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Abstract

Hoang Duy TRINH

Data Analytics for Mobile Traffic in 5G Networks using
Machine Learning Techniques

This thesis collects the research works I pursued as Ph.D. candidate at the Universi-
tat Politecnica de Catalunya (UPC). Most of the work has been accomplished at the
Mobile Network Department Centre Tecnologic de Telecomunicacions de Catalunya
(CTTC). The main topic of my research is the study of mobile network traffic through
the analysis of operative networks dataset using machine learning techniques. Un-
derstanding first the actual network deployments is fundamental for next-generation
network (5G) for improving the performance and Quality of Service (QoS) of the
users. The work starts from the collection of a novel type of dataset, using an over-
the-air monitoring tool, that allows to extract the control information from the radio-
link channel, without harming the users’ identities. The subsequent analysis com-
prehends a statistical characterization of the traffic and the derivation of prediction
models for the network traffic. A wide group of algorithms are implemented and
compared, in order to identify the highest performances. Moreover, the thesis ad-
dresses a set of applications in the context of mobile networks that are prerogatives
in the future mobile networks. This includes the detection of urban anomalies, the
user classification based on the demanded network services, the assistance to net-
work optimization frameworks (e.g., mobile device wake-up schemes).
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Chapter 1

Introduction

1.1 Context and Motivations

The penetration of Information and Communication Technologies (ICTs) in all the
parts of the society is confirmed by the statistics: at the time of writing, there are an
average of 6.8 billion of mobile subscribers and 750 million households connected
to the Internet [1]. These unprecedented numbers of connected devices increase the
mobile traffic and, at the same time, increment the complexity of the systems re-
quired to manage such amount of information. The increasing volume of exchanged
data, together with new requirements for higher peak data-rates, improved relia-
bility and reduced latency in fifth generation (5G) networks pose new challenges
to telecommunications researchers and operators for increasing the system perfor-
mance and, contemporaneously, improving the network power efficiency. In fact, it
is expected that the 5G networks will support 1000 times more traffic, 10 times more
users, and improved energy efficiency with respect to the actual 4G technology [2].

Starting from 4G, the concept of Self-organizing Networks (SONs) has been a
key driver for improving Operations, Administration, and Maintenance (OAM) ac-
tivities [3]. SON has been introduced by 3GPP in Release 8 [4] and aims at reducing
the cost of installation and management of 4G and future technologies, bringing in-
telligence and autonomous adaptability into cellular networks. At the same time
it points at increasing the mobile network automation and minimizing the human
intervention in the cellular network management through the capability of config-
uring, optimizing and healing itself.

In order to enable the concept of SON, several methods like Markov models [5],
fuzzy controllers [6] and genetic algorithms [7] have been applied to provide intel-
ligence to cellular networks. One problem that arises, however, is that as the tech-
niques get more complex, more data is required to the algorithm to meet its design
requirements. Moreover, many of the solutions require expert engineers to analyze
data and adjust system parameters manually in order to optimize or configure the
network. Some other methods also require expert personnel on site in order to fix
certain problems, when detected. All these solutions are extremely ineffective and
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costly to mobile operators and, although operators collect a huge amount of mobile
data daily, it is not being used at its full potential. [8]

Within this challenging context, latest years have seen Machine Learning (ML)
as one of the most potential and promising tool to investigate a large set of com-
plex problems. ML techniques, in particular Deep Learning (DL) algorithms, have
obtained tremendous impacts in many research fields (e.g. computer vision, speech
synthesis, machine translation) [9], becoming in a relatively short amount of time
the state-of-the-art framework for a wide range of problems. Self-driving car and fa-
cial recognition applications are examples of businesses that received a major impact
from the development of ML technologies [10]. The rapid growth of ML is directly
correlated with the technology evolution: training neural networks has become rel-
atively fast and cheaper, thanks to more powerful hardware, like Graphical Process-
ing Units (GPUs) and thanks to specifically designed Tensor Processing Units (TPUs)
for Deep Learning [11]. Moreover, the rapid growth of the AI community has been
beneficial to the development of many open-source libraries and tools (e.g. Tensor-
Flow, Keras, PyTorch, fast.ai), that helps many researcher in the implementation and
deployment of ML algorithms.

However, one of the requirements for developing valuable ML algorithms, is
the existence of qualitative and measurable data: in the case of computer vision,
or speech recognition, there exist a large pool of datasets that represents a shared
benchmark where researchers can compare the proposed solutions. Examples are
the MNIST handwriting dataset [12] or ImageNet [13], which contains more than
20,000 categories of images. In the field of wireless and mobile communications,
there is not a similar counterpart. In fact, retrieving data from mobile networks it is
more difficult and Mobile Network Operators (MNOs) are not always favourable to
release data due to various reasons, including security and users privacy issues.

There are some exceptions, like the Data for Development (D4D) challenge from
the Orange group [14], which made available anonymous data extracted from oper-
ative networks in Senegal and Ivory Coast to research laboratories. However these
data are in general aggregated and do not allow deep insight into the operator’s net-
work. The lack of extensive datasets represents a major limitation for the advance-
ment of the ML based network management research. Some databases are available
([15]), providing a precious insight in mobile network operators, but still does not
give sufficient characterization on the behaviour of the network, since it does not
contain detailed information on which Internet protocols and which technologies
are involved in the specific communication sessions. To assist resource allocation,
quality of service management and other services (e.g. anomaly detection), we need
to have finer quality data, accessing directly to the network channel information ex-
changed between the users and the associated base stations. This allows to have
access not only to aggregate base station statistics, but also to more information de-
rived from the radio protocols, such as the resource block allocation and the link



1.2. Objectives and Contributions 3

adaptation mechanism of the system, which are valuable for the above mentioned
network management issues.

1.2 Objectives and Contributions

The work in this thesis is conducted in a data-driven way, and it focuses on under-
standing the enormous amount of information exchanged in the mobile network.
Most of the data transmitted in the network can be re-utilized to discover and un-
derstand hidden structure and implicit correlation between the different parts of the
system. This information can be merged with data gathered from other sources, for
example using information on the typical users behaviors or on the land-use of dif-
ferent geographical areas. The combination of heterogeneous types of sources can
be studied to enable a strong analysis and a deeper knowledge on the network and
on its users.

The objective of this thesis is to characterize the users mobile traffic, the appli-
cation usage and their traffic patterns. The analysis of the temporal and the be-
havioural statistics of the network is then needed to individuate the area for im-
provement in terms of efficiency and user QoS. The exploitation of a large amount
of information allows to improve the performance of the network itself but also to
solve a set of problems (e.g. anomaly detection, user classification) that can affect
the network infrastructure.

The work starts from studying datasets that come from the actual mobile net-
work deployments and to derive new models that may be subsequently used for the
design network optimization frameworks and respond to a multitude of network-
ing problems like resource allocation, energy saving and security, to name a few. The
initial part of the work has been devoted to understand the most suitable datasets to
be used in the analysis. To this end, it is important to identify different scenarios in
order to cover all the possible use cases in the next generation mobile network. The
data to be used can be acquired through the tools presented in the next chapters or
synthetically reproduced by network simulators.

Another possibility is to find free available datasets on the Internet. The major
concerns is related to the quality of the available data: most of public datasets con-
tain irrelevant information without details on the specific technologies involved or
they consist of aggregate of statistics. Thus, granularity and resolution of the dataset
become discriminant characteristics for the dataset to be considered. In particular, it
is possible to use a sniffer, as the one described in [16], to collect raw communication
traces exchanged by the users and the associated eNodeB. This would allow to have
access to millisecond statistics, that represent valuable information to describe the
users’ traffic at a network level, and enable the characterization of the users based
on the different demanded resources.
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The high level objective is to make the networks more self-aware, by exploiting
the information already available in the network to gain experience in the network
management, which allow to automatize the decision processes. Additionally, the
use of pattern recognition and machine learning algorithms enables the design of al-
gorithms for the prediction of the user mobility and the traffic load, in order to sup-
port network management strategies. The study of neural networks is performed
to evaluate the effectiveness of these algorithms to predict the traffic patterns for a
given mobile network cell. Derived models of these patterns, that are used to drive
network policy algorithms, and the quantitative evaluation of network related ap-
plications, such as anomaly detection and user classification, are major contributions
of this work.

The tasks that this thesis addresses can be summarized as follows:

1. state-of-the-art study on mobile traffic modeling, current standardization of
5G and machine learning algorithms;

2. collection of a new dataset using reliable tools for creating a comprehensive
database on mobile network traffic to be studied;

3. analysis of mathematical tools: study of algorithms and ML techniques that
can be exploited for the mobile traffic characterization; understanding if the
learning process can be supervised or not;

4. understanding the network traffic: study the dataset to infer knowledge about
the users and the resource scheduling mechanisms; identify opportunities for
improvement and optimization;

5. modeling and prediction of the traffic: enabling a precise traffic prediction for
aggregated traffic profiles using ML methods;

6. anomaly detection: identify urban anomalies in given traffic profiles related
to crowded events and find efficient algorithms for recognition; extend the
anomaly detection with semi-supervised procedures for unseen anomalies;

7. classification of mobile services and apps: extract user sessions from LTE
Physical Control Channel (PDDCH) and use them to classify the user traffic
based on two levels: demanded service and used applications; use the clas-
sifier to produce unsupervised traffic decomposition and profiling for given
base stations;

8. energy-efficient optimization: based on the prediction and traffic modeling,
serve the acquired knowledge to network energy optimization that would
include energy harvesting sources for powering the network and proactive
scheduling of the resources among connected users.
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1.3 Thesis Organization

This section gives a brief outline of how the thesis is organized and which topics are
presented and discussed in the next chapters. Chapters 2 and 3 are introductory and
they serve as a baseline on the study of mobile networks from real traffic datasets
and on the fundamentals of machine learning. The contributions are presented start-
ing from Chapter 4, which describes in details the measurement campaign for the
data collection. Chapters 5, 6, 7 and 8, include published works with results and
applications derived from the collected dataset.

Chapter 2

This Chapter presents the related works on the study of the mobile network traffic
using real datasets. A brief description of available datasets is given from an aca-
demic perspective. We present related works on the temporal characterization of
the traffic as time-series and a literature review for anomaly detection and users’
traffic classification using machine learning approaches.

Chapter 3

This Chapter provides the necessary background information regarding the machine
learning algorithms implemented in this thesis. It starts describing a general taxon-
omy of ML based on the type of available data and labels. Then, a short introduction
on Neural Networks and Deep Learning structures is given. For complete reference,
the reader is suggested to refer to textbooks [17, 18].

Chapter 4

In this Chapter we explain why we need to collect a new database for studying
the mobile networks. We describe the motivations and the challenge that the data
collection system poses. Also, we give the details on which is our setting and tool
used during the measurement campaign to capture an extensive database of mobile
traffic data. This represents a major contribution of the thesis.

Chapter 5

This Chapter presents the analysis and the modeling of the traffic starting from the
collected data traces. Statistical analysis and predictive modeling are given. The
results reported in this Chapter are presented in the following papers:

• Trinh, H. D., Bui, N., Widmer, J., Giupponi, L., & Dini, P. (2017, October). Anal-
ysis and modeling of mobile traffic using real traces. In 2017 IEEE 28th An-
nual International Symposium on Personal, Indoor, and Mobile Radio Communica-
tions (PIMRC) (pp. 1-6). IEEE. [19]
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• Rago, A., Piro, G., Trinh, H. D., Boggia, G., & Dini, P. (2019, June). Unveiling
Radio Resource Utilization Dynamics of Mobile Traffic through Unsuper-
vised Learning. In 2019 Network Traffic Measurement and Analysis Conference
(TMA) (pp. 209-214). IEEE. [20]

• Trinh, H. D., Giupponi, L., & Dini, P. (2018, September). Mobile traffic predic-
tion from raw data using LSTM networks. In 2018 IEEE 29th Annual Interna-
tional Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)
(pp. 1827-1832). IEEE. [21]

Chapter 6

In this Chapter we describe how to perform anomaly detection using mobile net-
work data to identify potential urban anomalies caused by crowded events. The
results reported in this Chapter are presented in the following papers:

• Trinh, H. D., Giupponi, L., & Dini, P. (2019, June). Urban anomaly detection
by processing mobile traffic traces with LSTM neural networks. In 2019 16th
Annual IEEE International Conference on Sensing, Communication, and Networking
(SECON) (pp. 1-8). IEEE. [22]

• Trinh, H. D., Zeydan, E., Giupponi, L., & Dini, P. (2019). Detecting Mobile
Traffic Anomalies Through Physical Control Channel Fingerprinting: A Deep
Semi-Supervised Approach. IEEE Access, 7, 152187-152201. [23]

Chapter 7

This Chapter provides a methodology to identify with high accuracy the demanded
services only by processing the information included in the unencrypted physical
channel. Moreover, a novel wake-up scheme to enhance the energy-efficiency of
5G mobile devices is proposed to prolong the battery lifetime while reducing the
buffering delay. The results reported in this Chapter are presented in the following
papers:

• Trinh, H. D., Gambin, A. F., Giupponi, L., Rossi, M., & Dini, P. (2019). Mo-
bile Traffic Classification through Physical Channel Fingerprinting: a Deep
Learning Approach . arXiv preprint arXiv:1910.11617. [24]

• Rostami S., Trinh, H. D., Lagen S., Costa M.,Valkama M. & Dini, P. (2019).
Proactive Wake-up Scheduler based on Recurrent Neural Networks. arXiv
preprint arXiv: 1910.11617. [25]

• Rostami S., Trinh, H. D., Lagen S., Costa M.,Valkama M. & Dini, P. (2019).
Wake-up Scheduling for Energy-Efficient Mobile Devices. arXiv preprint arXiv:
1910.11617. [26]
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Chapter 8

This final Chapter is devoted to summarize the presented results of the thesis and to
outline the future works.
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Chapter 2

Related Work

This Chapter is devoted to the state-of-the-art literature on mobile traffic character-
ization based on data analytics and machine learning. The Chapter is organized in
four sections. Each section introduces the scientific work used as background for
the main contribution of this thesis explained in the next chapters, as detailed in the
diagram below.

Section 2.1
Datasets for Mobile

Traffic Analysis

Chapter 4: Network Measurements and Datasets Collection
Section 5.1: Analysis and Modeling using Raw LTE Traces
Section 5.2: Unveiling Radio Resource Utilization Dynamics
through Unsupervised Learning

Section 2.2
Traffic as Time-

series and Mobile
Prediction

Section 5.3: Mobile Traffic Prediction from Raw Data
using LSTM Neural Networks
Section 7.2: Proactive Wake-up Scheduler for Energy-Efficiency

Section 2.3
Anomaly Detection Chapter 6: Urban Anomaly Detection using Mobile Data

Section 2.4
Traffic Classification

and Prediction

Section 2.2
Mobile Traffic 

Prediction

Section 7.1: Mobile Service and App Classification
Section 7.2: Proactive Wake-up Scheduler for Energy-Efficiency

R
el

at
ed

 W
or

ks C
ontributions

Figure 2.1: Thesis organization.

First, in Section 2.1, we give a brief description of examples of available datasets
that come from operative mobile network deployments. We explain which are their
main characteristics and their limitations. Then, in Section 2.2, we present related
works on the temporal characterization of the traffic as time-series and models for
the prediction of the future samples. Next, in Sections 2.3 and 2.4, we give a lit-
erature review on machine learning approaches for two important applications in
mobile networks: anomaly detection and users’ traffic classification. In particular,
we present a comprehensive comparison based on different learning methods and
on the type of analyzed traffic.
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2.1 Datasets for Traffic Analysis in Mobile Networks

Understanding the utilization of the actual network resources is fundamental for
building solid models over which working and proposing solutions to target effi-
ciency in mobile networks. With the advent of new 5G paradigms and the tremen-
dous increase of the Internet usage, there is the need for finding efficient radio re-
source management and network planning solutions that will further exploit and extend
the actual resources, in order to provide an ubiquitous system to all the users [27].
In this context, information on the users’ traffic profiles and on the network usage
patterns becomes essential during the phases of planning and of deployment of the
network. This translates into a more efficient allocation of the resources that can help
to mitigate the effects of the increasing costs incurred by the network operators to
tackle the expected upsurge of the Internet demands.

However, for research and academic communities, it is very challenging to get
access to real mobile data extracted from the network: mobile network operators
rarely release full datasets of the mobile traffic due to problems concerning, for ex-
ample, the subscribers privacy. Users traffic data are not always made available or
they can be found but with very limited information. Typically the available datasets
are originally collected by network operators for billing and monitoring purposes at
the cellular network operator’s side.

By applying anonymization and aggregation, to preserve the customers’ privacy,
some datasets have been released for research purposes. One example of mobile
traffic dataset is the one released in the Telecom Big Data Challenge [28]: this dataset is
released by the Italian network operator TIM and consists of aggregated traffic de-
rived from the Call Detail Records (CDRs). The objective of this context was to enable
big data operations to find meaningful insights in the mobile traffic related to major
Italian cities, including Milan and Rome. In the released dataset, the operator made
available information on the exchanged text, voice and data, which are mixed, with-
out additional information on the used technology. Short information is given on
which type of base station the users are attached to. Also, information on the utiliza-
tion of the resources at a physical level is not disclosed and therefore, no scheduling
optimization of the radio resources can be assessed.

Another well-known example is the Data for Development (D4D) challenges [14],
released by Orange, a French-based network operator who also operates in some
African countries. In this case, the challenge aims at employing mobile traffic datasets
towards the development of Ivory Coast and Senegal. The participants of this chal-
lenge are provided with traffic dataset that reflect users activities over the network.
The mobile traffic dataset is derived from a CDR database with information about
the Orange subscribers. Information related to customers’ contracts at Orange dur-
ing the data collection phase are omitted, and all the customers’ identifiers are re-
placed with randomly generated numbers, to prevent a direct mapping between
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their identities and their mobile phone activities. Due to technical data collection
problems, some information is missing from the dataset. Note that in this challenge
the main focus was not primarily the study of the network related issues and opti-
mization. In fact, most of the works using this dataset provided social insights and
related solutions regarding, for example, the genesis of millet prices in Senegal [29],
the ubiquitous sensing for mapping poverty in developing countries [30] and the
estimation of food consumption and poverty indices with mobile phone data [31].

2.1.1 Dataset Characteristics

To be fruitful from an academic perspective, a mobile network dataset needs to com-
ply with a set of well-defined characteristics. A comprehensive survey about mobile
datasets can be found in [32]. The available mobile traffic datasets can be very dif-
ferent in terms of temporal granularity, aggregation level, and type of traffic. This
is a direct consequence of how the data has been collected, and which is operator’s
goal in case the data is publicly released. As broad categorization, datasets can be
classified according to the next following characteristics:

Network vs User side perspective: A first distinction is given by which kind of
characterization the dataset enables to assess. Generally, we can identify two major
perspectives:

1. An aggregate point of view, where the overall traffic, relative to all users ac-
cessing the network within a certain geographical area, is analyzed;

2. An individual mobile user point of view, where the behavior of each customer
or mobile device is accounted for by itself.

In general, the closer the data collection is to the user, the more detailed is the in-
formation we can obtain. However, measuring the data at the users’ side, generally
implies significant efforts to cover a network-wide perspective. To this end, a viable
solution consists of crowd-sourcing methods. For example, network information
can be collected with applications installed in the user’s device. These information
are periodically uploaded to a server to form a continuously updated database with
network-related information [15]. An example of user-side reporting the network
measurements is given by OpenSignal [33].

In some cases, operators can consider network-oriented aggregation schemes, in
order to avoid possible privacy problems resulting from sharing per-user informa-
tion. As an example, network operators can gather all users communication data for
each cell on a periodic temporal basis. Such a scheme enable networking analysis
that allow to characterize usage patterns over the network [34]. From the perspective
of users, aggregation schemes allow to hide users identifiers and to protect their pri-
vacy. However, when sharing per-user data, operators may provide coarse-grained
information, which can limit their usefulness in the study of the network.
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Temporal granularity: The temporal granularity is of extreme importance for
the potential subsequent analysis of the dataset. A high-temporal resolution dataset
enables a deeper study of the dataset and allows for the identification of potential
optimization solutions. Starting from 4G, the communications between network and
user’s devices is expected to be in the order of milliseconds. Therefore, to be able
to perform a complete analysis and to provide optimal solutions, the data collection
should comply with the characteristics of the specific technology involved. A more
coarse-grained dataset still can present a general overview of the network utilization
(e.g. statistics of users’ data volume per month, average speed of users per operator,
etc.), but cannot be used for general academic purposes. As consequence, a higher
resolution brings also more data volume and more complexity to manage.

Spatial granularity: The spatial granularity is fundamental to identify potential
patterns and relationships between the users’ behaviours and their usage of the net-
work. Having specific descriptions of the areas where the network information are
gathered, makes possible to formulate localized and optimized solutions. With the
advent of 5G, the use-cases and the users’ scenarios are multiples (e.g. high-speed
scenario, rural and sub-urban areas) and optimized configurations of the network
are needed to satisfy the requirements in terms of speed and network coverage. To
this end, understanding for example the relationships between the user’s activities,
and discovering recurrent usage patterns can be fruitful for a smarter optimization
of the network. However, in some cases, operators consider the position of their
equipments as sensitive information. Consequently, forced by regulations, they may
provide only an approximation of their locations, as done in the Orange D4D dataset,
where they applied such a technique to share the positions of the base stations.

Type of Traffic: The heterogeneity of datasets is also observed in terms of traffic
type. Mobile traffic operators often release CDR dataset where texts, voice and Inter-
net data communications are measured for bill charging purposes. However, from
an academic perspective, it would be important to define also the specific use-case:
understanding which protocols are used (e.g. TCP or UDP), or which technology has
been involved (e.g. Voice over IP (VoIP), 3G, 4G, LTE), it is of more interest from an
engineering and research point of view, and then can help, for example, to identify
different user classes, with different Quality of Service (Qos) requirements.

2.2 Mobile Traffic as Time Series

In literature, the mobile traffic dynamics is often modeled as a time-series represent-
ing a set of traffic features over specific time interval [35, 36, 36, 34, 37, 38]. From an
analysis point of view, this representation can be used to track the temporal evolu-
tion of both aggregate and individual user traffic. Additionally, it enables different
kinds of aggregation schemes and therefore, diverse levels of granularity, depending on
the objective of the analysis.
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Studying the spatio-temporal dynamics of users’ traffic allows to understand the
evolution of the aggregate demands over the access network and to find repetitive
patterns. For example, it is common to identify a cyclic daily behavior characterized
by a low traffic at night hours and a high traffic during day hours, across different
datasets. Accordingly, mobile traffic is observed to follow a regular behavior. For
example, authors in [39], while analyzing the packet data call activity over multiple
cells for one week duration , notice that the traffic presents a daily repetitive behavior
over weekdays, characterized by a low activity during the night and a high activity
during the day. The same behavior is also perceived at different time scales in other
several studies [40, 35, 41].

Although the most significant load difference is between night and day, other
studies have pointed to traffic variations over different temporal scales, suggesting
the need for further investigations to understand the correlation with the human
activity dynamics over smaller time intervals. In [42], the authors detect variations
at an hourly basis, of both calls and texts activities in two different scenarios: San
Francisco, and an unnamed Chinese city. Interestingly, they identify the occurrence
of two daily peaks over the Chinese dataset for calls and one peak for texts, while in
the case of San Francisco, they detect only one peak for calls and no peak at all for
texts. The study in [39] exploits temporal variations at an even finer granularity, of
10 minutes, in packet data call traffic. Authors detect the presence of several peaks,
with the largest ones appearing mostly in the late afternoon. Significant differences
are also observed for various traffic types between weekends and weekdays. In [39],
notice that packet data call traffic is higher on weekdays with respect to weekends.
Finally, authors in [43] capture seasonal variations in users traffic: they detect an
increase of 20% in monthly data usages towards the end of the year with respect to
data usages in the summer.

2.2.1 Prediction and Modeling of Mobile Traffic

Predictive analysis on mobile network traffic is becoming of fundamental impor-
tance for the next generation cellular network, and the proactive knowledge about
which are the user demands, allows the system for an optimal network resource al-
location. To meet the strict requirements of 5G, and its new set of applications, it is
fundamental that the network becomes aware of the traffic demands and be able to
predict with accuracy the user’s requests .

Due to the characteristics of the available datasets, the prediction of mobile traffic
patterns has been usually studied through time-series analysis methods. As conse-
quence, most of the works treat the mobile traffic analysis using techniques such as
Auto Regressive Integrated Moving Average (ARIMA) and Support Vector Regres-
sion (SVR), which are two most widely used methods to deal with time-series. Also
different versions of the ARIMA model (e.g. SARIMA, ARIMAX, mixed ARIMA,
Fractional-ARIMA), have been applied to wireless networks to capture the trends
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of the temporal evolution of the mobile traffic, [44], [41]. In particular, SARIMA
(Seasonal ARIMA) is a technique to study the seasonal and cyclic patterns that are
present in the traffic, in order to find the recurrent behaviour of the user’s mobile
demands.

However, one of the known limitations of such techniques is the poor robustness
to the rapid fluctuations of the time-series, since the prediction tends to over repro-
duce the average of the past observed values [45]. In some cases, the data resolution
can be in the order of milliseconds, allowing for a deep analysis in terms of temporal
granularity: however, this implies also a rapid change in the time-series that cannot
be captured by traditional methods. SVR models are also limited for the reason that
the users need to determine some key parameters for the model, and there is no a
structured way available for determining best values for these parameters [46]. Ad-
ditionally, these methods work well with homogeneous time-series, where the input
and the prediction are within the same set of values. When the dataset includes a
higher number of metrics, the data structure becomes more complex and the diffi-
culty of extracting meaningful patterns increases as well.

For these reasons, accompanied by rapid technology evolution, in recent years
Artificial Neural Networks (ANNs), and in particular Recurrent Neural Network (RNNs),
have shown outstanding results for time domain problems and sequential data.
They have been heavily adopted for text prediction and machine translation [47],
becoming the state of the art approach for this type of problems. These neural net-
work structures can fit the problem of mobile traffic prediction, in particular, when
data consists of multivariate features and presents heterogeneous, non-linear infor-
mation about the users communications. Moreover, the time-domain characteristic
of the mobile traffic can be assisted by the RNN properties, which are able to capture
the temporal trends of the data.

Results in literature show that RNN networks outperform other machine learn-
ing approaches for time-series analysis in the traffic prediction. As example, Long
Short-Term Memory (LSTM) structures have been proposed in [41] for traffic predic-
tion. Long Short-Term Memory networks represent the most used implementation
of RNN due to their complex structure, which allows them to solve the vanishing-
gradient problem and learn longer term dependencies from the input data. In [41],
LSTM has been used to study a dataset that consists of the spatio-temporal distribu-
tion of the mobile traffic from different base stations. Spatial correlation has been
used to highlight similarities between neighbouring base stations. Even though
LSTM has been applied for the traffic prediction, in this case the input data con-
sider only one feature (e.g. the spatially distributed traffic), and only a one-step
prediction. A multi-step prediction would be able to predict the traffic for multiple
steps, providing a longer horizon time to perform potential network optimization.
Moreover, considering more than one feature enables a multivariate characterization
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of the traffic, that would include, at the same time, the radio-resource allocation and
data-rate of the communication between the device and the eNodeB.

2.3 Anomaly Detection using Mobile Network Data

With the rising capacity demand in mobile networks, the infrastructure is becom-
ing larger, denser and more complex to manage. Therefore, a key characteristic
of the next generation systems is the ability to be dynamic, programmable and re-
configurable, driven by analytics and intelligence. This feature enables automatic
and autonomous operations that may address a multitude of issues, e.g. capac-
ity planning, QoS/QoE management, outage detection and relief, energy saving,
to name a few, so as to optimize network functioning, simplify its maintainance
and save costs. In this context, the automatic detection of urban anomalies, like
unexpected crowd gathering, is of upmost importance for government and public
administration [48].

Network traffic anomalies may be defined as unusual and significant changes in
the traffic of a network, which a mobile network operator (MNO) needs to timely
detect to take the proper actions and maintain the right operation of its network
([49], [50]). Detecting anomaly using mobile network data represents a perfect use-
case for exploiting the pervasiveness of mobile networks in urban areas. Examples
of anomalies include both legitimate activities such as transient changes in the cus-
tomer demand, flash crowds, and illegitimate activities such as Distributed Denial
of Service (DDoS) attacks, device eavesdropping, etc. [51].

Different Approaches Proposed Approach
Characteristics Limitations Advantages Differences

Traditional Density and distance
based [52, 53]

High data dependence Use of multivariate data to
increase hit rate (recall)

Higher order distinction be-
tween AD and normal traffic
in crowd events

Parametric-based [54, 55, 56] Model dependence, dif-
ficulty dealing with high
dimensional data

Contextual Anomaly rather
than only point AD

Shallow
Learning

Based on dataset labels: su-
pervised [57], unsupervised
[58], semi-supervised [59]

Severe class unbalance
Model drift

Ability to interact with raw
complex network data

Extension for high dimen-
sional mobile network data

Uncertainty around data
model

High Learning Capacity Early detection capabilities

Scaling issues for large data

Deep
Learning

Using CNN, RNN, LSTM
[60] to identify anomalous
behaviour

Depends mostly on training
over single deep model
Limited application scope
(e.g. AE used most for
intrusion detection)

Apply a decision function
on reconstruction (or predic-
tion) error to take into ac-
count traffic variations

Detection of contextual
anomalies using two step
approach and with hybrid
models (e.g. LSTM-AE)

Network
Datasets

CDR-driven [61, 62]
Network flow (TCP connec-
tion) driven [63, 64]
Social network data driven
[65]
Log analysis to detect suspi-
cious behaviour [66]

Mostly proprietary data
Low resolution and aggre-
gated data
Difficult to correlate with
event
No operational datasets

Fine-grained measurements
(every 1ms TTI)
Detect all the users con-
nected to LTE eNodeB
Availability of PHY Network
informations (i.e. Resource
Blocks, MCS index)

Based on unencrypted LTE
PDCCH measurements
Spatial and time context that
allows for social event corre-
lation
Can be performed without
MNO intervention

Table 2.1: Overview of AD techniques, datasets and comparison with
the proposed approach.
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2.3.1 Traditional AD Approaches

Anomaly Detection (AD) and outlier detection have been widely investigated in dif-
ferent research areas and there are many works that cover these issues from statis-
tical perspectives [52, 53, 67, 68, 69, 54, 70, 63]. One of the major challenges that
is encountered in all of these works is the design of a suitable model that can ac-
curately separate normal data from unusual data points. A classification of tradi-
tional AD algorithms can be done based on four main categories: density-based,
distance-based, parametric and statistical-based algorithm. In density-based and
distance-based AD, spatial proximity of data points are used. Density-based spatial
clustering of applications with noise (DBSCAN) [52], Isolation Forest and Local Out-
lier Factor (LOF) [53] are some examples of density-based AD algorithms. Distance
based AD algorithms comprises adaptations of clustering algorithms, including K-
NN [67, 68], and K-Means [69]. Gaussian Mixture Model (GMM) [54], Single Class
SVMs [55] and Extreme value theory [56] are notable examples of parametric based
approaches. Statistical tests such as z-score and variations [70] are examples of statis-
tical based approaches. However, traditional approaches are not able to handle the
complex nature of raw mobile control channel data.

Compared to traditional approaches, in our work we focus on AD using multi-
variate data analysis to increase the overall hit-rate of anomaly detection to differ-
entiate between anomalous and normal events. Moreover, our analysis is based on
contextual AD events rather than point anomalies as is usually studied with tradi-
tional AD approaches.

2.3.2 Shallow Learning based AD Approaches

Shallow learning algorithms for AD depend on the availability of the dataset and on
how the algorithms are trained (using a labeled dataset, using an unlabeled dataset
or using partly the dataset with samples of the majority class). In case of a labeled
dataset, the algorithm can be trained supervisedly: in this case, the AD is performed
as a classification task to differentiate the normal class from the anomalous class.
However, there are two major issues that arise in supervised anomaly detection:
first, the anomalous instances are far fewer compared to the normal instances in
the training data, creating imbalanced class distributions [71, 72]. Second, obtain-
ing accurate and representative labels, especially for the anomaly class is usually
challenging.

The performance of supervised anomaly detection are in general superior to un-
supervised approaches [73, 58]. However, obtaining a labeled dataset for AD is an
extremely expensive operation due to the few anomalous occurrences. In a com-
plex scenario like operative mobile networks, it is unrealistic and infeasible to set
the AD problem as a supervised task. Moreover, as the dimensionality of mobile
data increases, shallow learning approaches have difficulty in terms of scaling. For
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these reasons, unsupervised or semi-supervised approaches are more favorable. A
semi-supervised statistical based method using the Call Data Records (CDRs) pro-
vided by a network operator is given in [59].

2.3.3 Deep Learning based AD Approaches

Emerging deep learning techniques recently have been applied to AD problems. A
survey of such techniques within diverse research areas and application domains
is provided in [60]. Application of traditional approaches in combination with deep
learning have also been studied. For example, the authors in [74] have demonstrated
that before training a RNN model, an initial clustering with K-NN can enhance the
detection of outliers in social media. A more recent survey paper that brings to-
gether previous approaches on deep learning in the domain of wireless and mobile
networking domain is given in [75]. Different deep learning architectures such as
Restricted Boltzmann Machines (RBM), Autoencoders (AEs), CNN and RNN have
also been considered to extract the representative features from the datasets and ob-
tain a characterization of network traffic behaviours. For example, CNN and RNN
are proven to be able to study multi-dimensional input correlation, and they are ap-
plied to model spatial and temporal characteristics of the mobile data in [76, 77].
In these cases, anomalies can be detected whenever a sample displays character-
istics that are significantly isolated in the feature space. Authors in [78] combine
CNN and RNN for automatic feature extraction and AD from web traffic over a
one-dimensional time-series signal. Another deep learning based approach with
autoencoders is used to reconstruct the input samples and it has been employed
for intrusion detection in [79]. A supervised AD algorithm using variational AEs is
provided in [80], in order to solve both seen and unseen anomalies. Using AE, the
reconstruction error can be evaluated and those samples that show abnormal values
are likely to be considered anomalies.

In some cases, the learning is done in a supervised manner using a labeled
dataset, where the algorithms are trained using both classes (normal and anoma-
lies) of traffic instances. In contrast, in this work, due to the nature of the dataset,
we choose a semi-supervised deep learning approach, where only one class of sam-
ples (normal traffic) is needed to train the AD algorithms. Our proposed design
comprises a stacked architecture combined with Long Short-Term Memory (LSTM)
cells, which are an improved structures for RNN implementation, that are able to
extract the relevant features from the multivariate input dataset collected from mo-
bile network. In this work, we use a two-steps approach to detect anomalies. First
we exploit generating hybrid models (e.g. with autoencoders). After building the
deep learning model, instead of using a static threshold on the reconstruction (or
prediction) error to detect the anomalies, we use first and second order statistics to
calculate a dynamic error threshold that take account of the traffic variation during
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different hours of the day using a moving average with discrete linear convolution
method.

2.3.4 Datasets used for AD Approaches

Datasets used for AD approaches are diverse and involve different data domains
such as cyber-intrusion detection systems, image and speech recognition, video surveil-
lance, industrial Internet of Things (IoT) applications, data center log analysis and
analysis of cellular network and communication data. For example, a survey for
anomaly detection using social network AD is given in [65]. AD methods on data
center log dataset has been done to detect suspicious activities in [66].

In the area of communication mobile networks, AD has been investigated in the
literature mainly based on usage of different datasets [63, 64, 62, 81, 61]. The authors
in [63] follow a statistical based AD approach where the proposed change-detection
algorithm is used to characterize the large scale dataset obtained from a real opera-
tional mobile network. The paper in [64] proposes a deep learning based network
AD system against malicious malware forming botnets in 5G networks using net-
work flow data features. The authors in [62] analyze CDRs of the Mobile Network
Operator (MNO) to extract anomalies and predict the future traffic over anomaly-
free data using neural networks. In [81], the authors adapt wavelet transformation
techniques to identify cellular network anomalies related to social events. Hussain et
al. in [82], investigate a semi-supervised statistical based AD approach using CDR
dataset provided by the operator Telecom Italia after the Big Data Challenge 2014
competition. CDRs are also used in [61], in which Karatepe et al. analyze the dataset
to find anomalies in generated CDRs using a rule based approach

Differently than previous approaches, in this thesis we use Long Term Evolu-
tion (LTE) control channel data source to identify potential anomalous events which
can give fine-grained measurement level. AD on this level of measurements can also
yield early detection possibilities compared to more coarse-grained measurements
such as CDRs or social media analysis outcomes. Moreover, we consider combi-
nation of multiple fingerprints in the raw dataset to help us detect not just point
anomalies but also contextual anomalies. This has the potential to increase the pre-
cision and hit-rate with respect to other data sources.

2.4 Mobile Traffic Classification

The categorization of network traffic into appropriate classes has many relevant uses
spanning from Quality of service (QoS)/Quality of Experience (QoE) control and
management, to pricing, network resource management, malware detection, and in-
trusion detection, to name a few. The key challenge of such classification algorithms
consists in the identification, and in the subsequent computation, of a number of
representative features. These features are then used to train algorithms that classify
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the data flows at runtime. Most of the surveyed approaches leverage some domain
knowledge, which is utilized to manually obtain the feature set, i.e., using prior infor-
mation by a human expert.

2.4.1 Learning Methods for Traffic Classification

The use of deep learning techniques has recently paved the way to automatic fea-
ture discovery and extraction, often leading to superior performance. For example,
in [83] encrypted traffic is categorized through deep learning architectures, proving
their better performance with respect to shallow neural network classifiers. The au-
thors of [84] present a mobile traffic super-resolution technique to infer narrowly
localized traffic consumption from coarse measurements. In detail, a deep-learning
architecture combining Zipper Network (ZipNet) and Generative Adversarial neu-
ral Network (GAN) models is put forward to accurately reconstruct spatio-temporal
traffic dynamics from measurements taken at low resolution. Another example is
found in [85], where identification of mobile apps is performed by automatically ex-
tracting features from labeled packets through CNNs, which are trained using raw
Hypertext Transfer Protocol (HTTP) requests, achieving a high classification accu-
racy. The work in [83, 84, 85], as the majority of the other techniques , use statisti-
cal features obtained from application or Internet Protocol (IP) level information for
both service and app identification, along with UDP/TCP port numbers.

The most common classification methods in the literature leverage UDP/TCP
port analysis and/or packet inspection. UDP/TCP port analysis relies on the fact
that most Internet applications use well-known Transmission Control Protocol (TCP)
or User Datagram Protocol (UDP) port numbers. For instance, the authors of [86]
define a mobile traffic classifier as a collection of rules, including destination IP
addresses and port numbers. Based on these rules, application-level mobile traffic
identification is performed deploying a dedicated classification architecture within
the network, and measurement agents at the mobile devices. However, port-based
schemes hardly work in the presence of applications using dynamic port numbers [87].

A scheme based on deep packet inspection is presented in [88]. The authors of
this paper devise a technique for Code Division Multiple Access (CDMA) traffic clas-
sification, using correlation-based feature selection along with a decision tree classi-
fier trained on a labeled dataset (which is labeled via deep packet inspection). The al-
gorithm in [89] extracts application layer payload patterns, and performs maximum
entropy-based IP-traffic classification exploiting different Machine Learning (ML)
algorithms such as Naive Bayes, Support Vector Machines (SVMs) and partial de-
cision trees. Remarkably, payload-based methods are limited by a significant com-
plexity and computation load [87]. Furthermore, many mobile applications adopt
encrypted data transmission due to security and privacy concerns, which renders
packet inspection approaches ineffective.
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Classification schemes for encrypted flows utilize traffic statistics, extracting mean-
ingful features from the observed traffic patterns. For example, the authors of [90]
propose a classification system for mobile apps based on a Cascade Forest algorithm
exploiting features related to: i) the mobile traces, ii) the Cascade Forest algorithm,
iii) connection-oriented protocols and connection-less protocols, and iv) encrypted
and unencrypted flows. Along the same lines, a classification approach that com-
bines state-of-art classifiers for encrypted traffic analysis is put forward in [83]. An-
other interesting work is presented in [87], where the authors classify service usage
from mobile messaging apps by jointly modeling user behavioral patterns, network
traffic characteristics, and temporal dependencies. The framework is built upon four
main blocks: traffic segmentation, traffic feature extraction, service usage prediction,
and outlier detection. When traffic flows are short and the defined features do not
suffice to fully describe the traffic pattern, Hidden Markov Models (HMMs) are ex-
ploited to capture temporal dependencies, to enhance the classification accuracy.

The authors of [91] show that a passive eavesdropper is capable of identifying
fine grained user activities for Android and iOS mobile apps, by solely inspecting
IP headers. Their technique is based on the intuition that the highly specific imple-
mentation of an app may leave a fingerprint on the generated traffic in terms of,
e.g., transfer rates, packet exchanges, and data movement. For each activity type,
a behavioral model is built, then K-means and SVM are respectively used to reveal
which model is the most appropriate, and to classify the mobile apps.

Automatic fingerprinting and real-time identification of Android apps from their
encrypted network traffic is presented in [92]. IP-based feature extraction and su-
pervised learning algorithms are the basis of a framework featuring six classifiers,
obtained as variations of SVMs and Random Forestss (RFs). RFs have also been con-
sidered in [93], where the authors claim that the sole use of packet-based features
does not suffice to classify the traffic generated by mobile apps. As a solution, they
use a combination of packet size distributions and communication patterns. Recent
works exploit Neural Networks (NNs) [85, 84, 83]. In [85], mobile apps are identified
by automatically extracting features from labeled packets through CNNs, which are
trained using raw HTTP requests. In [83], encrypted traffic is classified using deep
learning architectures (feed forward, convolutional and recurrent neural networks)
for Android and iOS mobile apps, with and without using TCP/UDP ports. The au-
thors of [84] combine Zipper Networks (ZipNet) and Generative-Adversarial Net-
works (GAN) to infer narrowly localized and fine grained traffic generation from
coarse measurements.

A systematic framework is devised in [94] for comparison among different tech-
niques where deep learning is proposed as the most viable strategy. The perfor-
mance of the deep learning classifiers is critically investigated based on three mobile
datasets of real human users’ activity, highlighting the related drawbacks, design
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guidelines, and challenges. Several survey papers dealing with deep learning tech-
niques applied to traffic classification can be found in [95], [96] and [75]. The authors
in [95] overview general guidelines for classification tasks, present some deep learn-
ing techniques and how they have been applied for traffic classification, and finally,
open problems and future directions are addressed. The survey in [96] presents a
deep learning-based framework for mobile encrypted traffic classification, review-
ing existing work according to dataset selection, model input design, and model
architecture, and highlighting open issues and challenges. Finally, a comprehensive
and thorough study of the crossovers between deep learning and mobile networking
research is provided in [75] where the authors discuss how to tailor deep learning
to mobile environments. Current challenges and open future research directions are
also discussed.

We stress that that most of the works in the literature, with the exception of [85,
84, 83] and [94], classify mobile traffic based on manual feature extraction and all
the papers that we surveyed process network or application level data. Our work
departs from prior art as we leverage the feature extraction capabilities of deep
neural networks and classify mobile data gathered from the physical channel of a
mobile operative network, at runtime, and without access to application data and
TCP/UDP port numbers.
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Chapter 3

Machine Learning Background

In this Chapter, we discuss about the Machine Learning (ML) framework applied to
mobile traffic analysis. This part presents an overview of the algorithms that have
been used to solve the different problems of mobile traffic characterization proposed
in this thesis. The objective of this chapter is to give a taxonomy of ML algorithms
and the different architectures we adopt in our proposed solutions.

First, in Section 3.1, we give a broad categorization of the ML algorithms based
on the learning procedure. Then, in Section 3.2, we introduce Neural Networks-
based algorithms and we present several deep learning architectures. Finally, in 3.5,
we give the details on the code implementation and we list the libraries used for the
software development.

3.1 ML Taxonomy

Based on the learning process, the set of ML algorithms can be broadly partitioned in
supervised, unsupervised, and reinforcement learning algorithms. The application
of each type of algorithm depends on the availability of labelled data and on the
problem goals. Generally, when we approach a problem using ML, the first issue
to be addressed is to understand which type of data we are able to provide to the
algorithm and the amount of information we can use to teach the algorithm to solve
the problem.

In the context of mobile networks, we observe that different problems can be ad-
dressed with different type of ML algorithm. The heterogeneity and the complexity
of mobile networks make the choice broad: tons of data are generated and transmit-
ted at different level of the communication stack, from the physical to the application
layer. The choice of which information to be used is fundamental and must consider
a multitude of factors, including the easiness to retrieve a large pool of data and the
granularity of information.
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3.1.1 Supervised Learning

In Supervised Learning, the algorithms learn using labelled data. In this case, the
objective is to build a statistical model for predicting, or estimating, an output based
on one or more inputs. Generally, supervised learning involves observing several
examples of a random vector x and an associated value or vector y, and learning to
predict y from x, usually by estimating p(y|x). The term supervised learning origi-
nates from the view of the target y being provided by an instructor who shows the
machine learning system what to do. For example, based on the collection of mo-
bile users data sessions, we want to implement a real-time classifier that is able to
identify to which category the user belongs to. If we succeed in collecting a suffi-
cient number of samples, we can train a supervised way a ML algorithm where each
session is labelled according to the specific class.

The efforts to obtain a labelled dataset must be measured with respect to the fi-
nal objective: having a labelled dataset enables the implementation of supervised
learning algorithms, which are more goal-defined and more precised to solve spe-
cific problems. However, in many cases this is not possible due to the complexity
of the labeling operation, which may require time and manual intervention. Some
examples of supervised learning tasks are the classification of users based on their
activity, as done in [24], or prediction of the LTE mobile traffic [21]: in the latter case,
the problem can be state as time-series prediction problem. In literature, this a well-
know problem which can be resolved with classic methods like ARIMA, Seasonal-
ARIMA [97], but the multidimensionality of the inputs and the complexity of the
data, justify the use of ML algorithms that have shown great performance in se-
quential data problems like machine translation and natural language processing
(NLP).

3.1.2 Unsupervised Learning

With unsupervised statistical learning, the goal is to learn relationships and struc-
ture from the input data. The algorithm receives unlabelled input with the objective
to find a pattern and learn relationships from it. In this case,we let the algorithm
learn by itself, without providing the correct answer to the problem we want to
solve. Conversely to supervised learning, unsupervised algorithms involve observ-
ing several examples of a random vector x, and attempting to implicitly or explicitly
learn the probability distribution p(x), or some interesting properties of that dis-
tribution. In unsupervised learning, there is no instructor and the algorithm must
learn to make sense of the data without any guide.

One of the most common unsupervised task is clustering, where the observed
samples are grouped into clusters, according to their intrinsic characteristics. Tradi-
tional algorithms for clustering can be categorized in distance-based algorithms or
density-based algorithms. In distance-based algorithms, the observed elements are
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grouped based on a measure of distance or similarity (usually pair-wise); in density-
based approaches, instead, the clusters are formed based on the density and on the
sparsity of elements in the features area (e.g. DBSCAN). With reference to the pre-
vious example, we may have access to many mobile user sessions but we may not
have a defined label for each session. Instead, we are interested into grouping the
users based on the characteristics of the sessions. Each session may be defined by
a multitude of parameters: the increasing dimensionality can increase the complex-
ity of the problem, making necessary to use more complex algorithms to extract the
hidden features needed for the classification.

3.1.3 Semi-Supervised Learning

In Semi-Supervised Learning, the learning process is a blend between supervised
and unsupervised. There is not a strict definition for this type of algorithms, but
generally, the learning includes both supervised and unsupervised tasks: for exam-
ple, within this category, we can put those algorithms using datasets that are only
partially labeled. Typically, in practical scenarios, only a small amount of samples
is labelled, and the objective is to assign a label to the unlabelled portion of data,
which is normally larger.

In this work, we use a semi-supervised approach for anomaly detection on LTE
traces: we want to detect the traffic associated to anomalous events. To this end,
we perform supervisedly the separation between those traces that we consider not
anomalous with high degree of certainty and then, we perform the features extrac-
tion in a unsupervised way using Autoencoder structures.

3.1.4 Reinforcement Learning

Reinforcement Learning (RL) is defined as a set of algorithms to solve sequential
decision processes where one agent directly interact with the environment, which
returns a reward through which the agent learns the optimal policy. The definition of
a RL problem involves an environment that can be defined by a set of actionsA, a set
of states S , and a reward function R. The formulation of the problem is derived from
Markov-Decision Processes (MDP), and mathematically the solutions are equivalent
for both formulations. In the context of mobile networks, we can model a problem
with Reinforcement Learning, when the network agents take actions to manage the
network procedures, protocols or functions.

In this thesis, we focus on the mobile network traffic modeling and characteriza-
tion rather than optimizing network precedures. Therefore, RL has not been used in
the solutions presented in this work. Nevertheless, the traffic models and the predic-
tion of the traffic given in this thesis, allows for a characterization and a simplifica-
tion of the traffic states that can be exploited in related works, where RL algorithms
have been implied [98].
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3.2 Artificial Neural Networks

Artificial Neural Networks (ANN) aim at reproducing the complex behaviour of the
human brain learning starting from a single cell unit called neuron. The popular-
ity of ANNs is due to the fact that most of the algorithm optimization is based on
the gradient-descent method, that can be implemented efficiently on hardware using
computational graphs. To this end, specific hardware has been built to facilitate and
to improve the performance of Neural Networks: GPUs and TPUs (Tensor Process-
ing Unit) are widely available on the market to perform such operations and can be
easily associated with cloud infrastructures that allow to manage large data lake and
Big Data operations.

Similarly to the brain cells, the basic element of ANNs is also called neuron: in
practice, the simplest neuron is represented by the Perceptron, which performs basic
mathematical operations. Perceptrons can be combined to form a layer, and layers
can be connected to build complex multilayers networks that can be represented as
directed graph, where the nodes are the neurons and the edges are connections.

Next, we present the ANN structures that have been adopted in this work, and
the analysis is limited to the description of the main architectures, without reporting
the full mathematical notations. For further reading, the author suggests [17, 18].

3.2.1 Multilayer Perceptron

A single perceptron is the basic component in an ANN and it is graphically repre-
sented by a circle (Fig.3.1). Suppose our dataset consists of m input-output pairs
(x(i), y(i)), i = 1, . . . , m: the simplest perceptron takes an input x(i) = [x1, x2, . . . , xn],
and produces an output ˆy(i)(w, x(i)), performing a linear combination with its weight
wi and non-linear activation function σ(·):

ŷ(i) = σ

(
n

∑
i

xiwi + b

)
(3.1)

Generally, the single neuron operations are mathematically expressed as matrix
multiplication. For this reason, it is common to add x0 = 1 as part of the input
vector x(i) = [1, x1, x2, . . . , xn] and include the bias term b in the vector of weights
w = [b, w1, w2, . . . , wn], so that the notation simplifies as follow:

ŷ(i) = σ
(

wTx(i)
)

(3.2)

Multiple perceptrons can be combined together to form a layered architecture,
usually named multi-layer perceptron. In the simplest case, each neuron performs the
same mathematical operations, using the same non-linear activation function. In
many text books, the input and the output are considered, respectively, the first and
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Figure 3.1: Perceptron graphical representation.

the last layers of the neural network. A graphical representation of a MLP is given
in Fig.3.2. The intermediate layers are called hidden layers, the neurons of this layer
are called hidden neurons, and their number defines the size of the layer. The term
hidden refers to the fact that we do not have the ground truth/training value for the
hidden units, in contrast to the input and output layers, both of which we know the
ground truth values from x(i), y(i).

x1

x2

x3

x4

Output

Hidden
layer

Input
layer

Output
layer

Figure 3.2: Example of fully-connected MLP architecture with 1 hid-
den layer and 5 hidden neurons.

Without considering the non-linear activation function, in our problem, we should
have that the classes must be linearly separable by a the decision surface consisting
of a hyperplane, as shown in Figure 3.3.

The task of the non-linear activation function is therefore, to extend the ability of
a neural network to non-linearly separable cases. The most common used non-linear
activation function is the sigmoid function:

σ(z) =
1

1 + e−z (3.3)

In our case, let z = wTx be the linear combinations of input and weights. Eq. 3.3
then becomes

σ(z) =
1

1 + exp(−∑ wixi + b)
(3.4)

The shape of the sigmoid function resembles the step function. One of most interest-
ing properties of using the sigmoid as non-linear activation function is its derivative,
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Figure 3.3: A pair of linearly separable vs. a pair of non-linearly sep-
arable patterns.

which can be written as:

σ′(z) =
e−z

(1 + e−z)2 = σ(z)(1− σ(z)) (3.5)

The simple calculation of its derivative make the sigmoid function very fast to be
implemented in the back-propagation algorithm, which is used to train the network.

3.2.2 Feed-Forward Networks

We refer to the ANN represented in Fig. 3.4. The ANN is also called Feed-Forward
Networks since the input data is "fed" to the network (forward-pass). The operations
of each layer can be denoted with a matrix of weight W [l], where l refers to the layer
number (we consider l = 0 for the input layer). The dimensions of this matrix are
equal to the number of inputs multiplied by the number of hidden neurons. At each
layer l, we denote the linear combination with z[l], and the activation with a[l]:

z[l] = W [l]x(i) + b[l] (3.6a)

a[l] = σ(z[l]) (3.6b)

x1

x2

x3

x4

ŷ

Figure 3.4: Example of ANN with 2 hidden layers with size 3 and 2.

The forward-pass consists of feeding the data from the input to the output layers
(from left to right). In the example, we have an ANN with 4 inputs, 2 hidden layers
with size 3 and 2, and 1 output. The forward-pass for the i-th sample is evaluated as
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follows:

z[1] = W [1]x(i) + b[l] (3.7a)

a[1] = σ(z[1]) (3.7b)

z[2] = W [2]a(1) + b[2] (3.7c)

a[2] = σ(z[2]) (3.7d)

z[3] = W [3]a(2) + b[3] (3.7e)

ŷ(i) = a[3] = σ(z[3]) (3.7f)

The choice for the last activation function depends on the problem we are trying
to solve: in case of a regression problem, we can use tanh, sigmoid or ReLU func-
tions, while for classification problems, it is common to apply the softmax activation
function, which outputs the probabilities of input to belong to the different classes.
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σ′(x)

(a) Sigmoid function and its
derivative.
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tanh(x)

(b) Hyperbolic tangent func-
tion.

Figure 3.5: Two common used activation functions.

3.2.3 Backpropagation with Gradient Descent

In this section, we describe the loss and cost functions, and the backpropagation al-
gorithm, following the notation given in many text books. Given the output ŷ(i), we
define a loss function L(ŷ(i), y(i)) as a function that measures the error from the real
output y(i). In a real-valued regression problem it is common to choose L(ŷ(i), y(i))
as the half-squared error loss:

L(ŷ, y) =
1
2
||ŷ− y||2 (3.8)
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while for binary classification using logistic regression the loss function normally is

L(ŷ, y) = −(y log ŷ + (1− y) log(1− ŷ)) (3.9)

The loss L(i) outputs a scalar. Given this value, the training of the neural network
consists of updating all the parameters (W [l], b[l]) in the different layers. For any
given layer l, using the stochastic gradient descent method, we update them as follow:

W [l] = W [l] − α
∂L

∂W [l]
(3.10a)

b[l] = b[l] − α
∂L
∂b[l]

(3.10b)

where α is the learning rate.

Given m the dimension of the training set, we define the cost function J(W, b) as
the average of the m losses calculated over the m training samples:

J(W, b) =
1
m

m

∑
i=1
L(i) (3.11)

Using the gradient descent method, for any single layer l, the update rule is defined
as:

W [l] = W [l] − α
∂J

∂W [l]
(3.12)

The difference between the gradient descent (also called batch gradient descent) up-
date versus the stochastic gradient descent version is that the cost function J gives
more accurate gradients whereas L(i) may be noisy. Stochastic gradient descent at-
tempts to approximate the gradient from (full) gradient descent. The disadvantage
of gradient descent is that it can be difficult to compute all activations for all exam-
ples in a single forward or backwards propagation phase. In practice, research and
applications use mini-batch gradient descent. This is a compromise between gradi-
ent descent and stochastic gradient descent. In the case mini-batch gradient descent,
the cost function Jmb is defined as follows:

Jmb =
1
B

B

∑
i
L(i) (3.13)

where B is the number of examples in the mini-batch.

3.3 Recurrent Neural Networks

Recurrent neural networks or RNNs [99] are a family of neural networks for pro-
cessing sequential data. In the last few years, they have been applied with success
to a variety of problems: speech recognition, language modeling, translation, image
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captioning. RNNs can scale to long sequences and also they are able to process se-
quences of variable length. The typical representation of a RNN is given in Fig.3.6
and consists of a neural network with loops, that allow information to persist. In the
diagram, a neural network, A, looks at some input xt and outputs a value ht:

A

ht

xt

Figure 3.6: Rolled RNN structure.

RNNs can be thought of as multiple copies of the same network, each passing a
message to a successor. The idea behind this architecture is to exploit the sequential
structure of the data. The name of this neural networks comes from the fact that
they operate in a recurrent way. This means that the same operation is performed
for every element of a sequence, with its output depending on the current input,
and the previous operations. This is achieved by looping an output of the network
at time t with the input of the network at time t + 1. These loops allow persistence
of information from one time step to the next one.

The structure with loops in Fig. 3.6 becomes intuitive when we look at the chain
formed when we unroll the computational graph. In the right part of Fig. 3.7, we

A A A A=A

h0

x0

h1

x1

h2

x2

ht

xt

ht

xt . . .
Figure 3.7: Unrolled RNN structure.

represent the same unrolled (or unfolded) network graph, where each node is as-
sociated with a particular time. Now we have an architecture which can receive
different inputs at each time step xt, has the capability of producing outputs at each
time step ht and maintains a memory state which contains information about what
happened in the network up to time t.
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3.3.1 LSTM Networks

To learn long-term dependencies, a solution consists to use deep recurrent neural
networks. In theory, RNNs are absolutely capable of handling such long-term de-
pendencies. However, in practice, when the number of layer increases, the training
of network using the backpropagation algorithm can be difficult. In fact, what hap-
pens is that the gradient tends to get smaller as we move backward through the first
hidden layers. This means that neurons in the earlier layers learn much more slowly
than neurons in later layers. The problem was explored in depth by [100], and it is
known as the vanishing gradient problem.

Long Short-Term Memory Networks are a particular kind of RNN, that have
been introduced in [101]. They have been explicitly designed to avoid the vanishing-
gradient problem in normal RNNs [102]. The capability of learning long-term de-
pendencies is due to the structure of the LSTM units, which, differently to plain
neurons, incorporates gates that regulate the learning process. The neurons in the
hidden layers of an LSTM are Memory Cells (MCs). A MC has the ability to store or
forget information about past network states by using structures called gates, which
consist of a cascade of a neuron with sigmoidal activation function and a pointwise
multiplication block. Thanks to this architecture, the output of each memory cell
possibly depends on the entire sequence of past states, making LSTMs suitable for
processing time series with long time dependencies [103].

A standard LSTM memory cell diagram is presented in Fig. 3.8. The basic oper-
ations are accomplished by the input gate it, the forget gate ft and the output gate
ot:

• the input gate is a neuron with sigmoidal activation function (σ). Its output
determines the fraction of the MC input that is fed to the cell state block;

• similarly, the forget gate processes the information that is recurrently fed back
into the cell state block;

• the output gate, instead, determines the fraction of the cell state output that is
to be used as output of the MC at each time step;

• moreover, the cell state ct represents the memory of the unit and it is updated
with the information to be kept (or to be forgotten), provided by the input gate
(or forget gate).

Gate neurons usually have sigmoidal activation functions (σ), while the input and
cell state use the hyperbolic tangent (tanh) activation function. All the internal con-
nections of the MC have unitary weight [103]. With reference to Fig. 3.8, we report
the operations performed by a single MC unit, at time t:
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Figure 3.8: Standard LSTM unit.

it = σ(Wi · (ht−1, xt) + bi) (3.14a)

ft = σ(W f · (ht−1, xt) + b f ) (3.14b)

ot = σ(Wo · (ht−1, xt) + bo) (3.14c)

c̃t = φ(Wc · (ht−1, xt) + bc) (3.14d)

ct = ft � ct−1 + it � c̃t (3.14e)

ht = ot � φ(ct) (3.14f)

In the previous equations, σ(·) is the sigmoid function and φ is hyperbolic tangent
function (tanh). W and b are respectively the weight matrix and the bias of the gates
i, f , o or of the cell state c. The subscript t is the time index and� is the element-wise
multiplication. The LSTM unit combines the output of the previous unit ht−1 with
the current input xt using the input, the output and the forget gates to update the
memory of the cell. The variables it and ft represent respectively the information
that need to be kept or to be forgotten from the past and the current input. The
cell state ct is updated by summing the previous cell state ct−1 and the candidate
cell state c̃t, weighted respectively with ft and it. Finally, we obtain the output ht

applying the tanh function to ct and multiplying it by ot. Then, the current output ht

is passed to next unit and combined with the input at the next time index t + 1.

3.4 Convolutional Neural Networks

3.4.1 Parameters Sharing

Convolutional Neural Networks (CNNs) are a category of Neural Networks that have
proven very effective in areas such as image recognition and classification. To un-
derstand the differences from vanilla multi-layer networks to CNNs, we need to
refer to the following concept: parameter sharing across different parts of a model.
Sharing of the parameters makes it possible to extend and apply the model to exam-
ples of different forms (different lengths) and generalize across them. Such sharing
is particularly important when a specific piece of information can occur at multiple
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positions within the input data. For example, in a object classification problem, the
exact location of the object to be recognized in a given image is not known a-priori.

A traditional fully connected feed-forward network would have separate param-
eters for each input feature, so it would need to learn all the rules separately at
each position. If we had separate parameters for each value of the input, we could
not generalize to input that have not been seen during training, nor share statistical
strength across different input lengths and across different positions of the input. By
comparison, a convolutional neural network shares the same weights across several
input location.

3.4.2 Basic CNN Structure

Convolutional Neural Networks differs from fully connected MLP for the presence
of one or more convolutional layers. At each convolutional layer, a number of kernels
(or filters) is used. Each kernel is composed of a number of weights and is convolved
across the entire input signal to create multiple feature maps. In Fig. 3.9, we repre-
sent a typical CNN for image recognition.

Figure 3.9: Typical CNN Structure.

The three feature operations that are computed by a CNN are:

• Convolution with a set of kernels;

• Non-Linearity Activation Function;

• Pooling or Sub Sampling

Note that the kernel acts as a filter, whose weights are re-used (shared weights)
across the entire input: this makes the network connectivity structure sparse, i.e.,
a small set of parameters (the kernel weights) suffices to map the input into the
output. With respect to other Neural Networks (e.g. LSTM Networks), this leads
to a considerably reduced computational complexity with respect to fully connected
feed forward neural networks, and to a smaller memory footprint. CNNs have been
proven to be excellent feature extractors for images and inertial signals [104]. For
more details the reader is referred to [105].
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3.5 Software Framework

3.5.1 ML Libraries and Implementation

The success of ML and its countless applications is also due to the development of
a multitude of frameworks that allows to implement and deploy ML models with
relative easiness. In this thesis, the implementation of ML algorithms is done using
open-source libraries: we choose Python as primary programming language, since,
in the last couple of years, it became the main language for ML development and
data science, and it can count on the most known up-to-date libraries for ML [106].

Moreover, we rely on cloud infrastructures for managing the collected network
data and for the algorithms development. The reasons are manifold: first, there
exist cloud services that allow to store data on the Internet for free, so it can be
accessible everywhere. Second, most of the time these services integrate free GPU
and Tensor Processing Unit (TPU) kernels, which are specifically designed to speed
up the training of deep networks thanks to their parallel processing. Even if the free
versions of the cloud services have some limitations in terms of storage and usage
time, in most cases they are sufficient for our implementations. In Table 3.1, we
report the main tools used in our development.

Name Type Characteristics

NumPy Python Library Math library that adds support for large, multi-dimensional arrays
and matrices
Includes a large collection of high-level mathematical functions to
operate on arrays

Scikit-Learn Python library ML library that includes fundamental classification, regression and
clustering algorithms
Used for data preprocessing and for algorithms benchmark

Pandas Python Library Library for data manipulation and analysis
It offers data structures and operations for manipulating numerical
Library and time series.
Used to load the data and for preprocessing

Matplotlib Python library Plotting library for NumPy
It provides an object-oriented API for embedding plots into applica-
tions
Designed to closely resemble that of MATLAB

Seaborn Python Library Python data visualization library based on matplotlib
It provides a high-level interface for drawing attractive and infor-
mative statistical graphics

Tensorflow Python Library End-to-end platform for ML dataflow and differentiable program-
ming across a range of tasks
It has a comprehensive, flexible ecosystem of tools that lets re-
searchers push the state-of-the-art in ML and developers build and
deploy ML applications
It is used for both research and production at Google



36 Chapter 3. Machine Learning Background

Keras Python Library Library for neural-network implementations
It is capable of running on top of TensorFlow, R, Theano, and other
ML backends
Designed to enable fast experimentation with deep neural networks,
it focuses on being user-friendly, modular, and extensible.

Jupyter Notebook Dev Environment Web-based interactive computational environment for Python
Used for development with markdown texts, in-line plots and com-
ments

Google Colab Dev Environment Google’s free cloud service for AI developers similar to Jupyter
Notebook
Integrate main ML libraries and allows multi-user contributions
Free GPU and TPU for neural networks training

Table 3.1: ML Frameworks and Libraries.
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Chapter 4

Network Measurements and
Dataset Collection

In this Chapter we present the methodology for the data collection that has been
retrieved from operative Spanish mobile networks. This part represents a major
contribution of the work and it is not limited to the applications presented in the
next chapters of the thesis. Starting from Section 4.1, we discuss the motivations and
the challenges to acquire this type of dataset, which includes radio level information
at a time granularity not available in other studied datasets. Next, in Section 4.2,
we explained the main characteristics of the LTE Physical Channel, from which we
decode the data to obtain the network information. Finally, in Section 4.3, details of
the measurement campaign is given.

4.1 Dataset with Radio Level Information

4.1.1 Motivations

Reliable network measurements are a fundamental component of networking re-
search as they enable network analysis, system debugging, performance evaluation
and optimization. However, setting up a network measurements campaign often re-
quire very expensive tools that are almost always exclusive prerogative of industries
and mobile operators. In order to study the mobile networks from a comprehensive
and meaningful dataset, we identify four different solutions and, for each, we indi-
viduate pro and cons which are summarized in Table 4.1

• Simulated Data: simulation data obtained though open-source network sim-
ulator (e.g. NS-3 [107]);

• Operators Released Data: datasets released by network operators (e.g. Tele-
com Big Data Challenge [28], see Section 2.1 for details);

• Online Open-access Databases: dataset freely available online (e.g. OpenCel-
lId [15]);
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• New Data Collection: gathering a complete new dataset from operative mo-
bile networks to be studied.

Source Pros Cons Examples

Simulated
Data

Open-source solutions
Relatively-short time to obtain the
data
Controlled environment

Not realistic, too simplified scenar-
ios
Cannot capture long-term traffic
dynamics

NS-3 [107]

Operators Re-
leased Data

Realistic dataset
From operative networks

Limited information and missing
details
privacy and open-access issues
Coarse spatio-temporal aggregation

CDRs dataset
[28]

Online
Open-access
Databases

Open-access information
Fast to obtain large amount of
worldwide data

Limited information and missing
details
Unverified sources and not compre-
hensive

OpenSignal
Database [33]

New Data
Collection

Realistic data and different scenar-
ios
Full control of time-space resolution
Correlation with land-use and users
activities

Time-consuming for collection and
maintenance
Measurements errors troubleshoot-
ing required

LTE Air Traf-
fic Monitor
[16]

Table 4.1: Source of available mobile network traffic datasets to be
studied: pros and cons.

We weighted our options and possibilities based on multiple factors. First, we
identified that it is important for us to control the granularity and the resolution of the
data, disregarding the storage volume: in any data-driven problem, a large pool of
data must be seen as an opportunity to obtain deeper insights and achieve an opti-
mal solution of the problem, even if the complexity increases. This is more important
when we consider ML solutions, for which the model outcomes highly depends on
the quality and quantity of the analyzed data. Thanks to advancement in ML frame-
works, most known ML algorithms are implemented and, therefore, the collection
of a qualitative dataset represents a significant advancement for the analysis.

Considering that 4G works at milliseconds time-scale while 5G is characterized
by even lower granularity, since it can allocate resources at the symbol level, the
analysis of aggregated data with low frequency updates cannot help us to identify
potential suboptimal performances. Moreover, another factor to be considered is
that the dataset should give us a network-side perspective: obtaining data for a single
customer would allow an improved user’s profile characterization. However, we
are more interested to understand how the network allocates the available radio-
resources, if there is room for optimization and improvement, and the possible cor-
relations between users’ activity patterns and the land-use of the studied area.

These considerations are fundamental for the subsequent analysis and for the
work objectives, and they lead us to consider the collection of new data from the
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operative mobile network. Moreover, relying on a new type of dataset would con-
tribute to the state-of-the-art, since it allows to study the network starting from dif-
ferent source of information. The choice of which data to acquire considers also fea-
sibility factors, including costs, time and computational efforts for the collection, man-
agement and analysis of the new dataset. The long-term objective also is not limited to
the work of these thesis: this methodology is finally intended to obtain and an open-
database with up-to-dates and ongoing measurements that can serve as baseline for
the future research in mobile networks.

Due to the complexity and to the wide typology of information in mobile net-
works, many challenges arise when we start to consider a new network data collec-
tion. Big data technologies can help to deal with such problems, and they can answer
to 4 Vs that characterize the plethora of information produced by modern communi-
cation systems: Velocity (frequency of data generation), Variety (heterogeneity of the
data), Volume (total amount of data), Veracity (usability of the data).

When we start to deal with complex systems, such as 4G and 5G mobile net-
works, we understand that these 4Vs are not only theoretical principles, but real
issues arise and they must be solved properly. For example, in our context we face
the following cases:

1. many 4G operators work on 20 MHz bandwidth, and, using Carrier Aggre-
gation (LTE CA), the total available bandwidth can be higher than 40 Mhz,
enabling high throughput and large amount of data exchange (Volume);

2. each eNB can serve up to 1000 users (in case of Macro eNBs) and allows for
speed up to order of Gb per second; the minimum periodic time frame for
transmission in LTE (TTI) is in the order of ms (Velocity);

3. data are transmitted by diverse type of devices of different users, using differ-
ent services and applications (Variety);

4. a large volume of data are dedicated to planning, control and maintenance
of the network functionalities (e.g. scheduling information): is it all the ex-
changed information useful for the network analysis (Veracity)?

The previous example refer to the 4G technology. With 5G, the network per-
formances are promised to be boosted by at least 10x factor. Moreover, we do not
account for the myriad of promised applications and services (e.g. autonomous driv-
ing, augmented and virtual reality, IoT devices), which will contribute to increase the
overall complexity of the network.
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4.2 LTE Physical Control Channel

In LTE, the Physical Control Channel is responsible for the exchange of scheduling
information between the LTE Base station (eNodeB) and User Equipment (UE). Due
to the separation between Data Plan and Control Plan in LTE, no personal data are
exchanged over the Control Channel. The users’ actual data exchanged between the
network are sent over encrypted channel (Physical Downlink/Uplink Shared Chan-
nel, PDSCH/PUSCH). Instead, the Physical Downlink Control Channel (PDCCH) is
unencrypted but the subscribers privacy is preserved, since the users’ identities are
obfuscated using temporal identifiers that are renewed after short periods of inactiv-
ity. Decoding the LTE control channel would give access to the full base station traf-
fic at a TTI granularity, which is 1 ms in LTE, thus allowing for traffic profiling and
accurate measurements. Although few implementations of LTE PDCCH decoders
are available [16], not all of them are free or they do not provide tools to reliably
decoding the LTE control channel and, thus, accessing the scheduling information.

4.2.1 OWL: Online Watcher for LTE

In [16], the authors present OWL, an Online Watcher for LTE that is able to decode
the resource blocks in more than 99% of the LTE frames, significantly outperforming
existing non-commercial decoders. Compared to previous attempts, OWL makes
possible to run the software on inexpensive hardware coupled with almost any soft-
ware defined radio capable of sampling the LTE signal with sufficient accuracy. This
tool has been specifically designed for researchers that need an economic solution
to perform reliable measurements on LTE physical communications between mobile
phones and the serving base station. OWL is built on top of srs-LTE, an LTE library
that provides an efficient implementations of LTE physical channels and works with
a few software defined radios (SDRs), including bladeRF and USRP, which are ca-
pable of sampling LTE signal. In particular, [16] extends srs-LTE by implementing
an online procedure to decode all Downlink Control Information (DCI) transmitted
on the PDCCH. This solution is more efficient than previous attempts, because the
software collect and maintain a list of active Radio Network Temporary Identifiers
(RNTIs), which identify user equipments (UEs) within a given cell (eNodeB).

The OWL software architecture is composed of three processes: 1) a synchro-
nized signal recorder, 2) the actual control channel decoder, and 3) a fine-tuner that
is used when a control message is expected to be found on the control channel, but
the main process cannot decode it. Finally, an auxiliary verifier tool checks whether
the decoded DCIs match the actual resource allocation on the PDSCH.

1. Synchronized signal recorder: OWL first, synchronizes the software to the
eNodeB transmissions by means of Primary Synchronization Sequence (PSS)
and Secondary Synchronization Sequence (SSS) correlation, then acquires the
remaining information by decoding the MIB, and finally it writes an output
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file starting from the first symbol of the first frames for which it obtained a
successful MIB decoding. However, it might happen that the system synchro-
nization degrades without the recorder being able to notice, in particular for
recordings longer than a few seconds. To improve this, the recorder performs
synchronization check at the beginning of every frame. In addition, an error
log tracks any synchronization issues and any other software related error that
might hamper the following operations.

2. Control channel decoder OWL’s main component is the control channel de-
coder. It can work either online while the signal is being sampled by the SDR
or offline processing prerecorded traces. While a single UE can monitor a lim-
ited set of control channel locations, OWL needs to extend the procedure to all
possible locations and DCI formats. OWL only performs actual DCI decoding
if there is an ongoing transmission on the resource elements of the scanned
location. With respect to srs-LTE, OWL considers the decoding operation suc-
cessful if any of the C-RNTI of the active list matches with the decoded mes-
sage. Since the C-RNTI list is empty when the system starts, OWL needs to
populate it while decoding the control channel.

To do so, OWL can either 1) exploit the random access procedure or 2) verify
the decoding success by re-encoding the DCI. In the former procedure, when-
ever a DCI is decoded with the Cyclic Redundancy Check (CRC) field XORed
with a Random Access RNTI (in [1-10]), not only is it considered a success-
ful decoding, but also the Random Access Response (RAR) message, which is
sent in PDSCH, is actually demodulated and decoded and provides OWL with
a new C-RNTI to be inserted in the active list. The particular configuration of
the RAR messages allow us to simplify the decoding by just taking the last
two bytes of the message, because the C-RNTI is always specified in this loca-
tion. In addition, since the actual RAR message is provided with a CRC field,
OWL is able to evaluate the correctness of the whole operation by verifying
the message checksum against the CRC field.

The RNTIs are just temporary identifiers and, after a complete SFN cycle (10.24
seconds) of inactivity, a UE needs to perform the access procedure again to
obtain a new one. For this reason, OWL resets all the RNTIs in the list that are
inactive for more than a SFN cycle.

3. Fine-tuner and Verifier While, theoretically, the control channel decoder should
be able to decode all DCIs, there are a few rare conditions for which power is
detected on the control channel, but no DCI message has been decoded. Au-
thors of [16] believe that these conditions are due to either equalization or syn-
chronization problems. The fine-tuner is able to correct the majority of these
issues by iteratively performing the decoding operation on the specific location
only and varying the timing offset of the LTE signal.
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Finally, to verify whether the decoded information matches the actual PDSCH
resource allocation, a simple tool takes as inputs the decoding log and the raw LTE
signal trace. For each subframes it computes how many RBs are detected by OWL by
summing all the NRB values of downlink messages. Similarly, it evaluates for each
subframe and for each RB whether the average power measured on the PDSCH is
higher or lower than the power measured on the reference signals that are the closest
to the related RB.

4.2.2 DCI Decoding

Decoded and verified DCI messages include the scheduling information for the con-
nected User Equipments (UEs) to a specific eNodeB. Among other information, DCI
contains the following fields:

• Radio Network Temporary Identifier (RNTI): DCI messages use RNTIs to
specify their destination. RNTIs are 16-bit identifiers that are employed to
address UEs in an LTE cell. They are used for different purposes such as to
broadcast system information (SI-RNTI), to page a specific UE (P-RNTI), to
carry out a random access procedure (RA-RNTI), and to identify a connected
user (C-RNTI). Here, we are interested in the C-RNTI, that is temporarily as-
signed when the UE is in RRC (Radio Resource Control) CONNECTED state,
to uniquely identify it inside the cell. The C-RNTI can take any unreserved
value in the range [0x003D–FFF3]. ;

• Resource Block (RB) assignment: in LTE, a RB represents the smallest physical
resource unit in time and frequency that can be allocated to any user. The
number of resource blocks that are assigned to a UE (NRB), is derived based on
the DCI bitmap;

• Modulation and Coding Scheme (MCS): the MCS is a 5-bit field that deter-
mines the modulation order and the code rate that are used, at the physical
layer, for the transmission of data to the UE;

Based on RB and MCS, we can calculate the Transport Block Size (TBS). The TBS
specifies the length of the packet to be sent to the UE in the current Transmission
Time Interval (TTI). It is derived by from a lookup table by using MCS and NRB,
see [108].
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4.3 Measurements Campaign

4.3.1 Scenarios and Objectives

The measurement campaign has been planned with the objective of collecting an
exhaustive dataset that comprehends different scenarios, in order to be able to de-
scribe as better as possible most of the potential realistic use-cases and to be usable
for the applications presented in the rest of this thesis. As guideline, the 3GPP stan-
dard release technical reports (e.g. [109], see Table 4.2), where a set of use-cases, and
their correspondent requirements, are listed. For example, urban locations require
more capacity per square meters, and therefore the operators are called to plan the
network deployment in such a way to satisfy the specified requirements.

Scenario Experienced
data rate
(DL)

Experienced
data rate
(UL)

Area traffic ca-
pacity (DL)

Area traffic ca-
pacity (UL)

User den-
sity

Activity
factor

Urban macro 50 Mbps 25 Mbps 100 Gbps/km2 50 Gbps/km 2 10 000/km2 20%

Rural macro 50 Mbps 25 Mbps 1 Gbps/km2 500 Mbps/km2 100/km2 20%

Indoor
hotspot

1 Gbps 500 Mbps 15 Tbps/km2 2 Tbps/km2 250000/km2 N/A

Dense urban 300 Mbps 50 Mbps 750 Gbps/km2 125 Gbps/km2 25000/km2 10%

Highspeed
train

50 Mbps 25 Mbps 15 Gbps/train 7.5 Gbps/train 1000/train 30%

Highspeed
vehicle

50 Mbps 25 Mbps 100 Gbps/km2 50 Gbps/km2 4 000/km2 50%

Airplanes
connectivity

15 Mbps 7.5 Mbps 1.2 Gbps/plane 600
Mbps/plane

400/plane 20%

Table 4.2: 3GPP Technical Report 22.261: Mobility Use Cases [109].

Keeping this in mind, we placed our LTE sniffer in different areas characterized
by different land-use and, consequently, different users’ behaviours. One of the main
objective is to have mobile traffic network that is generated and transmitted both in
urban and sub-urban area. Also, we want to characterize the diversity of network
traffic, for example, between office and residential area, where the traffic profiles
show different characteristics both in term of magnitude, shape and demanded traf-
fic type. The variability of the traffic is also a fundamental feature that we want to
characterize: to this end, we place the sniffer in areas where the traffic shows a cyclic
weekly behaviour, but we monitored also different locations where the traffic varies
in sudden and unexpected ways.

4.3.2 Setting and Measurement Scheduling

We planned to collect our dataset from different locations of the city of Barcelona,
Spain and we extend it with additional data retrieved from another measurement
campaign that took place in Madrid, thanks to Nicola Bui, who originally proposed
this for data collection. Therefore, our overall dataset contains mobile traffic infor-
mation for the two major cities in Spain: Barcelona and Madrid.
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In Table 4.3, we report the locations where the sniffer has been placed and the
corresponding land-use of that area. In Fig. 4.1, we show the locations of the sniffer
and the monitored cell in few areas in Barcelona. During the measurement period,
we are able to remotely monitor the recording activity thanks to web-based applica-
tion that simply plot the downlink and uplink traffic measured at that cell. The app
is shown in the monitor in Fig. 4.3, and a snapshot is reported below.

(a) Castelldefels: suburban
area with a university cam-

pus.

(b) Camp Nou: mainly
residential area with

Barcelona FC stadium.

(c) Born: mixed residential,
transport and leisure area.

(d) PobleSec: mainly resi-
dential area.

Figure 4.1: Maps of Barcelona metropolitan areas where the measure-
ment campaign took place. The eNodeB location is denoted by A, the

sniffer is marked as B.

A representation of the setting for the sniffer is given in Fig. 4.3. It consists of
three parts (plus a UE terminal):

• SDR: the LTE DCI decoding software supports a wide range of SDR; as sug-
gested by the author, we use the Nuand BladeRF x40 SDR;

• PC: in our case, we choose Intel mini-NUC, equipped with an i5 2.7 Ghz multi-
core processor, 256 GB SSD storage; due to its reduced size it represents a
good compromise between computational power and portability; and 16 GB
of RAM.
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Cell Name City Approximate Location Land-use Characteristics

atocha Madrid Atocha Train Station Train station area

callao Madrid Callao Square One of the main squares of the city;
along the path of the most central
shopping and restaurant street

imdea Madrid Leganes Office and residential area

leganes Madrid Leganes Mainly residential area with a few
commercial activities in the sur-
roundings

rastro Madrid Rastro Market Location known for the most popu-
lar market in the city

born Barcelona Born District Mixed residential, transport and
leisure area

campnou Barcelona Camp Nou Area Mainly residential area with
Barcelona FC stadium

castelldefels Barcelona Castelldefels suburban area with a university
campus

poblesec Barcelona Poble Sec Neighbourhood Mainly residential

sants Barcelona Sants Train Station Train station area

Table 4.3: Locations and land-use characteristics of the measurement
campaign.

• Antenna: here, there is no strict specifications; so, one can use any antenna
that supports the LTE frequencies

Figure 4.2: Experimental setup for data collection: a SDR module
is connected to an antenna to capture PDCCH DCI data, which is

decoded by a mini-PC running a dedicated software.

The screen monitor is not necessary for the duration of the measurements. There-
fore, the sniffer overall sizes make it very compact and easily transportable. The
setup is simple and requires to find the specific which is the Physical Cell ID (PCI) of
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the eNodeB to be monitored with OWL. This can be achieved also using a mobile ter-
minal and through specific mobile applications it is possible to find the details of the
surrounding cells, including the PCI. To test the synchronization between the sniffer
and the cell, there exist some application that are part of the srs-LTE library [110]
(see details in [16]). Moreover, using the website AntenaGSM.com, it is possible to
know the exact position of the cell.

Figure 4.3: Snapshot of the web-app for real-time visualization of the
collected LTE data.
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Chapter 5

Mobile Traffic Characterization and
Prediction

In this Chapter we present the analysis of real mobile traffic traces, which is help-
ful to understand usage patterns of cellular networks. In particular, mobile data
may be used for network optimization and management in terms of radio resources,
network planning, energy saving, for instance. First, in Section 5.1 we perform an
analysis on the retrieved LTE raw traces: we give a temporal characterization of
the traffic using different time-scales and we model it through Markov chains. This
section is the result of the following publication:

• Trinh, H. D., Bui, N., Widmer, J., Giupponi, L., & Dini, P. (2017, October). Anal-
ysis and modeling of mobile traffic using real traces. In 2017 IEEE 28th An-
nual International Symposium on Personal, Indoor, and Mobile Radio Communica-
tions (PIMRC) (pp. 1-6). IEEE. [19];

In Section 5.2, we continue the study using the data collected in a residential and
a campus area. We use an unsupervised method to classify the traffic sessions in
clusters. This section is the result of the following publication:

• Rago, A., Piro, G., Trinh, H. D., Boggia, G., & Dini, P. (2019, June). Unveiling
Radio Resource Utilization Dynamics of Mobile Traffic through Unsuper-
vised Learning. In 2019 Network Traffic Measurement and Analysis Conference
(TMA) (pp. 209-214). IEEE. [20];

Finally, in Section 5.3, we perform mobile traffic prediction using a method that
comprises LSTM neural networks. This section is the result of the following publi-
cation:

• Trinh, H. D., Giupponi, L., & Dini, P. (2018, September). Mobile traffic predic-
tion from raw data using LSTM networks. In 2018 IEEE 29th Annual Interna-
tional Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)
(pp. 1827-1832). IEEE. [21];
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5.1 Analysis and Modeling using Raw LTE Traces

In the context of intelligent mobile networks, information about the users’ traffic
profiles and on the network usage patterns becomes essential during the phases of
planning and of deployment of the network. This can translate into a more efficient
allocation of the resources and can help mitigate the effects of the increasing costs
incurred by the network operators to tackle the expected upsurge of the Internet
demands.

However, for research and academic communities, it is very challenging to get
access to real data extracted from mobile network. We overcome the lack of network
information using the LTE sniffer presented in the previous section, which is capa-
ble of decoding the unencrypted LTE control channel, and we present a temporal
and spatial analysis of the recorded traces. Moreover, we present a methodology
to derive a stochastic characterization for the daily variation of the LTE traffic. The
proposed model is based on a discrete-time Markov chain and is compared with the
real traces. Results show that, with a limited number of states, our model presents a
high level of accuracy in terms of first and second order statistics.

5.1.1 Dataset Analysis

We derive our analytical model from an extensive dataset of LTE scheduling in-
formation, which have been collected in four locations of the metropolitan city of
Madrid. In particular, the dataset has been collected using OWL [16], using a Soft-
ware Defined Radio (SDR) to send the raw LTE signal to a PC running the decod-
ing software. This open-source software is capable of reliably logging the LTE DCI
broadcast by base stations [111].

Resources are assigned to devices through RNTIs, every millisecond, specifying
the number of resource blocks (RBs) and the MCS index to be used. This makes
our dataset both anonymous, because it is impossible to obtain users’ unique iden-
tifiers, and accurate, because we can separate the dataset into high-resolution traces
belonging to individual communications. Therefore, our datasets are useful to ob-
tain both aggregated information on a given cell and to extract trace-based statistic
distributions.

The analysis aims at describing the main characteristics of the LTE traffic by an-
alyzing the number of connected users and, both, temporal and spatial variations of
the collected traces. The results that we show refer to the downlink communication
between the eNodeB and the user equipments. The traffic is normalized with respect
to the peak traffic that occurred in the examined period. Without loss of generality,
the same analysis can be extended to the uplink direction.
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(b) Average daily traffic:
weekdays vs. weekend.
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(c) Traffic per day.
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(d) Average daily traffic:
weekdays vs. weekend.

Figure 5.1: Weekly and daily traffic for two LTE eNodeBs with a time
resolution of 30 minutes.

Temporal Behaviour

Figure 5.1 shows the downlink aggregated throughput of two eNodeBs averaged
over the 30 days of monitoring. We can distinguish the traffic per week in Figure
5.1a and 5.1c and the daily traffic in Figure 5.1b and 5.1d.

A strong relation between mobile traffic and connected users is recognized. We
observe the same daily pattern repetition: high traffic is shown during the hours
of the day (when population is active), whereas less intensive traffic is experienced
during nights (when people sleep). Traffic intensity is similar in working days and
during weekends. A different behavior is detected in one particular cell, where a
higher traffic is normally experienced on Sunday (Figure 5.1c). The reason behind
this higher activity, is the presence of a local market open every Sunday in the same
area where the eNB is located. As for the connected users, the minimum traffic is
around 5.30 am for all the cells; a more prominent peak can be seen around at 8 pm.
The maximum ratio between the peaks observed in the measurements is 13.3. The
absolute values of the traffic are different and depend on the location of the area
where the eNodeB is deployed.

Figure 5.2 shows the normalized average daily traffic distribution of the observed
cells. Also in this case, the daily average traffic profiles are similar in shape for
all the cells, especially during low load period. As a proof of representiveness of
our measurements, we compare the extracted information from the collected data
with the traffic model presented in the EU ICT FP7 EARTH [112]. The data used
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in this project are provided by a network operator. We observe that, considering a
daily average, the two traffic shapes are compatible and very similar (see Fig. 5.2).
This comparison does not account for the absolute values of the traffic, which are
dependant on the location of the specific base station, but it shows, on average, how
the traffic demand is distributed over 24 hours. A different coefficient for the traffic
magnitude can be calculated for each eNodeB based on the active population of that
zone.
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Figure 5.2: Normalized daily traffic of different LTE cells and EARTH
model.

Next, we show some example statistics for the traffic intensity of the four ob-
served cells. Figure 5.3 shows the probability density function (pdf) and the cumu-
lative distribution function (cdf) by applying the Kernel Smoothing algorithm on the
empirical data traces. We have computed the pdfs and cdfs for different periods of
one day (slots of 1 hour duration) and we have also evaluated their variation during
the day. The figure shows only 6 slots for the sake of simplicity. The numbers report
the start/end hour of the day of the respective slot.

We notice that night and early morning are the periods with lower traffic inten-
sity (slot 0-1 and slot 4-5 have curves on the left side of the graph). After that and
till slot 20-21, the traffic is increasing (the curves are more on the right side of the x
axis). Moreover, we can identify that the curves for slot 8-9 and slot 12-13 are similar,
which indicates that the traffic in those hours is almost at the same level.

Finally, Figure 5.4a shows the number of connected users (both idle and active)
in a cell during a day. The number is strictly correlated with the location where the
e NodeB is deployed. In fact, cell 1 presents a higher number of users with respect
to the others because it is deployed in the centre of the city with a high population
density and activity. However, normalizing the curves with respect to the daily max-
imum number of users, the same pattern is identified for all the cells (Figure 5.4b).
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Figure 5.3: PDF and CDF of the eNodeB traffic for six 1 hour-duration
time-slots of a day.

The identified pattern follows a very similar behavior of the traffic profile. This con-
firms the correlation between the number of users and their generated traffic with
the daily human activity.

(a) Absolute activity (b) Normalized activity.

Figure 5.4: Connected users per cell - comparison.

Spatial Behaviour

We are able to estimate the quality of the channel experienced by the users during the
communication with the eNodeB, based on the assigned MCS index. One of the 28
possible MCS indexes is allocated by the eNodeB as a function of the Channel Qual-
ity Indicator (CQI) sent by the UE. The CQI depends on the SINR experienced by the
user, which, among other factors, generally decreases with the distance between the
eNodeB and the UE. In [113] a mapping between SINR values and different CQIs is
provided. As a result of that, and based on the information on the assigned MCS,
we estimate a spatial distribution of the user and combine it with the served traffic,
in order to obtain a traffic distribution in space for each eNodeB.

Considering all the communications occurred in the recording period, Figure
5.5a shows the aggregated amount of traffic for each assigned MCS index: the top
three indexes are 9, 10 and 11 and this is confirmed for all the analyzed base stations.
On the other hand, we see different profiles (Fig. 5.5b when we consider only the
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average traffic per communication. This is due to the fact that the MCS indexes
assigned by the eNodeB among the users are not uniformly distributed. For cell 1,
except for the highest 3 MCS indexes, the users that experience a better quality of
the channel also produce larger amount of traffic on average. However, a different
behavior is noticed for cell 3: here, the largest communications correspond to a MCS
index between 10 and 15.
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Figure 5.5: Traffic associated to different MCS (aggregated vs. aver-
age).

In Figure 5.6, we analyze more than 10 millions communication traces between
the eNodeB and the users. This map shows the spatial distribution of the users’
communications and the relative amount of traffic. Considering a cell in the center
of the plot, the distance between the users and the eNodeB is distributed according
to the average MCS experienced during the communication. The exact angular po-
sition of the user is unknown and it is picked from a uniform distribution. The total
amount of traffic produced during the communication gives the magnitude, repre-
sented by the different traffic intensities in the figure. The contour lines in the map
group the areas with similar traffic distribution and highlight those that produce the
larger amount of traffic. The groups shown in the figure demonstrate that the central
region of a cell is usually the most dense and produces most of the traffic.

5.1.2 Discrete-Time Markov Model

The proposed model aims at profiling the traffic pattern of a cell during a day.
The daily time-scale has been selected based on the study of the frequency domain
shown in Figure 5.7, which reports a strong periodicity of the traffic during the 24
hours.

The dynamics of the mobile traffic intensity are captured by a discrete-time Markov
chain with Ns states. Formally, we consider a traffic intensity in bit per second during
a given hour of the day, which can be in any of the states xs ∈ S = {0, 1, ..., Ns − 1}.
Every time step, the system evolves from a state xs(k) to the next state xs(k + 1) ∈ S
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Figure 5.6: Spatial traffic distribution of more than 10 million traces
for a single eNodeB.
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Figure 5.7: Periodogram of a 36 days-long traffic trace.

according to the probabilities puv = Prob[xs(k + 1) = v|xs(k) = u], with u, v ∈ S ,
which is not null only if tk+1 = (tk + 1)modNt, being Nt the number of time slots in
a day. To calculate the one-step transition probabilities from empirical data, we use
Algorithm 1: for each step, the algorithm computes the transition probability matrix
by counting how many times the cell traffic moves from a state to another. We obtain
the correspondent probability matrix by normalizing each row.

Algorithm 1 Transition Probability Matrix Calculation

1: procedure MARKOV MATRIX(data, Nt, Ns)
2: qData← quantize data in Ns levels
3: for ts in [0, ..., Nt − 1] do
4: for x1 in [0, ..., Ns − 1] do
5: for x2 in [0, ..., Ns − 1] do
6: Mx1,x2,ts ← count # transitions xs1 → x2 in qData(ts)

7: normalize rows of M
8: return M

Model Results

In this section, we show some results on the stochastic Markov model for the daily
traffic intensity. To evaluate our model, we split the dataset of a given cell into a
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training set and a validation set. The training set comprises 75% of the recording
days and it is used to obtain the model through the presented algorithm. The val-
idation set is used to have a numerical comparison with the traffic generated with
the model.

Figure 5.8 shows the error due to the selection of the number of states Ns and the
number of slots Nt. We apply a uniform quantization strategy that achieves accurate
results, as demonstrated next. The error is calculated with respect to the validation
trace as the average absolute daily difference, given by the following equation:

Err =
1

Ns

Ns−1

∑
i=0
|xsim − xval | (5.1)

We notice that an increase in Ns and Nt corresponds to a decrease of the error. In
particular, with Ns ≥ 6 states and Nt ≥ 24 time-slots, the error is small enough to
produce a good approximation of the mobile traffic.
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Figure 5.8: Error experienced changing the number of states Ns and
the number of time-slots Nt.

Figure 5.9a shows a 10-days synthetic traffic trace versus the validation dataset
and their daily average, using Ns = 10 and Nt = 24. We can see that, considering a
sufficient number of days, the model is able to estimate with high accuracy the daily
traffic pattern (Fig. 5.9b).

Considering one single cell, Fig. 5.10 demonstrates the statistical accuracy of the
discrete-time Markov traffic model. It shows the cdf of the synthetic traces applying
the Kernel-Smoothing algorithm with the cdf of the traces from the validation set.
We observe that the two curves almost overlap. Kolmogorov-Smirnov test is passed
with a confidence of 1%.

Moreover, we show that our Markov model is sufficient to accurately represent
second-order statistic. Fig. 5.11 shows the autocorrelation function (ACF) for dif-
ferent values of Ns. With only 2-states (Ns = 2) the model is able to capture the
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Figure 5.9: Simulated Traffic vs Original Data with Nt = 24 and Ns =
10.

periodicity of the traffic profiles and classify it in high or low load periods. How-
ever, major accuracy requires higher values of Ns. With Ns = 10 the model already
performs satisfactorily. The good fit of the autocorrelation function confirms that,
for a sufficient value of Ns, a further of level complexity is unnecessary in the char-
acterization.
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Figure 5.10: CDFs of the synthetic traffic trace vs empirical traces.
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5.2 Unveiling Radio Resource Utilization Dynamics through
Unsupervised Learning

In this Section, we continue the statistical analysis on part of the collected dataset,
using an unsupervised learning method, namely K-means [114]. Specifically, a mul-
tivariate analysis on the mobile traffic sessions has been conceived to make a classi-
fication at the radio link level, according to their properties. To this end, K-means is
used to map sessions with similar properties into K clusters.

5.2.1 Mobile Traffic Analysis and Discussion

The study focuses on four features in the downlink communications to describe the
mobile traffic sessions. They are the following: average data rate, average MCS index,
average number of allocated RBs, session duration. The variables of interest are firstly
normalized within the range ]0,1]. Then, each session is represented as a point in
a hyperplane, whose dimensions refer to the variables of interest of the conducted
analysis. At this point, the dissimilarity associated with two sessions is defined as
the Euclidean distance between the two related points in the aforementioned hy-
perplane. Indeed, the optimal value of K is calculated in order to ensure that the
intra-cluster distances are minimized and the inter-cluster distances are maximized
[114] (note that, according to K-means terminology, this means that the silhouette
[115] is maximized). Finally, the clustering process provides in output the sessions
of each cluster and a special point of the hyperplane, namely centroid, that identifies
the cluster itself. Their coordinates are obtained by averaging the value of variables
associated with the sessions belonging to the considered cluster. By studying the
obtained groups of sessions, it is possible to extract statistical details associated with
each cluster and finalize the traffic characterization.

Two LTE base stations in a residential and campus area of Barcelona, operating
in a bandwidth of 20 MHz, are monitored to collect mobile data. The residential
area dataset contains 521 sessions. Instead, the campus area dataset contains 4946
sessions. The analysis proposed next discusses the properties of the gathered mobile
data for each base station considering (i) the dataset as a whole and (ii) the dataset
divided into 4 time-slots that are morning, afternoon, evening, and night.

5.2.2 Study of the dataset as whole

The two monitored base stations show different behavior in terms of radio resource
usage patterns. The first difference refers to the output of the silhouette analysis,
which groups the residential and campus traffic in four and two clusters, respec-
tively. Figures 5.12 and 5.13 show the outcome of the K-means clustering process,
carried out for the residential area and the campus area. For each variable of inter-
est, the figures highlight the identified clusters, their centroids (i.e., the red dots), the



5.2. Unveiling Radio Resource Utilization Dynamics through Unsupervised
Learning

57

25th and the 75th percentile (i.e., the bottom line and the top line of the blue rectan-
gle), as well as the minimum and the maximum measured value (i.e., the edges of
the vertical red line) of the variables of interest.

(a) Rate (b) MCS

(c) RBS (d) Duration

Figure 5.12: Study of dataset related to the residential area, as a
whole.

(a) Rate (b) MCS

(c) RBS (d) Duration

Figure 5.13: Study of dataset related to the campus area, as a whole.

Comments for the residential area: it is important to note that there is a strict
relation between the number of sessions belonging to the cluster and the average
data rate experienced by its traffic sessions. About 45% of sessions report an average
data rate equal to 0.46 Mbps. Instead, only 3.26% of sessions register an average data
rate equal to 5.74 Mbps. Intermediate average data rates refer to intermediate groups
of sessions (i.e., 35.89% and 15.74% of sessions present an average data rate equal to
1.33 Mbps and 2.60 Mbps, respectively).
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Similar behavior is observed for MCS indexes and the allocated RBs. Figure 5.12b
shows that the selected average MCS index is lower than 4 for about 45% of sessions.
Only 3.26% of sessions use an average MCS index close to 10. Moreover, 35.89%
and 15.74% of sessions use an average MCS index approximately equal to 6 and
8, respectively. Only intermediate clusters register peaks of MCS up to nearly 26.
Considering that LTE allows a maximum MCS index equal to 31, obtained findings
clearly highlight that the channel quality experienced by mobile terminals during
the monitoring is relatively scarce.

Interesting details related to the distribution of radio resources among mobile
terminals are depicted in Figure 5.12c. About 45% of sessions, which have the aver-
age data rate equal to 0.46 Mbps, consume the lowest amount of physical resources.
Considering that 100 RBs per TTI are available in 20 MHz bandwidth, an average
number of RBs per TTI approximately equal to 23 means that sessions belonging to
the first cluster occupy less than 1/4 of the overall amount of resources available
within a cell. On the other hand, only 17 sessions consistently use a larger amount
of resources per TTI, thus obtaining higher data rates. A quite different behavior
emerges from the analysis of the average session duration. Sessions that register the
average data rate equal to 5.74 Mbps remain active for about 40 s, which is the low-
est amount of time among the four clusters. For other clusters, instead, the duration
increases with the number of sessions belonging to the cluster. It is also important
to note that the session duration always presents a very high variability: the actual
duration of 75% of sessions in each cluster is lower than the one associated with the
related centroid.

Comments for the campus area: the campus area presents a number of sessions
extremely higher than the residential case, but the reported bandwidth requirements
are extremely lower. As expected, there is a strict relation between the number of
sessions per cluster and the average data rate. Nevertheless, almost all the sessions
monitored in the campus area (i.e., 99.92%) fall within the same cluster and register
a very low average data rate equal to 0.14 Mbps. Only 0.08% of sessions register an
average data rate of 5.47 Mbps.

The study of MCS indexes provides a reverse relation, as shown in Fig. 5.13b.
The former group of sessions experiences variable channel conditions, translating
into the usage of all the admitted transmission settings. While the average MCS
index is 13, the maximum value is equal to 31. The second group of sessions (4
out of 4946) registers worse channel conditions. In this case, the average and the
maximum MCS indexes are about 7 and 10, respectively.

Fig. 5.13c confirms what observed for the residential area: the higher the average
number of RBs used per TTI, the higher the achieved data rate. Reported results still
show that 4942 sessions use about 1/4 of the bandwidth per TTI. On the contrary,
only 4 sessions use a larger amount of resources per TTI (i.e., more than 52). As
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depicted in Fig. 5.13d, the campus area hosts sessions with very short durations.
Apart from one exception (e.g., the graph reports one session duration equal to 1465
s), the former group of sessions registers an average session duration of 5 s. The
duration of sessions belonging to the second cluster, instead, is lower than 2 s.

Study based on time-slots

Figure 5.14: Study of the dataset related to the residential area, on
time-slots basis.

Figure 5.15: Study of the dataset related to the campus area, on time-
slots basis.

The analysis of mobile traffic on time-slots basis leads to a detailed characteri-
zation of sessions, with a consequent deep recognition of resource usage and QoS
requirements that a mobile network has to address during different parts of the day.
The outcomes of the proposed clustering methodology on time-slots basis, applied
to both residential and campus areas, are summarized in Tables 5.14 and 5.15, re-
spectively.
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Comments for the residential area: The relation between the number of sessions
belonging to the cluster and the average variable registered by related traffic sessions
still exists. About 30% of morning sessions report an average data rate equal to 0.22
Mbps, while about 40% have an average data rate equal to 0.65 Mbps. During the
afternoon, that is the time-slot with the highest number of residential sessions, the
data rate starts growing. In fact, about 40% of afternoon sessions have an average
data rate equal to 0.48 Mbps and the other 40% of sessions register an average data
rate equal to 1.26 Mbps. The data rate still grows during the evening. The average
data rate is 0.79 Mbps and 2.48 Mbps for about 60% and 35% of evening sessions,
respectively.

Considering night sessions, whose number is limited because people tend to
sleep, the average data rate goes down: about 87% of night sessions report an aver-
age value equal to 0.30 Mbps. The average MCS index is lower than 5 for about 70%
of morning sessions. In particular, around 40% use an average MCS index close to 5
and around 30% even use an average MCS index approximately equal to 3. During
the afternoon, average MCS indexes increase. In fact, about 40% of afternoon ses-
sions have an average MCS index close to 4 and a further 40% register an average
value close to 6. The MCS indexes still grow during the evening, as the data rate.
The average MCS index is approximately 5 and 8 for about 60% and 35% of evening
sessions, respectively. As regards night sessions, MCS indexes tend to reduce. In
fact, about 87% of night sessions report an average value close to 3.

The distribution of radio resources follows a similar pattern. About 30% of morn-
ing sessions report an average number of RBs per TTI equal to 1/6 of the overall
amount of resources available within a cell, while about 40% have an average value
equal to 1/4. During the afternoon, about 40% of sessions use an average number of
RBs per TTI close to 1/4 of bandwidth per TTI and a further 40% register an average
number equal to 1/3. During the evening, the average amount of resources per TTI
is more than 1/4 and about 1/2 of the overall bandwidth for about 60% and 35%
of sessions, respectively. Then, bandwidth consumptions decrease during the night:
about 87% of night sessions consume less than 1/4 of bandwidth per TTI.

The average duration, which varies greatly, has different behavior. Sessions gen-
erally register a short duration (i.e., 600 s), except for those available in the night
time-slot. In fact, about 87% of night sessions last about 800 s. Moreover, around
6.5% have an average duration equal to 1718 s.

Comments for the campus area: the campus area reports a more balanced dis-
tribution of sessions among the wholeday slots. As expected, traffic classification on
time-slots basis offers a better characterization of sessions. For example, up to 7 clus-
ters are identified for the afternoon time-slots, against the only two clusters reported
for the analysis of the dataset as a whole. Regarding the data rate in the campus
area, more than 55% of morning sessions report an average data rate equal to 0.06
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Mbps, while about 40% have an average data rate equal to 0.25 Mbps. During the
afternoon, the data rate tends to decrease. In fact, about 40% of afternoon sessions
report an average data rate equal to 0.02 Mbps and about 26% register an average
data rate equal to 0.12 Mbps. The data rate is still low during the evening. In fact,
the average value of 0.13 Mbps is measured for more than 99% of sessions. During
the night, that is the time-slot with the highest number of sessions, the average data
rate tends to increase. From Table 5.15, it is 0.03 and 0.16 Mbps for about 36% and
40% of night sessions, respectively.

The average MCS index is similar among the time-slots. In particular, about 55%
of morning sessions have an average value close to 13. About 40% of afternoon ses-
sions register an average MCS index close to 11, while about 26% and 25% use an
average MCS index approximately equal to 14 and more than 14, respectively. Dur-
ing the evening, the average MCS index is approximately 13 for 99.76% of sessions.
Lastly, it is close to 11 and 14 for about 36% and 40% of night sessions, respectively.

Also the allocated RBs per TTI have similar behavior. In particular, they slightly
increase and decrease during the morning and the afternoon and during the evening
and the night, respectively. About 56% of morning sessions and 38% of afternoon
sessions report an average number of RBs per TTI close to 1/4 of the overall amount
of resources available within a cell. Instead, the average amount of resources per TTI
is more than 1/4 of the overall bandwidth for 99.76% of evening sessions and about
76% of night ones.

The average duration is extremely low during all the considered time-slots. In
particular, about 56% of morning sessions last about 9 s. Furthermore, about 38%
of afternoon sessions last longer than 10 s (i.e., about 12 s), while more than 50%
(the clusters 2 and 3 in the afternoon) last less than 1 s. The average duration is
approximately equal to 3 s for about 99% of evening sessions. As the last report,
about 36% of night sessions last longer than 10 s (i.e., about 12 s), while around 60%
last less than 1 s.

5.2.3 Considerations

The proposed study clearly shows that the analysis of mobile traffic on time-slots
basis gives a deep insight into radio resource utilization dynamics. Obtained results
report a clear heterogeneity among traffic sessions, whose clustering offers key in-
struments for the optimal management of the radio resources for mobile operators.

As far as the residential area is concerned, a high number of sessions are mea-
sured for the afternoon time-slot and peaks of bandwidth requirements are regis-
tered in both afternoon and evening time-slots. By observing data related to the
night time-slot, it is possible to understand that a residential area significantly re-
duces its traffic load when people usually go to sleep. Nonetheless, differently from
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daily time-slots, the few sessions active during the night present very high dura-
tions. Regarding the campus area, sessions use a higher MCS index than residential
sessions, but a very low rate: analyzed campus sessions do not transmit a lot of
data, even if the quality of channel could be good, because the traffic load is not
significant.

By knowing the radio resource utilization patterns of mobile traffic, it will be
possible to conceive novel methodologies that aim at optimizing mobile networks.
Interesting research activities to address in the future may include:

• Advanced QoE/QoS management through dynamic radio resource schedul-
ing algorithms exploiting the deep properties expected for mobile flows at the
radio level;

• Dynamic and fine-grained management of slices and virtual functionalities of-
fered through the radio access networks in upcoming 5G architectures;

• Optimal energy savings mechanisms (e.g. sleep mode of base stations and dis-
continuous reception in mobile terminals) and opportunistic handover man-
agement procedures that leverage the predicted behavior of classified traffic
flows;

• Planning for new base station deployments in geographical regions where
higher traffic load is expected.

5.3 Mobile Traffic Prediction from Raw Data Using LSTM
Networks

Predictive analysis on mobile network traffic is becoming of fundamental impor-
tance for the next generation cellular network. Proactively knowing the user de-
mands, allows the system for an optimal resource allocation. In this Section, we
study the mobile traffic of an LTE base station and we design a system for the traf-
fic prediction using Recurrent Neural Networks. The mobile traffic information is
gathered from the LTE PDCCH using the passive tool presented in[16].

The design of the prediction system includes Long Short Term Memory units.
With respect to a Multilayer Perceptron Network, or other artificial neurons struc-
tures, recurrent networks are advantageous for problems with sequential data (e.g.
language modeling) [47]. In our case, we state the problem as a supervised multi-
variate prediction of the mobile traffic, where the objective is to minimize the predic-
tion error given the information extracted from the PDCCH. We evaluate the one-
step prediction and the long-term prediction errors of the proposed methodology,
considering different numbers for the duration of the observed values, which deter-
mines the memory length of the LSTM network and how much information must be
stored for a precise traffic prediction.
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5.3.1 The LTE Scheduling Dataset

The collected dataset consists of one-month of scheduling information that we gath-
ered by monitoring different eNodeBs located in the city of Barcelona, Spain. Let
D = {Dc1 , Dc2 , ..} be the dataset, where Dck is the set of measurements for the moni-
tored cell k. Given a Dck , for each connected user at the time t, temporary identified
by a RNTI r, we decode the DCI message containing the resource blocks, the trans-
port block size and other scheduling information for the uplink and the downlink
directions. We store this information in a measure sr(t), where t corresponds univo-
cally to an LTE subframe number, or TTI, which is 1 ms long.

We calculate the aggregate cell traffic measurements for a given timeslot T, which
is the sum of the traffic generated by all the RNTIs connected during the timeslot T,
R(T)

S(T) = ∑
r(t)∈R(T)

∑
t∈T

sr(t) (5.2)

Thus, S(T) is the vector that contains the number of resource blocks allocated in
the uplink and in the downlink directions, the number of the messages sent in both
the directions and the sum of the total transport block sizes for a given timeslot T.
Moreover, for each timeslot T, we include the number of the attached users to the
eNodeB in the timeslot T. In our case we consider T, as the number of TTIs for which
we aggregate the traffic.

(a) eNodeB 1 (b) eNodeB 2

Figure 5.16: Normalized weekly traffic signature of two monitored
LTE eNodeBs.

5.3.2 A Long-Short Term Memory Network

Recurrent neural networks are a generalization of feedforward neural networks, that
have been devised for handling temporal and predictive problems. LSTM are a par-
ticular kind of RNN, that have been introduced in [101]. They have been explic-
itly designed to avoid the long-term dependency issue, which is the cause of the
vanishing-gradient problem in normal RNNs [102].
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The capability of learning long-term dependencies is due to the structure of the
LSTM units, which incorporates gates that regulate the learning process. In a stan-
dard LSTM unit, the basic operations are accomplished by the input gate it, the
forget gate ft and the output gate ot. Moreover, the cell state ct represents the mem-
ory of the unit and it is updated with the information to be kept (or to be forgotten),
provided by the input gate (or forget gate).

The LSTM unit combines the output of the previous unit ht−1 with the current
input xt using the input, the output and the forget gates to update the memory of
the cell. The variables it and ft represent respectively the information that need
to be kept or to be forgotten from the past and the current input. The cell state ct

is updated by summing the previous cell state ct−1 and the candidate cell state c̃t,
weighted respectively with ft and it. Finally, we obtain the output ht applying the
tanh function to ct and multiplying it by ot. Then, the current output ht is passed to
next unit and combined with the input at the next time index t + 1.

Figure 5.17: Single-layer LSTM network.

Multiple LSTM units are concatenated to form one layer of the LSTM network.
Each unit computes the operations on one time index and transfer the output to the
next LSTM unit. The number of concatenated cells indicates the number of obser-
vations of the data that are considered before making the prediction. In our case,
the input xt is the eNodeB traffic vector S(T), and the number of observations is the
number of selected timeslots T.

The proposed architecture for the mobile traffic prediction is depicted in 5.18. In
our design, we consider multiple layers of basic LSTM units to form a stacked LSTM
network. The intuition is that the deep LSTM network is able to learn the temporal
dependencies of the aggregate mobile traffic: the LSTM unit of each layer extract
a fixed number of features which are passed to the next layer. The depth of the
network (e.g. the number of layers) is to increment the accuracy of the prediction,
which is done by the last fully connected layer.

For the one-step prediction we use a many-to-one architecture, which means that
the network observes the mobile traffic for a fixed number of timeslots until T and,
then try to predict the traffic in the next time slot T + 1. In the multi-step predic-
tion, we delay the prediction for a chosen number of timesteps, similarly to what is
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Figure 5.18: Proposed architecture for the mobile traffic prediction.

done for language modeling problems when they try to predict a sequence of words.
Last, the output of the LSTM network is passed to a fully connected neural network,
which performs the actual prediction.

5.3.3 LSTM Network Performance

Evaluation Setup We use the set of mobile traffic data from two different eNodeBs,
that we collected during one month, to evaluate the performance of the proposed
architecture. For each eNodeB, we calculate the aggregate cell traffic, as described in
the previous section. We choose the Normalized Root Mean Square Error (NRMSE)
as the metric to measure the accuracy of the prediction algorithm, which is given as

NRMSE =
1
x̄

√
∑N

t=1(x̃t − xt)2

N
(5.3)

where N is the total number of points, x̃t and xt are the predicted value and its
correspondent observation at the time t and x̄t is their mean. This same metric is
used to compare the accuracy of the proposed architecture with the one obtained
using other predictive algorithms.

The implementation of the mobile traffic prediction algorithm is done in Python,
using Keras and Tensorflow, as backend. The chosen hyperparameters are reported
in Table 1. The number of hidden layers is fixed to 5: this is one of the hyperpa-
rameters that need to be selected and can affect the tradeoff between the prediction
accuracy and the time needed to train the network. A higher number of layers may
increase the precision of the prediction, but we want to focus on the the relationship
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between the number of past observed values and the precision of the multi-step pre-
diction, which determines the quantity of information needed to be memorized and
utilized by the network. For the same reason, we fix the number of epochs to 100.
Three weeks of data are used to train and to validate the architecture. Next results
are related to the last week. We use the Adam optimization [116], to update the
network weights iteratively based on the training data.

Table 5.1: Training Hyperparameters for the LSTM Stacked Network

Initial Learning Rate 0.001

Num. of Epochs 100

LSTM Hidden States 64

LSTM Hidden Layers 5

Feedforward Hidden Layers 1

Optimization Algorithm Adam

Loss Function MAE

Results Analysis Next, we present the results of multi-step prediction, that is
when the output is delayed for a fixed number of timeslots and the prediction is per-
formed for later time instants. We show how the accuracy decreases when we try
to predict the traffic data in future timesteps. Furthermore, we analyze the effect of
the number of observations that the LSTM network can see, and the duration of the
timeslots T: these are design parameters that need to be estimated, since they deter-
mine the memory length of the LSTM network and how much traffic information is
needed to be stored for an accurate prediction.

In 5.19, we show the results of the mobile traffic prediction for two cells: since
they are located into two different areas, the monitored eNodeBs present two distinct
traffic profiles in terms of profile and traffic magnitude. We can see that the predic-
tion is precise for the whole week, despite the oscillating behaviour of the traffic. In
this case, the prediction is one-step ahead, that means that we use a fixed number of
past values (K = 10) to predict the traffic for the next timeslot.

In 5.20a and in 5.20b we evaluate the prediction error with respect to past ob-
served values. It is relevant also to consider different values for the timeslot dura-
tion of T, which affects the calculation of the aggregated traffic S(T) from the raw
LTE traces. Figures are related to the first eNodeB (results are comparable for eN-
odeB 2). In Fig. 7, we see that the NRMSE is larger for a higher duration of T and,
as expected, the error decreases with a larger number of observations. To emphasize
the effect of the number of past observations, we plot the increasing accuracy (with
respect to observing only one past value) for different values of T. We can observe
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Figure 5.19: Prediction of the weekly mobile traffic for two different
eNodeBs.

that the major increase in percentage is given for larger values of T. For 10 past
observed timesteps the accuracy can increase more than 40%.

(a) NRMSE. (b) Percentage of accuracy
gaining.

Figure 5.20: Error and accuracy gaining vs number of past observed
values.

In 5.21a we show the prediction for 15 timesteps ahead. We fix K = 10 and
T = 10 TTIs. At first, the prediction almost corresponds to the measured values,
while after some steps the prediction error is more dominant. In 5.21b, we plot
the increasing error with respect to future prediction steps. As expected, longer
prediction causes an increment in the error of the algorithm. The error increases
with different trends and it is around 40% when we predict for 15 steps ahead. This



68 Chapter 5. Mobile Traffic Characterization and Prediction

is similar to what happens in the problem of language synthesis for the prediction
of long sentences: for further words prediction, the number of candidate words is
larger, therefore there is more uncertainty in the correct choice. Conversely to the
number of past observations, changing the duration of the timeslot T, does not give
useful insight on the prediction error: for longer periods, the variability of the mobile
traffic is larger, leading to an oscillating and randomic error for future predictions.

(a) Predicted vs. ground-
truth for 15 steps ahead

(T = 10).

(b) Error increasing vs
number of predicting

timesteps.

Figure 5.21: Lookup for the predicted mobile traffic and error increas-
ing for 15 steps ahead.

Comparison with ARIMA Finally, we compare the proposed architecture with
two time-series prediction methods: an ARIMA model is a well-established tech-
nique for the time-series analysis, and it is defined by 3 parameters (p, d, q) that
determine the auto-regression, the differentiation and the moving average, respec-
tively. Here, we use a (10, 1, 5) model. Also, note that we use only one variable for
the prediction (i.e. the aggregate traffic), instead of multiple information obtained
by the raw data. The other traffic prediction is obtained using a deep FeedForward
Neural Network (FFNN), where we replace the LSTM neural network with a net-
work of fully connected neurons. For a fair comparison, we use the same number
of hidden layers. 5.22 shows the traffic prediction on the same time window us-
ing these two techniques. The accuracy using the ARIMA model is lower, since the
prediction tends to be closer to the average value of the traffic. On the other hand,
the FFNN is able to follow the periodic trend and the traffic oscillations, but it still
lack of a high precision. Also, we compare the average error for the three prediction
methods on the two traffic profiles: as expected, thanks to the LSTM properties, the
proposed algorithm captures the temporal characteristics of the mobile traffic, and
it provides superior accuracy with respect to the FeedForward Neural Network or
to the classic ARIMA model.

Conclusions We study the effectiveness of recurrent neural networks applied to
the prediction of the mobile traffic. The choice of using LSTM network is imposed by
the dataset characteristics, since we use multivariate traffic information that derive
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Figure 5.22: Traffic prediction obtained with different model and er-
rors.

directly from the DCI of the LTE control channel. The LSTM units succeed in cap-
turing the temporal correlation of the traffic even for distant timeslots. Applying the
prediction of the traffic using raw aggregate data from the physical channel, is fun-
damental in time-critical applications and avoids the need for additional resources
to process the traffic data.
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Chapter 6

Mobile Traffic Anomaly Detection
in Urban Environments

In this Chapter, we evaluate the possibility of exploiting the pervasiveness of mobile
newtorks and use them as sensing platforms to detect potential urban anomalies.
First, in Section 6.1, we use the acquired data from the Camp Nou area, to imple-
ment a supervised algorithm to detect the users’ behaviours when a football match
is scheduled. Next, in Section 6.2, we extend the detection of anomalies to unknown
events, using a semi-supervised approach, in which only normal traffic samples are
used to train the algorithm. The results reported in this Chapter are presented in the
following papers:

• Trinh, H. D., Giupponi, L., & Dini, P. (2019, June). Urban anomaly detection
by processing mobile traffic traces with LSTM neural networks. In 2019 16th
Annual IEEE International Conference on Sensing, Communication, and Networking
(SECON) (pp. 1-8). IEEE. [22]

• Trinh, H. D., Zeydan, E., Giupponi, L., & Dini, P. (2019). Detecting Mobile
Traffic Anomalies Through Physical Control Channel Fingerprinting: A Deep
Semi-Supervised Approach. IEEE Access, 7, 152187-152201. [23]

6.1 Detecting Anomalies through Supervised Approach: the
Case of Barcelona Camp Nou

Nowadays most of the population of the planet lives in towns with a higher and
higher concentration of people in the metropolitan areas. This trend brings evident
economic benefits to citizens, but, several issues for their wellness, e.g., congested
mobility and transportation, air quality and pollution, social segregation, to name
a few, have been raising. Therefore, such demographic changes require cities to
implement smart strategies for a more sustainable development and management
of metropolitan areas.
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In this context, the automatic detection of urban anomalies, like unexpected
crowd gathering, is of upmost importance for government and public administra-
tion [48]. However, urban anomalies often exhibit complicated forms, and moni-
toring heterogeneous sources like traffic flows or public transportation usage, re-
quires complex sensing systems. Generally, the collection of such information can
be achieved with a remote sensing platform, composed of a distributed network of
sensors and cameras [117], or, alternatively using crowd-sourcing methods [118].
However, enabling such complex platforms requires the direct human intervention
and it can be expensive due to the installation and to the maintenance of the hard-
ware needed to monitor and report the public status in different parts of the city.

6.1.1 Mobile Network as a Sensing Platform

A viable opportunity to effectively complement the already available monitoring
systems, is to exploit the extreme pervasiveness of the mobile networks: using the
mobile network as a sensing platform, eliminates the need for additional expensive
hardware and it is valuable in the long-term because of 5G Ultra-Dense Networks
(UDN), which, in the upcoming years, will boost the ubiquity of the mobile net-
works [119].

In this work, we demonstrate how to perform Anomaly Detection (AD) using
mobile network data: to this end, we leverage a Multi-access Edge Computing
(MEC) architecture, which enables the mobile data processing directly from the ra-
dio access, and the detection of anomalies occurring in an area covered by one base
station. The mobile data is collected from the LTE Control channel and it is provided
to a MEC server, which promptly processes the information close to the edge of the
network, i.e. at the radio-access, avoiding high latencies. MEC provides service ,
through the virtualization of network functions that formerly existed in the Evolved
Packet Core (EPC): the movement of these functionalities close to the base station
enables a boost in the performance and of the Quality of the Services (QoS). The
benefits are due to a network deployment based on the virtualization of the network
functions, which formerly existed in the Evolved Packet Core (EPC), and moved to
the network edge close to the base stations.

The approach we adopt is the following: we collect the mobile network data by
passively sniffing the unencrypted LTE PDCCH from base stations in a certain area.
We proceed by identifying a known event (e.g. a football match) that is expected to
generate a large concentration of people in a certain urban zone. We collect mea-
surements from the target zone during different days for a sufficiently long period,
and finally we design and use an anomaly detection tool that is able to identify the
anomalous behaviour, during the targeted event. The identification of such unex-
pected events is beneficial in a wide range of contexts, for example, for public safety
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purposes, for the optimization of urban planning, and for network management op-
timization, to handle e.g. network congestion issues that may affect the Quality of
experience (QoE) of the users, especially if they are demanding real-time services.

6.1.2 Objectives

We design an anomaly detection (AD) system based on RNNs, which are the state-of-the-art
learning techniques to cope with sequential input data, showing outstanding per-
formance, for example, in the area of Natural Language Processing (NLP) [120].
We adopt Long Short-Term Memory (LSTM) neural networks, which are capable
of learning long-term dependencies from the input time series, while solving the
vanishing-gradient problem that affects standard RNNs.

The presented analysis shows that our proposed algorithm for AD achieves an
F-score of 1 on the considered dataset and also provides a comparison with other
classes of algorithms. The methodology and the achieved results are novel in the
context of urban anomaly detection. In summary, the original contributions are the
following:

• Mobile Network as a Sensing Platform: we propose to exploit the pervasiveness
of the existent network to monitor locally the presence of people and to detect
potential anomalies; this method reduces the need of installation and mainte-
nance of additional expensive hardware;

• Anomaly Detection with LSTM Neural Networks and Comparison: we design an
algorithm based on LSTM neural networks and we tune the training parame-
ters to obtain a maximum F-score of 1. The algorithm is intended to work in
real-time, based on the LTE control data provided to the MEC server. A com-
parison with other state-of-the-art algorithms demonstrates the advantage of
our supervised approach.

6.1.3 Scenario

We consider a scenario like the one depicted in Fig.6.1, where a MEC server is de-
ployed and co-located with a multi-access RAN, e.g. LTE base stations (eNodeB).
The MEC server coordinates several virtual machines (VMs), which share the com-
putational efforts to support the traffic load from a limited number of eNodeBs and
it is provided with the LTE network data. To supply this information to the MEC,
one solution is to create a link to share the internal base station data: however, to get
access to the eNodeB information, it is required the direct intervention of the mobile
network operator.

Alternatively, the solution we adopt consists of listening to the LTE Control Chan-
nel information and it can be feasibly performed by external individuals: using the
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Figure 6.1: Scenario.

unencrypted data sent over the LTE PDCCH we can obtain the full scheduling in-
formation about the radio resource usage for that particular base station. More pre-
cisely, it is possible to serve MEC with DCI messages, from which we can derive the
resource blocks and the modulation and coding index assigned to the users together
with an user identifier. This approach presents two main advantages:

1. the collected data does not present any privacy/security issue, since it relies on
the LTE security protocols, and therefore no additional procedure to preserve
user’s anonymity is required;

2. the passive listening over-the-air does not need additional expensive hardware
to provide the information to the MEC server and the DCI decoding can be
performed directly using open-source software.

For these reasons, the proposed approach exploits the existent infrastructure and
is feasible in terms of costs and effectiveness.

6.1.4 Dataset

The measurement campaign took place in the city of Barcelona for one month. We
monitored an eNodeB located nearby the popular Camp Nou football stadium: Camp
Nou is the largest European football stadium and allows up to almost 100 thousand
attendance per event. The stadium is located in a urban residential area of Barcelona,
which is characterized by a high population density. The choice of the eNodeB to
be monitored is made based on the high variability of the traffic during sports and
leisure events, which are hosted periodically into the stadium.

In this work, we are interested in studying the total traffic exchanged between
the eNodeB and all the connected users. Thus, we need to aggregate the eNodeB
traffic: let T be the total measurements period; for every second t ∈ T , we define
x(t) as the vector that contains the following information

1. RNTI: the total number of assigned C-RNTI;
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Figure 6.2: Map of Barcelona area where the measurement campaign
took place for the creation of the input dataset. The eNodeB location
is denoted by A, whereas the data collection system is marked as B.

2. TBSdown: the total number of transport block size assigned in the downlink
direction;

3. TBSup: the total number of transport block size assigned in the uplink direc-
tion;

4. RBdown: the total number of resource blocks allocated in the downlink direc-
tion;

5. RBup: the total number of resource blocks allocated in the uplink direction;

We indicate with D the number of metrics we consider in x(t). Therefore, the se-
quence x(t) is a multi-variate time-series, which includes the metrics described above,
which are extracted directly from the decoded DCI messages and aggregated over
all the assigned C-RNTI.

6.1.5 Temporal Traffic Analysis

The collected dataset allows for a localized characterization of the mobile traffic,
which is exchanged in the area of the monitored eNodeBs.

In Fig. 6.3, we observe the mobile traffic for several days. The plot includes one
matchday, during which a football game takes place: it is possible to identify a regu-
lar daily pattern, but, also, traffic anomalies, which deviate from the normal behav-
ior. The plots in Fig. 6.3 show the number of assigned C-RNTIs, the transport block
sizes and the number of allocated resource blocks, averaged over a 30-minutes win-
dow. We recognize the match-day, due to the presence of prominent peaks. As ob-
servable, the number of C-RNTIs seems to represent a good indicator for measuring
and detecting the traffic variations, since it is assigned by the eNodeB to temporarily
identify the different UEs.
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Figure 6.3: Traffic profiles including one match day.

Based on the previous observations, we establish that the traffic conditions that
the network experiences can be categorized at least into two states, which are identi-
fied as normal behaviour, typical when no football match is scheduled, and as anoma-
lous behaviour, when the traffic deviates from the expected behaviour at a given time
of the day.

6.1.6 Football Match Insights
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Figure 6.4: Matchdays traffic profiles.

One of the advantage of exploiting the LTE PDCCH information is the high res-
olution of the dataset, i.e. 1 ms, which allows for a detailed characterization of the
mobile traffic. In the previous section, we show the daily traffic profile. Further
meaningful insights can be acknowledged from the collected data.

In Fig. 6.4, we plot the traffic profiles of 3 different matches. Since the football
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Figure 6.5: LSTM-AD Framework.

games took place at a different time of the day, we overlap the mobile traffic time-
series in correspondence to the match kick-off. Also in this case, we plot the number
of assigned C-RNTIs. We select a time-window that starts 3 hours before the match
and terminates 2 hours after the match ends. The following observations can be
made:

• repetitive patterns: we found that the same traffic pattern repeats during match-
days, independently from the starting hour of the match;

• traffic increase before the game: this can be observed since we considered a large
time resolution that start few hours before the game. The traffic increases be-
cause of the number of attendees that enter the areas nearby the stadium before
the game;

• traffic drop when the match starts: it is that when the football match starts, the
attendees start watching the game, and, therefore, they do not use their termi-
nals;

• half-time peaks: as soon as the half time takes place, the attendance are prone
to use their mobile phones; the mobile traffic drops as the half-time finishes,
similarly to when the match starts, but more abruptly.

• end-game peak: after the match end, the traffic experiences the most prominent
peak.

In the next section, we provide the description of an algorithm, whose objective is
to detect the anomalous behaviour and make the network aware of the rapid traffic
fluctuations.

6.1.7 AD-Framework

The problem of discriminating the anomalous states from a normal state of the
network traffic conditions is classified as an anomaly (or outlier) detection prob-
lem. In this work, we design an anomaly detection (AD) system based on stacked
Long Short-Term Memory (LSTM) neural networks, which are capable of tracking
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long-term dependencies from multi-variate time-series, while solving the vanishing-
gradient problem that affects standard RNNs. The intuition is that a stacked LSTM
network is able to extract the temporal dependencies of the mobile traffic patterns
and learn to discriminate the anomalies from the normal pattern.

Since we know the match times and therefore, we know when the related anomaly
occurs, the approach that we use in this work is supervised. Thus, the AD problem
is addressed as a binary classification problem, where the designed algorithm is in
charge of classifying the network traffic sequences into two classes: normal or anoma-
lous behaviour. In general, AD supervised algorithms lead to more accurate results
with respect to other techniques [121].

The whole framework to solve the AD problem is depicted in Fig. 6.5; it takes
as input the data collected from LTE PDCCH and it consists essentially of 2 parts:
Data Preparation and Algorithm Learning. The implementation details of both parts
are discussed in the next sections.

6.1.8 Data Preparation

The dataset x(t), needs to be preprocessed and labeled before being input to the AD
algorithm. Next we illustrate the procedure we adopt, consisting into four steps:

Data Resampling and Normalization

The sequence x(t) is resampled using a value ts and standardized by removing the
mean and by scaling to unit variance. This operation filters the input sequence and
normalizes the original curve, henceforth it helps to identify rapidly the anomalies
also by visual inspection (in Fig. 6.3 ts = 30 minutes). Hereafter, to keep simple the
notation, we use x(t) to also indicate the resampled sequence.

Data Windowing

The sequence x(t) is split and grouped using a fixed-length window W. The window
is moved each time by one-step. The value of W defines the number of time-lags that
the LSTM architecture processes to classify the input as anomalous or normal. This
also determines the input length to the first LSTM layer.

The multi-variate sequence can be expressed as [x(1), x(2), . . . , x(T)], being T the
cardinality of T , i.e. T = |T |. After the split, we have N′ = T −W + 1 sequences
x(n′), n′ ∈ [1, N′]

x(1) = [x(1), x(2), . . . , x(W)]

x(2) = [x(2), . . . , x(W + 1)]

x(N′) =
[
x(N′), . . . , x(T)

]
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A sequence x has length W and each of its element is D-dimensional, with D ∈
[1, 5] the number of considered metrics described in Section 6.1.4. Hereafter, we refer
to the sequence x as samples. Then, we can define X′ the three-dimensional matrix
which contains N′ sequences x. The matrix X′ has dimension N′ ×W × D.

Data Augmentation

One of the most common problems in supervised classification is the lack of suffi-
cient labeled data for which the algorithm is able to learn and distinguish the dif-
ferent classes [122]. This becomes more serious for anomaly detection, where, by
definition, the anomalous behaviour appears very infrequently, creating a very un-
balanced ratio between the two classes. Moreover, in order to validate the algorithm
performance, we need to split the dataset into training and validation sets, which
reduces the number of anomalous samples from which the algorithm can learn (or
validate), making it difficult to obtain meaningful results in a statistical sense.

To overcome this issue, as done in [123], we can augment our dataset by over-
sampling the data by a factor F. The objective is to have enough samples in both the
training and validation sets. This simple but effective method does not change the
distribution of the anomalous samples (less than 8% in our case) in the dataset, but
allows for statistical measure of the performance metrics (described in Section 6.1.10),
which is required to evaluate the proposed algorithm.

We obtain X as the repetition of X′: this operation can be seen as stacking X′

F-times along the first dimension. The new matrix dimensions are N×W ×D, with
N = N′ · F. We choose F = 3 to have a sufficient number of anomalies (> 10) in the
validation set. Similarly to x(n′), we refer to the samples of X as x(n), n ∈ [1, N].

Labeling

The dataset is labeled under the assumptions that we know when an anomaly oc-
curs. In our approach, we define as an anomalous behaviour those traffic patterns
that occur during a football match. As seen in Section 6.1.5, the network traffic devi-
ates from his normal behaviour when there is a football game. This approach does
not involve any threshold set or additional manual intervention. Moreover, this rep-
resents the best-effort approach in this case, since we strictly define what we consider
an anomaly.

For each sequence x of X, we assign a label of 1 if any of its elements is measured
during the period of a football match and 0 in the opposite case. Note that the traffic
patterns associated to the football match can occur at any time-step of a given x,
making the classification problem more complex.
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6.1.9 LSTM-AD Architecture

The proposed architecture for urban anomaly detection is shown in the last part of
Fig 6.5 and is based on Long Short-Term Memory (LSTM) neural networks. The ca-
pability of learning long-term dependencies is due to the structure of the basic LSTM
cells (or units), inclusive of gates that regulate the learning process (see Fig. 7.16).

Multiple LSTM cells are concatenated to form one layer of the LSTM network.
Each cell computes the operations on one time index and transfers the output to the
next cell. The number of concatenated cells indicates the number of observations of
the data, which in our case, corresponds to the window length W.
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Figure 6.6: Scatter plots obtained with PCA of the raw input data vs
the hidden features extracted by the last LSTM layer before softmax.

Table 6.1: LSTM-AD performance for different configuration of the
input data with W = 8.

D N Best Input Combination Prec Rec F-Score Wmin

1 5 [RNTI] 0.96 0.95 0.95 14
2 10 [RNTI, TBSdown] 0.95 0.96 0.96 11
3 10 [RNTI, TBSdown, TBSup] 1.00 1.00 1.00 8

4 5 [RNTI, TBSdown, TBSup, RBSdown] 1.00 1.00 1.00 8

5 1 [RNTI, TBSdown, TBSup, RBSdown, RBSup] 1.00 1.00 1.00 8

In our design, we consider a stacked architecture combining L = 3 LSTM hidden
layers and a final Fully Connected (FC) layer. The L LSTM layers are composed of
H = 200 LSTM units, while the last FC output layer is formed by 2 hidden neurons to
perform the binary classification. In each LSTM layer, the hyperbolic tangent (tanh)
activation function is adopted to process the output to be passed to the subsequent
layer. Differently, in the last FC layer, a softmax activation function produces the final
output, which corresponds to the probabilities of belonging to the anomaly class
or to the normal class. Finally, the classification is performed by picking the class
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with the highest likelihood probability. The algorithm is trained using the binary
cross-entropy loss function and it is optimized using the RMSProp algorithm [124].
Hereafter, we refer to the proposed algorithm as LSTM-AD.

6.1.10 Performance Evaluation

The LSTM-AD algorithm is evaluated for different values of W and D. In particu-
lar, W represents the length of the observation window, which is equivalent to the
number of lags of the stacked LSTM architecture. Instead, D indicates the num-
ber of parameters collected from the DCI messages that we need to process for the
detection of the anomalies. We have tested all the possible combinations of the 5 pa-
rameters in the DCI messages described in Section 6.1.4. The objective of this study
is to find the minimum value of D and W for which we obtain the highest accuracy.
Finally, we also compare our solution with other state-of-the-art anomaly detection
algorithms.

The performance tests have been carried out on cloud environment using Google
Colaboratory, which provides free hardware acceleration with Tensor Processing
Unit (TPU). The input dataset is split into training and validation sets with a ra-
tio of 70% - 30% before the replication step. The anomaly detection algorithms have
been implemented in Python: we use keras library and Tensorflow, as backend, to
implement the LSTM-AD algorithm, while for the unsupervised algorithms we use
the implementation from [125]. In the next section, we evaluate the results of the
anomaly detection system, by defining, first, the evaluation metrics.

Performance Metrics

Defining proper metrics to evaluate the performance in an AD problem is funda-
mental: in most cases, in a multi-class classification problem, the accuracy (measured
as the number of corrected classified samples over the total number of samples)
is enough to explain the algorithm performance. However, when the classes are
formed by an unbalanced number of samples, like in our case, the accuracy is not
sufficient to evaluate the algorithm, since a blind classification of all the samples as
normal behaviour can lead to a very high result. For these reasons we introduce
additional metrics, namely precision, recall and F-score:

• Precision P: defined as the ratio between true positives Tp (the number of
samples belonging to that anomaly class that are correctly classified) and the
sum between true positives and false positives Fp, where Fp represents those
normal samples that are incorrectly classified as anomalous,

P =
Tp

Tp + Fp
(6.1)
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• Recall R (also known as sensitivity or hit-rate): defined as the ratio between the
true positives Tp and the sum between true positives and false negatives Fn,
which are the anomalous samples incorrectly classified as normal, it gives the
probability of detection of an anomalous behaviour,

R =
Tp

Tp + Fn
(6.2)

• F-Score F is defined as the harmonic mean of precision P and recall R,

F =

(
1
P + 1

R
2

)−1

= 2
RP

R + P
. (6.3)

LSTM-AD Algorithm Evaluation

In Fig. 6.6, we use the Principal Component Analysis (PCA) to produce the 2D-scatter
plots of the raw data (before it is input into LSTM-AD) and of the hidden features
that are extracted by the last LSTM layer, before the FC softmax layer. We observe
that a linear transformation like PCA is not able to separate the anomalies from the
normal samples and justify the use of LSTM for our problem. In fact, the features
extracted by the LSTM stacked architecture can definitely facilitate the estimation of
a decision function to separate the two classes.

Fig. 6.7 gathers the performance results using the metrics that we previously de-
fined for the anomaly class. The algorithm is evaluated for different values of W and
D. First, we notice that the precision metric is not sufficient to evaluate the algorithm
alone, since there are almost zero false-positive in the detection. Instead, from the
F-score plot, we can observe that we obtain an F-score F = 1 when W = 8 and D = 3,
meaning that we need to consider only the information about the number of C-RNTI
and about the transport block size [RNTI, TBSdown, TBSup]. Table 6.1 reports the re-
sults for the best input combination for D varying from 1 to 5 and W = 8. As shown
in Fig. 6.7 and Table 6.1, increasing the dimensionality D it is not necessary, since
the information given by the number the resource blocks allocation ([RBdown, RBup],
D = {4, 5}) is implicitly included in the number of transport block size assigned.

6.1.11 Comparison with state-of-the-art AD

The anomaly detection with non-supervised algorithms is solely based on intrinsic
properties of the data instances. The advantage is that they do not need the explicit
labeling of the input data. Instead, their approach is to learn only the characteristics
of the normal class and the classification of the anomalies is performed by comparing
the new sample characteristics with the learnt characteristics.

We choose the following 3 methods as examples of non-supervised AD algo-
rithms:
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Figure 6.7: F-score, recall and precision of the LSTM-AD algorithm
for different values of D and W. For each D, the choose the best input

combination, as reported in Table 1.
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Figure 6.8: F-score obtained with OC-SVM, PCA and ABOD for dif-
ferent D and W values.

• One Class-SVM (OC-SVM) [126] is one of the most common one-class AD al-
gorithms, and it is an extension of the Support Vector Machines to the AD
problem;

• Angle-Based Outlier Detection (ABOD) [127] calculates the variance in the an-
gles between the difference vectors of a point to the other points;

• Principal Component Analysis (PCA), with respect to the two former algo-
rithms, is mostly used for feature selection and dimensionality reduction, but
a variant of the PCA has been implemented and used in [128], for solving dif-
ferent outlier detection problems.

For these algorithms, we use the implementation presented in [125]: OC-SVM
requires a parameter ν, defined as the upper bound on the fraction of outliers. This
parameter regulates the tradeoff between maximizing the margin and the number
of normal data points within the decision boundary: as done in [126], we choose a
small value for ν (ν = 0.1), since in our case the fraction of outliers is 8%.

In Fig. 6.8, we show the F-score of benchmark algorithms applied to our prob-
lem. As expected from Fig. 6.6a, the PCA cannot help distinguish the anomalies
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from the normal samples, achieving the poorest results in terms of F-score. On the
other hand, OC-SVM and ABOD get positive F-score values with a maximum of 0.4
and 0.5 for W = 15 and W = 12, D = 3, respectively, which are much lower com-
pared to the performances obtained with the LSTM-AD. This analysis proves that
non-supervised algorithms are an alternative for the AD problem, in case you con-
sider an unlabeled dataset, but they cannot reach the performance of the supervised
approach, when a labeled dataset is available, as in the present work.

6.2 Detecting Anomalies through a Deep Semi-supervised
Approach

6.2.1 Context and Motivations

In this Section, we analyze data collected from an operative LTE network in Spain
to perform mobile traffic anomaly detection. We focus on traffic that can present
contextual anomalies, which are classified not only by their absolute values but also
based on a specific temporal context. For example, a period of high traffic would
be correctly classified as non-anomalous at regular peak times, but it would be an
anomaly at low traffic hours (e.g. during the night).

After creating the dataset, we use a semi-supervised approach to train deep learn-
ing algorithms and detect the contextual traffic anomalies. With such methodology
we overcome the so called unbalanced class problem [129], where one class is poorly
represented with respect to the other. As a result of this, AD problem is not ad-
dressed as a supervised classification task, but rather, algorithms are semi-supervisedly
taught to detect traffic anomalies learning only from non-anomalous samples.

We address the problem of anomalies identification using RNN, which are one of
the state-of-the-art deep learning techniques to deal with temporally correlated data.
In particular, we use LSTM cells to build different deep learning architectures. For
this, we design and evaluate two different approaches. In the first approach, we use
LSTMs to implement an Autoencoder, which has the task of learning to reconstruct
the normal input samples. In the second design, we exploit LSTM neural networks
to predict the traffic at the next time-instant. The AD is then performed comparing
the reconstruction and the prediction error against the groundtruth. A discussion on
the performance of the algorithms and a comparison with shallow implementations
is provided. The achieved results show the capabilities of the proposed deep learn-
ing framework to accurate detect the anomalies in the traffic data that are associated
to different urban event typologies.
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(a) Barcelona-Camp Nou (b) Barcelona-Born

(c) Madrid-Rastro

Figure 6.9: Maps of Barcelona and Madrid where the measurement
campaign took place for the creation of the dataset. In the maps, the
eNodeB location is denoted by A, whereas the data collection system

and the mobile terminal are marked as B.

6.2.2 Exploratory Data Analysis

The measurement campaign consists of about one month of data collection process
for each eNodeB that takes place over operative mobile networks in Spain. The mon-
itored eNodeBs are located in the two largest Spanish cities: Barcelona and Madrid.
In this work, we include data corresponding to three eNodeBs located in different
areas of these two cities. The maps in Fig. 6.9 show the exact locations of eNodeB
where the sniffers have been placed for the duration of the measurements period.

The choice of the eNodeBs to be monitored is made based on the high variability
of the mobile traffic in the selected areas. For each eNodeB, we identified a set of
events occurred in the monitored period that gathers a variable number of people in
the considered area and generate an abnormal mobile traffic demand. Information
on the chosen events are publicly available [130, 131, 132]:

1. Barcelona - Camp Nou: the eNodeB is placed nearby the popular Camp Nou
football stadium in Barcelona. The stadium is located in a urban residential
area of Barcelona, which is characterized by a high population density. Event:
The stadium is the largest in Europe and during football matches, it can host
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up to 100K attendees;

2. Barcelona - Born: this area is a downtown district with a mixed residential,
transport and leisure land use. The main activities include many restaurants
and bars. Event: The measurement period includes Easter holidays and reli-
gious celebrations take place in the nearby area.

3. Madrid - Rastro: the eNodeB is located in centre of Madrid. The area is sur-
rounded by the commercial activities that are either restaurants or small shops
and the crowd in the surroundings is mainly pedestrian or slowly moving ve-
hicles. Event: A periodic flea market known as "El Rastro" takes place in this
area weekly, gathering a larger number of people.

For each area, we mark the respective associated event, and we exclude them
from the set of data that we use to train the algorithms for the AD problem.

Dataset Structure

To study the total traffic exchanged between the eNodeB and all the connected users,
we need to aggregate the eNodeB traffic from the PDCCH data. Let T be the total
measurement period (see Table 6.2) for every second t ∈ T and define x(t) as the
vector that contains the following information

1. RNTI: the total count of assigned C-RNTI;

2. RBdown: the total number of RBs allocated in the Downlink (DL) direction;

3. RBup: the total number of RBs allocated in the Uplink (UL) direction;

4. MCSdown: the average MCS index assigned in the DL communication;

5. MCSup: the average MCS index assigned in the UL communication;

We indicate with D ∈ [1, 5] the number of features we consider in x(t). Therefore,
the sequence x(t) is a multi-variate time-series, which includes the metrics that are
extracted directly from the decoded DCI messages.

Dataset Visualization

Understanding the nature of the collected data and identifying significant patterns is
fundamental in any data-driven approach. To this end, we perform an Exploratory
Data Analysis (EDA) on the gathered mobile traffic data, to infer useful insights that
can help to solve AD problem.

As first step, in Fig. 6.11, we show the average traffic profiles over 24 hours
of the three considered eNodeBs in a typical day: as example, we plot the distri-
bution of DL communication metrics (RNTI, RBdown and MCSdown). In Fig. 6.11a
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Table 6.2: Collected PDCCH Dataset Statistics.

Barcelona
Camp Nou

Barcelona
Born

Madrid
Rastro

eNodeB bandwidth 20 Mhz 20 Mhz 10 Mhz
total PRBs 100 100 50
# of measurements 1002824 625278 1601292
measurement period T 24 days 21 days 38 days
RNTI (avg±std) 4.70±3.27 79.2±62.9 4.8±3.1
RBdown (avg±std) 1.65±1.15 5.74±1.11 1.04±0.38
RBup (avg±std) 0.47±1.8 0.70±2.2 0.86±.18
MCSdown (avg±std) 11.9±5.7 13.0±4.6 15.4±2.9
MCSup (avg±std) 13.6±6.6 13.0±6.7 10.8±6.3

RNTI RBdown RBup MCSdown MCSup

RNTI

RBdown

RBup

MCSdown

MCSup

1.00 0.97 0.24 0.20 0.12

0.97 1.00 0.23 0.09 0.10

0.24 0.23 1.00 -0.27 -0.19

0.20 0.09 -0.27 1.00 0.31

0.12 0.10 -0.19 0.31 1.00

(a) Barcelona - Camp Nou
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1.00 0.51 0.32 -0.12 -0.11

0.51 1.00 0.50 -0.32 -0.27

0.32 0.50 1.00 -0.40 -0.29

-0.12 -0.32 -0.40 1.00 0.45

-0.11 -0.27 -0.29 0.45 1.00

(b) Barcelona - Born
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Figure 6.10: Pearson correlation matrix of the observed metrics.

and 6.11b, we can observe that the three traffic profiles present similar characteris-
tics, but differ at some hour of the day. Night periods (12am - 7am) and day periods
(8am - 11pm) are distinguishable and it is possible to observe that the traffic peak is
reached around 8pm when typically residents are at the end of their working day.
In Fig. 6.11a, RNTI values are maximum at 9pm and minimum at 5am. In Fig. 6.11b,
for the Madrid eNodeB, we can observe that the RB utilization peaks are at 1pm and
at 8pm, which corresponds to busy hour traffic, whereas it is minimum at 5am dur-
ing non-busy hour period. In Fig. 6.11c, the average MCS index is around 15 for all
the hours of the day (note that MCS can take values in [0,28]). These results show
that the observed metrics are experiencing different behaviors including peaks and
minimums at different times of the day.
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Fig. 6.10 shows the Pearson correlation between the variables of the collected
datasets. We can observe that the correlations between the metrics of PDCCH data
exhibit different values for each eNodeB. For example, in Barcelona-Camp Nou,
RNTI and RBdown are highly correlated (with a value of 0.97), while in Barcelona - Born,
RNTI and RBdown (RBup) have values of 0.51 (0.32), respectively. This means that an
increment in number of UEs in a given cell does not always correspond to an in-
crease of the PRBs assignation. MCS correlation values are lower and, in general,
the correlations between RNTI, MCS and RB are observed to be low, i.e. less than
0.5. The low values in the correlation matrix point out that there is not a straightfor-
ward dependence between the variables (for example between RBdown and RNTI).
Therefore, we cannot further reduce the input dataset and also rather than focusing
just on a single feature for AD, all the monitored metrics should be jointly utilized
in mobile traffic anomalies identification problem.
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Figure 6.11: Mean distributions for different KPI values over hours of
day in downlink.
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The heatmaps drawn in Fig. 6.12 indicate the median RNTI values per hour dur-
ing one week at three different eNodeBs. For each eNodeB, the correspondent events
are marked in red boxes:

• In Barcelona-Camp Nou, the events correspond to football matches. The red box
includes the start and the end of the match times with a offset of one hour.
Three matches played at different hours are monitored (on 13th, 17th and 20th
January, respectively). The most recognizable event is on January 13th, where a
high value of RNTI was measured. However, detecting the other two matches
is more difficult. For example, considering January’s 17th no major changes
occurred in the RNTI compared to the value measured on the previous days;

• In Madrid-Rastro, the registered event is the flea market that takes place weekly
in the nearby area from 9am to 3pm. With respect to the Barcelona-Camp Nou
dataset, the event is visually easier to be identified. However, this base sta-
tion has only 10 Mhz bandwidth compared to the others (each with 20 Mhz
bandwidth). Therefore, the absolute values of the difference of RNTI due to
the event in this area is minor with respect to other two considered events.
As example, we also plot the heatmaps of RBdown in Fig. 6.13b for comparison
purposes. Due to low correlation between the metrics and possibility to in-
crease the detection rates for the considered AD problem, we have considered
multiple metrics in the subsequent analysis;

• In Barcelona-Born, the measurements period took place during Easter week.
The notable events during this period include the religious celebrations (on
29th, 30th March, and 1st April at 12pm). In particular, on April 1st (Easter
day), two celebrations occurred: one around 10pm the night before (Easter
Eve) and the other one at 12pm.

6.2.3 Semi-Supervised Framework

The general framework for solving the AD problem is depicted in Fig.6.14, which is
named as LSTM-AD. This framework comprises a limited number of pre-processing
steps on the collected raw data to minimize the detection time of potential anoma-
lies. To accomplish this, the framework first takes the data collected from LTE
PDCCH as input. Later, it essentially performs three parts: A) Data Preprocessing,
B) AD Algorithm Learning and C) AD Decision Function. The implementation details
of each parts are in turn discussed in the next sections.

Data Preprocessing

Before being input to the AD algorithms, the mobile traffic dataset is preprocessed.
Given the multi-variate mobile traffic time-series x(t), we perform the following two
preprocessing steps:
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Figure 6.12: Heatmaps of one week of RNTI values collected from
three different eNodeBs where chosen events are marked in red

boxes.

• Data sampling and normalization: The sequence x(t) is resampled using a value
ts and standardized by removing the mean and scaling to unit variance. This
operation is performed to filter and normalize the original sequence to reduce
the variance of the input dataset (in our experimental results, the plots are
obtained with ts = 30). Hereafter, to simplify the notation usage, we also use
x(t) to indicate the resampled sequence.

• Data windowing: The sequence x(t) is split and grouped using a fixed-length
window W. The window is moved each time by one-step. The value of W
defines how many time-lags are processed by the AD-algorithm that classifies
if the input is an anomaly or not.
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Figure 6.13: Heatmaps of one week of RBdown values collected from
the eNodeBs where chosen events are marked in red boxes.

Figure 6.14: LSTM-AD Framework: A general framework to solve
AD problem.

The multi-variate sequence can be expressed as [x(1), x(2), . . . , x(T)], where T
the cardinality of T , i.e. T = |T |. After the split, we have N = T −W + 1
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sequences x(n), n ∈ [1, N]

x(1) = [x(1), x(2), . . . , x(W)]

x(2) = [x(2), . . . , x(W + 1)]

x(N) = [x(N), . . . , x(T)]

A sequence x(n) has length W and each of its element is D-dimensional, with
D ∈ [1, 5], the number of considered metrics as described in Section 6.2.2.
Hereafter, we refer to the sequence x as samples. Then, we can define X the
three-dimensional matrix which contains N sequences of x. The matrix X has
dimension N ×W × D and serve as input tensor to the AD algorithm.

AD Algorithm Learning

We design two neural network architectures, namely Autoencoder and Predictor,
to automatically extract the relevant features from the LTE PDCCH dataset and we
train them to reconstruct or predict the normal traffic instances. The AD is achieved
by studying the reconstruction or prediction error, which is supposed to be higher
for anomalous traffic instances.

Specifically in our implementation, we use stacked-LSTM neural networks, which
are the state-of-the-art deep learning structures to deal with sequential data. LSTMs
are capable of learning long-term dependencies from the input time series, while
solving the vanishing-gradient problem that affects standard RNNs [133]. This ca-
pability is due to the structure of the basic LSTM cells (or units) that includes gates
to regulate the learning process.

LSTM Autoencoder the general approach using an LSTM-Autoencoder (LSTM-
AE) is depicted in Fig. 6.15. Generally, autoencoders are used in representation
learning to learn unsupervisedly a representation of the input in a feature space. In
our case, we implement a sequence-to-sequence autoencoder [134], since our dataset
consists of time-series sequences. The objective is to reconstruct the traffic samples
using an encoded representation of the input sequence.

An autoencoder consists of an encoder and a decoder. Let X = RD be the input
space and F be the feature space. An encoder is a function φ : X → F that has the
task of learning the prominent characteristics and creating an encoded version of the
sample in the feature space F . The decoder instead is a function ψ : F → X that aims
to reconstruct the input using the internal representation.

For the implementation of both the encoder and the decoder, we use LSTM cells,
which do not consider independent inputs with respect to plain neurons (or percep-
trons) and are capable of extracting the temporal dependencies from one instance
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Figure 6.15: LSTM Autoencoder for Anomaly Detection.

and another. To address the AD problem, the idea is to train the autoencoder in
a semi-supervised way using only traffic samples without potential anomalies. For-
mally, given a sample sequence x(n), the autoencoder is a function ΦAE : ≺ ◦← that
outputs x̂(n)

ΦAE(x(n)) = x̂(n) (6.4)

With sufficient training samples, the architecture is taught to learn to reconstruct the
normal samples with a low reconstruction error compared to anomalous events.

LSTM Prediction we can use the LSTM architecture to make traffic prediction as
well (LSTM-PRED, see Fig. 6.16). Therefore, instead of trying to reconstruct the input
samples, the objective now becomes to predict the traffic in the next time-instants.
By definition, anomalies are unlikely predictable, therefore, the idea is that the algo-
rithm is taught to predict only the traffic in regular conditions, where the prediction
error is expected to be low.
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Figure 6.16: LSTM Architectures used for Anomaly Detection.
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As input, the algorithm (LSTM-PRED) receives a traffic sequence of length W at
time n, x(n) = [x(n), x(n+ 1), .., x(n+W− 1)], and tries to predict the traffic sample
at time n + W, x̂(n + W)

ΦPRED(x(n)) = x̂(n + W) (6.5)

Similar to LSTM-AE, we train the LSTM-PRED using only regular traffic sam-
ples. Our implementation consists of a stacked architecture that includes multiple
LSTM layers. The number of concatenated cells in the first layer indicates the num-
ber of observations of the data, which in our case corresponds to the window length
W.

AD Decision Function

Given the output from the AD algorithm learning block, the objective of this part is
to evaluate the reconstructed (or predicted) traffic and decide if it has to be classified
as anomalous or not. First, we calculate the Mean Square Error (MSE) between the
reconstructed (or predicted) sequences and their true values averaged over the D
metrics:

LAE(n) =
1

W
1
D ∑

W
∑
D
|ΦAE(x(n))− x(n)|2 (6.6)

LPRED(n + W) =
1
D ∑

D
|ΦPRED(x(n))− x(n + W)|2 (6.7)

The classification of anomalies is performed as inference on the input traffic se-
quence. Both algorithms are trained only on normal traffic samples, hence the errors
produced for anomalous sequences are expected to be higher, making the algorithm
being able to classify them as anomalies.

Instead of setting a static error threshold, we can use the first and the second
order statistics to implement the decision function that classifies an error as anomaly,
and we can calculate a dynamic error threshold that take account of the different
traffic behaviours during the different hours of the day.

We accomplish this using moving average with discrete linear convolution method.
Similar to [135], the moving average µ(n) is calculated as a linear convolution be-
tween the error LAE/PRED(n) = err(n) and a low-pass filter K(n) with length W.
Then, we calculate σ as the standard deviation of the residual. If the absolute differ-
ence between the error and the moving average is greater than σ, the correspondent
traffic instance is marked as anomaly (see pseudo-code in Algorithm 2).
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Algorithm 2 AD Decision Function

1: procedure ANOMALY DETECTION

. calculate moving average using kernel K
2: K: low-pass filter
3: A: set of anomaly samples
4: µ(n)← err(n) ∗ K(n)
5: residual ← err(n)− µ(n)
6: σ← standard deviation (residual)

. mark the anomalies
7: if |err(n)− µ(n)| > σ then
8: mark sample at time n as anomaly
9: add n to set of anomaly samples A

10: return A

6.2.4 Performance Evaluation

The two proposed algorithms are evaluated in terms of precision, recall, F-score and
accuracy metrics. Note that accuracy alone is not sufficient to demonstrate the ca-
pabilities of algorithms due to the class unbalance problem, in which even a blind
classification of all the samples as normals can lead to a very high accuracy results.

Training phase

Before training the algorithms, first we divide the dataset that is composed of only
normal samples (we exclude the measurements that take place during notable events)
into training, validation and test sets, using a split ratio of ∼ 0.50, 0.25, 0.25. We
train and validate the algorithms on the training (or validation) sets to minimize
the reconstruction error (in the case of LSTM-AE) or prediction error (in the case
of LSTM-PRED). The test set is used at inference time for anomaly prediction and
includes the weeks when the events occured: for Barcelona-Camp Nou dataset, the
test set is the week between 13th and 20th January, for Barcelona-Born, is the week
between 28th March and 4th April and for Madrid-Rastro, it includes two weeks
between 15th July and 2nd August.

In Fig. 6.17, we plot the train and validation errors versus the number of epochs
during the training phase for the LSTM-PRED (left) and LSTM-AE (right). The pa-
rameters used for the training are chosen by grid-search validation in order to obtain
an MSE ≤ 0.01 (reported in Table 6.3). For LSTM-AE, we use NLAE = 2 LSTM layers
and HAE = 100 hidden neurons for implementing both encoder and decoder. In
LSTM-PRED, we consider a stacked architecture combining NLPRED = 2 LSTM hid-
den layers with HPRED = 100 hidden units each. The error is calculated as MSE and
the RMSProp algorithm is used to optimize the learning process. As can be observed
from Fig. 6.17, the error values start to saturate after ∼ 50 epochs.
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Figure 6.17: Training and Validation error vs. number of epochs.

Table 6.3: Configuration of learning parameters.

Parameters Value

NLPRED

number of layers in
LSTM-PRED 2

NLAE

number of layers in
LSTM-AE 2

HPRED

number of hid-
den LSTM cells
in each layer in
LSTM-PRED

100

HAE

number of hidden
LSTM cells in each
layer in LSTM-AE

100

W moving-window
samples 6

D number of features 5

Opt optimization algo-
rithm RMSprop

6.2.5 Anomaly Detection

The anomaly identification is achieved at inference time using the test set. We eval-
uate the algorithm performance by measuring the reconstruction error in the case of
LSTM-Autoencoder (LSTM-AE) and the prediction error in the case of LSTM-PRED
as given in equations (6.6) and (6.7) respectively. We also use the decision function
defined in Sec. (6.2.3) to classify if the considered traffic instance is an anomaly or
not.
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(c) LSTM-AE used on Madrid-Rastro dataset.

Figure 6.18: AD results on the test datasets of the three different
datasets collected from three eNodeBs.

In Fig. 6.18, we present three plots (one for each eNodeB) that show the proposed
algorithm’s error performance and the correspondent detected anomalies over the
test dataset. We also mark the periods when the chosen events took place. We can
distinguish two types of traffic anomalies: the contextual anomalies (which are as-
sociated to the identified events) and point anomalies (which we do not associate to
any specific urban event).
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Event Identification

Based on the decision function, in Fig. 6.18 we label the anomalies so that they can
be compared with the marked events (in green mark) that serve as ground-truth. In
this case, since we are interested in identifying contextual anomalies, we can select
the periods that present subsequent anomalies (red mark). This allows us to identify
specific events and gives a characterization of such events including the duration,
the starting time and the ending time.

Some of the observations are as follows: first, in Fig. 6.18 the error is observed to
be higher in correspondence to the marked events (e.g., when the football games are
played) and all the marked events are successfully detected by the proposed algo-
rithms. Second, Fig. 6.19 shows the obtained results with the two semi-supervised
algorithms using accuracy, precision, recall and F-score as metrics. Considering that
the training is done using only the normal samples, for both algorithms the precision
is very high (> 0.9 on average). However, the recall is lower (0.6 on average), since
the detected events are slightly shifted with the respect to the marked periods as
observed in Fig. 6.18. To understand these differences, it is appropriate to refer to
every single case:

• In Barcelona-Camp Nou, due to the high capacity of the stadium (about 100K
attendees), people start gathering in the area nearby the stadium few hours
before the match kick-off. Consequently, the mobile traffic exchanged at the
correspondent eNodeB increases before the game starts;

• In the Madrid-Rastro dataset, the period between the opening and closing
hours of the flea market are marked where this event takes place weekly from
9am to 3pm. However, even if the market starts at 9am, the majority of people
concentrates around 12pm, making the detected events slightly to be shifted
to the right. In the performance evaluation, this has the effect of lowering the
recall values, since few false-negatives are produced;

• In Barcelona-Born, we observe multiple events taking place on consecutive
days. This is because of Holy Week during Easter holiday. The events occur
at different times, but they are linked to religious celebrations organized in the
nearby area. In particular, we can observe that all the events take place at day
time, except the one that is shown on March 31st, which corresponds to Easter
eve. It traditionally occurs at night between the Holy Saturday and the Easter
Day.

Other Type of Anomalies

The proposed methodology is also general enough to detect potential traffic anoma-
lies that are not preliminarily marked and that are not associable to the monitored
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events. In fact, we can observe from Fig. 6.18 that few point anomalies are not com-
prised between the marked events. Point anomalies are generally associated to an
isolated occurrence, for example, due to an instant increase of the traffic demands by
the users, and are not related to any urban event.

In our case, point anomalies are also observed in all the three monitored eN-
odeBs. We can observe both isolated phenomena and subsequent anomalies that are
marked as detected events. These affect the precision of the proposed algorithms,
lowering the overall F-score. In particular, we observe that

• in the Madrid-Rastro dataset, we detect traffic anomalies on July 27th, which
is a week day that cannot be associated to the flea market event. No similar
events have been reported in this commercial area, however, this day corre-
sponds to the longest total lunar eclipse of the 21st century [132], which we
believe had gathered a crowd of interested people to observe this uncommon
phenomena;

• in Barcelona-Born, we identify anomalies on April 4th: observing the heatmaps
of Fig. 6.12 and 6.13, we can see that these anomalies are not recognizable from
the RNTI heatmap figure, but an increase of RBs in the DL direction (RBdown)
can be observed. However, the detected traffic anomaly may be associated
to some liturgics’s celebration in the week after Easter (known as Octave of
Easter).

Based on these results, we assert that the proposed algorithm allows for a general
identification of crowd-gathering anomalies, not restricted to any particular type of
event. This ability is due to the semi-supervised learning methods, which permits
to the algorithm to separate the regular traffic instances from the ones related to
unusual events.
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Figure 6.19: Performance measures of the AD algorithms where a
static AD function is applied. F-score is reported on top of the bars.
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Considerations

To compare the classification performance of the proposed algorithms, we also plot
in Fig. 6.20 the Receiver Operating Characteristic (ROC) using the prediction and re-
construction errors from LSTM-PRED and from LSTM-AE. For each algorithms, we
calculate the Area Under Curve (AUC), which represent a degree of separability be-
tween the two classes. For LSTM-AE, the results are similar for all the datasets with
an average AUC of 0.93. For LSTM-PRED the performance are inferior (average
AUC = 0.85), in particular for Madrid-Rastro, where the True Positive Rate (TPR)
(or recall) value is observed to be lower than other eNodeBs as a consequence of
detecting some anomalies that are not correlated with the marked events.

Overall, the performance of LSTM-AE is observed to be higher compared to
LSTM-PRED. This is due to the fact that reconstructing an entire anomaly sequence
with LSTM-AE results more complex than predicting a singular traffic sample. In
fact, the autoencoder fails to reconstruct a traffic sequence that differs too much from
the normal sequences that is learnt from during the training phase. Therefore the er-
ror becomes larger and easier to be identified in the test dataset. Moreover, the error
increases when a sequence contains more than one point anomaly. On the other
hand, the high ability of LSTM cells to predict even irregular patterns makes the
prediction error limited also for traffic with anomalies.

The tradeoff between having a precise traffic prediction and an accurate anomaly
identification should be evaluated in a realistic operative scenario. In fact, LSTM-PRED
can be used online to perform multiple task: traffic prediction and anomaly detec-
tion. If the next instant traffic load is very large, there is a probability that it may be
associated to an anomaly. This makes the algorithm being able to detect potential
anomalies almost in real-time.
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Figure 6.20: Receiving Operation Characteristic of the AD algorithms
(a) LSTM-PRED (b) LSTM-AE.
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Table 6.4: Results and references of anomaly detection on different
datasets using state-of-the-art algorithms.

Dataset Algorithm Ref Prec Rec F-Score Acc

Camp Nou K-Nearest Neigh [136] 0.29 0.78 0.42 0.90
One Class-SVM [126] 0.25 0.77 0.36 0.89
Isolation Forest [137] 0.27 0.74 0.39 0.89

Born K-Nearest Neigh [136] 0.44 0.78 0.56 0.87
One Class-SVM [126] 0.45 0.76 0.57 0.88
Isolation Forest [137] 0.44 0.76 0.56 0.87

Rastro K-Nearest Neigh [136] 0.31 0.90 0.46 0.91
One Class-SVM [126] 0.30 0.92 0.46 0.91
Isolation Forest [137] 0.29 0.91 0.44 0.90

6.2.6 State-of-the-art Comparison

For the sake of completeness, in this section, we present the comparison between the
proposed deep learning algorithms and three standard semi-supervised AD bench-
marks: k-Nearest Neighbours [136], One-Class SVM [126] and Isolation Forest [137].

• k-Nearest Neighbours (k-NN): is a classic non-parametric distance-based method
that are used for both classification and regression purposes. In classic k-NN,
the learning is mostly supervised. However in its enhanced version for AD
problems, k-NN is trained in a semi-supervised manner, with only one class
of samples [136]. The detection of anomalies occurs at inference when a new
instance is projected far from the normal cluster in the feature space;

• One Class-Support Vector Machine (OC-SVM): is one of the most common single-
class AD algorithms, and is an extension of the SVMs to the AD problem [126];
OC-SVM requires a parameter ν, defined as the upper bound of the fraction of
outliers. This parameter regulates the tradeoff between maximizing the mar-
gin and the number of normal data points within the decision boundary;

• Isolation Forest: is an ensemble tree-based method, that depends on the spatial
proximity of the observed samples. The algorithm isolates the observations
by randomly selecting a feature and then randomly selecting a split value be-
tween the maximum and minimum values of the selected feature. The recur-
sive partitioning can be represented by a tree structure and the number of splits
required to isolate a sample is equivalent to the path length from the root node
to the terminating node. If a sample requires multiple splits to be isolated, it is
likely that it will be classified as anomalous.

For all these above benchmarks, we used PyOD, which is a scalable implementa-
tion for detecting outlying objects in multivariate data presented in [125]. For k-NN,
we use k = 5. For OC-SVM, we choose a small value for ν (ν = 0.1) (which rep-
resents the upper bound of the fraction of outliers) since in our case the fraction
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of outliers is 8%. In the Isolation Forest, we use the default number of estimators
(ntree = 100).

The results are reported in Table 6.4 and a comparison with the F-score of the pro-
posed deep learning algorithms is given in the barplot of Fig. 6.21. We can observe
that the recall value is very high (in particular, in the Madrid-Rastro dataset), with
an average of 0.81 versus 0.61 of the proposed algorithm. However, the precision
(0.34 vs. 0.89), and consequently the F-score (0.47 vs. 0.72), are much lower.
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Figure 6.21: Barplots of the algorithms F-score on the different
dataset.
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Figure 6.22: Anomaly detection with Isolation Forest applied to
the Barcelona-Camp Nou dataset: numerous false-positives are ob-

served.

To understand this outcome, we plot the normalized traffic in Fig. 6.22: we can
see that most of the peak traffic hours are marked as anomalies, thus increasing
the number of false positives. This means that even the normal traffic instances are
classified as anomalies. The main conclusions are that these traditional algorithms,
differently from our approach, detects all the traffic peaks, including the expected
daily maximums, but are not able to differentiate them from the traffic generated by
crowd-gathering events. This explains that the F-score is lowered by 34% on average
with respect to the proposed algorithms.
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Chapter 7

LTE Channel Fingerprinting for
Traffic Classification and Prediction

This Chapter provides a methodology for the classification and the prediction of
mobile traffic through the LTE Physical Channel fingerprinting: in Section 7.1, we
present a viable methodology to identify the demanded services and apps only by
monitoring the unencrypted control information channel and we are able to classify
the users with very high accuracy. The results of this section are presented in the
following paper:

• Trinh, H. D., Gambin, A. F., Giupponi, L., & Dini, P. (2019). Mobile Traffic
Classification through Physical Channel Fingerprinting: a Deep Learning
Approach. arXiv preprint arXiv:1910.11617. [24]

Next, in Section 7.2, we present an application of the predictive model intro-
duced in Section 5.3 and of the classification algorithm proposed in Section 7.1 in
the context of energy saving devices. Together with authors of [25], we propose a
wake-up scheme to enhance the energy-efficiency of 5G mobile devices is proposed
in order to prolong the battery lifetime, while reducing the buffering delay. The
results reported in this Section are presented in the following papers:

• Rostami S., Trinh, H. D., Lagen S., Costa M.,Valkama M. & Dini, P. (2019).
Proactive Wake-up Scheduler based on Recurrent Neural Networks. arXiv
preprint arXiv: 1910.11617. [25]

7.1 Classification of Mobile Services and Apps using LTE
Physical Channel Information

With the advent of powerful chipsets, high-definition bezel-less screens, and up-
graded memory storages, mobile devices have become information and communi-
cation hubs and are getting more powerful by the day. Starting with 4G, mobile
applications (apps) are as well getting resource hungry, requiring large bandwidth
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and good amount of computation at the devices. The demand for streaming appli-
cation is increasing at a constant pace, for example, more than half of YouTube views
come from mobile terminals [138, 2], and future networks are called to be highly re-
sponsive in any context, e.g., high-speed mobility, indoor, crowded events, etc. [139].

A key feature towards supporting such technological evolution, and the corre-
sponding upsurge in multimedia traffic, is represented by the ability of networks
to carry out automatic traffic analysis, through online classification tools. The catego-
rization of network traffic into appropriate classes has many relevant uses spanning
from Quality of service (QoS)/Quality of Experience (QoE) control and manage-
ment, to pricing, network resource management, malware detection, and intrusion
detection, to name a few. The key challenge of such classification algorithms consists
in the identification, and in the subsequent computation, of a number of representa-
tive features. These features are then used to train algorithms that classify the data
flows at runtime. Most of the surveyed approaches leverage some domain knowledge,
which is utilized to manually obtain the feature set, i.e., using prior information by a
human expert. However, the use of deep learning techniques has recently paved the
way to automatic feature discovery and extraction, often leading to superior perfor-
mance. For example, in [83] encrypted traffic is categorized through deep learning
architectures, proving their better performance with respect to shallow neural net-
work classifiers. The authors of [84] present a mobile traffic super-resolution tech-
nique to infer narrowly localized traffic consumption from coarse measurements. In
detail, a deep-learning architecture combining Zipper Network (ZipNet) and Gen-
erative Adversarial neural Network (GAN) models is put forward to accurately re-
construct spatio-temporal traffic dynamics from measurements taken at low resolu-
tion. Another example is found in [85], where identification of mobile apps is per-
formed by automatically extracting features from labeled packets through CNNs,
which are trained using raw HTTP requests, achieving a high classification accu-
racy. The work in [83, 84, 85], as the majority of the other techniques, use statistical
features obtained from application or IP level information for both service and app
identification, along with UDP/TCP port numbers.

7.1.1 Objectives and Methodology

The solution presented in this Chapter sharply departs from prior approaches as
it performs highly accurate traffic classification directly from radio-link level data,
without requiring any prior knowledge and without having to decode and/or de-
crypt the transmitted data flows. The proposed classifiers enable fully automated,
over the air, and detailed traffic profiling in mobile cellular systems, making it pos-
sible to characterize the radio resource usage of typical service classes. To this end,
we leverage OWL [16], a tool that allows decoding the LTE PDCCH, where control
information is exchanged between the LTE eNodeB and the connected UEs. Specifi-
cally, we take advantage of the DCI messages carried in the PDCCH, which contain
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radio-link level settings for the user communication (e.g., modulation and coding
scheme, transport block size, allocated resource blocks). From DCI data, we create
two datasets:

1) a labeled dataset, used to train service and app classification algorithms, where
labeling is made possible by injecting an easily identifiable watermark into the
application flows generated by a terminal under our control;

2) an unlabeled dataset, used for traffic profiling purposes, which is populated by
monitoring, for a full month, mobile traffic from four operative radio cell sites
with different demographic characteristics within the metropolitan area of Barcelona,
in Spain.

For the traffic analysis, we focus on those services and applications that domi-
nate the radio resource usage, but the approach can readily be extended to further
services and applications. We directly use raw DCI data as input into deep learn-
ing classifiers (automatic feature extraction), achieving accuracies as high as 99% for
both mobile service and app identification tasks. Moreover, taking advantage of the
high accuracy of our CNN classifier, we propose a technique to successfully use it
in unsupervised settings, to profile the mobile traffic from operative radio cell sites
at runtime. Our tool allows for a fine grained and automated analysis of user traffic
from real deployments, using radio link messages transmitted over the PDCCH. The
developed classification algorithms, as well as our experimental results are highly
novel within the traffic monitoring literature, which only provides hourly and aggre-
gated measures for typical days [140][141], and where traffic profiling is performed
from UDP/TCP, IP or above IP flows, e.g., [83, 84, 85].

In summary, the original contributions of this work are:

• Mobile Data Labeling: we present an original and effective approach to automat-
ically label LTE PDCCH DCI data traces. This approach is utilized for six mo-
bile apps, to create a unique correspondence between the software programs
(the apps) and the session identifiers that were assigned to them by the eN-
odeB. The result is a labeled dataset of real DCI data from selected applications,
i.e., YouTube, Vimeo, Spotify, Google Music, Skype and WhatsApp video calls.

• Classification and Benchmarks: we tailor deep artificial Neural Networks (NNs),
namely Multi-Layer Perceptron (MLP), RNNs and CNNs, to perform clas-
sification tasks for both mobile services and app identification over the la-
beled dataset. Moreover, we compare their performance against a number
of benchmark classifiers, based on state-of-the-art supervised learning algo-
rithms. CNN architectures achieve the highest classification accuracy.

• Mobile Service Profiling from Unlabeled Data: the CNN classifier, which is found



106 Chapter 7. LTE Channel Fingerprinting for Traffic Classification and Prediction

to be the best among all NN schemes, is augmented with the capability of re-
jecting out of distribution sessions, i.e., sessions whose statistical behavior de-
parts from those learned during the training phase. This makes it possible to
use the CNN classifier with unlabeled traffic, in an online fashion. In fact, the
augmented CNN classifier rejects those sessions for which it is uncertain, pro-
viding a robust classification outcome. Through its use, daily traffic profiles for
the four monitored eNodeBs are obtained, getting a fine grained decomposi-
tion of the services requested by the active users. The proposed augmentation
strategy exploits theoretically sound and lightweight techniques, and consti-
tutes an innovative contribution of this thesis.

7.1.2 Data Collection System

Figure 7.1: Experimental framework adopted for the creation of the
unlabeled and labeled datasets.

Dataset Creation

Fig. 7.1 shows the different building blocks of the experimental framework that has
been developed to populate the unlabeled and labeled datasets. Briefly, the data mea-
surement and collection block acquires data from the LTE PDCCH channel to extract
the relevant DCI information. Data preparation, instead, processes the gathered DCI
data so that it can be used for training and classification purposes, according to the
type of dataset.

In LTE, the eNodeB communicates scheduling information to the connected UEs
through the DCI messages that are carried within the PDCCH with a time granu-
larity of 1 ms. While the actual user content is sent over encrypted dedicated channels,
i.e., the Physical Uplink/Downlink Shared Channel (PUSCH/PDSCH respectively),
the PDCCH is transmitted in clear text and can be decoded. To process DCI data,
we have adapted the OWL monitoring tool [16]. A SDR has been programmed,
acquiring the PDCCH via an open-source software sitting on top of the srs-LTE li-
brary [110], which makes it possible to synchronize and monitor the channel over a
specified LTE bandwidth. The SDR is connected to a PC that performs the actual de-
coding of DCI data: in our experimental settings, we used a low cost Nuand BladeRF
x40 SDR and an Intel mini-NUC, equipped with an i5 2.7 Ghz multi-core processor,
256 GB Solid State Storage (SSD) storage and 18 GB of RAM.



7.1. Classification of Mobile Services and Apps using LTE Physical Channel
Information

107

Unlabeled Dataset

Thanks to the tool described in the previous section, four cell sites of a Spanish mo-
bile network operator in the metropolitan area of Barcelona have been monitored
for a full month. The selected eNodeBs are located in areas having different demo-
graphic characteristics and land uses, so as to diversify the captured traffic in terms
of service and app behavior. We have named the datasets according to the corre-
sponding neighborhood: PobleSec (mainly residential area), Born (mixed residential,
transport and leisure area), Castelldefels (mixed suburban and campus area), Camp
Nou (mixed residential and stadium area). In total, we have collected more than
68 GB of DCI data from the LTE PDCCH. Fig. 6.9 shows the locations of the four
monitored sites, along with that of the data collection system. After the data collec-
tion, the signaling associated with each found C-RNTI is extracted from the PDCCH
DCI data stream, and is prepared for the classifier. During this procedure, we dis-
card short-length traces, which are mainly due to signaling, paging and background
traffic. Such data accounts for less than 3% of the total traffic in the monitored radio
cells.

Labeled Dataset

A labeled dataset is obtained by running specific services and apps at a mobile ter-
minal under our control, detecting the identifier of that terminal within the PDCCH
channel and finally associating the corresponding DCI trace with a label, which links
it to the service/app that is executed at the UE. Generating data sessions is easy, as it
is sufficient to run a specific app from a device that we control, and that is connected
to the monitored eNodeB. The difficult part is to identify the generated data flow
among those carried by the PDCCH channel, which contains DCI information for all
the connected UEs within the radio cell. We made this labeling possible by injecting
a watermark into the traffic that we generate by the controlled UE, so that the latter
can be easily identified among all other users, as we now explain.

C-RNTI Identification

The data preparation procedure is divided into two phases: 1) the identification
of the C-RNTI corresponding to the controlled UE, 2) the extraction and labeling
of the corresponding DCI trace. In the LTE PDCCH channel, each UE is identi-
fied by the C-RNTI, which uniquely identifies the mobile terminal within the radio
cell. The identifier though is temporary, i.e., it changes after short inactivity peri-
ods. This is due to prevent the plain tracking of mobile users, since the PDCCH
is sent unencrypted. To overcome this, we introduced a watermark into the traffic
generated through our mobile terminal. This watermark amounts to producing, for
each application, a regular pattern: any given application (e.g., YouTube) is run for
a pre-defined amount of time (60 s is used in our measurements), then, a pause in-
terval of fixed duration is inserted before running the app for further 60 seconds.
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We loop this over time, obtaining a duty cycled activity pattern that is easily distin-
guishable from all the other activity traces within the radio cell. Fig. 7.2 shows an
example of this watermark injection procedure: the traffic generated by our UE is
represented through a blue solid line, for which the duty cycled activity is evident
and easily identifiable from that of other users in the cell (dashed orange line).

Through this watermarking approach, the DCI data associated with our UE can
be easily obtained from the PDCCH channel, allowing us to track the corresponding
C-RNTI as a function of time. The label, corresponding to the application that is
being executed at the mobile terminal, is finally associated with the extracted DCI
data. In our experiments, DCI traces from the same app are split into labeled sessions
of 60 s each. This method guarantees a high UE identification accuracy and can be
automated, allowing the collection of thousands of labeled DCI traces.

In our measurement campaign, we have recorded and labeled about M = 10, 000
mobile sessions, gathering the scheduling information contained in the DCI mes-
sages for several apps. We considered three data-intensive services: video streaming,
audio streaming and real-time video calling, which represent classes producing a con-
siderable amount of traffic and taking most of the network resources [138]. For each
service type, we chose two popular applications: Spotify and Google Music for audio,
YouTube and Vimeo for video streaming, while for the video calling we picked two
instant-messaging applications, namely, Skype and WhatsApp Messenger.
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Figure 7.2: Example audio traffic vs. unknown session traces with
(solid line) and without (dashed line) watermark: the regular pattern

allows the identification of the user, i.e., of the assigned C-RNTI.

A large measurement campaign has been conducted to expose the mobile termi-
nal running the selected apps to different radio link conditions and obtain a compre-
hensive dataset. In particular, the UE has been placed into two different locations
(termed B1 and B2 in Fig. 4.1a) within the Castelldefels radio cell to experience dif-
ferent received signal qualities (−84 dBm and −94 dBm for B1 and B2, respectively),
and in the Camp Nou eNodeB during football matches, to capture data in high cell
load conditions.
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Fig. 7.3 shows a few radio resource usage patterns collected for the selected apps.
Some similarities can be recognized within the same service class. For example,
audio and video streaming present similar behaviors. Also, significant differences
can be observed between the radio resource usage of real time video calls (Skype and
WhatApp Video) and the other apps. Video and audio streaming applications use up
a high amount of radio resources at the beginning of the sessions, buffering most
of the content into the terminal memory. Real time video calling, instead, entails a
continuous transmission and a more constant usage of radio resources throughout
the sessions.
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Figure 7.3: Traffic pattern snapshots showing the normalized data
rate for different applications as a function of time.

7.1.3 Synchronous and Asynchronous Sessions

Through the watermarking approach and the splitting procedure, we obtained a la-
beled dataset, where each session, depending on the service, presents patterns sim-
ilar to those shown in Fig. 7.3. Assuming that the beginning and the end of each
session are known is rather optimistic, as in a real measurement setup we have no
means to accurately track these instants. Put it another way, it is unlikely that the
LTE PDCCH measurements and the application run on the UE will be temporally
synchronized. Synchronizing the measurement with the beginning of each session
would facilitate the classification task, since most of the generated traffic is buffered
on the terminal at the beginning, see Fig. 7.3, and this behavior is a distinctive feature
that is easy to discriminate.

To ensure the applicability of our classifiers to real world (asynchronous) cases,
we account for asynchronous sessions, entailing that the classification algorithm has
no knowledge about the instants where the sessions begin and end. Specifically,
each session is split using a sliding window of length W seconds, moved rightwards
from the beginning of the session with a stride of S seconds, see Fig. 7.4. The split
sessions (asynchronous sessions), of W seconds each, represent the input data to our
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Figure 7.4: Sliding window of 20s length and 15s stride, applied to a
sample video-streaming session.

classification algorithms. Note that W and S are hyper-parameters of the proposed
classification frameworks.

7.1.4 Sessions Correlation over Time

As a sanity check, we verify the soundness of the watermarking strategy: our aim
is to understand whether the transmission of user data in the form of duty-cycled
patterns may affect the way in which the eNodeB handles the communication from
our terminal, e.g., through some advanced channel reservation mechanism. In that
case, in fact, our watermarking strategy would be of little use, as it would introduce
scheduling artifacts that do not occur in real life conditions. To verify this, we eval-
uated the Pearson correlation between the initial session (i.e., when the UE connects
to the LTE PDCCH for the first time and it is assigned a new C-RNTI) and the fol-
lowing ones. Fig. 7.5 shows that, for each of the three services, the correlation is high
only when we compare the first session with itself (n = 0). Instead, low values are
observed between the first session and the following ones (n > 1), indicating that
the behavior of the eNodeB scheduler is not affected by the repetitive actions (i.e.,
the duty-cycled activity) performed at the UE side.

7.1.5 Problem Statement

Let M be the number of windowed-sessions obtained through the data preparation
procedure of Section 7.1.2, W is the window size, and D = 2 is the number of com-
munication directions (downlink and uplink). We define X the input dataset tensor
with size M ×W × D, where the m-th row vector xm contains the trace associated
with W TBS samples per session for both downlink and uplink directions (D = 2).

A classifier estimates a function c : X → Y , where matrix Y has size M×K and K
represents the number of classes. The row vector ym = c(xm) = [ym1, . . . , ymK] con-
tains the probabilities that session m belongs to each of the K classes, with ∑k ymk =



7.1. Classification of Mobile Services and Apps using LTE Physical Channel
Information

111

0 2 5 8 10 12 15 18
n

0.2

0.0

0.2

0.4

0.6

0.8

1.0

co
rre

la
tio

n

video-streaming
audio-streaming
video-calls

Figure 7.5: Pearson correlation between the initial and the following
sessions running in the controlled UE.

1. The final output of the classifier is class k?, where k? = argmaxk(ymk). The follow-
ing classification objectives are addressed:

O1) Service identification: to classify the collected sessions into K = 3 classes,
namely, audio streaming, video streaming and video calls;

O2) App identification: to identify which app is run at the UE. In this case, the
number of output classes is K = 6, namely, Spotify, Google Music, YouTube,
Vimeo, Skype and WhatsApp Messenger.

Next, we present the considered classification algorithms, grouping them into
two categories: those based on artificial neural networks and the others on ’stan-
dard’ machine learning techniques (referred to here as benchmark classifiers).

7.1.6 Neural Networks for Classification

In this section, we describe how we tailored three neural network architectures
to solve the above traffic classification problem. The considered architectures are
Multilayer Perceptron (MLP), RNNs and CNNs.

Multilayer Perceptron

A multilayer perceptron is a feedforward and fully-connected neural network archi-
tecture. The term “feed-forward” refers to the fact that the information flows in one
direction, from the input to the output layer. An MLP is composed of, at least, three
layers of nodes: an input, a hidden and an output layer. A directed graph connects
the input with the output layer and each neuron in the graph uses a non-linear acti-
vation function to produce its output. Links are weighted and the backpropagation
algorithm is utilized to train the network in a supervised fashion, i.e., to find the
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set of network weights that minimize a certain error function, given an input set of
examples and the corresponding labels. For further details, see [142].

The MLP that we use for mobile traffic classification has three fully connected
layers. The input layer MLP1 contains NMLP1 = 128 neurons, the second layer MLP2

has NMLP2 = 64 neurons and the third layer MLP3 is fully connected, with K neurons
and a softmax activation function to produce the final output. The output of MLP3

is the class probability vector ym.

All neurons in layers MLP1 and MLP2 use a leaky version of the Rectified Linear
Unit (ReLU) (leaky ReLU) activation function. Leaky ReLUs help to solve the vanish-
ing gradient problem, i.e., the fact that the error gradients that are backpropagated
during the training of the network weights may become very small (zero in the worst
case), preventing the correct (gradient based) adaptation of the weights. To prevent
this from happening, leaky ReLUs have a small negative slope for negative values
of their argument [143]. To train the presented MLP architecture, we use the RM-
Sprop gradient descent algorithm [124], by minimizing the categorical cross-entropy
loss function L(w), defined as [142]

L(w) = − ∑
xm∈B

K

∑
k=1

tk(xm) log(ymk(w, xm)). (7.1)

where t(x)m = [t1(xm), . . . , tk(xm)] contains the class labels associated with the in-
put trace xm, i.e., tk = 1 if xm belongs to class k and tk = 0 otherwise (1-of-K coding
scheme). Vector w contains the MLP weights and ymk(w, xm) is the MLP output ob-
tained for input xm. Eq. (7.1) is iteratively minimized using the training examples in
the batch set B ⊂ X, where B is changed at every iteration so as to span the entire
input set X.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) have been conceived to extract features from
temporal (and correlated) data sequences. LSTM networks are a particular type of
RNN, introduced in [103]. They are capable of tracking long-term dependencies
into the input time series, while solving the vanishing-gradient problem that affects
standard RNNs [102].

The capability of learning long-term dependencies is due to the structure of the
LSTM cells, which incorporates gates that regulate the learning process. The neurons
in the hidden layers of an LSTM are MCs. A MC has the ability to retain or forget
information about past input values (whose effect is stored into the cell states) by
using structures called gates, which consist of a cascade of a neuron with sigmoidal
activation function and a pointwise multiplication block. Thanks to this architec-
ture, the output of each memory cell possibly depends on the entire sequence of
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past states, making LSTMs suitable for processing time series with long time depen-
dencies [103].

Figure 7.6: RNN architecture.

The proposed RNN based traffic classification architecture is shown in Fig. 7.6. In
our design, we consider three stacked layers combining two LSTM layers and a final
fully connected output layer. The first and the second layer (respectively RNN1 and
RNN2) have NRNN1 = NRNN2 = 180 memory cells. The fully connected layer RNN3

uses the softmax activation function and its output consists of the class probability
estimates, as described in Section 7.1.6.

Convolutional Neural Networks

Figure 7.7: CNN architecture.

Convolutional Neural Networks (CNNs) are feed-forward deep neural networks
differing from fully connected MLP for the presence of one or more convolutional
layers. At each convolutional layer, a number of kernels is used. Each kernel is com-
posed of a number of weights and is convolved across the entire input signal. Note
that the kernel acts as a filter whose weights are re-used (shared weights) across the
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entire input and this makes the network connectivity structure sparse, i.e., a small
set of parameters (the kernel weights) suffices to map the input into the output. This
leads to advantages such as a considerably reduced computational complexity with
respect to fully connected feed forward neural networks, and to a smaller memory
footprint. For more details the reader is referred to [105].

CNNs have been proven to be excellent feature extractors for images and inertial
signals [144] and here we prove their effectiveness for the classification of mobile
traffic data. The CNN architecture that we designed to this purpose is shown in
Fig. 7.7. It has two main parts: the first four layers perform convolutions and max
pooling in cascade, the last two are fully connected. The first convolutional layer
CNN1 uses one dimensional kernels (1× 5 samples) performing a first filtering of
the input and processing each input vector (rows of X) separately. The activation
functions are linear and the number of convolutional kernels is NCNN1 = 32. The
second convolutional layer, CNN2, uses one dimensional kernels (1 × 5 samples)
with non-linear hyperbolic tangents as activation functions, and the number of con-
volutional kernels is NCNN2 = 64. Max pooling is separately applied to the outputs
of CNN1 and CNN2 to reduce their dimensionality and increase the spatial invari-
ance of features [144]. In both cases, a one-dimensional pooling with a kernel of size
1× 3 is performed. A third fully connected layer, CNN3, performs dimensionality
reduction and has NCNN3 = 32 neurons with Leaky ReLU activation functions. This
layer is was used in place of a further convolutional layer to reduce the computation
time, with a negligible loss in accuracy. The last (output) layer CNN4 is fully con-
nected with softmax activation functions, and returns the class probability estimates,
see Sections 7.1.6.

7.1.7 Benchmark classifiers

Other standard classification schemes have been tailored to the considered tasks O1
and O2. The selected algorithms are: Linear Logistic Regression, K-Nearest Neighbours
and Linear SVM, as examples of linear classifiers; Random Forest, as an ensemble
learning method, and Gaussian Processes as an instance of Bayesian approaches. The
implementations of Linear Logistic Regression, K-Nearest Neighbours and Linear
SVM are based on [145], [146] and [147], respectively. The Random Forest implemen-
tation is based on [148], whereas for the classifier based on Gaussian Processes we
refer to [149]. Configuration parameters and implementation details for the bench-
mark classifiers are provided in Table 7.1.

7.1.8 Supervised Training and Comparison of Traffic Classifiers

Performance Metrics

The performance tests have been carried out using an Intel core i7 machine, with 32
GB of RAM and an NVIDIA GTX 980 GPU card. We divided the dataset, featuring
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Table 7.1: Configuration parameters for the benchmark classifiers.

Algorithm Parameters Note - Reference

Linear SVM
• penalty = L2

• loss = Hinge Loss

• c = 0.025

• c: penalty parameter for the error term

• extended to multi-class with one-vs-rest [145]

Logistic Regres-
sor

• penalty = L2

• c = 1

• c: inverse of the regularization strength

• extended to multi-class with one-vs-rest [145]

Nearest Neigh-
bours

• K = 3

• p = 2

• metric = Minkowski

• K: number of neighbors for queries

• p: distance metric parameter

• p = 2 amounts to using the Euclidean distance [146]

Random Forest
• n. estimators = 10

• max depth = 5

• criterion = entropy

• n. estimators: number of trees in the forest

• max depth: maximum depth of a tree

• criterion: function to measure the quality of a split of
subsets [148]

Gaussian Pro-
cesses

• kernel = RBF

• σ = Logistic func.

• approx. = Laplacian

• Radial Basis Function (RBF) used as kernel

• σ is the sigmoid function used to “squash” the nui-
sance function

• Laplacian method used to approximate the non Gaus-
sian Posterior [149]

10, 000 labeled DCI sessions, into training and validation sets with a split ratio of
70% - 30%. These sets are balanced, as they contain the same percentage of traces
for all classes. The classification algorithms have been implemented in Python. We
have used keras library on top of Tensorflow backend for the implementation of
deep NNs. For the benchmark classifiers, we used the popular sklearn library.

The classification performance is assessed through the following metrics:

1. Accuracy: defined as the ratio between the number of correctly classified ses-
sions to the total number of sessions.

2. Precision P: defined, for each class, as the ratio between the number of sam-
ples belonging to that class that are correctly classified (true positives Tp) and
the sum between true positives and false positives Fp, where Fp represents
those samples that are incorrectly classified as belonging to that class,

P =
Tp

Tp + Fp
, (7.2)

3. Recall R: defined, for each class, as the ratio between the true positives Tp and
the sum between true positives and false negatives Fn, which are the samples
from that class that are incorrectly classified as belonging to another class,

R =
Tp

Tp + Fn
. (7.3)
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Algorithm Accuracy % Precision Recall F-Score # Parameters Acc Async % Diff %

Linear SVM 81.23 0.811 0.812 0.805 36726 68.41 -12.8
Logistic Regressor 81.61 0.806 0.816 0.809 486 65.72 -15.9

Nearest Neighbours 84.51 0.843 0.845 0.841 36720 79.65 -4.9
Random Forest 83.52 0.821 0.835 0.827 41310 70.21 -13.3

Gaussian Processes 87.43 0.874 0.871 0.871 146720 81.21 -6.2

Neural Networks

MLP 90.04 0.900 0.900 0.900 19014 84.61 -5.4
RNN 96.57 0.967 0.968 0.968 392046 92.93 -3.6
CNN 97.77 0.978 0.976 0.977 25062 93.20 -4.5

Table 7.2: Classifiers comparison for the app identification task.

4. F-Score is defined as the harmonic mean of precision P and recall R,

F =

(
1
P + 1

R
2

)−1

= 2
RP

R + P
. (7.4)

Note that the definition of precision and recall only applies to classification tasks
with one class. However, tasks O1 and O2 both have a number of classes K > 2,
namely, K = {3, 6} for app and service identification, respectively. Thus, precision
and recall are separately calculated for all the K classes, and their average is shown
in the following numerical results.
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Figure 7.8: Confusion matrices for the CNN algorithm.

7.1.9 Comparison of Classification Algorithms

Accuracy and Algorithm Training

Tables 7.2 and 7.3 summarize the obtained performance metrics for the deep NNs
and the benchmark classifiers for app and service identification, respectively. First,
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Algorithm Accuracy % Precision Recall F-Score # Parameters Acc Async % Diff %

Linear SVM 90.80 0.908 0.908 0.907 19843 79.61 -11.2
Logistic Regressor 90.42 0.904 0.904 0.904 243 81.11 -9.3

Nearest Neighbours 92.76 0.925 0.925 0.925 19840 83.45 -9.3
Random Forest 91.57 0.915 0.915 0.915 22320 84.25 -7.3

Gaussian Processes 93.21 0.932 0.928 0.929 73360 82.51 -10.7

Neural Networks

MLP 94.31 0.943 0.939 0.942 18819 93.38 -0.9
RNN 98.21 0.981 0.982 0.981 391503 95.38 -2.8
CNN 98.87 0.986 0.988 0.988 24963 95.40 -3.5

Table 7.3: Classifiers comparison for the service identification task.

we focus on synchronous sessions results. In general, better performance is achieved
through deep NNs (+13.8% on app identification, +8.7% on service classification).
Moreover, we observe a significant performance gap between the service and app
classification tasks, due to the higher number of classes of the latter: the performance
gap is higher than 8% for the benchmark classifiers and ranges from 2 to 6% for
NNs. Furthermore, RNN and CNN architectures achieve an accuracy of about 99%
for the service identification task (O1) and higher than 95% for the app identification
task (O2). The algorithm based on Gaussian Processes performs the best among
the benchmark classifiers. In general, the higher the complexity (i.e., the number
of parameters, and also hidden layers for NNs), the higher the performance. The
only exception to this is provided by CNNs, which present the highest accuracy
but use a small number of parameters. This fact confirms the high efficiency of
convolutions in processing high amount of data with complex temporal structure,
and the effectiveness of parameter sharing. CNNs require only 6% of the variables
used up by RNNs, achieving a better accuracy. This also translates into a faster
training: in Fig. 7.9, we show the accuracy as a function of the number of epochs for
training and validation sets for RNNs and CNNs. The number of epochs required by
the CNNs to reach an accuracy higher than 90% is fewer than 20 (Fig. 7.9b), whereas
for RNNs convergence is achieved only after 30 epochs (Fig. 7.9a).
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Figure 7.9: Accuracy vs number of epochs for training and validation
sets for the app identification task.
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A deeper look at the performance of CNNs is provided by the confusion matrices
of Fig. 7.8, whose rows and columns respectively represent true and predicted labels,
and all values are normalized between 0 and 1. For the service classification task
(Fig. 7.8a), CNNs only misclassify the video streaming sessions: 2% of those are
labeled as video calls. For the app identification task (Fig. 7.8b), errors (4%) mainly
occur for Skype and WhatsApp videocalls. These errors are understandable, as these
are both interactive real-time video applications and, as such, their traffic patterns
bear similarities. The lowest performance is found for Vimeo traces, for which 88%
of the sessions are correctly classified. Here our CNN-based classifier confuses them
with the other video applications for both streaming service (Youtube - 3%) and real-
time calling (WhatsApp and Skype - 6% and 3%, repectively).

Asynchronous Sessions Results

As shown in the last two columns of Tables 7.2 and 7.3, the algorithms’ accuracy
is affected by asynchronous sessions. As expected, we observe a general decrease
in the accuracy for all the algorithms (−6.0% for service identification, −7.7% for
app identification, on average). However, for both classification problems, neural
network-based approaches are more robust to the asynchronous case, showing a
performance degradation of−4.3%, while the degradation of standard algorithms is
−8.4%.

Impact of Different Window Sizes

Fig. 7.11 shows the classification accuracy as a function of the window size, W. For
the app identification task, 40 seconds suffice for CNNs and RNNs to reach accura-
cies higher than 90%, with negligible additional improvements for longer observa-
tion periods. Periods shorter than 40 seconds provide less accurate results. Similar
trends are observed for the service classification task. However, in this case after
20 seconds the accuracy of CNNs and RNNs is already higher than 90%, due to the
smaller number of classes. In summary, the ability of CNNs and RNNs to extract
representative statistical features from a session grows with the input data length.
In our tasks, deep NN algorithms become very effective as monitoring intervals get
longer than 20 seconds.

7.1.10 Unsupervised Traffic Profiling

Next, we analyze the mobile traffic exchanged within the four selected cell sites. The
traffic load is modeled in terms of aggregated traffic dynamics and type of service
requests over the 24 hours of a day. The identification of mobile traffic, for each
of the considered services, is performed using the trained classifiers with the unla-
beled dataset. Formally, for each eNodeB, the corresponding unlabeled dataset is
stored into matrix X ′, whose size is M′×N, where M′ corresponds to the number of
monitored RNTIs (sessions) and N to the number of collected samples per session.
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Figure 7.10: Effect of Synchronization vs Asynchronization proce-
dures
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Figure 7.11: Accuracy vs window lengths for app and service classifi-
cation tasks.

Given X ′, as input, the classifier c computes the output Y ′, whose analysis provides
a detailed characterization of the mobile user requests for the eNodeB within the
monitored time span. Vectors x′m and y′m = c(x′m) respectively indicate the m-th row
of matrices X ′ and Y ′. In this part, we restrict our attention to the classification of
services, and use the CNN classifier, as it yields the highest accuracy.

Aggregated Traffic Analysis

Fig. 7.12 shows the aggregated traffic demand for the four selected eNodeBs over the
24 hours of a typical day, where each curve has been normalized with respect to the
maximum traffic peak occurred during the day for the corresponding eNodeB.

The four traffic profiles have a different trend, which depends on the character-
istics of the served area (demographics, predominant land use, etc.), as confirmed
by [150]. PobleSec is a residential neighborhood and, as such, presents traffic peaks
during the evening, at 5 and 11 pm. Born is instead a downtown district with a
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Figure 7.12: Daily Aggregated Traffic for the four eNodeBs.

mixed residential, transport and leisure land use. Two peaks are detected: the high-
est is at lunchtime around 2 pm, whereas the second one is at dinner time, from
9 pm. This traffic behavior is likely due to the many restaurants and bars in the area.
CampNou is mainly residential and presents a similar profile to PobleSec. However,
Barcelona FC stadium is located in this area, and three football matches took place
during the monitored period (events started at 8:45 pm and ended at 10:45 pm). As
expected, a higher traffic intensity is observed during the football match hours. In
particular, we registered a high amount of traffic exchanged between 7 pm to 1 am,
i.e., before, during and after the events. This behavior is probably due to the move-
ment of people attending the matches. Castelldefels is a suburban and low popu-
lated area with a university campus. The traffic variation suggests a typical office
profile with traffic peaks at 10 am and 5 pm. However, in this radio cell the amount
of traffic exchanged is the lowest observed across all eNodeB sites, i.e., 6.8 Gb/hour
in the peak hours. The highest traffic intensity was measured in Camp Nou, reach-
ing a peak of 106.1 Gb/hour (29.5 Mb/s on average). Intermediate peak values are
detected in Poble Sec and Born, amounting to 49.7 Mb/s and 46.1 Mb/s, respectively.
The only common pattern among the four areas is the low traffic intensity at night,
approximately between 2 am and 7 am.

Traffic Decomposition at Service Level

The set of applications that we have labeled is limited to those apps and services that
dominate the radio resource usage. However, additional apps may also be present in
the monitored traffic, such as Facebook, Instagram, Snapchat, etc. These apps gen-
erate mixed content, including audio-streaming, video-streaming and video-calling.
Additional service types may also be generated by, e.g., web-browsing and file down-
loading. While in the present work the classifiers were not trained to specifically
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track these apps, for a robust classification outcome, it is desirable that the audio
and video streams that they generate will either be captured and classified into the
correct service class, or at least flagged as unknown. To locate those traffic patterns
for which our classifier may produce inaccurate results, in our analysis we account
for the detection of out-of-distribution (OOD) sessions, i.e., of DCI traces that show
different traffic dynamics from those learned at training time. To identify these “sta-
tistical outliers”, the DCI data from each new session, x′m, is fed to the CNN and the
corresponding softmax output vector y′m = [y′m1, . . . , y′mK]

T is used to discriminate
whether x′m is OOD or not, following the rationale in [151][152]. In detail, the k-th
softmax output corresponds to the probability estimate that a given input session
x′m belongs to class k, i.e., y′mk = Prob(x′m ∈ class k), with k = 1, . . . , K. The classifier
chooses the class k? that maximizes this probability, i.e.,

k? = argmax
k

y′mk. (7.5)

If a new app, not considered in the training phase, generates sessions having similar
characteristics to those in the training set, namely, audio-streaming, video-streaming
or real time video-calls, we expect the CNN to generalize well and return similar vec-
tors at the output of the softmax layer. That is, the softmax vector that is outputted at
runtime for the new app should be sufficiently “close” to the output learned by the
classifier from the labeled dataset, as the new signal bears statistical similarities with
those learned in the training phase. In this case, it makes sense to accept the session
and classify it as belonging to class k?. Otherwise, the session would be classified as
OOD.

The problem at hand, boils down to assessing whether the softmax output y′m
belongs to the statistical distribution learned by the CNN or it is an outlier. This
amounts to performing outlier detection in a multivariate setting, with y′m ∈ [0, 1]K,

∑k y′mk = 1. Among the many algorithms that can be used to this purpose, we
adopt the method based on Kernelized Spatial Depth (KSD) functions of [153] as it
is lightweight and does not require the direct estimation of the probability density
function (pdf) of the softmax output layer, which is a critical point, as good estimates
require training over many points. Briefly, for a vector y ∈ RK, we define the spatial
sign function as S(y) = y/‖y‖ if y 6= 0 and S(y) = 0 if y = 0, where ‖y‖ =

(yTy)1/2 is the norm-2. If Yk is a training set containing ` softmax output vectors for
a certain class k, Yk = {y(k)

1 , y(k)
2 , . . . , y(k)

` }, the sample spatial depth associated with a
new softmax output vector y′m is:

D(y′m,Yk) = 1− 1
|Yk ∪ y′m| − 1

∥∥∥∥∥ ∑
y∈Yk

S(y− y′m)

∥∥∥∥∥ . (7.6)

Note that D(y′m,Yk) ∈ [0, 1] provides a measure of centrality of the new point y′m
with respect to the points in the training set Yk. In particular, if D(y′m,Yk) = 1,
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it follows that ‖∑y∈Yk
S(y − y′m)‖ = 0 and the new point is said to be the spatial

median of set Yk, i.e., it can be thought of as the “center of mass” of this set. Hence,
the spatial depth attains the highest value of 1 at the spatial median and decreases
to zero as y′m moves away from it. The spatial depth can thus be used as a measure
of “extremeness” of a new data point with respect to a set. In [153], the spatial
depth of Eq. (7.6) is kernelized, which means that distances are evaluated using a
positive definite kernel map. A common choice, that we also use in our case, is the
generalized Gaussian kernel κ(x, y),

κ(x, y) = exp(−(x− y)TΣ−1(x− y)), (7.7)

which provides a measure of similarity between x and y. Noting that the square
norm can be expressed as

‖x− y‖2 = xTx + xTx− 2xTy, (7.8)

kernelizing the sample spatial depth amounts to expanding (7.6) and replacing the
inner products with the kernel function κ. This returns the sample KSD function
(Eq. (4) in [153]).

Session classification procedure in an unsupervised setting: the CNN classifier is
augmented through the detection of OOD sessions, as follows:

• Initialization: for each class k = 1, . . . , K in the service/app identification task a
number of softmax output vectors is computed by the trained CNN using the
sessions in the training set. These softmax vectors are stored in the set Yk. Note
that, being the results of a supervised training of the CNN, we know that the
vectors in Yk are all generated by a distribution that is correctly tracked during
the supervised learning phase.

• Feature extraction through the pre-trained CNN: at runtime, as a new DCI vector
x′m is measured, it is inputted into the pre-trained CNN, obtaining the corre-
sponding softmax output y′m.

• Classification and OOD detection: vector y′m is used with Eq. (7.5) to assess the
most probable class k?. At this point, Algorithm 1 of [153] is utilized to as-
sess whether y′m is an outlier. In case the vector is classified as an outlier, it is
assigned to the OOD class, otherwise it is assigned to class k?.

Some final remarks are in order. The outlier detection algorithm uses a threshold
t ∈ [0, 1], which allows exploring the tradeoff between false alarm rate and detec-
tion rate. Instead, the covariance matrix Σ controls the decision boundary for reject-
ing vectors, driving the tradeoff between the local and global behavior of KSD. If
properly chosen, the contours of KSD should closely follow those of the underlying
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statistical distribution. Σ is learned, for each class k, from the training vectors in Yk,
and for the following results we picked Σ = Σ2 in [153].
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Figure 7.13: Finding threshold t? using the CNN with (solid line) and
without (dashed line) the OOD detection mechanism.

Tuning the OOD threshold t: for each class k, Sk is obtained from the training
dataset. We recall that Sk is used to compute the covariance matrix associated with
the adopted Gaussian kernel, which models the contours of the pdf of the output
softmax vectors. The threshold t ∈ [0, 1] is instead used by the outlier detection al-
gorithm to gauge the (kernelized) distance between the center of mass of set Sk and
a new softmax vector, acquired at runtime. If t = 1, the kernelized spatial depth of
the new point will always be smaller than or equal to t and all points will be rejected
(marked as outliers). This is of course of no use. However, as we decrease t towards
0, we see that more and more points will be accepted, until, for t = 0, no rejections
will occur. So, t determines the selectivity of the outlier detection mechanism, the
higher t, the more selective the algorithm is. For our numerical evaluation, once
the sets Sk are obtained for all classes k, we set this threshold by picking the highest
value of it, t?, for which all the softmax vectors belonging to the test set are accepted,
i.e., none of them is marked as an outlier (OOD). In other words, this is equivalent
to making sure that the F-Score obtained over the test set from our trained CNN
without the OOD mechanism enabled equals that of the CNN classifier augmented
with the OOD detection capability. As t? is the highest value of t for which all the
data in the test set are correctly classified as valid, our approach amounts to tuning
the threshold in such a way that the outlier detection algorithm will be as selective
as possible, while correctly treating all the data in the test set. In Fig. 7.13, we show
the F-Score as a function of t for the CNN algorithm with and without OOD detec-
tion. Threshold t? = 0.48 corresponds to the highest value of t for which the F-Score
remains at its maximum, i.e., at the end of the flat region.
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(a) Camp Nou eNodeB.
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(b) Castelldefels eNodeB.
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(c) Poble Sec eNodeB.
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Figure 7.14: Traffic decomposition at service level for the four moni-
tored eNodeBs during the 24 hours of a day.

Experimental analysis of eNodeB traffic: in Fig. 7.14, the traffic decomposition
into the considered service classes is shown for the four selected eNodeBs using
t? = 0.48. The percentage of sessions identified as OOD, for which the classifier is
uncertain, is also reported at the top of each bar. Common characteristics are ob-
served in all the considered deployments:

• the most used service is video-streaming, with typical shares ranging from 50%
to 80%. This confirms the measurements in [138] and [2].

• The least used service is video-call, whose share is typically between 5% and
10%, whereas audio-streaming takes 21% of the total traffic load.

• OOD sessions are consistently well below 8%. Note that this share accounts
for all those apps that are not tracked by our classifier, such as texting, web
browsing, and file transfers.

Through the proposed service identification approach, we can accurately charac-
terize, at runtime, the used services. Moreover, the traffic decomposition at service
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level allows one to make some interesting considerations on the land use. For ex-
ample, in a typical residential area (PobleSec) the audio-streaming service is the one
used the least across the four monitored sites, with an average of 16.4%. Instead, in a
typical office and university neighborhood (Castelldefels), audio-streaming has the
highest traffic share across all sites (22% on average). Born and CampNou, which are
two leisure districts, present a similar traffic distribution across the day. We finally
remark that, while the traffic profiling results are shown using a time granularity
of one hour, our classification tool allows for traffic decomposition at much shorter
timescales, i.e., on a per-session basis.

7.2 Application to Network Optimization Frameworks

In this section, we present an application of the LSTM traffic prediction and of the
classification model presented in the sections above, applied to the context of en-
ergy saving devices. Authors of [25], introduce a novel proactive wake-up scheduler
for energy efficiency in 5G. The contribution in this work is restricted to the traffic
profiles and to predictive model that serves the wake-up scheduler to take online
decisions.

In particular, the proposed approach is based on the discontinuous reception
(DRX), which as specified by 3GPP, is the de facto power saving mechanism for long-
term evolution (LTE) based fourth generation (4G) systems [154, 155] and NR based
5G systems [156]. It has been shown in [157] that the time period that a DRX-enabled
mobile device spends monitoring the PDCCH without any data allocation has a ma-
jor impact on its battery lifetime.

For these reasons, a novel concept is introduced, namely wake-up scheduling, to
further reduce the power consumption of the mobile device. Proactively knowing
the packet arrival times for a forecast horizon, allows the UE to remain at OFF mode
for longer periods. The main idea is of using a fixed WuS configuration and then ad-
justing the scheduling of the wake-up signals dynamically by determining whether
to wake-up the device or not, based on traffic predictions over a forecast horizon
and a maximum tolerable delay. In addition, differently to previous works in [158,
159, 160], the proposed scheduler is not tied to specific traffic models.

7.2.1 Proposed Wake-up Scheduler

Shortly, we describe the idea behind the wake-up scheduler, which is depicted in
the block diagram of Fig. 7.15. The wake-up scheduler does not send a wake-up
indicator (WI) as soon as there is a packet in the w-cycle, but waits until some con-
dition is met; for instance, until the number of buffered packets at gNB for a given
UE is larger than a predefined buffer size threshold, or until the estimated average
buffering delay exceeds a predefined threshold. The main motivation behind not
sending WI, as soon as a packet arrives at the gNB but rather waiting and sending
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the packets consecutively, is that the state-of-the-art modems suffer from large start-
up and power-down stages [158]. Therefore, it is desired in terms of energy-efficiency
that once the modem is at ON mode, it receives multiple packets, and not a single
packet. Although, waiting for longer times to buffer packets can eventually increase
the buffering delay. This extra buffering delay should not be problematic as long as
the average delay is maintained within a maximum bound.

traffic
estimatorpredictor
delay

true

false

WI=0

WI=1

Figure 7.15: Overall block diagram of proactive wake-up scheduler.

For this purpose, the average delay is estimated for k packets, in every w-cycle.
In the proposed scheme, traffic predictor forecasts the packet arrival times of the target
UE for the forecast horizon of one w-cycle based on past packet arrival times. In
other words, the traffic predictor observes the session’s packet arrival time for p
previous TTIs until beginning of the current TTI (c) and then predicts the packet
arrival times for the upcoming w-cycle with TTI indexes of [c, c + tw).

Furthermore, in every w-cycle, a delay estimator block estimates the average buffer-
ing delay (D̂) of k packets. If D̂ is higher than a maximum tolerable delay Dmax,
the network realizes that the only way to have shorter delay is by sending WI=1
promptly. Otherwise (D̂<Dmax), it leaves the UE to remain in OFF mode for at least
another w-cycle. Finally, a delay comparator block performs the task of comparison
and decision making (i.e., whether to send WI=1 or WI=0) accordingly.

7.2.2 Traffic Predictor and Dataset

The traffic prediction can be formulated as a time series forecasting problem, where
the packet arrivals at each TTI are defined as the values of the time series. To this end,
we tailor the stacked LSTM neural network architecture [161] presented in Chapter 5
to predict the next packet arrivals over a finite horizon. The proposed architecture
for the traffic predictor is depicted in Fig. 7.16.

The performance of the proactive wake-up scheduler is investigated using real
video and audio streaming traces. For this, we monitored one operative network
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in Spain during one month using the online watcher presented in [16]. We have
selected only those traces gathered during the night hours (1am - 6am) to be sure
that the selected cell is serving very few users. This allows us to assume that our
traces are not affected by the packet scheduler at the base station, since an adequate
number of radio resources per TTI is available to accommodate all the transmitting
UEs. Our dataset includes two columns: the Identifier of the UE, and the timestamp
of the packet arrival (with TTI granularity). The classifier introduced in 7.1 is used
to properly select the traces of the apps of interest. The collected dataset consists of
1500 sessions of different traffic type. For the sake of comparison, we also generated
Poisson traffic with mean packet arrival rate of 0.2 p/TTI (video and audio traffics
have varying packet arrival rates up to 0.2 p/TTI) and added them to the dataset.
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Figure 7.16: Proposed architecture for the packet arrival time predic-
tion.

The dataset with size z for a particular traffic type is represented by xt|z1, where xt

indicates the packet arrival time during the tth TTI. As shown in Fig. 7.15 and 7.16,
the proposed network observes xt|c−1

c−p and, then, predicts the traffic in the upcoming
w-cycle x̃t|c+tw−1

c by delaying the prediction for the duration of tw. Finally, the out-
put of the LSTM network (ht|c+tw−1

c ) is fed to a fully connected neural network that
performs the actual prediction. The first layer size corresponds to p observed TTIs,
while the last layer output has a length equal to future horizon tw.

The implementation of the traffic prediction algorithm was performed in Python,
using Keras and Tensorflow, as backend. The chosen hyperparameters are reported
in Table 7.4. The number of hidden layers is fixed to 5, which is the number giving
a good trade-off between prediction accuracy and model complexity. For the train-
ing part, we used the Adam’s algorithm [116] as optimizer and the Mean Absolute
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Figure 7.17: MAPE as function of number of past observations p and
forecast horizon tw for different traffic types.

Percentage Error (MAPE) as loss function. We define the MAPE as follows,

MAPE =
100%

tw

c+tw−1

∑
t=c

|x̃t − xt|
xt

(7.9)

where x̃t is the predicted packet arrival time on the tth TTI.

Table 7.4: Training hyperparameters

Initial learning rate 0.001

Number of epochs 100

Number of LSTM hidden states 64

Number of LSTM hidden layers 5

Number of feed-forward hidden layers 1

Optimization algorithm Adam

Loss function MAPE

7.2.3 Numerical Results

Numerical results are given to evaluate the proposed proactive schemes in terms
of prediction accuracy, packet delay and power consumptions and energy saving.
However, we are interested to show the results related to the prediction model and
the delay of the different traffic types. For all results, the reader is invited to refer
to [25].

The impact of the length of the horizon (tw) and the number of previous obser-
vations (p) on the prediction errors is illustrated in Fig. 7.17. For shorter w-cycles,
the predictions follow the actual values closely, whereas for larger w-cycles, the pre-
diction error is bigger: longer forecast horizons (tw) decrease the accuracy of the
predictor, as expected. Furthermore, as it can be observed, the MAPE reduces with
a larger number of observations (p) for all four traffic types. Also, the accuracy is
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smaller for Poisson packet arrivals than for video and audio traffics, due to its sim-
pler traffic pattern. For Poisson traffic, the MAPE increases around 15% when tw

increases from 10 to 30 TTIs for given p = 20 TTIs.

As shown in Fig. 7.17, it is desirable to reduce tw and enlarge p. However, in
terms of power consumption, such a reduction of the w-cycle would contribute to a
higher energy consumption due to frequent checking of wake-up signaling. Addi-
tionally, a higher number of past observations p involves a longer memory length of
the LSTM network and a large amount of information that must be stored for a pre-
cise traffic prediction. As a result, the floating point operations per second (FLOPS)
of the LSTM network increases. This complexity overhead can become very high,
especially if the number of users per cell increases.

Fig. 7.18 shows the empirical cumulative distribution function (CDF) of packet
delay for the four different traffic types. Two different sets of performance results, in
terms of power consumption and delay, are presented. Namely, (1) wake-up scheme
without scheduler (WuS) that is considered as a benchmark scheme, and (2) wake-
up scheme with proactive scheduler (Pro).
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Figure 7.18: The CDF graphs of buffering delay of packets for WuS
and proactive scheduler under different traffic types. The dashed
lines and corresponding numbers represent average delays caused

by the particular method.

Generally, video streaming sessions are much longer than that of the audio traf-
fic, and packets arrive burstly (implying high self-similarity). As it can be seen for
video results of proactive scheduler, a large number of packets are served with near
to zero delay, and the reason is due to the consecutive packet arrivals that are served
while the inactivity timer is triggered. At the same time, a large number of packets
are served with delays larger than the maximum delay budget of video (40 ms), and
this comes from the fact that the proactive scheduler is a greedy method and waits
until the average buffering delay approaches to Dmax. As compared to the proactive
scheduler, WuS has a lower and consistent delay regardless of the traffic types.

7.2.4 Conclusions

In the presented work, the traffic prediction model based on LSTM network and
data collected from LTE PDCCH are used to propose a novel proactive wake-up
scheduler. The feasibility of proactive scheduler based on user traffic prediction has
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been investigated and the simulation results using different traffic types show that
proactive scheduler has lower energy consumption than the wake-up scheme with-
out scheduler. Moreover, the promising results motivate jointly considering user
traffic prediction and wake-up scheduler in order to reduce the energy consumption
of users under different traffic circumstances.
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Chapter 8

Conclusions

8.1 Summary of Achievements

The challenges that arise from the next generation mobile networks encompass a
multitude of elements, that include the increase of requirements to support a more
complex infrastructure. In this thesis, we leverage the potential and the capabilities
of ML algorithms to tackle some essential features in the context of mobile traffic
analysis. The thesis is organized into one preliminary part and four technical parts:

• in Chapter 1, 2, and 3, we introduce the context and the problem. Moreover,
we present related works on the analysis of traffic datasets based on both sta-
tistical and learning methods; also, in Chapter 3, we provide the reader of a
brief background regarding the ML framework that is adopted throughout the
thesis;

• in Chapter 4, we describe the data collection system and the measurement
campaign;

• in Chapter 5, we present the analysis of the collected traffic traces and we de-
rive a model for traffic prediction;

• in Chapter 6, we define a methodology for the detection of urban anomalies
using the collected data; we provide two different use-cases;

• in Chapter 7, we perform a classification of the applications using solely the
physical data that we collect; moreover, we describe an application for the
classifier and for the traffic predictor is given, in the context of energy-saving
devices.

Next, we briefly report the summary of contributions for each specific technical
part of the thesis.
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8.1.1 Data Analysis using LTE PDCCH Information

In Chapter 4, we described the measurements and the dataset that have been used to
conduct the analysis throughout the rest of the thesis. The analysis has shown that
using a simple and inexpensive LTE sniffer, we were able to acquire a millisecond-
resolution dataset that allows to perform extensive study on the user mobile traffic
for a given LTE eNodeB. This step is fundamental in any ML pipeline development,
since the quality of the collected data can affect the subsequent analysis and results.
Moreover, there is no need for the intervention of a mobile network operator, and the
user’s privacy is preserved since we are decoding only the scheduling information
of the mobile users exchanged on the LTE PDCCH.

In Chapter 5, we performed an analysis to describe the recurrent patterns in the
mobile traffic. We showed that the aggregate traffic can be modeled with a sim-
ple discrete-time Markov chain, and, through unsupervised learning methods, we
showed differences and similarities between different traffic types. Moreover, we
proved that using LSTM neural networks, we can implement a multi-steps traffic
predictor that beat the performance of wide-used statistical methods like ARIMA:
this can be valuable also in related works, where researchers, for example, need to
generate traffic patterns in their experiments.

8.1.2 Urban Anomaly Detection with Mobile Traffic

Chapter 6 has been devoted to describe the detection of urban anomalies using solely
the collected dataset. Such topic is relevant in the context of integrating the mobile
network with other urban infrastructures (e.g. smart cities), since an early detec-
tion can prevent events that may be harmful to public safety. In this part of the
work, we proved that urban anomalies that derive from crowd-gathering events
due, for example, to sport events, can be identified through the analysis of LTE data.
First, we considered a simple case, where the event is supervisedly marked; then,
we extended our method to multiple type of events and we performed the anomaly
detection using a semi-supervised framework, that includes the utilization of au-
toencoders structures.

8.1.3 Additional Applications: Traffic Identification and Prediction

In Chapter 7, we dealt with two applications that can be exploited by the network
management to optimize the network performances. First, we investigated the pos-
sibility of identifying which app has been run on the users’ device. We solved this
problem using a supervised methodology, in which we monitored a mobile phone
that run the most wide-used applications in three categories: video-streaming, audio-
streaming, and real-time video-calling applications. An extensive benchmark for the
identification for the app and for the services has been presented: the results showed
that adapting deep-learning structures with CNNs, we can obtain the upmost results
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with more than 90% accuracy. Finally, we reported a sample application of the LSTM
traffic prediction tool that we presented in Chapter 5. In this case, the main author
integrated the traffic prediction in a wake-up scheme, that allows to save energy in
a 5G device using the DRX mechanism.

8.2 Future Works

In this thesis, we have implemented solutions for a limited part of the problems from
studying mobile network user traffic. However, due to the myriads of aspects to be
considered in this topic, there are open issues that can be relevant in order to define
additional future works.

8.2.1 Extensive Dataset Collection

We focus the collection of data from LTE base stations for which we know the corre-
spondent land-uses. This allowed us to infer a characterization on the users’ traffic
profiles and on their temporal dynamics. However, a more extended dataset would
permit the description of different scenarios, and may have included cases that we
were not able to define. Also, a dataset that cover larger urban areas (like the one
released by mobile network operators), would allow to describe the geographical
correlation of the traffic and, possibly, to study the users’ mobility and, for example,
to analyze the effects and problems of intercell roaming with regard to the network
performances.

8.2.2 Network Management Optimization

The application of the thesis’ results in existing and/or developing frameworks
should be evaluated in order to demonstrate their effectiveness. In Chapter 7, we
reported the utilization of the implemented prediction model that has been used
in a wake-up scheme algorithm for devices with DRX. This is an example in the
context of energy-saving devices. The implementation of optimization solutions for
the network management should cover different type of applications: for example,
since we collected scheduling information, we may develop an optimized schedul-
ing algorithm to allocate the physical resources among the connected users. In these
solutions, where the objective is to learn a policy, we should properly refer to RL
algorithms, instead of referring only to supervised learning methods.

8.2.3 Integration with Big Data platforms

The analysis has been conducted on data retrieved from the mobile network and the
study has been done through an offline approach: this limits the presented results to
restricted solutions, in which time and operational complexity are not consistently
taken into account. To be formally feasible in a realistic case, the study should con-
sider the effect of elaborating the data streaming in real-time at large-scale: Big data
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frameworks are functional to this end, and may be included in the evaluation and
presented as a trade-off with the offline approach.
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