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Abstract

This thesis aims to understand the relationship between corporate governance

and performance by tracing its evolution over time and revisiting the method-

ological issues faced in measuring corporate governance. Empirical corporate

governance literature shows that good governance stocks outperformed poor

ones until investors' increased attention to governance information made this

anomaly disappear. On the contrary, �rst part of this thesis reveals that poor

governance stocks have outperformed good ones in recent years. To explain

this novel result, we examine whether investors become aware of the risks asso-

ciated with poor governance after the 2008 global �nancial crisis and integrate

this information into their investment decisions. Empirical evidence supports

this explanation. In the second part of the thesis, we propose an unequal-

weighted measure of corporate governance using anti-takeover provisions. In

comparison with existing measures of governance that employ equal weight-

ing methodology, this is the �rst study to explore multiple unequal weighting

methodologies. Results show that the relationship between governance and

performance is better explained when individual anti-takeover provisions' het-

erogeneity is captured in the weights of the governance index. While the �rst

two studies take the shareholders' view of corporate governance, the third

study of this thesis takes a stakeholders' view by considering environmental,

social and governance (ESG) characteristics together. Unlike prior literature

that applies kitchen-sink measures of �rms' ESG-orientation, this study in-

troduces a selective approach to measure corporate sustainability as an ESG

subset. We show that corporate sustainability is the main driver of ESG's

relationship with �nancial performance. Overall, this thesis highlights the

importance of governance and ESG information (and the way they are both

measured) for both the �rms and their investors. Governance is signi�cantly

related to performance and valuation, but conditional on the way it is mea-
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sured. This, in turn, has important implications for managers, governance

rating agencies, and regulators.
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CHAPTER 1

Introduction

1.1 An Overview

With multiple cases of bankruptcies amid �nancial crises witnessed in the last

two decades, more and more investors are demanding improved governance

structures. The use of good governance practices should translate into supe-

rior �nancial performances for �rms and accordingly bene�t its shareholders.

However, are good governance �rms actually creating more wealth than the

poorly governed ones? The main focus of this dissertation is on studying how

well the investors understand a �rm's governance quality, and how do they

react to it.
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To begin with, this thesis examines whether investors can employ governance

information to create investment strategies that can beat the markets. We

do so by �rst examining if the disappearance of the relationship between gov-

ernance and returns, shown in Bebchuk, Cohen, and Wang (2013), remains

persistent after the 2007�2008 global �nancial crisis. Using anti-takeover pro-

visions (ATPs) data from 1990 to 2018, we �nd that the disappearance of

governance�returns relationship after 2001 is in fact temporary. Poor gover-

nance stocks outperform the good governance ones after 2008, in sharp contrast

to the outperformance of good governance stocks seen in 1990s. The natural

question then is what causes this change. We explore information �ow-based

explanation and �nd that a combination of investors' high prudence toward

poor governance stocks and their increased awareness of investment horizon-

based tailored governance preferences played an important role in the appear-

ance of new governance�returns relation.

Next, this thesis highlights methodological issues in measuring corporate gov-

ernance when ATPs are assigned equal weights (à la Bebchuk, Cohen, and Fer-

rell, 2009; Gompers, Ishii, and Metrick, 2003). As an alternative, we propose

an unequal-weighted measure that accounts for the relevance and importance

of its individual anti-takeover components. The results, using the ATPs data

from 2007 to 2018, show that value implications for both the �rms and their

investors are quite di�erent when the relevance of each ATP is identi�ed and

included as weights in the governance measure.

Lastly, this thesis considers a more holistic stakeholder view instead of share-

holders' perspective captured by corporate governance characteristics such as

ATPs. In recent years, the attention towards environmental, social and gover-

nance (ESG) information has increased considerably in comparison to the cor-

porate governance characteristics. Figure 1.1 shows plots comparing corporate

governance and ESG using Google Trends data. Similarly, from institutional

2



Figure 1.1 Corporate governance and ESG popularity trends

This �gure compares the google trends for the topics (Panel A) and terms (Panel B) as
available for comparison on Google Trends. The trend plots start in January 2004 and end
in January 2019. The �tted trend lines are plotted separately for pre-2008 and post-2008
years (indicated by the dotted vertical line) to show the impact of global �nancial crisis on
these topics and terms.

Panel A: Trends by Topics.

Panel B: Trends by Terms.

investors point of view as well, ESG integration in investment decisions have

grown in recent years (Ailman et al., 2017). So, we examine measurement

issues related to the ESG characteristics to determine what is essentially value

relevant for both the �rms and their investors. Our results show that only

corporate sustainability-relevant ESG initiatives are important for corporate

valuation.
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1.2 Relevance and Background

Institutional investors consider corporate governance to be an important fac-

tor. On one hand, institutional investors intervene in the investee �rms' gov-

ernance through �voice� and �exit� (McCahery, Sautner, and Starks, 2016).

On the other hand, institutional investors also react to �rm's corporate gov-

ernance quality when making their investment decisions. This is re�ected by

the fact that the market for corporate governance ratings has snowballed in

last two decades with the institutional investors being their major clientÃ¨le

(Daines, Gow, and Larcker, 2010). Can these investors reliably use aggre-

gate index measures or governance rankings to create investment strategies

that generate abnormal returns? Can they also use these governance indices

or rankings as a means of di�erentiating the good governance �rms from the

poorly governed ones? This study centrally focuses on these question while also

revealing methodological and conceptual complexities that accompany the use

of aggregated governance measures such as the G-Index (Gompers, Ishii, and

Metrick, 2003), the E-Index (Bebchuk, Cohen, and Ferrell, 2009), and Gov-

Score (Brown and Caylor, 2006), as well as the aggregated ESG measures

(Dyck et al., 2018; Lins, Servaes, and Tamayo, 2017).

All across the globe, academic researchers as well as investment advisors have

dedicated a lot of e�ort in trying to capture the governance quality of public

companies using di�erent measures (for e.g., Erkens, Hung, and Matos, 2012;

Gao and Kling, 2008; Klapper and Love, 2004). Country-wide factors notwith-

standing, studies on �rm-speci�c characteristics in corporate governance have

shown that features such as director ownership (Bhagat and Bolton, 2013),

board characteristics (Eisenberg, Sundgren, and Wells, 1998) and other direc-

torship aspects (Bushee, Carter, and Gerakos, 2013) are key to capture internal

governance mechanisms and measure its quality. But instead of individual �rm

characteristics, the �rst two manuscripts presented in this dissertation explore

4



�rm-speci�c aggregated governance and their practical utility. Using cross-

sectional variations in governance qualities of di�erent publicly traded �rms

within a single country (i.e. United States), the aim is to assess whether the

measures available to institutional investors�to di�erentiate and identify the

good governance �rms from poorly governed ones�are actually useful or not.

Similarly, in recent decades, there is an upsurge in interest shown towards

�rms' ESG quality (Edmans and Ioannou, 2019; Starks, 2009). While di�erent

streams of literature uses di�erent names for the ESG-based measures (e.g.,

stakeholder welfare � Jiao, 2010, stakeholder-relations index � Borgers et al.,

2013), they essentially re�ect CSR performance (Buchanan, Cao, and Chen,

2018; Lins, Servaes, and Tamayo, 2017; Becchetti, Ciciretti, and Hasan, 2015;

Becchetti, Ciciretti, and Giovannelli, 2013; Humphrey, Lee, and Shen, 2012).

However, there is no clear consensus on whether ESG screens can create value

for investors (Humphrey, Lee, and Shen, 2012; Fulton, Kahn, and Sharples,

2012). Thus, a part of this dissertation also sheds light on the bene�ts of ESG

quality by accounting for the di�erential impacts that the individual ESG

activities can have on �rms' survival (Fatemi, Fooladi, and Tehranian, 2015).

As most of the governance and ESG data analyzed in this thesis are catered

to institutional investors, our �ndings do not re�ect the expectations of retail

investors. However, this is not a major cause of concern as the objective is

to see investors' behavior toward corporate governance and ESG information.

Since the institutional investors can process governance and/or ESG signals

better than the retail investors, they are more likely to exploit these signals in

their investment decisions.

1.3 Corporate Governance

Corporate governance broadly refers to the policies and processes undertaken

by companies to make sure that its business activities are focused towards mu-

5



tual bene�t of the corporation, its owners and the society at large within the

existing legal setup. This expansive conceptualization of corporate governance

has resulted in di�erent streams of literature seeing it from di�erent perspec-

tives. Taking investors' perspective, corporate governance is aimed at ensuring

timely corporate disclosures (or, transparency) and legal rights of shareholders

(La Porta et al., 2000). Or, simply, it deals with companies' policies that as-

sure investors of obtaining returns on their investments (Shleifer and Vishny,

1997).

1.3.1 Measuring Corporate Governance

Thus far, existing literature has identi�ed multiple �rm characteristics that

can be indicative of e�ective corporate governance:

a. Ownership structure: Ownership structure, on its own has been widely

investigated in di�erent studies as a corporate governance practice. Us-

ing the agency theory as its backbone, research has shown that higher

percentage ownership can lead to better board e�ectiveness and con-

sequently, improved monitoring of �rms (Chung and Lee, 2020; Crane,

Koch, and Michenaud, 2019; Schmidt and Fahlenbrach, 2017).

b. Board of Directors (BoD) size and other attributes: BoD's experience,

composition, structure and other features all have been suggested as gov-

ernance practices that increase e�ectiveness of board monitoring (Cor-

nelli and Karaka³, 2012; Eisenberg, Sundgren, and Wells, 1998; Hermalin

and Weisbach, 1991).

c. BoD composition: There is a vast literature that has focused on the

importance of independent directors within �rms. As an indicator of

corporate governance quality, many empirical papers have examined its

e�ect along with other directors' characteristics on �rm performances

(e.g., Hu et al., 2020; Bhagat and Bolton, 2013; Bhagat and Black, 2001).
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d. CEO Duality: By separating the management decisions from control,

agency theory propagates reduction of agency costs and improvement

of �rm performance (Jensen and Meckling, 1976). However, empirical

evidence relating CEO duality to �rm performances have been far a few

(Yang and Zhao, 2014; Boyd, 1995).

e. Audit Committee composition and attributes: Similar to BoD, Audit

committees play a big role in ensuring accountability and transparency.

The importance of having independent auditors and those who are com-

mitted to the cause by ensuring regular meetings, has been evidenced

widely (Jiraporn, Singh, and Lee, 2009; Deli and Gillan, 2000).

f. Executive compensation arrangements: Several studies have examined

CEO pays and other compensation arrangements such as bonuses and

employee stock option plans for their e�ect on company performance

(e.g., Cuñat, Gine, and Guadalupe, 2016; Larcker, Richardson, and Tuna,

2007).

g. Shareholder Voting: Any obstruction to the shareholder activism and/

or use of a provision that decreases their voting power is viewed in theory

as opposed to good governance practice (Iliev et al., 2015; Cuñat, Gine,

and Guadalupe, 2012; Gillan and Starks, 2000; Karpo�, Malatesta, and

Walkling, 1996).

While some papers consider each of these characteristics separately, others use

them together as multiple proxies for broadly representing corporate gover-

nance. Lo, Wong, and Firth (2010), for example, employ board independence,

CEO Duality and audit committee compositions to show that good governance

quality can deter earnings manipulations using related-party sales. Similarly,

Core, Holthausen, and Larcker (1999) use the measures of board and ownership

structures as proxies for corporate governance to show its e�ect on CEO com-

pensation. While the list of characteristics presented above is not exhaustive,
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it covers most of the governance mechanisms that �nance literature has stud-

ied. Of course, many more other �rm-speci�c characteristics can directly or

indirectly impact the monitoring of management by BoD and the shareholders

(see Gillan, 2006 for a full review).

Notwithstanding the interest of shareholders, BoD, managers, and debtholders;

other corporate participants such as the employees, suppliers and customers

may also play a key role in its governance (Gillan, 2006). Each of these par-

ticipants have contractual agreements with the �rm that can eventually a�ect

the shareholders' interests (Jensen and Meckling, 1976). Thus, the stakeholder

view that also accounts for the environment (i.e., legal, political, community,

etc.) is also important to get a robust picture of �rms' governance quality

(Gul et al., 2020; Jensen, 2001). For this reason, the investors' demand for

�rm's ESG data has rapidly grown in recent years (Van Duuren, Plantinga,

and Scholtens, 2016; Bialkowski and Starks, 2016).

1.3.2 Anti-Takeover Provisions

Institutional investors' interest in corporate governance information grew many-

fold with the failures that accompanied the corporate scandals of the early

2000s. The corporate bylaws and charter provisions are of particular interest

to the investors as they can be employed by the management to potentially

in�uence the market for corporate control (Ruback and Jensen, 1983). For

example, staggered boards provision, which restricts board members' elections

to occur in smaller groups, can deter potential takeover bids as the acquirer

cannot take immediate control of the board. While such provisions can give

more power to the board during takeover negotiations, they can also incentivize

managerial entrenchment (Jarrell, Brickley, and Netter, 1988).

In theory, the presence of ATPs such as staggered board reduce �rm value, due

to their associated agency costs (Jensen and Meckling, 1976). Nevertheless,
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their incidence in �rms has grown over the years as they have been shown to

have positive e�ect on takeover bids (Sokolyk, 2011). Given the fact that the

shareholders' proposals related to these provisions have grown over the years

(Gillan and Starks, 2000), investors seem keen to in�uence the governance

characteristics of their investee �rms. Along with the presence of dual class

stocks structure, ATPs such as the poison pills, staggered boards, blank-check

preferred stock, limited ability to call special meetings or for written consent,

and supermajority voting requirements are commonly identi�ed as entrenching

devices. For this reason, such ATPs have been voted down by the shareholders

in majority of cases (Bebchuk, Cohen, and Ferrell, 2009).

Several papers have studied the impact of individual ATPs to show their im-

portance for the �rm and its investors. A series of papers starting with Be-

bchuk and Cohen (2005) and Faleye (2007), and followed by Cohen and Wang

(2013), Amihud and Stoyanov (2017), Cremers, Litov, and Sepe (2017), Cohen

and Wang (2017) and Daines, Li, and Wang (2018) have debated the e�ect

of staggered boards on shareholder value. On one hand, staggered boards can

promote managerial entrenchment and have negative e�ect on �rm value, es-

pecially if they are present along with the poison pills, by preventing possible

takeovers of loss-making �rms (Bebchuk and Cohen, 2005). On the other hand,

staggered boards could increase �rm value by inhibiting managerial myopia

when managers are free to pursue long-term goals without constant pressure

from the board members (Cremers, Litov, and Sepe, 2017). Amihud, Schmid,

and Solomon (2017) and Amihud, Schmid, and Solomon (2018) try to settle

this debate by claiming that while the empirical evidence for both positive

and negative e�ects of staggered boards on �rm value may hold under speci�c

conditions, overall this e�ect is statistically insigni�cant. Similarly, literature

has widely debated other ATPs such as the golden parachutes (Bebchuk, Co-

hen, and Wang, 2014; Fich, Tran, and Walkling, 2013; Brusa, Lee, and Shook,
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2009; Falaschetti, 2002) and poison pills (Heron and Lie, 2015; Bizjak and

Marquette, 1998; Comment and Schwert, 1995; Ryngaert, 1988).

1.3.3 Corporate Governance Indices

Despite being insightful, studying each governance characteristic or ATPs sep-

arately cannot necessarily represent overall governance quality of the �rms.

Moreover, as shown previously, there is mixed empirical evidence when it

comes to the bene�ts associated with each ATP individually. Hence, the need

for aggregated corporate governance indices (Gompers, Ishii, and Metrick,

2003). Several governance indices have been conceptualized by commercial

rating agencies and academic scholars. The degree to which these indices are

good indicators of �rms' governance quality can considerably constrain their

practical applications (Bhagat, Bolton, and Romano, 2008). What separates

most of these indices in terms of its construction, is mainly the corporate gov-

ernance features that each of them combine (Black et al., 2017). While some

indices have given relatively more importance to either internal governance fea-

tures or external governance characteristics, there are others which combine

both of these features in their composition (Beiner et al., 2006). However, all

these indices employ equal weighted methodology, with the index formed as a

sum of the presence of all the individual governance constituents. Although

index weights are important, due to the complexities that arise when measur-

ing them (Nerantzidis, 2018), very few scholars have attempted to construct

unequal weighted indices.

Scholarly research on corporate governance indices and their construction was

driven by the need to measure governance quality. Several rating agencies fol-

lowed the suit by introducing their own proprietary indices based on their as-

sessment criteria. These developments have led to a growing demand from both

buy-side (i.e., institutional investors) and sell-side (i.e., �rms themselves who

10



want to signal their governance quality to investors) participants. Gompers,

Ishii, and Metrick's (2003) G-Index was the �rst-of-a-kind company-speci�c

aggregate measure of corporate governance constructed using ATPs. Higher

G-Index values depicted more leeway for the managers to pursue their own in-

terests (i.e., poor corporate governance). Subsequently, Bebchuk, Cohen, and

Ferrell (2009) introduced E-Index using a subset of six indicators from the orig-

inal G-Index provisions. These six takeover-defense provisions were identi�ed

for their ability to contribute �the most to managerial entrenchment� (hence,

the name Entrenchment Index or E-Index). E-index constituted of staggered

boards, limits to amend shareholder bylaws, supermajority requirements for

mergers, limits to charter amendments, poison pills, and golden parachutes.

Alternatively, Brown and Caylor (2006) introduced Gov-Score using more gov-

ernance mechanisms than the ATP-focused G-Index and E-Index. By using a

comprehensive set of 51 factors, Gov-Score was proposed to provide a better

measure of corporate governance quality as it was not restricted to only the

ATPs and included additional board composition and executive compensation

indicators. In contrast, focusing on parsimony instead of exhaustivity, Cre-

mers and Nair (2005) construct an Alternative Takeover Protection Index by

considering only a set of three main ATPs.

In addition to those scholarly corporate governance indices, there are commer-

cial rankings and indices by private research and advisory agencies that rate

companies' governance qualities. For example, Institutional Shareholder Ser-

vices (ISS), GovernanceMetrics International (GMI), Thomson Reuters, and

The Corporate Library (TCL) have all been collecting data on a wide range of

governance issues in order to provide investors, policymakers, and regulators

with governance rankings. Daines, Gow, and Larcker (2010) show that com-

mercial corporate governance ratings and indices do not necessarily measure

what they ought to. This shows that the methodologies employed by these
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commercial rating agencies have further scope for improvements.

1.3.4 ESG Indices

Although the idea of ethical investing and social responsibility has been widely

prevalent for many years (Graves and Waddock, 1994; Brown and Perry, 1994),

research in this area was severely constrained by the lack of data on corporate

social initiatives and controversies. While some of the early proponents were

skeptical about the bene�ts of socially responsible investing (SRI), others con-

sidered that it is possible to be socially responsible and economically viable at

the same time (Hamilton, Jo, and Statman, 1993). Hylton (1992) went as far

as to declare that �more aggressively SRI is practiced, the more one would ex-

pect ethical investing to be economically unattractive.� Corson and Van Dyck

(1992), in contrast, show that ethical investing need not necessarily be harmful

for investors as environmental and social activities may potentially just be a

part of an extended set of �rms' fundamentals.

More recently, ethical investing has gone mainstream and data providers such

as MSCI KLD, Sustainalytics, Thomson Reuters, ISS, and Bloomberg have

all started actively collecting ESG data and disseminating their ratings. In

academic research, while some scholars prefer to use proprietary ESG ratings

provided by these agencies (for e.g., Buchanan, Cao, and Chen, 2018; Liang

and Renneboog, 2017; Ferrell, Liang, and Renneboog, 2016), others segregate

all the available ESG data to measure ESG indices on their own (Dyck et al.,

2018; Di Giuli and Kostovetsky, 2014; Kim, Li, and Li, 2014). In some cases,

even individual ESG characteristics and proposals have been separately consid-

ered to study their �nancial outcomes (Flammer, 2015; Krüger, 2015; Dimson,

Karaka³, and Li, 2015). While most evidence points to the bene�ts of ESG (or,

CSR) performance for both the �rms and their shareholders (Ferrell, Liang,

and Renneboog, 2016; Flammer, 2015), its negative impact for certain stake-
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holders such as the debtholders (Dumitrescu, El Hefnawy, and Zakriya, 2019)

has also been documented.

1.4 Dissertation Structure

This doctoral dissertation primarily focuses on governance�performance rela-

tionship by looking at it through investors' lens. The overall objective is to

present three complete manuscripts that provide insights into di�erent dimen-

sions of this relationship: a) Whether and how investors react to the corporate

governance signals, b) The corporate governance measure and its construction,

and c) Broadening the governance perspective to include environmental and

social factors to see how it a�ects investment outcomes. Thus, the dissertation

is structured in the form of a monograph based on three related manuscripts.1

While the central objective of the dissertation is to highlight the importance

of governance information for investors, each of the three manuscripts are de-

veloped as standalone research papers that address each of the above three

challenges that arise when studying investors' behavior toward governance in-

formation. Overall, these three manuscripts complement and contribute to-

wards general understanding of how investors can bene�t from certain intra-

�rm mechanisms that align the managements and shareholders, and/or other

stakeholders interests.

The �rst manuscript documents the reappearance of governance pricing anomaly,

and provides a possible explanation for the same using a natural experiment.

The aim is to disentangle the possible managerial encroachment (i.e. man-

agers bene�ting at the expense of investors) and shareholder enrichment as

outcomes of corporate governance signals. The second manuscript focuses

on measuring the corporate governance quality itself by examining method-

1Please note that the references are provided at the end of each chapter. The limitations
and future directions of research are discussed in the last chapter.
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ological drawbacks in index construction when equal weights are assigned to

underlying governance components. The aim is to draw attention towards the

relevance and importance of the individual anti-takeover provisions. The third

manuscript looks beyond corporate governance unidimensionality by including

additional environmental and social initiatives into the mix to see how �rm's

sustainability can bene�t its investors.

1.5 Objectives and Contributions of Each Manuscript

The central objectives and contributions for each of the three research projects

presented in this dissertation are summarized as follows:

1.5.1 Study I:

�Governance, Information Flow and Stock Returns�

This study identi�es multiple structural breaks in the relationship between

corporate governance and stock returns, and provides an investor-centric ex-

planation for the second structural break.

Contributions: We contribute to the literature by showing that there are two

structural breaks in the governance�returns correlation i.e. a) its disappear-

ance, and b) its reappearance in the opposite direction. Using a natural

experiment that captures the changes in institutional investors' governance

preferences and its resultant impact on stock returns, we provide a possible

explanation for the second structural break in the form of investor learning

hypothesis. Under this hypothesis, beyond the initial learning or �rst break

point, the repeated exposure to governance signals facilitates institutional in-

vestors to further appreciate the di�erences in good and poor governance �rms,

so that their expectations of returns from poor governance �rms change. Our

results from the natural experiment support this hypothesis. The proportion
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of short-term investors increases in the poorly governed �rms after the critical

investor learning point. And, governance-based hedge portfolios show possi-

ble trading bene�ts from poor governance stocks, with the portfolio of these

stocks consistently outperforming good governance portfolio beyond the in-

vestor learning point (i.e. January-2008). By evidencing the reappearance of

governance pricing anomaly that was reported to have disappeared in the past,

we also contribute to a growing literature that explores rational and behavior

theories of asset pricing anomalies. Thus, in some ways, we also addresses

market e�ciency and its fragility.

1.5.2 Study II:

�The Corporate Governance � Performance Puzzle: New In-

sights�

This study sheds light on the corporate governance�performance puzzle by

exploring an unequally weighted governance index.

Contributions: Using a novel unequal-weighted approach that dynamically ac-

counts for the heterogeneity of individual anti-takeover components, we show

that our proposed �nG (new Governance) Index� is less prone to erroneous

inferences than a comparable equal-weighted index (such as G-Index, E-Index

etc.) is. Previous governance indices, being equal-weighted, did not possess

requisite dynamism to trace the evolution of governance landscape that was

induced by the government interventions and media in�uences. Given that

recent research has shown that these indices are not associated with abnor-

mal returns beyond the early 2000s, our �ndings reveal that when individual

provision's weights are captured in an index, governance-based hedges can

still generate abnormal returns for investors in recent years. Additionally, this

study contributes by highlighting that the information content of all gover-
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nance provisions are not the same.

1.5.3 Study III:

�Sustain and Deliver: Capturing the Valuation E�ects of Cor-

porate Sustainability�

This study probes the environmental, governance and social characteristics to

identify a corporate sustainability measure that can have implications for the

value of the �rms.

Contributions: In this study, we contribute to the literature by examining indi-

vidual environmental, social and governance (ESG) factors that are commonly

combined in the related literature to measure corporate social responsibility

(CSR) or ESG performance. Inspired by the Bebchuk, Cohen, and Ferrell

(2009) paper that introduces E-Index as a subset of G-Index introduced in

Gompers, Ishii, and Metrick (2003), we identify a subset of ESG indicators that

converge towards the concept of �corporate sustainability�. This identi�ed sub-

set completely explains the CSR's valuation bene�ts, while also shedding some

light on its stock market performance. In contrast, the remaining indicators

have no impact on both the accounting- and stock market-based valuations of

the �rm. Since this is the �rst study to apply an industry-neutral selection of

ESG indicators, it has implications for both the �rms and their ESG-rating

providers. By focusing attention on the sustainable aspects of ESG, managers

can take value-relevant decisions and the rating agencies can provide value-

enhancing investment advisory services.
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1.6 Scholarly Contributions

The three articles presented in this dissertation are currently being revised

for journal submissions. They have been presented in multiple international

conferences and seminars in the last three years. The details about each of

their authorship and conference presentations are summarized in Table 1.1.

The �rst two manuscripts are co-authored with Dr. Ariadna Dumitrescu, and

the third one is solo-authored.
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CHAPTER 2

Governance, Information Flow, and Stock

Returns

2.1 Abstract

We show that governance information is useful for investors but not as pre-

viously envisaged. Poor governance stocks outperform good governance ones

after 2008. This novel reversal of the governance�returns relationship implies

that its disappearance documented in Bebchuk, Cohen, and Wang (2013) is

temporary. The revival of this relationship can be explained by sophisticated

investors learning to recognize governance risks and becoming more prudent
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after the global �nancial crisis. Consistent with this learning, we �nd that

investors could have identi�ed via price and risk channels that the poorly gov-

erned �rms face higher uncertainty regarding their future earnings power after

2008. Furthermore, following the crisis, we observe that institutional investors

update their governance preferences through information-induced learning.

2.2 Introduction

Does corporate governance matter for stock returns? Most investors would like

to invest in good corporate governance stocks but perhaps not at the expense

of shareholder returns. This issue is at the core of a recent debate about the

role of corporate governance and corporate social responsibility in stock perfor-

mance. In the past, �rms with good corporate governance were associated with

good stock performance (Gompers, Ishii, and Metrick, 2003). More recently,

Edmans and Ioannou (2019) state �[t]he idea that companies and investors can

both do good and do well is �nding ever greater traction among executives,

shareholders and wider society.� As a result, large institutional investors have

designed strategies to identify and invest in good corporate governance �rms.

The California Public Employees Retirement System (CalPERS), for example,

devised its own list of e�ective governance practices and also used social ac-

tivism to improve the performance of its investments.2 However, Gillers (2019)

reports in the Wall Street Journal that �[d]oubts about the strategy rose as

Cal[PERS]' funding situation worsened in the decade after the 2008 �nancial

crisis. A key sign came in December 2016 as retirement-system o�cials rec-

ommended the board drop its tobacco ban, citing the potential money lost.

2CalPERS is the largest public pension fund in the U.S. with $366 billion in assets as
of June 2019 (Gillers, 2019) and is well known for creating the �Focus List,� which contains
companies with concerning or undesirable corporate governance practices. The fund worked
with the listed companies to improve their performance creating a phenomenon known as
the �CalPERS e�ect.�
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Staying out of the investments for 16 years had cost the fund more than $3.5

billion, a fund consultant calculated.� Did CalPERS and other institutional

investors realize the cost of ignoring poor governance stocks amid the funding

crunch that accompanied the 2008 crisis?

This study analyses the evolution of governance�returns relationship to show

that the poor governance stocks indeed cannot be ignored after 2008. In this

period, poor governance �rms are under-priced and a zero-investment strat-

egy that goes long poor governance stocks and short good governance ones

generates over 2.5% monthly risk-adjusted returns. This is a novel result that

indicates a reversal of the governance�returns relationship. Before 2002, good

governance stocks outperformed the poor governance ones (Gompers, Ishii,

and Metrick, 2003; Bebchuk, Cohen, and Ferrell, 2009). Bebchuk, Cohen, and

Wang (2013), however, show that the correlation between stock returns and

corporate governance indices ceased to exist in the 2002-2008 period, and so

also did any arbitrage opportunities for investors. Moreover, during the 2007-

2008 �nancial crisis, good governance stocks performed poorly (Erkens, Hung,

and Matos, 2012). We conjecture that the higher returns for poor corporate

governance �rms after 2008 may be driven by prices re�ecting their high infor-

mation asymmetry and the e�ect this had on institutional investors' demand.

Consistent with this notion, we �nd that the price informativeness of good

governance stocks increases and that of poor governance decreases after the

disassociation period (2001-2008). This shows that information �ow played an

important role in making the governance�returns correlation reappear in the

opposite direction. Furthermore, on exploring how institutional investors re-

spond to these changes, we �nd that their governance preferences are a�ected

by information-induced learning. After 2008, short-term (long-term) institu-

tional ownership in poor (good) governance stocks is higher when compared

to the dissociation years.
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How did the 2008 �nancial crisis a�ect investors' attention to governance in-

formation? Attention is a key determinant of investment choice (Barber and

Odean, 2008), and good corporate governance mitigates downside risk (Wang

et al., 2015). Thus, we posit that, due to increased attention during the crisis

period, investors realized that the increased volatility in the markets increases

downside risk for poor governance �rms. Sophisticated investors are most

likely to identify this due to their superior data gathering and processing abil-

ities. Some of these investors then used the information on downside risk

together with the information about governance characteristics to design new

investment strategies. This constitutes sophisticated learning. In other words,

after the crisis-induced sophisticated learning, some of the investors become

governance-motivated when they understand that the corporate governance

continues to be a reliable signal for good corporate governance �rms, but not

so for the poor governance ones. This mechanism has been explored theo-

retically by Pastor, Stambaugh, and Taylor (2019) and Pedersen, Fitzgibbons,

and Pomorski (2019), who show that environmental, social and governance (or,

ESG) information and preferences are important for investment returns. When

only a few investors use governance information, governance-based investment

portfolios can generate abnormal returns and good governance stocks give

higher returns (for e.g., during 1990s, as shown in Gompers, Ishii, and Met-

rick, 2003). Next, when this information becomes common to all investors,

abnormal returns disappear (for e.g., after 2001, as in Bebchuk, Cohen, and

Wang, 2013). However, unlike in the past, Pastor, Stambaugh, and Taylor

(2019) predict that good (poor) governance stocks will give negative (posi-

tive) abnormal returns when the overall market sensitivity toward governance

information is high. Pedersen, Fitzgibbons, and Pomorski (2019) similarly pre-

dict that when there are many governance-motivated investors in an economy,

good governance stocks will have lower returns. Thus, our explanation for the
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recent reemergence of the relationship between governance and returns, and

that too, remarkably in the opposite direction, are in line with these theoretical

predictions.

In order to shed light on the evolving governance�returns relationship since the

1990s, we create governance-based hedge portfolios (see Gompers, Ishii, and

Metrick, 2003; Bebchuk, Cohen, and Ferrell, 2009) using the ISS governance

provisions data. While this association disappears in 2001, further exploration

reveals that another structural break exists in 2008, when the relationship

reappears, albeit in the opposite direction.3 We identify the two structural

break points using Bebchuk, Cohen, and Wang (2013) approach, and use the

Bai and Perron (1998) and Hatemi-J (2008) tests to con�rm the two regime

shifts. In recent years, we �nd that poor governance stocks have higher re-

turns than the good governance ones. This outperformance of poor governance

stocks after 2008 indicates that the sensitivity to governance information has

increased after the �nancial crisis and that many sophisticated investors have

adjusted their investments to this information (or, have become governance-

motivated). Thus, to understand these two underlying mechanisms, we run

multiple empirical tests and investigate whether investors learn, after 2008,

that: (a) governance characteristics have become more informative, and (b)

sophisticated investors are drawn to di�erent sets of stocks based on their

governance preferences.

We study the role of information �ow in sophisticated learning by assessing

if there is a systematic shift in the amount of information impounded in the

prices of good and poor governance stocks across 2008. If there was indeed

such a shift, investors, and more speci�cally, sophisticated investors, could

3All our main results and additional analysis employ the E-Index as a governance proxy,
as this index can be reliably developed for the entire sample period. The change in ISS's
data collection methodology after 2007 (that changed the number of anti-takeover provisions
covered by ISS) makes the replication of the G-Index di�cult after 2006.
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have reacted to changes in price information by adjusting their expectations

from poor governance stocks. We examine two underlying learning channels

through which the informativeness of governance characteristics could have

been identi�ed by the investors. First, since good governance is related to the

price informativeness (Lee, Chung, and Yang, 2016), we study the information

content of good and bad governance stocks' prices and the changes that their

price informativeness experiences across the two structural break points. More

speci�cally, we capture the di�erences in investors' expectations of future �rm

growth rates and earnings prospects between well- and poorly-governed �rms.

Second, since the �no arbitrage� condition leads to a relation between the in-

formation �ow rate and stock price volatility (Ross, 1989), we examine the

impact of governance on idiosyncratic volatility and price non-synchronicity

across the two structural breaks. While the �rst channel re�ects the learn-

ing that is aided by information �ows through the price, the second channel

portrays the same experienced through the risk.

To investigate the price channel, we analyze the di�erences between the cross-

sectional price informativeness of good and bad governance stocks. Our results

support both the Bebchuk, Cohen, and Wang (2013) learning hypothesis for

the �rst structural break and sophisticated learning across the second struc-

tural break. While price informativeness increased in the pre-2001 period for

both good and bad governance stocks (through learning e�ects), there is a

di�erent trend in the post-2008 period. Poor governance stocks show a dis-

tinct decline in price informativeness after the second structural break point,

whereas well-governed stocks show an upward trend for the same period. Dur-

ing the period of dissociation (i.e., between the two structural break points),

price informativeness is statistically insigni�cant, implying stable information

access across both well- and poorly-governed �rms. We complement the results

from cross-sectional measure of price informativeness using �rm-speci�c infor-
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mation �ow proxies, and again �nd evidence supporting sophisticated learning.

More speci�cally, at the �rm level, poor governance �rms have greater infor-

mation asymmetry and also show comparatively lower trading activity than

well-governed ones after the second structural break.

To examine the risk channel, we study the �rms' idiosyncratic volatility and

stock price crash risk. Our results again support possible sophisticated learn-

ing, with bad governance �rms being associated with higher idiosyncratic

volatility in comparison with good governance ones in the post-2008 period.

Additionally, we �nd that while the E-Index could not predict future stock

price crash risk before 2008, there is a positive association between the two

thereafter. This means that after the second structural break, poorly governed

stocks with more entrenchment provisions have a higher likelihood of crashes.

Jin and Myers (2006) show that �limited information a�ects the division of

risk bearing between inside managers and outside investors.� Combined with

the evidence from the price channel tests, the results from the risk channel

tests thus indicate that learning about the increased information asymmetry

in poor governance �rms could have made some investors become aware of the

riskiness associated with these �rms. As a result, these investors would have

wisely adjusted their expectations of poor governance �rms' future earnings

power and associated risk premia in making their investment decisions.

Although the results from information-in-price tests lend credence to the ex-

istence of sophisticated learning, they do not shed light on the role of institu-

tional investors in the appearance of a newer (i.e., negative) correlation between

governance and returns. Institutional investors not only play an important role

in the governance of investee �rms (Gillan and Starks, 2000; McCahery, Saut-

ner, and Starks, 2016), they also have their governance preferences (Bushee,

Carter, and Gerakos, 2013). So, we next explore the evolving governance

preferences of institutional investors around the 2008 �nancial crisis. We use
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a quasi-natural experiment to capture the changes in institutional investors'

governance preferences and its resultant impact on stock returns. In 2007,

Institutional Shareholder Services (ISS)�a leading corporate governance data

provider used by institutional investors�changed its data collection and re-

porting methodology, which led to the faster dissemination of governance data

on an annual basis than in previous years when governance data were made

available to investors every two or three years. Since this exogenous shock

occurs just before the second structural break in the governance�returns rela-

tionship, it provides an ideal setting within which to assess if investors learn to

recognize the riskiness of poorly governed �rms. Basically, our experimental

test builds on the Grossman and Stiglitz (1980) and Hellwig (1980) theoretical

models on informational e�ciencies, as we aim to understand how informed

sophisticated investors react to the quality of governance information and/or

its noisiness through sophisticated learning.4

We examine the changes in short- and long-term institutional ownership across

the second structural break point using the frequency of governance-information

availability as a proxy for di�erential sophisticated learning among investors.

While there is a signi�cant decline in long-term institutional ownership among

poor governance stocks after the second break point when there is faster dis-

semination of governance information to investors, short-term institutional

ownership increases for poor governance �rms. Our results support the idea

that short-term investors seek returns by exploiting informational ine�ciencies

Yan and Zhang (2009). Long-term investors, meanwhile, choose good gover-

nance �rms so that they can intervene through �voice,� while they choose to

�exit� when �rms have poor governance structures (McCahery, Sautner, and

Starks, 2016). In other words, the bene�ts from investing in good governance

4These models show that when it is costly to acquire information, prices cannot perfectly
aggregate such information.
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stocks arise in the form of lower monitoring costs, while foregoing short-term

gains (Bebchuk, Brav, and Jiang, 2015).

In addition to merely exploring and explaining the negative association be-

tween governance and stock returns, our �ndings contribute to a broader body

of the literature that studies information-based trading strategies and/or long-

run event studies. From an asset pricing perspective, we draw attention to a

possible anomaly (see Schwert, 2003). This is especially important as the

anomaly in focus was shown to have disappeared after 2001. While the dis-

appearance of �nancial anomalies has been widely studied, few studies have

highlighted their possible reappearance. In some ways, our study also re�ects

the tensions and complementarities between the rational and behavioral the-

ories of �nancial anomalies (Brav and Heaton, 2002). We show that while

learning does involve the recalibration of governance information by rational

investors, the additional uncertainties accompanying information asymmetry

induce sophisticated learning that allows investors to exploit fresh arbitrage

opportunities. Additionally, we contribute to the larger market e�ciency lit-

erature (see Fama, 1991). Our �ndings are consistent with those of Brown,

Harlow, and Tinic (1988), as we show that investors' risk and returns adjust to

new information, especially for poor governance structures after market prices

have corrected for the di�erences between well-governed and poorly governed

�rms (i.e., after the initial learning period). Alternatively, the relatively high

idiosyncratic risk and lower price informativeness of poorly governed �rms af-

ter the second break point may also be indicative of the ambiguity premium

(Epstein and Schneider, 2008).

The rest of this study is organized as follows. Section 2.3 discusses sophis-

ticated learning. Section 2.4 describes the data and variables. Section 2.5

makes a case for the two structural breaks or regime shifts in the governance�

returns relationship. Next, Section 2.6 explores the price and risk channels to
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assess the importance of information �ow for sophisticated learning. Section

2.7 applies a quasi-natural experiment to understand the short- and long-term

institutional investors' behavior toward governance information, and Section

2.8 summarizes our main results and concludes.

2.3 Sophisticated Learning

Investors are constantly seeking information that can help them beat the mar-

kets (French, 2008). Moreover, they are sensitive to managerial entrenchment

(E-Index), as the presence of entrenching anti-takeover provisions within �rms

exposes them to possible information asymmetry when managers are better

shielded from takeover threats (Bebchuk, Cohen, and Ferrell, 2009). We ex-

pect investors' sensitivity to such governance provisions to be heightened when

they are exposed to extreme downside events such as the global �nancial cri-

sis. Thus, we de�ne sophisticated learning as the governance-centric learning

experienced by sophisticated investors when they exercise high prudence to-

wards poor governance stocks on facing the stock market free fall in 2008. The

underlying rationale is that some investors learn to better adapt to market con-

ditions after the �nancial crisis so that they make more informed investment

decisions using governance information than other market participants.

Using a theoretical model, Pedersen, Fitzgibbons, and Pomorski (2019) show

that investors' sensitivity to governance (or, ESG) information can explain the

existence and disappearance of abnormal returns, and predict that investors'

governance preferences will drive the governance-based portfolios' performance

in the future. When only a few investors use governance scores, portfolios

based on these scores have higher returns than an average portfolio that ig-

nores them (à la Gompers, Ishii, and Metrick, 2003). Subsequently, when all

investors employ governance information, but they do not have speci�c gov-

ernance preferences, abnormal returns disappear (as in Bebchuk, Cohen, and
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Wang, 2013). However, Pedersen, Fitzgibbons, and Pomorski (2019) show that

when investors have ESG preferences, they are willing to pay a premium for

good ESG stocks. Pastor, Stambaugh, and Taylor (2019) model governance-

motivated investors in a market that is highly sensitive to governance informa-

tion. They show that poor governance stocks have positive abnormal returns

in equilibrium if all investors have governance preferences.

Gompers, Ishii, and Metrick (2003) and Bebchuk, Cohen, and Ferrell (2009)

propose that many market participants in the 1990s did not understand the

importance of governance provisions, thus creating opportunities for institu-

tional investors to obtain abnormal returns. As a consequence, Chung and

Zhang (2011) �nd a positive relationship between institutional ownership and

governance structures for the same period. However, increased attention to-

ward these provisions over time resulted in the disappearance of abnormal

returns from governance-based hedge portfolios (Bebchuk, Cohen, and Wang,

2013). We conjecture that a change in investors' governance preferences took

place around 2008. During the global �nancial crisis in 2007�2008, �rms with

better governance characteristics and higher institutional ownership performed

poorly in terms of their stock returns (Erkens, Hung, and Matos, 2012). This

would have led to an increased prudence toward governance provisions among

informed institutional investors. Thus, the learning that accompanies such

increased scrutiny should have created additional investment opportunities

for these investors after the �nancial crisis, hence, a�ecting the demand for

good/bad governance stocks.

As institutional investors have comparatively superior information-gathering

and -processing power, they can identify potential sources of information asym-

metries and agency problems faster. Beyond the critical sophisticated learning

point, we expect short- and long-term institutional investors to react di�er-

ently to governance signals. While the myopic view of short-term investors
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will make poor governance stocks lucrative for them, long-term investors will

be attracted to good governance �rms (Nesbitt, 1994). From �rms' perspec-

tive, stock prices are in�uenced by investors' liquidity needs (Chang, Chen,

and Zolotoy, 2017). Thus, the impact of �rms' governance structures on in-

stitutional ownership and subsequent liquidity pressures should jointly in�u-

ence their stock returns. In other words, although governance risk may a�ect

stock returns through liquidity risk (see Dumitrescu, 2015; Back et al., 2018),

it is not captured through the same in its entirety. Hence, the markets at

large may not really factor in governance risks. In the long run, however,

such governance-based abnormal returns opportunities should disappear, with

the market learning process eventually eliminating any governance-related in-

formation asymmetry. Hence, while the returns accompanying sophisticated

learning do dwell upon market ine�ciency in the short run, it does not rule

out the possible return to e�cient market conditions in the future.5

We expect learning among institutional investors to be driven by either one or

all of the following three conditions. First, investors' risk attitudes and returns

expectations are known to change around �nancial crises (Weber, Weber, and

Nosi¢, 2012). This implies that investors may have become more prudent after

the 2007�2008 �nancial crisis. Second, governance information was previously

not made available to investors in a consistent and reliable manner. However,

investment planning should have improved with ISS standardizing its gover-

nance reporting practices. Lastly, informed institutional investors are in a bet-

ter position to react to newer information than uninformed investors and hence

should demand higher returns when investing in high private information �rms

5From a di�erent and more rational standpoint, the sophisticated learning hypothesis
does not necessarily assume complete market ine�ciency or suggest purely investor-centric
learning. Since we mimic the passive market portfolio by only controlling for some well-
known risk factors, such learning may even be experienced by investors and all other market
participants alike, as long as they can factor additional governance risk into their investment
decisions.
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(Easley and O'Hara, 2004). This would also entail the governance�returns re-

lationship being a�ected by a reliable information �ow.

The aforementioned e�ect of the �nancial crisis on investor behavior and stock

prices cannot be ignored (Muir, 2017). In our tests of the sophisticated learn-

ing involving quasi-natural experiment, since our focuses on investee �rms, we

can control for the 2007�2008 �nancial crisis under the assumption that it had

similar impacts on both treatment and control �rms. However, our tests on the

price and risk channels of learning merely assume that institutional investors

must have readjusted their portfolios after the crisis due to increased diligence

and prudence. Two opposing catalysts drive these post-crisis readjustments:

the improved accuracy of analysts' assessments of a �rm's riskiness (Joos,

Piotroski, and Srinivasan, 2016) and the decline in the accuracy of earnings

forecasts (Sidhu and Tan, 2011). Moreover, Mondria and Quintana-Domeque

(2013) and Bekaert et al. (2014) show that international investors pay more

attention to �macroeconomic fundamentals� during a crisis period. In other

words, the country's economic stability becomes more important than the in-

dividual �rm's characteristics. Together, these factors would have contributed

to sophisticated learning. While these are important explanatory drivers from

investors' perspective, much of our analyses in this study aim to understand

investees' �rm-speci�c drivers.

2.4 Data and Measures

We draw the data for anti-takeover provisions from the ISS governance database,

the stock returns, prices, and volumes from the Center for Research in Stock

Prices (CRSP) database, �rm-speci�c fundamentals and controls from COM-

PUSTAT, and the Fama-French and Liquidity Factors fromWRDS. Additional

data for the probability of informed trading (PIN), as used by Brown and Hil-

legeist (2007), were obtained from Stephen Brown's website. The main sample
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includes �rms whose governance data are reported by ISS and excludes all

�rms with dual class stocks as these have governance structures that di�er

from single class stock �rms (Gompers, Ishii, and Metrick, 2009).

2.4.1 Governance Data

We focus on the governance data published by ISS (formerly IRRC-Riskmetrics),

which reports the anti-takeover provisions of S&P 500 and other large Fortune

500 companies to its customers (i.e., institutional investors). ISS's governance

rankings and related data assess the takeover protection mechanisms in sam-

ple �rms using the documents and forms �led with the U.S. Securities and

Exchange Commission as well as other publicly available information from an-

nual reports and proxy statements. Using these anti-takeover provisions as

a proxy for the shareholder�manager relationship, Gompers, Ishii, and Met-

rick (2003) and Bebchuk, Cohen, and Ferrell (2009) present the G-Index and

E-Index, respectively.6 ISS's governance data collection and reporting method-

ology as well as its frequency have changed over time. Before 2007, almost 30

governance provisions and state-based statutes were reported for sample �rms

every two to three years. Since 2007, however, ISS has published its anti-

takeover provisions data annually, which cover about 25 provisions and state

laws. Thus, to ensure comparison across the years, we use the E-index (Be-

bchuk, Cohen, and Ferrell, 2009) as our main corporate governance indicator,

as it can be measured over the entire sample period from 1990 to 2018.7

While Bebchuk, Cohen, and Ferrell (2009) construct the E-index as the man-

6Anti-takeover provisions along with other governance characteristics such as ownership,
board features, and auditing requirements from ISS data are also used by Brown and Caylor
(2006) to create another measure of corporate governance (i.e., Gov-Score). However, these
data have only been made available by ISS for a limited time since 2001.

7Although we cannot construct the G-Index across the entire sample period, as its scale
would di�er between the pre-2007 and post-2007 years, we do use a normalized G-Index
score, or G-Proxy, to test the robustness of all our results.
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agerial entrenchment subset from within the G-Index using pre-2007 ISS data,

it can still be created for the new ISS dataset, as four of the six entrenchment

provisions (i.e., staggered boards, limits to shareholder bylaw amendments,

poison pills, and golden parachutes) were retained, even after 2007. The re-

maining provisions on the supermajority requirement for mergers and charter

amendments are included by assessing the reported voting percentage require-

ments for these. We examine how the distribution of each of the six E-Index

provisions is a�ected by using a balanced panel sample comprising the last

three and �rst three governance data releases of the two ISS datasets (i.e.,

2002, 2004, and 2006, and 2007, 2008, and 2009 respectively). We only �nd

that the indicator representing golden parachutes shows a distinct decline from

78.7% in 2006 to 52.7% in 2007, but recovers to 81.4% in 2009. Nevertheless,

to ensure that our results are not driven by this trend in the presence of golden

parachutes, we also test the robustness of all our results by excluding golden

parachutes.

Table 2.1 shows the summary statistics for the E-Index across our sample for

each year in which the ISS governance data were published. There is a distinct

trend for both the mean value of the E-Index and its standard deviation across

the years. We �nd that the average governance structures have worsened over

time and the cross-sectional variations among the governance structures have

also reduced. Figure 2.1 also shows that the change in ISS's data collection

methodology in 2007 does not seem to distinctly a�ect the E-Index. The

monotonic trends of the increasing average E-Index values and its declining

cross-sectional variations are maintained before and after 2007. Over the 29-

year period, our sample comprises more than 40,800 �rm-year observations of

governance scores.
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Table 2.1 E-Index across the years

This table summarizes the presence of entrenchment provisions (using E-Index) in our sample
for each of ISS data publication years. Dual class stocks are left out. For details on each of
the E-Index provisions, see Bebchuk, Cohen, and Ferrell (2009). The dashed line indicates
change in ISS data collection methodology.

Year Mean SD Minimum Median Maximum Number

1990 2.2177 1.3826 0 2 6 1346
1993 2.3114 1.3548 0 2 6 1336
1995 2.2966 1.3420 0 2 6 1369
1998 2.2609 1.3245 0 2 6 1702
2000 2.4390 1.3055 0 2 6 1665
2002 2.4802 1.2877 0 3 6 1668
2004 2.5333 1.2457 0 3 6 1759
2006 2.4933 1.2354 0 3 6 1711
2007 3.0521 1.2923 0 3 6 1556
2008 2.9653 1.2303 0 3 6 1528
2009 3.2910 1.2456 0 3 6 1519
2010 3.3311 1.2214 1 3 6 1492
2011 3.7785 1.2331 1 4 6 1458
2012 3.8182 1.1627 1 4 6 1419
2013 3.8492 1.1038 1 4 6 1386
2014 3.8943 1.0347 1 4 6 1372
2015 4.0202 0.8416 1 4 6 1291
2016 4.0723 0.7981 1 4 6 2580
2017 4.1634 0.8183 1 5 6 2347
2018 4.1054 0.7013 1 4 6 2169

Full Sample+ 2.9107 1.4145 0 3 6 40819
+The full sample here includes �rms' last E-Index values for intermediate years when the
governance data was not issued by ISS. For example, the �rms' E-Index scores in 1990 are
replicated for the years 1991 and 1992.
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Figure 2.1 Evolution of E-Index and its cross-sectional variation
over time

This �gure shows the plots of average E-Index scores from 1990 to 2018 along with its
standard deviations. As in the Table 2.1, when governance data was not issued by ISS for
a year, the previous E-Index score for each �rm is carried forward.

2.4.2 Stock Returns and Other Data

We also use in our analysis data on monthly returns for the period 1988 to

2019 obtained from the CRSP database for all the �rms in the governance

dataset. We thus, ensure the availability of two additional years before and

one after the governance data. This allows us to compute the lagged controls

(e.g., past returns) and/or calculate future portfolio returns. We additionally

use daily returns from CRSP database to measure crash risk and idiosyncratic

volatility. For all the sample �rms, we also use the annual balance sheet data to

measure price informativeness and other �rm-speci�c controls. Lastly, institu-

tional ownership is obtained from Thomson Reuters institutional holdings 13f

�lings data, with the ownership proportions computed for short- and long-term

investors separately.

2.4.3 Price Informativeness and Information Flow Measures

We construct the price informativeness measure using the estimation proce-

dures use by Bai, Philippon, and Savov (2016). We �rst regress future earnings
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on market valuations for each of the years, with multiple time horizons (i.e., us-

ing future earnings at one-, two-, three-, and �ve-year intervals). The current

period's earnings and industry sector controls are used to measure publicly

available information as in Bai, Philippon, and Savov (2016). The indus-

try controls also take into account di�erent investment opportunities available

during booms and busts (Li and Li, 2016):

Ej,t+i

Aj,t

= at,i + bt,iln

(
MVj,t
Aj,t

)
+ ct,i

Ej,t

Aj,t

+ dt,iSj,t + εj,t,i, (2.1)

where Ej,t, MVj,t, and Aj,t are the annual earnings, market values, and total

assets of �rm j in year t, respectively. Sj,t is a sector dummy using the one-digit

SIC code. For each group of �rms (i.e., good and poor governance), we obtain

coe�cients for each year t and time horizon i. Finally, price informativeness

(PRI) is computed as a product of the cross-sectional standard deviation (σt)

of the main regressor, namely, MVj,t/Aj,t, and its coe�cient's estimate from

the above equation using:

PRIt,i = bt,i ∗ σt
(
ln
MVj,t
Aj,t

)
. (2.2)

While this measure helps us trace the cross-sectional price informativeness

of good and poor governance �rms from a holistic perspective, it does not

reveal how the information �ows within individual �rms are in�uenced by

governance structures. Thus, we also compute �rm-speci�c information �ow

measures to examine whether any systematic di�erence exists across the struc-

tural breaks. We use the two measures from Ferreira and Laux (2007): share

turnover (TURN) and the probability of informed trading (PIN) following

Easley, Hvidkjaer, and O'hara (2002).
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2.4.4 Idiosyncratic Volatility and Crash Risk Measures

Ferreira and Laux (2007) show a persistent negative association between the

G-Index and idiosyncratic volatility. Similarly, Andreou et al. (2016) show that

a wide array of corporate governance mechanisms (e.g., institutional owner-

ship, CEO stock options, percentage of outside directors with stock ownership,

and board size) can help predict future stock price crashes. Thus, to explore

sophisticated learning through the risk channel, we apply two �rm-speci�c risk

measures: stock price crash risk and idiosyncratic volatility.

We begin by estimating �rm-speci�c weekly returns W from the residuals

obtained by regressing weekly �rm returns in an expanded index model as

suggested by Hutton, Marcus, and Tehranian (2009):

rj,t = αj +βa,j ∗rm,t−2 +βb,j ∗rm,t−1 +βc,j ∗rm,t +βd,j ∗rm,t+1 +βe,j ∗rm,t+2 +εj,t,

(2.3)

where rj,t is �rm j's Wednesday-to-Wednesday return for week t, and rm,t is

the CRSP value-weighted market index return for the same week. To control

for infrequent trading, we introduce one- and two-week lagged and forward

market returns. We calculate �rm-speci�c weekly returns as Wj,t = ln(1 + εj,t)

to correct for the skewed residuals εj,t.

We measure crash risk using CRASH that indicates whether a �rm has experi-

enced at least one crash week in a given year (Hutton, Marcus, and Tehranian,

2009). The crash week is de�ned as the one in which the �rm-speci�c return

Wj,t declines by more than 3.09 standard deviations below the average Wj,t

in that year.8 We use several additional crash risk proxies for robustness.

CRASHNUM is de�ned as the number of crash weeks experienced by a �rm

8The 3.09 standard deviation threshold picks up the lowest 5% of Wj,t for any year. We
use 10% or 1% thresholds as a robustness check and see no di�erence in our main �ndings
for CRASH.
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in a given year. JUMP measure stock price up-movements (Hutton, Marcus,

and Tehranian, 2009) i.e., using an indicator of whether �rm-speci�c Wj,t rises

by more than 3.09 standard deviations above the average Wj,t in that year.

Finally, following Chen, Hong, and Stein (2001), we compute two alternative

measures negative conditional skewness NCSKEW and down-to-up volatility

DUV OL.

For idiosyncratic volatility, we aim to capture more variation by considering

monthly measures unlike the crash risk measures, which are estimated on a

yearly basis. For each month, we run the estimation of a slightly modi�ed

version of Equation 2.3 considered for the crash risk measures. In this case, we

consider daily stock returns rj,t for each �rm without the lead and lag market

returns, and estimate R2 on a monthly basis. As in the literature (e.g., Ferreira

and Laux, 2007), idiosyncratic volatility is then computed through a logistic

transformation as

IDIOSY N = ln

(
1−R2

R2

)
. (2.4)

2.4.5 Investment Horizon Measures

We identify short- and long-term institutional investors following the procedure

in Harford, Kecskes, and Mansi (2018). For each investor in a given year, we

measure the proportion of each stock that is no longer held in the investor's

portfolio in comparison to the amount of that stock held three years ago.9

This turnover measure is in the interval [0,1]. Next, we compute a weighted

average turnover measure for each investor based on its investment portfolio

weights for each year. Finally, investors are classi�ed into short- and long-

term groups based on their average turnover. Corresponding approximately

to the lowest quartile of the turnover distribution, investors with 35% or lower

9In addition to three-year portfolio turnover, we employ two-year turnover in a robustness
check.
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average turnover are categorized as long term, while the rest form the short-

term investor group (for more details, see Nguyen, Kecskés, and Mansi, 2020).

2.4.6 Summary Statistics

Table 2.2 summarizes the mean, median, standard deviation, and total number

of available observations for each of the main variables other than stock returns,

market returns, and related risk factors. We �rst present these statistics for

the full sample and then separately for the governance�returns association

years (1990�2000), dissociation years (2001�2007), and negative association

years (2008�2018), as indicated at the top of the table. Panel A covers all

the variables introduced to measure price informativeness. There is no visible

trend for these variables across the three time periods. Panels B and C show

all the �rm-based information �ow and risk measures. Whereas PIN increases

on average over these three periods, turnover activity TURN shows a declining

trend on average. Lastly, Panel D presents all the control variables. Many of

the variables associated with �rm size show a characteristic rise over the years.

This is expected because many of the �rms in our sample are consistently

reported by ISS and have grown during these years.

2.5 The Association, Dissociation, and Reassociation of

Governance and Returns: A Case of Two Structural

Breaks

2.5.1 Identi�cation Strategy

Using the long-run event study methodology, we trace the two extreme gover-

nance portfolios (i.e., Democracy or Good Governance with E-Index = 0, and

Dictatorship or Bad Governance with E-Index = 5 | 6) along with the gov-

ernance hedge portfolio (long Democracy/short Dictatorship) over a 26-year
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period.10 This allows us to locate the exact point (points) of the structural

break (breaks) in the time series for abnormal returns using Quandt likelihood

ratios. To estimate unknown structural breaks, we use the supremum of the

likelihood ratios (Andrews, 1993) in three stages. We �rst run the sup-Wald

test for the entire sample to identify the �rst break point. By design, with

15% trimming applied, the procedure identi�es only the �rst structural break

point, which usually provides the largest F-statistic because of the approxi-

mated asymptotic distribution. Next, we run the same test by restricting the

sample months after the �rst break to locate the second break point. Lastly,

we run con�rmation tests following Clemente, Montañés, and Reyes (1998)

and Bai and Perron (1998), speci�cally with the two structural break tests of

Hatemi-J (2008).11

Put di�erently, we apply the Andrews (1993) tests for unknown structural

breaks twice (to identify each break) by running time-series regressions and

looking for statistically signi�cant breaks in the αs or risk-adjusted returns.

We calculate abnormal returns using Carhart (1997) four factor model adding

the liquidity factor (Pástor and Stambaugh, 2003). We use other alternative

asset pricing for robustness checks. The main speci�cation is as follows:

Rt = α + (∆α) ∗ POST + β1 ∗RMRFt + β2 ∗ SMBt + β3 ∗HMLt+

β4 ∗MOMt + β5 ∗ LIQt + εt,
(2.5)

where Rt is the governance-based hedge portfolio return for month t, POST

is an indicator used to measure structural break, RMRFt is the excess return

10When the minimum value of E-Index is not `0', the next lowest value i.e., `1' is used to
identify the Democracy stocks.

11Since we want to identify breaks only in the alphas or constants, we use single structural
break estimation twice. Bai and Perron (2003) use multiple structural break estimation
techniques as they seek structural breaks for both slopes and trends. Nevertheless, we employ
these estimations as a more stringent robustness check to detect the second structural break.
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of the market portfolio, SMBt is the size factor, HMLt is the book-to-market

factor, MOMt is the momentum factor, and LIQt is the liquidity factor. This

model allows us to statistically locate the exact points in time when the two

regime shifts occur for α.

Similar to Bebchuk, Cohen, and Wang (2013), we identify the possible �criti-

cal learning� point using 36-month rolling alphas to determine when gradual

learning is complete. For sophisticated learning, we apply a similar gradual

process assumption and determine the end point of sophisticated learning using

a rolling estimation. For each governance-based hedge portfolio, we estimate

the 36-month rolling abnormal returns or alphas and identify (a) the month

in which abnormal returns are consistently statistically insigni�cant and (b)

the exact month in which abnormal returns are again consistently signi�cant.

While the statistical estimation using the Quandt (1960) method identi�es the

critical points of the structural breaks or regime shifts, the rolling estimation

method pinpoints the last possible points for the two learning phases (Bebchuk,

Cohen, and Wang, 2013).12

2.5.2 Results

We start by estimating the �rst structural break, which is the month in which

the F-statistic for a break was the largest in the entire sample of 26 years.

Panel A in Table 2.3 summarizes the �rst break points identi�ed by both the

Quandt method using 15% trimming and the 36-month rolling returns method.

The estimated break points for the �rst structural break in the table are similar

to those shown by Bebchuk, Cohen, and Wang (2013) for both the equal- and

the value-weighted portfolios. To identify the second break point, we repeat

the F-statistic test by excluding the time period before the �rst structural

12Assuming that market learning and sophisticated learning is completed within three
years.
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Table 2.3 The two structural breaks in governance�returns associ-
ation

In this table, Panel A reports the two break points in governance�returns relationship as
identi�ed using the Andrews (1993) Quandt tests and the 36-month rolling methods. The
results follow both equal-weighted (EW) and value-weighted (VW) governance hedge (long
Democracy/ short Dictatorship) portfolios wherever indicated. Hedge portfolios are rebal-
anced whenever new data is made available by ISS. Monthly portfolio returns are loaded
on �ve factors capturing market (RMRF), size (SMB), book-to-market (HML), momentum
(MOM) and liquidity (LIQ). Our �nal estimates for each break point are also shown. Panel
B, alternatively, reports abnormal returns (α s or Alphas) by running Equation 2.5 with
additional structural break (SB) variables in place of POST. All estimations use White
(1980) robust standard errors (in parentheses). In the 2 SB model, the dissociation period
(2001-2007) is taken as the benchmark, with each of the association and negative associa-
tion periods represented by SB1 Dummy (for 1990-2000) and SB2 Dummy (for 2008-2018)
respectively. In the 1 SB model, a single variable takes the value of `-1' for pre-dissociation
period and `+1' for post-dissociation years. The benchmark remains the same as before. We
also control for the sensitivities of each of the �ve factors on the SB dummies by including
their interactions in these estimation. Signi�cance levels at 10%, 5%, and 1% are shown
using *, ** and *** respectively.

Panel A: The break points

1st break point 2nd break point

VW EW VW EW
Quandt LR Method July-2000 November-2000 January-2008 February-2008
36-month Rolling Method February-2003 June-2002 July-2008 December-2008

Estimated point: January-2001 January-2008

Panel B: Alphas and the two structural breaks

2 SB Variables 1 SB Variable

VW EW VW EW
Alpha 0.0012 0.0005 -0.0067** -0.0003

(0.003) (0.003) (0.003) (0.002)
SB1 Dummy 0.0076** 0.0068* -0.0184*** -0.0078***

(0.004) (0.004) (0.004) (0.003)
SB2 Dummy -0.0262*** -0.0073*

(0.008) (0.005)

Observations 340 340 340 340
R-squared 0.26 0.23 0.24 0.20
p-Value 0.00 0.00 0.00 0.00

break. The estimated second break points using the equal- and value-weighted

portfolios are just one month apart (i.e., January 2008 and February 2008).

Using the 36-month rolling returns method as well, the identi�ed break points

for the �rst structural break are similar to those of Bebchuk, Cohen, and Wang

(2013). For the second structural break, interestingly, the estimated end points
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for sophisticated learning are either July 2008 (for the value-weighted portfo-

lio) or December 2008 (for the equal-weighted portfolio). This suggests that

sophisticated learning is much quicker than the Bebchuk, Cohen, and Wang

(2013) learning during the �rst structural break. To ensure that the e�ects

of learning are separated as early as possible, and therefore the sophisticated

learning point can be estimated within a larger window, we identify the �rst

break point as January 2001. For the second break point, we consider the earli-

est point in time found by both the applied methods (across the two portfolios),

as this point essentially identi�es the �rst instance of sophisticated learning

and the governance�returns' negative association in our sample. Con�rmatory

tests using the Bai and Perron (1998) and Hatemi-J (2008) estimations�with

the slightly modi�ed speci�cations of Equation 2.5 that allow for multiple

breaks�show that the second structural break is close to that in our previous

analysis.

Figure 2.2 con�rms our two structural break hypothesis by showing that there

are indeed three distinct phases in the evolution of average 36-month future

abnormal returns: (a) a monotonically increasing trend, (b) an almost �at

trend, and (c) a decreasing trend. The dotted vertical lines superimposed on

this �gure are the two structural break points. As expected, these appear a few

months after the trend shifts, since the plots represent future returns. Along

with the value- and equal-weighted governance hedge portfolios, we addition-

ally plot the industry-adjusted value- and equal-weighted returns by adjusting

each stock's returns using the 48-industry mean of Fama and French (1997)

classi�cation. This helps us alleviate concerns about industry clustering driv-

ing the governance�returns relationship, as expressed by Johnson, Moorman,

and Sorescu (2009) and Giroud and Mueller (2011). While the industry ad-

justment does drastically suppress the excess returns for the equal- and value-

weighted portfolios during the association and dissociation years, the declining

52



Figure 2.2 Returns from governance trading strategies

This �gure shows the plots of the cumulative excess returns generated from a long good
governance/ short bad governance hedge portfolio using the E-Index. For each month,
future 36-month average abnormal returns are computed using rolling �ve-factor regres-
sions that account for the three Fama and French (1993) factors, namely, market, size, and
book-to-market, along with the Fama-French momentum factor and Pástor and Stambaugh
(2003) liquidity factor. These monthly abnormal returns are then compounded over the
months beginning September 1990 and ending December 2018. The previous month market
capitalization-weighted or value-weighted (VW), and the equal-weighted (EW) portfolios
are both considered. Additionally, to account for product market competition, industry-
adjusted returns (IA) using the 48-industry classi�cation of Fama and French (1997) are
shown. The vertical dotted lines on the plot represent the two identi�ed structural break
points.

returns are consistent across all the portfolios after 2008. This suggests that

the sophisticated learning is robust to industry clustering and product market

competition.

To assess the changes in abnormal returns for the three time periods separated

by the two aforementioned structural break points: 1990�2000, 2001�2007, and

2008�2018, we consider two variations of the model in Equation 2.5 (Panel B of

Table 2.3). In the �rst model, we consider 2001�2007 (or the dissociation years)

to be the benchmark and include two structural break (SB) dummies: one

indicating the pre-dissociation period and the other representing the negative

association years. In the second model, we again consider 2001�2007 to be the

reference period, but include a single structural break variable coded -1 for
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the pre-dissociation years and +1 for the post-dissociation period. While both

these estimations provide the di�erent abnormal returns for the governance-

based strategies over and above the zero alpha during the dissociation years,

the �rst variant breaks them down into two components and the second one

measures the average excess alphas during the two association periods (i.e.,

both pre- and post-dissociation).

Using the two structural break variables, we �nd that the E-Index-based value-

weighted (equal-weighted) hedge portfolio alphas are statistically signi�cant,

producing +76 (+68) basis points and almost -2.6% (-0.7%) monthly risk-

adjusted returns in the pre- and post-dissociation periods, respectively. Ex-

pectedly, the reference period alpha is statistically insigni�cant, con�rming the

dissociation between governance and returns. The negative abnormal returns

for our governance hedge point out the reversal of the long/short positions (i.e.,

long Dictatorship and short Democracy) to generate zero-investment gains in

the post-dissociation years. The second estimation in Panel B of Table 2.3,

with one structural break variable, shows the net association e�ect across the

two governance�returns association periods. For the value-weighted (equal-

weighted) portfolio, this e�ect is 184 (78) basis points, statistically signi�cant

at 1%. Even when we use alternative asset pricing models instead of the �ve

factors shown in Equation 2.5, the coe�cients retain their statistical and eco-

nomic signi�cance (see Appendix 3.A.4).

2.6 The Role of Information Flow

The �rst structural break point can be explained either with the learning

hypothesis (Bebchuk, Cohen, and Wang, 2013) or using the available invest-

ment and divestiture options across governance structures (Li and Li, 2016).

However, as we show that the association between governance and returns

undergoes another structural change, the second break point needs to be fur-
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ther examined. We start by investigating if information �ow played any role

in helping investors recognize governance risk around the second break point.

We look at two broad channels: (a) the price price channel and (b) the risk

channel.

2.6.1 Sophisticated Learning Through Price Channel

To explore the price channel, we �rst employ the price informativeness measure

of Bai, Philippon, and Savov (2016) that captures the ability of stock prices

to predict future earnings. Under the sophisticated learning hypothesis, in-

vestors realize the inherent governance risk of bad governance �rms compared

with good governance ones. Thus, the focus is on information asymmetry be-

tween the �rm and its investors. Such asymmetry would expectedly be larger

for poor governance �rms with more anti-takeover provisions (or higher man-

agerial entrenchment). Therefore, we expect the price informativeness of good

governance stocks to be greater than that of poor governance stocks and this

di�erence to be driven by the decreasing price informativeness of poor gover-

nance �rms after the second structural break point.

While price informativeness does shed light on the information asymmetry

trends between good and bad governance �rms, it provides no insights into

�rm-level changes. Thus, we complement the price informativeness tests with

additional �rm-based information �ow measures. Since we are interested in

identifying whether within-�rm governance changes in�uence �rms' informa-

tion �ow to investors, we employ a �xed e�ects panel regression to �nd any

systematic di�erences in the way changes in managerial entrenchment a�ect

the information �ow across the two structural breaks.
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2.6.1.1 Estimation Models

With multiple complementary tests, we assess how information-in-price may

have driven sophisticated learning. To compare the trends, we split our sam-

ple into good governance and poor governance �rms using the median E-Index

as the cuto� for each year. We then compute the welfare-based aggregate

price informativeness (PRIt) for each group separately over di�erent expec-

tation horizons (as explained in Section 2.4.3). Finally, we regress the price

informativeness values (with various investment horizons) on the dummies rep-

resenting pre-dissociation (SB1) and post-dissociation years (SB2) to examine

the trends for each group. This means that the 2001�2007 period (or the dis-

sociation years) is captured by the constant term. The following model is run

separately for the price informativeness of good and bad governance �rms:

PRIt = A1 +B1(SB1t) + C1(SB2t) + εt. (2.6)

We additionally run a similar regression using the di�erences in price infor-

mativeness between the two groups as a dependent variable to quantify the

di�erential trend.

To capture the average e�ects of the association years against the dissociation

years, we use an alternative speci�cation. We model 2001�2007 as the reference

time period, but include a single SB variable coded -1 for the pre-dissociation

years and +1 for the post-dissociation years. In this speci�cation, we include

a dummy EI that represents poor governance (above the median E-Index):

PRIt = A2 +B2(SBt) + C2(EIt) + C2(SBt ∗ EIt) + εt. (2.7)

Second, to rea�rm that sophisticated learning through price is not merely an

aggregative process, we focus on the �rm-speci�c information �ow measures.

56



For the �rm-based information �ow measures (FPRIj,t), which are either PIN

or TURN as de�ned in Section 2.4.3, we use the following speci�cation:

FPRIj,t+1 = A3 +B3(E−Indexj,t) + C3(Xj,t) + εj,t, (2.8)

where Xj,t includes all the standard controls used in Ferreira and Laux (2007)

and Hutton, Marcus, and Tehranian (2009).13

2.6.1.2 Results

We compare the price informativeness of our sample �rms grouped into good

and poor governance categories using the median E-Index in each year, and

the results are presented in Figure 2.3. The two groups follow a similar trend

of slightly positive price informativeness with the one-year earnings forecast

horizon across all three periods (i.e., association, dissociation, and negative

association), which are separated by the vertical dotted lines in this �gure.

However, for the remaining three horizons, a common pattern emerges be-

tween the good and poor governance groups in the post-dissociation period

(i.e., 2008�2018). After the second structural break, the price informativeness

of good governance stocks largely lies above that of poor governance ones. Ad-

ditionally, over the longer horizons of three and �ve years, poor governance

stocks tend to show declining price informativeness after 2008. To gain more

insights into this trend and the di�erences between these two groups, we esti-

mate regression Equations 2.6 and 2.7.

In Panel A of Table 2.3, we focus on the dummy variable representing the

years after the second break point (i.e., SB2). While there is no di�erence

in the relative price informativeness of good and poor governance �rms over

the short horizon, a consistent trend is found for the medium to long hori-

13See Appendix 2.A.1 for the de�nitions of all these control variables.
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Figure 2.3 Governance and price informativeness

This �gure compares the price informativeness of good and poor governance �rms grouped
by the median E-Index cuto� for each year. For each group, price informativeness (PRI)
is separately computed by �rst using Equation 2.1 to obtain the information coe�cient
(tracing ln(MV/A)) and then substituting this coe�cient into Equation 2.2 for each year.
Each of the subplots represents the di�erent forecasting horizons considered (represented
by i in Equation 2.2). The same are indicated at the top of each subplot, with the vertical
dotted lines representing the two structural break points (i.e., January 2001 and January
2008).
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zons. For the three- and �ve-year horizons, the price informativeness of poor

governance stocks during 2008�2018 decreases, whereas that of good gover-

nance ones increases in comparison to the dissociation years. The di�erential

e�ect (i.e., good � poor PRI) for each of these horizons shows a monotonic

increasing trend, implying that the price informativeness of poor governance

stocks worsens in terms of future earnings predictability with longer horizons

compared with good governance stocks. The results in Panel B con�rm our

�ndings in Panel A that most of the changes in price informativeness appear

after the second structural break point. When we combine the two structural

breaks into a single structural break variable, only price informativeness over

the three-year horizon picks up a consistent governance-based di�erential e�ect

across the two structural breaks.

To gather more �ne-grained insights into the price channel, Table 2.5 reports

the �rm-based information �ow measures (i.e., TURN and PIN) in relation

to the E-Index across the two structural breaks. Model 1 uses simple ordinary

least squares (OLS) with industry �xed e�ects and Model 2 controls for �rm

heterogeneity by including �rm �xed e�ects in a panel regression. For both

TURN and PIN , we see a distinct shift in the E-Index coe�cients across

the second structural break, especially with the �rm �xed e�ects. Note that

TURN is measured monthly, while PIN is available on a yearly basis. Before

2008 an increasing E-Index would entail increased trading activity (TURN)

for an average �rm, however the direction of this relationship reverses after

2008. For PIN , the �ndings are directionally opposite to those for TURN .

Increasing anti-takeover E-Index provisions increases PIN after second break

point in contrast to its e�ect on PIN before the same point.

The systematic di�erences between the dissociation and post-dissociation years

for both aggregate price informativeness and the �rm-based information �ow

measures indicate an increase in information asymmetry for poor governance
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Table 2.5 Firm-speci�c information �ow and the two structural
breaks

This table lists the results obtained for regressions of trading activity TURN and information
asymmetry i.e. probability of informed trade PIN on E-Index. The full sample period is
segregated around the two structural breaks and separate regressions are run for each of
the association, dissociation and negative association periods shown in the table by their
respective time periods. For both TURN (Panel A) and PIN (Panel B), we report OLS
(Model 1) and �rm �xed e�ects (Model 2). Standard �rm-based controls as suggested in
Ferreira and Laux (2007) are included. Additional industry-wide controls using Fama and
French (1997) 48 industry classi�cation are present in Model 1 with �rm clustered standard
errors shown in parentheses. The coe�cients for constant and industry dummies are omitted.
See Appendix 2.A.1 for de�nitions of all controls. Signi�cance levels at 10%, 5%, and 1%
respectively are shown using *, **, and ***.

Panel A: TURN Model 1 Model 2
1990 - 2000 2001 - 2007 2008 - 2018 1990 - 2000 2001 - 2007 2008 - 2018

E-Index 0.0003 0.0273*** -0.1911*** 0.0023*** 0.1494*** -0.0705**
(0.000) (0.005) (0.021) (0.001) (0.011) (0.028)

ROE -0.0180*** -0.0063 -0.0179 0.0003 0.0181 0.0348
(0.001) (0.010) (0.015) (0.003) (0.021) (0.057)

vROE 0.0009 0.0023** 0.0183*** -0.0084*** -0.0020 0.0058
(0.002) (0.001) (0.006) (0.002) (0.003) (0.009)

LEV -0.0175*** -0.0129 0.1353*** 0.0029 0.2496*** 0.3407*
(0.003) (0.028) (0.039) (0.005) (0.075) (0.194)

MB 0.0081*** 0.0041* -0.0153*** -0.0020*** 0.0026 -0.0615***
(0.000) (0.002) (0.004) (0.000) (0.007) (0.016)

SIZE 0.0116*** 0.1582*** 0.5236*** 0.0201*** 0.0796*** -0.1302***
(0.000) (0.009) (0.038) (0.001) (0.016) (0.038)

AGE -0.0163*** 0.0313*** 0.0675*** 0.0153*** 0.4915*** 0.1713**
(0.001) (0.006) (0.011) (0.001) (0.035) (0.067)

DD -0.0727*** -0.1694*** -0.4788*** -0.0209*** 0.0888** -1.1124***
(0.001) (0.020) (0.115) (0.002) (0.037) (0.088)

Firm/Industry Fixed E�ects Industry Industry Industry Firm Firm Firm
Number of observations 141776 99639 162734 141776 99639 162734
R-Squared 0.146 0.020 0.017 0.001 0.001 0.001
Number of Groups 2053 2419 2810
Panel B: PIN Model 1 Model 2

1993 - 2000 2001 - 2007 2008 - 2010 1993 - 2000 2001 - 2007 2008 - 2010

E-Index -0.0036*** -0.0034*** 0.0038*** -0.0052*** -0.0029*** 0.0037**
(0.000) (0.000) (0.001) (0.001) (0.001) (0.002)

ROE 0.2100 -0.2540*** -0.0001** -0.0080 0.2270*** -0.1390
(0.132) (0.007) (0.002) (0.158) (0.008) (0.161)

vROE 0.0001 0.0000 0.0001 0.0000 -0.0002* 0.0002
(0.000) (0.000) (0.002) (0.000) (0.000) (0.000)

LEV -0.0046 0.0045 -0.0024 -0.0201*** 0.0128** -0.0109
(0.005) (0.004) (0.005) (0.008) (0.005) (0.018)

MB -0.0052*** -0.0012*** -0.0006 -0.0054*** -0.0038*** -0.0020*
(0.001) (0.000) (0.000) (0.001) (0.000) (0.001)

SIZE -0.0291*** -0.0269*** -0.0179*** -0.0286*** -0.0231*** 0.0065***
(0.001) (0.000) (0.001) (0.001) (0.001) (0.002)

AGE -0.0004 0.0010 -0.0000 -0.0182*** -0.0256*** -0.0027
(0.001) (0.001) (0.001) (0.002) (0.003) (0.006)

DD 0.0080*** 0.0015 0.0016 0.0061* -0.0007 -0.0041
(0.002) (0.001) (0.002) (0.004) (0.002) (0.008)

Firm/Industry Fixed E�ects Industry Industry Industry Firm Firm Firm
Number of observations 8551 8426 2076 8551 7234 2076
R-Squared 0.416 0.558 0.440 0.361 0.426 0.217
Number of Groups 1683 1829 1341
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�rms after 2008. Market prices and trading activity can communicate this

change to investors if they are alert and receptive to such signals.

2.6.2 Sophisticated Learning Through Risk Channel

Although price information �ow and volatility have a close relationship (Ross,

1989), they are two distinct channels for sophisticated learning. The investors'

portfolios are not only sensitive to the earnings information in price (Ham-

burger and Kochin, 1972), but also to the stock price volatility (Ferreira and

Laux, 2007). Thus, in this section, we examine the ability of the E-Index to

predict �rms' risk and show how it evolved across the two structural break

points. We �nd that there are systematic di�erences in �rms' riskiness relative

to governance changes across the two structural breaks.

2.6.2.1 Estimation Model

We use two main measures of �rm-speci�c risk (FRj,t) for each �rm j in a

given year or month t, namely, idiosyncratic volatility (IDIOSYN, monthly)

and crash risk (CRASH, yearly):

FRj,t+i = A4 +B4(E−Indexj,t) + C4(Xj,t) + εj,t. (2.9)

For the model using IDIOSYN, the �rm-speci�c controls Xj,t are similar to

those used for the �rm-based information �ow measures in Ferreira and Laux

(2007), whereas for the one using CRASH, we identify the controls from Hut-

ton, Marcus, and Tehranian (2009), An and Zhang (2013), and Kim, Wang,

and Zhang (2016). For idiosyncratic volatility, we consider 12-month forward

values or i = 12, whereas for crash risk, i = 1. We additionally control for ac-

counting opacity in both these �rm risk regressions. With the annual CRASH

measure, the year �xed e�ects are also included to control for unobservable

time trends. The models estimated here are similar to those used for the
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�rm-based information �ow measures, as we divide the full sample into three

subsamples around the two structural breaks.

While relative idiosyncratic volatility (IDIOSYN ) captures �rm-speci�c risk

by accounting for the covariance of a �rm's stock returns with market returns,

stock price crash risk (CRASH ) captures the skewness of returns distributions

through the presence of extreme negative outliers. Stock price crashes are

generally a result of managerial bad news hoarding (Jin and Myers, 2006). In

the short run, managers have the freedom to choose to hide or divulge �rms'

bad performance, and they tend to show a preference toward withholding it

(Kothari, Shu, and Wysocki, 2009). However, when the downside risk exposure

grows beyond managers' control in consecutive bad periods, the sudden release

of accumulated bad news results in a crash.

2.6.2.2 Results

Table 2.6 reports the results of the pooled regressions (Model 1) and �rm �xed

e�ects panel regressions (Model 2) for our two main �rm-speci�c risk measures

(i.e., IDIOSYN and CRASH ). To compare and contrast the predictive ability

of governance or the E-Index on these measures across the structural breaks,

we subdivide the sample into three periods: 1990�2000, 2001�2007, and 2008�

2018. Panel A shows the results for idiosyncratic volatility. For both the

pooled and the �xed e�ects models, there is a signi�cant change in the co-

e�cients of the E-Index before and after sophisticated learning (i.e., around

the second structural break point). During 1990�2000 and 2001�2007, future

idiosyncratic volatility is negatively associated with the E-Index both in cross-

sectional terms (Model 1) and within �rm terms (Model 2). However, this

relationship turns positive for 2008�2018. Since IDIOSYN is a relative mea-

sure (see Equation 2.4), the coe�cients of the E-Index can be interpreted as

a decline in idiosyncratic volatility by 13.42% (5.91%) for each extra adoption
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(cross-sectional change) of the E-Index provision during the dissociation years.

Sophisticated learning opportunities are re�ected in the post-dissociation years

with idiosyncratic volatility increasing by 8.93% (8.80%) for each E-Index dif-

ferential change within (across) �rms. From 1990�2000 to 2001�2007 (i.e.,

across the �rst break point), the negative association with the E-Index is per-

sistent for idiosyncratic volatility and increases in magnitude for both Models

1 and 2.

Similarly, crash risk also shows a distinct shift in relation to the E-Index from

2001�2007 to 2008�2018. Since CRASH is a dummy variable indicating a stock

price crash in a given year, we estimate a pooled logit (Model 1) and panel

logit with �rm �xed e�ects (Model 2) in Panel B of Table 2.6. During the

dissociation years, the coe�cients of the E-Index are statistically insigni�cant,

indicating no relation with crash risk (for both regression models). On the

contrary, the E-Index shows a statistically signi�cant (at 1%) and positive re-

lation with future stock price crash risk during the post-dissociation years. We

estimate the marginal e�ects of the E-Index on future CRASH to establish the

economic signi�cance of the coe�cients from the pooled logit and panel logit

models by �xing all control variables at their means. Every additional E-Index

provision is found to increase crash likelihood by 1.16% (p < 0.01) in cross-

sectional terms (Model 1) and 0.05% (p < 0.10) for within-�rm changes (Model

2). The lower e�ect for the within-�rm adoption of anti-takeover provisions is

understandable because, in our sample, the proportion of �rms with changing

E-Index values over time is much lower than those with a constant E-Index

(especially when the sample is divided around the two structural breaks).

Just as for idiosyncratic volatility, crash risk also shows no distinct shifts

around the �rst structural break. Furthermore, the marginal e�ects during

both the pre-dissociation (1990�2000) and the dissociation (2001�2007) peri-

ods are not statistically di�erent from zero. This indicates that there is no
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Table 2.6 Firm-speci�c risk and the two structural breaks

This table shows results obtained for relative idiosyncratic volatility (IDIOSYN ) and �rm
speci�c crash risk (CRASH ) on E-Index across the association, dissociation and negative
association years as indicated by their respective time periods. In Panel A, we report results
for IDIOSYN using OLS (Model 1) and �rm �xed e�ects (Model 2) with all controls similar
to those used in Table 2.4, and an additional control for opacity (OPQ ) introduced (Hutton,
Marcus, and Tehranian, 2009). Panel B reports results for CRASH using logit (Model 1)
and panel �rm �xed e�ects logit (Model 2). When �rm �xed e�ects are not considered (i.e.
Model 1), we control for industry characteristics using Fama-French 48 industry classi�cation
dummies and use �rm clustering to report standard errors and corresponding z or t statistics.
The coe�cients for constant and industry/year dummies are left out. See Appendix 2.A.1
for de�nitions of all control variables. *, **, and *** represent signi�cance levels for 10%,
5%, and 1% respectively.

Panel A: Idiosyncratic Volatility Model 1 Model 2
1990 - 2000 2001 - 2007 2008 - 2018 1990 - 2000 2001 - 2007 2008 - 2018

E-Index -0.0217*** -0.0591*** 0.0880*** -0.0565*** -0.1342*** 0.0893***
(0.006) (0.005) (0.005) (0.019) (0.011) (0.008)

ROE 0.0387** 0.0312* -0.0140 0.0655 0.0139 0.0452**
(0.017) (0.017) (0.010) (0.051) (0.030) (0.019)

vROE -0.0131 0.0000 -0.0033 0.0285 -0.0090** -0.0018
(0.018) (0.001) (0.002) (0.034) (0.004) (0.003)

LEV 0.1193** 0.1764*** 0.5401*** -0.0233 -0.1005 0.8446***
(0.054) (0.042) (0.031) (0.108) (0.082) (0.060)

MB -0.0332*** -0.0189*** 0.0260*** 0.0124 -0.0152** -0.0087*
(0.004) (0.003) (0.002) (0.010) (0.008) (0.005)

SIZE -0.3632*** -0.2112*** -0.1665*** -0.3580*** -0.2448*** 0.1798***
(0.005) (0.005) (0.004) (0.016) (0.017) (0.011)

AGE -0.0560*** -0.0604*** -0.0825*** -0.2326*** -0.2809*** 0.6077***
(0.013) (0.010) (0.006) (0.031) (0.036) (0.021)

DD 0.1311*** -0.1851*** -0.1104*** 0.0771 0.0844** 0.0891***
(0.022) (0.017) (0.012) (0.054) (0.040) (0.026)

OPQ 0.0367*** 0.0219*** 0.0435*** 0.0624*** 0.0506*** 0.0208***
(0.004) (0.002) (0.005) (0.002) (0.002) (0.001)

Firm/Industry Fixed E�ects Industry Industry Industry Firm Firm Firm
Number of observations 78098 91747 142593 78098 91747 142593
R-Squared 0.082 0.079 0.066 0.057 0.038 0.014
Number of Clusters/Groups 1278 1966 2697 1278 1966 2697
Panel B: Crash Risk Model 1 Model 2

1990 - 2000 2001 - 2007 2008 - 2018 1990 - 2000 2001 - 2007 2008 - 2018

E-Index 0.047* 0.022 0.057*** 0.087 -0.016 0.083***
(0.027) (0.023) (0.019) (0.090) (0.082) (0.030)

DIFTURN 0.044** 0.021*** 0.028*** 0.036*** 0.016** 0.024***
(0.017) (0.006) (0.005) (0.012) (0.006) (0.004)

AV G 12.765** 15.705*** 1.329 -12.187 -13.217** -20.072***
(5.316) (4.384) (3.660) (7.501) (5.501) (4.140)

SIGMA 3.005* 0.140 4.045*** -4.829 -4.229** 1.685
(1.688) (1.398) (1.172) (3.033) (1.990) (1.525)

LEV 0.384* 0.194 -0.239** 0.022 -0.293 -0.033
(0.220) (0.179) (0.111) (0.521) (0.373) (0.229)

SIZE 0.045* -0.047** 0.021 0.506*** 0.417*** 0.640***
(0.026) (0.022) (0.016) (0.098) (0.093) (0.058)

MB 0.048*** 0.025** 0.013 -0.018 0.001 0.025
(0.018) (0.012) (0.008) (0.051) (0.035) (0.019)

ROA 0.711* 0.488* 0.611*** 1.244 0.508 0.297
(0.384) (0.267) (0.190) (0.811) (0.548) (0.346)

NCSKEW 0.022 0.094*** 0.046** -0.251*** -0.207*** -0.104***
(0.046) (0.033) (0.023) (0.053) (0.036) (0.022)

OPQ 0.062*** 0.051*** 0.0208*** 0.0413*** 0.0265*** 0.0120***
(0.002) (0.002) (0.001) (0.001) (0.002) (0.001)

Year Fixed E�ects Yes Yes Yes Yes Yes Yes
Firm/Industry Fixed E�ects Industry Industry Industry Firm Firm Firm
Number of observations 5265 6295 11342 4131 5436 12112
Pseudo R-Squared 0.036 0.021 0.027 0.038 0.023 0.026
Number of Clusters/Groups 928 1366 2532 587 988 1442
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Table 2.7 Alternative �rm risk measures and the two structural
breaks

This table presents the coe�cients and standard errors (robust/clustered by �rms as in
Table 2.4 Models 1 and 2) using alternative �rm risk measures i.e. negative conditional
skewness (NCSKEW - Panel A), down-to-up volatility (DUVOL - Panel B), number of
CRASHes experienced by a �rm in a year (CRASHNUM - Panel C) and an indicator if the
�rm speci�c weekly return shows a price jump (JUMP) in a year. All controls in Table 2.6
are used. Additionally, for DUVOL and NCSKEW, past three years values of the same are
included to partially control for autocorrelation and reverse causality. Model 1 in Panels A
and B apply OLS regressions, with Panel C using Tobit regression and Panel D employing
Logit regression. Model 2 controls for �rm heterogeneity by including �rm-�xed e�ects. *,
**, and *** represent signi�cance levels for 10%, 5%, and 1% respectively.

Model 1 Model 2

1990�2000 2001�2007 2008�2018 1990�2000 2001�2007 2008�2018

Panel A: NCSKEW

0.0106 0.0059 0..0468*** 0.0248 0.0121 0.0617***
(0.011) (0.011) (0.010) (0.042) (0.039) (0.016)

Panel B: DUVOL

0.0045 -0.0046 0.0185*** 0.0034 -0.0067 0.0235***
(0.004) (0.004) (0.004) (0.016) (0.014) (0.006)

Panel C: CRASHNUM

0.0346 0.0174 0.0418***
(0.021) (0.017) (0.014)

Panel D: JUMP

-0.0313 -0.0140 -0.0106 -0.0309 -0.0503 -0.0444
(0.026) (0.023) (0.019) (0.087) (0.094) (0.029)

learning-induced e�ect of the E-Index on crash risk in these periods.

Robustness Checks: We use alternative measures of crash risk as a ro-

bustness check (Table 2.7) and �nd that our previous result indicating the

predictive ability of the E-Index for future price crashes after second break

point remains consistent across all these alternative measures. Additionally,

we test whether the e�ect of the E-Index is symmetrically observed across price

crashes and jumps. Using the price JUMP indicator, we see that the E-Index

does not show a similar marginal e�ect as on CRASH. This indicates that

while poor governance (Model 1) as well as deteriorating governance struc-

tures (Model 2) do marginally in�uence future stock price crash risk in recent
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years, the opposite is not true; in other words, neither good governance nor

improving governance structures explain stock price jumps.

Overall, our �ndings support the sophisticated learning hypothesis and show

that �rm-speci�c risk is another possible channel through which alert investors

may have learnt to appreciate the governance risk di�erence between low and

high E-Index �rms.

2.7 The Role of Investors' Governance Preferences:

An Indicative Experiment

The analysis we performed identi�es the second break point and studies the

role of information �ow. However, it does not identify underlying mechanisms.

One possible mechanism is explained by Pedersen, Fitzgibbons, and Pomorski

(2019) and Pastor, Stambaugh, and Taylor (2019) highlighting the role of in-

stitutional investors and their governance preferences on stock returns. To

investigate this, we provide some evidence regarding the behavior of institu-

tional investors around the second break using a quasi-natural experiment.

2.7.1 Identi�cation Strategy

In this experiment, our identi�cation strategy exploits the change in ISS's data

collection and reporting methodology in 2007. Although IRRC (the governance

data provider) was taken over by ISS in 2005, its methodology was not imme-

diately a�ected. In 2007, when ISS introduced new speci�cations for collecting

the data on takeover defenses, which required annual reviews of �rms' charters

and bylaws, a newer methodology was adopted. We proxy for sophisticated

learning using the change in ISS's data reporting frequency, which is a source

of exogenous variation in the governance information available to institutional

investors. The main underlying assumptions are that investors are not aware

which �rms' governance data will be reported for 2007 and do not plan their
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governance-based investment strategies in advance. It may be argued that if

some institutional investors do actively seek governance information to plan

their trading strategies, they may obtain such information on their own�even

before it is provided by ISS. If this is indeed true, then these investors will trade

on governance information beforehand, thereby eliminating any potential gains

from the informational advantage that ISS's new data reporting methodology

provides. In other words, the attenuation accompanying such pre-shock trad-

ing makes it harder for us to observe the sophisticated learning e�ect (because

of relatively conservative estimates), thus enhancing our identi�cation.

The change in ISS's governance reporting methodology o�ers us a good quasi-

experimental setting that can isolate institutional investors' reaction to gov-

ernance information, and comes with several advantages. First and foremost,

�rms whose information was not updated in 2007 (control �rms, or Slow group

henceforth) and those that had a new set of information in 2007 (treatment

�rms, or Fast group) are mutually exclusive, ensuring that the two groups

are clearly categorized. Second, considering that ISS issues governance data

independently, both sets of treatment and control �rms are largely unaware

of which group they fall into. This eliminates any potential intra-�rm sources

of endogeneity. Third, we can safely assume a roughly random assignment of

�rms to the two groups because there are no reasons to believe that ISS favors

reporting some �rms' governance provisions over others.14 From the institu-

tional investors' perspective, this also means that they were largely unaware

of which �rms' information was to be updated in 2007 and which was not.

Fourth, as an extension of the previous point, ISS's decision to cover a speci�c

�rm's anti-takeover provisions should largely be independent of the �rm's past

institutional ownership and returns. Fifth, although the frequency and timing

with which ISS released the governance data (which were previously issued

14Nevertheless, we do tackle selection concerns by using propensity-score-matched groups.
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at two- or three-year intervals) was inconsistent, the timing and frequency

remained consistent for the last three reports. This would have allowed in-

vestors to plan their investment strategies using governance information with

certainty. Lastly, the inconsistencies in past reporting frequency allows for

possible placebo tests, which can strengthen the validity of our inferences.

Institutional investors can bene�t more from faster information dissemination.

This bene�t will be more prevalent for the group of �rms whose governance

data were reported in 2006 and updated in 2007. As mentioned earlier, we

call this the Fast group, which represents treatment �rms. By contrast, �rms

covered by ISS in 2006 but not reported in 2007 are allocated to the Slow

group. In our setting, the Slow group thus includes control �rms that induce

comparatively slower sophisticated learning, as their reporting frequency and

accompanying investment strategy are similar to those employed with past

ISS (or, IRRC) publications (i.e., portfolios being reset every two to three

years). Since most �rms covered by ISS in 2006 are updated with the 2007

information, we �nd that the treatment group (2,086) is much larger than

the control group (395).15 When we look at the number of �rms in extreme

portfolios (i.e., Democracy with E-Index = 0 and Dictatorship with E-Index

= 5 | 6) for each group, the trend remains the same (i.e., 399 �rms in the

treatment group and 55 in the control group). Importantly, we also ensure

that the ISS coverage in 2007 is independent of �rm-speci�c attributes such as

size, pro�tability, and age by using propensity score matching.

15The governance index scores change little over time. Within the treatment group, only
505 �rmsâ�� (i.e., 25% of the sample) E-Index scores change in the treatment period from
2006 to 2007. This proportion is slightly higher than the past governance updates from ISS
(approximately 21% of �rmsâ�� E-Index scores changed in the governance datasets of 2004
and 2006). However, it is still much smaller than the proportion of changes observed for
2010 (51%) and 2015 (74%).
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2.7.1.1 Estimation Model

To assess whether and how institutional investors adjust their investment port-

folios based on governance structures, we focus on the changes in short- and

long-term institutional ownership during the experimental window (2006 to

2009). Overall, institutional ownership has increased on average over the years.

However, since our experimental setting focuses on a shock to the governance

information �ow, we seek to identify how short- and long-term institutional

investors across the treatment and control groups react di�erently to changes

in the frequency and quality of governance reporting. In general, short-term

investors tend to seek mispriced stocks (Derrien, Kecskés, and Thesmar, 2013).

Thus, after 2008 when poor governance stocks are mispriced, we expect these

investors to maximize their short-term gains by aggressively investing in these

stocks. On the contrary, long-term investors actively intervene in their port-

folio �rms (McCahery, Sautner, and Starks, 2016). Hence, they prefer to exit

poor governance �rms and stay invested in good governance ones to maximize

their long-term performance.16 To capture this di�erent behavior for each

group of institutional investors across the treatment and control �rms, we seg-

regate the four-year experimental window into pre- and post-learning periods

of two years each. We then estimate the overall treatment e�ect on short- and

long-term institutional ownership (termed SIO and LIO, respectively) using

triple di�erence (DDD) analysis. We subdivide the sample into good and poor

governance �rms by using the dummy variable EI that represents the above-

and below-median E-Indices for each year t. Two additional dummy variables,

16It is important to note that our classi�cation of short- and long-term investors applies
three-year investment horizon (see Section 2.4.5), whereas subsequent tests on abnormal
returns in Appendix 2.A.2 consider monthly returns for portfolios that are rebalanced annu-
ally. However, as the investor classi�cation considers a continuum of proportions of long-term
shares held (i.e., 0 to 1), both sets of investors, in principle, can invest in the governance-
hedge that we use to assess abnormal returns.
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SB2 and Treat, represent the post-learning period (2008 onward) and treat-

ment �rms, respectively. The institutional ownership variable IO is either SIO

or LIO depending on the investment horizon:

IOj,t = A0 +B0,1 ∗ EIj,t +B0,2 ∗ SB2j,t +B0,3 ∗ Treatj,t +B0,4 ∗ EIj,t ∗ SB2j,t

+B0,5 ∗ EIj,t ∗ Treatj,t +B0,6 ∗ SB2j,t ∗ Treatj,t

+B0,7 ∗ EIj,t ∗ SB2j,t ∗ Treatj,t + C0 ∗Xj,t + εj,t.

(2.10)

We aim to identify how SIO and LIO react to changes in EI for treatment �rms

compared with control �rms after the second structural break. Accordingly,

the interaction of EI with SB2 and Treat gives us the DDD coe�cient of

interest (i.e., B0,7). The controls Xj,t include size (market capitalization), age,

leverage, return on assets, Tobin's Q, dividend yield, share price, monthly

turnover, past returns, and volatility as in Yan and Zhang (2009) and Chung

and Zhang (2011).

2.7.1.2 Internal Validity

There are two potential threats to the internal validity of our experimental

inferences. First, as mentioned earlier, the control group is smaller than the

treatment group and selection biases, which confound the outcomes of an ex-

periment when treatment and control �rms have signi�cantly di�erent char-

acteristics, may also drive our results. For example, if size is such a factor,

larger �rms may be more likely to be covered by ISS's governance publications

(becoming treatment �rms), and in turn these �rms may also have exagger-

ated in�uences from governance structures than smaller control �rms. We

tackle these selection concerns using a propensity-score-matched treatment

group that identi�es comparable �rms for each control group �rm matched on

size (log of total assets), pro�tability (return on assets), and leverage (debt

to assets). Second, sophisticated learning may not be unique to the second
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structural break. In other words, similar sophisticated learning trends may

exist in other periods. We conduct placebo DDD tests to verify that this is

not the case by �rst identifying similar ISS reporting frequency-centric control

and treatment groups in another period and then running a pre-post analysis

across alternative placebo break points.

2.7.2 Preliminary Evidence

The corporate governance provision data became available annually to insti-

tutional investors from 2007 onward. How did they adjust their investments

to the more timely dissemination of governance signals? The sophisticated

learning hypothesis predicts that institutional investors' learning experience

is higher when governance information is disseminated to them at a faster

pace (on an annual basis) than the older IRRC reporting practices (biennial

or triennial). Owing to such learning, institutional investors (both short- and

long-term ones) would have readjusted their investment portfolios to bene�t

from the subsequent informational advantage. As shown by Yan and Zhang

(2009), we expect this informational advantage to be better exploited by short-

term investors.

To show the di�erences in preferences for governance structures between short-

and long-term institutional investors, Figure 2.4 compares the average propor-

tion of good governance stocks held by each investor type for each year in

our sample period. We divide �rms into good and poor governance stocks

by considering the median E-Index cuto� for each year. The plots indicate a

general trend of long-term investors preferring more good governance stocks

than short-term ones. While the average preferences for both investor types

overlap between the two structural breaks, the di�erence reappears after the

second structural break. Interestingly, while both short- and long-term in-

vestors had the majority of their investment in good governance stocks before
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Figure 2.4 Institutional investors and the two structural breaks

This �gure shows the plots of the proportion of good governance stocks held by short- and
long-term institutional investors. All the sample �rms were grouped into good and poor
governance stocks around the median E-Index for each year. For each institutional investor,
the proportion of good governance stocks in its portfolio is then computed as the total good
governance stock value divided by the total portfolio value at the end of each year. Finally,
the cross-investor value-weighted mean proportions are computed for each of the two investor
types. The two structural break points are represented using vertical dotted lines.

the �rst structural break, they both show much lower average propensities for

the good governance stocks after the second structural break. Between the

two breaks, there is a sharp decline in the institutional ownership of good

governance stocks, seemingly driven by two factors. First, learning-induced

rebalancing makes good governance stocks less attractive to investors. Ac-

cordingly, investors' choices are independent of the governance characteristic

(50%) around 2006. Second, a further decline accompanies the increased in-

vestor prudence during the crisis years (see Section 2.3).

Figure 2.5, meanwhile, compares the raw cumulative returns, using various long

good governance/short bad governance portfolios, between control (Slow) and

treatment (Fast) �rms. Panels A and B show the value-weighted and equal-

weighted E-Index governance hedge portfolios, respectively, whereas Panels C

and D show the same by adjusting each �rm's returns using the Fama-French
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Figure 2.5 Returns from governance trading strategies around the
second structural break

This �gure shows the plots of the cumulative returns generated for control (Slow) and treat-
ment (Fast) �rms using various long good governance/ short bad governance hedge portfolios
constructed with the E-Index. For each month, we compute compounded hedge portfolio re-
turns from January 2006 (the �rst month of our DiD period). Both value-weighted (VW)and
equal-weighted (EW) portfolios are shown. Additionally, industry-adjusted returns (IA) us-
ing the Fama and French (1997) 48-industry classi�cation are shown to control for product
market competition and industry clustering. The vertical dotted lines on the plots represent
the critical sophisticated learning point (i.e., January 2008).

48-industry means to control for product market competition and industry

clustering. Across all four plots, whereas cumulative hedge portfolio returns

from the control group remain almost �at and close to zero, those from the

treatment group drop after the sophisticated learning point (marked by the

dotted vertical line in the �gure). In fact, the trend between the two groups

is directionally opposite, with the governance hedge portfolios of control �rms

showing positive and increasing returns. These plots support the validity of

our experimental setting.
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Despite the preliminary evidence presented in Figures IV and V, there is a

need to statistically examine the sophisticated learning phenomenon for the

experimental period. Thus, to study the changes around the second structural

break point while eliminating possible biases from extraneous confounders, we

estimate the Equation 2.10.

2.7.3 Experimental Results

Table 2.8 shows the results for the DDD estimations using �rms' institutional

ownership classi�ed into short and long term based on their investment hori-

zons (Panels A and B use three- and two-year turnover periods, respectively).

All the DDD estimations use the E-Index dummy (EI).17 The baseline re-

sults show that while short-term institutional investors increase their owner-

ship (SIO) of poor governance stocks on average after the second structural

break point, the long-term institutional ownership (LIO) of poor governance

stocks decreases after the same point. This is re�ected by the coe�cients of

the DDD terms, which are statistically signi�cant for both SIO and LIO, but

in the opposite directions.

Next, we ensure equivalent control and treatment �rms using nearest neighbor

propensity score matching with a 0.001 caliper. Firms in the control group

are matched based on size of assets, operating performance (i.e., return on

assets), and leverage to obtain a comparable treatment �rm. Panel A in Ta-

ble 2.9 summarizes the key characteristics for each group before and after the

matching. The three �rm characteristics used su�ciently balance the treat-

ment and control groups, even across the additional dimensions, as shown in

Table 2.9.18 The economic and statistical signi�cance of the matched DDD

17The statistical signi�cance of the DDD terms remains the same when the true E-Index
scores are used in place of the E-Index dummy. However, we prefer to report the results for
EI in Table 2.8 to allow us to interpret and compare good and bad governance �rms.

18Only the E-Index means are di�erent between the two groups. The mean value is higher
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Table 2.8 Does sophisticated learning a�ect the institutional own-
ership?

This table reports the triple di�erence (DDD) estimation results for short- and long-term
institutional ownership (shown as SIO and LIO respectively) for the experimental period
2006 to 2009. Panels A and B show the results for both SIO and LIO with the institutional
ownerships categorized using three- and two-year portfolio horizons respectively. All models
are estimated using Equation 2.10 controlling for size (log of market capitalization), age
(in logs), leverage, return on assets (ROA), Tobin's Q, dividend yield, share price, monthly
turnover, past returns (in logs) and volatility. See Appendix 2.A.1 for further details on
control variables. Robust standard errors, clustered by �rms, are shown in parentheses.
Structural Break Dummy (SB2) represents the post-dissociation years in the baseline and
propensity score (PS) matched DDD models. Placebo DDD 1 employs the year 2000 as a
dummy structural break and placebo DDD 2 applies the �rst structural break year 2001. PS
matched DDD employs nearest-neighbor logit using a 0.001 calliper to match one treatment
�rm for each control �rm in each of the years in our experimental period. Signi�cance levels
for 10%, 5%, and 1% are shown using *,**, and *** respectively.

Panel A: Investor horizons de�ned using last three year portfolio turnover

Baseline DDD PS Matched DDD Placebo DDD 1 Placebo DDD 2

SIO LIO SIO LIO SIO LIO SIO LIO

EI 0.2520 0.7722 0.2763 0.8537 -0.0094 0.0101 0.0034 0.0428**
(0.250) (0.779) (0.278) (0.866) (0.013) (0.025) (0.010) (0.020)

SB2 0.0196 -0.1016** 0.0109 -0.1193** -0.0009 -0.0227 -0.0175 -0.0155
(0.016) (0.047) (0.020) (0.059) (0.007) (0.015) (0.012) (0.031)

Treat 0.0031 -0.0262 0.0168 0.0318 -0.0068 -0.0101 -0.0053 -0.0084
(0.013) (0.038) (0.028) (0.086) (0.006) (0.012) (0.004) (0.008)

EI ∗ SB2 0.0488*** -0.0665*** 0.0458*** -0.0696** 0.0097 0.0449 -0.0031 0.0220
(0.009) (0.021) (0.011) (0.028) (0.013) (0.031) (0.031) (0.047)

EI ∗ Treat 0.0131 0.0167 0.0168 0.0316 0.0038 0.0246* 0.0056 0.0301**
(0.010) (0.026) (0.018) (0.052) (0.007) (0.014) (0.006) (0.012)

SB2 ∗ Treat 0.0214* -0.1202*** 0.0327*** -0.0921*** -0.0009 -0.0164 -0.0038 0.0415***
(0.013) (0.035) (0.011) (0.030) (0.006) (0.013) (0.004) (0.009)

EI ∗ SB2 ∗ Treat 0.0369*** -0.0813** 0.0395*** -0.0701** 0.0094 0.0201 0.0055 0.0618**
(0.012) (0.034) (0.011) (0.029) (0.008) (0.016) (0.006) (0.013)

Industry Fixed E�ects Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Observations 3480 3480 2685 2685 2549 2549 2596 2596
R-squared 0.010 0.010 0.012 0.012 0.159 0.283 0.159 0.309

Panel B: Investor horizons de�ned using last two years portfolio turnover

Baseline DDD PS Matched DDD Placebo DDD 1 Placebo DDD 2

SIO LIO SIO LIO SIO LIO SIO LIO

EI 0.1843 0.5228 0.2017 0.5733 -0.0132 0.0139 0.0014 0.0478**
(0.165) (0.519) (0.182) (0.572) (0.009) (0.025) (0.007) (0.020)

SB2 0.0512*** -0.1003** 0.0451** -0.1193* -0.0077 -0.0213 -0.0224*** -0.0014
(0.016) (0.050) (0.020) (0.063) (0.006) (0.016) (0.008) (0.032)

Treat 0.0101* -0.0140 0.0155 0.0158 -0.0090* -0.0014 -0.0028 -0.0055
(0.006) (0.018) (0.012) (0.036) (0.005) (0.013) (0.003) (0.009)

EI ∗ SB2 0.0701*** -0.0665*** 0.0677*** -0.0770** -0.0009 0.0551* 0.0041 0.0261
(0.009) (0.025) (0.011) (0.032) (0.010) (0.032) (0.036) (0.061)

EI ∗ Treat 0.0204*** 0.0090 0.0253** 0.0211 -0.0001 0.0356** 0.0062 0.0368***
(0.006) (0.017) (0.011) (0.032) (0.005) (0.016) (0.004) (0.013)

SB2 ∗ Treat 0.0494*** -0.1149*** 0.0587*** -0.0972*** -0.0068 -0.0152 -0.0050 0.0528***
(0.011) (0.035) (0.010) (0.028) (0.005) (0.014) (0.003) (0.009)

EI ∗ SB2 ∗ Treat 0.0612*** -0.0722** 0.0635*** -0.0708** 0.0007 0.0270 0.0027 0.0732**
(0.012) (0.036) (0.011) (0.033) (0.006) (0.017) (0.004) (0.013)

Industry Fixed E�ects Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Observations 4561 4561 3584 3584 2549 2549 2596 2596
R-squared 0.008 0.008 0.010 0.009 0.173 0.280 0.174 0.307
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Table 2.9 Summary statistics for unmatched and matched samples

This table reports the averages of important �rm characteristics for the treatment and
control group �rms along with the di�erences in their means. For de�nitions of each of these
characteristics, see Appendix 2.A.1. Panel A considers the full E-Index sample employed
for short- and long-term institutional ownerships, whereas Panel B includes only the sub-
sample consisting of Democracy and Dictatorship �rms used for assessing the abnormal
returns. The propensity score and matching employs log of assets, return on assets (ROA)
and leverage (LEV). For the mean di�erences, signi�cance levels at 10%, 5%, and 1% are
represented using *,**, and *** respectively.

Panel A: Full E-Index Sample (2006�2009)

Unmatched Matched

Control Treatment Di�erence Control Treatment Di�erence

ln(assets) 6.979 7.865 -0.886*** 7.295 7.308 -0.013
ROA 0.053 0.116 -0.064*** 0.099 0.097 0.002
LEV 0.227 0.185 0.043*** 0.211 0.222 -0.011
Tobin's Q 2.096 2.115 -0.019 1.984 2.023 -0.039
CAPEX/TA -3.681 -3.65 -0.031 -3.576 -3.631 0.056
R&D/TA 0.742 0.093 0.649*** 0.052 0.055 -0.003
Annual Returns -0.081 -0.044 -0.037** -0.062 -0.061 -0.001
Propensity Score 0.744 0.824 -0.080*** 0.786 0.786 0.001
E-Index 1.938 2.784 -0.846*** 1.906 2.758 -0.851***

Panel B: Democracy & Dictatorship Sample (2006�2008)

Unmatched Matched

Control Treatment Di�erence Control Treatment Di�erence

ln(assets) 7.338 8.22 -0.882*** 7.361 7.629 -0.268
ROA 0.099 0.115 -0.016 0.101 0.094 0.007
LEV 0.221 0.193 0.027 0.201 0.196 0.005
Tobin's Q 1.889 1.956 -0.068 1.901 1.889 0.012
CAPEX/TA -3.564 -3.641 0.077 -3.546 -3.678 0.132
R&D/TA 0.027 0.031 -0.004 0.025 0.039 -0.014
Annual Returns -0.02 -0.102 0.082 -0.028 -0.104 0.076
Propensity Score 0.787 0.836 -0.049*** 0.792 0.802 -0.01
E-Index 0.407 4.064 -3.656*** 0.423 4.215 -3.792***
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estimators remains the same as in the baseline estimations.

We additionally test the validity of our experiment using placebo sophisticated

learning points, as shown in Table 2.8. We �rst locate similar treatment and

control �rms at a di�erent point in time (in this case, taking the 1998�2001

period instead of 2006�2009). While the IRRC report for 1995 lasted three

years, the IRRC governance report in 1998 was applicable for two years. We

thus consider �rms with information updated in 2000 to be the placebo treat-

ment and those without such new information to be the placebo control. Both

the DDD terms for SIO and LIO are statistically insigni�cant for this test

(placebo DDD 1). Lastly, we check if a similar sophisticated learning e�ect

is visible across the �rst structural break by including 2001 as the learning

year within the same experimental setting as placebo DDD 1. For this test

(placebo DDD 2), there is again no signi�cant changes for SIO, whereas LIO

has a DDD coe�cient with the opposite sign to that in the baseline DDD.

However, the positive in�uence of the E-Index on LIO has to be interpreted

with caution, as the application of placebo learning in 2001 a�xes the E-Index

for four consecutive years (1998 to 2001) for control �rms.

Overall, the results in Table 2.8 support the existence of the sophisticated

learning e�ect through the informational advantages that accompany faster

information dissemination. Our results indicate a preference for poor gover-

nance stocks among short-term investors after 2008. Meanwhile, long-term

investors prefer to exit poor governance stocks after the same year. This �nd-

ing is consistent across the two short- and long-term institutional investor

classi�cations.19

for the treatment group than the control group, which shows that increased anti-takeover
provisions within �rms did not necessarily prevent these �rms from making such information
available to ISS. Additionally, the median E-Index across both these groups is the same.

19In unreported analyses, we also apply the classi�cation of short- and long-term investors
proposed by Yan and Zhang (2009) using the portfolio turnover in the last four quarters and
obtain similar results to those reported in Table 2.8.
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We run supplementary analyses to test whether (a) governance-based hedge

portfolios that employ these treatment and control groups show a distinct shift

in abnormal returns beyond 2008 (see Appendix 2.A.2), and (b) a combined

governance and information timeliness (double-sorted) hedge portfolio could

have generated abnormal returns (see Appendix 2.A.3). The results from both

these tests con�rm that information �ow plays an important role in the rela-

tionship between governance and returns after 2008. Lastly, we also show that

our results are not driven by the applied �ve-factor asset pricing model using

other alternative models. The coe�cients of the sophisticated learning e�ect

remain stable across all the alternative pricing models employed.

2.8 Conclusion

In his seminal paper, Fama (1998) examines several asset pricing anomalies

and shows that �anomalies are chance results� and �apparent overreaction of

stock prices to information is about as common as underreaction.� Our tests

of the sophisticated learning, to a certain extent, build on this stock price

overreaction/underreaction mechanism and show that the governance�returns

anomaly is indeed fragile. This fragility is displayed by the initial disappear-

ance of the governance�returns association and then its reappearance. The

association reappears when institutional investors with di�erent investment

horizons adapt their investment strategies by considering governance-related

risks.

We show that the governance�returns relation disappeared after 2000, as shown

in Bebchuk, Cohen, and Wang (2013), but it subsequently reappears in the

opposite direction (i.e., showing a reversal of the hedge position) from 2008

onward. The disappearance of this relation is explained by the market par-

ticipants' learning to include governance information in their decisions.20 The

20Alternatively, Li and Li (2016) show that the governance�returns relation over time
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reappearance of this relation is explained by sophisticated learning. Speci�-

cally, sophisticated learning represents institutional investors' ability to under-

stand governance risk, which other market participants, as well as the markets

at large, do not yet recognize. Consistent with sophisticated learning, we �nd

evidence that after 2008 price information and risk channels may communicate

governance risk. While medium- and long-run price informativeness declined

for poor governance stocks after 2008, it increased for good governance stocks.

With respect to �rms' risk measures, we �nd that poor governance stocks are

more likely to face future stock price crashes and have higher future idiosyn-

cratic volatility. Both these trends with regards to price information �ows

and �rm risks were not visible in the dissociation period. Hence, we posit

that investors that learned about governance risk after the �rst structural

break point, may have identi�ed governance-based investment opportunities

that subsequently appeared.

Furthermore, we provide additional insights on sophisticated learning by ex-

ploring the role of institutional investors and their governance preferences in

propagating the new (or, negative) governance�returns relation. Using a quasi-

natural experiment set around an exogenous shock to governance information

availability, we show that investors may have bene�ted from learning (after

the second structural break point) by better adjusting their investment port-

folios and corresponding returns expectations. Our results indicate that �rms'

corporate governance structures in�uence the institutional investors' holding

period. In other words, when we look at �rms' ownership patterns, the pro-

portion of short-term investors increases in poorly governed �rms after the

can be explained by the economic conditions (i.e., booms or busts) faced by each �rm's
industry. Hence, the pre-2000s governance�returns anomaly is not robust when investment
and divestiture options are accounted for. However, hedge reversal and sophisticated learning
seem robust to such industry-wide factors. We do not directly test such economic conditions
or investment options, but do control for them by adjusting the returns of each �rm by its
industry's mean returns.
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critical sophisticated learning point. Long-term investors are known to reduce

managerial rent extraction and improve governance (Harford, Kecskes, and

Mansi, 2018). This, along with our �ndings on their recently revitalized pref-

erence for well-governed �rms, suggests a reinforcing mechanism that bene�ts

these investors through lowered monitoring costs. On the contrary, trading

pro�ts seem to attract short-term investors to poor governance stocks in lieu

of forgoing the long-term monitoring bene�ts.

Daines, Gow, and Larcker (2010) show that corporate governance rankings do

not provide any useful information for shareholders (in 2005�2007). Our re-

sults con�rm that indeed during the dissociation years, no useful information

was provided to investors through governance data and rankings. However, we

�nd that governance indices can be informative for investors and that this in-

formation content changes across the two identi�ed structural breaks. In fact,

such governance information can be used by investors to develop investment

strategies that can generate abnormal returns after 2008. From this perspec-

tive, our results neither indicate market ine�ciency nor suggest sophisticated

learning solely for the institutional investors. Our passive investment strategy

only controls for some of the well-known risk factors, whereas the market may

yet be pricing the unobservable governance risk that we fail to account for as

it has not yet been measured (Fama, 1998). However, as a word of caution,

since corporate governance itself encompasses a variety of underlying monitor-

ing and auditing mechanisms, it is highly unlikely that such governance risk

becomes completely priced by markets, thus continually creating investment

opportunities such as the one documented herein.
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2.A Appendices

2.A.1 De�nitions of the Control Variables

SIZE: The market value of equity (in logs) either for each month or year.

ROE: Net income divided by the book value of common stock i.e. the sum of

book value of common equity (Compustat item 60) and deferred taxes (Com-

pustat item 74).

vROE: Variance of ROE over last 36 months.

AGE: Log transformation of �rm age measured as the months that �rm is

listed on CRSP database (as per the end of each calendar year).

LEV: Long term debt (Compustat data item 9) / Total assets (Compustat

data item 6). Alternative measure of leverage (Long term debt/ Total equity)

was used for robustness check.

MB: Log of the ratio of the CRSP market value of common equity to its book

value. Book value of common equity is the sum of book value of common

equity (Compustat item 60) and deferred taxes (Compustat item 74).

DD: A dummy variable indicating if the �rm pays dividends.

ROA: Return on Assets calculated as the operating income divided by end

of the year total assets (Compustat data item 6). We use operating income

before depreciation (Compustat data item 13) in the numerator.

DIFTURN: It is the di�erence of mean monthly share turnover for current

year t and the mean monthly share turnover of prior year t − 1. For each

�rm-month, the monthly share turnover is the ratio of corresponding trading

volume to the total shares outstanding.

AVG: The average �rm speci�c weekly return Wj,t (see Section 2.4.4) for a

given �rm in a year.

SIGMA/Volatility: Volatility or standard deviation of speci�c weekly return
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Wj,t for a given �rm over that year.

OPQ: Discretionary accruals that indicate opacity as measured by Hutton,

Marcus, and Tehranian (2009) using a three year moving sum of the absolute

value of discretionary accruals calculated with modi�ed Jones model.

Tobin's Q: Following Bebchuk, Cohen, and Ferrell (2009), computed as mar-

ket value (MV) of assets divided by book value (BV) of assets (Compustat data

item 6) with the MV of assets being: (BV of assets + MV of common stock)

� (BV of common stock + deferred taxes). Corresponding industry-adjusted

(SIC 2-digit) values are obtained using industry median Tobin's Q values.

TURN: Measures liquidity using the volume of trade for the �rm's common

equity recorded in the calendar year divided by 12 (in logs).

Share Price: Firm's share price as on the last trading day of a calendar year.

2.A.2 Applying the Experimental Setting on Abnormal Returns

We employed the experimental setting explained in Section 2.7 to assess if

the returns on governance-hedge portfolios di�er between the treatment and

control groups. Simply put, we empirically test the preliminary results shown

in Figure 2.5 using a di�erence-in-di�erences (DiD) design. With respect to

abnormal returns, the time window chosen for our experiment lasts from Jan-

uary 2006 (when the last old IRRC methodology-based governance data were

published) to December 2008 (which covers the end date of possible investment

strategy using the �rst set of new ISS methodology-based governance data).

Since our identi�cation strategy for returns focuses on governance-based hedge

portfolios over this three-year window, while assuming a persistent investment

strategy using the available governance data, we employ the calendar-time

portfolio approach to obtain the risk-adjusted abnormal returns. This ap-
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proach follows a similar rationale to the long-run method in Section 2.5, but

with the event window shortened to three years instead of 26 years. We �nd

that, on average, Democracy stocks underperform Dictatorship stocks in terms

of raw returns. This di�erence is more pronounced in the Fast group than

in the Slow group, suggesting that learning investors bene�t from the faster

reporting of governance data. This variation in returns, in tandem with the

long-run event study used to obtain abnormal returns for the governance hedge

portfolios in each group, lays the basis for us to identify the causal estimates

for governance-based sophisticated learning on stock returns. While testing for

di�erences in raw returns or abnormal returns for governance portfolios across

the treatment and control groups can identify the e�ect of reporting frequency

and better information quality on stock returns, it does not provide any in-

sights into the second structural break. Our sophisticated learning hypothesis

predicts that investors only learn to appreciate the governance risk of high E-

Index �rms after the second structural break point (i.e., January 2008). Hence,

to capture the sophisticated learning e�ect, we divide the 36-month period into

a 24-month pre-learning period and 12-month post-learning period. With this,

we thus have the ideal backdrop for a DiD setup that captures both the time

trend (i.e., before vs. after) and the treatment e�ect in the interaction term.

For abnormal returns, the DiD design has the following speci�cation with

observations for each month:

RJ,t = α + π1SB2t + π2TreatJ + π3SB2t ∗ TreatJ + γFt + εt, (2.11)

where RJ,t denotes the hedge portfolio returns for a certain group J of �rms

in month t, SB2 indicates the period after the second break point or the

months following sophisticated learning, and Treat is a dummy indicating if

portfolio J is composed of �rms from the Fast (treatment) or Slow (control)

group. Our main coe�cient for this model is thus π3, which shows the DiD
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interaction e�ect, namely, the e�ect on the abnormal returns of the treated

portfolio due to sophisticated learning. As in Equation 2.5, we control for

some of the common risk factors that can explain the time series of a market

or passive portfolio returns. Similar to Section 2.5.1, we include the market,

size, book-to-market, momentum, and liquidity factors for Ft in this model.21

For abnormal returns, we account for the numerical di�erences in the two

groups by increasing the number of �rms in the control group using a median

E-Index-based classi�cation of Democracy and Dictatorship �rms.22

Table 2.10 shows the main results of our DiD estimation for abnormal re-

turns. To test the validity of our experiment, we �rst run Model 1, which

estimates only π1 and π2; that is, it ignores the interaction term in Equation

2.11. Panel A shows that the treatment group-based portfolio generates sig-

ni�cantly di�erent abnormal returns than the control group one on average

for both the equal-weighted and the value-weighted portfolios. Additionally,

there is a statistically signi�cant change in returns across the second structural

break for both these portfolios. In Model 2 with the DiD term included, the

estimation results strongly support the existence of the sophisticated learning

phenomenon, as only the interaction term remains statistically signi�cant.

In Panel B of Table 2.10, we correct for the di�erences in the number of �rms in

the Democracy and Dictatorship portfolios between the treatment and control

groups by expanding the portfolio classi�cation for control group �rms using

the median E-Index. The results, especially when it comes to the DiD term,

remain largely the same in terms of both the magnitude and the statistical

signi�cance of the coe�cient. Next, in Panel C, we ensure equivalent control

and treatment �rms in each portfolio using nearest neighbor propensity score

21Other asset pricing models are again used for the robustness checks.
22Using such broad criteria, Democracy �rms are rede�ned as E − Index ≤ 3 and Dicta-

torship �rms as those with E − Index > 3. This results in an almost equal number of �rms
in both the Fast and the Slow groups.
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Table 2.10 Does sophisticated learning Drive the negative
governance�returns association?

This table reports the Di�erence-in-Di�erences (DiD) estimation results for average main
e�ects (Model 1) and average treatment e�ects (Model 2) using various governance-based
hedge portfolios excess returns. All models are estimated using Equation 2.11 controlling
for market, size, book-to-market, momentum and liquidity factors. Robust standard errors
are shown in parentheses. Structural Break (SB2) Dummy represents the post-dissociation
year 2008. Treat is a dummy representing Fast group as de�ned in Section 2.7.1.1. Baseline
estimation in Panel A considers extreme portfolios in the Fast (treatment) and Slow (con-
trol) groups by hedging long Democracy (E-Index=0) short Dictatorship (E-Index=5|6).
Panel B augments the results of Panel A by ensuring larger control group whereby the two
extreme portfolios are rede�ned around the median E-Index=3 (included in the Dictatorship
portfolio). To correct for the possible selection bias, Panel C employs nearest-neighbor logit
propensity score (PS) matching using a 0.001 calliper to match one treatment �rm for each
control �rm. Here, hedge portfolios are de�ned as in Panel A. Levels of signi�cance at 10%,
5%, and 1% are indicated by *,**, and *** respectively.

Panel A: Baseline Di�erence-in-Di�erences (DiD) estimation

Model 1 Model 2

VW EW VW EW
SB2 -0.0426*** -0.0183* 0.0211 0.0100

(0.015) (0.010) (0.018) (0.007)
Treat -0.0389*** -0.0131** 0.0036 0.0058

(0.013) (0.006) (0.007) (0.004)
SB2 ∗ Treat -0.1275*** -0.0566***

(0.030) (0.013)

Observations 72 72 72 72
R-squared 0.25 0.15 0.49 0.40

Panel B: DiD estimation with median-based control group portfolios

Model 1 Model 2

VW EW VW EW
SB2 -0.0283* -0.0212** 0.0495*** 0.0068

(0.016) (0.010) (0.017) (0.010)
Treat -0.0400*** -0.0183*** 0.0119* 0.0004

(0.014) (0.006) (0.008) (0.004)
SB2 ∗ Treat -0.1555*** -0.0560***

(0.028) (0.016)

Observations 72 72 72 72
R-squared 0.22 0.16 0.56 0.37

Panel C: DiD estimation with propensity score (PS) matched treatment group

Model 1 Model 2

VW EW VW EW
SB2 -0.0353 -0.0029 0.0514*** 0.0225

(0.023) (0.018) (0.018) (0.022)
Treat -0.0359** 0.0075 0.0219 0.0244

(0.017) (0.014) (0.014) (0.016)
SB2 ∗ Treat -0.1734*** -0.0507*

(0.035) (0.030)

Observations 72 72 72 72
R-squared 0.15 0.08 0.43 0.11
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matching with a 0.001 caliper. As was the case for institutional ownership, the

matched groups are equivalent for extreme portfolio �rms as well (see Panel B

in Table 2.9). The economic and statistical signi�cance of the matched DiD

estimator is similar to the baseline DiD estimate.

Table 2.11 reports additional robustness tests for the main results of the DiD

estimation shown in Table 2.10. While the results in Panels B and C of Ta-

ble 2.10 strengthen the validity of our results by increasing the power (Panel

B: increased control group) and eliminating selection bias (Panel C: propen-

sity matching with the control group), we do not have a case of high power

and low selection bias together. In Panel A of Table 2.11, we combine the

wider median-based portfolios with propensity score matching to overcome

this. Once again, the results support the sophisticated learning hypothesis,

especially for the value-weighted portfolios. The loss of signi�cance for the

equal-weighted portfolio may be driven by some of the matched characteristics

explaining the variations in returns. The magnitudes of the coe�cients are also

smaller, indicating that this is a much sterner test of our experiment because

the di�erence between Democracy and Dictatorship �rms is much smaller with

the median-based division.

We carry out additional validity tests in our experimental setting by running

placebo DiD estimations (see Panels B and C of Table 2.11). Panel B considers

a three-year timeframe as in all the previous DiD estimations, considering

arbitrary sophisticated learning in 2000 within an estimation period from 1998

to 2000. Panel C, on the contrary, includes the returns for 2001 (the learning

structural break year) to assess whether a similar sophisticated learning e�ect

exists, albeit with a possible reversal of direction. Across both placebo test

speci�cations, the DiD terms are insigni�cant, providing further credence to

our main result that sophisticated learning from governance information was

experienced only in 2008.
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Table 2.11 Robustness for sophisticated learning and negative
governance�returns Association

This table reports the robustness tests for the main Di�erence-in-Di�erences (DiD) estima-
tion results shown in Table 2.10. The average main e�ects (Model 1) and average treatment
e�ects (Model 2) using various governance-based hedge portfolios excess returns are shown
accordingly with robust standard errors given in parentheses. All models are estimated using
Equation 2.11 controlling for market, size, book-to-market, momentum and liquidity factors.
Structural Break Dummy represents the post-dissociation year (SB2 or 2008) in Panel A,
the placebo year (2000) in Panel B, and the dissociation year (SB1 or 2001) in Panel C.
Treat is a dummy representing Fast group as de�ned in Section 2.7.1.1. Panel A employs the
PS matched sample while using the hedge portfolios de�ned around the median E-Index as
in Table 2.10 Panel B, but for both control and treatment groups. For the placebo tests, i.e.
Panels B and C, hedge portfolios are de�ned exactly as in Table 2.10 Panel A (i.e. with the
control group's extreme portfolios divided around the median E-Index=3). The signi�cance
levels at 10%, 5%, and 1% are represented using *,**, and *** respectively.

Panel A: DiD estimation with PS matched treatment group using median-based portfolios

Model 1 Model 2

VW EW VW EW
SB2 0.0156** 0.0055 0.0357*** 0.0081

(0.007) (0.005) (0.012) (0.008)

Treat -0.0036 -0.0047 0.0098* -0.0030
(0.005) (0.003) (0.005) (0.003)

SB2 ∗ Treat -0.0402*** -0.0052
(0.012) (0.009)

Observations 72 72 72 72
R-squared 0.30 0.18 0.43 0.17

Panel B: Placebo DiD estimation

Model 1 Model 2

VW EW VW EW
PlaceboSB -0.0174 0.0123 0.0021 -0.0003

(0.016) (0.017) (0.028) (0.028)

Treat 0.0334* -0.0058 0.0465** -0.0142
(0.017) (0.015) (0.022) (0.016)

PlaceboSB ∗ Treat -0.0392 0.0252
(0.035) (0.034)

Observations 72 72 72 72
R-squared 0.10 0.26 0.11 0.26

Panel C: Placebo DiD estimation around �rst structural break (2001)

Model 1 Model 2

VW EW VW EW
SB1 0.0155 0.0018 0.0397 0.0052

(0.021) (0.019) (0.038) (0.033)

Treat 0.0213 -0.0075 0.0334* -0.0058
(0.016) (0.013) (0.017) (0.015)

SB1 ∗ Treat -0.0485 -0.0068
(0.040) (0.032)

Observations 96 96 96 96
R-squared 0.01 0.13 0.02 0.12
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2.A.3 Abnormal Returns from Sophisticated Learning:

The Governance Risk Premium

As an additional supplementary analysis, we extend the �ndings from the

previous DiD experiment to examine how a fully informed investor may po-

tentially bene�t from exploiting both the governance data and its timing, or in

other words, complete sophisticated learning. We model this using the �ve fac-

tor model as shown in Equation 2.5, but taking the returns from information

timeliness hedge of the governance hedge portfolios. Alternatively put, our

hypothetical investment strategy involves going long Slow governance hedge

(Democracy � Dictatorship) and shorting the Fast one. In some ways, this

strategy mimics double-sorted portfolio hedging when the stocks are sorted

both by their E-Index values and its availability (or frequency). Hence, we

expect the abnormal returns from such a strategy to essentially represent the

sophisticated learning premium, especially beyond the second structural break

point. As a word of caution, the proposed investment strategy is actually

impractical in our DiD experimental period as the investors were unaware

in advance as to which stocks' governance data will be updated for the year

2007. For this reason, the premium measures using abnormal returns from our

double-sorted hedge may be in�ated by informational biases.

Table 2.12 presents possible premia for investors' learning using both the value-

weighted and equal-weighted portfolios. In Panel A, we see that a long Slow

governance hedge and short Fast one would have generated 4.38% (26 bps) pre-

mium for value-weighted (equal-weighed) portfolios. These results are robust

to alternative asset pricing models (see Table 2.15). When the investment hori-

zons are restricted to annual periods, in Table 2.12 Panel B, we �nd that much

of the governance risk premium is generated soon after the second structural

break i.e. in the year 2008. For both the value-weighted and equal-weighted

portfolios, such sophisticated learning premia are statistically signi�cant be-

yond 5% levels.
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Table 2.12 Governance, sophisticated learning and returns

This table shows the coe�cients and standard errors (in parentheses) of �ve-factor regression
using three factors of Fama and French (1993) i.e. market (RMRF), size (SMB), book-to-
market (HML) along with the momentum factor (UMD) and Pástor and Stambaugh (2003)
liquidity factor (LIQ). The dependent variable is monthly returns from an information-based
hedge on governance-based portfolios i.e. long Slow information governance hedge / short
Fast information governance hedge. The governance hedge is set up through zero-investment
trading strategy that buys good governance stocks and shorts bad governance ones. For the
Fast stocks, portfolios get reset in the beginning of each year when new governance data
is available, while the Slow stocks employ governance information of year 2006 as ISS did
not report updated governance data for this group. Panel A considers the full DiD horizon
period, whereas Panel B consider annual investment horizons. *,**, and *** respectively
represent signi�cance levels at 10%, 5%, and 1%.

Panel A: Full DiD horizon (2006 to 2008)

Portfolios α RMRFt SMBt HMLt MOMt LIQt R2

Value-weighted
Slow 0.0131 -0.2603 0.4403 -1.4691*** -0.0909 -0.6047 0.330

(0.009) (0.222) (0.517) (0.506) (0.269) (0.366)

Fast -0.0307*** 0.5675* -1.6650** -1.7338*** -0.2836 0.4351 0.462
(0.011) (0.316) (0.653) (0.613) (0.387) (0.404)

Slow � Fast Hedge 0.0438*** -0.8278* 2.1053** 0.2648 0.1927 -1.0398 0.298
(0.016) (0.409) (0.964) (0.959) (0.518) (0.646)

Equal-weighted
Slow -0.0107 -0.5234 1.0687* -1.3621* -0.3394 0.2853 0.120

(0.013) (0.335) (0.622) (0.721) (0.443) (0.340)

Fast -0.0132** 0.0314 -0.1183 -0.5257* -0.3731 0.3583 0.153
(0.005) (0.174) (0.286) (0.304) (0.224) (0.243)

Slow � Fast Hedge 0.0026 -0.5547 1.1869* -0.8364 0.0337 -0.0730 0.093
(0.014) (0.393) (0.653) (0.792) (0.481) (0.458)

Panel B: Annual investment horizons

Portfolios 2006 2007 2008

Value-weighted
Slow 0.0477 0.0286 0.0621***

(0.027) (0.026) (0.016)

Fast -0.0123 -0.0124 -0.0836**
(0.007) (0.010) (0.031)

Slow � Fast Hedge 0.0601* 0.0410 0.1458***
(0.025) (0.023) (0.043)

Equal-weighted
Slow -0.0224 0.0125 0.0090

(0.028) (0.035) (0.016)

Fast -0.0052 -0.0065 -0.0578***
(0.005) (0.006) (0.020)

Slow � Fast Hedge -0.0172 0.0189 0.0668**
(0.030) (0.315) (0.029)
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2.A.4 Alternative Asset Pricing Models

We check the robustness of all our results that employ �ve factor model pre-

sented in Equation 2.5 by using alternative asset pricing models. We apply

capital asset pricing model (CAPM), the three-factor model (Fama and French,

1993), the �ve-factor model (Fama and French, 2016) and the variations of

these Fama-French (FF) models with the Pástor and Stambaugh (2003) liq-

uidity factor included. The Cremers, Nair, and John (2009) takeover factor

was also considered, but left out due to lack of data availability for recent

years.
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Table 2.13 Robustness check for Table 2.3 using alternative factor
models

This table summarizes results when alternative asset models are considered in Table 2.3
Panel B by running di�erent factors and factor combinations in Equation 2.5 with additional
structural break (SB) variables. All estimations use White (1980) robust standard errors
(in parentheses). For variable de�nitions, see Table 2.3. Signi�cance levels at 10%, 5%, and
1% are shown using *, ** and *** respectively.

Panel A: CAPM

2 SB Variables 1 SB Variable

VW EW VW EW
Alpha -0.0053 -0.0019 -0.0102*** -0.0028

(0.003) (0.003) (0.003) (0.002)
SB1 Dummy 0.0107** 0.0065 -0.0173*** -0.0069**

(0.005) (0.004) (0.004) (0.003)
SB2 Dummy -0.0238*** -0.0077

(0.009) (0.006)

Panel B: Fama-French 3 factors

2 SB Variables 1 SB Variable

VW EW VW EW
Alpha 0.0011 0.0003 -0.0065** -0.0008

(0.004) (0.003) (0.003) (0.002)
SB1 Dummy 0.0105*** 0.0084** -0.0204*** -0.0085***

(0.004) (0.004) (0.004) (0.003)
SB2 Dummy -0.0289*** -0.0085

(0.009) (0.006)

Panel C: Fama-French 3 factors + liquidity factor

2 SB Variables 1 SB Variable

VW EW VW EW
Alpha 0.0008 -0.0001 -0.0065 -0.0009

(0.003) (0.003) (0.003) (0.002)
SB1 Dummy 0.0109*** 0.0087** -0.0197*** -0.0082**

(0.004) (0.004) (0.004) (0.003)
SB2 Dummy -0.0260*** -0.0070

(0.008) (0.006)

Panel D: Fama-French 5 factors

2 SB Variables 1 SB Variable

VW EW VW EW
Alpha 0.0003 0.0041 -0.0039 0.0008

(0.003) (0.002) (0.003) (0.002)
SB1 Dummy 0.0116*** 0.0046 -0.0227*** -0.0092***

(0.004) (0.003) (0.004) (0.003)
SB2 Dummy -0.0308*** -0.0139**

(0.008) (0.006)

Panel E: Fama-French 5 factors + liquidity factor

2 SB Variables 1 SB Variable

VW EW VW EW
Alpha 0.0019 0.0028 -0.0038 0.0007

(0.003) (0.002) (0.003) (0.002)
SB1 Dummy 0.0125*** 0.0058* -0.0220*** -0.0089***

(0.004) (0.003) (0.004) (0.003)
SB2 Dummy -0.0284*** -0.0119**

(0.008) (0.006)
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Table 2.14 Robustness check for Table 2.10 using alternative factor
models

This table summarizes results using alternative asset models for main DiD estimation result
in Table 2.10 (Panel A). White (1980) robust standard errors are shown in parentheses.
For variable de�nitions, see 2.10. Average main e�ects (Model 1) and average treatment
e�ects (Model 2) are shown using either the equal-weighted (EW) or value-weighted(VW)
governance-based hedge portfolios. Levels of signi�cance at 10%, 5%, and 1% are indicated
by *,**, and *** respectively.

Panel A: CAPM

Model 1 Model 2
VW EW VW EW

SB2 -0.0561*** -0.0162* 0.0077 0.0120*
(0.019) (0.009) (0.014) (0.006)

Treat -0.0389*** -0.0131** 0.0036 0.0057
(0.013) (0.006) (0.006) (0.004)

SB2 ∗ Treat -0.1275*** -0.0565***
(0.032) (0.014)

Panel B: Fama-French 3 factors

Model 1 Model 2
VW EW VW EW

SB2 -0.0421*** -0.0184* 0.0216 0.0099
(0.015) (0.010) (0.018) (0.007)

Treat -0.0389*** -0.0131** 0.0036 0.0057
(0.013) (0.006) (0.007) (0.004)

SB2 ∗ Treat -0.1275*** -0.0565***
(0.030) (0.014)

Panel D: Fama-French 3 factors + liquidity factor

Model 1 Model 2
VW EW VW EW

SB2 -0.0425*** -0.0181* 0.0212 0.0101
(0.014) (0.010) (0.017) (0.007)

Treat -0.0389*** -0.0131** 0.0036 0.0058
(0.013) (0.006) (0.007) (0.004)

SB2 ∗ Treat -0.1275*** -0.0566***
(0.030) (0.014)

Panel D: Fama-French 5 factors

Model 1 Model 2
VW EW VW EW

SB2 -0.0329* -0.0180 0.0309 0.0103
(0.018) (0.011) (0.020) (0.007)

Treat -0.0389*** -0.0131** 0.0036 0.0057
(0.013) (0.006) (0.006) (0.004)

SB2 ∗ Treat -0.1275*** -0.0566***
(0.029) (0.014)

Panel E: Fama-French 5 factors + liquidity factor

Model 1 Model 2
VW EW VW EW

SB2 -0.0299* -0.0158 0.0338 0.0124*
(0.016) (0.011) (0.021) (0.007)

Treat -0.0389*** -0.0131** 0.0036 0.0057
(0.013) (0.006) (0.006) (0.004)

SB2 ∗ Treat -0.1275*** -0.0566***
(0.029) (0.014)

98



Table 2.15 Robustness check for Table 2.12 using alternative factor
models

This table reports alphas (αs) when alternative asset pricing models are used in the Panel
A of Table 2.12. For variable de�nitions and other details, see Table 2.12. Abnormal
returns from long / short strategies based on governance information (Fast vs Slow) on the
E-Index hedge (long Democracy short Dictatorship) using both equal-weighted (EW) and
value-weighted (VW) portfolios are shown. Levels of signi�cance at 10%, 5%, and 1% are
indicated by *,**, and *** respectively.

VW EW

Slow Fast Slow � Fast Slow Fast Slow � Fast

Panel A: CAPM

0.0072 -0.0314** 0.0344* -0.0089 -0.0126** 0.0036
(0.010) (0.012) (0.018) (0.012) (0.005) (0.013)

Panel B: Fama-French 3 factors

0.0069 -0.0285*** 0.0311* -0.0102 -0.0123** 0.0021
(0.009) (0.010) (0.018) (0.011) (0.006) (0.012)

Panel C: Fama-French 3 factors + liquidity Factor

0.0128 -0.0315*** 0.0446*** -0.0116 -0.0143** 0.0026
(0.009) (0.010) (0.016) (0.013) (0.005) (0.013)

Panel D: Fama-French 5 factors

-0.0003 -0.0160* 0.0159* -0.0186 -0.0063 -0.0122
(0.008) (0.009) (0.013) (0.011) (0.005) (0.011)

Panel E: Fama-French 5 factors + liquidity Factor

0.0056 -0.0212** 0.0294** -0.0175 -0.0087* -0.0088
(0.008) (0.009) (0.013) (0.013) (0.005) (0.012)
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CHAPTER 3

The Corporate Governance�Performance

Puzzle: New Insights

3.1 Abstract

This study presents the �nG (new Governance) Index�, an unequal-weighted

measure of corporate governance that dynamically captures the heterogene-

ity of its individual antitakeover components, as an alternative to the equal-

weighted G-Index, E-Index, and Gov-Score proposed in the related literature.

Our �ndings show that all antitakeover provisions do not equally contribute

to the �rms' corporate governance quality, and our proposed nG-Index there-
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fore traces the governance�performance relationship more persistently than an

equal-weighted measure does. Further analysis reveals that an nG-Index based

zero-investment hedge, going long on a poor governance portfolio and shorting

the good governance one, would generate an abnormal return of over 1.33%

per month, or about 16% per year. In contrast, a comparable hedge using

equal-weighted index shows no signi�cant abnormal returns. Moreover, we

�nd that the heterogeneity of antitakeover provisions is important to show the

investors' underreaction to good governance signals and their attentiveness to

the riskiness associated with poorly governed �rms.

3.2 Introduction

�Goodness is the only investment that never fails.�

�Henry David Thoreau

Firms that employ good corporate governance mechanisms should outperform

poorly governed ones. However, do they actually perform better? Do better

internal and external governance practices translate into superior performance

and higher equity valuations? Do stock prices and the corresponding returns

factor in the �rm's corporate governance quality? These are some of the ques-

tions that have ba�ed corporate governance scholars over last three decades,

who made several attempts to investigate the governance�performance rela-

tionship empirically. However, empirical tests of this relationship are di�cult

due to the complexities in measuring corporate governance itself. The underly-

ing fundamental question is: How do we di�erentiate well-governed �rms from

poorly governed ones?

To measure corporate governance, identifying its constituent mechanisms is a

big challenge. The existing literature discusses several mechanisms to put a

check on managers to avoid agency problems and provide better governance.

These include higher monitoring by the board of directors, having large (or in-
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stitutional) shareholders, using an appropriate �nancial structure, and through

takeover threats (or antitakeover provisions, ATPs hereafter) and proxy bat-

tles.

In this study, we focus on segregating various ATPs and their use for manage-

rial entrenchment to harm shareholders, to assess how well they measure �rms'

corporate governance quality. Our main contribution to the literature is in the

form of a unique measure of corporate governance that captures the hetero-

geneity of its individual antitakeover components. To this end, we propose that

stock markets can best capture the di�erences in �rms' governance quality, and

thus use contemporaneous returns-based models to identify the importance of

individual ATPs. More speci�cally, we capture the weights from past con-

temporaneous relationships (i.e., between lagged or out-of-sample ATPs and

returns) to apply them for each year's index construction. Previously concep-

tualized measures such as the Governance Index (G-Index, Gompers, Ishii, and

Metrick, 2003), Entrenchment Index (E-index, Bebchuk, Cohen, and Ferrell,

2009), Corporate Governance Index (CGI, Beiner et al., 2006), and Gov-Score

(Brown and Caylor, 2006), all of which assign equal weights to each of its

antitakeover components, have the composite index as a sum of all such pro-

visions present in a �rm. On the contrary, for the �rst time, we can identify

the importance and relevance of each provision as represented by their weights

in each year. Furthermore, we apply our measure to study the relationship

between governance and future abnormal returns.

In general, good corporate governance practices that align owners' and man-

agement's interests should bene�t both the �rm and its investors (see Shleifer

and Vishny, 1997 for a full review). This is true for both internal and exter-

nal governance (Acharya, Myers, and Rajan, 2011). The presence of frictions

between owners and managers, and accompanying agency problems, can in-

�uence managerial decisions and risk taking (Fama, 1980; Fama and Jensen,
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1983). Managers have and will always tend to have a strong inclination and

incentive to expropriate �rms' assets to undertake projects that bene�t them-

selves at the expense of shareholders (Jensen and Meckling, 1976; Stein, 1989).

This, in turn, a�ects both the �rms' value and their cost of capital.23 While

the valuation e�ect is driven by intra-�rm power dynamics (Rajan and Zin-

gales, 1998) and managerial rent extraction (Shleifer and Vishny, 1989), which

can in�uence investors' expectations of future cash �ows (Jensen, 1986), the

cost of capital e�ect is driven by monitoring and auditing costs (Lombardo

and Pagano, 2002; Dumitrescu, 2015), which in�uence investors' expected risk

premium (Chen, Chen, and Wei, 2009). When shareholders vote against an

ATP, they expect market monitoring (through the threat of hostile takeover)

to counter agency risks, forcing managers to undertake projects that add value

to the �rm, and hence resulting in better �rm performance and subsequently

increasing shareholders' wealth (Stein, 1988).

To evidence the bene�ts of good governance, using measures such as the G-

Index and E-Index (constructed from ATPs prevalent in the sample �rms dur-

ing the 1990s and early 2000s) researchers show a positive relationship be-

tween governance and measures such as �rm value, operating performance,

and future abnormal returns. However, recent studies indicate that this rela-

tionship has disappeared or weakened over time (Erkens, Hung, and Matos,

2012; Bebchuk, Cohen, and Wang, 2013). We propose that the disappear-

ance of the governance�performance relationship maybe due to the inability

of previously conceptualized governance indices to successfully measure corpo-

rate governance beyond the early 2000s. Because all the previous indices were

23 Williamson (1988) elaborates the contractual problems from such con�icts of interest
using transaction cost economics and agency theory. Regardless of whether adopting the
ex-ante approach in agency theory (DeAngelo and Rice, 1983) or the ex-post view of transac-
tion cost economics (Williamson, 1998), harmonized contractual relations using appropriate
governance structures should bene�t the �rm.
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constructed by assigning equal weights to all available ATPs, they did not pos-

sess requisite dynamism to capture the subsequent evolution of the governance

landscape as newer government interventions and media in�uences shaped it.

Do the weights of individual provisions really matter? Studies that employ

voting data on individual ATPs show that these provisions are related to ab-

normal returns. Cuñat, Gine, and Guadalupe (2012), for example, show that

passing of governance proposals can create value for shareholders, albeit within

a shorter event window (i.e., most abnormal returns are generated on the day

that the governance proposal passes). Additionally, this e�ect is more pro-

found for provisions included in the G-Index. Alternatively, using the same

index, Bebchuk, Cohen, and Wang (2013) show that the increased attention

to corporate governance led to the disappearance of the association between

governance indices and abnormal returns after the year 2000. Thus, the per-

sistence in this relationship for individual provisions, despite the disappearing

association for aggregate indices, may indicate pure learning e�ects seen only

in the long run. In other words, increased attention to governance over the

years has limited the bene�ts of governance provisions to a shorter window

for investors (as Cuñat, Gine, and Guadalupe, 2012, 2016 show), since mar-

kets now adjust more quickly to the di�erences in �rms' governance. However,

besides learning, it also indicates potential �aws in the governance indices,

which possibly restrict their ability to represent governance quality when the

importance or weights of individual provisions are ignored.

To begin with, using ATPs that can jeopardize shareholders' rights, we intro-

duce an index that dynamically measures �rms' corporate governance quality.

Using a dynamic weighted methodology allows us to overcome the implicit

drawbacks of the previous indices elaborated earlier. Our goal is to identify

the right mix of ATPs within the composite measure for each year. Using the

new unequally weighted method, we �nd evidence that of the 19 ATPs available
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in the ISS database, certain provisions (such as unequal voting rights, limited

ability to amend bylaws, etc.) warrant higher weights than other provisions

do to better re�ect governance quality. We also �nd that some provisions,

such as golden parachutes and a supermajority requirement to amend char-

ters, do not capture governance quality or become irrelevant with time. Having

multiple indicators for the same governance mechanism (for example, special

meetings and supermajority requirement for these meetings) allows us to show

that each of the sub-dimensions for a given ATP does indeed require di�er-

ent weights within a governance index. We also evaluate alternative dynamic

variable selection and/or weight extraction methodologies including machine

learning algorithms. To compare the unequally and equally weighted (Gom-

pers, Ishii, and Metrick, 2003) methodologies, we introduce an equal-weighted

modi�ed Governance Index (mG-Index) along with our unequal-weighted new

Governance Index (nG-Index) using the same 19 provisions.

After introducing the nG-Index, we hypothesize that this unequally weighted

index should track a �rm's governance quality much better than the mG-Index

does. On comparing the two indices in how they capture the governance�

performance relationship, we see that the nG-Index shows more persistent and

statistically signi�cant results than the equally weighted mG-Index does. Our

�ndings show that good governance measured by the nG-Index is signi�cantly

related with superior �rm value measured by Tobin's Q, as Gompers, Ishii,

and Metrick (2003) and Bebchuk, Cohen, and Ferrell (2009) also show. In

other words, �rms with good governance structures (i.e., lower nG scores) had

signi�cantly higher �rm valuations than those with bad governance structures

in our sample period. The mG-Index traces this relationship on an annual

basis weakly, with statistical signi�cance shown only for 1 of the 9 years exam-

ined. Our nG-Index, on the other hand, retains its explanatory power for 5 of

the 9 years. The results from �xed e�ects and system generalized method of
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moments (GMM) regressions also lend stronger support to the nG-Index than

for the mG-Index. This is important because for our sample, using an equally

weighted index would suggest very low or even zero di�erence between the

Tobin's Q values of �rms with good and bad governance, which is not the case

when using an unequally weighted index. We also note that the coe�cients

obtained with the mG-Index are largely biased upwards, as Cuñat, Gine, and

Guadalupe (2012) suggests.24 While the nG-Index indicates that the absence

of all 19 provisions would result in an increase of about 0.75 units in Tobin's

Q, the mG-Index indicates that there would be an increase of 3.55 units in

Tobin's Q.

To identify a causal link between the nG-Index and Tobin's Q, we exploit

an exogenous shock to the �rms' corporate governance quality caused by the

adoption of Revlon ruling in the state of Maryland (for details, see Cain,

McKeon, and Solomon, 2017). The Revlon ruling a�ects potential hostile

takeover bids by enforcing the directors to accept only the most reasonable

of the available prices, which in turn impacts the e�ectiveness of ATPs. Our

results from this quasi-experimental setting corroborate the �ndings from the

panel and GMM regressions, i.e. the changes in nG-Index does cause changes

in Tobin's Q for the treatment �rms.

We further assess the nG and mG indices in relation to operating performance

measures such as return on assets (ROA), return on equity (ROE), and net

pro�t margin (NPM). Across these measures, the nG-Index shows greater con-

sistency in re�ecting the superior operating performance of well-governed �rms.

Bhagat, Bolton, and Romano (2008) and Bhagat and Bolton (2009) show a

similar positive and signi�cant association between governance and operating

24 Cuñat, Gine, and Guadalupe (2012) mention the upward bias of estimates for abnormal
returns for the governance portfolio returns in Gompers, Ishii, and Metrick (2003), but do
not assess bias in �rm values or Tobin's Q.
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performance for the G-Index, E-Index, and Gov-Score as well in the pre-2007

period. However, in our sample period (i.e., 2007 to 2015), while the nG-Index

has a negative relationship with all the three operating performance measures,

the mG-Index has an opposite association with ROE. From this, an important

implication is that using the nG-Index to measure governance quality allows

us to judge the management of well governed �rms in terms of their operating

outcomes or pro�t margins, which is not always the case for an equal-weighted

index.25

Good governance being related to superior �rm value and better operating per-

formance does not necessary imply that our index should be associated with

future abnormal stock returns because market prices are expected to re�ect

and correct for any di�erences in �rms' governance. However, we �nd that

corporate governance is an important factor to consider in investment deci-

sions, since a zero-investment strategy based on the nG-Index shows potential

to yield abnormal returns. We construct portfolios each year by grouping all

available �rms into nG-Index-based governance deciles. Our analysis reveals

that buying the bottom 5th percentile stocks (bad governance portfolio) and

selling the top 5th percentile stocks (good governance) generates an abnormal

return of 1.33% per month or about 16% per year in our sample period. In

contrast, a similar zero-investment hedge using mG-Index-based governance

portfolios shows no statistically signi�cant abnormal returns consistent with

the �ndings of Bebchuk, Cohen, and Wang (2013).

We further run supplementary tests to investigate whether the proposed nG-

Index can predict future stock price crashes and if it can track future bene�ts

of good governance. This gives us further insights on the importance of index

weights for investment decisions by examining the governance related risk-

25 The triple di�erence estimations exploiting the Revlon ruling in Maryland additionally
reveal a causal relation between nG-Index and two of the operating performance measures.
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return tradeo�s. Our analysis reveals that the nG-Index re�ects high riskiness

associated with poorly governed �rms as they do show a higher likelihood of

a future stock price crashes. On the contrary, mG-Index based classi�cation

of good and poor governance �rms fails to show a signi�cant relationship with

future price crashes. Additionally, only nG-Index based hedge portfolios show

that investors can potentially bene�t from good governance signals in the long-

run.

The rest of this study is structured as follows. Section 3.3 presents the

governance�performance puzzle and the testable hypotheses. Section 3.4 de-

scribes the data, new index construction, and provides a preliminary evaluation

of our proposed index. Section 3.5 presents the empirical models and results

for the outlined governance�performance relations. Next, Section 3.6 discusses

the importance and relevance of our �ndings. Lastly, Section 3.7 summarizes

and concludes.

3.3 The Governance�Performance Puzzle

Since the 1990s, research on corporate governance centers largely around indi-

vidual governance-related �rm characteristics (such as CEO Duality, Director

Ownership, etc.) and its outcomes, or around aggregated measures of corpo-

rate governance, that is, governance indices (for a detailed review, see Maskara,

Maskara, and Aggarwal, 2013). With respect to the latter, most of the liter-

ature on governance indices construction is motivated by the fact that these

indices are correlated with �rm value measures (i.e., Tobin's Q), operating

performance measures (such as ROA, ROE, and pro�tability ratios), and ab-

normal stock returns (e.g., Gompers, Ishii, and Metrick, 2003). In other words,

�rms with good governance practices as per their governance scores had su-

perior �rm values and operating performance, while also generating higher

abnormal returns for their investors. However, despite the consistent evidence
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on the positive relationship between �rm values and good governance in sub-

sequent literature (Bebchuk, Cohen, and Ferrell, 2009), the relationship with

abnormal returns puzzlingly disappeared beyond the early 2000s, partly due

to investor learning (Bebchuk, Cohen, and Wang, 2013; Erkens, Hung, and

Matos, 2012). The same disappearance occurred for operating performance

measures as well (Bhagat and Bolton, 2013).

3.3.1 Do We Need a New Governance Index?

To explain the aforementioned disappearance of the association between ATP-

based indices (such as the G-Index, E-index, etc.) and the performance mea-

sures beyond the 1990s, we argue that the advent of various corporate scandals

in the early 2000s and the consequent regulatory interventions caused a consid-

erable change in the global corporate governance landscape. Static corporate

governance indices do not capture this evolution because they give equal impor-

tance to all available ATPs, rendering them incapable of measuring governance

quality well in changing times. Note that each governance provision does not

exist in isolation. This means that post-2002 (with regulations in place such as

the Sarbanes-Oxley Act, SOX henceforth), the increased importance of some

of the previously optional provisions may have had a cascading e�ect on other

provisions as well, due to the newer regulatory mandates (Bhagat and Bolton,

2013). Expectedly, such regulatory changes should a�ect how �rms attend to

their governance provisions. With regulatory changes making some of the pre-

viously optional provisions compulsory (hence, limiting their ability to capture

governance variability), their contribution as an indicator of good governance

would have disappeared. Thus, we seek to provide a better understanding of

the key ATPs that are appropriate to construct a corporate governance index,

even after the wide acceptance of such regulatory changes.

Most prior studies exploring the governance�performance relation largely used
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either the G-Index or E-Index from governance data before 2007. Our gover-

nance index, in addition to allowing for heterogeneity in individual provisions,

uncovers the governance�performance relationships for 2007 to 2015. Essen-

tially, using the ATPs, we want to introduce a governance index that is dy-

namic and can retain its explanatory power, even in recent years. The revival

of interest in corporate governance research recently could be ascribed to the

2008 Global Financial Crisis, as regulators and investors began looking for

better means of monitoring internal governance mechanisms. Executive com-

pensation was one of the key factors responsible for the reckless risk exposure

at �nancial institutions that led to the crisis. Consequently, newer codes and

regulations have been introduced, giving shareholders a non-binding say-on-

pay with respect to executive compensation arrangements. For this reason,

the present regulatory advancements and ever-growing shareholder activism

were directed towards clipping the wings of the companies that employ poor

governance mechanisms. Using an alternative governance index that factors in

this evolution in corporate governance will enable us to examine the changing

relevancies of all governance provisions that constitute the nG-Index, and see

how certain provisions have either gained or lost importance as an indicator

of governance quality.

Another explanation for the disappearance of the governance�performance re-

lation in recent years could be that the ATPs on their own should not be

operationalized into one single construct, as such indices ignore other impor-

tant governance dimensions. Beiner et al. (2006) raised a similar question

when they use the CGI with �ve additional variables instead of only relying

on the aggregated CGI measure. However, we follow an approach that dif-

fers from that of Beiner et al. (2006), as we do not seek to introduce more

variables to increase the explanatory power of corporate governance on per-

formance, but instead focus on identifying the relative importance of each
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available variable or provision. We propose that the information content of

the ATPs' relative importance can enrich and revive the relevance of gover-

nance indices. Why adopt only ATPs and not other governance aspects, such

as ownership patterns, director characteristics (independence, diversity, etc.),

shareholder activism, executive compensations, and more? As we consider the

investor's point of view, the idea is to rely on data that is readily available to

investors in a single place to create a comprehensive measure of governance

quality. Undoubtedly, including the aforementioned additional aspects into

the mix would make the governance measure richer and more reliable, but it

comes at the expense of the parsimony and simplicity essential for constructing

an index.

Recent research applying aggregate governance measures employs ATP-based

governance ratings and rankings provided by commercial research �rms. These

studies widely assume that these rankings are reliable and provide a clear in-

dication of good versus poor governance practices within their sample �rms

because commercial agencies have superior access to �rm-level governance data

and better resources than academic scholars do (Schnyder, 2012). However,

the relationship between these ratings and �rm performance measures show

inconsistent results (Daines, Gow, and Larcker, 2010), implying that even

commercially available governance rankings do not represent �rms' governance

qualities well enough. To analyze �rms' governance prior to 2006, academic

researchers continue to apply the G and E indices because their reliability has

been empirically tested. The same cannot be said for governance research that

uses the latest aggregated or index data as �in almost all cases� commercial

governance rating agencies do not reveal the methodological details for the

approaches they use in their rankings. Thus, there is a need to study the lat-

est governance dataset (in our case, data on ATPs) to assess whether we can

organize it into a measure that has a higher methodological transparency than
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commercial indices to provide academic scholars the opportunity to test them

empirically, and that investors could possibly use to assess �rms' governance

quality. We present one such measure in the form of the nG-Index. Apart from

the aforementioned bene�ts to the academic community and investors, there

is additional scope to apply a similar and more objective unequally weighted

approach even in commercial governance rankings.26

3.3.2 Relationship Between Governance and Firm Performance

Governance can a�ect both the �rm's value and operating performance posi-

tively or negatively (Gompers, Ishii, and Metrick, 2003). On the one hand, a

weaker governance structure implies weaker shareholder rights and that even

underperforming managers can continue without having fear of being �red.

Furthermore, lesser shareholder involvement entails lesser requisite transparency,

meaning that even the better managers within these �rms will undertake value

diminishing activities like shirking, leading to higher agency costs and declining

performance. On the other hand, with weaker governance mechanisms in place,

managers have more security and are encouraged to take less risky investment

projects (Shleifer and Vishny, 1989). This, in turn, would result in better �rm

performance. Improving governance by adopting a shareholder-friendly provi-

sion (or dropping an ATP) would increase managers' accountability, thereby

increasing the likelihood that managers will focus on immediate rather than

long-term performance in order to signal their intent.

Much of the empirical evidence indicates that there is indeed a positive re-

lationship between governance and �rm value and operating performance.27

26 Most commercial governance rankings tend to use subjective weights identi�ed from
`expert' opinions.

27 Some studies, such as those by Hermalin and Weisbach (1991) and Bhagat and Black
(2001) show negative or no relationship between governance and Tobin's Q, but these usually
focus on a speci�c governance attribute such as board characteristics or director indepen-
dence instead of an aggregate governance measure.
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Even in our sample period, we expect that the �rms that demonstrate good

governance quality according to the nG-Index will show relatively higher �rm

values and better operating performance than poorly governed �rms will. The

direction of this governance�performance causality could be questioned, never-

theless, as one can also argue that the �rms with higher market valuations have

a higher likelihood of employing superior governance mechanisms because they

have more capital, lower costs of capital, better access to external sources of �-

nancing, and more investment prospects (Durnev and Kim, 2005; Klapper and

Love, 2004). While our initial analysis will rely on the governance�performance

correlation, and not causation, to assess how well governance quality is mea-

sured, we do shed some light on causality in subsequent analyses.

We hypothesize that if our governance index truly re�ects the sample �rms'

governance quality, it will show consistent relationships across multiple per-

formance measures and model speci�cations. Supposing that some operating

performance measures (ROE, ROA, or NPM) indicate signi�cant positive cor-

relations with governance, while others show negative relationships, we argue

that the lack of consistent results would be driven largely by the presence of

measurement errors within the governance index. We do not presume that

there is no possibility of having a negative governance�performance relation-

ship, as in the alternative argument above. However, even a negative relation-

ship would more reliably re�ect the true e�ect of governance mechanisms only

if the results are consistent across multiple performance measures.

3.3.3 Relationship Between Governance and Stock Returns

With respect to the e�ect of governance on investors, much of academic re-

search focuses on the existence of abnormal stock returns for good governance

portfolios vis-à-vis poor governance ones. Although initial studies such as

Gompers, Ishii, and Metrick (2003) and Bebchuk, Cohen, and Ferrell (2009)
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show a signi�cant positive relationship between abnormal returns and gover-

nance, subsequent studies (Core, Guay, and Rusticus, 2006; Bebchuk, Cohen,

and Wang, 2013; Gu and Hackbarth, 2013; Cremers and Ferrell, 2014) show

that this correlation disappeared in the post-2000 period as market partici-

pants and investors learned to apprise governance scores in their investment

decisions.

Gompers, Ishii, and Metrick (2003) provide two sets of explanations for the

positive governance�returns association. First, poor governance creates agency

costs (as seen for other �rm performance measures previously), and in the

1990s, investors tended to underestimate these costs, resulting in stock per-

formance falling below their expectations. Second, governance may have been

correlated with returns merely due to the high degree of correlations with other

risk factors that caused abnormal stock returns in the 1990s. Due to the en-

dogeneity problem, it is di�cult to prove the causal explanation. However,

using a regression discontinuity design (RDD), Cuñat, Gine, and Guadalupe

(2012, 2016) show that adopting a governance proposal does cause a signif-

icant increase in shareholder value. These RDD studies, however, consider

short event-windows and the signi�cant positive returns occur within the �rst

two days of a governance proposal being passed.

Bebchuk, Cohen, and Wang (2013) and Cremers and Ferrell (2014), using the

G-Index and E-Index, empirically show the disappearance of the governance�

abnormal returns association over the years. Does market wisdom explain this

puzzling disappearance completely, or is it an indication of changing investor

expectations from poorly governed �rms? While increasing media attention

and research coverage of governance is indeed one of the factors behind this

disappearing relationship, and hence the learning hypothesis (Bebchuk, Co-

hen, and Wang, 2013) cannot be questioned, we argue that the measurement

ability of governance indices declined over the years, leading to measurement
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errors and the classical errors-in-variables problem. Thus, the results tend to

have an upward bias due to inherent threats to construct validity (i.e., the de-

gree to which these governance indices actually measure what they purport to

measure), with a major threat being the equal weights assigned to individual

ATPs/factors in their operationalizations. To put it di�erently, the �learning

hypothesis� that Bebchuk, Cohen, and Wang (2013) proposes is true not only

for investors, but is also true for regulators, as policy makers grew wiser in

terms of the actions and interventions they force upon poorly governed �rms.

Such interventions and regulatory changes should a�ect how companies attend

to their governance provisions and their priorities for each of them. The older

indices (G-Index, E-Index, etc.) do not account for the changing relevance of

individual provisions, in turn restricting their ability to measure governance.

Thus, the lack of relevance weights in these indices would lead to biased results

in the correlation and regression coe�cients shown in literature (especially af-

ter big scandals in the 2000s and the passing of SOX), due to the attenuation

e�ect, or �regression dilution.�

Core, Guay, and Rusticus (2006) report that the outperformance of good gov-

ernance stocks over poor governance ones is not seen beyond the year 2000,

stating, �abnormal stock returns for �rms with weak shareholder rights are

somewhat greater than returns for strong governance �rms.� They suggest

that the previous outperformance (i.e., before 2000) of good governance stocks

is merely a case of �shareholders rights anomaly ... connected to ... new econ-

omy pricing anomaly of the (late) 1990s.� This is the underlying presumption

for also possibly expecting a negative association between governance and re-

turns.
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3.3.4 Endogeneity in Governance�Performance Relationships

When studying the outcomes of corporate governance, it is di�cult to draw

causal inferences by ruling out reverse causality and the possible e�ects of par-

allel confounding or unobservable variables. In recent years, several studies

(Cuñat, Gine, and Guadalupe, 2012, 2016; Chemmanur and Tian, 2017) as-

sess the outcomes of ATPs using RDDs, which can provide causal estimates.

However, RDDs using pass votes on ATPs' removal can only establish the

outcomes for individual provisions when they are randomly dropped around

the vote share pass window. Such studies essentially measure the impact on

the �rm when a certain provision is dropped and governance improves. With

index measures, it is di�cult to examine causality with RDD because indices

tend to look at the available ATPs in aggregate.

In light of these arguments, we thus �rst try to tackle endogeneity concerns

in our governance�performance speci�cations using a dynamic panel GMM

(Wintoki, Linck, and Netter, 2012).28 GMM is superior to ordinary least

square (OLS) and �xed-e�ects (FE) models because it wholly controls for si-

multaneity, the e�ect of past governance structures on �rm outcomes, and

additional unobserved �rm-level heterogeneity [see (Schultz, Tan, and Walsh,

2010) and (Wintoki, Linck, and Netter, 2012) for methodology, econometric

rationale, and other details]. Moreover, previous studies employing GMM to

capture the governance�performance relationship largely conclude that there

is no causal relation between them in spite of the statistically signi�cant as-

sociation observed with OLS and FE speci�cations. Thus, the estimates from

GMM provide a good preliminary acid test to alleviate endogeneity concerns

28 The advantage of using GMM for a governance index is that this method identi�es
instruments internally from within the panel data itself. With di�culties in spotting exoge-
nous sources of variations to develop instrumental variables for indices, GMM provides a
solution by using past performance and governance data to instrument for the contempora-
neous outcomes of governance.
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in our setting.

Finding an exogenous shock, which substantively a�ects governance quality as

measured using an aggregated index, is a big challenge to employ ideal iden-

ti�cation strategies such as a natural experiment or di�erence-in-di�erences.

Despite this, we next obtain additional causal estimates by exploiting the tim-

ing of the adoption of Delaware ruling of Revlon Inc case, which had an e�ect

on �rms' corporate governance characteristics by enforcing directors to only

accept �best� price whenever there is a takeover bid. This exogenous ruling

has an impact on takeover markets by restricting the directors from accept-

ing o�ers for management buyouts, leveraged buyouts, or friendly takeovers

whenever an o�er price is lower than an acceptable market value. Although

this ruling came out in the state of Delaware in 1986, it was only accepted or

rejected within other states in later years. In our sample period, Maryland

adopts the Revlon ruling in November 2009. This allows us to take the �rms

based in Maryland as the treatment �rms (which faced an external shock

to their governance) and the ones based in Delaware as control �rms (since

much of the regulatory or legal interventions in Delaware happened in 1980s).

The �nal treatment e�ect is then computed using triple di�erence estimation

(DDD or di�-in-di�-in-di�) which gives us the resultant impact on Tobinâ��s

Q or other performance measures, when there are changes in the nG-Index

between the pre-2009 and post-2010 years, and also between the Maryland-

and Delaware-based �rms. We additionally check the validity and robustness

of our results using placebo tests and propensity score matching.

3.3.5 Governance and the Risk-Return Tradeo�

Firms with higher agency risks are more prone to future stock price crashes

(Andreou et al., 2016; Kim and Zhang, 2016). With greater agency risks, man-

agers are more likely to take suboptimal investments (Bebchuk and Stole, 1993)
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and aim to maximize short-term bene�ts and incentives (Stein, 1989). How-

ever, this information asymmetry cannot be maintained to conceal bad news

for long, as markets eventually learn about it, resulting in a signi�cant decline

in stock prices or a crash (Kim and Zhang, 2016). In a similar vein, when

markets experience declining trends, �rms with accumulated hidden informa-

tion tend to have bigger negative return outliers (Hong and Stein, 2003). In

conjunction with the learning hypothesis (Bebchuk, Cohen, and Wang, 2013),

investors and market participants must have became more aware of gover-

nance provisions after the year 2000. This means that with time, they must

have also learnt to identify poor governance stocks as high agency risk �rms.

If indeed governance index weights are irrelevant for assessing such risks, then

both equal- and unequal-weighted index should show similar in�uence of gov-

ernance on price crashes.

Good governance should pay o� for investors in the long run (McCahery, Saut-

ner, and Starks, 2016). In other words, if the stock market impounds only part

of the available governance information in the stock prices, returns from good

governance stocks in the short run will be subdued. However, in the long

run, shareholders of good governance �rms will earn higher returns as all of

the information is impounded over the years. If governance index weights do

not matter for future returns, then both equal- and unequal-weighted index

should track this bene�t of good governance to investors. Through these two

mechanisms, we aim to provide preliminary insights on how index weights can

also impact risk-return tradeo�s associated with corporate governance.

3.4 Data and Methodology

3.4.1 The Data

The data we use in our analysis are largely taken from three main sources

available in the WRDS database: Institutional Shareholder Services (ISS) for
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the governance data on ATPs, Standard and Poor's COMPUSTAT annual

database for accounting data to measure performance variables and �rm-level

controls, and the Center for Research in Security Prices (CRSP) monthly data

for stock prices and returns. We also collected additional Fama-French four

factors and liquidity factors from the WRDS.

Before 2006, ISS (then IRRC-Riskmetrics) published data on �rm-level gover-

nance provisions every 2 to 3 years. These data were taken from inputs such

as proxy statements, annual reports, charters and bylaws, and other SEC �l-

ings. The provisions data were typically collected for large Fortune 500 or S&P

500 companies that institutional investors requisitioned to assess the takeover

protection mechanisms that these companies employed. ATPs are a proxy

for the shareholder�manager relationship. For this reason, Gompers, Ishii,

and Metrick (2003) and Bebchuk, Cohen, and Ferrell (2009) use similar data

to conceptualize the G-Index and E-Index, respectively. Brown and Caylor

(2006) also use the same pre-2007 dataset to create the Gov-Score, which in-

cludes additional governance characteristics from other ISS data. However,

with a change in the data collection methodology after 2007, these indices

have grown obsolete because there are only 19 distinct provisions in the new

ISS governance dataset, unlike the previous data that had 22 takeover-related

provisions and an additional 6 state-mandated takeover statutes.29 The new

data collection system introduced in 2007 includes an initial review of every

company's bylaws and charters and other SEC �lings on a yearly basis. The

governance data we include in our analysis encompasses an average of 1100

29 The E-index (Bebchuk, Cohen, and Ferrell, 2009) can still be created for new ISS
dataset because the information on all six entrenchment provisions (i.e., staggered boards,
limits to bylaw amendments, limits to charter amendments, poison pills, golden parachutes,
and supermajority requirement for mergers) are available. However, note that Bebchuk,
Cohen, and Ferrell (2009) identi�es these provisions as a subset of the existing G-Index
to show that the E-index has superior explanatory power than the G-Index does. Thus,
applying the E-index to the new governance data, which has a di�erent set of provisions,
may give misleading results.
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companies for each year from 2007 to 2015, with a total of 10,190 �rm-year

governance observations.

3.4.1.1 Governance Data

The ISS governance dataset has 21 antitakeover characteristics and an addi-

tional 8 �opt-outs� (representing whether the company opted out of certain

state laws concerning takeover-related features such as fair price, poison pill,

director duties, etc.). We combine the 8 opt-outs into a single variable that

measures whether the company opted out of any of the takeover provisions, in

turn restricting the available shareholder rights. Of the 21 ATPs, three vari-

ables are related to a majority vote requirement for a director's election, so we

combine these and present them as a single supermajority requirement. We

drop the provision related to Carve-Out Contest, as it is essentially re�ected

in the aforementioned supermajority requirement for a director's election, thus

making it redundant. Table 3.1 summarizes the selected ISS provisions (for

more details on these and the full list of other available ISS governance provi-

sions, see Appendix 3.A.1).

As in Gompers, Ishii, and Metrick (2003), we categorize all provisions into 5

distinct groups: those that delay hostile takeovers (Delay), those related to

voting (Vote), those that protect director's rights (Protection), other ATPs

(Other), and those related to opt-outs from state laws. This categorization

provides only a means of comparison between the provisions in the G-Index

to those used to construct the nG-Index. We retained the four voting provi-

sions for the G-Index (i.e., Blank check, staggered board, special meeting, and

written consent) in the same group in our dataset as well, with two additional

provisions assessing a supermajority requirement to call for special meeting

or to take action by written consent. Similarly, we included two additional

provisions (supermajority to amend charters and to amend bylaws) in the pro-
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Table 3.1 Governance provisions from the ISS database

This table summarizes the presence of ATPs in the sample covered by ISS from 2007 to 2015.
For details on each of these provisions, see Appendix 3.A.1. The provisions are classi�ed into
the �ve categories as presented in Gompers, Ishii, and Metrick (2003). Firms with dual-class
stocks are left out of the �nal sample.

Year 2007 2008 2009 2010 2011 2012 2013 2014 2015

Number of �rms 1329 1359 1387 1386 1381 1403 1420 1409 1417

Delay Provisions

Blank check preferred stock 92.02% 91.76% 92.00% 92.21% 93.48% 93.73% 93.87% 93.40% 93.65%

Staggered board 56.21% 54.01% 51.84% 50.22% 46.05% 43.62% 40.56% 37.33% 34.65%

Special meeting 44.70% 45.47% 46.14% 47.19% 48.15% 49.25% 53.31% 54.36% 55.54%

Written consent 42.14% 41.94% 41.38% 44.23% 58.29% 58.37% 57.82% 58.98% 58.93%

Supermajority�special meeting 3.09% 3.24% 3.24% 3.03% 2.68% 2.57% 2.82% 2.91% 2.82%

Supermajority�written consent 19.41% 20.68% 20.19% 19.34% 31.72% 32.57% 32.82% 33.29% 33.24%

Protection Provisions

Golden parachutes 52.22% 34.07% 81.40% 83.41% 84.00% 84.11% 84.51% 84.32% 79.46%

Resignation requirement+ - 68.29% 64.38% 59.96% 55.03% 46.47% 40.35% 34.14% 28.51%

Voting Provisions

Bylaws 84.88% 86.53% 87.53% 88.17% 88.49% 88.74% 88.52% 88.22% 88.99%

Charter 86.98% 89.26% 90.70% 91.70% 92.54% 94.73% 95.28% 97.23% 97.81%

No cumulative voting 91.95% 92.27% 92.29% 93.00% 94.06% 94.23% 94.44% 94.68% 95.13%

No secret voting 88.19% 87.71% 86.09% 86.00% 86.82% 86.89% 87.39% 87.51% 87.65%

Supermajority for merger 32.66% 31.13% 29.27% 30.09% 36.71% 32.00% 20.99% 18.38% 18.14%

Supermajority�amend charter 54.85% 55.63% 55.37% 54.83% 54.67% 53.60% 53.17% 53.09% 52.43%

Supermajority�amend bylaws 40.56% 40.77% 39.87% 40.69% 40.33% 39.77% 38.66% 39.25% 38.81%

Unequal voting 0.53% 0.52% 0.43% 0.51% 0.51% 0.21% 1.48% 1.21% 0.78%

Other Provisions

Fair price 12.04% 13.10% 15.07% 16.16% 13.61% 13.26% 12.89% 12.42% 12.28%

Poison pill 39.13% 34.95% 27.54% 21.50% 17.02% 13.97% 10.92% 10.01% 7.62%

State Laws++

Opt outs from state laws 0.00% 15.08% 12.91% 13.20% 0.00% 0.00% 0.00% 0.00% 0.00%

+ No data were collected on the resignation requirement provision by ISS in 2007.
++ The ISS governance dataset contains information on opt-outs chosen by �rms for 8
separate laws, which are combined here into a single dummy variable measuring whether
any of the opt-outs were selected or not.
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tection provisions for the new dataset. There are fewer provisions (only two,

fair price and poison pill) that are retained within the other provisions group.

Following Gompers, Ishii, and Metrick (2003) and related literature (Bebchuk,

Cohen, and Ferrell, 2009; Bebchuk, Cohen, and Wang, 2013) we leave out

companies with dual-class stocks because they have governance characteristics

that are incomparable with companies having a single class stock. While the

presence of certain provisions, such as special meeting, written consent, and

its supermajority requirement, no cumulative voting requirement and limited

ability to amend the charter increased over the years in our sample; the inci-

dence of other provisions such as a supermajority requirement for a merger,

poison pills, and resignation requirements declined over the same period. This

supports our argument that such an evolving corporate governance landscape

needs an index construction methodology that considers the relative impor-

tance of speci�c provisions that contribute more to governance quality than

others.

Similar to the within-�rm clustering Gompers, Ishii, and Metrick (2003) show

for governance provisions from 1990 to 2000, we �nd that most of the positive

pairwise correlations amongst these 19 provisions are statistically signi�cant

from 2007 to 2015. Since ISS governance data (and its previous versions from

IRRC-Riskmetrics) cover a wide variety of �rms in terms of size, age, and

other characteristics, we expect minimal or no sampling bias and systematic

bias. Similarly, we do not see survivorship bias a�ecting our analysis as we

employ panel regressions in most cases, and we cannot explain the results of

all the governance�performance relationship variations considered therein by

the disappearance of a few �rms from the ISS dataset.

To build a governance dataset for constructing the nG-Index, we coded ISS

data based on the presence or absence of each individual provision. Much of

the coding rules follow the procedures speci�ed in Gompers, Ishii, and Metrick
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(2003), with only the criteria for supermajority provisions changed. These

supermajority requirements were coded 1 when more than 66% voting was

required for the respective governance provision.30 Although most of the pro-

visions restricted shareholders, as Gompers, Ishii, and Metrick (2003) show,

there were two exceptions: ability to have secret ballot and cumulative voting.

We code these for their absence as an indicator of poor governance, unlike the

rest remaining provisions for which we code presence as 1 [Gompers, Ishii, and

Metrick (2003) and Bebchuk, Cohen, and Ferrell (2009) use similar exceptions

in their indices].

3.4.1.2 Performance and Returns Data

We extracted all performance-related �rm characteristics from COMPUSTAT

annual data for the �rms in the governance data sample. As in the prior lit-

erature, we compute Tobin's Q to measure �rm value and measure operating

performance using ROA, ROE, and NPM. We calculated additional control

variables such as size, book-to-market, leverage, and so on using standard

procedures in the literature (for details on these variables and their underly-

ing calculations, see Appendix 3.A.2). Table 3.2 Panel A gives the summary

statistics for all performance-related variables along with the controls.

We collected monthly returns from CRSP for all �rms and years represented

in the governance dataset. Additionally, for each �rm, we included data for at

least 2 years prior to the availability of governance data to measure additional

lagged returns-based controls. Table 3.2 Panel B summarizes the returns-based

variables in our study. Note that whenever monthly returns are used with the

30 Gompers, Ishii, and Metrick (2003) and Bebchuk, Cohen, and Ferrell (2009) allow for
a supermajority to be considered when a 51% voting requirement is in place. However, with
a more precise de�nition of supermajority, we expect it to contribute less to measurement
error. We use the 51% simple majority criteria in place of the 66% supermajority as a
robustness check for our main �ndings and see no major di�erences in the two results.
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Table 3.2 Descriptive statistics for performance and returns vari-
ables

This table presents the mean, standard deviation, range extremes, and the number of ob-
servations for all main performance variables, returns variables, and controls from 2007 to
2015. Panel A covers all variables included in either the �rm value�governance or operating
performance�governance regressions on an annual basis. These variables are computed from
COMPUSTAT data. For details on the composition of these variables, see Appendix 3.A.2.
Panel B shows brief statistics on the returns related variables to analyze the stock returns�
governance relationship at a monthly frequency. Inputs for these variables were sourced
from CRSP. For more details, see Appendix 3.A.3.

Panel A:

Variables Mean SD Minimum Median Maximum N

Tobin's Q 2.17 1.18 -0.97 1.86 15.23 10190

ROA 0.12 0.11 -2.6 0.12 1.18 10190

NPM 0.05 0.88 -66.8 0.07 6.65 9156

ROE† 23.84 62.37 -6.98 1.59 429 7618

Size (Log of Total Assets) 8.08 1.67 4 7.95 14.76 10190

Altman's Z 1.69 1.5 -42.16 1.63 14.3 10190

Leverage 0.19 0.18 0 0.17 2.88 10190

Log of CAPEXTA -3.75 1.39 -11.65 -3.54 -0.35 9569

S&P Dummy 0.32 0.47 0 0 1 10190

Delaware Dummy 0.45 0.5 0 0 1 10190

Log of Age 5.45 0.74 1.61 5.51 6.47 9990

Log of Book-to-Market -4.3 2.66 -15.06 -3.68 1.63 8462

(R&D + Adv. Exp.)/Total Assets 0.03 0.06 0 0.01 0.96 10190

Panel B:

Variables Mean SD Minimum Median Maximum N

Returns 0.0094 0.1116 -0.9544 0.0101 1.9917 119857

Log Past 2-Month returns 0.0075 0.1611 -3.5224 0.0194 1.9076 119809

Log Past Quarter returns 0.0145 0.1949 -2.6216 0.0309 1.8235 119719

Log Past Semi-Annual returns 0.0319 0.2822 -3.0894 0.0587 2.3305 119430

Log of Book-to-Market -4.5 2.77 -15.17 -3.83 2.78 119517

Log of Dollar Volume traded 20 1.66 12.24 19.98 25.35 119860

Log monthly Closing Price 3.39 0.79 -4.37 3.45 7.4 119840

Log Market Value (Size) 7.89 1.52 0.78 7.74 13.13 119853

Log Two-Year returns -2.88 1.23 -9.7 -2.74 3.26 66202

Yield 0.02 0.04 0 0.01 1.67 118693

Sales Growth 1.16 0.43 -0.57 1.11 13.98 118946

† Winsorized at 5% on both tails due to the presence of extreme outliers.
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governance and performance data in regressions, the annual variables are held

constant for each �scal year.

3.4.2 Dynamic Weighting Methodologies

We employ multiple indexing methodologies that aim to capture the dynamism

that each of the constituent ATPs show over the years. In all our approaches

we start with the basic premise that it is the market, who best understands the

importance of individual ATPs and prices this in the stock returns. Cuñat,

Gine, and Guadalupe (2012) show that �rms' stock prices do react to their

shareholders' acceptance or rejection of ATP proposals. Thus, while we assume

strong stock market e�ciency for ATPs cross-sectionally, we do not necessarily

presume ATPs to be risk factors. This can be explained by the fact that the

relevance of individual ATPs are fundamentally derived from their presence or

absence in each of the sample �rms up to the measurement year, and hence

varies over time. Moreover, ATPs merely represent �rm characteristics, and

not all �rm characteristics can necessarily be treated as systematic risk factors

(Pukthuanthong, Roll, and Subrahmanyam, 2018).

Our index construction methodology primarily relies on the Sharpe's (1992)

technique, commonly identi�ed as returns-based style analysis. Its initial ap-

plication was to identify asset allocation weights to construct mutual fund

portfolios that maximize their returns. We apply a slightly modi�ed algorithm

using similar constrained regressions to identify governance factor weights on

individual �rms' returns. Our model re�ects the restrictive ability of ATPs

on shareholders' wealth, with an additional constraint capturing the negative

relationship between the number of existing governance provisions within the

�rm and its raw returns. While the relationship of governance indices with

stock returns has disappeared (Bebchuk, Cohen, and Wang, 2013), the impact

of individual ATPs on returns remains (Cuñat, Gine, and Guadalupe, 2012).
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By applying the modi�ed Sharpe's (1992) methodology, we aim to capture each

of the ATPs' in�uences on the stock returns, and then use this information to

construct a more precise and informed aggregate index. In other words, the

idea is to show that weights extracted from �past realized returns� have im-

portant information about individual governance provisions that can help us

identify a monotonic contemporaneous relationship between governance and

performance.

As an alternative, we employ a methodology that considers a slightly di�erent

variable selection approach in place of weight identi�cation/extraction. But,

importantly, variable selection algorithm in our application can also be viewed

as a weight extraction tool with the ATP weights restricted to 0s (exclusions)

and 1s (inclusions) in the index construction. Thus, we check if a machine

learning algorithm can identify important ATPs that are cross-sectional predic-

tors of stock returns. More speci�cally, we apply Least Absolute Shrinkage and

Selection Operator (LASSO) technique (Tibshirani, 1996) on the same regres-

sion model that we constrain with an economic condition using Sharpe's (1992)

technique. Chinco, Clark-Joseph, and Ye (2019) state that while �LASSO uses

a statistical rule rather than economic intuition to identify predictors, the pre-

dictors it identi�es are nevertheless associated with economically meaningful

events� when it comes to returns. We aim to test if this is true for ATPs by

extracting the relevant subset of ATPs that can predict stock returns and then

using them to measure corporate governance. We also considered a partial

least square (PLS) framework to identify important ATPs using returns as

instruments in a three-pass regression �lter (3PRF) using an approach similar

to that used in Huang et al. (2015). However, extracting relevant ATPs us-

ing their covariance with stock returns does not allow for identifying dynamic

weights since one of the passes in 3PRF is aimed at capturing time-series vari-

ation. For this reason, we focus only on LASSO estimation as an alternative
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to baseline identi�cation using Sharpe's (1992) methodology.

After applying the two main approaches, we compare them on the basis of

their out-of-sample predictive power. Accordingly, the weight extraction or

ATP selection that results in best predictability for out-of-sample returns,

is selected to measure corporate governance as a linear combination of the

identi�ed ATPs.

3.4.2.1 Baseline Methodology to Extract Index Weights

A similar returns-based model for extracting factor weights using constrained

regressions is popular in the asset pricing literature (Heston and Rouwenhorst,

1994; Bekaert, Hodrick, and Zhang, 2009) and comes with several additional

advantages.31 First, assuming e�cient markets, stock returns are least sub-

ject to endogeneity problems, unlike other outcomes of governance provisions.

Second, data on stock returns is available with much higher frequency than

accounting-based measures like ROA, ROE, or Tobin's Q are, allowing us to

capture more variations. Third, causal estimates were established for con-

temporaneous returns in relation to individual governance provisions in recent

years (for short event-windows) in Cuñat, Gine, and Guadalupe (2012). Fi-

nally, having a model that is structurally similar to the one used in Sharpe's

(1992) provides us with plausible tools to assess the �t of this model for our

purpose.

Unlike regular OLS regressions, a linearly constrained least squares (CLS)

combines one or more linearity constraints within the least square problem.

The same OLS objective remains � to minimize the error sum of squares �

31 In an unreported analysis, we additionally test the robustness of our factor weights
by considering other accounting-based performance measures to extract weights in place
of returns. Over 75% of weights that accounted for the 5 most relevant provisions in our
returns-based model remained the same, even in an ROA-based model. We found similar
outcomes with Tobin's Q.
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but with an additional condition imposed on some or all of the independent

variables. The main purpose of using constrained regression is to account

for coexisting provisions that results in biased coe�cient estimates (due to

multicollinearity), especially since our main factor variables are binary. In our

sample, multiple ATPs have very high and statistically signi�cant correlations

of up to 0.48. With constrained regression that sets the sum total of coe�cients

to a constant, we are able to marginally correct for this bias (see Appendix

3.A.5 for details).

Factor models are common in investment theory and in asset pricing models,

with the following general form:

R̃i =
n∑

j=1

λijFj + εi, (3.1)

where λij represents the sensitivities of each factor j to the returns on an asset

i. For asset pricing, the fundamental assumption that the factors are uncor-

related with the error term εi follows by de�nition. The Sharpe's (1992) asset

allocation problem was a special case of the generic factor model, with each

factor representing the individual asset's returns and the factor sensitivities λ

constrained to sum to 1 (i.e., 100%).32 However, when considering governance

factors or provisions, it is important to control for all other omitted variables

that may be separate from the error term as a direct in�uence on returns. Ac-

cordingly, we include essential controls such as �rm size, book-to-market ratio,

growth rate, liquidity, past price, and past returns.33 Additionally, we assume

32 Sharpe's model was based on the underlying assumption that asset allocation explains
most of the variations in any well-diversi�ed investment portfolio. With the sensitivities
constrained to 100%, the measured component (for factors or assets) represents a style
attribute and the error component forms the selection attribute.

33 These controls are largely similar to those in the Fama-MacBeth return regressions
in Gompers, Ishii, and Metrick (2003) that considers controls from Brennan, Chordia, and
Subrahmanyam (1998), Shleifer and Vishny (1994), and Morck and Yang (2001).

129



that the error terms for each �rm are uncorrelated with the other error terms

(i.e., ρ(εi, εj) = 0). As a modi�ed model to extract factor weights based on

Equation 3.1, we use the following model:

logR̃i =
n∑

j=1

λijFj +
m∑
k=1

γikXik + εi, (3.2)

where λij represents the sensitivities of each provision (or factor F ) to the

�rm's returns, X are the controls with corresponding sensitivities γ, and the

error is ε. The monthly returns for each stock i is given by logR̃i (log returns).

We assume that the individual factors are uncorrelated with the controls and

the error term (although the index created from these factors would eventually

have correlations with other �rm characteristics that we include as controlsX).

Thus, the �rst component in this model expectedly measures the governance

attribute, the second component controls for the �rm characteristics, and the

error term captures all unobservables that are uncorrelated with the �rst two

components.

Since we de�ne the absence of ATPs as 1 to maintain consistency with the

approaches in prior literature, such as Gompers, Ishii, and Metrick (2003) and

Bebchuk, Cohen, and Ferrell (2009), we expect a negative relationship between

the overall governance attribute (�rst component) and the contemporaneous

returns. In other words, �rms with poor governance practices (having more

ATPs) should perform poorly on stock markets in terms of realized returns

(Cuñat, Gine, and Guadalupe, 2012, 2016). Accordingly, the constraint is

that the factor weights (or sensitivities λ) sum to −1. That is:

n∑
j=1

λj = −1. (3.3)

This constraint requires a cautious interpretation. We do not assume that
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the log returns move linearly with the governance measure. Depending on the

individual factor weights, the presence or absence of the provision would drive

the stock returns down by the margin identi�ed by the constrained regression

coe�cients. Thus, here, we only presume the sign of this relationship based

on the restrictive abilities of the ATPs with respect to shareholder rights, and

backed by empirical evidences available in the literature. The sum weight of

1 for factors ensures that the total weights do not exceed 100% and are dis-

tributed as per their contribution to the contemporaneous returns�governance

relationship.34 One could argue that if a poorly governed �rm has all 19 ATPs

in place, and drops all of them to become an extremely well-governed �rm

the very next month, our measurement would imply an increase of 100% in

the stock returns. In practice, however, this extreme condition is impossible to

verify, as such large-scale changes in governance provisions do not occur. More-

over, in any constrained regression, the overall objective remains the same as in

the OLS, that is, to minimize squared deviations, with an additional constraint

applied on the coe�cients. This means that changing the magnitude of the

constraint would not really change the relative measures of the coe�cients.35

For constrained regressions, we can assess the model �t and the strength of

the applied constraint or restriction by comparing the two root mean squared

error (RMSE) values, that is, with and without the constraint (Bekaert, Ho-

drick, and Zhang, 2009). If the RMSE shows only a marginal change with the

application of constraint, then the constrained regression �ts the data as well

34 The exact dates for each annual meeting are available in the governance data, which
is updated in the beginning of each year for the provisions applied in the previous year.
For ease of constructing the index, however, we consider the provisions as stable through
the calendar year without accounting for the meeting dates. Accordingly, for a given year,
the logged monthly returns we obtained from CRSP are regressed on the governance data
observed during that calendar year.

35 For example, using �-2� or �-3,� or even �-1/2� as the constraint instead of �-1� would
merely change the magnitude of the coe�cients, but not their relative weights, that is, make
the coe�cients either twice, thrice, or half of their respective values obtained using �-1� as
a constraint.
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as the unconstrained regression.36

We present the coe�cients of the unconstrained and constrained regressions

in Table 3.3. The last two columns show the coe�cients for the complete

dataset. We see that applying our constraint on the contemporaneous returns�

governance provisions regression only marginally increases the RMSE from

0.107 to 0.119. This increase of 11% in the RMSE is very low compared to the

change in RMSE with other possible restrictions or constraints. Every year,

we run regressions inclusive of all past governance and returns information

available up to that year. This serves two purposes. First, it ensures rich-

ness in the data as we move ahead in time to provide a better picture of the

relationship between each of the governance provisions and returns. This is

essential for our purpose of weight extraction because our criterion is to choose

weights in accordance with each of the provisions' importance and relevance

as a contributor to shareholders' wealth. Second, it enables us to trace the

evolution of each provision's contribution to our proposed nG-Index.

For each year, at least 15 of the 19 provisions remain statistically signi�cant

contributors to returns. Through 2007 to 2015, while some of the provisions

lost importance as contributors to returns, others gained prominence. For this

reason, it is important to continue using all available provisions data when

using such unequal-weighted indices. Though one of the provisions, i.e. su-

permajority requirement to amend the charter, does not show a signi�cant

relationship with returns until 2014, it eventually shows some e�ect on returns

in 2015, albeit with a positive coe�cient. Beyond 2009, the provision for golden

parachutes becomes statistically irrelevant. Singh and Harianto (1989) show

36 In an asset allocation case, the asset classes contribute signi�cantly to portfolio returns
(translating into large a R2 value), especially for well-diversi�ed portfolios. However, with
the governance factor weights, the R2 values are comparatively lower, as there are many
additional unobservable �rm characteristics (that directly or indirectly a�ect the �rm's raw
returns); in other words, the explanatory power of the model is not very high.
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Table 3.3 Constrained and unconstrained regressions

This table presents the coe�cients of all 19 provisions obtained using the regression in
Equation 3.2 constrained by Equation 3.3 for each year. The unconstrained regression
coe�cients are presented for the full sample inclusive of �rms in 2015 in the last column.
The dependent variable is stock returns (in log) for month `t,' while all 19 provisions are
independent variables. The standard controls include volume, past returns, size, value, and
others, as shown in Appendix 3.A.3. Standard errors are given in parenthesis with the
signi�cance levels at 10%, 5%, and 1% indicated using * , **, and ***, respectively.

Constrained Coe�cients Unconstrained

Provisions 2007 2008 2009 2010 2011 2012 2013 2014 2015 2015

Golden parachutes -0.0083** -0.0089*** -0.0047** 0.0013 -0.0006 0.0010 -0.0001 -0.0011 -0.0011 0.0102***
(0.003) (0.003) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

Fair price -0.0254*** -0.0226*** -0.0160*** -0.0149*** -0.0135*** -0.0122*** -0.0134*** -0.0134*** -0.0138*** -0.0026*
(0.004) (0.004) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001)

Resignation Req. -0.0000*** -0.0253*** -0.0163*** -0.0117*** -0.0138*** -0.0126*** -0.0138*** -0.0145*** -0.0135*** -0.0009
(0.000) (0.003) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

Unequal Voting -0.6332*** -0.5859*** -0.5836*** -0.5692*** -0.5502*** -0.5782*** -0.4950*** -0.4593*** -0.4655*** 0.0015
(0.012) (0.012) (0.010) (0.009) (0.007) (0.007) (0.006) (0.005) (0.005) (0.006)

No secret voting -0.0223*** -0.0189*** -0.0122*** -0.0127*** -0.0141*** -0.0119*** -0.0158*** -0.0184*** -0.0180*** 0.0053***
(0.004) (0.004) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001)

No cumulative voting -0.0364*** -0.0350*** -0.0398*** -0.0405*** -0.0425*** -0.0372*** -0.0415*** -0.0441*** -0.0429*** -0.0026
(0.004) (0.005) (0.004) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002)

Staggered Board 0.0013 0.0065** 0.0068** 0.0071*** 0.0077*** 0.0059*** 0.0036** 0.0028** 0.0028** 0.0012
(0.003) (0.003) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

SM - Merger -0.0330*** -0.0357*** -0.0278*** -0.0244*** -0.0144*** -0.0135*** -0.0185*** -0.0173*** -0.0147*** -0.0033***
(0.005) (0.005) (0.003) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

SM - Consent -0.0070* -0.0088** -0.0167*** -0.0183*** -0.0167*** -0.0142*** -0.0146*** -0.0143*** -0.0138*** -0.0011
(0.004) (0.004) (0.003) (0.003) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001)

SM - Sp. Meeting -0.0539*** -0.0669*** -0.0754*** -0.0862*** -0.0949*** -0.0919*** -0.1138*** -0.1217*** -0.1200*** 0.0028
(0.005) (0.005) (0.005) (0.004) (0.003) (0.003) (0.003) (0.002) (0.002) (0.002)

SM - Bylaws -0.0174*** -0.0137*** -0.0140*** -0.0140*** -0.0141*** -0.0127*** -0.0134*** -0.0141*** -0.0152*** -0.0016
(0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

SM - Charter -0.0009 -0.0004 0.0008 0.0002 0.0005 0.0008 0.0011 0.0009 0.0021* -0.0000
(0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

Poison Pill -0.0026 -0.0020 -0.0033 -0.0079*** -0.0081*** -0.0085*** -0.0102*** -0.0114*** -0.0110*** 0.0019*
(0.003) (0.003) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

Sp. Meetings -0.0659*** -0.0724*** -0.0834*** -0.0936*** -0.1005*** -0.0967*** -0.1184*** -0.1265*** -0.1247*** 0.0003
(0.005) (0.005) (0.005) (0.004) (0.003) (0.003) (0.003) (0.002) (0.002) (0.002)

Written Consent -0.0196*** -0.0137*** -0.0188*** -0.0217*** -0.0226*** -0.0199*** -0.0212*** -0.0209*** -0.0206*** -0.0019*
(0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

Bylaws -0.0145*** -0.0268*** -0.0280*** -0.0291*** -0.0310*** -0.0297*** -0.0344*** -0.0355*** -0.0356*** -0.0014
(0.004) (0.004) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001)

No Blank Check -0.0423*** -0.0452*** -0.0449*** -0.0435*** -0.0461*** -0.0421*** -0.0446*** -0.0454*** -0.0443*** -0.0048**
(0.005) (0.005) (0.004) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002)

Opt Outs -0.0000*** -0.0077** -0.0053** -0.0032* -0.0054** -0.0084*** -0.0154*** -0.0201*** -0.0217*** 0.0002
(0.000) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001)

Charter -0.0186*** -0.0165*** -0.0172*** -0.0179*** -0.0197*** -0.0183*** -0.0208*** -0.0258*** -0.0285*** 0.0024
(0.004) (0.004) (0.004) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002)

No. of observations 6728 13524 19496 25330 34274 42431 49478 58059 65547 65547
Adj. R-squared 0.051
RMSE 0.101 0.143 0.148 0.142 0.135 0.128 0.124 0.121 0.119 0.107
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that �rms adopting golden parachutes experience greater takeover threats than

the �rms that do not. Similarly, Bebchuk, Cohen, and Wang (2014) show that

until 2006, �rms that adopted golden parachutes showed negative abnormal

returns. Our results indicate that beyond 2009, this trend disappeared. Exam-

ining the incidence of this provision in our sample (Table 3.1) shows that be-

yond 2009, few proposals on golden parachutes were adopted and the numbers

remain stable over the years. Whereas the di�usion of golden parachutes was

fast over the previous years, making it a red �ag for investors, investors began

to accept them as a neutral governance mechanism in recent years (for details

on the di�usion process of golden parachute agreements, see Fiss, Kennedy,

and Davis, 2012).

In contrast, we see that poison pills show an opposite trend. They remain ir-

relevant to shareholder returns until 2009, but become statistically signi�cant

in the subsequent years. This trend is important to discuss because poison pill

is one of the six most signi�cant provisions of the 24 G-Index provisions when

Bebchuk, Cohen, and Ferrell (2009) proposed the E-index. While the G and

E indices included poison pills as an important constituent of corporate gover-

nance measures, the unequally weighted methodology applied here shows that

its importance does not remain constant over time, with instances where the

provision is statistically insigni�cant as a contributor to returns and, in turn,

the corporate governance measure. Another important �nding in Table 3.3 is

with respect to the staggered board provision, which shows a consistently pos-

itive e�ect on stock returns. Bebchuk and Cohen (2005) show that staggered

boards have a negative e�ect on �rm value. Additionally, as it is for poison

pill, the E-index treats the presence of staggered boards as an indicator of low

governance quality. While staggered boards may have a negative e�ect on �rm

value, as the literature suggests, there has been very little or no evidence of
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it impacting stock returns.37 We show that staggered board tends to show

a positive e�ect on stock returns in recent years. One possible explanation

for investors bene�ting from this antitakeover provision could be based on the

�ndings in Guo, Kruse, and Nohel (2008) showing that the de-staggering of

boards provides immediate returns (within three days), but this e�ect wanes

in the subsequent period. Essentially, staggered boards destroy shareholder

value on their adoption, but as investors realize with time that the threat of

takeover is low, it turns bene�cial. Additionally, our aim here is to assess

whether staggered board is a signi�cant indicator of corporate governance or

not, and we �nd that it is indeed signi�cant over our sample period.

Several governance mechanisms represented in our data have multiple indi-

cators. This allows us to assess if the assigned weights are actually relevant

and practical. For instance, special meetings and written consent provisions

both have an additional indicator of supermajority requirements. With most

governance aspects captured by these provisions themselves, the additional

supermajority indicators should have a considerable yet marginal governance

e�ect, and thus show relatively lower coe�cients. We see that this is indeed

true for all such provisions.

On the whole, we see that the coe�cient weights for factors from constrained

regressions are a good representation of each provision's contribution to cor-

porate governance. We also �nd that the relative importance of provisions,

which previous index construction methodologies ignore, can be important

when measuring the real impact of governance characteristics.

37 Bebchuk, Coates IV, and Subramanian (2002) show that shareholder returns were re-
duced by 8-10% during 1996 to 2000, when the target �rms being acquired had �e�ective�
staggered boards. In our study, we merely consider the presence of staggered board provi-
sions.
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3.4.2.2 Alternative Methodology

In our LASSO application for ATP selection, we use Equation 3.2 to minimize

the following function:

N∑
i=1

(
logR̃i −

n∑
j=1

λijFij −
m∑
k=1

γikXik

)2

+ Λ1

( n∑
j=1

|λij|+
m∑
k=1

|γik|
)
. (3.4)

The terms associated with Λ1 represent our LASSO-penalty for the OLS esti-

mation captured by the �rst term.38 Thus, the LASSO technique here essen-

tially selects a subset of ATPs (Fij) that explains the returns best in compar-

ison to a full model that includes all the 19 ATPs.

Commonly, variable selection can be done one variable at a time using step-

wise regression. However, employing an advanced variable selection technique

such as the LASSO comes with several advantages. First, LASSO is e�ective

in identifying the relative importance of predictors or factors to omit irrele-

vant variables. Second, LASSO is speci�cally designed to maximize in-sample

predictive ability. Third, it can be customized to use up-to-date information

for every year, so that dynamic selection is applied for ATPs. Fourth, LASSO

estimation works even in the presence of multicollinearity. Last, it requires

fewer iterations and, hence, is faster when there are many variables to choose

from.

In Table 3.4, we report the ATPs selected from LASSO estimations in each year

of our sample period when all 19 ATPs are included as predictors of returns

using Equation 3.2. All the controls X are the same as those used in the base-

line methodology shown in the Section 3.4.2.1. For each year, we introduce all

prior sample years data along with the estimation year. The LASSO-selected

38 With only 19 ATPs to select from, alternative algorithms such as ridge regression or
elastic net estimation showed similar results as LASSO.
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Table 3.4 LASSO estimations

This table presents the summary of ATPs that are selected when LASSO estimations are
used on Equation 3.2 for each year. The dependent variable is stock returns (in log) for
month `t,' while all 19 provisions are independent variables along with standard controls
including volume, past returns, size, value, and others, as shown in Appendix 3.A.3. For
each year, the estimations consider all data available up to the focal year to provide dynamic
ATP selection. In-sample R-squared values for the selected model that minimizes Extended
Bayesian Information Criterion (EBIC) are also provided.

Year 2007 2008 2009 2010 2011 2012 2013 2014 2015

Golden parachutes Yes Yes Yes Yes Yes Yes Yes
Fair price Yes Yes Yes Yes
Resignation Req. Yes Yes Yes Yes Yes Yes Yes
Unequal Voting Yes Yes Yes Yes
No secret voting Yes Yes Yes Yes Yes Yes Yes
No cumulative voting Yes Yes Yes Yes
Staggered Board Yes Yes
SM - Merger Yes Yes Yes Yes Yes Yes Yes
SM - Consent
SM - Sp. Meeting Yes Yes Yes Yes Yes Yes
SM - Bylaws
SM - Charter Yes Yes
Poison Pill Yes Yes Yes Yes Yes
Sp. Meetings
Written Consent Yes Yes Yes
Bylaws Yes
No Blank Check Yes Yes Yes Yes Yes
Opt Outs
Charter Yes Yes Yes Yes Yes Yes

In-sample R-squared 0.069 0.072 0.062 0.061 0.053 0.054 0.056 0.054 0.053

ATPs subset varies over time con�rming the results from Table 3.3, that the

explanatory power of each of the ATPs toward returns are not constant. With

LASSO, the number of selected ATPs varies from as few as 2 in 2008 to as

many as 14 in 2012.

The in-sample R-squared values across the sample for LASSO-selected ATPs

remain comparable to those obtained using OLS regressions. For example,

the R-squared for the year 2015 is the same as that shown for unconstrained

regression (or OLS) in Table 3.3. Moreover. when we compare the out-of-

sample predictive power of LASSO selected ATPs to the weights identi�ed

with Sharpe's (1992) method, we �nd that LASSO underperforms consistently
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across the years. Thus, we employ the weights identi�ed from constrained

regression in Table 3.3 to construct the unequal-weighted governance index.

3.4.3 The Two Indices for Comparison

3.4.3.1 The New Governance Index

The new governance (nG) index is a simple weighted sum of individual provi-

sions coded as 1 for each provision that empowers managers and limits share-

holders' say, and 0 if the provision is absent. Similar coding for presence/

absence of ATPs were used to construct the G and E indices (Gompers, Ishii,

and Metrick, 2003; Bebchuk, Cohen, and Ferrell, 2009). Some provisions, such

as those measuring supermajority requirements for certain �rm decisions, were

speci�cally designed from the available data to capture poor governance mech-

anisms (see Appendix 3.A.1 for more details). The weights attached to each

of the 19 factors were extracted using the methodology explained in previous

section. For every year, we determined the weights based on the data available

up to that speci�c year. This was essential to avoid recency bias and to ensure

that the index captures the essence of each provision's evolution with time.

Using all available data to construct the index also ensured richness in the

data and reduced the e�ects of survivorship bias. The index composition for

each �rm j in year t can be summarized as:

nGj,t = |
19∑
i=1

witFij,t |, (3.5)

where nGj,t is the new governance (nG) index for �rm j in year t, wit is the

individual factor i's weight for each year t, and we de�ne Fij,t ∈ {0, 1} as

above for each provision factor. We set the weights wit = λit for all factors

except wit = 0 when the factors were statistically insigni�cant (at α = 0.10)
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Table 3.5 Annual summary statistics for the new Governance (nG)
Index

This table shows the summary statistics for the new governance (nG) index over time.
The nG-Index is computed using the 19 provisions in Table 3.1 using the method detailed in
Section 3.4.2.1. The index values presented here are in percentages for ease of interpretation.
Higher values for the nG-Index indicates lower governance quality, and vice versa. The last
row provides the summary statistics for the entire sample. Firms with dual class stocks are
excluded.

Year
Number

of Firms
Mean

Standard

Deviation
Minimum

5th

percentile
Median

95th

percentile
Maximum

2007 1020 24.38 5.53 10.00 18.21 24.55 28.88 96.41

2008 1071 27.63 5.58 12.48 21.53 27.54 32.34 95.84

2009 1113 26.31 5.35 13.99 20.55 26.06 31.67 94.83

2010 1161 28.35 5.30 14.37 23.36 28.19 32.09 97.55

2011 1164 29.01 5.19 17.99 24.04 28.52 33.50 97.23

2012 1187 26.57 3.63 17.07 22.22 26.45 30.27 82.82

2013 1202 31.28 6.53 19.54 26.12 30.55 35.37 95.77

2014 1236 33.25 5.88 22.32 28.04 32.67 37.66 95.20

2015 1036 32.63 4.70 22.09 28.22 32.34 36.69 93.64

Total 10190 28.90 6.06 10.00 22.07 28.52 35.68 97.55

in the constrained regressions.39 Our examination of the statistically insignif-

icant coe�cients revealed that most had very low and sometimes negligible

magnitudes, which again backed our assumption that these provisions were

irrelevant for that year in di�erentiating a well governed �rm from a poorly

governed one. As a robustness check, we also created indices for each year by

including all weights, regardless of their statistical signi�cance (wit = λit for

all factors) and found that it had a very high correlation (ρ = 0.9768) with

our index, showing that omitting certain irrelevant factors from the index for

speci�c years does not lead to any signi�cant loss of information.

The constructed index, thereby represents the degree to which management is

able to restrict shareholders' rights by ensuring the existence of ATPs within

39 This is not a mere heuristic approximation. With the factors beings statistically in-
signi�cant, we cannot reject the hypothesis that their weights are 0. Hence, the rule applies.

139



these �rms. Table 3.5 summarizes the key characteristics of our governance

index. The true nG-Index scores are on a scale of 0 to 1, with 0 characterizing

the lack of ATPs or better governance quality (the G and E indices have a

similar scale of 0 for good governance to higher values for poor governance).

We see that, on average, the governance quality of �rms in our sample worsened

over the years. We see the same from the minimum scores seen for each year

as well. However, the highest degree of bad governance for each year shows

no such monotonic trend. For most, the mean scores lie on the right side of

the median scores, showing that the governance ratings using the nG-Index

generally have a positively skewed distribution. We also provide the 5th and

95th percentile scores because this formed the criteria to identify good and

poor governance portfolios when examining abnormal returns.

3.4.3.2 The Modi�ed Governance Index

To establish the advantages of an unequal-weighted index over an equal-weighted

index and to demonstrate its superior ability to track governance quality, we

also created an index using the same 19 provisions by assigning them equal

weights of 1; that is, setting wit = 1 in the right-hand-side of Equation 3.5. We

do this to stay consistent with the method followed in prior literature to com-

pose the G-Index, E-Index, Gov-Score, and so on. Since most of the available

provisions are similar to those used in the G-Index, albeit smaller in number,

we refer to this index as the modi�ed Governance (mG) index.

mGj,t =
19∑
i=1

Fij,t , (3.6)

where F s are the individual factors or provisions explained before. We use

the exact same factor codings as those for the nG-Index. Most of the key

characteristics of mG are similar to those observed for nG in Table 3.5, but on
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a di�erent scale of 0 to 19.

3.4.4 Relationship Between the New and Old Indices

We used the mG-Index as a close proxy for the G-Index and additionally

created a similar close proxy for the E-Index using the currently available

set of ATPs. Table 3.A.1 of the Appendix reports the correlations amongst

these indices. The corresponding proxies for the two existing indices (G-Index

and E-Index) have a correlation of 0.72, which is similar to that reported in

Bebchuk, Cohen, and Ferrell (2009). However, the nG-Index has a statistically

signi�cant correlation of 0.37 with the G-Index proxy and 0.13 with the E-

Index. While this does show that the E-Index contributes considerably to the

G-Index, it contributes signi�cantly less to the unequally weighted index. This

is understandably because the E-Index, by construction, consists of the most

relevant elements from within the G-Index provisions, but at the expense of

75% of the remaining elements that also have a substantial and even higher

correlation to the G-Index (Bebchuk, Cohen, and Ferrell, 2009). Moreover,

these correlations also indicate the possibility that certain provisions in the E-

Index may have become irrelevant within the new set of provisions for which

data is collected and reported by ISS beyond 2007.

The nG-Index understandably retains a higher correlation with the G-Index

than the E-Index proxy because it includes all of the available ATPs. The

low correlation of 0.37 between the equally and unequally weighted indices

may also indicate a considerable amount of information loss when the relative

importance of individual provisions is ignored.

Since our �rst set of empirical tests focus on assessing the ability of the

nG-Index as a measure of governance quality, in the next section, we draw

comparisons between the nG and mG indices and make a case for nG-Index.

Subsequently, we examine the abnormal returns' relationship with the invest-
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ment portfolios created using the nG-Index to assess investor returns from a

governance-based hedge.

3.5 Corporate Governance�Performance Relationship

We study the relationship between corporate governance and various perfor-

mance measures using both the nG- and mG-Index to then compare the results

and examine their respective explanatory powers. For testing the nG-Index's

association with the �rm values and operating performances, we use out-of-

sample construction of the index (i.e. replacing wit by wit−1 in Equation 3.5)

to ensure that the results are free from in-sample bias. The in-sample prob-

lem for these performance measures can be summarized as follows. If current

ATPs are included as a determinant of returns to obtain the factor weights,

these weights will be correlated with current returns and hence should essen-

tially be related to �rm values and operating performances. This may result

in over�tting that drives the statistical signi�cance for the nG- against the

equally weighted mG-Index. The said problem is not existent when we study

the abnormal returns from governance portfolios, because these portfolios are

constructed by sorting the sample �rms using last year's nG-Index values.

3.5.1 Firm Value and Corporate Governance

Most studies investigating the governance��rm value association use Tobin's

Q as the proxy for �rm value.40 Therefore, for ease of comparison between

our results and those in the prior corporate governance literature, we study

the e�ect of corporate governance on �rm value by using Tobin's Q as the

dependent variable. We account for industry-wide variations in �rm value

40 In relation to aggregated governance indices as well as speci�c governance character-
istics such as board diversity (Carter, Simkins, and Simpson, 2003), board size (Eisenberg,
Sundgren, and Wells, 1998), executive compensation (Mehran, 1995), and ownership struc-
tures (Cho, 1998).
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by generating an industry-adjusted Tobin's Q with respect to the industry

median values. The industry-adjusted Tobin's Q based on mean was also

explored, but the median-based industry-adjusted Tobin's Q was preferred, as

Gompers, Ishii, and Metrick (2003) and Bebchuk, Cohen, and Ferrell (2009)

suggest. The model speci�cations for the Tobin's Q on corporate governance

regressions were variations of the following baseline model:

Qj,t = a1 + b1 ∗Gj,t + c1 ∗Xj,t + εj,t, (3.7)

where Qj,t is Tobin's Q (in all cases, industry-adjusted using the industry-

median Tobin's Q) for �rm j in year t, and Xj,t are the corresponding �rm-

based controls. Gi,t is either the nG scores or mG scores for �rm j in a

given year. Standard controls identi�ed from prior literature included size

(�rm's assets), Altman's Z-scores (measuring �nancial distress; see Altman,

1968), volume of shares traded (a proxy for liquidity), leverage, capital expen-

ditures/total assets ratio (CAPEXTA), and a Delaware incorporation dummy.

Many studies use these controls in examining the corporate governance��rm

value association (such as Bhagat and Bolton, 2008, 2009; Bebchuk, Cohen,

and Ferrell, 2009). Bhagat and Bolton (2008) use Altman's Z-scores as an in-

strumental variable to control for endogeneity. However, many recent studies

indicate a direct relationship between �nancial distress as measured by Alt-

man's Z-score and the �rm value or Tobin's Q (Güner, Malmendier, and Tate,

2008; Allayannis, Lel, and Miller, 2012). For this reason, we introduce Alt-

man Z-score as a control for �nancial distress in our speci�cation. We also

reviewed each of these controls from the literature to identify the expected

sign of their relationships with Tobin's Q. We included �rm assets, volume

traded, and CAPEXTA in the models using logarithmic transformations, as

these variables were positively skewed with long tails.

The governance index literature suggests multiple variations of Equation 3.7.
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However, there is an overall agreement that a classic OLS is not su�cient.

Thus, we look at two variants of this regression equation. First, as Gompers,

Ishii, and Metrick (2003) suggest, we use a variant of Fama and MacBeth

(1973) method by assessing the statistical signi�cance of cross-sectional re-

gressions for each year and across years. Second, since the nG scores vary with

both time and year, we examine the Tobin's Q and governance relationship

by running a �xed e�ects (FE) panel regression to control for unobserved �rm

heterogeneity (Bebchuk, Cohen, and Ferrell, 2009). However, on a cautionary

note, within-�rm governance characteristics change very little over time, and

thus the FE estimates may be attenuated if they mostly capture time-series

variations (Gompers, Ishii, and Metrick, 2003). So, to account for time-trends,

we include additional year dummies in the FE model and isolate only the e�ect

of changes in the governance score (nG or mG) on Tobin's Q.

Table 3.6 summarizes the outcomes for the �rst variation of the Tobin's Q

regressions (i.e., annual estimates). We see a signi�cant relationship between

both nG and mG with Tobin's Q when we consider the time-series averages

(last row). However, a closer examination of the annual cross-sectional regres-

sions show the superiority of nG over mG. The unequally weighted nG has

statistically signi�cant coe�cients (at p<0.10) for more years in the sample

period than the equally weighted mG does. We consider two alternative models

to check these annual regression estimates: �rst, Model 1 in Table 3.6 consid-

ers only the four controls used in Gompers, Ishii, and Metrick (2003); second,

Model 2 includes additional controls as Bebchuk, Cohen, and Ferrell (2009)

and Bhagat and Bolton (2008) suggest. Comparing the adjusted R-squared

for both index measures shows no considerable di�erence in their explanatory

powers. However, with more controls in the regression (Model 2), �ve of the

nine years for nG show statistical signi�cance, while we see the same for mG

in only one of the years. Overall, we see here that better governance (lower
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Table 3.6 Annual regressions for Tobin's Q on governance

This table shows the results obtained by running regressions of Tobin's Q on the new Gov-
ernance (nG) and modi�ed Governance (mG) indices for each year in our sample. Model 1
considers Tobin's Q with the two indices using only the four controls in Gompers, Ishii, and
Metrick (2003), i.e., log of assets, log of �rm age, Delaware dummy, and S&P500 dummy.
Model 2 extends Model 1 by additionally controlling for ROA, Altman's Z, leverage, and
log of capital expenditures. For details on the de�nition of each variable, see Appendix
3.A.2. All regressions use industry-adjusted Tobin's Q calculated as Tobin's Q minus the
median Tobin's Q for that industry (segregated using Fama and French (1997) 48 indus-
try classi�cation). For each year, the corresponding coe�cients and robust standard errors
from cross-sectional regressions are reported accordingly. The time-series coe�cients and
standard errors (using Fama and MacBeth, 1973 methodology) are given at the bottom of
the table. The coe�cients for constant and controls are left out. Signi�cance levels are
represented by *, **, and *** for 10%, 5%, and 1%, respectively.

Year Number of
Observations

(1)

nG-Index mG-Index

(2)

nG-Index mG-Index
2007 1001 -0.8959** -0.0319* -0.4772 -0.0073

(0.392) (0.017) (0.371) (0.014)
2008 1050 -0.8080** -0.0179 -0.6150* -0.0044

(0.384) (0.013) (0.373) (0.012)
2009 1092 -1.3295*** -0.0373** -0.9159** -0.0197

(0.403) (0.013) (0.339) (0.012)
2010 1137 -0.9954** -0.0299** -0.5314 -0.0055

(0.445) (0.015) (0.357) (0.017)
2011 1140 -1.1504** -0.0364** -0.7414** -0.0051

(0.503) (0.015) (0.352) (0.013)
2012 1161 -1.5539* -0.0439** -0.6706 -0.0178

(0.822) (0.015) (0.573) (0.013)
2013 1176 -1.2348** -0.0633** -0.5816* -0.0211

(0.411) (0.019) (0.353) (0.016)
2014 1207 -1.4874** -0.0645** -1.3352** -0.0524**

(0.524) (0.022) (0.564) (0.025)
2015 1026 -1.1441* -0.0475** -0.7451 -0.0352

(0.614) (0.024) (0.508) (0.023)

Mean 9388 -1.1777*** -0.0414*** -0.7348*** -0.1872***
(0.085) (0.005) (0.087) (0.005)

145



nG scores) is associated with higher �rm values (Q). The last row in Table

3.6 shows that a 100% decline in the nG score (i.e., from 1 to 0) will result

in approximately 0.74 units increase in �rm value measured by Tobin's Q. In

contrast, every 1 unit decline in mG score (on a scale of 0 to 19), increases

Tobin's Q by 0.19 units. For comparison, we transformed the units for mG

into same scale as for nG and �nd that a 100% decrease in the mG score

(i.e., from 19 to 0) increases the �rm value measure Tobin's Q by only 0.35

units.41 Since the presence of measurement error in the independent variable

can lead to biased estimates, the lower impact on Q indicates the downward

bias in these results, which the fact that individual cross-sectional regressions

for each year had mostly insigni�cant coe�cients for mG also con�rms.

With the nG-Index being a better indicator of �rms' governance quality than

the mG-Index is, we expect more consistency for its coe�cients in the an-

nual Tobin's Q regressions. Our �ndings con�rm that the nG-Index indeed

consistently shows that good governance is signi�cantly related with superior

�rm value in both time-series and cross-sectional models. This is not the case

with the mG-Index, which has a signi�cant coe�cient only for the time-series

average.

Regardless of the results above, there is still a chance that the mG-Index is

equally as good as the nG-Index is in measuring governance quality, if not

better. Although the observations in the sample were exactly the same in both

cases, the e�ect of �rm characteristics on the two measures are di�erent be-

cause many �rm characteristics are controlled in creating the nG-Index (in the

constrained regressions), which is not the case with mG. This leaves a possibil-

ity that these �rm characteristics interact with the error term and distort our

41 We did this by creating a new variable, calculated as [mG1 = (19−mG)/19] to normalize
to the same scale as nG scores, and then running the Fama-MacBeth variant of the Q on
the governance regression in Equation 3.7.
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results. To tackle this, we considered the next variation of regressions using

the �rm FE model. Table 3.7 reports the results from these regressions for

both indices.

We essentially see a similar pattern as that from the annual regressions. Good

governance �rms (with lower nG scores) perform signi�cantly better than those

with poor governance quality (i.e., high nG scores) do. However, when we

consider �rm �xed e�ects, only the nG-Index shows a statistically signi�cant

relationship between governance and �rm value. The alternative mG-Index

shows no statistically signi�cant relationship between good governance and

�rm value, with the coe�cient's sign (+) being opposite to our expectation (�

). The model �ts, as the R-squared values indicate, because all nG regressions

are marginally better than those seen for the mG-Index. These results enforce

our inferences from Table 3.6 that the nG-Index, being a better indicator of

governance quality, shows a more persistent relationship with �rm value (i.e.,

Tobin's Q) than the mG-Index does.

As Section 3.3.4 explains, we further analyze the relationship between the two

indices and Tobin's Q using a dynamic system GMM as a preliminary con-

trol for endogeneity. We �rst assessed if past �rm values a�ect the current

�rm value. Models 4 and 5 in Table 3.7 show the results. This is important

to understand whether we can indeed use past �rm values as instruments for

present governance structures. Subsequently, we drop the recent two lags and

include the next two lags to capture the dynamism between governance and

�rm value in the panel GMM estimator. Wintoki, Linck, and Netter (2012)

show that such instruments are exogenous and that including two lags is suf-

�cient for governance�performance relationships. Model 6 reports the system

GMM estimation. Similar to the assumption in Wintoki, Linck, and Netter

(2012), we consider all regressors besides the year dummies and �rm age to

be endogenous. The results show that even after accounting for simultaneity,
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possible reverse causality, and unobservable heterogeneity, there exists a sta-

tistically and economically signi�cant relationship between nG-Index and �rm

value. When we use the equal-weighted mG-Index instead, the GMM estimate

becomes statistically insigni�cant. This rea�rms our earlier inference that

the nG-Index has superior explanatory power to the mG-Index, since our pro-

posed index provides causal estimates for the relationship between corporate

governance and �rm value, while the equal-weighted measure fails to do so.

3.5.1.1 Robustness

We further ran in-sample tests for all regressions in this section to a�rm that

our results are not driven by the out-of-sample period weights assigned for the

nG-Index. The results remain the same, even with an alternative in-sample

construction of the nG-Index that assigns the current year's weight to each

provision in any given year (Appendix Table 3.14). Alternatively, we �xed

the weights from year 2007, and applied it across the years 2008 to 2015 and

again found that the results remain robust (untabulated). However, without

dynamism the information on each ATPs becomes obsolete over time, and the

statistical signi�cance and magnitude of the coe�cients decline. We addition-

ally ran a horse-race regression by including the E-Index and several measures

of active ownership to see if our index retains its explanatory power when we

control for other governance characteristics. The nG coe�cient estimates con-

tinue to show strong and consistent e�ects on Tobin's Q (see Appendix Tables

3.15 and 3.16).

3.5.1.2 Quasi-Natural Experiment

Despite the system GMM estimation results indicating a causal link between

nG-Index and Tobin's Q, there remains a need to further explore a cleaner

identi�cation that can isolate the true in�uence of governance (as measured

149



Table 3.8 Do changes in nG-Index cause changes in Tobin's Q?

This table reports the Di�-in-Di�-in-Di� (DDD) estimation results for average main e�ects
(1), main e�ects + average �rst interaction e�ects (2), and full model with all main and
interaction e�ects (3) for the impact of changes in governance on Tobin's Q. All models are
estimated using Equation 3.8 controlling for the same �rm characteristics as those introduced
in Table 3.7 (except the Delaware dummy, which becomes redundant by the de�nition of
Control and Treatment �rms). Robust standard errors are shown in parenthesis. ∆nG
represents the annual change in nG-Index values for a �rm. Post indicates years after Revlon
ruling is passed in Maryland (i.e. beginning 2010) and Treat is a dummy representing
Maryland-based �rms, where Delaware-based �rms are taken as control group. Baseline
DDD estimation in Panel A considers the Maryland and Delaware �rms as is. Propensity
score (PS) matched DDD estimation considers a comparable Delaware �rm matched on log
of assets, return on assets and leverage, for every Maryland �rm in a given year (using
nearest-neighbor match with a 0.001 calliper). Panel B validates the results of Panel A
by running placebo treatments. First placebo test assumes placebo treatment group for
�rms based in the state of Ohio, and the second test modi�es the baseline DDD estimation
by considering placebo Post (beginning 2011). All models include industry and year �xed
e�ects. Levels of signi�cance at 10%, 5%, and 1% are indicated by *,**, and *** respectively.

Panel A: Baseline and Propensity Score (PS) Matched DDD estimations

Baseline DDD PS Matched DDD

(1) (2) (3) (1) (2) (3)

∆nG 0.1963 -0.0499 0.0562 0.2354 -4.7860 -2.4677
(0.184) (0.688) (0.713) (0.378) (3.087) (2.717)

Post -0.0480 -0.0575* -0.0615* 0.0625 0.1708 0.1819
(0.031) (0.032) (0.033) (0.148) (0.149) (0.152)

Treat -0.0210 -0.1243 -0.1936* -0.0715 -0.1835 -0.2472*
(0.056) (0.113) (0.108) (0.077) (0.131) (0.129)

∆nG ∗ Post 0.2953 0.1803 5.2824* 2.9667
(0.710) (0.734) (3.111) (2.734)

∆nG ∗ Treat -1.6503 -8.4209* -0.3432 -7.7447
(2.471) (4.620) (2.957) (5.649)

Post ∗ Treat 0.1206 0.2281* 0.1521 0.2502*
(0.122) (0.119) (0.141) (0.138)

∆nG ∗ Post ∗ Treat 11.1171** 11.1314*
(5.102) (6.516)

Observations 4831 4831 4831 506 506 506
R-squared 0.031 0.031 0.033 0.168 0.178 0.189

Panel B: Placebo DDD tests

Placebo Treated State (Ohio) Placebo Post-Treatment (2011)

(1) (2) (3) (1) (2) (3)

∆nG 0.2491 0.5462 0.4668 0.1963 -0.6044 -0.5582
(0.168) (0.686) (0.800) (0.184) (0.389) (0.391)

Post -0.1055*** -0.1009*** -0.1019*** -0.0600* -0.0411 -0.0426
(0.033) (0.035) (0.035) (0.033) (0.034) (0.034)

Treat 0.0032 0.0105 0.0156 -0.0210 -0.0231 -0.0596
(0.024) (0.056) (0.058) (0.056) (0.089) (0.100)

∆nG ∗ Post -0.3578 -0.2668 1.0864** 1.0401**
(0.683) (0.819) (0.425) (0.427)

∆nG ∗ Treat -0.0525 0.2425 -1.3847 -4.4612
(0.416) (0.861) (2.518) (4.332)

Post ∗ Treat -0.0097 -0.0164 -0.0235 0.0328
(0.061) (0.063) (0.097) (0.109)

∆nG ∗ Post ∗ Treat -0.4578 6.2700
(0.929) (4.800)

Observations 4929 4929 4929 4831 4831 4831
R-squared 0.030 0.030 0.030 0.031 0.032 0.032
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by nG-Index) on the �rm values. We exploit the acceptance of Revlon ruling

in the state of Maryland as an exogenous shock to corporate governance (see

Section 3.3.4) and run a DDD estimation as follows:

∆Qj,t = a1,1 + b1,1 ∗∆Gj,t + b1,2 ∗ Postj,t + b1,3 ∗ Treatj,t + b1,4 ∗∆Gj,t ∗ Postj,t

+b1,5 ∗∆Gj,t ∗ Treatj,t + b1,6 ∗ Postj,t ∗ Treatj,t

+b1,7 ∗∆Gj,t ∗ Postj,t ∗ Treatj,t + c1,1 ∗Xj,t + εj,t,

(3.8)

where Post is a dummy variable indicating the years after the introduction of

Revlon ruling in the state of Maryland. Treat is a dummy variable taking a

value of one for the �rms based out of Maryland and zero for �rms registered

in the state of Delaware. Firms' pre-existing ATPs are known to bias the esti-

mates when using state-based antitakeover rulings for identi�cation (Karpo�

and Wittry, 2018). To overcome this, we model the changes in nG-Index as

∆Gj,t, i.e. the change in nG-Index experienced by a �rm j from year t − 1

to t, and accordingly measure the impact on Tobin's Q as ∆Qj,t, which is

again computed as a �rst di�erence of time-series of industry-adjusted Q. All

the controls Xj,t remain the same as in Equation 3.7, except for the Delaware

dummy that is already controlled for in Treat.

Our main coe�cient of interest is b1,7 that captures the resultant change in

Tobinâ��s Q when there are changes in the nG-Index between the pre-2009

and post-2010 years, and also between the Maryland- and Delaware-based

�rms. Table 3.8 shows the regression results for our triple di�erence estimation.

The overall treatment e�ect of changes in nG-Index on Tobin's Q is represented

by the triple interaction term shown in the table. The results indicate that

there is a statistically signi�cant positive e�ect of changes in nG-Index on

Tobin's Q: essentially, changes in Tobin's Q are greater after the passing of

Revlon ruling in Maryland, and relative to Delaware �rms.
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The result for the triple di�erence term largely remains the same both in

terms of the magnitude and statistical signi�cance even with propensity score

(PS) matched control group. For each Maryland-based �rm, we identify an

equivalent Delaware-based control �rm using nearest neighbor PS matching

with a 0.001 calliper matched on the size of assets, operating performance (i.e.

ROA) and leverage. Panel B in Table 3.8 shows additional validity tests for

our quasi-experimental shock by running a couple of placebo DDD estimations.

We �rst take a placebo treatment state (Ohio) in place of Maryland, and �nd

that the DDD e�ect is statistically indistinguishable from zero. Next, for our

original treatment state (i.e. Maryland), we assume a placebo treatment date

(2010 instead of 2009) and check if the DDD estimate is insigni�cant. The

results from both these placebo estimations a�rm the internal validity of our

causal inference from baseline DDD model.

3.5.2 Operating Performance and Corporate Governance

The relationship between operating performance and governance indices was

studied using multiple measures of operating performance, such as ROA, ROE,

NPM, and sales growth (Gompers, Ishii, and Metrick, 2003; Bhagat and Bolton,

2008, 2009; Brown and Caylor, 2009). Core, Guay, and Rusticus (2006) ex-

amine the operating performance�governance index relationship using the G-

Index and show that ��rms with weak shareholder rights [proxied using the

G-Index] exhibit signi�cant operating underperformance�. Most subsequent

studies on governance impacts on operating performance use ROA as its pre-

ferred proxy. We use three measures: ROA, ROE, and NPM, to represent

operating performance and assess how consistently the two governance mea-

sures (nG and mG) relate to them. Our basic model speci�cation to estimate

the relationship between operating performance and governance is similar to

that used for �rm value in the previous section, but with the operating per-
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formance proxies (i.e., ROA, ROE, or NPM) as the dependent variable.

OPj,t = a2 + b2 ∗Gj,t + c2 ∗Xj,t + εj,t, (3.9)

whereOPj,t is either industry-adjusted ROA, ROE, or NPM using the industry-

median values for �rm j in year t and Xj,t are the corresponding �rm-based

controls. Gj,t is either the mG or nG scores for �rm j across years t in the sam-

ple period. Most of our control variables here are the same as those used in the

Tobin's Q regressions with an addition of log of book-to-market ratio following

the methods in (Giroud and Mueller, 2011). We leave out Altman's Z due to

its de�nition (as it has operating performance as one of its constituents). For

the ROA and ROE regression models, we exclude leverage and CAPEXTA as

controls because they would lead to greater endogeneity concerns for the reason

that they include either assets or equity in their computations.42 Additionally,

we include a variable capturing research and development (R&D) expenses and

advertising expenses for the NPM regression as a ratio of sum-total of these

two expenses to total assets.43

Table 3.9 shows the results for various operating performance measures using

using median regressions with block bootstrapped standard errors, as operat-

ing performance data show some degree of autocorrelation, which would lead

to bias in both the time-series and panel regressions. An alternative process

suggested in the literature (e.g., Brown and Caylor, 2009) corrects for this au-

tocorrelation by including a one-period lagged operating performance measure

(the same as the dependent variable); however, this process may still lead to

some bias because it only considers a lag-one autocorrelation.

42 This is not an issue for NPM, which is a sales or revenue based measure.
43 For similar concerns as those for excluding leverage and CAPEXTA, we cannot use this

control for the ROA or ROE regressions.
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Table 3.9 Regressions for operating performance on governance.

This table summarizes several variations of the median (minimum absolute deviation) re-
gressions that specify operating performance as depending on the nG and mG indices for
the entire sample. For both nG and mG, the respective expected signs for their coe�cients
are shown in parenthesis. The results for the operating performance measures ROA, ROE,
and NPM are shown in Panels A, B, and C, respectively. Model 1 considers the operat-
ing performance measure with the two indices without any controls. Model 2 improves on
model 1 by including size (log of assets), age (in logs), book-to-market ratio (in logs), and
dummies for S&P500 and Delaware incorporation as controls. For the NPM regressions,
we additionally control for capital expenditure along with R&D and advertising expenses.
Model 3 includes year �xed e�ects. For further details and the calculations for each variable,
see Appendix 3.A.2. All regressions use industry-adjusted operating performance measures
calculated as ROA (ROE or NPM) minus the median ROA (ROE or NPM) for that indus-
try using the Fama-French Fama and French (1997) (FF) 48 industry classi�cation. The
�rst set of models report the coe�cients and robust standard errors for the nG measure of
governance and the next set show the same for the mG measure. Models 2 and 3 considered
block bootstrapping with 200 bootstraps to estimate standard errors. The coe�cients for
constant, controls, and year dummies are omitted. Signi�cance levels are represented by *,
**, and *** for 10%, 5%, and 1%, respectively.

Panel A: ROA as the performance measure

(1) (2) (3) (1) (2) (3)

nG (�) -0.0174** -0.0166** -0.0195**
(0.008) (0.006) (0.009)

mG (�) -0.0011*** -0.0019*** -0.0020***
(0.000) (0.000) (0.000)

Controls Yes Yes Yes Yes
Year Fixed E�ects Yes Yes

Number of Observations 9170 7368 7368 10190 8276 8276

Panel B: ROE as the performance measure

(1) (2) (3) (1) (2) (3)

nG (�) -1.1335* -4.1191*** -3.2665***
(0.605) (1.187) (1.166)

mG (�) -0.0272*** 0.1564*** 0.1148**
(0.011) (0.055) (0.050)

Controls Yes Yes Yes Yes
Year Fixed E�ects Yes Yes

Number of Observations 6785 6630 6630 7615 7442 7442

Panel C: NPM as the performance measure

(1) (2) (3) (1) (2) (3)

nG (�) -0.0493*** -0.0378*** -0.0452***
(0.016) (0.014) (0.013)

mG (�) -0.0021*** -0.0015*** -0.0017***
(0.000) (0.000) (0.000)

Controls Yes Yes Yes Yes
Year Fixed E�ects Yes Yes

Number of Observations 9156 7368 6950 9156 7805 7805
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For ROA and NPM, both nG and mG show that good governance quality

is signi�cantly related to better operating performance. Bhagat and Bolton

(2008, 2009) show similar results. However, in the full model 3, the e�ect

on NPM (0.04 units increase) is double that for ROA (0.02 units) for the

nG-Index. In contrast, the e�ect of mG-Index on ROA is marginally more

than that on NPM. We cannot compare these coe�cients in absolute terms

because the two indices operate on di�erent scales (0 to 1 for nG and 0 to

19 for for mG). However, the transformed scale for the mG index shows that

the e�ect size using both indices are almost similar, that is, 0.045 units for

nG and 0.038 units for mG.44 The results for ROE di�er from those seen for

the other two operating performance measures. While the nG-Index shows a

statistically signi�cant relationship with ROE, indicating that good governance

leads to improved operating performance, the mG-Index results in a coe�cient

in contrast to our expectation; that is, good governance as measured using the

mG-Index would lead to a decline in operating performance measured by ROE.

Again, overall, we see that the unequally weighted nG-Index is a better indi-

cator of �rms' governance quality than the mG-Index is. Using the nG-Index,

we �nd an association between good governance and superior operating perfor-

mance consistently across all three measures. The mG-Index shows signi�cant

relationships with operating performance as well, albeit an opposite sign for

ROE (i.e., well-governed �rms have a lower ROE than poorly governed ones).

Assuming that the mG-Index measures governance well, poorly governed �rms

outperform well-governed �rms in terms of net pro�ts made available to equity

shareholders. This would contradict the inferences drawn from the other oper-

ating performance measures. Consequently, we deduce that unless some other

variable drives this directional change, this is a su�ciently clear indication of

measurement error in the mG-Index.

44 We �nd this result using the same normalized mG index as for Tobin's Q.
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3.5.2.1 Robustness

As for the Tobin's Q regressions, we ran in-sample tests for all regressions and

each operating performance measure as a robustness check. This test shows

that our results are not driven by the out-of-sample period weights assigned for

the nG-Index, as even with the alternative in-sample nG-Index construction,

the results remain same (see Appendix Table 3.17). Similarly, the results

remain robust even by applying the �xed weights of year 2007 for the sample

period 2008 to 2015 (untabulated).

3.5.2.2 Quasi-Natural Experiment

To account for endogeneity, we further ran causal estimations for nG-Index

on all the three operating performance measures using changes in ROA, ROE

or NPM as a dependent variable in place of ∆Q in Equation 3.8. Results

were largely similar to that seen for Tobin's Q earlier, with the DDD e�ect

for Revlon ruling in Maryland indicating a strong and statistically signi�cant

causal relationship between nG-Index and two of the operating performance

measures (i.e. ROA and NPM, see Appendix Table 3.18).

The results for both �rm value and operating performance reveal the same

reliability issues with the mG-Index. Overall, poor governance �rms (with

higher nG or mG scores) signi�cantly underperform good governance �rms

(low scores) in our sample period. However, only the nG-Index shows a con-

sistent relationship between governance and both �rm value and operating

performance.

3.5.3 Stock Returns and Corporate Governance

One of our primary motivations for conceptualizing the unequally weighted

nG-Index was the disappearing premium in terms of abnormal returns seen
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in good governance �rms vis-à-vis the bad governance ones. If, indeed, the

disappearance of the abnormal returns�governance association was only for

the reasons given according to Bebchuk, Cohen, and Wang (2013) learning

hypothesis, our index would corroborate their �ndings by showing that there

is no investment strategy possible based on our governance index to beat the

markets. However, if, in addition to learning by market participants, the

disappearing association is also a result of low construct validity of the G and

the E indices, then long-short strategies using portfolios constructed with our

index will result in either gains or losses, albeit lower than those seen in the

1990s (Gompers, Ishii, and Metrick, 2003; Bebchuk, Cohen, and Ferrell, 2009).

We test this by dividing the sample for each year in deciles based on their nG

scores, with `Decile 1' (or Democracy) representing good governance �rms and

`Decile 10' (or Dictatorship) having the poorly governed �rms. This good to

bad governance classi�cation of portfolios is similar to those that Gompers,

Ishii, and Metrick (2003) and Bebchuk, Cohen, and Ferrell (2009) use. The

yearly division of deciles serves two speci�c purposes. First, it enables us to

ensure that we draw deciles using the latest nG index scores when they are

available at the beginning of each year.45 Second, it allows us to reset the

portfolios each year as and when new information becomes available.

We form the governance portfolio deciles by �rst sorting the individual �rms

in our sample based on their nG-Index scores, with the 1st decile contain-

ing �rms with low nG-Index scores in the previous year, and the 10th decile

comprising bad governance �rms with high nG-Index scores. We could select

these portfolio deciles using quantiles to break the 10 groups down. With

equal-sized groups using quantile breaks, however, we �nd that the di�erence

45 Note that, in essence, we consider lagged governance (nG) scores to see if investors can
use this information at its availability to make abnormal returns using long-short governance
portfolios. The weight extraction procedure in Section 3.4.2, on the other hand, employs
contemporaneous governance provisions.
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between the �rst and tenth decile scores is not signi�cantly large enough to

show di�erences in their governance qualities. Another reason that we do not

use quantile breaks is the positive skewness seen for nG-Index, as more �rms

are concentrated in the better governance (or lower nG-Index) region. Addi-

tionally, these governance scores are not unique for each �rm, as in the case

of the G and E indices, meaning that there could be several �rms with the

same governance scores, making it di�cult to decide which ones to include in

which decile if they lie at the decile thresholds. Gompers, Ishii, and Metrick

(2003) and Bebchuk, Cohen, and Ferrell (2009) have similar unequal portfolio

quantiles, that is, deciles for the G-Index and sextiles for the E-Index.

The top 5 percentile governance �rms are those with nG-scores of less than 0.21

(or 21%), whereas we assign the worst 5 percentile governance rank to those

with nG-scores of more than 36%. We divide the remaining 90 percentile �rms

among the remaining 8 portfolios such that the intermediate range of nG-scores

(between the two extreme portfolios) are equally divided amongst them.46

We �rst examine whether the abnormal returns vary with governance deciles

over our entire sample using the methodology that Gompers, Ishii, and Met-

rick (2003) suggest. However, unlike Gompers, Ishii, and Metrick (2003), we

consider the Fama-French momentum factor in place of the Carhart (1997)

momentum factor along with the Fama and French (1993) three factors. In

addition, in the past few years, corporate governance scholars investigated the

relationship between corporate governance and stock market liquidity (for ex-

ample, Chung, Elder, and Kim, 2010). For this reason, we include the Pástor

46 In terms of nG% scores ranging from 21% or more for Decile 1 to 36% or less for Decile
10, this would mean dividing the 15% di�erence equally amongst the remaining 8 portfolios
such that each portfolio has a range of scores = 15%/8 = 1.875%.
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and Stambaugh (2003) liquidity factor within our returns model:

Rt = α+β1 ∗RMRFt +β2 ∗SMBt +β3 ∗HMLt +β4 ∗MOMt +β5 ∗LIQt + εt,

(3.10)

where Rt is the excess return for a certain portfolio in month t, the three stan-

dard Fama-French factors are RMRFt (excess market returns over the risk-free

rate), SMBt (Small minus Big), and HMLt (High minus Low) representing

the market, size, and value e�ects for time t with the additional MOMt fac-

tor capturing the momentum e�ect and LIQt representing the value-weighted

traded liquidity factor for month t. Although the literature contains consider-

able discussion on the ability of these factors to assess risk and performance,

we follow Gompers, Ishii, and Metrick (2003) argument that these factors can

depict a passive investment strategy, so that the intercept α represents the

abnormal returns from an active portfolio. We also consider the recent �ve-

factor model that Fama and French (2016) propose, which includes additional

investment and pro�tability factors. However, as Fama and French (2016)

mention, including these additional factors makes HML redundant. In other

words, keeping parsimony in mind, the returns variations captured by the HML

factor would more or less explain the impact of the investment and pro�tabil-

ity factors. Additionally, since we focus on attributing governance to portfolio

performance, the momentum and liquidity factors would be more pertinent for

corporate governance than the pro�tability and investment factors.

Table 3.10 summarizes the key attributes of the individual decile portfolios.

The �rst column shows the average nG-Index value for each portfolio by year.

The next two columns show the average monthly excess returns and the 5-

factor alphas using the model in Equation 3.10 for the value-weighted portfo-

lios. The remaining two columns show the same excess monthly returns and

alphas for the equal-weighted portfolios. We see that the abnormal returns
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Table 3.10 nG-Index based trading strategies and their abnormal
returns

This table provides the result for a �ve-factor regression (Fama and French (1993) of three
factors along with their momentum factor and Pástor and Stambaugh (2003) liquidity factor)
for each decile portfolio created from the nG-Index. The alphas and mean excess returns
are shown using both value- and equal-weighted portfolios. These portfolios are reset when
new data is available at the beginning of each year. The monthly portfolio returns for each
decile are regressed over factors capturing market (RMRF), size (SMB), book-to-market
(HML), momentum (MOM), and liquidity (LIQ) for White (1980) standard errors. The
stocks in deciles 1 and 10 represent the Democracy and Dictatorship Portfolios, respectively,
identi�ed as per the criteria in parenthesis. For deciles 2 to 9, equal intervals are assigned
for the remaining nG-Index range. For 2015, there were no stocks categorized in decile 1,
so the stocks in the next highest group, decile 2, were assigned to the Democracy portfolio.
Signi�cance at 10%, 5%, and 1% are indicated by *, **, and ***, respectively.

Value-weighted Equal-weighted

Portfolios
Mean

nG-Index
Alpha

Excess
Returns

Alpha
Excess
Returns

Democracy � Dictatorship -1.333** -1.233 -0.316 -0.275
(0.623) (0.405)

Decile 1 (Democracy) 0.189 -0.954** -0.345 0.010 0.729
(0 ≤ nG < 0.21) (0.490) (0.306)

Decile 2 0.221 -0.393 0.238 -0.181 0.550
(0.443) (0.244)

Decile 3 0.239 -0.359* 0.621 -0.093 0.637
(0.226) (0.159)

Decile 4 0.257 -0.181 0.452 0.100 0.818
(0.153) (0.108)

Decile 5 0.276 0.231** 0.849 .295*** 1.021
(0.111) (0.099)

Decile 6 0.293 0.011 0.679 0.237 0.953
(0.188) (0.147)

Decile 7 0.312 -0.117 0.533 0.206 0.848
(0.197) (0.000)

Decile 8 0.331 0.006 0.622 0.271 0.973
(0.320) (0.283)

Decile 9 0.349 1.267*** 1.669 1.400** 1.929
(0.462) (0.558)

Decile 10 (Dictatorship) 0.488 0.378 0.888 0.326 1.004
(0.36 < nG ≤ 1) (0.414) (0.258)
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or alpha estimates for all decile portfolios using both the monthly returns of

the equal- and value-weighted portfolios follow an increasing trend from the

Democracy portfolio to the Dictatorship portfolio. The democracy portfolio

(decile 1) distinctly underperforms the Dictatorship portfolio (decile 10). We

see this outperformance of Dictatorship portfolio over the Democracy portfolio

for both mean excess returns and abnormal returns. In the �rst row, we in-

clude the results of estimating the regression model speci�cation in Equation

3.10 by taking the returns from the hedged portfolio (long Democracy and

short Dictatorship) on the right-hand side. From a preliminary analysis of

the alphas and mean excess returns for the two extreme portfolios, we expect

this hedge portfolio to return a negative alpha, implying a possible reversal of

the long-short positions. However, we retain the long-short hedge strategy as

in previous studies (e.g., Gompers, Ishii, and Metrick, 2003; Core, Guay, and

Rusticus, 2006; Giroud and Mueller, 2011) for ease of comparison.

For this hedged model, α is about −16% per annum (or −1.33% per month)

for the value-weighted portfolios and about −3.8% per annum (−0.32% per

month) on the equal-weighted portfolios. The negative abnormal returns on

our governance hedge is statistically signi�cant at the 5% level for the value-

weighted portfolios. This result is markedly di�erent from that in Gompers,

Ishii, and Metrick (2003), of around +8.5% and in Bebchuk, Cohen, and Fer-

rell (2009), of about +14% for value-weighted portfolios in the 1990s, showing

that stock returns over our sample period were negatively related to gover-

nance (i.e., lower returns for better governance stocks). The negative alpha

indicates that swapping the buy/sell positions in the assumed hedge portfo-

lio, i.e., going long on poor governance �rms and short on good governance

ones, should have yielded about 16% returns per year using the value-weighted

portfolios. The corresponding equal-weighted hedge does not have statistically
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signi�cant returns.47 The statistically signi�cant outperformance of the decile

10 (Dictatorship) portfolio over the decile 1 portfolio (Democracy) is also a

powerful indicator of the strength of our proposed hedge because the remain-

ing performance attribution di�erences based on risk factors (market, size,

book-to-market, momentum, and liquidity) are either less signi�cant or in-

signi�cant. Additional analysis using portfolios created with the mG-Index,

show markedly di�erent results to those in Table 3.10, as there are no econom-

ically or statistically signi�cant magnitudes of abnormal returns possible.

From the individual portfolio decile summaries in Table 3.10, we see that the

value-weighted portfolios have mostly negative alphas (with the top 4 deciles

all having negative alphas) for the �rst 5 deciles, while 4 of the higher 5 deciles

(6 to 10) have positive alphas. This shows that, collectively, portfolios of poor

governance stocks tend to outperform passive investment strategies, while port-

folios composed of good governance stocks tend to underperform the same. The

results are similar for the equal-weighted portfolios as well, with less statisti-

cally signi�cant alphas than those for the value-weighted investments. This

is consistent with the new hedge seen for our sample period and follows the

directionally opposite trend to portfolio performance in the 1990s reported by

Gompers, Ishii, and Metrick (2003) and Bebchuk, Cohen, and Ferrell (2009).

3.5.3.1 Robustness Checks

We next carried out additional robustness checks on the hedge portfolio's ab-

normal returns to emphasize the validity of our �ndings. We follow a two-

pronged strategy here. First, we considered alternative portfolio constructions

to those in Table 3.10 to rule out the possibility that the results are not driven

47 A closer examination of the individual deciles shows that the outperformance of poor
governance stocks is largely driven by Decile 9 (which has signi�cant αs). Thus, with a wider
selection criteria for extreme portfolios, both the equal- and value-weighted hedge portfolios
become statistically signi�cant.
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by the nG-Index criteria applied for the portfolio division or other character-

istics such as industry membership, �rm size, or year of returns. Table 3.19 of

the Appendix shows the results for this robustness check. Second, we analyze

portfolio returns using alternative risk-factor models to check if the results

change when we add new factors or remove others. If the alphas remain con-

sistent in all alternative asset pricing models, we can rule out the potential

that the results are model driven. Additionally, alternative risk factor models

allow us to see if the �ve factors we use in our performance attribution analysis

explains the hedge portfolios best. The Table 3.20 in the Appendix reports

the results for these alternative asset pricing models.

Table 3.19 includes some modi�cations to the governance-hedged portfolio by

varying the nG-Index criteria in the selected deciles (see Bebchuk, Cohen, and

Ferrell, 2009) and in subsamples (see Gompers, Ishii, and Metrick, 2003).48

We use the Fama and French (1997) 48 industry classi�cation to obtain the

industry-adjusted monthly returns for each �rm by adjusting for the industry

median returns for each month. Additionally, to assess how hedged portfolios

behave if we use the equally weighted mG-Index to construct the portfolios

in place of the nG-Index, we show the corresponding abnormal returns for a

long-short mG-Index hedge.

For each portfolio construction variant in Table 3.19, we apply the same �ve-

factor model for performance attribution in Equation 3.10. In addition to

the abnormal returns or alphas, we report the mean excess returns for each

Democracy�Dictatorship hedge portfolio. These checks allow us to see if the

choice of cuto� (i.e., rows 2 to 4), industry membership (row 5), or time

e�ects (rows 6 and 7) may drive the results. We create additional Democracy�

48 We show results using (a) the same 5/95 percentile as in our primary decile portfolios
with the criterion limits changing every year, (b) newer 2/98 percentile rules held constant
for all years, and (c) equal sized deciles or 10 quantiles.
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Dictatorship hedges by combining more than 1 extreme deciles from our base-

line portfolio (row 1) to show the monotonic decline in abnormal returns as

the portfolio sizes in the extremes are increased by including more �rms from

the center of the nG-Index distribution (rows 8 and 9 � see Bebchuk, Cohen,

and Ferrell, 2009 for additional inputs on these variations). Last, as in the

last row of Table 3.19, we assess how the inferences would di�er if we use the

equal-weighted mG-Index in place of the nG-Index.

For most of the portfolio variants, the potential gains from both the value-

weighted and equal-weighted hedges are economically large. The only cases

for which the abnormal returns fall below 1 basis point are the cases with

equal-sized deciles or 10 quantiles (row 4) and when we use the mG-Index

to construct the portfolios (row 10). These results corroborate our previous

�ndings. Using equal-sized deciles does not provide a good hedge because

the extreme portfolios have very little di�erence between them, and because

the positive skewness of the nG-Index scores a�ect them. The results for the

mG-Index, once again, show that the equally weighted methodology may not

truly measure the �rm's governance quality. We �nd statistical signi�cance

for alphas in �ve of the variants for the nG-Index based value-weighted hedge

portfolios.

When we adjust the cuto�s for Democracy and Dictatorship portfolios each

year (row 2), the value-weighted hedge portfolio remains statistically signi�cant

at the 10% level. However, when we make the cuto�s smaller (to increase

the di�erences between the extremes), the abnormal returns from the hedged

portfolios become statistically insigni�cant. This result, combined with those

in row 4 indicate that making cuto�s too small or too big are detrimental to

these governance-based hedges.

Table 3.20 shows the estimates of abnormal returns for the long good governance�

short poor governance strategy using alternative asset pricing models. We do
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this mainly to test whether using di�erent factors or factor combinations af-

fect our main results in Table 3.10. We use the capital asset pricing model

(CAPM), three-factor model of Fama and French (1993), �ve-factor model of

Fama and French (2016), and variants of these Fama-French (FF) models with

the Pástor and Stambaugh (2003) liquidity factor included.49 For the value-

weighted hedge portfolio, the abnormal returns range from -1.31% per month to

-1.49% per month, and are all signi�cant at the 5% level. This shows that our

main result indicating that investors could potentially gain abnormal returns

by reversing the more conventional Democracy�Dictatorship hedge position is

true, even when we consider alternative asset pricing models. Moreover, the

FF four factor + liquidity model that we substantively selected to assess these

abnormal returns seem to give the most conservative estimates of the various

asset pricing models tested (with only the CAPM giving an alpha lower than

our estimate). For the equal-weighted portfolio hedge, in fact, the alpha for

our baseline model is the lowest amongst all models tested.

Overall, we �nd that our inference from nG-Index sorted portfolios is robust

and that investors could have potentially made abnormal returns by going long

on poor governance stocks and short on good governance stocks, especially by

investing in value-weighted portfolios.

3.5.4 Are the Index Weights Really Important for Investors?

We ran further empirical tests to examine how important are index weights for

investors by considering the risk-return tradeo�s related to governance. First,

we assess if poor governance �rms are indeed riskier for investors by studying

the di�erences in stock price crash risks associated with good governance �rms

49 We also considered the Cremers, Nair, and John (2009) takeover factor and Carhart
(1997) momentum factor for this robustness check. However, data on the takeover factor
is available only until 2003. We expect that the FF momentum factor (MOM) factor to
be closely related to Carhart (1997) up-minus-down (UMD) because it is constructed by
including stock momentum sorts along with �rm size sorts.
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vis-à-vis poor governance �rms. If governance weights are indeed important

for investors' downside risk, future stock price crash should be related only to

the nG- and not the mG-Index. Next, we checked the implication of applying

nG-Index scores to portfolio segregation after 2 and 3 years of the information

being available to investors. If investors do not capture the bene�ts of good

governance signals in the period immediately following the availability of gov-

ernance information (as we see in the previous section), the subsequent period

abnormal returns for long good governance�short bad governance hedge port-

folios should be higher. As more time passes, investors would react favorably

to the good governance stocks as they start to understand the bene�ts of good

governance signals. If, again, the index weights are essential for investors fu-

ture returns associated with good governance, only nG-Index should capture

this relation and not the mG-Index.

3.5.4.1 Future Stock Price Crash Risk and Corporate Governance

Can corporate governance, measured using the nG-Index, be used to identify

�rms with future low performances and corresponding stock price crash risk?

In this section, we address this central question.

Using the nG-Index as a proxy for corporate governance and corresponding

agency risk, we expect �rms that have high nG scores (i.e., demonstrating poor

governance practices) to show a higher propensity of facing stock price crashes

in the near future; that is, in the next year. We measure �rm-speci�c weekly

returns W as the logarithmic transformation of the residual obtained from

running weekly returns for each �rm in an expanded index model regression

following Hutton, Marcus, and Tehranian (2009):

rj,t = αj +β1j ∗ rm,t−2 +β2j ∗ rm,t−1 +β3j ∗ rm,t +β4j ∗ rm,t+1 +β5j ∗ rm,t+2 + εj,t,

(3.11)

166



where rj,t is �rm j's Wednesday-to-Wednesday return in week t, rm,t is the

corresponding CRSP value-weighted market index for the same week t. To

allow for nonsynchronous trading, we include additional two week lead and lag

terms for market index returns. Next, using the residual εj,t from the above

equation, we obtain the �rm-speci�c weekly return as Wj,t = ln(1 + εj,t).

To measure crash risk, we use four variables identi�ed from prior literature

(Chen, Hong, and Stein, 2001; Jin and Myers, 2006; Kim, Wang, and Zhang,

2016): CRASH, CRASHNUM, NCSKEW, and DUVOL. When a �rm-speci�c

weekly return Wj,t falls by more than 2.98 standard deviations below the aver-

age �rm-speci�c weekly return (FSWR) for that calendar year, we identify it

as a crash week. We set this limit to pick the lowest 10% of the FSWR distri-

bution in that year. The �rst measure CRASH is a dummy variable that takes

value 1 if the �rm undergoes at least one crash week in a given year, while the

second measure CRASHNUM counts the number of crash weeks experienced

by each �rm in a given year.

The other two measures are negative conditional skewness (NCSKEW) and

down-to-up volatility (DUVOL) as de�ned in the prior literature (for formulae

and calculations, see Chen, Hong, and Stein, 2001; Hutton, Marcus, and Tehra-

nian, 2009). While NSCKEW looks at the ratio of the third moment di�erence

in FSWR and its average to its standard deviation in a given year, DUVOL

considers weeks with above-average FSWR separately from those with below-

average FSWR and computes the log ratio of the down and up movement's

standard deviations. These four measures of crash risk are regressed in either

OLS, logit, or tobit models with the following generic speci�cation:

CRj,t+1 = A+B ∗Gj,t + C ∗Xj,t + εj,t (3.12)

where CRj,t+1 is either CRASH, CRASHNUM , NCSKEW , or DUV OL
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for each year t + 1 as de�ned above and Gj,t is either a dummy indicating

poor governance (above average nG-score that year) or the nG-Index scores

themselves depending on the regression model used.

When CRASH and CRASHNUM are the dependent variables, we run logit

and tobit regressions, respectively, with the poor governance dummy as the

main explanatory variable. Since the crash frequency is much lower than that

for non-crash events, we can identify the likelihood of a crash better with a

dichotomous classi�cation for governance. In other words, using the nG-Index

itself instead of a governance dummy would lead to this model being underi-

denti�ed. To capture predictability, we always use one-year forward dependent

variables in all regressions. From the previous literature on crash risk, we iden-

tify controls,Xj,t, such as the di�erence in investor opinionsDIFTURN (Hong

and Stein, 2003), the average FSWR or AV G, return volatility or SIGMA, and

additional �rm controls such as �rm SIZE, market to book ratio MB, lever-

age LEV , ROA ROA, and opacity based on accruals OPAQUE (Chen, Hong,

and Stein, 2001; Hutton, Marcus, and Tehranian, 2009). For regressions with

CRASH and CRASHNUM , we also control for past crash risk by including

NCSKEW in the model. For the OLS regressions involving NSCKEW and

DUV OL, we include up to three period lagged values of dependent variables

as controls to partially account for reverse causality and endogeneity (Kim,

Wang, and Zhang, 2016).

Table 3.11 shows the results for each of the tobit, logit, and OLS regressions

with corresponding dependent variables. For CRASHNUMj,t, we use the

tobit regression because it measures the number of crash weeks in a year t

experienced by �rm j. Using the tobit regression allows us to model crashes

better, as it imposes only left censoring for �rms that do not experience crashes,

where CRASHNUMj,t = 0. For the binary variable CRASHj,t, logit modeling

allows to implement the likelihood of experiencing one or more crashes in year t.
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Table 3.11 Future stock price crash risk and governance

This table shows the results obtained by running various regressions for crash risk measures
on a dummy that represents poor governance. For each of the dependent variables CRASH-
NUM, CRASH, NCSKEW and DUVOL, column 1 (column 2) represents �rms with nG
(mG) scores greater than the average nG-Index (mG-Index) for the entire sample in that
year. All regressions control for year and industry �xed e�ects. For industry classi�cations,
we employ Fama and French (1997) 48 industries. All regressions use �rm clustering to
report standard errors (shown in parentheses) and the corresponding z or t statistics. Re-
gression models for each dependent variable are speci�ed in the table. The coe�cients for
constant and industry/year dummies are left out. See Appendix 3.A.4 for the de�nitions
of all variables, including controls. Signi�cance levels are represented by *, **, and *** for
10%, 5%, and 1%, respectively.

Regression: Tobit Logit OLS

Dependent: CRASHNUMt+1 CRASHt+1 NCSKEWt+1 DUVOLt+1

(nG) (mG) (nG) (mG) (nG) (mG) (nG) (mG)
Poor Governance 0.091** 0.020 0.123** 0.026 0.069** 0.010 0.024** 0.002

(0.035) (0.036) (0.049) (0.049) (0.027) (0.028) (0.010) (0.010)

DIFTURNt 0.021*** 0.021*** 0.028*** 0.028*** 0.000 0.001 0.000 0.000
(0.003) (0.003) (0.005) (0.004) (0.002) (0.002) (0.001) (0.001)

AV Gt 0.902 0.773 2.448 2.337 12.723*** 12.627*** 5.229*** 5.213***
(2.803) (2.807) (3.948) (3.952) (2.334) (2.342) (0.976) (0.978)

SIGMAt 3.608*** 3.385*** 4.871*** 4.554*** -0.724 -0.920 -0.410 -0.478*
(0.939) (0.931) (1.331) (1.316) (0.763) (0.753) (0.274) (0.272)

LEVt -0.158 -0.165 -0.211 -0.220 -0.153 -0.158* -0.054 -0.056
(0.101) (0.101) (0.135) (0.135) (0.094) (0.095) (0.034) (0.034)

SIZE -0.004 -0.004 -0.004 -0.004 0.054*** 0.053*** 0.023*** 0.022***
(0.012) (0.013) (0.017) (0.017) (0.010) (0.010) (0.004) (0.004)

MBt -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ROAt 0.492*** 0.478*** 0.703*** 0.682*** 0.291** 0.277* 0.084 0.079
(0.162) (0.162) (0.227) (0.227) (0.143) (0.142) (0.055) (0.054)

OPAQUEt 0.395** 0.412*** .403*** 0.430*** 0.081* 0.112** 0.032 0.052*
(0.165) (0.136) (0.118) (0.137) (0.043) (0.050) (0.021) (0.027)

NCSKEWt 0.030* 0.031* 0.044* 0.046*
(0.017) (0.017) (0.024) (0.024)

Dependentt 0.027* 0.028* 0.008 0.009
(0.016) (0.016) (0.017) (0.017)

Dependentt−1 -0.008 -0.008 -0.014 -0.014
(0.012) (0.012) (0.012) (0.012)

Dependentt−2 -0.003 -0.002 -0.004 -0.004
(0.013) (0.013) (0.013) (0.013)

Year Fixed E�ects Yes Yes Yes Yes Yes Yes Yes Yes
Industry Fixed E�ects Yes Yes Yes Yes Yes Yes Yes Yes
#Observations 10527 10527 10527 10527 7773 7773 7771 7771
Pseudo / Adjusted R2 0.0215 0.0212 0.0304 0.0299 0.0207 0.0198 0.0293 0.0285
#Firms 1484 1484 1484 1484 1384 1384 1384 1384
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As observed, the coe�cients for the poor governance dummy are positive and

statistically signi�cant only with nG-Index, consistent with our expectation

that �rms with good governance have a lower likelihood of future stock price

crashes. To estimate the economic signi�cance of this coe�cient, we look at

the marginal e�ect of our poor governance indicator, that is, the nG dummy on

these crash risk variables by setting the remaining variables to their respective

means. The marginal e�ect of bad governance is on an average approximately

11% of the unconditional stock price crash probability.

The OLS regression estimates for negative conditional skewness (NCSKEWt)

and down up volatility (DUV OLt) are also positive only for the poor gover-

nance identi�ed using nG-Index and show statistical signi�cance at the 5%

level. As in previous studies on crash risk, the variable NCSKEWt tends

to show higher magnitudes for the explanatory variables than DUV OLt does

by construction. Although increasing values of these two variables indicate a

higher likelihood of stock price crashes, their economic interpretation is lim-

ited by their de�nitions. However, these coe�cients do show that our main

result that �rms with good (bad) governance as classi�ed using nG-Index have

a lower (higher) likelihood of crash risk is not driven by the 10% lower limit

speci�ed for the other two crash risk variables. When it comes to the mG-

Index, we �nd that the associated poor governance dummy cannot predict

future price crashes across all the four crash risk proxies.

Overall, we �nd evidence that poor governance �rms as identi�ed only using

the nG-Index are more likely to face future stock price crashes. This provides

some credence to our proposition that governance index weights are important

for investors to highlight the agency risks associated with poor governance

stocks. This inference requires caution because we modeled and measured

only one dimension of the possible future downside risk as an outcome of

existing agency risk within the �rms. When looking at a �rm's total risk,
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there may be several other dimensions of idiosyncratic volatility and other

variability measures to consider. Nevertheless, the marginal e�ect that we see

in these results is economically signi�cant and may indeed in�uence investment

decisions.

3.5.4.2 Future Stock Returns and Corporate Governance

To assess if investors react positively to good governance signals (as depicted by

nG-Index) in the period immediately following the availability of governance

information, we run similar hedge portfolio regressions on the risk factors in

Table 3.10 using the speci�cation in Equation 3.9. However, instead of cre-

ating portfolios using one-year lagged nG-Index scores, we consider two- and

three-year lags. We report the results from these regressions in Table 3.12.

We observe a monotonic upward trend for both the abnormal returns and

mean excess returns for the nG-Index based decile portfolios as the lag period

increases from 1 year to 3 years. This trend exists for both the equal- and

value-weighted portfolios.

Whether we consider a value- or equal-weighted hedge, we see that positive

abnormal returns appear for a long good governance short poor governance

hedge with both 2 and 3 year lags. However, the statistical signi�cance dis-

appears for the value-weighted hedge beyond the 1-year lag. Overall, there

does seem to be evidence that investors do bene�t from good governance sig-

nals in the long run, with the measures of abnormal returns and mean excess

returns having economically signi�cant magnitudes that tend to increase for

governance hedges with increasing lags. Even considering the lack of statis-

tical signi�cance, re�ecting zero abnormal returns beyond the �rst year for

the value-weighted hedge indicates that investors start bene�ting from good

governance signals after �rst year. However, the lack of statistical signi�cance

for portfolios that use longer lags requires cautious interpretation. With in-
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Table 3.12 Returns on 2- and 3-year lagged nG-Index-based hedge
portfolios

This table provides the results for the �ve-factor regressions (i.e., the three factors from
Fama and French (1993) along with the momentum factor and the Pástor and Stambaugh
(2003) liquidity factor) for governance hedge portfolios, i.e., Democracy�Dictatorship (both
value- and equal-weighted) using deciles created in accordance with 2-year and 3-year lagged
nG-Index scores. These portfolios are reset at the beginning of each year when new data
is available. The monthly portfolio returns for each hedge portfolio (buy Democracy-sell
Dictatorship) are regressed over factors capturing market (RMRF), size (SMB), book-to-
market (HML), momentum (MOM), and liquidity (LIQ) with White (1980) standard errors.
Part A in the table repeats the results in Table 3.10 for a comparison with the 1-year lagged
results. Parts B and C show the abnormal returns and mean excess returns for each of
the 2-year and 3-year lag-based hedge portfolios, respectively. For abnormal returns, the
statistical signi�cance at 10%, 5%, and 1% are shown by *, **, and ***, respectively.

A: Using nGt−1 B: Using nGt−2 C: Using nGt−3

Hedge Portfolios Alpha Excess Returns Alpha Excess Returns Alpha Excess Returns
Value-weighted -1.333** -1.233 0.013 -0.318 0.165 -0.142

(0.623) (0.385) (0.370)

Equal-weighted -0.316 -0.275 0.337 0.241 0.452 0.413
(0.405) (0.297) (0.293)

creasing lags, the available set of data declines, resulting in lower statistical

power. This in turn a�ects interpretability, since with every additional lag

year, we lose 12 observations from the time-series regressions we use to obtain

abnormal returns. This is a signi�cant loss considering that our sample pe-

riod is only 9 years. When we run similar analysis using the mG-Index based

portfolio deciles, the bene�ts of good governance are not clearly visible. Both

the abnormal returns and mean excess returns remain statistically insigni�cant

regardless of one-, two- or three-year lags. These results are untabulated for

the sake of brevity.

3.6 Discussion

In this study, we set out to investigate the corporate governance�performance

puzzle, and especially the disappearance of the governance�returns relation by

examining recent ATP data. While doing so, we demonstrate the importance

of accounting for the evolution of these provisions and how they contribute
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to measuring corporate governance. We make several contributions to this

literature by exploring the bene�ts of using an unequally weighted index.

First, our primary contribution is methodological. It allowed us to introduce

the �new Governance� (nG) index, an unequally weighted corporate governance

measure. The design of this index applies a methodology that ensures that the

weights of individual provisions consider both the timing of its introduction in

a �rm and its relative importance to other provisions. Prior studies explore

only equally weighted methodology to operationalize governance indices. We

apply an inclusion rule that guarantees that the index introduces only relevant

factors, hence ensuring that the constructed index explains the maximum of

governance variations amongst the sample �rms. Moreover, the nG-Index is

dynamic because the weights allotted to each provision are updated annually,

as and when newer data on ATPs become available. All previous indices, in

contrast, were static because they gave equal importance to each provision,

regardless of the year in which the index was constructed.

Second, we highlight the importance of weights in aggregated indices by show-

ing that only the unequally weighted nG-Index has a persistent and robust

relation with �rm value. Using the equal-weighted mG-Index for a governance

measure would entail that no relationship exists between governance and �rm

value. Only with the nG-Index do we see that �rms with poor governance

structures (high nG scores) have signi�cantly lower �rm valuations than those

with good governance structures across all model speci�cations in our sample

period.

Third, we show that the relationship between corporate governance and sev-

eral operating performance measures are explained better using the nG-Index

than with the mG-Index. For the nG-Index, we �nd a consistently negative

relationship between governance scores and operating performance, meaning

that poorly governed �rms underperform the well-governed ones. The mG-
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Index, on the other hand, traces this relationship inconsistently, implying that

the equal weights assumption may induce measurement errors in governance

indices.

Fourth, using the nG-Index we show that corporate governance remains an

important factor to consider in investment decisions. We can see the economic

and �nancial signi�cance of our �ndings from the fact that a dollar invested

in good governance �rms between 2007 and 2015 (using nG-sorted annual

portfolios) would result in a good governance portfolio (Democracy) reduced

to 0.40 dollars (i.e., on average, reduced by 95 basis points per month).50 In

contrast, the bad governance portfolio (Dictatorship) increases from one dollar

at the beginning of the investment period to 1.44 dollars (increasing by about

38 basis points per month). This shows that investors who created a hedge

portfolio by buying a bad governance portfolio and selling a good governance

portfolio could have potentially earned 1.23% excess returns per month in this

period. Our results are markedly di�erent to those using governance-sorted

portfolios in Gompers, Ishii, and Metrick (2003) and Bebchuk, Cohen, and

Ferrell (2009) in the 1990s. While the prior literature suggests hedging by

going long democracy and short dictatorship to beat the markets, we show a

newer hedge position for the period of our study.

Fifth, we provide some preliminary insights into how investors can bene�t from

using unequal-weighted governance index. We show that �rms' governance

di�erences using nG-Index are indicative of poor governance �rms being riskier

than good governance ones as they are associated with higher stock price crash

risks. On the other hand, mG-Index based classi�cation of good and poor

governance �rms does not show any association with future stock crashes. We

50 Using the mean excess returns in Table 3.9. We consider only the value-weighted
portfolio over 8 years because it robustly shows statistically signi�cant abnormal returns
over this period.
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also �nd that investors' long run bene�ts from good governance signals in the

period following the availability of governance information is only tracked by

the nG-Index, and not the mG-Index.

Finally, we contribute to the general understanding of the governance� perfor-

mance relationship in recent years and provide a foundation for future research

into other outcomes of superior corporate governance. With the nG-Index, re-

searchers have an empirically testable governance measure that captures the

overall essence of ISS governance provisions, while also retaining the compara-

tive prominence of each individual provision. We show that certain provisions

(such as unequal voting rights, limited ability to amend bylaws, etc.) have

higher relative importance than others do in measuring governance quality.

Moreover, with our dynamic index weights that capture all up-to-date infor-

mation, the nG-Index is better able to withstand the test of time compared

to the previously conceptualized indices. Thus, our indexing methodology can

also lay the basis for practical implications in the governance ranking industry,

as well as for regulatory authorities and policy decisions. We also open the

doors for researchers to employ a similar unequal-weighted methodology for

other �rm-level aggregate measures that in�uence �rms' returns.

3.7 Conclusion

The main purpose of this study is to examine if we can use recent data on �rms'

ATPs to construct an index that can di�erentiate well-governed �rms from

poorly governed ones. After reviewing previous index construction methodolo-

gies, such as those in Gompers, Ishii, and Metrick (2003), Cremers and Nair

(2005), Brown and Caylor (2006), and Bebchuk, Cohen, and Ferrell (2009), we

found that for recent years, equal-weighted indices may not be able to assess

governance quality well due to measurement errors. As an alternative, we thus

present the nG-Index, an unequal-weighted measure of corporate governance
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that captures the heterogeneity of its individual ATPs. Gompers, Ishii, and

Metrick (2003) mention that using simple binary codes for provisions and then

adding them �sacri�ces precision for the simplicity necessary to build an in-

dex�. We show that for a governance measure, such a simple addition of coded

provisions is not enough to understand the economic and �nancial impact of

governance. This, as our results show, is especially important with respect to

investors.

Overall, the new unequal-weighted nG-Index tracks the governance� perfor-

mance relationship more consistently than the alternative equal-weighted mG-

Index does. Our results show that if we use the nG-Index as a measure of

governance quality for our sample �rms, we can judge its management in terms

of the alignment of their interests with those of shareholders through superior

�rm values and operating performance. The same is not true when using an

equal-weighted index.

Our analysis also reveals a newer governance-based hedge strategy to that

shown in prior literature that can generate abnormal returns. Previous stud-

ies show that investors could make abnormal returns by investing in good

governance stocks. However, we show that investors will lose money if they

keep using the old long good governance�short poor governance strategy. An

investor going long bad governance stocks (Dictatorship) and shorting good

governance ones (Democracy) would have made approximately 16% abnormal

returns in our sample period. This indicates that investors may be taking

a longer time now to impound the performance bene�ts of good governance

stocks than they did in previous years. We can also take this to indicate a

preference for risk-seeking behaviour in recent years, especially if governance

quality is measured well. Speci�cally, we show that in terms of stock returns

in the short run, poor governance quality in �rms bene�ts the investors more

than the goodness of �rm's governance quality.

176



While we thoroughly examine the governance�performance relationship by in-

troducing a dynamic and more informative new governance index, there are

several limitations that future research could address. For instance, we largely

study the association between governance and performance, while only brie�y

exploring endogeneity and causality. Moreover, there is scope to assess the

heterogeneity of these provisions in a multiple-country setting to draw inter-

national comparisons. Additionally, does the relative importance of ATPs

have similar e�ects on other �rm outcomes and decisions, such as innovation

and/or takeovers? Our study opens the door for many such research questions.
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3.A Appendices

3.A.1 ISS Corporate Governance Provisions (2007 onwards)

This appendix brie�y explains all provisions listed in Table 3.1 and which we

use as factors to construct the equal-weighted new Governance (nG) index

and equal-weighted modi�ed Governance (mG) Index. We provide these de-

scriptions in alphabetical order; they are similar to descriptions provided in

Gompers, Ishii, and Metrick (2003) for certain provisions that existed in the

older ISS provisions dataset. We also provide a quick brief on each provision's

impact on shareholder rights and the rationale for their categorizations in Ta-

ble 3.1.

Blank Check preferred stock is a provision through which the company can

create and issue new classes of preferred stocks without seeking shareholder

approval to raise additional funds. Preferred stock is called �blank checks�

because the board of directors has complete authority to determine voting,

dividend, conversion, and other rights. It is most commonly applied to `delay

takeovers' by implementing poison pills or by placing such preferred stocks

with friendly investors.

Bylaw and Charter amendment limitations limit shareholders' ability to

amend the corporation's governing documents. This might take the form of a

supermajority vote requirement for charter or bylaw amendments, total elimi-

nation of shareholders' ability to amend the bylaws, or the ability of directors

(beyond the provisions of state law) to amend the bylaws without shareholder

approval.

A Classi�ed Board (or staggered board) is one in which directors are

placed into di�erent classes and serve overlapping terms. Since the �rm can

replace only a part of the board each year, an outsider who gains control of a

corporation may have to wait a few years before being able to gain control of
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the board, causing a possible `delay' in takeovers.

Cumulative Voting allows a shareholder to allocate his total votes in any

manner desired, where the total number of votes is the product of the num-

ber of shares owned and the number of directors to be elected. By allowing

them to concentrate their votes, this practice helps minority shareholders elect

directors. Cumulative Voting and Secret Ballot (below) are the only two pro-

visions whose presence is coded as an increase in shareholder rights, with an

additional point to the nG or mG index if the provision is absent.

Fair-Price provisions limit the range of prices a bidder can pay in two-tier

o�ers. They typically require a bidder to pay the highest price to all share-

holders during a speci�ed period before the commencement of a tender o�er,

and do not apply if the board of directors or a supermajority of the target's

shareholders approve the deal. The goal of this provision is to prevent pres-

sure on the target's shareholders to tender their shares at the front end of a

two-tiered tender o�er, and they make such an acquisition more expensive.

Golden Parachutes are severance agreements that provide a large payment

or other �nancial compensation to company executives if they should be dis-

missed as a result of a merger or takeover. They do not require shareholder

approval. While the net impact on managerial entrenchment and shareholder

wealth is ambiguous, the more important e�ect is a clear decrease in share-

holder rights. In this case, the �right� is the ability of a controlling shareholder

to �re management without incurring an additional cost.

Limitations on action by Written Consent can take the form of estab-

lishing majority thresholds beyond the level of state law, requiring unanimous

consent, or eliminating the right to take action by written consent. Such re-

quirements add extra time to many proxy �ghts since bidders must wait until

the regularly scheduled annual meeting to replace board members or dismantle

takeover defenses. This delay is especially potent when combined with limita-
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tions for calling special meetings (above).

With Limited Ability to call Special Meetings, special meetings of share-

holders may be called only by the board of directors or by other persons autho-

rized by the company's certi�cate of incorporation or bylaws. If the company's

certi�cate of incorporation does not contain any provisions on the calling of

a special meeting, and shareholders' right to cause a special meeting to be

called is only contained in the bylaws, the company's board of directors can

act, without shareholder approval, to amend the bylaws to speci�cally deny

shareholders the right to call a special meeting.

Poison Pills provide their holders with special rights in the case of a trigger-

ing event, such as a hostile takeover bid. If the board of directors approve a

deal, the poison pill can be revoked, but if the deal is not approved and the

bidder proceeds, the pill is triggered. Typical poison pills give the holders of

the target's stock, besides the bidder, the right to purchase stock in the target

or the bidder's company at a steep discount, making the target unattractive

or diluting the acquirer's voting power. Poison pills may even be used as a

�delay� strategy at the core of modern defensive tactics.

Under a Secret Ballot (also called con�dential voting), either an indepen-

dent third party or employees sworn to secrecy count proxy votes, and the

management usually agrees not to look at individual proxy cards. This can

help eliminate potential con�icts of interest for �duciaries' voting shares on be-

half of others, and can reduce management pressure on shareholder-employees

or shareholder-partners.

Special Meeting limitations either increase the level of shareholder support

required to call a special meeting beyond that speci�ed by state law or elim-

inate the ability to call one entirely. Such provisions add extra time to proxy

�ghts, since bidders must wait until the regularly scheduled annual meeting to

replace board members or dismantle takeover defenses. This delay is especially
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potent when combined with limitations on actions by written consent (below).

The State Laws provision summarizes antitakeover laws (i.e., Business Com-

bination laws, control share acquisition laws, cash-out laws, etc.) in a single

measure representing the presence of any of these state legislations within the

jurisdiction in which the company is located.

Supermajority requirements to approve mergers are charter provisions

that establish voting requirements for mergers or other business combinations

above the threshold requirements of state law. They limit is typically over

1/3rd and may often exceed attendance at the annual meeting. We consider a

more conservative 2/3rd requirement.

Supermajority for Written Consent/ Special Meeting/ Amending

Bylaws/ Amending Charter are supermajority provisions similar to Super-

majority requirements to approve mergers in terms of a minimum requirement

(we de�ne them as over 2/3rds) to vote for either passing a written consent,

call for a special meeting, or to amend bylaws. These provisions require a

majority of disinterested shareholders to vote on such changes and are treated

as a structural defense against shareholder activism.

Unequal Voting rights limit the voting rights of some shareholders and ex-

pand those of others. Under time-phased voting, shareholders who held the

stock for a given period of time are given more votes per share than recent

purchasers.

3.A.2 Variables and Controls Used in the Tobin's Q and Operating

Performance Regressions

Tobin's Q: Measure created following Gompers, Ishii, and Metrick (2003) and

Bebchuk, Cohen, and Ferrell (2009). Q is the ratio of the market value of as-

sets to the book value of assets (Compustat data item 6) with the numerator
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calculated as: (book value of assets + market value of common stock) � (book

value of common stock + deferred taxes). All inputs for the Q measure were

taken from corresponding headers in the COMPUSTAT data.

ROA: As a measure of operating performance, Return on Assets (ROA) is cal-

culated as the operating income divided by end of year total assets (Compustat

data item 6). We applied operating income before depreciation (Compustat

data item 13) as Bhagat and Bolton (2008) suggest.

Size: Log transformation of Total Assets (Compustat data item 6).

Age: Log transformation of �rm age measured in months at the end of each

calendar year.

Altman's Z Score: Unlike Bhagat and Bolton (2008), who employ the modi-

�ed Altman's Z-score, we use the conceptualization of Z-score as Altman (1968)

suggests, but not including leverage as a factor (since we take leverage as a

separate control variable). The component factors, such as Working Capital

to Total Assets, Retained Earnings to Total Assets, Sales to Total Assets,

and EBIT to Total Assets were calculated from corresponding headers in the

COMPUSTAT data.

Leverage: Following Bhagat and Bolton (2008) and Bebchuk, Cohen, and

Ferrell (2009): Long term debt (Compustat data item 9) / Total Assets (Com-

pustat data item 6). An alternative measure of leverage, the Debt/Equity

ratio, was also used as a robustness check.

CAPEXTA: is the log transformation of the ratio of Capital Expenditures

to Total Assets.

Delaware Dummy: Dummy variable indicating whether a �rm is incorpo-

rated in Delaware or not (coded 1 and 0, respectively) as �rst used in Gompers,

Ishii, and Metrick (2003).

S&P500: Dummy variable indicating whether a �rm is included in the S&P500

in the corresponding calendar year.

188



Book-to-Market: The ratio of the book value of common equity to the mar-

ket value of common equity. The book value of common equity is the sum

of the book value of common equity (Compustat item 60) and deferred taxes

(Compustat item 74).

NPM: Net income divided by sales (Compustat item 12).

ROE: Net income divided by the book value of common stock, i.e., the sum

of the book value of common equity (Compustat item 60) and deferred taxes

(Compustat item 74).

3.A.3 Variables and Controls Used to Extract Factor Weights

Price: Monthly Closing Price for time t�2 (in logs).

Size: Market capitalization observed at the end of month t�2 (in logs).

Volume: Dollar volume of trading recorded at the end of month t�2 (in logs).

S&P500: Dummy variable indicating whether a �rm is included in the S&P500

for month t.

Yield: Computed as one-year lagged dividends (Compustat item 21) divided

by market capitalization measured at calendar year-end.

2-Year Return: The compounded return from month t�1 to month t�25 (in

logs).

Value: Tobin's Q computed as the ratio of the market value of assets to the

book value of assets (Compustat data item 6) with the numerator calculated

as: (book value of assets + market value of common stock) � (book value of

common stock + deferred taxes), item 74). (Industry-adjusted using median

Q values for each industry).

Past 2-Month Returns: Compounded gross returns for months t�3 and t�2

(in logs).

Past Quarterly Returns: Compounded gross returns for months t�6 to t�4
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(in logs).

Past Semi-Annual Returns: Compounded gross returns for months t�12

to t�7 (in logs).

SE Code: A dummy variable representing the speci�c stock exchange on

which the �rm's stock is listed in that month.

3.A.4 Variables and Controls Used in Crash Risk Regressions

CRASH: A dummy variable that takes the value 1 when in a given year, the

�rm experiences one or more crash weeks. A crash week is when the �rm-

speci�c weekly return (FSWR) falls 2.98 standard deviations below the annual

average FSWR. The number of standard deviations here represents the lower

10% level of the FSWR distribution for that �rm-year.

CRASHNUM: An indicator that counts the number of crash weeks a �rm

experienced in a given year. Crash weeks are measured as above for the variable

CRASH.

NCSKEW: The negative conditional skewness of FSWR over a given year.

DUVOL: Down-to-up volatility is measured as the logarithmic transformation

of the ratio of the standard deviation of FSWR for down weeks (below average)

to that for the up weeks (above average) for each �rm-year.

DIFTURN: The di�erence in mean monthly share turnover for current year t

and the mean monthly share turnover of prior year t−1. For each �rm-month,

the monthly share turnover is the ratio of corresponding trading volume to the

total shares outstanding.

AVG: The average FSWR for a given �rm over that year.

SIGMA: Volatility or standard deviation of FSWR for a given �rm over that

year.

SIZE: The market value of equity (in logs).
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MB: The market-to-book ratio taken as the market value of equity divided

by the book value. Book value is the sum of the book value of common equity

(Compustat item 60) and deferred taxes (Compustat item 74).

LEV: Same as `Leverage' in Appendix 3.A.2.

ROA: As de�ned in Appendix 3.A.2.

OPAQUE: Discretionary accruals that indicate opacity measured by Hutton,

Marcus, and Tehranian (2009) using a three-year moving sum of the absolute

value of discretionary accruals calculated with a modi�ed Jones model.

3.A.5 Additional Details for Section 3.4.2.1

For example, if we consider a simple unconstrained estimation of stock returns

Ret on three ATPs X1, X2 and X3:

Ret = β1X1 + β2X2 + β3X3 (3.13)

For the unconstrained model to be unbiased, we assume all of the provisions are

independent of each other (orthogonal), which is not the case for governance

provisions as is seen by their high correlations. Thus, applying a constraint

β1 + β2 + β3 = −1 would imply a constrained regression of the form:

Ret = β1X1 − (1 + β1 + β3)X2 − (1 + β1 + β2)X3 (3.14)

We see that the use of constraint ensures that the estimation procedure, which

extracts the coe�cients of factors for each year in the sample, represents the

contribution of each factor towards returns by accounting for the variation in

each of the remaining factors. Such localization procedures have widely been

used to replicate interdependence amongst the otherwise independent variables

in many studies (e.g., Heston and Rouwenhorst, 1994). In other words, all the

covariances between each of the ATPs or factors (i.e. the focal factor and
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rest of the factors) are corrected for in the solution, making the estimates

less biased. In our case, this is done by assuming that all of the available

ATPs have a peculiar linear dependence. To elaborate this further, consider a

system of related regressions that estimate each factor's contribution to returns

separately while controlling for other factors:

Ret = γ1X1 + γ2(X2 +X3) (3.15a)

Ret = θ1X2 + θ2(X1 +X3) (3.15b)

Ret = η1X3 + η2(X1 +X2) (3.15c)

By subtracting equations 3.15b and 3.15c, we obtain a linear equation (θ2 −

η2)X1 + (θ1 − η2)X2 + (θ2 − η1)X3 = 0 that can be treated as a constraint

for estimating equation 3.15a (given that the coe�cient γ2 for the sum of two

correlated variables is the weighted average of individual marginal e�ects, see

Kee, 2009) to get a unique solution for this system. This is the underlying

rationale behind applying constrained regression for the ATPs and returns.

In recent years, asset allocation literature has extended the application of

Sharpe (1992) methodology by introducing regularization and optimization

procedures (see, for e.g., Giamouridis and Paterlini, 2010) that employ LASSO

regression (Tibshirani, 1996) or ridge regression (Hoerl and Kennard, 1970).

However, these methods are ideal for factor selection when facing non-orthogonality,

whereas our objective is to capture factor relativity. Additional problems arise

out of the binary nature of ATP variables that restricts the ability of these

penalized regressions. Nevertheless, we do assess LASSO estimation procedure

for ATP selection in the Section 3.4.2.2.

3.A.6 Supplementary Results

192



Table 3.13 Correlations between the nG-Index and the G and E
indices

This table shows the correlations and corresponding signi�cance levels for the new unequally
weighted nG-Index with two existing indices. While the nG-Index and mG-Index (used as
a proxy for the G-Index) are computed using 19 provisions as in Table 3.1, the E-Index is
created using a subset of these 19 provisions as in Bebchuk, Cohen, and Ferrell (2009). The
statistical signi�cance at 10%, 5%, and 1% are shown by *, **, and ***, respectively.

nG-Index mG-Index E-Index

nG-Index 1.0000

mG-Index 0.3659*** 1.0000
(0.0000)

E-Index 0.1237*** 0.7155*** 1.0000
(0.0000) (0.0000)
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Table 3.17 Regression for operating performance on governance
(in-sample test)

This table summarizes results obtained by running several variations of median the (min-
imum absolute deviation) regressions that specify operating performance as dependent on
the nG and mG indices for the entire sample. The results here extend those in Table 3.9 by
using the nG-Index with in-sample period weights (i.e., the factor weights obtained inclusive
of current year's returns). All other variable de�nitions, controls, and models are exactly
the same as in Table 3.9. By construction, the results for the mG-Index remain the same as
reported earlier. Signi�cance levels are represented by *, **, and *** for 10%, 5%, and 1%,
respectively.

Panel A: ROA as the performance measure

(1) (2) (3) (1) (2) (3)

nG (�) -0.0145** -0.0149** -0.0214**
(0.005) (0.006) (0.009)

mG (�) -0.0011*** -0.0019*** -0.0020***
(0.000) (0.000) (0.000)

Controls Yes Yes Yes Yes
Year Fixed E�ects Yes Yes

Number of Observations 10190 8276 8276 10190 8276 8276

Panel B: ROE as the performance measure

(1) (2) (3) (1) (2) (3)

nG (�) -0.7779* -3.7329*** -3.8053***
(0.406) (1.005) (1.146)

mG (�) -0.0272*** 0.1564*** 0.1148**
(0.007) (0.048) (0.054)

Controls Yes Yes Yes Yes
Year Fixed E�ects Yes Yes

Number of Observations 7615 7442 7442 7615 7442 7442

Panel C: NPM as the performance measure

(1) (2) (3) (1) (2) (3)

nG (�) -0.0345** -0.0313** -0.0410**
(0.016) (0.013) (0.014)

mG (�) -0.0021*** -0.0015*** -0.0017***
(0.000) (0.000) (0.000)

Controls Yes Yes Yes Yes
Year Fixed E�ects Yes Yes

Number of Observations 9156 7805 7805 9156 7805 7805
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Table 3.18 Do changes in nG-Index cause changes in operating per-
formance?

This table reports the Di�-in-Di�-in-Di� (DDD) estimation results for all main and inter-
action e�ects for the impact of changes in nG-Index on operating performance (i.e. ROA,
ROE or NPM as indicated). All models are estimated using Equation 3.7, but taking the
operating performance measures in place of Tobin's Q and controlling for the same �rm char-
acteristics as those introduced in Table 3.9. Robust standard errors are shown in parenthesis.
∆nG represents the annual change in nG-Index values for a �rm. Post indicates years after
Revlon ruling is passed in Maryland (i.e. beginning 2010) and Treat is a dummy represent-
ing Maryland-based �rms, where Delaware-based �rms are taken as control group. Baseline
DDD estimation in Panel A considers the Maryland and Delaware �rms as is. Propensity
score (PS) matched DDD estimation considers a comparable Delaware �rm matched on
log of assets, log of book-to-market and S&P500 membership, for every Maryland �rm in
a given year (using nearest-neighbor match with a 0.001 calliper). Panel B validates the
results of Panel A by running placebo treatments. First placebo test assumes placebo treat-
ment group for �rms based in the state of Ohio, and the second test modi�es the baseline
DDD estimation by considering placebo Post (beginning 2012). All models include industry
and year �xed e�ects. Levels of signi�cance at 10%, 5%, and 1% are indicated by *,**, and
*** respectively.

Panel A: Baseline and Propensity Score (PS) Matched DDD estimations

Baseline DDD PS Matched DDD

∆ROA ∆ROE ∆NPM ∆ROA ∆ROE ∆NPM

∆nG 0.0444 -1.2884 -0.0304 0.0854 -16.6061** 1.8660
(0.051) (0.797) (0.321) (0.246) (6.479) (2.069)

Post 0.0062* 0.0225 0.0325 -0.0039 -0.2649 -0.0266
(0.003) (0.035) (0.034) (0.010) (0.215) (0.118)

Treat -0.0013 -0.1081 -0.0225 0.0016 -0.1245 -0.0279
(0.006) (0.086) (0.048) (0.012) (0.203) (0.069)

∆nG ∗ Post 0.0204 1.1760 0.1194 -0.4114 11.1440 -1.5616
(0.063) (0.807) (0.320) (0.293) (7.357) (2.210)

∆nG ∗ Treat -0.2254* 0.1616 -2.1223 -0.4385* 15.0925** -2.4990
(0.135) (2.866) (1.352) (0.228) (6.473) (1.863)

Post ∗ Treat 0.0030 0.1672* -0.0166 0.0050 0.4266* 0.0625
(0.006) (0.099) (0.050) (0.010) (0.227) (0.072)

∆nG ∗ Post ∗ Treat 0.3251** 2.7674 2.4477* 0.7799*** -5.4865 3.1057*
(0.164) (3.456) (1.485) (0.272) (7.121) (1.792)

Observations 4189 3442 3884 626 440 428
R-squared 0.011 0.028 0.019 0.140 0.219 0.200

Panel B: Placebo DDD tests

Placebo Treated State (Ohio) Placebo Post-Treatment (2012)

∆ROA ∆ROE ∆NPM ∆ROA ∆ROE ∆NPM

∆nG 0.0352 -1.2788* 0.0317 0.0067 -0.6648* 0.0149
(0.052) (0.770) (0.271) (0.036) (0.357) (0.165)

Post 0.0136*** 0.0035 0.0323 -0.0024 0.0271 -0.0444*
(0.004) (0.040) (0.032) (0.004) (0.031) (0.027)

Treat 0.0033 0.0193 0.0333 0.0049 0.0040 -0.0264
(0.009) (0.034) (0.027) (0.003) (0.050) (0.029)

∆nG ∗ Post 0.0274 1.1648 0.0410 0.0952* 0.5844 0.0908
(0.063) (0.779) (0.284) (0.057) (0.384) (0.213)

∆nG ∗ Treat 0.0680 1.4890* 0.2429 -0.0987 0.8152 -0.9423
(0.084) (0.782) (0.343) (0.095) (1.849) (0.843)

Post ∗ Treat -0.0194 0.0202 -0.0618* -0.0167*** 0.1884 -0.0872*
(0.019) (0.039) (0.033) (0.006) (0.176) (0.052)

∆nG ∗ Post ∗ Treat -0.0616 -1.5255* -0.2550 -0.1281 7.9574 -1.1119
(0.102) (0.795) (0.402) (0.192) (5.732) (1.485)

Observations 4061 3404 3961 4189 3442 3884
R-squared 0.019 0.025 0.019 0.012 0.027 0.019
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Table 3.19 Robustness check for nG-based trading strategy: Alter-
native governance-hedge portfolios.

This table reports the result for a �ve-factor regression (i.e., three factors of Fama and
French (1993) along with the momentum factor and the Pástor and Stambaugh (2003)
liquidity factor) for alternative decile portfolios created using the nG-Index (both value-
and equal-weighted portfolios). These portfolios are reset at the beginning of each year
when new data is available. The monthly portfolio returns for each hedge portfolio (buy
Democracy�sell Dictatorship) are regressed over factors capturing market (RMRF), size
(SMB), book-to-market (HML), momentum (MOM), and liquidity (LIQ) with White (1980)
standard errors. Row (1) replicates the results in Table 9 for a comparison to the alternative
portfolio constructions shown in the remaining rows. Rows (2) to (4) use di�erent criteria,
either by allowing for (a) changing cuto�s with years, (b) using new 2%-98% cuto�s, or (c)
strict quantile division. Row (5) presents the hedge on industry-adjusted portfolios using the
Fama-French Fama and French (1997)48 industry classi�cation taking the median industry
monthly returns. Rows (6) and (7) break the sample period into two halves (48 months
each). Portfolios in rows (5) to (7) were drawn following Gompers, Ishii, and Metrick (2003).
Rows (8) and (9) take the same criteria as in row (1), but combine either the top 2 deciles
and bottom 2 deciles or top 3 and bottom 3 deciles as the Democracy and Dictatorship
portfolios. For these compositions, we follow Bebchuk, Cohen, and Ferrell (2009). The last
row considers the same 5%-95% criteria as for the main results (same as Row (1)), but uses
the equal-weighted mG-Index in place of the nG-Index. Heptiles were used for last row with
extreme portfolios to create a hedged position because a decile distribution was not possible
using mG-Index values. Signi�cance at 10%, 5%, and 1% are shown by *, **, and ***,
respectively.

Portfolios Value-weighted Equal-weighted

Alpha
Excess
Returns

Alpha
Excess
Returns

Democracy � Dictatorship -1.333** -1.233 -0.316 -0.275
(1) (0.623) (0.405)

Rolling 5%-95% criteria (a) -0.324* -0.412 -0.266 -0.273
(2) (0.196) (0.204)

Single 2%-98% criteria (b) -0.605 -0.525 -0.025 -0.051
(3) (0.614) (0.473)

Strictly quantile criteria (c) -0.001 -0.001 -0.002 -0.001
(4) (0.002) (0.159)

Industry-adjusted -0.869* -0.764 -0.309 -0.291
(5) (0.517) (0.366)

First-half sample period -0.131 -0.298 +0.125 +0.365
(6) (0.687) (0.099)

Second-half sample period -2.452** -2.168 -0.734 -0.915
(7) (1.122) (0.697)

Double deciles (1,2 � 9,10) -1.128** -1.085 -0.608** -0.549
(8) (0.515) (0.302)

Triple deciles (1,2,3 � 8,9,10) -1.081*** -1.088 -0.564** -0.514
(9) (0.389) (0.255)

mG-Index based portfolios -0.001 0.002 -0.002 -0.001
(10) (0.002) (0.002)
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Table 3.20 Robustness check for nG-based trading strategy: Alter-
native factor models

This table summarizes the results for the abnormal returns on the governance hedge, i.e.,
Democracy�Dictatorship portfolios (both value- and equal-weighted) when using alternative
asset pricing models. The �rst row shows the result for the baseline model using raw returns
as reported in Table 3.10 along with the industry-adjusted returns as in Table 3.19. The
second row considers a market risk model (i.e., the capital asset pricing model). The third
shows abnormal returns with the Fama-French (FF) three-factor model. In the fourth row,
we augment the previous model by adding the Pástor and Stambaugh (2003) liquidity factor.
The next row reports the alpha from the FF four-factor model. Last, we also assess the FF
�ve-factor model Fama and French (2016) and the same FF �ve-factor model with the
liquidity factor. The robust standard errors are reported in parentheses for each alpha.
Signi�cance at 10%, 5%, and 1% are denoted using *, **, and ***, respectively.

Asset Pricing Model Value-weighted Equal-weighted

Raw
Industry-

Adjusted
Raw

Industry-

Adjusted

FF four factors + liquidity factor -1.333** -0.869* -0.316 -0.309
(1) (0.623) (0.517) (0.405) (0.366)

CAPM -1.314** -0.798 -0.32 -0.343
(2) (0.631) (0.546) (0.422) (0.390)

FF three factors -1.351** -0.803 -0.343 -0.335
(3) (0.622) (0.548) (0.425) (0.394)

FF three factors + liquidity factor -1.338** -0.810 -0.325 -0.319
(4) (0.623) (0.545) (0.423) (0.393)

FF four factors -1.347** -0.802 -0.336 -0.327
(5) (0.622) (0.551) (0.407) (0.368)

FF �ve factors -1.493** -0.966* -0.34 -0.364
(6) (0.638) (0.540) (0.450) (0.409)

FF �ve factors + liquidity factor -1.482** -0.971* -0.327 -0.353
(7) (0.639) (0.539) (0.448) (0.407)
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CHAPTER 4

Sustain and Deliver: Capturing the Valuation

E�ects of Corporate Sustainability

4.1 Abstract

This study identi�es a select few indicators from a large set of environmental,

social and governance (ESG) factors; and introduces a corporate sustainabil-

ity measure. Sustainable part of corporate social performance completely ex-

plains its positive relation with �rm value. In parallel, those ESG initiatives

that are irrelevant to sustainability do not a�ect �rm value. These �ndings

remain robust after controlling for potential endogeneity issues. Moreover,
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sustainability-based hedge portfolios would have generated abnormal returns

of over 4% per year in the sample period. Together, these results imply that

only the sustainable aspects of ESG are associated with superior �nancial per-

formance in terms of both accounting- and market-based value.

4.2 Introduction

�Sustainable investing is simply smart investing. Sustainable investing seeks

to drive positive social or environmental impact alongside �nancial results,

allowing investors to accomplish more with their money.�

[BlackRock, Inc.]

Investors, and especially large institutional investors such as BlackRock, are

increasingly employing screening processes to identify �rms with better envi-

ronmental, social and governance (ESG henceforth) practices. Do these social

responsibility screens bene�t investors? While this question has drawn a lot

of attention in the literature over the last 10 years, the jury is still out due to

mixed empirical evidence on the relationship between corporate social respon-

sibility/ performance (CSR/CSP) and �nancial performance (CFP).51 While

some studies indicate that ESG screens work for investors (e.g., Kempf and

Ostho�, 2007), others show no signi�cant bene�ts from such investments (e.g.,

Humphrey, Lee, and Shen, 2012).52 Put alternatively, the valuation bene�ts

accompanying ESG activities are yet to be �rmly established.

In this study, thus, I contribute to this literature by highlighting those �ner yet

vital aspects of ESG initiatives that may a�ect the way �rms and their man-

51In di�erent streams of literature, ESG-based measures are known by di�erent names
such as stakeholder welfare (Jiao, 2010), stakeholder-relations index (Borgers et al., 2013),
or more popularly CSR/CSP (Humphrey, Lee, and Shen, 2012; Becchetti, Ciciretti, and
Giovannelli, 2013; Becchetti, Ciciretti, and Hasan, 2015; Lins, Servaes, and Tamayo, 2017;
Buchanan, Cao, and Chen, 2018).

52See Van Beurden and Gössling (2008) and Fulton, Kahn, and Sharples (2012) for detailed
reviews.
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agers respond to these. To begin with, using theoretical insights from Fatemi,

Fooladi, and Tehranian (2015), I identify a select few ESG indicators that are

signi�cant predictors of �rms' survival. Further assessment of these indicators

using inputs from sustainability and CSR literature, along with the United

Nations' sustainability-speci�c guidelines, con�rm that the selected indicators

importantly converge towards the concept of corporate sustainability. Subse-

quently, I run empirical tests with these sustainability-relevant CSR initiatives

to show a monotonic ESG�valuation relationship. In addition, I examine the

practical signi�cance of corporate sustainability by assessing if sustainability-

based hedge portfolios could have generated abnormal returns for investors.

Do each of the ESG indicators necessarily warrant a presence in the ESG-based

ratings? Which of the ESG subcomponents (both strengths and concerns)

largely contribute towards the CSR and CFP relationship? These questions

are central to the research objectives of this study. Further motivation comes

from the fact that most ESG rating agencies, as well as prior research, com-

bines a heterogeneous set of ESG strengths and concerns using a �kitchen sink�

or �all-in� approach to either measure individual ESG dimensions (i.e., environ-

mental, social or governance aspects separately) or a composite ESG score that

represents CSP.53 However, there is no theoretical argument for assuming that

all of the available ESG indicators are essential as contributors towards bet-

ter CSR �rms outperforming their poor CSR counterparts. In fact, Fatemi,

Fooladi, and Tehranian (2015) �rm valuation model �that captures the net

bene�ts of ESG initiatives� shows that �the nature of CSR [or ESG] activi-

ties .. undertaken� does have value implications. Essentially, di�erent ESG

53Note that some ESG-rating agencies such as MSCI have started assessing only a set
of key industry-speci�c indicators in recent years following the works on industry-relevance
or materiality in Khan, Serafeim, and Yoon (2016). But despite the introduction of indus-
try relevance, broad kitchen-sink/all-in approach prevails since there is no industry-neutral
selection applied.
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activities can have di�erent e�ects on the �rms' cash �ows, their probability

of survival, and their capitalization rates. Hence, those CSR activities that

are central to �rms' long-term survival should show superior valuation e�ects.

Moreover, if indeed such survival is a consequence of corporate sustainability,

these indicators should also represent the �rms' sustainability focus.

In recent years, empirical research exploring the relationship between accounting-

based CFP measures and CSP has largely revealed unidirectional results, i.e.,

�rms with high CSR ratings have better �rm value than their low CSR counter-

parts. The same cannot be said, however, when market-based performance or

stock returns are used (Derwall, Koedijk, and Ter Horst, 2011; Fulton, Kahn,

and Sharples, 2012).54 I argue that the positive correlation between CSR and

accounting CFP may be driven by some dominant ESG indicators whence

possibly others diminish the value or are irrelevant. Managers' need to bal-

ance amongst stakeholders' demands may, additionally, suppress the in�uence

of certain important ESG components or indicators (Bouslah, Kryzanowski,

and M'Zali, 2013). When it comes to stock returns, however, Krüger (2015)

shows that markets react di�erently to di�erent CSR news. Hence, while the

net e�ect of CSP on accounting CFP remains consistent, its impact on stock

returns may be directed solely through the survival-relevant CSR initiatives.

ESG data, using all-in approach, has been extensively used to measure prox-

ies for several concepts such as the social capital (Jha and Cox, 2015; Lins,

Servaes, and Tamayo, 2017), stakeholder relations (Borgers et al., 2013) and

CSP/ CSR (Humphrey, Lee, and Shen, 2012; Kim, Li, and Li, 2014; Dyck

et al., 2018). But, as far as I know, this is the �rst time a selective approach

is being used to identify a few ESG indicators from all the ESG dimensions

54Much of this literature employs aggregate CSP measures or broad commercial CSR
ratings. However, results mostly remain the same even when ESG sub-dimensions i.e., the
environmental, social and governance sub-ratings are separately considered (e.g., Galema,
Plantinga, and Scholtens, 2008; Ng and Rezaee, 2015).
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to construct a more latent corporate sustainability measure.55 I employ an

empirical identi�cation that instruments �rm survival as an outcome of sus-

tainability in a partial least square (PLS) framework to select a subset of

available ESG strengths and concerns, before con�rming with a review of the

MSCI ESG indicator de�nitions that these indicators conceptually converge

towards corporate sustainability. Sustainability, in this context, is de�ned as

the �rm's ability to meet current goals, i.e., shareholders wealth maximization,

without comprising the societal goals and the needs of future generations or

other stakeholders (WCED, 1987; Van Marrewijk, 2003).56 Or, in other words,

it is the ability to balance the triple bottom line comprising of pro�t, people

and planet (Kaptein and Wempe, 2002).57 Essentially, sustainability captures

a �rm's moral obligation towards future generations (Solow, 1993) and therein

lies the big bone of contention, whether these so-called moral obligations do

create value for the �rm and its shareholders, or merely cause value diminution.

My initial hypothesis is that, out of about 140 available MSCI ESG indica-

tors, only the ESG strengths and concerns that matter for �rm survival are

most in�uential in contributing towards the well-documented CSP��rm value

correlation. Using inputs from Kelly and Pruitt (2015), I employ a partial

three-pass regression �lter (i.e., PLS) to identify those ESG indicators that

55Khan, Serafeim, and Yoon (2016) use a selective approach as well, but focus on �material
sustainability�, which is the subset of ESG factors that are materially relevant for each of
the 45 industries as classi�ed by the Sustainability Accounting Standards Board (SASB).
However, I focus on a more generic corporate sustainability measure that is industry-neutral.

56In certain streams of management literature, corporate sustainability is aimed at mini-
mizing risks for long-term survival by ensuring the �rms' future �nancial growth. However,
note that I apply corporate sustainability from stakeholder perspective as de�ned by United
Nations Global Compact Guide to Corporate Sustainability, 2015. Thus, within this con-
ceptual framework, the long-term survival and �nancial growth are possible consequences of
corporate sustainability, and not necessarily corporate sustainability itself.

57The term triple bottom line is widely used to represent a win�win�win objective focused
on the �company, its customers, and the environment� as �rst explored in Elkington (1994).
In recent years, these objectives are largely represented by the 3Ps i.e., pro�t, people and
planet.
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managers should ideally be most attentive towards since they can predict fu-

ture �nancial distress, and hence, the likelihood of �rms' survival. I further

�nd that this subset of ESG indicators is also signi�cantly di�erent as it is re-

�ective of corporate sustainability as recognized by the CSR literature, as well

as the United Nations (UN) sponsored programs and initiatives. My analysis

reveals that only 30 strengths and 21 concerns (out of the 140 ESG indica-

tors) are relevant to �rms' survival. Since more than 80% of these indicators

are also representative of corporate sustainability, the composite score of this

identi�ed subset of ESG indicators is called the sustainability index (SUS-

Index or simply, SUS). Each �rm in the MSCI ESG database is assigned SUS

scores using their ESG strengths (+) and concerns (�) re�ected by these 51

select-few sustainability indicators. Bebchuk, Cohen, and Ferrell (2009) follow

a similar identi�cation strategy to show that only 6 entrenchment variables

out of the total 24 used in Gompers, Ishii, and Metrick (2003) Governance

Index (G-Index) capture most of the variations seen in the aggregated all-in

G-Index.

Next, I assess if the identi�ed indicators are signi�cantly associated with �rm

value's proxy Tobin's Q. The results using both aggregated measure (SUS)

and its subcomponent strengths (SUSstr) and concerns (SUScon) show sig-

ni�cant correlations with �rm value even after controlling for important �rm

characteristics and the remaining ESG indicators. The sustainability index has

a monotonic and signi�cantly positive association with Tobin's Q, while the

aggregate remnant ESG score does not show a signi�cant relationship with

the same. Even when it comes to strength and concern subcomponents, as

expected, the SUSstr has a positive association with �rm value and SUScon

is negatively related to it. On comparing these results with those of corre-

sponding all-in approach based CSP measure, I �nd that SUS-Index and its

subcomponents capture much of the CSP��rm value relationship across the
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sample period. These �ndings remain robust even with dynamic models that

control for simultaneity, or with �rm �xed e�ects and cross-sectional panel

estimations.

I further employ a cleaner identi�cation strategy to get causal estimates using

a quasi-experimental setting that exploits the application of industry-based in-

dicator assessment by MSCI. Before 2010, all the ESG indicators were assessed

for each of the �rms covered by MSCI. However beginning 2010, MSCI initi-

ated a new data collection criteria that limited the assessment to a smaller set

of industry-relevant indicators for each �rm. The results from this exogenous

shock to the ESG-based measures show that only the changes in SUS-Index

do cause changes in Tobin's Q for the treatment �rms across the change in as-

sessment methodology. To corroborate my �ndings, I run a robustness check

using the instrumental variables (IV) approach. My results from the IV esti-

mations, once again, support the existence of a causal relationship between all

the sustainability measures (SUS, SUSstr, and SUScon) and the �rm value.

Better sustainability scores resulting in superior �rm value need not necessarily

imply that an investment strategy using sustainability index should generate

abnormal stock returns, as we expect market participants to understand the

di�erences between the more and less sustainable �rms so that the market

prices correct for them. However, I �nd that there is a monotonic and increas-

ing relationship between sustainability and abnormal returns in my sample

period. As mentioned earlier, much of the empirical evidence on the relation

between ESG-based measures and abnormal returns are mixed. Hence, a pos-

itive signi�cant relationship using the selective sustainability index may be

indicative of drawbacks accompanying the use of composite indices or scores

applying the kitchen sink approach whence investors do not ascertain the im-
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portance of individual components within these composites.58

The premium associated with sustainable CSR activities is di�cult for both the

investors and markets to understand because much of their future long-term

valuation bene�ts are driven by external sources such as better reputation,

more customer loyalty, superior talent acquisition, etc. Long high sustainabil-

ity / short low sustainability hedge using the SUS-Index, thus, could generate

economically and statistically signi�cant abnormal returns of about 4.3% per

annum. The fact that a similar investment hedge using the rest of ESG com-

ponents does not show any signi�cant correlations with abnormal returns in

the analyzed sample period, signi�es the importance of sustainability index.

Note that the existence of abnormal returns in my �ndings does not necessarily

indicate considerable market ine�ciency nor guarantees that a similar trend

can be expected in the coming years. However, by comparing the hedging

strategies that use the sustainability index and the other components index, I

show that the outcome of investment strategies that focus on relevant parts of

a composite index can be much di�erent from that of the one that applies a

pooled index. This may just be because the sustainability index is less noisy

than a comparable ESG-composite CSP/ CSR score.

The rest of this study is organized as follows. Section 4.3 provides a background

for measuring sustainability. Section 4.4 presents the data and SUS-Index

along with some preliminary analysis. Next, Section 4.5 explains the empirical

models and corresponding results for the relationship between �rm value and

sustainability, including additional tests to draw causal inferences. Section 4.6

assesses sustainability-based investment portfolios and their abnormal returns.

Finally, Section 4.7 discusses the main �ndings and concludes.

58Using the three sub-dimensions within ESG (i.e., environmental, social and governance
dimensions), some papers have highlighted the same (Kempf and Ostho�, 2007; Galema,
Plantinga, and Scholtens, 2008). However, this is the �rst study that disentangles the
relevance of individual ESG factors instead of disaggregating the broader three dimensions.
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4.3 ESG and Sustainability

4.3.1 Background: The CSR View

Just like individuals, �rms do not exist in isolation. As legal entities, they are

a part of the society and ecology to which they belong. Does this mean that

they have additional social responsibilities along with their �duciary responsi-

bility towards shareholders? This is the central question in the CSR literature.

In economics and �nance, the attention towards CSR view has grown in recent

years with an increasing emphasis on social accounting and sustainability re-

ports by large corporations. The Volkswagen scandal and its fallout highlights

the relevance of ESG accountability and codes for both the �rms and their

investors. Sustainability and the triple bottom line have become the new buzz

words.

In economics and �nance, there are two broad contrasting views concerning cor-

porate social expenditures. While one stream of literature treats stakeholder

and social welfare maximization complementary to shareholder wealth max-

imization (e.g., Edmans, 2011), the other stream builds on Friedman (1970)

argument that CSR is an avoidable cost for �rms that comes at the expense

of shareholders. This debate is ongoing with recent evidence supporting both

views. I contribute to this debate by focusing on investment strategies employ-

ing ESG data to assess if the corporate social response and sum of sustainability

initiatives are value-enhancing for shareholders. Taking the investors perspec-

tive also allows us to understand the real outcomes of CSP and the economic

impact it has in terms of shareholder wealth generation.

Using either of the two contrasting views stated above, in theory, the associ-

ation between �rm valuation and sustainability or CSP could be accordingly

positive or negative. The �rm's CSR objectives may be in sync with its wealth

maximization objective, or it may have additional costs that contradict the
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said objective (Ferrell, Liang, and Renneboog, 2016). Empirical evidence is

seen to support either of these views depending on the type of CSR-related

costs and corresponding �rm outcomes studied. Hillman and Keim (2001),

for example, show that while CSP and stakeholder management focusing on

primary stakeholders can increase shareholder value, strict social screens that

exclude alcohol, tobacco or other controversial industries may be detrimen-

tal to the shareholders. Since my analysis focuses on qualitative indicators

a�ecting primary stakeholders and does not include exclusionary screens, I

hypothesize that shareholders will reap bene�ts from CSP, and more so from

sustainability. By further exploring the sustainability strengths and concerns

separately, I seek to identify how each of these drives the shareholders' value.

4.3.2 Measuring Sustainability

The MSCI ESG data (previously the Kinder, Lydenberg, and Domini Research

& Analytics, Inc. or RiskMetrics-KLD) has about 140 ESG related strengths

and concerns categorized under eight di�erent dimensions: community, con-

troversial business, governance, diversity, employee relations, environment, hu-

man rights, and product-related aspects. Over the years, some indicators get

added to each dimension while others are dropped as and when they seem

to in�uence or become irrelevant to each of these dimensions. There are also

instances when some of the ESG components were moved from one dimension

to another (e.g., indigenous people relations was moved in 2002 from the com-

munity to human rights). This lays credence to my argument that the ESG

landscape is evolving with time and not all components in the ESG database

are value-enhancing or value-diminishing. However, since the aim of this study

is to measure sustainability, which is a long-term focused measure, all com-

ponents that a�ect the �rms' sustainability should necessarily be expected to

have a long-lasting impact and have value-enhancing relevance.
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In empirical terms, following the theoretical prediction of Fatemi, Fooladi, and

Tehranian (2015), I start with the hypothesis that only those ESG indicators

that are relevant to �rm survival should be important for the �rms, and hence

should impact their valuations. Note that this identi�cation assumes that �rm

survival is an outcome of corporate sustainability to isolate the underlying

latent factor from ESG data that can predict future �rm survival. Then, I

run a conceptual assessment of whether these indicators also matter towards

stakeholders' interest alignment in the long-run by contributing to the �rm's

sustainability or not. In other words, the purpose of this conceptual identi�-

cation is to assess if my assumption that survival-predicting ESG indicators

converge to corporate sustainability is indeed true or not.

In theory, sustainability indicators should be the ones that �rms' decision mak-

ers largely consider when balancing between various stakeholders to maximize

their triple bottom line. It is important to note that, in my de�nition of stake-

holders, I also include shareholders although the ESG database only covers

a small part of shareholders' and management's interest-aligning governance

mechanisms.59 The broad-based governance attributes rated by MSCI such as

corruption, public policy, and business ethics are not strictly concerned with

corporate governance per se as they have wider societal implications a�ect-

ing other stakeholders. Therefore, following Bereskin et al. (2018), and to

avoid category omission bias as forewarned in Ferrell, Liang, and Renneboog

(2016), I initially include governance indicators, and later omit it for robustness

checks.60 Balancing between di�erent stakeholders while ensuring shareholder

wealth maximization may be bene�cial for the managers themselves (Cheng,

59For this reason, in my analysis, I further explore other dimensions of corporate gover-
nance (i.e., managerial entrenchment, institutional ownership, and blockholding patterns)
as additional control variables to assess if agency problems substitute or contribute to the
valuation bene�ts from corporate sustainability.

60The exclusion of MSCI corporate governance indicators from the ESG measures does
not a�ect any of my results. For example, see Appendix Table 4.13.
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Ioannou, and Serafeim, 2014). Nonetheless, assuming that market forces and

�rms' internal corporate governance mechanisms function well, such adverse

e�ects may be minimized to eventually bene�t the �rm and increase its valu-

ation (Ferrell, Liang, and Renneboog, 2016).

Why should sustainability matter? Sustainability and the balancing of the

triple bottom line (i.e., pro�ts, people, and planet) can not only align the in-

terests of shareholders with other stakeholders but can also bene�t the �rm

through positive externalities that indirectly in�uence its reputation, goodwill

and in turn, its value (Gregory, Whittaker, and Yan, 2016; Gong and Grundy,

2017). With the sustainability viewed through a long-term lens, stakeholders

can also bene�t by reducing the threat of short-termism and consequential

managerial myopia (Louche, 2009). These arguments have been used in the

literature to hypothesize the bene�ts of corporate sustainability in terms of

higher valuations. However, alternatively, the Friedman (1970) view that sus-

tainability is merely a cost cannot be ignored in theory. When the managers

pay attention to other stakeholders' needs, shareholders may be negatively

a�ected as there will be some decisions undertaken that are detrimental to

shareholder wealth maximization, especially in the short-run. Nevertheless, as

we de�ne sustainability and identify its indicators through a long-term lens,

all stakeholders including the shareholders should reap the bene�ts of superior

sustainability in comparison to other �rms.

In light of the aforementioned argument highlighting the bene�ts of sustain-

ability, I next identify the ESG components that should contribute to �rms

survival positively (i.e., the strengths) or negatively (i.e., the concerns), con-

�rm that these represent corporate sustainability, and then run empirical tests

to assess if these hypothesized components drive the valuation outcomes doc-

umented in the literature for CSR performance.
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4.3.3 Identi�cation of the ESG Factors Relevant to Firm Survival

To empirically identify the sustainability-relevant indicators, I assume that

corporate sustainability directly in�uences �rms' survival by a�ecting its dis-

tress risk. To this end, the expected survival measures are assumed to be

linearly related to sustainability indicators in the following manner:

E(Survivalt+1) = A0 + A1 ∗ SUSt (4.1)

where SUSt are those ESG indicators that are truly a formative part of cor-

porate sustainability and, hence, matter for �rms' survival. The actual �rm

survival measures are then a combination of their conditional expectations and

any unexpected variations.

Survivalt+1 = E(Survivalt+1) + εt+1 (4.2)

or,

Survivalt+1 = A0 + A1 ∗ SUSt + εt+1 (4.3)

where εt is sustainability-irrelevant part of the �rm survival measurement,

which is clearly independent of SUStâ� .

Let Ft =
(
F1,t, F2,t, , Fn,t

)
represent the n ESG indicators set. The underlying

assumption is that the factor structure for each of the indicators Fi,t can be

modeled as:

Fi,t = Bi0 +Bi1 ∗ SUSt +Bi2 ∗ remCSPt + ei,t (4.4)

where SUSt captures the sustainability component, remCSPt accounts for the

additional component within each factor that controls for all non-sustainability

(remnant) characteristics, and ei,t is the error component of each factor Fi,t.

Thus, the key objective of the identi�cation strategy here is to isolate the load-
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ing Bi1 (the sensitivity of each ESG criteria to the sustainability construct) and

test if it is statistically di�erent from zero. However, this cannot be achieved

for the aforesaid factor structure without employing estimation techniques that

can e�ectively curtail both the non-sustainability component remCSPt and

the error term ei,t. Several econometric tools such as the principal compo-

nent analysis (PCA) are available to separate SUSt from ei,t (Girerd-Potin,

Jimenez-Garcès, and Louvet, 2014). Importantly though, techniques like PCA

are unable to completely isolate SUSt, as the remCSPi,t remains an in�uential

part of any of the identi�ed orthogonal components (for a detailed discussion

on the limitations of PCA, see Huang et al., 2015). Conversely, when non-

sustainability characteristics form a large part of ESG indicators, PCA might

mostly capture variations in remCSPi,t making the identi�cation of corporate

sustainability impractical. Moreover, applying PCA on ESG data is prob-

lematic since the number of indicators vary with time as and when MSCI

updates its reporting methodology. With factor methods like PCA employing

estimation based on the ESG indicators' covariances/ correlations, they are

ine�ective in the presence of missing data whence an indicator is dropped or

isn't reported for a �rm.

In the light of these arguments, there is a need to use an alternative econometric

tool that can ensure isolation of SUSt component by introducing a measurable

outcome of corporate sustainability (in our case, the �rm survival proxy) as

an instrument within the estimation process. To do so, using the methodology

from Kelly and Pruitt (2013, 2015), I run the PLS estimation to eliminate

the sustainability-irrelevant component. Combining the factor structure in

Equation 4.4 with the assumed relation in Equation 4.3, I seek to identify the

sustainability indicators as those ESG factors that have an impact on �rms'

future survival. Instead of extracting components based on with-in covariations

(as in PCA), PLS allows for the identi�cation of sustainability indicators by
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examining the covariation of ESG indicators with the �rm survival proxies.

Following Huang et al. (2015), I implement the PLS technique using the �rst

two passes of the three-pass regression �lter introduced in Kelly and Pruitt

(2015).

In the �rst pass, I estimate n time-series regressions, i.e., one for each ESG

indicator, with the �rm survival proxy as the independent variable.

Fi,t = ηi0 + ηi1Survivalt+1 + µi,t (4.5)

Here, the coe�cient ηi1 measures the sensitivity of each ESG factor Fi,t to the

true corporate sustainability component that is instrumented using the �rm

survival proxy. Kelly and Pruitt (2015) show that there is no strict requirement

that the survival proxy itself is noise-free. The two-pass process ensures that

the impact of such noise is minimized. Since the expected true survival mea-

sure is a�ected only by SUSt (Equation 4.1), only the sustainability-relevant

ESG indicators are allowed to in�uence expected �rm survival while being

independent of unexpected variations (from Equations 4.3 and 4.4). From

these �rst pass time-series regressions (Equation 4.5), hence, ηi1 estimates the

relation between each ESG indicator i and the true corporate sustainability

component.

Next, in the second step, I run the cross-sectional regressions for each time

period t using the estimated coe�cients ηi1 from the �rst step to obtain the

PLS coe�cient estimates for each ESG indicator using the following:

Fi,t = ζt0 + SUSPLS
t η̂i1 + νi,t (4.6)

where the coe�cient SUSPLS
t is the estimated PLS for each of the ESG indi-

cators in a given time t. As shown in Equation 4.6, the second pass introduces

the �rst-stage coe�cient estimates from Equation 4.5 as independent variables
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while retaining the same dependent variables Fi,t. Since the PLS estimation

is done separately for each of the ESG indicators, missing values for one in-

dicator do not have a bearing on the rest (unlike in PCA). The Equations

4.3 and 4.4 are combined together within this PLS framework to obtain the

SUSPLS
t coe�cient, hence, allowing us to assess the relevance of each ESG

indicator towards corporate sustainability (using �rm survival proxy). Since

the true relationship between each ESG indicator and the survival proxy is

unknown, the �rst pass gives a biased coe�cient estimate that includes noisy

element remCSPt; although the other error component ei,t is discarded. Even-

tually, the second pass eliminates all the sustainability-irrelevant components

to identify the true relationships.

Finally, I classify each ESG factor as either sustainability or remnant CSP

indicator by running univariate t-tests for the time-series of estimated coef-

�cients SUSPLS
t , and checking whether they are statistically di�erent from

zero. The aim is to segregate corporate sustainability from within the ESG

indicators by only considering those factors that persistently impact �rms' sur-

vival. I employ two measures of distress risk to proxy for �rm survival, Altman

(1968) Z-score (for main analysis) and Bharath and Shumway (2008) distance

to default (for robustness check).61

4.3.3.1 Do the Identi�ed Indicators Re�ect Corporate Sustainability?

To con�rm that the empirically identi�ed indicators correspond to corporate

sustainability concept, I follow an independent secondary identi�cation using

four step �ltration process. While the identi�cation in Section 4.3.3 is data-

61Despite its limitations, Altman's Z-score is preferred in the main analysis because it
can be computed easily from accounting data, unlike other measures of distress risk such as
the distance to default (DD). This allows me to identify sustainability indicators without
any signi�cant loss of observations. Note that when DD is used as survival proxy, many of
the identi�ed indicators remain robust. However, the identi�cation is less powerful as fewer
indicators are found to be related to future DD.
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driven and assumes that �rm survival is an outcome of corporate sustainability,

the purpose of conceptual identi�cation in this section is to con�rm that this

assumption is indeed true. In other words, I check if the indicators obtained

empirically (assuming that �rm survival instruments corporate sustainability)

are similar to the ones identi�ed using sustainability-focused theoretical and

conceptual lens.

In the �rst step, since my de�nition of sustainability focuses on long term ben-

e�ts, I examine each of the available 140 ESG components to trace the number

of years for which their data was gathered. This provided me with possible in-

dicators that have lost relevance with time or were short-lived ESG indicators

that do not matter in the long-run and may not represent sustainability and

triple bottom line objective.

In the second step, I reviewed the sustainability literature across the eco-

nomics, �nance and management perspectives to assess which components

from the identi�ed subset of long-lasting indicators should be theoretically rel-

evant. Using over 1800 indicators from 20 di�erent ESG datasets, Rahdari

and Rostamy (2015) extract 30 common sustainability constructs. I examined

each of the 140 MSCI ESG components and their de�nitions to check if it is

directly associated with any of these identi�ed constructs.

In step three, I further assessed the theoretically relevant indicators in terms

of how well they �t in 2015 United Nations (UN) Global Compact Guide

to Corporate Sustainability. This benchmark was selected for three reasons.

Firstly, the very de�nition of corporate sustainability by UN Global Compact

(UNGC) initiative in terms of �well-being of workers, communities and planets

.. [along with] .. health of the business� is in sync with the way I want to

measure it. This is especially important because Rahdari and Rostamy (2015)

do not provide a clear de�nition of corporate sustainability. Secondly, this

initiative is worlds largest sustainability project with almost 12000 for-pro�t
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and non-pro�t participants worldwide.62 This shows the wide acceptance of

the UNGC guide across the globe and allows me to use a set of sustainability

constructs that have industry-wide relevance. Thirdly, being a UN initiative,

assuming a well-researched plan, the identi�ed constructs can be expected to

be the most powerful indicators of sustainability. In this UNGC guide, the UN

expands ten principles related to human rights, labor, environment and anti-

corruption that are fundamental to corporate sustainability. The ESG com-

ponents shortlisted from step two were cross-veri�ed and further �ltered using

these principles. Additionally, to check the robustness of the identi�ed ESG

components, the United Nations Principles for Responsible Investment (UN-

PRI) and United Nations Conference on Trade and Development's (UNCTAD)

2011 Investor and Enterprise Responsibility Review and the 2015 Investment

Policy Framework for Sustainable Development were referred to rea�rm the

�ltered indicators.63

Lastly, in step four, I run con�rmatory test to check the relevance of these iden-

ti�ed sustainability indicators in terms of the way they have recently re�ected

in media articles and Google Trends in comparison to rest of the ESG indica-

tors. The idea here is to ascertain that the relevant sustainability indicators

are those that have commonly impacted �rms across businesses, industries and

countries through their �popularity�. This test con�rms the degree to which

issues relating to these indicators draw signi�cant attention in comparison to

other less relevant or irrelevant indicators.

62The UNGC initiative is followed across companies and other participants spread over
160 countries.

63Other initiatives were also considered but eventually left out since they were not suitable
for identifying corporate sustainability. Some of these were broad-based criteria such as the
Global Reporting Initiative (as it focuses on CSR in entirety and not only on corporate
sustainability), while others were too narrow-focused such as the carbon footprint maps
and Commission on Sustainable Development initiatives (as they are largely environment-
oriented).
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Table 4.1 List of sustainability indicators identi�ed from MSCI
ESG data

This is a summary list of all indicators included in the sustainability index (SUS) and its cor-
responding strengths (SUSstr) and concerns (SUScon) subcomponents. The sustainability
indicators that overlap with the independent conceptual identi�cation in Section 4.3.3.1 are
shown in bold. For a complete list of all the MSCI ESG indicators, see Appendix 4.A.1. The
selection criteria that were met for each of these indicators are accordingly shown by †, ‡ and
> for Rahdari and Rostamy (2015) 30 sustainability constructs, UNGC Guide to Corporate
Sustainability and UNCTAD's 2015 Framework for Sustainable Development respectively.

Community

Strengths: Concerns:

Support for Housing†‡ Tax Disputes†‡
Support for Education†‡ Negative Economic/ Community Impact†‡
Non-US Charitable Giving†‡ Other Community Concerns†‡
Community Engagement†‡

Diversity

Strengths: Concerns:

CEO Diversity‡ Non-Representation †
Board of Directors - Gender Diversity†‡ Other Diversity Concerns†‡
Work-Life Balance/ Family Bene�ts†‡
Employment of the Disabled†‡
Other Diversity Strengths†‡

Employees

Strengths: Concerns:

Employee Involvement† ‡> Workforce Reductions†
Strong Retirement Bene�ts† Supply Chain Controversies†
Employee Health & Safety† ‡> Child Labor† ‡>
Compensation & Bene�ts†‡
Human Capital - Other Strengths† ‡>

Environment

Strengths: Concerns:

Bene�cial Products & Services/ Env. Opportunities† Hazardous Waste† ‡>
Pollution Prevention/ Waste Management† ‡> Ozone Depleting Chemicals† ‡>
Climate Change/ Alternative Fuels/ Clean Energy† ‡> Toxic Spills & Releases/ Substantial Emissions† ‡>
Environmental Management Systems† ‡> Agricultural Chemicals† ‡>
Raw Material Sourcing Climate Change† ‡>
Natural Resource Use‡> Other Environment Concerns†‡

Governance

Strengths: Concerns:

Limited Compensation†> Accounting Concern† ‡>
Ownership Strength† ‡> Reporting Quality/ Transparency Concern † ‡>
Transparency/ Reporting Quality Strength† ‡> Other Governance Concerns†>
Political Accountability Strength†‡

Human Rights

Strengths: Concerns:

Labor Rights Strength† ‡> Support for Controversial Regimes>
International Labor Rights Concern† ‡>
Indigenous Peoples Relations

Product

Strengths: Concerns:

Product Safety & Quality†‡ Antitrust & Anticompetitive Practices†‡
R & D/ Innovation†‡
Social Opportunities - Access to Communications†‡
Social Opportunities - Nutrition and Health†‡
Other Product Strengths
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4.3.3.2 An Overview of the Sustainability Indicators

Using the PLS estimation from Section 4.3.3 and the aforementioned �lter-

ing steps, I identify the ESG strengths and concerns that essentially matter

for �rm survival. By using a two-pronged identi�cation, I am able to select

the sustainability indicators which are theory driven, empirically tested, and

conceptually robust. Thus, in addition to being the predictors of future �rm

survival, these indicators re�ect the preference and importance that ESG rat-

ing agencies, the United Nations and media assign to these over the rest of the

ESG indicators. Put di�erently, my hypothesis that these indicators are the

ones that matter, comes from an objective assessment of what shapes man-

agerial response to the investors' and other stakeholders' demands regarding

ESG factors.

For a complete list of available MSCI ESG indicators, refer to Appendix

4.A.1.64 The list of identi�ed sustainability indicators from ESG dataset using

PLS estimation with the Altman's Z-score as the �rm survival proxy is pro-

vided in Table 4.1. The conceptual relevance of these indicators is con�rmed by

the fact that corporate sustainability indicators identi�ed using Section 4.3.3.1

(see Appendix Table 4.11) overlap with over 80% of the indicators in Table

4.1 (as shown in bold).65 Furthermore, over 80% of the empirically identi�ed

sustainability indicators using PLS �t in at least two of the three main ob-

jective references employed in the secondary conceptual identi�cation i.e., a)

Rahdari and Rostamy (2015) 30 broad constructs list (indicated by † in Table

64For de�nitions of each of these ESG indicators, see MSCI ESG KLD STATS: 1991-2014
Data Sets Methodology guide, version: June 2015.

65A detailed discussion on some of these sustainability and remnant ESG indicators, and
the reasons for their inclusion/exclusion as per Section 4.3.3.1 is presented in Appendix
4.A.2. For example, some of the more recently introduced ESG indicators such as freedom
of expression, privacy and data security, biodiversity and di�erent dimensions of climate
change such as carbon footprint, energy e�ciency etc. were found to be relevant for SUS
in the �ltering process. However, since all these new indicators were only introduced after
2012 and had too many missing values they were dropped from the �nal list.
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Figure 4.1 Google Trends' interest scores for sustainability and
remnant ESG indicators

This �gure shows the plots of average Google Trends' interest over time measures for each
month from January 2004 to December 2017. All searches are normalized with respect to
the keyword �Charitable Giving� that represents one of the sustainability indicators. For
the complete list of keywords used for each of the ESG indicators, see Appendix 4.A.5. The
indicators whose respective keywords do not appear in Google Trends are omitted from these
averages.

∗ relative to the `Charitable Giving' keyword.

4.1), b) UNGC Guide to corporate sustainability (‡), and c) UNCTAD's 2015

Framework for Sustainable Development (>).

4.3.3.3 Sustainability Versus Remnant ESG Indicators: The Trend

While the criteria employed to demarcate sustainability indicators from the

remnant ESG components are chosen to ensure that the selection remains ob-

jective, there may be questions on its e�ectiveness. To mitigate these concerns,

I next evaluate the two sets of indicators in terms of their popularity shown in

Google search. Ideally, the sustainability-related issues should draw relatively

more attention �not only amongst the media but also people at large� than

the other ESG parameters, hence, increasing their relevance to the �rms.

The time series of average interest scores of all sustainability indicators is
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shown against the remnant ESG indicators in Figure I. While 75% of all sus-

tainability indicators had their respective keywords covered by Google Trends,

only about 25% of the remnant ESG ones appeared in the same (see Appendix

4.A.5 for details). As seen in the �gure, sustainability issues remained almost

ten times more popular than other CSR issues across the years on an aver-

age. In fact, if the non-appearing indicators (i.e., those whose keywords do not

show on the Google Trends) are set to zero, the sustainability interest scores

become 25 times that of remnant ESG averages. This lays credence to my ar-

gument that relevance of sustainability issues within the ESG dataset cannot

be ignored.

4.3.4 Relationship with Stock Returns

The multidimensionality of ESG-based measures, along with underlying country-

factors and cultural in�uences, makes it di�cult to capture abnormal returns

using investment strategies based on CSP measures. In terms of country-based

in�uence, for example, a �rm's CSR ranking is seen to be associated with

its home country's legal origins (Liang and Renneboog, 2017). In terms of

CSP multidimensionality, each of the dimensions within ESG composite mea-

sure may have contradictory e�ects on returns leading to confounding results

(Galema, Plantinga, and Scholtens, 2008). While this does explain the mixed

evidence seen in the literature, there is no explanation available yet as to why

investors continue to be attracted to the �rm's CSR ratings. Furthermore,

CSR in �rms is related to future stock price crash risk (Kim, Li, and Li, 2014)

and also book-to-market ratios that can increase resultant portfolio sensitivi-

ties to the Fama-French HML risk-factor (Galema, Plantinga, and Scholtens,

2008). This would accentuate di�culties encountered in capturing the stock

returns�sustainability association as the sustainability itself is measured as a

subcomponent of CSR/CSP.
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Despite the challenges mentioned above, the market for commercial ESG-based

ratings is booming with institutional investors being their main target cus-

tomers. So, numerous studies have tried to assess whether there are real

bene�ts for investors arising out of socially responsible investments or SRIs

(Galema, Plantinga, and Scholtens, 2008; Derwall, Koedijk, and Ter Horst,

2011). It has been shown that there is a considerable e�ect of CSP on returns

when markets are undergoing a crisis and investor trust is running low (Lins,

Servaes, and Tamayo, 2017). But, what should investors expect during other-

wise stable market conditions? I hypothesize that when sustainable aspects of

CSP are considered, markets do not completely correct for the di�erences in

corporate sustainability. The long-term perspective of sustainability makes it

di�cult for the investors and markets to completely understand the bene�ts

of sustainability for the stock prices to immediately adjust accordingly. Alter-

natively, nonexistence of abnormal returns for sustainability-based investment

hedges would suggest that markets have already learnt to correct for corporate

sustainability so as to override any possible mispricing (Borgers et al., 2013).

4.4 Methodology and Data

4.4.1 Empirical Approach

The empirical strategy applied in this study is as follows. In the �rst stage,

I identify a robust measure of sustainability using ESG data. This is done

using the two-step methodology proposed in Bebchuk, Cohen, and Ferrell

(2009). First identifying those indicators which are relevant to sustainability

from within the available ESG factors in MSCI dataset (as shown in previous

section), and then assessing if the sustainability measure SUS-Index itself is

relatively more important subcomponent within the all-in CSP measure. Al-

though there is a considerable amount of literature which has disaggregated

broad CSP measures based on ESG dimensions and its underlying strengths
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and concerns (e.g., Bouslah, Kryzanowski, and M'Zali, 2013), the idea of se-

lecting a subset of indicators from the whole lot of available ESG data is unex-

plored in the literature. While the in�uence of sustainability itself is subject to

reverse causality, simultaneity and endogeneity, my objective in the �rst part

of analysis is to capture the variability in correlations before drawing inferences

on causality. Subsequently, in the second stage, I establish causal relationship

between sustainability and �rm value using multiple identi�cation strategies

that collectively alleviate any possible endogeneity concerns. Finally, in the

last stage, I evaluate investment strategies using the proposed sustainability

measure SUS-Index to capture risk-adjusted returns. Several alternative port-

folios and asset pricing models are considered to test the robustness of my

�ndings.

4.4.2 ESG Data

The sustainability measure and other aspects of corporate social performance

are obtained using MSCI (formerly KLD) ESG data. My entire sample consists

of �rm-level data spanning from 1991 to 2015. The sample size covered by

MSCI-KLD for the ESG data has expanded from about 650 U.S. companies

in 1991 to about 3000 companies in the year 2015. MSCI evaluates these

companies on multiple indicators covered under several categories: community,

diversity, employees, environment, human rights, governance and product. For

each of these categories, a number of characteristics (i.e., indicators) re�ecting

the strengths or concerns under each category are represented for their presence

(1) or absence (0).66

Almost all prior ESG-based studies, measure the total number of strengths

66Only the qualitative indicators were used to construct ESG measures. The exclusionary
screens that identify controversial business areas such as alcohol, gambling, �rearms, mili-
tary, nuclear power and tobacco are excluded as they are mainly concerns which conceptually
do not contribute to CSP or sustainability (Hillman and Keim, 2001).
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minus total number of concerns as the CSP measure. I use the same CSP

measure as a benchmark to compare the sustainability measure SUS. Some

recent papers in ESG literature (e.g., Ng and Rezaee, 2015), measure speci�c

ESG dimensions i.e., environmental, social and governance, by taking only

their respective strengths and concerns to compute individual di�erence scores

for each. However, such sub-division is not preferred here as my objective is

not to explore speci�c ESG dimensions, but instead to identify sustainability

measure as a signi�cant component of the all-in CSP measure. My �nal sample

consists of over 36,000 �rm year observations of the CSP and other ESG-based

measures.

4.4.3 The Sustainability Index and the Remnant ESG Components

Index

To compute the sustainability index SUS for each year, I use an approach

similar to that used in prior literature employing MSCI ESG data (e.g., Jiao,

2010; Borgers et al., 2013) i.e., taking an aggregate of all the strengths (+) and

concerns (�), but using only the sustainability indicators identi�ed in Section

4.3.3. Additional subcomponents for this index are captured by summing up

only the strengths (SUSstr) or the concerns (SUScon). In other words, the

SUS-Index score is the di�erence between SUSstr and SUScon. This measure

captures the net sustainability improvement (if SUS > 0) or deterioration

(SUS < 0) experienced by a �rm in a given year in terms of how it balances

all important stakeholders' needs to achieve its triple bottom line objective.

For the comparable CSP measure as well, respective strength and concern

subcomponents (i.e., CSPstr and CSPcon) are calculated by following an

all-in approach and including all the ESG indicators.

Since SUS-Index is constructed using a subset of indicators from those used in

constructing the CSP measure, I additionally include all the leftover indicators
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(i.e., those that do not contribute to sustainability) using similar aggregation

procedure as before, to create the remnant CSP score (remCSP ). Essentially

remCSP is the di�erence between the net CSP score and the SUS score. If

variations in SUS measure captures much of the variation in CSP , the corre-

sponding coe�cient for remCSP in my analysis should predominantly remain

statistically insigni�cant. This focal criteria forms the base for empirical tests

that I run subsequently. Key attributes of the sustainability measures, CSP

measures and the remnant CSP are all summarized in Table 4.2 Panel A.

I further create a pseudo-sustainability measure by randomly dropping some

of the ESG indicators. This may be considered as a placebo experiment to

check that my results are not chance-driven, and to test the validity of �cor-

porate sustainability� measure itself.67 To allow for the replicability of this

experiment, a systematic sample of indicators was chosen by selecting every

third strength indicator, and every second concern indicator from each of the

8 categories reported by MSCI, to combine them into a pseudo-sustainability

score using exactly the same number of indicators as in the actual SUS-Index.

Subsequently, all those indicators that did not form the part of this measure

were combined into the pseudo-remnant CSP score.

4.4.4 Performance, Returns and Other Data

The performance variables and �rm-level controls are taken from COMPUS-

TAT annual data, and the monthly stock prices and corresponding returns are

provided by Center for Research in Security Prices (CRSP) as available on

WRDS. Additional governance data, mainly the Bebchuk, Cohen, and Ferrell

(2009) entrenchment index (E-Index) and institutional ownership/ blockholder

distribution, was taken from ISS-Riskmetrics and Thomson Reuters Institu-

tional Holdings data respectively, while the Fama-French four factors, �ve

67I am grateful to an anonymous referee for suggesting this test.
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Table 4.2 Descriptive statistics for �rm-speci�c variables, ESG-
based measures, and instruments

This table presents the mean, median, standard deviation (SD), extreme values and the
total number of observations (N) for all variables used in �rm value on ESG regressions.
Panel A covers all ESG-based measures. Panel B summarizes key aspects of independent
variables and main controls, whereas Panels C and D show summary statistics for additional
controls and instruments. These variables are computed from MSCI ESG, ISS Governance
and COMPUSTAT data. For details on the composition of these variables, see Appendices
C and D. All regressions applying ratios such as Tobin's Q, Sales Growth and ROA use these
values winsorized at the 5th and 95th percentiles in the presence of extreme outliers.

Panel A: ESG based measures and dimensions

Variables Mean SD Minimum Median Maximum N

SUS 0.133 1.481 -6.00 0.00 13.00 36040
SUSstr 0.803 1.352 0.00 0.00 15.00 36040
SUScon 0.669 0.929 0.00 0.00 9.00 36040
CSP -0.122 2.407 -11.00 0.00 19.00 36040
CSPstr 1.482 2.307 0.00 1.00 22.00 36040
CSPcon 1.604 1.801 0.00 1.00 18.00 36040
remCSP -0.255 1.440 -10.00 0.00 10.00 36040
Environment 0.061 0.801 -5.00 0.00 6.00 36040
Social 0.000 1.913 -9.00 0.00 14.00 36040
1. Community 0.085 0.501 -2.00 0.00 4.00 36040
2. Diversity -0.005 1.235 -3.00 0.00 7.00 36040
3. Employee 0.050 0.953 -4.00 0.00 8.00 36040
4. Human Rights -0.023 0.272 -3.00 0.00 2.00 35021
5. Product -0.106 0.587 -4.00 0.00 3.00 36040
Governance -0.180 0.666 -4.00 0.00 3.00 36040

Panel B: Main Regressors

Variables Mean SD Minimum Median Maximum N

Tobin's Q 2.407 4.279 -23.25 1.89 690.82 35915
SIC Industry Adjusted Tobin's Q 0.429 4.206 -25.81 0.02 688.26 35915
FF48 Industry Adjusted Tobin's Q 0.432 4.194 -26.37 0.02 687.93 35915
ROA 0.100 1.769 -120.96 0.11 226.31 36074
Size (Log of Total Assets) 7.512 1.802 -3.82 7.45 14.76 35971
Leverage 0.194 0.210 0.00 0.14 3.68 36074
Volume 18.470 1.616 8.97 18.48 25.67 36061
CAPEX/Total Assets -3.739 1.454 -12.75 -3.47 -0.19 33129
R&D Expense/Total Sales -1.170 1.826 -11.42 0.00 10.15 36074
Sales Growth (2 Years) 1.983 44.889 -34.95 1.16 7344.91 35485
Log of Age 5.033 1.039 0.00 5.23 6.48 35870
Delaware Dummy 0.585 0.493 0.00 1.00 1.00 36040

Panel C: Additional Controls

Variables Mean SD Minimum Median Maximum N

E-Index 3.093 1.446 0.00 3.00 6.00 19698
Institutional Ownership (%) 0.734 0.201 0.01 0.768 1.00 19861
Blockholders (#) 2.561 1.607 0.00 2.50 14.25 20261

Panel D: Instruments

Variables Mean SD Minimum Median Maximum N

PVD 0.546 0.064 0.25 0.55 0.93 34383
CDD 0.631 0.268 0.00 0.50 1.00 34370
SGD 0.727 0.313 0.00 0.75 1.00 34370
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factors (Fama and French, 2016) and Pástor and Stambaugh (2003) liquidity

factor were included for analyses concerning abnormal returns.

For �rst part of the analysis, the MSCI ESG and COMPUSTAT data were

merged together to pool them into an unbalanced master yearly panel. In

subsequent analysis, the E-Index and the institutional ownership details were

also added from the ISS governance and Thomson Reuters Institutional Hold-

ings data respectively. For computing monthly portfolio returns and to assess

corresponding abnormal returns, the CRSP data was appended to this master

panel such that the ESG and performance data remained same in each �scal

year for any given �rm.

For political leanings as instrumental variables (Di Giuli and Kostovetsky,

2014), I gather data for states in which MSCI sample �rms are headquartered.

The data for state-level Presidential voting percentages is obtained from Dave

Leipâ��s Atlas of U.S. Presidential elections, and the data on composition

of the House of Representatives, the Senate, and the state governments are

obtained from various online sources. Table 4.2 Panels B, C and D summa-

rize all the main variables, additional control variables and the instruments

respectively. The correlations between all the main variables are reported in

Appendix Table 4.12.

4.5 Sustainability and Firm Value

Numerous studies have demonstrated that ESG-based measures are associated

with �rm performance measures (e.g., Gregory, Whittaker, and Yan, 2016).

What I aim to show in this section is that sustainability or SUS explains

much of the cross-sectional relationship between �rm value and broader mea-

sures of corporate social performance such as CSP . Starting with McGuire,

Sundgren, and Schneeweis (1988), many studies have examined the CSP�CFP

nexus. In recent years, �rm value proxy Tobin's Q (Jiao, 2010) and operating
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performance measures such as return on assets (ROA) and return on equity

(Eccles, Ioannou, and Serafeim, 2014) are commonly used to represent �nancial

performance.

I use Tobin's Q as the accounting-based CFP proxy. Thus, all regression

models in this section use Tobin's Q (adjusted for the median 2-digit SIC or

Standard Industry Classi�cation Tobin's Q values) as the dependent variable.68

The main empirical models are either of the following speci�cations:

Qj,t = a1 + b1 ∗ CSPj,t + z1 ∗Xj,t + εj,t (4.7)

or

Qj,t = a2 + b2 ∗ SUSj,t + c2 ∗ remCSPj,t + z2 ∗Xj,t + εj,t (4.8)

where Qj,t is the �rm j's Tobin's Q value in year t and Xj,t are all �rm-speci�c

control variables. CSPi,t is the broader kitchen-sink all-inclusive corporate so-

cial performance measure that sums up all the ESG strengths (+) and concerns

(�) and SUSi,t is the �rm j's sustainability index measure constructed by only

adding the sustainability-speci�c strengths (+) and concerns (�) as identi�ed

in Section 4.3.3. When sustainability measures are used, the leftover ESG

strengths and concerns form the remnant CSP score or remCSPj,t. In other

words, Equation 4.8 separates the sustainability component from the overall

CSP score used in Equation 4.7, while also controlling for the remaining ESG

indicators in remCSPj,t. Certain variations of these models break down the

CSPi,t and SUSi,t into its constituent strengths (i.e., SUSstri,t and CSPstri,t)

and concerns (i.e., SUSconi,t and CSPconi,t) to provide additional insights.

Tobin's Q is de�ned as in Gompers, Ishii, and Metrick (2003), Bebchuk, Cohen,

and Ferrell (2009) and Jiao (2010) among others. The de�nitions and oper-

68In addition, I run Fama and French (1997) 48 industry adjusted Tobin's Q and do not
�nd any standout di�erences in any of the results. For example, see Appendix Table 4.15
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ationalizations of this and other variables are provided in Appendix 4.A.3.

Using empirical evidence and theoretical arguments from prior literature (Be-

bchuk and Cohen, 2005; Jiao, 2010), the control variables Xj,t include oper-

ating performance (using ROA as proxy), �rm size (proxied by log of �rm's

total assets), leverage, liquidity (volume of shares traded), log of capital ex-

penditures/total assets ratio (CAPEXTA), research and development expense

ratio (R&D/total sales), log of �rm age (in months), 2 year sales growth and

Delaware incorporation dummy. One more control variable, insider ownership

level and its square (Morck, Shleifer, and Vishny, 1988) was also considered

but left out from the main results as the Execucomp data on executive own-

ership has gaps and leads to considerable loss of sample size. However, note

that the use of insider ownership produces similar results, albeit much smaller

number of observations.

4.5.1 Corporate Social Performance Versus Sustainability

Is much of the association between corporate social performance (CSP) and

�rm value explained by the sustainability component of the CSP? This is

the main question of focus in this part of analysis. Multiple variations of

Equations 4.7 and 4.8 are used in CSR and sustainability literature to re�ect

the cross-sectional variations in Tobin's Q of good ESG score �rms versus

the poor ESG ones. I apply ordinary least squares (OLS) and the dynamic

OLS as the preliminary models and then two additional variants of the OLS

estimation. Firstly, as suggested in Gompers, Ishii, and Metrick (2003) and

Bebchuk, Cohen, and Ferrell (2009), I run annual cross-sectional regressions

and then show time-series averages using Fama and MacBeth (1973) method.

This re�ects the way cross-sectional valuations vary with sustainability and

aggregate CSP over time. Secondly, I run panel regressions to examine how

the CSP and SUS-Index truly have an impact on Tobin's Q cross-sectionally

(using between-e�ects estimation) and within �rms' across time (using �xed-
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e�ects estimation). Gormley and Matsa (2014) show that �xed e�ects model

is more consistent when �controlling for unobserved [�rm] heterogeneity� than

the industry-adjusted models.

The OLS and dynamic OLS estimations for Tobin's Q on ESG aggregate scores,

along with their segregated strengths and concerns components, are shown in

Table 4.3. With a static model (1) that includes industry and year �xed

e�ects, a signi�cant association is seen with Tobin's Q for both the all-in

CSP measure and the newly introduced sustainability score. The sign and

magnitude of CSP coe�cients are similar to those reported in Jiao (2010) for

a smaller sample period between 1992 and 2003. As expected, CSP is seen to

have a positive and signi�cant in�uence on �rm value. However, sustainability

index seems to be the main driver of this result when CSP is divided into

SUS-Index and remnant CSP components, as the coe�cient for SUS is almost

twice in magnitude when compared to the CSP coe�cient. Remnant CSP

score (constituting indicators that are leftover after sustainability indicators

are identi�ed) in this speci�cation, shows no signi�cant contribution towards

Tobin's Q. Almost all the control variables show expected signs and statistical

signi�cance with the dependent variable.

Firm performance proxies are known to be sticky, with past performances asso-

ciated with current and subsequent performance (Wintoki, Linck, and Netter,

2012). To counter this, I introduce a dynamic OLS model (2) with past two

years Tobin's Q values included as controls. Interestingly, the introduction of

dynamism in the OLS estimation has no e�ect on the statistical insigni�cance

seen previously for remnant CSP score. Only the sustainability component is

found to contribute signi�cantly to Tobin's Q amongst the ESG sample �rms.

Additionally, the magnitude of selective SUS-Index remains almost double that

of the all-in CSP score as seen in the static model.

Next, I assess how the segregated ESG strengths and concerns within these two
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Table 4.3 OLS and dynamic OLS regressions for Tobin's Q on ESG
measures

This table shows the results of two variations of OLS estimation for Tobin's Q on the CSP
and sustainability scores (SUS-Index), as well as their subcomponent strengths and concerns.
When SUS-Index is used as the regressor, additional control for remaining CSP indicators
(remCSP ) is included. For de�nitions of the variables see Appendix 4.A.3. Model 1 shows
Tobin's Q with the two ESG measures, and all the main controls included along with year
and industry �xed e�ects. Model 2 improves Model 1 by controlling for past two years'
Tobin's Q in a dynamic OLS. Dependent variable is the industry-adjusted Tobin's Q taken
as Tobin's Q minus the median Tobin's Q for that industry using SIC 2-digit classi�cation.
Coe�cients for the constant, year dummies and industry dummies are omitted. Signi�cance
levels are represented by *, **, and *** for 10%, 5%, and 1% respectively.

ESG Aggregate Measures ESG Subcomponents

Model (1) Model (2) Model (1) Model (2)

CSP 0.0333*** 0.0137***
(0.004) (0.003)

SUS 0.0757*** 0.0297***
(0.007) (0.005)

CSPstr (+) 0.0555*** 0.0236***
(0.005) (0.003)

CSPcon (�) 0.0093 0.0052
(0.006) (0.004)

SUSstr (+) 0.0971*** 0.0399***
(0.008) (0.006)

SUScon (�) -0.0205** -0.0036
(0.010) (0.007)

remCSP -0.0071 -0.0015 -0.0056 -0.0009
(0.005) (0.004) (0.005) (0.004)

ROA -0.0162 -0.0186 -0.6495 -0.6501 0.0091 -0.0047 -0.6373 -0.6428
(1.017) (1.016) (0.769) (0.769) (1.018) (1.017) (0.771) (0.770)

Size -0.4712*** -0.4817*** -0.1376*** -0.1420*** -0.5035*** -0.4951*** -0.1528*** -0.1488***
(0.014) (0.014) (0.026) (0.026) (0.016) (0.015) (0.028) (0.027)

Leverage -0.9828*** -0.9708*** -0.3125** -0.3088** -0.9396*** -0.9494*** -0.2941** -0.2987**
(0.146) (0.146) (0.149) (0.149) (0.147) (0.147) (0.149) (0.149)

Volume 0.3984*** 0.3986*** 0.0974*** 0.0979*** 0.3897*** 0.3948*** 0.0941*** 0.0964***
(0.013) (0.013) (0.023) (0.023) (0.012) (0.013) (0.023) (0.023)

CAPEX / Assets 0.1183*** 0.1160*** 0.0484** 0.0476** 0.1148*** 0.1150*** 0.0470** 0.0472**
(0.029) (0.029) (0.020) (0.020) (0.029) (0.029) (0.020) (0.020)

R & D / Sales -0.0050 -0.0039 -0.0077 -0.0073 -0.0014 -0.0019 -0.0061 -0.0063
(0.016) (0.016) (0.012) (0.012) (0.017) (0.016) (0.012) (0.012)

Sales Growth 0.0003* 0.0003* 0.0001* 0.0001** 0.0003* 0.0003* 0.0001** 0.0001**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Age -0.0845*** -0.0871*** 0.0383*** 0.0373*** -0.0901*** -0.0894*** 0.0353*** 0.0359***
(0.014) (0.014) (0.013) (0.013) (0.014) (0.014) (0.013) (0.013)

Delaware Dummy 0.0237 0.0247 0.0223 0.0227 0.0219 0.0249 0.0215 0.0228
(0.024) (0.023) (0.019) (0.019) (0.024) (0.023) (0.019) (0.019)

Lag 1 Tobin's Q 0.5822*** 0.5817*** 0.5812*** 0.5812***
(0.070) (0.070) (0.070) (0.070)

Lag 2 Tobin's Q 0.0606** 0.0604** 0.0606** 0.0604**
(0.028) (0.028) (0.028) (0.028)

Year Fixed E�ects Yes Yes Yes Yes Yes Yes Yes Yes
Industry Fixed E�ects Yes Yes Yes Yes Yes Yes Yes Yes
Number of observations 32546 32546 30991 30991 32546 32546 30991 30991
R-Squared 0.209 0.211 0.550 0.551 0.212 0.212 0.551 0.551
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ESG-based measures get in�uenced when sustainability indicators are identi-

�ed. As shown before, intuitively and expectedly, ESG-based strengths should

positively in�uence the �rm value whereas the ESG concerns must have a neg-

ative impact on the same (as indicated alongside each subcomponent in the

table). Using the same two estimation models (i.e., static and dynamic OLS),

the coe�cients and standard errors for the strengths and concerns subcom-

ponents are also reported in Table 4.3. In the static model (1), when only

time and industry heterogeneity is controlled for, the CSP concerns variable

shows a statistically insigni�cant positive coe�cient. In contrast, both the

SUS-Index subcomponents are shown to re�ect statistically signi�cant contri-

butions to Tobin's Q, and with expected signs. In my full model (2), which

allows for dynamism, the sustainability concerns subcomponent loses its sta-

tistical signi�cance but retains its sign. Also, once again, both the static and

dynamic OLS models for the ESG subcomponents indicate that the remnant

CSP indicators are not related to Tobin's Q.

4.5.1.1 Additional Controls

Since antitakeover provisions based corporate governance measures such as

the Bebchuk, Cohen, and Ferrell (2009) E-Index that is indicative of manage-

rial entrenchment are not covered in the ESG data used for CSP measures, I

subsequently ran robustness tests by including the E-Index as an extra con-

trol variable. Furthermore, other governance mechanisms such as monitoring

through institutional ownership (Buchanan, Cao, and Chen, 2018; Dyck et al.,

2018) and blockholders (Konijn, Kräussl, and Lucas, 2011) have been shown

to in�uence �rm value. Matching �rms with their E-Index scores, % institu-

tional ownership and the number of blockholders further reduced my sample

size, but the results remain robust for all the ESG-based measures (shown

in Appendix Table 4.14). This shows that the importance of sustainability
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indicators over the other remnant CSP indicators persists even when other

governance characteristics are controlled for.

4.5.1.2 Annual Regressions

I run cross-sectional regressions to compare the consistency of the relationships

between each of the two ESG-based measures and �rm value over time. The

summary of coe�cients obtained using Equations 4.7 (CSP ) and 4.8 (SUS

and remCSP ) for each year are given in Table 4.4 for Tobin's Q on ESG ag-

gregate scores and their respective strengths (CSPstr, SUSstr) and concerns

(CSPcon, SUScon) subcomponents. For each measure, their corresponding

Fama and MacBeth (1973) time-series averages are also reported. In Table 4.4,

though the time-series averages are statistically signi�cant for both the all-in

CSP aggregate score and the selective SUS-Index, the magnitude for sustain-

ability score is roughly twice that of the CSP score, and the coe�cient for

remnant CSP indicators re�ects no signi�cant relation with Tobin's Q. This

result is essentially similar to that seen in static and dynamic OLS regressions.

An inspection of yearly cross-sectional coe�cients shows that the lack of sta-

tistical signi�cance for the remnant CSP indicators' aggregate is primarily due

to the fact that it has both positive and negative relationship with Tobin's Q in

the sample period. Also, while the aggregate CSP score is signi�cantly related

to Tobin's Q only in the second half of the sample years, the sustainability

score shows a widespread signi�cant association with Tobin's Q across time.

For the ESG strengths and concerns subcomponents in Table 4.4, the Fama-

Macbeth average coe�cients for both the strengths and concerns using sus-

tainability indicators are signi�cantly associated with Tobin's Q. The all-in

CSP based subcomponents, meanwhile, shows statistical signi�cance only for

the strengths, similar to the OLS results. Moreover, the signs for strengths

(+) and concerns (�) are as expected when it comes to sustainability indica-
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Table 4.4 Annual regressions and time-series averages for Tobin's
Q on ESG measures

This table summarizes yearly and time-series average regressions for Tobin's Q on the CSP
score and sustainability score (SUS-Index). When SUS-Index is used as the regressor (Model
2 based on Equation 4.8), additional control for remaining CSP indicators (remCSP ) is
shown. All other control variables are the same as those used in Table 4.3. Both the
aggregate ESG measures and their respective strengths and concerns subcomponents are
reported. All estimations use SIC 2-Digit industry classi�cation to obtain industry-adjusted
Tobin's Q calculated as Tobin's Q minus the median Tobin's Q for that industry. For each
year, only the main regressors coe�cients and robust standard errors are shown. Time-series
average coe�cients and standard errors (using Fama and MacBeth, 1973 methodology) are
given at the bottom. *, **, and *** are signi�cance levels for 10%, 5%, and 1% respectively.

Year # Observations ESG Aggregate Measures ESG Subcomponents

Model (1) Model (2) Model (1) Model (2)

CSP SUS remCSP CSPstr CSPcon SUSstr SUScon remCSP

1991 260 0.0320 0.1147** -0.0343 -0.0252 -0.1024** 0.0357 -0.2622*** -0.0444
(0.027) (0.039) (0.053) (0.042) (0.048) (0.065) (0.073) (0.040)

1992 267 -0.0028 0.0341 -0.0358 -0.0379 -0.0456 -0.0541 -0.2081*** -0.0499
(0.021) (0.035) (0.042) (0.029) (0.038) (0.049) (0.067) (0.034)

1993 274 -0.0176 -0.0194 -0.0159 -0.0095 0.0292 -0.0368 -0.0071 -0.0178
(0.019) (0.032) (0.035) (0.035) (0.044) (0.058) (0.058) (0.032)

1994 281 -0.0015 0.0236 -0.0286 0.0187 0.0388 0.0367 0.0028 -0.0283
(0.015) (0.027) (0.021) (0.020) (0.030) (0.031) (0.043) (0.027)

1995 289 0.0156 0.0335* -0.0029 0.0323 0.0185 0.0523 0.0251 -0.0024
(0.020) (0.021) (0.030) (0.027) (0.044) (0.039) (0.080) (0.031)

1996 301 0.0150 0.0228 0.0068 0.0170 -0.0104 0.0239 -0.0191 0.0070
(0.024) (0.034) (0.035) (0.029) (0.038) (0.041) (0.062) (0.033)

1997 319 0.0446* 0.0488** 0.0404 0.0548 -0.0269 0.0554* -0.0275 0.0422
(0.025) (0.023) (0.037) (0.034) (0.030) (0.032) (0.061) (0.043)

1998 326 0.0188 0.0128 0.0250 0.0040 -0.0418 -0.0097 -0.0875 0.0174
(0.025) (0.047) (0.047) (0.032) (0.032) (0.052) (0.072) (0.047)

1999 349 -0.0063 0.0340 -0.0530 -0.0041 0.0093 0.0317 -0.0384 -0.0532
(0.038) (0.090) (0.060) (0.047) (0.061) (0.075) (0.077) (0.090)

2000 377 0.0184 0.0327 0.0003 -0.0158 -0.0618* -0.021 -0.1212** -0.0049
(0.027) (0.053) (0.044) (0.039) (0.034) (0.058) (0.057) (0.053)

2001 673 0.0155 0.0751*** -0.0633** 0.0289 0.0026 0.0859** -0.0543 -0.0613**
(0.017) (0.030) (0.027) (0.023) (0.023) (0.035) (0.036) (0.030)

2002 704 0.0055 0.0413** -0.0412** 0.0115 0.0033 0.0465** -0.0302 -0.0402**
(0.011) (0.020) (0.016) (0.013) (0.014) (0.020) (0.023) (0.020)

2003 1722 0.0292* 0.1198*** -0.0900*** 0.0949*** 0.0345* 0.1764*** -0.0344 -0.0707**
(0.015) (0.028) (0.026) (0.021) (0.020) (0.032) (0.031) (0.028)

2004 2071 0.0616*** 0.1600*** -0.0630** 0.1053*** -0.0129 0.1765*** -0.1356*** -0.0609**
(0.018) (0.025) (0.031) (0.027) (0.018) (0.040) (0.030) (0.025)

2005 2085 0.0494*** 0.0817*** 0.0121 0.0740*** -0.0160 0.1052*** -0.0393 0.0146
(0.013) (0.020) (0.021) (0.016) (0.017) (0.025) (0.027) (0.020)

2006 2123 0.0630*** 0.1022*** 0.0169 0.0916*** -0.0232 0.1275*** -0.0411 0.0213
(0.012) (0.020) (0.022) (0.016) (0.015) (0.025) (0.027) (0.020)

2007 2145 0.0524*** 0.0798*** 0.0223 0.0742*** -0.0234 0.1094*** -0.0126 0.0238
(0.011) (0.020) (0.017) (0.012) (0.017) (0.020) (0.027) (0.020)

2008 2263 0.0352*** 0.0514*** 0.0161 0.0403*** -0.0287** 0.0484*** -0.0583** 0.0157
(0.009) (0.016) (0.015) (0.011) (0.013) (0.017) (0.027) (0.016)

2009 2304 0.0367*** 0.0447*** 0.0278** 0.0449*** -0.0266** 0.0550*** -0.0217 0.0292**
(0.008) (0.014) (0.012) (0.010) (0.010) (0.014) (0.019) (0.014)

2010 2383 0.0233** 0.0503*** -0.0026 0.0392*** 0.0157 0.0475*** 0.0773*** 0.0329*
(0.008) (0.016) (0.015) (0.009) (0.013) (0.015) (0.029) (0.018)

2011 2288 0.0299*** 0.0627*** 0.0019 0.0405*** 0.0031 0.0635*** 0.0656** 0.0289
(0.007) (0.015) (0.018) (0.009) (0.015) (0.018) (0.028) (0.018)

2012 2333 0.0589*** 0.0767*** 0.0498** 0.0734*** 0.0150 0.1061*** 0.1008** 0.0408*
(0.014) (0.022) (0.025) (0.014) (0.031) (0.027) (0.049) (0.022)

2013 2133 0.0278** -0.002 0.0438** 0.0400*** 0.0356 0.0146 0.1188* 0.0370*
(0.012) (0.020) (0.028) (0.013) (0.027) (0.030) (0.063) (0.020)

2014 2213 0.0667** 0.1093*** 0.0206 0.0838*** -0.0091 0.1251*** 0.0254 0.0222
(0.023) (0.032) (0.032) (0.025) (0.032) (0.033) (0.072) (0.032)

2015 2086 0.1154*** 0.1392*** 0.0933*** 0.1342*** -0.0342 0.1535*** 0.0124 0.0924***
(0.020) (0.031) (0.032) (0.022) (0.031) (0.033) (0.053) (0.031)

Fama- 32546 0.0317*** 0.0566*** 0.0024 0.0404*** -0.0103 0.0602*** -0.0308* 0.0016
MacBeth (0.006) (0.009) (0.009) (0.009) (0.007) (0.012) (0.017) (0.009)
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tors based subcomponents (SUSstr and SUScon), as they have more years

showing signi�cant and monotonic relationship with �rm value than the all-in

ESG indicators based CSP subcomponents.

Overall, the results for OLS, dynamic OLS and annual regressions show that

most of the variations in all-in CSP scores that drives its relationship with �rm

value is powered by the sustainability indicators. Even after controlling for

time trends, unobserved industry characteristics and past performances, only

the sustainability indicators through SUS-Index shows signi�cant and mono-

tonic positive association with Tobin's Q. The leftover indicators' remCSP

score is unrelated to �rm value. These preliminary tests provide credence

against the use of all-in approaches for CSP that sum up all available ESG

indicators. The selected sustainability indicators are seen to better re�ect the

variations in ESG data when studying �rm-level outcomes such as the Tobin's

Q.

4.5.1.3 Between and Within Panel Estimations

I further test the robustness of previous results by employing panel regres-

sions. Table 4.5 summarizes the results from both between-�rm and within-

�rm estimations using the aggregated ESG scores i.e., all-in CSP score and the

selective SUS-Index, and their segregated strengths and concerns subcompo-

nents. ESG-based aggregated measures exhibit little time series (within �rm)

variations and thus have relatively lower power to detect a statistically signif-

icant relationship using �xed e�ects estimations. Hence, to robustly capture

the variations for ESG measures in �xed e�ects models, I additionally em-

ploy above- versus below-median ESG measures (Panel B) along with the true

ESG-based scores (Panel A).69 In all panel regressions, year and industry dum-

69In additional unreported analysis, I use quartile classi�cation of ESG measures in place
of median-based division as a robustness check. All the main results remain the same.
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mies are included when required to control for the time trends and industry

characteristics.

The between e�ects panel regression coe�cients show the e�ect of independent

variables as they change between the sample �rms, while the �xed e�ects coef-

�cients re�ects the changes on outcome variable when the independent variable

changes within the �rm. On comparing Tables 4.5 and 4.3 for the coe�cients

of ESG aggregated measures, i.e., CSP and SUS-Index, the panel estimates

are expectedly much larger than the simple OLS estimates when they employ

a broad-based dichotomous ESG dummies in Panel B. The results are iden-

tical for each of the two strengths and concerns subcomponents as well. In

Panel A, while CSP and its subcomponents are all insigni�cant in �xed e�ects

estimations (Model 2), most sustainability measures are statistically signi�-

cant (only strengths dimension does not pick any signi�cant e�ect on Tobin's

Q). In Panel B, it is seen that with �rm-speci�c heterogeneous characteristics

controlled for, the overall SUS-Index as well as its two subcomponents i.e.,

strengths and concerns can signi�cantly in�uence an average �rm's value over

time. The all-in ESG measures (i.e., CSP and its subcomponents), meanwhile,

show similar statistical insigni�cance as previously seen in Panel A.

4.5.1.4 Pseudo-Sustainability Placebo

I repeated all of the above analyses using the pseudo-sustainability and rem-

nant scores. The results for OLS, dynamic OLS and Fama-Macbeth regres-

sions using the pseudo scores, instead of SUS and remCSP , are shown in the

Appendix Table 4.16. Other results are omitted for brevity. The randomly

identi�ed placebo measure (consisting of 30 strengths and 21 concerns), in

contrast to SUS-Index, fails to completely capture the CSP��rm value rela-

tion. The remnant CSP indicators for the placebo measure consistently shows

positive association with �rm value. While in some instances the pseudo-
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Table 4.5 Panel regressions for Tobin's Q on ESG measures

This table shows the coe�cients for between e�ects (cross-sectional) and �xed e�ects (within-
�rm) estimations of Equations 4.7 and 4.8 by �rst considering the aggregated measures CSP
and SUS-Index, and then its respective strengths and concerns subcomponents. Expected
signs for the ESG subcomponent variables are shown in parenthesis alongside. Panel A
reports the results with true ESG scores. Panel B has ESG measures indicated by a dummy
taking the value of 1 for above median values in each year. All controls are the same
as those used in Tables 4.3 and 4.4. With SUS-Index as the regressor, additional control
representing leftover CSP indicators is included. Each column with between- and �xed-
e�ects models are denoted by Models 1 and 2 accordingly. All regressions use industry-
adjusted Tobin's Q calculated as Tobin's Q minus the median Tobin's Q for that SIC 2-digit
industry. The coe�cients for controls variables, constants, year dummies and industry
dummies are omitted. Signi�cance levels at *, **, and *** are indicative of 10%, 5%, and
1% respectively.

Panel A: True ESG Scores

ESG Aggregate Measures ESG Subcomponents

Model (1) Model (2) Model (1) Model (2) Model (1) Model (2) Model (1) Model (2)

CSP 0.0671*** -0.0038
(0.016) (0.005)

SUS 0.1622*** 0.0177**
(0.030) (0.008)

CSPstr (+) 0.1106*** -0.0091
(0.019) (0.007)

CSPcon (�) 0.0175 -0.0048
(0.025) (0.008)

SUSstr (+) 0.1952*** 0.0062
(0.033) (0.011)

SUScon (�) -0.0823* -0.0446***
(0.047) (0.013)

remCSP -0.0286 -0.0217*** -0.0263 -0.0167**
(0.030) (0.006) (0.030) (0.006)

Year Fixed E�ects Yes Yes Yes Yes Yes Yes Yes Yes
Industry Fixed E�ects Yes No Yes No Yes No Yes No
# Observations 32546 32546 32546 32546 32546 32546 32546 32672
R-Squared 0.264 0.110 0.267 0.111 0.268 0.111 0.268 0.105
Number of Groups 4069 4069 4069 4069 4069 4069 4069 4095

Panel B: ESG Dummies

ESG Aggregate Measures ESG Subcomponents

Model (1) Model (2) Model (1) Model (2) Model (1) Model (2) Model (1) Model (2)

CSP 0.1340** 0.0200
(0.067) (0.018)

SUS 0.3815*** 0.0733***
(0.076) (0.020)

CSPstr (+) 0.3512*** 0.0435*
(0.082) (0.024)

CSPcon (�) 0.1546** -0.0298
(0.077) (0.023)

SUSstr (+) 0.3341*** 0.0644***
(0.070) (0.021)

SUScon (�) -0.1939** -0.0660***
(0.076) (0.022)

remCSP -0.1521** -0.0287 -0.1539** -0.0130
(0.074) (0.017) (0.074) (0.017)

Year Fixed E�ects Yes Yes Yes Yes Yes Yes Yes Yes
Industry Fixed E�ects Yes No Yes No Yes No Yes No
Number of observations 32546 32546 32546 32546 32546 32546 32546 32672
R-Squared 0.277 0.111 0.281 0.112 0.280 0.112 0.281 0.106
Number of Groups 4069 4069 4069 4069 4069 4069 4069 4095
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sustainability measure does have higher coe�cients than the actual SUS-Index,

the pseudo-remnant measure consistently shows statistically signi�cant coe�-

cients across all the models (unlike the lack of statistical signi�cance for the

actual remCSP ). This shows that only the identi�ed set of sustainability in-

dicators, and not some randomly picked set, can completely explain the CSR's

relationship with �rm value.

4.5.2 Exploring Causality

While the previous inferences do indicate that sustainability and its subcompo-

nents are more powerful part of CSP when it comes to explaining the CSP��rm

value relationship, all of the �ndings reported so far are hounded by severe en-

dogeneity problems. To overcome these concerns and draw causal inferences,

in this section, I run additional analysis �rst using a quasi-natural experiment

exploiting an exogenous shock to ESG measures themselves, and then running

con�rmatory check with instrumental variables approach.

4.5.2.1 Quasi-Natural Experiment

The baseline causal estimates are found across the year 2010 when MSCI

changed its indicator assessment strategy as part of its new data collection

methodology that ensures only industry-relevant indicators get rated. In other

words, beyond 2010, the set of ESG indicators assessed for each of the sample

�rms is restricted to a subset of key industry-speci�c indicators that are unique

to the industry to which the focal �rm belongs.

Accordingly, I identify the treatment �rms as the ones whose ESG measures

(either CSP or SUS) change from 2009 to 2010.70 Alternatively, the con-

trol �rms' ESG measures remain constant across this exogenous shock. The

70Note that this identi�cation assumes that the ESG indicator ratings are sticky and
undergo very few changes across the years. This characteristic of ESG factors is elaborated
in panel estimations earlier.
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rationale behind this identi�cation of treatment and control �rms is further

illustrated as follows. If a �rm had 20 ESG strengths and 10 concerns in 2009,

its overall CSP score is +10. But, supposing that only 15 of these strengths are

industry-relevant, the subsequent CSP score in 2010 is +5. Given that these

indicators do not considerably change within a �rm over the years, it can be

safely assumed that the change of ESG measures across this year is hence an

exogenous treatment. Similarly, a lack of such a treatment or change implies

that the �rm falls in the control group. I estimate the overall treatment e�ect

on Tobin's Q using triple di�erence (DDD or di�-in-di�-in-di�) analysis. Even

though I control for possible confounds and alternative explanations in two

of the di�erences within DDD i.e., treatment vs. control group and pre- vs.

post-treatment periods, further inclusion of �rm �xed e�ects ensures that all

other �rm-speci�c characteristics are also controlled for.

The change in indicator assessment rule by MSCI is an exogenous shock to its

sample �rms. However, since the new rule applies assessment of only the key

industry indicators, it can be argued that the �rms and their managers may

have been aware of the important ESG indicators for each of their industries,

hence marginalizing the impact of the shock itself. I run placebo tests to

assess if such anticipation indeed occurs. Furthermore, I run propensity score

matching to account for any selection and sampling biases borne out of the

di�erences in the size of control and treatment groups.

Model: This quasi-natural experiment is modeled for analysis using DDD

estimation. I introduce �rm �xed e�ects to control for �rm heterogeneity as

shown in Section 4.5.1.3. Additional dummy variables Postj,t and Treatedj,t

represent the post-treatment period (2010 onwards) and the treatment �rms

respectively. Either of the following speci�cations are employed depending on
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whether the all-in CSP or the selective SUS is used:

Qj,t = a3 + b3,1 ∗ CSPj,t + b3,2 ∗ Postj,t + b3,3 ∗ Treatedj,t + b3,4 ∗ CSPj,t ∗ Postj,t

+b3,5 ∗ CSPj,t ∗ Treatedj,t + b3,6 ∗ Postj,t ∗ Treatedj,t

+b3,7 ∗ CSPj,t ∗ Postj,t ∗ Treatedj,t + z3 ∗Xj,t + a3j + εj,t
(4.9)

Qj,t = a4 + b4,1 ∗ SUSj,t + b4,2 ∗ Postj,t + b4,3 ∗ Treatedj,t + b4,4 ∗ SUSj,t ∗ Postj,t

+b4,5 ∗ SUSj,t ∗ Treatedj,t + b4,6 ∗ Postj,t ∗ Treatedj,t

+b4,7 ∗ SUSj,t ∗ Postj,t ∗ Treatedj,t + c4 ∗ remCSPj,t

+z4 ∗Xj,t + a4j + εj,t
(4.10)

I seek to identify the impact on Tobin's Q when there is an increase (decrease)

of ESG measures from below (above) average levels for treatment �rms after

the adoption of new industry-relevant indicators assessment. So the coe�-

cients of interactions for each of the CSP and SUS with Post and Treated

given by b3,7 and b4,7 respectively, are the ones that capture the DDD terms.71

Treatment �rms are those with a change in their ESG measures from year

2009 to 2010, i.e., either with change in their true CSP (with 420 control �rms

having unchanged scores) or SUS-Index (with 658 in control group). The �rm

�xed e�ects a as well as the controls Xj,t (from Equations 4.7 and 4.8) are

included accordingly for each of the ESG-based measures.

Results: Table 4.6 shows the results for all the DDD estimations. Baseline

result in panel A shows that an improvement in sustainability rating due to

the sudden application of industry-speci�c assessment has a negative e�ect

71In these models, the focus is on assessing the net impact on �rm value whenever there is
a change (regardless of the sign) in ESG scores after the MSCI methodology update in 2010.
Hence, both the treatment �rms with increased and decreased ESG values are included
together in one model speci�cation.
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Table 4.6 Do changes in SUS-Index cause changes in Tobin's Q?

This table reports the results of multiple triple di�erence (DDD) estimations for the impact
of changes in ESG measures on Tobin's Q. All regressions in Panels A and B are estimated
using Equations 4.9 and 4.10 depending on whether the all-in CSP or selective SUS is
applied. Firm controls are the same as those introduced in OLS and panel estimations
(except the Delaware dummy, which becomes redundant with �rm �xed e�ects). Standard
errors are shown in parenthesis. Panel A gives the results when aggregated ESG measures
are used, and Panel B shows the results with each of the ESG strengths and concerns
subcomponents disaggregated. Post indicates years after the MSCI indicator assessment
change (i.e., 2010 onwards) for baseline and propensity score (PS) matched estimations.
Treated is a dummy representing �rms that experienced a change in their ESG scores from
2009 to 2010 (with the unchanged scores belonging to the control �rms). Baseline DDD
estimations re�ect the control and treatment �rms as is. PS matched DDD estimation
randomly identi�es a comparable control �rm observation matched on log of assets, return
on assets and leverage, for every treatment observation. First placebo test assumes placebo
treatment in 2003, and the second test applies placebo Post in 2007. Levels of signi�cance
at 10%, 5%, and 1% are indicated by *,**, and *** respectively.

Panel A: ESG Aggregate Measures

Baseline DDD PS Matched DDD Placebo Year 2003 Placebo Year 2007

ESG=CSP ESG=SUS ESG=CSP ESG=SUS ESG=CSP ESG=SUS ESG=CSP ESG=SUS

ESG 0.0760*** 0.0228 0.0681*** -0.0274 0.0236* 0.0744*** 0.0458*** 0.0624***
(0.014) (0.017) (0.013) (0.030) (0.013) (0.022) (0.006) (0.016)

Post 0.0924*** 0.1184*** 0.0890*** 0.1603*** -0.2647*** -0.2946*** -0.0762** -0.0356
(0.031) (0.024) (0.034) (0.038) (0.034) (0.028) (0.033) (0.026)

ESG ∗ Post -0.0434*** 0.0043 -0.0397*** 0.0485** -0.0248* -0.0213** -0.0208* -0.0218*
(0.015) (0.013) (0.015) (0.024) (0.013) (0.009) (0.011) (0.013)

ESG ∗ Treated -0.0574*** 0.0454*** -0.0365* 0.0817*** -0.0126 0.0002 -0.0162*** 0.0168**
(0.015) (0.008) (0.019) (0.017) (0.015) (0.015) (0.006) (0.008)

Post ∗ Treated 0.0077 0.0065 0.0319 -0.0309 0.0039 0.0733** 0.0331 0.0117
(0.032) (0.026) (0.043) (0.043) (0.037) (0.037) (0.034) (0.028)

ESG ∗ Post ∗ Treated 0.0219 -0.0430*** 0.0269 -0.0844*** 0.0054 0.0023 -0.0158 -0.0038
(0.016) (0.015) (0.021) (0.030) (0.015) (0.017) (0.011) (0.014)

remCSP -0.0041 0.0125 -0.0059 0.0058
(0.005) (0.010) (0.005) (0.005)

Firm Fixed E�ects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 26085 26085 8840 8840 12069 12069 22599 22599
R-squared 0.154 0.153 0.191 0.191 0.234 0.235 0.165 0.164

Panel B: ESG Subcomponents

Baseline DDD PS Matched DDD Placebo Treatment 2003 Placebo Treatment 2007

ESG=CSP ESG=SUS ESG=CSP ESG=SUS ESG=CSP ESG=SUS ESG=CSP ESG=SUS

ESGstr 0.0789*** 0.0005 0.0759*** 0.0563 0.0420** 0.0470*** 0.1053*** -0.0456**
(0.019) (0.017) (0.019) (0.035) (0.017) (0.017) (0.022) (0.020)

ESGcon -0.0700*** -0.0535** -0.0566*** -0.0641 -0.0225 -0.0862*** -0.0820*** -0.0593*
(0.018) (0.023) (0.018) (0.041) (0.016) (0.023) (0.021) (0.031)

Post 0.2325*** 0.1565*** 0.2360*** 0.1931*** -0.1421*** -0.2359*** 0.0410 0.0317
(0.046) (0.032) (0.049) (0.052) (0.047) (0.035) (0.026) (0.024)

Post ∗ Treated -0.0672 0.0207 -0.0320 0.0083 -0.0189 0.0519 -0.0687* -0.0828**
(0.047) (0.035) (0.063) (0.060) (0.055) (0.051) (0.036) (0.034)

ESGstr ∗ Post -0.0913*** -0.0311* -0.0862*** -0.0613 -0.0557*** -0.0704*** -0.0360*** -0.0459***
(0.019) (0.019) (0.018) (0.043) (0.017) (0.017) (0.009) (0.014)

ESGstr ∗ Treated -0.0733*** 0.0274 -0.0529** -0.0005 -0.0356* -0.0472** -0.0140 -0.0002
(0.020) (0.019) (0.025) (0.040) (0.019) (0.023) (0.013) (0.018)

ESGstr ∗ Post ∗ Treated 0.0627*** -0.0259** 0.0592** -0.0154** 0.0267 0.0480 -0.0054 -0.0141
(0.020) (0.012 (0.025) (0.008) (0.019) (0.043) (0.012) (0.018)

ESGcon ∗ Post -0.0207 -0.0309 -0.0250 -0.0426 -0.0015 0.0419* 0.0050 0.0136
(0.022) (0.027) (0.021) (0.048) (0.015) (0.023) (0.010) (0.018)

ESGcon ∗ Treated 0.0344* -0.0306 0.0157 -0.0313 0.0020 0.0372 -0.0066 -0.0210
(0.019) (0.026) (0.024) (0.048) (0.019) (0.031) (0.012) (0.022)

ESGcon ∗ Post ∗ Treated 0.0163 0.0290 0.0059 0.0178 0.0012 -0.0326 0.0184 0.0398
(0.023) (0.031) (0.029) (0.057) (0.018) (0.032) (0.013) (0.025)

remCSP -0.0036 0.0140 -0.0087* -0.0046
(0.005) (0.010) (0.005) (0.005)

Firm Fixed E�ects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 26085 26085 8840 8840 12069 12069 24167 24167
R-squared 0.158 0.157 0.196 0.195 0.238 0.237 0.170 0.169
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on Tobin's Q. Most importantly, the coe�cient for remCSP corroborates our

previous inferences from OLS and time-series regressions that the remaining

CSP indicators do not have a signi�cant impact on Tobin's Q. Moreover, in-

terestingly, the result for the all-in CSP measure does not support any causal

link with Tobin's Q having the DDD term statistically indistinguishable from

zero. Note that although both the strengths and concerns indicators' assess-

ment was made industry-speci�c from 2010 onwards, the assessment regarding

concerns was reverted to being all-inclusive (and not industry-speci�c) from

2012. Thus, with disaggregated strengths and concerns subcomponents I �nd

support for the reliability of the identi�ed treatment, as only the strengths for

both SUS and CSP show a statistically signi�cant DDD term.72

Validity Tests: To address the threats to internal validity of my inferences

from this quasi-natural experiment in terms of the selection biases and coun-

terfactuals, I employ propensity score-matching for treatment �rms and addi-

tional placebo tests. These additional results are accordingly shown in Table

4.6 next to the baseline results.

Despite controlling for �rm characteristics Xj,t and the additional �rm �xed

e�ects, there remains concerns regarding the nonequivalence of the treatment

and control groups both with respect to their sizes and characteristics. For

this reason, I apply one-to-one nearest neighbor propensity score matching on

size, pro�tability and leverage dimensions using a 0.001 calliper.73 This way I

randomly identify a comparable treatment �rm observation for every control

�rm one. The main results shown in Panel A remain robust for this matched

72A subsample analysis restricting the observations to the year 2011 con�rms this treat-
ment reliability, as both the strengths and concerns subcomponents show signi�cant impact
on �rm value in this sample period.

73These three characteristics are proxied using log of total assets, return on assets (ROA)
and long-term debt to total asset ratio respectively. I �nd that the two groups have statis-
tically di�erent pro�tability and leverage.
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sample with the sustainability DDD term indicating causal link between SUS

and Tobin's Q.

I run two placebo tests, one to assess if pre-shock managerial anticipation

occurs within the treatment �rms (Post = 1 for 2007 onwards) and another

to check if there is generic trend in the second-half of MSCI ESG data sample

period (Post = 1 for 2003 onwards) as the managers grow wise with time to pay

attention to only the most relevant indicators. Both these placebo estimations

have the DDD term statistically insigni�cant, as expected, indicating that the

treatment was relatively exogenous.

4.5.2.2 Instrumental Variables

While the quasi-natural experiment and its results provide support for the

causal link between SUS-Index and Tobin's Q, its identi�cation strategy ex-

ploits the introduction of a newer data collection methodology by MSCI that

prioritized industry-relevance. This may have indirectly had a value-enhancing

e�ect on the triple di�erence estimator if the previous all-inclusive methodol-

ogy was more noisier than the new one for measuring CSR and sustainability.

Thus, next I check the robustness of the DDD results by examining the causal

impact of changes in the SUS scores using instrumental variables that are

solely related to CSR/sustainability measures and are largely exogenous to

�rm value. Some studies in CSR literature employ variables such as the �rm

age as an instrument for ESG-based measures (Jo and Harjoto, 2011). How-

ever, it has been shown that growth opportunities and �rm value decline as

�rms grow older (Loderer and Waelchli, 2010), and the same is observed with

�rm age included as control variable in previous results. Alternatively, many

studies employ the industry average ESG scores as an instrument (El-Ghoul

et al., 2011; Cheng, Ioannou, and Serafeim, 2014; Jha and Cox, 2015; Ferrell,

Liang, and Renneboog, 2016), while some such as Jiao (2010) additionally in-
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troduce past negative earnings as a possible instrument. However, exogeneity

of these instruments can still be questioned by the fact that �rm value do get

a�ected by industry-wide shocks, and that negative earnings can be restrictive

to future �rm value.74

Di Giuli and Kostovetsky (2014) show that there are systematic di�erences in

the CSR preferences of Democrats and Republicans, and hence, the state-level

political leanings can be an e�ective instrument for ESG scores.75 Accordingly,

I employ the state-level voting shares for Democratic presidential candidate,

along with the state-wise congressional and the local governmental Democratic

distribution as the three instrumental variables (see Appendix 4.A.4 for their

de�nitions). The relevance and exogeneity for these instruments can be estab-

lished by the fact that while the �rm's CSR initiatives are in�uenced by local

political leanings, there is no reason to suspect that they directly in�uence

individual �rm's value.

As shown in Table 4.7 the F-stats for �rst-stage of two-stage least squares

(2SLS) estimation are much greater than the Stock and Yogo (2005) recom-

mended cuto� (except for the SUSstr, which is only marginally greater than

the cuto�) indicating that the instruments are not weak. For both SUS-Index

and its strengths and concerns subcomponents, the hypothesis for joint valid-

ity of the used instruments (i.e., Hansen-Sargan test) is not rejected and all

the reported Cragg-Donald F-test stats are well greater than the critical values

supporting the IVs' relevance. All inferences from IV estimations support the

results seen from the quasi-natural experiment. The corresponding signs for

strengths (+) and concerns (�) are also as expected. Additionally, the causal

estimates from 2SLS, once again, show that the remaining CSP indicators

74Nevertheless, in unreported analysis, I apply these instruments for robustness check and
�nd support for a causal relationship between all the sustainability measures and Tobin's
Q.

75I appreciate the comments from an anonymous referee, who suggested this IV.
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Table 4.7 Instrumental variables regressions for Tobin's Q on sus-
tainability measures

This table gives the results for two-stage least-squares (2SLS) IV regressions using state-
level political leanings as instruments for the ESG-based measures. Voting % for Democrat
Presidential candidate (PVD), proportion of Democrat Congressional members (CDD) and
the proportion of Democrats in state legislative chambers (SGD) are the three variables used
to proxy for the political leanings (Di Giuli and Kostovetsky, 2014). The IV estimations
�rst consider the aggregated measure SUS and then its respective strengths and concerns
subcomponents as indicated in the table. Expected signs for the ESG subcomponent vari-
ables are shown in parenthesis alongside. All controls are included along with a variable
representing remnant CSP indicators. Dependent variables are shown on top to indicate
�rst/second stage of the 2SLS estimations. Tobin's Q is industry adjusted as Tobin's Q
minus the median Tobin's Q for that SIC 2-digit industry. Standard errors reported in
parenthesis are clustered by �rms. The coe�cients for constants are omitted. Additional
test statistics for IV estimation is given at the bottom of the table. Signi�cance levels at *,
**, and *** are indicative of 10%, 5%, and 1% respectively.

Sustainability Aggregate Sustainability Subcomponents

DV=SUS DV=remCSP DV=Tobin's Q DV=SUSstr DV=SUScon DV=Tobin's Q

SUS 0.8468***
(0.282)

SUSstr (+) 0.6800*
(0.407)

SUScon (�) -0.8754***
(0.246)

PVD -2.0727*** -1.0134*** 0.0643 1.7785***
(0.394) (0.368) (0.351) (0.204)

CDD 0.5890*** 1.0229*** -0.3357*** -0.5629***
(0.075) (0.069) (0.068) (0.042)

SGD -0.0013 -0.2251*** 0.1159 0.0376
(0.083) (0.070) (0.072) (0.042)

Remnant CSP -0.1839 0.1965*** -0.1573*** -0.2233*
(0.167) (0.018) (0.011) (0.133)

ROA 0.2265** 0.2539*** -0.2295 -0.1888*** -0.3255*** -0.2533
(0.097) (0.093) (0.974) (0.064) (0.063) (0.972)

Size 0.1691*** 0.0154 -0.4862*** 0.2654*** 0.1018*** -0.4380***
(0.018) (0.016) (0.055) (0.017) (0.013) (0.092)

Leverage -0.5763*** -0.4235*** -0.6440*** -0.5845*** -0.1580*** -0.7747***
(0.088) (0.079) (0.216) (0.077) (0.046) (0.291)

Volume 0.0918*** 0.0306** 0.2467*** 0.1272*** 0.0462*** 0.2714***
(0.017) (0.014) (0.027) (0.014) (0.007) (0.045)

CAPEX / Assets 0.0140 -0.0298*** -0.0069 0.0820*** 0.0575*** 0.0065
(0.013) (0.011) (0.027) (0.011) (0.008) (0.032)

R & D / Sales -0.0356*** 0.0385*** 0.0863*** -0.0749*** -0.0257*** 0.0757***
(0.012) (0.011) (0.021) (0.010) (0.008) (0.027)

Sales Growth 0.0001 0.0001** 0.0003** -0.0001 -0.0001*** 0.0003*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Age 0.0824*** 0.0255* -0.1780*** 0.1089*** 0.0356*** -0.1572***
(0.017) (0.015) (0.028) (0.014) (0.010) (0.040)

\# Observations 31259 31259 31259 31259 31259 31259
R-Squared 0.094 0.031 0.248 0.277 0.143 0.154
First stage F-stat 26.48 78.31 10.01 72.32
Cragg-Donald Wald F-statistic 27.43 16.62
Sargan-Hansen test (p-value) 0.255 0.626
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(remCSP ) do not contribute to the �rm value.

4.5.3 Individual ESG Components: The Sustainability Indicators

While the overall sustainability score is seen to signi�cantly in�uence �rm

value, each of the sustainability indicators by themselves may not necessarily

be contributing to this relationship. To explore this, I run additional regres-

sions to study the association between each of the 51 sustainability indicators

and Tobin's Q.76 My focus is on ensuring that each sustainability indicator is

not considered in isolation, so as to see whether it impacts �rm value even after

controlling for other ESG indicators. The regression model employed here is a

simple alteration of Equation 4.8, with each sustainability indicator replacing

SUS variable and the remaining CSP composite score (excluding that focal

indicator) replacing the remCSP variable. All the control variables X remain

the same, with additional year �xed e�ects included to isolate any time-trends.

Table 4.8 summarizes the relationship between each of the 51 sustainability

indicators and Tobin's Q. Panel A covers all the 30 sustainability strengths,

which ideally should have a positive e�ect on Tobin's Q as they represent

the sustainability-related initiatives undertaken in the sample �rms. Panel B,

on other hand, has all 21 sustainability concerns that are expected to have

negative association with �rm value. Out of the 51 sustainability indicators,

it is seen that only 7 indicators have no statistically signi�cant relationship

with Tobin's Q at 10% level. Of these, three are strengths and the remaining

four concerns. This result is important because it shows that management

cannot take for granted that all sustainability initiatives or controversies may

be value-impacting. While, the overall sustainability performance (SUS) itself

and its two strength and concern components do in�uence the �rm value, there

76These regressions follow the approach shown in Bebchuk, Cohen, and Ferrell (2009)
where the contributions of individual entrenchment provisions were isolated after controlling
for other antitakeover provisions.
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Table 4.8 Sustainability indicators and Tobin's Q

This table summarizes coe�cients and corresponding robust standard errors (given in paren-
thesis) when each of the individual sustainability indicators are regressed on Tobin's Q. All
standard controls are retained. Additionally, the sum total of remaining strengths (+) and
concerns (�) is included to control for remaining ESG characteristics. Tobin's Q is indus-
try adjusted as Tobin's Q minus the median Tobin's Q for that SIC 2-digit industry. Year
�xed e�ects were included to control for time-trends. For each indicator, whence the coe�-
cients have expected signs i.e., (+) strengths and (�) concerns, they are highlighted in bold.
Signi�cance levels 10%, 5%, and 1% are indicated by *, **, and *** respectively.

Panel A: Sustainability Strength Indicators

Community
Support for
Housing

Support for
Education

Non-US
Charitable Giving

Community
Engagement

0.2974*** 0.2609*** 0.2395*** 0.1117*
(0.051) (0.065) (0.087) (0.071)

Diversity CEO Diversity
Board of
Directors -
Gender Diversity

Work-Life/
Family Bene�ts

Employment of
the Disabled

Other
Diversity
Strengths

-0.1503*** 0.0752* 0.0976** 0.1398* -0.1116*
(0.051) (0.041) (0.046) (0.085) (0.061)

Employees
Employee
Involvement

Strong
Retirement
Bene�ts

Employee Health
& Safety

Compensation
& Bene�ts

Other
Employees
Strength

0.1376*** 0.0553* -0.0874*** 0.1711** 0.0986**
(0.035) (0.032) (0.029) (0.069) (0.043)

Environment
Bene�cial
Products &
Services

Pollution
Prevention/
Waste
Management

Climate Change/
Alternative Fuels/
Clean Energy

Environmental
Management
Systems

Raw Material
Sourcing

Natural
Resource Use

-0.1428*** -0.17966*** 0.0407* -0.2417*** 0.0871 0.5732**
(0.040) (0.035) (0.029) (0.033) (0.082) (0.291)

Governance /
Human Rights

Limited
Compensation

Ownership
Strength

Transparency/
Reporting Quality
Strength

Political
Accountability
Strength

Labor Rights
Strength

0.1912*** 0.4690*** -0.0706* 0..2447*** -0.5351***
(0.033) (0.247) (0.040) (0.117) (0.126)

Product
Product Quality
& Safety

R&D /
Innovation

Social Opp.
Access to
Communications

Social Opp.
Nutrition &
Health

Other
Products
Strength

0.0761** 0.4241*** 1.0071*** 0.0009 -0.0035
(0.037) (0.090) (0.356) (0.229) (0.076)

Panel B: Sustainability Concern Indicators

Community Tax Disputes
Negative
Community
Impact

Other
Community
Concerns

0.1230** -0.0104 0.3065***
(0.051) (0.029) (0.064)

Governance /
Diversity

Accounting
Concern

Reporting
Quality/
Transparency
Concern

Other
Governance
Concerns

Non-
Representation

Other
Diversity
Concerns

-0.1819*** 0.0074 -0.1235*** -0.0313* 0.1440**
(0.047) (0.050) (0.032) (0.018) (0.070)

Employees
Workforce
Reductions

Supply Chain
Controversies Child Labor

-0.6513*** 0.1309 0.5987***
(0.097) (0.097) (0.243)

Environment
Hazardous
Waste

Ozone Depleting
Chemicals

Toxic Spills
Emissions

Agricultural
Chemicals

Climate
Change

Other
Environmental
Concerns

-0.2203*** -0.7861*** -0.0755*** -0.4768*** -0.0337 0.3153***
(0.056) (0.104) (0.031) (0.085) (0.032) (0.061)

Human Rights
Support for
Controversial
Regimes

International
Labor Rights
Concern

Indigenous
People
Concern

0.4998*** -0.1316** 0.0917*
(0.095) (0.056) (0.053)

Product
Antitrust &
Anticompetitive
Practices
0.1348***
(0.035)
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are some indicators that have no value enhancing or diminishing e�ect.

Furthermore, while more than 70% of the strength indicators have positive

in�uence on �rm value, only 52% of the concerns seem to be negatively associ-

ated with the same. This �nding, however, has to be interpreted with caution.

Although, in general, sustainability strengths and concerns are expected to

have positive and negative associations respectively with �rm value, the pres-

ence of opposite association may still be in�uential. For example, if most

of the sustainability strengths as well as concerns under community category

were negative, there would still be a net positive in�uence of the community

dimension of sustainability on the �rm value, as long as the negative impact

of concerns is lower than that of the strengths (so that the di�erential e�ect

remains).

4.6 Sustainability and Stock Returns

Despite the superior explanatory power for sustainability component over the

all-in CSP measure captured from the ESG data, the big question remains: can

investors bene�t from such sustainability measures? Could sustainable �rms

create superior abnormal returns for socially responsible investors? This po-

tential would essentially exist if market participants fail to learn the di�erence

between the more sustainable �rms and the less sustainable ones (Galema,

Plantinga, and Scholtens, 2008; Borgers et al., 2013). Similar reasoning is

echoed for portfolios that bet on the di�erences in �rm's corporate governance

as well (Bebchuk, Cohen, and Wang, 2013).

Several studies exploring the relationship between abnormal returns and ESG-

based measures have used the Carhart (1997) four-factor model to compute

risk-adjusted returns (Galema, Plantinga, and Scholtens, 2008; Humphrey,

Lee, and Shen, 2012; Borgers et al., 2013). I use the same four factors, but

replace the Carhart (1997) momentum factor by the Fama-French momentum
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factor. The ESG-based measures are known to be related to corporate gover-

nance mechanisms (Jo and Harjoto, 2012). Governance, meanwhile, has been

shown to impact stock market liquidity (e.g., Chung, Elder, and Kim, 2010).

For this reason, I additionally include Pástor and Stambaugh (2003) liquidity

factor in the asset pricing model speci�cation to compute risk-adjusted returns:

Rt = α+β1 ∗RMRFt +β2 ∗SMBt +β3 ∗HMLt +β4 ∗MOMt +β5 ∗LIQt + εt

(4.11)

where α measures the abnormal returns or risk-adjusted returns. The excess

returns over risk-free rate for each portfolio in month t is given by Rt. RMRFt,

SMBt, HMLt along with MOMt represents the three standard Fama and

French (1993) factors measuring excess market returns, size, book-to-market,

and the additional momentum factor respectively for each month t. LIQt is

the Pástor and Stambaugh (2003) value-weighted traded liquidity factor.77

Borgers et al. (2013) show using an all-in ESG measure called stakeholder in-

dex that the positive risk-adjusted returns from this index-based hedge existed

only from 1992 to 2004, with the subsequent years showing that the abnormal

or risk-adjusted returns have disappeared.78 Nevertheless, the ESG criteria

and ESG-based screens have been increasingly employed by institutional in-

vestors even in recent years. These investors largely rely on third party ESG

composite ratings or speci�c social, environmental or other indicative ratings.

I aim to show that investors can bene�t by using more focused and conceptu-

ally rich measures derived from ESG than the commonly used ESG aggregate

measures such as CSP shown before. Having indicators that matter for �rm

77The recent Fama and French (2016) �ve-factor model with investment and pro�tability
factors was not applied in the main results because, the use of these additional factors merely
makes the book-to-market factor HMLt redundant.

78Borgers et al. (2013) show the disappearing abnormal returns only for the subsequent 4
years after 2004.
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survival, and that were even promoted in UN introduced sustainable invest-

ment programs (through UNPRI, UNCTAD and other related agencies), the

SUS-Index may identify pro�table investment opportunities that are otherwise

neglected.

4.6.1 Sustainability Portfolios

To test if investment strategies could be made using sustainability measure,

I created portfolios using the extreme SUS-Index scores. This was done by

�rst dividing the sample each year in unequal-sized pentiles based on their

sustainability scores. Similar portfolio construction has been used in prior

literature for measuring abnormal returns on hypothetical hedge portfolios

for various CSR based measures (Galema, Plantinga, and Scholtens, 2008;

Humphrey, Lee, and Shen, 2012; Borgers et al., 2013) as well as for corporate

governance based ones (Gompers, Ishii, and Metrick, 2003; Bebchuk, Cohen,

and Ferrell, 2009; Giroud and Mueller, 2011). Using the nomenclature shown

in Bouslah, Kryzanowski, and M'Zali (2013) and Fernando, Sharfman, and

Uysal (2017), I name the �rst `Pentile 1' portfolio as �Toxic� portfolio made up

of unsustainable �rms and last `Pentile 5' as �Green� portfolio that includes

all highly sustainable �rms as indicated by high SUS-Index scores.

To understand how such portfolios work, similar investment strategy may have

been replicated by investors during my sample period as follows. Each year,

MSCI collects the ESG data for all the sample �rms, and releases it in the

beginning of next year. Based on this data, using the sustainability indica-

tors, investors identify the SUS-Index scores for each �rm in the previous year.

Accordingly, the stocks of these �rms are ranked as per their sustainability per-

formance. Investors will then go long on the high sustainability �rms and short

sell the stocks of low sustainability ones. Holding period is thus assumed to

be one year. When MSCI releases new ESG data the following year, the same
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is then used to generate new SUS-Index scores and accordingly re-balance the

hedge portfolio. In other words, I use the calendar-time event hedge portfolios

to compute the investors' abnormal returns.

After sorting the �rms according to their SUS-Index scores for each year, the

Toxic �rms were grouped as those which have SUS-Index scores less than or

equal to -2. On the other hand, �rms with SUS-Index scores more than or

equal to +2 were classi�ed as Green �rms. Firms corresponding to the scores

of -1, 0 and +1 formed the remaining three pentiles. While the cross-sectional

distribution of the sustainability scores does vary over time, the extreme port-

folios criteria is largely seen to be consistent. For this reason, the cuto�s are

held constant throughout the sample period.

4.6.2 Alternative Portfolios

As a means of robustness test, I use portfolio selection criteria used in Galema,

Plantinga, and Scholtens (2008) where strength screening is taken as a sepa-

rate group from the concern screened stocks. This is done by creating three

unequal-sized portfolio terciles that represent a) Green stocks that have more

sustainability strengths than concerns (SUS-Index ≥ +1), b) Toxic stocks that

have more sustainability concerns than strengths (SUS-Index ≤ -1), and c)

Neutral stocks (SUS-Index = 0).

4.6.3 Results

Table 4.9 shows the outcomes when the asset pricing model given in Equa-

tion 4.11 is run for the two extreme portfolios' and the long Green - short

Toxic hedge portfolio's monthly excess returns. Panel A applies the pen-

tile portfolio classi�cation while Panel B uses terciles. As seen in the table,

equal-weighted portfolios for both these portfolio classi�cations allowed for

sustainability based risk-neutral hedge. With equal-weighted monthly portfo-

lio returns, Green stocks consistently outperformed the markets (positive and
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signi�cant α) represented using the �ve factors, whereas the Toxic stock port-

folios did not beat the market as their abnormal returns are not statistically

signi�cant or di�erent from zero. In contrast, the value-weighted portfolios us-

ing both pentiles and terciles did not show possible risk-neutral hedge as both

the Green and Toxic portfolios consistently outperformed the markets. Much

of the recent literature that applies value-weighted portfolios has shown similar

results with no di�erence in abnormal returns between the extreme portfolios

(Galema, Plantinga, and Scholtens, 2008; Humphrey, Lee, and Shen, 2012).

However, all the abnormal returns αs and the coe�cients for book-to-market

factor HML for value-weighted portfolios do con�rm the �ndings in Galema,

Plantinga, and Scholtens (2008) that CSR based hedges �impact ... stock re-

turns by lowering the book-to-market ratio and not by generating positive

alphas�.79

For the equal-weighted hedge, it is seen that much of the outperformance of

Green portfolio over the Toxic one is driven by positive abnormal returns for

the Green stocks. I further �nd that as the sustainability scores decline from

Green to Toxic portfolios, there is a monotonic decrease in both the abnormal

returns and mean excess returns. This is summarized in Table 4.10 for both

pentile and tercile portfolio constructions.

For the sustainability hedge portfolio, α is roughly 4.3% per annum (or 0.36%

per month) when pentile portfolios are constructed and about 2.5% per an-

num (21 basis points per month) using tercile portfolio classi�cation. These

hedged positions are statistically signi�cant at 5% level and have considerable

economic signi�cance considering that the MSCI ESG sample �rms include

most of the large cap stocks along with a large number of mid-cap �rms.

This result extends the �ndings in Borgers et al. (2013), Flammer (2015) and

79Galema, Plantinga, and Scholtens (2008) report this �nding only for the value-weighted
socially responsible investments.
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Table 4.9 Abnormal returns using extreme sustainability portfolios

The results for a �ve-factor regression using Fama and French (1993) factors capturing
market (RMRF ), size (SMB) and book-to-market (HML) along with the Fama-French
momentum factor (MOM) and Pástor and Stambaugh (2003) liquidity factor (LIQ) are
shown in this table. Panel A uses pentile portfolio classi�cation with SUS − Index ≤ −2
(Toxic) and SUS− Index ≥ +2 (Green) forming the two extreme portfolios. Tercile portfo-
lios use SUS− Index ≤ −1 (Toxic) and SUS− Index ≥ +1 (Green) as cuto�s. The alphas
and other factor coe�cients are shown for both equal-weighted and value-weighted portfo-
lios. Portfolios are rebalanced in the beginning of each year. White (1980) robust standard
errors are shown in parenthesis. For each set of extreme portfolios, the corresponding dif-
ferential hedge portfolio (long Green � short Toxic) is also shown. Signi�cance at 10%, 5%,
and 1% are indicated by *, ** and *** respectively.

Panel A: Pentile Portfolios

Portfolios α RMRFt SMBt HMLt MOMt LIQt R2

Equal-weighted
Green 0.0029*** 0.9415*** 0.1481*** 0.3585*** -0.1491*** -0.0076 0.919

(0.001) (0.022) (0.036) (0.031) (0.024) (0.019)

Toxic -0.0007 1.0781*** 0.1668** 0.5920*** -0.1591** 0.1446*** 0.753
(0.002) (0.048) (0.081) (0.077) (0.063) (0.048)

Green � Toxic Hedge 0.0036** -0.1366*** -0.0187 -0.2335*** 0.0100 -0.1522*** 0.095
(0.002) (0.046) (0.067) (0.069) (0.053) (0.044)

Value-weighted
Green 0.0069*** 0.9317*** -0.2479*** -0.0973** -0.0796** -0.0358 0.881

(0.001) (0.026) (0.031) (0.047) (0.032) (0.026)

Toxic 0.0053*** 0.9513*** -0.2299** 0.1426* 0.0430 0.1798*** 0.606
(0.002) (0.055) (0.094) (0.076) (0.048) (0.050)

Green � Toxic Hedge 0.0016 -0.0195 -0.0180 -0.2399*** -0.1226** -0.2156*** 0.069
(0.002) (0.062) (0.108) (0.090) (0.061) (0.061)

Panel B: Alternative Tercile Portfolios

Portfolios α RMRFt SMBt HMLt MOMt LIQt R2

Equal-weighted
Green 0.0021** 0.9834*** 0.1917*** 0.4195*** -0.1542*** 0.0100 0.929

(0.001) (0.021) (0.041) (0.030) (0.028) (0.018)

Toxic -0.0000 1.0581*** 0.2833*** 0.5782*** -0.1976*** 0.0894** 0.853
(0.001) (0.034) (0.058) (0.060) (0.049) (0.036)

Green � Toxic Hedge 0.0021** -0.0747** -0.0916** -0.1587*** 0.0433 -0.0794** 0.100
(0.001) (0.030) (0.043) (0.050) (0.034) (0.033)

Value-weighted
Green 0.0069*** 0.9666*** -0.2073*** -0.0679** -0.0512** -0.0338* 0.924

(0.001) (0.021) (0.033) (0.033) (0.022) (0.019)

Toxic 0.0057*** 0.9404*** -0.0902** 0.1637*** 0.0437 0.0858*** 0.819
(0.001) (0.032) (0.038) (0.047) (0.028) (0.030)

Green � Toxic Hedge 0.0012 0.0263 -0.1172** -0.2316*** -0.0949** -0.1195*** 0.124
(0.001) (0.036) (0.054) (0.057) (0.037) (0.040)
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Table 4.10 Monotonic relationship between sustainability and re-
turns

The alphas and mean excess returns are shown for equal-weighted pentile and tercile port-
folios in this table. The portfolios get rebalanced with new data availability in the begin-
ning of each year. Monthly portfolio returns are loaded on �ve factors capturing market
(RMRF), size (SMB), book-to-market (HML), momentum (MOM) and liquidity (LIQ).
All estimations use White (1980) robust standard errors which are given for alphas in the
parenthesis. Pentile portfolios have SUS − Index ≤ −2 (Toxic) and SUS − Index ≥ +2
(Green) as the two extreme portfolios along with additional three mid portfolios having
SUS − Index scores of -1, 0 and 1 respectively. Tercile portfolios use SUS − Index ≤ −1
(Toxic) and SUS − Index ≥ +1 (Green) as cuto�s with the mid portfolio having a neutral
(0) SUS − Index value. The factor loadings are omitted and signi�cance levels for alphas
are reported at 10%, 5%, and 1% using *, ** and *** respectively.

Pentile Portfolios Tercile Portfolios

Portfolios Alpha Excess Returns Portfolios Alpha Excess Returns

Green � Toxic Hedge 0.0036** 0.00125 Green � Toxic Hedge 0.0021** 0.00022
(0.002) (0.001)

Pentile 1 (Green) 0.0029*** 0.0092 Tercile 1 (Green) 0.0021** 0.0091
(0.001) (0.001)

Pentile 2 0.0013* 0.0089
(0.001)

Pentile 3 (Neutral) 0.0009 0.0089 Tercile 2 (Neutral) 0.0009 0.0089
(0.001) (0.001)

Pentile 4 0.0002 0.0090
(0.001)

Pentile 5 (Toxic) -0.0007 0.0079 Tercile 3 (Toxic) -0.0000 0.0089
(0.002) (0.001)

Krüger (2015) by showing that using a subcomponent of ESG characteris-

tics that measures sustainability, investors could have potentially made risk-

neutral returns. The disappearance of stock returns to ESG-based measures

(Borgers et al., 2013) is seen to be restricted to only value-weighted portfo-

lios. While ESG engagements and proposals do create value for shareholder

in the short-run (Flammer, 2015; Krüger, 2015), I show that a sum total of

sustainability-based initiatives could signi�cantly explain the cross-sectional

di�erences in shareholder value creating abilities of sustainable stocks vis-á-vis

less sustainable �rms even for longer holding periods of one year.
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4.6.4 Robustness Checks

With the equal-weighted hedge portfolios showing positive risk-adjusted re-

turns, I ran further tests to examine if the results are driven by industry-

membership of sustainability �rms, any time-speci�c trends, or by the �ve-

factor model selected for generating abnormal returns (see Appendix Table

4.17). Consistently signi�cant or insigni�cant alphas across all the alternate

factor models shows that results are not biased by the chosen asset pricing

model.

When industry adjusted monthly returns are used for each portfolio instead

of unadjusted returns, the magnitudes of alpha reduce a�ecting the economic

signi�cance of the risk-adjusted returns from hedge portfolios (especially equal-

weighted) but statistical signi�cance remains.80

With the subsample periods considered, some of the evidence seem to weakly

support the conclusions drawn in Borgers et al. (2013) that, over the years, at-

tention towards ESG issues has diminished the chances of ESG-centric mispric-

ing. However, interestingly, when it comes to equal-weighted hedge portfolios,

the observed mispricing seems to have reappeared in recent years, especially

when the sample period is broken down into three parts. This essentially ex-

tends the �ndings in Borgers et al. (2013) as the recent 8 years (from 2008

to 2015) were largely not included in that sample. The magnitude of al-

phas are largely similar to those reported in prior literature, which uses all-in

CSP measures for portfolio construction. However, consistent positive alphas

for sustainability hedge does indicate the importance of selecting conceptually

grounded indicators of ESG instead of summing up all the available indicators.

Could similar hedge portfolios using the other ESG indicators (or remCSP

80Monthly returns for each �rm were adjusted by deducting the industry median returns
using Fama and French (1997) 48 industry classi�cation.
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scores) have generated abnormal returns as well? I test this by constructing

similar extreme portfolios using the remnant CSP score and then forming a

long � short hedge (last row in Table 4.17 Panel A). Neither equal-weighted

nor value-weighted portfolios show abnormal returns, con�rming the bene�ts

of measuring sustainability.

With respect to alternative factor models (Table 4.17 Panel B), the alpha

values with the chosen �ve factor model (Equation 4.11) does not seem to

be in�uenced considerably by the selected factors. For robustness testing, I

include the Fama and French (1993) three-factor model, the Fama and French

(2016) �ve-factor model and the variations of these Fama-French (FF) models

with the Pástor and Stambaugh (2003) liquidity factor added. For the equal-

weighted hedge portfolio, the risk-neutral returns vary from 44 basis points

(bps) a month to 26bps a month for the pentile portfolios, and 29 bps to 21

bps monthly for tercile based hedge portfolios (statistically signi�cant in most

cases). The FF four factors + liquidity factor alphas seem to lie in the middle

of alphas' range seen across various asset pricing models. With value-weighted

hedge, as before, all alphas remain statistically insigni�cant.

Overall, the main results shown in Tables 4.9 and 4.10 for the relationship

between sustainability and stock returns seem to be robust to several sample

period selections and factor model speci�cations. Most of the drawn inferences

remain consistent through all of these robustness tests. While there has been

some degree of learning by investors regarding ESG characteristics, there is

enough evidence indicating that sustainability based hedging strategies could

have generated consistent abnormal returns in the long run.

4.7 Discussion and Conclusions

This study introduces a corporate sustainability measure SUS-Index that rep-

resents the attention (+) or lack of attention (�) �rms reportedly show towards
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practices and policies that can in�uence their triple bottom line. Subsequently,

it is found that the highly sustainable �rms are associated with superior �rm

value. In fact, it is this sustainability component from within the broader

CSR/CSP measure that completely explains its well-documented relationship

with �rm value. Both with the dynamic OLS model that includes past �rm

performances to disentangle simultaneity and with the panel regressions, the

same results are observed. Sustainability measure and its two subcomponents

seem to capture most of the variations seen in the CSP��rm value relationships

for the MSCI sample �rms. This result is consistent with the theoretical model

proposed in Fatemi, Fooladi, and Tehranian (2015) that captures di�erential

valuation e�ects of di�erent CSR expenditures. Those CSR activities that are

focal to corporate sustainability are shown to have positive valuation e�ects.

The initial evidence merely supports that the individual sustainability indi-

cators, its composite index and the two subcomponents have signi�cant cor-

relations with �rm value but does not indicate causation. Does the �rms'

attention toward sustainability cause them to be valued higher than the less

sustainable �rms? I answer this using multiple identi�cation strategies that

collectively support the �nding that the changes in sustainability scores for

a �rm can indeed cause changes in its valuation as measured by Tobin's Q.

Using regression discontinuity design, Flammer (2015) shows that the pass-

ing of CSR engagement proposals can increase �rm value in the adopted as

well as subsequent years. However, the impact of sustainability initiatives is

much higher on Tobin's Q than these broad ESG engagements as shown by

the magnitudes of coe�cients for SUS-Index in my results.

Additionally, I provide evidence that sustainability and SUS-Index could have

generated abnormal returns for investors if appropriate investment strategies

were employed. While it is di�cult to establish at the �rm level if ESG per-

formance is correctly priced by the stock markets, some recent studies (e.g.,
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Flammer, 2015) show that CSR engagements do result in a positive reaction

in stock markets resulting in abnormal returns for investors. Krüger (2015),

however, has shown that the market reaction can change based on the intensity

of the CSR news itself. Since I look at sustainability-based portfolios instead

of individual �rms, and the sustainability measure itself is an aggregation of

multiple initiatives, the impact of individual CSR engagement related �rm

news and its confounding e�ects is avoided. It is seen that the SUS-Index

based hedge portfolios could have generated risk-adjusted returns of over 4%

per year in my sample period. As a word of caution, however, since I have

analyzed realized returns to show that a sustainability-based hedge could have

generated abnormal returns in the past, it does not imply that the same strat-

egy should necessarily generate similar returns in the future. As the markets

and investors become more aware of the bene�ts from sustainability initia-

tives, risk-adjusted abnormal returns may eventually diminish and disappear

(Borgers et al., 2013).

This study also has regulatory and managerial implications as it identi�es a

subset of ESG strengths and concerns that are most relevant to the �rm's

sustainability, which is shown to impact �rm performance and shareholders'

wealth. On an individual factor level as well, it is found that more than 90%

of the identi�ed sustainability indicators have a signi�cant association with

�rm value. This association remains robust even after controlling for all other

ESG indicators. So the value-driving characteristic of sustainability is not

merely seen on the aggregate level, but even the individual strength and con-

cern indicators have value-impacting properties. Thus, if regulators introduce

policies and directives that target these speci�c sustainability indicators, they

are more likely to in�uence the overall �rm sustainability and its subsequent

performance. Similar reasoning also applies for managers and other decision

makers who seek to improve corporate sustainability, or for institutional in-
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vestors who seek sustainable investment portfolios.

By showing that the correlation between CSP and CFP is driven largely by a

concentrated subset of ESG components, this study also has an implication for

commercial ESG rating agencies such as MSCI and others. For ESG rankings,

the more is not the merrier, i.e., increasing the number of ESG indicators does

not necessarily enrich the ESG rankings. What essentially matters is whether

the included indicators are relevant to corporate sustainability or not.
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4.A Appendices

4.A.1 List of all the MSCI ESG Indicators

Community

Strengths Concerns

Generous Giving Investment Controversies
Innovative Giving Negative Economic/ Community Impact
Support for Housing Indigenous Peoples Relations Concern

Support for Education (added in 1994) Tax Disputes (moved from Governance in 2005)

Indigenous Peoples Relations Strength Other Concern
Non-US Charitable Giving
Volunteer Programs Strength
Community Engagement
Other Strength

Employees

Strengths Concerns

Union Relations Strength Union Relations Concern
No Layo� Policy (to 1993) Health and Safety Concern
Cash Pro�t Sharing Workforce Reductions
Employee Involvement Pension/ Retirement Bene�ts Concern (1992 - 2009)
Strong Retirement Bene�ts (1991 - 2009) Supply Chain Controversies
Employee Health and Safety (added in 2003) Child Labor
Supply Chain Labor Standards Other Concern/ Labor-Management Relations
Compensation and Bene�ts
Employee Relations
Professional Development
Human Capital Management/ Developments
Labor Management
Controversial Sourcing
Other Strength

Environment

Strengths Concerns

Bene�cial Products & Services/ Env. Opportunities Hazardous Waste
Pollution Prevention/ Waste Management Regulatory Compliance
Recycling/ Packaging Materials and Waste Ozone Depleting Chemicals
Climate Change/ Alternative Fuels/ Clean Energy Toxic Spills and Releases/ Substantial Emissions
Property, Plant, and Equipment (through 1995) Agricultural Chemicals
Environmental Management Systems Climate Change (added in 1999)
Water Stress Negative Impact of Products (from 2010)
Biodiversity and Land Use Land Use and Biodiversity (from 2010)
Raw Material Sourcing Non-Carbon Releases/ Operational Waste (from 2010)
Natural Resource Use Supply Chain Management (from 2012)
Green Buildings Water Management (from 2012)
Renewable Energy Other Concern
Waste Management - Electronic Waste
Climate Change - Energy E�ciency
Climate Change - Carbon Footprint
Climate Change - Insuring CC Risk
Other Strength
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Diversity

Strengths Concerns

CEO Diversity Employee Discrimination
Promotion Non-Representation (1993 - 2011)
Board of Directors - Gender Diversity Board Diversity - Gender
Work-Life/ Family Bene�ts Board of Directors - Minorities
Women and Minority Contracting Other Concern
Employment of the Disabled
Progressive Gay/ Lesbian Policies
Employment of Underreperesented Groups
Other Strength

Governance

Strengths Concerns

Limited Compensation High Compensation
Ownership Strength Tax Disputes (moved to Community 2005)
Transparency/ Reporting Quality Strength Ownership Concern
Political Accountability Strength Accounting Concern
Public Policy Strength Reporting Quality/ Transparency Concern
Corruption and Political Instability Political Accountability Concern
Financial System Instability Public Policy Concern
Other Strength Governance Structure Controversies

Controversial Investments
Business Ethics
Other Concern

Human Rights

Strengths Concerns

Positive Operations in South Africa (1994â��1995) South Africa Concern (through 1994)
Indigenous Peoples Relations (moved in 2002) Northern Ireland Concern (through 1994)
Labor Rights Strength Support for Controversial Regimes
Other Strength Mexico (1995â��2002)

International Labor Rights Concern
Indigenous Peoples Relations (moved in 2002)
Operations in Sudan (2010 - 2011)
Freedom of Expression
Human Rights Violations
Other Concern

Product

Strengths Concerns

Quality Product Quality and Safety
R & D/ Innovation Advertising and Marketing/ Contracting Controversy
Bene�ts to Economically Disadvantaged Antitrust and Anticompetitive Practices
Access to Capital Customer Relations
Social Opportunities - Access to Communications Privacy and Data Security
Social Opportunities - Nutrition and Health Other Concern
Product Safety - Chemical
Product Safety - Financial
Product Safety - Privacy and Data
Product Safety - Responsible Investment
Product Safety - Insuring Health & Demographics
Other Strength

Note that those indicators which have moved from one category to another are
shown in bold. For de�nitions / explanations of these indicators, check MSCI ESG
KLD Stats Methodology guide.
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4.A.2 Conceptual Inclusion (Exclusion) of Sustainability (remnant

CSP) Indicators

From changes in governance norms to the use of scarce natural resources, from

community engagement programs to the human capital development, and from

essential human rights to the consumer rights protection; ESG characteristics

include a wide array of key stakeholder attributes that the �rms and their

management should be paying attention towards. With a similar wide vari-

ety of ESG initiatives covered by MSCI, the identi�cation of sustainability

indicators becomes challenging more so because some of the reported indi-

cators overlap with each other over the years. For example, Employment of

the Disabled (DIV-str-F) and Gay & Lesbian Policies (DIV-str-G) were sep-

arately evaluated until 2011 but were discontinued thereafter to be covered

under a common header Employment Of Underrepresented Groups (DIV-str-

H). In this case, since both these diversity strengths �t the selection criteria

explained in Section 4.3.3.1, I include all these three as sustainability indica-

tors. In contrast, a few ESG indicators such as freedom of expression, privacy

and data security, biodiversity and di�erent dimensions of climate change such

as carbon footprint, energy e�ciency etc. are relevant to sustainability as per

the said criteria, but are excluded from the �nal list of sustainability indica-

tors since they are reported only after 2012 and are di�cult to assess with

too many missing values. The only short-lived indicator included purposefully

is Operations in Sudan (HUM-con-H), which was assessed for two years i.e.,

2010 and 2011, as it broadly �ts within another relevant indicator Support

for Controversial Regimes (HUM-con-C) that initially reported investments in

Burma till 2011. In similar essence, South Africa (HUM-str-A; HUM-con-A)

and Northern Ireland (HUM-con-B) indicators are excluded as the data made

available by MSCI is restricted to 4 years that includes the end of controversial

societal or social regimes in these countries (implying that the nature of these
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regimes are themselves controversial in this period).

While ESG strength indicators are an assessment of best management prac-

tices in relation to stakeholder risk management, the concern indicators make

an assessment of ESG-related controversies that the �rms were exposed to.

For some ESG characteristics, however, there are strength and concern dimen-

sions that are mutually exclusive while being almost exhaustive. Thus, if a

speci�c characteristic is identi�ed as sustainability-relevant, I include only the

strength indicator to avoid unbalanced weighting of that characteristic. In

other words, the idea is to ensure that all sustainability-related best practices

(controversies) are rated either 0 or 1 (-1) in the overall index measure, which

will not be the case when one characteristic has its two obverse indicators

included resulting in a scale of -1 to +1 in net terms. For instance, within

MSCI governance indicators, the Limited Compensation (CGOV-str-A) and

Ownership Strength (CGOV-str-C) have their corresponding concern coun-

terparts namely, High Compensation (CGOV-con-B) and Ownership Concern

(CGOV-con-F). I �nd that both the ownership and compensation aspects are

important to sustainability as per the selection criteria employed, but to avoid

the aforementioned problem of double scaling, I only include the two strength

indicators in the sustainability set. Exceptions are the Transparency/ Re-

porting Quality (CGOV-str-D; CGOV-con-H), Board of Directors - Gender

(DIV-str-C; DIV-con-C), Employee Health and Safety (EMP-str-G; EMP-con-

B) and Labor Rights (HUM-str-G and HUM-con-F) indicators because either

they are asymmetrically de�ned or they are reported for asymmetric time peri-

ods. To illustrate further, while the Labor Rights strengths were evaluated for

international or overseas labor-related initiatives, the Labor Rights concerns

assessed local controversies. Similarly, while Transparency/ Reporting Quality

strengths were reported from 1996 to 2009, its concerns were covered by MSCI

from 2005 to 2012.
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Certain indicators are prioritized over others for the way they are de�ned,

with the more stringent sustainability-focused indicator preferred. In this

light, Generous Giving (COM-str-A) is excluded from the sustainability list

as its de�nition broadly includes social �investments� along with charity and

philanthropy. Moreover, in its de�nition, the 1.5% threshold over three years

is set on pre-tax pro�ts that may bias the construct whence the �rms engage in

such activities for tax-saving motives rather than social or stakeholder engage-

ment motives. On the other hand, Non-US Charitable Giving (COM-str-F)

is de�ned with a substantial minimum (20%) contributed overseas that better

re�ects sustainability criteria where �rms' policies are indeed directed towards

community upliftment both locally and internationally. Similarly, while Em-

ployee Involvement (EMP-str-D) and Compensation & Bene�ts (EMP-str-I)

are a part of sustainability list for their ability to incentivize all of the em-

ployees with a clear welfare objective, Labor Management (EMP-str-M) and

Professional Development (EMP-str-K) are excluded from the list as they are

either largely pro�t-oriented activities (EMP-str-M) or are directed only to-

wards mid- / upper-level executives (EMP-str-K).

4.A.3 De�nitions of Variables Used in Tobin's Q Regressions

CSPstr: Measures strengths related to corporate social performance. It is

constructed as in El-Ghoul et al. (2011); Jha and Cox (2015) as the sum of all

ESG strengths available in MSCI dataset (sum total of all strengths given in

Appendix 4.A.1). High value indicates high CSR engagements and initiatives

for the �rm.

CSPcon: Measures concerns related to corporate social performance. It is

constructed as in El-Ghoul et al. (2011); Jha and Cox (2015) as the sumtotal

of all ESG concerns available in MSCI dataset, or in other words, sum total of

all concerns given in Appendix 4.A.1. High value indicates �rm is embroiled
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in CSR controversies.

CSP: Measures the net corporate social performance of the �rm in a given

year. It is calculated as the di�erence between ESG strengths and concerns

(i.e., CSP = CSPstr − CSPcon).

SUSstr: Measures sustainability related strengths for a �rm. It is constructed

using similar summation as CSPstr but, only the sustainability indicators are

included (refer Table 4.1). High value indicates proactiveness for sustainability

initiatives in the �rm.

SUScon: Measures sustainability related concerns in a �rm. It is constructed

using similar summation as CSPcon but, only the sustainability indicators are

included (refer Table 4.1). High value indicates a disregard for sustainability

and triple bottom line by the �rm.

SUS: Measures the �rm's sustainability score in a given year. It is calculated

as the di�erence between sustainability strengths and concerns (i.e., SUS =

SUSstr − SUScon).

remCSP: Measures the remnant CSP score after separating the sustainability-

related parameters. It is calculated as the di�erence between the overall net

CSP score and the sustainability score (i.e., remCSP = CSP − SUS).

Tobin's Q: Calculated as in Bebchuk, Cohen, and Ferrell (2009) as market

value of assets divided by book value of assets (Compustat data item 6) with

the market value of assets calculated as: (book value of assets + market value

of common stock) � (book value of common stock + deferred taxes). Corre-

sponding industry-adjusted (either Fama French 48 or SIC 2-digit) values are

obtained by taking the di�erence of Tobin's Q and the corresponding industry

median Tobin's Q values.

ROA: The control used as proxy for operating performance, Return on Assets

(ROA) computed as the operating income divided by end of year total assets
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(Compustat data item 6). Operating income before depreciation (Compustat

data item 13) is used as given in Bhagat and Bolton (2008).

Size: Log transformation of Total Assets (Compustat data item 6).

Leverage: As described in Bhagat and Bolton (2008): Long term debt (Com-

pustat data item 9) / Total Assets (Compustat data item 6). Alternative

measure of leverage i.e., Debt/Equity ratio was also used as a means of ro-

bustness check.

Volume: Measures liquidity using the volume of trade for the �rm's common

equity recorded in the �scal year (in logs).

CAPEX/Total Assets: is the log transformation of the ratio of Capital

Expenditures (Compustat data item 31) to Total Assets.

R&D Expense/Total Sales: is the log transformation of the ratio of Re-

search & Development expenses (Compustat data item 47) to Total Revenues.

Sales Growth: The ratio of Total Revenues for current year to that of the

year t�2.

Age: Log transformation of �rm's age measured in months at the end of each

calendar year with reference being the listing month.

Delaware Dummy: Dummy variable indicating whether a �rm is incorpo-

rated in Delaware or not (coded 1 and 0).

E-Index: The entrenchment index from Bebchuk, Cohen, and Ferrell (2009),

which is the sum of the managerial entrenchment provisions (from limits to

bylaws, limits to charters, staggered boards, poison pills, golden parachutes

and supermajority requirement for mergers) existing in a �rm for a given year.

EI Dummy: Dummy variable indicating whether a �rm is high or low E-Index

value, classi�ed using the median E-Index value for each year.

Institutional Ownership (%): The percentage of shares owned by insti-

tutional investors obtained from the quarterly 13f �lings, which is annualized
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using the average of all available quarterly % institutional ownership data.

Blockholders (#): A measure of blockholder dispersion for a �rm in a given

year, calculated as the average quarterly number of blockholders. The block-

holders are classi�ed from institutional investors as the ones that own at least

5% of a �rm's equity.

4.A.4 Instrumental Variables for State-Level Political Leanings

% Votes for Democrat Presidential Candidate (PVD): It is the percent-

age of votes within each state registered in favor of the Democratic presidential

candidate.

Congressional Democratic Distribution (CDD): This variable is con-

structed as shown in Di Giuli and Kostovetsky (2014), for each state, by taking

the average of the percentages of Democrat Congressmen and the Democrat

Senators.

State Government's Democratic Distribution (SGD): From Di Giuli

and Kostovetsky (2014), this variable is calculated as the sum of 0.5 x Demo-

crat governor dummy, 0.25 Ã� Democrats-controlled dummy for the state's

upper chamber, and 0.25 Ã� Democrats-controlled dummy for the state's lower

chamber.

4.A.5 Keywords List Used for Google Trends

For each MSCI ESG variable, the related keywords were identi�ed from their

respective de�nitions as given in the MSCI methodology guide. Only those

keywords that appeared in Google Trends data are listed below.
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4.A.5.1 Sustainability Indicators:

�Charitable giving�, �community engagement�, �education support�, �housing

support�, �gender diversity�, �retirement bene�ts�, �employee involvement�,

�employee safety�, �Employment for disabled�, �climate change�, �alternative fu-

els�, �employee health�, �clean energy�, �labor rights�, �product quality�, �prod-

uct safety�, �R & D�, �social opportunities�, �environmental management sys-

tem�, �tax disputes�, �political accountability�, �oil spills�, �child labor�, �haz-

ardous waste�, �ozone depletion�, �labor relations�, �agricultural chemicals�,

�natural resource�, �family bene�ts�, �work-life balance�, �pollution prevention�,

�waste management�, �antitrust�, �human capital management�, �accounting

quality�, �non-representation�, �board compensation�, �CSR report�, �indige-

nous people rights�

4.A.5.2 Remnant ESG Indicators:

�Generous giving�, �volunteer programs�, �employee discrimination�, �LGBT

rights�, �gay and lesbian rights�, �underrepresented groups�, �supply chain is-

sues�, �labor management�, �water stress�, �consumer fraud�, �privacy and data

security�, �data theft�, �access to �nance�, �freedom of expression�, �Internet

censorship�, �human rights violations�, �political instability�, �regulatory com-

pliance�, �community reinvestment act�, �green buildings�, �public policy is-

sues�, �product carbon footprint�, �protect biodiversity�, �corporate bribery�,

�business fraud�

4.A.6 Supplementary Results
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Table 4.11 Conceptual identi�cation of sustainability indicators

This is a summary list of all indicators identi�ed using three step conceptual �lter explained
in the Section 4.3.3.1 and Appendix 4.A.2. The selection criteria that were met for each of
these indicators are accordingly shown by †, ‡ and > for Rahdari and Rostamy (2015) 30
sustainability constructs, UNGC Guide to Corporate Sustainability and UNCTAD's 2015
Framework for Sustainable Development respectively.

Community

Strengths: Concerns:

Support for Housing†‡ Tax Disputes†‡
Support for Education†‡ Other Community Concerns†‡
Non-US Charitable Giving†‡
Community Engagement†‡

Diversity

Strengths: Concerns:

CEO Diversity‡ Board of Directors - Gender Diversity†‡
Board of Directors - Gender Diversity†‡
Work-Life Balance/ Family Bene�ts†‡
Women & Minority Contracting†‡
Employment of the Disabled†‡
Progressive Gay/ Lesbian Policies‡
Employment of Underrepresented Groups†‡

Employees

Strengths: Concerns:

Employee Involvement† ‡> Health & Safety Concern/ Safety Controversies† ‡>
Strong Retirement Bene�ts† Workforce Reductions†
Employee Health & Safety† ‡> Child Labor† ‡>
Supply Chain Labor Standards† ‡> Labor Rights & Supply Chain - Other Concerns/
Compensation & Bene�ts†‡ Labor-Management Relations† ‡>
Human Capital Management/ Developments‡
Human Capital - Other Strengths† ‡>

Environment

Strengths: Concerns:

Bene�cial Products & Services/ Env. Opportunities† Hazardous Waste† ‡>
Pollution Prevention/ Waste Management† ‡> Regulatory Compliance† ‡>
Climate Change/ Alternative Fuels/ Clean Energy† ‡> Ozone Depleting Chemicals† ‡>
Environmental Management Systems† ‡> Toxic Spills & Releases/ Substantial Emissions† ‡>
Natural Resource Use‡> Agricultural Chemicals† ‡>

Governance

Strengths: Concerns:

Limited Compensation†> Accounting Concern† ‡>
Ownership Strength† ‡> Reporting Quality/ Transparency Concern † ‡>
Transparency/ Reporting Quality Strength† ‡> Other Governance Concerns†>
Political Accountability Strength†‡

Human Rights

Strengths: Concerns:

Labor Rights Strength† ‡> Support for Controversial Regimes>
Labor Rights Concern† ‡>
Operations in Sudan>

Product

Strengths: Concerns:

Product Safety & Quality†‡ Advertising & Marketing/ Contracting Controversy†
R & D/ Innovation†‡ Antitrust & Anticompetitive Practices†‡
Social Opportunities - Access to Communications†‡
Social Opportunities - Nutrition and Health†‡
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Table 4.13 Tobin's Q regressions on ESG measures (excluding cor-
porate governance indicators)

This table repeats the estimations from Table 4.3, and presents the results when the MSCI
corporate governance indicators are excluded from the ESG measures. For details on each
of the variables see Appendix 4.A.3. Model 1 shows Tobin's Q regressed on the two ESG
measures with all the main controls, and additional year and industry �xed e�ects. Model 2
adds the past two years' Tobin's Q as regressors in a dynamic OLS for Model 1. Dependent
variable is the industry-adjusted Tobin's Q taken as Tobin's Q minus the median Tobin's Q
for that industry using SIC 2-digit classi�cation. Coe�cients for the constant, year dummies
and industry dummies are omitted. Signi�cance levels are represented by *, **, and *** for
10%, 5%, and 1% respectively.

ESG Aggregate Measures ESG Subcomponents

Model (1) Model (2) Model (1) Model (2)

CSP 0.0378*** 0.0166***
(0.005) (0.003)

SUS 0.0741*** 0.0301***
(0.008) (0.005)

CSPstr 0.0598*** 0.0263***
(0.005) (0.004)

CSPcon 0.0079 0.0035
(0.007) (0.005)

SUSstr 0.1010*** 0.0428***
(0.008) (0.006)

SUScon -0.0079 0.0012
(0.010) (0.007)

Remnant CSP 0.0054 0.0046 0.0058 0.0047
(0.006) (0.004) (0.006) (0.004)

ROA -0.0177 -0.0188 -0.6507 -0.6509 0.0080 -0.0032 -0.6385 -0.6428
(1.016) (1.016) (0.769) (0.769) (1.018) (1.017) (0.771) (0.770)

Size -0.4743*** -0.4819*** -0.1391*** -0.1423*** -0.5038*** -0.4973*** -0.1528*** -0.1500***
(0.014) (0.014) (0.026) (0.026) (0.016) (0.015) (0.028) (0.027)

Leverage -0.9812*** -0.9759*** -0.3114** -0.3099** -0.9442*** -0.9526*** -0.2958** -0.2990**
(0.146) (0.146) (0.149) (0.149) (0.147) (0.146) (0.149) (0.148)

Volume 0.3953*** 0.3960*** 0.0960*** 0.0965*** 0.3889*** 0.3922*** 0.0936*** 0.0949***
(0.013) (0.013) (0.023) (0.023) (0.013) (0.013) (0.023) (0.023)

CAPEX / Assets 0.1181*** 0.1164*** 0.0482** 0.0477** 0.1145*** 0.1149*** 0.0468** 0.0471**
(0.029) (0.029) (0.020) (0.020) (0.029) (0.029) (0.020) (0.020)

R & D / Sales -0.0048 -0.0039 -0.0076 -0.0073 -0.0016 -0.0018 -0.0062 -0.0063
(0.016) (0.016) (0.012) (0.012) (0.017) (0.016) (0.012) (0.012)

Sales Growth 0.0003* 0.0003* 0.0001** 0.0001** 0.0003* 0.0003* 0.0001** 0.0001**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Age -0.0854*** -0.0870*** 0.0378*** 0.0370*** -0.0896*** -0.0890*** 0.0351*** 0.0356***
(0.014) (0.014) (0.013) (0.013) (0.014) (0.014) (0.013) (0.013)

Delaware Dummy 0.0225 0.0235 0.0220 0.0223 0.0212 0.0233 0.0213 0.0223
(0.024) (0.024) (0.019) (0.019) (0.024) (0.024) (0.019) (0.019)

Lag 1 Tobin's Q 0.5821*** 0.5818*** 0.5812*** 0.5813***
(0.070) (0.070) (0.070) (0.070)

Lag 2 Tobin's Q 0.0605** 0.0604** 0.0606** 0.0604**
(0.028) (0.028) (0.028) (0.028)

Year Fixed E�ects Yes Yes Yes Yes Yes Yes Yes Yes
Industry Fixed E�ects Yes Yes Yes Yes Yes Yes Yes Yes
Number of observations 32546 32546 30991 30991 32546 32546 30991 30991
R-Squared 0.209 0.210 0.550 0.551 0.212 0.212 0.551 0.551
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Table 4.15 Annual regressions and time-series averages for Tobin's
Q on ESG measures with alternative industry adjustment

As a robustness check, this table replicates the results of Table 4.4 by using Fama and
French (1997) 48 industry classi�cation, instead of the SIC 2-Digit industry classi�cation
to obtain industry-adjusted Tobin's Q. The annual and time-series average regressions are
shown for both the ESG aggregate scores (i.e. SUS and CSP) and their respective strengths
and concerns subcomponents. With SUS-Index as the regressor (Model 2 based on Equation
4.8), additional control for remaining CSP indicators (remCSP ) is applied. All other control
variables are the same as before. For each year, only the main regressors coe�cients and
robust standard errors are shown. Time-series average coe�cients and standard errors (using
Fama and MacBeth, 1973 methodology) are given at the bottom. *, **, and *** show the
signi�cance levels at 10%, 5%, and 1% respectively.

Year # Observations ESG Aggregate Measures ESG Subcomponents

Model (1) Model (2) Model (1) Model (2)

CSP SUS remCSP CSPstr CSPcon SUSstr SUScon remCSP

1991 260 0.0174 0.0682 -0.0232 -0.0117 -0.0533 0.0480 -0.1058* -0.0258
(0.052) (0.042) (0.043) (0.044) (0.043) (0.063) (0.057) (0.042)

1992 267 -0.0013 -0.0254 0.0202 -0.0364 -0.0469 -0.0823 -0.0866 0.0111
(0.046) (0.035) (0.040) (0.033) (0.040) (0.053) (0.068) (0.035)

1993 274 -0.0240 -0.0546 0.0066 -0.0181 0.0323 -0.0426 0.0728 0.0078
(0.042) (0.034) (0.036) (0.037) (0.046) (0.056) (0.068) (0.033)

1994 281 0.0006 0.0200 -0.0203 0.0130 0.0221 0.0339 0.0079 -0.0199
(0.028) (0.030) (0.026) (0.022) (0.038) (0.038) (0.045) (0.030)

1995 289 0.0255 0.0320* 0.0187 0.0323 -0.0114 0.0457 0.0106 0.0190
(0.037) (0.025) (0.035) (0.032) (0.050) (0.047) (0.079) (0.035)

1996 301 0.0263 0.0243 0.0283 0.0292 -0.0196 0.0275 -0.0136 0.0290
(0.047) (0.036) (0.039) (0.031) (0.039) (0.045) (0.059) (0.035)

1997 319 0.0509** 0.0517* 0.0502 0.0599* -0.0354 0.0560 -0.0378 0.0514
(0.044) (0.032) (0.037) (0.032) (0.026) (0.042) (0.050) (0.042)

1998 326 0.0116 0.0068 0.0166 -0.0025 -0.0335 -0.0063 -0.0501 0.0122
(0.045) (0.044) (0.043) (0.031) (0.029) (0.049) (0.061) (0.044)

1999 349 -0.0197 0.0202 -0.0659 -0.0149 0.0262 0.0292 -0.0023 -0.0649
(0.069) (0.086) (0.062) (0.047) (0.058) (0.077) (0.074) (0.086)

2000 377 0.0119 0.0185 0.0035 -0.0198 -0.0522* -0.0173 -0.0781 0.0000
(0.047) (0.052) (0.041) (0.038) (0.031) (0.054) (0.056) (0.052)

2001 673 0.0101 0.0660** -0.0637** 0.0279 0.0137 0.0826** -0.0336 -0.0605**
(0.032) (0.027) (0.026) (0.022) (0.020) (0.033) (0.031) (0.027)

2002 704 0.0030 0.0312* -0.0338* 0.0100 0.0070 0.0404** -0.0116 -0.0320
(0.024) (0.019) (0.016) (0.013) (0.013) (0.020) (0.023) (0.020)

2003 1722 0.0210 0.1129*** -0.0996*** 0.0863*** 0.0421** 0.1747*** -0.0196 -0.0786***
(0.029) (0.028) (0.026) (0.021) (0.018) (0.032) (0.030) (0.028)

2004 2071 0.0528** 0.1537*** -0.0746*** 0.0988*** -0.0016 0.1788*** -0.1166*** -0.0716***
(0.027) (0.024) (0.031) (0.027) (0.018) (0.040) (0.029) (0.024)

2005 2085 0.0435*** 0.0818*** -0.0005 0.0715*** -0.0061 0.1095*** -0.0316 0.0025
(0.022) (0.020) (0.021) (0.016) (0.015) (0.026) (0.025) (0.020)

2006 2123 0.0618*** 0.0998*** 0.0170 0.0890*** -0.0224 0.1265*** -0.0354 0.0217
(0.021) (0.019) (0.022) (0.016) (0.014) (0.025) (0.026) (0.019)

2007 2145 0.0526*** 0.0760*** 0.0273 0.0734*** -0.0218 0.1081*** -0.0030 0.0290
(0.023) (0.019) (0.017) (0.012) (0.017) (0.019) (0.027) (0.019)

2008 2263 0.0343*** 0.0519*** 0.0137 0.0398*** -0.0269** 0.0505*** -0.0551** 0.0135
(0.019) (0.016) (0.015) (0.011) (0.013) (0.017) (0.027) (0.016)

2009 2304 0.0369*** 0.0439*** 0.0291** 0.0443*** -0.0271** 0.0552*** -0.0186 0.0307**
(0.016) (0.013) (0.012) (0.010) (0.010) (0.014) (0.018) (0.013)

2010 2383 0.0225** -0.0008 0.0468*** 0.0367*** 0.0134 0.0353* 0.0768*** 0.0439***
(0.018) (0.015) (0.017) (0.010) (0.013) (0.018) (0.029) (0.015)

2011 2288 0.0292*** 0.0046 0.0580*** 0.0378*** -0.0020 0.0277 0.0531* 0.0587***
(0.018) (0.018) (0.015) (0.009) (0.014) (0.018) (0.028) (0.018)

2012 2333 0.0549*** 0.0715*** 0.0463** 0.0669*** 0.0117 0.0955*** 0.0735 0.0390*
(0.027) (0.022) (0.026) (0.014) (0.032) (0.028) (0.048) (0.022)

2013 2133 0.0260** -0.0100 0.0450** 0.0380** 0.0373 0.0118 0.1600*** 0.0363*
(0.024) (0.019) (0.028) (0.013) (0.026) (0.030) (0.058) (0.019)

2014 2213 0.0598** 0.1061*** 0.0092 0.0746** -0.0037 0.1245*** 0.0513 0.0111
(0.036) (0.032) (0.032) (0.025) (0.032) (0.033) (0.070) (0.032)

2015 2086 0.0978*** 0.1265*** 0.0709** 0.1103*** -0.0418 0.1413*** 0.0300 0.0699**
(0.033) (0.031) (0.031) (0.022) (0.031) (0.033) (0.052) (0.030)

Fama- 32546 0.0282*** 0.0471*** 0.0050 0.0376*** -0.0083 0.0582*** -0.0065 0.0053
MacBeth (0.005) (0.010) (0.009) (0.008) (0.006) (0.013) (0.013) (0.008)
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Table 4.16 OLS, dynamic OLS and Fama-Macbeth regressions for
Tobin's Q on pseudo-sustainability measures

This table replicates the results of OLS, dynamic OLS (from Table 4.3 in the paper)
and Fama-Macbeth time series averages (from Table 4.4) for Tobin's Q on the pseudo-
sustainability and remnant scores taken in place of the true SUS and remCSP scores.
Model 1 applies OLS with all the main controls including year and industry �xed e�ects.
Model 2 includes the past two years' Tobin's Q as regressors in a dynamic OLS model. Model
3 uses Fama-Macbeth regressions to compute time series average coe�cients. Dependent
variable is the industry-adjusted Tobin's Q taken as Tobin's Q minus the median Tobin's Q
for that industry using SIC 2-digit classi�cation. Coe�cients for the constant, year dummies
and industry dummies are omitted. Signi�cance levels are represented by *, **, and *** for
10%, 5%, and 1% respectively.

ESG Aggregate Measures ESG Subcomponents

Model (1) Model (2) Model (3) Model (1) Model (2) Model (3)

SUSpseudo 0.0297*** 0.0121*** 0.0378***
(0.006) (0.004) (0.009)

SUSstrpseudo 0.0689*** 0.0289*** 0.0597***
(0.007) (0.005) (0.015)

SUSconpseudo 0.0618*** 0.0271*** 0.0162
(0.009) (0.006) (0.010)

remCSPpseudo 0.0359*** 0.0149*** 0.0258*** 0.0301*** 0.0124*** 0.0220***
(0.006) (0.004) (0.007) (0.006) (0.004) (0.007)

ROA -0.0165 -0.6497 4.0927*** 0.0055 -0.6391 4.1124***
(1.017) (0.770) (0.826) (1.017) (0.770) (0.824)

Size -0.4711*** -0.1375*** -0.3407*** -0.5080*** -0.1542*** -0.3578***
(0.014) (0.026) (0.033) (0.016) (0.027) (0.035)

Leverage -0.9833*** -0.3127** -1.3064*** -0.9453*** -0.2975** -1.2926***
(0.146) (0.149) (0.131) (0.147) (0.149) (0.133)

Volume 0.3987*** 0.0976*** 0.3627*** 0.3929*** 0.0956*** 0.3562***
(0.013) (0.023) (0.047) (0.013) (0.023) (0.048)

CAPEX / Assets 0.1183*** 0.0484** -0.1033*** 0.1135*** 0.0465** -0.1092***
(0.029) (0.020) (0.019) (0.029) (0.020) (0.019)

R & D / Sales -0.0051 -0.0077 0.0713*** -0.0014 -0.0062 0.0743***
(0.016) (0.012) (0.006) (0.016) (0.012) (0.006)

Sales Growth 0.0003* 0.0001* 0.2113** 0.0003* 0.0001** 0.2140**
(0.000) (0.000) (0.084) (0.000) (0.000) (0.085)

Age -0.0844*** 0.0384*** -0.0809*** -0.0905*** 0.0346*** -0.0868***
(0.014) (0.013) (0.014) (0.014) (0.013) (0.014)

Delaware Dummy 0.0239 0.0224 -0.0683*** 0.0236 0.0222 -0.0689***
(0.024) (0.019) (0.020) (0.024) (0.019) (0.020)

Lag 1 Tobin's Q 0.5822*** 0.5812***
(0.070) (0.070)

Lag 2 Tobin's Q 0.0606** 0.0605**
(0.028) (0.028)

Year Fixed E�ects Yes Yes No Yes Yes No
Industry Fixed E�ects Yes Yes No Yes Yes No
Number of observations 32546 30991 32546 32546 30991 32546
R-Squared 0.209 0.550 0.364 0.212 0.551 0.367
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Table 4.17 Robustness checks for abnormal returns generated using
sustainability measure

This table summarizes abnormal returns when industry-adjusted returns are used, alterna-
tive sample periods are employed (Panel A) or when alternate asset pricing models are used
(Panel B). Abnormal returns using long Green � short Toxic hedge for both value-weighted
(shown by VW) and equal-weighted (EW) are reported along with corresponding robust
standard errors. The �rst row in each panel shows the result for baseline model using excess
hedge portfolio returns as reported in Table 4.9 for comparison. Panel A reports abnormal
industry-adjusted returns followed by abnormal returns when sample period is divided into
two equal 12 year periods or 3 equal 8 year periods. Panel B reports α for combinations of
Fama and French (1993) three factor model and Fama and French (2016) �ve factor model
along with momentum and the Pástor and Stambaugh (2003) liquidity factors. Signi�cance
levels for 10%, 5%, and 1% is shown by *, ** and *** respectively.

Panel A: Alternative Portfolio Characteristics

Portfolios Pentile Portfolios Tercile Portfolios

EW VW EW VW

Green � Toxic Hedge 0.0036** 0.0016 0.0021** 0.0012
(0.002) (0.002) (0.001) (0.001)

Industry adjusted 0.0011* 0.0008 0.0008 -0.0004
(0.001) (0.002) (0.001) (0.002)

First 12 years 0.0042 0.0041 0.0024 0.0034*
(0.003) -0.004 (0.002) (0.002)

Last 12 years 0.0038* 0.0006 0.0024 0.0005
(0.002) (0.002) (0.002) (0.002)

First 8 years 0.0021 0.0060 0.0016 0.0038*
(0.004) (0.004) (0.002) (0.001)

Mid 8 years 0.0027 0.0005 0.0018 0.0006
(0.003) (0.004) (0.002) (0.002)

Last 8 years 0.0056** 0.0022 0.0037* 0.0024
(0.003) (0.003) (0.002) (0.002)

remCSP -based Hedge 0.0001 -0.0020 0.0003 -0.0006
(0.001) (0.004) (0.001) (0.003)

Panel B: Alternative Factor Models

Asset Pricing Models Pentile Portfolios Tercile Portfolios

EW VW EW VW

FF four factors + liquidity 0.0036** 0.0012 0.0021** 0.0012
(0.002) (0.002) (0.001) (0.001)

FF three factors 0.0027 -0.0007 0.0016 -0.0002
(0.002) (0.002) (0.001) (0.001)

FF three factors + liquidity factor 0.0037** 0.0006 0.0025** 0.0004
(0.002) (0.002) (0.001) (0.001)

FF four factors 0.0026 0.0003 0.0012 0.0005
(0.002) (0.002) (0.001) (0.001)

FF �ve factors 0.0036* -0.0001 0.0019* 0.0007
(0.002) (0.002) (0.001) (0.002)

FF �ve factors + liquidity factor 0.0044** 0.0009 0.0029** 0.0012
(0.002) (0.002) (0.001) (0.002)
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CHAPTER 5

Summary and Conclusions

5.1 Summary of Findings

In this dissertation, we set out to study the relationship between corporate gov-

ernance and returns (Chapter 2), while also drawing attention to the method-

ological issues plaguing the research in this area (Chapter 3) and the conceptual

issues that researchers and investors face when dealing with governance from

stakeholders' perspective rather than shareholders' (Chapter 4).

In the chapter, Governance, Information Flow, and Stock Returns, we provide

a detailed and comprehensive outlook of how governance information continues

to be an importance resource for implementing pro�table investment strategies.
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While Bebchuk, Cohen, and Wang (2013) show that the governance�returns

correlation has disappeared after 2002, this chapter reveals that it has a di-

rectionally opposite reappearance in recent years i.e., poor governance stocks

outperform good governance ones. In other words, the relationship between

governance and returns undergoes two structural changes (i.e., dissociation

and reversed association). The reappearance of pricing anomalies is seldom

identi�ed or studied. Thus, this chapter is one of very few empirical studies

that have provided insights on why pricing anomalies reappear. We explain

this puzzling reappearance using sophisticated learning that accompanies in-

stitutional investors' increased sensitivity to governance information after the

2008 global �nancial crisis. How did the investors learn that poor governance

stocks now have a higher expected returns in equilibrium? We examine and

�nd support for two underlying learning mechanisms that may have aided the

sophisticated learning i.e., price and risk channels. Poor governance stocks

have lower (higher) price informativeness (future risk) than good governance

stocks after the crisis. How did this change in �rms' information impounded in

stock prices, based on their governance characteristics, in�uence the investor

behavior? We observe that institutional investors react to information �ow by

adjusting their portfolios based on their investment horizons. Using a quasi-

natural experiment, we show that while short-term investors show preference

for poor governance stocks after the crisis, long-term investors forgo immediate

returns by preferring to invest in good governance stocks.

The chapter titled The Corporate Governance�Performance Puzzle: New In-

sights examines the importance of weights when constructing corporate gov-

ernance indices. Previously, the literature has introduced governance indices

(for e.g., G-Index, E-Index, etc.) applying equal-weighted methodology by sim-

ply adding the constituent provisions or governance structures. In this chap-

ter, for the �rst time, an alternative unequal-weighted approach is introduced
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for governance index construction. We test multiple new index construction

methodologies that can dynamically account for the heterogeneity of individual

antitakeover components, and present the nG-Index. This index is found to be

less prone to erroneous inferences than a comparable equal-weighted index is.

Only with the nG-Index, a monotonic relationship between corporate gover-

nance and performance measures is seen. Firms with higher nG-Index scores

(i.e., poor governance �rms) show worse operating performance and lower �rm

value. The equal-weighted measure, in contrast, shows con�icting results with

operating performance measures and has a statistically insigni�cant associa-

tion with �rm value. These results hold even when we additionally control for

endogeneity.

In the chapter Sustain and deliver: Capturing the valuation e�ects of corpo-

rate sustainability, we study �rms' environmental, social and governance (ESG)

characteristics and how they a�ect �rm valuation. Although the ESG indica-

tors rated by ESG data providers cover a wide array of strengths (indicating

socially responsible behavior) and controversies (i.e., socially irresponsible con-

duct), they are commonly combined using an all-in or kitchen-sink approach

to measure corporate social performance/ responsibility (CSP/ CSR). This

chapter implements a selective approach to �rst identify important industry-

neutral sustainability indicators from a wide range of �rms' ESG characteristics

and then show that this subcomponent of CSR is most relevant to valuation

bene�ts. Our �ndings reveal that the use of sustainability-relevant ESG in-

dicators can help identify a monotonic relationship with both the �rm value

and abnormal stock returns, unlike the puzzling mixed evidence that was pre-

viously shown in related literature. The sustainability-irrelevant indicators,

meanwhile, are neither associated with the �rm value not with the abnormal

returns.
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5.2 Limitations and Future Directions

While each of the three manuscripts presented in this dissertation address as

many limitations as possible within the framework or approach that is em-

ployed, they present opportunities aplenty for future research to address.

Firstly, both the ISS Governance (in Chapters 2 and 3) and MSCI ESG (Chap-

ter 4) data that are used to measure corporate governance and corporate sus-

tainability respectively, are only analyzed for a single country due to their avail-

ability. Thus, there is a scope to conduct similar analyses to test whether the

bene�ts of governance and sustainability are available across the globe for in-

vestors to exploit. Previously, literature has studied corporate governance��rm

value relation for a global sample using an equal-weighted index (Ammann,

Oesch, and Schmid, 2011), but the studies on investor returns using gover-

nance indices have largely been limited to single-country settings. Moreover,

Denis and McConnell (2003) and Martynova and Renneboog (2013) highlight

certain challenges that arise when dealing with international corporate gov-

ernance research. Whether some of these challenges can be addressed using

an unequal-weighted governance index remains an open question. When it

comes to ESG and CSR, Aouadi and Marsat (2018) and Ferrell, Liang, and

Renneboog (2016) show their e�ect on �rm value, and Auer and Schuhmacher

(2016) show it on stock returns in cross-country settings. However, the valua-

tion bene�ts from corporate sustainability across the globe are not yet clearly

understood.

Secondly, the focus of this dissertation is on performance outcomes of corporate

governance with the investment returns being one of the main performance

metrics used. While the impact on risk is partially captured in Chapters 2

and 3 for corporate governance, the third article does not delve into how ESG

and corporate sustainability can mitigate or exacerbate �rms' riskiness. To

address this gap, we have examined the e�ect of the three ESG dimensions
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separately on the stock price crash risk (Dumitrescu and Zakriya, 2018) and

the distress risk (Dumitrescu, El Hefnawy, and Zakriya, 2019) to understand

their importance for the shareholders and debtholders respectively. However,

future studies can explore whether corporate sustainability is what drives the

relationship between CSR and future �rm risk.

Thirdly, and relatedly, instead of performance metrics, the e�ect of governance

and sustainability on other �rm outcomes can be determined. Put di�erently,

can the ATPs and ESG information be used by investors and other stakeholder

to gauge other �rm outcomes such as the ability to innovate or their ability to

pay dividends? These outcomes are also important from �rms' point of view

as they can help us understand how governance and ESG features in�uence

�rms' investment and dividend decisions.

Fourthly, the investors' perspective is captured in all the three manuscripts us-

ing long-run event studies that obtain risk-adjusted abnormal returns by con-

trolling for common risk factors. Speci�cally, we have applied calendar-time

portfolio approach to obtain the abnormal returns from long/short hedge port-

folios. This strategy is employed to mimic real-time investment decisions, and

is commonly applied in the literature to study investor gains from corporate

policies or decisions. Nevertheless, applying alternate long-run methodologies

may provide additional insights (Lyon, Barber, and Tsai, 1999).

Fifthly, the relationship between governance and performance is clouded by

endogeneity concerns. The same is true for corporate sustainability and CSR

as well. This makes causal identi�cation a major challenge. We overcome

this in all the three studies using quasi-natural experiments that exogenously

a�ect either the governance features or socially responsible behavior of the

�rm. Despite the fact that shock-based design (or natural experiments) can be

considered as the best practice in empirical corporate governance (Atanasov

and Black, 2016), causal inferences have to be made with caution as it is
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extremely di�cult to assess the shock strength and exogeneity. Future studies

can employ other identi�cation strategies such as the regression discontinuity

design to assess how investment decisions and investors' preferences are a�ected

by corporate governance and sustainability.

Lastly, each of the three studies were constrained in their scope as the aim was

to provide an in-depth assessment of a single explanation of a phenomenon

(Chapter 2) or index construction methodology (Chapters 3 and 4). For in-

stance, while we present and examine the sophisticated learning explanation

for the reappearance and reversal of governance�returns relation in Chapter

2, ruling out other explanations was beyond the scope. Future research could

examine other related mechanisms that may have driven this reappearance.

This may be done by simply regressing various outcomes or determinants of

corporate governance on the governance measure itself, and then comparing

the coe�cients around the second structural break point to determine if sys-

tematic di�erences exist (Bebchuk, Cohen, and Wang, 2013; Li and Li, 2016).

5.3 Implications and Concluding Remarks

This dissertation shows that governance and ESG information cannot be ig-

nored by the investors. When it comes to corporate governance, we show that

the governance pricing anomaly continues to exist. In recent years, poor gover-

nance stocks outperform good governance ones. In theory, this may be driven

by increased investor sensitivity to governance information (Pedersen, Fitzgib-

bons, and Pomorski, 2019), changing governance preferences of investors (Pas-

tor, Stambaugh, and Taylor, 2019), or both. Indeed, our results show that

both these factors may have acted in tandem following the 2008 global �nan-

cial crisis to help institutional investors recognize governance risks and adjust

their trading strategies. Through sophisticated learning, investors are able

to identify pro�table governance-based investment strategies that had earlier
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disappeared (i.e., before 2008). When it comes to ESG characteristics, we

show that investors cannot blindly pay attention to all the ESG strengths or

controversies that are commonly reported by the rating agencies. By focusing

on important sustainability-relevant ESG subset, investors are more likely to

generate abnormal returns. Similarly, managers should also not take it for

granted that all ESG investments are bene�cial and all ESG controversies are

costly.

Since many governance rating agencies apply subjective weights in index con-

struction, this dissertation also has the potential to contribute to the indus-

try by showing that a neutral and objective weight extraction can be useful.

Furthermore, the preliminary analysis in Chapter 3, which employs machine

learning tools, can be used by ranking agencies to design advanced weight-

extraction techniques for their proprietary products. For ESG rating agencies

as well, this dissertation has important takeaways. While industry-based ESG

rating has been widely implemented following the evidence on materiality by

Khan, Serafeim, and Yoon (2016), industry-neutral ESG criteria selection is

vastly understudied. In Chapter 4, we make �rst such attempt to identify

important non-industry speci�c ESG indicators and show that the valuation

e�ect of these are di�erent from others.

This dissertation also makes important contributions to the academia. The

topic in focus, i.e., corporate governance and sustainability, is widely stud-

ied across many literature streams including �nance, economics, accounting,

and strategy. Thus, the indices introduced in Chapters 3 and 4 (i.e., the

unequal weighted governance measure, nG-Index; and the corporate sustain-

ability measure, SUS-Index) can be used by researchers in multiple �elds to

raise important research questions. Using the �ndings of this dissertation as

a launch pad, our future research agenda aims to shed further light on the

underlying mechanisms that make the corporate governance and ESG data in-
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�uential for risk and return. Although the idea of �doing well by doing good�

is currently widely popular, it is not clear whether and how �rms will be able

to achieve this. Thus, our goal will be to provide insights by identifying those

conditions and �rm characteristics that directly in�uence both the stakeholder-

and shareholder-orientations of the �rms.
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