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UNIVERSITAT POLITÈCNICA DE CATALUNYA 

Abstract 

Department of Civil and Environmental Engineering 

by Núria Ferrer Ramos 

Global change is a term widely used to describe changes in the characteristics of inter-

related climate variables, and derived changes in terrestrial processes, including human 

activities that affect the environment. One of the main drivers of the current global change 

is the climate change characterized by increased number and increased length of drought 

periods. Another relevant driver that will imply greater pressure on natural processes is 

the expected population growth, increasing the demand and competition for water for 

domestic, industrial, agricultural, and municipal uses. Global change effects on water 

resources are profound and need to be explored deeply, especially, in the developing 

countries since, projections of impacts due to global change are associated with large 

uncertainties.  

In Africa, it is estimated that 75 % of population use groundwater as their main source of 

drinking water, particularly in rural areas that rely on low-cost dug wells and boreholes. It 

is an important resource for economic growth, food production, drinking water security 

and ecosystem services. However, groundwater quality in Africa is being hampered 

negatively by anthropogenic pollution sources and activities limiting the available water 

resources. Despite its importance, data of groundwater systems are sparse and the current 

state of knowledge is low and this is a serious limitation for the sustainable development of 

the groundwater resources. Therefore, it is needed to find new tools and approaches to 

understand these systems with lack of data and poorly understood, especially in Africa’s 

coastal areas where threatens are even more important. In this context, where Africa’s 

groundwater systems are a critical and poorly understood socio-ecological systems, born 

the project Gro for Good: Groundwater Risk for Growth and Development” founded by the 

UPGro (http://upgro.org/). The main objective of this interdisciplinary project is to support 

science and governance of managing groundwater risks for growth and development in 

Africa for the poorest benefit. As part of this project, the main objective of this dissertation 

focus on develop a combination and integration of different types of hydrogeological tools, 

climatic episodes, and social variables, in order to better understand the effects of global 

change on Sub-Saharan Africa. To do it, the coastal aquifer system of Kwale (Kenya) is taken 

as a reference, where local communities share groundwater resources with new water-

reliant activities as mining, agriculture and tourism. The final goal is to understand the risks 

http://upgro.org/
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and impacts in this context to improve water resources management in benefit of the 

poorest. The study area of this thesis is located in a rural area on the coastal plain of Kwale 

County, south of Mombasa and adjacent to northern Tanzania. The area is characterized by 

a bimodal rainfall pattern (average 1200 mm/year), and experiences increased climate 

variability. Between April and June occurs generally the long rains and between October 

and December the short rains period. The major portion of the area is based on local 

agriculture, but since 2012, two new and major water-reliant economic activities have been 

established in Kwale County. One is carried out by the Kwale International Sugarcane 

Company Limited (KISCOL), which has been progressively habilitating 5500 ha of drip-

irrigated sugarcane. The other important recent economic activity is the country’s largest 

mining operation: the Kwale Mineral Sands Project operated by Base Titanium Ltd. 

Furthermore, the study area has a long-established coastal tourism industry. 

The aquifer system has been characterized integrating kilometric geophysical transects 

carried out by the Kenyan team, hydrochemistry, environmental isotopes and groundwater 

level data. Furthermore, the main quality groundwater problems, contamination by faecal 

bacteria (E. coli), have been also characterized. To evaluate the main drivers of this kind of 

pollution, several qualitative and quantitative variables as geology, hydrology, 

geochemistry, sanitary risk factors, well types, and maintenance have been statistical 

analysed to study its correlation with E. coli concentration. The other main quality problem 

in the area is the saline intrusion, so geochemical models to understand the geochemical 

processes occurring in the area affected by seawater intrusion dynamics have been 

developed using PHREEQC software. The groundwater sustainability of the system has also 

been determined under the new abstraction regime of the water-reliant users. In most 

developing countries, this information is unknown, so information from water users and 

simple information sources (interviews, Google Earth, Trip Advisor, basic analytical 

methods, etc.), has been used to estimate groundwater abstraction of the main water-

reliant industries. This sustainability has been evaluated thought La Niña drought 2016/17. 

All this previous knowledge has helped to build a numerical groundwater flow model, using 

Modflow code from 2010 to 2017, in order to integrate all the information available, define 

the relationship between surface and groundwater, and to use it as a tool to study how the 

climate change and the future increased abstraction rate may affect the groundwater 

system and its management. Future rainfall scenarios have been constructed based on long 

historical data series (from 1959 to 2017) and the Standardized Precipitation Index. Future 

abstraction has been based on current abstraction and future estimations made by to Water 

Resources Authority water allocations. In addition, a new index has been defined and tested 
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in the study area to define the risk for a given household to have no access to drinking water 

(in terms of either quantity or quality). 

The aquifer is a multi-layered system formed by a shallow and deep aquifer, which crop out 

in the western part of the area in the Shimba Hills range on the west of the study area. The 

hydrochemical facies and the water isotopic composition indicate that there is hydraulic 

connectivity across the materials that comprise the shallow aquifer and between all the 

deep geological formations that conform the deep aquifer. These two aquifer units are 

separated by the presence of a middle/low permeability aquitard emplaced between the 

young and old materials Furthermore, the deep aquifer is disrupted across the area by two 

in-filled palaeochannels. Equipotential lines of the shallow aquifer show that the 

groundwater flow direction is from the Shimba Hills on the west to the Indian Ocean on the 

east. The statistical analyses performed to improve understanding on faecal bacteria 

pollution indicate that well constructive characteristics are the most important variables to 

avoid bacteria presence in groundwater. Furthermore, low Eh, short water column and 

areas with fast infiltration are factors related with the presence of faecal bacteria. Saline 

intrusion is the other quality problem in the aquifer area. The geochemical mix models point 

out that the increase in salinity, as observed in 2016 during La Niña, and the dynamics of 

the sea water intrusion will tend to increase calcite dissolution with could induce other 

potential risks as increase the creation of sinkholes. The main effect of La Niña has been a 

reduction of the recharge of 69 % compared to a year with average annual rainfall as 2013 

and there has been a groundwater level decline in 86 % of the measured shallow wells. 

During La Niña groundwater salinity increases during the rainfall season instead of being 

reduced, as occurs in normal years in the wells located near the coast. Despite the 

groundwater levels recover after the drought period in the wake of the long rains wet 

season of 2017, the quality of the coastal wells did not recover. 

The estimation of the current abstractions has been the baseline to define future 

groundwater abstraction that together with a future climatic series (precipitation and 

temperature) based on historical data, global scenarios have been run future using the 

numerical model as a tool. The total anticipated volume abstracted will increase by around 

85 % compared with current abstraction. However, the percentage of this increment will 

not significantly affect the aquifer storage in each of the future global scenarios, reducing 

the aquifer storage around 1 %-2 % depending on the global climatic conditions. 

Nevertheless, three followed dry year can induce a reduction of the groundwater levels of 

the aquifer system. Despite groundwater level decline observed during prolonged dry 

periods and abstraction increment, a dry period followed by a humid period leads to the 
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relatively swift recovery of the groundwater system in less than 3 years. Another 

applicability to the numerical groundwater flow model has been to use the outputs of these 

numerical future scenarios together with household field data to test the new developed 

index that can be widely applied to evaluate the risk to run out without water due to lack of 

water and/or low water quality threshold. This index helps to understand better the effect 

of the global change on households under a “transient state” instead of a “steady state”, as 

most of the current indexes do. In this tested case, this index shows that the areas with 

highest risk respond to quality issues, no quantity, as those located near the coast affected 

by saline intrusion. 

The present dissertation contributes to the hydrogeological knowledge in a context that 

represents much of East Africa. Methodologically, different tools have been presented in 

order to study these systems by limited understanding and lack of data. It shows the 

importance of integrating the hydrogeological data of stakeholders, and the alternative 

sources of information used (Google Earth, Trip Advisor…) to advance the knowledge in 

areas with lack of data. Furthermore, this dissertation presents how to use different tools 

and kinds of data to study the sustainability of the aquifer system, focusing on the 

groundwater availability as well as its quality. Furthermore, integrating hydrogeological 

and social household data let a bigger understanding of how the groundwater system 

changes, naturally or induced, can affect the groundwater availability to the water-reliant 

users. 
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UNIVERSITAT POLITÈCNICA DE CATALUNYA 

Resumen 

Department of Civil and Environmental Engineering 

per Núria Ferrer Ramos 

El cambio global es un término ampliamente utilizado para describir los cambios en las 

características de las variables climáticas interrelacionadas y los cambios derivados en los 

procesos terrestres, incluyendo las actividades humanas que afectan el medio ambiente. 

Uno de los principales impulsores de este cambio global es el cambio climático, 

caracterizado por un aumento en el número y duración de los períodos de sequía. El 

esperado crecimiento poblacional es otro factor relevante que producirá una mayor presión 

sobre los procesos naturales. Este aumento de población, generará un incremento en la 

demanda y en la competencia por el agua, tanto en los usos domésticos, industriales, 

agrícolas como municipales. Los efectos del cambio global en los recursos hídricos son 

profundos y deben explorarse en detalle, especialmente en los países en vías de desarrollo, 

pues es donde las proyecciones de los impactos debidos al cambio global están asociadas a 

mayores incertidumbres.  

En África, se estima que el 75 % de la población utiliza el agua subterránea como su 

principal fuente de agua potable, especialmente en las áreas rurales que dependen de pozos 

excavados de bajo coste. Es un recurso importante para el crecimiento económico, la 

producción de alimentos, la seguridad del agua potable y los ecosistemas. Sin embargo, la 

calidad de las aguas subterráneas en África se ve afectada negativamente por las fuentes de 

contaminación antrópica y las actividades que limitan los recursos hídricos disponibles. A 

pesar de la importancia de este recurso, los datos de los acuíferos son escasos y el estado 

actual del conocimiento es bajo, constituyendo una serie de limitaciones para el desarrollo 

sostenible de los recursos subterráneos. Por lo tanto, es necesario desarrollar nuevas 

herramientas y enfoques para comprender estos sistemas con falta de datos y poco 

conocidos, especialmente en las zonas costeras de África donde las amenazas son aún más 

importantes. En este contexto, donde los sistemas de agua subterránea de África son 

sistemas socio-ecológicos críticos y poco conocidos, nace el proyecto Gro for Good, cuyas 

siglas significan “agua subterránea para el crecimiento y el desarrollo”, fundado por UPGro 

(http://upgro.org/). El objetivo principal de este proyecto interdisciplinario es apoyar la 

ciencia y la gobernanza de la gestión de los riesgos de las aguas subterráneas para el 

crecimiento y el desarrollo en África para beneficiar la población más pobre. Como parte de 

este proyecto, el objetivo principal de esta tesis es desarrollar, combinar e integrar 

http://upgro.org/
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diferentes tipos de herramientas hidrogeológicas, episodios climáticos y variables sociales, 

a fin de comprender mejor los efectos del cambio global en África subsahariana. Para 

hacerlo, el acuífero costero de Kwale (Kenia) se ha tomado como referencia, pues es un 

ejemplo donde las comunidades locales comparten los recursos de agua subterránea con 

nuevas actividades como la minería, la agricultura y el turismo, las cuales también 

dependen del agua subterránea. El objetivo final es comprender los riesgos e impactos en 

este contexto a fin de mejorar la gestión de los recursos hídricos en beneficio de los más 

pobres. El área de estudio de esta tesis está ubicada en un área rural en la llanura costera 

del condado de Kwale, al sur de Mombasa y adyacente al norte de Tanzania. El área se 

caracteriza por un patrón de precipitación bimodal (promedio de 1200 mm / año) y 

sometida a una gran variabilidad climática. Entre abril y junio ocurren generalmente las 

lluvias prolongadas, y entre octubre y diciembre, es el período de lluvias cortas. La mayor 

parte del área se basa en la agricultura de subsistencia, pero desde 2012, se han establecido 

en el condado de Kwale dos nuevas e importantes actividades económicas que dependen 

del agua. Una es la realizada por Kwale International Sugarcane Company Limited (KISCOL), 

una empresa que ha estado habilitando progresivamente 5500 ha de caña de azúcar 

mediante riego por goteo. La otra actividad económica es la empresa minera más grande 

del país: Kwale Mineral Sands Project operado por Base Titanium Ltd. Además, el área de 

estudio tiene una industria de turismo costero establecida hace años. 

El acuífero se ha caracterizado mediante la integración de largos transectos geofísicos 

realizados por el equipo de Kenia, datos hidroquímicos e isotópicos, y datos sobre el nivel 

del agua subterránea. Además, se han caracterizado los principales problemas de calidad 

de las aguas subterráneas, uno de ellos, la contaminación por bacterias fecales (E. coli). Para 

evaluar los principales causantes de este tipo de contaminación, se han analizado 

estadísticamente varias variables cualitativas y cuantitativas como la geología, hidrología, 

geoquímica, factores de riesgo sanitario, tipos de pozo y mantenimiento para estudiar su 

correlación con la concentración de E. coli. El otro principal problema de calidad en el área, 

es la intrusión salina, por lo que se han desarrollado modelos geoquímicos para 

comprender los procesos geoquímicos que se producen en el área afectada por la dinámica 

de intrusión de agua de mar mediante el software PHREEQC. Además, se ha determinado la 

sostenibilidad de las aguas subterráneas bajo un nuevo patrón de extracción por parte de 

los usuarios de la zona. En la mayoría de los países en vías de desarrollo, esta información 

es desconocida, por lo que la información directa de los usuarios y de fuentes de 

información simples (entrevistas, Google Earth, Trip Advisor, métodos analíticos básicos, 

etc.) ha servido para estimar la extracción de agua subterránea de las principales industrias 

que dependen de este recurso. La sostenibilidad del acuífero se ha evaluado durante la 
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sequía producida por el evento de La Niña 2016/17. Además, todo este conocimiento previo 

sobre el sistema hidrogeológico ha permitido a construir un modelo numérico de flujo de 

agua subterránea, utilizando el código Modflow del 2010 al 2017, y así poder integrar toda 

la información disponible y definir la relación entre las aguas superficiales y subterráneas. 

Este modelo se ha usado como herramienta para estudiar cómo la variabilidad climática y 

el futuro aumento del bombeo de agua subterránea puede afectar al acuífero y poder definir 

así, una mejor gestión de los recursos. Los escenarios futuros de lluvia se han construido 

mediante el método SPI (índice de precipitación estandarizado) aplicado en una serie de 

datos de precipitación históricos (de 1959 a 2017). El volumen de bombeo futuro se ha 

basado en el volumen de explotación actual y la futura estimación realizada por las 

autoridades gestoras del agua de la zona. Además, se ha definido un nuevo índice y éste se 

ha probado en el área de estudio para intentar definir el riesgo de que un hogar 

determinado no tenga acceso al agua potable (en términos de cantidad o calidad). 

El acuífero estudiado es un sistema de múltiples capas formado por un acuífero superficial 

y uno profundo, el cual este último aflora en la parte occidental del área de estudio en la 

zona montañosa de las Shimba Hills en el oeste de la zona de estudio. Las facies 

hidroquímicas y la composición isotópica del agua indican que existe una conectividad 

hidráulica a través de los materiales que comprenden el acuífero superficial y entre todas 

las formaciones geológicas profundas que conforman el acuífero profundo. Estas dos 

unidades acuíferas están separadas por la presencia de un acuitardo de media / baja 

permeabilidad emplazado entre los materiales recientes y antiguos. Además, el acuífero 

profundo está interrumpido en toda el área por dos paleocanales. Las líneas equipotenciales 

del acuífero superficial muestran que la dirección del flujo de agua subterránea es desde 

Shimba Hills en el oeste hasta el Océano Índico en el este. El análisis estadístico realizado 

para mejorar la comprensión de la contaminación por bacterias fecales indica que las 

características constructivas del pozo son las variables más importantes para evitar la 

presencia de bacterias en el agua subterránea. Además, bajos valores de Eh, una columna 

de agua reducida y áreas con infiltración rápida son los principales factores relacionados 

con la presencia de bacterias fecales. La intrusión salina es el otro problema de calidad en 

el acuífero. Los modelos de mezcla geoquímicos señalan que el aumento de la salinidad, 

como se observó en el 2016 durante La Niña, y la dinámica de la intrusión de agua de mar 

tenderán a aumentar la disolución de la calcita la cual podría inducir otros riesgos 

potenciales, tales como el aumento de la creación de hoyos. El efecto principal de La Niña 

ha sido una reducción de la recarga del 69 % en comparación con un año con un promedio 

anual de precipitaciones (2013), y una disminución del nivel subterráneo en el 86 % de los 

pozos superficiales medidos. Durante La Niña, la salinidad del agua subterránea aumenta 
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en los pozos ubicados cerca de la costa durante la temporada de lluvias en lugar de 

reducirse, como ocurre en años normales. A pesar de que los niveles de agua subterránea 

se recuperaron después del período de sequía gracias a la temporada de lluvias de 2017, la 

calidad de los pozos costeros no se recuperó. 

La estimación de las explotaciones actuales ha servido de base para definir la futura 

extracción que junto con la serie climática futura (precipitación y temperatura) basada en 

datos históricos, han permitido estimar los efectos del cambio global mediante la utilización 

del modelo numérico como herramienta. Se ha estimado que la explotación futura 

aumentará alrededor de un 85 % en comparación con el volumen actual. A pesar de este 

incremento, el almacenamiento del acuífero no se ve significativamente afectado en los 

escenarios futuros analizados, ya que sólo se reduce el almacenamiento en torno al 1 % -2 

%, dependiendo de las condiciones climáticas globales. Tres años secos seguidos pueden 

inducir una reducción de los niveles subterráneos. A pesar de esta disminución de los 

niveles observada durante los períodos secos prolongados y el incremento de la extracción, 

un período seco seguido de un período húmedo conduce a una recuperación relativamente 

rápida del sistema en menos de 3 años. Otra aplicabilidad del modelo numérico ha sido 

utilizar los resultados de estos escenarios futuros numéricos junto con datos de hogares 

para probar el nuevo índice. Este índice evalúa el riesgo que tiene un hogar de quedarse sin 

agua y/o una reducción de la calidad del agua. Este índice ayuda a comprender mejor el 

efecto del cambio global en los hogares bajo un "estado transitorio" en lugar de un "estado 

estacionario", como lo hacen la mayoría de los índices actuales. En el área de estudio, este 

índice muestra que las áreas con mayor riesgo responden a problemas de calidad, como es 

el caso de aquellos hogares ubicados cerca de la costa afectados por la intrusión salina. 

La presente tesis contribuye al conocimiento hidrogeológico en un contexto que representa 

gran parte de África oriental. Metodológicamente, se han presentado diferentes 

herramientas para estudiar estos sistemas que presentan una comprensión limitada y falta 

de datos. Se muestra la importancia de integrar los datos hidrogeológicos de los usuarios 

de una zona y la utilización de fuentes alternativas de información (Google Earth, Trip 

Advisor ...) para poder avanzar el conocimiento en un área con falta de datos. Además, esta 

tesis presenta cómo utilizar diferentes herramientas y tipos de datos para estudiar la 

sostenibilidad de acuíferos, centrándose en la disponibilidad de aguas subterráneas, así 

como en su calidad. Además, la integración de datos hidrogeológicos y sociales permite 

comprender mejor cómo los cambios en un sistema de agua subterránea, naturales o 

inducidos, pueden afectar la disponibilidad de este recurso a los usuarios que dependen del 

agua.  
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UNIVERSITAT POLITÈCNICA DE CATALUNYA 

Resum 

Department of Civil and Environmental Engineering 

por Núria Ferrer Ramos 

El canvi global és un terme àmpliament utilitzat per descriure els canvis en les 

característiques de les variables climàtiques interrelacionades i els canvis derivats en els 

processos terrestres, incloent les activitats humanes que afecten el medi ambient. Un dels 

principals impulsors d'aquest canvi global és el canvi climàtic caracteritzat per un augment 

en el nombre i la durada dels períodes de sequera. L'esperat creixement poblacional és un 

altre factor rellevant que implicarà una major pressió sobre els processos naturals. Aquest 

augment de població, produirà un increment en la demanda i en la competència per l'aigua 

tant en els usos domèstics, industrials, agrícoles com municipals. Els efectes del canvi global 

en els recursos hídrics són profunds i s’han d'explorar en detall, especialment en els països 

en vies de desenvolupament, ja que és on les projeccions dels impactes deguts al canvi 

global estan associades a incerteses majors. 

A l'Àfrica, s'estima que el 75 % de la població fa servir l'aigua subterrània com la principal 

font d'aigua potable, especialment en les àrees rurals que depenen de pous i pous excavats 

de baix cost. És un recurs important per al creixement econòmic, la producció d'aliments, la 

seguretat de l'aigua potable i els ecosistemes. Malgrat això, la qualitat de les aigües 

subterrànies a l'Àfrica es veu obstaculitzada negativament per les fonts de contaminació 

antròpica i les activitats que limiten els recursos hídrics disponibles. Tot i la importància 

d'aquest recurs, les dades dels aqüífers són escasses i l'estat actual del coneixement és baix, 

constituint una sèrie de limitacions per al desenvolupament sostenible dels recursos 

subterranis. Per tant, cal trobar noves eines i enfocaments per comprendre aquests 

sistemes amb manca de dades i poc coneguts, especialment a les zones costaneres d'Àfrica 

on les amenaces són encara més rellevants. En aquest context, on els sistemes d'aigua 

subterrània d'Àfrica són sistemes socio-ecològics crítics i poc coneguts, neix el projecte Gro 

for Good, les sigles signifiquen "aigua subterrània per al creixement i el desenvolupament", 

fundat per UPGro (http: / /upgro.org/). L’objectiu principal d'aquest projecte 

interdisciplinari és donar suport a la ciència i la governança de la gestió dels riscos de les 

aigües subterrànies per al creixement i el desenvolupament a l'Àfrica per tal de beneficiar 

la població més pobra. Com a part d'aquest projecte, l'objectiu principal d'aquesta tesi és 

desenvolupar, combinar i integrar diferents tipus d'eines hidrogeològiques, episodis 

climàtics i variables socials, per tal d’entendre més bé els efectes del canvi global a l'Àfrica 
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subsahariana. Per fer-ho, l'aqüífer costaner de Kwale (Kenya) s'ha pres com a referència, ja 

que és un exemple on les comunitats locals comparteixen els recursos d'aigua subterrània 

juntament amb noves activitats com la mineria, l'agricultura i el turisme, les quals també 

depenen d’aquest recurs. L'objectiu final és entendre els riscos i impactes en aquest context 

per tal de millorar la gestió dels recursos hídrics en benefici dels més pobres. L'àrea d'estudi 

d'aquesta tesi està ubicada en una àrea rural a la plana costanera del comtat de Kwale, al 

sud de Mombasa i adjacent al nord de Tanzània. L'àrea es caracteritza per un patró de 

precipitació bimodal (mitjana de 1200 mm / any) sotmesa a una gran variabilitat climàtica. 

Entre abril i juny tenen lloc generalment les pluges prolongades, i entre octubre i desembre, 

és el període de pluges curtes. La major part de l'àrea es basa en l'agricultura local, però des 

de 2012, s'han establert al comtat de Kwale dues noves i importants activitats econòmiques 

que depenen de l'aigua. Una és la realitzada per Kwale International Sugarcane Company 

Limited (KISCOL), una empresa que ha estat habilitant progressivament 5500 ha de canya 

de sucre mitjançant reg per degoteig. L'altra activitat econòmica és l'empresa minera més 

gran del país: Kwale Mineral Sands Project el operat per Base Titanium Ltd. A més, l'àrea 

d'estudi té una indústria de turisme costaner establert de fa anys. 

L'aqüífer s'ha caracteritzat mitjançant la integració de llargs transsectes geofísics realitzats 

per l'equip de Kenya, dades hidroquímiques i isotòpiques, i dades sobre el nivell de l'aigua 

subterrània. A més, s'han caracteritzat els principals problemes de qualitat de les aigües 

subterrànies, un d’ells, la contaminació per bacteris fecals (E. coli). Per avaluar els principals 

impulsors d'aquest tipus de contaminació, s'han analitzat estadísticament diverses 

variables qualitatives i quantitatives com la geologia, hidrologia, geoquímica, factors de risc 

sanitari, tipus de pou i manteniment per a estudiar la seva correlació amb la concentració 

d'E coli. L'altre principal problema de qualitat de l'àrea, és la intrusió salina, per la qual cosa 

s'han desenvolupat models geoquímics per comprendre els processos geoquímics que es 

produeixen a l'àrea afectada per la dinàmica d'intrusió d'aigua de mar mitjançant el 

programari PHREEQC. A més, s'ha determinat la sostenibilitat de les aigües subterrànies 

sota un nou patró d'extracció per part dels usuaris de la zona. En la majoria dels països en 

vies de desenvolupament, aquesta informació és desconeguda, de manera que la informació 

directa dels usuaris i de fonts d'informació simples (entrevistes, Google Earth, Trip Advisor, 

mètodes analítics bàsics, etc.) ha servit per estimar l’extracció d'aigua subterrània de les 

principals indústries que depenen d’aquest recurs. La sostenibilitat de l'aqüífer s'ha avaluat 

durant la sequera produïda per l'esdeveniment de La Niña 2016/17. A més, tot aquest 

coneixement previ sobre el sistema hidrogeològic ha ajudat a construir un model numèric 

de flux d'aigua subterrània, fent servir el codi Modflow del 2010 al 2017, i així poder 

integrar tota la informació disponible i definir la relació entre les aigües superficials i 



 

XI 
 

subterrànies. Aquest model s'ha fet servir com a eina per estudiar com la variabilitat 

climàtica i el futur augment del bombament d'aigua subterrània afecta l'aqüífer i així, 

millorar la gestió dels recursos. Els escenaris futurs de pluja s'han construït mitjançant el 

mètode SPI (índex de precipitació estandarditzat) aplicat a una sèrie de dades de 

precipitació històriques (de 1959 a 2017). El volum de bombament futur s'ha basat en el 

volum d'explotació actual i la futura estimació realitzada per les autoritats gestores de 

l'aigua de la zona. A més, s'ha definit un nou índex i aquest s'ha provat en l'àrea d'estudi per 

a intentar definir el risc de que una llar en concret no tingui accés a l'aigua potable (en 

termes de quantitat o qualitat). 

L'aqüífer estudiat és un sistema de múltiples capes format per un aqüífer superficial i un 

profund, el qual aquest últim aflora a la part occidental de l'àrea d'estudi a les Shimba Hills 

a l'oest de la zona d'estudi. Les fàcies hidroquímiques i la composició isotòpica de l'aigua 

indiquen que hi ha una connectivitat hidràulica a través dels materials que comprenen 

l'aqüífer superficial i entre totes les formacions geològiques profundes que conformen 

l'aqüífer profund. Aquestes dues unitats aqüíferes estan separades per la presència d'un 

aqüitard de mitjana / baixa permeabilitat emplaçat entre els materials recents i antics. A 

més, l'aqüífer profund està interromput en tota l'àrea per dos paleocanals. Les línies 

equipotencials de l'aqüífer superficial mostren que la direcció del flux d'aigua subterrània 

és des de les Shimba Hills a l'oest fins a l'Oceà Índic a l'est. L’anàlisi estadístic realitzat per 

millorar la comprensió de la contaminació per bacteris fecals indica que les característiques 

constructives del pou són les variables més importants per evitar la presència de bacteris 

en l'aigua subterrània. A més, baixos valors d'Eh, una columna d'aigua reduïda i àrees amb 

infiltració ràpida, són els principals factors relacionats amb la presència de bacteris fecals. 

La intrusió salina és l'altre problema de qualitat a l'aqüífer. Els models de mescla 

geoquímica assenyalen que l'augment de la salinitat, com es va observar al 2016 durant La 

Niña, i la dinàmica de la intrusió d'aigua de mar tendiran a augmentar la dissolució de la 

calcita la qual podria induir altres riscos potencials, com ara l'augment de la creació de 

forats. L'efecte principal de La Niña ha sigut una reducció de la recàrrega del 69 % en 

comparació amb un any amb una mitjana anual de precipitació (2013), i una disminució del 

nivell de l'aigua subterrània en el 86 % dels pous superficials mesurats. Durant La Niña, la 

salinitat de l'aigua subterrània augmenta en els pous situats a prop de la costa durant la 

temporada de pluges en lloc de reduir-se, com passa en anys normals. Tot i que els nivells 

d'aigua subterrània es van recuperar després del període de sequera gràcies a la temporada 

de pluges de 2017, la qualitat dels pous costaners no es va recuperar. 

L'estimació de les explotacions actuals ha servit de base per definir la futura extracció que 

juntament amb la sèrie climàtica futura (precipitació i temperatura) basada en dades 
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històriques, han permès estimar els efectes del canvi global mitjançant la utilització del 

model numèric com a eina. S'ha estimat que l'explotació futura augmentarà al voltant d'un 

85 % en comparació amb el volum actual. Tot i aquest increment, l'emmagatzematge de 

l'aqüífer no es veu significativament afectat en els escenaris futurs analitzats, ja que només 

es redueix l'emmagatzematge entorn de l'1 % -2 %, depenent de les condicions climàtiques 

globals. Tres anys secs seguits poden induir una reducció dels nivells subterranis. Malgrat 

aquesta disminució dels nivells observada durant els períodes secs prolongats i l'increment 

de l'extracció, un període sec seguit d'un període humit condueix a una recuperació 

relativament ràpida del sistema en menys de 3 anys. Una altra aplicabilitat del model 

numèric ha estat utilitzar els resultats d'aquests escenaris futurs numèrics juntament amb 

dades de llars per provar el nou índex. Aquest índex avalua el risc que té una llar a quedar-

se sense aigua i/o una reducció de la qualitat d’aquesta. Aquest índex ajuda a comprendre 

més bé l'efecte del canvi global en les llars sota un "estat transitori" en lloc d'un "estat 

estacionari", com ho fan la majoria dels índexs actuals. A l'àrea d'estudi, aquest índex 

mostra que les àrees amb més risc responen a problemes de qualitat, com és el cas 

d’aquelles llars situades a prop de la costa afectades per la intrusió salina. 

La present tesi contribueix al coneixement hidrogeològic en un context que representa gran 

part d'Àfrica oriental. Metodològicament, s'han presentat diferents eines per estudiar 

aquests sistemes que presenten una comprensió limitada i manca de dades. Es mostra la 

importància d'integrar les dades hidrogeològiques dels usuaris d'una zona i la utilització de 

fonts alternatives d'informació (Google Earth, Trip Advisor ...) per poder avançar en el 

coneixement d’una àrea amb manca de dades. A més, aquesta tesi presenta com utilitzar 

diferents eines i tipus de dades per estudiar la sostenibilitat d'aqüífers, centrant-se en la 

disponibilitat d'aigües subterrànies, així com en la seva qualitat. A més, la integració de 

dades hidrogeològiques i socials permet comprendre millor com els canvis en un sistema 

d'aigua subterrània, naturals o induïts, poden afectar la disponibilitat d'aquest recurs als 

usuaris que depenen de l'aigua. 
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1.1. Global change 

We live in a world where humans are having profound impacts on the global environment. 

Climate is warming, the populations of many species are in decline, pollution is affecting 

ecosystems and human health, and human societies now face new risks in terms of sea level 

changes, food security, and climate extremes. Global change is a term widely used to 

describe changes in the characteristics of inter-related climate variables in space and time, 

and derived changes in terrestrial processes, including human activities that affect the 

environment. In recent decades, a wide array of scientific research has been carried out to 

better understand how water resources might respond to global change (Green et al., 2011). 

One of the main drivers of this global change is the climate change. Most scenarios predict 

that climate change increase mean global temperature, affect mean precipitation, increase 

extreme events and decrease the predictability of these abiotic factors (Allan and Soden, 

2008; Easterling et al., 2000; Stocker et al., 2013). Other consequences are increased 

number and increased length of drought periods (Allan and Soden, 2008; Dai, 2011; Stocker 

et al., 2013), and decreased ice cover (Arnell, 1999; Barnett et al., 2005; Stocker et al., 2013). 

Climate change is projected to change global hydrologic behaviour (Hansen et al., 2016) 

altering water resource availability and distribution (Bin Hu et al., 2019). All these effects 

will be felt by humans mainly through its impacts on water resources globally, including 

groundwater resources and water-related disasters such as floods and droughts. Direct 

impacts of climate change on natural processes (recharge, groundwater discharge, storage 

and quality) may be exacerbated by the human response to these impacts, such as increased 

groundwater abstraction due to extended and more frequent droughts (UNESCO-IHP, 

2015). 

Another relevant driver of the global change that will imply greater pressure on natural 

processes and thus on water resources in the future is the expected population growth 

trends (UN, 2015). Population growth is a major contributor to water scarcity. Growth in 

populations means mounting demand and competition for water for domestic, industrial, 

agricultural, and municipal uses. Water is also needed for agriculture and industrial use, 

and for the evacuation of waste materials. The most water scarce or stressed areas are 

typically those with few water resources, high population densities, and high population 

growth rates (FAO, 2011). A growing population requires more food and so, more water is 

needed to produce that food. Agricultural productivity is a crucial component of global food 

security and, therefore, water scarcity and hunger are closely interrelated. Population 

growth, along with development, will double global food demand by 2050. The main 

concern is that people alter the properties of water as they use it, often degrading the 
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quality with each successive use. Waters that have been used for a variety of purposes may 

contain harmful constituents, including sewage, that pose threats to the environment and 

to the public health.  

Global change effects on water resources are profound and need to be explored deeply, 

especially, in the developing countries (Okello et al., 2015a). Accurate knowledge of 

freshwater availability is indispensable for water resources management at regional or 

national level. In addition, in this context of global change, the coastal water resources are 

the most vulnerable, since coastal regions are zones occupied by dense human population; 

many living in rapidly growing cities and highly economically productive. However, overall 

projections of impacts due to global change on water resources in these countries are 

associated with large uncertainties (Kusangaya et al., 2014). This information has 

historically been very difficult to obtain because of difficulties in the aggregation of spatial 

information, and problems in the quantification of distributed hydrological processes 

(Schuol et al., 2008). Furthermore, institutional capacity to govern interactions between 

economic activities, water resource demands and poverty outcomes are currently 

constrained by insufficient knowledge and lack of effective management tools (Fulazzaky, 

2014). 

In this context of global change, African countries are the areas where more affection on the 

water resources are provided due to diverse causes. Africa is the continent which present 

the highest population growth rate. The current population in Africa is five times the size 

that had in 1950. In addition, the population expansion is set to continue, with its 

inhabitants doubling from 1.2 billion to 2.4 billion between 2015 and 2050, and eventually 

reaching 4.2 billion by 2100 (www.forbes.com). Moreover, the African coastal regions will 

be the areas that will experience the highest rates of population growth in the coming 

decades (Lichter et al., 2011). Furthermore, this population growth is companied by 

continent industrialization. Much of this new economic activity in African countries is based 

on tourism, mainly in coastal areas (World Tourism Organization, 2013) and extractive 

industries, such as oil, mining and intensive harvesting of maize, rice and sugar, among 

others. In many African countries, coastal areas provide the main tourism resource, with 

the greatest concentration of tourism investment and facilities. As a result of rapid 

population growth and increased industrial activity, water demand in Africa is projected to 

more than double by the end of the 21st century (Wada et al., 2010), which may 

compromise the future livelihoods and living standards of millions of people. Global climate 

change is expected to exacerbate this issue, as it will bring more extreme climate conditions, 

such as droughts (Carvalho Resende et al., 2018). African nations are the most vulnerable 

http://www.forbes.com/
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to the effects of climate change due to the slow pace of economic development and 

inadequate institutional capacity (Ongoma and Onyango, 2014). 

In Africa, groundwater is the major source of drinking water and its use for irrigation is 

forecasted to increase substantially to combat growing food insecurity (MacDonald et al., 

2012). An estimated 75 % of Africans use groundwater as their main source of drinking 

water (UNEP, 2011), particularly in rural areas that rely on low-cost dug wells and 

boreholes. It is an important resource for economic growth, food production, drinking 

water security and ecosystem services. The total groundwater storage estimated in Africa 

is 0.66 million km3 (0.36–1.75 million km3). However, not all of this groundwater storage is 

available for abstraction (MacDonald et al., 2012). In this context of global change, 

groundwater plays an important role in society’s adaptation to climate change and 

variability, in particular because it is more resilient to the effects of climate change than 

surface water (Green et al., 2011; Taylor et al., 2013; Treidel et al., 2011; Van der Gun, 2012). 

Groundwater’s unique buffer capacity provides a major strength to reduce the risk of 

temporary water shortage and to create conditions for survival in areas where global 

change is expected to cause water stress (Falkenmark, 2013).  

Groundwater quality in Africa is increasingly being hampered negatively by anthropogenic 

pollution sources and activities. Contaminating sources such as human settlement 

developments (demographic dynamics, ignorance, improper watershed and waste 

management, advanced agricultural production and industrial activities) are the major 

threat that compromise groundwater quality and quantity (Oke and Fourie, 2017). It must 

be present that poor quality of water affects the plant growth and human health causing 

diseases like diarrhoea, cholera among others. Official estimates suggest that in Africa, 50 

% of the people lack access to water free from microbial contamination (Bain et al., 2014). 

In order to maintain the quality and quantity of water supply and irrigation water in this 

continent, it is essential doing a well management of groundwater, which has become the 

major source of water supply for domestic, industrial and agricultural sectors of many 

African countries (UNEP, 2011) as cited before. However, data of groundwater systems are 

sparse and the current state of knowledge is low and this is a serious limitation for the 

sustainable development of the groundwater resources (Gaye and Tindimugaya, 2018). 

This lack of information has hampered groundwater development and protection (Oke and 

Fourie, 2017), i.e. 5 of the 8 large aquifer system considered as over-exploited are located 

in Africa (Richey et al., 2015a, 2015b). Therefore, spatially explicit information on 

groundwater in this continent, mainly related to Africa's coastal aquifers (Steyl and Dennis, 

2010), is required to characterize this resource in ways that can usefully let to develop 
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strategies to adapt to growing water demand associated not only with population growth 

but also climate change. Improved management of coastal groundwater resource requires 

the acquisition of suitable groundwater inventory information and how to disseminate the 

information for the benefit of coastal communities (Oiro and Comte, 2019). 

1.2. Motivation and objectives 

In this context, where Africa’s groundwater systems are a critical and poorly understood 

socio-ecological system born the project Gro for Good: Groundwater Risk for Growth and 

Development” founded by the UPGro (http://upgro.org/). This interdisciplinary project has 

the main idea that groundwater is essential for economic growth and can contribute to 

human development if resources are used sustainably to benefit the poor. However, 

competing groundwater use (commercial, community, ecosystem) requires new tools to 

understand risks from natural and human-induced changes. Therefore, the aim of this 

project is to support interdisciplinary science and governance of managing groundwater 

risks for growth and development in Africa: (I) a new Groundwater Risk Management Tool 

to support government regulation and management in Kenya; (II) an automated, daily 

monitoring network for shallow groundwater levels; (III) improved theory and evidence 

linking groundwater governance to poverty and health dynamics and outcomes 

(http://upgro.org/consortium/gro-for-good/). This thesis is carried out as part of Gro for 

Good project. 

The main objective of the thesis focuses on developing a combination and integration of 

different types of hydrogeological tools, climatic episodes, and social variables, in order to 

better understand the effects of global change on sub-Saharan Africa taking as a reference 

the coastal aquifer system of Kwale (Kenya).The final goal is to understand the risks and 

impacts on this context to improve water resources management in benefit of the poorest. 

To accomplish this broad objective, specific goals are identified: 

 To define the hydrodynamics of the studied aquifer system, which has a geological 

structure that is representative of an important portion of the East Coast of Africa. 

 To study the quality issues of the aquifer system with special effort onto faecal 

bacteria pollution drivers, the main pollution problem in many developing 

countries.  

 To assess the sustainability of the system including the increment of groundwater 

demand caused by the diverse water-reliant users in the study area. 

http://upgro.org/
http://upgro.org/consortium/gro-for-good/
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 To evaluate the effects of the climate change in the aquifer system, taking as a 

reference La Niña 2016/2017, as example of an extreme climatic event. 

 To develop a numerical groundwater flow model, as a tool to study the 

vulnerability of the aquifer system to global change by: 

o Integrating all the data available in the study area including the relation 

between surface and groundwater. 

o Manage the future global change basing on the future climate variability 

and increase of abstraction rate. 

 To create an index based on the groundwater numerical model outputs and 

household data to understand better the effects of the global change on the 

communities. 

1.3. Study area 

The 660 km2 study site of this thesis is located in a rural area on the coastal plain of Kwale 

County, south of Mombasa and adjacent to northern Tanzania (Fig. 1.1). The physiography 

of the region is divided into three units: The Coast Plain at an elevation generally below 30 

m a.s.l.; the Foot Plateau which has an elevation ranging from 60 to 135 m a.s.l., and the 

Coastal Range formed by the Shimba Hills with elevation ranging generally from 150 to 455 

m a.s.l (Buckley, 1981) (Fig. 1.1). The area slopes toward the sea.  

The area is characterized by a bimodal rainfall pattern and experiences considerable 

climate variability (Mumma et al., 2011). Between April and June occurs generally the long 

rains and between October and December the short rains period (CWSB, 2013). In the 

coastal area, the precipitation range is between 900 and 1500 mm/yr and the average 

temperature is about 26.5 °C. Inland, west of the Shimba Hills, the precipitation ranges from 

500 to 600 mm/yr and the temperature is about 26.6 °C (County Government of Kwale, 

2013). 

The county, which has one of the highest poverty rates in Kenya, has a population around 

720.000 (GoK, 2013), most of whom reside in rural areas (82 %) (CWSB, 2013a; Foster and 

Hope, 2016), concentrated manly along the coast. Only 65.8 % of Kwale's population has 

access to improved water in households in 2009 and 49 % to improved sanitation 

(Commission on Revenue Allocation, 2013). 

The population in the study area live in small scattered communities and extensive 

stockbreeding. The coastal areas host the urban communities such as Ukunda, Msambweni 

and Diani. Population decreases inlandwards. The major portion of the area is based on 

local agriculture, but since 2012, two new and major water-reliant economic activities have 
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been established in Kwale County, increasing the pace of environmental, economic, social 

and political change in the area. One is carried out by the Kwale International Sugarcane 

Company Limited (KISCOL), which has been progressively habilitating 5500 ha of drip-

irrigated sugarcane. The other important recent economic activity is the country’s largest 

mining operation: the Kwale Mineral Sands Project operated by Base Titanium Ltd. 

Furthermore, the study area has a long-established coastal tourism industry in the Diani 

zone, with approximately 109 hotels (Fig. 1.1). This new water reliant industries, tourism 

sector and communities, schools and health centres are supplied by groundwater, 

exploiting the aquifer system of the study area by deep boreholes, shallow wells and 

handpumps. 

The study area is divided into 4 zones (Fig.1.1) that represent the areas where each 

economic activity takes place. Zone 1 covers the area where the sugar fields irrigated with 

groundwater from in-situ boreholes are located; Zone 2 includes the mine and its well field; 

Zone 3 is the area where the sugar fields are irrigated with surface water from the Mtawa 

River but not from boreholes; and Zone 4 includes the area where most of the hotels are 

located. 

Thus, Kwale County captures the complex reality of Africa’s groundwater science and policy 

challenges at a unique historical moment prior to a generation of social, environmental and 

economic change (http://upgro.org/). 

http://upgro.org/
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Figure 1.1. Location of the study area in Kwale county (Africa). The orange area is the Base Titanium mining site, 
the red one corresponds to the KISCOL sugar fields, the star are the hotels and the black dots refer to the 
community handpumps. The study area is divided into the four zones shown, which have been set to help the 
reader throughout this manuscript.  

1.4. Thesis outline 

The resulting document is structured in seven chapters. Even though each of these chapter 

is focused on answering specific question, all of them are intended to understand the 

groundwater system located in Kwale (Kenya) under global change scenarios. 

The introduction to the problem is presented in Chapter 1. Chapter 2 characterizes the 

coastal aquifer system by the integration of kilometric geophysical profiles, 

hydrochemistry, hydrochemistry, environmental isotopes and groundwater levels. Once 

the conceptual model is defined, the last goal is to study the impacts on groundwater quality 

and quantity caused by the climatic event of La Niña 2016/17 that gave, as a result, an 

important drought in the study area.  

Chapter 3, focus on fecal bacteria pollution, the main quality problem detected in the study 

area. The aim of this chapter is to discern what are the most significant sanitary, 

hydrogeological, geochemical and physical variables influencing the presence Escherichia 

coli (E. coli) in groundwater by means of statistical multivariate analyses. The statistical 
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analyses carried out have been Principal Component Analysis and generalized mixed 

models with Poisson error.  

In Chapter 4, the conceptual model defined in Chapter 2 is used to study the sustainability 

of the aquifer system under the new abstraction rate by the water-reliant industries settled 

in the study area. The goal is to explore how irrigated agriculture, mining and tourism 

dependent on a multi-layered groundwater system could affect the groundwater system by 

analyzing the sustainability of the new abstraction regimes before, during and after La Niña 

event 2016/17. As part of the approach, induced changes in seawater intrusion are also 

studied. Geochemical models to understand the geochemical processes occurring in the 

area affected by seawater intrusion dynamics are developed using PHREEQC software. 

Chapter 5 presents the regional numerical groundwater flow model built based on the 

conceptual model presented in Chapter 2 and the abstraction data presented in Chapter 3. 

The calibrated numerical flow model has been used as a tool to run different future 

scenarios. The final goal of this chapter is to analyze the effect of climate change and 

increased groundwater demand in the coastal studied aquifer in Kwale County. The 

groundwater flow model has been constructed using Modflow-2005 to simulate the period 

2010 to 2017, and eight potential future model scenarios developed that cover six 

hypothetical years under different conditions (very dry, wet, etc.). Future rainfall scenarios 

have been constructed based on a long historical data series (from 1959 to 2017) and the 

Standardized Precipitation Index. Future abstraction has been based on current abstraction 

and future estimations made by to Water Resources Authority water allocations. 

In Chapter 6 a new methodology is presented to assess the risk of a household to run out 

without water due to lack of water and/or low water quality threshold. This method 

combines household field data with groundwater numerical model outputs.  This 

methodology is applied in the study area to evaluate the current situation as well as future 

conditions according to developed scenarios.   

Finally, Chapter 7 presents a summary of the conclusions obtained during the performed 

research. 

The Appendix includes all the extra information used to understand the different results 

obtained in the previous chapters.  

 



 

  

 

 

 

Chapter 2 

 

Conceptual model and La Niña effects 

Ferrer, N., Folch, A., Lane, M., Olago, D., Odida, J., Custodio, E., 2019. Groundwater hydrodynamics of an Eastern 

Africa coastal aquifer, including La Niña 2016–17 drought. Sci. Total Environ. 661, 575–597. 
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2.1. Introduction 

El Niño Southern Oscillation (ENSO) is a quasi-periodic invasion of warm sea surface waters 

into the central and eastern tropical Pacific Ocean, returning at least once in a ten-year 

period (Baudoin et al., 2017). Studies have shown correlations between ENSO conditions 

and monthly and seasonal rainfall patterns over East Africa (Mutemi, 2003). Oscillations in 

sea-surface temperatures in the Indian Ocean (known as the Indian Ocean Dipole) have also 

been shown to influence rainfall in the region (Behera et al., 2005; Ogwang et al., 2015). 

ENSO and IOD conditions triggered a severe drought in East Africa in 2016-17 (Uhe et al., 

2018, 2017). The most affected areas include most of Somalia, south-eastern Ethiopia, 

north-eastern and coastal Kenya, and northern Uganda. Somalia and parts of Kenya faced 

severe famine. In South Sudan and Somalia, drought conditions made it harder to cultivate 

land and hampered humanitarian access, and in consequence, the drought led to the 

displacement of millions of people. In parts of Somalia and coastal Kenya, 70 % to 100 % 

crop failure was registered (Mpelasoka et al., 2017).  

In Kenya, the first signals of an impending drought were experienced in October-December 

2016 (Uhe et al., 2017). Kenya usually receives the majority of its rainfall during two 

periods: the ‘long rains’ during March, April and May (MAM) and the ‘short rains’ during 

October, November and December (OND) (Uhe et al., 2017). In 2016, the International 

Federation of Red Cross and the Red Crescent Societies (IFRC) noted that the south-eastern 

coast and north-western parts of Kenya received poor OND short rains, leading to an 

extension of the dry lean season that usually lasts from August to October. The south-east 

area had also suffered from poor MAM rains, intensifying the drought episode. The most 

affected Kenyan counties classified as “alarm stage” by the National Drought Management 

Authority were Turkana and Marsabit on the north-west and Kwale, Kilifi, Mombasa and 

Lamu on the south-east coast. The IFRC noted that the last drought reduced agricultural 

production and grazing lands for pastoralist communities and that the failed rains lead to 

decreased power and water supply to some of Kenya’s communities (Uhe et al., 2017). 

Due to the higher resilience of groundwater availability to droughts compared with surface 

water, groundwater resources are of particular importance during dry periods. However, 

aquifer water budgets and groundwater hydrodynamics are also affected by reduced 

rainfall. For this reason, it is important to characterize aquifer systems and understand their 

limitations in the face of future drought episodes (MacDonald et al., 2009). There are many 

African aquifer systems that have not yet been fully characterized, despite the importance 

of groundwater for growth and development (Comte et al., 2016). Poorly understood 

groundwater resources could be being used below their actual capacity, or be at risk of 
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over-exploitation. Further research is required to underpin sustainable use and 

development of Africa’s groundwater resources.  

From a global comparison of scenario-based projections of population growth in low-

elevation coastal zones, African coastal regions appear set to experience the highest rates 

of population growth and urbanization in the coming decades (Neumann et al., 2015), 

underlining the importance of groundwater resource management to meet population 

needs. Groundwater availability along the African coast was briefly reported in Steyl and 

Dennis, (2010) but only some of the most populated areas have been studied in more detail. 

The South-east Tanzania Quaternary aquifer, which is the main water resource for the 

populated city of Dar es Salaam and its adjacent suburbs where around 80 % of Tanzanian 

industry is located (Mtoni et al., 2013; Sappa et al., 2015; Van Camp et al., 2013), and the 

recently discovered regional Neogene aquifer (SE of Dar es Salaam) (Bakari et al., 2012), 

were studied in recent years. Of the Sub-Saharan African countries, South Africa has also 

had a number of hydrogeological investigations to define the country’s aquifers (Day, 1993; 

Demlie and Titus, 2015; Kelbe et al., 2016; Ndlovu and Demlie, 2016). In Sub-Saharan 

Africa’s low-income countries or regions, there have been very few additional studies. In 

Kenya, for example, coastal aquifers have been described by defining the current state of 

seawater intrusion (Obura, 2001; Okello et al., 2015a) and Ezekiel et al., (2016) provide an 

assessment of the vulnerability of the Mombasa coastal aquifer. In many areas of Africa, the 

lack of groundwater monitoring and/or geological studies makes adequate aquifer 

characterization difficult. 

ENSO and IOD-related droughts must be considered as one of several threats to 

groundwater availability in coastal Africa in coming decades. In order to improve water 

resources management and planning, this study provides evidence of the effect of the 

drought which began in 2016 on the groundwater systems of the East African coast. The 

groundwater system located in Kwale has a geological structure that is representative of an 

important portion of the East Coast of Africa (Rais-Assa, 1988) and was thus chosen as a 

paradigmatic example for study aimed at understanding the impact of severe drought on a 

coastal aquifer system in a rural area of relatively low population. This contrasts the recent 

studies carried out in Dar es Salaam and South Africa which focused on aquifers in highly 

populated urbanized zones. This chapter has two specific objectives: 1) Define the 

hydrodynamics of the Kwale hydrogeological system, and 2) Show the effects of La Niña 

2016/17 drought on the groundwater system. 

This chapter includes the results of a geophysical survey conducted to define the aquifer 

geometry forming the basis of the conceptual model. Local meteorological and soil data, 
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hydrochemical field surveys and groundwater level were used to describe aquifer recharge, 

groundwater flow direction, connectivity between aquifer levels and prevalence of 

pollution. The effects of La Niña on the hydrogeological system were assessed by comparing 

data from before and during the drought episode. 

2.2. Study area 

The study area is defined in Section 1.3 (Fig. 1.1). 

As already said, the area is characterized by a bimodal rainfall pattern and experiences 

considerable climate variability (Mumma et al., 2011). From May 2016 to early 2017, the 

study area experienced unusually dry conditions. Local weather data suggest that this 

period represents the most extreme drought since 1974 in this area: The precipitation in 

the rain gauge at Kwale Agricultural Department Station (KMD 9439001) in Kwale town in 

the north-west of the study area was 636 mm/yr in 2016. Rainfall in the same station in 

2013, 2014 and 2015 was 1286, 1604 and 1345 mm/yr respectively. In recent years, from 

2012 to 2017, the average rainfall depth is around 1145 mm. 2013 (1286 mm) and 2017 

(1265mm) were close to the average whilst 2012 and 2016 were both well below the 

average, and 2014 and 2015 were well above. During 2016, some community wells dried 

up completely. 

2.3. Geology 

The main rocks in the area range from the Carboniferous to Plio-Pleistocene in age and 

overlie the metamorphic rocks of the Mozambiquan system (Caswell, 1953; Rais-Assa, 

1988). Much of the geology to the east is covered by the Magarini and Kilindini sands. The 

Rais-Assa (1988) nomenclature is adopted to describe the stratigraphy of the sedimentary 

rocks, which comprise six formations. The oldest of these formations is the Taru Fm. (Upper 

Carboniferous to Middle Permian) which is made up of tillite that suggests a periglacial 

environment, overlain by arkosic sandstones and arkose and conglomerates that point to a 

fluviatile environment. The Maji ya Chumvi Fm. (Mid-Permian to Mid-Triassic) overlies 

conformably on top of the Taru Formation and comprises sandstones and Carboniferous 

shales, sandy shales with fossil fish fauna, and argillaceous sandstones that reflect a 

lacustrine deposition palaeoenvironment (Rais-Assa, 1988) and a period of fluctuating 

climate (wet to dry) with possible evaporate deposits (Caswell, 1953). The Mariakani Fm. 

(Middle to Upper Triassic) covers conformably the Maji ya Chumvi Fm. (Rais-Assa, 1988); 

it has mottled and flaggy sandstones as well as silty shales and shale lenses that represent 

deltaic facies (Caswell, 1953; Rais-Assa, 1988). Caswell (1953) describes them as fine-
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grained, flaggy sandstones and silty shales. Two sets of joints are often present, trending 

ENE-WSW and NW-SE, while a third set, which is less prominent, trends N-S (Caswell, 

1953). The joints are regular, clean-cut and closely spaced. The Matolani Fm. (Upper 

Triassic to the start of Lower Jurassic) is dominated by feldspathic sandstones (Cannon et 

al., 1981; Caswell, 1953; Rais-Assa, 1988), corresponding to a deltaic facies, and ends with 

a major angular unconformity (Rais-Assa, 1988). None of these formations outcrop in the 

study area. Based on drilled boreholes they have low groundwater potential and thus they 

can be considered the substratum. The Taru Fm. and the others up to the Mazeras Fm. have 

a regional dip of 5-10° to the east-south-east (Caswell, 1953). 

The formations that outcrop in the study area are the Mazeras Fm. (Lower Jurassic to the 

start of Middle Jurassic), the Kambe Fm. (Start of Middle Jurassic to middle Upper Jurassic), 

and the Mtomkuu Fm. (from the Middle of the Upper Jurassic to the Cretaceous) (Rais-Assa, 

1988). These are overlain, following a long hiatus, by Cenozoic rocks and unconsolidated 

materials that include the Magarini sands (Upper Pliocene) dunes, coral reefs (Lower to 

Middle Pleistocene), the lagoonal Kilindini sands (Upper Pleistocene) and younger mostly 

sandy deposits (Caswell, 1953; Rais-Assa, 1988). The Mazeras Fm. is divided into two, the 

Lower and Upper Mazeras (Rais-Assa, 1988). The Lower Mazeras has coarse sandstones 

with silicified wood horizons, while the Upper Mazeras (roughly constrained above the 272 

m contour line) comprises quartz-feldspathic sandstones and grits (Shimba grits) at the top 

(Caswell, 1953, 1956; Cannon et al., 1981; Rais-Assa, 1988). The Mazeras rocks have been 

estimated to attain a total thickness of at least 305 m (Caswell, 1953) and are ascribed to a 

deltaic to aeolian facies (Rais-Assa, 1988). The Kambe Fm., a marine facies, has 

conglomerates and limestones in the lower part and shales, sandstones and limestones in 

the upper parts (Rais-Assa, 1988), and sits above on a major angular erosional discordance 

that separates it from the Shimba grits. (Caswell, 1953; Rais-Assa, 1988). The Mtomkuu Fm. 

rests upon a major angular unconformity with the Upper Kambe Fm., and has silty clays in 

the lower part and shales, sandstones and limestones in the upper part, representing a 

transgressive marine facies (Rais-Assa, 1988). These three formations and the overlying 

Cenozoic sediments constitute the medium to high potential aquifers in the study area. 

Related geological and geophysical work that was undertaken as part of this project has 

revealed that there are two palaeochannels in the study area, located in zone 1 and 4 (Fig. 

2.1) (Olago D., Odida J. and Lane M., pers. comm.). They were formed by the erosion of 

Kambe Fm. and Mtomkuu Fm. during the last low sea stand and subsequent infilling by 

fluviatile sediments with very likely thin impermeable derived layers of e.g. fine 

consolidated fluvial sands, clays and indurated bioclastic sands. Clusters of high capacity 

boreholes lie within these palaeochannels at Milalani (zone 1) and Kinondo (zone 4).  
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Figure 2.1 Geological map with the main faults, the main paleochannels (grey dotted lines). Geologically surveyed 
by D.O. Olago, J. Odida, and M. Lane (2018), ©University of Nairobi. The sampled points in June 2016 and the 
general cross-section of the study area (modified from Buckley, 1981). In red the ERT profiles. 

2.4. Methodology 

In order to construct the conceptual model and characterize the hydrogeological system 

during La Niña event in 2016, different surveys were carried out in the study area. 

Water samples were taken from wells and boreholes at different depths and in different 

geological formations to characterize all aquifer systems in the study area. Because of the 

complexity of the available sampling points, the efforts were focused on identifying distinct 

hydrogeological interactions and on providing a complete description of groundwater 

dynamics. 
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2.4.1. Geophysical surveys 

An ERT (electro-resistivity tomography) study was conducted between December 2015 

and June 2016 to define the aquifer geometry in the study area. This was supported by 

geological field studies. A 2-D electrical imaging/tomography survey equipment was used. 

The field set of the tomography system used in this research included an ABEM SAS 1000 

Terrameter, LUND ES464 switchbox (an electronic switching unit), 4 multi-core cables each 

with 21 current take out points at constant spacing of 10 metres interval, battery, 

communications cables, electrode jumpers, electrodes, laptop, and data transfer cable. The 

profile length was 800 m, comprising four multi-core cables. Roll-along technique was used 

during data acquisition. After completing the sequence of measurements, the cable was 

moved past one end of the line by two cables. The investigated depth was 149 m bgl (meters 

below ground level). This set-up provides a 2-dimensional inversion of the resistivity 

measurements along a profile line. The data was acquired in E-W orientation and NNE-SSW 

orientation, parallel to the coastline. ERT data was analysed using RES2DINV inversion 

software. 

2.4.2. Recharge 

In order to estimate the effect of La Niña drought on the seasonal and annual recharge 

patterns, groundwater recharge was estimated for the period 2012 to 2017. Groundwater 

recharge was calculated for the main land cover of the study area, with 65 % of it defined 

as open: broadleaved deciduous trees with closed to open shrubs, based on Africover 

database (DiGregorio, 2002). 

Rainfall data was obtained from Kwale Agricultural Department rainfall station manned by 

Kenya Meteorological Department (KMD) located in Kwale Town. The other meteorological 

parameters such as temperature, wind speed, evaporation and humidity were obtained 

from the SWAT Global Weather (Soil and Water Assessment Tool), NASA, Kenya 

Meteorological Department and TAMHO (Gathenya, Thomas, pers.com). ETP was calculated 

by Hargreaves equation (Hargreaves and Samani, 1982). The recharge rate was estimated 

based on the soil mass balance by considering soil composition, root deep and threshold 

runoff. Soil composition was obtained from Kensoter ver.2 database (Kempen, 2007). This 

database consists of a soil inventory, which includes the geographical distribution of the 

soil units, the percentage of clay, silt and sand characteristic of each soil type, and their 

specific TAWC (Total Available Water Content) value. The root depth of the land cover was 

obtained from the Food and Agricultural Organization (FAO) (www.fao.org). Finally, the 

http://www.fao.org/
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threshold runoff was calculated for each land use by applying data from theoretical tables 

(Miller, 1994). 

2.4.3. Background monitoring 

An aquifer monitoring program was developed to measure groundwater level and 

physicochemical parameters (temperature, electrical conductivity (EC) and pH) from 

January 2014 until present. A total of 43 points in the Magarini sands, Kilindini sands and 

Pleistocene corals were monitored every two weeks (from 4 m bgl to 27 m bgl). 

This data was complemented with information from Base Titanium’s monitoring network 

composed of piezometers and community wells (from 5 m bgl to 107 m bgl) spread mainly 

around the mining site starting in March 2007 (field water quality) and August 2011 (water 

level data). 

2.4.4. Hydrochemical and isotopic sampling surveys 

Sampling campaigns were carried out in the study area in March (end of dry season) and 

June (end of wet season) to enable assessment of hydrochemical conditions in different 

seasons of a wet year (2014) and in La Niña-affected year (2016). During the field 

campaigns carried out in 2014, 32 and 34 wells/boreholes up to 30 m deep were sampled 

in the dry (March) and wet (June) season respectively. During the field survey of 2016, the 

number of sampling points was increased to 75 in March and 80 in June, since more samples 

were needed to better define the groundwater system. This included an additional sampling 

of wells/boreholes in the Shimba Hills and a number of deep boreholes across the study 

area. The 2016 surveys also included surface water samples: 2 in Ramisi River (C108HWL 

and 3KD01), 3 in Mkurumudzi River (S1-3KD06, MUK DAM and MUK DWS) and 1 in 

Mwachema River (MWACHEMA TRIB) (Fig.1). In 2016 water isotopes were also analysed 

in both field surveys. 

Samples for hydrochemical and isotopic analysis were taken from wells used daily. For 

boreholes fitted with a handpump, it was ensured that at least three casing volumes of 

groundwater were removed before sampling. In the case of open wells, samples were taken 

using an electrical pump when the water column allowed. A bucket was used as a last 

option. The physicochemical parameters measured in situ during the 2016 sampling 

campaign were: temperature, pH, EC25 (electric conductivity at 25 ºC), DO (dissolved 

oxygen) and Eh measured with a YSI Professional Plus multiparameter probe with a flow 

cell to avoid contact with the air. pH and EC25 measurements are automatically temperature 

compensated. In 2014 the field parameters were measured with a Eutech COND 6+ 
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conductivity meter (EC25 and temperature) and Eutech pH 6+ pH/ORP meter (pH and Eh). 

The pH was periodically calibrated against pH 7.00 and 4.04 references before and during 

the field surveys. EC25 was periodically calibrated against a 1413 µS/cm reference solution 

before and during the field surveys. All probes were washed in distilled water before and 

after each measurement and the probes were kept with distilled water all time. In addition, 

in 2016, ammonium concentration (mg/L NH4-N and mg/L NH4+) was measured in situ by 

a field colorimeter test with a colour card comparator manufactured by Merck Millipore. 

Alkalinity concentration (carbonate, CO32- and bicarbonate, HCO3-) was also measured in 

situ, after filtering the sample with 0.2 µm filters, by field titration using a digital titrator 

manufactured by Merck Millipore in the 2016 field surveys, and by field titrator 

manufactured by HACH in 2014 field surveys. 

Samples for cation, anion and trace element analysis were filtered in the field with 0.2 µm 

GNWP (Millipore) nylon membrane in 15 mL polypropylene bottles, in 2016. In 2014, 

samples were filtered with 0.45µm filters (Sartorius) and collected in 130 mL 

polypropylene bottles. One membrane was used for each sampled point. After filtering, the 

bottles for cation and trace elements samples were acidified with 70 % pure HNO3- to 

ensure that pH < 2. Water isotopes were collected in 2 mL special crystal chromatography 

tubes with their respective septum cup without headspace. Total Organic Carbon (TOC) was 

sampled with crystal bottles (previously sterilized in a muffle furnace), filled without 

headspace and acidified in the field with HCl 2N. Water isotopes and TOC were analysed 

only in 2016 field surveys. 

The samples were kept at 4 °C in a dark cool box during the field day and stored at 4 °C until 

they were analysed in the laboratory. The cations, trace metals and TOC collected in 2016 

were analysed by the Institute of Environmental Assessment and Water Research (IDAEA) 

by ICP-AES, ICP-MS and by an infrared detector using the NPOC method (Shimatzu TOC-

Vcsh) respectively. In the 2014 campaigns, cations were analysed by ICP-OES. Anions 

(campaigns in 2016) were processed by the Catalan Institute of Water Research (ICRA) 

using ionic chromatography. Bromide was analyzed at the Grup de Tècniques de Separació 

(GTS) of the Autonomous University of Barcelona by ICP-MS. In 2014 field campaigns, the 

laboratory used a Water Analyzer to measure anion concentrations. Water isotopes (δ2H 

and δ18O) were measured in the Centro de Hidrogeología de la Universidad de Málaga 

(CEHIUMA) using Picarro equipment. The notation is expressed in terms of δ ‰ relative to 

the international standard V-SMOW (Vienna Standard Mean Oceanic Water) for δ2H and 

δ18O. The precision of the samples calculated from international and internal standards 

systematically interspersed in the analytical batches was ±0.3 ‰ for δ2H and ±0.05 ‰ for 

δ18O. The quality of the chemical analysis was checked by performing the ionic mass 
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balance. The hydrochemical composition of samples with error >10 % was not taken into 

account in the hydrochemical results. 

2.5. Results  

2.5.1. Aquifer structure based on geological and geophysical data  

 

Figure 2.2. Geophysical profiles located on the study area in Figure 2.1. 
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The profiles, from west to east, are in sequence 6, 4, 1 and 2 (Fig. 2.2). In Profile 6 the surface 

geology is weathered Mazeras sandstones with some only slightly weathered patches. At 

depth, there are no clearly defined lithological structures and this probably reflects the 

spatially and vertically heterogeneous nature of these deltaic and aeolian-derived, folded 

and compacted sediments, with occasional aquifers. The highly weathered fracture zone(s) 

in the sandstones are potential aquifers, with good water quality reported at Lukore 

Dispensary, Lukore Secondary and Mukanda sites. Profile 4 clearly shows two aquifer 

layers; a shallow (up to 30 m) unconfined aquifer with generally low resistivities reflecting 

lenses of saline water, and a deeper aquifer with higher resistivity (50-200 Ω m). Profile 4 

sub-surface topography indicates that the rocks of the Mazeras, Kambe and Mtomkuu Fm. 

are folded, consistent with Rais Assa’s (1988) observations. While the Mazeras sandstone 

can easily be differentiated on the basis of its relatively high resistivity (>300 Ω m), the 

Kambe and Mtomkuu Fm. are geophysically indistinguishable, perhaps partly due to their 

relatively high water bearing capacity or their relatively small thickness. Profile 1 surficial 

geology consists of Magarini sands with relatively flat topography. The geophysical results 

indicate possible potential aquifers between 20 m and 80 m bgl. Multiple rivers were 

observed traversing the area. Fresh (low resistivity, 30-100 Ω·m) to saline (very low 

resistivity, <30 Ω·m) unconfined groundwater is indicated, depending on the locality, up to 

depths of ca. 30 m. A major fracture zone trending NNE-SSW with a down throw to the east 

is inferred (fault 3 on Figure 2.1), with a surface expression 380 m long. Profile 2 was 3000 

m long. Its surface geology comprised Kilindini sands to the west and Pleistocene corals to 

the east. From the geophysical results, the tongue-shaped structure at the eastern end of 

the profile depicts a possible underground cavern from the dissolution of corals. There is a 

barrier that restricts movement of saline water further inland. In the subsurface and close 

to the present-day shoreline, corals can be inferred to a depth of about 100 m bgl. 

Consequently, the outline of the hydrogeology of the area is fairly simple. The groundwater 

system comprises a shallow aquifer system recharged directly by rain infiltration, and a 

deeper aquifer that is recharged laterally from the Shimba Hills area acting as a mountain-

front area.  

2.5.2. Recharge 

Groundwater recharge evolution according to the soil water balance is shown in Fig. 2.3. 

Despite the very short time series, only 5 years, there is significant variation over time. In 

2014, the wettest year of the period, precipitation was 1591 mm while in 2016, during the 

drought event, precipitation was 636 mm, less than half of that and 13 % less than total 

precipitation in the second driest year. 
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Groundwater recharge occurs mainly during the wet season and for 97 % of the studied 

period (2012-2016) no recharge is observed. Fig. 2.3 shows that unless accumulated 

rainfall in a given rain period is greater than 104 mm, little or no recharge occurs. These 

observed thresholds reflect the requirement of prolonged rainfall events to generate 

recharge due to high rates of evapotranspiration and soil moisture deficit. Daily potential 

evapotranspiration is often higher than daily rainfall depth in the area. The relationship 

between rainfall and groundwater recharge is nonlinear. Seasonal rainfall depth is 

important, as is rainfall pattern across the seasons. This observation agrees with Taylor et 

al. (2012), which notes that intense seasonal rainfall associated with the El Niño Southern 

Oscillation and the Indian Ocean Dipole mode of climate variability contributes 

disproportionately to recharge. Indeed, infrequent recharge associated with heavy rainfall 

events is common in semiarid climates with retentive soils (Custodio et al., 1997). 

During the wet year 2014, the main recharge periods are well differentiated: April to June 

(long rains) has the highest recharge with less recharge in October to December (short 

rains). During La Niña event, groundwater recharge was reduced during both wet seasons. 

During the long rains period, there was a recharge peak due to rainfall events of over 145 

mm/d in April 2016. However, as stated in Uhe et al., (2018, 2017), the OND short rainfall 

period was particularly badly hit by La Niña event, and the results indicate no recharge 

during this period (Fig. 2.3). 

 

Figure 2.3. Recharge rate based on daily soil mass balance vs rainfall at Kwale Agricultural Department station 
(Kenya Meteorological Department) (mm/d); January 2012 to October 2017. 
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2.5.3. Groundwater distribution and trends 

Groundwater flow in the shallow aquifer is from the upper part of the study zone to the 

lowest zones at the coast, discharging littoral and offshore into the sea (Fig. 2.4). The 

majority of discharge from both aquifers is assumed to be submarine to the Indian Ocean. 

There are a number of brackish groundwater emergences in the tidal zone observed along 

Diani coast and Msambweni Beach. In the middle part of the study area, the shallow aquifer 

feeds the gaining Mkurumudzi River while the surface-groundwater interaction in the 

Ramisi River cannot be defined with available water level data.  

 

Figure 2.4. Groundwater contour map for the shallow aquifer in March 2016 after the field survey. Potentiometric 
lines are represented every 10 m.  
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The Kilindini sands constitute the main extension of the shallow aquifer in the study area. 

Most of the groundwater recharge in this geological formation occurs during intense rains 

or long rainy periods from April to June (Fig. 2.5a). The response of the water table to 

important rains is relatively fast, with peak water level occurring between 7 and 20 days 

after the main rainfall (Fig. 2.5a). Increasing groundwater level is accompanied by 

decreasing EC (Table 2.1).  

The effect of La Niña 16/17 event on groundwater level variation in the Kilindini sands 

aquifer is shown in a well (GS9) located in this geological formation (Fig. 2.5a). During the 

low rainy periods, such as during La Niña, the descent of groundwater level continues until 

the next relevant rainfall event. The year 2012 was a very dry year with low OND rainfall, 

only slightly more than that in 2016. From January to December 2016, the groundwater 

level variation measured in wells located in this geological formation was between a 

maximum of 3.4 m and a minimum of 1.4 m (Table 2.1). 

However, some wells located in the Kilindini formation in the north of the study area (points 

Z4-06, Z4-08, Z4-04 and Z4-01 in Fig. 2.1) show a different pattern in the response of 

groundwater level to rainfall (Table 2.1). These wells show lower increases in groundwater 

level after large rainfall events (Fig. 2.5b).  

Rapid infiltration after rainfall events in the Pleistocene corals, attributed to high hydraulic 

diffusivity, causes recharge peaks in wells in this formation to dissipate rapidly, (Fig. 2.5a 

grey dots). The same process explains the sharper response of groundwater levels to 

rainfall compared to that seen in the unconfined Kilindini sands (Table 2.1). These 

observations are to be expected due to karstification of the geological formation. The 

reaction is not observed after all the main rainfall events due to the low frequency of 

measurements (every 15 days). 

The deep aquifer is exploited by some community wells, KISCOL, and Base Titanium. Only 

Base Titanium has monitoring points not directly affected by dynamic groundwater levels 

due to abstraction. For this reason and because of the geological heterogeneity in the study 

area, the deep aquifer behaviour can be only described in the middle part of the study area. 

Groundwater level in deep boreholes also reacts to rainfall, as the shallow aquifer 

piezometers do, but there are somewhat longer lags between the start of recharge and the 

groundwater level maximum in the confined aquifer compared with the shallow aquifer; 

this time lag is 13-20 days (Table 1, Appendix A).  

Water level measurements from the Base Titanium shallow piezometers show a limited 

effect of pumping from the deep aquifer on shallow groundwater level. This limited/nil 
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effect is attributed to a low permeability aquitard between the two aquifers, which was 

observed during the drilling of the Base Titanium boreholes. Groundwater level in the deep 

aquifer shows the influence of groundwater abstraction in this area, which started in 2014 

(Fig. 2.6). The marked drawdown during the 2016 drought may have been enhanced by 

groundwater abstraction during the same period made by Base Titanium.  

 

Figure 2.5. a) Groundwater level over time in well located in the Kilindini sands (GS9) and in well located in the 
Pleistocene corals (GS7). Peaks are insinuated in the corals during some recharge events indicating the fast 
response of the aquifer to rains. They did not show up in other recharge events due to the low frequency of 
measurements. b) Groundwater level in 2016 in community wells located to the North of the study area in the 
Kilindini sands see Figure 2.1). Plots also show rainfall at Kwale Agricultural Department station (Kenya 
Meteorological Department) (mm/d). 
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Figure 2.6. Base Titanium shallow and deeper control piezometers at an elevation of 24.6 m asl. The black line 
shows the groundwater recession that occurred in 2012 and early 2013 under natural conditions, since the 
wellfield was not intensively pumped until October 2013. The blue lines show the reduction in groundwater level 
occurring between recharge events once abstraction had commenced. The green line shows the slope increment 
of groundwater recession possibly caused by increased abstraction during La Niña event of 2016. The recession is 
taken as a line as the total drawdown is much smaller than the final stage controlled by the sea level. 



 

  

Table 2.1. Groundwater level range and EC range of some monitored points from 2016 to April 2017. 

Point Geology Zone Aquifer Dates EC range 

EC 

tendency 

during 

2016 

GWL range 

GWL 

tendenc

y during 

2016 

Well 

depth/Screened 

section 

D18 

isotop

ic 

signal 

(june 

2016) 

Z4-MS Magarini s. 4 Shallow Aquifer 04/2016-

02/2017 

311-380 down 27.25-27.55 down 29 -3.12 

Z4-85 P. corals 4 Shallow Aquifer 01/2016-

04/2017 

698-973 stable 9.62-9.9 down 10.4 -2.94 

Z4-78 P. corals 4 Shallow Aquifer 01/2016-

04/2017 

2418-2652 stable 8.04-8.4 not clear no data -2.74 

Z4-24 Kilindini s. 3 Shallow Aquifer 01/2016-

03/2017 

184-326 not clear 6.21-7.65 stable 7.5 -2.44 

Z4-18 P. corals 4 Shallow Aquifer 01/2016-

04/2017 

705-960 stable 15.24-15.5 stable 15.9 -3.14 

Z4-11 Magarini s. 4 Shallow Aquifer 01/2016-

04/2017 

102-621 up 12.63-16.1 down 17.87 -2.80 

Z4-08 Kilindini s. 4 Shallow Aquifer 01/2016-

06/2016 

585-768 stable 23.38-27.69 down 28 -3.17 

Z4-06 Kilindini s. 4 Shallow Aquifer 01/2016-

12/2016 

675-840 stable 23.5-24.1 down 24.6 -3.23 

Z4-04 Kilindini s. 4 Shallow Aquifer 01/2016-

04/2017 

538-644 stable 22.62-23.5 down 23.6 -3.00 

Z4-01 Kilindini s. 4 Shallow Aquifer 01/2016-

04/2017 

615-692 stable 22.97-23.48 down no data -3.24 

Z3-98 P. corals 3 Shallow Aquifer 01/2016-

04/2017 

728-920 up 11.35-11.76 stable 12 -2.59 

Z3-96 P. corals 3 Shallow Aquifer 01/2016-

04/2016 

2985-3090 not clear 7.08-8.19 not clear 8.3 -2.58 



 

 
 

Z3-90 P. corals 3 Shallow Aquifer 01/2016-

04/2017 

1674-3655 up 6.22-8.49 down no data -2.62 

Z3-87 P. corals 3 Shallow Aquifer 01/2016-

04/2017 

1659-2120 up 4.84-5.1 stable no data -2.59 

Z3-30 Kilindini s. 2 Shallow Aquifer 01/2016-

04/2017 

535-1375 down 3.37-5.62 down no data -2.54 

Z3-29 Kilindini s. 2 Shallow Aquifer 01/2016-

04/2017 

225-390 down 9.94-11.13 down 12.04 -2.68 

Z3-102B P. corals 2 Shallow Aquifer 04/2016-

04/2017 

507-640 up 11.24-11.8 down 12 -2.40 

Z2-112 Magarini s. 2 Shallow Aquifer 01/2016-

04/2017 

55-128 down 6.75-8.11 down no data -2.40 

Z2-104 P. corals 2 Shallow Aquifer 01/2016-

04/2017 

628-697 stable no data no data no data -2.64 

Z2-103 P. corals 2 Shallow Aquifer 01/2016-

04/2017 

606-900 stable 11-11.51 stable no data -2.69 

Z1-70 Kilindini s. 1 Shallow Aquifer 01/2016-

04/2017 

510-911 down 2.73-5.44 down 6.6 -2.29 

Z1-33 Kilindini s. 1 Shallow Aquifer 01/2016-

04/2017 

531-759 up 9.86-10.47 down 10.65 -2.64 

Z1-140 Magarini s. 2 Shallow Aquifer 01/2016-

04/2017 

529-669 up 11.06-12.94 stable 13.4 -3.12 

Z1-135 Kilindini s. 2 Shallow Aquifer 01/2016-

04/2017 

190-360 down 3.18-5.05 down no data -1.97 

Z1-125 Magarini s. 1 Shallow Aquifer 01/2016-

04/2017 

88-182 up 14.11-16.99 down 17.1 -2.70 

Z1-124 Magarini s. 1 Shallow Aquifer 01/2016-

01/2017 

207-350 not clear 13.62-15.19 not clear 15.2 -2.61 

Z1-122 Magarini s. 1 Shallow Aquifer 01/2016-

04/2017 

122-217 down 10.82-12.82 down no data -2.25 



 

  

Z1-121 Kilindini s. 1 Shallow Aquifer 01/2016-

04/2017 

560-671 up no data no data no data -1.40 

Z1-110 Kilindini s. 2 Shallow Aquifer 01/2016-

04/2017 

92-206 down 4.78-6.4 down 6.4 -2.18 

DB/FI/HP Kambe 2 Deep Aquifer 04/2016-

04/2017 

516-695 stable no data no data no data -3.07 

DB/BM/HP Kambe 2 Deep Aquifer 04/2016-

04/2017 

236-208 stable no data no data no data -3.14 

C/15/10 Mazeras snd. 1 Deep Aquifer 04/2016-

04/2017 

379-677 up no data no data no data -3.15 

C/109/21 Mazeras snd. 2 Deep Aquifer 04/2016-

04/2017 

483-790 up no data no data no data -3.16 

C/06/12 Mazeras snd. 1 Deep Aquifer 04/2016-

04/2017 

248-760 up no data no data no data -3.10 
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2.5.4. Hydrochemical facies  

The survey having more points sampled (June 2016) was chosen to represent the 

hydrochemical results of the study area. Although two field campaigns were carried out and 

each one represents a different season (dry and wet), the year 2016 was very dry and 

recharge in the rainy season were lower than usual because of La Niña 2016/2017 event, 

as stated in Section 2.5.2 (Fig. 2.3). 

 

Figure 2.7. Piper diagram of all points sampled during June 2016 field survey. 

Hydrochemical data shows the groundwater pattern in space and in depth. From it, the flow 

paths and the main hydrochemical processes that are taking place in the study area can be 



30 Chapter 2 

  

deduced. Based on hydrochemical datasets, some groundwater hydrochemical facies are 

defined according to their major ion content. A total of 5 hydrochemical groups are 

described according to geology and the hydrochemical facies (Fig. 2.7 and Fig. 2.8): 

Hydrochemical group ‘A’ comprises samples with a Ca-HCO3- facies that are hosted mainly 

in Pleistocene materials, Kilindini sands (‘Pls’) and Pleistocene corals (‘Plc’), and a few 

samples from the deep aquifer in Mazeras sandstone (Fig. 8). This is the dominant group, 

comprising 63 % of the samples. pH is over 6.0 (6.1 to and 7.2). Some samples of this group 

are saturated with respect to calcite, most of them located in the limestone materials closest 

to the shoreline (Table 2, Appendix A). 

Other facies present in Pleistocene materials are Na-Cl- waters, located on the coastal line 

around Gazi bay and north coast (Fig. 2.8). The group ‘B’ consists in 7 samples representing 

the points affected by the saline intrusion, which is also supported by the average EC around 

2850 µS/cm and a maximum value of 4061 µS/cm. 

Group ‘C’ comprises 15 % of the samples and has a Na-Ca-HCO3- facies. Most samples in this 

group are located in the Mazeras sandstone outcropping at Shimba Hills and in their 

extension as the deep aquifer emplaced under the Magarini and Kilindini sands. These wells 

stand out by its lower Ca content, yet higher Na (Table 3, Appendix A) (Fig. 2.9a).  

Group ‘D’ is represented by the 4 samples in Mazeras sandstone but having Na-Cl--HCO3- 

facies. These samples are located up to Shimba Hills and they are enriched in Si (>20 mg/L 

Si or >40 mg/L SiO2) (Table 3, Appendix A). The presence of quartz-feldspar minerals and 

silicified units in this formation with oversaturation relative to quartz (SI>1) indicates that 

the main process governing the Si content in this water is silicate weathering (Table 2, 

Appendix A). The sample labeled Maji ya Chumvi beds (pink symbol) corresponds to a point 

located at Lukore, up to the Shimba Hills, which present also this kind of facies but with a 

greater concentration of HCO3-, Na and Cl- than the other samples of the group. This Cl- and 

Na enrichment can be due to the greater water retention in the soil, thus increasing evapo-

concentration or due to the presence of bluish-black gritty shales and muddy sandstones 

with possible salt remnants deposited during a period of fluctuating climate. 

Hydrochemically, this sample does not follow the sodium enrichment line and moves out 

the left side (Fig. 2.9c), suggesting a process that incorporates further HCO3- to groundwater 

from the soil gas (Armengol et al., 2017). A similar composition in sample C/12/12 points 

to connectivity between Triassic (Maji ya Chumvi Fm.) and Jurassic materials (Mazeras 

sandstone) (Fig. 2.9a).  
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Group ‘E’ represents the samples located in the Magarini sands (shallow aquifer) with Na-

HCO3-Cl- facies. These samples also show high Si content and their Na concentration could 

come from silicate weathering process.  

 

Figure 2.8. Modified Stiff diagram for points sampled in June 2016. Crosses indicate points monitored fortnightly 
and red dots the points at which fortnightly sampling was cut down due to various problems. The purple and green 
modified Stiff diagrams correspond to samples from the deep confined aquifer.  
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Figure 2.9. a) Cl- vs. Ca+Mg in mg/L; b) Li concentration (µg/L) vs. Na in mg/L; c) (Na-Cl-) vs. [(HCO3
-+SO4

2-)-
(Ca+Mg)] in meq/L; d) Si vs. δ18O. * It is referred to the samples in zone 4 that present δ18O <-3. ** It is referred to 
samples D/16/10. 

2.5.5. Water environmental isotopes 

There is a relatively small change in altitude in the study area with a maximum elevation of 

454 m a.s.l. at the Shimba Hills. Most of the samples follow the African Meteoric Water Line 

(AMWL) (Mckenzie et al., 2010). Relative to the Global Meteoric Water Line (GMWL) the 

samples present a deuterium excess between 8 and 13 ‰ (Fig. 2.10a), which is the same 

deuterium excess obtained in Levin et al., 2009 for the coast of Kenya and Ethiopia. It may 
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be indicative of precipitation formed from water vapor from an oceanic environment with 

less than average air humidity conditions, or alternatively from water evaporated near the 

land surface, either as a product of evaporated rainfall that recondenses or evaporation 

from surface water (Levin et al., 2009).  

All samples from Shimba Hills (group ‘D’) and those of group ‘E’ in the Magarini sands have 

the lightest isotopic signal with δ18O equal to -3.15 ‰ ±0.21 ‰ and -3.07 ‰ ±0.25 ‰ 

respectively. Most samples of the deep aquifer have the same isotopic composition as the 

samples from Shimba Hills (Fig. 2.10b). 

The shallow aquifer has a higher water isotopic composition due to its proximity to the 

coast and the lower altitude. Nevertheless, the shallow wells located in Kilindini formation 

in the north area present lower isotopic values, similar to the samples from the deep 

aquifer. In addition, sample D/16/10 has a higher isotopic value (δ18O = -1.4 ‰) and could 

be on a line of slope 4 (Fig. 2.10) corresponding to evaporation from a free water surface. 

This isotopic enrichment in 18O suggests the influence of water infiltrated from the seasonal 

Lake Nimbodze near the sampled point (Fig. 2.10b).  

The isotopic composition of the samples from the rivers in the study area (Ramisi, 

Mkurumudzi and Mwachema Rivers) show evaporation effect, except the sample upstream 

of Mkurumudzi, located at the Shimba Hills (Fig. 2.10a). 
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Figure 2.10. a) δ18O vs. δ2H of water samples and the Global Meteoric Water Line (GMWL) δ2H=8* δ18O+10 ‰ 
(orange line), Dar es Salaam local meteoric water line 7.05* δ18O+7 ‰ (black line) and African Meteoric Water 
Line (AMWL) 7.4* δ18O+10.1 ‰ (grey line). The dotted line refers to surface water evaporation; b) Box plot that 
shows the maximum, minimum and median of δ18O for each geological formation. 

2.5.6. Nitrogen pollution 

One of the most common groundwater quality problems worldwide is nitrate pollution 

(Custodio, 2013). Typically, nitrate pollution in Africa comes from nitrogen compounds in 

wastewater and sewage (e.g. leakage from latrines into the aquifer), and from fertilizers 

applied in agriculture (Ouedraogo and Vanclooster, 2016); soil degradation and faecal 

contamination from extensive animal raising can also be factors. Most samples in the study 
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area show low nitrate concentrations, under 5-10 mg/L NO3- (Table 3, Appendix A), which 

may approach the chemical groundwater base-line. During March 2014 (dry season), only 

2 out of 32 samples had nitrate concentration over the drinking water level limit of 50 

mg/L: Z3-98 (63 mg/L) and Z4-78 (113 mg/L). During the wet season in the same year, 

only point Z3-98 (48 mg/L) had relatively high nitrate concentration, just below the 

drinking water limit. In 2016, when 75 (March) and 80 (June) groundwater points were 

sampled across the study area, samples with higher nitrate concentrations were also 

uncommon (Figure 1, Appendix A). In March, samples with nitrate over or approaching 50 

mg/L were located as follows: UK-WL (58 mg/L) (a hand-dug well near Ukunda village), 

A/06/13 (48 mg/L) and Z3-98, to the east of the KISCOL sugar plantation (41.7 mg/L). In 

June 2016, only 20 samples presented a nitrate concentration over 10 mg/L and only 4 were 

above the drinking water limit: the same one near Ukunda village (UK-WL: 55.0 mg/L), one 

sample from Gazi village (A/01/11: 64.7 mg/L); one from Msambweni village (C/05/09: 

51.8 mg/L) and Z3-98. Indeed, in June 2016 one deep monitoring borehole located in 

KISCOL’s Milalani (southern fields) was measured and it had (73.1 mg/L). This high 

concentration could come from the fertilizers added in the sugar fields. Therefore, the small 

amount points which show nitrate contamination are located in the main villages of 

Msambweni, Gazi and Ukunda, except point Z3-98 located east of the KISCOL sugar fields 

around Kinondo (Table 3, Appendix A). In village areas, the source of nitrate pollution in 

the samples could be latrines or animal faeces. In the sugarcane plantation, nitrate pollution 

could be associated with fertilizer use. Overall, despite the potential for nitrate pollution 

due to poorly managed sewage/wastewater and growing agricultural activity in the study 

area, nitrate pollution seems so far to be locally confined. In 2014 and 2016 nitrate 

concentration was higher during the dry season than during the wet season, likely due to 

the lower rate of recharge in the dry season (see Folch et al., 2011; Menció et al., 2016). 

Recharge dilutes and pushes local contamination down flow, while higher rates of nitrogen 

uptake as plants grow following precipitation also reduces nitrate concentration in the soil 

(Wick et al., 2012).  

Some samples show significant concentrations of ammonia. During the dry season of 2016, 

6 points had ammonia between 0.2 and >8 mg/L NH4+ and during the wet season, only 4 

points presented ammonia of between 0.2 and 5 mg/L. Furthermore, there are points in 

several geological areas with values of Eh in the range of iron reduction by nitrate (Table 3, 

Appendix A) (Faulwetter et al., 2009). The most reducing waters are those located in the 

middle area, in the Pleistocene corals and in the deep aquifer. Some of these points also 

have a high concentration of dissolved manganese and iron. Therefore, although there is no 

clear trend or distribution, hydrochemical data seems to indicate potential reducing 
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conditions across the study area which could affect nitrate concentrations as ammonia is 

oxidized.  

This assumption may be confirmed by the iron stability diagram (Figure 2, Appendix A). All 

samples are located between the Fe+2 and Fe2O3.nH2O stability fields. The samples on the 

Fe+2 field are located on Mazeras sandstone and Magarini sands, i.e. in facies ‘C’, ‘D’ and ‘E’. 

These facies present lower pH due to the absence of carbonates in the terrain and thus, 

boreholes in these areas produce more corrosive water, which has been seen to affect 

borehole/handpump functionality in these areas. The fact that significant DO 

concentrations were measured in many of these points (Table 3, Appendix A) indicates that 

there is no chemical equilibrium between dissolved oxygen, pH and Eh, but a kinetic 

situation. 

Redox conditions could be influenced by the presence of organic matter. High concentration 

of dissolved organic carbon, measured as total organic carbon (TOC), was observed. 

Notably, the TOC value tends to increase towards the coast, with lower values inland. The 

samples with the highest TOC are located in Pleistocene corals (Table 3, Appendix A). It is 

possible that TOC is an input from the soil/surface since the high PCO2 values match those 

expected from degradation of soil organic matter, which could be affecting the redox 

conditions in the aquifer (Table 3, Appendix A). In order to understand potential natural 

attenuation processes, it is important to define first the baseline composition of the aquifer 

system as Manzano et al. (2007b) did, and then apply other sources of information, such as 

nitrate isotope measurement or organic matter data. 

2.5.7. Hydrochemical changes between seasons in 2014 (wet) and 2016 (La 

Niña) years 

Comparing the 24 samples from March and June 2014 (wet year) field surveys, most fresh 

water samples (around 60 %) were more saline during June than in March (Table 4 and 5, 

Appendix A). However, the samples in the lower part of zone 4 do not present any variation 

between the two field campaigns. In contrast with 2014, in 2016 the fresh groundwater 

samples from the dry and wet seasons (March and June 2016 respectively) show similar 

salinities (Table 6, Appendix A). However, there is an increase in salinity in the samples 

from groundwater affected by saline intrusion along the coastline, mainly on the north coast 

around Ukunda and Diani (Fig. 1.1).  

Comparing hydrochemical data for the 22 points sampled in both wet seasons (June 2014 

and June 2016 – La Niña year of low rainfall), most of the fresh groundwater samples 

(around 60 %) showed higher salinity during June 2014. The samples in zone 4 have the 
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same hydrochemical composition in both years, with less than 2.4 % average difference 

when comparing the concentration of the major ions between years and less than 6.3 % 

average difference when comparing the EC values. However, the samples affected by saline 

intrusion (group ‘B’) present a 20 % increment in salinization during La Niña year 

compared to that measured in June 2014. 

2.6. Discussion 

2.6.1. Conceptual flow model 

The geophysical profiles allow a comprehensive three-dimensional understanding of the 

aquifer geometry of the study area and of vertical and lateral relationships through the 

geological formations. The groundwater level time series, hydrochemistry and water 

isotopes have helped to determine the main recharge areas, the connectivity between the 

geological formations and the consequences of drought on the groundwater system. 

According to the stability diagrams of silicates (Figure 3, Appendix A), weathering produces 

kaolinite as the main clay mineral in equilibrium with primary silicates for all the points 

sampled in the study area. This weathering product is preferentially formed under the 

climatic conditions dominating in the study area. Kaolinite is formed in rainy areas with 

intense rainfall and well-drained conditions (Appelo and Postma, 2005). Hydrochemical 

and isotopic data allow the definition of groundwater flow paths and main recharge areas, 

as in other studies under similar conditions (Anglés et al., 2017; Edmunds et al., 2003; 

Manzano et al., 2007a; Menció et al., 2012). Different hydrochemical data facies illustrate 

the hydrochemical sequence that takes place within the system (Fig. 2.8). 

Up to the Shimba Hills, it is possible to distinguish two types of processes affecting deep 

wells located and screened only in the Mazeras sandstone (Fig. 2.8). The samples of group 

‘D’ located in this geological formation present high silica concentration and are saturated 

with respect to quartz. Based on the Ca - HCO3- and Na – Cl- relationships the samples are 

enriched in HCO3- and Na, resulting from silicate weathering, mainly-feldspar (Appelo and 

Postma, 2005). For this reason, these samples are unsaturated with respect to calcite (Table 

2, Appendix A). The EC range of these samples is between 260 and 313 µS/cm. However, 

the rest of the samples in Mazeras sandstone formation, north of the mining site are of the 

hydrochemical group ‘C’. These samples, compared to group ‘D’, have lower silica 

concentration but despite this, they are also unsaturated with respect to calcite, and the 

saturation index is less negative than in group ‘D’ (Table 2, Appendix A). Silicate weathering 

in this facies is less significant compared to that in group ‘D’, even though they are more 
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enriched in Na (Fig. 2.9c) and present higher values of EC (from 499 to 666 μS/cm). This 

may be due to increased evapotranspiration. 

The same range of Li (8-35µg/L) in the deep aquifer samples and the samples of the group 

‘C and D’ seems to indicate that recharge of the deep aquifer originates in the Shimba Hills 

range (Table 3, Appendix A). 

The hydraulic continuity of Shimba Hills aquifer and the Mazeras Fm. deep aquifer is also 

confirmed by the water isotopic data since the composition of most samples of the deep 

aquifer is in the same isotopic interval as the samples from Shimba Hills (Fig. 2. 10a). Some 

samples located in the deep aquifer in zone 2 have the same hydrochemical facies (group 

‘C’) as the samples located in the Shimba Hills. These samples are from some Base Titanium 

boreholes screened in Jurassic materials (Kambe, Mtomkuu and Mazeras Fm.). In addition, 

the EC values of these samples are in the same range (370 μS/cm) as results from the 

samples of group ‘C’. This suggests hydraulic continuity along the Mazeras sandstone, which 

is also confirmed by seasonal changes in deep groundwater level (Fig. 2.6). The time lag 

between a rainfall event and the groundwater level peak smothered indicates hydraulic 

connection throughout the Mazeras Fm. and the recharge area of the deep aquifer. This is 

also confirmed by artesian (flowing) behaviour during the drilling of some of Base 

Titanium’s wells that are only screened in the deep aquifer. 

The redox values (Eh from +94 to +191 mV) and dissolved oxygen (DO from 0.8 to 4 mg/L) 

found in the Base Titanium boreholes tapping the deep aquifer are higher than those of the 

samples of group ‘D’ located in the Shimba Hills, and show that there is no significant inflow 

of shallow groundwater induced by the abstractions. This points to semi-confined 

conditions suggesting the presence of a semi-confining layer (data not shown) (Fig. 2.11). 

Indeed, the artesian flow in two Base Titanium boreholes indicates the presence of this 

confining and/or semi-confining layer (Fig. 2.1). The permeability of this aquitard varies 

across the study area depending on geological formation and is affected by the 

palaeochannels and also by some deep wells with screens in both the shallow and deep 

aquifer. The presence of a semi-confining layer dividing a formation into two aquifer units 

has been observed elsewhere (Manzano et al., 2013). The identification of this layer and 

detailed characterization of the groundwater system modifies the former conceptual model 

of a single coastal aquifer into a more complex but still hydrogeologically simple system 

consisting of two separate layers with an aquitard in between. Other deep well samples 

present facies typical of group ‘A’, due to the screened sections of these boreholes being in 

multiple geological materials, taking water from Pleistocene corals, Kambe limestone, 

Mtomkuu Fm. and probably Mazeras Fm. as well. These wells show higher values of EC (590 
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μS/cm) and higher pH values (6.9 and 7.2 respectively) than the wells screened only in the 

Mazeras sandstone. Some KISCOL wells also screened in both shallow and deep geological 

formations show hydrochemical facies of group ‘A’ and a similar range of EC and pH.  

The KISCOL boreholes (BH302 and BH310) located in the sugar fields in zone 1 have a 

higher isotopic composition than boreholes screened only in the deep aquifer, and also 

differ in terms of hydrochemical composition. This isotopic range would appear to be due 

to the multiple screened intervals in the KISCOL wells, presumably aimed at maximizing 

groundwater abstraction by capturing water from different aquifer units. Water from both 

boreholes show silicate weathering, but whilst BH310 has a Ca-HCO3- facies with δ18O = -

2.72 ‰, borehole BH302 presents a Na-Ca-HCO3- facies with lower water isotopic 

composition (δ18O = -2.88 ‰). Considering that the average error for δ18O is ± 0.05, the two 

samples appear to be slightly different suggesting that BH310 has a greater proportion of 

water from the shallow aquifer which has higher isotopic composition compared to BH302. 

This supposition is backed up by a comparison of Li concentrations (Fig. 2.9b), as BH302 

with a hydrochemical facies typical of the deep aquifer has higher Li concentration (10-20 

µg/L) than BH310 (1-8 µg/L) with hydrochemical facies typical of the shallow aquifer. In 

addition, the BH310 δ18O change from March (-2.94 ‰) to June (-2.72 ‰) may indicate 

that during the dry season a higher proportion of the groundwater being abstracted is from 

the deep aquifer. Moreover, the facies of this point changes from Ca-Na-HCO3- in March, 

incorporating Na from the deep aquifer to Ca-HCO3- in June, which points to recharge from 

the shallow aquifer. 

Regarding the shallow aquifer formations, the hydrochemical signal of group ‘E’, all points 

located in Magarini sands, indicate that this geological formation acts as the recharge area 

for the shallow groundwater system. Infiltration through the sand is accompanied by 

silicate weathering, forming a local hydrochemical system. Low pH (average of 5.6) and EC 

(between 50 and 170 μS/cm) compared with the samples located in other geological 

formations indicate the absence of soluble carbonate minerals and suggest less interaction 

with the soil and the unsaturated zone (Table 3, Appendix A). 

The different composition of the samples located in the Mazeras sandstone and in the 

Magarini sands, with lower salinity and Cl- and higher Si concentrations in samples from the 

second geological formation, indicate that there is no hydraulic connection between these 

two geological formations. However, the groundwater contour map (Fig. 2.4) indicates the 

possibility of deep groundwater flow from the Shimba Hills to the sea. These two factors 

indicate that the fault located East of the Shimba Hills (Fault 2 of Fig. 2.1) acts as a low 

permeability boundary, forcing recharge from the Shimba Hills to the deep aquifer located 
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under the shallow geological formations (Magarini sands, Pleistocene sands and corals) 

(Fig. 2.11). 

Groundwater flowing through the shallow groundwater system becomes enriched in Ca and 

HCO3-, (Group ‘A’ samples), due to the geology (carbonate, mainly limestone - Pleistocene 

materials) of the southern area. The modified Stiff diagrams show how this enrichment in 

Ca and HCO3- going from inland (Magarini sands) toward the coast point to connection 

through the geological formation. The relatively high Si concentration in Pleistocene 

formations and in samples taken from an upwelling/spring located on the tidal Msambweni 

beach in zone 1 (over 10 mg/L Si) confirms the connection between all the shallow aquifer 

systems (Magarini sands, Kilindini sands and Pleistocene corals) (Table 3, Appendix A). On 

the other hand, samples with low Si concentration located in zone 1 and 2 along the 

Pleistocene materials indicate a possible dilution of Si concentration due to local recharge 

through these geological formations. Indeed, the wells located along the coast which are not 

affected by saline intrusion show a slight EC decrease during rainy periods, indicating 

shallow local recharge in the Pleistocene corals. Some samples near the south coast present 

lower isotopic composition, more similar to the samples from the deep aquifer. This further 

confirms the connectivity between diverse geological materials in the palaeochannel areas 

due to the process of erosion and deposition during the original formation of the channels 

(Fig. 2.11). 

Furthermore, considering the change in isotopic composition across the field surveys, the 

samples showing the greater percentage change in water isotopic composition when 

comparing March and June field surveys are the samples with Na-Cl- facies (group ‘B’). This 

is due to the isotopic mixing produced by seawater intrusion. Seawater intrusion is also 

confirmed by the high Li concentration (9-22 µg/L) (Fontes and Matray, 1993) following 

the mixing seawater line (Line 1 Fig. 2.9b). However, samples from the shallow aquifer 

located in Magarini sands with Na-HCO3--Cl- facies (group ‘E’) also present higher isotopic 

change between seasons due to the influence of local rainfall during the wet season. On the 

contrary, samples in the deep aquifer (group ‘D’) present little isotope variation (Fig. 2.10b), 

suggesting a uniform and constant recharge in the deep aquifer throughout the seasons. 

Samples located in the Magarini sands and the Mazeras sandstone (group ‘E’ and ‘D’ 

respectively) present low values but a high variation of EC between seasons providing 

further evidence of their role as recharge areas. 

There is a negative correlation (P < 0.01) between Si concentration and water isotope 

composition (δ18O), except for in surface water samples and those allowing evaporation 

from a free surface (Fig. 2.9d). This confirms the main recharge areas previously mentioned: 
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the Mazeras sandstone and Magarini sands, and the two main flow paths: one from the 

Mazeras sandstone to the deep aquifer and a second from the Magarini sands to the coral 

limestone. The change in isotopic composition and Si concentration (among others) along 

the flow path of the shallow aquifer formation shows that besides the Magarini sands, 

significant recharge of the shallow aquifer is also occurring on the Pleistocene formations. 

Finally, the fact that significant DO concentrations were measured in many wells (Table 3, 

Appendix A) indicates that dissolved oxygen, pH and Eh are not in chemical equilibrium. 

This observation may suggest that the water under more reducing conditions coming from 

the Magarini sands is mixing with more oxygenated water from recharge through the 

Pleistocene materials as the shallow aquifer is recharged across the study area. That said, 

DO values in zone 4, which range from 3.1 to 5.7 mg/L, are lower, suggesting other 

processes may be taking place in this area (Table 3, Appendix A). 

Seasonal variation in groundwater level in wells in zone 4, along with lower DO values and 

the isotopic composition of samples from this area may indicate the existence of a clay layer 

associated with the marine sediments of the Kambe and Mtomkuu Fm. The low 

permeability of this layer would limit local recharge to the deep aquifer in the lower part of 

the basin, explaining the relatively lower isotopic composition of groundwater recharged 

in the higher areas. This explanation is in agreement with observed groundwater level 

variation after extreme rainfall events in which the limited change in groundwater level 

after rainfall indicates the absence of direct recharge (Fig. 2.5b). 

Regarding surface water-groundwater interaction, although it cannot be defined along all 

rivers with the potentiometric data (Fig. 2.4), the hydrochemical results indicate that the 

slightly brackish Ramisi River is being fed by the aquifer as the point sampled downstream 

has lower salinity than the sample from upstream (Fig. 2.8), which can be explained by 

dilution as lower salinity groundwater flows into the river. The Li concentration in the 

samples from Ramisi River comes from the hot springs at Mwananyamala (Tole, 1990) 

(Line 2 Fig 2.9b). The potentiometric map shows that the Mkurumudzi River is also effluent 

(gaining), which agrees with the composition of point S1-3KD06 (δ18O = -2.6 ‰) being in 

the same range as groundwater. However, river-aquifer interactions are difficult to 

ascertain with this kind of data as the sampling points may be affected by water released at 

dams and subject to other hydrochemical processes.  
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Figure 2.11. Schematic conceptual model of the aquifer. The flow lines indicate flow direction and connectivity 
through the geological formations from the recharge areas for the shallow and deep aquifer. The question marks 
indicate the existence of a clay layer, the connectivity between the Mazeras Fm. and Pleistocene corals and the 
discharge of the deep aquifer. Mazeras (Mazeras Fm.), M&K (Mtonkuu and Kambe Fm.), P (Magarini sands), Pls 
(Kilindini sands), Bs (Bioclastic sands with clay lenses), Plc (Pleistocene corals), and in brown color the clay layer 
acting as an intercalated aquitard. F1 to F4 indicates the main fault in the study area. 

2.6.2. Effects of La Niña drought on the groundwater system and its 

hydrochemistry 

There is insufficient groundwater level data to evaluate the effect of La Niña in the shallow 

aquifer as data in most points starts in 2016. However, during La Niña event, the wells 

located on the Kilindini sands (except in zone 4) and Magarini sands present higher 

groundwater drawdown (3.4 to 1.4 m) compared to the wells located on Pleistocene corals. 

In the deep aquifer, with data available since 2012 in the Zone 2, it is possible to observe a 

larger recession in groundwater level during La Niña event compared to that seen in 2012, 

possibly caused by increased abstraction rates during the drought period. 

The behaviour of the system in 2014 is the one expected for an area affected by the monsoon 

in a tropical area (Isa et al., 2014). The recharge volume difference in 2014 between seasons 

produces an ionic differentiation of the composition of the sample. During the post-

monsoon (wet season-June 2014) inland samples display an elevated concentration of 

mineral ions (Ca and Mg). This increment during the wet season could be explained by the 

associated reversible cation exchange. Oppositely, during La Niña event, there are not fresh 

water salinity differences between campaigns in 2016 due to the low recharge caused by 

the low rainfall in the wet season. Zone 4 is an exception to this pattern, as there is no 

hydrochemical variation between field surveys in 2014 and 2016 confirming the existence 

of a clay layer in this area. 
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In the coastal area, during the pre-monsoon (dry season-March 2014), there is a higher 

concentration of (Na and Cl-) due to an increase of seawater intrusion caused by lower 

recharge. As expected, samples affected by saline intrusion shows higher salinity during the 

dry season due to lower recharge. The EC values during the dry season are around 22 % on 

average higher than the wet season. On the contrary, during La Niña, this increment on 

saline intrusion on the coastal samples during the dry season is lees compared to 2014. The 

increment on CE values during the dry season is only 12 % on average compared to the wet 

season. Therefore, during La Niña drought the whole year behaves as a “dry season” causing 

its main impact in the coastal area.  

2.7. Limitations of the groundwater conceptual model and 

implications 

In this study, a groundwater conceptual model of the Kwale aquifer has been defined and 

the effects of La Niña on the hydrodynamics of the system have been assessed. However, it 

should be noted that the research here presented has some limitations and uncertainties. 

One important limitation is that the effect of “La Niña” in 2016 on the shallow aquifer is 

based only on groundwater level data from the same year which limits the understanding 

of the effect of this drought on the shallow aquifer system. Moreover, the hydrodynamics of 

the shallow aquifer in some areas are not yet completely understood. Wells located in zone 

4 did not seem to be affected by La Niña event. However, the behaviour of the system under 

longer drought periods is unknown. In the same way, hydrochemical and isotopic data from 

wells located in the Kilindini sands in zone 2 indicate different aquifer hydrodynamics in 

this area. 

Another important issue is incomplete knowledge of the full extent of the aquitard, which 

separates the groundwater system into the shallow and deep aquifer levels. While this layer 

is clearly identified in Zone 2 in the area of Base Titanium boreholes, its presence or absence 

in zones 1, 3 and 4 not affected by the palaeochannels is unknown due to the lack of deep 

boreholes in those areas. Potential connectivity between the aquifer units must be taken 

into account in terms of groundwater exploitation since intense abstraction in the deep 

aquifer could affect the shallow aquifer levels. The connectivity between the shallow and 

deep aquifer levels in the Pleistocene corals is also not well understood Whilst it is thought 

that the Pleistocene corals overlay the Mazeras Fm. in depth near the coast, there is a lack 

of knowledge about how the deep aquifer connects with the sea and thus the potential for 

salinization of both aquifer levels. 
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It was possible to identify two palaeochannels located in zone 1 and 3. However, the full 

extent and continuity of these sedimentary layers are not completely understood which in 

turn limits understanding of the hydraulic properties of the formation and the potential 

hydraulic connectivity with surrounding formations. In addition, the exact borders of the 

paleochannels and their connectivity with the sea are undetermined. Therefore, although 

water level and quality in the area of the paleochannels did not appear to be affected by La 

Niña 2016, the behavior of the system under longer drought periods and the effect of the 

palaeochannels at a regional scale cannot be defined. For example, in a prolonged drought 

it is possible that the palaeochannels could act as preferential zones of saline intrusion.  

The hydrochemical data from the Ramisi River suggests that the aquifer feeds water into 

the middle reaches of the river. However, the river-aquifer relation along the river length 

and the effect of the drought period in the river is not fully understood due to the lack of 

groundwater data from areas bordering the stream. 

The drought that occurred in 2016 did not have dramatic effects on water level and. 

However, due to the above-mentioned limitations and uncertainties, the consequences of a 

future longer drought period cannot be predicted. 

2.8. Summary and conclusions 

Drought provoked by La Niña and IOD conditions harassed the Greater Horn of Africa 

region in 2016. One of the affected areas was the coastal county of Kwale (Kenya), a rural 

area, where the effects of drought on the aquifer system can be used as an indication of 

likely effects throughout the coastal strip sharing similar geology. 

Before analysing the effect of La Niña 2016 event on the groundwater system, a conceptual 

model of the hydrogeological system was defined. By means of a geophysical approach, it 

was possible to define the aquifer geometry and its limits. The studied aquifer system is 

formed by two hydrogeological systems: one shallow aquifer composed of younger 

geological materials (Pliocene and Pleistocene formations) and a deep aquifer composed of 

older materials (Jurassic and Triassic) which outcrops inlandwards, in the Shimba Hills 

Range. In the middle part of the area, the deep aquifer acts as a confined aquifer due to the 

presence of an aquitard with very low permeability located between the younger and the 

older materials. However, the confined behaviour of the deep aquifer changes along the 

study area, becoming less confined such that connectivity between the shallow and deep 

aquifer increases. This is due to the presence of palaeochannels, one in the northern area 

(zone 3) and another in the southern area (zone 1). The shallow unconfined aquifer is 
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recharged directly by local rainfall across the area, except in the lower part of zone 4, where 

the shallow aquifer behaves as semiconfined/confined due to the heterogeneity of 

geological materials and the presence of clay/low permeability materials. The deep aquifer 

is recharged in the Shimba Hills area by preferential flow though faults and joints. The 

discharge of both hydrogeological systems is littoral to the Indian Ocean, through 

abstraction by the different water users of the region (communities, agriculture, mining) 

and through direct evaporation and evapotranspiration, etc. 

One of the effects of La Niña drought of 16/17 was the reduction in the recharge during this 

event. In 2016 recharge was reduced by 78 % compared to the wet year of 2014 and 

reduced by 69 % compared to a year with normal annual rainfall (2013). In effect, the wet 

season of 2016 behaved like a continuation of the dry season. 

The change in recharge caused by La Niña drought meant that groundwater quality 

remained constant in the samples located inland throughout the year, compared to the 

seasonal differences observed in 2014. On the other hand, due to a reduction in recharge 

attributed to La Niña drought, salinity in the coastal wells increased between March and 

June instead of being reduced, as occurs in normal years.  

Regarding groundwater quality beyond the coast, results seem to indicate that nitrate 

pollution is not a significant problem in the study area, and what exists is mainly linked to 

urban areas.  

The effect of La Niña 2016/17 event on the aquifer system in Kwale County has important 

implications for groundwater management, as the “recovery” of groundwater levels and 

quality is damaged in the absence of normal wet season rainfall. Effectively, this region 

experienced an extended dry season from the end of 2015 to the middle of 2017, with a 

consequent decrease in aquifer water levels and an increase in the saline intrusion. For 

successful long-term management of water resources, the effects of long drought periods 

must be considered together with impacts associated with increased groundwater demand 

throughout Africa. Intensification of agriculture, industrialization and population growth 

along with the effects of extended droughts may act in damaging synergy on Africa’s 

groundwater systems. 
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Chapter 3 

 

Hydrogeological and non-hydrogeological 

parameters affecting the presence of faecal 

bacteria 

Ferrer, N., Folch, A., Masó, G., Sanchez, S., Sanchez-Vila, X. 2019. What are the main factors influencing the presence 

of faecal bacteria pollution in groundwater systems in developing countries? Manuscript submitted. 
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3.1. Introduction 

Worldwide, human populations rely heavily on groundwater as a source. This situation is 

even more significant in Asia and Africa, where groundwater is the major source of drinking 

water and has an important role in improving health and sustaining urban livelihoods 

(Adelana and MacDonald, 2008; MacDonald et al., 2012). Although groundwater has been 

historically assumed to be free of bacterial pathogens, surveys carried out during the last 

decades indicate that a significant fraction of groundwater supply sources are responsible 

for water-borne diseases outbreaks around the world (Bhattacharjee et al., 2002). Globally, 

25 % of people lack access to water free from microbial contamination (Nowicki et al., 

2019). In Africa, this figure doubles, to a value above 50 % (Bain et al., 2014), far from 

compliance with the Sustainable Development Goal number 6 of the United Nations.  

Hand-pumped tube-wells, being low-cost and low-tech efficient solutions, offer affordable 

access to shallow aquifers in many developing countries across Africa, Asia and the Pacific. 

These type of wells, most generally operated by families or small rural communities, are a 

valid alternative to private or governmentally-operated deep boreholes (Ferguson et al., 

2012). However, they are susceptible to faecal contamination due to the introduction of 

bacterial pathogens into the subsoil, arising from a variety of sources, such as septic tank 

infiltration, improper disposal of solid urban waste, leachate from landfills, anthropogenic 

controlled water recharge, or crop excess irrigation with untreated or insufficiently treated 

sewage effluent (Charles et al., 2008; Goyal et al., 1984; Matthess et al., 1988; Oteng-Peprah 

et al., 2018; Yates et al., 1985). Once bacteria reach the groundwater, and under very 

favourable conditions with respect to flow, geochemistry and lack of competing indigenous 

biomass, bacterial pathogens can eventually travel considerably long distances (Sharma 

and Srivastava, 2011). Groundwater transport in shallow aquifers is primarily a function of 

the hydrogeological setting and climate conditions (Macler and Merkle, 2000). It is known 

that the transport, rate of survival and fate of microbes in the subsurface environment are 

directly influenced by the microbial population (both diversity and individual 

characteristics and concentrations, e.g., (Barba et al., 2019a)), the microbes physical state 

(dead or alive), the type and characteristics of the subsurface soil and aquifer sediment, as 

well as water temperature, quality and hydrological conditions (Rao et al., 1986). Therefore, 

in order to protect drinking water wells against microbial contamination, safe setback 

distances are essential between wastewater disposal services and water supply wells 

(Blaschke et al., 2016). 

Understanding the mechanisms of bacterial fate and transport in the subsurface is of great 

importance to control soil and groundwater pollution (e.g., Sepehrnia et al., 2018). Some 
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recent studies focus in understanding the role of the vadose zone in the flow and transport 

of Escherichia coli (E. coli) through the soil until reaching the shallow water table in 

unconfined aquifers (Sepehrnia et al., 2018; Weldeyohannes et al., 2018). Yet, this should 

be completed with the detailed analysis of the impact of design, construction and 

maintenance of individual wells. As an example, Kilungo et al., (2018) compares the water 

quality of samples from wells of different designs, in order to help guiding future efforts in 

providing affordable and sustainable interventions to improve access to clean and safe 

water in rural communities without centralized supply and sewage networks. Other 

authors (e.g., Olajuyigbe et al., 2017) examine some relevant socio-economic characteristics 

of population, such as gender, age, household size, family size, employment, and average 

income, in order to capture information about the exposure of hand-dug wells to pollution 

and contamination. Moreover, some authors (e.g., Devane et al., (2018) review the different 

faecal tracking tools to recommend the suitable method to determine faecal sources in rural 

areas. Furthermore, some studies try to correlate the temporal variation in the 

concentrations of E. coli as a function of seasonal rainfall characteristics (Elangovan et al., 

2018; Howard et al., 2003; Kayembe et al., 2018), well depths, distance to a septic tank, and 

population density (Dayanti et al., 2018; Martínez-Santos et al., 2017; Rohmah et al., 2018).  

Despite some authors try to correlate the presence of faecal bacteria to diverse sanitary risk 

factors in order to assess the microbiological risk posed by groundwater sources (Ercumen 

et al., 2017; Godfrey et al., 2006; Lin et al., 2018), to our knowledge, there are no studies 

which combine both hydrogeological and non-hydrogeological variables within the same 

study, with the goal to somehow assess the variables that are actually correlated, and also 

their relative ranking to evaluate and eventually predict faecal pollution.  

Therefore, the main goal of this chapter is to discern what are the hydrological, geochemical, 

physical and sanitary variables potentially influencing the presence of faecal bacterial 

pollution in groundwater sources in rural areas. The method proposed is based on 

performing a number of multivariate statistics evaluations, being tested in the study area, 

one of the multiple zones along the African continent heavily affected by bacterial pollution 

(Mzuga et al., 1998; Nowicki et al., 2019; Tole, 1997) in shallow aquifers of very different 

geologies and hydrochemical facies, as well as different types of waterpoints in terms of 

construction and maintenance. Understanding which variables are affecting, and to what 

degree, the presence of E. coli in the groundwater sources, could provide significant 

knowledge for an accurate management of the waterpoints, land use and water resources 

to avoid faecal contamination to population, being the cause of a combination of sanitary 

and educational problems that are perpetuating gender inequality and poverty in rural 

areas in developing countries. 
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3.2. Methods 

3.2.1. Study area 

The study area is defined in Section 1.3 (Fig. 1.1 and 3.1). Adding that the economy of these 

communities is mainly based in self-consumption livestock. There is not wastewater 

treatment, and the basic sanitation facilities in the area are pit latrines. The communities 

are supplied by diverse type of groundwater points (WP) such as hand-dug wells (large-

diameter wells, less than 30 meter deep, and frequently uncovered), hand-dug wells with 

handpumps (similar to the previous ones, but covered by the presence of hadpumps), 

handpump boreholes (small diameter boreholes, less than 30 meter deep, fully covered on 

the surface by concrete) and deep boreholes (small diameter boreholes, with depths 

exceeding 30 m).  

The area, as well as the location of the waterpoints, span the geological units defined in 

Section 2.3.  

 

Figure 3.1. Study area with the geological units. The location of the sampled points and the latrines are displayed.  
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3.2.2. Water sampling 

Two sampling campaigns were carried out in March 2016 (end of the dry season) and June 

2016 (end of the wet season) to measure several hydrochemical and bacteriological 

parameters under different climate conditions. During the field surveys, the number of 

sampling points were 78 (March) and 77 (June), here including different sources: large 

diameter hand-dug wells, either uncovered or covered wells with or without a placed 

handpump, boreholes with handpumps, and deep boreholes, and all on the range of 30 to 

80 meters depth. In addition, the main rivers in the study area, Mkurumudzi and Ramisi 

(Fig. 3.1), were also sampled. 

Samples for hydrochemical analysis were taken from wells used daily by the population, 

explained in detail in Section 2.4.4. Bacteriological samples were taken using the same 

methodology just explained, except in those points in which a bucket was needed. In those 

cases, a stainless bucket previously sterilized with ethanol was used. In the waterpoints 

with handpumps, samples were taken at the outlet point, cleaned with ethanol before 

sampling was performed. 

3.2.3. Physicochemical parameters and ion analyses 

The methodology to measure the physicochemical parameters and the diverse ion analyses 

is described in detail in Section 2.4.4. 

3.2.4. Bacteria concentration determination 

Concentrations of E. coli were determined using Aquagenx Compartment Bag Test (CBT) 

(Aquagenx, 2015). CBTs allow for a quantitative assessment of E. coli concentration based 

on a most probable number (MPN) along with an upper 95 % confidence interval (Foster 

and Willetts, 2018; Gronewold et al., 2017; Stauber et al., 2014). MPN testing involves 

multiple presence/absence tests on different volumes of the same sample. Samples were 

collected in sterile purpose-made bags stored in a fridge during their transport and 

processed within 24h, 30h or 48h of collection, depending on temperature 

recommendations by the manufacturer (Stauber et al., 2014). MPN was calculated with data 

supplied by the manufacturer, here enclosed as Table 3.1, and based on the World Health 

Organization “Guidelines for Drinking Water Quality” 4th Edition, assigning risk categories 

of drinking water to E. coli levels ranges. 
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Table 3.1. E. coli risk categories of drinking water (modified from Aquagenx, 2015), and values assigned for the 
statistical analysis. 

Sampled volume with colour 

changed 
Risk categories 

Value assigned for the 

statistical analysis 

0/100 ml Safe 0 

1-10/100ml Intermediate risk 1 

11-100/100 ml High risk 2 

>100/100 ml Very High risk/Unsafe 3 

 

3.2.5. Sanitary risk inspections 

A questionnaire comprised of 13 questions (Table 3.2), involving sanitary risk factors, was 

carried out based on Wright et al., (2013). Sanitary risk inspections were undertaken at 

each groundwater point. The first 10 questions were answered for all points, and the last 3 

for hand-dug wells only. The questions were related to physical and sanitary conditions of 

all analysed wells and the presence of latrines according to different distances (<10, <30 or 

>30m.). Questions related to animal presence around the well or any important damage 

that could influence bacterial contamination were also included. 

Table 3.2. Questions related to value the sanitary risk factors according to Wright et al. 2013. 

Question 1 Does the cement floor extend more than 1.5 m from the well? 

Question 2 Is there any ponding of water on the cement floor? 

Question 3 Are there cracks in the cement floor which could permit water to enter the well? 

Question 4 Is the pump loose where attached to the base, allowing water to enter the casing? 

Question 5 Is the drainage channel cracked, broken or in need of cleaning? 

Question 6 Do animals have access to within 10 m of the well?  

Question 7 Are there any latrines within 10 m of the well? 

Question 8 Are there any additional latrines within 30 m of the well? 

Question 9 Are there any open water sources within 20 m of the borehole? 

Question 10 Are there any uncapped wells within 30 m of the borehole? 

Question 11 Is there any scattered waste within 30 m of the well? 

Question 12 Is the cover of the well unsanitary? 

Question 13 Is there any scattered waste inside the well? 
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3.2.6. Data analysis 

Multivariate statistics is a suitable technique to treat big datasets involving different sorts 

of variables, from quantitative to categorical, and thus amenable to be used to combine 

biochemical, hydraulic, geological and external conditions (such as design, drilling 

characteristics. and maintenance) of groundwater points (Barba et al., 2019b). Principal 

Component Analysis (PCA) is a multivariate statistics method which involves the analysis 

of a number of parameters or variables, revealing associations between them, known as 

(vario)factors or components. Analyses were performed using the IBM-SPSS software.  

The PCA analyses were subjected to Orthogonal Varimax rotation, first developed by 

Thompson (2004). This implies the rotation of the original system corresponding to the 

directions of largest variance in the dataset. Variables with loadings closer to ±1 indicate 

the strongest degree of linear correlations between variables, while values within the 

interval [-0.5, 0.5] indicate weak correlations. Prior to the extraction of the factors, the 

Kaiser-Meyer-Olkin (KMO) and the Bartlett sphericity tests were conducted to assess the 

suitability of the existing data for factor analysis. KMO returns values between 0 and 1, and 

values >0.50 are considered suitable for factor analysis (Hair et al., 1995; Tabachnik and 

Fidell, 2007). The Bartlett sphericity test checks if the observed correlation matrix diverges 

significantly from the identity matrix. It should be significant (p<0.05) for factor analysis to 

be suitable. 

To assess which variables influence significantly the presence of E. coli, generalized mixed 

models with Poisson error distribution (Bates et al., 2015) were used. E. coli was included 

as a dependent variable, and covariates included correspond to the main principal 

component variofactors of the final PCA. Because of repeated measures were taken on the 

same waterpoint, “Sample ID” was modelled as a random factor. For all tests, the 

significance level was set at α = 0.05 (two-tailed test). Overdispersion was tested and 

corrected if necessary by means of including the number of observation as a random factor 

(Broström and Holmberg, 2011). All analyses were run using R 3.5.1 (Team, 2018). 

3.3.7. Selecting variables for the statistical analyses 

Statistical parametric methods accomplish best when data follows a unimodal symmetric 

distribution (Paliy and Shankar, 2016). Therefore, in order to follow better with the 

assumption of PCA analysis, some variables from the initial dataset were grouped, 

transformed and/or eliminated. Following Barba et al., (2019b), non-Gaussian 

hydrochemical variables were transformed to log concentrations, these being Alkalinity, Eh 

(a proxy for redox conditions), and the concentrations of SO42-, Na+, Cl-, and SiO2. On the 
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other hand, TOC (Total Organic Carbon), DO (Dissolved Oxygen), and the concentrations of 

NO3- and NH4+, were added to the analysis as raw data without any transformation. Since 

the aim of the statistical analysis was to emphasize the correlations with the E. coli data, 

most redundant geochemical variables, such as Mg2+, Ca2+ and K+ were disregarded due to 

the strong correlation with other hydrochemical elements. The discrete (also termed 

categorical) variables were transformed to continuous ones based on a logical structure, as 

indicated in Table 3.3. Due to the cero variability in the response in the questions 4 and 5 of 

the questionnaire (Table 3.2), these two questions were not included in the analysis. 

The variables included in the first sets of PCAs to value to correlation of E. coli with all type 

of water points were: geology; aquifer unit; type of well; sanitary risk factors (Questions 1, 

2, 6, 7, 8, 9, 10); field parameters (conductivity, pH, TOC, alkalinity, DO, Eh); and 

hydrochemical parameters (NH4+, Cl-, SO42-, NO3-, Na, Si). The closest latrine was considered 

for every waterpoint, even if several were found nearby. The two field surveys were 

considered, using the date of each field campaign as a variable of seasonality. 

The variables included in the second sets of PCAs, targeting to the correlation of the 

presence of E. coli with a subset of waterpoints, here only hand-dug wells and hand-dug 

wells with handpumps, were: the same as the previous mentioned, adding the variables 

(both expressed in m) water column as (𝑤𝑒𝑙𝑙 𝑑𝑒𝑝𝑡ℎ − 𝑝𝑖𝑒𝑧𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑙𝑒𝑣𝑒𝑙) and depth to 

groundwater level (GWL), which were only measured in these type of waterpoints. 

Furthermore, the questions related to sanitary risk factor included in the analysis were 1, 

2, 3, 6, 7, 8, 10, 11, 12 and 13. 
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Table 3.3. Assigning categorical data to quantitative values to be included in the statistical analysis. 

Variable Weights 
Value 

assigned 
Justification 

Geology 

Pliocene sands 

Pleistocene sands 

Pleistocene sands /corals 

Pleistocene corals 

Sandstones. 

1 

2 

3 

4 

5 

According to the aquifer 

units composition based on 

the conceptual model 

described in Chapter 2. 

Aquifer unit 

Shallow aquifer 

Deep aquifer 

0 

1 

 

Type of well 

Hand-dug well 

Hand-dug wells w/handpump 

Handpump 

Deep borehole 

1 

2 

3 

4 

Increasing from the 

simplest structure to the 

most complex one. 

Sanitary risk factors from 

questionnaire (Table 2) 

No 

Yes 

0 

1 

 

 

3.3. Results 

3.3.1. E. coli quantification 

33 of the 78 waterpoints sampled in March 2016 showed low-risk, meaning no E. coli 

colonies were detected; 5 waterpoints were classified as intermediate-risk, 12 as high-risk 

and 28 were in the range very high-risk/unsafe (Table 1, Appendix B). Samples from surface 

bodies (rivers) were classified as very high risk. In the June 2016 campaign, E. coli risk was 

measured in 77 waterpoints; 34 showed low-risk, (no E. coli colonies), 3 intermediate-risk, 

15 high-risk, and 25 very high-risk/unsafe (Table 2, Appendix B).  

72 samples were measured in both campaigns in which 13 % of the waterpoints reduced 

the E. coli risk from March to June, while 7 % of the points incremented the risk factor in 

the latter campaign with respect to the March one.  
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3.3.2. PCA results 

Five different PCAs were carried out to evaluate all the information available and 

considering all type of wells/boreholes present in the study area (Table 3.4). Data from both 

sampling campaigns were included, and the samples for the surface water were not 

considered. We indicate, in the same table and for each statistical analysis performed, the 

extracted components and their variables, as well as the proportion of variance represented 

by each component. The measure of sampling adequacy (KMO test value) is reported. 

Furthermore, a brief explanation about the indication of each component is included for 

later discussion.  

All type of groundwater points (wells/boreholes) 

A first PCA1 (Table 3.4) was conducted in order to observe which physicochemical variables 

displayed high correlation and to exclude those which would make the subsequent PCAs (3 

to 5) redundant or masked (thus reducing reliability). The component four indicated that 

oxygen changes with seasonality, could be attributed to a slight increment in recharge of 

oxygenated water during the wet season (high DO values). PCA2 (Table 3.4) was conducted 

in order to exclude the sanitary risk factors (Table 3.2) that do not add significant 

information in the subsequent analyses. Once the two firsts PCAs were conducted, the most 

redundant variables were detected, then removed from the list of variables, and additional 

PCAs were performed adding the variable representing the concentration of E. coli. PCA3 

(Table 3.4) thus contains the six most relevant hydrochemical variables from the first PCA1 

plus E. coli concentrations.  

E. coli concentration was also added to seven selected variables from PCA2 to perform PCA4 

(Table 3.4). Here, the first component shows a negative correlation between E. coli 

concentrations, Q1 “Does the cement floor extend more than 1.5 m from the well?”, but 

positive correlation with Q8 “Are there any additional latrines within 30 m of the well?”, 

suggesting faecal bacterial pollution in wells located near latrines, and for not properly 

constructed wells. Notice that type of well and presence of cement floor (Q1) were 

positively correlated, as virtually all handpumps are cemented.  

After conducting PCA3 and PCA4, the variables most correlated with the presence of E. coli 

were selected to conduct the final PCA5 (Table 3.4), here including hydrochemical 

parameters, sanitary risk factors, latrine data and E. coli quantification, for a total of ten 

variables. Altogether, this indicates that all deep boreholes have handpumps (or pumps), 

and that the probability of faecal bacterial pollution increased with the presence of nearby 

latrines and with uncapped wells. The second component indicated a correlation between 
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Na concentration and the presence of cemented floor around the well, as the latter is 

common in waterpoints situated near the coast line, with seawater intrusion influence. The 

results of the PCA5 are represented in Figure 3.2 in a projection on the plane corresponding 

to variofactors 1 and 2. 

Once the final correlation between hydrogeological and non-hydrogeological parameters 

with the presence of E. coli was obtained, a new and final PCA5.1 (Table 3.4) was performed 

including the same variables as PCA5, but now removing E. coli from the set, thus in order 

to assess which variables influence most significantly the presence of E. coli. Based on the 

results of the PCA5.1 a generalised mixed model with Poisson error distribution was 

performed, including principal components variofactors as covariates. The covariates 

affecting significantly the presence of E. coli were only C1 (Figure 3.3a; χ21= 63.379; p < 

0.001) and C2 (Figure 3.3b; χ21= 3.852; p = 0.049), while C3 (χ21= 2.655; p = 0.103) and C4 

(χ21= 0.199; p = 0.655) were not significant (p values exceeded 0.05), thus making the 

conclusions of PCA5 even more robust. 

 

Figure 3.2. Main results of PCA5. Samples are projected to variofactor space (VF1 and VF2 axes), and position of 
samples is scaled for visualization purposes. Size of the points increase with E. coli measurements. Grey arrows 
represent the contribution of each variable projected into the variofactor plane, so that components can be easily 
identified.  
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Figure 3.3. Significant relation between E. coli and variofactors 1 (A) and variofactors 2 (B) from PCA5.1 considering 
all types of wells. E. coli ranges from safe (O) to unsafe (3) (Table 2.1).



 

 
 

Table 3.4. First components extracted from PCA analyses (bold indicates that the correlation is inverse);–log in geochemical variables indicates that log transformation 
was performed; Q indicates “question” (from Table 3.2.). For all PCA’s the Bartlett sphericity test was significant (p<0.001). 

Type of 

variables 

# of 

variables 

PCA 

numb

er 

Extracted components 
% of 

variance 

Total of 

variance 

KMO 

Test 

Value 

Indication of each component 

Physicochemica

l parameters 
14 PCA1 

C1: Geology, Log Cl-, Log EC, 

Log Na, Log SO4
2- 

25.65 

72.74 0,69 

Major ions and geological setup 

C2: Aquifer unit, Geology, 

Log Si 
15.18 Aquifer unit 

C3:NH4
+, Log Eh, Log 

Alkalinity 
11.38 Redox state 

C4: Date, DO 11.07 Oxygen as function of seasonality 

C5: NO3
-, TOC 9.46 Nitrate correlated with TOC 

Sanitary risk 

factor+latrine 

data 

12 PCA2 

C1: Q6, Type of well 17.41 

63.62 0,51 

Deep boreholes mainly from the industries have a 

fence 

C2: Q1, Q9, Q10 13.34 Unknown explanation 

C3: Num. Latrines, 

distance latrines 
12.44 Presence and distance from latrines 

C4: Q7 10.49 
Isolated variable representing a statistical 

component 

C5: Q2 9.94 
Isolated variable representing a statistical 

component 

Physicochemica

l + E. coli 
7 PCA3 

C1: Aquifer unit, E. coli 21.32 

62.44 0,50 

Highest presence of E. coli in the shallow aquifer 

C2: Date, DO 21.18 Oxygen as function of seasonality 

C3: log Eh, Na 19.94 Redox state 

8 PCA4 
C1: Q1, Q8, Type of well, E. 

coli 
26.31 59.55 0,60 

Latrines nearby and  bad well properties 

construction more E. coli 



 

  

Sanitary risk + 

E. coli +latrine 

data 

C2: Q10, Distance latrines 17.5 Unknown explanation 

C3:Q2, Q7 15.74 Unknown explanation 

Physicochemica

l data + E. 

coli+Sanitary 

risk factor 

+latrine data 

10 PCA5 

C1: Type of well, Aquifer 

unit, Q8, E. coli 
25.39 

69.05 0,63 

Main variables related to presence of E. coli 

C2: Log Na, Q1 15.74 
Waterpoints located in the coastline (more Na+) 

have cemented floor 

C3: DO, log Eh, Num. 

Latrines 
15.08 Eh partially depends on DO content 

C4: Q2 12.84 
Isolated variable representing a statistical 

component 

PCA5 without E. 

coli 
9 PCA5.1 

C1: Type of well, Aquifer 

unit, Q8 
23.32 

69.99 0,61 

Main variables related to presence of E. coli 

C2: Log Na, Q1 17.49 
Waterpoints located in the coastline (more Na+) 

have cemented floor 

C3: DO, log Eh, Num. 

Latrines 
15.26 Eh partially depends on DO content 

C4: Q2 13.92 
Isolated variable representing a statistical 

component 
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Hand-dug wells and Hand-dug wells with handpumps 

Another way of reading Figure 3.3a is by noticing that hand-dug wells (either with or 

without handpumps) are the most polluted well types, with significantly high presence of 

E. coli in agreement with previous studies (Dayanti et al., 2018; Kilungo et al., 2018; Mzuga 

et al., 1998; Ugochukwu and Ojike, 2019). In order to find which variables are affecting the 

presence of E. coli in these most polluted points. Five new PCAs were performed now only 

including data from hand-dug wells. Therefore, we included here the variables only 

measured in this type of wells such as groundwater depth (GWL), groundwater column 

height within the well, and some specific sanitary risk factors related only to this type of 

waterpoints. Like the previous sets of PCAs both sampling surveys were included (Table 

3.5). 

As in the previous section, the first PCAa (Table 3.5) was a preliminary screening of 

variables to select the ones providing information, thus allowing eliminating those that 

were redundant or irrelevant for the information point of view. A second analysis was 

conducted (PCAb) (Table 3.5), considering only the sanitary risk factors from the 

questionnaire in Table 2 for this particular subset of waterpoints (thus, without the need to 

include here the variable “type of well”). Following the same scheme as in the previous set, 

these two PCAs were followed by two more where the variable E. coli is added. PCAc 

included selected hydrochemical variable and E. coli. PCAd included sanitary risk factors 

(selected from the results of PCAb) and the variable E. coli, for a total of nine variables.  

PCAe involved nine variables including hydrochemical, risk factor variables and presence of 

E. coli in the same subset of waterpoints. In component two, E. coli showed inverse 

correlation with depth to groundwater level, water column and Eh. In general, despite the 

uniformity in the physical and chemical properties in the water column, a prominent 

stratification of microbial groups was observed (consisted with Karlov et al., (2008). The 

inverse correlation between E. coli and the water column suggested preferential presence 

of faecal bacteria when the water column was low. Results of PCAe are represented in Figure 

3.4 in a projection on the plane corresponding to variofactors 1 and 2. 

Finally, PCAe.1 was performed including the same variables as PCAe, just excluding E. coli. In 

short, the components obtained were very similar to those from PCAe, thus indicating 

robustness in the previous analysis. From the results of PCAe.1, a generalised mixed model 

with Poisson error distribution was performed including principal components 

variofactors as covariates. The analysis indicates that the covariates affecting significantly 

the presence of E. coli only in hand-dug well and hand-dug well with handpumps were C1 

(Figure 3.5a; χ21= 7.399; p = 0.006) -sanitary issues- and C2 (Figure 3.5b; χ21= 4.496; p = 
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0.033) -redox state related to GW levels-, while C3 (χ21= 1.388; p = 0.238), as well as 

subsequent components, were not found significant.  

 

Figure 3.4. Main results of PCAe. Samples are projected to variofactor space (VF1 and VF2 axes), and position of 
samples is scaled for visualization purposes. Size of the points is according to E. coli measurements. Grey arrows 
represent the contribution of each variable projected into the variofactor plane, so that components can be easily 
identified. 

 

Figure 3.5. Significant relation between E. coli and variofactors V1 (A) and V2 (B) from PCAe.1 considering only 
hand-dug wells and hand-dug wells with handpumps. E. coli ranges from safe (O) to Unsafe (3).



 

 
 

Table 3.5. Relation to main correlations among variables obtained by PCA analysis. Negative correlations displayed in bold); –log in geochemical variables indicates 
that log transformation was performed; each PCA includes. For all PCA’s the Bartlett sphericity test was significant (p<0.001). 

Type of 

variables 

#of 

variable

s 

PCA 

number 
Extracted components 

% of 

variance 

Total 

of 

varian

ce 

KMO 

Test 

Value 

Indication of each component 

Physicochemi

cal 

parameters 

15 PCAa 

C1: Geology, Log EC, Log Na, 

Log Cl-, Log SO42- 
23.02 

86.72 0,540 

Major ions and geological setup 

C2:Geology, Log EC, Log 

Alkalinity, GWL 
15.32 

GWL in function of geology and chemical 

properties 

C3:Date, DO 11.57 Oxygen as function of seasonality 

C4:NO3-, Log Si 10.42 Flux indicators 

C5: GWL, Water Column 9.86 Water levels 

C6: Log Eh, NH4+ 8.96 Redox state 

C7: TOC 7.57 
Isolated variable representing a statistical 

component 

Sanitary risk 

data 
12 PCAb 

C1:Q6, Num. Latrines 23.02 

71.13 0,564 

Latrines located inside the main villages in the 

coast, where animals have no physical access 

C2:Q1, Q3, Q10 15.32 Well construction and maintenance parameters 

C3: Q8, Q12, Q13 11.57 
Pollution and sanitary conditions that is presence 

of latrines 

C4: Q11 11.04 
Isolated variable representing a statistical 

component 

C5: Q2, Distance Latrines 10.18 Unknown explanation 

Physicochemi

cal + E. coli 
8 PCAc 

C1: Log Eh, E. coli, Water 

Column, DO, TOC, Geology 
55.09 72.16 0,805 

Higher E. coli concentrations as the water 

columns decrease; also E. coli correlates to redox 

potential (Eh, DO) and presence of organic carbon 



 

  

C2: NO3-, GWL 17.07 

The largest villages with NO3- pollution are 

located near the coast where the groundwater 

level is shallow 

Sanitary risk 

+ E. coli 
9 PCAd 

C1: Q1, Q12, Q13, E. coli 26.97 

69.2 0,573 

E. coli positively correlated with that of 

unsanitary well cover, and waste inside the well , 

and inversely with the present of cement floor 

C2: Q6, Q8 14.4 
Latrines located inside the main villages in the 

coast, where animals have no physical access 

C3: Q11 13.97 
Isolated variable representing a statistical 

component 

C4: Q2, Q3 13.86 
Potential sanitary conditions caused by direct 

water infiltration 

Physicochemi

cal + E. 

coli+Sanitary 

risk data 

9 PCAe 

C1: Q1, Q12, Q13 20.64 

68.91 0,517 

Unsanitary well cover, and waste inside the well , 

and inversely with the present of cement floor 

C2:Log Eh, E. coli, Water 

column, GWL 
19.45 

E. coli inverse correlated with depth to 

groundwater level, water column and Eh 

C3:Q8, Q13, Water column 15.93 Latrines and scattered waste inside open well 

C4: Geology 12.89 
Isolated variable representing a statistical 

component 

PCAe without 

E. coli 
8 PCAe.1 

C1: Q1, Q12, Q13 24.41 

60.71 0,497 

Unsanitary well cover, and waste inside the well , 

and inversely with the present of cement floor 

C2:Log Eh, Water column, 

GWL 
18.71 

E. coli inverse correlated with depth to 

groundwater level, water column and Eh 

C3:Q8, Water column 17.59 Latrines and scattered waste inside open well 
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3.4. Discussion 

In the study area, a coastal rural area in South-East Kenia, it was observed that 

microbiological pollution levels exceeded the WHO drinking water quality 

recommendations in almost all the waterpoints analysed. We could not find any direct 

relation of geology to E. coli pollution, although in other cases we believe that geology could 

be a significant factor, as it might drive fast/slow recharge. 

Most bacteriological problems in supply waterpoints can be associated to improper well 

design, bad construction, and/or insufficient maintenance practices. (Lutterodt et al., 

(2018) already points out that shallow hand-dug wells have more pollution and sanitary 

issues as compared to boreholes. In this study, well type (or design) is the variable most 

controlling the presence of E. coli. Inadequate maintenance of hand pumps, improper 

sanitation and unhygienic conditions around the waterpoints, are factors that may 

contribute to faecal contamination. Our results are in line with those of several authors (Lin 

et al., 2018; Nkini et al., 2006; Sukumaran et al., 2015), since unsanitary covers and litter 

scattered inside (or around) the well strongly result in the presence of E. coli in hand-dug 

wells, regardless of the presence of handpumps. Furthermore, the extension of the cement 

floor around the waterpoints, is found to be an important factor affecting E. coli presence, 

since a smaller protection by cementation could imply short transit times (direct injection 

of bacteria) through the non-saturated zones. 

The highest counts of faecal bacteria were observed near human settlements. Unlike other 

studies that suggest that groundwater faecal pollution is influenced by seasonal changes 

(Howard et al., 2003) and is significantly higher during the wet season compared to the dry 

season (Kayembe et al., 2018), the present study does not show any difference in E. coli 

quantification between seasons. This could be explained due to the low precipitation during 

the wet season in 2016, when the study area was affected by La Niña event, with an 

estimated 69 % reduction in recharge compared to average values as stated in Chapter 2. 

Actually, in the study area, it was observed that E. Coli concentration values increased 

during low groundwater levels mostly in dry season, related most probably to direct input 

of bacteria (either for well construction or maintenance conditions) into small volumes of 

water. Future research is needed to understand the actual causality of this correlation, since 

longer and more recurrent droughts will be expected under future climate change 

conditions that in sub-Saharan Africa might imply the lowering of groundwater levels, 

causing a potential cascading effect on water availability and quality.  

Some geochemical variables displayed a strong correlation with the registered 

concentrations of E. coli. Yet, in some cases it is only due to some external factor that 
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explains both variables together. An example, is Na+ concentrations. In the study area, Na+ 

and E. coli concentrations display a significant negative correlation; low Na+ and high E. coli 

concentration values were found in the wells located in the Magarini and Kilindini sands. 

This geological formation shows low transit time through the unsaturated zone (recall 

Chapter 2) and thus less attenuation capacity of the soil. Therefore, high E. coli counts reach 

the shallow aquifer. These observations are in line with Howard et al., (2003), who 

suggested that fast recharge is the major cause of microbiological contamination, and 

underpins that the use of hydrochemical and isotopical data, routinely used to evaluate 

transit times in aquifer systems, might also be used as indicators of the presence or absence 

of faecal pollution in other study areas in similar realities.  

Regarding the risk factors affecting all type of waterpoints, this study confirms that the 

presence of leaching pit latrines in the vicinity of supply wells is a clear driver of faecal 

pollution, causing serious concerns for the public, as already shown in Howard et al., 2003; 

Graham and Polizzotto, 2013; Martínez-Santos et al., 2017; Prüss-Ustün et al., 2016; Schmoll 

et al., 2006. This effect increases whenever there is a general lack of physical barriers (e.g., 

concrete) in the latrines between stored excreta and soil and/or groundwater (Van 

Ryneveld and Fourie, 1997). Despite the presence of E. coli in the study area is correlated 

to the presence of pit latrines within 30 m from the well, it is not correlated to the actual 

number of latrines in the vicinity; this could indicate that one latrine is enough to cause 

pollution at the well, becoming irrelevant the actual number of them.  

Redox condition shows a positive correlation with dissolved oxygen, number of latrines and 

E. coli concentration. The latter are an obvious source of oxygenated water with a large 

organic matter and bacteria loads. Low values of Eh results in enhanced transport of 

bacteria in groundwater. E. coli is also correlated again to water levels; thick non-saturated 

zones increase water transit times from the surface to the aquifer, reducing aquifer 

vulnerability to pollution. As Weldeyohannes et al. (2018) show, the levels of E. coli 

decrease dramatically (below detection limits) when the vadose zone is more than 0.9 m 

thick. This could be due to the additional mechanisms in the unsaturated zone favouring 

colloid/bacterial retention at the solid-water interfaces (Sepehrnia et al., 2018a). This effect 

might counteract that of bacteria increasing with reducing water levels mentioned before; 

a reduction of the saturated thickness also results in an increase in the unsaturated area 

that can allow a greater retention of faecal bacteria in the unsaturated zone. 

A management strategy to reduce sanitary risks related with groundwater supply should 

focus on the correct construction of the wells to improve the isolation of the waterpoints to 

possible external contaminants. One possible solution should imply drilling of shallow 
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boreholes with handpumps totally protected. Furthermore, despite they are less affordable, 

drilling deep boreholes seem to be the safest solution, but could result in groundwater that 

are in anaerobic conditions, with the need for additional treatment. Well maintenance, 

protection of waterpoints (preventing water ponding around, and with sanitation coverage 

implementation), and sanitary practices are a must, and should be emphasized; as a 

consequence, awareness and sensitization campaigns to eradicate malpractices should be 

carried out. 

3.5. Conclusions 

While the presence of faecal bacteria in domestic supply wells has been acknowledged for 

decades, no study until the present discriminate and quantify how the combination of 

hydrogeological and non-hydrogeological parameters correlate with the presence of E. coli 

as a proxy of faecal pollution. Therefore, a number of qualitative and quantitative variables 

combining geological, hydrological, geochemical, sanitary risk factors, well types, and 

maintenance variables have been statistical analysed for correlations with E. coli 

concentrations in a coastal area of Sub-Saharan Africa, with high presence of faecal bacteria 

in the groundwater used to supply the population. 

This study demonstrates that including in a PCA different type of variables, such as cited 

previously, is a useful methodology to obtain precise information of the relations between 

all those variables, most times separated in analysis (e.g., in modelling efforts). 

Furthermore, this study goes a step forward when trying to assess which variables are 

related to faecal bacteria pollution by providing reliable information on which of these 

variable significantly influence the presence of E. coli. Thus, including PCA variofactors as a 

covariate in mixed models might become a useful tool when working regions in order to 

compare different areas, as well as to assess the main factors influencing E. coli and/or the 

presence of other pathogens. 

Despite the geological formation itself has not shown a direct relation to E. coli pollution, 

different certain hydrogeological properties (capacity of colloids retention, flow velocity, 

redox condition, etc) could be related. Therefore, the way to include geology when the risk 

pollution is evaluated should be according to hydrogeological properties more than just the 

geological formation where the waterpoints are located.  

This methodology has confirmed in a quantitative way that the well constructive 

characteristics are most important to avoid bacteria presence in groundwater in the field. 

Extended cement floor would reduce the presence of faecal bacteria pollution, being more 
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important in those areas where the water infiltrates fast through the unsaturated zone. 

Furthermore, knowing the geochemical elements, indicators of transit time, and 

groundwater depth, could be a good indicative of faecal bacteria presence. Hence, easy 

hydrogeological and geochemical measurements such as Eh and water column, easy to 

identify and measure, can help identifying the presence of faecal bacteria. The former can 

be related to the presence of input water with high organic matter load (indicating the 

presence of nearby latrines), while the latter is related to climate and to well operation 

conditions.  
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4.1. Introduction 

The exploitation of groundwater generates different types of negative externalities 

(Giannoccaro et al., 2017): (i) reduced availability of the resource for other current or future 

uses; (ii) increase in extraction costs; (iii) possible risk of water quality degradation; and 

(iv) damage to groundwater dependent ecosystems. If the exploitation of groundwater 

occurs close to the coastline, other negative externalities and costs are generated: (i) 

reduction of groundwater supply due to enhanced corrosion and well failure; (ii) health 

problems; (iii) negative effects on agriculture, since crop, land quality and cropping area 

potentially decrease (SASMIE, 2017). 

The expected increase in abstraction must be considered together with the expected 

increase in droughts in dry periods and precipitation in wet periods (Solomon and Qin, 

2013; Stocker et al., 2013). Climate change will affect hydrogeological system dynamics and 

their water resources quality (Mas-Pla and Menció, 2018). For example, aquifer recharge 

reduction caused by climate changes is an important factor in aquifer salinization (Oiro and 

Comte, 2019). The increased abstraction is poorly compatible with the sustainable use of 

coastal aquifers where there is a high population density and where tourism is concentrated 

(Dhar and Datta, 2009; Mantoglou, 2003; Okello et al., 2015b), since the use of coastal 

groundwater is compromised by salinization (Michael et al., 2017). Many coastal aquifers 

in the world are currently experiencing intensive saltwater intrusion (SWI) caused by both 

natural and man-induced processes (Custodio, 2010; De Filippis et al., 2016a, 2016b; 

SASMIE, 2017; Adrian D. Werner et al., 2013). 

In the last couple of decades many African countries have seen unprecedented economic 

growth rates, and this has drawn the region into the global limelight (World Bank, 2013). 

This industrialization process has led to an overall increase in groundwater abstraction in 

most African countries (Adelana and MacDonald, 2008). The drilling of new deep boreholes 

with higher abstraction rates than traditional dug wells or shallow borehole handpumps 

has increased in many areas to meet the water demands of these new economic activities 

(Comte et al., 2016).  

The high socio-economic and ecological importance of groundwater and the fact that 

groundwater is an important strategic resource are recognised throughout developing 

countries. However, data on groundwater systems are sparse and the current state of 

knowledge is poor (Pavelic et al., 2012). Most of the time the data that are available are 

often spatially and temporally inconsistent (Candela et al., 2014) These are serious 

limitations for the sustainable development of groundwater resources (Gaye and 

Tindimugaya, 2018). Key aquifers need urgent characterization to change the current 
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situation, in which development proceeds with insufficient aquifer knowledge (Olago, 

2018). One of the main challenges when studying these aspects is the lack of information, 

especially with respect to abstraction data and the location of abstraction well fields, in 

order to determine the possible future impacts at the local and/or regional scale on 

groundwater systems. 

A study by Pavelic et al. (2012) emphasizes that data on groundwater systems throughout 

Sub-Saharan Africa SSA is sparse, so the current state of knowledge creates a barrier to 

sustainable groundwater development. In order to define realistic local management policy 

it is essential to understand groundwater use and users. One of the major challenges to 

proper governance is lack of scientific and technical knowledge about aquifers. Without 

adequate technical understanding of aquifers, actors may not properly identify the source 

of aquifer pollution or depletion and may be prone to blaming each other for 

mismanagement (IGRAC, 2019). Thus, in the absence of coordinated efforts to manage 

aquifers, it is unlikely that any advanced technical understanding will be achieved. This 

paradox is the crux of the groundwater governance challenge and perhaps explains why 

effective groundwater governance regimes are still elusive today. 

Therefore, the aim of this study is to assess how increased competition for water may be 

affecting groundwater systems by analysing the sustainability of new abstraction regimes 

in the study area. Kenya is examined, where new water-reliant industries have been 

established since 2012. This should avoid repeating the errors made in many areas 

worldwide, such as in the Mediterranean basin, where some coastal aquifers were salinized 

decades ago by tourism, industrial and agricultural groundwater abstraction and where 

local economies suffered the consequences, costs and expenses of developing the new 

water sources that were required (SASMIE, 2017). Aquifer sustainability has been assessed 

during a drought period caused by the 2016 La Niña event (Uhe et al., 2018), and during the 

following recovery period after the significant rains of 2017. Knowing the aquifer behavior 

under different climatic conditions can help decision making in the future, and assist in 

ensuring sustainable use of the groundwater system. 

4.2. Study area 

The study site is defined in Section 1.3 of the present document. From what is said before 

adding that there are around 300 handpumps providing drinking water to local 

communities, schools and healthcare centres scattered across the study area. These 

handpumps are used daily by the population to fill buckets for different purposes, such as 

drinking and domestic water uses. The coastal strip has a long established coastal tourism 
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industry at Diani. Most of the hotels are located in the coastal area in the north of the study 

area. Furthermore, Ukunda area has many private homes that have their own shallow well 

or borehole. In the last two decades, the acquisition of small parcels of land has increased 

in this area to build bungalows/maisonettes for which the source of water for construction 

and supply is often groundwater. 

The two major economic activities established in the study area are defined below: The 

Special Mining Lease operated by Base Titanium cover 1661 ha. The Project resource 

comprises two dunes that contain economically viable concentrations of heavy minerals. 

These two areas are separated by the Mkurumudzi River (Fig. 1.1). Mine construction was 

completed at the end of 2013 and the first bulk shipment of mineral departed from 

Mombasa in February 2014. Projected 2019 production is up to 450,000 tonnes of ilmenite; 

93,000 tonnes of rutile (14 % of the world’s rutile output); and 37,000 tonnes of zircon. The 

total mineral resource on 30th June 2018 were estimated to be 134 million tonnes. 

Currently KISCOL’s sugarcane fields occupy a total area of 5500 ha, of which 4100 ha have 

been put to cultivation of sugarcane since 2008; 800 ha are currently under sub-surface 

drip irrigation. The fields are located in the Kinondo, Milalani/Shirazi and Nikaphu areas, 

the last one being located south of the study area (Fig. 1.1). The factory has the capacity to 

crush 3000 tonnes of cane per day and it is projected to produce 3500 tonnes/day of sugar 

at full capacity, self-generating 18 MW of electricity in a bagasse-fired power plant, and 

producing around 50,000 L/day of ethanol (http://www.kwale-group.com). The planned 

area for irrigated (not rain-fed) sugar at KISCOL is 3000 ha, to be achieved when all dams 

and the bulk water system (BWS) is completed in the coming years.  

4.2.1. Climate 

The area experiences a bimodal rainfall pattern: 1) From May 2016 to early 2017, the study 

area experienced unusually dry conditions. Local weather data (Kwale Agricultural 

Department Station KMD 9439001 in Kwale) suggest that this period represents one of the 

most extreme droughts since 1974 in this area (recall Section 2.2). 

4.2.2. Hydrogeology 

The conceptual model of the groundwater system has been defined in detail in Chapter 2. 

https://en.wikipedia.org/wiki/Ethanol
http://www.kwale-group.com/
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4.3. Methodology 

4.3.1. Recharge estimation 

In order to assess the sustainability of the aquifer system during the 2016 La Niña drought, 

the total recharge to the aquifers of the study area has to be known, which is the main input 

of the system as stated in Section 2.5.2. The recharge was calculated following the 

methodology, based on the soil water balance for the period 2010-2017 (recall Section 2.4).  

In that study, groundwater recharge was calculated for each land cover type and each soil 

type, following the process presented in the Figure 1, Appendix C. Rainfall data and 

meteorological parameters were obtained from three different stations for the period 

2010-2015. At the end of 2015, 11 manual rain gauge stations were established, spread 

around the study area. These new data improved the accuracy of recharge estimation. 

During 2016-2017, temperature data were obtained from the Trans-African 

HydroMeteorological Observatory (TAHMO) stations (www.tahmo.org) (Fig. 4.1).  

Table 4.1. Rainfall and temperature data from different meteorological stations used to calculate groundwater 
recharge. The location of each station is shown in Figure 4.2. 

Rainfall & Temperature 

2010-2015 

Rainfall from manual 

rain gauge station 

2016-2017 

Temperature 2016-2017 

SWAT Nº 45395 

Boyani station 

TAHMO Kidongo gate 

Footprints 

Kidongo gate 

KISCOL 

Muhaka ICIPE 

Mwachande 

SWAT Nº45394 
KISCOL TAHMO Msambweni 

SACO Muhaka 

SWAT Nº42397 

Hobo Msambweni 

TAHMO Msambweni 

SACO 

Jabalini 

KISCOL 

Mwachande 

 

http://www.tahmo.org/


Sustainability of the aquifer system  75 

 
 

4.3.2. Hydrochemical data 

In order to assess the possible effects of the water-reliant industries on the groundwater 

system, hydrochemical field data obtained during La Niña event in 2016 were used (recall 

Chapter 2). 

In order to study the aquifer recovery after La Niña event, hitherto not studied, the 

groundwater level and electrical conductivity (EC) of 23 points were measured in Magarini 

sands, Kilindini sands and the Pleistocene corals every two weeks from 4 m bgl to 27 m bgl 

(below ground level) after La Niña event, until December 2017. These points are part of a 

monitoring network in which groundwater levels and physicochemical parameters were 

measured every two weeks. Fortnightly groundwater levels (2012-2017) measured by 

Base Titanium in its monitoring network have also been used to study the aquifer evolution 

as well as the potential interaction between the shallow and the deep aquifer during the 

study period. 

To represent EC evolution in the study area, this information was mapped for each of the 

seven field surveys using ArcGis 10.0 software, and the hydrogeochemical analysis tool 

QUIMET (Velasco et al., 2014). To represent the spatial distribution of the variables, the 

Inverse Distance Weighting (IDW) method was used, which is a deterministic method that 

allows multivariate interpolation from a set of known scattered points. The EC data were 

obtained from different wells measured during the field surveys carried out in the study 

area in September 2013, March 2014, June 2014, March-May 2015, and September 2015. 

The physiochemical parameters measured in situ were temperature, pH and EC25 (electric 

conductivity at 25 ºC) by means of a Hanna Instruments meter. 

In order to understand the geochemical processes occurring in the area affected by 

seawater intrusion (SWI), a geochemical modelling exercise was carried out to understand 

the long-term evolution in this geological context and the potential impacts of SWI 

dynamics. Given the composition of the Pleistocene corals, different geochemical models 

considering several conceptual hydrogeological models were generated to understand 

which reactions are taking place, to what extent, under which conditions, and how water 

quality and aquifer mineralogy could change due to SWI. 

PHREEQC software was used to simulate the mixing between fresh groundwater located 

inland in the Pleistocene formation with EC < 1000 µS/cm and one sample from the saline 

water upwelling on the beach (Diani), which is 83 % seawater according to chloride 

concentration (Table 1, Appendix C). A total of 20 mixed waters were simulated, each under 

5 different conceptual hydrogeological scenarios: 1) initial and mixing solutions in 
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equilibrium with calcite; 2) initial and mixing solutions in equilibrium with calcite and 

dolomite; 3) none of the samples in equilibrium with calcite or with dolomite; 4) only the 

initial solution in equilibrium with calcite; and 5) both end member solutions in equilibrium 

with calcite and dolomite, but not the mixed waters. 

4.4. Abstraction data and future estimation 

One of the main challenges when studying this kind of area is the lack of information, 

especially abstraction data and the location of production boreholes. It proved very helpful 

to integrate information from the Water Resources Authority (WRA) and from groundwater 

users in the area (particularly the mining and sugar companies). The abstraction permits 

for each economic activity were obtained from the Water Resources Authority (WRA). The 

WRA data comprised the permitted daily well/borehole abstraction volumes for individual 

consumers and companies, such as Base, KISCOL, the hotels in the South Coast, and 

community boreholes. However, not all the abstraction data from the different water users 

have the same accuracy. 

Base Titanium provided daily abstraction data from the end of 2013 to 2017. These actual 

abstraction estimates are very accurate. Unlike Base Titanium, KISCOL’s actual abstraction 

rates were not available. However, the company report that they control drip irrigation by 

means of soil humidity sensors to conserve water. Therefore, KISCOL’s estimated monthly 

abstraction is based on soil evaporation deficit (ETD). The ETD is the difference between 

potential evapotranspiration and actual evapotranspiration under natural conditions, 

which gives the minimum amount of irrigation water required to maintain the soil moisture 

that allows the crop to get the water it needs. Multiplying the ETD by the KISCOL irrigation 

area, the minimum crop water requirement (MCWR) is obtained. 

Observed groundwater abstraction was available for only one hotel located at the coast in 

Zone 4. Therefore, a complementary estimate of hotel abstractions using other data sources 

was made. Hotel locations, both those with and without WRA permit data, were obtained 

from Google Earth. The number of rooms for each hotel and the hotels’ class were collected 

from the TripAdvisor webpage. Total groundwater volume consumed by hotels was 

estimated using the consumptions specified in the Practice Manual for Water Supply 

Services in Kenya (2005) for each type of hotel, assuming a water use of 600 L/day per bed 

for high class hotels and 300 L/day per bed for medium class. For 35 % of the hotels 

identified from Google Earth, interviews with hotel managers validated consumption data. 

The Kenya National Bureau of Statistics (KNBS) provided bed occupancy data for the South 

Coast 2015 to 2017. Despite hotel abstraction data does not present the same degree of 
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accuracy as Base Titanium data, using this methodology it is possible to estimate the order 

of magnitude of hotel abstraction. 

The average abstraction of the community handpumps was obtained from Water point Data 

Transmitters (WDTs), which provide reliable real-time data on handpump usage (Thomson 

et al., 2012). Using a low cost integrated circuit (IC) based accelerometer, the WDT 

automatically monitors the number of strokes made in operating a handpump and then 

transmits this information to a computer over the GSM network. Volumetric abstraction 

was calculated from the accelerometer data for the period 2014-2015. These data provide 

information on hourly pump use. 

The abstraction of the water-reliant industries will increase in the near future; Base 

Titanium planned to drill more boreholes within the same wellfield, thus increasing the 

total groundwater abstracted. In the absence of any better estimates, we arbitrarily 

assumed a 20 % increase in groundwater abstraction for irrigated sugar. The Draft Kwale 

Water Master Plan has assumed a 1 % growth per year in water demand for the tourism 

sector over the next 20 years. In order to supply more water to the population, the Water 

Supply Master Plan (2018) for Mombasa and other towns within the Coast Province (CWSB, 

2016) has proposed developing the Msambweni wellfield to meet future demand for the 

middle and south coast zones. This is the considered future scenario for groundwater 

abstraction. 

4.5. Results 

This section presents all the results analysed in order to determine the sustainability of the 

groundwater system. First of all, the recharge from 2010-2017 and its change is assessed, 

since it is the main water input of the system and key to understanding the water budget. 

Secondly, abstraction for each groundwater use is estimated and used as outputs from the 

groundwater system. In the third component, the groundwater level evolution is analysed 

as the main indicator of storage changes in the system, showing the relationship between 

system inputs and outputs. To evaluate the system in the coastal zone, where groundwater 

quality plays an important role in the sustainability of the system, the evolution of electrical 

conductivity (as a proxy for salinity) is analysed. Finally, the results of the geochemical 

models, which are needed to understand the geochemical processes occurring in the area 

affected by seawater intrusion, are also presented.  
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4.5.1. Recharge 

Total recharge volume was calculated for an area of 660 km2. This area is bigger than the 

four study Zones (Fig. 1.1), covering the recharge area of the shallow and deep aquifers from 

the sea to the Shimba Hills. While the shallow aquifer is recharged directly from the surface, 

the underlying deep aquifer is recharged from the Shimba Hills. To estimate recharge across 

the study area, 123 soil water balances were calculated (Fig. 4.1). 

 

Figure 4.1. (Left) Average recharge from 2010 to 2017 in mm/d. (Right) Recharge difference between La Niña 
(2016) and a normal climatic year (2017). The coloured dots are the meteorological stations used to calculate the 
net recharge. 

The spatial distribution of recharge follows the rainfall spatial pattern. Higher recharge 

occurs near the coast and decreases inland, west of Shimba Hills. However, in the eastern 

Shimba Hills (around 450 m a.s.l., see Fig. 1.1) recharge is higher. The highest average 

recharge volume for the period 2010-2017 occurred in areas underlain by ferralic 

arenosols, which have low usable soil water reserves (UR). Some areas overlying the 

shallow aquifer in the Kilindini and Magarini sands also have this type of soil. On the 

contrary, lower average recharge occurs in areas with high UR ferric acrisols. These soils 

are mainly located on the Mazeras sandstone, in the Shimba Hills. 
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The total recharge during La Niña in 2016 was 58 MCM/year, 74 % less compared to 2017 

(224 MCM/year). A comparison of recharge during La Niña with previous years (Table 4.2) 

shows that there is minimal correlation between total annual rainfall and total annual 

recharge. This is because the rainfall intensity and distribution through the year influences 

net recharge, rather than the total annual volume of rainfall. High rainfall peaks produced 

by intense but short storms are more effective in driving recharge than lower, more 

continuous rainfall. An intense rainfall event (>100mm) on a saturated catchment leads to 

intense and significant recharge. This is consistent with other studies on the phenomenon 

(Taylor et al., 2012; Taylor and Jasechko, 2015). The recharge volume represents 7 % of the 

annual rainfall in the driest years, but up to 23 % in 2017. 

Table 4.2. Annual precipitation in mm/year obtained from the different meteorological stations located in the 
study area (Table 1) and the annual recharge volume in MCM/year. 

Year Precipitation 

(mm/year) 

Recharge 

(MCM/year) 

2010 1022 71 

2011 1406 160 

2012 987 50 

2013 1154 86 

2014 1715 156 

2015 1757 169 

2016 867 58 

2017 1442 224 

 

4.5.2. Groundwater use by water-reliant industry 

In this sub-section we present a detailed description of each water-reliant user in the area 

and its abstraction rate estimate.  

Base Titanium Ltd 

The mining company constructed and commissioned an 8.4 MCM water supply dam on the 

Mkurumudzi River to meet most of its water requirements for mining. This supply is backed 

up by a wellfield comprising four, 95-105 meter deep boreholes. At the end of 2013, both 

surface and groundwater were abstracted to start the mine. The average abstraction for a 
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“normal climate year” such as 2014 and 2015 was 1449 and 1806 m3/day, respectively. 

However, during the 2016 La Niña event, this abstraction increased by around 66 % to 4272 

m3/day on average (Table 4.3). After La Niña event, the daily average abstraction fell by 

around 26 % (3370 m3/d) in 2017, compared to 2016 (Fig. 4.2). It should be pointed out 

that Base Titanium recycles a considerable proportion of process water: in 2016, it recycled 

>70 % of the total daily water use. It improved in 2017, recycling around 78 %. 

The mine site is located on the Pliocene formation but the Base wellfield is on the Kilindini 

sands (Pleistocene) east of the mine. These production wells are screened in the deep 

aquifer, to ensure that groundwater is pumped only from the Jurassic and Triassic 

formations. This was a deliberate design philosophy to reduce as much as possible adverse 

effects to the shallow aquifer that local communities use for water supply. 

Adjacent to each operational borehole a shallow and deep monitoring piezometer measures 

the groundwater level fluctuations under baseline conditions and due to subsequent 

abstraction. Under natural conditions before abstraction started in 2013, the deep 

groundwater levels were higher than the shallow groundwater levels as the piezometric 

control area of the confined deep aquifer is at a higher elevation, in the Shimba Hills. Once 

abstraction started at the end of 2013, the shallow piezometric trend shows a limited effect 

of pumping from the deep aquifer, maintaining the hydraulic relationship between the 

shallow and deep aquifer, except sporadically due to occasionally higher abstraction rates, 

as in April 2014 (Fig. 4.2). However, during the dry year of 2016 (La Niña event), some deep 

boreholes had a piezometric level below the shallow aquifer groundwater level.  

Since 2013, Base Titanium has also monitored the groundwater quality in its production 

boreholes and some shallow and deep community wells spread around the mine. The 

hydrochemical composition of the pumped water from 2013 to the present (data not 

shown) indicates that there is no significant change in groundwater quality in the 

groundwater pumped from the deep aquifer, even during La Niña event. The EC values 

measured in the inland deep community wells monitored by Base Titanium have been 

<1500 µS/cm from 2012 until the present. 
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Figure 4.2. Comparison between shallow and deep groundwater levels of piezometers located near a production 
borehole recorded by Base Titanium. Black vertical lines indicate the hydraulic relationship between the shallow 
and the deep aquifer under different conditions: 1) “Natural conditions” refers to groundwater levels when the 
wellfield was not intensively pumped before October 2013; 2) “regular abstraction” shows the shallow and deep 
groundwater levels once the deep aquifer exploitation started; 3) “La Niña” shows the groundwater levels during 
the drought period caused by La Niña event in 2016/2017 and 4) “Recovery” refers to the recovery of the aquifer 
hydraulic relationship after the rains of April 2017. Rainfall volume data is from Kwale Agricultural Department 
station (Kenya Meteorological Department) (mm/d). The green line shows Base Titanium abstraction as m3/d. 

KISCOL sugar fields 

KISCOL uses different water sources to meet sugarcane water demand. Its water demand 

depends on the crop water requirements of the sugar plant. As expected, the minimum crop 

water requirement (MCWR) is higher during the driest months, with an average of 40,784 

m3/day from January to March and 28,349 m3/day for the wet period (April to June).  

Groundwater is obtained from up to 17 boreholes, 60-100 meters deep, drilled in and 

spread across the sugar fields. According to WRA, KISCOL has been allocated a total of 

10535 m3/day from 12 production boreholes. However, information available indicates 

that only eight boreholes are currently operational, so actual groundwater abstraction is 

probably lower than the WRA allocation. These eight boreholes are operational (since mid-

2015), and are located in the Milalani fields (Zone 1, Fig. 1.1). The Kinondo fields are 

irrigated by surface water (Zone 3, Fig. 1.1) as the borehole pumps are not connected to 

power lines and electrical generators have been vandalized. Pumped groundwater is stored 

in one-day storage lagoons, together with water coming from the dams, which is the other 

water source for sugar irrigation. Groundwater acts as a strategic water reserve; volumes 

used are small compared with water from dams. According to current WRA rules, the 
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maximum volume that may be pumped is 60 % of the well test discharge rate over a ten-

hour pumping day. It means that the mean estimated abstraction rate for the eight KISCOL 

boreholes is 2088 m3/day (Table 4.2). This value is in accordance with the KISCOL test 

yields for these eight boreholes and it is in the same range as other unpublished data from 

KISCOL. 

KISCOL wells are multi-screened, taking water from multiple water-bearing zones in the 

shallow and deep aquifer units. This well design increases the yield but produces a mix of 

groundwater from different origins, as shown by the isotopic and hydrochemical 

composition (Ferrer et al., 2019) and may facilitate the entrance of contaminated water 

from the shallow aquifer towards the deep one. This screen configuration is different from 

the Base Titanium boreholes, which are only screened in the deep aquifer.  

Water quality was measured within KISCOL’s Milalani plantation in a monitored borehole 

at different depths in the June 2016 field survey (Ferrer et al., 2019). The most significant 

result was the measured nitrate concentration in this borehole: 48 mg/L at 21 m bgl and 31 

mg/L at 65 m bgl, as NO3-. Furthermore, a well located at Nikaphu, south of the study area, 

had 1.2 mg/L of ammonia, as NH4+, during the March 2016 field campaign. Taking into 

account that groundwater has an Eh of +239.4 mV and dissolved oxygen of 1.42 mg/L, the 

relatively high ammonia content indicates that the sample is not in chemical equilibrium. 

This shows a relatively fast recirculation of shallow groundwater around the pumping well. 

Currently, there are no nitrate polluted shallow wells around the KISCOL Mililani fields. 

Conversely, in the Kinondo fields (Zone 3), where sugar is irrigated only with surface water, 

there is only one point at the outflow from the end of the fields that is polluted by nitrates, 

at 73 mg/L NO3- in June 2016. 
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Table 4.3. The allocated and the actual or estimated groundwater abstraction for each water user. *Hotel 
groundwater use is based on Table 4.4. 

Period Recharge 

(m3/d) 

Groundwater abstraction (m3/d) 

Base 

Titanium 
KISCOL Hotels Handpumps 

Community 

boreholes 

Dry year: 

La Niña 

2016 

158,602 Current: 

4272 

Allocated: 

5280 

Current: 

2088 

Allocated: 

2528 

3272* 450 991 
Recovery/

average 

year: 2017 

613,890 Current: 

3370 

Allocated: 

5280 

Future abstraction 8800 9504 3926 540 11500 

 

Tourism 

From the data obtained from Google Earth, 85 % of the hotels located on the coast are 

located in Zone 3 and 4 on the Diani coast, with only a few situated on the Msambweni coast 

in Zone 1 and 2 (Fig. 1.1).  

The highest tourism season is from October to March and the lowest from April to July. Hotel 

water use is closely associated with the number of tourists, so both intra- and inter-annual 

abstraction varies considerably. Most hotels use water from private boreholes, from which 

large volumes of water are withdrawn using electrical and/or diesel driven pumps. The 

groundwater abstraction points that support this economic activity are located near the 

coast, mainly exploiting the shallow aquifer located in the Pleistocene corals formation. 

Using both Google Earth and Trip Advisor, it was possible to identify 109 hotels and obtain 

the number of rooms for 91 hotels. Personal interviews with hotel managers improved the 

understanding of water use and water source for each hotel. Around 40 % of the hotels were 

unwilling to answer the questions and the remaining 60 % of hotels at least revealed the 

water source. Of the 60 % of the hotels that answered, 72 % are only supplied by private 

boreholes while the remaining 28 % supplement groundwater with municipal piped water 

from the Tiwi aquifer, located 6-12 km north of Ukunda and covering an area of 

approximately 30 km2. 
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We estimated hotel groundwater abstraction according to the different type of data source 

(WRA allocations and hotel interviews). We also estimated hotel groundwater abstraction 

using the number of rooms and the hotel class type (Table 4.4). 

Table 4.4. Hotel groundwater abstraction (m3/d) based on different information sources. 

Source Kind of data Number of 

points with 

available 

data 

Abstraction 

(m3/day) 

WRA WRA allocation permits 29 2760 

Hotels Answer direct from the Hotels 38 1809 

Estimate 
Google Earth + Trip Advisor + 

Manual for Water Supply Services 
91 3272 

 

The total number of beds available on the south coast has decreased around 40 % from 

2015 to 2017, since some hotels closed during this period. However, the percentage of beds 

occupied has increased, maintaining an occupancy rate of around a million bed-nights/year 

for the period 2015-2017 (Fig. 4.3). The Draft Kwale Water Master Plan assumed a 1 

%/year growth in water demand for the tourism sector over the next 20 years.  

Hotel groundwater use varies through an order of magnitude across the months of the year, 

based on bed occupancy. Water consumption is lower during the wet season, since it 

coincides with the months with lowest tourism activity. However, the water consumption 

in the rest of the year is significant. It is worth emphasising that the highest bed occupancy 

rate and thus the highest water consumption occur from October to December, just before 

the dry season.  
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Figure 4.3. Total bed occupancy for the South Coast hotels from 2015 to 2017 obtained from the Kenya National 
Bureau of Statistics (KNBS).  

Community abstraction  

Groundwater abstraction from commercial activities takes place alongside the traditional 

dispersed 300 functional handpump-equipped shallow wells and boreholes, and 22 

community boreholes (some with solar pumps put in by Base Titanium), that provide 

drinking water to communities and institutions. The WRA allocation for 22 community 

boreholes within the study area is 991 m3/day (Table 3.3). There are also some open wells 

operated with buckets within the study area for which no abstraction data exist; however, 

anticipated abstraction rates are much lower than in handpump-equipped boreholes. 

Weekly data obtained from the transmitters (WDT) from the 300 handpumps during 2014 

and 2015 gave a mean daily abstraction of approximately 1.5 m3/day per pump. Water 

pumped from community handpumps also depends on rainfall (Thomson et al., 2019). 

Abstraction varied from 0.71 m3/day per pump in the wet season to 2.05 m3/day per pump 

in the dry season, with monthly variation shown in Figure 4.4. They operate under different 

dynamics, according to the economic activities in the area. The monthly average volume 

pumped is lower than the annual average abstractions from May to December. This shows 

that communities use other water sources during wet periods, such as rainwater collection 

(Thomson et al., 2019). 
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Figure 4.4. Monthly average abstraction variation for handpumps during 2014 and 2015.  

4.5.3. Groundwater level evolution 

In order to determine the sustainability of the groundwater system under different 

abstraction regimes, it is important not only to consider how abstraction could affect 

aquifers during a drought, but also how the systems recover after such climatic events. 

Therefore, the present study goes beyond that of Ferrer et al., (2019), as it focuses on the 

recovery of groundwater levels during 2017 after La Niña event and especially on shallow 

aquifer recovery. The shallow aquifer is the source of water for most communities in the 

study area.  

During La Niña event, there was a groundwater level decline in 86 % of the measured 

shallow wells. In the remaining wells, the groundwater levels were nearly constant. 

However, levels in 95 % of the wells affected by La Niña drawdown recovered after the first 

rainy season (AMJ) in 2017 (Table 2, Appendix C). In this regard, the first rainy season (AMJ) 

is more effective in the recovery of the groundwater system than the short rains (OND).  

Regarding groundwater level recovery after La Niña event in the deep aquifer, there are 

only data from Zone 2 (from the Base Titanium monitoring network). Figure 4.2 shows the 

effects of recharge and abstraction on deep piezometer water levels; this shows that 

groundwater levels recovered after the first rainfall event in April 2017, to values close to 

those observed in previous wet years.  
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4.5.4. Groundwater quality on the coastal strip 

Sea water intrusion (SWI) in aquifers occurs naturally in coastal areas around the world 

(Custodio, 2010; SASMIE, 2017). The position of the seawater/fresh water-mixing zone is 

influenced by groundwater discharge into the sea and aquifer thickness, as well as aquifer 

hydraulic conductivity. The natural discharge rate could be affected by groundwater 

abstraction, reducing diffuse discharge into the sea. In order to study short-term salinity 

changes, we carried out a spatial analysis of groundwater EC (electrical conductivity) 

between 2013 between 2016.  

The evolution of EC since 2013 (Fig. 4.5) shows that salinity increased, mainly in 2016. This 

illustrates the relationship between EC increase and decreasing rainfall, since the total 

rainfall during 2016 (when La Niña event occurred), was 49 % less compared to the 2014 

total (Table 2, Appendix C). The highest EC values in June 2016 correspond to the wells 

located in Zones 3 and 4 (except for a point in Zone 1), with an EC mean value of 2814 µS/cm 

and a maximum of 3793 µS/cm (Table 3, Appendix C). Looking at the EC variation across 

2016-2017 for the wells located near the coast, around 88 % of the sampled sites show an 

EC increase across the period. The wells that do not show any EC increase are mainly 

located inland in Zone 4, and in some wells in the Magarini sands in Zone 1 (Table 2, 

Appendix C).  

We compared hydrogeochemical modelling results with the samples from wells/boreholes 

affected by SWI in the shallow aquifer to understand the importance of the SWI change. 

Field samples contain between 0 % and 30 % of seawater (Fig. 4.6a), except for the sample 

taken from a beach upwelling, which had 83 % seawater. Of the conceptual models tested 

(data not shown), the one that gives results closest to the observed field samples is the 

mixing of fresh and saline water, both in equilibrium with calcite (i.e. Fig. 4.6a).  

Looking at the delta ion evolution for calcite (total quantity of precipitated/dissolved calcite 

mineral) in this conceptual model, during mixing between fresh groundwater and saline 

water (Fig. 4.6b) the increase in salinity tends to dissolve calcite, with 30-40 % maximum 

dissolution in a water mixture containing 50 % of seawater.  
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Figure 4.5. EC spatial distribution along time after the different field surveys from 2013 to 2016. The inland white 
areas mean that no data is available. The high EC values located inland in from September 2015 to June 2016 
correspond to a saline geological formation, the Maji ya Chumvi beds (Caswell, 1953). 

  



Sustainability of the aquifer system  89 

 
 

 

Figure 4.6. a) Mg vs. percentage of mixing. The red crosses represent sampled waters near the coast. The X-axis 
shows the percentage of mixing from 0 % to 100 % of fresh water in the coast samples and the upwelling. The light 
blue line represents the best-fitting conceptual model (water solutions in equilibrium with calcite). 4.6.b) Calcite 
ion delta (change) vs. percentage of mixing of the model in equilibrium with calcite. The Y-axis represents the 
calcite saturation index and the X-axis shows percent mixing. 
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4.6. Discussion 

Current situation 

The total groundwater abstraction represented 6 % of the recharge during La Niña and 1.3 

% of recharge during a normal climatic year, such as 2017. The recharge volume is an 

important component of the aquifer system dynamics, responsible for groundwater level 

variation in both the shallow and deep aquifers. 

Not all water users exploit the same aquifers (formations). The community wells, 

handpumps and hotels mainly abstract groundwater from the shallow aquifer. The 

recharge areas of this aquifer unit are those exhibiting more volume variation between 

drought and a normal climatic year (i.e. 2017) (Fig. 4.1). The shallow aquifer unit is less 

resilient to climate variation than the deep one. This explains why some wells located in the 

Kilindini and Magarini sands became dry during La Niña drought. The aquifer system 

exhibited swift recovery after the first normal rainy season in 2017. This allowed the system 

to return to the average groundwater budget and to face the next drought period. 

One consequence of wells becoming dry is the increase in walking distance to collect water. 

As reported during fieldwork in June 2016, during La Niña event, some communities stated 

that they had to walk longer distances to collect water because the nearest borehole or well 

was dry. Amongst other impacts, Demie et al. (2016) found that spending more time 

searching for water had a negative impact on girls and women, since this forces them to 

stop investing time in their education and other important activities. Furthermore, the 

reduction in groundwater availability leads to an increase in the price of the water sold to 

local residents. The Gro for Good research team found that during the drought event of 

2016/2017, some areas having very limited access to drinking water suffered a peak in the 

price of vended water, with charges ranging from 20 to 50 Ksh per 20 litres reported west 

of the Shimba Hills. Such costs are an order of magnitude higher than the usual price for 

vended water, which is 2 to 3 Ksh per 20 litres. This price increase has a huge impact on 

families is an area where the average household income is about 330 Ksh/day, about the 

cost of 2.5 kg of rice. This price increase will either result in households having reduced 

funds for other needs because of the drought, or reducing their water use, or a combination 

of both. This may cause adverse health impacts from compromised hygiene behaviour.  

Unlike communities and hotels, Base Titanium exploits the deep aquifer and KISCOL both 

aquifer units. The fact that the recharge variation is less in the Shimba Hills than in the 

lowland means that the deep aquifer is more resilient to drought events. This favours 

groundwater abstraction by these users, since they can continue to exploit the deep aquifer 
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during periods of drought without impacting the shallow aquifer exploited by the 

communities and hotels lasting at least as long as the last La Niña event.  

Focusing on mining, the abstraction rate depends on rainfall patterns, increasing during the 

dry period in 2016, and reducing during wet years, such as in 2017. The influence of 

abstraction on the shallow aquifer is insignificant up to the present, according to 

observation piezometer water level data in the shallow and deep aquifer in the Base 

Titanium wellfield. This is due to the presence of an aquitard between the two aquifers. 

Groundwater abstraction only quantitatively affected the deep aquifer system to a 

significant degree during the 2016 drought. This groundwater level decline could be due to 

the combination of abstraction from the deep aquifer and the reduced recharge during the 

drought in the Shimba Hills (Fig. 4.2). Unlike in other areas, like Italy, Tunisia, 

Mediterranean Spain and the Canary Islands (La Vigna et al., 2013; Maliki et al., 2000; 

SAMIE, 2017), where intensive exploitation permanently affects the relationships between 

aquifer units, after La Niña event the hydraulic relationship between the shallow and deep 

aquifer recovered following the rains in April 2017, showing that the impact on the deep 

aquifer in 2016 was attribute to the recharge.  

Like Base, KISCOL water use changes over time, as their principal use is for irrigation: less 

water is consumed during the wet season and more during the dry season and droughts. At 

present, current KISCOL abstraction has a dual effect on groundwater quality, as the 

potential pollutants related to fertilizers used in the sugarcane fields are present in the deep 

pumping wells but do not spread beyond the sugar fields due to the recharge of irrigation 

return flow (Fig. 4.7). The presence of a high NO3- concentration (31 mg/L) at 65 meters 

depth in a KISCOL control piezometer located in Milalani (in the southern fields), confirms 

the aquifer unit’s connection through the well due to the long screened sections. The 

northern fields (Kinondo), which are irrigated with surface water, shows how the pollutants 

may move following groundwater flow, as a well located down flow of the fields is one of 

the few in the area with elevated nitrate (recall Section 2.5.6). 

The relationship between the shallow and deep aquifer at the coast itself is unknown. 

Furthermore, as there are no data on the deep aquifer in the area between the coast on the 

one hand and the sugar fields and the mine on the other, it is not possible to determine the 

effects of sugarcane irrigation and mining abstraction on saline intrusion in the deep 

aquifer. However, none of the deep boreholes sampled during this study (up to 100 m depth, 

data not shown) shows SWI influence. Moreover, it is unknown how water abstraction from 

boreholes located within or near the palaeochannel could increase the SWI, mainly around 

the Msambweni area, in Zone 1 (Fig. 1.1). 
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In the coastal areas with major tourism concentrations, recent years’ data seem to show a 

local salinization effect in the shallow aquifer due to the higher abstraction induced by 

tourism and associated activities. However, a longer period of observation is needed to 

determine the saline water intrusion dynamics in order to consider rainfall fluctuations and 

to differentiate between seasonal effects (still unclear but possible) and long-term trends. 

As the zone with most of the hotels is also the area with the highest population density, it is 

not possible to differentiate between saline intrusion caused by the hotel sector itself and 

that caused by wells and boreholes serving private dwellings or used by local communities. 

EC in most measured shallow wells remained high after the drought period, even after the 

important rains of early 2017, indicating that groundwater quality in the coastal zone did 

not fully recover. This behaviour is in agreement with the well-studied Llobregat Delta 

aquifers, near Barcelona (Custodio, 2002; SASMIE, 2017), which show that salinity takes 

much longer than groundwater level to change and to recover once the aquifer is salinized.  

Future situation 

Total groundwater abstraction is expected to increase by a factor of four over the current 

rate (see Table 4.3). This level of abstraction would represent 22 % of the total recharge 

occurring during La Niña event. Currently, the existing water-reliant industries are 

exploiting the aquifer without significantly affecting groundwater levels. However, the 

possible local effect of pumping wells on the aquifer system and the consequences of future 

increased groundwater abstraction during long drought periods should be evaluated. The 

number of dry shallow wells could increase in the future due to more frequent and longer 

droughts, but also due to augmented abstraction.  

Considering the groundwater level difference between aquifer units during La Niña in the 

14 m-thick aquitard (the minimum aquitard thickness reported by Base) and the estimated 

vertical hydraulic conductivity, Darcy’s Law shows that the vertical water downward 

displacement through the aquitard is of the order of 2 m/year, penetrating much less than 

the aquitard thickness in one year. Consequently, pollution from the upper aquifer level 

cannot reach the deep aquifer except due to poor well construction. However, in a future 

scenario with a four-fold increase in groundwater abstraction rate and/or longer droughts, 

a longer and possibly permanent shift in the difference in piezometric levels between the 

aquifer units may occur, increasing the risk of contamination from vertical drainage 

through the aquitard.  

A future increase in groundwater abstraction by the sugar company during a drought 

period may affect both the shallow and the deep aquifer, as those wells are screened in both 
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aquifers (for maximum borehole yield). A potential reduction in groundwater level in the 

shallow aquifer in Zone 1 may affect the Ramisi River-aquifer relationship in that area. A 

fall in the shallow aquifer level would decrease aquifer discharge to the river and at some 

point could induce river water infiltration into the aquifer. The infiltration of naturally 

saline water from the Ramisi River could affect the groundwater quality in shallow wells 

adjacent to the river by increasing its salinity, thus limiting their use. The maximum EC 

upstream in the Ramisi River was 5594 µS/cm (Table 3, Appendix A). In extreme cases, the 

EC could limit the use of groundwater from the shallow aquifer. This does not only apply to 

domestic uses but also to sugar irrigation, as the threshold EC for sugarcane is 1700 µS/cm 

(FAO, 2018), if some of abstraction wells were located close to the river. In order to prevent 

this occurring, KISCOL might consider irrigating the south sugar fields with surface water 

from dams located in the Mkurumudzi catchment. Furthermore, it is expected that in 

periods when the groundwater level in the deep aquifer stays lower than in the shallow 

aquifer, pollution of the deep aquifer can be induced in the wells, as has occurred in other 

areas (Menció et al., 2011) and is a common occurrence in coastal areas.  

SWI is an important issue in coastal aquifers, and has already been observed in Kwale 

County (Oiro and Comte, 2019). A reduction in groundwater flow would lead to a slow 

penetration of the saltwater wedge inland, increasing the percentage of saline water in 

shallow wells already affected by SWI and affecting new areas. The significance of SWI is 

that only 2 to 3 % of seawater mixed with fresh water is enough to make the resulting water 

useless for most purposes. 

The calculation of the freshwater-saltwater mixing zone is a complex task, but an 

approximation can be obtained assuming a sharp freshwater-saline water interface and 

comparing the results with the final equilibrium state. The steady state penetration of the 

sea water wedge in the case of an homogeneous aquifer can be easily calculated from 

aquifer thickness and hydraulic conductivity for a given groundwater flow discharging at 

the coast (see Section 13, (Custodio and Bruggeman, 1986; Custodio and Llamas, 1976). We 

calculated seawater wedge growth from the coastline for the shallow aquifer, under the 

future increased abstraction scenario with the same net recharge as during La Niña event 

(Table 1, Appendix C). Increasing groundwater abstraction from 9535 m3/d to 34270 m3/d 

will move the steady state saline water wedge from 232 m inland up to 280 m in the final 

equilibrium state. This advance of the saline wedge could affect hotel groundwater supply 

and community handpumps located near the coast. 

We also calculated the saline wedge depth for different distances from the coast and for the 

different geologies near the coast, i.e. the Pleistocene corals and Kilindini sands (Table 1, 
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Appendix C). The results show that even during the future abstraction scenario during a 

drought year like the 2016 La Niña, the saline wedge will not affect the Kilindini sands. 

Under the future scenario, the saline wedge in the Kilindini sands (around six kilometres 

inland from the coast) would be around 400 m deep, so the shallow aquifer would not be 

affected. Only the coral formation is affected by SWI in the present and future scenarios. 

The saline wedge depth in the coral formation ranges from two meters deep at one meter 

inland from the coastline, to 100 m deep at the geological contact between the corals and 

the Kilindini sands, located around four kilometres inland. 

The future consequences of borehole salinization would be an increasingly salty taste and 

at some point unsuitability of the water for human consumption. This would increase costs, 

due to corrosion of domestic appliances, hotel facilities, pipes, and pumps, besides the cost 

of providing drinking water by other means, and the early abandonment of wells and 

associated facilities. Furthermore, as shown by Foster et al., (2018), handpump failure risks 

are higher and lifespans are shorter when groundwater is more saline and the static water 

level is deeper.  

The increase in salinity, as observed in 2016, and the dynamics of the SWI will tend to 

increase calcite dissolution (Fig. 4.6b). The related increase in karstification would have a 

number of potential long-term effects: 1) induced hydraulic conductivity rise will hasten 

further aquifer salinization and; 2) would increase the creation of sinkholes already 

observed in parts of the coral limestone during fieldwork. New sinkholes may be caused 

when caverns or channels in the coral limestone collapse due to groundwater 

overexploitation (Alfarrah et al., 2017; Jakemann et al., 2016; Khanlari et al., 2012). 

Occurrences of land subsidence in limestone have been globally reported, such as in Spain 

(Molina et al., 2009), India (Sahu and Sikdar, 2011), Mexico (Ortiz-Zamora and Ortega-

Guerrero, 2010) and the United States (Holzer and Galloway, 2005). This has implications 

for the stability of buildings and other structures constructed on the limestone.  

Despite the uncertainty of the impacts caused by the future abstraction scenario and longer 

forecast drought periods (Stocker et al., 2013), aquifer management decisions regarding 

the potential impacts on the aquifer system and the linked communities and economic 

activities are needed. Private sector and public participation in water resources 

management should be enhanced through decentralised management approaches. In this 

way, stakeholders, including the Water Resources Authority, private water users and 

communities in the study area, should carry out decision-making. Water infrastructure and 

technologies should be fit-for-purpose in application and scale, and the pro-poor focus 

should be underpinned by appropriately focused management regimes (Olago, 2018). 
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This decision-making must focus on managing the aquifer system in a sustainable way in 

order to protect the communities. These are the most vulnerable stakeholders, since they 

rely on the less resilient aquifer for water supply. Therefore, alternative, secure water 

resources must be developed to supply vulnerable communities before community wells 

become dry or salinize. One potential solution could be to supply the communities from 

deep boreholes, since this aquifer unit is more resilient in the face of adverse climate events. 

Base Titanium is already working together with Kwale County government to install 

community water sources into the deep aquifer to provide water security to communities, 

with a number of Base-drilled boreholes originally with handpumps installed planned to be 

converted to solar or mains-powered pumps. Other possible actions to ensure community 

well sustainability would comprise taking measures to protect the main recharge areas as 

is being done by the Kenya Wildlife Service supported by Base Titanium together with 

conservation organisations in the Shimba Hills National Reserve – the Water Tower for the 

Mkurumudzi catchment; managing land use to ensure high infiltration rates; promoting 

managed artificial recharge; and conjunctive water use. A common conjunctive 

management strategy is the recharge and storage of surface water in aquifers when it is 

available in excess of demand, for withdrawal later when surface supplies are reduced, as 

during drought (Foster and van Steenbergen, 2011). Furthermore, private companies 

should strive to manage their groundwater resources sustainably, minimising the impact 

on community well water quality and availability. For example, Base Titanium adopts 

recycling and conjunctive use, combining surface and groundwater during drought periods 

as a management strategy. 

This study uses simple calculations to illustrate the possible future risks of increased 

abstraction under climate stress to an aquifer system in Kwale County. At present, under 

‘normal’ climatic conditions, we have observed no adverse consequences in the aquifer 

system since major abstraction started in 2012. However, the study underlines the 

importance of evaluating all risks to any aquifer system prior to major groundwater 

abstraction.  
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Figure 4.7. Schematic hydrogeological conceptual model of the aquifer system with the main economic activities 
in the area and the location in the geology of the abstraction boreholes for each activity. The question marks 
indicate the unknown extension of the clay layer (in brown) acting as an intercalated aquitard that reduces the 
connectivity between the Mazeras Fm. and Pleistocene corals and sands, and the discharge of the deep aquifer. 
Mazeras (Mazeras Fm.), M&K (Mtomkuu and Kambe Fm.), P (Magarini sands), Pls (Kilindini sands), Bs (Bioclastic 
sands with clay lenses), Plc (Pleistocene corals). F2 to F4 indicate the main faults in the study area. 

4.7. Conclusions 

Water-reliant growth in Africa needs to manage multiple risks for sustainable management 

of strategic groundwater resources. Securing new investors in rural areas where poverty is 

high and environmental regulation is weak may focus on the former at the cost of the latter. 

Lack of historical data such as water level, abstraction and quality data is typically the norm 

and challenge objective decision-making in the face of urgent development priorities. 

Government and enterprises may find environmental sustainability of secondary 

importance to advancing economic production, creating local jobs and new sources of 

taxation. This may translate into unknown risks to local, vulnerable populations and future 

generations who rely on shallow groundwater for water supply. Droughts compound this 

risk, with multiple and competing bulk water users abstracting from the same aquifer 

system without any shared understanding of impacts, including short and long-term 

damage from saline intrusion in coastal aquifers. As in most aquifers, water quality does not 

recover in all wells after wet season recharge, and significant amounts of data are needed 

to evaluate future aquifer response. Furthermore, in areas of the continent with lower 
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precipitation and consequently lower recharge, a lower level of abstraction could be 

harmful to aquifers. Future risk should therefore be predicted under different abstraction 

future scenarios, before major abstraction takes place. 

While gambling with groundwater may be common in Africa and globally, this study shows 

that groundwater resources can be significant and resilient to unpredictable but recurrent 

drought events. Given over half a billion dollars  in capital investment in the two water-

reliant industries in Kwale, in addition to tourism and related investment, understanding 

investor risk and liability from groundwater sustainability would seem prudent, if not a 

legal obligation, before major abstraction starts. Government leadership is essential to 

manage the aquifer as a system for all, including environmental services, rather than for the 

powerful few. Without technical, material and political support, water resource 

management agencies face stark choices in Africa, as limited staff and capacity are unable 

to ensure that adequate monitoring systems exist to guide regulations that manage water 

resources in the public interest. Governance failure can promote market failure, by 

mismanaging groundwater, by design or by accident. However, this is not inevitable and we 

see evidence of good corporate water management as a catalyst for providing critical deep 

aquifer data to inform a credible model for future groundwater management and resource 

allocation in Kwale. Furthermore, using often simple information sources (interviews, 

Google Earth, Trip Advisor, basic analytical methods, etc.), enables groundwater 

abstraction to be estimated, allowing potential future risks to be assessed as has been 

shown by this study. 

We strongly recommend compliance with existing regulations and codes of practice and 

strengthening of the capacity of the Water Resources Authority to monitor such compliance. 

Further, in line with the current updating of the national water policy, we advocate for 

improvement of the application of the legal framework and regulatory reach so as to 

encompass the notion of shared risks and responsibilities among the government and the 

private sector, and creation of a business climate that espouses resource protection for 

growth and promotion of sustainable development. 
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Chapter 5 

 

Evidence of groundwater vulnerability to climate 

variability and economic growth 
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5.1. Introduction 

Climate change and future changes in abstraction effect groundwater resources. The 

uncertainty of possible future impacts is a major challenge nowadays, given the urgency of 

adopting measures required to secure drinking water supplies (Van Engelenburg et al., 

2018). Global change and climate evolution seem to have modified the hydrologic cycle and 

resulted in changes in precipitation pattern by increasing the frequency of extreme events, 

such as droughts and floods, accelerating the melting of glaciers and icecaps, and modifying 

soil moisture and river runoff (Bates et al., 2008). Forecasted spatial and temporal changes 

in mean annual rainfall (Stocker et al., 2013) are known to influence the water balance as a 

whole, and groundwater recharge in particular (Carter and Parker, 2009). 

The effects of climate change will be even more serious in countries with high population 

growth, which will generate an increasing demand of water resources (Carter and Parker, 

2009). This increased water demand will strain local water supply, limiting the amount of 

water available per person. The growth in urban populations is accompanied by significant 

food production increases in both rural and peri-urban areas. Water resources will be 

further stressed by an increase in groundwater abstraction. Drilling deeper boreholes with 

higher intended abstraction rates than those traditionally obtained with dug wells or 

shallow boreholes equipped with handpumps, will increase in many areas to meet the 

water demand of new economic activities that are taking place across developing countries 

(Comte et al., 2016). 

During the past 40 years or more, numerical groundwater flow models have been proved 

suitable for evaluating groundwater resources and testing alternative approaches for 

aquifer management (Howard and Griffith, 2009). They are becoming increasingly useful 

and reliable tools when it comes to addressing the principal challenges involved in planning 

and managing water resources, and are being widely applied (Barthel et al., 2005; Feng et 

al., 2018; Folch and Ferrer, 2015; Mas-Pla et al., 2012; Urrutia et al., 2018; Vázquez-Suñé et 

al., 2006; Vižintin et al., 2017, among others). Moreover, these models have been shown to 

constitute an important tool for predicting the effects of climate change on aquifer 

behaviour (Kopytkovskiya et al., 2015; Levison et al., 2014; Taylor et al., 2013; Adrian D 

Werner et al., 2013) and for investigating mitigation measures (Howard and Griffith, 2009). 

Despite their importance, developing climate change scenarios in groundwater models is 

difficult because the scale of global climate models is too large and the local historical data 

needed to predict future trends is typically lacking. Most of these global climatic models are 

unable to accurately reproduce local historical climate conditions, since they suffer 
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systematic bias in the simulated variables (e.g., precipitation and temperature); a 

correction is therefore needed to obtain reliable local scale results (D’Oria et al., 2018). 

Africa is considered the most vulnerable continent to climate change, with one-third of the 

population living in drought-prone areas, with the highest rate of population increase in the 

world (Meigh et al., 1999), with high industrialization increase based on different economic 

activities (mining, agriculture, tourism…). One of the key uncertainties surrounding the 

impacts of climate change in Africa is the effect on the sustainability of rural water supplies 

(MacDonald et al., 2009). In East Africa, impacts on agriculture caused by climate change 

will translate into impacts on livelihoods for the majority of people, as almost 80 % of the 

population depends on agriculture, which contributes 40 % of the national gross domestic 

product (Adhikari et al., 2015). Within this context, it is clear that it is necessary to develop 

long-term water management plans in Africa, to address the consequences of the joint effect 

of climate change, population growth and increase of water abstraction in a continent 

where most people depend on groundwater for a range of different purposes (Abiye, 2016; 

Kahsay et al., 2018; Taylor and Howard, 1996). 

Despite the importance of numerical flow models, they are rarely developed in sub-Saharan 

Africa, as the data describing groundwater systems are often sparse and the current state 

of aquifer understanding is poor. Furthermore, data related to economic growth that is 

suffering the continent is in most of the cases unknown. Candela et al. (2014) evaluated the 

effects of dry and wet periods on groundwater recharge in the Lake Chad Basin, a data 

scarce area, while Yihdego et al. (2017) estimated seasonal variability of groundwater-

surface water exchange fluxes on the water balance of Lake Naivasha, in Kenya. Despite the 

fact that hydrological processes in coastal areas will be profoundly affected by climate 

change (Stefanova et al., 2015), there are only a few groundwater models developed for the 

East Coast of sub-Saharan Africa so far. Kamermans et al., (2002) developed a numerical 

groundwater flow model to study the effects of groundwater discharge on the diversity and 

abundance of lagoon seagrasses, from the coast of Kenya to northern Tanzania, including 

Zanzibar.  

The aim of this chapter is to extend the emerging evidence of the implications of climate 

variability on recharge in Africa by including impacts of economic development and 

associated abstraction. The contributions to the literature are methodological and empirical 

in developing future scenarios using numerical groundwater flow models with observed 

data on abstraction and historical rainfall data. Furthermore, the analysis of the 

groundwater level variation of the aquifer units of the study area, provides insights into the 

potential vulnerability of rural communities who largely depend on shallow aquifer. 
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5.2. Methodology 

5.2.1. Future scenarios  

In order to build future groundwater flow model scenarios to study which variables 

(rainfall, temperature, and/or abstraction) are the priority concern in aespecific location, 

firstly solving the 3D partial differential equation of groundwater flow is needed. The 

governing equation for groundwater flow is: 
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where Kxx, Kyy, Kzz are the values of hydraulic conductivity along the x, y, z coordinate axes, 

which are assumed to be parallel to the major axes of hydraulic conductivity [L T−1]; h is the 

groundwater level [L]; W are the source/sink terms, with W < 0 for flow out of the 

groundwater system and W > 0 for flow into the system [T−1]; Ss is the specific storage of 

the porous material [L−1]; and t is time [T]. The source code of MODFLOW is open and easily 

accessible. 

The numerical model is used as a tool to study the future scenarios which are calculated 

uploading a new period of data for some of the boundary conditions. In order to study the 

effects of climate variables new rainfall and temperature time series are used to estimate 

the corresponding groundwater recharge for each land use, using the soil water balance 

approach. Results of the soil water balance are introduced into the modelled period as a 

recharge boundary condition for six hypothetical years. The process followed is that 

detailed in Figure C.  

The rainfall serie was calculated based on the Standardized Precipitation Index (SPI) 

method (Guttman, 1999, 1998; Mckee et al., 1993). The SPI index was developed as a 

versatile tool in drought assessment, analysis and monitoring to represent both short 

timescales (e.g., soil moisture status) and long timescales (e.g., reservoir and groundwater 

storage). The SPI can be seen as the standard deviation of observed anomalies with respect 

to the long-term average for the same period (month, season or year). The expected total 

rainfall depth is described in terms of terciles: “below normal” is rainfall less than the 33rd 

percentile, “above normal” is rainfall greater than the 67th percentile and “normal” is in 

between the 33rd and 67th percentiles. Each scenario describes a sequence of rainfall 

seasons that reflect a specific stress condition.  

The SPI method has been used to characterize meteorological droughts over a wide range 

of timescales and areas (Mckee et al., 1993). Values and their interpretation are 



Assessment of global change effects on groundwater dynamics 103 

 

 
 

summarized in Table 5.1. For the purposes of this analysis, the SPI categories were lumped 

together into three categories that distinguish “below normal”, “normal” and “above normal 

conditions”. 

Table 5.1. SPI classification. 

SPI Values Classification Lumped categories 

2.00 and above Extremely wet 

Above Normal 1.50 to 1.99 Very wet 

1.00 to 1.49 Moderately wet 

-0.99 to 0.99 Near Normal Normal 

-1.00 to -1.49 Moderate dry 

Below Normal -1.50 to -1.99 Severely dry 

-2.00 and less Extremely dry 

 

The method requires the selection of a “primary” rainfall record to select specific seasons 

based on the SPI. The seasonal rainfall total depths and the SPI were calculated for each 

season. The mean monthly rainfall measured indicates the seasons for specific area. Four 

different rainfall scenarios were developed to reflect different degrees of deviation from a 

3-year “normal” rainfall pattern. The “normal” scenario is compiled exclusively from 

seasons which fall in the normal category (i.e. -1.0<SPI<+1.0). The “wet” scenario is 

compiled using rainfall seasons which fall in the “above normal” category (i.e. SPI>+1.0) and 

the “dry” and “very dry” scenarios compiled using dry seasons that fall in the “below 

normal” category (i.e. SPI<-1.0 and SPI<-2.0 respectively). After applying this methodology, 

rainfall data was spliced to form a synthetic time series of daily rainfall that reflects the 

rainfall conditions for each scenario. 

The temperature time series was generated using the same approach as for the rainfall. The 

daily temperature data for selected seasons were spliced together to obtain a synthetic time 

series. Once the temperature baseline time series was built, two plausible temperature 

scenarios for the selected rainfall stations were defined: TC0 (Baseline temperature) and 

TC2 (Baseline temperature +2ºC). 

In order to study the economic growth in an area, the abstraction boundary condition needs 

to be uploaded with future abstraction data. Firstly, the groundwater demand was 
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disaggregated across different users and aquifers. In the absence of actual measured 

abstraction data, the water permit allocation was used. Groundwater permits ascribe a 

maximum daily abstraction rate for each borehole (m3/day). One plausible abstraction 

scenario (referred to as D0) assumes that the total abstraction is equal to the daily allocated 

amount for 365 days per year. A second scenario assumes that groundwater demand has 

increased (Scenario D2). This second future estimation considers implicitly the future 

population and economic growth, since more people would imply more groundwater 

consumption. 

5.2.2. Field application 

The groundwater model and the futures scenarios have been tested in the study area 

presented in Section 1.3 (Fig. 5.1). 

 

5.1. Study area with the main geological units and formations. The squares are the rainfall stations used to calculate 
the recharge in the future scenarios. 

5.3. Groundwater model setup 

The groundwater flow model has been constructed using the MODFLOW-2005 Package and 

the graphical interface ModelMuse (Winston, 2009). MODFLOW is a 3D code that solves the 

finite-difference method and includes modules to simulate steady-state or transient 

groundwater flow in confined/unconfined aquifers (Harbaugh, 2005). A steady-state 
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simulation has been conducted to set up initial conditions, as compared with field data. The 

transient simulation covers an eight year period from from 2010 until November 2017. 

Monthly stress periods with 3 time steps in each have been adopted in the model 

simulation. 

Model grid and boundary conditions 

The uniform finite difference mesh of the study area has been discretized in 120 columns 

and 99 rows, with a size of 300 m x 300 m per cell; thus, the model includes 11,880 cells 

and represents an area of 665.5 km2. The vertical discretization extends from the ground 

surface, determined from a Digital Elevation Model with a resolution of 90 m x 90 m. 

Geophysical surveys at large scale using ERT (electro-resistivity tomography) helped to 

define layer thicknesses and to improve the understanding of the geological structure. 

The three aquifer units have been discretised in 16 horizontal layers. The first two layers 

represent the shallow aquifer unit (Pliocene-Pleistocene Fm.). The next 10 layers represent 

the middle aquifer (Kambe and Mtomkuu Fm.). This layer is discretized in several layers to 

represent the two palaeochannels present in the study area, one in the north and another 

in the south. The last four layers represent the deep aquifer (Mazeras sandstone) (Fig. 5.2). 
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Figure 5.2. Modelled domain gridded with the boundary conditions to limit the model area. The cross section 
colours indicate the discretization for the main aquifer units; shallow aquifer (green), middle 
aquifer/aquitard/palaeochannels (red) and deep aquifer (blue). 

The model limits have been defined by lateral boundary conditions and include the 

following two natural boundaries: the coastline of the Indian Ocean to the east and the 

Ramisi River to the south. The sea level has been defined by a Dirichlet condition with the 

MODFLOW package CHD (Time-Variant Specific Head). The Ramisi River has been defined 

as a river condition. The other model boundaries have been defined as no flow (Fig. 5.2). 

Other defining conditions are used in the model: 

Recharge from precipitation. Groundwater recharge has been estimated for the 

modelled period (2010-2017), for each land use. This recharge has been calculated by soil 

water balance and the result has been introduced into the model as the main input. The 

process followed and the data used to calculate the recharge is detailed in Section 4.3.1. In 

order to define accurately recharge values, field experiments were carried out to verify that 

the soil properties data base (KENSOTER, cited in Section 2.4.2) was correct. In addition, 

historic rainfall data from an established climate station was used, as well as rainfall data 

from new manual rainfall stations established by the study. 



Assessment of global change effects on groundwater dynamics 107 

 

 
 

Groundwater abstraction. A large number of pumping wells were defined to 

describe the groundwater abstraction using the WEL package. The main groundwater 

abstraction is carried out by the main economic activities in the study area: mining, 

irrigated sugarcane and factory, and hotels. The abstraction rate for each economic activity, 

plus the community boreholes and handpumps, are detailed in Section 4.4. 

Surface/groundwater interaction. The perennial rivers in the study area (the 

Ramisi and Mkurumudzi Rivers) have been defined using the RIV package, which calculates 

water exchange between the rivers and groundwater. The river bed conductance has been 

defined by calibration and was set at 12 m/d. Small ephemeral surface water flows were 

defined using the DRAIN package, since flows only occur during intense rainfall events. This 

type of boundary condition only allows groundwater discharge to rivers when groundwater 

level is higher than the river channel. The drain conductance has been defined by 

calibration and was set at 55 m/d for all drains. 

The hydraulic parameters have been divided into zones, based on geological formation. Due 

to the lack of hydrogeological parameters, the transmissivities for the main geological 

formation were obtained from boreholes drilled during the 1980s to the mid-1990s (thanks 

to the first-large scale deployment of the Afridev handpump). The Afridev is a lever-action 

reciprocating handpump, originally designed to be maintained at the village-level and 

capable of a pumping lift of up to 45 m (Baumann and Furey, 2013). The Swedish 

International Development Cooperation Agency (SIDA) played a critical role in financing 

the programme. The transmissivity for each borehole was calculated from specific capacity, 

using the Galofré equation (1966) (Custodio and Llamas, 1976) taking the LPS (litre per 

second) test data and calculating the difference between the static and dynamic 

groundwater level obtained during the borehole construction. The transmissivities have 

been complemented with hydrogeological data obtained during Base Titanium borehole 

drilling and pumping tests in the deep aquifer system. Horizontal hydraulic conductivities 

(Ky and Kx) were set, while the vertical component (Kz) was fixed as 10 % of the horizontal 

hydraulic conductivities. In order to simulate the effect of the low permeability barrier 

behind the indurated corals located adjacent to Kilindini Sands, a HFB (Horizontal Flow 

Barrier) package was used. This package simulates thin, vertical low-permeability 

geological features that impede horizontal groundwater flow. Given that changes in 

hydraulic heads are negligible compared to the saturated thickness, all model layers are 

assumed to behave as confined units (constant transmissivity). 

A steady-state simulation was used to conduct a first calibration of hydrogeological 

parameters and determine the initial heads of the transient simulations. The transient 
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simulation covers the period 2010 to 2017, though the period most representative of the 

mass balance is from 2014 to 2017; from 2010 to 2013 the water balance is based on 

simulated heads affected by unknown initial heads. Fortnightly groundwater head data 

from 34 observation shallow wells measured from 2016 to 2017 and groundwater heads 

measured in Base’s water resources monitoring network (ten deep boreholes and 18 

shallow boreholes) from 2012 to 2017 were used to calibrate the model (Table 1, Appendix 

A). The hydraulic conductivity and the specific yield values were calibrated manually. The 

root mean squared error (RMSE) has been selected as an indicator of goodness of fit. 

Due to the uncertainty of some GWL measurements in some hand-dug wells, different 

weights have been defined by type of water point: lower weights were applied to hand-dug 

wells and higher weights to piezometer wells installed by Base Titanium, as the screened 

sections are well-defined. Results show that the simulated GWLs match most observed 

GWLs, with a R2=0.89. The main calibrated hydrogeological parameters (i.e., Kx and Ss) are 

presented in Table 5.2. 

Simulated GWLs fit the observed GWLs fluctuations in most of the observation wells (Fig. 

5.3). The middle zone of the study area, mainly wells located in the Kilindini sands, are the 

wells with the best-fitting. Regarding the fluctuations through the model period, the 

drawdown slope of the simulated values is better adjusted than the recovery slope of GWLs. 

However, there are some simulations of wells located to the north and south, mainly in the 

Magarini sands, where simulations need a better adjustment. 

Table 5.2. Obtained hydraulic conductivity and specific storage for the entire model domain after calibration 
processes with observed data. 

Geological formation Hydraulic conductivity (K) 

in m/day 

Specific storage (Ss) in m-

1 

Alluvial 50 0.001 

Corals Fm. between 100 and 300 between 1E-5 to 0.001 

Kilindini sands between 1 and 40 0.008 

Pliocene Fm. between 0.1 and 3 0.0007 to 0.01 

Mazeras Fm. outcrop 1 1.00E-05 

Mkomtuu and Kambe Fm. between 0.1 and 1 0.0001 

Palaeochannels 0.6 to 1.1 0.01 
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Regarding the tendencies of GWLs in each geological formation, the coastal wells located in 

the corals show fast but small GWL variations. The water level decline variation of these 

wells is less than two meters, being the maximum peak of GWL increase after the rainfall 

event of April 2016 (model time 2708). The simulated GWLs of the wells located in Kilindini 

and Magarini sands show a different pattern compared with the wells located in Pleistocene 

corals; GWL variation through the model period is smoother, with a maximum water level 

decline of around two meters (Fig. 5.3). These wells show GWL recovery after the drought 

period in the wake of the long rains wet season of 2017. The wells located in the deep 

aquifer show more pronounced GWL variations than GWLs in the shallow aquifer units, 

with a maximum water level decline of four meters (Fig. 5.3). 

The groundwater balance was also analysed during the 2010-17 simulation period (Table 

5.3). From 2014 to 2017, the results show that the recharge term in the groundwater 

balance is the main input of the system and represents 80 % of the total input, which 

comprises the recharge and river inflow to the aquifer. Groundwater discharge includes 

groundwater abstraction from the shallow and deep aquifers, lateral aquifer discharge to 

the sea and groundwater flow from the aquifer to the rivers. In dry years, like 2016, there 

is 75 % less recharge compared with 2017. This can be attributed to last La Niña event. 

Around 20 % of aquifer recharge comes from the main river channels (Table 5.3).  

The main output of the system is groundwater discharge to the ocean, which represents 

around 46 % of total outputs. This output is constant throughout the modelled period, with 

only 8 % less outflow to the sea in the year of least recharge (2016) compared to 2017. 

Another important output of the model is the flow coming from drains, which is also nearly 

constant throughout the model period, even during the years of least recharge. Total 

groundwater abstraction only represents 0.44 % of total outputs (Table 5.3).  

This net balance is almost constant along the modelled period. Based on the potentiometric 

map (data not shown), most recharge from surface water infiltrates in the downstream 

reach of the Mkurumudzi River, where river to aquifer inflow is 52 % higher than the 

aquifer to river outflow. In contrast, the Ramisi River receives around 67 % more water 

from the aquifer than the aquifer gets from the river. This is in agreement with the 

hydrochemistry of samples of the river presented in Chapter 2, where a sample upstream 

was more saline than a downstream sample, showing surface water dilution with 

groundwater outflow. 

The model shows some of the limitations of the conceptual model. The northern area 

appears to be less influenced by La Niña event than the central area (see Ferrer et al. 2019). 

The calibrated model shows different hydrodynamic behaviour in this area. However, there 
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is no objective geological or hydrogeological evidence that the northern area is significantly 

different to the central area, particularly with respect to the shallow aquifer system. 

Table 5.3. Water balance results in hm3/year for the transient simulation. Note: Mku is the Mkurumudzi River. 
The * in 2017 means that the total water balance for that year is from January to November. 

Modflow 

terminology 

Real 

terminology 
2010 2011 2012 2013 2014 2015 2016 2017* 

Recharge in Recharge 71.44 160.60 50.05 86.13 156.93 169.42 57.89 224.07 

River 

Leakage in 

Mku. Stream 

losing 
25.21 25.35 25.95 26.39 26.62 26.67 27.64 24.99 

Ramisi Stream 

losing 
4.86 5.16 5.55 5.35 4.89 4.73 5.14 4.33 

Constant 

Head in 

Inflow from the 

sea 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TOTAL IN Total inflow 101.52 191.10 81.55 117.87 188.43 200.83 90.67 253.40 

Wells out GW abstraction 0.30 0.31 0.40 0.45 0.95 1.01 1.97 1.58 

Constant 

Head out 

GW discharge 

to the sea 
88.51 103.73 84.53 84.69 93.51 99.59 81.41 88.89 

River 

Leakage out 

Mku. Stream 

gaining 
13.71 12.69 10.80 9.98 9.88 10.11 8.63 8.79 

 
Ramisi Stream 

gaining 
15.43 15.83 14.24 14.28 15.36 16.55 14.50 14.20 

Drains out Drains 94.13 85.54 77.23 73.50 76.42 82.06 73.27 79.22 

TOTAL OUT Total outflow 212.08 218.11 187.20 182.90 196.12 209.33 179.78 192.68 

IN-OUT 
Change in 

storage 
-110.56 -27.00 -105.65 -65.04 -7.68 -8.50 -89.12 60.71 

 

Simulated GWLs in wells located in the Magarini sands also show a poor fit to observed 

values. Again, this could be due to conceptual model limitations, such as an incomplete 

understanding of the full extent and continuity of the palaeochannels; or the potential 

hydraulic continuity with surrounding formations. Finally, it could also be due to an 

incomplete understanding of the full extent of the aquitard, which separates the 

groundwater system into the shallow and deep aquifers.  
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However, the model is reasonably effective in simulating the groundwater dynamics of the 

aquifer. Therefore, it has been used as a tool to analyze the complicated groundwater 

behavior of the aquifer system under future scenarios. 

 

 

Figure 5.3. Observed values (red dots) versus calibrated values (blue line) of some representative wells for each 
geological formation. The red circles are the areas with less effectively calibrated groundwater drawdowns. The 
green circles are the Base Titanium shallow piezometers with good fitting. 
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5.4. Future scenarios 

To simulate the future groundwater resource availability under global change, eight 

scenarios encompassing the rainfall, temperature, and groundwater demand variables have 

been considered (Table 5.3), in order to understand the sensivity of the system to a 

combination of different changes; the simulation period covers the hypothetical six year 

period. The first three years simulate the possible drought periods with low and very low 

rainfall (1st rain cycle). The persistence within the system of impacts induced under the 

change scenario is tested under different recovery scenarios that are defined by the 

characteristics of the rainfall in the recovery phase (2nd rain cycle). Therefore, the last three 

years of the future simulations take into account a normal and an above normal 

precipitation, which is responsible for the recovery of the aquifer system. All the scenarios, 

except one, are calculated without a temperature increase, since these were considered the 

most realistic short-term scenarios. A scenario with a 2 °C temperature increase was 

generated to study the impact of increased temperature on the aquifer system. Finally, all 

the scenarios were run for current abstraction volumes and future increased abstraction to 

study the effect of abstraction on the system. These eight model scenarios are summarised 

in Table 5.4. 

Table 5.4. Combinations of variables used to simulate the eight numerical flow models to represent different future 
climate change scenarios. 

Variable 

of future 

scenario 

Dry_ 

Normal_0 

_Current 

Dry_ 

Normal_0_ 

Increase 

VDry_ 

Normal_0

_Current 

VDry_ 

Normal_0

_Increase 

VDry_ 

Normal_2

_Current 

VDry_ 

Normal_ 2_ 

Increase 

VDry_ 

Wet_0_ 

Current 

VDry_ 

Wet_0_ 

Increase 

1st rain 

cycle 
Dry Dry Very dry Very dry Very dry Very dry 

Very 

dry 
Very dry 

2nd rain 

cycle 
Normal Normal Normal Normal Normal Normal Wet Wet 

Temp. 0ºC 0ºC 0ºC 0ºC 2ºC 2ºC 0ºC 0ºC 

GW 

Demand 

Current 

(D0) 

Increase 

(D2) 

Current 

(D0) 

Increase 

(D2) 

Current 

(D0) 

Increase 

(D2) 

Current 

(D0) 

Increase 

(D2) 
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5.4.1. Data used in field application 

The Shimba Hills (Kidongo Gate) record has been the most appropriate “primary” station 

to apply SPI, as it is located centrally within the study area (Fig. 5.1). The time data and daily 

data set records range between 1959 and 2017, with data gaps between 1989 and 99, and 

in 2002. The mean monthly rainfall measured in Shimba Hills indicates that the seasons for 

this area are best defined as January-March (JFM), April-June (AMJ), July-September (JAS) 

and October-December (OND). In order to develop rainfall surfaces that reflect the natural 

spatial variability of rainfall, the Msambweni DO and Kwale Agricultural Department 

station records were used for matching the time periods defined previously (JFM, AMJ, JAS 

and OND), as selected for Shimba Hills (Fig. 5.1).  

In order to create the temperature time series, two SWAT Global Weather (Soil and Water 

Assessment Tool) stations have been used to represent the rainfall time series between 

1979 and 2015. The TAHMO stations (Trans-African HydroMeteorological Observatory) for 

Msambweni and Kidongo Gate have been selected, based on proximity, to extend the SWAT 

data to cover the period 2016 – 2017. The net result has been a synthetic temperature time 

series for each of the three rainfall stations (Shimba Hills, Kwale Agric. and Msambweni DO) 

used as the temperature input data for the simulation of the rainfall scenarios. 

Groundwater abstraction is controlled by the total amount of water allocated to the user by 

the Water Resources Authority (WRA) through water permits. Groundwater permits 

ascribe a maximum daily abstraction rate for each borehole (m3/day). This may vary season 

to season. Here, in the absence of actual measured abstraction data, the water permit 

allocation was used. Four different types of users were identified, namely: (I) mining, with 

abstraction from the deep aquifer; (II) irrigated sugar farming, with abstraction from both 

the shallow and deep aquifers; (III) tourism enterprises, with abstraction from the shallow 

coastal aquifer; and (IV) medium-scale public water supplies and rural communities, with 

abstraction from the shallow aquifer. The future abstraction rate for each activity and 

information sources are detailed in Table 4.3.  
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5.5. Results and discussion 

5.5.1. Effects of climate variability on recharge 

The possible future temperature increase of 2°C implies a 7 % reduction in recharge when 

the same future climate and abstraction variables are compared under the scenario with 

three very dry years followed by three years of normal rainfall. The recharge reduction due 

to increased temperature is lower than 7 % in the wet scenarios compared with the driest 

scenarios (Table 1, Appendix D). The groundwater model balance confirms that rainfall is 

the key climatic variable responsible for the main input of water into the aquifer system, as 

suggested previously in Chapter 2. Considering future estimation in Kenya, where climate 

projection estimates that rainfall intensities and total rainfall will increase, but wet seasons 

will be shortened, and droughts will be deeper and last longer (Herrero et al., 2010), the 

scenarios considered are plausible and would have an important impact on groundwater 

resources in the study area. 

The recharge volume for the future scenarios has been calculated based on future rainfall 

patterns for the three rainfall stations (Fig. 5.1). Table 5.5 shows that the correlation 

between the rainfall and the recharge is not linear, confirming that there is no simple direct 

relationship between average annual rainfall and recharge (Butterworth et al., 1999). This 

is especially significant for the normal scenario in which the two years show a total 

precipitation slightly above 1200 mm, but a range of recharge between 51 and 160 mm. In 

particular, rainfall during intense but short storms is more effective in driving recharge 

than lower intensity, more continuous rainfall. The rainfall intensity and distribution 

through the year influences net recharge, rather than simply the total annual volume of 

rainfall. Therefore, an intense rainfall event (>100mm) on a saturated catchment leads to 

intense and significant recharge. This is consistent with other studies of the phenomenon 

(Carter and Parker, 2009; Taylor et al., 2012; Taylor and Jasechko, 2015). Recharge 

differences across different climate scenarios can be explained by antecedent soil moisture. 

When the field capacity of the soil is empty (i.e. at the end of a drought period), rain is 

retained in the soil until the soil moisture deficit is satisfied, so less recharge reaches the 

aquifer. The opposite happens in wet soils (i.e. during wet periods), where the soil field 

capacity is full, so more net recharge reaches the aquifer. The normal rainfall annual mean 

of this area is greater than 500 mm per year, indicating an area where the results show that 

the population relies on regular recharge (MacDonald et al., 2009). Current recharge meets 

demand, but if climate change were to induce a reduction in recharge, either from a decline 

in total rainfall or in the intensity of individual rainfall events or periods which 

disproportionately contribute to recharge, would represent a risk to the population. 
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Table 5.5. Rainfall at Kidongo Gate (Shimba Hills), in mm/year versus recharge in hm3/year for the 3 -year future 
scenarios. 

Station Shimba Hills* Year 1 Year 2 Year 3 

Very Dry 

Rainfall (mm/year) 432 392 461 

Recharge (hm3/year) 12 12 9 

Dry 

Rainfall (mm/year) 578 698 694 

Recharge (hm3/year) 11 17 12 

Normal 

Rainfall (mm/year) 1245 1157 1209 

Recharge (hm3/year) 160 72 51 

Wet 

Rainfall (mm/year) 2226 2005 2336 

Recharge (hm3/year) 305 272 340 

 

5.5.2. Effects of rainfall variability  

In this aquifer system, despite reduced recharge under drought conditions, the discharge 

from the system through the different boundaries is nearly constant. The reduction of the 

water stored is reflected by the GWLs across the entire system, which decline during all 

drought periods. The aquifer system is significantly affected by three years of dry 

conditions, and needs a wet period in order to recover to the initial state (Figure 5.4). The 

GWL decline over a three year drought period is not reversed when followed by three 

normal climatic years. The general patterns of GWLs in wells located in the shallow aquifer 

for different future scenarios is similar. It shows that there is little difference in water level 

decline in the 3-year dry or very dry scenarios. The main difference in the GWL patterns 

comparing the different scenarios is the 3-year wet scenario, which is the period required 

for the aquifer system to recover (Fig. 5.4). 

These GWL declines are not the same in all geological formations, so the possible effects are 

also not the same. In the deep aquifer, GWL decline is higher compared to levels in the 

shallow aquifer, with a maximum of 10 meters after a three drought year. This decline could 

affect abstraction by the main water-intensive industries in the area supplied from deep 

boreholes. The cost of pumping groundwater increases approximately linearly with 

changes in water table depth in groundwater-fed irrigation systems, where energy cost is 

the main component of water price (Foster et al., 2015). This increased energy cost could 

increase the sugar and by extension Base Titanium operating costs and consequently 

product prices. 



116  Chapter 5 

 

  

The shallow wells located in the Kilindini and Magarini sands are the most susceptible to 

desiccation. The GWL decline in these geological formations will be around 5 meters after 

a three year drought scenario. This will materially influence community well-being, since 

these communities are largely supplied by handpumps exploiting the shallow aquifer. Of 

the observation wells used to calibrate the model, the depths of 26 of them are known; 60 

% of these wells would become dry after a long dry period. In fact, 29 % of these wells were 

dry at the end of the 2016 drought. In prolonged drought periods, shallow wells often fail. 

Those result indicates only deeper hand-dug wells and boreholes are reliable across all 

seasons and in drought periods. Long drought periods would also influence community 

economies in the study area which are based mainly on subsistence farming and small-scale 

livestock-raising. Even though water level decline in wells located in the corals near the 

coast will not be as significant as in other geological formations, small GWL declines could 

be sufficient to increase the risk of saline intrusion; climate change, particularly long 

drought periods, favours increased saline intrusion (Kumar, 2012; Okello et al., 2015b). 

Rainfall variability will also influence the river-aquifer relationship, reducing river flows as 

outflow from the aquifer to rivers during drought periods declines. The reduction of flow 

from aquifer to river in a dry year will be 20% less compared to a normal climatic year. 

During prolonged drought periods, this could then affect the dams used for water supply by 

the main industries (Base Titanium and KISCOL). The use of dams to store surface water by 

the water-reliant industries, along with the pumping of groundwater illustrates the 

importance of conjunctive use of water resources in the study area. In conjunctive water 

resources management, groundwater resources are used in dry periods in anticipation of 

wet season recharge. Recharge is made more effective if groundwater abstraction is 

reduced during recharge periods, when water demand can be met by surface water sources. 

Therefore, conjunctive water management is the optimum way to use water sources when 

seasonal variations in water availability are taken into account. The climatic conditions in 

Kwale mean that surface water resource availability is strongly seasonal, following a 

bimodal rainfall year. Dams are constructed to store wet season water for use at other 

times. Groundwater, on the other hand, constitutes a water resource that is available 

throughout the year, but is subject to certain constraints. The most significant of these are 

the effective groundwater recharge and actual abstraction.  

Rainfall variability could not only produce drought periods. but also wet periods where 

rainfalls will be above average. These wet periods are needed for aquifer systems to recover 

after a long drought period, since average rainfall after a drought is insufficient to lead to 

full groundwater level recovery. Thus, if a drought period lasts longer than one year and the 
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annual recharge is 70% less than an average year, as occurred during the 2016 La Niña 

event, a long wet period is need for the aquifer system to recover. This GWL increase would 

occur in both aquifer systems and in all geological formations, with higher GWL increase in 

the Kilindini and Magarini sands. The GWL level increment in these shallow aquifers could 

have negative impacts on groundwater quality in the area. This could be explained as major 

increases in GWLs in the shallow aquifer could reach the bottom level of pit latrines, the 

most common human excreta disposal systems in the study area, enabling pathogens and 

other contaminants to directly enter shallow groundwater. Furthermore, wet periods imply 

an increase in groundwater discharged to the sea (Supplementary material wet scenario). 

Although increased discharge to the sea may reduce the saline wedge penetration, it has a 

negative effect on seagrass diversity (Kamermans et al., 2002). This study found that 

groundwater outflow influences seagrass species diversity along the East African coast, 

with less species diversity observed in lagoons with high groundwater outflow. 

5.5.2.1Progression of the saline wedge 

This sub-section discusses the movement of the saline wedge based on the equation 

presented in Ferrer et al. (2019a). In this case, reduced recharge caused by a drought period 

( 29,863 m3/d) and increased abstraction from 3,616 m3/d to 23,589 m3/d would move the 

saline wedge 0.5 km inland, where it is located under current abstraction, reaching 2 km 

inland under these conditions in the future. At 6 km inland, the top of the saline water 

wedge is calculated to be located at 93 m bgl under current abstraction, but would rise to 

29 m bgl under the future abstraction scenario, affecting the shallow aquifer. The 

progression of the saline wedge under the future drought scenario is higher compared to 

the hypothetical scenario with the same increased abstraction scenario and the recharge 

produced during La Niña event presented in Ferrer et al, (2019). These calculations 

indicates that in other coastal regions with higher abstraction rates and higher hydraulic 

conductivities, the saline wedge would penetrate further inland and produce negative 

impacts for groundwater users.  

Since most of the population lives near the coast (Carter and Parker, 2009; Nlend et al., 

2018), aquifer salinization near the coast will affect groundwater quality and reduce the 

availability for a large proportion of the population of Kwale. This will also affect coast hotel 

water supply and so will impact the country’s economy. According to the Kenya Tourist 

Board (KTB), about 65% of the tourists coming to Kenya visit the Coast. People living along 

the Kenyan Coast depend extensively on tourism, which is already being affected by 

changes in weather and climate (Ongoma and Onyango, 2014). Anecdotally salinization is 

already affecting the drinking water of hotels in this area. 
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Figure 5.4. Observed versus simulated groundwater drawdowns, calibrated for different geological formations 
from 2010-2017 (pink shading) and for simulated future scenarios (yellow shading). 
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5.5.3. Effects of temperature increment 

The 2 oC temperature increase under the wet scenario cannot be observed in GWL evolution 

as the effect of increased temperature on GWLs is less than 0.05 meters. Increasing 

temperature will produce an increase in PET, which in turn will lead to reduced recharge. 

However, the effect of increased PET is limited, leading to a water level decrease of around 

0.05 meters. Despite the temperature increase not significantly affecting the GWL decline 

during drought periods, the increased temperature will affect agriculture. Serdeczny et al. 

(2015) show that each day during the growing season with a temperature above 30 °C 

reduces yields by 1% compared to optimal, drought-free, rain-fed conditions. Maize, for 

example, one of the commonest crops in Sub-Saharan Africa and in the study area, has been 

found to have a particularly high sensitivity to temperatures above 30 °C during the growing 

season. In addition to this, the rainfall reduction during drought periods presented here will 

affect crop productivity, which will need irrigation, or more irrigation in order to mitigate 

yield losses. 

5.5.4. Effects of socio-economic growth  

The total anticipated volume abstracted will increase by around 85 % compared with 

current abstraction (Supplementary material). The percentage of this increment will affect 

the aquifer storage in each of the future scenarios, reducing the aquifer storage around 1% 

in the dry/normal scenario and 2 % in the very dry/normal and the very dry/wet scenarios. 

Focusing only on increased groundwater pumping rates, abstraction would reduce the 

volume of groundwater in storage and increase the rate of water level decline across the 

system. Increased abstraction also has a local effect on water levels in shallow and deep 

wells located near intensively-pumped boreholes. The future GWL patterns in wells located 

in the middle zone near the Base Titanium well field, show the effect of the increased 

abstraction scenario, compared with the current abstraction scenarios. Water level decline 

in the deep aquifer in the middle area may produce a water level decline in shallow wells in 

the middle area that would be around 0.6 meters, rising to a maximum of 1 meter compared 

with wells located far from the well field in the same geological formation. In addition (and 

as with shallow wells located near the well field), there are differences in the GWL response 

in the deep aquifer under both current and increased abstraction scenarios, depending on 

the distance of the observation piezometer from the production well. Piezometers located 

near production wells show a higher water level decline under future increased abstraction, 

which would be between 3 and 5 meters. This could be due to the affect of the drawdown 

cone produced in the pumping well. The only scenario which leads to full deep aquifer GWL 
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recovery is the three wet year scenario under the current pumping regime. On the contrary, 

under the three wet year scenario under increased abstraction, the GWLs do not fully 

recover (Fig. 5.5). This shows that increased abstraction will affect the shallow aquifer in 

the middle part of the study area, worsening the situation already produced by climate 

change.  

 

Figure 5.5. Observed versus simulated groundwater drawdowns, calibrated for wells drilled in the deep aquifer 
unit from 2010-2017 (pink background) and GWLs for the simulated future scenarios with yellow background. 
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5.6. Conclusions 

This study presents the first numerical groundwater flow model of an aquifer located on 

the East African coast, based on a conceptual model developed previously. The conceptual 

model helped to build the numerical model, which was subsequently calibrated against 

known groundwater level and abstraction data; it also shows the limitations already 

defined in the conceptual model. The numerical model confirms the current sustainability 

of the aquifer system and the capability of water levels in the system to recover after 

drought events, like La Niña event of 2016.  

This model has been used as a tool to test empirically how rainfall and temperature 

variability could affect recharge in Africa and in aquifer system by including also the 

increment of abstraction due to the future socio-economic growth. The future scenario 

models show the importance of recharge in maintaining the volume of water in aquifer 

storage. Recharge is not linearly correlated with rainfall in ‘normal’ and ‘dry’ rainfall 

scenarios. Rainfall distribution and intensity are more important in producing effective 

recharge than the total annual rainfall. GWL patterns show that the aquifer needs a rainfall 

period above ‘average’ in order to recover GWLs after a long drought period. The impact of 

increased abstraction is not equal across the study area. Wells near the Base Titanium well 

field show greater drawdown in GWLs under increased abstraction future scenarios. 

Finally, deep piezometers located near the Base Titanium production boreholes show GWLs 

drawdown that do not fully recover, even during wet periods under the projected increased 

abstraction rates. The future scenarios show the possible impacts on the groundwater 

system, such as movement of the saltwater wedge, desiccation of community shallow wells 

and increased cost of deep groundwater abstraction. These would affect both the large-

scale and community users of groundwater, of particular concern being the impact on the 

latter, who—absent other sources of supply—will struggle to get access to reliable potable 

water. 

This future groundwater depletion will not only be related to the consequence of drought 

periods or the future abstraction increase, but also is related to the economic and social 

policies of the study area. A well management should involve the stakeholder and all the 

water-reliant users of the area in the process of decision making. These results, which are a 

long term approach, should help to make management policies and practices that improve 

human-water relationships by harmonizing the equilibrium between humans and natural 

water resources, mainly when they are under pressure, such as during a drought period. 

Furthermore, this chapter emphasises the minimum data of an aquifer system needed to 

make sustainable management of groundwater resources. 
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Safety, Closeness and Reliability-SCR Index   
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6.1. Introduction 

Almost one-fifth of the world’s population, live in areas of water scarcity. Another almost 

one quarter of the world’s population, face economic water shortage, meaning areas lacking 

the necessary infrastructures to take water from rivers or aquifers (UN, 2016). Two thirds 

of the world’s population currently live in areas that experience water scarcity for at least 

one month a year (Mekonnen and Hoekstra, 2016). 

Inadequate sanitation is also a problem for 2.1 billion people, being exposed to diseases 

such as cholera, typhoid fever, and other water-borne illnesses. Two million people, mostly 

children, die every year from diarrheal diseases alone. Another 844 million people do not 

have even a basic drinking water service. This includes 263 million people who have to 

spend over 30 minutes to arrive to a drinking water supply source, and about 159 million 

still drinking untreated water from surface water sources, such as streams or lakes 

(www.unicef.org). 

With the existing climate change scenario, it is expected that by 2030 water scarcity in some 

arid and semi-arid areas in the planet will displace between 24 million and 700 million 

people (UNDP, 2006). Furthermore, population growth is creating an increasing demand 

for water, and due to the rising of living standards, water consumption per capita is also 

likely to increase (Sullivan, 2002). This means that water resource availability is linked to 

economic and social progress, suggesting that development is likely to be influence by the 

combination of water availability and how water resources are managed (Sullivan, 2002). 

Provision of a reliable, sustained, and safe water supply worldwide has become a top 

priority on the international agenda, being one of the UN Sustainable Development Goals. 

Water managers are often faced with an increasing and competing demand, but with limited 

resources to manage it (Giné Garriga and Pérez Foguet, 2011). Therefore, good information 

supported by appropriate indicators is required to determine how a populated area is 

faring, whether it is on-track to meet its objectives of full safe supply and what decisions 

need to be made to maximize performance. A key prerequisite to support effective planning 

is to access consistent information through accurate monitoring, backed up by rigorous 

interdisciplinary science. Thus, it is needed to develop an index that can offer policy 

planners an appropriate tool for performance monitoring, benchmarking comparisons, 

policy progress evaluation, public information, and decision making. Simple aggregated 

indices can encapsulate more than one measure of progress in a single number, and allow 

quantitative and qualitative elements to be combined (Sullivan et al., 2003). However, 

indices are incomplete and imperfect tools, and caution is required when using them for 

supporting poverty alleviation (Giné Garriga and Pérez Foguet, 2010). 
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One such index is the Water Poverty Index (WPI), developed by Sullivan (2002). WPI has 

been recognized as a useful and holistic tool in policy analysis, and specifically designed to 

contribute to effective water management (Sullivan et al., 2003). It was created as an 

interdisciplinary indicator to assess water stress and scarcity, linking estimates of water 

availability with the socioeconomic drivers of poverty (Giné Garriga and Pérez Foguet, 

2010). The WPI has been applied in different areas in the World, such as Java, Mexico, and 

North Kenya (Giné Garriga and Pérez Foguet, 2011; López Álvarez et al., 2015; Perera and 

Muttil, 2009), both at the local and national scales (Giné Garriga and Pérez Foguet, 2010; 

Lawrence and Meigh, 2003; Sullivan and Meigh, 2007; Sullivan et al., 2003). 

The WPI was developed in a participatory manner, through consultation with a wide range 

of stakeholders, policy makers, and scientists. Despite all the studies are based on five key 

components (Resources, Access, Capacity, Use, and Environment), every study case is based 

on specific variables or subcomponents. WPI combines the information from local 

authorities, field investigation and household surveys to assess an integrated indicator of 

water poverty at some specific time (“steady state conditions”). Due to the correlation 

between the variables and the subjectivity of the response of the surveys completed by 

users, it is difficult to predict how some of these variables might change in the future.  

Therefore, it is relevant to find a tool that could help evaluating the future groundwater 

availability in areas based on a simplistic and fast way, since in low-income areas, any 

solution to improve water poverty assessment needs to be efficient and cost-effective. The 

successful and sustainable development of groundwater resources in these areas is critical 

for future safe water supplies, economic growth and food security in the continent. Regional 

assessment of the impacts of climate change indicates that future changes in rainfall 

patterns including large drought periods and concentrated precipitation events with very 

large variability will reduce recharge. This, coupled with increasing population growth 

(both in urban and in rural areas), will reduce population access to drinking water 

resources 

Therefore, the goal of this chapter is to go an step forward to build an index to assess the 

risk for a given household to have no access to drinking water (in terms of either quantity 

or quality) under “transient” conditions and incorporating data from groundwater models, 

the “management tool” for groundwater managers and planners. The index developed is 

based upon the already existing WPI, but focused on hydrogeological data that could be 

provided by numerical groundwater models outputs (piezometric level and drawdowns) 

and household fields (households geographical location). Therefore, the index intends to be 

objective, yet due to the difficulty to obtain reliable information related to the water use in 



New index for groundwater scarcity in rural areas  125 

 

 

developed countries, this new index is based only on 3 simple variables: Safe to drink, 

Closeness to the supply source, and Reliability (thus, the name SCR). One of the advantages 

of using numerical models as inputs of the index is the potential of evaluating the effects of 

different future scenarios related either to climate change or to future water management 

realities (e.g., groundwater abstraction in time and the spatial distribution). Finally, 

showing the changes in this new index spatially by mapping could help water managers to 

define the potential riskier areas to suffer scarcity in terms of the fraction of affected 

households in some given area. The index SCR has been tested in the study area. 

6.2. Development of the SCR index 

The idea of obtaining an “ideal index” that perfectly captures and aggregates variables of 

very interdisciplinary nature is quite challenging. Yet, many such indices have been 

developed and are widely used. We intend to present an index based only on elements 

supported by groundwater numerical models, thus avoiding both the inclusion of non-

quantitative index or based on surveys or public perception. This does not preclude any 

problem on existing indices, but it expresses the need for getting fast quantitative results 

that could be translated efficiently into one index that relies only on groundwater aspects 

to map the areas prone to suffer water scarcity.  

6.2.1. Regional approach 

As cited before, the SCR index is a local index applied at a household scale. However, it is 

recommended to calculate first the availability of groundwater as a resource at the aquifer 

(regional) level in order to frame the development of the SCR index. The term “Availability” 

in this study is the equivalent to the term Resources (R) used in the WPI. This indicator 

looks at how much groundwater is available per unit of time for each person in a particular 

area, and it is defined as (López Álvarez et al., 2015):  

𝐴 =
𝑅𝑒𝑐ℎ𝑎𝑟𝑔𝑒−𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑅𝑒𝑐ℎ𝑎𝑟𝑔𝑒
   (eq. 2.1) 

A negative value of index 𝐴 points to groundwater mining, defined as the withdrawal of 

groundwater over a sustained period of time that exceeds the natural recharge rate of the 

aquifer. An area with low (or negative) availability might need to find other sources of 

water, which most of the time is less safe. Notice that both recharge and abstraction as a 

function of space and time are inputs to regional numerical groundwater models, the 

former usually obtained from a soil water balance, while the latter is directly related to 

groundwater use for population supply, industry and agricultural needs. 
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6.2.2. Local approach  

The SCR index is composed by 3 variables: 

Safety (S, component 𝑿𝟏): this parameter of the index is related to the groundwater 

quality. Groundwater quality is an important issue when assessing the risk of water 

resources, due to the fact that poor quality of groundwater can affect social, health and 

economic aspects, clearly influencing household poverty. A conservative transport model is 

an option to assess the groundwater quality evolution. Many numerical models are 

available to simulate the contaminant flow path in the aquifer. The partial differential 

equation describing the transport of contaminants in 3D transient groundwater flow 

systems can be written as:  

∂(nC)

∂t
= ∑

∂

∂x𝑖
(𝑛𝐷𝑖𝑗

∂C

∂x𝑗
)𝑖,𝑗 − ∑

∂

∂𝑥𝑖
(𝑛𝑣𝑖𝐶)𝑖 +𝑞𝑠𝐶𝑠 + ∑ 𝑅𝑛𝑛    (eq. 2.2) 

where 𝐶 is dissolved concentration of contaminant (mol/L), 𝑛 is porosity of the medium, 

𝐷𝑖𝑗  is hydrodynamic dispersion coefficient tensor (m2/s), 𝐶𝑠 is the external concentration 

(mol/L) of the source or sink flux being 𝑞𝑠 (L/s), 𝑅𝑛 are sink/source terms driven by 

geochemical reactions (mol\L-s), and 𝑣𝑖  is the seepage or linear pore water velocity (m/s), 

calculated as 𝑣𝑖 = −
𝐾𝑖

𝑛

∂h

∂x𝑖
. The external source can be used in model predictions, being 

obtained from numerical codes used externally (e.g., coupled climate-recharge codes).   

The concentration range at the point of interest (supply well or small defined area, defined 

from the numerical model, either at the cell size or downscaled) will be normalized (range 

[0,1]), where 1 means no pollution and 0 means that the contaminant concentration is over 

the limit established by the WHO. The quality problem is composed by multiples 

components, such as chemical elements, trace metals, organic compounds, or pathogens. 

Therefore, this parameter will be quantified as follows: if only one compound of the total 

number analyzed exceeds the limit defined by the WHO, the quality index assigned to a well 

will set equal to 0; otherwise, a linear or non-linear relationship can be stablished to assign 

the index value to a given value of concentration. We suggest 

𝑋1 = {
1 − 𝐶/𝐶𝑡

0
      

𝑖𝑓 𝐶 < 𝐶𝑡

𝑖𝑓 𝐶 ≥ 𝐶𝑡
  

In the case of lack of data to build a full transport flow model, a vulnerability map (based on 

semiquantitative indices) can give a reasonable delineation of the areas where households 

are at risk due to a potential reduction of the groundwater quality. This step outlines the 

use of two tools: GIS and expert judgment, which are often used in conjunction with each 
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other to produce vulnerability maps. As in the previous methodology, the concentration of 

a given contaminant will be normalized from 0 to 1 based on expert judgment.  

In some cases, the index 𝑋1 could be based on only one specific quality problem. For 

example, in the case of a coastal aquifer, the evaluation of Safety could be based on the 

potential salinization of wells caused by the seawater wedge progress. In this case, the full 

numerical model can be replaced by a simple evaluation of the length of the toe of the saline 

wedge, given analytically by  

𝐿 =
𝐾∗𝛽(1+𝛽)∗𝑏2

2𝑞𝑡
   (eq. 2.3) 

where L is the length of the saline wedge; K means the arithmetic average of the horizontal 

hydraulic conductivity; b is the aquifer thickness; β is the ratio of the difference between 

saltwater and fresh water densities to fresh water density, being approximately equal to 

0.03 for the Western Indic Ocean (Poisson et al., 1981); and 𝑞𝑡 =
𝑊−𝑄

𝑐𝑜𝑎𝑠𝑡 𝑙𝑒𝑛𝑔𝑡ℎ
 where 𝑊 is 

regional freshwater flow and 𝑄 is groundwater abstraction, so that the difference, 𝑊 − 𝑄, 

is the net discharge of freshwater to the sea. This equation can be used to delineate in plain 

view a boundary line separating fully penetrating wells that are located in the intrusion area 

or not. Additional equations can be used for partially penetrated wells to evaluate upconing. 

Closeness (C, component 𝑿𝟐): this parameter considers whether a groundwater source is 

available near a given household. Collecting water is often the most time-consuming and 

most important daily activity for women and young girls in developing countries 

(www.unicef.org). The average distance that women and children walk for water in Africa 

and Asia is 6 km. It has been estimated that women in sub-Saharan Africa spend 40 billion 

hours annually fetching and carrying water from sources (that not always even provide 

clean water) far from home. The time spent collecting water makes it difficult for women to 

focus on other economic activities and for young girls to attend school. The weight of the 

water they carry also exposes them to a greater risk of malnutrition, back problems, and 

anaemia. The combination of illiteracy, malnutrition and recurrent sickness combine to 

perpetuate poverty and gender inequality in some rural areas.  

Sometimes this term of closeness to a water resource is determined by a socio-politic 

geographic distances. This means that a household can be supplied by a given well despite 

having another one closer, just based on own or family (inherited) decisions. However, 

using an objective approach in order to define the SCR index under future scenarios, we 

assume an acceptable maximum distance of 15 minutes walking or 1 km distance, based on 

Giné Garriga and Pérez Foguet (2010) and (MacDonald et al., 2012). 
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A simple way to assign this index is based on calculating the distances between a given 

household and all available supply points (not necessarily the Euclidean one, as elements 

such as existing paths, orography, property issues, can be significant). Using a GIS platform 

is most convenient. Notice that during a certain period of time one well can become dry, 

polluted, or just deactivated due to malfunctioning of the pump or political issues. In such a 

case, distances should be recalculated to find the next available source. To give a 

quantitative value to this parameter, we assume that a distance equal or higher than a 

predefined distance 𝐿𝑡  (by default we stablish 1 km) leads to a value of 0, while shorter 

distances are quantified using a linear formulation expressed as  

𝑋2 = {
1 − 𝐿/𝐿𝑡

0
      

𝑖𝑓 𝐿 < 𝐿𝑡

𝑖𝑓 𝐿 ≥ 𝐿𝑡
  

Reliability (R, component 𝑿𝟑): this parameter is defined as household access to a drinking 

water source sustained in time. In many countries, the water supply is only reliable during 

the wet season, since during the dry season most wells become dry. Therefore, reliability 

should mostly be assessed during the dry season. From a groundwater model, reliability is 

governed by the difference between groundwater heads (in unconfined aquifers) and the 

bottom of the well. This difference is termed “water column (H)”; it is location-specific, and 

evolves with time. The minimum value of H that can sustain pumping depends on the pump 

(existence, type) and on drilling boreholes characteristics. 

Another point is to define for how long a well has to remain dry (H below the minimum 

value) to consider a well as non-reliable. This can be assessed through an initial survey in 

households, or from expert judgement based on climate conditions, average size of a family, 

household water use, and other local conditions, that would be used to estimate the amount 

of days that a given family could survive without fetching clean water. An option to calculate 

the risk related to the water scarcity could be defined as 1 meaning that the water column 

does not decline below the predefined value in a given period, while 0 indicates the 

opposite. Thus, in principle this value is binary at a given time, yet it can take any value 

between [0,1] if a probabilistic approach is adopted so that water column becomes 

uncertain in predictive scenarios.  

6.3. Structure of the Index 

The SCR index has a similar structure to that of the WPI and aquifer vulnerability index 

(DRASTIC). The three key components are combined using the following general 

expression: 
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𝑆𝐶𝑅 = ∑ 𝑤𝑖
3
𝑖=1 𝑋𝑖    (eq. 3.1) 

Where 𝑋𝑖  refers to component i of the SCR structure (S=1, C=2, R=3) and wi is the weight 

applied to that component. The weights are constrained to be nonnegative and to add up to 

one, thus implying that SCR lies also in the range [0,1]. 

In any composite index, the choice of weights is aimed at reflecting the relative importance 

given to the variable comprising the index. Despite weight selection based on consultation 

with experts is a quite a subjective method, it is a conventional practice in most existing 

indices that combine multidisciplinary data, regardless whether parameters are treated as 

deterministic or uncertain (DRASTIC is a well-known example, see, e.g., Armengol et al., 

(2014). Alternatively, multivariate techniques, such as principal component analysis or 

factor analysis, present an empirical and objective option for weight assignment. No 

weighting system is beyond criticism.  

Each term composing the SCR index is a function of time, and so does the full SCR index. 

This time should be defined by the experts or could be an outcome of the numerical model, 

thus calculating the SCR index for all predefined times. 

The scores obtained from the SCR index will be distributed in order to provide a qualitative 

indicator of risk, from “high risk” (𝑆𝐶𝑅 ∈ [0,0.25]), “medium risk” (𝑆𝐶𝑅 ∈ (0.25,0.5]), “low 

risk” (𝑆𝐶𝑅 ∈ (0.5,0.75]), or “no risk” (𝑆𝐶𝑅 ∈ (0.75,1.0]).  

6.4. Development and application at the household scale 

6.4.1. Case study 

To illustrate the application of this index, and to study how it changes under future climate 

scenarios, a real application was explored. The study area is defined in Section 1.3 of this 

document. Complementary to the information already presented, in August 2013, a 

waterpoint survey identified 571 handpumps (all Afridev model, see Section 5.2) in the 

study area of which 45 % were non-functioning. A sample of 531 handpump locations were 

used as a framework for two rounds of household surveys in 2013/14 (Nov-Jan) and 2015 

(March-May). In 2014-2015, multidimensional poverty indices (MPIs) were mapped, 

interviewing around 3500 households. This study showed that groundwater and welfare 

can be conceptualized together merging information on water resources, drinking water, 

productive systems, and welfare status (Katuva et al., 2019). Some of these variables are 

clearly related to the components of the SCR index. 
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In 2019, a numerical groundwater flow model of the studied aquifer was built using 

Modflow-2005 code presented in Chapter 5. The outputs of these flow model scenarios have 

been used to delineate the SCR index for future scenarios. 

6.4.2. Data available and methodological application of SCR to the study area 

The three components of the SCR index were calculated for the case study based on the 

characteristics of the boreholes and the data available: 

 Safety: Kwale is a coastal area with salinity problems due to seawater intrusion 

(recall Section 4.5.4). Therefore, the 𝑋1 component was only based on EC (electrical 

conductivity) measurements. EC was measured in 2014 during the corresponding 

household field survey, and these point values were used to delineate the map of estimated 

EC concentrations based using kriging as the interpolation method. In those areas with 

estimated values higher than 1000 µS/cm, a value of 0 was assigned to 𝑋1. For the years 

modelled years (2015-2017 plus 6-future simulated years), the salinity progress was 

defined from equation 2.3, using the groundwater flux from the numerical model in a 

deterministic way. In dried wells, the values were also assigned to 0. Those wells with the 

EC values under 1000 µS/cm the safety value was 1. 

 Closeness: the term closeness was inferred from questions asked in the 

2013/2014 field survey, where components of each household were requested to answer 

whether they thought that the community handpump was close. The Euclidian distance was 

measured between each household and the handpumps reported. From the results of the 

survey, a distance of 𝐿𝑡  = 400 m was assigned as the value indicated in average by the 

households to declare that a supply point was considered far. Therefore, we assigned a 

value of 𝑋2 = 0 when 𝐿 > 400 m, and 𝑋2 = 1 when 𝐿 < 400 m. When a community well was 

dry, the distance from the household to the closest handpump was recalculated to the next 

well in terms of component values. 

Reliability: Available data includes the depth of boreholes and the topographic 

elevation obtained from a Digital Elevation Model. The numerical model provides 

drawdown values every 15 days and we calculated the annual mean decline for each 

borehole and for each simulated year. Taking as reference piezometric map, the one 

corresponding to 2014, the drawdown in each well and construction data allowed mapping 

the water column at each pumping well and for the different simulated years. The Afridev 

handpump devices stop working when the water column is zero. If there is no groundwater 

decline 𝑋3 = 1, when the water column is zero 𝑋3 = 0, and a weighting between 0 and 1 if 
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there was some groundwater column decline always having groundwater column value 

above zero. 

6.4.3 SCR Index maps.  

The household surveys in 2013/14 and 2015 carried in the study case were used to obtain 

the georeferenced location of the boreholes and the households interviewed in the welfare 

field survey. Boreholes locations were introduced in the existing numerical flow model to 

get the groundwater head decline at each borehole under different global scenarios. Each 

parameter has the same weight (0.33).  

First of all the Availability term has calculated for each year to have a regional view of the 

aquifer system and its evolution under different global scenarios. The availability value 

range from 0.19 during the drought period to 0.96 during the wet scenarios both with the 

future increase of abstraction. Looking in detail the SCR evolution using the modelled data 

from 2015 to 2017, the figure 6.1 captures the effect of the drought year caused by La Niña 

event that triggered a severe drought in East Africa in 2016 (recall the model presented in 

Chapter 2). The figure 6.2 shows the evolution for each individual parameter. In the case of 

La Niña event the X2 and X3 are the parameters that changes more from 2015 to 2017. 

 

Figure 6.1. SCR index from 2015 to 2017. Red colour means values from 0 to 0.25 (high risk), Orange colour means 
values from 0.25 to 0.5 (middle risk), green colour from 0.5 to 0.75 (low risk) and blue colour from 0.75 to 1 (no 
risk). 
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6.4.4. SCR maps – Predictive scenarios 

The impact of future climate scenarios (6 simulated future years) is displayed in Fig. 6.3. It 

represents a 3-year long drought period, with the rainfall volume 90 % less compared to an 

average year, followed by a 3-year long wet period, with the rainfall annual volume 70 % 

more compared to the average. During all the simulation period, we considered an 

increment of groundwater abstraction with respect to the present value, following the 

scenarios presented in Chapter 4.4. 

 

Figure 6.2. SCR index values for each parameter, Safety, Closeness and Reliability. 
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6.5. Discussion 

Figure 6.2 displays the S,C,R terms for three representative years: 2015 and 2017, affected 

by (hypothetical dry year), and (hypothetical wet year). The spatial patterns of all 

components are quite different. The one displaying the lower values is X1, with high-risk 

values in the north coast, and in the inland area due to some of the wells located in the 

Magarini sands were dry. Low values of Safety appear in the drought year, indicating the 

effect of seawater intrusion in the south coast, due to the reduction in recharge. In order to 

value the salinity changes thought the time, a variable-density flow model should be run, 

since the eq. 2.3 only works for steady state situation. However, the salinity variable during 

the wet year shows that this effect does not get reverted as stated in the Chapter 2 and 4, 

since the salinization process takes years to revert its effects on the handpumps/ wells. 

The closeness parameter is quite constant throughout the simulated years. This parameter 

presents lowest values inland where there is less handpump density and thus, there is more 

distance between them.  

Reliability is the parameter that changes more as a function of climate conditions showing 

the effects of the variability in recharge. The reliability value decreases during the drought 

period, and increases during the wet period in the wells located on the coast, as recharge is 

the main driving factor controlling water column.  

Overlapping the three maps for the S, C, R indices we obtain the areas that are most 

vulnerable to suffer groundwater supply shortages under different scenarios. Here we 

separate the effects of periods with existing data (2015-2017, see Fig. 6.1), from predictions 

based on the outputs of the numerical model (Fig. 6.3). In 2014, the central study area 

displayed very low values of SCR, since most of the wells in this area were reported dry. 

There is some uncertainty in these result, as it could be an error associated with the 

topographic data (elevation was extracted from a 90m x 90m DEM map) with the 

respectively associated error that could provide huge errors in the initial conditions input 

in the model. 

The SCR index decreased widespread during La Niña episode that started in 2016 and lasted 

until April 2017. The effects of this drought period made that some handpumps became dry, 

mainly in wells located some km inland from the coast.  

Maps corresponding to the 3-years of drought were based on predictions considering a 

three-year drought period caused by climate change (see Chapter 5). The effects of drought 

seem to be translated to the SCR Index mostly for the first two years. The lowering in the 

index, and therefore the increase in the perception of risk, is mainly due to the enhancement 
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of the saline wedge progress due to the reduction of recharge and the increase in 

abstraction and, consequently, the reduction in net discharge to the sea. Indices slightly (not 

fully) recover after 3 wet years where some wells located inland and not affected by saline 

intrusion see an increase in SCR, changing from “low risk” to “no risk”. 

Due to the lack of data related to the household located on the northern area in the 

mountainous range, it is not possible to define reliable SCR indices in this area. The value 

depicted in the maps are thus just extrapolations. 

We can also state the relevance of location in the relevance of the individual components of 

the SCR Index. Inland, Reliability is the most significant variable. However, on the coast, 

Safety becomes key. Furthermore, Closeness is more significant inland as compared to the 

households located at the coast, since the latter location concentrates most of the 

population, and thus they are the areas with the highest concentration of wells.  

The SCR index is a simple tool for the water manager in order to be able to take decisions 

regarding water supply to rural areas with simple, yet quantifiable, data. The advantages of 

using only three variables are clear. But the simplicity is also one of the drawbacks. We 

know that more parameters would be needed to incorporate additional information that 

could result in informed decisions, but here we consider that the three components 

selected: distance, groundwater quality, and quantity, encompass enough relevant 

information to make first decisions in complex areas. It is an easy index that can help to 

define the first maps that show the areas of highest risk to suffer a reduction of good water 

supply. Then, these maps could be used as a baseline tool to study in detail the areas where 

higher budget should be devoted in order to obtain additional data that could be included 

in different, more sophisticated, indices, such as the WPI.  

Despite the simplicity of the components, there are also prone to errors. In the study case, 

one such error was caused by the resolution to the DEM map, leading to erroneous values 

of the initial water column, so that some wells were assumed as dry. A more accurate 

technique, such as a DGPS could have been used (difference in elevation between a DEM 

map and DGPS can range 5 m of difference). Furthermore, detailed information of each 

borehole depth is a must, while this information is rarely available in developing countries. 

In addition, in the study case we fixed a zero value for Reliability is zero when the water 

column was zero, but this can be different depending on the waterpoint and pump 

characteristics. Furthermore, the perception of Reliability can be somewhat subjective for 

every household, with a strong local variability even for neighbouring households. 

Moreover, in the study case, we calculated the average annual groundwater decline, but it 

should be more specific to calculate the SCR index for each climatic season. So, it is 



New index for groundwater scarcity in rural areas  135 

 

 

important to know the climate of the studied area to define the correct time index, also a 

challenging problem as most climate change scenarios provide data in a very coarse grid 

that should then be downscaled to the elements in the study area. 

Regarding Closeness, this is a relative parameter linked to socio-topography barriers. In 

this study case, we used as the maximum acceptable distance once taken from a survey, plus 

we computed distances based on Eucledian distance. These two elements could be 

challenged, and assigned differently in other realities. For example, acceptable distance 

(here 400 m) could change in the future, due to unforeseen social and cultural decisions. 

Finally, the component Safety defines the quality of the system which is always composed 

of many parameters. In any given site, we should first screen as many parameters as 

possible to decide the really stringent ones, but this means money and time to make the 

analysis. In Kwale County, we based the S component in just one parameter that was easy 

to measure during the field survey, the EC. Despite EC is always a relevant parameter, 

mostly in coastal areas, it is not necessarily the most critical one in other realities, where 

the presence of pathogens could be the limiting element for water quality.  
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Figure 6.3. SCR index for under future scenarios. 
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6.6. Conclusions  

This chapter presents a new methodology based on an index that measure the risk to run 

out with groundwater due to scarcity and/or quality reduction for each household. The SCR 

index has been applied in the study area of Kwale, where the communities are mainly 

supplied by handpumps. This index is an easy index only composed of three variables that 

encompass distance between the household and the waterpoint, groundwater quality and, 

quantity. 

The novelty of the index relays in the combination of groundwater model outputs with 

household data, which allow generating a “transient” risk index that can be calculated for 

several scenarios depending of the data available to run the initial groundwater model. Its 

application to the studied area has given consistent results with the current knowledge of 

the Kwale coast. As this index allows running different potential future scenarios, it helps 

to understand better the effect of the global change at household scale. Therefore, it is a 

predictive tool that allows evaluate future potential groundwater risks in time and space, 

being very useful for water authorities and stakeholders, who will be able to take action 

before groundwater availability reduction takes place. At the same time, this new index is a 

step forward to use the real potential of groundwater models for water resources 

management. 
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General conclusions  
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In the context of Africa, groundwater management is hampered by a lack of information on 

aquifer characteristics. The data describing groundwater systems is often sparse and so, the 

current state of aquifer understanding is poor. Furthermore, African nations are the most 

vulnerable to the effects of climate change due to the slow pace of economic development 

and inadequate institutional capacity. Plus to climate change, the population growth and 

the continent industrialization will produce an effect on groundwater systems, reducing its 

availability and quality. Therefore, more research is needed to understand how all these 

future changes will affect the groundwater resources and supply, in order to improve and 

adapt the management of these resources to future global change. 

In this dissertation, the aquifer system located in Kwale County (Kenya) has been studied 

as a paradigmatic case of what is happening in the African continent under socio-economic 

development. Interestingly, this aquifer is exploited by different water-reliant industries of 

different kinds (mining, agriculture, tourism), which share groundwater supply with the 

rural communities. Furthermore, the groundwater system has a geological structure that is 

representative of an important portion of the East Coast of Africa. The research conducted 

in this area provides various insights into the problem of aquifer management in the 

continent under different global scenarios. First, the aquifer has been characterized using 

physicochemical data, groundwater level measurements, environmental isotopes, and 

geophysics transects. The main quality problems have been also approached being the most 

important the anthropogenic pollution of faecal bacteria presence and the induced 

pollution problem of saline intrusion. Furthermore, the impacts on groundwater 

availability has been assessed studying the sustainability of the aquifer system under new 

pump rate by the water-reliant users in the area. The availability of groundwater resources 

under future climate change has been valued also through the evaluation of the produced 

by La Niña event 2016/17, a severe drought that affected the aquifer system. All this 

previous knowledge has helped to build a numerical groundwater flow model in order to 

integrate all the information available, define the relationship between surface and 

groundwater and to use it as a tool to study how the climate change and the future increased 

abstraction rate will affect groundwater vulnerability and how to manage this resource 

under global change. Finally, a new index has been defined and tested in the study area to 

define the risk for a given household to have no access to drinking water (in terms of either 

quantity or quality). Overall, these results are a contribution to the knowledge of how to 

face the groundwater resource management in this continent under future global scenarios. 

The geophysical and geological data point out that the aquifer system is composed by a 

shallow aquifer composed of young geological materials, including silicate sands (Pliocene 

Fm.) and carbonates, corals and sands (Pleistocene Fm.), and a deep aquifer composed of 
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older materials, mainly sandstones (Jurassic and Triassic) which crop out in the western 

part of the area in the Shimba Hills range. The hydrochemical facies and the water isotopic 

composition indicate that there is hydraulic connectivity across the materials that comprise 

the shallow aquifer. The same data show that the Mazeras sandstones in the Shimba Hills 

are hydraulically connected with the deep aquifer. These two aquifer units are separated 

by the presence of a middle/low permeability aquitard emplaced between the young and 

old materials. Furthermore, the geophysical data points that the confined aquifer is 

disrupted across the area by two in-filled palaeochannels (filled with sedimentary and re-

worked fluvio-deltaic materials) perpendicular to the coast (in Zone 1 and 3) that enhance 

the connectivity between the shallow and deep aquifer in each of these zones. Equipotential 

lines of the shallow aquifer show that the groundwater flow direction is from the Shimba 

Hills to the Indian Ocean. The potentiometric map and the hydrochemistry indicate that the 

Ramisi (Zone 1) and Mkurumudzi (Zone 2) Rivers are gaining streams, receiving water from 

the aquifer, at least in their middle parts. The hydrochemical data and environmental 

isotope data shows that the shallow aquifer is directly recharged by local rain through the 

ground surface and the deep aquifer is recharged laterally from the Shimba Hills where it 

outcrops. The discharge of both hydrogeological systems is along the littoral to the Indian 

Ocean, through abstraction by the different water users of the region (communities, 

agriculture, mining and tourism), through direct and evapotranspiration. This aquifer 

characterization takes place during the extreme climatic event caused by La Niña event in 

2016/2017. La Niña drought affected the groundwater system inducing and important 

decrease of groundwater recharge reducing it by 78 % compared to the wet year of 2014 

and reduced by 69 % compared to a year with normal annual rainfall (2013). During La 

Niña event, there was a groundwater level decline in 86 % of the measured shallow wells. 

During the aquifer characterization different contaminant were analyzed such as trace 

metals, nitrates and faecal bacteria in 75 and 80 waterpoints, in March and June 2016 

respectively. The studied aquifer does not present any trace metal that overtake the health 

threshold define by the WHO. The nitrates pollution is a localized problem, since most 

samples in the study area show low nitrate concentrations, under 5–10 mg/L NO3-. The 

small amount of points showing nitrate contamination are located in the main villages of 

Msambweni, Gazi and Ukunda, except one point located east of the KISCOL sugar fields 

around Kinondo. The main anthropogenic pollution found in the study area is faecal 

bacteria (E. coli), found in 60 % of the water points. The statistical analysis (PCA and mixed 

models) have allowed to elucidate which hydrogeological and non-hydrogeological 

parameter drive this kind of pollution. Opposite to previous studies, recharge/seasonality 

does not seem to be an important factor influencing the presence of E. coli in groundwater. 
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However, the study case has been performed during La Niña event with nil wet season. 

Agree with other studies, the well constructive characteristics are the most important 

factors affecting bacteria presence, having higher concentration in hand dug wells, a 

common type of well in developing countries. Analysing in detail this type of waterpoints, 

results indicate that the factors of low Eh and small water column are correlated with higher 

faecal bacteria pollution.  

The other important quality problem in the aquifer area, is the saline intrusion. In the 

coastal areas with major tourism concentrations, recent years’ data show a local 

salinization effect in the shallow aquifer due to the higher abstraction induced by tourism 

and associated activities (localized population). Furthermore, due to a reduction in 

recharge attributed to La Niña drought, salinity in the coastal wells increased between the 

dry and wet season instead of being reduced, as occurs in normal years. Despite 

groundwater levels are recovered after the drought period, EC in most shallow wells, 

remain high even after the important rains of early 2017, indicating that groundwater 

quality in the coastal zone is not fully recovered. The increase in salinity, as observed in 

2016, and the dynamics of the SWI will trend to increase calcite dissolution which could 

induce other potential risks as increase the creation of sinkholes already observed in parts 

of the coral limestone during fieldwork and, the rise of hydraulic conductivity induced that 

could hasten further aquifer salinization. 

A part from groundwater quality, the groundwater abstraction by water-reliant users and 

its impact have been also evaluated by different methods despite the lack of data concerning 

to abstractions in these areas. In the studied case, recharge term in the groundwater 

balance is the main input of the system and represents 80 % of the total input. The total 

groundwater abstraction represents only 1.3 % of recharge during a normal climatic year, 

such as 2017, pointing out the limited effect of abstraction in normal years. However, in 

areas of the continent with lower precipitation and consequently lower recharge, a lower 

level of abstraction could be harmful to aquifers. The obtained results highlight that the lack 

of historical data such as water level, abstraction, and quality parameters is typically the 

norm and challenge objective decision-making to face urgent development priorities. This 

may translate into unknown risks to local, vulnerable populations and future generations 

who rely on shallow groundwater for water supply. The integration of hydrogeological data 

from water-reliant industries and/or stakeholders as Base Titanium as well as, the creation 

of a simple but effective monitoring groundwater network in order to define the 

sustainability of the aquifer system, can help to overcome these problems. In the case of 

abstraction data, most of the time unknown in developing countries, simple information 
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sources (interviews, Google Earth, Trip Advisor, basic analytical methods, etc.) can enable 

groundwater abstraction to be estimated, allowing potential future risks to be assessed. 

The numerical groundwater model built has helped to integrate all the hydrogeological 

information available in the study area and check the reliability of the conceptual model. 

The numerical model has defined the surface-groundwater relationship confirming the 

previously established by the hydrochemical and isotopic data. The limitations detected 

during the definition of the aquifer characterization has reproduced in the numerical 

groundwater model mainly in zone 1 and 4. Furthermore, the numerical groundwater flow 

model has used as a tool to asses the groundwater vulnerability under climate variability 

and under future increment of groundwater abstraction caused by the socio-economic 

growth through numerical groundwater flow scenarios. A long drought period caused by 

rainfall variability causes a GWL decrease in all aquifer units. However, the effect of 

temperature increment has a low effect on GWL since only implies a 7 % reduction in 

recharge. The impact of increased abstraction is not equal across the study area since the 

wells near the Base Titanium well field show greater drawdown in GWLs in increased 

abstraction future scenarios. After the groundwater level decline during La Niña event and 

during prolonged dry periods, the aquifer system can recover followed by a humid period. 

Levels in 95 % of the shallow wells affected by La Niña drawdown recover after the first 

rainy season (AMJ) in 2017. This allows the system to return to the average groundwater 

budget and to face the next drought period. 

This thesis presents an index which allows incorporating the hydrodynamical function of 

an aquifer. This allows to study the risk under a “transient time” instead of “steady state”, 

as most of the current indexes do. Furthermore, the SCR index defines the risk at household 

level pointing the importance of the groundwater quality, the distribution and density of 

the waterpoints in the space, and the groundwater availability in order to do good 

management at long-term. Incorporating the results of future modelled scenarios makes 

that the index can be used as a predictive, management and plan tool since the most 

vulnerable areas could be defined and in which households. In this way, different and 

accurate solutions could be planned to face this risk. 

In conclusion, this dissertation shows the reality of the changes that the African continent 

is suffering. This dissertation contributes to the hydrogeological knowledge in a context 

that represents much of East Africa. Different tools have been presented in order to study 

these systems in a hydrogeological context characterized by limited understanding and lack 

of data. It shows the importance of integrating the hydrogeological data of stakeholders, 

such as Base Titanium monitoring data in the presented case, and the alternative sources of 
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information used (Google Earth, Trip Advisor…) to advance the knowledge in areas with 

lack of data. Furthermore, this dissertation presents how to use different tools and kinds of 

data to study the sustainability of the aquifer system, focusing on the groundwater 

availability as well as its quality. This sustainability has been studied not only during the 

present time but also under different future scenarios affected by global change. 

Furthermore, integrating hydrogeological and social household data let a bigger 

understanding of how the groundwater system changes, naturally or induced, can affect the 

groundwater availability to the water-reliant users. Furthermore, the integration of this 

information can serve as a reference for water managers and stakeholders in the future.  

 

.
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Figure 1, Appendix A: Nitrate concentration in mg/l during dry season 

(March 2016) and wet season (June 2016). 

 

 

Figure 2, Appendix A: Iron stability diagram for June 2016 field samples. 

 

 



 

  

Figure 3, Appendix A: Stability relations for gibbsite for June 2016 field 

samples. 

 



 

 

Table 1, Appendix A: Drawdown range for shallow and deep boreholes monitored by Base Titanium. 

Code Dates Aquifer Geology Zone 

Drawdown from 01/2016 to 12/2016 

maximum -minimum level of these 

period 

Lack between rain event and maximum 

groundwater level recorded after (days) 

Base of 

screen (m 

bgl) 

GS1 02/2008-12/2016 Shallow Aquifer Kilindini s. 2 2.89 12 >8.63 

GS2 02/2008-12/2016 Shallow Aquifer Kilindini s. 1 2.65 13 8.2 

GS5 11/2011-09/2016 Shallow Aquifer Kilindini s. 1 0.83 13 5.4 

GS3 12/2011-10/2013 Shallow Aquifer P. Corals 2 no data 26 11.2 

GS4 11/2011-10/2013 Shallow Aquifer P. Corals 1 no data 13 5.6 

GS6 02/2008-12/2016 Shallow Aquifer Kilindini s. 2 1.38 6 5.2 

GS7 11/2011-12/2016 Shallow Aquifer Kilindini s. 3 0.45 13 7.2 

GS9 11/2011-12/2016 Shallow Aquifer Kilindini s. 2 1.9 20 >6.44 

GS20 06/2012-12/2016 Shallow Aquifer Kilindini s. 2 4.289 32 18.3 

GD8 06/2012-12/2016 Deep Aquifer Mazeras snd. 2 5.19 pump affected 54.0 

GS21 05/2012-09/2016 Shallow Aquifer Kilindini s. 2 1.68 6 5.7 

GD9 05/2012-09/2016 Deep Aquifer Mazeras snd. 2 3 pump affected 34.1 

GS22 05/2012-09/2016 Shallow Aquifer Magarini s. 2 2.47 13 14.0 

GD10 05/2012-09/2016 Deep Aquifer Mazeras snd. 2 2.2? 20 54.0 

GS23 02/2013-09/2013 Shallow Aquifer Kilindini s. 2 3.13 13 12.0 

GD11 11/2012-12/2016 Deep Aquifer Mazeras snd. 2 2.8 13 36.0 



 

  

GS24 05/2012-12/2016 Shallow Aquifer Kilindini s. 2 2.5 13 14.2 

GD12 05/2012-12/2016 Deep Aquifer Mazeras snd. 2 5.11 pump affected 60.9 

GS25 05/2012-12/2016 Shallow Aquifer Kilindini s. 2 1.48 6 11.6 

GD13 05/2012-12/2016 Deep Aquifer Mazeras snd. 2 2.24 13 64.1 

GD7 06/2016-12/2016 Deep Aquifer Mazeras snd. 2 1.6 no data 100.2 

GI21 05/2012-12/2016 Shallow Aquifer Magarini s. 2 1.75 13 18.3 

GS26 06/2016-12/2016 Shallow Aquifer P. Corals 2 0.36 no data 8.6 

GS28 07/2016-12/2016 Shallow Aquifer Magarini s. 2 0.334 no data 2.1 

GS29 07/2016-12/2016 Shallow Aquifer Magarini s. 2 1.02 no data 16.1 

GD22 06/2016-12/2016 Deep Aquifer Mazeras snd. 2 2.08 no data 14.0 

GS30 07/2016-12/2016 Shallow Aquifer Magarini s. 2 0.77 no data 21 

GD23 06/2016-12/2016 Deep Aquifer Mazeras snd. 2 0.57 no data 52.0 

GS31 07/2016-12/2016 Shallow Aquifer Magarini s. 2 0.332 no data 9.9 

GS36 03/2016-12/2016 Shallow Aquifer Kilindini s. 2 0.1 not affected 9.0 

GS37 03/2016-12/2016 Shallow Aquifer Kilindini s. 2 0.64 54 9.0 

GS42 03/2016-12/2016 Shallow Aquifer Magarini s. 2 0.11 38 10.0 

GS45 07/2016-12/2016 Shallow Aquifer Kilindini s. 2 0.39 no data 8.8 

GS47 07/2016-09/2016 Shallow Aquifer Magarini s. 2 0.4 no data 3.0 

GD24 06/2016-12/2016 Deep Aquifer Mazeras snd. 2 0.1 no data 38.0 

  



 

 

Table 2, Appendix A: Isotopic data from March and June 2016 field survey; Saturation Index of Calcite and Quartz 

for June 2016 field samples and ionic relation for June 2016 field survey. 

CODE DATA δ18O δ 2H DATA δ18O δ 2H SI CALCITE SI QUARTZ NA/CL- CA/HCO3- 

FOOTPRINTS SCHOOL 06/06/2016 -3.47 -13.35 01/03/2016 -3.43 -13.51 -3.34 0.72 1.54 0.16 

Z4-11 06/06/2016 -2.80 -9.79 01/03/2016 -2.87 -10.13 -1.40 0.32 1.46 0.98 

Z4-09 - - - 02/03/2016 -3.14 -12.88 - - - - 

Z4-01 07/06/2016 -3.24 -13.56 02/03/2016 -3.50 -13.72 0.10 0.32 1.30 1.03 

A/04/12 07/06/2016 -3.16 -13.30 06/03/2016 -3.30 -13.77 0.00 0.37 1.04 0.88 

Z4-18 07/06/2016 -3.14 -12.87 06/03/2016 -2.98 -12.70 0.18 0.34 0.99 0.97 

A/06/12 07/06/2016 -2.74 -10.92 06/03/2016 -2.66 -11.30 0.16 0.17 0.73 1.31 

Z4-78B 07/06/2016 -2.65 -9.94 06/03/2016 -2.39 -10.01 0.28 0.09 0.77 1.49 

Z4-08 06/06/2016 -3.17 -14.02 02/03/2016 -3.47 -13.89 -0.07 0.31 2.19 0.76 

Z4-06 06/06/2016 -3.23 -13.84 02/03/2016 -3.42 -13.50 -0.01 0.40 2.53 0.84 

D/100/16 06/06/2016 -3.28 -13.58 02/03/2016 -3.52 -13.59 -0.01 0.30 3.10 0.37 

Z4-04 07/06/2016 -3.00 -12.67 02/03/2016 -3.15 -13.41 0.17 0.33 1.30 0.88 

Z4-MS 06/06/2016 -3.12 -13.03 01/03/2016 -3.34 -13.56 -1.37 0.28 1.10 1.31 

D/82/14 06/06/2016 -3.05 -12.46 01/03/2016 -3.31 -13.24 -4.60 0.56 1.98 0.22 

Z4-85 07/06/2016 -2.94 -12.46 06/03/2016 -2.83 -11.82 0.12 0.33 0.94 1.11 

Z4-24 08/06/2016 -2.44 -8.31 05/03/2016 -2.49 -8.07 -0.87 0.40 0.90 1.05 

Z3-25 - - - 05/03/2016 -2.31 -7.85 - - - - 

D/63/13 08/06/2016 -3.37 -14.04 05/03/2016 -3.42 -14.73 -3.46 0.51 2.28 0.23 

D/68/13 08/06/2016 -3.24 -14.06 05/03/2016 -3.37 -14.49 -3.09 0.54 3.90 0.16 

Z3-30 08/06/2016 -2.54 -8.11 03/03/2016 -2.54 -7.75 -0.54 0.69 1.08 1.04 



 

  

Z3-29 08/06/2016 -2.68 -9.52 03/03/2016 -2.83 -9.32 -0.95 0.27 1.01 1.18 

DB/BM/HP 08/06/2016 -3.14 -12.22 03/03/2016 -3.25 -11.09 -1.62 0.62 3.57 0.42 

BH310 23/06/2016 -2.72 -9.80 04/03/2016 -2.94 -11.64 0.03 0.40 2.27 0.97 

BH402 - - - 04/03/2016 -2.78 -10.67 - - - - 

NK-03 - - - 04/03/2016 -2.86 -10.84 - - - - 

Z1-70 13/06/2016 -2.29 -7.52 11/03/2016 -2.42 -7.14 -0.91 -0.07 1.12 0.84 

Z1-33 13/06/2016 -2.64 -9.28 11/03/2016 -2.72 -10.02 0.21 0.16 1.38 1.32 

A/14/10 13/06/2016 -2.86 -10.59 11/03/2016 -2.90 -10.69 0.09 0.08 1.26 1.04 

Z3-87 07/06/2016 -2.59 -9.17 06/03/2016 -2.78 -9.29 0.01 0.01 0.75 1.18 

Z3-98 11/06/2016 -2.59 -8.46 08/03/2016 -2.72 -9.69 0.10 -0.18 0.75 1.16 

Z3-90 14/06/2016 -2.62 -9.24 08/03/2016 -2.78 -10.37 0.06 0.27 0.51 1.81 

A/05/11 14/06/2016 -2.47 -9.48 01/03/2016 -3.16 -11.69 0.03 0.30 0.63 1.75 

HOTSPRING 09/06/2016 -2.37 -9.64 10/03/2016 -2.24 -8.94 0.97 0.24 1.00 0.10 

C108HWL 09/06/2016 0.95 6.13 10/03/2016 1.85 7.66 0.98 -0.38 0.99 0.22 

3KD01 09/06/2016 0.40 4.04 10/03/2016 2.78 11.48 0.62 -0.16 1.00 0.49 

TIWI 8.2 18/06/2016 -2.94 -13.04 15/03/2016 -3.12 -13.98 -0.74 0.50 0.94 0.86 

TIWI 1 14/06/2016 -2.24 -9.69 15/03/2016 -2.38 -10.30 0.06 0.37 1.49 0.93 

MUACHEMA TRIB  11/06/2016 -0.70 1.41 - - - -0.35 0.42 1.65 0.52 

S1-3KD06 15/06/2016 -2.69 -9.45 09/03/2016 -2.78 -10.77 -2.87 0.15 1.31 0.41 

GD31 15/06/2016 -3.36 -13.36 09/03/2016 -3.45 -13.72 -0.61 0.53 2.65 0.47 

MUK DAM 15/06/2016 -0.07 2.66 09/03/2016 0.30 5.72 -1.68 0.04 1.32 0.59 

MUK DWS 15/06/2016 -1.12 -1.15 09/03/2016 -0.86 1.14 -1.66 0.13 1.35 0.51 

KINGOMBERO 25/06/2016 -3.03 -11.29 11/03/2016 -3.06 -11.46 -4.17 0.30 - 0.35 

Z1-122 10/06/2016 -2.25 -6.65 04/03/2016 -2.18 -5.83 -1.80 0.26 1.01 0.82 

Z1-125 10/06/2016 -2.70 -9.39 04/03/2016 -2.73 -10.24 -4.09 0.37 1.48 0.26 



 

 

Z1-124 10/06/2016 -2.61 -9.37 04/03/2016 -2.87 -9.12 -0.86 0.28 1.42 0.87 

D/16/10 10/06/2016 -1.40 -2.81 04/03/2016 -1.30 -2.39 -0.36 0.10 1.45 1.07 

Z1-121B 10/06/2016 -3.10 -12.13 05/03/2016 -2.92 -11.47 -0.18 0.54 0.68 0.96 

Z1-116 15/06/2016 -3.02 -12.04 11/03/2016 -2.83 -11.69 -0.11 0.21 1.12 1.13 

C/07/09 10/06/2016 -2.55 -9.71 11/03/2016 -2.40 -9.58 -0.19 0.11 0.51 1.26 

A/01/11 14/06/2016 -2.71 -9.67 05/03/2016 -2.49 -8.93 -0.08 0.11 1.31 1.18 

Z2-103 11/06/2016 -2.69 -9.74 05/03/2016 -2.79 -10.35 0.16 0.03 1.40 0.80 

D/203/27 14/06/2016 -2.70 -9.26 08/03/2016 -2.64 -9.71 -0.22 0.32 0.39 1.07 

DB/MS/LST 13/06/2016 -2.88 -10.71 05/03/2016 -2.82 -10.20 -0.05 0.20 0.98 0.88 

Z1-135 08/06/2016 -1.97 -6.63 02/03/2016 -2.15 -7.47 -0.58 0.01 2.45 0.76 

Z2-112 08/06/2016 -2.40 -7.71 03/03/2016 -2.45 -8.44 -2.80 0.03 1.25 0.55 

Z1-140 15/06/2016 -3.12 -12.26 09/03/2016 -3.11 -12.14 -0.41 0.30 2.02 0.96 

Z2-104 16/06/2016 -2.64 -9.35 03/03/2016 -2.56 -9.59 -0.19 0.29 2.05 1.04 

Z1-110 16/06/2016 -2.18 -5.85 03/03/2016 -1.90 -4.86 -0.73 -0.09 1.36 1.00 

DB/FI/HP 16/06/2016 -3.07 -12.39 03/03/2016 -2.96 -11.37 -0.19 0.33 1.54 0.49 

Z3-96 11/06/2016 -2.58 -9.70 08/03/2016 -2.55 -8.64 -0.02 0.14 0.75 1.33 

E/29/01 11/06/2016 -2.66 -8.83 08/03/2016 -2.55 -8.78 -0.08 -0.10 0.60 1.10 

A/09/11 14/06/2016 -1.86 -5.61 08/03/2016 -1.68 -5.03 -0.01 0.07 0.81 1.24 

MIVUMONI 15/06/2016 -3.06 -11.60 09/03/2016 -3.02 -12.12 -3.39 0.62 2.47 0.14 

C/15/10 09/06/2016 -3.15 -11.56 09/03/2016 -2.97 -11.72 -1.33 0.45 4.02 0.33 

C/109/21 15/06/2016 -3.16 -13.07 09/03/2016 no data no data -0.66 0.52 3.63 0.47 

C/12/12 09/06/2016 -2.97 -12.71 10/03/2016 -2.93 -12.47 -1.25 0.67 1.12 0.50 

C/06/12 09/06/2016 -3.10 -12.40 10/03/2016 -3.20 -9.94 -3.11 0.58 1.85 0.15 

C/19/10 09/06/2016 -2.71 -11.00 10/03/2016 -3.04 -10.20 -4.41 0.06 1.59 0.33 

D/129/19 06/06/2016 -3.03 -13.27 01/03/2016 -3.08 -13.27 -3.45 0.48 2.77 0.11 



 

  

DB/MH/CO 07/06/2016 -2.79 -11.82 02/03/2016 -2.75 -11.77 0.04 0.40 1.83 0.72 

Z1-141 13/06/2016 -2.06 -7.02 13/03/2016 -2.05 -7.34 0.04 -0.38 0.75 2.38 

UK-WL 11/06/2016 -3.04 -13.27 06/03/2016 -2.99 -12.77 -0.12 0.32 0.85 1.21 

D/103/16 06/06/2016 -3.20 -14.18 08/03/2016 -3.16 -13.74 -0.08 0.46 1.66 0.78 

LUKORE-SEC. SCHOOL 09/06/2016 -3.00 -11.74 10/03/2016 -3.06 -11.77 -0.14 0.54 1.00 0.56 

Z1-118 10/06/2016 -2.75 -10.36 11/03/2016 -2.89 -10.57 -0.31 0.32 1.50 1.13 

VIN-WL 13/06/2016 -2.85 -11.61 11/03/2016 -3.27 -8.99 -0.04 0.13 0.69 1.06 

BASE_BH_3 17/06/2016 -3.25 -12.93 16/03/2016 -3.20 -13.12 -0.24 0.47 1.27 1.22 

BASE_BH_7 17/06/2016 -3.14 -12.39 16/03/2016 -3.23 -12.70 -0.90 0.63 3.55 0.55 

DB/KI/ST 18/06/2016 -3.29 -12.84 16/03/2016 -3.34 -11.15 -1.13 0.54 2.67 0.28 

Z3-102B 16/06/2016 -2.40 -8.88 - - - 0.04 -0.02 1.23 0.95 

BH302 23/06/2016 -2.88 -9.89 - - - -1.76 0.42 2.05 0.55 

DIANI 22/06/2016 -0.29 1.19 - - - -0.30 -0.34 0.70 5.77 

MSW BEACH 22/06/2016 -2.28 -7.34 - - - -0.03 0.18 0.73 1.30 

KIS_21 23/06/2016 -2.62 -8.27 - - - -2.21 0.22 1.61 0.72 

KIS_65 23/06/2016 - - - - - -2.84 0.35 2.11 0.66 

GD14_5 17/06/2016 -2.78 -10.72 - - - -0.14 -0.14 0.54 2.70 

GD14_ 35 17/06/2016 -2.90 -10.95 - - - 0.36 -0.02 0.81 0.90 

C/05/09 24/06/2016 -3.03 -10.62 - - - 0.20 0.07 1.26 0.91 

C/03/09 24/06/2016 -2.81 -9.69 
   

0.05 -0.04 0.77 1.06 



 

 

Table 3, Appendix A: Physico-chemical parameters measured in the field and 

hydrochemical data for June 2016 field survey. 

CODE GEOLOGY COND. Tª PH TOC ALKALI

NITY 

HCO3 D

O 

ORP EH NH4 CL 

    (µS/cm) °C   (mg/

L) 

as mg/L 

HCO3 

  (m

g/

L) 

mV mV (mg

/L) 

(mg/L

) 

FOOTPRIN

TS SCHOOL 

Mazeras snd. 311,7 27,5 5,8 0,9 54,9 54,9 2,2 -26,5 193,5 0,0 43,3 

Z4-11 Magarini s. 205 29,0 6,6 0,9 79,3 79,3 7,9 38,4 258,4 0,0 13,5 

Z4-01 Kilindini s. 671 29,2 7,0 0,9 317,3 317,3 5,4 71,2 291,2 0,0 20,0 

A/04/12 P.Corals 64,5 29,6 6,8 0,7 396,6 396,6 5,8 93,5 313,5 0,0 62,3 

Z4-18 P.Corals 881,0 29,3 7,0 1,1 366,1 366,1 6,5 33,0 253,0 0,0 68,3 

A/06/12 P.Corals 2743 29,5 7,1 1,0 311,2 311,2 7,1 -39,6 180,4 0,0 690,1 

Z4-78B P.Corals 3793 28,1 7,4 1,5 256,3 256,3 6,1 34,9 254,9 0,0 1025,2 

Z4-08 Kilindini s. 406,1 29,6 6,8 1,8 378,3 378,3 4,5 7,9 227,9 0,0 19,4 

Z4-06 Kilindini s. 769 28,9 6,8 0,5 396,6 396,6 3,7 61,5 281,5 0,0 17,9 

D/100/16 Kilindini s. 875 29,1 7,0 0,6 488,2 488,2 3,1 50,4 270,4 0,0 28,0 

Z4-04 Kilindini s. 592 28,6 7,2 0,9 292,9 292,9 5,7 25,5 245,5 0,0 20,9 

Z4-MS Magarini s. 364,1 28,4 6,5 0,7 85,4 85,4 5,8 44,8 264,8 0,0 32,2 

D/82/14 Magarini s. 91,9 27,7 5,3 0,8 18,3 18,3 7,9 136,

2 

356,2 0,0 11,7 

Z4-85 P.Corals 64,5 29,9 7,0 1,0 317,3 317,3 6,1 65,8 285,8 0,0 85,6 

Z4-24 Kilindini s. 282,6 28,4 6,9 1,6 103,7 103,7 3,5 -58,0 162,0 0,0 24,6 

D/63/13 Magarini s. 170,2 28,8 5,7 1,5 42,7 42,7 2,9 88,3 308,3 0,0 20,0 

D/68/13 Magarini s. 51,4 29,0 6,0 1,1 54,9 54,9 3,0 -5,8 214,2 0,0 10,8 

Z3-30 Kilindini s. 735 29,2 6,8 
 

189,2 189,2 3,9 52,5 272,5 0,0 78,3 

Z3-29 Kilindini s. 342,2 28,1 6,7 1,4 115,9 115,9 4,3 45,6 265,6 0,0 23,9 

DB/BM/HP Kambe 256,4 28,7 6,5 1,4 109,8 109,8 5,3 91,0 311,0 0,0 11,8 

BH310 Mazeras snd. 510 28,8 7,1 2,0 262,4 262,4 3,8 56,8 276,8 0,0 15,4 

Z1-70 Kilindini s. 820 28,2 6,6 3,9 177,0 177,0 5,4 -

120,

8 

99,2 0,0 98,7 

A/14/10 P.Corals 667 28,9 6,9 3,4 353,9 353,9 3,9 80,0 300,0 0,0 21,6 

Z3-87 P.Corals 2011,0 29,2 6,9 1,0 335,6 335,6 5,5 47,1 267,1 0,0 433,2 



 

  

Z3-98 P.Corals 830 28,8 6,9 2,9 347,8 347,8 7,2 40,7 260,7 0,0 33,0 

Z3-90 P.Corals 2360 28,2 6,6 1,2 433,2 433,2 5,5 -33,3 186,7 0,0 602,5 

A/05/11 P.Corals 1750 30,3 6,8 1,7 305,1 305,1 3,3 -32,0 188,0 0,0 320,8 

HOTSPRIN

G 

Spring 15792,0 58,8 7,9 1,7 976,3 976,3 0,9 -

197,

0 

23,0 5,0 2642,7 

C108HWL SW 5594,0 32,1 8,5 7,6 445,4 445,4 11,

6 

-18,3 201,7 1,2 1561,9 

3KD01 SW 3211 30,6 8,6 9,4 158,7 158,7 8,9 -32,5 187,5 0,0 858,9 

MUACHEM

A TRIB  

SW 505 25,0 7,3 14,9 189,2 189,2 5,1 -30,6 189,4 0,0 53,5 

S1-3KD06 SW 140 22,6 6,4 3,0 30,5 30,5 8,6 66,8 286,8 0,0 16,9 

GD31 Mazeras snd. 290 28,0 7,0 1,4 207,5 207,5 4,3 -77,9 142,1 0,0 32,8 

MUK DAM SW 230 26,9 6,8 4,0 61,0 61,0 7,4 -36,3 183,7 0,0 21,6 

MUK DWS SW 210 26,3 6,8 5,5 67,1 67,1 8,2 32,3 252,3 0,0 22,4 

Z1-122 Magarini s. 210 27,9 6,3 1,5 79,3 79,3 7,6 51,2 271,2 0,0 14,4 

Z1-125 Magarini s. 112 27,6 5,3 1,2 30,5 30,5 5,4 111,

9 

331,9 0,0 12,5 

Z1-124 Magarini s. 325,3 28,9 6,5 1,7 189,2 189,2 2,2 23,3 243,3 0,5 8,3 

D/16/10 Kilindini s. 592 28,7 6,6 1,5 286,8 286,8 3,4 52,8 272,8 0,0 15,0 

Z1-121B Kilindini s. 589 28,4 6,5 1,6 433,2 433,2 5,2 25,5 245,5 0,0 13,0 

Z1-116 P.Corals 740 30,0 6,8 2,0 292,9 292,9 3,2 58,7 278,7 0,0 31,4 

C/07/09 P.Corals 666 30,1 6,6 1,9 378,3 378,3 3,4 -9,1 210,9 0,0 22,4 

A/01/11 P.Corals 1040,0 29,1 6,7 1,4 360,0 360,0 1,1 31,2 251,2 1,2 57,3 

Z2-103 P.Corals 890 28,8 7,0 3,8 396,6 396,6 5,6 -69,4 150,6 0,0 34,9 

D/203/27 Kilindini s. 610 30,7 6,7 1,4 292,9 292,9 3,3 -3,3 216,7 0,0 31,9 

DB/MS/LS

T 

P.Corals 1010 29,8 6,8 4,1 372,2 372,2 1,4 -

180,

9 

39,1 0,8 97,4 

Z1-135 Kilindini s. 253,9 27,6 7,2 1,4 122,0 122,0 7,1 -25,8 194,2 0,0 7,3 

Z2-112 Magarini s. 41,3 27,6 6,1 1,4 36,6 36,6 5,6 93,8 313,8 0,0 7,1 

Z1-140 Magarini s. 650,0 28,3 6,7 1,8 256,3 256,3 1,0 -92,0 128,0 0,0 13,8 

Z2-104 P.Corals 610 29,2 6,7 2,1 317,3 317,3 2,1 -42,6 177,4 0,0 19,0 

Z1-110 Kilindini s. 180 30,5 7,2 2,6 85,4 85,4 3,0 -56,8 163,2 0,0 10,1 

DB/FI/HP Kambe 590,0 30,6 7,2 2,0 244,1 244,1 0,8 -96,7 123,3 0,0 31,4 



 

 

Z3-96 P.Corals 3300 28,9 7,0 173,3 292,9 292,9 3,6 -

221,

0 

-1,0 0,0 810,8 

E/29/01 Pls-Plc 980 29,2 6,7 3,2 360,0 360,0 3,7 -9,4 210,6 0,0 99,9 

A/09/11 P.Corals 475 30,1 7,0 1,2 323,4 323,4 1,8 -21,1 198,9 0,0 1241,2 

MIVUMONI Mazeras snd. 260 29,1 5,7 1,9 61,0 61,0 1,8 64,2 284,2 0,0 22,2 

C/15/10 Mazeras snd. 66,4 27,8 6,4 1,5 207,5 207,5 1,7 -

134,

3 

85,7 0,2 25,9 

C/109/21 Mazeras snd. 630 27,2 6,6 1,4 317,3 317,3 1,1 -

178,

7 

41,3 0,0 25,6 

C/12/12 Mazeras snd. 65,7 29,1 6,4 
 

195,3 195,3 1,6 0,7 220,7 0,0 192,4 

C/06/12 Mazeras snd. 313 27,8 5,7 1,6 85,4 85,4 2,5 87,7 307,7 0,0 38,5 

C/19/10 Magarini s. 42,7 28,0 5,3 1,6 18,3 18,3 2,6 52,6 272,6 0,0 8,4 

D/129/19 Magarini s. 49,2 27,9 5,9 0,4 48,8 48,8 4,1 87,5 307,5 0,0 13,9 

DB/MH/CO Mazeras snd. 516 29,3 7,2 0,4 268,5 268,5 5,2 48,7 268,7 0,0 26,2 

Z1-141 P.Corals 9440 28,0 6,9 4,4 329,5 329,5 3,8 32,2 252,2 0,0 2852,4 

UK-WL P.Corals 1040 29,2 6,7 2,6 335,6 335,6 6,6 70,3 290,3 0,0 59,7 

D/103/16 Kilindini s. 539,0 28,7 7,0 0,7 286,8 286,8 4,3 90,6 310,6 0,0 20,3 

LUKORE-

SEC. 

SCHOOL 

Mazeras snd. 70,0 27,7 6,7 1,5 543,1 543,1 1,6 90,5 310,5 0,0 253,8 

Z1-118 P.Corals 710,0 28,7 6,5 1,6 335,6 335,6 3,4 -21,5 198,5 0,0 9,6 

VIN-WL Kilindini s. 780,0 29,6 6,7 4,4 378,3 378,3 5,7 45,9 265,9 0,0 30,2 

BASE_BH_3 Mazeras snd. 590,0 28,1 6,9 3,0 219,7 219,7 0,8 -

126,

3 

93,7 0,0 42,5 

BASE_BH_7 Mazeras snd. 370,0 28,6 6,7 3,3 183,1 183,1 4,1 -28,8 191,2 0,0 17,0 

DB/KI/ST Mazeras snd. 500 27,5 6,5

8 

2,375 238,0 238,0 3,3 -

127,

0 

93,0 0,0 36,8 

Z3-102B P.Corals 540,0 29,6 7,0 2,8 299,0 299,0 7,0 5,8 225,8 0,0 19,7 

BH302 Mazeras snd. 200,0 29,6 6,5 1,8 79,3 79,3 2,7 40,3 260,3 0,0 13,4 

DIANI SW 46750,0 27,3 7,0 3,7 177,0 177,0 4,4 101,

6 

321,6 0,0 15844,

0 

MSW 

BEACH 

SW 12250,0 29,1 6,9 3,7 439,3 439,3 4,7 58,0 278,0 0,0 4570,0 

C/05/09 P.Corals 894,0 28,3 6,9 1,9 384,4 384,4 2,7 40,3 260,3 0,0 62,7 



 

  

C/03/09 P.Corals 1435,0 28,5 6,9 2,1 353,9 353,9 4,2 154,

2 

374,2 0,0 157,1 

 

CODE SO4 NO3 PO4 BR F CA MG NA K FE SI  AL LI MN 

  (mg/L) (mg/

L) 

(mg/

L) 

(mg/

L) 

(mg/

L) 

(mg/

L) 

(mg/

L) 

(mg/

L) 

(mg/

L) 

(mg/

L) 

(mg/

L) 

(mg/

L) 

ppb ppb 

FOOTPRIN

TS SCHOOL 

33,2 0,3 0,1 0,3 0,1 3,0 6,8 43,2 4,4 2,27 35,8 0,00 17,8 144

,5 

Z4-11 4,5 1,0 0,0 0,1 0,0 25,6 0,8 12,9 0,6 0,00 14,9 -

0,04 

<0,8 11,

5 

Z4-01 13,0 2,0 0,0 0,1 0,2 107,

1 

9,3 16,8 2,6 0,04 15,1 -

0,08 

5,7 4,4 

A/04/12 27,5 2,1 0,0 0,5 0,2 114,

4 

13,9 42,2 4,2 0,05 17,1 -

0,08 

6,6 0,8 

Z4-18 24,9 3,6 0,0 0,4 0,2 117,

0 

13,2 43,9 3,5 0,03 15,9 -

0,03 

5,9 2,1 

A/06/12 86,1 6,1 0,0 5,7 0,2 133,

5 

34,0 327,4 8,6 0,18 10,7 -

0,06 

9,6 5,8 

Z4-78B 132,6 11,8 0,0 4,1 0,2 125,

0 

54,1 510,8 16,6 0,03 8,5 -

0,04 

11,5 12,

5 

Z4-08 3,8 1,8 0,1 0,2 0,1 94,7 12,9 27,5 2,5 0,01 14,9 -

0,09 

3,8 14,

2 

Z4-06 3,3 0,5 0,0 0,2 0,2 108,

6 

15,9 29,3 2,7 0,04 17,9 -

0,03 

4,3 12,

6 

D/100/16 26,6 0,1 0,0 0,5 0,7 58,6 44,0 56,4 2,4 0,00 14,3 -

0,02 

23,8 3,3 

Z4-04 15,6 1,2 0,0 0,2 0,1 84,5 11,0 17,5 3,5 0,04 15,0 -

0,09 

5,0 8,5 

Z4-MS 19,5 6,9 0,0 0,2 0,0 36,8 5,7 23,0 1,8 0,03 13,3 -

0,14 

<0,8 16,

6 

D/82/14 6,0 0,9 0,0 0,1 0,0 1,3 0,7 15,1 2,0 0,03 25,0 -

0,06 

0,8 10,

3 

Z4-85 16,1 3,1 0,0 1,2 0,1 115,

0 

11,1 51,9 2,5 0,00 15,7 -

0,06 

4,8 2,6 

Z4-24 2,2 0,8 0,0 0,1 0,1 35,7 1,8 14,3 1,3 0,02 17,8 -

0,05 

<0,8 102

,5 

D/63/13 8,2 4,5 0,0 0,1 0,0 3,2 0,7 29,6 1,6 0,03 23,2 -

0,06 

1,6 12,

8 

D/68/13 9,3 2,6 0,0 0,1 0,0 2,9 0,8 27,4 1,6 0,45 24,8 -

0,13 

2,2 8,8 



 

 

Z3-30 30,8 37,3 0,1 0,3 0,1 64,7 10,5 54,9 8,4 -

0,02 

35,5 -

0,09 

<0,8 90,

2 

Z3-29 14,8 2,1 0,0 0,1 0,0 44,7 2,7 15,7 2,6 0,13 12,9 -

0,02 

4,2 7,3 

DB/BM/HP 14,6 0,3 0,3 0,1 0,1 15,0 4,5 27,3 2,3 0,05 29,4 -

0,08 

3,6 2,3 

BH310 4,8 9,4 0,1 0,1 0,2 83,2 5,5 22,6 2,2 0,03 18,0 0,03 6,2 2,0 

Z1-70 54,0 41,4 0,0 0,2 0,0 49,0 10,4 71,8 28,2 0,03 6,0 -

0,04 

3,4 43,

7 

A/14/10 6,0 6,1 0,0 0,1 0,1 120,

3 

3,8 17,6 1,4 0,02 8,6 0,02 2,2 1,1 

Z3-87 49,7 17,2 0,0 2,1 0,1 130,

2 

22,5 210,7 5,9 0,03 7,4 -

0,09 

4,6 0,8 

Z3-98 2,1 73,1 <LO

Q 

3,8 0,1 132,

4 

3,2 16,1 0,4 0,00 4,7 -

0,02 

2,0 2,6 

Z3-90 41,8 1,6 0,0 2,1 0,1 257,

7 

24,5 200,9 5,9 0,18 12,8 0,20 6,5 14,

1 

A/05/11 29,0 5,5 0,0 1,0 0,1 174,

6 

16,1 130,0 5,6 0,07 15,0 0,17 9,5 21,

8 

HOTSPRIN

G 

<LOQ 0,2 0,1 8,5 8,9 32,9 8,2 1715,

3 

61,0 0,07 31,1 -

0,02 

183

2,0 

48,

3 

C108HWL 16,7 0,3 <LO

Q 

5,7 4,1 32,1 31,6 997,5 30,1 -

0,01 

3,5 -

0,07 

764,

8 

55,

3 

3KD01 11,9 0,2 0,0 4,6 2,1 25,3 21,0 555,3 15,4 0,18 5,6 0,03 379,

0 

212

,4 

MUACHEM

A TRIB  

2,6 0,3 0,0 0,2 0,1 32,3 8,2 57,2 5,9 0,08 16,7 -

0,09 

2,8 312

,0 

S1-3KD06 6,3 1,5 0,0 0,1 0,0 4,1 2,6 14,3 2,2 0,02 8,1 -

0,12 

1,4 68,

6 

GD31 51,7 1,2 0,1 0,2 0,2 31,7 17,9 56,5 5,7 0,85 23,3 -

0,06 

17,5 836

,5 

MUK DAM 5,2 0,9 0,0 0,1 0,1 11,8 3,8 18,5 3,5 0,06 7,3 -

0,01 

3,7 155

,8 

MUK DWS 2,8 0,5 0,0 0,1 0,1 11,2 3,4 19,6 2,0 0,23 8,9 0,00 2,1 231

,7 

Z1-122 2,3 20,8 0,0 0,1 0,0 21,5 2,4 9,5 0,5 0,03 12,7 -

0,11 

1,3 9,1 

Z1-125 4,3 6,6 0,0 0,1 0,0 2,6 1,3 12,1 1,3 0,03 16,2 -

0,10 

1,2 34,

3 

Z1-124 6,5 9,9 0,0 0,1 0,0 54,1 1,5 7,6 1,8 0,01 13,7 -

0,05 

2,2 16,

5 



 

  

D/16/10 6,5 4,5 0,0 0,0 0,1 100,

9 

3,5 14,1 4,7 -

0,04 

9,0 -

0,08 

6,1 0,9 

Z1-121B 0,3 1,4 0,0 0,1 0,1 136,

0 

3,4 5,7 0,5 0,00 24,5 -

0,03 

3,8 1,8 

Z1-116 14,6 3,5 0,0 0,1 0,2 109,

0 

9,2 22,7 2,5 0,04 12,1 0,04 4,5 4,5 

C/07/09 10,8 4,5 0,0 0,2 0,2 112,

3 

5,7 18,3 1,5 0,01 9,6 -

0,04 

2,9 0,9 

A/01/11 31,3 64,7 0,0 0,2 0,1 138,

8 

6,8 48,7 10,1 0,02 9,2 0,06 4,5 1,7 

Z2-103 31,8 6,1 0,0 0,2 0,1 104,

5 

4,7 31,6 48,6 0,06 7,7 -

0,01 

4,0 9,2 

D/203/27 2,1 18,2 0,0 0,1 0,1 102,

9 

3,1 8,1 1,3 0,06 15,7 0,07 7,5 4,0 

DB/MS/LS

T 

15,9 0,3 0,0 0,3 0,2 107,

9 

15,6 62,0 6,1 2,12 11,6 -

0,04 

4,5 467

,4 

Z1-135 3,1 3,1 0,0 0,1 0,1 30,4 2,9 11,6 7,2 0,05 7,0 -

0,13 

<0,8 16,

6 

Z2-112 1,6 0,8 <LO

Q 

0,0 0,0 6,6 0,8 5,8 0,8 0,00 7,3 -

0,10 

<0,8 7,0 

Z1-140 15,0 0,2 0,0 0,1 0,2 80,3 17,0 18,0 9,1 0,16 14,0 0,08 4,4 110

,6 

Z2-104 13,8 2,1 0,0 0,1 0,1 107,

7 

6,5 25,2 2,0 0,08 14,0 0,08 5,3 3,7 

Z1-110 9,2 3,7 <LO

Q 

0,1 0,1 27,9 0,9 8,9 1,1 0,04 6,2 0,02 <0,8 9,1 

DB/FI/HP 32,0 0,2 0,1 0,1 0,2 39,3 8,2 31,4 2,0 0,03 16,1 -

0,06 

4,8 41,

8 

Z3-96 110,6 5,7 0,0 3,4 0,1 127,

6 

44,6 391,6 11,7 0,03 9,7 -

0,06 

10,4 11,

6 

E/29/01 8,6 1,7 <LO

Q 

0,5 0,1 130,

2 

6,6 39,0 1,6 0,00 5,7 -

0,07 

2,6 2,4 

A/09/11 166,7 0,0 0,0 4,7 0,2 131,

6 

89,3 655,5 28,6 0,05 8,7 0,02 15,8 2,6 

MIVUMONI 22,6 9,2 0,1 0,1 0,1 2,8 3,6 35,5 2,8 0,07 29,7 -

0,06 

7,9 93,

0 

C/15/10 27,0 0,4 0,3 0,6 0,2 22,6 13,2 67,4 3,9 0,78 19,3 -

0,09 

13,4 186

,7 

C/109/21 24,5 0,3 0,0 0,1 0,1 48,5 15,1 60,2 4,7 5,70 22,4 0,01 16,3 73,

6 

C/12/12 50,0 4,9 0,2 0,8 0,2 31,9 24,7 140,3 4,6 0,07 33,4 -

0,12 

13,6 267

,5 



 

 

C/06/12 18,1 8,3 0,2 0,3 0,1 4,1 5,3 46,2 5,0 0,02 26,2 -

0,12 

7,1 6,8 

C/19/10 5,4 4,1 0,0 0,1 0,0 2,0 1,7 8,7 1,5 2,82 8,0 -

0,10 

1,5 52,

7 

D/129/19 8,5 1,0 0,0 0,1 0,1 1,8 0,7 25,0 0,8 0,12 20,7 -

0,03 

<0,8 5,9 

DB/MH/CO 9,2 3,4 0,1 0,1 0,1 63,5 6,5 31,0 2,7 -

0,01 

18,1 -

0,10 

4,1 <0,

8 

Z1-141 359,6 1,5 <LO

Q 

10,3 0,1 257,

5 

151,

9 

1393,

2 

40,0 0,01 2,8 0,13 21,4 12,

8 

UK-WL 14,4 55,0 0,0 0,9 0,2 133,

4 

20,0 32,7 3,5 0,03 15,1 -

0,01 

6,6 3,4 

D/103/16 2,3 1,1 0,1 0,2 0,1 73,3

2 

9,37 21,77 3,45 0,05 20,3

4 

-

0,05 

3,5 1,6 

LUKORE-

SEC. 

SCHOOL 

114,8 3,4 0,1 1,3 0,1 98,9

6 

61,2

1 

164,1

2 

10,3

3 

0,20 23,8

6 

-

0,07 

39,7 68,

2 

Z1-118 1,1 3,7 0,0 0,0 0,1 124,

75 

2,59 9,28 1,07 0,04 14,9

4 

-

0,02 

7,0 5,9 

VIN-WL 5,6 14,4 0,0 0,1 0,1 131,

41 

5,43 13,40 1,46 0,01 9,77 0,02 2,2 6,7 

BASE_BH_3 15,9 0,4 0,1 0,2 0,1 88,1

2 

4,98 34,91 3,87 0,13 20,3

4 

-

0,06 

13,4 112

,1 

BASE_BH_7 21,4 1,8 0,1 0,1 0,2 32,8

0 

6,79 39,20 3,03 0,08 30,2

4 

-

0,01 

5,3 12,

3 

DB/KI/ST 26,8 0,8 0,0 0,3 <LO

Q 

21,6

0 

17,7

3 

63,71 3,27 0,84 23,6

1 

-

0,01 

18,6 225

,4 

Z3-102B 2,1 10,7 0,0 0,1 0,1 93,2

3 

7,14 15,72 3,65 0,02 7,04 -

0,01 

<0,8 <0,

8 

BH302 8,9 6,3 0,0 0,1 0,1 14,3

3 

3,92 17,79 2,17 0,11 19,2

7 

0,09 10,3 4,9 

DIANI 2208,2 0,8 0,0 58,7 0,7 334,

91 

878,

22 

7138,

30 

268,

35 

0,08 2,84 0,23 126,

1 

16,

0 

MSW 

BEACH 

651,6 1,1 0,0 16,5 0,3 186,

98 

271,

84 

2167,

80 

81,4

7 

0,01 10,3

4 

0,07 41,3 3,4 

C/05/09 9,2 51,8 0,03 0,2 0,1 158,

58 

6,58 20,90 1,64 0,05 8,18 0,15 2,7 5,4 

C/03/09 27,5 16,4 0,03 0,5 0,1 122,

60 

10,9

0 

78,08 2,89 0,07 6,49 0,19 2,9 1,6 

 

 



 

  

Table 4, Appendix A: Physico-chemical parameters measured in the field and hydrochemical data for March 

2014 field survey. 

Code Localization Data Cond. Tª pH HCO3 Cl SO4 NO3 Ca Mg Na K 

      (µS/cm) °C   (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Z1-140 Vumbu Shallow Well 25/03/2014 420 27.8 6.42 94 14 7.21 2.83 68.5 3.67 13.8 9.27 

Z1-116 Mwaembe, Msambweni 26/03/2014 670 29.5 6.64 112 35.2 16.1 1.77 107 9.13 26.1 2.81 

Z1-121 Alternate to Milalani Mosque 26/03/2014 624 28.7 6.62 136 22.6 6.37 6.58 110 3.81 17.1 4.84 

Z1-122 Kidzumbani Mosque (Buda 

Rd) 

26/03/2014 143.1 28.1 6.52 40.5 14.5 1.1 12.9 16.1 1.9 9.06 0.54 

Z1-124 Gongonda South 26/03/2014 157.2 28.6 5.85 55 10 4.28 1.77 20 1.4 8.97 1.53 

Z1-125 Gongonda North 26/03/2014 91.8 27.8 5.26 31.8 12.5 5.48 7.96 2.93 1.27 13 1.41 

Z1-33 Munje Mosque 26/03/2014 596 28.2 7.05 190 19.5 7.09 3.04 108 3.89 19.5 1.61 

Z1-70 Darigube Mosque, Ramisi 26/03/2014 705 29.4 5.94 57 136 41.8 11.8 37.6 8.48 76.5 20 

Z2-103 Gazi ShW (west of rd) 25/03/2014 760 29.1 6.89 188 30.5 18.3 8.32 108 4.78 27 45.5 

Z1-110 Fihoni Pri Sch 25/03/2014 115.5 30 6.47 37.9 8.25 4.09 4.24 12.6 0.77 7.9 1.03 

Z2-111 Fihoni (nr. S11) 25/03/2014 266 30.2 6.74 208 11.1 8.5 1.06 34.2 1.74 13.6 11.6 

Z2-112 Bumamani 25/03/2014 68.5 29.2 6.14 96 4.8 2.24 1.06 6.74 0.65 6.92 0.64 

Z3-102 MDC Kitaruni (Teba)F 26/03/2014 675 27.2 7.05 119 44 1.25 0.36 75.5 17.8 38.6 11.3 

Z3-29 Mchenzani Magaoni 25/03/2014 180 28.5 5.47 39.2 25.3 11.3 1.06 12.3 2.29 17.8 2.72 

Z3-25 Zigira Mosque (F) 27/03/2014 277 27.8 7.09 67 22.6 8.34 3.18 31.5 2 21.6 3.33 

Z3-30 Magaoni Mosque 25/03/2014 1014 30.1 6.31 53 256 11.4 < 0.01 65.5 13.6 106 4.01 



 

 

Z3-87 Kinondo II 27/03/2014 1924 28.6 6.94 131 423 40.3 3.85 135 30.1 226 9.33 

Z3-90 Makongeni Mosque 26/03/2014 2630 28.9 6.52 114 645 50 2.47 260 27.1 232 9.38 

Z3-96 Kinondo IV 27/03/2014 3010 28.7 7.01 125 795 82.2 1.99 134 48.3 406 13.6 

Z3-98 Kinondo III 27/03/2014 711 28.8 6.9 9 29.3 1.55 62.7 132 3.25 16 0.6 

Z4-01 Kiuzini 27/03/2014 627 28.5 6.63 121 18.8 11.6 2.2 106 9.26 18.3 2.56 

Z4-05 Mwabungo I 27/03/2014 564 28.2 6.89 120 21.3 15.4 1.01 87.9 11.3 18.8 3.29 

Z4-06 Ukunda Set Scheme 27/03/2014 737 28.4 6.59 117 19 3.35 0.84 110 16.6 30.6 2.68 

Z4-09 Mabakoni 27/03/2014 945 28.3 7.02 115 28.3 13.9 0.19 89.5 12.6 26 29.8 

Z4-11 Mabakoni Mosque 27/03/2014 218 28.1 6.7 27.4 11.5 4.63 0.75 29.1 1.49 13.1 2.62 

Z4-18 Mwabungo II 27/03/2014 827 29 6.7 136 68.7 25.3 2.83 115 13.6 46.3 4.16 

Z4-24 Kilole Pri Sch (F) 27/03/2014 187.7 28.3 6.92 31 13.3 2.77 0.79 22.6 1.97 13.5 2.49 

Z4-78 Neptune 27/03/2014 2450 29 7.04 0 697 69.2 113 131 37.1 328 9.66 

Z4-85 Kinondo I 27/03/2014 850 29.2 6.79 59 81 15.9 2.77 115 11 55.1 2.64 

 

  



 

  

Table 5, Appendix A: Physico-chemical parameters measured in the field and hydrochemical data for June 2014 

field survey. 

Code Localization Data Cond. Tª pH HCO3 Cl SO4 NO3 Ca Mg Na K 

      (µS/cm) °C   (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Z1-140 Vumbu Shallow Well 07/06/2014 516 29.6 6.35 323 14.1 11.1 6.41 83.4 7.3 17.1 12.5 

Z1-110 Fihoni Pri Sch 07/06/2014 206 28.9 6.98 98 13.6 9.55 23.8 29.8 0.87 11.3 1.33 

Z1-116 Mwaembe, Msambweni 07/06/2014 658 28.2 6.79 373 36.2 17.1 27.3 111 9.96 26.8 2.47 

Z1-122 Kidzumbani Mosque (Buda Rd) 07/06/2014 175.6 26.5 6.45 98.5 13 2.24 17.6 23.1 2.18 9.14 0.41 

Z1-124 Gongonda South 07/06/2014 243 27.1 6.38 160 8.77 4.37 8.98 37.8 2.12 8.32 2.41 

Z1-135 Madzi Kuko Mosque 07/06/2014 407 26.3 7.17 252 10 10.8 13.5 47.1 6.17 19.8 25.8 

Z1-33 Munje Mosque 07/06/2014 597 28.6 7.1 377 19.6 7.29 7.16 114 4.37 23 2.81 

Z1-70 Darigube Mosque, Ramisi 07/06/2014 882 28.2 6.4 210 143 61.3 16.3 61.6 12.8 95.5 25.3 

Z2-103 Gazi ShW (west of rd) 07/06/2014 782 27.4 6.96 394 45 38 20.8 105 4.75 39.5 56.3 

z2-104 Fihoni Salha Centre 07/06/2014 656 28 6.72 391 24.3 15.3 25 117 6.86 30.1 2 

Z2-111 Fihoni (nr. S11) 07/06/2014 332 26.7 6.37 203 7.44 8.58 < 0.01 46.8 2.16 13 11.3 

Z2-112 Bumamani 07/06/2014 106.1 27 6.09 57.1 4.54 3.2 2.92 14.5 0.95 6.32 0.53 

Z3-24 Mchenzani Magaoni 07/06/2014 232 26.9 5.75 98.4 24 11.4 1.1 24.3 2.58 17.6 2.49 

Z3-25 Zigira Mosque 08/06/2014 398 27.7 6.84 185 17.1 31.1 14.5 45.7 4.54 26.5 13 

Z3-30 Magaoni Mosque 07/06/2014 1845 26.7 6.64 311 209 25.6 18.3 106 18.3 117 10.1 

Z3-87 Kinondo II 08/06/2014 1590 27.8 6.79 336 337 36.2 5.08 124 18.1 191 4.04 



 

 

Z3-90 Makongeni Mosque 08/06/2014 1950 28 6.48 435 430 23.5 35.7 248 13.4 160 2.16 

Z3-96 Kinondo IV 06/06/2014 1968 27.2 7.49 290 473 54.7 1.14 110 32.7 261 9.24 

Z3-98 Kinondo III 06/06/2014 726 28 6.92 347 36.1 2.24 48.2 138 3.27 19.1 0.4 

Z4-01 Kiuzini 06/06/2014 633 28.5 6.85 431 19.6 11.5 3.27 112 9.9 17.8 2.37 

Z4-05 Mwabungo I 06/06/2014 546 27.7 7.25 341 20.3 15.5 0.28 88.5 11.8 18.3 3.35 

Z4-06 Ukunda Set Scheme 06/06/2014 728 28.7 6.85 508 18.5 3.64 0.66 115 17.6 30.6 2.56 

Z4-08 Kibarani, Ukunda Set Scheme 06/06/2014 680 28.6 6.6 480 21.1 3.58 < 0.01 105 15 29.6 5.65 

Z4-11 Mabakoni Mosque 06/06/2014 209 27.4 7.89 98.5 11.6 9.33 12.3 14 0.75 20.6 15.3 

Z4-18 Mwabungo II 06/06/2014 835 28.5 6.83 442 64.7 25.5 2.33 121 14.5 46.8 3.54 

Z4-24 Kilole Pri Sch (F) 08/06/2014 164.3 27.4 6.76 86.9 14.9 2.99 0.7 17.1 1.74 14 1.73 

Z4-78 Neptune 06/06/2014 1641 28.4 6.94 271 375 47.8 11.8 104 28.1 193 6.86 

Z4-85 Kinondo I 06/06/2014 839 28.3 6.98 396 74.5 15.9 3.98 119 10.8 53.6 2.2 

Z3-130 Gonjora 07/06/2014 1315 25.7 7.14 188 194 3.98 228 120 31 96.5 2.1 

 

  



 

  

Table6, Appendix A: Physico-chemical parameters measured in the field and hydrochemical data for March 

2016 field survey. 

Code Localization Geology Data Cond. Tª p

H 

Alkali

nity 

NH4 Cl SO4 NO3 Ca Mg Na K Fe 

        (µS/c

m) 

°C   as 

mg/L 

HCO3- 

(mg/

L) 

(mg/

L) 

(mg/

L) 

(mg/

L) 

(mg/

L) 

(mg/

L) 

(mg/

L) 

(mg/

L) 

(mg/

L) 

Footprints 

School 

Foot Print Childeren 

Home/School 

Mazeras 

snd. 

01/03/2

016 

343.6 27.

9 

5.

6 

67.1 0.0 43.1 31.9 1.1 2.5 6.9 44.3 4.0 2.88 

Z4-11 Mabokoni Msikitini Magarini 

s. 

01/03/2

016 

218.6 28.

9 

6.

0 

97.6 0.0 14.5 4.5 1.4 23.6 0.8 13.3 0.5 0.06 

A/04/12 Galu Multipurpose Group 

(GMG) 

P.Corals 06/03/2

016 

949 30.

5 

6.

8 

323.4 0.0 61.1 27.4 2.8 114.

8 

14.5 44.3 4.1 0.07 

Z4-18 Mwabungo _ Chiungoni P.Corals 06/03/2

016 

950.0 29.

4 

6.

9 

305.1 0.0 60.8 21.7 20.0 114.

1 

13.0 42.8 3.6 0.04 

Z4-78B Neptune P.Corals 06/03/2

016 

4423 30.

6 

7.

2 

238.0 0.0 110

4.5 

133.

3 

10.0 131.

9 

59.9 561.

6 

17.6 0.07 

Z4-08 Ukunda Settlement Scheme Kilindini 

s. 

02/03/2

016 

828 29.

1 

6.

6 

378.3 0.0 18.8 3.4 1.5 108.

8 

13.0 30.0 2.4 0.05 

Z4-06 Ukunda Settlement Scheme Kilindini 

s. 

02/03/2

016 

826 29.

2 

6.

7 

353.9 0.0 17.3 3.3 2.0 106.

4 

15.5 29.6 2.4 0.02 

D/100/16 Ukunda Scheme Kwa Boga Kilindini 

s. 

02/03/2

016 

924 29.

9 

6.

8 

384.4 0.0 28.0 28.3 0.2 62.8 41.4 55.5 2.7 0.02 

Z4-04 Mwabungo-Mwamua B Kilindini 

s. 

02/03/2

016 

631 29.

3 

7.

0 

256.3 0.0 20.0 16.7 1.3 81.5 10.8 18.0 3.0 0.03 



 

 

Z4-MS Mkambani Mosque Magarini 

s. 

01/03/2

016 

338.1 28.

5 

6.

2 

115.9 0.2 30.2 15.6 2.8 28.8 4.8 21.4 1.6 0.07 

D/82/14 Mwanjamba Kwa Mwakassim 

A 

Magarini 

s. 

01/03/2

016 

89.6 28.

9 

5.

2 

12.2 0.0 10.3 5.0 1.1 0.5 0.4 13.0 1.5 0.01 

Z4-85 Kinondo P.Corals 06/03/2

016 

1010 30.

3 

6.

9 

353.9 0.0 60.6 11.2 7.5 115.

9 

11.7 56.5 3.0 0.03 

Z4-24 Kilole Primary School Kilindini 

s. 

05/03/2

016 

221.5 29.

0 

6.

4 

61.0 0.0 15.8 2.5 1.8 21.3 1.4 13.7 2.0 0.11 

Z3-25 Zigira Mosque Kilindini 

s. 

05/03/2

016 

537 28.

6 

7.

8 

61.0 0.0 93.0 5.6 13.1 37.0 4.1 45.9 4.6 0.00 

D/63/13 Zigira Chiyaye B Magarini 

s. 

05/03/2

016 

182.7 28.

8 

5.

4 

48.8 0.0 14.9 4.7 1.0 1.7 0.7 32.1 1.4 0.03 

D/68/13 Zigira Bodo C Magarini 

s. 

05/03/2

016 

175 28.

7 

5.

8 

79.3 0.0 10.3 9.2 2.0 3.0 0.8 29.7 1.7 0.13 

Z3-30 Magaoni Mosque Kilindini 

s. 

03/03/2

016 

751 29.

5 

6.

1 

134.2 0.0 125.

1 

25.8 5.2 36.8 10.4 72.2 5.1 0.38 

Z3-29 Mchenzani Magaoni Kilindini 

s. 

03/03/2

016 

376.9 27.

9 

6.

6 

128.1 0.0 23.3 12.8 0.8 45.4 2.7 16.8 2.8 0.03 

DB/BM/HP Bumamani Kambe 03/03/2

016 

274.2 28.

5 

6.

3 

85.4 0.0 12.3 15.1 0.9 14.6 4.6 28.9 2.2 0.00 

BH310 KISCOL Sugar Plantation Mazeras 

snd. 

04/03/2

016 

555 30.

2 

7.

0 

244.1 0.0 14.8 4.9 7.8 73.8 5.5 23.7 2.1 0.04 

BH402 KISCOL Sugar Plantation Mazeras 

snd. 

04/03/2

016 

429.4 30.

1 

7.

1 

201.4 0.0 7.7 2.6 6.9 56.1 3.7 18.9 1.6 -

0.02 

NK-03 Nikaphu Mazeras 

snd. 

04/03/2

016 

760 31.

2 

6.

9 

140.3 1.2 161.

6 

2.2 0.2 28.1 17.3 133.

2 

9.3 -

0.02 



 

  

Z1-70 Darigube Kilindini 

s. 

11/03/2

016 

692 29.

8 

6.

2 

122.0 0.0 102.

2 

34.7 18.2 36.0 7.4 62.8 21.1 0.01 

Z1-33 Munje Bujoni P.Corals 11/03/2

016 

700 30.

1 

7.

1 

329.5 0.0 20.4 6.9 3.3 106.

0 

3.7 19.1 1.9 0.02 

A/14/10 Munje Madukani P.Corals 11/03/2

016 

723 29.

6 

6.

7 

341.7 0.0 21.6 5.5 5.2 117.

3 

3.8 17.8 1.7 0.02 

Z3-87 Kinondo P.Corals 06/03/2

016 

2171.

0 

29.

5 

6.

8 

360.0 0.0 296.

5 

31.3 5.7 134.

9 

25.7 233.

9 

7.4 0.00 

Z3-90 Makongeni P.Corals 08/03/2

016 

3153 30.

6 

6.

6 

408.8 0.0 541.

1 

43.7 20.1 269.

0 

31.9 238.

9 

9.3 0.14 

A/05/11 Makongeni Kambini P.Corals 01/03/2

016 

2197 29.

3 

6.

5 

402.7 0.0 469.

7 

46.2 9.8 194.

4 

17.8 211.

3 

8.1 0.01 

HOTSPRING Hotspring on the Tributary fo 

Ramisi River 

Spring 10/03/2

016 

1024

0.0 

59.

3 

7.

3 

744.4 >8 264

0.1 

0.2 0.7 32.9 8.1 185

4.8 

60.7 0.07 

3KD01 Mwachande Bridge SW 10/03/2

016 

5251 37.

2 

9.

3 

614.5 0.0 194

8.2 

2.0 0.2 21.2 16.3 141

7.0 

41.4 0.11 

GD31 Shimba Hills Secondary 

School BH 

Mazeras 

snd. 

09/03/2

016 

567 28.

3 

6.

4 

238.0 0.0 33.4 52.4 1.5 32.2 17.8 57.9 5.9 1.19 

MUK DAM Mukurumudzi River- Base T 

Dam 

SW 09/03/2

016 

195.7 33.

0 

7.

1 

61.0 0.0 20.3 3.6 0.3 10.0 3.6 17.0 3.6 0.09 

Z1-125 Gongonda Magarini 

s. 

04/03/2

016 

100.1 28.

4 

5.

3 

18.3 0.0 11.8 5.6 2.9 2.8 1.2 11.9 1.5 0.04 

Z1-124 Gongonda Magarini 

s. 

04/03/2

016 

288.6 28.

8 

6.

2 

128.1 3.0 8.9 5.6 0.2 41.7 1.5 8.3 1.8 0.66 

D/16/10 Milalani-Nimbodze kwa 

Mwabiti 

Kilindini 

s. 

04/03/2

016 

683 29.

5 

6.

8 

360.0 0.0 11.4 4.4 4.1 105.

3 

3.7 15.6 5.0 0.03 



 

 

Z1-121B Milalani Kilindini 

s. 

05/03/2

016 

758 28.

5 

6.

9 

421.0 0.0 18.5 1.0 9.2 137.

0 

3.6 6.7 0.8 0.04 

Z1-116 Mwaembe P.Corals 11/03/2

016 

752 30.

3 

6.

8 

341.7 0.0 32.3 15.8 3.4 107.

2 

8.8 21.6 2.6 0.02 

C/07/09 Kisimachande P.Corals 11/03/2

016 

722 31.

2 

6.

8 

347.8 0.0 23.1 10.0 3.9 106.

9 

5.6 17.2 1.6 0.02 

Z2-103 Gazi shallow well P.Corals 05/03/2

016 

868 30.

1 

7.

0 

390.5 0.0 30.6 18.1 11.2 108.

9 

4.8 25.3 42.4 0.02 

D/203/27 Marigiza - Baa Kanda (Voroni) Kilindini 

s. 

08/03/2

016 

638 31.

2 

6.

8 

262.4 0.0 32.8 2.1 13.8 104.

0 

3.5 9.7 1.8 0.05 

DB/MS/LST Vingujini opp Msambweni 

Police 

P.Corals 05/03/2

016 

1156 29.

9 

6.

8 

299.0 0.0 61.1 10.5 0.2 113.

3 

16.3 74.5 6.5 2.59 

Z1-135 Madzi Kuko Centre Kilindini 

s. 

02/03/2

016 

278 31.

0 

7.

0 

158.7 0.0 6.5 2.8 0.3 33.0 2.9 12.0 3.3 0.18 

Z2-112 Bumamani Magarini 

s. 

03/03/2

016 

79.3 28.

8 

5.

7 

24.4 0.0 7.3 1.5 0.3 6.4 0.7 6.0 0.7 -

0.01 

Z1-140 Vumbu Magarini 

s. 

09/03/2

016 

681.0 28.

9 

6.

6 

353.9 0.0 13.8 16.0 0.7 77.9 17.8 18.8 9.3 0.05 

Z2-104 Sala center P.Corals 03/03/2

016 

710 29.

1 

6.

7 

353.9 0.0 18.0 12.1 1.2 101.

1 

6.2 23.5 2.1 0.05 

Z1-110 Fihoni Primary School Kilindini 

s. 

03/03/2

016 

129.8 31.

3 

6.

6 

48.8 0.0 5.8 9.4 1.1 13.5 0.7 7.5 1.1 0.58 

DB/FI/HP Fihoni Chief's camp Kambe 03/03/2

016 

846.0 29.

8 

7.

1 

262.4 0.0 55.8 48.2 0.0 63.4 23.2 59.3 4.0 0.18 

Z3-96 Kinondo P.Corals 08/03/2

016 

3594 28.

5 

7.

0 

299.0 0.0 612.

0 

79.6 5.4 126.

4 

45.7 413.

9 

11.8 0.08 



 

  

E/29/01 Kinindo Amani Mosque Pls-Plc 08/03/2

016 

967 29.

3 

6.

7 

335.6 0.0 91.5 7.7 1.7 131.

5 

7.2 40.5 1.6 0.18 

A/09/11 Makongeni Bandani P.Corals 08/03/2

016 

4409 29.

7 

6.

9 

299.0 0.0 106

9.6 

151.

2 

0.0 111.

4 

73.4 580.

7 

25.4 -

0.02 

MIVUMONI Mivumoni Secondary School 

(BH) 

Mazeras 

snd. 

09/03/2

016 

252.5 29.

9 

5.

0 

61.0 0.0 10.1 11.8 4.3 2.9 3.7 37.5 2.9 0.11 

C/15/10 Mivumoni Mazeras 

snd. 

09/03/2

016 

666 30.

2 

6.

6 

262.4 0.0 28.6 26.3 0.5 30.1 18.3 73.9 4.8 0.74 

C/109/21 Amka village Mazeras 

snd. 

09/03/2

016 

499 27.

8 

6.

4 

213.6 0.0 16.3 24.0 1.2 37.4 12.1 45.4 4.6 0.36 

C/12/12 Maphombe Primary Mazeras 

snd. 

10/03/2

016 

1072 30.

4 

6.

3 

128.1 0.0 188.

0 

50.3 3.4 26.9 22.8 141.

1 

4.7 0.07 

C/06/12 Gazore Mazeras 

snd. 

10/03/2

016 

685 29.

1 

6.

4 

140.3 0.0 113.

7 

30.7 12.4 19.8 18.8 82.6 7.0 0.08 

C/19/10 Mivumoni-Makutano Magarini 

s. 

10/03/2

016 

92.7 28.

5 

5.

3 

24.4 0.0 8.2 5.0 1.7 2.4 1.6 8.2 1.2 3.80 

D/129/19 Mabokoni Msikitini Magarini 

s. 

01/03/2

016 

141 28.

3 

5.

7 

24.4 0.0 13.6 8.6 1.1 0.7 0.5 25.5 1.0 -

0.01 

DB/MH/CO Muhaka I.C.P.E. Coastal Field 

St 

Mazeras 

snd. 

02/03/2

016 

462 29.

8 

7.

1 

140.3 0.0 18.5 5.3 5.3 48.2 5.2 25.4 2.1 0.00 

Z1-141 Jabalini P.Corals 13/03/2

016 

1097

9 

30.

0 

6.

7 

305.1 0.5 318

0.0 

390.

6 

2.1 244.

6 

168.

2 

162

0.0 

46.5 0.01 

UK-WL Ukunda hand dug well P.Corals 06/03/2

016 

1048 29.

9 

6.

7 

445.4 0.0 58.7 14.6 53.7 132.

7 

20.2 34.6 3.7 0.03 

A/06/13 Kona Ya Chief/Mwagutu P.Corals 06/03/2

016 

1086.

0 

30.

0 

6.

8 

384.4 0.0 43.3 15.4 48.2 122.

22 

20.7

1 

44.6

8 

3.59 0.04 



 

 

D/103/16 Ukunda Scheme Kwa 

Madzugwe 

Kilindini 

s. 

08/03/2

016 

580.0 29.

0 

7.

0 

256.3 0.0 20.7 2.5 2.3 71.1

3 

9.12 21.6

1 

3.60 0.02 

LUKORE-Sec. 

School 

LUKORE-SH Mazeras 

snd. 

10/03/2

016 

2047.

0 

28.

2 

6.

6 

402.7 0.0 291.

1 

127.

1 

2.0 109.

12 

67.7

7 

167.

78 

10.1

2 

0.28 

Z1-118 Mabatani P.Corals 11/03/2

016 

720.0 29.

2 

6.

7 

360.0 0.2-

0.5 

11.0 1.2 3.3 123.

50 

2.65 10.2

1 

1.11 0.03 

VIN-WL Vingujini well Kilindini 

s. 

11/03/2

016 

773.0 29.

8 

6.

7 

378.3 0.0 29.3 6.2 14.5 125.

11 

4.40 13.9

8 

1.47 0.04 

Base_BH_1 Base Titanium Mazeras 

snd. 

16/03/2

016 

527.0 28.

9 

6.

9 

183.1 0.0 59.3 29.8 6.3 42.6

2 

7.73 46.1

4 

3.05 -

0.02 

Base_BH_3 Base Titanium Mazeras 

snd. 

16/03/2

016 

690.0 28.

0 

6.

9 

274.6 0.0 44.2 16.4 0.3 86.9

8 

4.61 34.2

1 

3.86 0.07 

Base_BH_7 Base Titanium Mazeras 

snd. 

16/03/2

016 

426.6 28.

8 

6.

6 

164.8 0.0 16.4 21.3 0.2 33.3

4 

6.28 37.9

1 

2.99 0.07 

DB/KI/ST Kibwaga Feeder School Mazeras 

snd. 

16/03/2

016 

553.0 28.

2 

6.

5 

225.8 0.0 34.8 26.4 0.5 21.4

3 

15.5

9 

59.4

4 

3.10 0.73 

A/06/12 Mvureni-Maweni P.Corals 06/03/2

016 

2993 30.

4 

6.

9 

286.8 0.0 690.

3 

82.8 4.6 133.

1 

35.1 348.

9 

9.3 0.06 

 

  



 

  

Appendix B. Supplementary information of Chapter 3: E. coli 

presence in each samples for March and June field campaigns. 

Table 1, Appendix B: E. coli quantification results from CBT in MPN/100ml 

in March 2016. Green colour means safe, yellow means intermediate risk, 

orange means high risk and red means unsafe. 

Code 
Aquagenx 

(bags) 
Code 

Aquagenx 
(bags) 

Code 
Aquagenx 

(bags) 

Footprints 
School 

0,0 A/14/10 0,0 Z2-112 48,3 

Z4-11 48,3 Z3-87 1,5 Z1-140 0,0 

Z4-09 >100 Z3-98 >100 Z2-104 2,6 

Z4-01 >100 Z3-90 >100 Z1-110 >100 

A/04/12 0,0 A/05/11 >100 DB/FI/HP 0,0 

Z4-18 >100 HOTSPRING 0,0 Z3-96 >100 

A/06/12 1,2 C108HWL >100 E/29/01 13,6 

Z4-78B >100 3KD01 48,3 A/09/11 0,0 

Z4-08 48,3 S1-3KD06 >100 MIVUMONI 0,0 

Z4-06 >100 GD31 0,0 C/15/10 0,0 

D/100/16 13,6 MUK DAM >100 C/109/21 0,0 

Z4-04 >100 MUK DWS >100 C/12/12 0,0 

Z4-MS >100 Z1-122 13,6 C/06/12 0,0 

D/82/14 0,0 Z1-125 >100 C/19/10 0,0 

Z4-85 >100 Z1-124 >100 D/129/19 0,0 

Z4-24 >100 D/16/10 1,2 DB/MH/CO 0,0 

Z3-25 >100 Z1-121B >100 Z1-141 >100 

D/63/13 0,0 Z1-116 13,6 UK-WL 0,0 

D/68/13 0,0 C/07/09 0,0 A/06/13 0,0 

Z3-30 48,3 A/01/11 0,0 D/103/16 0,0 

Z3-29 13,6 Z2-103 >100 LUKORE-SH 48,3 

DB/BM/HP 0,0 D/203/27 1,1 Z1-118 >100 

BH310 13,6 DB/MS/LST 0,0 VIN-WL 0,0 

BH402 0,0 Z1-135 >100 Base_BH_1 0,0 

NK-03 0,0 DB/KI/ST 0,0 Base_BH_3 0,0 

Z1-70 >100 Z1-33 >100 Base_BH_7 0,0 



 

 

Table 2, Appendix B: E. coli quantification results from CBT in MPN/100ml 

in June 2016. Green colour means safe, yellow means intermediate risk, 

orange means high risk and red means unsafe. 

Code 
Aquagenx 

(bags) 
Code 

Aquagenx 
(bags) 

Code 
Aquagenx 

(bags) 

Footprints 
School 

0,0 A/05/11 >100 Z1-110 >100 

Z4-11 48,3 HOTSPRING 0,0 DB/FI/HP 0,0 

Z4-01 >100 C108HWL >100 Z3-96 48,3 

A/04/12 0,0 3KD01 48,3 E/29/01 9,6 

Z4-18 48,3 MUACHEMA  >100 A/09/11 0,0 

A/06/12 0,0 S1-3KD06 >100 MIVUMONI 0,0 

Z4-78B >100 GD31 0,0 C/15/10 0,0 

Z4-08 >100 MUK DAM >100 C/109/21 0,0 

Z4-06 >100 MUK DWS >100 C/12/12 0,0 

D/100/16 48,3 Z1-122 13,6 C/06/12 0,0 

Z4-04 >100 Z1-125 >100 C/19/10 0,0 

Z4-MS 48,3 Z1-124 >100 D/129/19 0,0 

D/82/14 0,0 D/16/10 0,0 DB/MH/CO 0,0 

Z4-85 48,3 Z1-121B >100 Z1-141 >100 

Z4-24 >100 Z1-116 13,6 UK-WL 0,0 

D/63/13 0,0 C/07/09 0,0 D/103/16 0,0 

D/68/13 0,0 A/01/11 0,0 LUKORE- SH 0,0 

Z3-30 >100 Z2-103 >100 Z1-118 >100 

Z3-29 >100 D/203/27 13,6 VIN-WL 0,0 

DB/BM/HP 0,0 DB/MS/LST 0,0 Base_BH_3 0,0 

BH310 0,0 Z1-135 >100 Base_BH_7 0,0 

Z1-70 >100 Z2-112 48,3 DB/KI/ST 0,0 

Z1-33 48,3 Z1-140 1,5 Z3-102B 13.6 

A/14/10 0,0 Z2-104 4,7 BH302 0,0 

Z3-87 >100 Z3-98 >100 C/05/09 48.3 

Z3-90 13,6 C/03/09 0,0 
  



 

  

Appendix C. Supplementary information of Chapter 4: 

Information used in the mixing model and equation applied to 

calculate the saline intrusion wedge. 

Figure 1, Appendix C: Diagram process of the methodology applied to 

calculate net recharge. 

 

  



 

 

Table 1, Appendix C: Hydrochemical composition of the samples used as 

initial solutions for the geochemical model. 

Sample 
T 

(ºC) 
pH HCO3- Ca K Cl- SO42- Br- Si Mg Na 

Fresh 

sample 
28.4 6.5 433.2 136 0.5 13 0.3 0.1 24.1 3.4 5.7 

Saline 

sample 
27.3 7 177 344.91 268.35 15844 2208.2 58.7 10.37 878.22 7138.30 



 

  

Table 2, Appendix C: Groundwater level range and EC range of some monitored points of the shallow aquifer 

measured during and post- La Niña event (2016 and 2017). 

Point Geology Zone 

Groundwater level depth (m b.g.l) Electrical conductivity µS/cm 

The 

beginning of 

La Niña 

(January 

2016) 

The end 

of La 

Niña 

(March 

2017) 

After the 

first wet 

seasson 

(April 

2017) 

After the 

second wet 

seasson 

(December 

2017) 

Mean±SD 

The 

beginning of 

La Niña 

(January 

2016) 

The end 

of La 

Niña 

(March 

2017) 

After the 

first wet 

seasson 

(April 

2017) 

After the 

second wet 

seasson 

(December 

2017) 

Mean±SD 

Z4-85 P.Corals 4 9.89 9.8 9.81 9.78 9,77±0,08 829 959 941 899 891±51 

Z4-78 P.Corals 4 8.24 8.4 8.24 8.15 8,2±0,08 2484 2652 2641 2598 2568±76 

Z4-18 P.Corals 4 15.44 15.48 15.43 15.37 15,38±0,06 760 931 920 887 856±85 

Z4-11 Magarini s. 4 12.65 16.07 16.1 14.11 14,59±1,06 120 366 358 210 256±100 

Z4-05 Kilindini s. 4 22.62 23.4 23.42 22.74 23,05±0,23 628 586 594 582 585±30 

Z4-01 Kilindini s. 4 23.19 23.3 23.33 23.27 23,19±0,1 687 681 666 678 667±21 

Z3-98 P.Corals 3 11.73 11.7 11.71 11.36 11,51±0,35 786 905 901 805 816±49 

Z3-90 P.Corals 3 7.97 8.4 8.49 6.19 7,26±0,88 1685 3622 3650 2594 2632±652 

Z3-87 P.Corals 3 5.06 5.03 5 4.9 4,96±0,07 1722 2080 2100 1991 1922±115 

Z3-30 Kilindini s. 2 5.1 5.66 5.62 3.24 4,57±0,93 1369 584 590 609 723±236 

Z3-29 Kilindini s. 2 9.96 11.05 11.13 9.3 10,24±0,49 337 290 320 468 322±71 

Z3-102B P.Corals 2 No data 11.79 11.8 11.41 11,45±0,26 No data 589 591 580 586±6 

Z2-112 Magarini s. 2 6.75 8.99 9.11 6.83 7,68±0,7 128 58 83 89 83±28 

Z2-103 P.Corals 2 11.42 11.51 11.36 11.1 11,11±0,26 749 811 831 854 806±52 



 

 

Z1-70 Kilindini s. 1 3 4.95 5.31 2.54 3,5±0,94 795 623 640 733 696±89 

Z1-33 Kilindini s. 1 10.3 10.47 10.46 9.98 10,13±0,22 640 712 644 644 647±51 

Z1-140 Magarini s. 2 12.4 12.6 12.9 12.17 12,28±0,34 582 662 661 595 581±37 

Z1-135 Kilindini s. 2 4.37 No data 5.01 2.56 3,8±0,84 369 No data 260 443 328±84 

Z1-125 Magarini s. 1 14.11 16.9 17.11 14.08 15,2±1,14 94 135 182 91 111±20 

Z1-124 Magarini s. 1 14.66 15.01 No data 15.35 14,88±0,55 302 0 No data 648 439±185 

Z1-122 Magarini s. 1 11.7 12.8 12.75 10.2 11,52±0,84 115 121 109 183 164±33 

Z1-110 Kilindini s. 2 5.17 No data No data 4.32 5,14±0,62 114 No data No data 225 180±63 

Z1-141 P.Corals 1 6.45 6.65 6.61 6.38 6,42±0,15 3999 3999 3999 3999 4138±924 

 

  



 

  

Table 3, Appendix C: Electrical conductivity in µS/cm of diverse field survey from September 2013 to June 2016. 

September 2013 March 2014 June 2014 March-May 2015 September 2015 March 2016 June 2016 

Code EC 

(µS/cm) 

Code EC 

(µS/cm) 

Code EC 

(µS/cm) 

Code EC 

(µS/cm) 

Code EC 

(µS/cm) 

Code EC 

(µS/cm) 

Code EC 

(µS/cm) 

Code EC 

(µS/cm) 

Code EC 

(µS/cm) 

A/01/

09 

701 C/32/

11 

764 Z1-

110 

654 Z1-

110 

206 A/01/

09 

722 D/10/

09 

689 Footprints 

School 

315 Z4-11 219 Z4-11 205 

A/01/

11 

956 C/33/

11 

936 Z1-

116 

670 Z1-

116 

658 A/01/

11 

1004 D/11/

09 

574 Z4-11 136 Z4-09 619 Z4-09 
 

A/01/

12 

803 D/01/

09 

737 Z1-

118 

638 Z1-

122 

176 A/02/

09 

700 D/113

/17 

943 Z4-09 569 Z4-01 716 Z4-01 671 

A/02/

09 

690 D/04/

09 

707 Z1-

121 

624 Z1-

124 

243 A/02/

11 

852 D/117

/17 

880 Z4-01 630 A/04/12 949 A/04/12 65 

A/02/

11 

800 D/05/

09 

794 Z1-

122 

143 Z1-

125 

111 A/02/

12 

858 D/118

/17 

732 A/05/12 836 Z4-18 950 Z4-18 881 

A/02/

12 

816 D/06/

09 

720 Z1-

124 

157 Z1-

135 

407 A/02/

13 

697 D/13/

10 

566 Z4-18 834 A/06/12 2993 A/06/12 2743 

A/02/

13 

865 D/07/

09 

573 Z1-

125 

92 Z1-

33 

597 A/03/

09 

628 D/137

/15 

901 LEISURE 

HOTEL 

1603 Z4-78B 4423 Z4-78B 3793 

A/03/

12 

654 D/09/

09 

480 Z1-

135 

298 Z1-

70 

882 A/04/

09 

635 D/144

/20 

781 A/06/12 2557 Z4-08 828 Z4-08 406 

A/03/

13 

872 D/10/

09 

795 Z1-

33 

596 Z2-

103 

782 A/04/

12 

810 D/145

/20 

859 Z4-78B 3614 Z4-06 826 Z4-06 769 

A/04/

09 

614 D/100

/16 

860 Z1-

70 

705 Z2-

104 

656 A/04/

27 

1848 D/150

/20 

876 Z4-08 748 D/100/16 924 D/100/16 875 

A/04/

11 

3999 D/102

/16 

738 Z2-

103 

760 Z2-

112 

106 A/05/

09 

672 D/151

/20 

753 Z4-06 735 Z4-04 631 Z4-04 592 

A/04/

12 

752 D/103

/16 

510 Z2-

104 

116 Z3-

102 

846 A/05/

10 

670 D/158

/21 

894 D/100/16 708 Z4-MS 338 Z4-MS 364 

A/04/

27 

1858 D/104

/16 

605 Z2-

112 

69 Z3-

25 

398 A/05/

13 

2138 D/16/

10 

680 Z4-05 547 D/82/14 90 D/82/14 92 

A/05/

09 

640 D/105

/16 

715 Z3-

102 

675 Z3-

30 

1845 A/06/

10 

672 D/17/

10 

626 Z4-MS 311 Z4-85 1010 Z4-85 65 

A/05/

10 

611 D/11/

09 

551 Z3-

29 

180 Z3-

87 

1590 A/06/

12 

2760 D/20/

10 

705 D/82/14 68 Z4-24 222 Z4-24 283 

A/05/

12 

784 D/110

/16 

752 Z3-

25 

277 Z3-

90 

1950 A/07/

09 

651 D/36/

12 

670 Z4-85 879 Z3-25 537 D/63/13 170 

A/05/

13 

2001 D/113

/17 

914 Z3-

30 

1014 Z3-

96 

1968 A/07/

12 

1175 D/37/

12 

3052 Z4-24 224 D/63/13 183 D/68/13 51 



 

 

A/06/

09 

640 D/114

/16 

853 Z3-

87 

1924 Z3-

98 

726 A/07/

13 

963 D/40/

12 

248 Z3-25 355 D/68/13 175 Z3-30 735 

A/06/

10 

638 D/115

/16 

1556 Z3-

90 

2630 Z4-

01 

633 A/08/

09 

687 D/47/

12 

127 D/63/13 153 Z3-30 751 Z3-29 342 

A/06/

12 

2365 D/118

/17 

719 Z3-

96 

3010 Z4-

06 

728 A/08/

12 

1181 D/48/

13 

684 D/68/13 161 Z3-29 377 DB/BM/HP 256 

A/06/

13 

924 D/119

/17 

487 Z3-

98 

711 Z4-

08 

680 A/08/

13 

1262 D/51/

13 

656 Z3-30 801 DB/BM/HP 274 BH310 510 

A/07/

09 

613 D/121

/17 

283 Z4-

01 

627 Z4-

11 

209 A/09/

09 

679 D/84/

15 

752 Z3-29 343 BH310 555 Z1-70 820 

A/07/

11 

1810 D/123

/17 

489 Z4-

05 

564 Z4-

18 

835 A/09/

11 

4270 D/86/

15 

662 DB/BM/HP 243 BH402 429 Z1-33 700 

A/07/

12 

1016 D/127

/17 

354 Z4-

06 

737 Z4-

24 

164 A/09/

12 

1371 D/90/

15 

633 BKH-310 507 NK-03 760 A/14/10 667 

A/07/

13 

921 D/129

/19 

134 Z4-

08 

710 Z4-

85 

839 A/09/

13 

1121 D/98/

16 

593 BKH-402 381 Z1-70 692 Z3-87 2011 

A/08/

09 

619 D/13/

10 

562 Z4-

09 

945 
  

A/10/

10 

1461 D/99/

16 

758 NK-03 922 Z1-33 700 Z3-98 830 

A/08/

12 

1116 D/130

/19 

229 Z4-

11 

218 
  

A/11/

12 

788 
  

Z1-70 773 A/14/10 723 Z3-90 2360 

A/08/

13 

1160 D/137

/15 

873 Z4-

18 

827 
  

A/12/

10 

633 
  

Z1-33 613 Z3-87 2171 A/05/11 1750 

A/09/

09 

678 D/144

/20 

762 Z4-

24 

188 
  

A/12/

12 

563 
  

A/14/10 642 Z3-98 877 HOTSPRI

NG 

15792 

A/09/

11 

3999 D/145

/20 

816 Z4-

78 

2450 
  

A/13/

12 

895 
  

Z3-87 1896 Z3-90 3153 C108HWL 5594 

A/09/

12 

1294 D/148

/20 

917 Z4-

85 

850 
  

A/14/

10 

676 
  

Z3-98 720 A/05/11 2197 3KD01 3211 

A/09/

13 

986 D/150

/20 

868 
    

A/14/

12 

692 
  

Z3-90 2310 HOTSPRI

NG 

10240 TIWI 8.2 450 

A/10/

12 

1048 D/158

/21 

900 
    

A/15/

10 

676 
  

A/05/11 1851 C108HWL 7849 TIWI 1 1100 

A/11/

11 

1911 D/16/

10 

628 
    

A/16/

10 

1085 
  

LUKORE 1313 3KD01 5251 MUACHE

MA TRIB  

505 



 

  

A/11/

12 

745 D/17/

10 

613 
    

A/17/

10 

1190 
  

HOTSPRI

NG 

8600 TIWI 8.2 713 S1-3KD06 140 

A/12/

10 

599 D/18/

10 

658 
    

A/18/

10 

1897 
  

RAMISI 

US 

5450 TIWI 1 1137 GD31 290 

A/12/

12 

528 D/20/

10 

693 
    

B/02/

09 

775 
  

RAMISI 

DWS 

2646 S1-3KD06 137 MUK DAM 230 

A/13/

11 

773 D/203

/27 

640 
    

B/03/

09 

701 
  

VUGA 841 GD31 567 MUK DWS 210 

A/13/

12 

831 D/25/

10 

92 
    

B/08/

09 

106 
  

TIWI 8.2 676 MUK DAM 196 KINGOMB

ERO 

110 

A/14/

11 

808 D/36/

12 

681 
    

B/10/

09 

361 
  

TIWI 1 944 MUK DWS 211 Z1-122 210 

A/14/

12 

649 D/37/

12 

196 
    

B/14/

10 

813 
  

MUACHE

MA TRIB 

407 KINGOMB

ERO 

112 Z1-125 112 

A/17/

10 

1389 D/38/

12 

433 
    

B/15/

10 

935 
  

3KD06-

MUK 

136 Z1-122 224 Z1-124 325 

A/18/

10 

1121 D/40/

12 

236 
    

B/16/

10 

2070 
  

SHIMBA 

2SCH 

634 Z1-125 100 D/16/10 592 

B/03/

09 

676 D/47/

12 

122 
    

B/17/

10 

3290 
  

MUK DAM 191 Z1-124 289 Z1-121B 589 

B/08/

09 

86 D/48/

13 

676 
    

B/21/

10 

1391 
  

MUK DWS 183 D/16/10 683 Z1-116 740 

B/10/

09 

352 D/49/

13 

807 
    

B/24/

10 

1727 
  

KINGOMB

ERO 

122 Z1-121B 758 C/07/09 666 

B/12/

10 

466 D/50/

13 

687 
    

C/02/

09 

614 
  

Z1-122 203 Z1-116 752 A/01/11 1040 

B/14/

10 

746 D/51/

13 

655 
    

C/03/

09 

871 
  

Z1-125 71 C/07/09 722 Z2-103 890 

B/15/

10 

822 D/52/

13 

675 
    

C/03/

12 

145 
  

Z1-124 304 A/01/11 1052 D/203/27 610 

B/16/

10 

1888 D/54/

13 

705 
    

C/04/

09 

679 
  

Z1-130 675 Z2-103 868 DB/MS/LS

T 

1010 



 

 

B/17/

10 

3110 D/62/

13 

306 
    

C/04/

12 

442 
  

D/16/10 649 D/203/27 638 Z1-135 254 

B/18/

10 

668 D/63/

13 

171 
    

C/05/

09 

1935 
  

Z1-121B 695 DB/MS/LS

T 

1156 Z2-112 41 

B/21/

10 

1090 D/67/

13 

152 
    

C/06/

09 

864 
  

Z1-116 690 Z1-135 278 Z1-140 650 

B/24/

10 

1566 D/68/

13 

169 
    

C/06/

12 

341 
  

C/05/09 686 Z2-112 79 Z2-104 610 

C/02/

09 

544 D/71/

14 

219 
    

C/07/

12 

239 
  

A/01/11 938 Z1-140 681 Z1-110 180 

C/03/

09 

768 D/73/

14 

537 
    

C/08/

09 

656 
  

Z2-103 780 Z2-104 710 DB/FI/HP 590 

C/03/

12 

152 D/75/

14 

465 
    

C/08/

12 

515 
  

Z3-102 670 Z1-110 130 Z3-96 3300 

C/04/

09 

1014 D/84/

15 

751 
    

C/10/

12 

830 
  

B/MU/01 546 DB/FI/HP 846 E/29/01 980 

C/04/

12 

346 D/85/

15 

646 
    

C/109

/21 

581 
  

DB/MS/LS

T 

864 Z3-96 3594 A/09/11 475 

C/05/

09 

1758 D/86/

15 

638 
    

C/111

/21 

340 
  

Z1-135 367 E/29/01 967 MIVUMO

NI 

260 

C/06/

09 

790 D/88/

15 

1274 
    

C/119

/22 

1182 
  

Z2-112 186 A/09/11 4409 C/15/10 66 

C/06/

12 

268 D/90/

15 

605 
    

C/12/

12 

847 
  

Z1-140 453 MIVUMO

NI 

253 C/109/21 630 

C/07/

09 

598 D/91/

15 

634 
    

C/120

/22 

1165 
  

Z2-104 633 C/15/10 666 C/12/12 66 

C/07/

12 

436 D/94/

15 

616 
    

C/13/

10 

101 
  

Z1-110 175 C/109/21 499 C/06/12 313 

C/08/

09 

590 D/96/

15 

137 
    

C/13/

12 

1564 
  

DB/FI/HP 708 C/12/12 1072 C/19/10 43 

C/08/

12 

406 D/97/

15 

98 
    

C/14/

10 

213 
  

Z3-96 3353 C/06/12 685 D/129/19 49 

C/109

/21 

548 D/98/

16 

558 
    

C/145

/27 

172 
  

E/29/01 755 C/19/10 93 DB/MH/CO 516 

C/111

/21 

296 D/99/

16 

749 
    

C/15/

10 

548 
  

A/09/11 4087 D/129/19 141 Z1-141 9440 



 

  

C/12/

10 

120 
      

C/16/

12 

387 
  

MIVUMO

NI 

216 DB/MH/CO 462 UK-WL 1040 

C/12/

12 

954 
      

C/17/

10 

202 
  

C/15/10 432 Z1-141 10979 D/103/16 539 

C/120

/22 

1182 
      

C/17/

13 

368 
  

C/109/21 452 UK-WL 1048 LUKORE-

Sec. School 

70 

C/13/

10 

94 
      

C/18/

10 

115 
  

C/12/12 872 A/06/13 1086 Z1-118 710 

C/13/

12 

1024 
      

C/22/

11 

289 
  

C/06/12 315 D/103/16 580 VIN-WL 780 

C/14/

10 

178 
      

C/23/

11 

880 
  

C/19/10 85 LUKORE-

Sec. School 

2047 Base_BH_3 590 

C/145

/27 

130 
      

C/25/

11 

134 
  

D/129/19 131 Z1-118 720 Base_BH_7 370 

C/15/

10 

408 
      

C/26/

11 

898 
  

D/129/19 123 VIN-WL 773 DB/KI/ST 500 

C/16/

12 

134 
      

C/27/

11 

1411 
  

DB/MH/CO 493 Base_BH_1 527 Z3-102B 540 

C/17/

10 

196 
      

C/28/

11 

1544 
  

JABALINI 9540 Base_BH_3 690 BH302 200 

C/17/

13 

659 
      

C/32/

11 

309 
  

HOME 9540 Base_BH_7 427 DIANI 46750 

C/18/

10 

98 
      

C/33/

11 

1062 
    

DB/KI/ST 553 MSW 

BEACH 

12250 

C/19/

10 

118 
      

D/01/

09 

629 
      

KIS_21 170 

C/22/

11 

292 
      

D/04/

09 

715 
      

KIS_65 110 

C/23/

11 

802 
      

D/06/

09 

808 
      

GD14_5 329 

C/26/

11 

798 
      

D/07/

09 

598 
      

GD14_ 35 418 



 

 

C/27/

11 

1252 
      

D/09/

09 

494 
      

C/05/09 894 

C/28/

11 

1950 
              

C/03/09 1435 

 

  



 

  

Table 4, Appendix C: Data used to calculate the saline wedge progress. 

Equation used to calculate the saline wedge progress: 

𝐿 =
𝐾∗𝛽(1+𝛽)∗𝑏2

2𝑞𝑡
                                                                                                                      Where 𝑞𝑡 =

𝑊−𝑎𝑏𝑠𝑡

𝑐𝑜𝑎𝑠𝑡 𝑙𝑒𝑛𝑔ℎ𝑡
 

Equation used to calculate the saline wedge depth at different coastline distance: 

𝑍2 =
2𝑞𝑡𝑋 − 𝑊𝑋2

𝐾𝛽
 

L, length of the saline wedge L0= 7 meters L1= 9 meters 

Z, depth of the saline wedge at different coastline distance meters 

K, hydraulic conductivity of geological formation K=100 m/d for coral formation 

K=10 m/d for Kilindini sands 

b, shallow aquifer thickness b=30 meters 

W, recharge during La Niña event W=158602 m3/d 

Abs, groundwater abstraction Abs0=9535 m3/d Abs1=34270 m3/d 

β, ratio of the difference between saltwater and fresh water densities to fresh water 

density, which  means the saline interface is located 40 times the fresh water level 

over the sea water level in that point. 

β=1/40 

X, distance from the coast lin4 meters 



 

 

Appendix D. Supplementary information of Chapter 5: Groundwater mass balance for each 

scenario. 

Table 1, Appendix D: Water balance for each future scenario 

Hm3/y Dry_Normal_0ºC_Current Dry_Normal_0ºC_Extreme  
1st year 2nd year 3rd year 4th year 5th year 6th year 1st year 2nd year 3rd year 4th year 5th year 6th year 

Recharge in 11.14 17.20 11.82 161.33 78.79 51.55 11.14 17.20 11.82 161.33 78.79 51.55 

River Leakage 
in 

33.46 34.51 35.15 34.00 34.35 34.55 53.80 55.08 56.05 54.47 54.85 55.10 

TOTAL IN 44.59 51.70 46.97 195.32 113.14 86.10 64.94 72.28 67.87 215.80 133.65 106.65 

Wells out 0.93 1.06 1.97 1.63 0.96 1.00 8.78 8.76 9.00 8.90 9.07 8.69 

Constant Head 
out 

75.56 64.74 60.70 78.84 76.78 62.61 76.45 64.79 60.61 78.69 76.52 62.31 

River Leakage 
out 

20.56 17.19 15.13 18.74 18.04 16.03 28.52 24.36 21.95 26.34 25.41 22.93 

Drains out 69.83 58.09 51.67 65.50 61.20 58.86 75.95 64.13 57.58 71.66 67.08 64.72 

TOTAL OUT 166.88 141.09 129.47 164.71 156.98 138.50 189.70 162.04 149.14 185.59 178.08 158.65 

IN-OUT -122.29 -89.38 -82.50 30.61 -43.84 -52.40 -124.76 -89.76 -81.27 30.21 -44.44 -52.00 

Hm3/y VDry_Normal_0ºC_Current VDry_Normal_0ºC_Extreme  
1st year 2nd year 3rd year 4th year 5th year 6th year 1st year 2nd year 3rd year 4th year 5th year 6th year 

Recharge in 12.06 12.31 8.61 159.90 72.43 50.96 12.06 12.31 8.61 159.90 72.43 50.96 

River Leakage 
in 

33.32 34.57 35.32 34.09 34.38 34.53 33.38 34.70 35.47 34.26 34.59 34.74 

TOTAL IN 45.38 46.88 43.93 193.99 106.82 85.49 45.44 47.01 44.09 194.16 107.02 85.70 

Wells out 0.93 1.06 1.97 1.63 0.96 1.00 8.62 8.60 8.60 8.60 8.91 8.53 

Constant Head 
out 

75.74 64.85 60.60 77.61 73.21 61.37 72.83 61.03 56.58 73.52 69.02 57.12 

River Leakage 
out 

21.08 17.18 14.91 18.60 17.99 16.08 20.94 16.97 14.73 18.31 17.66 15.79 

Drains out 70.54 57.70 51.01 64.59 60.80 58.63 70.12 56.77 49.90 63.34 59.37 57.06 

TOTAL OUT 168.29 140.80 128.49 162.43 152.96 137.08 172.52 143.37 129.81 163.77 154.96 138.50 

IN-OUT -122.92 -93.91 -84.55 31.56 -46.14 -51.59 -127.07 -96.36 -85.73 30.39 -47.94 -52.80 

Hm3/y VDry_Normal_2ºC_Current VDry_Normal_2ºC_Extreme  
1st year 2nd year 3rd year 4th year 5th year 6th year 1st year 2nd year 3rd year 4th year 5th year 6th year 

Recharge in 10.65 11.27 7.31 149.95 68.95 44.81 10.65 11.27 7.31 149.95 68.95 44.81 



 

  

River Leakage 
in 

33.33 34.59 35.34 34.20 34.49 34.73 33.40 34.72 35.49 34.37 34.70 34.94 

TOTAL IN 43.99 45.86 42.65 184.15 103.44 79.55 44.05 45.98 42.81 184.32 103.64 79.75 

Wells out 0.93 1.06 1.97 1.63 0.96 1.00 8.62 8.60 8.60 8.60 8.91 8.53 

Constant Head 
out 

75.69 64.76 60.53 76.49 72.27 60.96 72.78 60.94 56.50 72.39 68.07 56.71 

River Leakage 
out 

21.01 17.07 14.80 18.30 17.64 15.62 20.87 16.87 14.63 18.02 17.32 15.35 

Drains out 70.40 57.49 50.79 62.50 59.64 56.11 69.98 56.56 49.68 61.26 58.22 54.54 

TOTAL OUT 168.04 140.39 128.08 158.92 150.51 133.69 172.26 142.97 129.41 160.27 152.52 135.12 

IN-OUT -124.05 -94.53 -85.43 25.23 -47.07 -54.15 -128.21 -96.98 -86.60 24.05 -48.88 -55.37 

Hm3/y VDry_Wet_0ºC_Current VDry_Wet_0ºC_Extreme  
1st year 2nd year 3rd year 4th year 5th year 6th year 1st year 2nd year 3rd year 4th year 5th year 6th year 

Recharge in 12.06 12.31 8.61 305.32 271.86 339.60 12.06 12.31 8.61 305.32 271.86 339.60 

River Leakage 
in 

33.32 34.57 35.32 32.08 30.66 29.55 33.38 34.70 35.47 32.25 30.90 29.77 

TOTAL IN 45.38 46.88 43.93 337.40 302.52 369.15 45.44 47.01 44.09 337.57 302.76 369.37 

Wells out 0.93 1.06 1.97 1.63 0.96 1.00 8.62 8.60 8.60 8.60 8.91 8.53 

Constant Head 
out 

75.18 64.32 60.20 89.47 101.11 112.61 72.27 60.50 56.17 85.38 96.93 108.39 

River Leakage 
out 

21.08 17.18 14.91 24.69 29.71 35.01 20.94 16.97 14.73 24.32 29.21 34.41 

Drains out 70.49 57.67 50.97 108.82 116.47 146.98 70.07 56.73 49.86 107.52 114.96 145.22 

TOTAL OUT 167.69 140.23 128.04 224.61 248.25 295.60 171.91 142.81 129.37 225.82 250.01 296.55 

IN-OUT -122.31 -93.35 -84.11 112.80 54.27 73.55 -126.47 -95.80 -85.28 111.75 52.75 72.82 

 

 

 

 

 

 


