








Abstract

High-order hybridizable discontinuous Galerkin formulation and
implicit Runge-Kutta schemes for multiphase flow through porous

media

Albert Costa-Solé

This dissertation presents high-order hybridisable discontinuous Galerkin (HDG)

formulations coupled with implicit Runge-Kutta (RK) methods for the simulation of

one-phase flow and two-phase flow problems.

High-order-methods can reduce the computational cost while obtaining more ac-

curate solutions with less dissipation and dispersion errors than low order methods.

HDG is an unstructured, high-order accurate, and stable method. The stability is

imposed using a single parameter. In addition, it is a conservative method at the ele-

ment level, which is an important feature when solving PDEs in a conservative form.

Moreover, a hybridization procedure can be applied to reduce the size of the global

linear system. To keep the stability and accuracy advantages in transient problems,

we couple the HDG method with high-order implicit RK schemes.

The first contribution is a stable high-order HDG formulation coupled with DIRK

schemes for slightly compressible one-phase flow problem. We obtain an analytical

expression for the stabilization parameter using the Engquist-Osher monotone flux

scheme. The selection of the stabilization parameter is crucial to ensure the stability

and to obtain the high-order properties of the method. We introduce the stabilization

parameter in the Newtons solver since we analytically compute its derivatives.

The second contribution is a high-order HDG formulation coupled with DIRK

schemes for immiscible and incompressible two-phase flow problem. We set the water

pressure and oil saturation as the main unknowns, which leads to a coupled system

of two non-linear PDEs. To solve the resulting non-linear problem, we use a fix-point

iterative method that alternatively solves the saturation and the pressure unknowns

implicitly at each RK stage until convergence is achieved. The proposed fix-point

method is memory-efficient because the saturation and the pressure are not solved at

the same time.

The third contribution is a discretization scheme for the two-phase flow problem

with the same spatial and temporal order of convergence. High-order spatial dis-

cretization combined with low-order temporal discretizations may lead to arbitrary
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small time steps to obtain a low enough temporal error. Moreover, high-order stable

DIRK schemes need a high number of stages above fourth-order. Thus, the com-

putational cost can be severely hampered because a non-linear problem has to be

solved at each RK stage. Thus, we couple the HDG formulation with high-order fully

implicit RK schemes. These schemes can be unconditionally stable and achieve high-

order temporal accuracy with few stages. Therefore, arbitrary large time steps can

be used without hampering the temporal accuracy. We rewrite the non-linear system

to reduce the memory footprint. Thus, we achieve a better sparsity pattern of the

Jacobian matrix and less coupling between stages. Furthermore, we have adapted the

previous fix-point iterative method. We first compute the saturation at all the stages

by solving a single non-linear system using the Newton-Raphson method. Next, we

solve the pressure equation sequentially at each RK stage, since it does not couple

the unknowns at different stages.

The last contribution is an efficient shock-capturing method for the immiscible

and incompressible two-phase flow problem to reduce the spurious oscillations that

may appear in the high-order approximations of the saturation. We introduce local

artificial viscosity only in the saturation equation since only the saturation variable

is non-smooth. To this end, we propose a shock sensor computed from the saturation

and the post-processed saturation of the HDG method. This shock sensor is compu-

tationally efficient since the post-processed saturation is computed in an element-wise

manner. Our methodology allows tracking the sharp fronts as they evolve since the

shock sensor is computed at all RK stages.
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Chapter 1

Introduction

1.1 Motivation

A hydrocarbon reservoir is a porous medium, which may contain water, oil and gas.

Nowadays, once an exploitable hydrocarbon reservoir is found, there are three hydro-

carbon recovery stages, known as primary, secondary and tertiary stages. Primary

and secondary stages are responsible for around 50% of the oil production in a hydro-

carbon reservoir, and the tertiary stage recovers a part of the remaining oil (Donaldson

et al., 1985, 1989; Chen et al., 2006).

1. Primary oil recovery. In this stage, the natural pressure difference between

the reservoir and the surface is high enough to move the hydrocarbon upward.

This process extracts 15%− 30% of the total hydrocarbon.

2. Secondary oil recovery or waterflooding process consists of injecting a fluid,

usually water, from one or several injection wells to mobilize the oil to the

producer wells when the natural pressure difference is not high enough. Usually,

after this process around 50% of the total hydrocarbon is extracted.

3. Tertiary oil recovery is the last stage of oil extraction. In general terms,

this process aims to increase the oil miscibility and eliminate the residual oil

saturation by the injection of materials that are not in the reservoir, such as

chemical species.

1



1. Introduction

In each stage, the nature of the fluids in the reservoir is different and, consequently,

different flow models and governing equations are used (Chen et al., 2006). Multi-

phase flow models through porous media are essential to determine the hydrocarbon

reserves, the petroleum distribution in the oilfield, and the best extraction techniques

at each recovery stage (Selley and Sonnenberg, 2014). Thus, stable, accurate and ro-

bust numerical simulations are a basic tool in analyzing, planning and optimizing

the hydrocarbon production. These numerical simulations have to deal with large

non-linear problems, highly heterogeneous materials and complex subsurface config-

urations of the hydrocarbon reservoir. Several methods have been used to simulate

multiphase flow through porous media, such as the the finite differences method (Aziz

and Settari, 1979; Russell and Wheeler, 1983; Chen et al., 2006), the finite element

method (Chen et al., 2006), the finite volume method (Chen et al., 2006; Radu et al.,

2015; Salinas et al., 2017, 2018), mixed finite element methods (Chen et al., 2006;

Hughes et al., 2006; Barrios et al., 2015; Hou et al., 2016; Abushaikha et al., 2017),

and discontinuous Galerkin methods (Rivière and Wheeler, 2002; Rivière, 2005; Chen

et al., 2006; Klieber and Rivière, 2006; Epshteyn, 2007; Ern et al., 2010; Badia and

Codina, 2010; Arbogast et al., 2013; Bastian, 2014; Li and Rivière, 2015; Jamei and

Ghafouri, 2016; Jamei et al., 2019).

Recently, many efforts have been focused on applying high-order methods to these

kind of problems because of their advantages (Epshteyn, 2007; Li and Rivière, 2015;

Fabien et al., 2018, 2020). If the analytical solution is smooth enough, then the

numerical solution obtained with a method of order k converges to the analytical

one as hke in L2−norm, being he the element size of the mesh (Babuska et al., 1981;

Löhner, 2011; Wang et al., 2013). Hence, it has been shown that high-order spatial

discretization methods can be more accurate than low-order ones for the same mesh

resolution, that is, for the same degrees of freedom (Wang et al., 2013). Moreover,

it is also reported that high-order methods introduce less diffusion and dispersion

errors in the solutions (Babuska et al., 1981; Löhner, 2011; Wang et al., 2013). In

addition, for the same accuracy threshold, high-order spatial discretization methods

require less computational cost than low-order methods since coarser meshes can be

used (Löhner, 2011; Wang et al., 2013; Löhner, 2013; Huerta et al., 2013; Giorgiani

et al., 2013).

Nevertheless, to obtain these advantages in unsteady problems, the temporal in-

tegration error has to be low enough. In general, there are two ways of controlling
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1.1. Motivation

the temporal error. The first one is to use low-order temporal schemes with small

time steps, and the second one is to use high-order temporal schemes with large time

steps. However, if high temporal accuracy is required, low-order time integration

schemes may require prohibitively small time steps. Thus, the computational cost

of the simulation can be severely hampered because, at each time step, a non-linear

problem has to be solved. In these cases, high-order temporal schemes with large time

steps may alleviate the computational cost while reducing the temporal dissipation

and dispersion errors (Donea and Huerta, 2003; Pazner and Persson, 2017).

To fully exploit the advantage of using arbitrary large time steps, high-order tem-

poral schemes have to be unconditionally stable for any combination of element size,

polynomial degree and time step. For instance, diagonally implicit Runge-Kutta

methods (DIRK) and implicit multi-step backward differentiation formula (BDF)

have been coupled with high-order spatial discretizations since they both are compu-

tationally efficient and have low memory footprint (Montlaur et al., 2012; Butcher,

2016; Fernández et al., 2018). However, DIRK schemes need to severely increase

the number of stages to achieve convergence rates above fourth-order, and only BDF

schemes up to second-order are unconditionally stable, known as second Dahlquist

barrier (Pazner and Persson, 2017). Thus, if higher-order accuracy is required, DIRK

schemes need a high number of stages, and BDF methods need small time steps. In

these cases, fully implicit RK schemes may be considered (Pazner and Persson, 2017).

They are unconditionally stable and achieve high-order accuracy with few stages.

Combining high-order spatial discretizations with fully implicit high-order tempo-

ral schemes increases the memory requirements. On the one hand, spatial high-order

methods couple more unknowns than low-order ones for the same resolution. Thus,

the Jacobian matrix involved in the non-linear system becomes denser. On the other

hand, fully implicit RK schemes increases the number of unknowns and therefore,

the Jacobian matrix becomes larger. Moreover, the unknowns of all the stages are

coupled, which further increases the memory footprint of storing the Jacobian matrix.

Therefore, specific algorithms should be devised to reduce the memory footprint for

these applications.

When the solution contains sharp fronts or discontinuities, spatial high-order

methods may introduce oscillations at the vicinity of the discontinuity (Persson and

Peraire, 2006; Huerta et al., 2012; Casoni et al., 2013). In unsteady problems, these

oscillations may not be dissipated because of the low dissipation error of high-order

3



1. Introduction

temporal schemes. Thus, the accuracy of the numerical solution may be compromised

as the front moves and the oscillations evolve. Moreover, the spurious oscillations may

lead to a non-physical numerical solution, like negative saturation values, which ham-

pers the robustness of the formulation. In these cases, the numerical model cannot

be evaluated and the simulation has to be stopped.

1.2 Goals and layout

This dissertation aims to develop stable high-order accurate formulations in space

and time for both one-phase and two-phase flow through porous media problems.

Specifically, we propose a stable and high-order hybridizable discontinuous Galerkin

(HDG) formulations combined with diagonally implicit and fully implicit Runge-

Kutta schemes for these two problems.

High-order HDG exhibits several advantages that make it suitable for these type of

simulations. First, HDG is high-order accurate. That is, it obtains a convergence rate

for the scalar variables (pressure and saturation) and their corresponding gradients

(flux and Darcy velocity) of order P +1 in L2−norm, being P the polynomial degree,

when the temporal error is low enough (Nguyen et al., 2009a,b, 2011, 2013; Kirby

et al., 2012; Roca et al., 2013; Giorgiani et al., 2013, 2014; Sevilla and Huerta, 2016;

Paipuri et al., 2018). Moreover, an element-wise post-processing can be applied at

chosen time steps to obtain a P + 2 convergence rate for the scalar variables (Nguyen

et al., 2009a,b, 2013; Kirby et al., 2012; Roca et al., 2013; Giorgiani et al., 2013,

2014; Sevilla and Huerta, 2016; Paipuri et al., 2018). Second, the stability is imposed

through the continuity in the normal direction of a numerical flux that depends on

a single stabilization parameter, τ . Third, mass is conserved at the element level.

This is an important feature when solving PDEs in conservative form. Fourth, it can

handle the heterogeneous reservoir properties and its geometric complexities, since

unstructured meshes can be used. Fifth, the method can be hybridized in terms of

the trace of the scalar variables, reducing the size of the system that has to be solved.

For these reasons, high-order HDG formulation has been recently applied in porous

media flow problems (Fabien et al., 2018, 2020).

To fulfill the main objective, the layout of this dissertation is organized into three

main Chapters, in which we cover the following partial objectives:

1. Developing a stable high-order HDG formulation for slightly com-
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1.2. Goals and layout

pressible one-phase flow through porous media coupled with high-

order DIRK schemes. In Chapter 3, we detail the proposed stable high-

order HDG formulation coupled with DIRK schemes for slightly compressible

one-phase flow through porous media. Specifically, we extend the formulation

presented in (Nguyen et al., 2009b) to deal with temporal, diffusive and con-

vective non-linear terms, and we solve the resulting non-linear system using

the Newton-Raphson method. Therefore, we propose a stable convergent and

high-order accurate method for both pressure and Darcy velocity. We ensure

the stability of the formulation and the accuracy of the obtained solution by

providing an analytical expression for the stabilization parameter using the

Engquist-Osher monotone flux scheme. We highlight that the stabilitzation

parameter is introduced in Newton’s solver since we can analytically compute

its derivatives. Note that the selection of the stabilization parameter is cru-

cial to obtain the high-order properties of the HDG method. The stability of

the method ensures the continuity of the obtained solution with respect to the

problem data (initial condition, boundary condition, source term, porous media

parameters,...). That is, the stability of the method ensures that small pertur-

bations of the problem data because of small numerical errors do not lead to

unbounded perturbations of the obtained solution.

2. Developing a memory-efficient high-order HDG formulation for in-

compressible and immiscible two-phase flow through porous media.

In Chapters 4 and 5, we detail the proposed high-order HDG formulation cou-

pled with high-order implicit Runge-Kutta (RK) schemes for immiscible and

incompressible two-phase flow through porous media. We define the wetting

pressure and non-wetting saturation as the main variables. This leads to a cou-

pled system of two non-linear partial differential equations, the first one for the

saturation and the second one for the pressure. We propose two methodologies

to solve the two-phase flow problem based on different temporal discretization

schemes:

a) In Chapter 4, we present a memory-efficient high-order HDG for-

mulation coupled with high-order DIRK temporal schemes. This

leads to a non-linear problem at each stage of the DIRK scheme. We pro-

pose a fix-point solver, in which we alternatively solve for the saturation

5



1. Introduction

unknowns, and then for the pressure unknowns implicitly until convergence

is achieved at each stage of the DIRK scheme. The proposed non-linear

solver reduces memory consumption since the saturation and the pressure

equations are decoupled. Therefore, there is no need to solve for both

unknowns at the same time.

b) In Chapter 5, we present a memory-efficient high-order hybridizable

discontinuous Galerkin (HDG) formulation coupled with high-

order fully implicit Runge-Kutta schemes. To obtain the same high-

order accuracy in space and time, we propose using fully implicit high-

order temporal schemes. Thus, we avoid small time steps if we use low-

order schemes, or a high number of stages if we use DIRK schemes. In

order to use arbitrary large time steps, we require unconditionally stable

temporal schemes for any combination of element size, polynomial degree

and time step. To reduce the memory footprint of coupling these spatial

and temporal high-order schemes, we rewrite the non-linear system. In

this way, we achieve a better sparsity pattern of the Jacobian matrix and

less coupling between stages. Furthermore, we adapt the proposed fix-

point iterative method in Chapter 4, which further reduces the memory

consumption since it decouples the saturation and pressure equations.

3. Developing a robust and efficient shock capturing methodology. In

Chapter 5, we introduce local artificial viscosity to reduce the spurious oscil-

lations at the vicinity of the sharp fronts. We propose using the shock sensor

introduced in Persson and Peraire (2006) to detect these oscillations. The main

difference with Persson and Peraire (2006) is that we compute the shock sensor

from the saturation solution and the post-processed saturation of HDG. The

proposed shock sensor is computationally efficient since the post-processed sat-

uration is computed in an element-wise manner. Thus, we do not need to solve

again the problem with a different polynomial degree. Our methodology allows

tracking the sharp fronts as they evolve through the different stages of the fully

implicit RK scheme, since the shock sensor is computed at the stages of the RK

scheme.
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Chapter 2

State of the art

In this chapter, we describe the main features of the spatial and temporal discretiza-

tion methods used in the numerical simulation of multiphase flow through porous

media. Next, we briefly review the shock capturing methods applied in the simula-

tion of two-phase flow problems. Finally, we summarize several non-linear solvers for

the simulation of two-phase flow.

2.1 Discretization methods

During the last decades, several spatial discretization methods have been used in

reservoir simulation. For instance, the finite difference method solves the differential

equations by approximating the derivatives with incremental ratios. The mass is

locally conserved at the discretization points (Aziz and Settari, 1979; Russell and

Wheeler, 1983; Chen et al., 2006). Although this technique is fast, it requires a

complex implementation to deal with the reservoir geometric complexity and to obtain

high-order discretizations.

The finite volume method obtains an element-wise approximation of the solution.

It can be applied to unstructured polygonal and polyhedral meshes, and therefore it

has geometric flexibility. Moreover, the method is locally conservative at each element

(Versteeg and Malalasekera, 2007). It has been successfully applied as a first-order

method in reservoir simulations (Chen et al., 2006; Radu et al., 2015; Salinas et al.,

2017, 2018).

7
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The high-order continuous Galerkin method approximates the solution using con-

tinuous element-wise polynomials of arbitrary degree. The method can deal with

the reservoir complexity since the mesh can be adapted to the geometry (Russell

and Wheeler, 1983; Zienkiewicz et al., 2005; Chen et al., 2006). The number of un-

knowns of the linear system can be reduced by applying a hybridization procedure,

and therefore the computational cost is also reduced. This method is conservative at

the domain level. Also, it is an accurate method for the scalar variable that converges

with a rate of P + 1 in L2−norm. Nevertheless, the gradient of the scalar variable

loses one order of convergence in L2−norm. Therefore, the Darcy velocity converges

with order P , which is a drawback for these type of simulations.

Mixed finite element methods usually introduce the flux in the formulation as a

new unknown, which is related to the gradient of the scalar variable (Chen et al., 2006;

Hughes et al., 2006; Barrios et al., 2015; Hou et al., 2016; Abushaikha et al., 2017).

However, it is necessary to apply different stabilization techniques for each selection

of approximation spaces to obtain a stable, consistent and convergent method (Masud

and Hughes, 2002; Brezzi et al., 2005; Hughes et al., 2006; Luo et al., 2011). Since

they introduce a new unknown, mixed methods have more degrees of freedom than

finite element methods, although a hybridization technique can also be applied to

reduce the number of unknowns of the linear system.

Discontinuous Galerkin methods have been shown as competitive discretization

methods in multiphase flow problems (Rivière et al., 2000; Rivière and Wheeler, 2002;

Klieber and Rivière, 2006; Epshteyn and Rivière, 2006; Epshteyn, 2007; Natvig and

Lie, 2008; Badia and Codina, 2010; Ern et al., 2010; Arbogast et al., 2013; Huang

and Scovazzi, 2013; Bastian, 2014; Li and Rivière, 2015; Hou et al., 2016; Jamei and

Ghafouri, 2016; Jamei et al., 2019). These methods are a type of mixed finite ele-

ment in which the scalar and the flux are discontinuous element-by-element. Both

variables also converge as P +1 in L2−norm. The stability, consistency and accuracy

of these methods depend on a suitable choice of a numerical flux that depends on

several parameters (Bassi and Rebay, 1997). Moreover, mass conservation is verified

at the element level, which is an advantage when solving PDEs in conservative form

(Montlaur et al., 2008; Roca et al., 2013). These methods can use polynomials of

arbitrary degree, and therefore are high-order accurate (Nguyen et al., 2013). More-

over, there are DG formulations that allow solving only for the main unknown to

increase computational efficiency, which is known as primal formulation (Epshteyn,
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2007).

Recently, the hybridizable discontinuous Galerkin (HDG) method has been ap-

plied in two-phase flow through porous media (Fabien et al., 2018, 2020). The HDG

method has all the advantages of the discontinuous Galerkin formulations. To relate

the unknowns of adjacent elements, this formulation imposes the continuity of the

normal component of a numerical flux between adjacent elements. To perform this,

the trace of the scalar variable is introduced on the mesh skeleton as a new variable.

It approximates the scalar variables and their gradients using element-wise discontin-

uous polynomials (Nguyen et al., 2009a,b, 2011, 2013; Kirby et al., 2012; Roca et al.,

2013; Giorgiani et al., 2013, 2014; Sevilla and Huerta, 2016). Both variables also

converge as P +1 in L2−norm, as in DG methods. Therefore, the Darcy velocity also

converges with order P + 1. Moreover, elemental post-processing can be applied to

obtain a convergence rate for the scalar variables of P + 2 in L2-norm (Nguyen et al.,

2009a,b, 2011, 2013; Kirby et al., 2012; Roca et al., 2013; Giorgiani et al., 2013, 2014;

Sevilla and Huerta, 2016; Paipuri et al., 2018). Consequently, the accuracy of the

obtained solutions can be increased without hampering the computational cost. The

stability is imposed through the continuity in the normal direction of a numerical flux

that depends on a single stabilization parameter, τ . Furthermore, mass is conserved

at the element level and unstructured meshes can be used to handle the reservoir het-

erogeneity. Finally, this method is also hybridizable in terms of the traces, reducing

the size of the global linear system.

For unsteady problems, time-marching integration schemes can be used, such as

RK methods (Butcher, 1964a,b, 1996; Montlaur et al., 2012; Butcher, 2016; Pazner

and Persson, 2017; Fernández et al., 2018). Given a solution at a time step, RK meth-

ods compute the solution at the next time step as a linear combination of the solution

obtained at intermediate times. Those intermediate times are known as the stages of

the RK method. Explicit RK schemes approximate the solution at a stage as a linear

combination of the solution at previous stages. While these methods have low com-

putational cost, they are conditionally stable, and therefore they cannot be applied

with arbitrary large time steps. To use arbitrary time steps, implicit RK schemes can

be used (Butcher, 1964a). For instance, in diagonally implicit Runge-Kutta (DIRK)

schemes, the unknowns at the stages depend on the unknowns at the current stage

and at the previous ones. Thus, the solution at the stages can be solved sequentially.

However, above fourth-order, the number of stages of DIRK schemes increases faster
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than the integration order (Pazner and Persson, 2017). If high-order temporal accu-

racy is required, the fully implicit RK schemes may be considered. These schemes

are unconditionally stable and can achieve high-order temporal accuracy with few

stages (Butcher, 1964b; Pazner and Persson, 2017). However, the stage unknowns

are all coupled, and therefore, they involve solving a non-linear system of equations

involving the unknowns of all the stages. Thus, fully implicit RK schemes have a

higher memory footprint than explicit RK and DIRK methods.

2.2 Shock capturing methods

It is well known that in two-phase flow through porous media problems, the saturation

can present sharp fronts (Klieber and Rivière, 2006; Arbogast et al., 2013; Jamei and

Ghafouri, 2016; Jamei et al., 2019). Thus, the high-order approximation may present

numerical oscillations. To reduce these spurious oscillations, shock capturing methods

can be applied. The idea of these methods is to introduce additional dissipation near

the sharp fronts (Persson and Peraire, 2006; Huerta et al., 2012; Casoni et al., 2013).

These methods require a shock sensor to precisely detect the location of the sharp

fronts. For example, in Persson and Peraire (2006), the authors propose a sensor that

is computed by comparing two solutions of the problem computed with a different

polynomial degree, P and P − 1.

Slope limiting techniques are commonly applied in two-phase flow problems to

reduce the spurious oscillations (Klieber and Rivière, 2006; Arbogast et al., 2013;

Jamei and Ghafouri, 2016; Jamei et al., 2019). Usually these techniques reduce the

order of the obtained approximations in the elements that contain the sharp fronts to

linear or constant hampering the accuracy of the solution at the sharp front (Huerta

et al., 2012). To overcome this drawback, h-adaptivity method is used to increase

the accuracy of the simulation (Klieber and Rivière, 2006; Arbogast et al., 2013).

Shock capturing methods based on high-order non-oscillatory reconstruction schemes,

known as essential non-oscillatory (ENO) and weighted essentially non-oscillatory

(WENO) approaches (Shu and Osher, 1988; Qiu and Shu, 2005; Zhu et al., 2008),

have been usually applied in the framework of finite differences and finite volume

methods with structured meshes. Nevertheless, there is active focus on applying

these schemes to unstructured meshes and improve their performance for high-order

methods (Zhu et al., 2008; Farmakis et al., 2020).
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Another shock capturing technique widely used in numerical simulations is the ar-

tificial viscosity method. It consists to introduce an artificial viscosity at the elements

located in the vicinity of the sharp fronts (VonNeumann and Richtmyer, 1950). One

of the critical aspects of this method is to compute the amount of artificial viscosity

needed to reduce the spurious oscillations without changing the underlying physics

of the problem. For example, in Persson and Peraire (2006), the authors relate the

amount of artificial viscosity with the shock sensor and the resolution of the mesh.

2.3 Non-linear solvers for two-phase flow

problems

Two-phase flow through porous media is governed by a coupled system of non-linear

partial differential equations. Once the problem is discretized, a system of coupled

non-linear equations involving the saturation and pressure nodal unknowns has to be

solved. Robust and efficient procedures are required to solve these non-linear systems

(Chen et al., 2006). The most common methodologies in two-phase flow problems that

fulfil those requirements are: the simultaneous solution method (SS), also called the

fully implicit method, the implicit pressure - explicit saturation (IMPES) approach,

and the adaptive implicit scheme.

The SS method consists of applying the Newton-Raphson method to solve the

full non-linear system of equations simultaneously. That is, solving for the saturation

and the pressure at the same time. If the initial approximation is close enough, this

technique achieves the convergence threshold with few non-linear iterations because

of the quadratic convergence of the Newton-Raphson method. However, it has a high

memory footprint, especially if we consider more complex models, such as chemical

compositional flow, which has a higher number of unknowns (Chen et al., 2006). The

SS method is also applied with DG formulations to solve the two-phase flow problem

(Epshteyn and Rivière, 2006, 2007; Bastian, 2014).

The IMPES approach reduces the memory footprint of the simulation. It solves

the non-linear system of equations by splitting it into a pressure and saturation equa-

tion. It implicitly computes the pressure by solving a linear system, while it computes

the saturation with an explicit time integration scheme (Chen et al., 2004, 2006; Hur-

tado et al., 2006; Kou and Sun, 2010). Using an explicit temporal scheme the param-

eters that depend on the saturation are computed from the saturation of the previous
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time step. For that reason, solving the saturation equation does not involve solving

a non-linear problem at each time step. Therefore, the explicit temporal scheme re-

duces the computational cost per time step. However, it is conditionally stable, and

therefore, arbitrary large time steps cannot be used. This stability constraint may

lead to using small time steps, which are not suitable for long time simulations. To

overcome this issue and taking into account that the saturation changes faster than

the pressure, the authors in Chen et al. (2004, 2006); Hurtado et al. (2006) propose

the improved IMPES method. This approach consists of computing the pressure with

a larger time step than the saturation. This method reduces the computational cost

of the simulation, but the saturation still cannot be evaluated with an arbitrarily

large time step.

The IMPES approach has been implemented in DG formulations to solve the two-

phase flow through porous media problem(Arbogast et al., 2013; Jamei and Ghafouri,

2016; Jamei et al., 2019). Specifically, in Jamei and Ghafouri (2016); Jamei et al.

(2019), the authors present different DG formulations, and compute the saturation

explicitly using a second-order total variation diminishing RK (TVD RK) scheme and

a second-order Lax-Wendroff scheme, respectively.

Several works propose to compute the saturation implicitly such as Klieber and

Rivière (2006); Ern et al. (2010); Fabien et al. (2018). These authors solve the

saturation equation implicitly using a backward scheme. Afterwards, they update

the pressure with the obtained saturation. In Klieber and Rivière (2006); Ern et al.

(2010), they linearize the saturation equation by time lagging the coefficients that

depend of the saturation. That is, the parameters that depend on the saturation are

computed using the information of the previous time step. In Fabien et al. (2018),

the authors present an HDG formulation for the spatial discretization. Furthermore,

they detail a semi-implicit algorithm to solve the non-linear problem. To perform the

time marching process, the authors first compute the pressure from a given saturation

at a time step. Second, using the obtained pressure, they compute the saturation at

the next time step by solving the non-linear saturation equation. To solve the non-

linear problem they use the Newton-Raphson method. This semi-implicit process is

repeated for all the time steps of the time marching process.

The adaptive implicit scheme is used to simulate the miscible displacement, black

oil model, compositional flow, among others (Chen, 2000). This scheme consists to

efficiently alternate the IMPES approach with the SS method in the same simulation
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domain (Chen et al., 2006). That is, the SS method is only applied in the elements of

a selected reservoir zone, while the IMPES approach is used in the rest of the domain.

This technique reduces the computational cost of the SS approach, but it requires

analyzing the stability of the time integration scheme (Chen et al., 2006).

13





Chapter 3

High-order HDG formulation with

DIRK schemes for the simulation

of one-phase flow through porous

media

3.1 Introduction

In this chapter, we focus on the primary oil recovery stage, which begins when the first

well is drilled and corresponds to 15%− 30% of the total oil production (Donaldson

et al., 1985, 1989; Chen et al., 2006). During this stage, the pressure difference

between the surface and the reservoir is high enough to move the hydrocarbon upward

(Selley and Sonnenberg, 2014). One-phase flow through porous media formulation is

used to model this problem (Chen et al., 2006). We consider a single Newtonian fluid

that fills the voids of the porous media. Moreover, we assume slightly compressible

fluid and rock. Therefore, the governing equation for this problem is a non-linear

transient partial differential equation (PDE), which is obtained from the combination

of the mass conservation with Darcy’s law and equations of state for the fluid and

the rock (Chen et al., 2006).

To obtain accurate approximations of the pressure and the Darcy velocity, several

requirements have to be fulfilled. The formulation has to deal with unstructured
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meshes to capture heterogeneous and complex subsurface configurations. Moreover,

it has to provide highly-accurate solutions without hampering the computational cost.

Therefore, unstructured high-order formulations are well-suited for these applications.

Also, the formulation has to be stable and the mass should be conserved, at least,

at the element level. Nowadays, several methods such as the finite differences (FD),

finite volumes (FV), continuous finite elements (CG), mixed finite elements (mixed

CG), and discontinuous Galerkin methods (DG), have been applied. While all of

these methods have their own advantages, none of them totally fulfill the previous

requirements.

Therefore, the contributions of this chapter are:

1. To develop a high-order HDG formulation for slightly compressible

one-phase flow through porous media problem coupled with high-

order DIRK schemes. We extend the formulation presented in Nguyen et al.

(2009b) to deal with temporal, diffusive and convective non-linear terms. Fur-

thermore, to obtain highly-accurate solutions in space and time, we couple the

high-order spatial HDG discretization with high-order DIRK schemes. Thus,

we obtain a non-linear system at each stage of the DIRK scheme that we solve

sequentially, stage-by-stage, using the Newton-Raphson method.

2. To ensure the stability and convergence of the proposed formulation

with a specific choice for the stabilization parameter. We obtain an

analytical expression for the HDG stabilization parameter, which ensures the

existence and uniqueness of the obtained approximation, as well as the stabil-

ity and the convergence of the formulation (Kirby et al., 2012). To this end,

we split the stabilization parameter into diffusive and convective parts, as in

Nguyen et al. (2009a,b). We define the diffusive part according to the physical

parameters of the problem. The convective part is selected using a monotone

scheme flux (LeVeque, 1992; Nguyen et al., 2009a,b). Specifically, we use the

Engquist-Osher monotone flux scheme, and we deduce an analytical expres-

sion of the convective part. Thus, the presented formulation provides a stable

method for arbitrary polynomial degrees. We highlight that the stabilization

parameter is introduced in Newton’s solver since we can analytically compute

its derivatives. Moreover, the proposed selection of the stabilization parameter

leads to an optimally accurate high-order method. That is, the pressure and

Darcy’s velocity converge with an optimal convergence rate of P + 1.
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Therefore, we propose a stable, convergent and high-order accurate method for both

pressure and Darcy’s velocity for slightly compressible one-phase flow through porous

media problem.

The outline of the chapter is as follows. In Section 3.2, we introduce the governing

equation of slightly compressible one-phase flow through porous media. In Section

3.3, we introduce the proposed HDG spatial discretization for the problem. In Section

3.4, we couple the proposed HDG formulation with DIRK schemes. In Section 3.5,

we define the Netwon-Raphson method at each stage of the DIRK scheme. In Section

3.6, we detail the hybridization procedure for the Jacobian matrix and the residual.

In Section 3.7, we state the local post-processing procedure. In Section 3.8, we show

several examples to illustrate the advantages of the proposed formulation. Finally, in

Section 3.9, we summarize the main contributions of this chapter.

3.2 Numerical model

We consider a single Newtonian fluid flow under isothermal conditions that occupies

the total soil porosity. We assume that the fluid mass cannot cross the solid interface

and mass fluxes can be neglected (Chen et al., 2006). Under these assumptions, the

governing equations are provided by the mass conservation and the Darcy’s law

∂(φρ)

∂t
+∇ · (ρv) = f, (3.1a)

v = − 1

µ
K (∇p − ρg) , (3.1b)

where φ is the soil porosity, ρ is the hydrocarbon density, t is the time, v is the Darcy

velocity, f is the source term, K = diag(k11, k22, k33) is the soil absolute permeability

tensor, g is the gravity, and µ is the hydrocarbon viscosity.

Following Chen et al. (2006), we consider that the fluid and rock compressibility,

(cf , cr, respectively) are constant in the pressure ranges of the simulation. More-

over, we also assume slightly compressible fluid and rock. Thus, the density and the

porosity are approximated as

ρ ≈ ρref (1 + cf (p − pref )) ,

φ ≈ φref (1 + cr(p − pref )) ,
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where ρref and φref are the reference density and the reference porosity at a reference

pressure pref . Then, the governing equation becomes

φρct
∂p

∂t
−∇ ·

(
ρ

µ
K(∇p − ρg)

)
= f, (3.2)

where ct = cf + cr is the total compressibility (Chen et al., 2006).

We define Ω ⊂ Rd as a porous medium domain with boundary Γ such that Γ =

ΓD∪ΓN and ΓD∩ΓN = ∅, where ΓD is the Dirichlet boundary and ΓN is the Neumann

boundary. We also consider the time interval T = (0, tend). Therefore, our numerical

model for a slightly compressible one-phase flow through porous media is composed

of Equation (3.2) and the corresponding boundary and initial conditions

s(p)
∂p

∂t
+∇ · (−A(p)∇p + F(p)) = f(x, t) ∀(x, t) ∈ (Ω, T ),

p(x, t) = gD(x, t) ∀(x, t) ∈ (ΓD, T ),

(−A(p)∇p + F(p)) · n = gN(x, t) ∀(x, t) ∈ (ΓN , T ),

p(x, 0) = p0(x) ∀x ∈ Ω,

(3.3)

where gD(x, t) and gN(x, t) are the Dirichlet and Neumann prescribed values respec-

tively, n is the outward normal, p0(x) is the initial pressure of the reservoir, and

s(p) = φ(p)ρ(p)ct,

A(p) =
ρ(p)

µ
K,

F(p) =
ρ(p)2

µ
Kg.

(3.4)

In order to introduce the HDG formulation, we rewrite Equation (3.3) as a system

of first-order equations by identifying q = −A(p)∇p as the diffusive flux and F(p)

as the convective flux

s(p)
∂p

∂t
+∇ · (q + F(p)) = f(x, t) ∀(x, t) ∈ (Ω, T ),

q + A(p)∇p = 0 ∀(x, t) ∈ (Ω, T ),

p(x, t) = gD(x, t) ∀(x, t) ∈ (ΓD, T ),

(q + F(p)) · n = gN(x, t) ∀(x, t) ∈ (ΓN , T ),

p(x, 0) = p0(x) ∀x ∈ Ω.

(3.5)
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3.3 Spatial discretization

We discretize the domain, Ω, with a tessellation, Th, composed of a set of elements,

e, of polynomial degree P . Afterwards, we introduce the discontinuous finite element

spaces associated with the tessellation, Th:

VPh =
{
v ∈ L2

(
Ωd
)
| v|e ∈

(
SP (e)

)
∀e ∈ Th

}
,

WP
h =

{
w ∈

(
L2
(
Ωd
) )d | w|e ∈

(
SP (e)

)d ∀e ∈ Th

}
,

MP
h =

{
γ ∈ L2 (Σh) | γ|f ∈

(
SP (f)

)
∀f ∈ Σh

}
,

where SP is the space of the polynomials of degree at most P for triangles and

tetrahedra (usually denoted by PP ), or the tensor products of polynomials of degree

at most P in each coordinate direction for tensor product elements (usually denoted

by QP ), d is the space dimension and Σh is the skeleton of the mesh composed of all

the element faces, f . We define MP
h (gD) =

{
γ ∈MP

h | γ = Π(gD) on ΓD
}

, where

Π(·) is a projection operator to the space
{
γ|ΓD

∀γ ∈MP
h

}
. In this work, we use a

fixed polynomial degree for all the elements. We define the scalar products on the

finite element spaces:

(u, v)e =

∫
e

u v dΩ ∀u, v ∈ VPh ,

(q,w)e =

∫
e

q ·w dΩ ∀q,w ∈ WP
h ,

〈λ, γ〉∂e =

∫
∂e

λ γ dΓ ∀λ, γ ∈MP
h .

From Equation (3.5), the HDG formulation ends up with finding an approximation

(ph,qh, p̂h) ∈ VPh ×WP
h ×MP

h (gD) such that∑
e∈Th

(
(s (ph)

∂ph
∂t

, v)
e
− (qh + F (ph) ,∇v)e

)
+

∑
e

(
〈(q̂h + F̂h) · n, v〉∂e − (f, v)e

)
= 0,

(3.6a)

∑
e∈Th

(
(A−1 (ph) qh,w)e − (ph,∇ ·w)e + 〈p̂h,w · n〉∂e

)
= 0, (3.6b)

∑
e∈Th

(
〈(q̂h + F̂h) · n, γ〉∂e

)
− 〈gN , γ〉ΓN

= 0, (3.6c)

for all (v,w, λ) ∈ VPh ×WP
h ×MP

h (0), where p̂h is the trace of the pressure defined on

the mesh skeleton, Σh, and q̂h+ F̂h is the total numerical flux. Equation (3.6c) is the
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transmissivity equation, in which we impose the continuity of the total numerical flux

in the normal direction between adjacent elements. Therefore, this equation relates

the unknowns between adjacent elements.

According to Nguyen et al. (2009a,b), we define the total numerical flux as

q̂h + F̂h = qh + F (p̂h) + τ(ph, p̂h)(ph − p̂h)n, on Σh,

where τ is the stabilization parameter that depends on ph and p̂h. Nevertheless, to

facilitate the notation, from now on, we will not write explicitly this dependency.

Following Nguyen et al. (2009a,b), we split the τ parameter into the diffusive and

convective terms as

τ = τdiff + τconv,

and we set the diffusive and convective numerical fluxes as:

q̂h = qh + τdiff(ph − p̂h)n, on Σh, (3.7a)

F̂h = F (p̂h) + τconv(ph − p̂h)n, on Σh, (3.7b)

respectively. We define the diffusive stabilization parameter as

τdiff =
1

lc

ρ(ph)

µ
γK, (3.8)

where lc is a characteristic length of the problem and γK is the maximum eigenvalue

of the permeability tensor, K.

To select the convective stabilization parameter, τconv, we use a monotone scheme

flux, which ensures the stability of the numerical method (Nguyen et al., 2009a,b).

Specifically, we define convective stabilization parameter as

τconv =
1

(ph − p̂h)2

∫ ph

p̂h

(
F̂ · nEO(s, p̂h)− F(p̂h) · n

ph − p̂h

)
ds, (3.9)

where F̂ · nEO(·, ·) is the Engquist-Osher monotone scheme flux (Nguyen et al., 2009a,b)

F̂ · nEO(a, b) =
1

2
(F(a) + F(b)) · n− 1

2

∫ b

a

|F′(s) · n| ds. (3.10)

It is straightforward to prove that the derivative of the convective flux is

F′(p) = 2
ρ(p)ρrefcf

µ
Kg.
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3.3. Spatial discretization

Therefore, the sign of the integral in Equation (3.10) only depends on the product

(Kg) · n. Thus, inserting the third equality of Equation (3.4), and Equations (3.9)

and (3.10) into Equation (3.7b), we obtain the normal component of the convective

numerical flux, F̂h · n, as

F̂h · n =


(Kg) · n
3cfρrefµ

(
ρ(ph)

3 − ρ(p̂h)
3

ph − p̂h

)
if (Kg) · n ≥ 0,

ρ(p̂h)
2 (Kg) · n
µ

if (Kg) · n < 0.

(3.11)

Note that for ph = p̂h, and applying the Hôpital rule to the first equation of (3.11),

we verify the required property of the monotone scheme flux: F̂h · n(p, p) = F(p) · n.

Afterwards, substituting the diffusive numerical flux, Equation (3.7a), into Equa-

tion (3.6) and using Equation (3.11) as the convective numerical flux, leads to find

(ph,qh, p̂h) ∈ VPh ×WP
h ×MP

h (gD) such that

∑
e∈Th

(
(s
∂ph
∂t

, v)
e
− (qh + Fh,∇v)e + 〈F̂h · n, v〉∂e

)
+
∑
e∈Th

(〈qh · n + τdiff(ph − p̂h), v〉∂e − (f, v)e) = 0,
(3.12a)

∑
e∈Th

(
(A−1qh,w)e − (ph,∇ ·w)e + 〈p̂h,w · n〉∂e

)
= 0, (3.12b)

∑
e∈Th

(
〈F̂h · n, γ〉∂e + 〈qh · n + τdiff(ph − p̂h), γ〉∂e

)
− 〈gN , γ〉ΓN

= 0, (3.12c)

for all (v,w, γ) ∈ VPh ×WP
h ×MP

h (0).

Remark 1. The HDG method is conservative at the elemental level. This is deduced

from the Equation (3.12a), by setting the test function, v = 1, in a single element

and 0 in the rest

(s
∂ph
∂t

, 1)e︸ ︷︷ ︸
temporal variation

+ 〈(q̂h + F̂h) · n, 1〉∂e︸ ︷︷ ︸
boundary inflow/outflow

= (f, 1)e︸ ︷︷ ︸
source term

, (3.13)

that represents the mass conservation, Equation (3.1a) in integral form.

Let {Ni}i=1,...,N be a Lagrangian basis of shape functions of SP (e), where N is the

total number of element nodes, and let {N f
l }l=1,...,Nf

be a Lagrangian basis of shape
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functions of SP (f), where Nf is the total number of nodes on the element faces. We

define the approximations ph, qh and p̂h as

ph(x, t) =
∑
e∈Th

N∑
i=1

pi(t)Ni(x), (3.14)

qh(x, t) =
∑
e∈Th

N∑
i=1

Nsd∑
j=1

qi,j(t)Ni(x)ej, (3.15)

p̂h(x, t) =
∑
f∈Σh

Nf∑
l=1

p̂l(t)N
f
l (x), (3.16)

where Nsd is the physical dimension of the problem. Similarly, the approximation of

the pressure temporal derivative, ṗh = ∂ph/∂t, is defined as

ṗh(x, t) =
∑
e∈Th

N∑
i=1

ṗi(t)Ni(x), (3.17)

where ṗi(t) = dpi/dt.

Inserting Equations (3.14), (3.15), (3.16) and (3.17) into Equation (3.12), we ob-

tain a non-linear coupled system of first order DAE. Specifically, the problem consists

of finding the coefficients pi(t), qi,j(t), ṗi(t) for i = 1 . . . Ni, j = 1 . . . Nsd and p̂l(t) for

l = 1 . . . Nf ∑
e∈Th

(
(sṗh, Ni)e − (qh + Fh,∇Ni)e + 〈F̂h · n, Ni〉∂e

)
+
∑
e

(〈qh · n + τdiff(ph − p̂h), Ni〉∂e − (f,Ni)e) = 0,
(3.18a)

∑
e∈Th

(
(A−1qh, Niej)e − (ph,∇ · (Niej))e + 〈p̂h, Niej · n〉∂e

)
= 0, (3.18b)

∑
e∈Th

(
〈F̂h · n, N f

l 〉∂e + 〈qh · n + τdiff(ph − p̂h), N f
l 〉∂e

)
− 〈gN , N f

l 〉ΓN
= 0, (3.18c)

for Ni, Niej and N f
l , with i = 1 . . . Ni, j = 1 . . . Nsd, l = 1 . . . Nf .

3.4 Temporal discretization

Equation (3.18) is a DAE and we rewrite it as

R (t,p, ṗ ,q, p̂) =

Rṗ (t,p, ṗ ,q, p̂)

Rq (t,p, ṗ ,q, p̂)

Rp̂ (t,p, ṗ ,q, p̂)

 = 0, (3.19)

22



3.4. Temporal discretization

where p, ṗ , q and p̂ are vectors composed of all the nodal values for the pressure,

pi(t), the pressure derivative, ṗi(t), the numerical flux, qi,j(t), and the trace of the

pressure, p̂l(t), at time t.

Thus, given an approximation of ph, ṗh,qh, p̂h ∈ VPh × VPh ×WP
h ×MP

h (gD), Rp ,

Rq and Rp̂ are defined as follows

[Rṗ ]i ≡
∑
e∈Th

(
(sṗh, Ni)e − (qh + Fh,∇Ni)e + 〈F̂h · n, Ni〉∂e

)
+
∑
e∈Th

(〈qh · n + τdiff(ph − p̂h), Ni〉∂e − (f,Ni)e) ,

[Rq]i,j ≡
∑
e∈Th

(
(A−1qh, Niej)e − (ph,∇ · (Niej))e + 〈p̂h, Niej · n〉∂e

)
,

[Rp̂ ]l ≡
∑
e∈Th

(
〈F̂h · n, N f

l 〉∂e + 〈qh · n + τdiff(ph − p̂h), N f
l 〉∂e

)
− 〈gN , N f

l 〉ΓN
.

To solve the DAE in Equation (3.19), we use a diagonally implicit Runge-Kutta

(DIRK) scheme. From now on, we denote by (·)n the value of any variable at time tn,

and by (·)n,i the value of any variable at time tn,i = tn + ci∆t, being n the time step

and i the DIRK stage. Accordingly, we compute the pressure at time tn+1 = tn + ∆t

as

pn+1 = pn + ∆t
s∑
i=1

ciṗn,i,

where s is the number of stages, and ṗn,i is the approximation of ṗ at time tn,i. The

pressure at each stage of the DIRK scheme is computed as

pn,i = pn + ∆t
i∑

j=1

aijṗn,j,

and the ṗn,i for i = 1, . . . , s are computed as the solution of the non-linear algebraic

equation

R

(
tn,i,pn + ∆t

i∑
j=1

aijṗn,j, ṗn,i,qn,i, p̂n,i

)
= 0. (3.20)

The parameters aij, bi, ci, with i = 1 . . . s and j = 1 . . . i, define the DIRK method

and are given by the Butcher’s tables (Butcher, 1964a,b, 2016; Montlaur et al., 2012;
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Kennedy and Carpenter, 2016; Pazner and Persson, 2017):

c A

b
≡

c1 a11

c2 a21 a22

...
...

. . .

cs as1 . . . ass

b1 b2 . . . bs

. (3.21)

3.5 Non-linear solver

Equation (3.20) defines a non-linear system of equations that we solve using the

Newton-Raphson method at each stage of the DIRK scheme. From now on and with-

out loss of generality, we reorder the unknowns of the non-linear system of Equation

(3.20) such as

un,i =

ṗn,i

qn,i

p̂n,i

 , for i = 1 . . . s.

Thus, the non-linear residual is

F
(
un,i
)

=

Rṗ

(
tn,i,pn,i, ṗn,i,qn,i, p̂n,i

)
Rq

(
tn,i,pn,i, ṗn,i,qn,i, p̂n,i

)
Rp̂

(
tn,i,pn,i, ṗn,i,qn,i, p̂n,i

)
 .

The Newton-Raphson method involves successive approximations of the solution

un,i,k at i-th Runge-Kutta stage

un,i,k+1 = un,i,k + δun,i,k,

where δun,i,k is the solution of the linear system

J
(
un,i,k

)
δun,i,k = −F

(
un,i,k

)
, (3.22)

being J
(
un,i,k

)
the Jacobian matrix of F evaluated at un,i,k. The Jacobian matrix

coefficients are detailed in Appendix A.
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3.6. Hybridization procedure

The process stops when an approximation is found that satisfies the prescribed

tolerances

‖ṗn,i,kh − ṗn,i,k+1
h ‖L2(Th)

‖ṗn,i,k+1
h ‖L2(Th)

< εṗ, ‖Rṗ‖2 ≤ εFṗ
,

‖qn,i,kh − qn,i,k+1
h ‖L2(Th)

‖qn,i,k+1
h ‖L2(Th)

< εq, ‖Rq‖2 ≤ εFq ,

‖p̂n,i,kh − p̂n,i,k+1
h ‖L2(Σh)

‖p̂n,i,k+1
h ‖L2(Σh)

< εp̂ , ‖Rp̂‖2 ≤ εFp̂
,

(3.23)

where ‖ · ‖L2(Th) is the norm of the L2(Th) space of functions, ‖ · ‖L2(Σh) is the norm

of the L2(Σh) space of functions, and ‖ · ‖2 is the Euclidean norm of vectors.

3.6 Hybridization procedure

To reduce the computational cost, we hybridize the linear system in Equation (3.22)

using the static condensation procedure that allows solving only for the unknowns,

δp̂n,i,k. Then, δṗn,i,k and δqn,i,k are obtained using an element-by-element post-

process. To this end, we rewrite the linear system in Equation (3.22) as

J
n,i,k
ṗṗ Jn,i,kṗq Jn,i,kṗp̂

Jn,i,kqṗ Jn,i,kqq Jn,i,kqp̂

Jn,i,kp̂ṗ Jn,i,kp̂q Jn,i,kp̂p̂


δṗ

n,i,k

δqn,i,k

δp̂n,i,k

 = −

R
n,i,k
ṗ

Rn,i,k
q

Rn,i,k
p̂

. (3.24)

Afterwards, we split Equation (3.24) as[
Jn,i,kṗṗ Jn,i,kṗq

Jn,i,kqṗ Jn,i,kqq

][
δṗn,i,k

δqn,i,k

]
+

[
Jn,i,kṗp̂

Jn,i,kqp̂

]
δp̂n,i,k = −

[
Rn,i,k
ṗ

Rn,i,k
q

]
, (3.25a)

[
Jn,i,kp̂ṗ Jn,i,kp̂q

] [δṗn,i,k

δqn,i,k

]
+ Jn,i,kp̂p̂ δp̂n,i,k = −Rn,i,k

p̂ , (3.25b)

From Equation (3.25a), we obtain

[
δṗn,i,k

δqn,i,k

]
=

[
Jn,i,kṗṗ Jn,i,kṗq

Jn,i,kqṗ Jn,i,kqq

]−1(
−
[
Rn,i,k
ṗ

Rn,i,k
q

]
−
[
Jn,i,kṗp̂

Jn,i,kqp̂

]
δp̂n,i,k

)
. (3.26)
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Then, we substitute Equation (3.26) into Equation (3.25b), and we obtain δp̂n,i,k

as the solution of the hybridized linear system(
−
[
Jn,i,kp̂ṗ Jn,i,kp̂q

] [Jn,i,kṗṗ Jn,i,kṗq

Jn,i,kqṗ Jn,i,kqq

]−1 [
Jn,i,kṗp̂

Jn,i,kqp̂

]
+ Jn,i,kp̂p̂

)
δp̂n,i,k

= −Rn,i,k
p̂ +

[
Jn,i,kp̂ṗ Jn,i,kp̂q

] [Jn,i,kṗṗ Jn,i,kṗq

Jn,i,kqṗ Jn,i,kqq

]−1 [
Rn,i,k
p

Rn,i,k
q

]
.

(3.27)

Finally, using δp̂n,i,k, we compute δqn,i,k and δṗn,i,k by solving the linear system

in Equation (3.26). It is important to highlight that Equation (3.26) is solved element

by element, since we can reorder the terms of the matrix[
Jn,i,kṗṗ Jn,i,kṗq

Jn,i,kqṗ Jn,i,kqq

]
to convert it into a block diagonal matrix, where each block involves only unknowns

of a single element. Thus, the computational cost of solving Equation (3.26) is low.

To solve the global system, Equation (3.27) at each stage of the Runge-Kutta

method, i = 1, . . . , s, and at each Newton-Raphson iteration, k, we use LU factoriza-

tion.

3.7 Local post-processing

One of the main advantages of using the HDG formulation is that the pressure, ph,

and its flux, qh, in VPh and WP
h spaces, respectively, have a rate of convergence of

P + 1 in the L2-norm, when the temporal error is low enough. Moreover, a local

post-processing can be applied to obtain a new approximation for the pressure, p∗h,

in VP+1
h with a rate of convergence of P + 2 in the L2-norm (Nguyen et al., 2009a,b,

2011, 2013; Kirby et al., 2012; Roca et al., 2013; Giorgiani et al., 2013, 2014; Sevilla

and Huerta, 2016; Paipuri et al., 2018).

The local problem consists of finding the post-processed pressure, p∗h ∈ VP+1
h on

each element, e, such that

(A(ph)∇p∗h,∇v)e = − (qh,∇v)e, (3.28a)

(p∗h, 1)e = (ph, 1)e, (3.28b)

for all v ∈ VP+1
h .
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In order to obtain a well-posed and invertible system, Equation (3.28b) is added,

which imposes that the averages of the post-processed pressure, p∗h, and the approx-

imated pressure, ph, are equal element by element. It is important to highlight that

this procedure can be applied at selected time steps, and it is not necessary to apply

it to all the time steps (Kirby et al., 2012; Nguyen et al., 2009a,b).

3.8 Examples

This section presents several examples that illustrate the capabilities of the proposed

high-order HDG formulation. The first example shows a numerical evidence of the

optimal convergence rates of P + 1 in L2-norm for the pressure, the flux and the

Darcy’s velocity, and also the convergence rate of P + 2 in L2-norm for the post-

processed pressure. In addition, we check the elemental mass balance. The second

example is devoted to validate our formulation and its implementation by comparing

the obtained solution against an analytical one. The third example is a comparison

between the solution of a fully three dimensional case against the solution of a pseudo-

three dimensional case. The last example is a fully three dimensional case with three

different permeability regions.

For the Examples 3.8.2 to 3.8.4, we set the characteristic length of the diffusive

stabilization parameter, τdiff, as 10−6, see Equation (3.8). In addition, the stopping

thresholds for the Newton-Raphson method are 10−5 for the absolute errors and 10−10

for the relative errors, see Equation (3.23).

For all the examples, we set pref = p(x, 0) := p0. We use the DIRK3-s3 scheme

defined in Appendix B. All the high-order meshes are generated using the algorithms

presented in Gargallo-Peiró et al. (2015, 2016); Ruiz-Gironés E.; Roca and Sarrate

(2016), which are implemented in the EZ4U environment (Roca et al., 2010).

3.8.1 Convergence rate analysis

In this example, we show a numerical evidence of the convergence rates for the pres-

sure, ph, the flux, qh, the Darcy velocity vh, and the post-processed pressure, p∗h. We

define an analytical pressure solution

p = (1 + sin(2πx) sin(2πy))t, (3.29)
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Table 3.1: Material and fluid parameters for Example 3.8.1.

Parameter Value Parameter Value
K 1 m2 µ 1 Pa · s

φref 0.1 cr 0.01 Pa−1

ρref 1 cf 0.01 Pa−1

where x ∈ Ω = (0, 1) × (0, 1) and t ∈ (0, 1) s. We prescribe a Dirichlet boundary

condition on the whole boundary and a source term in order to obtain the analytical

pressure defined in Equation (3.29). We use a DIRK3-s3 scheme with ∆t = 0.25

s for the time discretization. The material and fluid data used in this example are

detailed in Table 3.1. We set the characteristic length of the diffusive stabilization

parameter, τdiff, of Equation (3.8) as 0.1. the stopping thresholds for the Newton-

Raphson method are 10−10 for the absolute and relative errors, see Equation (3.23).

We generate a series of meshes with 16, 64, 256 and 1024 elements per side of

polynomial degrees 2 to 6. Then, we measure the error in L2-norm of the obtained

approximations against the analytical solution at time 1 s.

Figures 3.1(a) and 3.1(b) show the convergence rate of the pressure and the flux

in L2-norm, respectively. We obtain the theoretically expected convergence rate of

P + 1 in L2-norm for all the cases. Figure 3.1(c) shows the obtained L2-error for the

post-processed pressure, p∗h, and also shows the expected convergence rates of P + 2

for all the cases. Moreover, we also obtain a convergence rate of P + 1 in L2-norm

for the Darcy’s velocity, because it is defined in terms of the pressure and its flux, see

Figure 3.1(d).

For all the meshes, we have checked the elemental mass balance, see Equation

(3.13). We obtain values in the range 7.2 · 10−10 to 5.3 · 10−15. For instance, Figure

3.2 shows the elemental mass balance for the mesh with 256 elements and polynomial

degree five.

This example validates our formulation and the selection of the numerical con-

vective flux. That is, the proposed formulation is stable, and achieves the optimal

convergence rate of P + 1 in L2-norm for the pressure, the flux and the Darcy ve-

locity, and the convergence rate of P + 2 in L2-norm of the post-processed pressure.

Furthermore, we have numerically shown the theoretical result of the elemental mass

balance.
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Figure 3.1: Convergence rate for: a) the pressure; b) the flux, c) the post-processed
pressure and d) the Darcy velocity.

3.8.2 Comparison with an analytical solution

In this example, we compare the solution provided by our formulation with an an-

alytical solution for a one dimensional radial flow (Chen et al., 2006). To this end,

and according to Chen et al. (2006), we assume an infinite horizontal and homoge-

neous reservoir with constants material properties and a punctual and isolated well.

Neglecting the gravity effects and using cylindrical coordinates Equation (3.2) is ex-
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Figure 3.2: Elemental mass balance for the mesh with 256 elements and polynomial
degree five.

pressed as
1

χ

∂p

∂t
=
∂2p

∂r2 +
1

r

∂p

∂r
, (3.30)

where r is the distance to the punctual well and χ = k/φµct. Equation (3.30) is

completed with the following boundary and initial conditions

p (r, t) = p0 as r �∞, t ≥ 0,

r
∂p

∂r
=

Qµ

2πkH
as r � 0, t > 0,

p (r, 0) = p0 0 ≤ r <∞,

where Q is the oil production well rate and H is the reservoir thickness. Under this

conditions, the analytical solution of Equation (3.2) is

p (r, t) = p0 − Qµ

2πkH
ln

(
2.25tχ

r2

)
, t > 0. (3.31)

We consider a reservoir thickness of H = 30.48 m and an isolated well with radius

rw = 5.715 cm. We use the same data as in Chen et al. (2006), which are detailed in

Table 3.2.

For the numerical simulation, we define a square domain with a dimension of

Ω = (0, 4000) × (0, 4000) m, with a circular hole at the center of the domain with
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Table 3.2: Material and fluid parameters for Example 3.8.2.

Parameter Value Parameter Value
K 0.3 · 10−13 m2 p0 244.966 atm

φref 0.2 Q 0.00057742 m3/s
cr 5.8 · 10−10 Pa−1 µ 0.00106 Pa · s
cf 0 Pa−1 ρref 897.5 kg/m3

(a) (b)

Figure 3.3: Unstructured mesh for the considered reservoir; a) global view and b)
detailed view near the well.

radius rw = 5.715 cm. We prescribe the pressure on the square boundary, ΓD, and a

fixed oil rate at the circular boundary, ΓW .

The problem to be solved numerically is modeled by Equation (3.2) with a null

source term, neglecting the gravitational effects, and using the following boundary

and initial conditions

φct
∂p

∂t
= ∇ ·

(
1

µ
K∇p

)
∀(x, t) ∈ (Ω, T ),

p (x, t) = 244.966 atm ∀(x, t) ∈ (ΓD, T ),(
1

µ
K∇p

)
· n =

Qµ

2πrkH
= 0.04735

Kg

m3s
∀(x, t) ∈ (ΓW , T ),

p (x, 0) = 244.966 atm ∀x ∈ Ω.

Note that the reservoir thickness, H, is introduced in our 2D model through the

Neumann boundary condition.
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Figure 3.4: a) Analytical and numerical solutions for one dimensional radial flow. b)
Time evolution of the relative error.

We discretize the domain, Ω, using an unstructured mesh of 4674 quadrilateral

elements of polynomial degree three, see Figures 3.3(a) and 3.3(b). The total number

of nodes is 42177 and the total unknowns to be approximated with the HDG for-

mulation is 261892. However, after applying the hybridization procedure described

in Section 3.6, the size of the linear system to be solved is reduced to 37540. We

simulate four days using a DIRK3-s3 scheme with ∆t = 0.1 days.

Figure 3.4(a) shows the comparison between the analytical solution, Equation

(3.31), and the obtained approximation at the well boundary. We observe that at the

initial time step, we exactly reproduce the solution. The major difference between the

analytical solution and the numerical approximation appears at time 0.1 day. This

happens because the hydrocarbon is completely still and the well starts to pump at

the prescribed flux rate. Afterwards, the numerical solution tends to the analytical

solution.

In Figure 3.4(b), we plot the evolution of the relative error, which has the same

behaviour of the approximated solution in Figure 3.4(a). At initial state, the relative

error is null, because we exactly reproduce the initial and boundary conditions. Then,

at time 0.1 day, there is the maximum relative error due to the overshoot of the initial

pumping. Afterwards, the relative error decreases in time, until to 0.00579 % at the

last time step.
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(a) (b)

Figure 3.5: a) Fully three dimensional case. b) Pseudo-three dimensional case.

Table 3.3: Material and fluid parameters for Example 3.8.3. (z is the reservoir depth).

Parameter Value Parameter Value
K 0.3 · 10−13 m2 p0 244.966 + 0.96z atm

φref 0.2 f 0.58 kg/s
cr 5.8 · 10−10 Pa−1 µ 0.00106 Pa · s
cf 1.45 · 10−9 Pa−1 ρref 897.5 kg/m3

3.8.3 Fully and pseudo three dimensional comparison

This example presents a comparison between a fully three dimensional case with a

pseudo-three dimensional case considering the gravity effect and a slightly compress-

ible fluid and rock.

The physical domains, Ω3D and Ω2D are a cube and square (corresponding to a

vertical cross section) with side c = 50 m, Figures 3.5(a) and 3.5(b), in which we

impose no-flow condition on the outer boundaries. The parameters used for this

example are defined in Table 3.3.

For the fully three dimensional case, Figure 3.5(a), we consider a cylinder well

with radius rw = 2.0 m and length, l = c = 50 m, with a central axis located at

xw = (25, y, 25) m. The source term, f 3D, is defined as

f 3D =


f

lπrw2
if
√

(xw − x)2 + (zw − z)2 < rw,

0 elsewhere.

For the pseudo-three dimensional case, Figure 3.5(b), we consider a circular well with

radius rw = 2.0 m and the centre located at xw = (25, 25) m. The source term, f 2D,

33



3. High-order HDG formulation with DIRK schemes for the
simulation of one-phase flow through porous media

Table 3.4: Features for the 3D and 2D meshes of Example 3.8.3.

Item 3D mesh 2D mesh
Number of elements 512 64

Degree 3 3
Number of nodes 15625 625
Total unknowns 158720 3648
p̂ unknowns 27548 576

is

f 2D =


f

πrw2
if
√

(xw − x)2 + (zw − z)2 < rw,

0 elsewhere.

The domain, Ω, is discretized using a structured hexahedral and a quadrilateral mesh

of polynomial degree three with an element size of h = 6.25 m, for both cases. We

summarize the main features of the considered meshes in Table 3.4. For the time

integration scheme, we use the DIRK3-s3 with ∆t = 50 s.

Note that, we do not know a priori an initial condition compatible with the bound-

ary condition, in which the hydrocarbon is totally still. To this end, we evolve the

problem with a null source term until∫
Ω

‖pn+1 − pn‖2dΩ∫
Ω

1dΩ
< εabs, (3.32)

where εabs = 10−11 for that problem. To perform this, we apply the backward Euler

scheme with a variable time step, ∆tn = ∆t0 · 1.105n, being ∆t0 = 1.0 seconds and

n the step. Since we are only interested in the steady state solution, we use the

backward Euler scheme because is unconditionally stable and large time steps can

be used. Once the steady state is obtained, we perform the time integration using

a DIRK3-s3, because we are interested in an accurate tracking of the hydrocarbon

extraction process.

Figure 3.6 shows the pressure approximation at time t = 500 seconds. Specifically,

Figure 3.6(a) corresponds to a central cross-section of the fully three dimensional

case, whereas Figure 3.6(b) corresponds to the pseudo-three dimensional case. Note

that we obtain similar results for both cases. This is highlighted in Figure 3.7,

that shows a plot along the diagonal represented in Figure 3.5(b) of the pressure
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250 252 254 255 257 259 260 262 264
Pressure (atm)

(a) (b)

Figure 3.6: a) Pressure field: a) on the section of the fully three dimensional case,
and b) of the pseudo-three dimensional case.

Figure 3.7: Plot over the diagonal of Figure 3.6(b) and 3.6(a).

at time t = 500 seconds in the fully three dimensional case and the pseudo-three

dimensional case. The difference between both results is negligible and in both cases

the pressure decreases near the well, because of hydrocarbon recovery, Figure 3.6. It

is also important to highlight that the pressure is higher at the bottom of the reservoir

than the surface due to the gravity effect.

Figure 3.8 shows the Darcy velocity vectors, Equation (3.1b), on two sections of
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250 252 254 255 257 259 260 262 264

Pressure (atm)

Figure 3.8: Darcy velocity vectors on two sections of the fully three dimensional case.

the fully three dimensional case. As expected, the hydrocarbon is moving towards

the cylindrical well located at the center of the reservoir.

3.8.4 One-phase flow through heterogeneous material

This example corresponds to a fully three dimensional case with three different per-

meability regions, see Figure 3.9(a). The most permeable region is located at the

middle, KB. At the bottom is the region with the lowest permeability, KC . The

upper region has an intermediate permeability value, KA. The permeability values

are detailed in Table 3.5.

The physical domain is Ω = (0, 50) × (0, 50) × (0, 50) m, and we impose no-flow

condition on all the boundaries. We consider a spherical well with radius rw = 4.0 m

and the center located at xw = (25, 25, 25) m. The source term is modeled as

f 3D =


f

4

3
πrw3

if
√

(xw − x)2 + (yw − y)2 + (zw − z)2 < rw,

0 elsewhere.

The parameters used for this example are defined in Table 3.5.
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(a) (b)

Figure 3.9: a) Permeability distribution. b) Hexahedral elements of polynomial degree
four and with an element size of 12.5 m.

Table 3.5: Material and fluid parameters for Example 3.8.4.

Parameter Value Parameter Value
KA 10−14 m2

KB 10−13 m2 p0 244.966 + 0.96z atm
KC 10−17 m2

φref 0.2 f −2 kg/s
cr 5.8 · 10−10 Pa−1 µ 0.00106 Pa · s
cf 1.45 · 10−9 Pa−1 ρref 897.5 kg/m3

We discretize the domain, Ω, with a structured hexahedral mesh of 64 elements

of polynomial degree four (4913 nodes), see Figure 3.9(b). The total number of

unknowns is 38000. However, after applying the hybridization procedure, the size of

the linear system to be solved is reduced to 6000. The time step for this simulation

is ∆t = 2 hours.

Similarly to Example 3.8.3, first we have to compute an initial condition compat-

ible with the boundary conditions in which the hydrocarbon is totally still. For that

reason, we let the system evolve until Equation (3.32) is verified. To perform this, we

apply the backward Euler scheme with a variable time step and the same parameters

than in Example 3.8.3.

Figure 3.10 shows the pressure field at time t = 1 day in two sections of the

domain. The pressure increases with the depth due to the gravity effects, and it is
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(a) (b)

Figure 3.10: Pressure field and Darcy velocity in two sections of the computational
domain: a) YZ cross section, and b) XY cross section.

lower near the source term, because of the hydrocarbon recovery. In addition, the

pressure field in the impermeable zone remains higher than in the other two regions

due to the low permeability value. In the other two regions the effect of the pumping

well is insignificant. Figure 3.10(b) shows a cross section perpendicular to the depth,

in which the pressure field presents a circular symmetry centered at the well.

Figure 3.10 also shows that the Darcy velocity vectors are pointing to the well.

Again, the different permeability regions affect to the Darcy’s velocity. In the middle

region, which has the highest permeability, KB, the fluid is moving faster than in the

upper region, where the permeability is lower, KA, while the Darcy velocity is almost

zero in the impermeable region, KC .

3.9 Concluding remarks

In this chapter, we have presented two contributions. In the first contribution, we have

developed a high-order HDG formulation combined with high-order DIRK schemes

for the one-phase flow problem through porous media. To this end, we have rewritten

the initial second-order PDE as a set of first-order PDEs, and the weak form of the

problem has been deduced. In the second contribution, we have deduced an analytical

expression for the stabilization parameter of the proposed HDG formulation. We have
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split the stabilization parameter into diffusive and convective parts. The diffusive

part is selected according to the physical values of the problem, and we have used the

Engquist-Osher monotone scheme flux for the convective part. These choices ensure

the existence and uniqueness of the obtained approximation while providing a stable

and convergent method. We have shown that the Engquist-Osher monotone scheme

flux is well-suited for the one-phase flow problem. This selection allows deducing an

analytical expression of the numerical convective flux. Moreover, we can introduce

the numerical convective term in Newton’s solver since we can analytically compute

its derivatives.

We have shown in the examples the features and advantages of the proposed HDG

formulation. Specifically, we have presented numerical evidence of the optimal conver-

gence rates of P +1 in L2-norm, for the pressure, the flux and the Darcy velocity, and

also the convergence rate of P +2 in L2-norm for the post-processed pressure. There-

fore, the analytical expression for the stabilization parameter ensures the existence

and uniqueness of the obtained approximation and the stability and the convergence

of formulation. Moreover, we have numerically shown that the mass is conserved at

the element level. We have demonstrated the capability of the proposed HDG formu-

lation by using structured and unstructured meshes, and heterogeneous materials of

the reservoir. Furthermore, we have compared the obtained approximation with an

analytical solution to illustrate the accuracy of the proposed method and to validate

our formulation. For the examples presented in this paper besides the convergence

study, the number of iterations is around four if we consider homogeneous materials

and two or three more for non-homogeneous materials.
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Chapter 4

High-order HDG formulation with

DIRK schemes for the simulation

of two-phase flow through porous

media

4.1 Introduction

In this chapter, we focus on the secondary oil recovery process, in which a wetting

fluid is injected in the reservoir to mobilize the oil to the producer well and in this

way, to maintain the production rate (Donaldson et al., 1985, 1989; Chen et al.,

2006). To simulate this problem, the immiscible and incompressible two-phase flow

through porous media model can be used (Chen et al., 2006). There are different

formulations for this model depending on the selection of the main unknowns (Chen

et al., 2006). In particular, we select the oil saturation and the water pressure as

the main scalar unknowns. This leads to a coupled system of two non-linear partial

differential equations, the first one for the saturation and the second one for the

pressure.

As in Chapter 3, to obtain highly-accurate solutions, the proposed formulation

has to fulfill several requirements. First, it has to handle with unstructured meshes to

deal with the reservoir heterogeneity. Second, the formulation should be conservative
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at least at the element level. This is an interesting feature when solving PDEs in a

conservative form. Third, the proposed formulation has to be stable for any spatial

and temporal discretization.

Note that the two-phase flow formulation has more unknowns than the one-phase

flow problem, since it involves the saturation and the pressure variables. There-

fore, the computational cost and the memory footprint of the simulation is higher.

For that reason, it is necessary to develop and analyze specific non-linear solvers to

overcome this issue. One of them is the IMPES method, which is commonly used

in the industry. This approach consists of splitting the coupled non-linear system

into pressure and saturation equations, and solving them with implicit and explicit

schemes, respectively. The explicit schemes have low computational cost. However,

these schemes are not unconditionally stable, and therefore, arbitrary large time steps

cannot be used. This stability restriction may hamper the computational cost since

small time steps may be required, which are not suitable for long time simulations.

Thus, the contribution of this chapter is:

1. To develop a memory-efficient high-order HDG formulation for in-

compressible and immiscible two-phase flow through porous media

coupled with high-order DIRK temporal schemes. To obtain highly-

accurate solutions in space and time, we couple high-order HDG formulation

with DIRK schemes. This leads to an algebraic non-linear problem, which we

solve at each stage using a fix-point iterative method that alternatively solves

for the pressure and saturation until we achieve convergence. The proposed

fix-point iterative method is memory-efficient in the sense that the saturation

and pressure are not solved at the same time. As we are using DIRK schemes,

we solve for the oil saturation and water pressure unknowns sequentially, stage-

by-stage, which further reduces the memory consumption.

The outline of the chapter is as follows. In Section 4.2, we introduce the numerical

model for the immiscible and incompressible two-phase flow through porous media

problem. In Section 4.3, we deduce the corresponding HDG formulation. In Section

4.4, we couple the high-order HDG formulation with DIRK schemes. In Section 4.5,

we detail the proposed non-linear solver. In Section 4.6, we state the local post-

processing procedure. In Section 4.7, we show several examples to illustrate the

advantages of the proposed formulation. Finally, in Section 4.8, we summarize the

main contributions of this chapter.
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4.2 Numerical model

The two-phase flow through porous media is characterised by a wetting phase, w,

and the non-wetting phase, o. In this work, we consider water for the wetting phase

and oil for the non-wetting phase. Both phases fill the voids of the soil (Chen et al.,

2006; Bear and Verruijt, 2012), and verify:

Sw + So = 1,

where Sw and So are the saturation for the water and oil, respectively. Due to the

interface tension between phases, there is a discontinuity in the pressure field, which

is the capillary pressure, pc:

pc = po − pw,

where po is the oil pressure and pw is the water pressure.

The governing equations for two-phase flow through porous media are provided

by the mass conservation for each phase:

∂(φραSα)

∂t
+∇ · (ραvα) = ραfα α = w, o,

where φ is the porosity of the porous media, and ρα, vα and fα are the density the

velocity and the source term of phase α, respectively. The velocity of each phase, vα,

is given by the Darcy’s law as:

vα = −λαK∇pα α = w, o,

where K = diag(k11, k22, k33) is the absolute permeability and λα = krα/µα is the

phase mobility, being krα and µα the relative permeability and the viscosity of phase

α, respectively.

In this work, the capillary pressure, pc, and the relative permeability of each phase,

krα, are computed from the Brooks-Corey model (Corey, 1964):

pc = pe(1− Seo)−1/θ,

krw = (1− Seo)(2+3θ)/θ,

kro = Seo
2
(

1− (1− Seo)(2+θ)/θ
)
,

(4.1)

where pe is the entry pressure, θ is the pore size distribution, and

Seo =
So − Sro

1− Srw − Sro
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is the effective oil saturation, being Sro and Srw the residual oil and water saturation,

respectively.

There are several formulations to solve the two-phase flow problem. In this work,

we use the water pressure, pw, and the oil saturation, So, as main unknowns. Accord-

ing to Chen et al. (2006); Bear and Verruijt (2012), the total phase mobility and the

total velocity are defined as:

λt = λo + λw, vt = vo + vw.

Assuming immiscible and incompressible fluids and incompressible rock, we obtain a

system of governing equations composed of the oil saturation equation:

φ
∂So
∂t
−∇ · (λoK(∇pc +∇pw)) = fo, (4.2)

and the water pressure equation:

−∇ · (K (λo∇pc + λt∇pw)) = fo + fw, (4.3)

see Klieber and Rivière (2006) for additional details.

Let Ω ⊂ Rd be a porous medium domain and T = (0, tend) a time interval.

We consider that the boundary of Ω is divided in three disjoint parts such that

Γ = Γin ∪ Γout ∪ Γnf , where Γin is the inflow boundary (water is injected), Γout is

the outflow boundary (water and oil are extracted) and Γnf is the no-flow boundary.

Considering appropriate boundary conditions and assuming immiscible and incom-

pressible fluids and incompressible rock, a system of two coupled non-linear partial

differential equations (PDEs) is obtained (Klieber and Rivière, 2006). For the oil

saturation Equation (4.2):

φ
∂So
∂t
−∇ · (λoK(∇pc +∇pw)) = fo(x, t) ∀(x, t) ∈ (Ω, T ),

SΓin
o (x, t) = ginDs(x, t) ∀(x, t) ∈ (Γin, T ),(

λoλw
λt

K∇pc
)
· n = goutNs (x, t) ∀(x, t) ∈ (Γout, T ),

vo · n = 0 ∀(x, t) ∈ (Γnf , T ),

So(·, 0) = S0
o(x) ∀x ∈ Ω,

(4.4)

where ginDs(x, t) is the prescribed value of the saturation on the inflow boundary,

goutNs (x, t) is the prescribed value on the output boundary, and S0
o(x) is the initial
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saturation value. For the water pressure Equation (4.3):

−∇ · (λtK∇pw + λoK∇pc) = fo(x, t) + fw(x, t) ∀(x, t) ∈ (Ω, T ),

pΓin
w (x, t) = ginDp(x, t) ∀(x, t) ∈ (Γin, T ),

pΓout
w (x, t) = goutDp (x, t) ∀(x, t) ∈ (Γout, T ),

vt · n = 0 ∀(x, t) ∈ (Γnf , T ),

(4.5)

where ginDp(x, t), g
out
Dp (x, t) are the prescribed values of the pressure on the inflow and

outflow boundaries, respectively.

We rewrite equations (4.4) and (4.5) as a system of first order PDEs by introducing

the diffusive fluxes (Nguyen et al., 2009a,b; Kirby et al., 2012):

qs = −λoK∇pc, qp = −λtK∇pw.

Thus, the saturation system is

φ
∂So
∂t

+∇ ·
(

qs +
λo
λt

qp

)
= fo(x, t) ∀(x, t) ∈ (Ω, T ),

qs + λoK∇pc = 0 ∀(x, t) ∈ (Ω, T ),

SΓin
o (x, t) = ginDs(x, t) ∀(x, t) ∈ (Γin, T ),(

λoλw
λt

K∇pc
)
· n = goutNs (x, t) ∀(x, t) ∈ (Γout, T ),

vo · n = 0 ∀(x, t) ∈ (Γnf , T ),

So(·, 0) = S0
o(x) ∀x ∈ Ω,

(4.6)

and the pressure system is

∇ · (qp + qs) = fo(x, t) + fw(x, t) ∀(x, t) ∈ (Ω, T ),

qp + λtK∇pw = 0 ∀(x, t) ∈ (Ω, T ),

pΓin
w (x, t) = ginDp(x, t) ∀(x, t) ∈ (Γin, T ),

pΓout
w (x, t) = goutDp (x, t) ∀(x, t) ∈ (Γout, T ),

vt · n = 0 ∀(x, t) ∈ (Γnf , T ).

(4.7)

4.3 Spatial discretization

We discretize the domain, Ω, with a tessellation, Th, composed of a set of elements,

e, of polynomial degree P . Afterwards, we introduce the discontinuous finite element
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spaces associated with the tessellation, Th:

VPh =
{
v ∈ L2

(
Ωd
)
| v|e ∈

(
SP (e)

)
∀e ∈ Th

}
,

WP
h =

{
w ∈

(
L2
(
Ωd
) )d | w|e ∈

(
SP (e)

)d ∀e ∈ Th

}
,

MP
h =

{
γ ∈ L2 (Σh) | γ|f ∈

(
SP (f)

)
∀f ∈ Σh

}
,

where SP is the space of the polynomials of degree at most P for triangles and

tetrahedra (usually denoted by PP ), or the tensor products of polynomials of degree

at most P in each coordinate direction for tensor product elements (usually denoted

by QP ), d is the space dimension and Σh is the skeleton of the mesh composed of all the

element faces, f . We define MP
h (gD) =

{
γ ∈MP

h | γ = Π(gD) on ΓD
}

, where Π(·)
is a projection operator to the space

{
γ|ΓD

∀γ ∈MP
h

}
, and gD is the prescribed values

for the saturation and pressure equations on their respective Dirichlet boundaries, ΓD.

Note that, for the saturation equation the Dirichlet boundary is defined on the inflow

boundary, and for the pressure is defined on the inflow and outflow boundaries. In

this work, we use a fixed polynomial degree for all the elements. We define the scalar

products on the finite element spaces:

(u, v)e =

∫
e

u v dΩ ∀u, v ∈ VPh ,

(q,w)e =

∫
e

q ·w dΩ ∀q,w ∈ WP
h ,

〈λ, γ〉∂e =

∫
∂e

λ γ dΓ ∀λ, γ ∈MP
h .

The HDG formulation for the oil saturation corresponding to Equation (4.6) seeks

an approximation (Soh ,qsh , Ŝoh) ∈ VPh ×WP
h ×MP

h (ginDs) such that:∑
e∈Th

(
(φ
∂Soh
∂t

, v)
e
− (qsh +

λo
λt

qph ,∇v)
e

)

+
∑
e∈Th

(
〈(q̂sh +

λ̂o

λ̂t
q̂ph) · n, v〉

∂e

− (fo, v)e

)
= 0,

(4.8a)

∑
e∈Th

(
(A−1

sh
qsh ,w)

e
− (Soh ,∇ ·w)e + 〈Ŝoh ,w · n〉∂e

)
= 0, (4.8b)

∑
e∈Th

(
〈(q̂sh +

λ̂o

λ̂t
q̂ph) · n, γ〉

∂e

)
− 〈goutNs , γ〉Γout

= 0, (4.8c)

for all (v,w, γ) ∈ VPh ×WP
h ×MP

h (0), where λ̂o and λ̂t are the oil phase mobility

and the total phase mobility computed with the trace of the oil saturation, Ŝoh ,
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respectively, and Ash = λop
′
cK, being p′c the derivative of the capillary pressure

respect to the oil saturation.

The HDG formulation for the water pressure corresponding to Equation (4.7)

seeks an approximation (pwh
,qph , p̂wh

) ∈ VPh ×WP
h ×MP

h (gDp) such that:∑
e∈Th

(
−(qph + qsh ,∇v)e + 〈(q̂ph + q̂sh) · n, v〉∂e − (fo + fw, v)e

)
= 0, (4.9a)

∑
e∈Th

(
(A−1

ph
qph ,w)

e
− (pwh

,∇ ·w)e + 〈p̂wh
,w · n〉∂e

)
= 0, (4.9b)∑

e∈Th

〈(q̂ph + q̂sh) · n, γ〉∂e = 0, (4.9c)

for all (v,w, γ) ∈ WP
h ×VPh ×MP

h (0), where gDp are the Dirichlet conditions for the

pressure, Aph = λtK, and p̂wh
is the trace of the water pressure.

Equations (4.8c) and (4.9c) are the transmissivity equations, in which we impose

the continuity of the total numerical flux in the normal direction between adjacent

elements for each equation. Therefore, these equations relate the unknowns between

adjacent elements. We define the numerical flux for the oil saturation and the water

pressure as

q̂sh = qsh + τs(Soh − Ŝoh)n, (4.10a)

q̂ph = qph + τp(pwh
− p̂wh

)n, (4.10b)

respectively, where τs is the stabilization function for the oil saturation, and τp is the

stabilization function for the water pressure. According to Nguyen et al. (2009a,b),

we set the stabilization parameters, τs and τp, of Equations(4.10a) and (4.10b) re-

spectively as

τs =
λ̂op

′
c

ls
γK, τp =

λ̂t
lp
γK, (4.11)

where γK is the maximum eigenvalue of the permeability matrix, K, ls is the charac-

teristic length for the saturation and lp is the characteristic length for the pressure.

We highlight that the Dirichlet boundary conditions are applied as follows:

Ŝoh = Π(ginDs) ∀x ∈ ∂Ts
hΓD

, p̂wh
= Π(gDp) ∀x ∈ ∂Tp

hΓD
,

where ∂Ts
hΓD

and ∂Tp
hΓD

are the set of mesh faces on the Dirichlet boundary for the

oil saturation and water pressure, respectively.
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Let {Ni}i=1,...,N be a Lagrangian basis of shape functions of SP (e), where N is

the total number of element nodes, and let {N f
i }i=1,...,Nf

be a Lagrangian basis on

the element faces SP (f), where Nf is the total number of nodes on the element faces.

Thus, Soh , qsh , Ŝoh , pwh
, qph and p̂wh

are defined as

Soh(x, t) =
∑
e∈Th

N∑
i=1

Si(t)Ni(x), qsh(x, t) =
∑
e∈Th

N∑
i=1

Nsd∑
j=1

qsi,j(t)Ni(x)ej,

Ŝoh(x, t) =
∑
f∈Σh

Nf∑
i=1

Ŝl(t)N
f
l (x), pwh

(x, t) =
∑
e∈Th

N∑
i=1

pi(t)Ni(x),

qph(x, t) =
∑
e∈Th

N∑
i=1

Nsd∑
j=1

qpi,j(t)Ni(x)ej, p̂wh
(x, t) =

∑
f∈Σh

Nf∑
i=1

p̂l(t)N
f
l (x).

(4.12)

Similarly, the temporal derivative of the oil saturation, Ṡoh = ∂Soh/∂t, is defined as

Ṡoh(x, t) =
∑
e∈Th

N∑
i=1

Ṡi(t)Ni(x), (4.13)

where Ṡi(t) = dSi(t)/dt. By inserting Equations (4.12) and (4.13) into Equations (4.8)

and (4.9), we obtain a coupled system of first order differential algebraic equations

(DAE). Specifically, the discrete problem consists of finding the coefficients Si(t),

Ṡi(t), qsi,j(t), pi(t), qpi,j(t), for i = 1 . . . N , j = 1 . . . Nsd, and Ŝl(t), p̂l(t) for l =

1 . . . Nf such that

[
RSo

]
i
≡
∑
e∈Th

((
φṠoh , Ni

)
e
−
(
qsh +

λo
λt

qph ,∇Ni

)
e

)
+
∑
e∈Th

(〈
qsh · n + τs(Soh − Ŝoh), Ni

〉
∂e

)
+
∑
e∈Th

(〈 λ̂o
λ̂t

(
qph · n + τp(pwh

− p̂wh
)
)
, Ni

〉
∂e

)
−
∑
e∈Th

(fo, Ni)e = 0,[
Rqs

]
i,j
≡
∑
e∈Th

(
(A−1

sh
qsh , Niej)e − (Soh ,∇ · (Niej))e + 〈Ŝoh , Niej · n〉∂e

)
= 0,

[
RŜo

]
l
≡
∑
e∈Th

(〈
qsh · n + τs(Soh − Ŝoh) +

λ̂o

λ̂t
(qph · n + τp(pwh

− p̂wh
)), N f

l

〉
∂e

)
− 〈goutNs , N

f
l 〉Γout

= 0,
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[
Rpw

]
i
≡
∑
e∈Th

(
−(qph + qsh ,∇Ni)e + 〈qph · n + τp(pwh

− p̂wh
), Ni〉∂e

)
+
∑
e∈Th

(
〈qsh · n + τs(Soh − Ŝoh), Ni〉∂e

)
−
∑
e∈Th

(fo + fw, Ni)e = 0,[
Rqp

]
i,j
≡
∑
e∈Th

(
(A−1

ph
qph , Niej)e − (pwh

,∇ · (Niej))e + 〈p̂wh
, Niej · n〉∂e

)
= 0,[

Rp̂w

]
l
≡
∑
e∈Th

(
〈qph · n + τp(pwh

− p̂wh
) + qsh · n + τs(Soh − Ŝoh), N f

l 〉∂e
)

= 0,

for Ni, Niej and N f
l , with i = 1 . . . N , j = 1 . . . Nsd, l = 1 . . . Nf .

4.4 Temporal discretization

We rewrite the DAE system in a compact form as:

R
(
t,So, Ṡo,qs, Ŝo,pw,qp, p̂w

)
=



RSo

(
t,So, Ṡo,qs, Ŝo,pw,qp, p̂w

)
Rqs

(
t,So, Ṡo,qs, Ŝo,pw,qp, p̂w

)
RŜo

(
t,So, Ṡo,qs, Ŝo,pw,qp, p̂w

)
Rpw

(
t,So, Ṡo,qs, Ŝo,pw,qp, p̂w

)
Rqp

(
t,So, Ṡo,qs, Ŝo,pw,qp, p̂w

)
Rp̂w

(
t,So, Ṡo,qs, Ŝo,pw,qp, p̂w

)


=0, (4.14)

where So, Ṡo,qs, Ŝo,pw,qp and p̂w are vectors composed of all the nodal values for

the oil saturation, Si(t), the derivative of the oil saturation, Ṡi(t), the numerical flux

for the oil saturation, qsi,j(t), the trace of the oil saturation, Ŝi(t), the water pressure,

pi(t), the numerical flux for the water pressure, qpi,j(t), and the traces of the water

pressure, p̂i(t).

To solve the DAE in Equation (4.14), we use a diagonally implicit Runge-Kutta

method (DIRK). From now on, we denote by (·)n the value of any variable at time

tn and by (·)n,i the value of any variable at time tn,i = tn + ci∆t, being n the time

step and i the DIRK stage. Accordingly, we compute the oil saturation at time

tn+1 = tn + ∆t as:

Sn+1
o = Sno + ∆t

s∑
i=1

biṠn,io ,
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where Ṡn,io is the approximation of Ṡo at time tn,i, and s is the total number of stages.

The oil saturation at each stage of the DIRK scheme is computed as:

Sn,io = Sno + ∆t
i∑

j=1

aijṠn,jo , (4.15)

and the Ṡn,io for i = 1, . . . , s are computed as the solution of the non-linear algebraic

equation:

R

(
tn,i,Sno + ∆t

i∑
j=1

aijṠn,jo , Ṡn,io ,q
n,i
s , Ŝ

n,i
o ,p

n,i
w ,q

n,i
p , p̂

n,i
w

)
= 0. (4.16)

The parameters aij, bi, ci, with i = 1 . . . s and j = 1 . . . i, define the DIRK method

and are given by the Butcher’s tables (Butcher, 1964a,b, 2016; Montlaur et al., 2012;

Kennedy and Carpenter, 2016; Pazner and Persson, 2017), see Equation (3.21) in

Chapter 3.

4.5 Non-linear solver

To solve Equation (4.16), we use a fix-point iteration method. The main idea is to

iteratively solve the saturation and the pressure until convergence is achieved, see

Algorithm 4.1. To this aim, let l be the l-th iteration of the non-linear solver. Thus,

we first solve Equation (4.16) for the oil saturation by imposing:

R

(
tn,i,Sno + ∆t

i−1∑
j=1

aijṠn,jo︸ ︷︷ ︸
Data

+ ∆taiiṠn,i,l+1
o , Ṡn,i,l+1

o ,qn,i,l+1
s , Ŝn,i,l+1

o︸ ︷︷ ︸
Unknowns

,

pn,i,lw ,qn,i,lp , p̂n,i,lw︸ ︷︷ ︸
Data

)
= 0,

(4.17)

from which we compute (Ṡn,i,l+1
o ,qn,i,l+1

s , Ŝn,i,l+1
o ) given (pn,i,lw ,qn,i,lp , p̂n,i,lw ), Line 6 of

Algorithm 4.1. We compute Sn,i,l+1
o using Equation (4.15), Line 7 of Algorithm 4.1.

Then, we also solve Equation (4.16) for the water pressure by imposing:

R

(
tn,i,Sno + ∆t

i−1∑
j=1

aijṠn,jo + ∆taiiṠn,i,l+1
o , Ṡn,i,l+1

o ,qn,i,l+1
s , Ŝn,i,l+1

o︸ ︷︷ ︸
Data

,

pn,i,l+1
w ,qn,i,l+1

p , p̂n,i,l+1
w︸ ︷︷ ︸

Unknowns

)
= 0,

(4.18)
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Algorithm 4.1 Fix-point iteration method for two-phase flow at each DIRK stage.
1: Input: Sno
2: Sn,0o = Sn−1

o , pn,0w = pn−1
w .

3: l = 0
4: convergence = False
5: While (not convergence):

6: Compute: Ṡn,i,l+1
o , qn,i,l+1

s and Ŝn,i,l+1
o from Sn−1

o , pn,lw , qn,i,lp and p̂n,i,lw using
Eq.(4.17).

7: Compute: Sn,i,l+1
o using Eq.(4.15).

8: Compute: pn,i,l+1
w , qn,i,l+1

p and p̂n,i,l+1
w from Sn,l+1

o , qn,i,l+1
s and Ŝn,i,l+1

o using
Eq.(4.18).

9: l = l + 1
10: check convergence using Eq.(4.19).

11: Sn,io = Sn,i,lo , qn,is = qn,i,ls , Ŝn,io = Ŝn,i,lo , pn,iw = pn,i,lw , qn,ip = qn,i,lp , p̂n,iw = p̂n,i,lw .
12: end

from which we obtain (pn,i,l+1
w ,qn,i,l+1

p , p̂n,i,l+1
w ) given (Ṡn,i,l+1

o ,qn,i,l+1
s , Ŝn,i,l+1

o ), Line 8

of Algorithm 4.1.

This procedure will be repeated until convergence is achieved at each Runge-Kutta

stage, i = 1, . . . , s, Line 10 of Algorithm 4.1. We define the stopping criteria of the

non-linear solver using appropriate tolerances as

‖Sn,i,loh
− Sn,i,l+1

oh
‖
L2(Th)

‖Sn,i,l+1
oh ‖L2(Th)

< εSo ,
‖pn,i,lwh

− pn,i,l+1
wh

‖
L2(Th)

‖pn,i,l+1
wh ‖L2(Th)

< εpw ,

‖qn,i,lsh
− qn,i,l+1

sh
‖
L2(Th)

‖qn,i,l+1
sh ‖L2(Th)

< εqs ,
‖qn,i,lph

− qn,i,l+1
ph

‖
L2(Th)

‖qn,i,l+1
ph ‖L2(Th)

< εqp ,

‖Ŝn,i,loh
− Ŝn,i,l+1

oh
‖
L2(Σh)

‖Ŝn,i,l+1
oh ‖L2(Σh)

< εŜo
,

‖p̂n,i,lwh
− p̂n,i,l+1

wh
‖
L2(Σh)

‖p̂n,i,l+1
wh ‖L2(Σh)

< εp̂w ,

‖RSo
‖2 < εRSo

, ‖Rpw‖2
< εRpw

,

‖Rqs
‖

2
< εRqs

, ‖Rqp
‖

2
< εRqp

,

‖RŜo
‖

2
< εRŜo

, ‖Rp̂w‖2
< εRp̂w

,

(4.19)

where ‖ · ‖L2(Th) is the norm of the L2(Th) space of functions, ‖ · ‖L2(Σh) is the norm

of the L2(Σh) space of functions, and ‖ · ‖2 is the Euclidean norm of vectors.

We highlight that for each iteration of the fix-point method we need to solve two

linear systems, one for the saturation, Equation (4.17) and another for the pressure,

Equation (4.18). Each system to be solved is hybridized in order to solve a linear

system for Ŝn,i,l+1
o and another for p̂n,i,l+1

w . The other unknowns are recovered using
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an element-wise process. The hybridization procedure is applied in the saturation

and pressure systems similarly as in Section 3.6 of Chapter 3.

The proposed method differs from the classical and widely used IMPES method to

solve two-phase flow problem. IMPES method solves the pressure implicitly and the

saturation explicitly, whereas our formulation solves both variables implicitly (Chen

et al., 2006). The implicit scheme allows using larger time steps. In addition it is

high-order accurate in time. Moreover, the method detailed in Algorithm 4.1 iterates

until convergence is achieved at each stage delivering more accurate approximations.

4.6 Local post-processing

One of the main advantages of using the HDG formulation is that the scalar variables

(pressure and saturation) and their fluxes, in VPh and WP
h spaces respectively, have a

rate of convergence of P + 1 in the L2-norm, when the temporal error is low enough.

Moreover, a local post-processing can be applied to obtain a new approximation for

the saturation, S∗oh , and for the pressure, p∗wh
, both in VP+1

h with convergence rate of

P + 2 in the L2-norm (Nguyen et al., 2009a,b, 2011, 2013; Kirby et al., 2012; Roca

et al., 2013; Giorgiani et al., 2013, 2014; Sevilla and Huerta, 2016; Paipuri et al.,

2018).

In our formulation, we have two local problems. The first one consists of finding

the post-processed saturation, S∗oh ∈ V
P+1
h on each element, e, such that:

(Kλop
′
c∇S∗oh ,∇v)e = − (qsh ,∇v)e

(S∗oh , 1)e = (Soh , 1)e,
(4.20)

for all v ∈ VP+1
h . The second local problem consists of finding the post-processed

pressure, p∗wh
∈ VP+1

h on each element, e, such that:

(Kλt∇p∗wh
,∇v)e = − (qph ,∇v)e

(p∗wh
, 1)e = (pwh

, 1)e,
(4.21)

for all v ∈ VP+1
h .

It is important to highlight that this procedure can be applied at selected time

steps, and it is not necessary to apply it at all the time steps (Kirby et al., 2012;

Nguyen et al., 2009a,b).
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4.7 Examples

In this section, we first validate the proposed formulation and the applied method-

ology by showing numerical evidence of the convergence rates. Second, we apply

our method to simulate two applications of waterflooding technique for oil recovery.

Specifically, in the second example, we solve the classical five spot pattern problem,

and in the third one, we consider an heterogeneous domain.

In all the examples, we use the DIRK3-s3 scheme defined in Appendix B to per-

form the time discretization. All the high-order meshes are generated using the al-

gorithms presented in Gargallo-Peiró et al. (2015, 2016); Ruiz-Gironés E.; Roca and

Sarrate (2016), which are implemented in the EZ4U environment (Roca et al., 2010).

In the last two examples, we use the Brooks-Corey model, Equation (4.1), with

pe = 103 Pa, θ = 2, Srw = 0.2 and Sro = 0.2. In those examples, we define the

following boundary conditions and source terms:

pΓin
w = 3 · 106 Pa, SΓin

o = ginDs, on Γin,

pΓout
w = 106 Pa,

(
λoλw
λt

K∇pc
)
· n = 0, on Γout,

vt · n = 0, vo · n = 0, on Γnf
,

fw = 0, fo = 0, in Ω,

(4.22)

where ginDs will be different in each example. The initial condition for the saturation is

So(·, 0) = 0.78. We set the characteristic lengths in Equation (4.11) as ls = 10−7 and

lp = 10−10. In addition, we define the tolerances of the non-linear solver, Equation

(4.19), as:

εSo = 10−8, εqs = 10−6, εŜo
= 10−8, εRSo

= 10−8, εRqs
= 10−6, εRŜo

= 10−8,

εpw = 10−8, εqp = 10−6, εp̂w = 10−8, εRpw
= 10−8, εRqp

= 10−6, εRp̂w
= 10−8.

4.7.1 Convergence rate analysis

In this example, we show numerical evidence of the convergence rates for the Soh , pwh
,

qsh , qph , and the post-processed saturation and pressure, S∗oh and p∗h, respectively,

of our formulation. This example serves as a validation of our formulation and the

proposed methodology.
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We define an analytical solution for the oil saturation, So, and the water pressure,

pw, as:

So = 0.5 + t

(
sin(πx) sin(πy)

4

)
, pw = 0.5 + t

(
cos(πx) cos(πy)

4

)
,

where (x, y) ∈ Ω = [0, 1] m×[0, 1] m and t ∈ (0, 1) s. We prescribe Dirichlet boundary

condition for the water pressure and oil saturation, and the source terms are taken to

satisfy the PDEs with the proposed analytical solutions. We set the soil permeability

as K = I m2, the porosity as φ = 0.1, the oil viscosity as µo = 1 Pa · s and the water

viscosity as µw = 0.1 Pa · s. Specifically for this example, we use the Brooks-Corey

model, Equation (4.1), with pe = 0.5 Pa, θ = 1. We select τp = 1 and τs = 10, see

Equation(4.11). Specifically for this example, we set to 10−10 all the tolerances of the

fix-point solver, see Equation (4.19).

To study the convergence rates, we discretize Ω using quadrilateral meshes com-

posed between 9 to 6400 elements of polynomial degree from 1 to 3. Moreover, we

use a DIRK3-s3 scheme with ∆t = 0.25 s for the time discretization. At t = 1 s, we

measure the error in the L2-norm of the numerical solutions against the analytical

ones.

Figure 4.1 shows the convergence rates of the saturation and pressure, their fluxes,

and the post-processed solutions. We obtain the expected convergence rate of P + 1

in L2-norm for the water pressure, the oil saturation and for the fluxes qp and qs.

The local post-process, detailed in Equations (4.20) and (4.21), is applied to obtain

a super convergence rate of P + 2 in L2-norm of the post-processed pressure, p∗h, and

the post-processed saturation, S∗oh .

This example shows two main advantages of using HDG formulation, which are

the optimal convergence rate of P + 1 in L2-norm for the solutions and their fluxes,

and the convergence rate of P + 2 in L2-norm for the post-processed solutions.

4.7.2 Five spot pattern

We consider a square domain, Ω, of 140 m × 140 m. The selected pattern has four

injection wells located at the vertices of square, and one producer well at its center,

see Figure 4.2(a). The radius of the wells is rw = 5 m. On the boundary Γ =

Γin
⋃

Γout
⋃

Γnf , we apply the boundary conditions detailed in Equation (4.22), with

ginDs = 0.3.
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Figure 4.1: Convergence rates for: a) saturation, b) pressure, c) saturation flux, d)
pressure flux; e) post-processed saturation, and f) post-processed pressure.
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(a) (b)

Figure 4.2: Mesh and boundary conditions distributions for the examples of the wa-
terflooding simulation through: a) the five spot pattern b) the heterogeneous domain.

The soil permeability is K = 10−11I m2, the porosity is φ = 0.2, and the viscosity

for the water and oil phases are µw = 0.001 Pa · s and µo = 0.01 Pa · s, respectively.

We discretize Ω with 930 triangular elements of polynomial degree three (4314

nodes), see Figure 4.2(a). The number of unknowns involved in the linear systems

that have to be solved at each iteration of Equations (4.17) and (4.18) is 33652.

Nevertheless, applying a static condensation procedure in the HDG formulation it is

reduced to 5752 unknowns for each one. The time step for the DIRK3-s3 scheme is

∆t = 900 s.

Figure 4.3 shows the water pressure and saturation approximations at time t = 51

h and t = 65 h. At the initial stage the water saturation, Sw, is equal to the

residual water saturation, Sw(·, 0) = 1 − So(·, 0), and oil occupies the rest of the

voids. Afterwards, water is injected from the corner wells (injectors), moving the oil

to the pumping well at the center, and occupies the space left by the oil. This is

observed in Figures 4.3(a) and 4.3(b), in which we show the water saturation and the

water velocity vectors at time 51 and 65 hours, respectively. The water saturation

increases from the injectors wells to the producer well, as the result of mobilising

the oil to the producer well. Moreover, the water moves away from injector wells,

while it moves towards the producer well. Figures 4.3(c) and 4.3(d), show the water

pressure field. As expected, the water pressure has higher values at the injector wells
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Figure 4.3: Water saturation approximation at time: a) 51 hours, and b) 65 hours.
Water pressure approximation at time: c) 51 hours, and d) 65 hours.

and lower values at the extractor well.

4.7.3 Waterflooding through heterogeneous material

In this example, we consider a domain composed of two different permeability regions,

Figure 4.2(b). The simulation domain, Ω, is a square of 100 m × 100 m, and its

boundary is ∂Ω = Γin
⋃

Γout
⋃

Γnf , see Figure 4.2(b). We prescribe the boundary

conditions detailed in Equation (4.22) with ginDs = 0.22.

The soil permeability is KA = 10−13I m2 and KB = 10−12I m2, the porosity is

φ = 0.2 and the viscosity for the water and oil phases are µw = 0.001 Pa · s and
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Figure 4.4: Water saturation approximation at time: a) 30 days, and b) 100 days.
Water pressure approximation at time: c) 30 days, and d) 100 days.

µo = 0.012 Pa · s, respectively.

We discretize the domain using 256 quadrilateral elements of polynomial degree

four (4225 nodes), see Figure 4.2(b). The number of unknowns involved in the linear

systems that have to be solved at each iteration of Equations (4.17) and (4.18) is

21920. Nevertheless, applying a static condensation procedure in the HDG formula-

tion it is reduced to 2720 unknowns for each one. The time step for the DIRK3-s3

scheme is ∆t = 6 h.

Figure 4.4 shows the computed water saturation and water pressure at time t = 30

days and t = 100 days. In Figures 4.4(a) and 4.4(b), we show the water saturation
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and the water velocity vectors. At the beginning, the oil saturates homogeneously the

porous media. Then, water is injected along the inflow boundary and moves the oil

towards the outflow boundary. At both time steps the water is moving faster within

the bottom region, where the permeability is higher, than in the upper region. Figures

4.4(c) and 4.4(d), show the water pressure field at the same time steps. Highest

water pressure values are on the inflow boundary and the lowest on the outflow

boundary. Moreover, when the injected water reaches to the outflow boundary, the

water pressure in the entrance is equalized in both regions, and the water starts to

saturate the upper region, as can be observed in Figures 4.4(b) and 4.4(d).

4.8 Concluding remarks

In this chapter, we have developed a memory-efficient high-order HDG formulation

to solve the incompressible and immiscible two-phase flow in porous media problem.

To this end, we have rewritten the initial second-order PDEs as a set of first-order

PDEs, and we have deduced the weak form of the problem. We have computed the

stabilization parameters in terms of the oil and total phase mobilities and the max-

imum eigenvalue of the permeability matrix. We have provided a framework to use

high-order time discretization with a fix-point iteration method. In this framework,

we compute both the pressure and saturation implicitly. The proposed non-linear

solver reduces the memory footprint since it decouples the saturation and the pres-

sure equations. Since we are using high-order DIRK schemes, we alternatively solve

for the saturation and pressure unknowns stage-by-stage, which further reduces the

memory consumption. The proposed non-linear solver has the same memory foot-

print as the IMPES method. However, the proposed solver solves implicitly both

equations, while the IMPES solves the saturation explicitly. Moreover, our approach

is more accurate than the classical IMPES since it is in a fix-point framework, in

which we alternatively solve for both equations until we achieve convergence, while

the classical IMPES does not have any iterative process.

We present several different examples to illustrate the capabilities of the proposed

formulation and methodology. We have shown that the proposed formulation is high-

accurate by validating the convergence rates for the scalar variables, their fluxes and

their corresponding post-processed variables. Moreover, our formulation has been ap-

plied to solve the waterflooding technique for oil recovery simulation in two different
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cases. Specifically, these two examples deals with several wells, heterogeneous mate-

rial properties and unstructured meshes. We have seen that the number of iterations

of the fix-point procedure depends on the complexity of the domain, the size of the

element, and the time step. For the examples presented in this paper besides the

convergence study, the number of iterations of the fix-point solver is around thirty.
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Chapter 5

High-order HDG formulation with

fully implicit temporal schemes for

the simulation of two-phase flow

through porous media

5.1 Introduction

In Chapter 4, we have coupled a high-order HDG formulation with high-order DIRK

schemes. If high temporal accuracy is required, we can reduce the time step or increase

the integration order. One the one hand, small time steps increase the computational

cost because a non-linear problem has to be solve at each time step. On the other

hand, it is known that stable high-order DIRK schemes need a high number of stages,

especially above fourth-order. Thus, the computational cost of the simulation can be

severely hampered because a non-linear problem has to be solved at each stage of

each time step.

For that reason, in this chapter, we extend the proposed formulation for the im-

miscible and incompressible two-phase flow problem to perform the time integration

with fully implicit RK schemes. These schemes are unconditionally stable and achieve

high-order accuracy with few stages (Pazner and Persson, 2017). However, coupling

high-order spatial discretization with fully-implicit high-order temporal schemes leads

61



5. High-order HDG formulation with fully implicit temporal
schemes for the simulation of two-phase flow through porous media

to a denser and larger Jacobian matrix, which severely increases the memory require-

ments of the formulation (Pazner and Persson, 2017).

For non-smooth solutions, spurious oscillations may appear near the shocks or

discontinuities (Persson and Peraire, 2006; Huerta et al., 2012; Casoni et al., 2013).

These spurious oscillations compromise the accuracy of the numerical solution. More-

over, if high-order temporal schemes are used, these oscillations are not dissipated

because of the low dissipation error of these schemes. In addition, the spurious oscilla-

tions may lead to non-physical values, like negative saturation, in which the physical

model cannot be evaluated and the simulation has to be stopped.

To overcome these issues, the contributions of this chapter are the following:

1. To propose a memory-efficient high-order HDG formulation for in-

compressible and immiscible two-phase flow through porous media

coupled with high-order fully Runge-Kutta schemes. To exploit the

advantages of the high-order HDG formulation, we propose to perform a high-

order fully implicit RK method to control the temporal error. Specifically, we

use the Radau IIA and Gauss-Legendre schemes, which are unconditionally

stable, achieve high-order temporal accuracy with few stages, and do not suffer

order-reduction for two-phase flow through porous media problems. To reduce

the memory consumption of coupling high-order spatial and temporal discretiza-

tions, we rewrite the non-linear system. We propose the temporal integration

scheme in terms of the oil saturation instead of its temporal derivative. In this

way, we obtain a better sparsity pattern in the Jacobian matrix and less coupling

between the stages (Pazner and Persson, 2017). To further reduce the memory

consumption, we adapt the fix-point iterative method proposed in Chapter 4 to

deal with fully implicit RK schemes. This non-linear solver decouples the sat-

uration and pressure systems. Therefore, we do not need to solve a non-linear

system composed of both unknowns. We first solve for the saturation at all the

stages in a single non-linear system using the Newton-Raphson method. After-

wards, we solve the pressure unknowns sequentially at each Runge-Kutta stage,

since the pressure system does not couple the unknowns at different stages.

2. To develop a robust and efficient shock capturing methodology. To

reduce the spurious oscillations at the vicinity of the sharp fronts, we introduce

local artificial viscosity in the saturation equation (Persson and Peraire, 2006;

Huerta et al., 2012; Casoni et al., 2013). The oscillations are detected using
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the shock sensor introduced in Persson and Peraire (2006), but computed from

the saturation solution and the post-processed saturation of HDG. Therefore,

the proposed shock sensor is computationally efficient since the post-processed

saturation is computed in an element-wise manner. Note that, in Persson and

Peraire (2006) the sensor is computed by a comparison of two solutions of the

problem computed with a different polynomial degree, P and P − 1. Using the

proposed shock sensor we do not need to solve again the problem with a differ-

ent polynomial degree since we are using the HDG post-processed saturation.

Furthermore, we compute the saturation and the post-processed saturation at

the RK stages, and therefore, we obtain the shock sensor at the RK stages.

Thus, this methodology allows us introducing a different amount of artificial

viscosity at each RK stage and better tracking the sharp fronts as they evolve.

This chapter extends the proposed formulation in Chapter 4. Therefore, the

numerical model and the corresponding HDG spatial discretization are detailed in

Sections 4.2 and 4.3, respectively. The outline of this chapter is as follows. In

Section 5.2, we couple the high-order HDG formulation with high-order fully implicit

temporal discretization schemes. In Section 5.3, we detail the proposed non-linear

solver. In Section 5.4, we state the local post-processing procedure. In Section 5.5,

we specify the proposed shock capturing method. In Section 5.6, we present several

examples to asses the capabilities of the proposed formulation. Finally, in Section

5.7, we summarize the main contributions of this chapter.

5.2 Time discretization

In Chapter 4, we have proposed to couple the high-order HDG with DIRK schemes

for the two-phase flow through porous media problem. To this end, we have intro-

duced the governing equations and the corresponding weak forms for this problem, see

Sections 4.2 and 4.3, respectively. Moreover, in Chapter 4, we have obtained the cor-

responding first-order DAE by introducing the approximations for the oil saturation

and water pressure unknowns into the corresponding weak forms, see Equations (4.8)

and (4.9). Afterwards, in Section 4.4, we have detailed the temporal discretization

using DIRK schemes.

In this section, we couple the proposed high-order HDG formulation in Chapter 4

with fully implicit RK schemes. To this end, we rewrite the obtained first-order DAE
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in a compact form as in Chapter 4:

R
(
t,So, Ṡo,qs, Ŝo,pw,qp, p̂w

)
=



RSo

(
t,So, Ṡo,qs, Ŝo,pw,qp, p̂w

)
Rqs

(
t,So, Ṡo,qs, Ŝo,pw,qp, p̂w

)
RŜo

(
t,So, Ṡo,qs, Ŝo,pw,qp, p̂w

)
Rpw

(
t,So, Ṡo,qs, Ŝo,pw,qp, p̂w

)
Rqp

(
t,So, Ṡo,qs, Ŝo,pw,qp, p̂w

)
Rp̂w

(
t,So, Ṡo,qs, Ŝo,pw,qp, p̂w

)


= 0, (5.1)

where So, Ṡo,qs, Ŝo,pw,qp, and p̂w are the time dependent nodal values of the un-

knowns.

To solve the DAE in Equation (5.1), we use a fully implicit RK method. As in

Chapter 4, we denote by (·)n the value of any variable at time tn and by (·)n,i the

value of any variable at time tn,i = tn + ci∆t, being n the time step and i the RK

stage. Accordingly, we compute the oil saturation at time tn+1 = tn + ∆t as

Sn+1
o = Sno + ∆t

s∑
i=1

biṠn,io , (5.2)

where Ṡn,io is the approximation of Ṡo at time tn,i, and s is the total number of stages.

We compute Ṡn,io as the solution of the non-linear algebraic equations:

R
(
tn,i,Sn,io , Ṡ

n,i
o ,q

n,i
s , Ŝ

n,i
o ,p

n,i
w ,q

n,i
p , p̂

n,i
w

)
= 0, (5.3)

for i = 1, . . . , s, where the oil saturation at each stage of the RK scheme, Sn,io , is

approximated using Ṡn,jo as

Sn,io = Sno + ∆t
s∑
j=1

aijṠn,jo . (5.4)

The parameters aij, bi, ci define the RK method, and are given by the Butcher’s

tables (Butcher, 1964a,b, 2016; Montlaur et al., 2012; Kennedy and Carpenter, 2016;

Pazner and Persson, 2017):

c A

b
≡

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s

...
...

. . .
...

cs as1 . . . ass

b1 b2 . . . bs

.
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Instead of solving Equation (5.3) for Ṡn,io , we propose to solve for Sn,io . In this way,

we obtain a better sparsity pattern in the Jacobian matrix and less coupling between

stages (Pazner and Persson, 2017). To this end, we first rewrite Equation (5.4) as

Ṡn,io =
1

∆t

s∑
j=1

ãij
(
Sn,jo − Sno

)
, (5.5)

where ãij = (A−1)ij. Afterwards, we rewrite Equation (5.5) as

Ṡn,io =
1

∆t

s∑
j=1

ãijSn,jo −
c̃i

∆t
Sno , (5.6)

where c̃i =
∑s

j=1 ã
ij. Thus, inserting Equation (5.6) into Equation (5.3) we obtain

the following non-linear algebraic equation:

R

(
tn,i,Sn,io ,

1

∆t

s∑
j=1

ãijSn,jo −
c̃i

∆t
Sno ,q

n,i
s , Ŝ

n,i
o ,p

n,i
w ,q

n,i
p , p̂

n,i
w

)
= 0, (5.7)

for i = 1, . . . , s. Once the oil saturation is computed at all stages, we compute the

oil saturation at next time step by inserting Equation (5.5) into Equation (5.2):

Sn+1
o = d̃Sno +

s∑
j=1

b̃jSn,jo ,

where d̃ = 1−∑s
j=1 b̃

j and b̃ = bA−1.

5.3 Non-linear solver

To solve Equation (5.7) we use a fix-point iterative method. The main idea is to iter-

atively solve the saturation and the pressure unknowns until convergence is achieved,

see Algorithm 5.1. Let l be the l-th iteration of the fix-point iterative method. Thus,

we first solve Equation (5.7) for the oil saturation unknowns (Sn,i,l+1
o ,qn,i,l+1

s , Ŝn,i,l+1
o )

given the pressure unknowns (pn,i,lw ,qn,i,lp , p̂n,i,lw ), Line 6 of Algorithm 5.1. That is,

R

(
tn,i︸︷︷︸
Data

,Sn,i,l+1
o ,

1

∆t

s∑
j=1

ãijSn,j,l+1
o︸ ︷︷ ︸

Unknowns

− c̃i

∆t
Sno︸ ︷︷ ︸

Data

,qn,i,l+1
s , Ŝn,i,l+1

o︸ ︷︷ ︸
Unknowns

,pn,i,lw ,qn,i,lp , p̂n,i,lw︸ ︷︷ ︸
Data

)
= 0, (5.8)

for i = 1, . . . , s.
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Once the saturation unknowns at all stages are computed, we solve Equation (5.7)

for the water pressure unknowns (pn,i,l+1
w ,qn,i,l+1

p , p̂n,i,l+1
w ), Line 7 of Algorithm 5.1,

by imposing:

R

(
tn,i,Sn,i,l+1

o ,
1

∆t

s∑
j=1

ãijSn,j,l+1
o − c̃i

∆t
Sno ,q

n,i,l+1
s , Ŝn,i,l+1

o︸ ︷︷ ︸
Data

,pn,i,l+1
w ,qn,i,l+1

p , p̂n,i,l+1
w︸ ︷︷ ︸

Unknowns

)
=0,

(5.9)

for i = 1, . . . , s.

We repeat this procedure until convergence is achieved for all Runge-Kutta stages,

i = 1, . . . , s, Line 9 of Algorithm 5.1. We define the stopping criteria of the non-linear

solver using appropriate tolerances as

‖Sn,i,loh
− Sn,i,l+1

oh
‖
L2(Th)

‖Sn,i,l+1
oh ‖L2(Th)

< εSo ,
‖pn,i,lwh

− pn,i,l+1
wh

‖
L2(Th)

‖pn,i,l+1
wh ‖L2(Th)

< εpw ,

‖qn,i,lsh
− qn,i,l+1

sh
‖
L2(Th)

‖qn,i,l+1
sh ‖L2(Th)

< εqs ,
‖qn,i,lph

− qn,i,l+1
ph

‖
L2(Th)

‖qn,i,l+1
ph ‖L2(Th)

< εqp ,

‖Ŝn,i,loh
− Ŝn,i,l+1

oh
‖
L2(Σh)

‖Ŝn,i,l+1
oh ‖L2(Σh)

< εŜo
,

‖p̂n,i,lwh
− p̂n,i,l+1

wh
‖
L2(Σh)

‖p̂n,i,l+1
wh ‖L2(Σh)

< εp̂w ,

‖RSo
‖2 < εRSo

, ‖Rpw‖2
< εRpw

,

‖Rqs
‖

2
< εRqs

, ‖Rqp
‖

2
< εRqp

,

‖RŜo
‖

2
< εRŜo

, ‖Rp̂w‖2
< εRp̂w

,

(5.10)

where ‖ · ‖L2(Th) is the norm of the L2(Th) space of functions, ‖ · ‖L2(Σh) is the norm

of the L2(Σh) space of functions, and ‖ · ‖2 is the Euclidean norm of vectors.

We highlight that for each iteration of the fix-point method, we solve a non-linear

system for the saturation, Equation (5.8), since the λo, λt and p′c depend on Sn,i,l+1
o .

We solve the saturation system using the Newton-Raphson method. Since all the

stages are coupled, this non-linear system has s× (nSo + nqs + nŜo
) unknowns, being

s the number of RK stages, and nS, nqs and nŜo
the number of unknowns for the oil

saturation, the saturation flux and the oil saturation traces, respectively.

Once we obtain an approximation for the oil saturation unknowns at all the stages,

we compute the water pressure unknowns by solving s uncoupled linear systems of

size npw + nqp + np̂w , where npw , nqp and np̂w are the number of unknowns for the

water pressure, the pressure flux and the water pressure traces, respectively.
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Algorithm 5.1 Fix-point iteration method for two-phase flow.
1: Input: Sno
2: Sn,0o = Sn−1

o , pn,0w = pn−1
w .

3: l = 0
4: convergence = False
5: While (not convergence):
6: Compute: Sn,i,l+1

o , qn,i,l+1
s and Ŝn,i,l+1

o from Sno , pn,lw , qn,i,lp and p̂n,i,lw using
Eq.(5.8).

7: Compute: pn,i,l+1
w , qn,i,l+1

p and p̂n,i,l+1
w from Sn,l+1

o , qn,i,l+1
s and Ŝn,i,l+1

o using
Eq.(5.9).

8: l = l + 1
9: check convergence using Eq.(5.10).

10: Sn,io = Sn,i,lo , qn,is = qn,i,ls , Ŝn,io = Ŝn,i,lo , pn,iw = pn,i,lw , qn,ip = qn,i,lp , p̂n,iw = p̂n,i,lw .
11: end

Furthermore, the global linear system for the saturation unknowns and the linear

systems for the pressure unknowns are hybridized in terms of Ŝn,i,l+1
o and p̂n,i,l+1

w

respectively (Nguyen et al., 2009a,b; Kirby et al., 2012; Sevilla and Huerta, 2016). The

other unknowns Sn,i,l+1
o , qn,i,l+1

s pn,i,l+1
w and qn,i,l+1

p are recovered using an element-

wise process. The hybridization procedure is applied in the saturation and pressure

systems similarly as in Section 3.6 of Chapter 3.

This non-linear solver is memory-efficient since the saturation and the pressure

equations are decoupled. Therefore, there is no need to solve for both unknowns at

the same time. Furthermore, the pressure equation is solved sequentially stage by

stage, because the pressure is not coupled at different stages.

5.3.1 Saturation solver

We use the Newton-Raphson method to solve the saturation system, Equation (5.8).

From now on, to ease the notation, we drop the super-index l corresponding to the

fix-point iteration. We concatenate all the oil saturation unknowns of all stages in a

vector of unknowns un as

un =


un,1

...

un,s

 , where un,i =

Sn,io

qn,is

Ŝn,io

 , for i = 1 . . . s.
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Thus, the non-linear residual of the saturation is

F (un) =



RS

(
tn,1,Sn,1o , Ṡn,1o ,qn,1s , Ŝn,1o ,pn,1w ,qn,1p , p̂n,1w

)
Rqs

(
tn,1,Sn,1o , Ṡn,1o ,qn,1s , Ŝn,1o ,pn,1w ,qn,1p , p̂n,1w

)
RŜ

(
tn,1,Sn,1o , Ṡn,1o ,qn,1s , Ŝn,1o ,pn,1w ,qn,1p , p̂n,1w

)
...

RS

(
tn,s,Sn,so , Ṡn,so ,qn,ss , Ŝn,so ,pn,sw ,qn,sp , p̂n,sw

)
Rqs

(
tn,s,Sn,so , Ṡn,so ,qn,ss , Ŝn,so ,pn,sw ,qn,sp , p̂n,sw

)
RŜ

(
tn,s,Sn,so , Ṡn,so ,qn,ss , Ŝn,so ,pn,sw ,qn,sp , p̂n,sw

)


.

The Newton-Raphson method involves successive approximations of the solution un.

The k + 1 approximation is obtained as

un,k+1 = un,k + δun,k,

where the supra-index k denotes the Newton-Raphson iteration and δun,k is the so-

lution of the linear system

J
(
un,k

)
δun,k = −F

(
un,k

)
,

being J
(
un,k

)
the Jacobian matrix of F evaluated at un,k. The Jacobian matrix is a

block sparse matrix, in which each block corresponds to a RK stage. We decompose

J as the summation of two matrices:

J =


M11 M12 . . . M1s

M21 M22 . . . M2s

...
...

. . .
...

Ms1 Ms2 . . . Mss

+


J11 0 . . . 0

0 J22 . . . 0
...

...
. . .

...

0 0 . . . Jss

 . (5.11)

The first matrix in Equation (5.11) comes from the term containing the time derivative

of the oil saturation. Since it couples all the unknowns Sn,io for all the stages, it has

contribution in all the blocks. Each block Mij for i, j = 1 . . . s is also a block matrix

defined as

Mij =

M
ãij

∆t
0 0

0 0 0

0 0 0

 ,
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where [M]k,l = (φNk, Nl). The matrices M are constant in all the stages, since the

porosity, φ, does not depend on time. Therefore, the matrices M are computed only

once and are reused in all the stages.

The second matrix of Equation (5.11) is a block-diagonal matrix. This matrix

does not couple the unknowns of different stages. The block diagonal matrices are

not constant in the stages since they depend on the saturation. Nevertheless, there

are some elemental contributions that are constant and can be reused in the different

stages. The matrices Jii for i = 1 . . . s are equivalent to the matrices obtained when

solving a two-phase flow stationary problem.

Note that it is not necessary to converge the Newton-Raphson method for the satu-

ration unknowns because the pressure unknowns are not converged yet. Therefore, to

reduce the computational cost, we perform only one iteration of the Newton-Raphson

method.

5.3.2 Pressure solver

The pressure unknowns of the different stages are not coupled because the pressure

equation does not contain a temporal part, see Equation (5.9). Thus, we solve s

uncoupled linear systems and we reduce the memory footprint and the computational

cost of solving the pressure equation. Moreover, since we are using the fix-point

iterative method described in Algorithm 5.1, the pressure equation is linear because

the unknowns related to the saturation are considered as parameters in the pressure

equation.

5.4 Local post-processing

One of the main advantages of using the HDG formulation is that the scalar variables

(water pressure and oil saturation), and their fluxes have a rate of convergence of

P + 1 in the L2-norm. Moreover, a local post-processing can be applied to obtain a

new approximation for the saturation, S∗oh , and for the pressure, p∗wh
, both in VP+1

h

with convergence rate of P + 2 in the L2-norm (Nguyen et al., 2009a,b, 2011, 2013;

Kirby et al., 2012; Roca et al., 2013; Giorgiani et al., 2013, 2014; Sevilla and Huerta,

2016; Paipuri et al., 2018).

We apply the local post-processing at the stages of the RK scheme. The local

problems of the elements at each stage are independent and can be solved separately.
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In our formulation, we have two local problems, one for the oil saturation, S∗oh , and

other for the water pressure, p∗wh
.

The first local problem consist of finding the post-processed saturation, S∗oh ∈
VP+1
h on each element, e, and at all the stages of the RK scheme, such that:

(Kλop
′
c∇S∗oh ,∇v)e = − (qsh ,∇v)e

(S∗oh , 1)e = (Soh , 1)e,
(5.12)

for all v ∈ VP+1
h . Equation (5.12) is non-linear since λo and p′c depend on S∗oh . To

solve Equation (5.12), we apply the Newton-Raphson method. Once we find the

post-processed saturation, S∗oh , we solve the second local problem to find the post-

processed water pressure, p∗wh
∈ VP+1

h on each element, e, and at all the stages of the

RK scheme. Specifically, we solve

(Kλt∇p∗wh
,∇v)e = − (qph ,∇v)e

(p∗wh
, 1)e = (pwh

, 1)e,
(5.13)

for all v ∈ VP+1
h . Note that this is a linear problem in each element and at each stage

because the saturation at all stages is known.

5.5 Shock capturing

High-order methods, such HDG method, are high-accurate if the solution is smooth

enough. Nevertheless, if there is a sharp front (or discontinuity) in the solution,

oscillations may appear at the vicinity of the front (VonNeumann and Richtmyer,

1950; Persson and Peraire, 2006; Huerta et al., 2012; Casoni et al., 2013). These

oscillations may introduce spurious artifacts that hamper the accuracy of the obtained

solution and the robustness of the solver.

To reduce these spurious oscillations we introduce artificial viscosity (VonNeu-

mann and Richtmyer, 1950; Persson and Peraire, 2006; Huerta et al., 2012; Casoni

et al., 2013). We identify the elements containing the sharp front using the shock sen-

sor introduced in Persson and Peraire (2006). The main difference with Persson and

Peraire (2006) is that we compute the shock sensor from the saturation solution and

the post-processed saturation of HDG, S∗oh , obtained in Equation (5.12). Therefore,

the shock sensor is computed in an efficient manner as

Se =
(Soh − S∗oh , Soh − S∗oh)e

(S∗oh , S
∗
oh

)e
. (5.14)
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The main advantage of using the post-processed saturation S∗oh to compute the shock

sensor is the reduction of the computational cost, since S∗oh is obtained with an

element-wise post-processing. Thus, we do not need to solve again the problem with

a different polynomial degree. We compute the saturation and the post-processed

saturation at the RK stages, and therefore, we obtain the shock sensor at the RK

stages. Since the shock sensor is different at each RK stage, it allows tracking the

sharp fronts at the different RK stages.

According to Persson and Peraire (2006), we define the artificial viscosity factor,

ε, which is related to the resolution of the spatial discretization, as

ε =


0 if se < s0 − κ,
ε0
2

(
1 + sin

(
π(se − s0

2κ

))
if s0 − κ ≤ se ≤ so + κ,

ε0 if se > s0 + κ,

(5.15)

where se = log10 Se, ε0 '
he
P

, and so and κ are chosen empirically. Note that, as

the polynomial degree increases, the artificial viscosity factor, ε, decreases, and as

the element size increases the artificial viscosity factor, ε, increases. Note that, the

artificial viscosity is also different at each RK stage, because the sharp fronts position

evolves in time.

We add an artificial viscosity term to reduce the oscillations of those elements

detected by the sensor. In this work, we only introduce the artificial viscosity term

in the saturation equation because the pressure solution is smooth. Thus, we rewrite

Equation 4.2 as

φ
∂So
∂t

+∇·
(
−λoKp′c∇So − ελoKp′c∇So −

λo
λt
λtK∇pw

)
= fo(x, t) ∀(x, t) ∈ (Ω, T ).

In terms of fist-order PDEs the system to be solved for the oil saturation is

φ
∂So
∂t

+∇ ·
(

qs,ε +
λo
λt

qp

)
= fo(x, t) ∀(x, t) ∈ (Ω, T ),

qs,ε + λoKεp
′
c∇So = 0 ∀(x, t) ∈ (Ω, T ),

So
Γin(x, t) = ginDs(x, t) ∀(x, t) ∈ (Γin, T ),(

λoλw
λt

K∇pc
)
· n = goutNs (x, t) ∀(x, t) ∈ (Γout, T ),

vo · n = 0 ∀(x, t) ∈ (Γnf , T ),

So(·, 0) = S0
o(x) ∀x ∈ Ω,

(5.16)
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and for the water pressure is



∇ ·
(

qp +
qs,ε

1 + ε

)
= fo(x, t) + fw(x, t) ∀(x, t) ∈ (Ω, T ),

qp + λtK∇pw = 0 ∀(x, t) ∈ (Ω, T ),

pw
Γin(x, t) = ginDp(x, t) ∀(x, t) ∈ (Γin, T ),

pw
Γout(x, t) = goutDp (x, t) ∀(x, t) ∈ (Γout, T ),

vt · n = 0 ∀(x, t) ∈ (Γnf , T s).

(5.17)

For both systems, ε is the artificial viscosity factor, qs,ε = (1+ε)qs is the new diffusive

flux for the saturation equation, and Kε = (1 + ε)K is the new permeability of the

porous media for the saturation equation. Therefore, for ε = 0, we get qs,ε = qs and

Kε = K, and we recover the original problem. Note that the water pressure system

uses qs,ε, but we recover the same formulation as in Equation (4.7) of Chapter 4 since

the pressure solution is smooth and does not require adding local artificial viscosity.

Adding artificial viscosity can be interpreted as increasing the permeability of the

porous media in the detected elements. Therefore, we have to balance the amount of

artificial viscosity to reduce the spurious oscillations without changing the underlying

physics.

To introduce artificial viscosity, we need to compute the shock sensor that depends

on the saturation and the post-processed saturation, see Equation (5.14). Therefore,

we need to ensure that the temporal error is low enough to compute the post-processed

saturation with enough accuracy. For this reason, we propose to use temporal inte-

gration schemes with, at least, the same convergence rate as the expected convergence

rate of the post-processed saturation.

To compute the solution for a give time step, we perform a two-step method. First,

we compute the solution without adding artificial viscosity. Second, we compute the

amount of required artificial viscosity at each stage, and we compute the solution

again. We highlight that the artificial viscosity is different at each RK stage since it

depends on the shock sensor. Thus, the proposed methodology allows tracking the

sharp front as it moves at different stages and introducing appropriate amount of

artificial viscosity at each stage.
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5.6 Examples

In this section, we present seven examples to assess the capabilities of the proposed

formulation. Example 5.6.1 shows the convergence rates for the obtained solutions of

the proposed formulation. Example 5.6.2 analyses the effect of introducing artificial

viscosity. Examples 5.6.3 to 5.6.5 focus on the accuracy of high-order spatial and

temporal discretization methods of the proposed formulation. Finally, Examples

5.6.6 and 5.6.7 present two cases of waterflooding simulation. The first one considers

heterogeneous material properties and the second one analyses the nine-spot pattern.

For the Examples 5.6.2 to 5.6.7,we set the characteristic lengths in Equation (4.11)

as ls = 10−7 and lp = 10−10. In addition, we set the following tolerances for the fix-

point solver, see Equation (5.10):

εSo = 10−8, εqs = 10−6, εŜo
= 10−8, εRSo

= 10−8, εRqs
= 10−6, εRŜo

= 10−8,

εpw = 10−8, εqp = 10−6, εp̂w = 10−8, εRpw
= 10−8, εRqp

= 10−6, εRp̂w
= 10−8.

We also define εS∗
oh

= 10−12 and εRS∗
oh

= 10−6, as the relative and absolute toler-

ances of the Netwon-Raphson method to compute the local post-processing for the

saturation, see Equation (5.12).

For all the examples, the Butcher tables of the used time integration schemes are

detailed in Appendix B, and all the used high-order meshes are generated using the

algorithms presented in Gargallo-Peiró et al. (2015, 2016); Ruiz-Gironés E.; Roca and

Sarrate (2016), which are implemented in the EZ4U environment (Roca et al., 2010).

5.6.1 Convergence rate analysis

In this example, we analyze the convergence error in space and time of the numerical

approximation obtained with the proposed method using an analytical solution. To

this end, we define the space-time L2−norm of a function as

‖u (x, t) ‖2
L2(Ω,T ) =

∫ tend

0

∫
Ω

‖u (x, t) ‖2dΩ dt.

73



5. High-order HDG formulation with fully implicit temporal
schemes for the simulation of two-phase flow through porous media

We approximate the space-time integration as∫ tend

0

∫
Ω

‖u (x, t) ‖2dΩ dt =

∫ tend

0

∑
e∈Th

∫
e

‖u (x, t) ‖2dΩ dt

=

∫ tend

0

∑
e∈Th

∫
eM
‖u (ξg, t) ‖2|Jg|dξ dt

'
∫ tend

0

∑
e∈Th

Ng∑
g=1

‖u (ξg, t) ‖2|Jg|ωgdξ︸ ︷︷ ︸
f(t)

dt

=

∫ tend

0

f (t) dt,

(5.18)

where Ng is the number of integration points. To perfom the time integral we use the

time integration schemes of the Runge-Kutta methods. That is, bi are the temporal

integration weights, and ci are the temporal integration points for a time interval

(0, 1). Thus,∫ tend

0

f (t) dt =
Ns∑
n

∫ tn+1

tn
f (t) dt ' ∆t

Ns∑
n=1

s∑
i=1

f
(
tn + ci∆t

)
bi, (5.19)

where Ns is the number of time steps. Afterwards, substituting Equation (5.19) into

Equation (5.18) we obtain that the approximation of the space-time L2−norm of a

function is:

‖u‖2
L2(Ω,T ) '

∫ tend

0

∑
e∈Th

Ng∑
g=1

‖u (ξg, t) ‖2|Jg|ωgdξ dt

'
Ns∑
n=1

s∑
i=1

∑
e∈Th

Ng∑
g=1

‖u
(
ξg, t

n,i
)
‖2|Jg|ωgbi∆t,

where tn,i = tn + ci∆t.

We show numerical evidence of the convergence rates of the space-time error in

L2−norm for different polynomial degrees and time integration schemes for the oil

saturation, Soh , the saturation flux, qsh , the post-processed saturation, S∗oh , the water

pressure, pwh
, the pressure flux, qph , and the post-processed pressure, p∗wh

. We define

the error of each variable as

ESo = ‖Soh − So‖L2(Ω,T ), EqS
= ‖qSh

− qS‖L2(Ω,T ), ES∗
o

= ‖S∗oh − S
∗
o‖L2(Ω,T ),

Epw = ‖pwh
− pw‖L2(Ω,T ), Eqp = ‖qph − qp‖L2(Ω,T ), Ep∗w = ‖p∗wh

− p∗w‖L2(Ω,T ).
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To this end, we define the analytical saturation and pressure solutions

So = sin(πx) sin(πy) sin(t), pw = cos(πx) cos(πy) cos(t), (5.20)

where (x, y) ∈ Ω = (0, 2)× (0, 2) and t ∈ (0, 1).

We set the soil permeability as K = I m2, the porosity as φ = 0.1, the oil viscosity

as µo = 1 Pa·s and the water viscosity as µw = 0.1 Pa·s. Specifically for this example,

we use the Brooks-Corey model, Equation (4.1), with pe = 0.5 Pa and θ = 1. We

select τp = 10 and τs = 10, see Equation (4.11). We prescribe Dirichlet boundary

conditions on the whole boundary and we set the source terms in order to obtain

the analytical solutions defined in Equation (5.20). We do not introduce artificial

viscosity since the analytical solution is smooth.

We generate a series of meshes composed of quadrilateral elements of polynomial

degrees between one and five. All these meshes are combined with high-order GL

schemes that converge with the same rate or higher than the post-processed variables.

For each polynomial degree, we keep constant the ratio he/∆t.

We set to 10−10 all the tolerances of the fix-point solver, see Equation (5.10).

We also set the εS∗
oh

= 10−12 and εRS∗
oh

= 10−10 tolerances for the Netwon-Raphson

method to compute the local post-processing for the saturation, see Equation (5.12).

Figure 5.1 shows the convergence rates of the space-time error for the oil satura-

tion and the pressure, their fluxes, and the post-processed solutions. We obtain the

expected convergence rate of P + 1 in L2-norm for the oil saturation, water pressure

and for the fluxes qs and qp. The local post-process, detailed in Equations (5.12)

and (5.13), is applied to obtain a super convergence rate of P + 2 in L2-norm of the

post-processed saturation, S∗oh , and the post-processed pressure, p∗wh
.

5.6.2 Artificial viscosity analysis

In this example, we analyze the behavior of the artificial viscosity term. We consider

a rectangular domain, Ω = (0, 84) × (0, 2he) meters, where he is the element size

of the different spatial discretizations. Water is injected from the right side of the

domain, Γin, and extracted for the left side, Γout. Furthermore, we assume that both

fluids cannot cross the upper and lower boundaries, Γnf , see Figure 5.2. Therefore,

water will mobilize the oil from left to right and the flux will be parallel to the no-flow
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Figure 5.1: Convergence rates for: a) saturation, b) pressure, c) saturation flux, d)
pressure flux; e) post-processed saturation, and f) post-processed pressure.
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Figure 5.2: Rectangular domain and associated boundary conditions.

boundaries, Γnf . We define the following boundary conditions and source terms:

pΓin
w = 3 · 106 Pa, SΓin

o = 0.3, on Γin,

pΓout
w = 106 Pa,

(
λoλw
λt

K∇pc
)
· n = 0, on Γout,

vt · n = 0, vo · n = 0, on Γnf
,

fw = 0, fo = 0, in Ω,

and we set the initial oil saturation condition as S0
o = 0.7.

The parameters of the Brooks-Corey model are pe = 103 Pa and θ = 2, and the

residuals saturation for the water and oil are Srw = 0, Sro = 0, respectively. The soil

permeability is KA = 10−12I m2, the porosity is φ = 0.2 and the viscosity for the

water and oil phases are µw = 0.001 Pa · s and µo = 0.012 Pa · s, respectively.

We discretize the domain with quadrilateral elements of polynomial degree P = 6

with size he = 10.5 meters, and we use the GL8 scheme with a time step ∆t = 2

days. We compute the amount of artificial viscosity using κ = 6, s0 = −10 and

ε0 = 0.0, 2.5, 5.0, 7.5 and 10.0 in Equation (5.15).

Figure 5.3 shows the plot over the line y = 0 for the water saturation and water

pressure for the selected ε0 values at time 22 days. As expected, only the saturation

approximation presents a sharp front, whereas the pressure approximation is smooth.

As we increase the amount of artificial viscosity the oscillations and the discontinuities

between elements are reduced. However the sharp front is dissipated and becomes

less vertical, see Figures 5.3(a) and 5.3(b). This effect can be interpreted as a local

increase of the intrinsic permeability in the saturation equation, K, as it is shown

in Equation (5.16) and (5.17). As a consequence of this permeability increment, we

obtain a more diffused front. Note that for all the selected ε0 values the water pressure

does not have significant variations, see Figure 5.3(c).
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Figure 5.3: Plot over the line y = 0 at 22 days using a mesh composed of quadrilateral
elements of polynomial degree P = 6 with he = 10.5 meters, and using GL8 scheme
with ∆t = 2 days for different values of ε0: a) water saturation, b) zoom around the
sharp front of the water saturation, and c) water pressure.

5.6.3 Time integration schemes analysis

In this example, we compare different time integration schemes for the same spatial

discretization. We consider the same rectangular domain, boundary conditions and

material parameters of Example 5.6.2. We use a mesh with quadrilateral elements of

polynomial degree P = 4 with size he = 7 meters combined with the following time

integration schemes: backward Euler, midpoint, DIRK3s3, GL4, Radau IIA 5 and

GL6. These are time integration schemes of orders from one to six. For all of them,
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Figure 5.4: Plot over the line y = 0 at 30 days using a mesh composed of quadrilateral
elements of polynomial degree P = 4 with size he = 7 meters, and using several time
integration schemes with ∆t = 2 days: a) water saturation profile, and b) zoom
around the sharp front.

we use the same time step of ∆t = 2 days. We compute the amount of artificial

viscosity using κ = 6, s0 = −10 and ε0 = 4, see Equation (5.15).

Figure 5.4 shows the water saturation profile over the line y = 0 for the different

time integration schemes at time 30 days. The smoothest saturation profile is ob-

tained with the backward Euler since it introduces the highest amount of dissipation

error, see Figure 5.4(a). As we use more accurate time integration schemes, the dis-

sipation error is reduced and the waterfront becomes more vertical. Note that the

spatial discretization is the same for all the time integration schemes. Therefore, as

we increase the order of the temporal scheme, we obtain more discontinuities between

elements and higher oscillations since high-order temporal schemes do not dissipate

the errors introduced by the spatial discretization.

5.6.4 High-order spatial and temporal discretizations

analysis

In this example, we analyze the advantages of combining high-order discretizations

for space and time. We consider the same rectangular domain, boundary conditions

and material parameters of Example 5.6.2.
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Figure 5.5: Plot over the line y = 0 at 30 days using three different spatial and
temporal discretizations with the same resolution: a) water saturation profile and b)
zoom around the sharp front of the water saturation profile.

We perform a waterflooding simulation with different element sizes, polynomial

degrees and time integration schemes while keeping the same space-time resolution.

That is, the total number of spatial and temporal unknowns is the same in all cases.

To this end, we use three different spatial and temporal discretizations. In the first

one, we use quadrilateral elements of polynomial degree P = 2 with size h1 = 1.75

meters, and GL4 scheme with ∆t = 0.5 days. In the second one, we use quadrilateral

elements of polynomial degree P = 4 with size h2 = 3.5 meters, and GL6 scheme with

∆t = 0.75 days. In the third one, we use quadrilateral elements of polynomial degree

P = 6 with size h3 = 5.25 meters, and GL8 scheme with ∆t = 1 day. We compute the

amount of artificial viscosity using κ = 6, s0 = −10 and ε0 = 2 in Equation (5.15).

The amount of artificial viscosity is the same in all the cases since the resolution of

the spatial discretization is the same.

Figure 5.5 shows the plot over the line y = 0 at time 30 days of the water saturation

obtained with the selected spatial and time discretizations. We observe that the sharp

front is more vertical when high-order spatial and temporal discretizations are used.

Moreover, as we increase the order of the spatial and temporal discretizations, the

discontinuities between elements are reduced.

We highlight that the result of this example shows that high-order spatial and

temporal discretizations obtain more accurate results than low-order discretizations
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with the same resolution.

5.6.5 Accuracy of the time integration

In this example, we compare the accuracy and the computational cost of the midpoint

and GL8 schemes. We consider the same rectangular domain, boundary conditions

and material parameters of Example 5.6.2. First, we discretize the domain using

a mesh composed of quadrilateral elements of polynomial degree P = 6 with size

he = 16.8 meters. Using this mesh, we perform two simulations using the GL8 and

the midpoint schemes with the same time step, ∆t = 4 days. For both cases, we

compute the amount of artificial viscosity using κ = 6, s0 = −10 and ε0 = 6.4, see

Equation (5.15).

Figure 5.6 compares the water saturation approximation over the line y = 0 at

time 32 days using the GL8 and midpoint schemes. The waterfront is more vertical

when we use the GL8 scheme than when we use the midpoint scheme with the same

time step. This illustrates that the midpoint scheme introduces more dissipation

error than the GL8 scheme with the same time step. If we keep the solution obtained

with the GL8 scheme as reference, we need to reduce five times the time step of the

midpoint scheme (∆t = 4/5 = 0.8 days) to obtain a saturation profile with similar

dissipation error. This leads to 8 number of time steps for the GL8 scheme and 40

number of time steps for the midpoint scheme.

Second, we reduce by half the element size, using a mesh composed of quadrilateral

elements of polynomial degree P = 6 with size he = 8.4 meters. Therefore, we also

divide by two the time step of the GL8 and the modified one for the midpoint. That

is, we use ∆t = 2 days for the GL8 scheme and ∆t = 0.8/2 = 0.4 days for the

midpoint. Since we have increased the resolution by a factor of two we reduce by a

half the value of ε0 parameter. Thus, we compute the amount of artificial viscosity

using κ = 6, s0 = −10 and ε0 = 3.2 in Equation (5.15).

Figure 5.7 compares the saturation solution over the line y = 0 at time 32 days

computed with the GL8 and midpoint schemes. The waterfront is more vertical when

we use the GL8 scheme. The midpoint scheme introduces more dissipation error in

the solution than the GL8 scheme because the time step for the midpoint is too

large for this mesh. To obtain a similar dissipation error with both time integration

schemes, we need to reduce the modified time step of the midpoint scheme sixteen

times. That is ∆t = 0.8/16 = 0.05 days. In this particular case, there is a factor
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Figure 5.6: Plot over the line y = 0 at 32 days using a mesh composed of quadrilateral
elements of polynomial degree P = 6 with he = 16.8 meters, and using the midpoint
scheme with ∆t = 4 and ∆t = 0.8 days and GL8 scheme with ∆t = 4: a) water
saturation profile, and b) zoom around the sharp front.

of 40 between the number of time steps of the GL8 scheme (∆t = 2 days) and the

midpoint scheme (∆t = 0.05 days). This leads to 16 number of time steps for the

GL8 scheme and 640 number of time steps for the midpoint scheme.

It is important to highlight that once both methods obtain similar temporal ac-

curacy, each time the GL8 time step is reduced by a factor α, the midpoint time step

has to be reduced by a factor of αz with z = 8/2 = 4. Therefore, to achieve the same

temporal error between both schemes, the ratio between the number of time steps

increases exponentially. Thus, high-order temporal schemes may reduce the compu-

tational cost because exponentially larger time steps can be used and exponentially

less non-linear problems have to be solved.

5.6.6 Waterflooding through an heterogeneous material

with obstacles

In this example, we simulate a case of waterflooding technique through a domain

with two different material, see Figure 5.8(a). We consider a square domain Ω =

(0, 100)×(0, 100) with five circular obstacles of radius of 5 meters, located at (25, 25),

(25, 50), (25, 75), (75, 37.5), (75, 67.5) meters. The left side of the square is the injector
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Figure 5.7: Plot over the line y = 0 at 32 days using a mesh composed of quadrilateral
elements of polynomial degreee P = 6 with he = 8.4 meters, and using the midpoint
scheme with ∆t = 0.4 and ∆t = 0.05 days and GL8 scheme with ∆t = 2 days: a)
water saturation profile, and b) zoom around the sharp front.

well, Γin, and the right side is the extractor well, Γout. The rest of the boundary is

defined as no-flow, Γnf . We prescribe the same boundary conditions and the Brooks-

Corey parameters as in Example 5.6.2.

The domain is composed of two materials with different permeability and porosity

values. The upper half region is characterized by KA = 5 · 10−12I m2 and φA = 0.4,

and the lower half region by KB = 10−12I m2 and φB = 0.2. The viscosity for the

water and oil phases are µw = 0.001 Pa · s and µo = 0.012 Pa · s, respectively.

We discretize the domain using 283 unstructured quadrilateral elements of poly-

nomial degree four (4692 nodes), see Figure 5.8(a). To perform the time integration,

we use the GL6 scheme with a time step ∆t = 12 hours. We compute the amount of

artificial viscosity using κ = 6, s0 = −10 and ε0 = 4.8 of Equation (5.15).

Figure 5.9 presents the water saturation field at times t = 11, 15, 21 and 35 days.

Initially, the oil saturates homogeneously the porous media. Afterwards, water is in-

jected along the inflow boundary and mobilizes the oil towards the outflow boundary.

Water moves faster within the upper region, where the permeability is higher than

in the bottom region. Furthermore, the water leaks from the upper half region to

the lower half region. Note that, the added articial viscosity allows performing the

simulation since non-physical saturation values are avoided and a numerical solution
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(a) (b)

Figure 5.8: Mesh and boundary conditions distributions for the simulation of the wa-
ter flooding through: a) heterogeneous domain with obstacles, b) a nine-spot pattern.

without oscillations is obtained.

Figure 5.10 shows the computed water pressure at times t = 11, 15, 21 and 35 days.

We observe that the highest water pressure values are on the inflow boundary and

the lowest on the outflow boundary. Moreover, at the left of the circular obstacles,

the water pressure is higher than at the right. The pressure solution is smooth even

when the domain contains obstacles.

Figure 5.11 plots the magnitude of Darcy water and oil velocities at times t = 15

days and t = 35 days. Note that Darcy velocities are higher in the upper half region

than in the lower half because the soil is more permeable. Also, the water phase moves

faster than the oil phase, since it is less viscous. We also observe that as the fluid

overcome the obstacles the magnitude of Darcy water and oil velocities are higher

above and below the obstacles than in front and behind. The artificial viscosity term

also allows obtaining smooth approximations of the velocities, since they depend on

the saturation.

This example illustrates that the proposed methodology allows performing high-

order accurate simulations in space and time of a waterflooding problem with het-

erogeneous materials using unstructured high-order curved meshes and sharp fronts

not aligned with the mesh.
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(a) (b)

(c) (d)

Figure 5.9: Water saturation approximation at time: a) 11 days, b) 15 days, c) 21
days, and d) 35 days.

5.6.7 Nine-spot pattern

In this example, we perform a waterflooding simulation for a nine spot pattern on

a square domain, Ω = (0, 140) × (0, 140) meters. This pattern has eight injection

wells located at the vertices and the midpoint of the boundary edges, Γin, and one

producer well located at the center of the domain, Γout. The rest of the boundary
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1.0e+06 1.2e+06 1.5e+06 1.8e+06 2.0e+06 2.2e+06 2.5e+06 2.8e+06 3.0e+06
pw (Pa)

(a) (b)

(c) (d)

Figure 5.10: Water pressure approximation at time: a) 11 days, b) 15 days, c) 21
days, and d) 35 days.

is considered as no-flow, Γnf , see Figure 5.8(b). The radius of the wells is rw = 5

m. We prescribe the same boundary conditions and Brooks-Corey parameters as in

Example 5.6.2.

The soil permeability is K = 5 · 10−12I m2, the porosity is φ = 0.2, and the

viscosity for the water and oil phases are µw = 0.001 Pa · s and µo = 0.012 Pa · s,
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10−9 10−8 10−7 10−6 10−5
vw (m/s)

5·10−5 10−9 10−8 10−7 10−6 10−5
vo (m/s)

2.5·10−5

(a) (b)

(c) (d)

Figure 5.11: Magnitude of the Darcy velocities for the: a) water phase at time 15
days, b) oil phase at time 15 days, c) water phase at time 35 days and d) oil phase
at time 35 days.

respectively.

We discretize the domain with 1114 non-constant size unstructured quadrilateral

elements of polynomial degree four (18200 nodes), see Figure 5.8(b). To perform the

time integration, we use the GL6 scheme with a time step ∆t = 6 hours. We compute

the amount of artificial viscosity using κ = 6, s0 = −10 and ε0 = 0.78he of Equation
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0.25 0.31 0.38 0.44 0.50 0.56 0.62 0.69 0.75

Sw

(a) (b)

(c) (d)

Figure 5.12: Water saturation approximation at time: a) 5 days, b) 7.5 days, c) 12.5
days and d) 17.25 days.

(5.15), being he =
√∫

e
1dΩ

Figure 5.12 presents the water saturation approximations at times t = 5, 7.5, 12.5

and 17.25 days. We inject water from the injectors wells, moving the oil to the

pumping well at the centre, and occupying the space left by the oil phase. Thus, the

water saturation increases from the injectors wells to the producer well.
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1.0e+06 1.2e+06 1.5e+06 1.8e+06 2.0e+06 2.2e+06 2.5e+06 2.8e+06 3.0e+06
pw (Pa)

(a) (b)

(c) (d)

Figure 5.13: Water pressure approximation at time: a) 5 days,b) 7.5 days, c) 12.5
days and d) 17.25 days.

Figure 5.13 shows the water pressure field at times t = 5, 7.5, 12.5 and 17.25

days. As expected, the water pressure is higher at the injector wells and lower at the

extractor well.

Figure 5.14 plots the magnitude of Darcy water and oil velocities at times 7.5

and 17.25 days. When the waterfront reaches the extractor well, both phases, oil and
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10−9 10−8 10−7 10−6 10−5
vw (m/s)

10−9 10−8 10−7 10−6 10−5
vo (m/s)

3·10−5

(a) (b)

(c) (d)

Figure 5.14: Magnitude of Darcy velocities for the: a) water phase at time 7.5 days,b)
oil phase at time 7.5 days, c) water phase at time 17.25 days and d) oil phase at time
17.25 days.

water, are extracted. We observe that for all time steps the water velocity is higher

than the oil velocity around the injector wells.

Note that the proposed high-order formulation and shock capturing technique can

simulate several waterfronts (discontinuities) that interact between them. Moreover,
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we can deal with high-order curved unstructured meshes of non-constant element size.

5.7 Concluding remarks

In this chapter, we have presented a memory-efficient high-order HDG formulation

combined with high-order fully implicit time integration schemes for two-phase flow

through porous media problem. We have assumed that the fluids are immiscible and

the fluids and the porous media are incompressible. We have set the water pressure

and oil saturation as the main unknowns. We have proposed a fix-point iterative

method that alternatively solves the oil saturation and the water pressure implicitly

until convergence is achieved. At each iteration of the fix-point, we solve the satu-

ration equation by using the Newton-Raphson method, and the pressure equation at

each stage independently by solving a linear system. The proposed fix-point itera-

tive method is memory-efficient in the sense that the saturation and pressure are not

solved at the same time. Furthermore, the pressure system is solved at each stage

separately, since the pressure at different stages is not coupled. We have also proposed

a temporal integration scheme in terms of the oil saturation instead of its temporal

derivative. In this way, we have obtained a better sparsity pattern of the Jacobian

with less coupling between the stages (Pazner and Persson, 2017). Finally, to deal

with the sharp fronts that can appear in the saturation profile, we have introduced an

artificial viscosity term in the saturation equation. To detect the location of the sharp

fronts, we have used the shock sensor introduced in Persson and Peraire (2006), but

computed from the saturation solution and the post-processed saturation of HDG.

The proposed shock sensor is computationally efficient since the post-processed sat-

uration is computed in an element-wise manner. We have proposed to compute the

shock sensor at each RK stage and therefore, we introduce a different amount of

artificial viscosity at each RK stage. This allows tracking the waterfront as it moves

along the different RK stages.

We have presented several examples to assess the capabilities of the proposed for-

mulation and methodology. First, we have shown that the proposed formulation is

high-accurate in both space and time by studying the convergence rates for all the

variables in space-time. Second, we have analyzed the proposed artificial viscosity

term. We have observed that it is necessary to accurately determine the amount of

artificial viscosity to reduce the spurious oscillations at the vicinity of the shock with-
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out changing the underlying physics. We have shown that high-order methods can be

competitive in terms of accuracy. That is, for the same time and spatial resolution

we have obtained more vertical waterfronts and fewer discontinuities between ele-

ments when high-order methods are used. Moreover, we have analyzed the temporal

error introduced by the temporal integration schemes. Low-order temporal schemes

introduce more dissipation error into the solution. This leads to a diffused water-

front that does not correspond to the physics of the problem. We have also shown

that if high-accuracy is required, high-order methods have a lower computational

cost than low-order ones. Specifically, low-order temporal schemes may need expo-

nentially smaller time steps to obtain solutions with similar errors than high-order

temporal schemes. Finally, we have tested the robustness of the proposed shock sensor

with two examples of the waterflooding technique. These examples deal with several

waterfronts that also interact between them, heterogeneous material properties and

unstructured high-order curved meshes.
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Chapter 6

Summary and future work

6.1 Summary

In this section, we summarize the four main scientific contributions of this disserta-

tion:

1. We have proposed a stable high-order HDG formulation for slightly

compressible one-phase flow through porous media coupled with high-

order DIRK schemes. In Chapter 3, we have presented a high-order HDG

formulation for slightly compressible one-phase flow. This problem is modeled

using a non-linear convection-diffusion equation, with the convection driven by

gravity. We ensure the stability of the proposed HDG formulation by deducing

an analytical expression for the stabilization parameter. To this end, we have

split the stabilization parameter into diffusive and convective parts. The dif-

fusive part is selected according to the physical values of the problem, and we

have used the Engquist-Osher flux monotone scheme for the convective part.

These choices ensure the existence and uniqueness of the obtained approxima-

tion while providing a stable and convergent method. To achieve high-accuracy

in space and time, we have performed the temporal discretization using high-

order DIRK schemes. This leads to a non-linear system at each stage of the

DIRK scheme that we have solved using the Newton-Raphson method. More-

over, we have introduced the stabilization parameter in Newtons solver since

we can analytically compute its derivatives.
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2. We have proposed a memory-efficient high-order HDG formulation

for incompressible and immiscible two-phase flow through porous me-

dia problem coupled with high-order DIRK schemes. In Chapter 4, we

have presented a high-order HDG formulation for two-phase flow problem com-

bined with DIRK schemes. We have assumed that the fluids are immiscible

and the fluids and the porous media are incompressible. We have set the water

pressure and oil saturation as the main unknowns, which leads to a coupled

system of two non-linear partial differential equations. To solve it, we have

used a fix-point iterative method that alternatively solves the oil saturation

and the water pressure unknowns implicitly at each RK stage until convergence

is achieved. The proposed fix-point iterative method is memory-efficient in the

sense that the saturation and pressure are not solved at the same time.

3. We have proposed a memory-efficient high-order HDG formulation

for incompressible and immiscible two-phase flow through porous me-

dia problem coupled with high-order fully implicit RK schemes. In

Chapter 5, we have extended the formulation presented in Chapter 4, and we

have coupled the HDG formulation with high-order fully implicit RK schemes.

These schemes allow using arbitrary large time steps and achieve high-order

temporal accuracy with few stages. Moreover, we have rewritten the non-linear

system to reduce the memory footprint of the proposed formulation. That is,

we have propose the temporal integration scheme in terms of the oil saturation

instead of its temporal derivative. In this way, a better sparsity pattern in

the Jacobian matrix and less coupling between the stages is obtained (Pazner

and Persson, 2017). Furthermore, we have adapted the proposed fix-point it-

erative method in Chapter 4, which also reduces memory consumption since it

decouples the saturation and pressure equations.

4. Developing a robust and efficient shock capturing methodology. In

Chapter 5, we have detected the location of the sharp fronts using the shock

sensor introduced in Persson and Peraire (2006), but computed from the sat-

uration solution and the post-processed saturation of the HDG formulation.

The proposed shock sensor is computationally efficient since the post-processed

saturation is computed in an element-wise manner. We have computed the

shock sensor at each RK stage and therefore, we were able to introduce a dif-
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ferent amount of artificial viscosity at each RK stage. This allows tracking the

waterfront as it evolves in time.

6.1.1 Research dissemination

We have published the presented contributions in a scientific article and chapter of a

book:

• Costa-Solé, A., Ruiz-Gironés, E., and Sarrate, J. (2019). An HDG formula-

tion for incompressible and immiscible two-phase porous media flow problems.

International Journal of Computational Fluid Dynamics, 33(4), 137− 148.

• Costa-Solé, A., Ruiz-Gironés, E., and Sarrate, J. (2020). One-phase and two-

phase flow simulation using high-order HDG and high-order diagonally implicit

time integration schemes. Accepted in Applied Mathematics for Environmental

Problems ICIAM 2019 SEMA SIMAI Springer Series.

There are two more scientific articles under review process:

• Costa-Solé, A., Ruiz-Gironés, E., and Sarrate, J. (2020). High-order hybridiz-

able discontinuous Galerkin formulation for one-phase flow through porous me-

dia.

• Costa-Solé, A., Ruiz-Gironés, E., and Sarrate, J. (2020). High-order HDG

formulation with fully implicit temporal schemes for the simulation of two-phase

flow through porous media.

Moreover, all the scientific contributions of this PhD thesis and the most relevant

results have been presented in the following national and international conferences:

• Costa-Solé A, Ruiz Girons E. and Sarrate J. Two-phase flow simulation using

high-order HDG and fully implicit time integration. ICIAM. Valencia, Spain,

2019.

• Costa-Solé A, Ruiz Gironés E. and Sarrate J. An HDG formulation for two-

phase flow through porous media simulations. WCCM, New York, USA, 2018.

• Costa-Solé A, Ruiz Gironés E. and Sarrate J. High-order HDG method for one

phase flow simulation. ECCOMAS, Glasgow, UK, 2018.
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• Costa-Solé A, Ruiz Gironés E. and Sarrate J. Hydridizable discontinuous Galerkin

method for two phase flow problems. CMN, Valencia, Spain, 2017. (Presenta-

tion and Poster)

• Costa-Solé A, Ruiz Gironés E. and Sarrate J. High-order hydridizable discon-

tinuous Galerkin formulation for two phase flow simulation. CEDYA + CMA,

Cartagena, Spain, 2017.

We have been accepted to present in the following international conference:

• Costa-Solé A, Ruiz Gironés E. and Sarrate J. High-order HDG and fully implicit

methods for two-phase flow simulation. WCCM-ECCOMAS, Paris, France,

2020.

6.2 Future work

Several aspects can be analyzed and improved in the near future:

• Coupling the presented high-order HDG formulation for the slightly

compressible one-phase flow with fully implicit Runge-Kutta schemes.

We plan to extend the work presented in Chapter 3 by coupling the HDG for-

mulation with fully implicit RK schemes. In this way, arbitrary large time steps

can be used achieving a high-order accuracy with few stages.

• Increasing the computational efficiency of the two-phase flow high-

order HDG formulation with both DIRK and fully implicit Runge-

Kutta schemes. To this end, we will use the Newton-Raphson method to

solve the saturation and pressure unknowns at all the stages. While this can

reduce the number of iterations of the non-linear solver, it will increase the

memory footprint. For that reason, to store the system matrix we will require

to parallelize the code. Moreover, we will need to use iterative linear solvers.

Thus, we need to investigate efficient iterative linear solvers and appropriated

pre-conditioners for fully implicit time integration schemes. Considering all

these improvements, we will expect to simulate larger problems dealing with

more heterogeneous and complex domains.
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• Using h-p adaptivity to increase accuracy while reducing oscillations

and computational cost. Using this technique, we will be able to use small

low-order elements near the front and large high-order elements for the rest

of the domain. Therefore, we expect increasing the accuracy of the obtained

solutions while reducing the computational cost of the simulation. We will

investigate an error indicator to detect the elements with more error. After-

wards, it will be necessary to determine which technique should be used, the

h-adaptivity, the p-adaptivity, or both.

• Further analysis of the stability for the proposed two-phase flow for-

mulations. We propose to obtain an analytical expression for the convective

stabilization parameter in the saturation equation. This will ensure the exis-

tence and uniqueness of the obtained approximation, as well as the stability

of the formulation. To this end, we will investigate different monotone flux

schemes.

• Extending the presented HDG formulations to other porous media

flow models. We are interested in developing high-order HDG formulations for

other multiphase flow models, such as the black oil model and the compositional

flow. Therefore, we will be able to simulate more realistic and complex scenarios.

We also consider extending the developed formulations with other assumptions,

such as miscibility and/or compressible rocks and phases.
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Appendix A

Jacobian terms for one-phase flow

formulation

In this Appendix, we write the Jacobian terms required to solve Equation (3.22) of the

Newton-Raphson method. First, we deduce the partial derivatives of the numerical

convective flux, F̂h · n, Equation (3.11), respect to the pressure, ph, and its trace, p̂h

∂F̂h · n
∂pj

=


(
F(ph) · n− F̂h · n

(ph − p̂h)

)
Nj if (Kg) · n ≥ 0,

0 if (Kg) · n < 0,

(A.1)

∂F̂h · n
∂p̂j

=


(
−F(p̂h) · n + F̂h · n

(ph − p̂h)

)
Nf
j if (Kg) · n ≥ 0,

F′(p̂h)Nf
j if (Kg) · n < 0,

(A.2)

where ph and p̂h are defined in Equations (3.14) and (3.16), respectively. Note that,

for ph = p̂h the first equations of Equation (A.1) and (A.2) becomes

lim
ph→p̂h

∂F̂h · n
∂pj

= lim
ph→p̂h

∂F̂h · n
∂p̂j

=
1

2
F′(p̂h).

The partial derivatives of Equations (3.14) to (3.17) are

∂ph
∂pi

= Ni,
∂p

∂ṗj
= Nj∆taii,

∂qh
∂qij

= Niej,
∂p̂h
∂pj

= N f
j .
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Finally, we obtain the partial derivative of F̂h · n respect to ṗj as

∂F̂h · n
∂ṗj

=
∂F̂h · n
∂pj

· ∂ph
∂ṗi

= ∆taii
∂F̂h · n
∂pj

.

Thus, the elemental Jacobian coefficients are

(Jeṗṗ)i,j =
∂

∂ṗj

(
(sṗh, Ni)e−(Fh,∇Ni)e+〈F̂h · n, Ni〉∂e+〈τdiff pi, Ni〉∂e−〈τdiff p̂h, Ni〉∂e

)
=

((
ct∆taii(crφ

refρ + φcfρ
ref )Nj , Ni

)
e

+

(
φρ(pi)ct

∂ṗ

∂pj
, Ni

)
e

)
−
(

∆taii
K∇zg
µ

2ρcfρ
refNj ,∇Ni

)
e

+ 〈 ∂
∂ṗj

F̂h · n, Ni〉∂e

+

〈
∆taii

(
K

µl
cfρ

refpi + τdiff

)
Nj , Ni

〉
∂e

+

〈
∆taii

K

µl
cfρ

ref p̂h, Ni

〉
∂e

(Jeṗq)i,jk =
∂

∂qjk
(−(qh,∇Ni)e + 〈qh · n, Ni〉∂e) = −(Njek,∇Ni)e + 〈Njnk, Ni〉∂e

(Je,fṗp̂ )i,j =
∂

∂p̂j

(
〈F̂h · n, Ni〉∂e − 〈τdiff p̂h, Ni〉∂e

)
= 〈 ∂

∂p̂j
F̂h · n, Ni〉∂e − 〈τdiffN

f
j , Ni〉∂e

(Jeqṗ)ij,k =
∂

∂ṗk

(
(pi,∇ ·Niej)e + (A−1qh, Niej)e

)
= ∆taii

((
− qhµK

−1 ρ
refcfNk

ρ(pi)
2 , Niej

)
e

−
(
Nk,

∂Ni

∂xj

)
e

)
(Jeqq)ij,kl =

∂

∂qkl

(
A−1qh, Niej

)
e

= (A−1Nkel, Niej)e

(Je,fqp̂ )ij,k =
∂

∂p̂k
〈p̂h, Niej · n〉∂e = 〈Nf

k , Ninj〉∂e

(Je,fp̂ṗ )i,j =
∂

∂ṗj

(
〈F̂h · n, Nf

i 〉∂e + 〈τdiff pi, N
f
i 〉∂e − 〈τdiff p̂h, N

f
i 〉∂e

)
= 〈 ∂

∂ṗj
F̂h · n, Nf

i 〉∂e +

〈
∆taii

(
K

µl
cfρ

refpi + τdiff

)
Nj , Ni

〉
∂e

−
〈

∆taii
K

µl
cfρ

refNj p̂h, N
f
i

〉
∂e

(Je,fp̂q )i,jk =
∂

∂qjk
〈qh · n, Nf

i 〉∂e = 〈Njnk, N
f
i 〉∂e

(Je,fp̂p̂ )i,j =
∂

∂p̂j

(
〈F̂h · n, Nf

i 〉∂e−〈τdiff p̂h, N
f
i 〉∂e

)
=〈 ∂

∂p̂j
F̂h · n, Nf

i 〉∂e−〈τdiff N
f
j , N

f
i 〉∂e
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Appendix B

Runge-Kutta schemes

In this Appendix, we summarize the Butcher’s tables of the different time integra-

tion schemes used in this work, see Butcher (1964a,b, 2016); Montlaur et al. (2012);

Kennedy and Carpenter (2016); Pazner and Persson (2017) for more details.

Table B.1: Butcher’s table for the backward scheme.

1 1
1

Table B.2: Butcher’s table for the midpoint scheme.

1/2 1/2
1

Table B.3: Butcher’s table for the DIRK3-s3 scheme.

γ γ
1 + γ

2

1− γ
2

γ

1
−6γ2 + 16γ − 1

4

6γ2 − 20γ − 1

4
γ

−6γ2 + 16γ − 1

4

6γ2 − 20γ − 1

4
γ

γ = 0.4358665215
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B. Runge-Kutta schemes

Table B.4: Butcher’s table for the 4-th Gauss-Legendre Runge-Kutta scheme.

1/2− 1/6
√

3 1/4 1/4− 1/6
√

3

1/2 + 1/6
√

3 1/4 + 1/6
√

3 1/4
1/2 1/2

Table B.5: Butcher’s table for the 6-th Gauss-Legendre Runge-Kutta scheme.

1/2− 1/10
√

15 5/36 2/9− 1/15
√

15 5/36− 1/30
√

15

1/2 1/36 + 1/24
√

15 2/9 5/36− 1/24
√

15

1/2 + 1/10
√

15 5/36 + 1/30
√

15 2/9 + 1/15
√

15 5/36
5/18 4/9 5/18

Table B.6: Butcher’s table for the 8-th Gauss-Legendre Runge-Kutta scheme.

1/2− w2 w1 w′1 − w3 + w′4 w′1 − w3 − w′4 w1 − w5

1/2− w′2 w1 − w′3 + w4 w′1 w′1 − w′5 w1 − w′3 − w4

1/2 + w′2 w1 + w′3 + w4 w′1 + w′5 w′1 w1 + w′3 − w4

1/2 + w2 w1 + w5 w′1 + w3 + w4 w′1 + w3 − w′4 w1

2w1 2w′1 2w′1 2w1

w1 = 1/8−
√

30/144 w′1 = 1/8 +
√

30/144

w2 = 1/2(

√
15 + 2

√
30)/35 w′2 = 1/2(

√
15− 2

√
30)/35

w3 = w2

(
1/6 +

√
30/24

)
w′3 = w′2

(
1/6−

√
30/24

)
w4 = w2

(
1/21 + 5

√
30/168

)
w′4 = w′2

(
1/21− 5

√
30/168

)
w5 = w2 − 2w3 w′5 = w′2 − 2w′3

Table B.7: Butcher’s table for the 5-th Radau IIA Runge-Kutta scheme.

2/5−
√

6/10 11/45− 7
√

6/360 37/225− 169
√

6/1800 −2/225 +
√

6/75

2/5 +
√

6/10 37/225 + 169
√

6/1800 11/45 + 7
√

6/360 −2/225−
√

6/75

1 4/9−
√

6/36 4/9 +
√

6/36 1/9

4/9−
√

6/36 4/9 +
√

6/36 1/9
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