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Dr. Héctor Martı́n Crocce

and

Dr. Pablo Fosalba Vela

Tutor:
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Abstract

Ongoing and future photometric surveys will enable detailed measurements of the late-time
Universe and powerful tests of the nature of dark energy and General Relativity. These surveys
will be able to obtain cosmological constraints from multiple probes, and the combination of
these probes can improve their robustness and constraining power.

This thesis is focused on the combination of multiple tracers of large-scale structure (LSS) to
obtain tighter cosmological constraints. First, we combine the galaxy clustering from the Dark
Energy Survey (DES) Year 1 (Y1) data with CMB lensing from the optimal combination of
South Pole Telescope (SPT) and Planck, obtaining constraints on the galaxy bias, the growth
function and the cosmological parameters. Our results are consistent with ΛCDM and other
measurements of DES Y1. However, their constraining power is limited due to conservative
scale cuts. We expect an improved signal-to-noise in future analyses.

We then combine the galaxy clustering of two different galaxy samples (the so-called multi-
tracer approach) to explore the constraints on redshift space distortions (RSD) and primordial
non-Gaussianities (PNG). For this purpose, we consider a pair of optimistic samples (with large
bias differences and number densities) and the DES Year 3 (Y3) lens samples. We find that the
constraints on RSD can be improved a factor of five at low redshift with respect to a single tracer,
and the constraints on PNG can be improved more than a factor three. We also test the impact
of including CMB lensing cross-correlations in our analysis, in which we keep the cosmology
fixed, finding it mainly improves the galaxy bias constraints.

Last, we define and optimize a magnitude limited galaxy sample to be used for the galaxy
clustering measurements in the DES Y3 analysis, in combination with galaxy-galaxy lensing.
We rely on Fisher forecasts, and we test how these change given the variations obtained for
the number density and estimated redshift uncertainty for a set of magnitude cuts. We also
characterize the impact of redshift binning choices in our cosmological constraints for this
sample and the other DES Y3 lens sample: redMaGiC. Finally, our forecasts show that we
can potentially obtain 15% tighter constraints with this magnitude limited sample, compared to
redMaGiC.
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Introduction

According to the current consensus cosmological model, ΛCDM, dark matter and dark energy
make up most of the energy density of the Universe. However, their nature is still unknown
and understanding them presents a grand challenge for present-day cosmologists. Ongoing and
future photometric surveys will enable detailed measurements of the late-time Universe and
powerful tests of the nature of dark energy and General Relativity. The current generation of
surveys includes the Kilo-Degree Survey (KiDS) [57], the Hyper Suprime Cam (HSC) [11],
and the Dark Energy Survey (DES1) [164]. The next generation of surveys, starting in the
2020s, will include the Large Synoptic Survey Telescope (LSST2) [104], Euclid3 [94], the Dark
Energy Spectroscopic Instrument (DESI4) [95], and the Wide-Field Infrared Survey Telescope
(WFIRST5) [159].

These surveys will be able to obtain cosmological constraints from multiple probes, such as
galaxy clustering, galaxy-galaxy lensing, cosmic shear and Baryon Acoustic Oscillations (BAO).
And the combination of these probes can improve the robustness and the constraining power
of their cosmological constraints. An example of this is the joint analysis of cosmic shear,
galaxy-galaxy lensing and galaxy clustering of DES Year 1 (Y1) data [2], the so-called 3×2pt
analysis. We can further extend this multi-probe analysis by combining it with other tracers of
large-scale structure (LSS) such as the Cosmic Microwave Background (CMB) (see e.g. [3]).

Photons from the CMB are gravitationally deflected by the large-scale structure, and the distinct
pattern of the lensed CMB can be used to probe lensing structures along the line of sight. By
cross-correlating the CMB lensing signal with tracers of the matter distribution, such as galaxies,
we can measure the growth of structure in the Universe across cosmic time. High signal-to-noise

1http://www.darkenergysurvey.org/
2https://www.lsst.org/
3https://www.euclid-ec.org/
4https://www.desi.lbl.gov/
5https://wfirst.gsfc.nasa.gov/

http://www.darkenergysurvey.org/
https://www.lsst.org/
https://www.euclid-ec.org/
https://www.desi.lbl.gov/
https://wfirst.gsfc.nasa.gov/
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measurements of CMB lensing have been obtained by several collaborations, including Planck
[129], the Atacama Cosmology Telescope (ACT) [55], POLARBEAR [9], and the South Pole
Telescope (SPT) [41].

This thesis is focused on the combination of multiple tracers of LSS to obtain tighter cosmological
constraints. In particular, we concentrate on the Dark Energy Survey and its combination with
data from the South Pole Telescope (SPT) and Planck collaborations. In this work, we first
update the results of G16 by measuring the cross-correlations between galaxy density from
the DES Y1 data and a CMB lensing reconstruction using a combination of SPT and Planck
data. We use the measured galaxy-CMB lensing cross-correlations to obtain constraints on the
galaxy bias, the growth function and the cosmological parameters. In some of these analyses,
we perform joint fits to both the galaxy-CMB lensing cross-correlations and galaxy clustering
measurements in order to break degeneracies with galaxy bias.

We then combine the galaxy clustering of two different galaxy samples (the so-called multi-
tracer approach) to explore the constraints on redshift space distortions (RSD) and primordial
non-Gaussianities (PNG). The motivation behind this is that bias-sensitive parameters, such
as the redshift space distortions parameter, β(z) = f (z)/b(z), and the amplitude of local non-
Gaussianities, fNL, are different tracers of the same realization of the density field. Therefore,
comparing the clustering between different types of LSS enable us to measure these parameters
with a precision that is not limited by cosmic variance. In practice, the biases of the two samples
may be correlated, which limits the potential gains of the multi-tracer approach. By combining
the galaxy clustering from the two samples with CMB lensing correlations, one can mitigate
these correlations and break the degeneracies between the biases and the other cosmological
parameters of interest.

In this thesis, we extend the idea of a multi-tracer analysis of RSD explored in [14] by including
in addition the cross-correlations with CMB lensing in order to break possible degeneracies
with the galaxy bias. We also explore the constraints that we could obtain with a multi-tracer
analysis of local non-gaussianities, fNL, from photometric surveys. In addition, we forecast the
constraints on RSD and fNL considering the DES Year 3 (Y3) lens samples: redMaGiC and
magnitude limited.

Last, we define the magnitude limited sample from DES Y3 data that, alongside redMaGiC, is
going to be used to measure galaxy clustering. These galaxy clustering measurements are then
going to be combined with galaxy-galaxy lensing, cosmic shear, and CMB lensing correlations.
We optimize the galaxy selection of this sample in terms of its cosmological constraints. For this
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purpose we rely on Fisher forecasts, and we test how these change given the variations obtained
for the number density and estimated redshift uncertainty given by a set of magnitude cuts. We
also characterize the impact of redshift binning choices in our cosmological constraints for both
samples.

The outline of the thesis is the following. After a theoretical introduction in Chapter 1, and an
overview of the Dark Energy Survey (DES) in Chapter 2, in Chapter 3 we combine the galaxy
clustering from DES Y1 data with CMB lensing from SPT and Planck collaborations. Then,
in Chapter 4, we combine the galaxy clustering of two different galaxy samples to constrain
Redshift Space Distortions and Primordial non-Gaussianities in a multi-tracer approach. Here
we also consider the inclusion of galaxy - CMB lensing cross-correlations. Last, in Chapter 5
we define and optimize a magnitude limited lens sample for the combined analysis of galaxy
clustering and galaxy-galaxy lensing from DES Y3 data.



4 Introduction



Chapter 1

Cosmological Framework

1.1 The Standard Cosmological Model

The fundamental basis of Cosmology is the so-called Cosmological Principle, that states that the
Universe is isotropic and homogeneous at large scales. In 1929, Edwin Hubble discovered that
the Universe is expanding. In order to describe this effect we introduce the scale factor, a, which
is a measure of the expansion rate of the Universe. By the homogeneity property, a is a function
of time alone. Since this expansion is uniform, the coordinates of each point remain the same.
The distance between coordinates is called the comoving distance (x) and, the physical distance,
which is actually the distance we have to travel between two points in the Universe, is defined as

d = a(t)x. (1.1)

We usually normalize the scale factor by setting its present value equal to one (a(t0) = 1) where
we use the symbol t0 to indicate the current age of the Universe. To quantify the change in the
scale factor with time we introduce the Hubble rate

H(t) ≡
ȧ
a

(1.2)

where we denote by ȧ the time derivative of the scale factor: da/dt. The value of the Hubble rate
today, H0, is parametrized by the dimensionless Hubble parameter, h, in the following way

H0 = 100 h km s−1 Mpc−1. (1.3)
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Here Mpc stands for megaparsec units. Due to the expansion of the Universe, galaxies appear to
be receding from us, so that the light emitted by those galaxies is redshifted, i.e. the observed
wavelength is larger than the emitted one. The relationship between the redshift and the scale
factor is:

1 + z =
1
a

(1.4)

The most general isotropic and homogeneous metric of an expanding, flat Universe is given by
the Friedmann-Robertson-Walker (FRW) metric

ds2 = −dt2 + a(t)2[dr2 + r2dΩ2] (1.5)

where we have used spherical coordinates. Therefore, r is the radial comoving distance and
dΩ2 = dθ2 + sin2θdφ2. Light satisfies ds2 = 0, hence the comoving distance travelled by light
moving radially towards us is

r(z) =

∫ z

0

dz
H(z)

. (1.6)

This can be derived by combining equations (1.5) and (1.4). The evolution of the scale factor is
determined by the Friedmann equation, which can be written as

H2(t) =

( ȧ
a

)2

=
8πG

3

[
ρ(t) +

ρc(t0) − ρ0

a2(t)

]
. (1.7)

The parameter ρ(t) is the total energy density of the Universe, so it consists of the sum of the
energy densities of each component: baryonic matter, radiation, dark matter and dark energy (or
cosmological constant). In the same way, ρ0 is the energy density of the Universe today. Also, G
is Newton’s constant and ρc(t0) is the present value of the critical density, i.e. the value of ρ0

required for the Universe to be spatially flat.

ρc(t0) =
3H2

0

8πG
(1.8)

It is more convenient to use the density parameter Ω instead of ρ and it is defined as

Ω(t) =
ρ(t)
ρc(t)

. (1.9)

Analogously, the density parameter of each component of the Universe is defined as the ratio
of the energy density of the component to the critical density: Ωi = ρi/ρc. The Standard
Cosmological Model (SCM) is based upon a flat, expanding Universe dominated by dark matter
and dark energy (cosmological constant). Therefore, the density parameter today is equal to one:
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Ω = 1. Equivalently,
Ωr,0 + Ωb,0 + Ωc,0 + ΩΛ,0 = 1 (1.10)

where the subindices correspond to radiation, baryonic matter, dark matter and the cosmological
constant, respectively. According to recent experimental results [128], ΩΛ,0 has an approximate
value of 0.7 and Ωm,0 of 0.3, as it is just the difference between 1 and ΩΛ,0, because Ωr ∼ 0.
However, the density parameter corresponding to baryonic matter (Ωb,0) is very small, close to
0.04, so the main contributions come from dark matter and dark energy, in concordance with the
SCM. By conservation of the energy-momentum tensor (T µ

ν), it can be found that

ρ̇ = −3H(ρ + P) (1.11)

where P is the pressure. This equation gives us the evolution of the energy density. Each one of
the components of the Universe satisfies a different equation of state, i.e. has a different value of
the parameter w in

P = wρ. (1.12)

In particular, we have that: for radiation wr = 1/3, for matter wm = 0 and for the cosmological
constant, or dark energy, w = −1. Using the equation of state, we can now solve (1.11) and find
that the evolution of ρi with time is

ρi = ρi,0a−3(1+wi). (1.13)

Thus, for radiation ρr = ρr,0 a−4, for matter ρm = ρm,0 a−3 and, for the cosmological constant
ρΛ = constant. Taking into account that today the Universe is dominated by both matter and
dark energy, going back in time (i.e. smaller values of a) we see in Figure 1.1 that, initially the
Universe must have been dominated by radiation, followed by a period in which it was dominated
by matter.

Since the values of the density parameters are known, it is useful to rewrite the Friedmann
equation in the following way:

H2 = H2
0[Ωm a−3 + Ωr a−4 + ΩΛ]. (1.14)

For more details about the contents included in this section, see Dodelson 2003 [60].



8 Chapter 1. Cosmological Framework
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Figure 1.1: Energy density with respect to the scale factor for different
components of a flat universe.

1.2 Cosmic Inflation

Despite its many successes, such as the Hubble diagram manifesting expansion, light element
abundances in agreement with the Big Bang nucleosynthesis and the blackbody radiation of the
cosmic microwave background (CMB), the Standard Cosmological Model leaves some questions
unanswered. Which is the origin of the perturbations (seeds) that led to structure formation?
Why is the Universe so flat today? And why is it, particularly the CMB, so isotropic?

Cosmic Inflation [98] is the most accepted scenario for the evolution of the Universe at early
times and it provides an explanation for all these questions. Inflation theorizes that, at very early
times, the Universe experienced an exponentially fast expansion.

The initial fluctuations that originated current inhomogeneities are expected to be gaussian. These
inhomogeneities would have been produced due to vacuum quan-
tum fluctuations of a scalar field, the inflaton (φ).

During inflation, the inflaton slowly rolls down the potential until
it reaches a minimum, as shown schematically on the right-hand
side. As the Universe expands, each wave generated by quantum
fluctuations gets stretched out until its wavelength has the size
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of the Hubble horizon λ = 1/H, moment in which it freezes.
Therefore, at every instant of time, the field consists of a superposition of: oscillating waves, that
are being stretched out, and frozen waves.

When the inflaton is about to roll over the edge shown in the picture, the expansion is no longer
exponential and the energy density dilutes with time. Because of this superposition of frozen
waves originated from quantum fluctuations, not all the points in the Universe get to this edge
of the potential at the same moment. Those points that cross the edge later will have a higher
energy density at the end of inflation than the ones that cross it before. This is the origin of the
seeds that later led to structure formation.

1.3 Evolution of Inhomogeneities

In this section we approach the evolution of the inhomogeneities generated during inflation. The
inflationary prediction for the primordial power spectrum (i.e. the power spectrum when the
waves enter the horizon and freeze) is given by

P0(k) = Askns−1 (1.15)

where ns is the spectral index and As a normalization amplitude. If ns = 1, then the primordial
power spectrum is scale invariant. For further details about this, see e.g. [98] or [123].

After inflation, the Universe was radiation dominated, as shown in Figure 1.1, and its expansion
was decelerated. It has not been until recently, with the beginning of a period dominated by dark
energy, that the expansion has become accelerated.

The deceleration of the expansion provokes that, at some point, the wavelengths re-enter the
Hubble horizon. Depending on the scale, the waves will cross the horizon at the radiation
dominated epoch or the matter dominated one. Before re-entering the horizon, General Relativity
is needed to describe the evolution of inhomogeneities. The general description of the evolution
of perturbations is given by Boltzmann-Einstein equations, where the Boltzmann equations
govern the evolution of inhomogeneities and the Einstein equations relate perturbations in the
metric to perturbations in matter and radiation.

Once the waves have re-entered the horizon, a Newtonian treatment is valid and we can consider
matter as an ideal fluid. We will focus on the evolution of matter inhomogeneities in this case,
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after they have crossed the horizon.

1.3.1 Equations of motion

The equations of motion for a fluid are the Euler equation, the continuity equation and the
Poisson equation:

∂u
∂t

+ (u · ∇d) u = −
1
ρ
∇dP − ∇dΦ (1.16)

∂ρ

∂t
+ ∇d · ρu = 0 (1.17)

∇2
r Φ = 4πGρ. (1.18)

Here Φ is the gravitational potential and u is the physical velocity, i.e. the time derivative of
(1.1). These equations are written in physical coordinates.

In order to continue, we will need to convert them into comoving coordinates. First, we derive
(1.1) with respect to time:

u = ȧx + aẋ = ȧx + v (1.19)

where v is the peculiar velocity, which ignores the motion induced by the expansion of the
Universe.

Second, we need to transform the derivatives into the comoving system:(
∂

∂t

)
d

=

(
∂

∂t

)
x
− H(x · ∇x) (1.20)

∇d =
1
a
∇x. (1.21)

From now on, we will omit the x subindices that refer to the comoving coordinate system. Since
we are only interested in the perturbation with respect to the background, we split the potential
Φ in two terms:

Φ(d, t) = ϕ(x, t) +
1
2

aäx2. (1.22)

The first term corresponds to the perturbation component of Φ while the second corresponds
to the background potential. Since dark energy is uniformly distributed, it does not contribute
anything to the potential perturbation ϕ. Then, in a Universe consisting of matter and dark energy,
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like the current situation, the Poisson equation for the perturbed potential is

∇2ϕ = 4πGa2ρ̄δ(x, t) (1.23)

where we have transformed the derivatives to comoving coordinates and δ(x, t) is the density
contrast. If ρ̄ is the mean matter energy density, we define the density contrast as

δ(x) =
ρ(x) − ρ̄

ρ̄
. (1.24)

If the matter distribution was uniform, δ would vanish. For this reason, the density contrast is a
measure of the matter inhomogeneities: underdensities (δ < 0) and overdensities (δ > 0).

The Euler and continuity equations in the comoving system are the following ones, respectively:

∂v
∂t

+ Hv + (v · ∇) v = −
1

aρ
∇P −

1
a
∇ϕ (1.25)

∂ρ

∂t
+ 3Hρ +

1
a
∇ · ρv = 0. (1.26)

Here, in the continuity equation, we have used (1.11) applied to matter. Also, notice that the
last term of the Euler equation (−a−1∇ϕ) is the peculiar gravitational acceleration, i.e. the extra
acceleration with respect to the background. Now, using (1.24), we replace ρ by ρ̄(δ + 1):

∂v
∂t

+ Hv + (v · ∇) v = −
1

aρ̄(δ + 1)
∇P −

1
a
∇ϕ (1.27)

∂δ

∂t
+

1
a
∇ · (δ + 1)v = 0 (1.28)

The derivation of these expressions can be found more extensively at Peebles 1980 [123].

1.3.2 Linear Perturbation Theory

The exact solution to these set of equations is non-linear and, for this reason, it cannot be solved
analytically. The easiest approach to obtain an analytical solution is to use perturbation theory
at first order in δ, that is the limit in which the density and velocity perturbations are still very
small (δ � 1). This development is valid for large-scales.

In order to get a more accurate result (i.e. valid for a larger range of scales), one can use
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perturbation theory at higher orders in δ. There are also approximations and models, such as
the Zel’dovich approximation (Zel’dovich 1970), that are valid in the mildly non-linear regime,
although their domain of validity is limited.

We apply now linear perturbation theory to the set of fluid equations we have obtained previously.
Since δ and v are small perturbed quantities, at first order in perturbation theory we discard the
higher order terms δv, (v · ∇)v and ∇Pδ in the equations (1.27) and (1.28):

∂v
∂t

+ Hv = −
1

aρ̄
∇P −

1
a
∇ϕ (1.29)

∂δ

∂t
+

1
a
∇ · v = 0. (1.30)

In the following section we will treat the evolution of matter inhomogeneities during the period
in which the Universe was dominated by matter.

Matter Dominated Universe

From the linearized continuity equation (1.30) we find that ∇·v = −a∂δ
∂t . By taking the divergence

of the linearized Euler equation (1.29) and combining it with this expression and the Poisson
equation (1.23), we obtain a second order differential equation for the density contrast δ. It
is convenient to switch to Fourier space because then we get rid of all the spatial derivatives
(recall that the Fourier transform of the nabla operator ∇ is ik, where k is the wavenumber). The
subindex k denotes that it is the Fourier transform of the variable:

∂2δk

∂t2 + 2H
∂δk

∂t
= 4πGρ̄δk −

k2Pk

a2ρ̄
. (1.31)

This equation is analogous to the damped harmonic oscillator. Thus, the factor 2H at the second
term on the left-hand side, which is related to the expansion of the Universe, acts like a friction
or resistance to the growth of δ.

On the right-hand side we have two opposing forces. On the one hand, there is gravity (4πGρ̄δk),
that enhances the growth of δ. On the other hand, pressure suppresses its growth, and this effect
is magnified at high values of k or, equivalently, small scales.

Since most of the matter in the Universe appears to consist of cold dark matter (CDM) and it
only interacts through gravity, from now on we will ignore the effects of pressure. So, in real
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space:
∂2δ

∂t2 + 2H
∂δ

∂t
= 4πGρ̄δ (1.32)

As nothing depends on x except δ, this equation admits factorisable solutions. Therefore, the
general linear solution has the form:

δ(x, t) = D1(t)A(x) + D2(t)B(x). (1.33)

The variables D1(t) and D2(t) are the density growth factors for the linear evolution of density
perturbations, and A(x) and B(x) are given by the initial conditions. Consequently, the rate with
which the primordial inhomogeneities are to grow in the linear regime solely depends on the
growth factors D1(t) and D2(t).

One of these growth factors will decay faster than the other, so that its contribution can be
neglected. Taking into account that ρ̄ = ρcΩ and the definition of ρc (1.8), we find that the time
evolution of the leading growing factor D(t) is determined by1:

D̈ + 2HḊ =
3
2

ΩmH2D =
3

2a3 Ωm,0H2
0 D (1.34)

Matter and Dark Energy Dominated Universe

Currently, our Universe is dominated by matter and dark energy. For this reason, the growth
of inhomogeneities in such a situation is of special interest. We are going to consider that the
contribution of radiation to the total energy density is negligible (Ωr ∼ 0). Combining the first
and second derivatives of the Friedmann equation in (1.14), we find:

Ḧ + 2HḢ =
3

2a3 Ωm,0H2
0 H (1.35)

As a result, H(t) evolves according to the same equation as the growth factor D(t) in a Universe
dominated by matter. These two equations can be combined by multiplying (1.35) by D(t) and
subtracting H(t) times (1.34):

ḦD − D̈H + 2H(ḢD − HḊ) = 0 (1.36)

1In a so-called Einstein-de Sitter (EdS) Universe, which is purely dominated by matter Ω = Ωm = 1.
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Rearranging this expression conveniently leads us to the following differential equation

d
dt

[
a2H2 d

dt

(D
H

)]
= 0 (1.37)

whose solution is given by

D(z) =
5Ωm,0H2

0

2
H(z)

∫ ∞

z

1 + z′

H3(z′)
dz′. (1.38)

Here we have used the relation (1.4) between the redshift z and the scale factor a. The propor-
tionality constant in front of the integral is obtained by requiring that for a � 1 the growth factor
is the same as the one obtained for a matter dominated Universe (Einstein-de Sitter). In general,
the equation (1.38) has an exact solution in terms of hyper-geometric functions (see [121]), but
the following formula provides a sufficiently accurate approximation [24]:

(1 + z)D(z) ≈
(
5
2

)
Ωm

Ω
4/7
m −ΩΛ + [1 + Ωm/2][1 + ΩΛ/70]

(1.39)

where all the density parameters Ωi are evaluated at redshift z:

Ωm(z) = Ωm,0(1 + z)3 H2
0

H2(z)
(1.40)

ΩΛ(z) = ΩΛ,0
H2

0

H2(z)
. (1.41)

The growth factor is usually normalized such that D(z = 0) = 1, where z = 0 corresponds to t0.
With this normalization, and replacing cosmic time t with z, from (1.33) one can easily find the
following relation in Fourier space:

δ(k, z) = D(z)δ(k, 0) (1.42)

1.4 Redshift Space Distortions

Peculiar motions provoke perturbations in the observed redshift. A slightly overdense region
which is just beginning to collapse appears squashed in redshift space, as is illustrated in Figure
1.2 below. In each case, a contour of constant density is distorted in redshift space. The arrows
denote the direction and magnitude of the velocity.
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Real Space Redshift Space

Linear

Non
Linear

Figure 1.2: Illustration of the redshift space distortions.

For small (linear) overdensities, the peculiar velocities (vp) are smaller than the velocities due
to the expansion of the Universe (vH): vp < vH. In Figure 1.2 we can see that, since the closest
galaxies are moving away from us, they appear farther from us than they actually are. The
opposite happens with the galaxies on the farthest side of the overdense region.

On the contrary, in the case of a higher overdense region, when non-linear effects come into play
(vp > vH), it appears elongated along the line of sight. This is called the fingers-of-God effect:
structures have a tendency to point towards the observer. Furthermore, the peculiar velocities are
so large that the points on the bottom of the region (closest to us) appear at the opposite side in
redshift space. The combined effect of redshift space distortions in large and small scales is an
enhancement of the overdensity.

1.5 Angular Correlation Function

In order to characterize the evolution of large-scale structure in the Universe we need to use an
statistical approach, as we do not have direct observational access to primordial fluctuations (the
initial conditions for the evolution equations) and we cannot follow individual perturbations over
cosmic time. In this way, we can think of the observable Universe as being the evolved image of
a particular stochastic realization of a statistic ensemble of possibilities.

From now on, we consider the density field δ(x). Since at very large (linear) scales we observe
that fluctuations are gaussian, we usually assume that primordial fluctuations are indeed gaussian,
as generically predicted by inflation.
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Then, according to the Wick theorem, we only need the two-point correlation function to char-
acterize the density field (higher-order correlation functions vanish), which is defined as the
ensemble average of the product of the density at two different locations

ξ(r) = 〈δ(x)δ(x + r)〉 (1.43)

and it depends only on the norm of r due to the homogeneity and isotropy of the Universe. So,
for very large scales (i.e. the linear regime), when we can assume that δ(x) is gaussian, we only
need ξ(r) to characterize the field.

The physical interpretation of the two-point correlation function is that it measures the excess
over random probability that two particles at volume elements dV1 and dV2 are separated by a
distance x12 ≡ |x1 − x2|,

dP12

dV1dV2
= n̄2[1 + ξ(x12)] (1.44)

where n̄ is the mean density. It is convenient to work in Fourier space, as then it is easier to
distinguish between small and large scales. The matter power spectrum is the Fourier transform
of the two-point correlation function,

P(k) =

∫
d3rξ(r) exp(ik · r). (1.45)

Alternatively, we can express P(k) in terms of the Fourier transform of δ(x) and the three-
dimensional Dirac delta function δ3

D(k − k′):

〈δ(k)δ(k′)〉 = (2π)3P(k)δ3
D(k − k′). (1.46)

In order to normalize the power spectrum it is common to use the σ8 parameter (see Dodelson
2003 [60], page 286), which is defined as the variance of the mass density field filtered on a scale
of 8 Mpc/h,

σ2
8(z = 0) =

1
2π2

∫
dkk2P(k, z = 0)W̃2

8 (k), (1.47)

where W̃8(k) is the Fourier transform of the top-hat filter function and is given by

W̃8(k) =
3 j1(8k)

8k
, (1.48)

with j1 being a spherical Bessel function of the first kind. The σ8 parameter is related to the
observed abundance of massive clusters of galaxies. One of the more recent estimations of σ8
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(Dark Energy Survey Collaboration 2015 [165]) is σ8(Ωm/0.3)0.5 = 0.81 ± 0.06, where Ωm is the
matter density parameter today (1.9) and is estimated to have a value close to 0.3.

With the two-point correlation function or the power spectrum we can characterize the density
field at very large scales in three dimensions. However, whenever there is an intrinsic uncertainty
in the measure of radial distances to galaxies, e.g. for photometric surveys, it is more convenient
to introduce the angular two-point correlation function, ω(θ), that can be obtained from the
projection of the spatial two-point correlation function onto the surface of a sphere centered at
us. Since ξ is the ensemble average of the product of the density at two different points (1.43), in
order to obtain its angular counterpart we will have to project radially ξ twice. That is,

ω(θ) =

∫ ∫
dz1dz2φ(z1)φ(z2)ξ(s) (1.49)

where s =
√

r2(z1) + r2(z2) − 2r(z1)r(z2) cos θ is the comoving separation between a pair of
points and θ is the angular separation in the sky. Due to the uncertainty in the measured redshift,
the surface of the sphere we are considering has a certain width ∆z; the radial selection functions
φ(z1) and φ(z2) are introduced in order to take into account this issue. In galaxy surveys, for
example, φ(z) can be defined as the number of galaxies per unit redshift within a redshift bin (i.e.
within the shell) and it is normalized to unity.

1.5.1 Galaxy Bias

Until now we have considered the matter density field, and hence equation (1.49) describes the
angular distribution of the bulk of matter in the Universe. There is observational evidence that
the spatial clustering of galaxies can be biased relative to the spatial clustering of matter (Kaiser
1984 [86], Bardeen et al. 1986 [17]). The galaxy bias is the relationship between these two
distributions, that is between the spatial distribution of galaxies and the underlying matter density
field (composed mainly of dark matter). It is the result of the various physics of galaxy formation
which can cause the spatial distribution of baryons to differ from that of dark matter.

We define the linear galaxy bias as the ratio of the mean overdensity of galaxies δg to the mean
overdensity of mass,

b ≡ δg/δ, (1.50)

and can, in theory, depend on the scale and galaxy properties such as morphology, color, and
redshift. Since the power spectrum is proportional to the square of the density field (equation
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(1.46), in terms of the power spectrum, the linear bias can also be defined as:

b2(k) ≡ Pg(k)/P(k). (1.51)

Local Bias Model

The simplest possible model for the galaxy bias is the local bias model (see Fry & Gaztañaga
1993 [67]), in which the smoothed mean overdensity of galaxies is assumed to be a deterministic
function of the (similarly smoothed) mass density field δ̄g(x) = f (δ̄(x)), where the smoothed
density field is

δ̄(x) =

∫
d3x′δ(x′)W(x − x′), (1.52)

and W(x) is a normalized window function. For a top-hat window, δ̄(x) is just the volume average
of δ(x) over a sphere of radius R. On large scales, where δ << 1, we can expand f as a Taylor
series,

δ̄g = f (δ̄) =

∞∑
j=0

b j

j!
δ̄ j. (1.53)

The linear term, b1 corresponds to the so-called linear bias factor. We can use this model to
obtain the power spectrum of galaxies from the matter power spectrum. Taking (1.53) at linear
order, and using the definition of P(k), eq. (1.46), we get

Pg(k) = b2
1P(k). (1.54)

This expression is very useful in order to approximate the galaxy power spectrum at very large
scales, i.e., in the linear regime.

1.5.2 The Kaiser Factor

We have already seen that redshift space distortions produce an enhancement of overdensities
and hence they affect the power spectrum P(k). In linear perturbation theory, the relation between
the power spectrum in real and in redshift space is given by the so-called Kaiser factor.

According to Kaiser 1987 [87], the Fourier amplitude of fluctuations in redshift space δS
k is

amplified with respect to that of real space by a factor that depends on the angle between the
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wavevector k and the line of sight l.

δS
k = δR

k(1 + βµ2
kl) (1.55)

Here µkl is the cosine of the angle between k and l and β ≡ f /b1, where f is the logarithmic
derivative of the growth factor D(z) and b1 is the linear bias factor. From equation (1.55) we can
obtain the relation between the two-dimensional power spectrum in redshift and in real space:

PS (k, µkl) ≡ 〈δS
kδ

S ∗
k 〉 = PR(k)(1 + βµ2

kl)
2. (1.56)

It is convenient to characterize the two-dimensional redshift space power spectrum in terms of
multipole moments, that define the decomposition of PS (k, µ) into Legendre Polynomials,

PS (k, µ) =

∞∑
l=0

PS
l (k)Ll(µ) (1.57)

where Ll(µ) are the Legendre polynomials of l-th order. The multipole moments PS
l (k) can be

computed by the inversion formula

PS
l (k) ≡

2l + 1
2

∫ +1

−1
dµPS (k, µ)Ll(µ). (1.58)

Recall that the first three even Legendre Polynomials are:

L0(µ) = 1

L2(µ) =
3µ2 − 1

2
(1.59)

L4(µ) =
35µ4 − 30µ2 + 3

8
.

With this, we can see in equation (1.56) that PS (k, µ) contains no odd powers of µ and no
powers higher than µ4, and hence it is characterized completely by its monopole, quadrupole and
hexadecapole moments (l = 0, 2, 4). As a consequence, all odd multipoles and also those with
l > 4 must vanish according to (1.57). The non-vanishing multipole moments can be obtained by
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direct integration:

PS
0 (k) =

(
1 +

2
3
β +

1
5
β2

)
PR(k)

PS
2 (k) =

(
4
3
β +

4
7
β2

)
PR(k) (1.60)

PS
4 (k) =

(
8

35
β2

)
PR(k)

PS
l (k) = 0 for l , 0, 2, or 4. (1.61)

1.5.3 Anisotropic Clustering

In order to introduce the effects of redshift space distortions in the shape of the angular correlation
function ω(θ) we need to replace the spatial correlation function in equation (1.49) with the
anisotropic two-dimensional correlation function, as we can relate it with the two-dimensional
power spectrum in redshift space of the previous section2: P(k, µ). That is,

ω(θ) =

∫ ∫
dz1dz2φ(z1)φ(z2)ξ(s, µsl) (1.62)

where µsl is the cosine of the angle between the separation vector s and the line of sight l, and it
takes the form:

µsl =
r(z2) − r(z1)

s
cos

(
θ

2

)
. (1.63)

Following the same procedure as in the previous section, it is convenient to expand the two-
dimensional spatial correlation function ξ(s, µsl) as

ξ(s, µsl) =
∑
l even

ξl(s)Ll(µsl). (1.64)

Even though in theory this is an expansion over infinite even multipoles, just a few of them have
a non-negligible contribution at large scales (see e.g. Sánchez et al. 2013a [162]), meaning that,
in practice, most of the information is enclosed in the monopole and the quadrupole, and the
multipoles of order l ≥ 4 can be safely neglected. Then,

ξ(s, µsl) = ξ0(s) + L2(µsl)ξ2(s), (1.65)

2To simplify notation, from now on, we use P(k, µ) for PS (k, µ). We also apply this notation to other parameters
in redshift-space.
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where ξ0(s) and ξ2(s) are, respectively, the monopole and the quadrupole and L0(µsl) has been
replaced by 1. In order to obtain a description of these multipoles ξl(s) it is convenient to work
with the two-dimensional redshift space power spectrum, P(k, µkl). As we have seen in the
previous section, this quantity can be decomposed in terms of Legendre polynomials (1.57) and,
from its multipoles Pl(k), we can obtain the multipoles ξl(s) through

ξl(s) = il 1
2π2

∫ ∞

0
dkk2Pl(k) jl(ks) (1.66)

where ξl(s) is the l-th order harmonic coefficient of the redshift space two-dimensional correlation
function and jl(ks) is the spherical Bessel function of order l. The derivation of this identity can
be found in Cole et al. 1993 [49].

1.6 Weak Gravitational Lensing

One of the predictions of Einstein’s General Relativity is that light is deflected when it propagates
through an inhomogeneous gravitational field. Images of distant objects are distorted by the
intervening foreground matter distribution, inducing changes in shapes, apparent positions and
fluxes of the background population. This effect is called gravitational lensing and it is a powerful
probe of cosmology because it provides an invaluable way of probing mass distributions directly.
This way we can directly compare observations with theoretical predictions without the need of
understanding galaxy bias.

One of the most spectacular manifestations of gravity bending light paths is the so-called strong
gravitational lensing. This regime corresponds to strongly non-linear perturbations produced by
highly non-linear massive objects (e.g. clusters of galaxies), and can lead to multiple images of
distant objects. In this case, the analysis of the distortion of images of background sources can
be used to extract information on the properties of the foreground lens, such as its mass. The
first observation of a multiply imaged quasar was achieved in 1979 by Walsh, Carswell, and
Weymann [170]. Since then, dozens of multiply imaged quasars have been observed.

Alternatively, in the weak gravitational lensing regime, the distortions are small (of the order of
1%) and are not associated with a particular intervening lens, but rather by the generic large-scale
structure in the universe. Then, one does not use gravitational lensing to obtain the characteristics
of a single massive object but tries to derive the statistical properties of the density field, such as
the correlation function or the power spectrum (see §1.5). In the following we will thus focus on
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Figure 1.3: Sketch of the geometry of the gravitational lensing effect (from
Munshi et al. 2008 [114]).

relating the distortion of galaxy images to the underlying mass power spectrum. For extensive
reviews see [18, 82, 89, 114, 115, 140].

1.6.1 Deflection of Light Rays

A schematic picture of the light deflection due to gravitational lensing is shown in Fig. 1.3. As
they travel from the source to the observer, photons get deflected an angle α by a gravitational
potential fluctuation Φ. This changes the observed position of the source by the angle δθ, from
the intrinsic source direction θS to the image direction θI on the sky. The deflection angle, α is
given by the line integral of the gravitational acceleration perpendicular to the path:

α = −
2
c2

∫
∇⊥Φ(r′) dr′. (1.67)



1.6. Weak Gravitational Lensing 23

For small deflection angles, the phenomenon can be approximated to a single thin lens problem,
and then from Fig. 1.3 we can see that δθ and α are related by the lens equation

δθ = −
rs − r

rs
α, (1.68)

where δθ and α are vectors in the plane perpendicular to the unperturbed light ray, and rs and r
are the comoving radial distances to the source and the lens, respectively. Combining equations
(1.67) and (1.68) we then have

δθ = θI − θs =
2
c2

∫ rs

0
dr

rs − r
rs
∇⊥Φ(r), (1.69)

where θS is the intrinsic position of the source on the sky and θI is the observed position. It is
useful to define the effective lensing potential as the projected Newtonian potential of the lenses

Ψ(θ, rs) =
2
c2

∫ rs

0
dr

rs − r
rs r

Φ(r, rθ), (1.70)

since then the deflection angle reads

α(rs) = ∇θΨ(θ, rs). (1.71)

Equation (1.70) is valid for an extended three-dimensional distribution of matter, that is, it
accounts for the distortions induced by all the lenses at any distance between the source and the
observer. However, it assumes the Born approximation, in which integrals along the line-of-sight
are computed along the unperturbed path. This is accurate in most cosmological situations, since
the deflection angle is small, and we shall assume it hereafter.

If a source is much smaller than the angular scale on which the lens properties change, the lens
mapping can locally be linearized. The distortion of images is then described by the amplification
matrix Ai j, which is given by the Jacobian matrix of the transformation

Ai j ≡
δθS

δθI
= δi j − ∂i∂ jΨ ≡

1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

 , (1.72)

which defines the convergence κ and the complex shear γ = γ1 + iγ2. We are interested in the
weak lensing limit, where |κ|, |γ| � 1. At linear order the convergence gives the magnification
of the source as µ ' 1 + 2κ. The shear is the quantity that is most easily determined from
observations, and it is directly related to the ellipticity of the observed galaxy. From Eq.(1.72)
the convergence κ and the shear components γ1, γ2 can be written at linear order in terms of the
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second derivatives of the effective lensing potential

κ =
1
2

(
Ψ,11 + Ψ,22

)
γ1 =

1
2

(
Ψ,11 − Ψ,22

)
, γ2 = Ψ,12

(1.73)

where the commas denote derivatives with respect to directions perpendicular to the line of sight.

1.6.2 Convergence and Shear Power Spectra

The gravitational potential, Φ, is related to the fluctuations of the density contrast, δ, by Poisson’s
equation,

∇2Φ =
3ΩmH2

0

2a
δ. (1.74)

On the other hand, thanks to the radial integration over r in Eq.(1.70), gradients of the grav-
itational potential along the radial direction give a negligible contribution as compared with
transverse fluctuations [84, 88, 101] since positive and negative fluctuations cancel along the
line of sight. Since the convergence κ is related to the effective lensing potential Ψ via a 2D
Laplacian (1.73), it can be expressed in terms of the 3D Laplacian (1.74) at each point along the
line of sight. This yields for the converge

κ(θ, rs) =
3H2

0Ωm

2c2

∫ rs

0
dr

rs − r
rs

r
a(r)

δ(r, rθ). (1.75)

Thus, the convergence can be expressed very simply in terms of the density field; it is merely an
average of the local density contrast along the line of sight. Therefore, weak lensing observations
allow us to measure the projected density field κ on the sky. The mean convergence from a
population of source galaxies is obtained by weighting the above expression with the galaxy
probability distribution in comoving distance, φ(r)dr. Interchanging the integral order results in
the following expression,

κ(θ) =
3H2

0Ωm

2c2

∫ rlim

0
dr

r
a(r)

q(r)δ(r, rθ), (1.76)

q(r) =

∫ rlim

r
drs φ(rs)

rs − r
rs

, (1.77)

where we define q as the lens efficiency and rlim is the limiting comoving distance of the
galaxy sample. By construction, the expectation value of convergence and shear are zero, since
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〈δ〉 = 0. The first non-trivial statistical measure of the distribution of κ and γ are second moments.
Similarly to what is shown in §1.5 for the density contrast, in real space the second-order function
of the convergence is the two-point correlation function (2PCF) 〈κ

(
ϑ
)
κ
(
ϑ + θ

)
〉. The brackets

denote ensemble average, which can be replaced by a spatial average over angular positions ϑ.
Expressed in Fourier space, the 2PCF defines the convergence power spectrum Pκ with

〈κ(`)κ(`′)〉 = (2π)2 δD(` − `′)Pκ(`). (1.78)

In this equation we used a flat-sky approximation, which is sufficient for most weak lensing
purposes. For lensing on very large scales, and for 3D lensing, the curvature has to be accounted
for by more accurate expressions [103], or by applying spherical harmonics instead of Fourier
transforms. Taking the square of (1.75) in Fourier space, we obtain the 2D convergence power
spectrum in terms of the 3D matter power spectrum P(k, r) integrated along the line of sight,

Pκ(`) =
9ΩmH4

0

4c2

∫ rlim

0
dr

q2(r)
a2(r)

P
(
k =

`

r
, r

)
. (1.79)

In addition to the small-angle approximation and the flat-sky limit, here we have used Limber’s
approximation, which only collects modes that lie in the plane of the sky, thereby neglecting
correlations along the line of sight [88, 100].

We can obtain the power spectrum of the shear from the convergence one from the relations
between κ, γ and the lensing potential (1.73). Writing Eq.(1.73) in Fourier space, and using
complex notation for the shear, one finds

γ(`) =
(`1 + i`2)2

`2 κ(`) = e2iβκ(`), (1.80)

with β being the polar angle of the wave-vector ` = (`1, `2), written as complex quantity.
Therefore we get that the power spectrum of the shear equals the one of the convergence, Pγ = Pκ.
The shear power spectrum can in principle be obtained directly from observed ellipticities (see e.g.
Hu & White 2001 [80]). However, the simplest way to estimate second-order shear correlations
are in real space, which we will discuss in the following section.

1.6.3 Shear Correlation Function

The advantage of the shear two-point correlation function over its Fourier transform, shown in
the previous section, is that it can be estimated by simply multiplying the ellipticities of galaxy
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pairs and averaging. For weak gravitational lensing, these estimates are very noisy, since the
galaxies as a population have intrinsic ellipticities with a dispersion of about 0.4, whereas the
typical cosmic shear is around 0.01. Therefore, one needs a large number of galaxies to decrease
the noise associated with this intrinsic ellipticities.

The shear of each galaxy can be decomposed into two components: the tangential shear, γt, and
the cross-component, γ×. With respect to a given direction vector θ whose polar angle is β, they
are defined as

γt = −Re
(
γe−2iβ

)
(1.81)

γ× = − Im
(
γe−2iβ

)
. (1.82)

The minus sign is a convention in order to have a positive value of γt for the tangential alignment
around a mass overdensity. Radial alignment around underdensities have a negative γt. Three
two-point correlators can be formed from the shear components: 〈γtγt〉, 〈γ×γ×〉, and 〈γtγ×〉. The
latter vanishes in a parity-symmetric universe, and the other two are combined into the two
components of the shear two-point correlation function [111],

ξ+(θ) = 〈γγ∗〉(θ) = 〈γtγt〉(θ) + 〈γ×γ×〉(θ) (1.83)

ξ−(θ) = Re
[
〈γγ〉(θ)e−4iβ

]
= 〈γtγt〉(θ) − 〈γ×γ×〉(θ. (1.84)

From the equality of the shear and convergence power spectrum it follows that ξ+ is identical to
the two-point correlation function of the convergence, κ. Using equations (1.78) and (1.80), we
can write the shear 2PCF as Hankel transforms of the convergence power spectrum,

ξ+(θ) =
1

2π

∫
d` ` j0(`θ)Pκ(`) (1.85)

ξ−(θ) =
1

2π

∫
d` ` j4(`θ)Pκ(`), (1.86)

where j0,4 are spherical Bessel functions of order 0 and 4, respectively.
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1.7 Cosmic Microwave Background

1.7.1 Introduction

At early times photons and baryons were highly coupled by Thomson scattering. There were two
opposing forces in action, gravity against pressure, as depicted in (1.31). Overdense regions tend
to be compressed by gravity. However, the compression of the region caused its temperature to
rise, and hence increase its pressure. Since dark matter is also affected by gravity, it fell onto
the perturbation overdensities. The effect of these forces generated the so-called acoustic waves
in the baryon-photon fluid. The Universe was effectively opaque, since the mean free path of
photons was very short. Since the Universe at that time was already expanding, there was a
moment in which it cooled down enough for the photons to decouple from matter; thus making
the Universe transparent. The photons from the plasma were then free to propagate through the
Universe, generating the radiation that we see now in all directions of the sky, and that we call
the cosmic microwave background (CMB). In this manner, the photons of the CMB picture the
photon-baryon fluid at the last scattering surface.

The CMB was first detected by Penzias and Wilson in 1965 [125], when they detected an
excess of temperature of about 3.5 K after accounting for all possible noise contributions in
their observations. But it was not until 1992 that an experiment on the COBE satellite [158]
confirmed the black-body spectrum of the CMB and determined the (isotropic) temperature to
be 2.725 K [108, 109]. Even if the agreement with a black-body spectrum is extremely high,
the CMB is not isotropic. If we look at different points in the sky we observe anisotropies
giving slightly different temperatures for the photons in those regions, at the order of 1 part in
105. These anisotropies were originated by the acoustic oscillations in the primordial baryon-
photon fluid, which eventually generated the large-scale structure distribution we observe today.
Therefore, there is a lot of cosmological information imprinted in them and, more importantly,
from the observations of these anisotropies we can extract cosmological information from the
early Universe, which is complementary to the information we can extract from low-redshift
probes (such as galaxy clustering and cosmic shear, described in the previous sections).

While COBE first detected anisotropies on the largest scales, there are now convincing and very
precise measurements from space (e.g. WMAP [22], Planck [131, 132, 134]) and ground-based
telescopes (e.g. the Atacama Cosmology Telescope [ACT, 55], the South Pole Telescope [SPT,
161]), and many future observations are planned at even greater resolution and/or sensitivity,
such as the Simons Observatory [SO, 8]. The standard approach used when analyzing these
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anisotropies consists in decomposing them in spherical harmonics, Y`m(θ, φ),

∆T (θ, φ)
T0

=

∞∑
`=0

m=∑̀
m=−`

a`mY`m(θ, φ). (1.87)

And then from these a`m coefficients we can obtain the temperature angular power spectrum,

C` =
1

2` + 1

∑̀
m=−`

|a`m|2 , (1.88)

which is the primary observable for the CMB anisotropies. This statistical treatment is very
similar to that of density fluctuations.

1.7.2 CMB lensing

Besides the temperature power spectrum we can also obtain cosmological information from the
CMB polarization power spectrum and the CMB lensing; that is, the weak gravitational lensing
of the CMB photons by the inhomogeneous matter distribution between us and the last scattering
surface [97]. In order to analyze the CMB lensing signal we use the convergence angular power
spectrum defined in §1.6.2, which is given by Eq.(1.79). The difference with respect to the
convergence power spectrum of background (source) galaxies is that here the source is located at
the last scattering surface (at z ' 1090). For more extensive reviews see [45, 60, 78, 79, 99, 148].

The effect of lensing is to remap the CMB fluctuations, so that the observed anisotropy in the
direction n̂ is in fact the unlensed “primordial” anisotropy in the direction n̂ + ∇φ(n̂), where
φ(n̂) is the CMB lensing potential. The lens-induced remapping imprints distinctive statistical
signatures onto the observed CMB fluctuations, which can be used to extract cosmological
information in a process known as lens reconstruction [117].

Quadratic combinations of the CMB fields can be used to form estimators of the projected
gravitational potential, and therefore of the projected mass [72, 175]. Neglecting the lensing of
primordial B-modes there are five possible estimators, denoted by φ̂TT , φ̂T E, φ̂EE, φ̂EB, and φ̂T B,
which are based on various correlations of the CMB temperature (T) and polarization (E and B).
In addition, we can form a minimum-variance estimator, φ̂MV , that combines all five estimators.
In Fig. 1.4 we show as an example the lens reconstruction noise levels for these estimators from
Planck 2015 [132]. The most powerful estimator is TT, although TE and EE estimators are also
useful on large angular scales.
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Figure 1.4: Lens reconstruction noise levels for the TT, TE, EE, EB, and TB
estimators from Planck [132]. The noise level for their minimum-variance
combination (MV) is shown in grey, while the fiducial theory CMB lensing
power spectrum is shown in solid black.

The quadratic lensing estimators take inverse-variance filtered CMB multipoles as input, that
are obtained using a filter that masks the Galaxy and point sources, including the brightest
Sunyaev-Zel’dovich (SZ) clusters. After all the masks are applied, and the signal coming from
systematics is corrected, we can estimate the power spectrum of the lensing potential using the
auto- and cross-spectra of the quadratic lensing estimators. These spectra probe the 4-point
function of the lensed CMB. Then, we can estimate the contribution to the 4-point function
that is not sourced by lensing and subtract it, obtaining an estimate of the CMB lensing power
spectrum.
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Chapter 2

The Dark Energy Survey

As we have seen in Chapter 1, there is wealth of cosmological information that we can extract
from galaxy clustering and cosmic shear and, in order to do so, we use 2-point statistics, either
in real or Fourier space. Thus, we need large samples of galaxies in order to have precise
measurements of the cosmological parameters. Over the past two decades, large galaxy surveys
such as the Automatic Plate Measuring Survey [APM, 106], the 2dF Galaxy Redshift Survey
[2dFGRS, 50], the Sloan Digital Sky Survey [SDSS, 172], the WiggleZ Dark Energy Survey
[31] and the Baryon Oscillation Spectroscopic Survey [BOSS, 56] have enabled to study in detail
the large-scale structure of the Universe, and galaxy clustering has become a powerful tool to
study galaxy formation and evolution and to tighten constraints on cosmological parameters. In
this chapter we focus our attention to describe the Dark Energy Survey [DES, 164], which is the
main source of data used in this work.

2.1 Photometric Surveys

There are two ways of measuring redshifts: spectroscopy and photometry. The former consists
in measuring the spectrum of light from the source and compare the observed wavelengths of
spectral features to their respective rest frame values to obtain the redshift through its definition,
z ≡ (λobs−λrest)/λrest. Some examples of spectral features commonly used are the Hα emission line
at 6563 Å and the 4000 Å break, caused by a confluence of absorption lines. Unfortunately, even
though the spectroscopic technique allows to measure redshifts with high accuracy, obtaining
spectroscopic redshifts for all galaxies is typically impossible in wide-field imaging surveys due
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Figure 2.1: DES standard band-passes for the DECam grizY filters [4]. The
band-passes represent the total system throughput, including atmospheric
transmission and the average instrumental response across the science CCDs.

to the large number (∼ 108 − 109) of galaxies and the high cost of spectroscopy, especially for
the high-redshift galaxies.

To circumvent this problem, the current approach in the community is to estimate redshifts
using photometric measurements, i.e. fluxes from a few broad-band filters. Each of these filters
has a transmission function Ti(λ) associated to them, which determines the fraction of photons
of a given wavelength that passes through the filter. By definition, Ti(λ) always has values
between 0 and 1, being 0 when the filter is opaque and 1 when the filter is transparent to that
wavelength. Given an object with specific flux Fλ, and a filter with relative transmission Ti(λ),
the flux through that filter would be,

Fi =

∫
dλTi(λ)Fλ. (2.1)

In Fig. 2.1 we show as an example the relative transmission of the broad-band filters used in DES.
Because of the low-resolution spectra measured with these broad-band filters, the photometric
redshifts (hereafter photo-zs) cannot be inferred from a spectral feature, and are necessarily less
accurate than spectroscopic redshifts. For this reason, the photo-z error distributions need to
be quantified precisely in order to be able to use the photometric redshifts for the cosmological
analysis. The standard approach to quantify, or calibrate, the photo-z error distributions is to use
a small subsample of galaxies with accurately known redshifts. There are two main methods to
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estimate the photometric redshifts: template-based and training-based.

The template-based technique uses a set of spectral energy distribution (SED) templates from
real data or from theoretical models. Since the specific flux Fλ of these templates is known, we
can then integrate them using the transmission functions of our filters (2.1) while redshifting the
templates. This provides us with a set of fluxes for each band that depend on the redshift. We
then compare our fluxes with the redshifted ones from the templates and look for the redshift
that minimizes the differences.

In the other method, training-based, we start with a set of objects, a training sample, for which
we have both photometry and spectroscopy. The technique consists in using this training sample
to derive a relationship between redshift and fluxes, and then apply this function to all the objects
for which we do not have spectroscopy. The standard approach to find this relationship is using
machine-learning techniques, such as neural networks or random forests. See [73, 146] for
several examples of template and training-based techniques.

2.2 Survey Specifications

2.2.1 Overview

DES is an imaging survey of 5000 deg2 of the Southern sky, using a 570 megapixel camera on the
Cerro Tololo Inter-American Observatory (CTIO) 4 m Blanco telescope in Chile. Photometric
redshifts are obtained from the multi-band photometry to produce a quasi three-dimensional
survey. The main goal of DES is to determine the dark energy equation of state parameter
w (1.12) and other key cosmological parameters. DES will measure w using complementary
techniques in a single survey: counts of galaxy clusters, weak gravitational lensing, galaxy
clustering and Type Ia supernovae. DES is expected to catalog 300 million galaxies with
photometric redshifts; 200 million of them will have shape measurements for weak lensing. It
is expected that the uncertainty on w will be only a few percent for each probe. See [164] for
detailed parameterizations and statistics.

DES is an international collaboration, with over 400 scientists from the US, the UK, Spain,
Brazil, Germany, Switzerland and Australia. The DES Science is coordinated by a Science
Committee comprised of thirteen Science Working Groups (SWGs). The first light of DES was
obtained in September 2012, followed by commissioning of the Dark Energy Camera (DECam)
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Figure 2.2: Image of the DES survey area in celestial coordinates, from [61].
The sky coverage in the first year of observations is shown in red. The ∼ 5000
deg2 wide-area survey footprint is outlined in black. The circles outlined in
black represent the supernova fields, and the regions overlapping with Stripe
82 (S82) and SPT are also labeled.

[65]. Science verification (SV) observations took place from November 2012 to February 2013,
and Year 1 observations were taken from August 2013 to February 2014. In this work we use
data from the first year of observations (Y1) and from the first three years of observations (Y3
hereafter), which were taken from August 2013 to February 2016, see §2.3 for an overview of
the characteristics of these datasets.

2.2.2 DECam and Observation Strategy

In this section we briefly describe the characteristics of the DECam instrument and the DES
observation strategy. DECam is a wide-field-of-view (3 deg2) mosaic camera containing 62
science CCDs [65]. The DES wide-area survey observes five broadband filters, grizY , which are
very similar to their analogously named counterparts from other surveys. In Fig.2.1 we show
the relative transmission functions of these filters. Additional details, including construction,
installation, and a description of DECam subsystems and interfaces are provided in Flaugher et
al. 2015 [65].
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The DES footprint is shown in Fig.2.2. The wide-area footprint shape was selected to obtain a
large overlap with the South Pole Telescope (SPT) survey [41] and Stripe 82 from SDSS [1], and
includes a connection region to enhance overall calibration. Given the cosmological goals of
the survey, DES avoids the Galactic plane to minimize stellar foregrounds and extinction from
interstellar dust.

2.3 Data

In this section we briefly describe the two DES data sets considered in this work. Those are, the
Y1 catalog, generated from the first year of observations, and the Y3 catalog, created from the
first three years of observations.

2.3.1 Year 1

Here we describe the catalog used for the cosmological analysis of the first year of observations,
the so-called Y1 ‘Gold’ catalog, and the galaxy sample used for this work. The Y1 Gold data
set is assembled from multiple epochs of DES imaging and it contains ∼ 137 million objects
detected in coadded images covering 1800 deg2 in the DES grizY filters. The sky coverage in
Y1 is about 40% of the total DES footprint, averaging three to four visits per band. The Y1
footprint consists of two areas: one near the celestial equator including Stripe 82, and a much
larger area that was also observed by SPT (see red region in Fig.2.2). After masking for bright
stars and other poor-quality regions, including the Large Magellanic Cloud, the total area covered
is reduced to ∼ 1500 deg2. The limiting magnitude for galaxies at a signal-to-noise ratio of
S/N= 10 is g = 23.4, r = 23.2, i = 22.5, z = 21.8, and Y = 20.1. See [61] for an extensive
description of the Y1 Gold catalog.

In this work we use Y1 data for galaxy clustering measurements, i.e. for measuring the angular
correlation function ω(θ). The galaxy sample that we use here is the lens sample used for the joint
analysis of galaxy clustering and cosmic shear in DES [2]. This sample consists of redMaGiC
galaxies, which have the advantage of being easily identifiable, relatively strong clustered, and
of having relatively small photo-z errors (σz/(1 + z) < 0.02 over the redshift range of interest).
They are selected using a simple algorithm described in [143] that consists in the following:

1. Fit every galaxy in the survey to a red-sequence template and compute the corresponding
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Luminosity Redshift range Ngal

L > 0.5L∗ 0.15 – 0.30 63,719
L > 0.5L∗ 0.30 – 0.45 163,446
L > 0.5L∗ 0.45 – 0.60 240,727
L > 1.0L∗ 0.60 – 0.75 143,524
L > 1.5L∗ 0.75 – 0.90 42,275

Total 0.15 – 0.90 653,691

Table 2.1: Summary statistics of the DES red-sequence galaxy samples
(redMaGiC) from Y1 data. The effective sky area covered by these samples
is 1321 deg2.

best-fit redshift zred.

2. Evaluate the goodness-of-fit χ2 of the red-sequence template and the galaxy luminosity,
using the assigned photometric redshift.

3. Include the galaxy in the redMaGiC catalog only if it is bright and the red-sequence
template is a good fit; that is, if the luminosity of the galaxy is above a certain threshold
(L ≥ Lmin) and χ2 ≤ χ2

max.

The red-sequence template used in redMaGiC was generated by the training of the redMaPPer
cluster finder [144, 145]. As described in [145], training of this red-sequence template requires
overlapping spectroscopic, which in this work were obtained from SDSS in the Stripe 82 and the
DES deep supernova fields [174]. In practice, we do not specify χ2

max but instead demand that the
resulting galaxy sample has a constant comoving density as a function of redshift. Consequently,
redMaGiC galaxy selection depends upon only two parameters: the luminosity threshold, Lmin,
and the comoving density, n̄, of the sample. Reference luminosities are defined as a function
of L∗, computed using a Bruzual and Charlot [36] model for a single star-formation burst at
z = 3, see §3.2 of [145]. Naturally, increasing the luminosity threshold provides a higher redshift
sample as well as decreasing the comoving number density.

Three separate redMaGiC samples were generated from the Y1 data, referred to as the high-
density, high-luminosity, and higher-luminosity samples. The corresponding luminosity thresh-
olds and comoving densities for these samples are, respectively, Lmin = 0.5L∗, 1.0L∗, and 1.5L∗,
and n̄ = 10−3, 4 × 10−4, and 10−4 galaxies/(h−1 Mpc)3, where h is the reduced Hubble constant.
These galaxies are placed in five disjoint redshift bins of width ∆z = 0.15 from z = 0.15 to
z = 0.9. The lowest three bins are high-density, while the galaxies in the two highest redshift
bins are high-luminosity and higher-luminosity, respectively.
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Figure 2.3: Redshift distribution of the combined redMaGiC sample in 5
redshift bins, obtained from stacking Gaussian PDFs with mean and standard
deviation given by the redMaGiC algorithm [62].

The redMaGiC algorithm produces a best-fit redshift zred and an uncertainty σz. We assume
that the redshift probability distribution function (PDF) for each galaxy is given by a Gaussian
distribution with mean zred and standard deviation σz. We then obtain an overall estimate of the
redshift distributions of the samples by stacking these Gaussian PDFs. The details of these bins
are given in Table 2.1 and their estimated redshift distributions are shown in Fig.2.3. The number
of objects in each bin increases up to z = 0.6 due to the increase in volume, and decreases at
higher redshift due to the increased luminosity threshold. The clustering properties of these
galaxies are essential for the analysis of the galaxy clustering, that we use in this work. Thus, we
need to ensure that the galaxy maps are not contaminated by systematic effects, as that could
affect our clustering measurements. This requires the shallowest or otherwise irregular or patchy
regions of the total ∼ 1800 deg2 Y1 area to be masked, leaving a contiguous 1321 deg2 as the
area for the analysis. See [62] for a detailed description of the clustering properties of the sample
and its calibration, masking and correction of systematic effects.
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2.3.2 Year 3

Here we briefly describe the catalog that will be used for the cosmological analysis of the first
three years of observations, the Y3 ‘Gold’ catalog, and the galaxy samples used for this work.
This catalog will be described more extensively in [150, in prep.] and it is largely based on
the raw coadded catalog from the first three years of data (Y3) that was released publicly as
the DES Data Release 1 (DR1)1. The DES DR1 is the first DES catalog that spans the whole
footprint (∼ 5000 deg2, see Fig.2.2), and it is described in [4], alongside with the details of the
Data Management pipeline in [112] and photometric calibrations in [37]. The Y3 Gold catalog
contains ∼ 388 million objects detected in coadded images covering ∼ 5000 deg2 in the DES
grizY filters. The area has increased almost a factor 3 in griz with respect to the Y1 Gold catalog.

We will use two different lens samples for the Y3 joint analysis of galaxy clustering and galaxy-
galaxy lensing. The first one is a sample generated using the redMaGiC algorithm, which is
designed to find red-sequence galaxies in photometric data. This is the method that was used for
the Y1 analysis and has the advantage of producing galaxy samples with a small photometric
uncertainty. The second one, the magnitude limited sample, is a sample defined with a magnitude
cut in the i band depending linearly with the photometric redshift. In this way, this magnitude
limited sample reaches higher number density and higher redshift than the redMaGiC sample,
with the caveat of slightly larger photometric uncertainties. Another advantage of the magnitude
limited sample is that its selection is much simpler than with the redMaGiC sample, hence we
expect simpler modeling of nuisance parameters (e.g. galaxy bias) and covariance associated to
the sample.

In the following, we will describe the characteristics of these samples. Note that the Y3 analysis
is still ongoing, and the details of these samples may vary when the analysis is complete. Here
we just present their approximate specifications, which will be the baseline of the forecasts
presented in this work.

redMaGiC sample

Similarly to Y1 (§2.3.1), three separate redMaGiC samples are generated from Y3 data: high-
density (HD), high-luminosity (HL) and higher-luminosity (HL+) samples. The corresponding
thresholds and comoving densities are the same as in Y1. There are two differences in the Y3

1Available at https://des.ncsa.illinois.edu/releases/dr1

https://des.ncsa.illinois.edu/releases/dr1
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redMaGiC Magnitude limited
Luminosity Redshift range Ngal Redshift range Ngal

L > 0.5L∗ 0.15 – 0.35 341,602 0.20 – 0.35 1,680,160
L > 0.5L∗ 0.35 – 0.50 589,562 0.35 – 0.50 1,678,655
L > 0.5L∗ 0.50 – 0.65 877,267 0.50 – 0.65 1,460,354
L > 1.0L∗ 0.65 – 0.85 679,291 0.65 – 0.80 1,975,242
L > 1.0L∗ 0.85 – 0.95 418,986 0.80 – 0.95 2,374,205

0.95 – 1.05 1,470,893
Total 0.15 – 0.95 2,906,708 0.20 – 1.05 10,639,509

Table 2.2: Summary statistics of the DES red-sequence redMaGiC galaxy
sample (left) and the magnitude limited sample (right) from Y3 data. The
effective sky area covered by these samples is 4182 deg2.
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Figure 2.4: Redshift distribution of the combined Y3 redMaGiC sample in 5
redshift bins, obtained from stacking Gaussian PDFs with mean and standard
deviation given by the redMaGiC algorithm.

data version of these samples. First, the HL and HL+ samples reach higher redshift than in Y1
(zmax = 0.95 instead of zmax = 0.9 ). Second, HL has a higher number of galaxies than HL+

across the whole redshift range. Thus, the combined Y3 redMaGiC is comprised by three HD
redshift bins at low redshift, and two HL redshift bins at higher z. Therefore, we use HL for
the last redshift bin instead of HL+, which was used for the Y1 analysis. The details of these
are given in Table 2.2 (left), and their estimated redshift distributions are shown in Fig.2.4. The
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Figure 2.5: Redshift distributions of the DES Y3 magnitude limited sam-
ple in 6 redshift bins, obtained from the photo-z validation with VIPERS
spectroscopic galaxies.

redshift distributions have been estimated by stacking Gaussian PDFs, similarly to Y1. After
masking the shallowest or otherwise irregular or patchy regions of the total ∼ 5000 deg2 Y3
area, a contiguous 4182 deg2 area remains for the analysis. The correction of observational
systematics and the galaxy clustering measurements for this and the magnitude limited sample
will be presented in [141, in prep.].

Magnitude limited sample

This is a flux limited sample that has a magnitude cut on the i band depending linearly with
the photometric redshift, and a lower cut to remove the most luminous objects. We select the
galaxies applying these two cuts on the i band magnitude,

i < 4z + 18,

i > 17.5,
(2.2)
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and then we bin the sample in 6 tomographic z bins, from z = 0.2 to z = 1.05. The details of
these are given in Table 2.2 (right), and their estimated redshift distributions are shown in Fig.2.5.
The sample is complete in regions of the survey deeper than i = 22.2 magnitudes. Therefore,
we will only consider such regions as our baseline footprint. Since we want to compare the
cosmological constraints obtained from this sample with the redMaGiC sample, we combine the
masks of these two samples, resulting in a unique mask that is applied to both, with an effective
area of 4182 deg2.

The photometric redshifts used for redshift binning and galaxy selection (2.2) are derived
using the Directional Neighborhood Fitting (DNF) algorithm [58], which is trained with public
spectroscopic samples. We use the predicted value in the fitted hyper-plane from the DNF
code as our point estimate for galaxy redshifts (photo-zs). As for the estimates of the redshift
distribution of galaxies in each redshift bin (Fig.2.5), we use the stacking of counts of the nearest
neighborhood redshifts from the VIPERS spectroscopic sample [147], which spans 24 deg2 to
i < 22.5. After correcting VIPERS for target, color, and spectroscopic incompleteness we select
galaxies in a similar way as done with the data from the Gold catalog. We then use the VIPERS
redshifts to estimate the true redshift distributions n(z) of the magnitude limited sample.
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Chapter 3

Joint Analysis of Galaxy Clustering and
CMB lensing

As we have seen in §1.7, photons from the CMB are gravitationally deflected by the large-scale
structure, and the distinct pattern of the lensed CMB can be used to probe lensing structures
along the line of sight. By cross-correlating the CMB lensing signal with tracers of the matter
distribution, such as galaxies, we can measure the growth of structure in the Universe across
cosmic time. This is the motivation behind the work described in this chapter. We obtain
constraints on the galaxy bias, the lensing amplitude (an overall multiplicative bias in the CMB
lensing map), the growth function and the cosmological parameters from the joint analysis of
galaxy clustering from DES Y1 data and CMB lensing from SPT and Planck.

3.1 CMB Data

3.1.1 SPT

The South Pole Telescope (SPT) [41] is a 10-meter telescope located at the National Science
Foundation Amundsen-Scott South Pole Station in Antarctica. From 2008 to 2011, the telescope
was used to conduct the SPT-SZ survey, a survey spanning a contiguous area of approximately
2500 deg2 [161]. The survey footprint extends from 20h to 7h in right ascension (R.A.) and from
−65◦ to −40◦ in declination. The total area was observed at three frequency bands centered at
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roughly 95, 150, and 220 GHz. For this analysis, we will exclusively use the 150 GHz data,
whose beam has a shape similar to a Gaussian with a full-width at half maximum (FWHM) of
1.2′. The typical noise level of SPT-SZ maps at 150 GHz is 18 µK-arcmin, with small variations
across the footprint.

3.1.2 Planck

The Planck satellite, launched in 2009 by the European Space Agency [129], was used to observe
the sky in nine frequency bands from 30 to 857 GHz. It achieved better resolution, higher
sensitivity, and a wider range of frequencies than its predecessor, WMAP. In this work, we use
the publicly available Planck 143 GHz map and beam provided in the 2015 data release [130], as
the 143 GHz frequency band is closest to the SPT-SZ 150 GHz band. The 143 GHz beam can be
approximated by a Gaussian beam with FWHM of ∼ 7 arcmin, and the instrument noise level is
∼ 30 µK-arcmin [130].

3.2 Context

The deflection of the paths of the CMB photons produced by gravitational lensing, on the order
of a few arcminutes [48], alter the CMB primary anisotropies by redistributing power across
different angular scales and producing a non-Gaussian component to the primordial distribution
of temperature anisotropies. Measurement of this non-Gaussian structure can be used to infer the
total amount of deflection that has occurred in a given direction [75, 117]. High signal-to-noise
measurements of CMB lensing have been obtained by several collaborations, including the
Atacama Cosmology Telescope [ACT, 55, 152], Planck [131, 132, 135], POLARBEAR [9], and
the South Pole Telescope [SPT, 119, 160, 168].

The reconstructed CMB lensing signal is an integral of all deflections sourced by the large-
scale structure between the last-scattering surface and us. Due to this projection, we cannot
directly measure the evolution of structure along the line of sight by analyzing the lensing signal
alone. However, the signal from CMB lensing can be cross-correlated with tracers of the matter
distribution, such as galaxy catalogs with known redshifts. This allows us to measure the growth
of structure in the Universe across cosmic time.

Galaxy density-CMB lensing cross-correlations have been detected by several groups, using a
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variety of data sets. The first significant detection was reported by [156] correlating WMAP
data with radio galaxies from NVSS1 [51], which was later combined with other galaxy catalogs
by [74]. After that, several galaxy-CMB lensing cross-correlation measurements with optical,
infrared and radio galaxies have been carried out in the last few years [10, 13, 26, 27, 33, 59,
92, 120, 153, 154]. The first tomographic cross-correlation analysis using multiple redshift bins
from a single galaxy survey was carried out by ([70] , hereafter G16) using CMB lensing data
from SPT and Planck and the Dark Energy Survey (DES) Science Verification (SV) galaxies.

In this work, we update the results of G16 by measuring the cross-correlations between galaxy
density from the DES Year-1 (Y1) data and a CMB lensing reconstruction using a combination
of SPT and Planck data in the SPT-SZ survey area.2 The total area used in this work is nearly
a factor of 10 larger than in G16. We find a highly significant detection of the correlation
between galaxy density and CMB lensing. We subject the correlation function measurements
and corresponding covariance estimates to several tests for systematic effects, finding that biases
due to these systematic effects are negligible over the range of angular scales used for the main
analysis.

We use the measured galaxy-CMB lensing cross-correlations to extract cosmological information
in several ways. First, assuming a fiducial cosmological model based on the results of [128], we
measure the amplitude of our measurement relative to this model. The amplitude we obtain from
this procedure can be directly compared with similar constraints obtained in previous studies.
Second, we infer the linear growth function over the redshift ranges that DES is sensitive to, and
compare that with the baseline ΛCDM model predictions derived from CMB observations. Two
different approaches are used: (i) the DG estimator introduced in G16, and (ii) a method that
measures the growth and allows us to marginalize over galaxy bias parameters and parameters
associated with systematic measurement errors. Finally, we fix the lensing amplitude and growth-
rate parameters to their ΛCDM values and simultaneously estimate cosmological and systematics
parameters. In some of these analyses, we perform joint fits to both the galaxy-CMB lensing
cross-correlations and galaxy clustering measurements in order to break degeneracies with galaxy
bias.

1The National Radio Astronomy Observatory (NRAO) Very Large Array (VLA) Sky Survey
2G16 cross-correlated galaxies with CMB lensing maps from SPT and Planck separately, whereas in this study,

a lensing map derived from a combined temperature map presented in [47] is used.
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3.3 Theory

From the CMB lensing convergence κCMB and galaxy overdensity δg fields, one can construct the
auto- and cross-angular power spectra, which can be written as a function of multipole ` using
the Limber approximation3 as:

Cδi
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g(`) =

∫
dχ

qδi
g

(
`+ 1

2
χ
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where χ is the comoving distance to redshift z, PNL(k, z) is the non-linear matter power spectrum,
and the galaxy and CMB lensing kernels are:

qδi
g
(k, χ) = bi

g(k, z(χ))
ni

g(z(χ))

n̄i
g

dz
dχ

, (3.3)

qκCMB(χ) =
3H2

0Ωm

2c2

χ

a(χ)
χ∗ − χ

χ∗
. (3.4)

Here bi
g(k, z) is the galaxy bias, ni

g(z) is the redshift distribution of the i-th galaxy sample with
total density n̄i

g, a is the cosmological scale factor, and χ∗ is the comoving distance to the horizon.
We adopt a linear galaxy bias model (i.e. constant value for all values of k) with a single galaxy
bias bi parameter for each galaxy redshift bin. Following [91] and [20], we restrict the analysis
to angular scales over which the linear bias approximation is accurate.

In order to be consistent with the filtering that has been applied to the CMB lensing maps (see
§3.4), we multiply CδgκCMB(`) by the filter function, F(`), given by

F(`) =

 exp(−`(` + 1)/`2
beam), for 30 < ` < 3000

0, otherwise,
(3.5)

where `beam ≡
√

16 ln 2/θFWHM, and θFWHM = 5.4′. The Gaussian filtering is equivalent to
convolving the CMB lensing maps with a Gaussian beam of full width at half maximum θFWHM.

The harmonic-space expression above can be rewritten in position space by applying a Legendre

3See [91] for a discussion regarding the validity of the Limber approximation in the DES multi-probe framework.
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transformation, yielding the two-point correlation functions between two fields a, b:

wab(θ) =

∞∑
`=0

(
2` + 1

4π

)
P`(cos θ) Cab(`)F(`) , (3.6)

where a, b ∈ {δi
g, κCMB}, P` are the Legendre polynomials, and the summation can be truncated to

`max ∼ 104 for the angular scales of interest.

Following [91] and [20], we model potential biases in the estimation of the galaxy redshift
distributions using a single additive bias parameter for each galaxy redshift bin. The galaxy n(z)
is modified via

ni
g,unbiased(z) = ni

g(z − ∆i
z,g), (3.7)

where ∆i
z,g is the bias parameter. The biased ni

g(z) is then propagated to the CδgκCMB(`) as described
above.

We calculate the power spectrum using the Boltzmann code CAMB4 [76, 96] with the Halofit
extension to nonlinear scales [157, 163] and the neutrino extension from [29].

3.4 Data

For the galaxy clustering measurements we use the DES Y1 lens galaxy sample, as described
in §2.3.1. The only difference with respect to that sample is that here we also include the mask
for the CMB lensing convergence measurements, giving as a result a combined mask with an
effective area of 1289 deg2.

For the CMB lensing convergence measurements, we use the CMB weak lensing map presented
in [119], which we briefly describe here. This lensing map is derived from an inverse variance
weighted combination of SPT 150 GHz (§3.1.1) and Planck 143 GHz (§3.1.2) temperature data
over the SPT-SZ survey region (20h to 7h in right ascension and from −65◦ to −40◦ in declination,
see, e.g. [161]). The motivation for this is to obtain a temperature map that has broader multipole
` coverage and less noise than either individual map. Modes in this combined temperature map
with ` < 100 and ` > 3000 are removed to avoid foreground contamination. The brightest point
sources and clusters with a detection significance S/N> 6 (see [32]) are masked prior to the
combining procedure to avoid contamination in the maps. Then, a quadratic estimator technique

4See camb.info.
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Figure 3.1: Reconstructed lensing map from the linear combination of SPT
150 GHz and Planck 143 GHz temperature maps, from [119].

[117] is applied to this combined temperature map to reconstruct a map of the gravitational
lensing potential. Simulations are then used to debias and renormalise the amplitude of the
lensing map, which is shown in Fig.3.1. In constructing the map, we use the lensing multipole
range of 30 < ` < 3000 and apply a Gaussian smoothing of θFWHM = 5.4′ to the map. The
low-pass filter (removing multipoles ` ≤ 30) is applied to suppress foreground contamination,
while the high-pass filter (removing ` ≥ 3000) is applied to remove modes we measure poorly
in the data. When calculating the correlation functions in this work, we apply an additional
stricter mask that removes all the clusters with significance > 5 in [32] and DES and redMaPPer
clusters with high richness values (λ > 80). By masking massive clusters in the CMB lensing
map, we remove regions of high contamination by the tSZ effect [42]. However, we also induce
a secondary bias due to masking regions of high lensing convergence. It was shown in [20] that
this secondary bias is small compared to other systematic effects such as tSZ.

3.5 Methodology

In this work, we measure the clustering of the galaxies and their correlations with the CMB
lensing maps in position-space.
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3.5.1 Correlation functions

We measure both the auto-correlation of the galaxy density field and the cross-correlation
between galaxies and κCMB. The former is calculated using the Landy-Szalay estimator [93]:

wδgδg(θ) =
DD(θ) − 2DR(θ) + RR(θ)

RR(θ)
, (3.8)

with

DD(θ) =
1

NDD
θ
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j=1
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i η

D
j Θi, j, (3.9)
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i η
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RR(θ) =
1

NRR
θ

Nrand∑
i=1

Nrand∑
j=1

ηR
i η

R
j Θi, j, (3.11)

where ηD are the weights for the individual galaxies determined from cross-correlation with
systematic maps (see [62] for further details), Nθ are the total number of pairs of a given type
[data-data (DD), data-random (DR), random-random (RR)] in a given angular bin θ, and Θi, j is
1 if a pair is separated by an angle θ within the bin size ∆θ and 0 otherwise. Random galaxies
are generated uniformly over the union of the galaxy and κCMB masks, and are included in the
random catalog with probabilities matching the weight at the pixel which the random galaxies
fall onto. Here, we only consider the weights coming from the galaxy mask, although both the
galaxy and κCMB masks are used to determine the valid pixels.

For the correlation function between a galaxy catalog and a pixellated map such as the CMB
lensing convergence map, the correlation function is calculated using:

wδgκCMB(θ) = DκCMB(θ) − RκCMB(θ), (3.12)

with

DκCMB(θ) =
1

NDκCMB
θ

Ngal∑
i=1

Npix∑
j=1

ηD
i η

κCMB
j κCMB, jΘi, j, (3.13)

RκCMB(θ) =
1

NRκCMB
θ

Nrand∑
i=1

Npix∑
j=1

ηR
i η

κCMB
j κCMB, jΘi, j, (3.14)
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where ηκCMB
j is the value of the mask, and κCMB, j is the value of convergence at the j-th pixel.5 In

measuring the auto-correlation of galaxy density, we use 20 bins equally spaced in logarithm
between 2.5′ < θ < 250′; these angular bins are consistent with those of [62]. For wδgκCMB(θ),
we use 10 equally log-spaced angular bins over the same angular range due to the higher noise
levels of this measurement. The measurements in both cases are carried out using the TreeCorr
package6 [85].

3.5.2 Angular scale cuts

Our model for the correlation functions ignores several potential complications, such as the
effects of tSZ bias in the CMB lensing map, the effects of non-linear galaxy bias, and the
effects of baryons on the matter power spectrum. In order to minimize biases to the inferred
cosmological parameters in our analysis, we remove measurements at angular scales that we
expect to be significantly impacted by these effects.

The choices of these angular scale cuts employed here were motivated for the analyses of wδgδg(θ)
and wδgκCMB(θ) in [91] and [20]. The scale cuts were determined by introducing unmodeled effects
into simulated data vectors and performing simulated likelihood analyses to infer parameter
biases. The scale cuts ultimately chosen in [91] and [20] were determined based on the joint
analysis of two-point functions between the galaxy density, galaxy lensing and CMB lensing.
Since the analysis of a single correlation function — such as wδgκCMB(θ) — will necessarily be
less constraining, by adopting these scale cuts in this analysis we are being conservative. It was
shown in [91] that with these scale cuts, the bias on the main cosmological parameters (Ωm,
S 8 = σ8

√
Ωm/0.3, and w) will be less than 0.4σ, where σ represents the statistical uncertainty

on the parameters.

The scale cut choices motivated by [91] and [20] result in removing from the galaxy-CMB
lensing cross-correlations angular scales that are smaller than

θ
δgκCMB

min = [15′, 25′, 25′, 15′, 15′] (3.15)

for the five redshift bins. The corresponding scale cuts for the galaxy auto-correlations are [62]

θ
δgδg

min = [45′, 25′, 25′, 15′, 15′] . (3.16)
5Here, we only consider the weights coming from the κCMB mask, although both the galaxy and κCMB masks are

used to determine the valid pixels.
6https://github.com/rmjarvis/TreeCorr

https://github.com/rmjarvis/TreeCorr
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Figure 3.2: Covariance matrix for wδgκCMB(θ) obtained using the jackknife
method (upper left) and analytically (upper right). Each redshift bin includes
10 angular bins. The ratio of the diagonal elements are shown in the lower
panel. The gray panel denotes ±30% margin compared to the analytical
covariance.

3.5.3 Covariance matrix

It was shown by G16 that several covariance matrix estimators yield consistent results for the
galaxy-CMB lensing correlation. Based on this comparison and the analysis of [91], we decided
to use an analytic covariance estimate described in [91], but extended to include CMB lensing
cross-correlations as described by [20]. Unlike G16, in which the analytic covariance only
included Gaussian terms, we consider here a sum of Gaussian covariance and non-Gaussian
terms based on a halo-model approach (which includes the trispectrum term and the super-
sample covariance). We additionally modify the term of this covariance that involves correlations
between κCMB noise and δg noise, to take into account the survey geometry. This is done
by replacing the analytic noise-noise covariance (which is calculated based on the galaxy
number density and survey area only) with the covariance calculated from correlating Gaussian
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realizations of the κCMB map and the galaxy random catalog using the survey mask. This
correction increases the diagonal elements of the analytic covariance by ∼ 10% for wδgκCMB(θ).

We compare this theoretical covariance estimate to a data-based jackknife estimate of the
covariance in Fig.3.2. From the data we compute the jackknife covariance as

Cjk
i j =

Njk − 1
Njk

Njk∑
k

(~dk − d̄)i(~dk − d̄) j, (3.17)

where Njk is the number of jackknife patches used. We obtain diagonal covariance elements that
are on average ∼ 17% higher than the analytical covariance over the angular scales of interest.
Based on the discussion in [116] and [66], we consider that these are in sufficient agreement
given that the jackknife method is a noisy estimate of the underlying covariance.

3.5.4 Parameter inference

The cross-correlation between galaxy density and the CMB convergence map contains cosmo-
logical information. To extract this information, we assume that the likelihood of the measured
data vector ~d given a model ~m, is Gaussian:

lnL(~d|~m(~p)) = −
1
2

N∑
i j

(
di − mi(~p)

)
C−1

i j

(
d j − m j(~p)

)
, (3.18)

where N is the number of points in the data and model vectors. The posteriors on the model
parameters are given by:

P(~m(~p)|~d) ∝ L(~d|~m(~p))Pprior(~p), (3.19)

where Pprior(~p) is the prior on the model parameters.

1. Galaxy bias and lensing amplitude constraints

Assuming the cosmological model is tightly constrained, joint measurement of wδgκCMB(θ)
and wδgδg(θ) allows us to simultaneously constrain galaxy bias, b, and an overall multi-
plicative bias in the κCMB map, which we call Aκ. This is possible because the amplitude
of the galaxy-CMB lensing cross-correlation scales with bAκ, while the amplitude of the
galaxy clustering correlation function scales with b2.
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We consider two scenarios along these lines while fixing the cosmological model to the
fiducial model introduced in § 3.2. In the first scenario we fix Aκ = 1 and constrain the
galaxy bias in each redshift bin while marginalizing over the photo-z uncertainties. The
second scenario is identical to the first, but we let Aκ be free. In both cases we adopt the
priors on systematics parameters presented in Table 3.1.

2. Growth function

We use the measured correlation functions to constrain the cosmological growth function
using two different methods. For both of these methods we assume Aκ = 1.

The first approach is the procedure introduced in G16 (also applied in [28]), which we
compute here to compare with that analysis. For this method, we fix all the cosmological
and nuisance parameters to the fiducial values listed in Table 3.1. We define the growth-
removed auto- and cross-spectra, indicated with a slashed symbol, via:
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where D(z) is the linear growth function. The angular power spectra are then transformed
into w(θ) using Eq. 3.6, and our growth estimator is given by the ratio between7 the
observed and theoretical slashed correlation functions, averaged over a range of angular
scales [θmin

DG
, θmax

DG
]:

DG =

〈
wδgκCMB

observed(θ)

/w
δgκCMB

theoretical(θ)

√√√
/w
δgδg

theoretical(θ)

wδgδg

observed(θ)

〉
θmin

DG
<θ<θmax

DG

. (3.22)

We measure this quantity for the five tomographic bins, which allows us to measure the
evolution of the growth function in redshift bins (i.e. DG(zi)). The advantage of this
estimator is that the measured quantity is independent of galaxy bias since bias is canceled
out by taking the ratio. Due to the filtering that removes ` < 30 in the κCMB map, the
fiducial model wδgκCMB

theoretical(θ) reaches zero near θ = 100′, so we restrict our measurements to
scales θ < θmax

DG
= 100′. For θmin

DG
, we conservatively choose the larger scale between the

auto- and cross-correlation scale cuts for each redshift bin.

7This ratio only works in the limit when the redshift slices are narrow.
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Parameter Fiducial Prior
Cosmology

Ωm 0.309 [0.1, 0.9]
As/10−9 2.14 [0.5, 5.0]

ns 0.967 [0.87, 1.07]
w -1.0 Fixed
Ωb 0.0486 [0.03, 0.07]
h0 0.677 [0.55, 0.91]

Ωνh2 6.45 × 10−4 [0.0006,0.01]
ΩK 0 Fixed
τ 0.066 Fixed

Growth Amplitude
AD 1.0 [0.1,4.0]

Lensing Amplitude
Aκ 1.0 [0.1,4]

Galaxy bias
bi 1.45, 1.55, 1.65, 1.8, 2.0 [0.8,3.0]

Lens photo-z error
∆1

z,g 0.010 (0.008,0.007)
∆2

z,g -0.004 (-0.005,0.007)
∆3

z,g 0.009 (0.006,0.006)
∆4

z,g 0.001 (0.0,0.01)
∆5

z,g 0.0 (0.0,0.01)

Table 3.1: The fiducial parameter values and priors for cosmological and
nuisance parameters used in this analysis. Square brackets denote a flat prior
over the indicated range, while parentheses denote a Gaussian prior of the
form N(µ, σ). The Gaussian priors on photo-z errors are determined by [44].
The fiducial cosmological parameter values are taken from the [128], but
here we assume 3 massive neutrinos to stay consistent with other DES-Y1
analyses. For the photo-z bias, peaks of the posterior distributions in the DES
joint galaxy clustering and lensing analysis [2] are used as fiducial values.
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In order to test for possible deviations from the baseline ΛCDM model across the five
redshift bins, we assume the shape of the linear growth function D(z) to be fixed by
the fiducial cosmology, and we fit for a redshift-independent quantity AD such that it
minimizes:

χ2 =

5∑
i j

(Dobs(zi) − ADDfid(zi))C−1
i j (Dobs(z j) − ADDfid(z j)), (3.23)

with Dobs(zi) ≡ DG for this method. We take 50,000 multivariate Gaussian draws from
the analytical covariance matrix to produce simulated wδgδg(θ) and wδgκCMB(θ) data vectors,
calculate D(z) for each draw, and compute the covariance matrix Ci j over the ensemble of
realizations.

The second method for measuring the growth function consists of simultaneously fitting
AD, galaxy bias, and photo-z bias to the observed auto- and cross-correlations using a
Markov chain Monte Carlo (MCMC) approach. This method has an advantage of allowing
us to vary over other systematic effects, such as photo-z errors. For this method, we fix the
cosmological parameters to the fiducial values in Table 3.1 but vary the growth amplitude,
galaxy biases and lens photo-z biases over the priors given in the same table.

3. Cosmological parameter estimation

Finally, we use the measurements of both wδgκCMB and wδgδg presented in this work to
constrain cosmological parameters. We generate posterior samples using the Multinest
algorithm [64] as implemented in the CosmoSIS [176] package. We let the photo-z bias
(i.e. lens n(z) shift), galaxy bias and 6 cosmological parameters (Ωm, As, ns, Ωb, h, Ων)
vary simultaneously, while we fix Aκ = AD = 1. Here, As is the amplitude of the matter
power spectrum, ns is the spectral index, Ωb is the baryon density, h is the reduced Hubble
constant and Ων is the neutrino density. Priors on these parameters are summarized in
Table 3.1. In this study we will focus on the constraints on Ωm and S 8 ≡ σ8

√
Ωm/0.3,

where σ8 is the RMS amplitude of mass fluctuations on 8h−1 Mpc scale. S 8 is defined to
be approximately the most constrained cosmological parameter combination for galaxy
weak lensing measurements.
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3.5.5 Blinding

This analysis was blinded throughout the study using a combination of various blinding schemes.
The analysis pipeline was first built using Flask simulations as data vectors, and then we switched
to using blinded data. In order to blind the data analysis, we multiplied the CMB lensing map
by an unknown factor in the range between 0.8 and 1.2, shifted the cosmological parameter
constraints that we obtained by an arbitrary number, and removed the axes when generating
figures. After the data passed all systematic checks, the measurements were repeated using a
CMB lensing map without the random factor applied (i.e. unblinded), and the cosmological
parameter constraints were calculated without shifts.

3.6 Systematic Error Analysis

Systematic errors can impact the relationship between the measured and predicted correlation
functions in three ways: (1) by affecting the observed density of galaxies on the sky, (2) by
affecting the CMB lensing map, and (3) by affecting the inferred redshift distributions of the
galaxies. Systematics affecting the observed density of DES redMaGiC galaxies were explored
by [62] as part of the [2] analysis. The main source of systematic error impacting the CMB
lensing map is contamination by the tSZ effect which has been discussed and modeled in [20].
Systematic errors in the photometric redshift distributions of redMaGiC galaxies were explored
by [44], also as part of the [2] analysis. Below, we draw heavily from these companion papers to
constrain the systematic contamination of the measured correlation functions.

3.6.1 Galaxy density and CMB lensing biases

We first consider systematics impacting galaxy density and the CMB lensing map. It is useful to
divide these systematics into two categories: those that produce a bias due to galactic foregrounds,
and those that produce a bias that is correlated with the large-scale structure (LSS). For the
former, in order to generate a bias in wδgκCMB , the systematic must contaminate both the galaxy
density and κCMB; if it only impacts one of these observables, its impact on the correlation
function should average to zero. One of the strengths of cross-correlation measurements such as
wδgκCMB is that there are not many systematics that could contaminate both of the observed fields.
However, there are some potential sources of bias that could do this. One example is dust, which
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is one of the foreground components of the CMB temperature measurements, and one can expect
potential residuals in a single-frequency temperature map that can then propagate into the CMB
lensing map. Dust also affects the photometry of the observed galaxies and is correlated with
galactic latitude. This contamination can then induce density fluctuations through the change
of mean density with latitude. Consequently, dust extinction may contaminate simultaneously
galaxy density and CMB lensing, and could therefore contaminate measurement of wδgκCMB . In
what follows we will consider dust extinction and stellar density maps as potential contaminants.

On the other hand, there are some sources of contamination which are correlated with the
large-scale structure. In this case, the contaminant needs not affect both galaxy density and
CMB lensing in order to bias wδgκCMB(θ). At ∼ 150 GHz (roughly the frequencies of the SPT and
Planck maps used to generate the CMB lensing map), the tSZ effect results in a decrement in
the observed CMB temperature around clusters. This non-Gaussian feature gets picked up as
a false lensing signal by the quadratic estimator. Since hot gas is correlated with galaxies, we
expect the tSZ effect to induce a bias in the measured correlation functions. The CIB, which is
dominated by emission from dusty star forming galaxies, is another extragalactic foreground that
injects non-Gaussian features in our temperature maps. While the CIB emission spectrum peaks
at a higher frequency, minor correlations with 150 GHz observations are expected, which again
lead to false lensing signal. Since both the CIB and tSZ originate from large-scale structure,
we expect them to introduce biases in κCMB that are correlated with density fluctuations. Maps
for both tSZ and CIB contamination are built and described in detail by [20]. That work also
identified the tSZ effect as the dominant source of systematic affecting the cross-correlation
measurement between κCMB and δg. While the angular scale cuts proposed by [20] and restated
in §3.5.2 are chosen to mitigate these biases, they do not remove them entirely, and the residuals
must be quantified.

Of all the systematic effects that could potentially be present in our maps and catalogs, only the
ones which are correlated with both the observed CMB lensing map and the galaxy catalog affect
our cross-correlation measurements. We can therefore measure the quantity:

wκobs
CMBS(θ)wδobs

g S(θ)
wSS(θ)

(3.24)

to quantify the amplitude of the bias (to first order), which we expect to be zero for systematic
maps that are not correlated with both the CMB lensing map and galaxy catalogs. However for
astrophysical systematic effects such as tSZ and CIB which could potentially be contaminating
the CMB temperature map, physical correlations with κtrue

CMB are expected, and therefore Equation
3.24 is not expected to equal 0. Therefore, for these systematic effects, we directly measure the



58 Chapter 3. Joint Analysis of Galaxy Clustering and CMB lensing

101 102

−0.2

0.0

0.2

S = STELLAR DENSITY

0.15< z< 0.30
0.30< z< 0.45
0.45< z< 0.60

0.60< z< 0.75
0.75< z< 0.90

5 10 50 100 200

−0.2

0.0

0.2

S = EXTINCTION

101 102

θ [arcmin]

−1.5

−1.0

−0.5

0.0

0.5

S = κtSZ

5 10 50 100 200
θ [arcmin]

−0.2

−0.1

0.0

0.1

0.2

S = κCIB

w
δ g
S w

κ
C

M
B
S /

w
SS
/σ

(w
δ g
κ

C
M

B
)

w
δ g
S /
σ

(w
δ g
κ

C
M

B
)

Figure 3.3: Top two panels: Contributions due to uncorrelated systematics to
the galaxy-CMB lensing cross-correlations, as described by Eq. 3.24, in units
of the statistical errors on the observed cross-correlation. Lower two panels:
Contributions due to correlated systematics, given by the cross-correlations
between the κCMB systematics (κtSZ and κCIB) and δg, also in units of the
statistical error. The faded points are removed from the analysis due to the
imposed scale cuts. Note the different scales used for κtSZ and κCIB.
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correlations wδgκtSZ(θ) and wδgκCIB(θ) to quantify the bias. As described in more detail in [20], we
estimate κtSZ by passing a template tSZ map through the lensing pipeline of [119]; similarly, κCIB

is estimated by passing a 545 GHz CIB map [136] though the [119] lensing pipeline.

We first focus on those systematics that are uncorrelated with the true density. We show in
the top half of Fig. 3.3 the ratio between wκCMBS(θ)wδgS(θ)/wSS(θ) measured for dust extinction
and stellar contamination, and the uncertainty on the measured galaxy density-CMB lensing
correlation and verify that this ratio is significantly smaller than 1 and consistent with 0 across
all angular scales. We observe that within the angular scales we consider (note that the faded
points are excluded from the analysis) the contributions to the measurements due to systematics
are < 1σ for all redshift bins and for all systematic maps.

Since the tSZ template is generated only using redMaPPer clusters up to z = 0.6, the correlations
for the higher two redshift bins have been ignored (see [20]), as we apply our tSZ- induced
bias measurements for the third-to-last redshift bin to the higher redshift bins. We expect this
approximation to be conservative, since the tSZ bias apparently decreases as a function of
redshift, as seen in [20]. We can see that the impact on the measurements is generally small
compared with the statistical error bars, so that we can conclude there is no evidence for any of
these contaminants making a significant impact on our results.

We then consider the correlated sources of systematics: tSZ and CIB, and we show their
contributions to Eq. 3.24 in the bottom half of Fig. 3.3. Here we indeed see non-zero residuals
coming from tSZ but most of this bias is removed by applying our default scale cuts, and the
remaining bias is within 0.35σ, where σ is the statistical uncertainty.

We note that [62] investigated the impact of several observational systematics in addition to dust
extinction and stellar density that could introduce spurious fluctuations in redMaGiC galaxy
number density on large-scales. Using a set of 20 survey property maps,8 in addition to stellar
contamination and galactic extinction, they studied the dependence of number density as a
function of these observational properties. The results of these tests indicated that redMaGiC
galaxies were not largely impacted by these systematics. Furthermore, as mentioned above, since
we do not expect the DES-specific survey systematics (exposure time, sky brightness, airmass,
seeing, survey depth variations) to correlate with κCMB, we do not expect these to bias wδgκCMB(θ).

8These were exposure time, sky brightness, airmass, seeing and survey 10σ depth, in four different broad bands.
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3.6.2 Photo-z systematics

Unlike biases in the galaxy density or CMB lensing maps, we explicitly model biases in the
estimated redshift distributions of the galaxies as described in §3.3.

The analysis in [2] constrained biases in the inferred redshift distributions of the redMaGiC
galaxies using angular cross-correlations with spectroscopic data from the Sloan Digital Sky
Survey (DR8), particularly BOSS luminous red galaxies. This analysis is presented in [44].
These resultant priors on the photo-z bias parameters ∆i

z,g for the five redshift bins are listed in
Table 3.1. We let these values vary when calculating the growth amplitude and cosmological
parameter constraints in §3.7.2.

3.7 Results

We show in Fig. 3.4 the measured auto-correlation functions of the redMaGiC galaxy sample
and its cross-correlation with the SPT+Planck CMB lensing map. The small-scale data points
shown with faded symbols are the scales removed by the scale cuts as discussed in §3.5.2. The
theoretical predictions assuming the fiducial cosmology listed in Table 3.1 are shown as the black
lines. In the following sections we extract cosmological information using these measurements.

We note that we made few modifications in §3.7.1 after we unblinded the data. We first added
constraints on the galaxy bias from wδgκCMB(θ) alone with the cosmology fixed to Planck best-fit
values (instead of DES-Y1). The motivation for this was to allow us to directly compare the
constraints on galaxy bias when varying over the cosmological parameters, but combining with
the Planck baseline likelihood. Accordingly, we also changed the assumed cosmology when
computing the best-fit biases from wδgδg(θ) + wδgκCMB(θ). Additionally, we recomputed the galaxy
biases replacing wδgκCMB(θ) by wδgγt(θ) using the same data vectors as [138] but combined with
Planck baseline likelihood.

3.7.1 Galaxy bias and lensing amplitude

We first fix the cosmological parameters to the fiducial values and vary the galaxy bias and lens
photo-z error parameters simultaneously, imposing the priors shown in Table 3.1. We focus on
constraining galaxy bias, assuming a fixed lensing amplitude of Aκ = 1.
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Figure 3.4: Measured auto- and cross-correlation functions between the
redMaGiC galaxy sample described in §3.4 and CMB lensing from [119].
The faded angular points have been excluded from the fits, consistently with
[62] and with [20]. The theory modeling shown uses the mean bias and cross-
correlations amplitudes found in §3.7 and Table 3.2, assuming the fiducial
cosmology listed in Table 3.1. The error bars shown are the diagonal elements
of the covariance matrix

√
Cii, and therefore, the correlations between the

bins are ignored. In contrast, the best-fit amplitudes are calculated including
the off-diagonal elements and therefore the best-fit lines and data points may
not match visually in certain bins.
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wδgδg(θ) + wδgκCMB(θ) wδgκCMB(θ)
Sample Bias (Aκ = 1) Bias (Aκ , 1) Fixed +Planck

0.15 < z < 0.30 1.47+0.08
−0.08 1.46+0.09

−0.07 1.54+0.44
−0.38 1.47+0.51

−0.38
0.30 < z < 0.45 1.67+0.06

−0.04 1.68+0.06
−0.05 1.45+0.33

−0.42 1.30+0.46
−0.32

0.45 < z < 0.60 1.68+0.04
−0.04 1.68+0.04

−0.04 1.10+0.36
−0.21 1.06+0.34

−0.20
0.60 < z < 0.75 2.03+0.04

−0.05 2.02+0.05
−0.04 2.69+0.23

−0.28 2.78+0.17
−0.35

0.75 < z < 0.90 2.14+0.05
−0.08 2.12+0.08

−0.06 2.17+0.45
−0.42 2.31+0.35

−0.52

Aκ = 1.00+0.16
−0.09

Table 3.2: Summary of the constraints on the galaxy bias parameters using
wδgδg(θ)+wδgκCMB(θ) (left) and only wδgκCMB(θ) with the lensing amplitude fixed
to 1 (right), assuming Planck best-fit ΛCDM cosmology. For the former, we
consider two cases: fixing the lensing amplitude to 1 (2nd column in the table),
and setting Aκ free (3rd column). For the latter, we first fix the cosmology
(4th column) and then vary the cosmological parameters considering priors
from Planck baseline likelihood (5th column).

The results are shown in Table 3.2 (second column). These correspond to χ2 = 107.3 for 82 data
points. The high value of χ2 is primarily driven by the galaxy clustering measurements (see [62]).
The difference between the values reported here and in [62] is due to the cosmology assumed.

When we additionally treat the CMB lensing amplitude Aκ as a free parameter, we obtain the bias
values shown in the third column of Table 3.2 . The recovered posterior on the lensing amplitude
is Aκ = 1.00+0.16

−0.09, with a total χ2 = 107.2. The similarity between the constraints on the galaxy
bias values that we obtain with Aκ fixed to 1 and free suggests that the galaxy bias constraints in
this analysis are dominated by wδgδg(θ).

Next, we consider constraints on galaxy bias from wδgκCMB(θ) alone. We reject the hypothesis of
no lensing with a significance9 of 20σ when no scale cuts are imposed and 10σ after imposing
scale cuts. We note that the significance prior to the conservative scale cuts, 20σ, is roughly
what we would expect by the increase in area with respect to G16, which measured CMB lensing
with a 6σ significance. The signal-to-noise is proportional to

√
fsky, and we have ∼ 10 times

larger area, which translates into ∼ 3 times higher S/N. The constraints on galaxy bias from
this analysis are summarized in Table 3.2 (right). Not surprisingly, the constraints on galaxy
bias from wδgκCMB(θ) alone are significantly weaker than in the case when the measurements
are combined with wδgδg(θ) (2nd column in the table). Similar constraints on galaxy biases are
obtained when cosmological parameters are varied, but cosmological priors from Planck baseline

9The significance is calculated using
√
χ2

null, where χ2
null is the value of χ2 computed under the null model, i.e.

with galaxy bias b = 0.
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Figure 3.5: Galaxy bias estimation of redMaGiC galaxies from different
probes, as a function of redshift when combined with Planck baseline like-
lihood. The results from wδgκCMB(θ) assuming Aκ = 1 are shown in red.
Additionally plotted are the measurements from galaxy clustering [62] (gray
triangles) and galaxy-galaxy lensing [138] (gray squares).

likelihood are imposed (far right column of Table 3.2). In both cases photo-z biases are varied
over with the priors from [2]. The χ2 that we obtain are, respectively, 27.6 and 26.1 for 27 data
points.

The bias constraints from wδgκCMB(θ), as well as those from the DES-Y1 galaxy clustering [62] and
galaxy-galaxy lensing analyses [138] when combined with Planck baseline likelihood are shown
in Fig. 3.5. We find that considerably tighter constraints can be obtained from wδgδg(θ) relative to
wδgγt(θ) and wδgκCMB(θ). The constraining power of wδgκCMB(θ) relative to wδgγt(θ) increases with
higher redshift galaxy samples. This is because the number of available background galaxies
decreases as we increase the redshift of the lens galaxy sample. In contrast, the signal improves
for wδgκCMB(θ) due to the better overlap with the CMB lensing kernel.
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Figure 3.6: Growth function estimates from the combination of auto- and
cross-correlation functions, at the fiducial cosmology. The red points show
the measured value of DG in each redshift bin, with error bars representing
the diagonal elements of the covariance matrix described in §3.5.4. The
grey band represents the 1σ confidence interval on the best-fit amplitude
AD, assuming the fiducial ΛCDM template shown in black (solid), and the
red shaded regions describe the 1-σ uncertainties from the joint-fit analysis
described in §3.7.2.

3.7.2 Growth constraints

Next, we study the broader cosmological implications of our measurement: we first assume
cosmology to be fixed at high redshift, e.g. by the Planck CMB observations, and test whether
the linear growth function inferred from our measurement at low redshift is consistent with the
baseline ΛCDM model predictions. We test this using the two methods described in §3.5.4.

1. The DG estimator

We first measure the linear growth function D(z) using the DG estimator. We compute
DG for all five tomographic bins, applying the conservative angular scale cuts listed in
§3.5.2, and additionally removing scales above 100′ (see §3.5.4 for details). The results are
shown in Fig. 3.6. In addition, we also calculate the best-fit amplitude AD by combining
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all the bins, from which we obtain AD = 1.16+0.20
−0.20, which agrees with the fiducial ΛCDM

expectation of AD = 1.

2. Joint growth fit results

Here we keep the cosmological parameters fixed to the fiducial model, but marginalize over
the five independent linear galaxy bias parameters (one for each redshift bin), the photo-z
uncertainties and the linear growth parameter AD using the priors presented in Table 3.1.
We measure the linear galaxy bias to be b1 = 1.45+0.30

−0.15, b2 = 1.73+0.26
−0.22, b3 = 1.80+0.17

−0.29,
b4 = 2.04+0.35

−0.21, b5 = 2.15+0.36
−0.24 and find a constraint of AD = 0.92+0.15

−0.10 for the amplitude of
the growth function. These measurements of the bias are in agreement with the results
shown in Table 3.2. The recovered growth function agrees with the fiducial ΛCDM
expectation, as the measurement of AD is consistent with 1.0. We observe that the errors
on the galaxy bias are larger compared to a direct best-fit estimation presented in §3.7.1.
This is due to the fact that the bias and AD parameters are correlated. In turn, the fact that
the joint-fit method gets a different value of AD with respect to the DG method is because
it explicitly takes into account the correlations between bias and growth.

3.7.3 Cosmological parameter estimation

Here we present the full cosmological analysis using the wδgδg(θ)+wδgκCMB(θ) data vectors and
marginalizing over all the cosmological parameters and nuisance parameters (galaxy bias and
photo-z bias, but we fix AD = Aκ = 1). The priors used in this analysis are summarized in
Table 3.1, and are the same as used in [2] to maintain consistency between the analyses.

In Fig. 3.7 we show the constraints obtained on matter density Ωm and S 8 when all six cosmolog-
ical parameters, photo-z errors and linear galaxy biases for the five redshift bins are marginalized
over. This is then compared with the constraints from the combination of wδgδg(θ) + wδgγt(θ) as
presented in [2]. We observe that these two measurements slice through the parameter space
slightly differently. Using wδgδg(θ) + wδgκCMB(θ) we obtain Ωm = 0.276+0.029

−0.030 and S 8 = 0.800+0.090
−0.094,

whereas the combination of wδgδg(θ) + wδgγt(θ) gives us Ωm = 0.294+0.047
−0.029 and S 8 = 0.759+0.037

−0.031.
These two results can also be compared with the constraints from 3 × 2pt (the combination of
wδgδg(θ) + wδgγt(θ) + ξ+/−(θ))[2], which gives Ωm = 0.267+0.030

−0.017, S 8 = 0.773+0.026
−0.020. These results are

highly consistent with each other as shown on Fig. 3.7. The measurements used in this analysis
are combined in [3] with the wγtκCMB(θ) presented in [118] and the results from [2], using the
methodology outlined in [20].
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Figure 3.7: Constraints on Ωm and S 8 from the measurements of this work
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3.8 Prospects on neutrino mass constraints

Neutrinos have at least three individual mass states. However, direct experimental measurements
of their absolute mass values have so far proved impossible because of their incredibly small
values. A range of neutrino oscillation experiments have allowed measurements of the mass
differences between the three species and the corresponding minimum total mass of 0.06 eV [40].
While particle physics experiments have provided the lower bound on the total neutrino mass,∑

mν, the current tentative upper limit comes from cosmological studies. The Planck survey
set a 95% upper limit of

∑
mν < 0.12 eV on the total neutrino mass using data from the CMB

temperature and polarization anisotropies, lensing, and external large-scale structure probes
(Baryon Acoustic Oscillations measurements) [133]. It is expected that next-generation CMB
surveys will enhance this constraint further.

Meanwhile, galaxy surveys provide a strong complement to CMB information. The primary
motivation for combining galaxy clustering with CMB lensing is that the latter also contains a
relative suppression on small scales caused by the effects of neutrino free-steaming, analogous to
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that in the matter power spectrum. While the galaxy power spectrum is a biased measurement
of the matter power spectrum, CMB lensing probes it directly. Additionally, while the galaxy
power spectrum contains contributions from the baryon and cold dark matter transfer functions
only, the matter power spectrum probed by CMB lensing includes all matter, including massive
neutrinos.

Additionally, forecasted constraints on
∑

mν based on the full galaxy power spectrum will
primarily be limited by weak constraints on the optical depth τ [13, 35], as these two parameters
are both strongly correlated with As (or equivalently, σ8). As shown by [34, 173], CMB lensing
could help overcome this obstacle through its potential for constraining As.

In this section we explore the constraints on the sum of neutrino masses we obtain from the
combination of galaxy clustering from DES Y1 and CMB lensing measurements from SPT
+ Planck, using the wδgδg(θ)+wδgκCMB(θ) data vectors and marginalizing over all the cosmolog-
ical and nuisance parameters using the priors from Table 3.1. We combine the result from
wδgδg(θ)+wδgκCMB(θ) with Planck temperature and polarization auto- and cross-spectra. For this
purpose, we use the joint TT, EE, BB and TE likelihood for multipoles ` between 2 and 29 and
the TT likelihood for ` between 30 and 2508 (commonly referred to as TT+lowP), provided by
the Planck 2015 release. We obtain an upper bound at 95% confidence level (CL) of∑

mν < 0.81 eV (95%, wδgδg(θ) + wδgκCMB(θ) + Planck TT + lowP), (3.25)

while the constraints from Planck 2015 release [128] and its combination with DES Y1 3 × 2pt
[2] are ∑

mν < 0.72 eV (95%, Planck TT + lowP) (3.26)∑
mν < 0.47 eV (95%, 3 × 2pt + Planck TT + lowP). (3.27)

As mentioned before, the wδgκCMB(θ) measurements in this work have limited constraining power
due to the conservative scale cuts we have applied in this analysis. In addition, the clustering
amplitude in DES Y1 is slightly lower than expected in ΛCDM informed by Planck. The
three ways of reducing the clustering amplitude are to reduce Ωm, reduce σ8, or increase

∑
mν.

The best fit cosmology in DES Y1 moves all three parameters slightly in the direction of less
clustering in the present day. We expect to obtain better signal in the future as we use galaxy
samples at higher redshifts and we improve our treatment of systematics and modeling to include
smaller scales in our analysis.
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3.9 Summary

We have presented measurements of the DES redMaGiC galaxy-CMB lensing cross-correlation
as a function of redshift. Our measurement rejects the hypothesis of no-lensing at 19.9σ10

significance prior to any scale cuts and 9.9σ using the conservative scale cuts from [20]. The
conservative scale cuts reduce the signal to noise of the measurements in exchange for mitigation
of systematic biases.

We test for the impact of possible systematics in the cross-correlations, considering contaminants
to both the DES galaxy and the CMB lensing maps. We find that, on the scales we consider,
all these contaminants have a small impact on our measurements compared with the statistical
uncertainties. The largest effect comes from the tSZ contribution to the CMB lensing maps,
which becomes large at smaller angular scales, and is the main limiting factor dictating our
scale cuts [20]. Improving the modeling and subtraction of this contaminant will be the key to
extracting the full statistical power of the temperature based CMB lensing maps in the future.

In obtaining the galaxy bias parameters, we find that galaxy-clustering measurements place
significantly tighter constraints than galaxy-galaxy lensing or galaxy-CMB lensing correlations.
However, the two cross-correlations are nonetheless important in breaking degeneracies in
parameter space.

We use our measurements to infer cosmological information in a number of ways. We first
constrain the linear growth function using the DG estimator introduced by G16, finding a
relative growth amplitude of AD = 1.16+0.20

−0.20. This compiles measurements of growth in various
tomographic bins, accounting for their covariance. We then extend this result and constrain
the relative growth amplitude with a joint-fit method, marginalizing over galaxy biases and
photo-z uncertainties, and considering the full covariance of the observables. In this case, we
find AD = 0.92+0.15

−0.10. Both of these results are consistent with the ΛCDM predictions of AD = 1.

Using these measurements, we finally run a full MCMC analysis over the ΛCDM cosmological
parameters to also place marginalized constraints on the two parameters that are most directly
related to the matter density field: Ωm and S 8 ≡ σ8

√
Ωm/0.3. Using the combination of wδgδg(θ)

and wδgκCMB(θ) we obtain Ωm = 0.276+0.029
−0.030 and S 8 = 0.800+0.090

−0.094. This can be compared with the
results obtained using galaxy clustering and galaxy-galaxy lensing (i.e. wδgδg(θ)+wδgγt(θ)), which

10We note that while certain systematics could add to the apparent signal and artificially inflate the significance,
in this case the main contamination without scale cuts is tSZ, which artificially reduces wδgκCMB . In other words, in
the absence of tSZ and scale cuts, the significance of this measurement would be higher than 19.9 σ.
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gives Ωm = 0.294+0.047
−0.029 and S 8 = 0.759+0.037

−0.031. We find that the constraining power is comparable
despite the conservative scale cuts we have applied in this analysis, and we expect to obtain
better signal in the future as we use galaxy samples at higher redshifts due to the better overlap
with the CMB lensing kernel. We also combine wδgδg(θ) and wδgκCMB(θ) with Planck TT+lowP
likelihood obtaining an upper bound at 95% CL on the sum of neutrino masses of 0.81 eV, which
slightly loosens the bound from Planck TT+lowP alone (

∑
mν < 0.72 eV at 95% CL).

The constraining power of DES measurements of galaxy-CMB lensing correlations has the
potential to improve in future analyses. The DES-Y3 will cover the full 5000 deg2 of the DES
footprint at approximately the same depth as Y1. Since the extended area does not overlap with
the SPT footprint, we expect the gain in the signal-to-noise to be small in terms of improvements
in sky coverage. However, our analysis choice in this study is conservative; we have chosen
the scale-cuts to minimize the biases in exchange for signal-to-noise ratio. To improve this
measurement further, it will be essential to (1) characterize the bias to a higher accuracy, such that
the signal loss is minimized, or (2) to improve the reconstruction of the CMB lensing map so that
it is less prone to biases (see e.g. [107] for a discussion of modifications to temperature-based
lensing reconstruction to minimize tSZ bias). Furthermore, newer data sets from SPT (SPTpol
and SPT-3G [23]) have lower noise levels than SPT-SZ, and therefore, lensing maps generated
from these data sets will have lower noise. Improvements along these lines will allow us to
maximally extract the signal from this cross-correlation, and to reach the best possible accuracy
on cosmology.
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Chapter 4

Cosmological Constraints from Multiple
Tracers

4.1 Context

Cosmic growth is parametrized by γ, which gives the growth rate as f (z) = Ωm(z)γ. Modified
gravity models can give different values of γ for the same expansion history, see e.g. [69, 83, 105].
On the other hand, non-gaussianity in the initial conditions of the universe is one of the most
powerful mechanisms to discriminate among the competing theories of the early universe (see
[19, 46] for reviews). Most of the models predict non-gaussianity of local type, i.e. a type of
non-gaussianity that only depends on the local value of the potential. In this framework, the
primordial gravitational potential can be parametrized as [68, 90]

Φ = φ + fNL(φ2 − 〈φ2〉) (4.1)

where φ is a Gaussian field and fNL describes the amplitude of the quadratic correction to the
potential. In the simplest models of inflation primordial non-gaussianity (PNG) is predicted
to be very small, fNL � 1 (see e.g. [7]), while many multi-field inflation models predict large
non-gaussianity, fNL � 1 (see [38] for a review).

The random nature of fluctuations (sampling variance) limits the accuracy with which one can
determine the matter power spectrum. McDonald & Seljak (2009) [110] proposed to use multiple
tracers of the same underlying distribution to beat this limit and improve the constraints canceling
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sampling variance with redshift space distortions (RSD), although this improvement can also be
achieved with other observables, including fNL [124, 149].

Bias-sensitive parameters, such as the redshift space distortions parameter, β(z) = f (z)/b(z), and
the amplitude of local non-Gaussianities, fNL, are related to the same realization of the density
field. Therefore, comparing the clusterings between different types of tracers of large scale
structure (LSS) enable us to measure these parameters with a precision that is not limited by
cosmic variance. This technique has been explored in recent literature for spectroscopic and
photometric galaxy surveys [5, 6, 14, 25, 71, 171].

At present, the best constraints on PNG come from Planck 2018 measurements of the three-
point correlation function of the CMB temperature and polarization anisotropies [137], with
fNL = −0.9 ± 5.1 at 68% confidence level (CL), but large-scale structure is emerging as a
promising complementary observable. The tightest constraints from large-scale structure are
−51 < fNL < 21 at 95% CL from eBOSS Data Release 14 data [43]. It has been shown that
non-gaussianity leads to a very unique dependence of the large scale bias, one that increases
strongly towards large scales, and whose amplitude scales with the bias of the tracer relative to
dark matter. Such large scales are affected strongly by cosmic variance. Thus, we can improve
the expected constraints on fNL by combining information from different LSS tracers (in a
multi-tracer approach) to reduce the sample variance.

On the other hand, by combining two particular photometric galaxy samples there is a factor
∼ 2.5 to be gained on the growth rate constraints compared to an analysis using just one sample
[14]. In practice, the biases of the two samples may be correlated, which limits the potential
gains of the multi-tracer approach.

In this work, we extend the idea of a multi-tracer analysis of RSD explored in [14] by including
in addition the cross-correlations with CMB lensing in order to break possible degeneracies with
the galaxy bias. We also explore the constraints that we could obtain with a multi-tracer analysis
of local non-gaussianities, fNL, from photometric surveys. In addition, we forecast the constraints
on RSD and fNL considering the DES Y3 lens samples presented in §2.3.2: redMaGiC and
magnitude limited.
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4.2 Theory

We compute the anisotropic galaxy clustering using the equations from §1.5.3, and we include
redshift space distortions through the Kaiser factors [87] (§1.5.2). In some parts of this work we
include CMB lensing cross-correlations, which can be computed using (1.49) without the Kaiser
factors and changing the radial selection functions, φ(z), by kernel functions,

ωδgκCMB(θ) =

∫ ∫
dz1dz2Wδg(z1)WκCMB(z2)ξ(s), (4.2)

where Wδg(z) and WκCMB(z) are the kernels related to the density contrast and CMB lensing
convergence fields, respectively,

Wδg(z) = bi(z)φ(z), (4.3)

WκCMB(z) =
3ΩmH2

0

2c
(1 + z)
H(z)

χ(z)
χ∗ − χ

χ∗
(z), (4.4)

and bi is the linear galaxy bias of the tomographic bin i. This computation of the angular
correlation function is exact, without assuming Limber approximation. We compute ω(θ) using
a code that we describe in §4.3. In order to obtain constraints on the growth index, γ, and on the
amplitude of local primordial non-gaussianities, fNL, we modify the equations as described in
the following sections §4.2.1 and §4.2.2. We calculate the power spectrum using the Boltzmann
code CAMB [76, 96] with the Halofit extension to nonlinear scales [157, 163].

4.2.1 Growth history

The growth index can be conveniently defined as

f (z) ≡ Ωγ
m(z), (4.5)

and γ = 0.545 for ΛCDM. Consistently with this, we obtain the growth history as,

D(z) ≡ exp
[
−

∫ z

0

Ω
γ
m(z)

1 + z
dz

]
, (4.6)

where D(z) is normalized to unity today (z = 0). It is shown in [102] that this is an accurate ap-
proximation for D(z). The parameter γ is usually employed as an effective way of characterizing
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modified gravity models that share the same cosmic history as General Relativity but different
growth history [102].

4.2.2 Primordial non-gaussianities

In order to connect the density field δ to the gravitational potential Φ, we make use of the Poisson
equation at late times (1.18)

∇2Φ = −
3ΩmH2

0

2a
δ. (4.7)

At late times the gravitational potential Φ can be related to the primordial potential Φp by

Φ(k, z) =
T (k)D(z)

a(z)
g(0)
g(∞)

Φp(k) (4.8)

where T (k) is the transfer function, and the factor g(∞)/g(0), with g(z) = (1 + z)D(z), arises
due to our normalization of D(z) to unity at z = 0, and can be omitted if D(z) is normalized to
equal the scale factor, a, during the matter dominated era. From the Poisson equation (4.7), the
primordial gravitational potential can be related to the density field via δ(k) = α(k)Φp(k), with

α(k) =
2k2T (k)D(z)

3Ωm

c2

H2
0

g(0)
g(∞)

, (4.9)

Note that there are two conventions to define fNL in (4.1): the LSS convention where Φ is
normalized at z = 0, and the CMB convention where Φ is instead the primordial potential.
Here we adopt the LSS convention. The relation between the two normalizations is f LSS

NL =

g(∞)/g(0) f CMB
NL ≈ 1.3 f CMB

NL .

In the presence of PNG, the local number of halos does not just depend on the large-scale matter
perturbations, but it is also affected by the mode coupling between long and short wavelengths
that acts like a local rescaling of the amplitude of (small-scale) matter fluctuations. The total
bias, including local non-Gaussianity is then

btot = b + ∆b(k), (4.10)

where b is the linear bias and ∆b(k) is the scale-dependent contribution due to PNG. In the local
Ansatz this is given by [54, 155]

∆b(k) = 2(b − p) fNL
δcrit

α(k)
, (4.11)
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Figure 4.1: Dependency graph of the modules of the code.

where δcrit = 1.686 and 1 < p < 1.6 depending on the type of tracer. Here we follow [155]
assuming p = 1 for galaxies. As seen in §1.5.2, in the limit of the plane parallel approximation,
the linear matter power spectrum in redshift space is [87]

P(k, µ) = (btot + fµ2)2PM(k), (4.12)

where PM(k) is the linear matter power spectrum. The effect of PNG is included in the definition
of the total bias.

4.3 Code implementation

We have developed a code that predicts the exact angular correlation function ω(θ) (i.e. without
assuming Limber approximation) given a matter power spectrum P(k), a radial selection function
φ(z) and a set of cosmological parameters. The ω(θ) is then computed using the equations
described in section 1.5.3 and in this chapter. In addition, we use the local bias model (see
section 1.5.1) to estimate the galaxy angular correlation function.

The aim of this section is to describe the structure of the code developed in this work and its
functionality. For this purpose, we briefly describe each one of the modules in the code. In
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Figure 4.1, you can see a schema of its structure and the dependencies between modules.

Modules

types Includes definitions of different data types used in the code.

params Defines several parameters that are used in multiple modules across the code.

input Here we set the values of the cosmological parameters and the paths to the input files:
mainly the power spectrum and the radial selection function.

tools Defines numerical constants used throughout the calculation, such as the number π, along
with some utility tools, e.g. a subroutine that counts the number of lines in a file.

splines Includes two subroutines needed to obtain the cubic-spline interpolation of a set of data
points. The first subroutine, spline, returns an array that contains the second derivatives
of the interpolating function at the set of points given as input. Then, the second subroutine,
splint, uses the set of points and the output from the previous spline subroutine to
return a cubic-spline interpolated value. For further details, see [139].

quadpack Is a commonly used Fortran subroutine package for the numerical computation of
definite one-dimensional integrals [127]. Aside from the quadpack subroutines, in this
module we have also included the gabq subroutine for the computation of integrals using
Gauss adaptive-bipartition quadrature, which is detailed in [63].

cosmo Computes several cosmological quantities, that are a function of the set of cosmological
parameters from the inputmodule. Some examples are the growth factor D(z), the Hubble
parameter H(z) (1.14) and the radial comoving distance.

nz Reads the radial selection function φ(zi) from the input file and then makes a change of
units so that φ is a function of the radial comoving distance instead of the redshift z. It
also normalizes the selection function to unity. It also includes the definition of the CMB
lensing convergence kernel, WκCMB .

power Reads the matter power spectrum P(k, z).

xis Computes the multipoles ξ0(s) and ξ2(s) using equation (1.66). If redshift space distortions
are not considered, the parameter β is set to zero in equation (1.60).

model wtheta Using the radial selection functions from nz and the multipoles ξl(s) from xis,
it computes the angular correlation function ω(θ) using equation (1.62).



4.4. Data 77

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

z

0

1

2

3

4

5

6

7
n

(z
)

Pop1
Pop2

Figure 4.2: Normalized redshift distributions of the galaxy samples defined
in A14.

main It calls the main subroutines of the code so that the computation of ω(θ) is executed. Then,
saves the result in an output file.

4.4 Data

In this work we reproduce the results in Asorey 2014 [14], hereafter A14, but in real space
(instead of harmonic space) and we extend the analysis to include CMB lensing cross-correlations.
Since the samples presented in A14 are optimistic, we then apply the method to the DES Y3
lens samples, which are more conservative and realistic. In this section we describe the fiducial
galaxy samples we consider in our multi-tracer analysis.

In the first part of our analysis we use the same fiducial samples and photometric survey as
described in A14. This corresponds to two galaxy sample populations: one with b = 1 constant
across z, and photometric error σz = 0.05(1 + z), and another with b = 2 and σz = 0.03(1 + z).
We refer to them as ‘Pop1’ and ‘Pop2’, respectively. These sample characteristics are based on
the DES forecasts carried out in [16, 142], before DES observations started. We assume a total
of 300 million galaxies observed in 1/8th of the sky ( fsky = 1/8), which corresponds to ∼ 5150
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deg2. We characterize the overall galaxy redshift distribution by

dN
dz

= 4π fskyNgal

( z
0.5

)2
exp

(
−

z
0.5

)1.5
, (4.13)

where Ngal is a normalization related to the total number of galaxies of the sample. We divide the
sample in 6 z bins in the range 0.4 < z < 1.55, assuming a z bin width of ∆z = 0.1(1 + z). The
redshift bin width evolves linearly with z to match the behavior of the photometric uncertainty
σz.

The radial selection function in each redshift bin, φ(z), is the probability to include a galaxy in a
given z bin. Thus, it is given by

φ(z) =
dN
dz

W(z), (4.14)

where W(z) is the window function in each redshift bin. Since we are working with photometric
redshifts, the window function can be obtained from,

W(z) =

∫
dzpP(z |zp)Wph(zp), (4.15)

where zp is the photometric redshift and P(z |zp) is the probability of the true redshift to be z if
the photometric estimate is zp. We assume that the individual redshift probability distribution for
each galaxy, P(z |zp) is Gaussian with standard deviation given by the photometric uncertainty
σz, and we bin in photometric z, which implies that Wph(zp) is a top-hat. This leads to

φ(z) ∝
dN
dz

erf
zp,max − z
√

2σz

 − erf
zp,min − z
√

2σz

  , (4.16)

where zp,min and zp,max are the edges of each redshift bin. In Fig.4.2 we show the redshift
distributions, φ(z), of the samples from A14 we consider in this work.

We then apply the multi-tracer approach to more realistic samples. For this purpose we consider
the lens samples defined for the DES Y3 galaxy clustering analysis, that we present in §2.3.2.
These consists of a redMaGiC sample and a magnitude limited sample. The fiducial galaxy
bias values in each z bin that we assume for these samples are b = 1.7, 1.7, 1.7, 2.0, 2.0 for
redMaGiC, and b = 1.5, 1.8, 1.8, 1.9, 2.3, 2.3 for the magnitude limited sample. These fiducial
values for the galaxy bias are based on galaxy clustering measurements on a 10% subsample of
the data, in consistency with the Y3 blinding scheme. We note that when we consider the DES
Y3 samples we also assume the actual area covered in Y3, ∼ 4182 deg2.
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4.5 Methodology

Our goal is to derive constraints on the growth of structure from redshift space distortions, and
on the amplitude of primordial non-Gaussianities (PNG), fNL, using a multi-tracer approach to
reduce sample variance. The multi-tracer approach consists in combining the two samples, that
is, for each bin i we add the galaxy clustering cross-correlation of bin i between the two samples
A, B, and we also include the corresponding correlations in the covariance matrix. We assume no
overlap between galaxy samples A and B. We then compare the constraints coming from this
combination, denoted by ‘A x B’, with the most constraining results coming from a single galaxy
sample, either A or B. We analyze angular galaxy clustering using auto- and cross-correlations
between different z bins. The latter allow us to include the radial modes that account for scales
comparable to the bin separation. We also study the effect of including cross-correlations with
CMB lensing in our analysis.

In the first part of our analysis, following A14, we obtain constraints on the growth index, γ,
and fσ8. Since fσ8 depends on z, we associate one fitting parameter to each z bin, so that in
practice we obtain constraints on fσ8 evaluated at the mean z in each bin, which we assume to
be the same for the bins of the two samples we consider. In the second part of our analysis we
explore the constraints on fNL. In all cases we keep fixed all the cosmological parameters and
only allow to vary the galaxy bias in each z bin, bi, and the parameter of interest: either γ, ( fσ8)i,
or fNL. In the case of ( fσ8)i we actually allow to vary (bσ8)i instead of bi. In order to forecast
the constraints on these parameters we use Fisher matrices. We assume a Gaussian likelihood,

lnL(~d|~m(~p)) = −
1
2

N∑
i j

(
di − mi(~p)

)
C−1

i j

(
d j − m j(~p)

)
, (4.17)

where N is the number of points in the data and model vectors. The Fisher matrix is then given
by,

Fi j =

〈∂2
[
− lnL(~d|~m(~p))

]
∂pi∂p j

〉
, (4.18)

whose inverse allows us to obtain an estimate of the error on the model parameters,

∆pi ≤
√

(F−1)ii. (4.19)

The likelihood also depends upon the covariance matrix, C, that describes how the points are
correlated among them. This covariance also needs to take into account the correlation between
the two galaxy samples, when we combine them, and with CMB lensing if included. Our method
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to estimate the covariance matrix for our ω(θ) predictions consists in an analytical prescription.
We follow the approach of [52], which is based on the angular power spectrum Cl. For a full-sky
survey, the covariance matrix in harmonic space is diagonal, with diagonal elements given by
[see 60] σ2(Cl) = 2C2

l /(2l + 1). Given that the angular correlation function ω(θ) is the Legendre
transform of the angular power spectrum Cl,

ω(θ) =
∑
l≥0

(
2l + 1

4π

)
Pl(cos θ)Cl, (4.20)

and that the effect of observing only a fraction of the sky fsky on the covariance, C, between
measurements is well approximated by C ∼ f −1

skyCfull sky [see e.g. 39, 52, 142] one can arrive to,

CXY(θi, θ j) =
∑
l≥0

(2l + 1)2

fsky(4π)2 Pl(cos θi)Pl(cos θ j)σ2(CXY
l ), (4.21)

where {X, Y} denote fields {κ, g}, for CMB lensing and galaxy clustering, respectively. For galaxy
clustering correlations σ2(Cgg

l ) is given by

σ2(Cgg
l ) =

1
2l + 1

(
Cgg

l +
1
n

)2

, (4.22)

where 1/n is the number density of galaxies per steradian and accounts for the shot-noise of the
galaxy counts, while the variance of galaxy-CMB lensing cross-correlations σ2(Cgκ

l ) is given by

σ2(Cgκ
l ) =

1
2l + 1

[(
Cgκ

l

)2
+

(
Cgg

l +
1
n

) (
Cκκ

l + Nκκ)] , (4.23)

where Nκκ accounts for the primary CMB, instrumental and atmospheric noise for the CMB
lensing maps. In this work we use Nκκ estimations from the combination of SPT and Planck data
in the SPT-SZ survey area from [119] that was used in the DES Y1 analysis of cross-correlations
with CMB lensing (see Chapter 3).

Throughout this work we assume a fiducial flat ΛCDM cosmology, with parameters: Ωm = 0.25,
Ωb = 0.045, h = 0.7, τ = 0.08, ns = 0.95 and σ8 = 0.8 at z = 0, where h ≡ H0/100 kms−1 We
use the CosmoSIS pipeline to compute the theoretical predictions and the Fisher matrices, and
we use the exact ω(θ) computation described in §1.5.3 and §4.3, which we have implemented
into the CosmoSIS pipeline.
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4.6 Redshift Space Distortions

In this section we discuss the constraints on the growth index, γ, defined in (4.5), and on the
more standard f (z)σ8(z) as a function of z. In both cases, we first compare our results with
A14 using the same samples and survey specifications, and study the impact of including CMB
lensing cross-correlations in the multi-tracer approach. We then explore the constraints we could
obtain with the DES Y3 lens samples and survey area, and investigate ways of modifying these
samples in order to optimize the constraints on γ and fσ8.

4.6.1 Growth index

Let us first consider the constraints on the growth index, γ using the optimistic samples from A14.
In Table 4.1 we show the 1σ expected constraints on γ considering the two samples separately
and combined. The results we obtain are consistent with A14 and we find similar improvements
when adding galaxy clustering cross-correlations between z bins and when combining the two
galaxy samples. When including galaxy clustering cross-correlations, the constraints on γ

improve almost a factor ∼ 2 for Pop1 and a factor ∼ 1.3 for Pop2. The reason behind the different
improvement factors is due to the different photometric errors, σz. Pop2 has better photometric
accuracy and, as seen in Fig. 4.2, consequently the overlap between different z bins (and the
signal coming from z bin cross-correlations) is smaller. When combining the two samples we
obtain almost a factor ∼ 2 improvement on γ with respect to the most constraining galaxy sample
(Pop1 in this case), which to a large extent is due to the sample variance cancellation.

We also study the effect of including galaxy clustering - CMB lensing cross-correlations in our
analysis (denoted by ‘+ CMB’) and see no impact in our constraints. Our interpretation is that
the addition of CMB lensing correlations mainly improves the constraints on the galaxy bias,
as possible degeneracies with the bias are broken by the different scaling of galaxy clustering
(∝ b2) and CMB lensing cross-correlations (∝ b). It is shown in A14 that fixing the galaxy
bias only improves the RSD constraints slightly, which is consistent with the results we obtain
when including CMB lensing cross-correlations. In our case, the improvement on the constraints
is almost negligible because we are not fixing the bias, but only reducing the errors on this
parameter. Hence in what follows, we concentrate in galaxy clustering only.

We then consider the DES Y3 lens samples, presented in §2.3.2, and the area they cover, which is
a little less than considered in A14. The results for galaxy clustering auto- and cross-correlations
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Sample(s) gg auto gg auto + cmb gg cross gg cross + cmb

Pop1 0.42 0.42 0.23 0.23
Pop2 0.46 0.46 0.37 0.37

Pop1 x Pop2 0.38 0.37 0.12 0.12

Table 4.1: Forecasted 68% CL constraints on γ using the samples from
A14, considering galaxy auto-correlations (‘gg auto’), galaxy auto and cross-
correlations (‘gg cross’), and these two with the addition of galaxy-CMB lens-
ing cross-correlations (‘CMB’). Pop1 x Pop2 includes the cross-correlation
of the galaxy clustering from the two samples.

Sample(s) gg auto gg cross

redMaGiC 0.45 0.40
Mag lim 0.46 0.37

redMaGiC xMag lim 0.37 0.28

Table 4.2: Forecasted 68% CL constraints on γ using the DES Y3 lens
samples (§2.3.2), considering galaxy auto-correlations (‘gg auto’), galaxy
auto and cross-correlations (‘gg cross’). ‘redMaGiC x Mag lim’ includes the
cross-correlation of the galaxy clustering from the two samples.

are shown in Table 4.2. The constraints we obtain with galaxy auto-correlations are comparable
to the previous results with the samples from A14. However, we find a smaller improvement
when including galaxy cross-correlations between z bins, just a factor ∼ 1.12 for redMaGiC
and ∼ 1.3 for the magnitude limited sample. This makes sense, as the redMaGiC galaxies
have been selected to optimize photo-z accuracy, and hence the overlap between z bins is small,
being negligible for non-adjacent z bins (see Fig. 2.4). The galaxy redshift distributions of the
magnitude limited sample are slightly wider (Fig. 2.5), this is why in this case we gain more
information when including cross-correlations.

When combining the redMaGiC and magnitude limited samples we only obtain a factor ∼ 1.34
improvement on γ when considering a full tomographic analysis (including cross-correlations).
We note that now the two samples have different tomographic binning and number of z bins.
However, when we combine the two samples, we follow the same procedure: we include the
galaxy cross-correlation between samples A and B of the same z bin, even if the z edges of the bin
are different in each sample. We have repeated the analysis using the same tomographic binning
and number of bins for both samples, finding similar results and somewhat worse constraints due
to the fact that we lose information by removing the last z bin of the magnitude limited sample.

This gain when combining the two samples is smaller compared to the samples from A14. It has
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Sample(s) gg auto gg cross

redMaGiC Low Bias (LB) 0.41 0.36
Mag lim High Bias (HB) 0.51 0.45

redMaGiC LB x Mag lim HB 0.29 0.26

Table 4.3: Forecasted 68% CL constraints on γ using the DES Y3 lens
samples (§2.3.2), redMaGiC and magnitude limited, modified in order to
have 20% lower and 20% higher values for the galaxy bias, respectively. The
magnitude limited sample here has the same z binning as redMaGiC.

been shown in [12] that, in order to have sample variance cancellation, the bias values of the two
samples need to be different; and the larger the bias difference, the greatest the improvement
on the γ constraints with the multi-tracer approach. In addition, RSD become more important
with lower bias values [12, 14, 142]. The DES Y3 lens samples we consider here have very
similar bias values, around b ∼ 2. For this reason we believe that we find a smaller improvement
with the multi-tracer approach due to the samples not being optimal for this analysis, which it is
understandable, as they have been optimized for the cosmological analysis of galaxy clustering
in combination with cosmic shear.

In the following, we attempt to understand how we should modify the Y3 lens samples in order
to have a larger gain from a multi-tracer approach. For this purpose, we consider both samples
with the same tomographic binning and number of z bins. Thus, we remove the last z bin of the
magnitude limited sample and we divide it in the same tomographic binning as redMaGiC. In
Table 4.3 we compare the constraints on γ from the two samples and their combination, where
we have modified their bias values to increase the bias difference between the two samples.
We consider the redMaGiC sample with 20% lower bias, b = 1.35, 1.35, 1.35, 1.6, 1.6, and the
magnitude limited sample with 20% higher bias, b = 1.8, 2.2, 2.2, 2.3, 2.7.

In Table 4.3 we see that by lowering the bias values we obtain tighter constraints on γ, in
concordance with [12, 14, 142]. By combining the two modified samples in a full tomographic
analysis we obtain a factor ∼ 1.4 of improvement with respect to just one galaxy sample. Thus,
the gain from the multi-tracer approach has improved with the bias difference, but it is still far
from the factor ∼ 2 from A14. It is rather likely that the samples are still not optimal for this
analysis. Other possibilities to consider are increasing the number of galaxies (in order to reduce
the shot-noise), increase the bias difference even more, and modify the width of the tomographic
binning. We leave the study of these characteristics for future work.
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Figure 4.3: Constraints on f (z)σ8(z) derived at different redshift bins from
a multi-tracer analysis (black) compared to a single tracer analysis (red and
blue) from A14 (dashed lines) and this work (in solid).

4.6.2 Redshift evolution of the growth rate of structure

So far, we have used the combined analysis of all z bins to constrain one global parameter, the
growth rate index γ. We now turn into constraining f (z)σ8(z) itself, as a function of redshift. In
Fig. 4.3 we first compare our results with A14. While our constraints are consistent with A14 in
that we find the same level of improvement when combining the two samples with respect to
the constraints from a single tracer, on the other hand, we find systematically lower errors on
f (z)σ8(z) for each one of the cases considered. We note that there are some differences between
our analysis and A14. We perform the analysis in configuration space instead of harmonic space
and we are not using exactly the same galaxy samples. Even though we have defined the samples
based on the description in A14, there are some differences in the radial selection functions. In
A14 it is shown that the RSD measurement is sensitive to the width of the tomographic binning.
The fact that the z range in this work is slightly larger compared to A141 seems to indicate that,
consequently, the width ∆z is slightly different. This explains the offset with A14 constraints in

1In this work the range is 0.4 < z < 1.55 while in A14 is 0.4 < z < 1.4.
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Figure 4.4: Comparison of constraints on f (z)σ8(z) from galaxy clustering
auto- (top panel) and cross-correlations (bottom panel) with the addition of
CMB lensing cross-correlations. We consider the samples from A14, namely
Pop1 (blue), Pop2 (green) and their combination (red).

Fig. 4.3.

In the previous section we have explored the inclusion of galaxy clustering and CMB lensing
cross-correlations in the analysis of the growth index. Similarly, in Fig. 4.4 we compare the
constraints from galaxy clustering alone with those from galaxy clustering and CMB lensing
correlations considering the samples from A14. We find that there is a slight improvement
on the f (z)σ8(z) constraints when including CMB lensing cross-correlations. However, the
improvement is negligible, ∼ 1% or smaller. Thus, in the following we do not include CMB
lensing cross-correlations.

We now consider the DES Y3 lens samples (§2.3.2), redMaGiC and magnitude limited. Since we
fit f (z)σ8(z) at the mean redshift of each bin, in order to combine the two samples in a multi-tracer
approach, the two samples need to have similar tomographic binning. For this purpose, here
we modify the magnitude limited sample to have the same tomographic binning as redMaGiC.
In Fig. 4.5 we compare the constraints on f (z)σ8(z) using redMaGiC (red) and the magnitude
limited sample (blue) with their combination (black). We consider two scenarios: using only
galaxy clustering auto-correlations (left panel) and including cross-correlations between z bins
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Figure 4.5: Constraints on f (z)σ8(z) from galaxy clustering auto- (left) and
cross-correlations (right). We consider the DES Y3 lens samples (§2.3.2),
redMaGiC (red) and magnitude limited (blue), and their combination (black).
The magnitude limited sample here has the same z binning as redMaGiC.

(right panel).

We find that when considering a single tracer, both redMaGiC and magnitude limited samples
provide comparable constraints due to the relatively low bias difference between the samples.
When including cross-correlations we do not find much improvement in the single tracer con-
straints, similarly to our results for the growth index γ. However, we do find a remarkable
improvement with the multi-tracer approach, specially at low z, in consistency with A14. In
addition, the multi-tracer approach benefits from the inclusion of cross-correlations between z
bins. With a full tomographic analysis, the improvement is around a factor ∼ 2, except for the
first bin in which it is a factor ∼ 5, and the last bin, in which the improvement is very small
(∼ 1.13).

If we compare our predictions to measurements from spectroscopic surveys like VIPERS [126]
with constraints fσ8(z = 0.6) = 0.55±0.12 or WiggleZ [30] where fσ8(z = 0.6) = 0.390±0.063
and fσ8(z = 0.44) = 0.413 ± 0.080, we find that with a full tomographic multi-tracer analysis
using the DES Y3 lens samples we can achieve a similar level of errors (e.g. σ( fσ8(z = 0.27)) =

0.10, σ( fσ8(z = 0.58)) = 0.14) in determining the growth of structure, specially at low z, where
the gain from the multi-tracer approach is the largest.

We now explore the impact of modifying the relative bias between the samples on the f (z)σ8(z)
constraints. In Fig. 4.6 we compare the 1σ errors from the two DES samples, modified in such
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Figure 4.6: Constraints on f (z)σ8(z) from galaxy clustering auto- (left) and
cross-correlations (right). We consider the DES Y3 lens samples (§2.3.2),
redMaGiC (red) and magnitude limited (blue), modified in order to have 20%
lower and 20% higher values for the galaxy bias, respectively. The magnitude
limited sample here has the same z binning as redMaGiC.

a way that redMaGiC has 20% lower bias and the magnitude limited sample 20% higher bias
values. Since the RSD signal is boosted for lower bias values, now we see an improvement on the
redMaGiC constraints. The downside of having worse constraints coming from the magnitude
limited sample (due to the increase on b) is that at high z the errors on f (z)σ8(z) degrade when
combining the two samples with respect to redMaGiC alone. A possible explanation for this
is that, due to the difference in constraining power, at high z the gain we obtain by including
the magnitude limited sample does not compensate the fact we are introducing 5 extra bias
parameters in our analysis.

4.7 Local primordial non-gaussianities

In this section we discuss the constraints on the amplitude of local primordial non-Gaussianities,
fNL, from a multi-tracer approach. In Table 4.4 we show the constraints from galaxy auto- (left)
and cross-correlations (right) using the samples from A14, where we have modified the bias of
Pop1 to b = 1.2 in order to have sensitivity to fNL. It can be seen from (4.11) that for b = 1 (and
p = 1, which we are assuming) the contribution to the total bias coming from PNG vanishes.
Table 4.4 shows that there is not much information on fNL to be gained from the inclusion of
cross-correlation between z bins. However, by combining the galaxy clustering from the two
samples we can improve the constraints on fNL by a factor ∼ 2.3 from galaxy auto-correlations
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Sample(s) gg auto gg cross

Pop1 (b = 1.2) 26.2 24.5
Pop2 8.3 8.2

Pop1 (b = 1.2) x Pop2 3.6 2.3

Table 4.4: Forecasted 68% CL constraints on fNL using the samples from
A14, considering galaxy auto-correlations (‘gg auto’), galaxy auto and cross-
correlations (‘gg cross’), and these two with the addition of galaxy-CMB
lensing cross-correlations (‘CMB’). We have modified the bias of Pop1 to
b = 1.2.

Sample(s) gg auto gg cross

redMaGiC 22 21.9
Mag lim 17.4 16.7

redMaGiC xMag lim 15.3 15

Table 4.5: Forecasted 68% CL constraints on fNL using the DES Y3 lens
samples (§2.3.2), considering galaxy auto-correlations (‘gg auto’), galaxy
auto and cross-correlations (‘gg cross’). ‘redMaGiC x Mag lim’ includes the
cross-correlation of the galaxy clustering from the two samples.

alone, and a factor ∼ 3.6 if we include cross-correlations between bins. Therefore, galaxy
clustering measurements of fNL can greatly benefit from a multi-tracer approach.

We now consider the DES Y3 samples, as described in §2.3.2, i.e. the magnitude limited sample
has different tomographic binning compared to redMaGiC and an additional bin at higher z. In
Table 4.5 we show the fNL constraints from these two samples and their combination. Again,
we find negligible gain from the inclusion of cross-correlations between bins. We see that the
magnitude limited sample has more constraining power on fNL than redMaGiC due to the fact
that it is more biased, it has larger number density and it covers a greater z range. In fact, using
the magnitude limited sample with just galaxy clustering auto-correlations, we could potentially
obtain a 68% CL constraint on fNL of 17.4, which is a great improvement compared to the
tightest constraint from large-scale structure until now, −51 < fNL < 21 at 95% CL from eBOSS
Data Release 14 data [43]. However, when combining the two samples we only find a factor
∼ 1.15 of improvement compared to the most constraining single tracer. Again, this is probably
due to these samples not being optimal for a multi-tracer analysis of fNL.

In an attempt to understand the effect of the bias difference between the two samples in the
multi-tracer measurement of fNL, in Table 4.6 we compare the constraints from the two DES
Y3 lens samples, where we have modified them in such a way that redMaGiC has 20% lower
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Sample(s) gg auto gg cross

redMaGiC Low Bias (LB) 31.5 31.3
Mag lim High Bias (HB) 16.0 15.5

redMaGiC LB x Mag lim HB 14.6 13.2

Table 4.6: Forecasted 68% CL constraints on fNL using the DES Y3 lens
samples (§2.3.2), redMaGiC and magnitude limited, modified in order to
have 20% lower and 20% higher values for the galaxy bias, respectively.

bias and the magnitude limited sample 20% higher bias values. In addition, now the magnitude
limited sample has the same tomographic binning as redMaGiC. We find that the constraints
on fNL improve when considering a more biased tracer and degrade if we lower the galaxy bias,
contrary to what happens when measuring RSD. However, we do not find much improvement
from the multi-tracer approach, just a factor ∼ 1.2 when including cross-correlations between
bins. We may need to have an even larger bias difference between the two tracers in order to
take full advantage of the multi-tracer approach. It is also possible that the lower number density
of the redMaGiC sample holds down the possible gain from sample variance cancellation. We
leave further studies on the optimization of these samples for future work.

4.8 Summary

In this chapter we have explored the constraints on RSD (for the growth index γ and f (z)σ8(z))
and on PNG through the fNL parameter using a multi-tracer approach. We have first reproduced
the constraints on RSD from A14 in real space instead of harmonic space, and then we have
studied the impact of including CMB lensing cross-correlations in our analysis. We have found
that including CMB lensing cross-correlations has a negligible impact on the RSD constraints,
at least in this case in which we leave the shape of the matter power spectrum P(k, z) fixed (we
only allow to vary the galaxy bias and the parameter of interest).

We have then measured RSD with the DES Y3 lens samples: redMaGiC and magnitude limited.
In this case, we do not gain much if we include cross-correlations between z bins, due to the better
photometric accuracy compared to the samples considered in A14. Our predictions from a full
tomographic multi-tracer analysis are comparable to the latest measurements from spectroscopic
surveys. While we find a great improvement of the f (z)σ8(z) constraints with a multi-tracer
approach (specially at low z in which we can improve the constraints by a factor ∼ 5), we only
find a minor improvement on γ, a factor ∼ 1.34. This may be due to a number of reasons, as
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these samples have not been optimized for a multi-tracer measurement of RSD.

Since one of the characteristics that is important for sample variance cancellation is that the two
tracers considered have large galaxy bias differences, we study the impact of the relative bias by
lowering the bias of redMaGiC by 20% and increasing the bias of the magnitude limited sample
by 20%. The RSD sensitivity is greater the lower the galaxy bias of the tracer. Therefore, the
constraints from the magnitude limited sample degrade while the ones from redMaGiC improve.
As a consequence, when combining the two samples we obtain somewhat less constraining
measurements on f (z)σ8(z) at high z. This is probably due to the fact that the constraining power
of the magnitude limited sample with such high bias values (b = 2.7 at the last bin) is not enough
to compensate the fact that we are adding 5 more bias parameters allowed to vary. At low z we do
find some improvement because the bias of both samples is lower. When measuring γ, however,
we combine the information of all the z bins into one global parameter, and as a consequence the
gain due to the increase in relative bias at low z is compensated by the poorer constraining power
of the more biased sample at high z, and as a result we do not find much improvement in the
constraints from the combination of the two samples, just a factor ∼ 1.4.

We also explore the potential constraints on the amplitude of local PNG, fNL. We first consider the
samples from A14, where we have increased the bias of Pop1 by a 20% in order to have a biased
tracer. We find negligible improvement on the constraints with the inclusion of cross-correlations
between z bins. However, by combining the two samples we can improve the constraints by a
factor ∼ 2.3 with galaxy auto-correlations only, and by a factor ∼ 3.6 with a full tomographic
analysis.

We then consider the DES Y3 lens samples, where we find that the magnitude limited sample
is more constraining than redMaGiC due to the larger number density and higher bias. Our
forecasts show that we could potentially obtain a 68% CL error on fNL of 17.4 from the magnitude
limited sample galaxy auto-correlations only, while the tightest constraints from large-scale
sructure until now are −51 < fNL < 21 at 95% CL [43]. However, when combining the two
samples we only find a factor ∼ 1.15 of improvement.

We also explore the impact of increasing the relative bias between the two samples, by lowering
the redMaGiC bias by 20% and increasing the magnitude limited sample bias by 20%. In the
case of PNG measurements, we benefit from having more biased tracers. Thus, we find that the
constraint coming from the magnitude limited sample increases, while the one from redMaGiC
degrades. However, we do not find much improvement with a multi-tracer approach compared to
the original DES Y3 samples. Similarly to what we have found with γ, this could be due to the
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bias difference or the number density not being large enough (i.e. the samples not being optimal
for constraining fNL with a multi-tracer approach).

We leave to future work extending this analysis to allow to vary all cosmological parameters and
other nuisance parameters, such as uncertainties in the photometric redshift estimations. We will
also look further into how we should modify the DES Y3 lens samples in order to optimize them
for the multi-tracer measurements of RSD an PNG. In addition, we plan on testing the impact of
including CMB lensing cross-correlations in the multi-tracer measurement of fNL.
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Chapter 5

Impact of Lens Sample on Cosmological
Constraints from Multiple Probes

5.1 Context

As described in §2.3.2, in the DES Y3 analysis we will use two different lens samples to measure
galaxy clustering and combine it with cosmic shear measurements. The first one consists of
luminous red galaxies (LRG) that have been selected with the redMaGiC algorithm. This is the
method that was used for the Y1 analysis and it has the advantage of selecting galaxies which
have a small photometric uncertainty. The second one, the magnitude limited sample, is a flux
limited sample that reaches higher number density and redshift than redMaGiC, with the caveat
that it has slightly worse photometric accuracy.

In this chapter we describe and optimize the selection of the magnitude limited sample in terms
of its cosmological constraints in σ8, Ωm and w, as these are the main parameters that are
constrained in the joint analysis of galaxy clustering and weak lensing from DES data [2]. For
this purpose we rely on Fisher forecasts, that we validate with some selected MCMC runs. We
test how the forecasts on these cosmological parameters vary given the modifications obtained
for the number density and estimated redshift uncertainty given by a set of magnitude cuts.

We also characterize the impact of redshift binning choices in our cosmological constraints
for both samples and compare their final number densities and estimated redshift distributions.
We finally forecast the cosmological constraints from the combination of galaxy clustering and
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galaxy-galaxy lensing using redMaGiC and the magnitude limited sample, finding comparable
constraints, and potentially 15% tighter 1σ errors with the magnitude limited sample.

5.2 Theory

Similarly to §3.3, under the Limber approximation [103] we can construct the galaxy clustering
angular correlation function in the following way,
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Here bi(k, z) is the galaxy bias and ni
g(z) is the redshift distribution of the i-th galaxy sample with

total density n̄i
g. For galaxy-galaxy lensing, we model the tangential shear, which consists of the

correlation of lens galaxy positions in bin i with source galaxy shear in bin j. On large scales, it
can be expressed as an integral over the power spectrum,
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where m j is the multiplicative shear bias in order to take into consideration potential biases in the
inferred shears (see §5.3), J2 is the second order Bessel function, and qκ is the lensing efficiency
(1.77),
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where χlim is the limiting comoving distance of the galaxy sample and ni
κ(z) is the redshift

distribution of the i-th source galaxy sample with total density n̄i
κ. The cosmic shear signal

is independent of galaxy bias but shares the same general form as the other sets of two-point
functions. The theoretical predictions for these shear-shear two point functions are
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where the efficiency functions are defined above, and J0 and J4 are the (0th and 4th order) Bessel
functions for ξ+ and ξ−. We calculate the power spectrum using the Boltzmann code CAMB1

[76, 96] with the Halofit extension to nonlinear scales [157, 163] and the neutrino extension
from [29].

5.3 Data

All the likelihood analyses in this work use theory data vectors. However, the galaxy redshift
distributions and galaxy number densities, that enter into the covariance and theory data vector
computations, are taken from the data. For the galaxy clustering analysis we use two differ-
ent galaxy samples, as described in §2.3.2. These are the so-called DES Y3 redMaGiC and
magnitude limited samples.

For the galaxy-galaxy lensing analysis we use these galaxy samples as lenses and the DES
Y1 Metacalibration [81, 151] shear catalog as sources. Metacalibration uses the data itself to
calibrate shear estimates by artificially shearing the galaxy images and re-measuring the shear
to determine the response of the shape measurement to gravitational shear. Metacalibration
also includes an algorithm for calibration of shear-dependent selection effects of galaxies, which
could bias shear statistics at the few percent level otherwise. This calibration is carried out
by measuring on both unsheared and sheared images all those galaxy properties that are used
to select, bin, and weight galaxies in the catalog. Details of the practical application of these
corrections are given in [138, 151, 166, 177]. Potential biases in the inferred shears are quantified
by multiplicative shear-calibration parameters mi in each source redshift bin i, such that the
measured shear is related to the true shear in this way,

γmeas = (1 + mi)γtrue. (5.6)

Conservative cuts on S/N and size have been applied to the shear catalog, which reduce the
number of galaxies with shear estimates relative to the Y1 Gold input catalog significantly. After
masking and binning the catalog, the final number of galaxy shapes in the Metacalibration
sample is ∼ 26 million down to an r-band magnitude of ≈ 23.

The Metacalibration sample is divided into 4 tomographic bins: 0.2 < z < 0.43, 0.43 < z < 0.63,
0.63 < z < 0.9, and 0.9 < z < 1.3, where here z is the mean of the redshift PDF for each galaxy

1See camb.info.
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Figure 5.1: Normalized redshift distributions of the DES Y1 Metacalibration
source galaxies.

as estimated from a modified version of the Bayesian Photometric Redshifts (BPZ) algorithm
[21], detailed in [77]. These bin assignments are based upon photo-z estimates derived using
photometric measurements made by the Metacalibration pipeline in order to allow for correction
of selection effects. The resulting normalized redshift distributions are shown in Fig.5.1.

5.4 Methodology

In this work we run simulated likelihood analysis with both Fisher forecasts and Markov Chain
Monte Carlo (MCMC) methods using noiseless theory data vectors (i.e. a theoretical prediction
evaluated at the fiducial cosmology, that we maintain fixed in the likelihood sampling). For both
approaches we need to sample the likelihood in the n-dimensional parameter space, where n
is the number of parameters we vary in our analysis (see Table 5.4). We assume a Gaussian
likelihood,

lnL(~d|~m(~p)) = −
1
2

N∑
i j

(
di − mi(~p)

)
C−1

i j

(
d j − m j(~p)

)
, (5.7)
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where N is the number of points in the data and model vectors. The posteriors on the model
parameters are given by:

P(~m(~p)|~d) ∝ L(~d|~m(~p))Pprior(~p), (5.8)

where Pprior(~p) is the prior on the model parameters. The Fisher matrix is then given by,

Fi j =

〈∂2
[
− ln P(~m(~p)|~d)

]
∂pi∂p j

〉
, (5.9)

whose inverse allows us to obtain an estimate of the error on the model parameters,

∆pi ≤
√

(F−1)ii. (5.10)

The Fisher forecasts can provide inaccurate results for non-gaussian posterior distributions (e.g.
when there are degeneracies between parameters), but they have the advantage that they are
computationally much less expensive. For this reason, in this work we use Fisher forecasts when
we want to compare the constraints of many different data vectors, and then we validate our
conclusions with a full exploration of the likelihood using an MCMC method.

We use the CosmoSIS pipeline to compute the theoretical predictions, the Fisher matrices, and to
generate the MCMC samples that map out the posterior space leading to parameter constraints.
For the latter, we use the publicly available Multinest sampler [64].

The likelihood also depends upon the covariance matrix, C, that describes how the points are
correlated among them. This covariance also needs to take into account the correlation between
different probes, such as galaxy clustering and galaxy-galaxy lensing. We use analytical Gaussian
covariance matrices generated using CosmoLike, which was validated against simulations in
[91]. A Gaussian covariance matrix is sufficient for our efforts in this work because we are
just interested in forecasting and comparing the cosmological constraints given by different
sample definitions. In addition, we exclude small scales in our analysis (see §5.7.3), where the
non-Gaussian terms of the covariance become dominant. In addition, we have checked that
including non-Gaussian terms in our covariance matrix estimation does not impact our final
results significantly.
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Figure 5.2: Different sample definitions considered. The first version (blue
dots) applied a constant magnitude cut for each redshift bin, the second
version (v2.0), in solid green, used a continuous magnitude cut evolving
linearly with z, with slope and interception given by a fit to the blue points.
In dashed black we show the final definition of the sample.

5.5 Sample Optimization

In this section we justify the magnitude limited sample selection used in this analysis and describe
the optimization process we have carried out to reach the final definition of the sample. The first
version of the sample just applied a constant magnitude cut in the i band to all the galaxies in
the same redshift bin. This magnitude cut was different for each redshift bin, increasing with
redshift.

In order to have a smoother bias evolution with redshift we henceforth apply the same continuous
magnitude cut to all the galaxies of the sample, and, unless otherwise stated, we consider a cut
evolving linearly with redshift, i.e. i < az + b. In order to get a first estimate for the slope and
interception, we fit this function to the i and z values of the first version of the sample, obtaining
a = 4.0 and b = 17.64. In Fig. 5.2 we show the i values used for the first version of the sample,
the linear fit to these values, hereafter v2.0, and the cut corresponding to the final definition of
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Figure 5.3: Standard deviations on Ωm, w and σ8 from different defini-
tions of the magnitude limited sample normalized by estimates from the
redMaGiCsample.

the sample, i.e. i < 4z + 18 (see §2.3.2).

We then find the optimal definition of this sample by running Fisher matrix forecasts on all the
possible combinations of (a, b) values in these ranges: a = [3.5, 4, 4.5, 5], b = [17, 17.5, 18, 18.5].
These ranges of values are broad enough to cover a complete variety of possible sample defini-
tions, as the minimum values for a and b (i.e. i < 3.5z + 17) result in a sample with very few
galaxies, and the maximum values (i.e. i < 5z + 18.5) result in a sample with a very large limiting
magnitude (i < 23.75), in such a way that we are practically selecting almost all the galaxies
from the catalog. In addition, the sample is complete at full area (covering the whole ∼ 5000
deg2) for regions deeper than i = 22 magnitudes. If the limiting magnitude of the selection
(ilim = azmax + b) is larger than 22, we have to mask those regions of the footprint that are too
shallow, thus reducing the effective sky area. With the final definition of the sample (§2.3.2) the
limiting magnitude is i = 22.2, which implied masking of 1% the footprint. For some of these
combinations of (a, b) values, the limiting magnitude is 23, or larger. Given that with a limiting
magnitude of 22.5 we already would have to mask about 5% of the footprint, we decide not to
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Figure 5.4: Standard deviations on Ωm, w and σ8 from different definitions
of the magnitude limited sample normalized by estimates from the red-
MaGiCsample. We compare results obtained from Fisher matrix forecasts
(green triangles) with those from MCMC (blue squares).

consider those selections that reach a limiting magnitude larger than 22.5.

We are interested in optimizing the sample in terms of its cosmological constraints. In this
case, the parameters of interest are σ8, Ωm and w, as these are the main parameters that are
constrained in the joint analysis of galaxy clustering and weak lensing from DES data [2].
For each one of these possible magnitude cuts, we compare the constraints on {Ωm, σ8, w }
obtained from the joint analysis of galaxy clustering and galaxy-galaxy lensing using Fisher
forecasts. In Fig.5.3 we show the standard deviations resulting from the forecasts, which are
normalized by the constraints obtained from the Y3 redMaGiC sample (see §2.3.2). Thus, the
black dashed line represents constraints equal to those obtained from redMaGiC, while points
above or below that line correspond to samples giving worse or better constraints than redMaGiC,
respectively. The grey band delimits the region with 10% better or worse constraints compared
to redMaGiC. In Fig.5.3 we compare the relative gain on the constraints for most of the galaxy
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Redshift range Ngal redMaGiC Ngal Mag lim

0.15 – 0.35 341,602 1,599,462
0.35 – 0.50 589,562 1,593,745
0.50 – 0.65 877,267 1,379,717
0.65 – 0.85 679,291 1,862,978
0.85 – 0.95 418,986 2,257,704

Total 2,906,708 8,693,606

Table 5.1: Number of galaxies per redshift bin for redMaGiC and magnitude
limited samples assuming redMaGiC redshift binning for both. The effective
sky area covered by these samples is 4182 deg2.

selections considered2, and for the so-called v2.0 and v3.0 of the sample, which are the fits to
the magnitude cuts considered in the first version of the sample (blue dots in Fig.5.2) assuming
i < az + b and i < a

√
z + b, respectively. Here we see that most of the samples considered yield

constraints similar or slightly better than redMaGiC. This is probably due to the fact that, even
though the photo-z are less accurate, these samples have more galaxies and reach higher z than
redMaGiC. One of the samples provides significantly worse constraints (i < 3.5z + 17), but this
is understandable, because it corresponds to the extreme case in which very few galaxies are
selected from the Gold catalog. From all the samples considered we then choose as our fiducial
magnitude limited sample for the Y3 cosmological analysis the one with the best constraints
and with a limiting magnitude at zmax lower than 22.5. Since we bin in 6 z bins from z = 0.2 to
z = 1.05, that sample corresponds to i < 4z + 18.

We compare the results obtained from the Fisher forecasts with full likelihood explorations
using an MCMC method in Fig.5.4. Due to the fact that the MCMC method is much more
computationally expensive than the Fisher forecasts, we only perform this comparison for some
of the samples considered, including the result of the optimization (i < 4z + 18). We find that the
constraints from both forecasting methods agree within few percent, thus we conclude that our
choice of sample definition is robust and well justified.

5.6 Comparison with redMaGiC

In this section we compare the characteristics of the magnitude limited and redMaGiC samples.
For this purpose, we consider here the same tomographic binning for the former as the one used

2In this comparison we have excluded those selections that reach too high limiting magnitudes, as that would
imply masking more than 5% of the footprint.
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Figure 5.5: Normalized redshift distributions from magnitude limited (dashed
lines) and redMaGiC (solid lines) samples considering the same tomographic
z binning as used for the redMaGiC sample.

for the latter. This consists in five redshift bins ranging from z = 0.15 to z = 0.95. In Table 5.1
we show the details of this tomographic binning and the number of galaxies in each bin for both
samples. The magnitude limited sample has on average between 2 and 3 times more galaxies
than redMaGiC. The difference in Ngal ranges from 60% more galaxies in the third bin to more
than 4 times further galaxies in the last z bin.

In Fig.5.5 we compare the redshift distributions normalized such that
∫ zmax

zmin
dz n(z) = 1 in each

redshift bin. Here the n(z) for redMaGiC are the same as shown in Fig.2.4 but normalized to 1,
while the distributions for the magnitude limited sample have been obtained by stacking of the
nearest neighborhood redshifts from the DNF training sample (§2.3.2). Some parameters we can
use to compare the accuracy of the photo-z are the width and height (or spread of the tails) of
the normalized n(z) distributions. For both samples we have binned the galaxies in photometric
redshifts in the same way. Thus their distributions in true redshifts (normalized n(z)) will be
broader and have larger tails (shorter peaks) if their error on the photo-z estimation σz is larger.
In Fig.5.5 we see, as expected, that redMaGiC has more accurate photo-z, which is given by
their galaxies being selected with an algorithm optimized for photometric accuracy. However,
the photo-zs of the magnitude limited sample are not very degraded compared to redMaGiC, as
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Fiducial Same Ngal 6 z-bins
Luminosity Redshift range Luminosity Redshift range Luminosity Redshift range

L > 0.5L∗ 0.15 – 0.35 L > 0.5L∗ 0.15 – 0.40 L > 0.5L∗ 0.15 – 0.30
L > 0.5L∗ 0.35 – 0.50 L > 0.5L∗ 0.40 – 0.55 L > 0.5L∗ 0.30 – 0.40
L > 0.5L∗ 0.50 – 0.65 L > 0.5L∗ 0.55 – 0.65 L > 0.5L∗ 0.40 – 0.50

L > 0.5L∗ 0.50 – 0.65
L > 1.0L∗ 0.65 – 0.85 L > 1.0L∗ 0.65 – 0.80 L > 1.0L∗ 0.65 – 0.85
L > 1.0L∗ 0.85 – 0.95 L > 1.0L∗ 0.80 – 0.95 L > 1.0L∗ 0.85 – 0.95

Table 5.2: Different tomographic binning configurations for the redMaGiC
sample.

the n(z) distributions are not much broader. In particular the n(z) for the third redshift bin looks
quite similar in both samples. Thus, through the magnitude limited sample optimization carried
out in §5.5, we have managed to generate a galaxy sample with 2–3 times more galaxies than
redMaGiC and with slightly worse photo-z errors.

5.7 Analysis Choices

5.7.1 Tomographic Binning

Here we test the impact on the cosmological constraints of the number of tomographic bins and
edges of the binning of the Y3 lens samples (redMaGiC and magnitude limited samples).

redMaGiC sample

As described in §2.3.2, the redMaGiC sample in Y3 consists of the combination of two
redMaGiC samples selected with different luminosity thresholds: high-density (L > 0.5L∗)
in the range 0.15 < z < 0.65, and high-luminosity (L > 1.0L∗) in the range 0.65 < z < 0.95.
Taking this condition into account, here we explore different tomographic binnings for the
redMaGiC sample. We consider two cases: first, we vary the edges of the z bins trying to have a
more balanced Ngal across the redshift bins, we refer to this as the ‘same Ngal’ case; second, we
divide the sample into 6 z bins instead of 5. In Table 5.2 we show the details of these tomographic
binnings.

We test the impact of the tomographic binning of the redMaGiC sample in our cosmological
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Figure 5.6: Constraints from the combination of galaxy clustering, galaxy-
galaxy lensing and cosmic shear considering different tomographic binnings
for the redMaGiC sample, as specified in Table 5.2.

constraints by running MCMC simulated likelihood analyses from the combination of galaxy
clustering, galaxy-galaxy lensing, and cosmic shear. In Fig.5.6 we compare the constraints of
the fiducial redMaGiC sample with the other binnings considered. We find that changing the
edges of the tomographic binning –while keeping the same number of z bins– does not affect the
posterior distributions. On the other hand, we find a slight improvement by dividing the sample in
6 z bins instead of 5. However, this is a considerably minor improvement, about 3-4%. Increasing
the number of tomographic bins increases the total number of nuisance parameters to marginalize
over and the size of the covariance matrix, which could lead to more degeneracies between
nuisance and cosmological parameters. For this reason, we find that the fiducial definition with 5
z bins is preferable.
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Fiducial Same Ngal Same Ngal × bi

0.20 – 0.35 0.20 – 0.36 0.20 – 0.40
0.35 – 0.50 0.36 – 0.52 0.40 – 0.55
0.50 – 0.65 0.52 – 0.69 0.55 – 0.72
0.65 – 0.80 0.69 – 0.82 0.72 – 0.85
0.80 – 0.95 0.82 – 0.93 0.85 – 0.95
0.95 – 1.05 0.93 – 1.05 0.95 – 1.05

4 z-bins 5 z-bins 7 z-bins

0.20 – 0.44 0.20 – 0.40 0.20 – 0.35
0.44 – 0.69 0.40 – 0.60 0.35 – 0.50
0.69 – 0.87 0.60 – 0.77 0.50 – 0.64
0.87 – 1.05 0.77 – 0.90 0.64 – 0.77

0.90 – 1.05 0.77 – 0.86
0.86 – 0.95
0.95 – 1.05

Table 5.3: Different tomographic binning configurations for the magnitude
limited sample, considering variations in the edges of the z bins (left) and the
number of bins (right).
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Figure 5.7: Comparison of Fisher constraints from the combination of galaxy
clustering and galaxy-galaxy lensing considering different tomographic bin-
nings for the magnitude limited sample, as described in Table 5.3 (left).

Magnitude limited sample

Similarly to what we have carried out for the redMaGiC sample, here we test the impact of the
choice of tomographic binning on the cosmological constraints from the combination of galaxy
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Figure 5.8: Comparison of Fisher constraints from the combination of galaxy
clustering and galaxy-galaxy lensing considering different number of z bins
for the magnitude limited sample, as described in Table 5.3 (right), where here
the case with 6 bins corresponds to the fiducial magnitude limited sample.

clustering and galaxy-galaxy lensing. In all cases considered we maintain the same global z
range as the fiducial sample, i.e. 0.2 < z < 1.05. We first vary the edges of the tomographic
binning, putting together two new configurations in which we balance the number of galaxies
weighted by the galaxy bias in each redshift bin, ‘same Ngal × bi’, and unweighted, ‘same Ngal’.
The galaxy bias values we consider are listed in Table 5.4, and the definition of these z binnings
is shown in Table 5.3 (left). The motivation for balancing the number of galaxies (weighted by
the galaxy bias) is to have a more uniform signal-to-noise ratio across redshift. However, as we
can see in Fig.5.7, where we compare the constraints coming from these different tomographic
binnings, our choice of binning does not impact the cosmological constraints coming from the
combination of galaxy clustering and galaxy-galaxy lensing, hereafter 2x2pt.

We then vary the number of tomographic bins in which we divide the sample in the range
0.2 < z < 1.05. Our fiducial selection is divided in 6 z bins, and we consider additionally
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sample selections with 4, 5 and 7 z bins. See Table 5.3 (right) for the details of the z binning
for each one of these cases. In Fig.5.8 we compare the estimated Fisher 2x2pt constraints from
each one of these sample selections with our fiducial choice with 6 z bins. We can extract two
conclusions from these results. First, increasing the number of tomographic bins in which we
divide the sample does not improve the cosmological constraints. Second, reducing the number
of z bins degrades the cosmological constraints. This makes sense, as reducing the number of
bins while keeping fixed the total z range to be covered effectively increases the width of the
redshift distributions and, as shown in [15], there is a loss of information when projecting the 3D
power spectrum into angular tomographic bins, with that loss being larger the wider the redshift
bins. This is due to the fact that broad bins average down radial power on scales smaller than the
bin width. Thus, we conclude that our choice of tomographic binning for the magnitude limited
sample is robust and optimal for our cosmological analysis.

5.7.2 Parametrization and Priors

The cosmological model we consider in this work is spatially flat wCDM with fixed neutrino mass
corresponding to the minimum allowed neutrino mass of 0.06 eV from oscillation experiments
[122]. We split the neutrino mass equally among the three eigenstates, in consistency with
[2]. The fiducial cosmological parameter values correspond to the best-fits of the posterior
distributions from the DES Y1 3×2pt ΛCDM analysis in [2], that obtained cosmological
constraints from the combination of galaxy clustering, galaxy-galaxy lensing, and cosmic shear.

In addition to the cosmological parameters, our model contains about 20 nuisance parameters.
These are the galaxy bias parameters for the lens samples, bi, the multiplicative shear biases,
mi, two parameters related to the intrinsic alignment model, AIA and ηIA, and the photo-z shift
parameters for the lenses and the sources, ∆zi. These shift parameters are used in our analysis to
quantify uncertainties in the redshift distribution. We assume that the true redshift distribution
ni(z) in bin i is a shifted version of the photometrically derived distribution:

ni(z) = ni
PZ(z − ∆zi). (5.11)

The fiducial values and priors assumed for these parameters, shown in Table 5.4, are consistent
with [2]. For the magnitude limited sample, we assume fiducial values for the galaxy bias based
on galaxy clustering measurements on a 10% subsample of the data, in consistency with the Y3
blinding scheme. We have checked that our conclusions in this work are robust to changes in the
magnitude limited sample galaxy bias values.
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Figure 5.9: Comparison between parameter constraints obtained using the
fiducial priors assumed for the magnitude limited sample ∆zi parameters in
Table 5.4 (blue), and using priors twice as wide (red).

For the photo-z shift parameters we assume the same priors as in DES Y1, as we are using the
same redshift distributions for the sources, and the photometric calibration for the Y3 redMaGiC
and magnitude limited samples is still ongoing. Note that throughout this analysis we assume
the same priors on the shift parameters for the two lens samples, even though we have seen in
Fig.5.5 that the magnitude limited sample has slightly worse photometric accuracy. We have
tested the effect of this assumption by doubling the width of the priors on the magnitude limited
sample ∆zi parameters, obtaining the constraints shown in Fig.5.9. The constraints degrade by
less than a 10% when doubling the priors on ∆zi. Since the actual priors will be lower than this
pessimistic scenario, we conclude that our analysis is robust to changes in the priors associated
to the magnitude limited sample nuisance parameters.
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Parameter Fiducial Prior
Cosmology

Ωm 0.2837 [0.1, 0.9]
As/10−9 2.2606 [0.5, 5.0]

ns 0.9686 [0.87, 1.07]
w -1.0 [-2, -0.33]
Ωb 0.062 [0.03, 0.07]
h0 0.8433 [0.55, 0.9]

Ωνh2 6.155 × 10−4 Fixed
ΩK 0 Fixed
τ 0.08 Fixed

Galaxy bias (redMaGiC)
bi 1.4, 1.6, 1.6, 1.93, 1.99 [0.8,3.0]

Galaxy bias (Magnitude limited)
bi 1.49, 1.86, 1.81, 1.90, 2.26, 2.33 [0.8,3.0]

Intrinsic alignment
AIA(z) = AIA[(1 + z)/1.62]ηIA

AIA 0.0 [-5.0,5.0]
ηIA 0.0 [-5.0,5.0]

Lens photo-z shift
∆1

z,l 0.002 (0.0,0.007)
∆2

z,l 0.001 (0.0,0.007)
∆3

z,l 0.003 (0.0,0.006)
∆4

z,l 0.0 (0.0,0.01)
∆5

z,l 0.0 (0.0,0.01)
∆6

z,l 0.0 (0.0,0.01)

Source photo-z shift
∆1

z,s 0.002 (0.0,0.016)
∆2

z,s -0.015 (0.0,0.013)
∆3

z,s 0.007 (0.0,0.011)
∆4

z,s -0.018 (0.0,0.022)

Shear calibration
mi (i = 1, 4) 0.012 (0.012, 0.023)

Table 5.4: The fiducial parameter values and priors for cosmological and
nuisance parameters used in this analysis. Square brackets denote a flat prior
over the indicated range, while parentheses denote a Gaussian prior of the
form N(µ, σ).
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5.7.3 Scale Cuts

As seen in §1.3.2, in the linear regime perturbation theory can be used to calculate the matter
power spectra. On smaller scales, N-body simulations are needed in order to capture the non-
linear evolution of structure growth. For example, the Haloft method [157, 163], which we use
in this work, employs a functional form of the matter power spectrum derived from halo models,
which are in turn calibrated from N-body simulations. However, only gravitational physics are
included in these dark matter only simulations,which neglects any modification of the matter
distribution due to baryonic physics processes such as star formation, radiative cooling, and
feedback [53, 113, 169]. At small scales, these processes can modify the matter power spectrum
significantly [167].

In order to mitigate the impact of the uncertainty in how the baryonic physics modifies the
matter power spectrum, we apply a set of scale cuts, as described in [2, 91], such that non-linear
modeling limitations do not bias the cosmology results. We define scale cuts in terms of a
specific comoving scale R, and calculate the angular scale cut θi

min for bin i as

θi
min =

R
r (〈zi〉)

, (5.12)

where
〈
zi
〉

is the mean redshift of galaxies in the redshift bin i and r is the radial comoving
distance at that z. In this work we use the same scale cuts as considered for the DES Y1 baseline
analysis [2],

Rclustering = 8 Mpc h−1,

Rggl = 12 Mpc h−1,
(5.13)

where Rclustering denotes the scale cuts for the galaxy clustering data vector, and Rclustering for galaxy-
galaxy lensing. See [91] for a detailed description of how these scale cuts were determined.

5.8 Cosmological Constraints

In this section we compare the cosmological constraints obtained from the two Y3 lens samples,
redMaGiC and magnitude limited sample, as defined in §2.3.2. We perform a full MCMC
analysis of the combination of galaxy clustering and galaxy-galaxy lensing, assuming the fiducial
values and priors listed in Table 5.4. The resulting constraints are shown in Fig.5.10. We find that
the final definition of the magnitude limited sample, after the optimization process carried out in
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Figure 5.10: Comparison between parameter constraints obtained using the
redMaGiC (red) and magnitude limited (blue) samples from the combination
of galaxy clustering and galaxy-galaxy lensing.

Lens sample Ωm σ8 w

redMaGiC 0.295 ± 0.032 0.883 ± 0.049 −1.03 ± 0.21
Magnitude limited 0.287 ± 0.028 0.896 ± 0.041 −1.03 ± 0.18

Table 5.5: Comparison of 68% confidence level cosmological constraints in
wCDM from the combination of galaxy clustering and galaxy-galaxy lensing,
using redMaGiC and magnitude limited samples as lenses.

§5.5, provides moderately better constraints than redMaGiC for the cosmological parameters of
interest, specially for Ωm and σ8, which are the parameters more constrained by the DES 3x2pt
analysis [2]. In Table 5.5 we show the 68% confidence level constraints on these parameters. We
obtain around 15% tighter constraints using the magnitude limited sample instead of redMaGiC,
which is probably due to the greater number of galaxies (2-3 times higher) and increased depth,
reaching z = 1.05 instead of z = 0.95. This increase in depth will be particularly advantageous
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when combining the 3x2pt analysis with CMB lensing [3], as the magnitude limited sample will
have a greater overlap with the CMB lensing kernel, providing a higher signal-to-noise ratio
of galaxy clustering and CMB lensing cross-correlations. We note that this is just a simulated
likelihood analysis using a noiseless theory data vector, thus the relative constraining power will
probably be slightly different with real data. However, this work indicates that the magnitude
limited sample will give comparable and probably somewhat tighter cosmological constraints
in the DES Y3 analysis with respect to redMaGiC. In addition, it will increase the robustness
of our cosmological analysis with the use of another lens sample with galaxies selected in a
completely different and simpler way, allowing us a smoother modeling of nuisance parameters,
such as the galaxy bias.

5.9 Summary

In this chapter we have defined an alternative to redMaGiC for the DES Y3 galaxy clustering
measurements. This is a magnitude limited sample defined with a magnitude cut in the i band
with a linear dependency with the photometric redshift. We have optimized the definition of these
samples in terms of its cosmological constraints on Ωm, σ8 and w, obtaining as a result a sample
with 2-3 times more galaxies than redMaGiC with just slightly higher photometric redshift
uncertainties. We have checked the robustness of our analysis by testing different tomographic
binnings of the samples and extending the priors imposed on the photo-z nuisance parameters,
finding no improvement on the cosmological constraints with alternative z binnings, and no
significant alteration of the posterior distributions when widening the photo-z priors.

We finally run simulated likelihood analyses, obtaining as a result 15% tighter constraints
compared to redMaGiC from the combination of galaxy clustering and galaxy-galaxy lensing.
We plan to use this magnitude limited sample alongside redMaGiC for the galaxy clustering
measurements in the DES Y3 analysis, as it can potentially provide tighter constraints and
it will increase the robustness of our cosmological results. In addition, it will allow a higher
signal-to-noise ratio of galaxy clustering and CMB lensing cross-correlations, due to its increased
depth compared to redMaGiC.



Conclusions

This thesis is focused on the combination of multiple tracers of large-scale structure in order to
obtain tighter cosmological constraints. In particular, we concentrate on the Dark Energy Survey
and its combination with data from the South Pole Telescope (SPT) and Planck collaborations.
After a theoretical introduction in Chapter 1, and an overview of the Dark Energy Survey (DES)
in Chapter 2, in Chapter 3 we combine the galaxy clustering from DES Y1 data with Cosmic
Microwave Background (CMB) lensing from SPT and Planck collaborations. Then, in Chapter
4, we combine the galaxy clustering of two different galaxy samples to constrain Redshift Space
Distortions (RSD) and Primordial non-Gaussianities (PNG) in a multi-tracer approach. Here
we also consider the inclusion of galaxy - CMB lensing cross-correlations. Last, in Chapter 5
we define and optimize a magnitude limited lens sample for the combined analysis of galaxy
clustering and galaxy-galaxy lensing from DES Y3 data. In the following, we present the main
conclusions from this thesis.

Joint analysis of galaxy clustering and CMB lensing

We measure the cross-correlation between DES Y1 redMaGiC galaxies and CMB lensing
from the optimal combination of SPT and Planck, rejecting the hypothesis of no-lensing at
20σ significance prior to any scale cuts and at 10σ using conservative scale cuts that mitigate
systematic biases. We obtain constraints on the galaxy bias, the growth function and the
cosmological parameters.

In obtaining the galaxy bias parameters, we find that galaxy clustering measurements place
significantly tighter constraints than galaxy-galaxy lensing or galaxy-CMB lensing correlations.
We measure the growth function with two different methods, assuming a fixed cosmology. First,
using the DG estimator introduced in the analysis of DES Science Verification data [70], finding
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a relative growth amplitude of AD = 1.16+0.20
−0.20. Second, from the joint fit of the galaxy bias, the

growth function and systematic parameters associated to photo-z uncertainties using an MCMC
approach. In this case, we find AD = 0.92+0.15

−0.10. Both of these results are consistent with the
ΛCDM predictions of AD = 1.

Last, we run a full MCMC analysis over the ΛCDM cosmological parameters. Combining
galaxy clustering with galaxy - CMB lensing cross-correlations, we obtain Ωm = 0.276+0.029

−0.030 and
S 8 = 0.800+0.090

−0.094. We find that, despite the conservative scale cuts applied in this analysis, the
constraining power is comparable to the combination of galaxy clustering with galaxy-galaxy
lensing. We also combine galaxy clustering and galaxy - CMB lensing correlations with Planck
TT+lowP obtaining an upper bound at 95% CL on the sum of neutrino masses of 0.81 eV, which
slightly loosens the bound from Planck TT+lowP alone (

∑
mν < 0.72 eV at 95% CL).

Multi-tracer measurements of RSD and PNG

We explore the constraints on RSD –in particular, the growth index γ and f (z)σ8(z)– and on
PNG through the fNL parameter using a multi-tracer approach. We reproduce the constraints on
RSD from [14] (A14) in real space instead of harmonic space and we extend that analysis with
the inclusion of galaxy - CMB lensing cross-correlations, finding they have a negligible impact
on our results.

We then measure RSD with the DES Y3 lens samples (redMaGiC and magnitude limited),
finding that our constraints have a limited improvement when including cross-correlations
between redshift bins due to the better photometric accuracy compared to the samples in A14.
We show that the constraints on f (z)σ8(z) can be improved by a factor five at low redshift with a
multi-tracer approach, being comparable to the latest measurements from spectroscopic surveys
such as VIPERS [126] and WiggleZ [30]. However, we only obtain a minor gain on γ, due
to the samples not being optimal for this analysis. We test the impact of increasing the bias
difference between the redMaGiC and magnitude limited samples finding no significant changes
on γ, while the constraints on f (z)σ8(z) improve at low redshift and degrade at high redshift.

Regarding PNG, we first consider a pair of optimistic samples based on the ones from A14.
We find that by combining the two samples we can improve the constraints more than a factor
two with galaxy auto-correlations only, and more than a factor three with a full tomographic
analysis. We then consider the DES Y3 lens samples and show that we could potentially obtain a



Conclusions 115

68% CL error on fNL of 17.4 from the magnitude limited sample galaxy auto-correlations only,
which is significantly smaller than the tightest constraints from large-scale structure until now,
−51 < fNL < 21 at 95% CL [43]. However, we do not find much improvement when combining
the two samples, even when increasing the bias difference.

Sample optimization for multi-probe cosmology

We define a DES Y3 lens sample alternative to redMaGiC, the so-called magnitude limited
sample, which consists of a galaxy sample defined with a magnitude cut that evolves linearly
with photometric redshift. We optimize the galaxy selection of this sample in terms of its
cosmological constraints, obtaining as a result a sample with between two and three more
galaxies than redMaGiC with just slightly larger photometric redshift uncertainties. For the
sample optimization we rely on Fisher forecasts, and we test how these vary given the variations
obtained for the number density and estimated redshift uncertainty given by a set of magnitude
cuts.

We also characterize the impact of redshift binning choices in our cosmological constraints for
both samples, concluding that our tomographic binning is robust. In addition, we extend the
priors imposed on the nuisance parameters associated to photometric uncertainties, finding no
significant alteration of the posterior distributions. Finally, we show that with the magnitude
limited sample we can potentially obtain 15% tighter cosmological constraints than redMaGiC
on Ωm, σ8, and w from the combined analysis of galaxy clustering and galaxy-galaxy lensing.

Future work

The joint analysis of galaxy clustering, galaxy-galaxy lensing and cosmic shear of DES Y1 data
has produced cosmological constraints that are competitive with constraints derived from Planck
observations of the CMB. The DES Y3 data includes data from the first three years of the survey
and covers more than three times as much area to greater depth than Y1.

Most of the work in this thesis consists of forecasts considering the lens samples from DES
Y3 data. We plan to use the magnitude limited sample presented here alongside the redMaGiC
sample for the galaxy clustering measurements in the DES Y3 analysis that is still ongoing.
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Then we will combine these galaxy clustering measurements with galaxy-galaxy lensing and
cosmic shear (similarly to [2]), and with CMB lensing correlations (analogous to [3]). Using
the magnitude limited sample alongside redMaGiC can potentially provide tighter cosmological
constraints and it will increase the robustness of our results. In addition, since the magnitude
limited sample reaches higher redshift, it will allow a higher signal-to-noise ratio of galaxy
clustering and CMB lensing cross-correlations.

From the CMB lensing side, we plan on reducing the systematic biases in order to apply less
conservative scale cuts in the Y3 analysis. In order to improve the measurement of CMB
lensing correlations, it will be essential to either characterize the systematic biases to a higher
accuracy, or improve the reconstruction of the CMB lensing map so that it is less prone to biases.
Furthermore, newer data sets from SPT (SPTpol and SPT-3G [23]) have lower noise levels, and
thus lensing maps generated from these data sets will have lower noise.

On the other hand, we have seen that with the samples from A14 we can greatly improve the
constraints on RSD and PNG with a multi-tracer approach. We intend to extend this analysis
allowing all cosmological and nuisance parameters to vary, and testing the impact of including
CMB lensing correlations in the multi-tracer measurement of fNL.

We also plan on exploring further how we should modify the DES Y3 lens samples in order to
obtain a similar gain from their combination. Another possibility would be to define two new
samples from DES Y3 data and optimize them for these analyses. This approach could also be
taken with data from future surveys, such as the Dark Energy Spectroscopic Instrument (DESI),
that will start observations at the end of 2019 or the beginning of 2020, and will cover much
more area than DES, observing galaxies with a significantly greater precision.
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E. Bertin, D. Brooks, E. Buckley-Geer, D. L. Burke, A. Carnero Rosell, M. Carrasco
Kind, J. Carretero, F. J. Castander, M. Crocce, C. E. Cunha, C. B. D’Andrea, L. N.
da Costa, D. L. DePoy, S. Desai, H. T. Diehl, J. P. Dietrich, P. Doel, E. Fernandez,
B. Flaugher, P. Fosalba, J. Garcı́a-Bellido, E. Gaztanaga, D. W. Gerdes, T. Giannantonio,
D. A. Goldstein, R. A. Gruendl, J. Gschwend, G. Gutierrez, D. J. James, T. Jeltema,
M. W. G. Johnson, M. D. Johnson, S. Kent, K. Kuehn, S. Kuhlmann, N. Kuropatkin, T. S.
Li, M. Lima, H. Lin, M. A. G. Maia, M. March, J. L. Marshall, P. Martini, P. Melchior,
F. Menanteau, R. Miquel, J. J. Mohr, E. Neilsen, R. C. Nichol, B. Nord, D. Petravick,
A. A. Plazas, A. K. Romer, A. Roodman, M. Sako, E. Sanchez, V. Scarpine, R. Schindler,
M. Schubnell, M. Smith, R. C. Smith, M. Soares-Santos, F. Sobreira, E. Suchyta, M. E. C.
Swanson, G. Tarle, D. Thomas, D. L. Tucker, V. Vikram, A. R. Walker, J. Weller, Y. Zhang,
and DES Collaboration. Dark Energy Survey Year 1 results: Cosmological constraints
from cosmic shear. Phys. Rev. D, 98(4):043528, Aug 2018.

[167] M. P. van Daalen, J. Schaye, C. M. Booth, and C. Dalla Vecchia. The effects of galaxy
formation on the matter power spectrum: a challenge for precision cosmology. MNRAS,
415(4):3649–3665, Aug 2011.



BIBLIOGRAPHY 149

[168] A. van Engelen, R. Keisler, O. Zahn, K. A. Aird, B. A. Benson, L. E. Bleem, J. E.
Carlstrom, C. L. Chang, H. M. Cho, T. M. Crawford, A. T. Crites, T. de Haan, M. A.
Dobbs, J. Dudley, E. M. George, N. W. Halverson, G. P. Holder, W. L. Holzapfel,
S. Hoover, Z. Hou, J. D. Hrubes, M. Joy, L. Knox, A. T. Lee, E. M. Leitch, M. Lueker,
D. Luong-Van, J. J. McMahon, J. Mehl, S. S. Meyer, M. Millea, J. J. Mohr, T. E. Montroy,
T. Natoli, S. Padin, T. Plagge, C. Pryke, C. L. Reichardt, J. E. Ruhl, J. T. Sayre, K. K.
Schaffer, L. Shaw, E. Shirokoff, H. G. Spieler, Z. Staniszewski, A. A. Stark, K. Story,
K. Vanderlinde, J. D. Vieira, and R. Williamson. A Measurement of Gravitational Lensing
of the Microwave Background Using South Pole Telescope Data. ApJ, 756:142, Sept.
2012.

[169] M. Velliscig, M. P. van Daalen, J. Schaye, I. G. McCarthy, M. Cacciato, A. i. M. C. Le
Brun, and C. Dalla Vecchia. The impact of galaxy formation on the total mass, mass
profile and abundance of haloes. MNRAS, 442(3):2641–2658, Aug 2014.

[170] D. Walsh, R. F. Carswell, and R. J. Weymann. 0957+561 A, B: twin quasistellar objects
or gravitational lens? Nature, 279:381–384, May 1979.

[171] M. White, Y.-S. Song, and W. J. Percival. Forecasting cosmological constraints from
redshift surveys. MNRAS, 397(3):1348–1354, Aug 2009.

[172] D. G. York, J. Adelman, J. Anderson, John E., S. F. Anderson, J. Annis, N. A. Bahcall,
J. A. Bakken, R. Barkhouser, S. Bastian, E. Berman, W. N. Boroski, S. Bracker, C. Briegel,
J. W. Briggs, J. Brinkmann, R. Brunner, S. Burles, L. Carey, M. A. Carr, F. J. Castander,
B. Chen, P. L. Colestock, A. J. Connolly, J. H. Crocker, I. Csabai, P. C. Czarapata, J. E.
Davis, M. Doi, T. Dombeck, D. Eisenstein, N. Ellman, B. R. Elms, M. L. Evans, X. Fan,
G. R. Federwitz, L. Fiscelli, S. Friedman, J. A. Frieman, M. Fukugita, B. Gillespie, J. E.
Gunn, V. K. Gurbani, E. de Haas, M. Haldeman, F. H. Harris, J. Hayes, T. M. Heckman,
G. S. Hennessy, R. B. Hindsley, S. Holm, D. J. Holmgren, C.-h. Huang, C. Hull, D. Husby,
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