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Outline

The main body of this thesis is split into two parts. Part I deals with a mathematical model

for nanoparticles growth in solution. Part II analyses mathematical and physical aspects of

magnetic drug targeting. Chapter 1 is a general introduction to those topics. Chapter 2 is

an overview of the classical techniques to solve a particular Stefan problem related to the

one studied in the first part of the thesis. Chapter 3 analyses the standard model for the

growth of a single particle in solution. Chapter 4 presents an extended version of the same

model for a system of N nanoparticles. Chapter 5 deals with the mathematical modelling

of nanodrug delivery. Chapter 6 contains the conclusions.
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Abstract

It is well-known that many properties of nanoparticles, such as luminescence,

photostability, optical radiation efficiencies and electric properties, are size dependent.

Hence, the ability to create nanoparticles of a specific size is crucial. In this thesis, we

begin by developing mathematical models for the nanoparticle growth process and so

obtain guidelines for efficient growth strategies. Once the growth process is understood we

move on to a specific practical application of nanoparticles, namely targeted drug delivery.

In the first part, the mathematical model analysed is a non-standard Stefan problem

where the moving boundary is the surface of the particles. In the second part, the model

involves the motion of a non-Newtonian nanofluid subject to an external magnetic field

and an advection-diffusion equation for the concentration of the nanoparticles in the fluid.

In both cases we employ several mathematical tools, such as similarity solutions,

asymptotic analysis and numerical techniques.

In Chapter 2 we work on a simple but representative Stefan problem with constant

boundary values by means of analytical and numerical methods in order to identify the

key mathematical aspects of this type of problem. In Chapter 3 the standard model for

the growth of a single nanoparticle in solution is presented and analysed using the

techniques developed in the previous chapter. Particular attention is paid to the validity

of the assumptions regularly made in literature. Specifically, the analysis of the diffusion

boundary layer shows how the standard model does not hold at early times, while the

pseudo-steady assumption is found to be valid. Moreover, within experimental error a new

analytical solution for the particles radius depending only on two independent parameters

is determined. This demonstrates that the model is unable to distinguish between

diffusion and reaction driven growth. In Chapter 4 the model of Chapter 3 is extended for

ix
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a system of N particles, where N is arbitrarily large. By non-dimensionalising the system

and identifying dominant terms, the problem is reduced and solved by analytical and

numerical techniques. The Gibbs-Thompson equation for the solubility of the particles

shows the importance of this effect in order to control Ostwald ripening, which is driven

by the delicate balance between the bulk concentration and the particles solubility. The

comparison with experimental data and the analytical solution found in the previous

chapter shows excellent agreement, giving an important tool to control the particle size

distribution and optimise strategies for the growth.

The second part of the thesis deals with a practical use of nanoparticles, the promising

medical technique of magnetic drug targeting. In Chapter 5 a mathematical model for the

transport of drug nanocarriers in the bloodstream under the influence of an external

magnetic field is presented. Simplifications of the geometry allows the reduction of the

Navier-Stokes equations for the blood flow. Within the restrictions of these simplifications

analytical solutions are obtained. The comparison between the Newtonian and

non-Newtonian approximations shows the importance of taking into account the

shear-thinning behaviour of the blood when modelling drug delivery. In this scenario, the

viscosity of the blood, which changes depending on the shear rate, is crucial in the

calculation of the velocity of the magnetic particles in the vessel and non-Newtonian

models need to be used. The ultimate goal is to determine strategies to maximise drug

delivery to a specific site.



Resumen

Es conocido que muchas propiedades de las nanopartículas, como la luminiscencia, la

fotoestabilidad, la eficiencia de la radiación óptica y las propiedades eléctricas, dependen

del tamaño. Por lo tanto, la capacidad de crear nanopartículas de un tamaño específico es

crucial. En esta tesis, desarrollamos modelos matemáticos para el proceso de crecimiento

de nanopartículas con el objetivo de obtener pautas para estrategias de crecimiento

eficientes. Una vez comprendido el proceso de crecimiento, analizamos una aplicación

práctica de las nanopartículas, conocida como la liberación controlada de fármacos. En la

primera parte, el modelo matemático analizado es un problema no estándar de Stefan

donde la frontera libre es la superficie de las partículas. En la segunda parte, tratamos un

modelo para el movimiento de un nanofluido no newtoniano sujeto a un campo magnético

externo y una ecuación de advección-difusión para la concentración de las nanopartículas

en el fluido. En ambos casos empleamos varias herramientas matemáticas, como variables

de similitud, análisis asintótica y métodos numéricos.

En el Capítulo 2 analizamos un problema de Stefan con valores constantes en la frontera

mediante métodos analíticos y numéricos para identificar los aspectos matemáticos clave de

este tipo de problema. En el Capítulo 3 se presenta y analiza el modelo estándar para

el crecimiento de una sola nanopartícula en una solución líquida utilizando las técnicas

desarrolladas en el capítulo anterior. Se presta especial atención a la validez de las hipótesis

que se hacen regularmente en la literatura. Específicamente, el análisis de la capa límite de

difusión muestra como el modelo estándar no se cumple para tiempos pequeños, mientras

que la hipótesis de estado pseudoestable es válida. Además, se obtiene una nueva solución

analítica para la evolución del radio de la partícula que solo depende de dos parámetros

independientes. Esta solución demuestra que el modelo no puede distinguir entre la difusión
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y el crecimiento impulsado por la reacción. En el Capítulo 4, el modelo del Capítulo

3 se extiende para un sistema de N partículas, donde N es arbitrariamente grande. A

través de la adimensionalización del sistema e identificación de los términos dominantes,

el problema se reduce y se resuelve mediante técnicas analíticas y numéricas. La ecuación

de Gibbs-Thompson para la solubilidad de las partículas muestra la importancia de este

efecto para controlar la maduración de Ostwald, que es impulsada por el delicado equilibrio

entre la concentración de la solución lejos de la superficie y la solubilidad de las partículas.

La comparación con los datos experimentales y con la solución analítica encontrada en

el capítulo anterior muestra excelente resultado, dando una herramienta importante para

controlar la distribución del tamaño de las partículas y optimizar las estrategias para el

crecimiento.

La segunda parte de la tesis trata sobre un uso práctico de las nanopartículas: la

liberación de fármacos controlada. En el Capítulo 5 se presenta un modelo matemático

para el transporte de nanopartículas portadoras de fármacos en el vaso sanguíneo bajo la

influencia de un campo magnético externo. Las simplificaciones geométricas realizadas

permiten reducir las ecuaciones de Navier-Stokes para el flujo sanguíneo y encontrar

soluciones analíticas válidas dentro de los límites establecidos por dichas simplificaciones.

La comparación entre los modelos newtonianos y no newtonianos muestra la importancia

de tener en cuenta la reología pseudoplástica de la sangre a la hora de modelar la

administración de fármacos. En este escenario, la viscosidad de la sangre, que cambia en

función de la velocidad de corte, es crucial en el cálculo de la velocidad de las partículas

magnéticas en el vaso sanguíneo y es necesario utilizar modelos no newtonianos.

Finalmente, a partir del modelo formulado se establecen estrategias para maximizar la

liberación de medicamentos en un sitio específico.
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1 | Introduction

During the last decades it has been shown that nanotechnology-based industry can develop

materials, devices and systems that will change the way to work and manage scientific

challenges in a wide range of applications, like biomedicine [41, 42], environmental-related

problems [1], electronics and catalysis [9, 11, 26]. The formal definition of nanomaterials

requires the material to be man-made and with dimensions between 1 and 100 nanometers

(nm). But why is nanoscale so interesting? Nanoparticles (NPs) have unique properties

that naturally occur at that scale. There are two main features that show the power of

nanoscale:

1. Surface area to volume ratio:

Materials made up of nanoparticles have a greater surface area when compared to

the same volume of material made up of larger particles. This means that a great

amount of the material can come into contact with surrounding materials, increasing

the reactivity.

2. “Tunability” of properties:

With slight changes in size, a scientist is able to control and adapt a nanomaterial

property, such as electronic and optical properties of metals and semiconductors [74],

luminescence and photostability [46, 54], and optical radiation efficiencies [105], among

others.

Since many of these properties are size dependent, the ability to create nanoparticles of a

specific size is crucial.

A famous example that shows the great potential of this scale involves gold nanoparticles.

At the nanoscale, the motion of the gold’s electrons is confined and, because of that, they

1
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react differently with light compared at a larger scale. The result is that gold nanoparticles

are not yellow as we expect, but can appear red or purple according to their size. Moreover,

adjusting their dimensions, gold nanoparticles can be tuned according to the purpose: for

example, they can selectively accumulate in tumours in order to identify diseased cells and

to target laser destruction of the tumour avoiding healthy cells.

This thesis is devoted to providing a greater understanding of certain nanoscale

processes. In the first part the growth of nanoparticles is studied, with the aim of

providing guidelines for improving and optimising the process. In the second part a

specific applications for nanoparticles is considered. Specifically, the targeted delivery of

magnetic nanoparticles is modelled.

Over the past 40 years, growing nanoparticles to a specific size has been the object of

several studies. It is known that they can be prepared by both gas phase and solution

based synthesis techniques. Although the first method can produce large quantities of

nanoparticles, agglomeration and nonuniformity in particle size and shape are typical

problems [69]. Using the precipitation method monodisperse spherical nanoparticles can

be generated. The standard approach is to apply the classical La Mer and Dinegar

synthesis strategy where nucleation and growth are separated [58, 59]. The strategy is to

rapidly add the precursor at high temperature into batch reactors, causing a short

nucleation burst in order to create a large number of nuclei in a short space of time. To

separate the nucleation from growth, the reactor is cooled and the nanoparticles formed

start to grow [119]. The subsequent growth involves two different stages:

1. The focusing period, where particles increases rapidly and the size distribution is

relatively small.

2. The defocusing period, where the growth slows down and the size distribution become

larger.

The first phase leads to the desired result of monodisperse nanoparticles. In the second

phase we can observe a phenomenon called Ostwald ripening (OR), a process by which

larger particles grow at the expense of the smaller ones which dissolve due to their much

higher solubility. This process, schematized in Figure 1.1, produces monomer, which is

subsequently used to support growth of the larger particles. However, this simultaneous
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Figure 1.1: Sketch of Ostwald ripening in the case of two particles with different radius.

growth and dissolution leads to the unwanted defocusing of the particle size distribution

(PSD).

Recently, it has been shown that the PSD can be refocused by changing the reaction

kinetics. For example, in Figure 1.2, we can see a series of snapshots of the growth process of

gold nanoparticles from Bastús et al. [10], where temperature, gold precursor to seed particle

concentration, and pH are adjusted during the process in order to obtain the desired result.

The project studied in the first part of this thesis is motivated by the desire for a deeper

understanding of nanoparticles synthesis. This is motived by the work of the Inorganic

Nanoparticles group research from the Institut Català de Nanociència i Nanotecnologia

(ICN2), where the main authors of [10] worked.

Figure 1.2: Microscopy images of the growth of gold seed particles at different time steps from

Bastús et al. [10].
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In order to model this process, it will be shown how, from a mathematical point of

view, the growth of single nanoparticle is analogous to a one-phase Stefan problem. This

is a particular kind of boundary value problem for a partial differential equation where the

position of the border is time-dependent and has to be found as an unknown variable of

the system. In literature the equation that defines this position, commonly known as the

Stefan condition, usually describes the temperature distribution under a phase-change but

it is found to be perfectly suitable to define the growth evolution. To help understand this

complex nanoparticles growth problem, in Chapter 2 several analytical and numerical

techniques for solving a related Stefan problem are summarized and compared.

Simplifications are made in order to obtain analytical solutions and anticipate the

behaviour of the concentration of particles in a solution-based synthesis. However, there

exist very few practically useful exact solutions to moving boundary problems and so

other types of approximations will be studied, such as perturbation techniques, the heat

balance integral method and its improvements, and finally numerical methods.

Chapter 3 is dedicated to the correct interpretation of the standard model for the growth

of a single spherical particle and has already been published [79]. The main results concern

the limited time-range for the validity of this model and the impossibility to distinguish

between diffusion or surface reaction driven growth in the pseudo-steady approximation.

Moreover, an explicit equation for the growth of the particle radius is given which is shown

to depend only on two independent parameters. Finally, the importance of the variation of

particle solubility is highlighted, especially during the initial phase of the growth.

The single particle model may be adapted to approximate the evolution of the average

radius of a group of similar sized nanoaparticles. However, in order to understand and

control the undesired Ostwald ripening we need to keep track of the radius of each particle.

For this reason, an N particle model will be developed and described in Chapter 4. This

model incorporates the particle solubility variation which then permits the model to capture

OR. The N = 2 model can equally well represent the average radii for an initially bimodal

distribution of nanocrystals while an N > 2 model can represent a much larger distribution

of particles. This work has been already accepted and is pending printing [29].

In order to show a practical use of the ability to control the size of nanoparticles,

it is interesting to introduce some applications in the field of biomedicine. Many medical
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researchers are facing a wide variety of challenges, including the detection of disease-specific

biomarkers in the blood, targeted magnetic resonance imaging contrast agents in the field

of neurological surgeries, the specific detection of DNA and proteins, and many others [31].

For example, as already mentioned above, gold nanoparticles can be precisely built in order

to selectively activate through tissue irradiation for therapeutic thermal ablation. In Figure

1.3 we can see in vivo images of intracellular labelling of tumour cells by quantum dots from

the experimental work of [114]. A precise map of the distribution of many molecular markers

can be generated by irradiation, conjugating each colour (i.e. each size) of nanoparticles with

antibodies to different molecular targets. However, it is recognized that novel mathematical

models are needed in order to secure the added value of nanotechnology into the medical

field [31].

Figure 1.3: In vivo images of intracellular labelling of tumour cells by semiconductor nanocrystals

quantum dots of different sizes from [114].

After understanding the growth process of nanoparticles, the aim of the second part of

this thesis is to look at a practical use for NPs. Specifically, a model is developed for a

very popular and effective way to introduce drugs in selected parts of human body in the

context of cancer therapy: magnetic drug targeting. This technique consist in attaching a

drug to a biocompatible magnetic nanoparticle carrier, injecting them into the circulatory

system and then using a high gradient magnetic field to direct them to the target region.

One of the great potentials of selectively reaching the desired targets is to avoid, or at least

reduce, collateral damage. Currently, the main approaches for cancer treatment are non-

specific and their efficacy is low. The technique of magnetically targeted drug delivery will

allow to deliver the drugs directly to the tumour cells which results in minimizing the doses
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required and, especially, avoiding undesired side effects. The main advantages of magnetic

nanoparticles lies on two fundamental aspects: firstly, their controllable size are smaller

than or comparable to some important biological entities, like genes, cells, proteins or virus,

and therefore adapt to interact with them; secondly, they respond to external manipulation

such as magnetic fields making them easy to transport or heat up from a distance. However,

the success of the therapy also depends of many physical aspects, such as hydrodynamic

and physiological parameters. In fact, controlling the balance between magnetic and blood

drag forces is one of the main difficulties of this technique.

The movement and directing of magnetic nanoparticles in specific vessels of the

circulatory system subject to an external magnetic field is the focus of Chapter 5. The

goal is to investigate the evolution of the physical situation taking into account all the

forces acting on the drug carriers. The mathematical model consists of a system of

nonlinear partial differential equations formed by the Navier-Stokes equations for the flow

of the blood coupled with an advection–diffusion equation for the concentration of

nanoparticles. It is important to notice that blood is a biological fluid that reaches the

whole body and understanding its rheological and flow properties is essential in order to

develop tools to handle the great majority of the diseases. Its composition results in

non-Newtonian characteristics which can affect drastically the particle dynamics.

Geometry simplifications of the chosen vessel permit the comparison between several

models for the velocity and the viscosity of the fluid, highlighting the importance to

choose an accurate approximation. Once obtained the profile for the flow of the blood, the

equation for the concentration of magnetic nanoparticles is analysed and solved by

numerical techniques. The main results concern the ability to understand whether the

magnetic force can compete with drag force when considering a correct approximation for

the viscosity of the blood.



Part I

Nanoparticle growth
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2 | Moving boundary problems:

analytical and numerical

techniques

2.1 Introduction

Many real-life problems in the area of applied science lead to a partial differential equation

coupled with a moving boundary condition, such as the melting of ice, alloy solidification,

freezing of soil, ablation, oxygen diffusion and many others. The classical formulation of

these type of problems was introduced by Josef Stefan in 1889 (and named after him) and

deals with the phenomenon of solid-liquid change of phase [101]. In this first paper, he

modelled the growth of sea ice, solving a one dimensional diffusion equation (resulting

from conservation of heat) with a moving boundary between a polar ice cap and the

ocean. Nowadays, it is known that a lot of industrial problems can be modelled through

an adaptation of the classical Stefan theory. In the first part of this thesis we will focus on

a model for spherical nanoparticle growth in a solution, that is mathematically equivalent

to a one phase Stefan problem. The process is described by a diffusion equation for the

concentration of the solution, a Stefan condition for the evolving particle radius and a

mass conservation expression for the bulk concentration, and is a very interesting case of

these kind of problems.

The aim of this chapter is to study analytical and numerical techniques in order to solve

a related but simplified problem which may aid in the analysis of the nanoparticle growth

model. The techniques will be applied to standard configurations and then, if possible,

9
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adapted in subsequent chapters for the physical problem.

There are a very few practically useful exact solutions to moving boundary problems.

An exact analytical solution of the Stefan problem is possible only in a few cases even

in the one-dimensional case, and is mostly based on special type of solutions written in

terms of error and complementary error functions [47, 48]. Consequently many analytical

approximations and numerical techniques have been developed in the literature. In the next

sections, several approaches are described following the direction of the classical one phase

case. Firstly, similarity solutions and Laplace methods are used for small and large times,

to obtain expressions for the concentration and the radius of the particle [25]. Secondly,

due to the presence of a small parameter ε multiplying the time derivative in the diffusion

equation, we analyse the pseudo-steady case, which is a reasonably good approximation

of the problem as ε → 0. Assuming the dependence of the solution on this parameter, it

can be determined using a Taylor series expansion about ε = 0 where the pseudo-steady

solution appears as the first term in this expansion [49]. For this reason, perturbation

techniques have been applied to derive higher order terms to improve the accuracy of the

approximation [12, 18, 49, 55]. An interesting example of these methods applied to physical

problems can be found in [120], where it is considered the case of the solidification of a finite

slab with convective cooling and shrinkage. In cases where ε = O(1) we have employed

the Heat Balance Integral Method (from now on HBIM) to find approximate solutions to

our parabolic equation. This method was initially introduced by Goodman [43, 44] and

gained popularity due to its simplicity, although the accuracy depends on the choice of an

approximating function [73]. In 1973, Langford [60] proposed a definition of an error for

the HBIM method and later an interesting improvement has been developed and applied to

several forms of Stefan problem [72, 73, 77, 78, 80]. Finally, the solutions obtained through

the analysis are compared with numerical results via finite difference methods using the

boundary-fixing technique [37, 57].

2.2 The mathematical model

As introduced in the previous section and represented in Figure 2.1, we will analyse a

mathematical model for the growth of a single particle of radius R̂ in a bulk solution. The
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Figure 2.1: Sketch of a particle growing in a solution.

concentration of monomer diffuses in the light grey layer of depth δ → ∞, adjusting from

ĉR to an equilibrium value equal to ĉ∞. In the limit δ →∞, the problem is then governed

by the classical diffusion equation

∂ĉ

∂t̂
=
D

r̂2

∂

∂r̂

(
r̂2 ∂ĉ

∂r̂

)
for R̂(t̂) < r̂ <∞, (2.1)

describing the behaviour of the concentration ĉ(r, t) with a constant diffusion coefficient D,

and subject to the initial and boundary conditions

ĉ(R̂(t̂), t̂) = cR, t̂ > 0,

ĉ(r̂ →∞, t̂) = c∞, t̂ > 0, (2.2)

ĉ(r̂, 0) = c∞, R̂(t) < r̂ <∞,

where cR and c∞ are constant. We are interested in the location of the moving interface,

R̂(t̂), which represents the particle radius. It grows due to the diffusion of the monomer

molecules from the bulk to the surface of the nanoparticles and is described by the mass

balance
dR̂
dt̂

= VMD
∂ĉ

∂r̂

∣∣∣
r̂=R̂(t)

, (2.3)

with the associated initial condition R̂(0) = R0. Note, this is equivalent to a Stefan condition

in a one-phase problem. However, the Stefan condition arises through an energy balance.
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In order to analyse the problem, we proceed to the nondimensionalisation of the

variables, then use a small time analysis and apply several methods to find approximate

and exact solutions.

The nondimensionalisation obtained using the re-scaling

c =
ĉ− c∞
c∞ − cR

, r =
r̂

R0
, t =

t̂

τ
, (2.4)

substituting into equations (2.1) and (2.3), gives

∂c

∂t
=
τD

R2
0

1

r2

∂

∂r

(
r2 ∂c

∂r

)
, (2.5)

dR
dt

=
τVMD (c∞ − cR)

R2
0

∂c

∂r

∣∣∣
r=R(t)(t)

, (2.6)

for the governing equation and the Stefan condition. Our interest about the change in time

of the moving boundary R(t) leads to choose the time scale

τ =
R2

0

VMD(cR − c∞)
, (2.7)

and then

ε
∂c

∂t
=

1

r2

∂

∂r

(
r2 ∂c

∂r

)
, (2.8)

c(R(t), t) = −1, c(∞, t) = 0, c(r, 0) = 0, (2.9)

dR
dt

=
∂c

∂r

∣∣∣
r=R(t)

, R(0) = 1, (2.10)

where the moving boundary is R = R̂/R0 and ε = VM (c∞ − cR). It has to be noticed that

ε is typically very small; for example in the case of the CdSe nanoparticles growth treated

in Chapters 3 and 4, the values used in [89] imply ε = O(10−3), which is a typical value in

this kind of chemical processes.

2.3 Small time analysis

Looking at the initial conditions of the problem, we can notice that although at t = 0 the

concentration is zero everywhere, as soon as the process starts we have a big jump with

c(R(t), t) = −1. This suggests that for small times we will have a large gradient for the

concentration close to the boundary. In order to understand this behaviour, we proceed

with a small time analysis applying two different methods to find the exact solution.
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2.3.1 Similarity solution method

Let t = εατ where ε � 1, we analyse the behaviour at r ∼ R(t) by introducing the new

variable z defined by

r −R(t) = εβz, (2.11)

where α and β have to be found. Putting (2.11) into the governing equation (2.8), we have

ε

[
1

εα
∂c

∂τ

]
≈ 1

ε2βR2(t)

∂

∂z

(
R2(t)

∂c

∂z

)
, (2.12)

and considering z � 1, equation (2.12) leads to

ε1−α+2βcτ = czz. (2.13)

We want ε1−α+2β ∼ 1, that is 1− α+ 2β = 0 . Thus, in order to look close to the border,

we choose β = 1 that gives α = 3, obtaining the classical diffusion problem described by

cτ = czz, (2.14)

and subject to the conditions

c(0, τ) = −1, c(∞, τ) = 0, c(z, 0) = 0. (2.15)

The moving boundary is governed by the differential equation

Rτ = ε2cz|z=0 (2.16)

where R(0) = 1. Equation (2.16) shows clearly that R is small at small times.

One possible solution can be found via the similarity variables method, considering the

change of variable η = Azτα and c(r, τ) = f(η). The derivatives become

cτ = fηητ = fηαAzτ
α−1,

cz = fηηz = fηAτ
α,

czz = (cz)z = (fηηz)z = (fηAτ
α)z = (fηAτ

α)ηηz = fηηA
2τ2α.

(2.17)

Substituting (2.17) into (2.14), considering the definition of η and multiplying for τ both

terms, we will have the related equation

αηfη = A2t2α+1fηη. (2.18)
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In order to remove the time dependence, we choose α = −1/2 and A = 1/2, and we obtain

the simple ODE

−2ηfη = fηη. (2.19)

Let y = fη, then (2.19) can be written as

−2ηy = yη, (2.20)

which can be easily solved by separation of variables, obtaining

y = C1e
−η2 . (2.21)

Applying the last change of variable, we can integrate this expression and obtain

f(η) = C1

√
π

2
erf(η) + C2. (2.22)

The values for the constant of integration can be found using boundary conditions (2.15),

which give C1 = 2/
√
π and C2 = −1. Therefore, coming back to the first change of variables,

the solution will be

c(z, τ) = erf

(
z

2
√
τ

)
− 1. (2.23)

Following the same idea, we can find an analytical solution for the moving interface since

we already have an expression for the concentration. Considering that

cz = fηηz =
fη

2
√
τ
, (2.24)

with the same change of variables, (2.16) becomes

Rτ =
ε2

2
√
τ
fη|η=0 =

ε2

2
√
τ

(
2√
π
e−η

2

) ∣∣∣
η=0

=
ε2

√
τπ
. (2.25)

Integrating (2.25), we obtain

R(τ) = 2ε2

√
τ

π
+ C3, (2.26)

where C3 is given by the initial condition R(0) = 1. We can notice from (2.25) that Rτ is

infinite at τ = 0, which is an inevitable consequence of the discontinuity in concentration

at t = 0. However, this occurs over an infinitely small time, finally resulting in a finite R,

as shown by equation (2.26). In the original coordinates, we can write the solution for the

concentration and for the moving boundary

c(r, t) = erf

(
r −R

2

√
ε

t

)
− 1, R(t) = 2

√
εt

π
+ 1. (2.27)
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2.3.2 Laplace transform

Another way to obtain an analytical solution is to apply the Laplace transform to the

governing equations in order to obtain a much simpler problem. Hence, we define the

Laplace transform of the function c(r, t) as

L{c(r, t)} =

∫ ∞
0

e−stc(r, t)dt = c̃(r, s). (2.28)

It has to be noticed in (2.28) that the variable r has to be independent. When we consider

r = R(t), the integral is affected. To overcome this problem, we make the assumption that

R(t) varies slowly with t, i.e. for ε → 0. This is also confirmed if we look at the Stefan

condition for small times. In fact, considering the variable change t = ετ and noting that

equation (2.3) becomes
dR
dτ

= ε
∂c

∂r

∣∣∣
r=R(τ)

, (2.29)

it is reasonable to assume that R(τ) is almost constant as ε → 0 and that the Laplace

transform has sense at the border. Applying (2.28) to (2.8), we obtain

L{∂τ c} = L
{

1

r2
∂r
(
r2∂rc

)}
, (2.30)

where

L{∂τ c} =

∫ ∞
0

e−sτ cτ (r, τ)dt =

∫ ∞
0

s e−sτ c(r, τ)dτ + e−sτ c(r, τ)
∣∣∣∞
0

= s c̃(r, s)− c(r, 0) = s c̃(r, s),

(2.31)

and

L
{

1

r2
∂r
(
r2∂rc

)}
= L

{
∂rrc+

2

r
∂rc

}
=

∫ ∞
0

e−sτ
[
∂rrc+

2

r
∂rc

]
dτ =

= ∂rr c̃+
2

r
∂r c̃ =

1

r2
∂r
[
r2∂r c̃(r, s)

]
,

(2.32)

that gives the equation

∂rr c̃(r, s) +
2

r
∂r c̃(r, s)− s c̃(r, s) = 0. (2.33)

The transformed boundary conditions associated to (2.9) are

c̃(R, s) = −1

s
, (2.34)

c̃(r →∞, s) = 0, (2.35)
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for s > 0 and neglecting the t variation in R in (2.34). The solution of the transformed

equation (2.33) will be

c̃(r, s) =
Ae
√
sr +Be−

√
sr

r
, (2.36)

where the constants A and B have to be found applying the boundary conditions. It is easy

to see that condition (2.35) implies A = 0 and condition (2.34) implies

Be−
√
sR

R
= −1

s
, (2.37)

giving the final solution

c̃(r, s) = −R
r

(
e
√
s(R−r)

s

)
. (2.38)

Applying the inverse Laplace transform to (2.38) we obtain

L−1{c̃(r, s)} = −R
r

erfc

(
r −R
2
√
τ

)
, (2.39)

that gives, coming back to the original time scale,

c(r, t) =
R(t)

r

[
erf

(
r −R(t)

2

√
ε

t

)
− 1

]
, (2.40)

which is exactly the same solution given by similarity variables for small times in equation

(2.27) for r ∼ R(t). In order to find an analytical expression for the moving boundary, we

can use this solution for the concentration in equation (2.39) and obtain

Rτ = ε cr|r=R(τ) = ε

(
1√
πτ

+
1

R(τ)

)
. (2.41)

Considering R = 1 + εR1 and the expansion of 1
R , we can write (2.41) as

εR1τ = ε

[
1√
πτ

+ 1− εR1

]
, (2.42)

and considering just the leading order we can approximate

R1τ =
1√
πτ

+ 1. (2.43)

Integrating with respect to τ and coming back to the initial change of variables, we obtain

R1 = 2

√
τ

π
+ τ = 2

√
εt

π
+ εt, (2.44)

and finally we can write the analytical solution of the moving boundary for small times as

R(t) = 1 + 2

√
εt

π
+ εt. (2.45)
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2.4 Exact and approximate solutions for large times

The aim of this section is to find an exact solution for large times via similarity methods

and compare that with approximate solutions obtained through perturbation analysis, the

heat balance integral method and numerical techniques.

2.4.1 Similarity solutions

Applying the same method of similarity variables detailed in Section 2.3.1, let c(r, t) = f(η)

where η = Artα, we can write equation (2.8) as

εfηαArt
α−1 = A2t2α

(
fηη +

2

η
fη

)
, (2.46)

that, for definition of η and multiplying for t both terms, implies

εfηαη = A2t2α+1

(
fηη +

2

η
fη

)
. (2.47)

Again, in order to remove the time dependence, we set α = −1/2 and A = 1/2, and we

obtain

−εfη
η

2
=

1

4

(
fηη +

2

η
fη

)
, (2.48)

that gives

−2fη

(
εη +

1

η

)
= fηη, (2.49)

where now η = Artα = r/(2
√
t). At this point, let define y = fη in order to obtain a first

order ODE:

yη = −2

(
εη +

1

η

)
y =⇒

∫
dy

y
= −2

∫ (
εη +

1

η

)
dη, (2.50)

that gives

log(y) = −εη2 − 2 log(η) + C1 =⇒ log(y) = log
(
e−εη

2
η−2
)

+ C1, (2.51)

and finally

y = C1e
−εη2η−2. (2.52)

Considering the definition of y, we integrate equation (2.52)∫
fη = C2

∫ (
e−εη

2
η−2
)
dη, (2.53)
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that gives

f(η) = −A1

(
√
επ erf

(√
εη
)

+
e−εη

2

η

)
+A2, (2.54)

and we now adjust the boundary conditions in order to find the constants of integration. To

allow A1 and A2 to be constant, we require R(t) ∝
√
t, and looking at the border condition

in η = R/(2
√
t) we choose

R(t) = 2λ
√
t, (2.55)

where λ is an unknown constant that has to be found. Conditions (2.9) lead to

f(η)|η→∞ = 0 =⇒ −A1

√
επ +A2 = 0,

f(η)|η=λ = −1 =⇒ −A1

[
√
επ erf

(√
ελ
)

+
e−ελ

2

λ

]
+A2 = −1.

(2.56)

that gives

A1 =
λ

e−ελ2 − λ
√
επ erfc (

√
ελ)

,

A2 =
λ
√
επ

e−ελ2 − λ
√
επ erfc (

√
ελ)

.

(2.57)

Thus, we can define

A(λ) =
λ

e−ελ2 − λ
√
επ erfc (

√
ελ)

, (2.58)

that allows us to write the solution in the form

c(r, t) = A(λ)

[√
επ erfc

(
r

2

√
ε

t

)
− 2
√
t

r
e−

εr2

4t

]
. (2.59)

From equation (2.55) we know that

dR
dt

=
λ√
t
, (2.60)

and substituting (2.60) into the Stefan condition (2.10) we have

∂c

∂r

∣∣∣
r=R(t)

=
λ√
t
. (2.61)

According to our variables change, we have cr = fηηr that gives

∂c

∂r

∣∣∣
r=R(t)

=

[
fη

1

2
√
t

]
η=λ

=
λ

e−ελ2 − λ
√
επ erfc (

√
ελ)

[
e−εη

2

η2

]
η=λ

1

2
√
t

=
e−ελ

2

[e−ελ2 − λ
√
επ erfc (

√
ελ)][2λ

√
t]
.

(2.62)
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Therefore, we can write the equality between (2.60) and (2.62) and obtain

e−ελ
2

[e−ελ2 − λ
√
επ erfc (

√
ελ)][2λ

√
t]

=
λ√
t
, (2.63)

that gives

2λ2 − e−ελ
2

e−ελ2 − λ
√
επ erfc (

√
ελ)

= 0. (2.64)

Finally, we obtain an equation for λ

2λ2
[
e−ελ

2 − λ
√
επ erfc

(√
ελ
)]
− e−ελ2 = 0, (2.65)

and its solution, depending on ε, allows us to obtain the profile of R(t). It has to be notice

that this solution do not verify the initial condition R(0) = 1 and it is only valid for large

times, away from the initial condition.

2.4.2 Perturbation theory

We follow the perturbation method to find an approximate solution, by starting from the

exact solution of a related simpler problem. Thus, we want to approximate the concentration

and the moving boundary with a function of the form

c = c0 + εc1 + ε2c2 + . . . and R = R0 + εR1 + ε2R2 + . . . (2.66)

and divide the original problem in simpler related problems. Substituting (2.66) into (2.8)

and grouping terms with the same power of ε, we obtain:

O(ε0) −→ 1

r2

∂

∂r

(
r2∂c0
∂r

)
= 0 (2.67)

O(ε1) −→ 1

r2

∂

∂r

(
r2∂c1
∂r

)
=
∂c0
∂t

(2.68)

O(ε2) −→ 1

r2

∂

∂r

(
r2∂c2
∂r

)
=
∂c1
∂t

(2.69)

O(ε3) −→ . . . (2.70)

The related non zero boundary condition then becomes

c(R, t) = c0(R0 + εR1 + . . . , t) + εc1(R0 + εR1 + . . . , t) + . . . (2.71)

= c0(R0, t) + εR1
∂c0
∂r

∣∣∣
r=R0

+ εc1(R0, t) + · · · = −1. (2.72)
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which gives

c0(R, t) = −1, c0(∞, t) = 0, ci(R, t) = ci(∞, t) = 0 for i = 1, 2, . . .

R0(0) = 1, Ri(0) = 0 for i = 1, 2, . . .
(2.73)

From the first order (2.67) and boundary conditions (2.73), we can write

c0(r, t) = −R0(t)

r
. (2.74)

Therefore, using equation (2.74), the lower order of the Stefan condition will be

dR0

dt
=
∂c0
∂r

∣∣∣
r=R0

=
1

R0
, (2.75)

which gives the solution for the moving boundary profile

R0(t) =
√

2t+ 1, (2.76)

where the initial condition R0(0) = 1 has been applied. In order to solve the equation for

O(ε), we can use the solution (2.74) and the Stefan condition in order to write

∂c0
∂t

= −1

r

dR0

dt
= −1

r

(
∂c0
∂r

∣∣∣
r=R0

)
= − 1

rR0
. (2.77)

Substituting (2.77) into (2.68) and integrating twice, we obtain

c1(r, t) =
1

2

(
1− r

R0

)
+A

(
1

R0
− 1

r

)
, (2.78)

where the left boundary condition in (2.73) has been used and A is a constant that has

to be found applying the right boundary condition. However, we can observe that (2.78)

explodes as r →∞ suggesting that we can only use this solution at r ∼ R, and we should

rescale variables for large values of r.

2.4.3 Heat Balance Integral Method

For an alternative theoretical study of the function, we apply the heat balance integral

method, which was initially proposed by Goodman in the late 1950s in order to solve

thermal problems [44]. The HBIM is used to find approximate solutions to heat equation

and Stefan problems, where very few analytical solution can be found. Essentially, it follows

three steps:
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1. The introduction of a parameter δ that represents the diffusion depth: for r ≥ δ the

concentration change is negligible and hence c(δ, t) = 0 and cr(δ, t) = 0.

2. The definition of an approximate function dependent on δ and appropriate boundary

conditions.

3. The integration of the governing equation to produce the heat balance integral that

gives an ordinary differential equation for δ.

In order to simplify the diffusion equation (2.8), we also consider the change of variable

c = u/r and obtain the related system:

ε
∂u

∂t
=
∂2u

∂r2
, u(r, 0) = 0, R(t) < r < δ, t > 0, (2.79)

u(R(t), t) = −R(t), u(δ, t) = 0, t > 0, (2.80)

R(t)
dR
dt

=
∂u

∂r

∣∣∣
r=R(t)

+ 1, R(0) = 1, t > 0. (2.81)

As suggested in [73], we assume that the approximate function u is a polynomial of the

form

u(r, t) = a0 + a1

(
δ − r

δ −R(t)

)
+ a2

(
δ − r

δ −R(t)

)n
, (2.82)

where the coefficients a0, a1 and a2 may depend on time and δ is the diffusion thickness.

Using the boundary condition (2.80) at r = δ, we have:

u(δ, t) = 0 =⇒ a0 = 0,

∂u

∂r

∣∣∣
r=δ

= 0 =⇒ a1 = 0.
(2.83)

Moreover, evaluating (2.82) at r = R, we have

u(R(t), t) = a2 = −R(t), (2.84)

that gives the final approximating function:

u(r, t) = −R(t)

(
δ − r

δ −R(t)

)n
. (2.85)

In order to find the behaviour of δ and R, we consider the heat balance integral∫ δ

R(t)
ε
∂u

∂t
dr =

∫ δ

R(t)

∂2u

∂r2
dr, (2.86)
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that gives ∫ δ

R(t)
ε
∂u

∂t
dr =

[
∂u

∂r

∣∣∣
r=δ
− ∂u

∂r

∣∣∣
r=R(t)

]
. (2.87)

Putting (2.85) into the right side of (2.87), we have that ∂u
∂r

∣∣
r=δ

= 0 and

∂u

∂r

∣∣∣
r=R(t)

=
nR(t)(δ − r)n−1

(δ −R(t))n

∣∣∣
r=R(t)

=
nR(t)

δ −R(t)
. (2.88)

Moreover, for Leibniz’s theorem, we have

d
dt

∫ δ

R(t)
ε u(r, t)dr = ε

[
dδ
dt
u(δ, t)− dR

dt
u(R(t), t) +

∫ δ

R(t)

∂u

∂t
dr

]

= ε

{
dR
dt
R(t) +

∫ δ

R(t)

∂u

∂t
dr

}
,

(2.89)

where (2.80) is being applied. Therefore, (2.89) gives∫ δ

R(t)
ε
∂u

∂t
dr =

d
dt

∫ δ

R(t)
ε u(r, t)dr − εdR

dt
R(t). (2.90)

We can write the second integral as∫ δ

R(t)
ε u(r, t) dr = ε

∫ δ

R(t)

[
−R(t)

(
δ − r

δ −R(t)

)n]
dr = − εR(t)

(δ −R(t))n

[
−(δ − r)n+1

n+ 1

]δ
R(t)

= −εR(t)(δ −R(t))

n+ 1
,

(2.91)

and obtain the equation

d
dt

[
εR(t)(δ −R(t))

n+ 1

]
+ ε

dR
dt
R(t) =

nR(t)

δ −R(t)
. (2.92)

Using the Stefan condition (2.81) we finally obtain the ODEs system

dR
dt

=
n

δ −R(t)
+

1

R(t)
, (2.93)

dδ
dt

=

[
ε(n− 1)2 − n2 − n

]
R2(t) + 2εδ(n− 1)R(t) + εδ2

R2(t)(R(t)− δ)ε
, (2.94)

with the initial conditions R(0) = δ(0) = 1. In fact, at the beginning, diffusion does not

occur and consequently the thickness initial condition correspond to the initial value of the

radius. In order to avoid the singularity at the initial point, we proceed with a small time

analysis and suppose that

R(t) = 1 + 2ν
√
t. (2.95)
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Putting this expression into the Stefan condition (2.93) we obtain

(
1 + 2ν

√
t
) d
dt

(
1 + 2ν

√
t
)

=
n
(
1 + 2ν

√
t
)

δ −R(t)
+ 1, (2.96)

that gives (
1 + 2ν

√
t
) ν√

t
=

n
(
1 + 2ν

√
t
)

δ − (1 + 2ν
√
t)

+ 1. (2.97)

Thus, the term (δ −R) has to balance the factor
√
t, e.g. we suppose that

δ = 1 + 2µ
√
t, (2.98)

obtaining

ν =
n

2(µ− ν)
, (2.99)

that gives

µ = ν +
n

2ν
. (2.100)

Putting (2.95) and (2.98) into the HBIM equation, we obtain

ε

[
d
dt

(
(1 + 2ν

√
t)(2(µ− ν)

√
t)

n+ 1

)
+

ν√
t
(1 + 2ν

√
t)

]
=
n(1 + 2ν

√
t)

2(µ− ν)
√
t
, (2.101)

and due to the fact that t� 1, we can approximate this expression as

ε

[
d
dt

(
2(µ− ν)

√
t

n+ 1

)
+

ν√
t

]
=

n

2(µ− ν)
√
t
, (2.102)

that leads to

ε

[
n

2ν(n+ 1)
+ ν

]
= ν, (2.103)

where (2.100) has been used to substitute µ. We can finally write an expression for ν as

ν =

√
εn

2(1− ε)(n+ 1)
, (2.104)

that gives

R = 1 +

√
ε n t

2(1− ε)(n+ 1)
. (2.105)

Putting (2.104) into (2.100) we have

µ =
n [(1− ε)n− 1]√
2(1− ε)(n+ 1)εn

, (2.106)
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hence

δ = 1 +
n [(1− ε)n− 1]

√
t√

2(1− ε)(n+ 1)εn
. (2.107)

Thanks to this analysis we can choose an initial value for R and δ at t0 � 1 and calculate

the approximate solution of (2.93)–(2.94) using the MATLAB in–built function ode45. The

issue is understand which is the best choice for n in the approximate function. Langford

[60] proposed a definition of an error for the HBIM method through the integral of the

energy. Myers [78] used this definition to minimize the error leaving the exponent unknown.

Applying this strategy to our problem we obtain that the error

En(t) =

∫ δ

R

[
ε
∂u

∂t
− ∂2u

∂r2

]2

dr (2.108)

is minimized for n = 3.7.

2.4.4 Numerical approximation

As we have to deal with a numerical approximation, we introduce a constant δf that

represents the diffusion depth as in Section 2.4.3. We transform the system (2.79)–(2.81)

fixing the boundary through the change of variables

η =
r −R
δf −R

, τ = t, (2.109)

obtaining the equivalent system

ε
∂u

∂τ
= ε

dR
dτ

(
1− η
R− δf

)
∂u

∂η
+

1

(R− δf )2

∂2u

∂η2
, 0 < η < 1, (2.110)

u(0, τ) = −R, u(1, τ) = 0, u(η, 0) = 0, (2.111)

R
dR
dτ

=
1

(R− δf )

∂u

∂η

∣∣∣
η=0

+ 1, R(0) = 1. (2.112)

Let define the discrete variables in space and time

ηj = j∆η for j = 0, . . . , J,

tn = n∆τ for n = 0, . . . , N.
(2.113)

Thus, considering the notation unj = u(ηj , t
n), we approximate the diffusion equation

(2.110) using first order Euler for the time derivative and central difference for the spatial

derivatives, as:

∂u

∂τ
≈
un+1
j − unj

∆τ
,

∂u

∂η
≈
unj+1 − unj−1

2∆η
,

∂u

∂η
≈
unj+1 − 2unj + unj−1

∆η2
. (2.114)
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The behaviour of the boundary is given by forward difference in time and the three-term

backward difference of the solution, i.e.

dR
dτ
≈ Rn+1 −Rn

∆τ
,

∂u

∂η

∣∣∣
η=0
≈ 3un1 − 4un2 + un3

2∆η
. (2.115)

Hence, equation (2.110) can be approximated as

ε

(
un+1
j − unj

∆τ

)
=ε

(
Rn+1 −Rn

∆τ

)(
1− ηj
Rn − δf

)(
unj+1 − unj−1

2∆η

)
+

1

(Rn − δf )2

(
unj+1 − 2unj + unj−1

∆η2

)
,

(2.116)

where

Rn+1 =
∆τ

Rn(Rn − δf )

(
3un+1

1 − 4un+1
2 + un+1

3

2∆η

)
+

∆τ

Rn
+Rn, (2.117)

subject to R1 = 1. Multiplying (2.116) by (Rn − δf )2∆τ , defining ν = ∆τ/2∆η and

µ = ∆τ/∆η2, we can write the scheme as

an+1un+1
j−1 + bn+1un+1

j + dn+1un+1
j+1 = enunj , (2.118)

where

an+1 = ε(Rn − δf )(1− ηj)ν Rn+1
τ − µ,

bn+1 = ε(Rn − δf )2 + 2µ,

dn+1 = −ε(Rn − δf )(1− ηj)ν Rn+1
τ − µ,

en = ε(Rn − δf )2.

(2.119)

Boundary and initial conditions can be written as

un+1
0 = −Rn, un+1

J = 0, u1
i = δηi + 1. (2.120)

We can write the system in the matrix form

MnUn+1 = Un, (2.121)

for n = 1, . . . , T − 1, which expanded becomes

an+1
1 bn+1

1 dn+1
1 0 . . . . . . 0

an+1 bn+1 dn+1 0 . . . . . . 0

0 an+1 bn+1 dn+1 0 . . . 0

0 0
. . . . . . . . . . . . 0

0 . . . . . . . . . an+1 bn+1 dn+1

0 . . . . . . . . . . . . 0 1





un+1
1

un+1
2

...

...

un+1
J−1

un+1
J


=



en+1
1

enun2
...
...

enunJ−1

en+1
J


. (2.122)
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At each time we solve the system (2.121) and we use the solution Un+1 to solve the Stefan

condition (2.117).

2.5 Results

The approximations described in this chapter are compared in Figure 2.2 for ε = 0.01.

In Figure 2.2(a) we can observe the behaviour of the solutions for the concentration at

a fixed time t̄. The image shows good agreement between the similarity solution (2.59)

where λ = 0.75, the numerical approximation given by solving (2.121) and the HBIM

method obtained from re-scaling (2.85) with n = 3.7. In particular, the latter two are

almost undistinguishable. On the other hand, in Figure 2.2(b) the profile for the radius

shows the limits of some methods. While there is an excellent agreement between the

numerical solution given by (2.117) and the HBIM approximation (2.93), it is clearly shown

the invalidity of the similarity solution described in (2.55) for small times.

(a) (b)

Figure 2.2: Comparison of (a) the concentration and (b) the particle radius profiles given by the

similarity variables method (dashed line), the HBIM (dots) and the numerical approximation (solid

line) with ε = 0.01.
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Abstract

We examine the standard model for diffusion and surface kinetics driven growth of a single

spherical particle in solution and show that it is applied incorrectly throughout the

literature. It is shown that crystal growth occurs in two distinct stages: an early time

where the growth rate is large and a late time, when the rate decreases. The definition of

’early’ depends on the particular experiment, but may be of the order of hundreds of

seconds. It is only during the late time that the standard model holds. Authors typically

fit the model to all experimentally obtained growth data however since it is invalid in the

early time stage this leads to incorrect values for the diffusion and surface kinetic

coefficients. In fact the model cannot even distinguish between diffusion or surface kinetics

driven growth, although the majority of authors assume one or the other to be the

dominant driving force: since the model cannot distinguish either assumption leads to

equally good results. Applying the model correctly shows that the growth is controlled by

a single non-dimensional group: practically this means that the growth data may only be

27
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used to predict a single unknown. Previous studies, where 2, 3 or 4 parameters were

calculated have redundancy. The Gibbs-Thomson relation plays an important role but, in

the cases studied here it has a noticeable effect only during the first growth stage where

the model does not hold. On a more positive note, we finish by providing an explicit

relation for the variation of the radius with time. This is the first such relation in the

literature and, for large times with just a single fitting parameter, excellent agreement

with experimental data on CdSe nanocrystal growth is demonstrated.

3.1 Introduction

Nanocrystals or chemically grown quantum dots have a wealth of uses, such as in solar cells,

light emitting diodes, biological markers, optoelectronic devices and nanoelectronics [24, 71,

102]. It is estimated that semiconductor quantum dots may have a market value of over $4

billion by 2020 [15]. Since nanocrystal properties are tunable by adjusting their size and/or

shape it is essential to be able to prepare monodisperse particles in a reproducible manner.

To do this requires a clear understanding of the growth process, yet surprisingly there

is a lack of theoretical understanding for the process of growing nanocrystals in colloidal

solutions [104] and consequently production is still primarily carried out via small batch

processes and trial and error [15].

In this paper we study the standard model for colloidal spherically symmetric crystal

growth. Obviously this has application in a multitude of synthetic growth processes, however

we will focus primarily on the nanoscale due to the current high interest in this field. LSW

theory [7] is currently the most popular theoretical method to describe the colloidal crystal

growth process. The initial stage of this theory is to apply a kinetic model, whereby the

growth rate of each crystal depends on the local solute concentration, diffusion rate and

surface kinetics. Mathematically this leads to a diffusion equation in the solute, coupled to

a mass balance which describes the growth rate of the crystal. The growth rate obtained

through this analysis is then introduced into a continuity equation to calculate the particle

size distribution. With multiple particles it is possible to predict Ostwald ripening or

size focussing and to identify the key parameters controlling the process. It is therefore

essential to understand and to correctly apply the basic building block, the kinetic model,
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and for this reason it is discussed in detail by many authors. Sugimoto [103] uses the

kinetic model to provide a detailed theoretical and practical discussion of crystal growth.

Peng et al. [89] focus solely on the context of nanocrystal growth. In several nanocrystal

studies [7, 17, 23, 24, 71, 102, 104] the kinetic model is typically solved, subject to various

assumptions, to obtain an expression for t(r) (the change of time with radius, since the

function cannot be inverted to r(t)) and then the diffusion and surface kinetic coefficients

obtained via comparison with experimental data. All are able to obtain good agreement

to the data despite the fact different driving mechanisms (diffusion/surface kinetics) are

assumed to dominate and distinct growth regimes are observed. This means that different

numbers of fitting parameters are used in the various studies.

3.2 Growth of a single particle

We now focus on the typical scenario involving a single, spherical nanoparticle, with

radius rp. We assume the standard La Mer model [58] which is based on temporal

separation between nucleation and growth and then model only the period of particle

growth. The system is dilute, such that particle interaction and aggregation are neglected.

The growth is always spherically symmetric, i.e. we average the typical atom by atom

growth: this assumption becomes more reasonable as the size increases. The affect of any

solvent used to facilitate the growth process is accounted for by the diffusion and or

kinetic rate constant. The monomer concentration at the particle surface and in the

far-field are Ci and Cb, respectively. The particle solubility, Cs is given by the

Gibbs-Thomson (or Ostwald-Freundlich) relation

Cs = C∞ exp

{(
α

rp

)}
, (3.1)

where α is the capillary length and C∞ is the bulk solubility of the particle, i.e. when

rp →∞. If Cs < Cb then monomer molecules diffuse from the bulk towards the particle to

react with the surface and the particle grows, whereas if Cs > Cb the particle shrinks.

The monomer concentration, C, is described by the diffusion equation

∂C

∂t
=
D

r2

∂

∂r

(
r2∂C

∂r

)
, (3.2)
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where r is distance from the centre of the particle and t is time. This is subject to

C(rp, t) = Ci(t) , C(rp + ,.t) = Cb(t) , C(r, 0) = C0 for r > rp , (3.3)

where the last condition states that initially the monomer solution is well-mixed and at a

uniform concentration, C0. To conform with standard literature (see Refs. [69, 103, 108]),

we have included a diffusion layer of width δ around the particle, where the concentration

adjusts from Ci to Cb.

In practice the concentration adjacent to the particle surface, Ci, is difficult to measure.

It may be eliminated from the model by considering two equivalent expressions for the mass

flux at the particle surface, J . Fick’s first law relates the flux of monomers passing through

a spherical surface of radius r to the concentration gradient

J = 4πr2D
∂C

∂r
=

4πDrp(rp + δ)

δ
(Cb − Ci) , (3.4)

where D is the constant diffusion coefficient. Invoking a first-order surface reaction, the

flux is also proportional to the difference between monomer concentration adjacent to the

particle and the particle surface concentration

J = 4πr2
pk(Ci − Cs) , (3.5)

where k is a rate constant. Equating (3.4) with (3.5) gives

Ci = Cs +
D

k

∂C

∂r

∣∣∣∣
r=rp

, (3.6)

which defines the concentration Ci for the surface condition of (3.3).

The diffusion equation must be solved on a domain r > rp, where the particle radius is

an unknown function of time. To determine the radius we impose the mass balance

d

dt

(
4

3
πr3

p

)
= 4πr2

p

drp
dt

= VmJ , (3.7)

which upon substituting for J (at r = rp) yields

drp
dt

= VMD
∂C

∂r

∣∣∣∣
r=rp

, rp(0) = rp0 , (3.8)

where rp0 > 0 is the initial particle radius.
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To complete the system we require an expression for the time-dependent bulk

concentration, Cb(t). The volume of solute per particle is 1/N0, where N0 is the

population density. A mass balance within the volume surrounding a particle gives

1

N0
MpC0 = MpCb(t)

(
1

N0
− 4π

3
r3
p

)
+

4π

3
ρpr

3
p , (3.9)

where Mp is molar mass. On the left hand side is the total amount of monomer initially in

the solute, before nucleation has occurred. The first term on the right hand side represents

the amount of monomer at time t, but now the volume occupied by monomer is the original

value minus the space taken up by the nanocrystal. Finally, monomer has been used to

create a nanocrystal with density ρp, which is the final term. LSW theory is valid for dilute

systems, where particle-particle interaction is negligible, which means that 4πr3
pN0/3 � 1

(this is easily verified using the values of Table 3.1). Noting that VM = Mp/ρp we obtain

Cb(t) ≈ C0 −
4π

3

ρp
Mp

N0r
3
p = C0 −

4π

3

N0

VM
r3
p . (3.10)

The system is now fully defined: monomer concentration is described by equation (3.2),

subject to the boundary conditions (3.3) and holds for r > rp(t) where rp satisfies (3.8),

the bulk concentration required for the boundary conditions is given by (3.10).

Mathematically the problem is analogous to the melting or solidification of a spherical

nanoparticle, as described in Refs. [36, 93], where the melt temperature is a function of

the radius (following the Gibbs-Thomson relation). It is well-known from this theory that

even for simple configurations there is no analytical solution and so approximate or

numerical solutions are required.

3.2.1 Pseudo-steady state solution

The pseudo-steady state approximation is simply obtained by neglecting the time derivative

in (3.2) and integrating the resultant ordinary differential equation:

C = Cb +
kr2
p

D(rp + δ) + kδrp
[Cb − Cs]

(
1− rp + δ

r

)
. (3.11)

The ‘constants’ of integration (which may be time-dependent since the integration is with

respect to r) come from applying the boundary conditions in (3.3) and replacing Ci from
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(3.6). The concentration Cs(t) is defined by the Gibbs-Thomson equation (3.1) and Cb(t)

by equation (3.10). The growth rate of the particle comes from equation (3.8)

drp
dt

= VMD
k(rp + δ)

D(rp + δ) + kδrp
(Cb − Cs)

= D
k(rp + δ)

D(rp + δ) + kδrp

[
VM (C0 − C∞eα/rp)− b3r3

p

]
, (3.12)

where b3 = 4πN0/3.

Equation (3.11) describes the evolution of the concentration over time, it contains the

unknown δ, which represents the width of the adjustment zone where the concentration

increases from the particle edge to the bulk value. This is more commonly termed the

boundary layer. Diffusion boundary layers are time-dependent and, if the fluid is initially

well-mixed, δ(0) = 0 < rp. In the pseudo-steady approximation there is no way to calculate

δ(t). It may only be obtained via a full time dependent calculation (numerical) or certain

approximation techniques, see Ref. [78]. The growth equation (3.12) also contains δ(t),

consequently in its present form the pseudo-steady solution is of no practical use.

3.3 Standard solution method

To permit a tractable mathematical model a number of assumptions are made in the

literature, these include: pseudo-steady state diffusion; a diffusion layer thickness which is

significantly greater than the particle size; neglect of the Gibbs-Thomson relation

(resulting in a constant particle solubility) [7, 110]. The first two assumptions are so

widely accepted that they are usually stated regardless of the experimental procedure,

then analysis proceeds without discussion of their validity. We will investigate when these

assumptions are reasonable in a later section.

Following the pseudo-steady assumption, setting δ � rp and taking Ceq = C∞e
α/rp to

be constant leads to

C = Cb +
kr2
p

(D + krp)δ
[Cb − Ceq]

(
1− δ

r

)
(3.13)

drp
dt

=
Dk

D + krp

[
a3 − b3r3

p

]
, (3.14)

where a3 = VM (C0 − Ceq). Integration of equation (3.14) leads to an implicit equation for

t(r)
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t− t0 =
1

6a2b2Dk

[
(bD + ak)

{
ln
a2 + abrp + b2r2

p

(a− brp)2
− ln

a2 + abrp0 + b2r2
p0

(a− brp0)2

}

+2
√

3(bD − ak)

{
arctan

(
a+ 2brp√

3a

)
− arctan

(
a+ 2brp0√

3a

)}]
.

(3.15)

The governing equations of this section and the solution (3.15) are quoted in numerous

papers on nanocrystal growth, see Refs. [17, 23, 71, 102] for example, but here we have

explicitly written down the contribution of the initial condition, such that t(rp0) = t0. We

refrain from specifying t0 = 0 since a number of authors report the growth occurring in two

distinct stages, then t0 could represent the start time of the second stage and rp(t0) = rp0

the corresponding particle radius. As is frequently stated this equation cannot be inverted

in order to express r(t).

A list of typical values used in the standard model or obtained by fitting to experimental

data is provided in Table 3.1. Numbers in bold have been estimated from figures in the

respective papers or calculated. If we take the example of Chuang et al. [23], they have

graphs for Cd in µmol/g, we convert this to mol/m3 by multiplying by the solution density

0.9g/cm3. Their graph, Fig. 4, shows a maximum C0 ≈ 10.5µmol/g = 9.45 mol/m3. The

final concentration, when growth has stopped, is Ceq ≈ 0.08 mol/m3. From this we calculate

a3 = VM (C0−Ceq) ≈ 3.1× 10−4. Their experimental maximum radius rm = 2.89nm where

rm = a/b, hence b3 = 1.28 × 1022. To determine C∞ requires the value of the capillary

length α = 2σVM/(RGT ), which is calculated using the values quoted in [89]: σ = 0.44J/m2,

RG = 8.31 J/mol/K, VM = 3.3× 10−5 m3/mol and the temperatures provided in the table

then C∞ = Ceqe
−α/rm . The values of N0 (init.) are the numbers quoted in the paper,

usually estimated from a concentration curve, the value N0 (fin.) is calculated from the

value of b3 = 4πN0/3 obtained by fitting to experimental data. For Ref. [102] we only

present data for their "curve 2". The choice of region is discussed later.

3.4 Diffusion and kinetics driven cases

Various authors have assumed that the process is driven solely by diffusion or surface

kinetics, which leads to a slightly simpler solution form. In either case during the

derivation of equation (3.14) the number of expressions for the flux is reduced which then
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Param./Units Su [102] Chuang [23] Pan [85] Bullen [17]

N0 (init.) [No. m−3] 3.92× 1022 4.8× 1021 - -

N0 (fin.) [No. m−3] 8.19× 1022 3.02× 1022 3.19× 1021 4.6× 1022

C0 [mol m−3] - 9.45 2.5 50

Ceq [mol m−3] - 8× 10−2 6.1× 10−4 3.29

C∞ [mol m−3] - 7.9× 10−3 8.95× 10−6 0.131

a3 [1] 6.59× 10−5 3.1× 10−4 8.25× 10−5 1.54× 10−3

b3 [m−3] 3.43× 1022 1.28× 1022 1.34× 1022 1.93× 1023

D [m2 s−1] 9.10× 10−18 1.5× 10−16 no D no D

k [m s−1] 7.97× 10−9 no k 9.74× 10−10 2.2× 10−8

T [K] 503 523 473 538

rm [nm] 1.24 2.89 1.75 2.015

α [nm] 6.95 6.68 7.39 6.5

Table 3.1: Comparison of the parameters for nanocrystal growth in different studies.

prevents the determination of the unknown concentration, Ci, required in the boundary

condition.

In the diffusion limited case there can be no flux due to surface reaction, this requires

either setting Ci = Ceq or k = 0. Setting k = 0 in (3.14) leads to zero growth, hence the

diffusion limit can only be theoretically achieved by adjusting the concentration. That is,

for purely diffusion driven growth the value of the concentration in the solute adjacent to the

particle must be exactly equal to the equilibrium concentration of the particle throughout

the process. In the surface reaction driven case the diffusion term tends to zero provided

Ci = Cb orD = 0. Again we may immediately rule outD = 0 and so in this case the value of

Ci must be exactly the bulk concentration throughout the process. Further, equation (3.4)

indicates that if Cb = Ci then ∂C/∂r = 0 and hence C = Cb everywhere: the surface kinetics

limit requires that the concentration is constant in space throughout the process. From this

point of view it seems clear that the reductions are physically unrealistic. However, if we

do apply them then the surface reaction driven solution of Refs. [17, 85, 102] is obtained

by setting ak = 0 in (3.15), the diffusion driven solution of Refs. [23, 71, 102] is obtained
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by setting bD = 0.

3.5 Validity of the assumptions

The particle growth and solute concentration equations form the basis of LSW theory [7].

To correctly describe nanocrystal growth and Ostwald ripening and so better control the

process it is essential that the governing equations are correctly derived and analysed. In

the following we will highlight a number of errors common to the literature and show how

they may be corrected and interpreted. Finally we illustrate the conclusions by comparison

with experimental data.

The pseudo-steady assumption relies on the fact that diffusion occurs over a much

faster time-scale than growth, hence the concentration has sufficient time to equilibrate

to its steady-state value as the growth slowly proceeds, that is, the diffusion time-scale is

much smaller than the growth time-scale tD � tG. From the diffusion equation we can

see how time scales with distance, tD ∼ r2/D. From equation (3.8) the growth time-scale

tG = r2/(VMD∆C), and so tD/tG = VM∆C. Since VM∆C is of the order of a3 we see from

Table 3.1 that VM∆C ∼ a3 � 1 hence the standard pseudo-steady approximation will be

accurate.

Now consider the approximation δ � rp, inherent to all analyses, where δ(t) is the

thickness of the boundary layer and for a well-mixed solution δ(0) = 0. Immediately it is

clear that the approximation is invalid at small times. The question is then, what constitutes

small time? As discussed above for diffusion it is well-known that in spherical problems

time and distance scale as tD ∼ r2/D, which then indicates that the boundary layer grows

as δ ∼
√
Dt. If we assume δ = 30rp is sufficiently large to satisfy δ � rp, taking D from

the first two columns of Table 3.1 and a typical value rp = 1nm then the time taken to

achieve δ � rp is t = (30rp)
2/D which varies approximately between 10-100s. That is, we

can expect the approximation δ � rp to be accurate beyond times of the order 100s. In fact

this is clear from inspection of published experimental data. In [102, Fig 5] the first five

data points (up to around 200s) follow a distinct curve to those for larger t, thus forcing

the authors to find two sets of fitting parameters, for "curve 1" and "curve 2" (using the

D value of Table 3.1 gives t of order 100s). The evolution of the diameter shown in [23,
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Fig.3] also shows a distinct form for t < 50s (their D value gives t of order 10s). Mendez

et al. [71] discuss zones 1 and 2 for three different sets of results, the change occurs around

125s for two and 250s for the third. Without discussing specific zones, Brauser et al. [15,

Fig.2a] presents a ’short time’ solution, valid to around 100s. Bullen et al. [17] state that

at early times the ‘radius grows almost linearly’. Of course not all data shows such a clear

demarcation, but there appears to be sufficient evidence to verify our assertion of a two-

stage growth process, where the boundary layer increases in size until becoming significantly

larger than the particle. So, from now on we will refer to Stages 1 and 2 to denote early

and late time regimes respectively, and our analysis shows that when calculating system

parameters data from Stage 1 should be neglected.

The Gibbs-Thomson equation (3.1) specifies the variation of the particle solubility with

the radius. With the exception of [104] the variation is generally neglected based on the

assumption that α � rp [63, 103]. However, in Table 3.1 we have α ∈ [6.5, 7.39]nm, while

in the experiments rp(0) ≈ 1nm, this results in a typical factor of e7 ≈ 103 difference

between taking the exponential form at early times or simply setting Cs = C∞, indicating

the importance of the Gibbs-Thomson relation. To be clear, neglecting the exponential

variation will lead to huge errors in the model predictions. So, how is it possible that

previous researchers appear to have good agreement with data when making such a poor

approximation? To understand this consider the data of Chuang et al. [23] from Table 3.1:

C0 = 9.45mol/m3, Cs = 7.9 × 10−3e6.68/rp . If we take the initial radius rp = 1nm then

Cs(0) = 6.29 ≈ 0.7C0, however due to the exponential dependence Cs rapidly decreases as

rp increases to its maximum of 2.89nm: when rp = 2nm Cs = 0.22, which is now negligible.

As we will see in the comparison to experiment Stage 2 only starts when rp ≈ 2.5nm.

Consequently, although the Gibbs-Thomson relation plays a controlling role in particle

growth during the Stage 1 this is when the standard model is not applicable. In modelling

the growth of a single crystal, in Stage 2, the solubility plays a minor role and could be set

to Cs = C∞ with negligible effect on the results. However, despite its minor contribution

to growth of a single particle it does play an important role in the growth of a group of

nanocrystals. With a single crystal growth stops when the maximum radius is reached, with

a group of crystals one particle may have reached its limit while others are still growing,

this acts to reduce the bulk concentration and then Cb − C∞eα/rp can become negative,
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leading to the particle shrinking. In this way the growth or death of particles can depend

crucially on the value of eα/rp .

3.6 An explicit solution for r(t)

Bullen et al. [17] state that while the evolution equation (3.14) is simple its solution is not,

which makes the fitting of data a non-trivial task. Below we detail how the solution may

be inverted to provide a simple form for rp(t), with a negligible error.

Since we only work in Stage 2 of the growth process we may neglect the exponential

variation and define Ceq = C∞e
α/rm as constant, then equation (3.15) which describes the

relation t(rp) contains two distinct terms, involving arctan and log. This combination of

terms prevents the inversion to rp(t). The ratio of these terms is

λ =
2
√

3(bD − ak)

(bD + ak)

 arctan
(
a+2brp√

3a

)
− arctan

(
a+2brp0√

3a

)
ln
(
a2+abrp+b2r2p

a−br2p

)
+ ln

(
a2+abrp0+b2r2p0

a−br2p0

)
 . (3.16)

Taking the parameter values of Su et al. [102] this has a maximum value of approximately

2.5× 10−3 which is achieved at t = 0, it then decreases monotonically to zero as rp → a/b,

when the log term has a singularity. This means that the arctan term is always negligible

compared to the log term and if it is dropped from the model the errors will be of the

order 0.1%. Removing this term we find that both diffusion and kinetic driven processes

are accurately approximated by a solution of the form

t− t0 =
1

6ab

ak + bD

akbD

[{
ln
a2 + abrp + b2r2

p

(a− brp)2
− ln

a2 + abrp0 + b2r2
p0

(a− brp0)2

}]

= G ln
f(rp)

f(rp0)
.

(3.17)

Equation (3.17) is easily inverted to determine the radius as a function of time

f(rp) = f(rp0) exp

(
t− t0
G

)
, (3.18)

where f(x) = (a2 + abx + b2x2)/(a − bx)2 = (r2
m + rmx + x2)/(rm − x)2, where rm is the

radius when growth stops. This is a quadratic equation for rp with solution

rp =
rm
2

[
1 + 2 f (rp0 ) exp

(
t−t0
G

)
−
√
−3 + 12 f (rp0 ) exp

(
t−t0
G

)][
−1 + f (rp0 ) exp

(
t−t0
G

)] . (3.19)
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A feature made clear from the parameter G = (ak + bD)/(6ab(akbD)) is that ak and

bD are interchangeable: it does not matter if we define them the opposite way round,

the result is the same. Physically this means that the model cannot distinguish between

diffusion or reaction driven growth. Consequently in the literature authors have been able

to approximate experimental data, irrespective of the assumed driving mechanism. The

equivalence my be confirmed by examination of the data of Table 3.1: only Su et al. [102]

calculates both k and D to find ak ≈ 3.2 × 10−10, bD ≈ 3 × 10−10, which only differ by a

few percent. In fact, as we discuss later, the small difference is most likely related to their

solver or rounding errors.

The goal in developing a theoretical model is to determine how the controlling

parameters influence the process and so understand how to optimise the growth. Part of

this involves the determination of the diffusion and/or surface kinetic coefficients as well

as the parameters a, b by fitting the model to the experimental data. Previous researchers

have used the data to solve for all four, or just three in the diffusion or surface kinetic

driven limit. In fact Su et al. [102] solve for eight parameters, four in each of their two

stages. It is well-known that the more parameters there are to fit the less the chance of an

accurate or even correct solution. For non-linear equations such as we have here there may

be infinitely many solutions and the fitting algorithm may easily settle on an incorrect

one. The non-uniqueness can be seen from the results of Mendez et al [71], who calculate

a3 = 2.21 × 106, b3 = 2.7 × 1032, D = 9.99 × 10−28. The first two values are ten orders of

magnitude greater than the values quoted by Su et al. [102] and Chuang et al. [23], the

diffusion coefficient ten orders smaller yet they provide an excellent fit to their

experimental data (shown in their Fig. 5 G3.5 solution). However the time-scale to reach

the state where δ � rp is of the order 1011s ≈ 32, 000 years as opposed to the observed

125s. Their solver has settled on a theoretically possible but physically unrealistic

solution.

If we examine equation (3.19) we see that, provided rm is measured, there is in fact just

a single unknown, G, to solve for: this is a relatively simple task and with much less chance

of settling on an incorrect solution. If rm is not measured then there are two unknowns,

which again is significantly simpler and more reliable than fitting to three or four unknowns.

For the present study we take rm to be the maximum value obtained in the experiments, for
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certain cases this must be viewed as an approximation: with Chuang et al. [23] it is clear

that the growth process has stopped, whereas with Pan et al. [85] it appears the crystal

could slightly increase in size if the experiment were carried on for longer. We then apply

a simple least-squares fit to the data in the Stage 2. In certain cases this stage is easily

identified, for others it is not clear. However, if t0 is chosen to be too large it should not

make a difference to results, provided we are in Stage 2 the value obtained for G should

remain approximately constant, regardless of the number of experimental points. As an

example we note that in the results shown below the value obtained for G when using the

data of Chuang et al. [23] changed by 1% when starting at the 5th or 6th data points.

Given that we cannot use growth data alone to determine important parameters such

as the diffusion coefficient or surface reaction rate it is clear that we must employ other

experimental data to complete the system. In this case we propose using the measured

concentration data. If we take the example of Chuang et al. [23] we have so far

determined G = 28.28, using their measured rm = 2.89nm. Their initial concentration

C0 = 9.45mol/m3 and the process stops when Ceq = C∞e
α/rm = 0.08mol/m3, the molar

volume is VM = 3.3 × 10−5m3/mol. This allows us to calculate

a3 = VM (C0 − Ceq) = 3.09 × 10−4 and hence b3 = (a/rm)3 = 1.28 × 1022. Since ak = bD

then rm = a/b = D/k and G = rm/(3a
3k) = r2

m/(3a
3D) indicates k = 1.1 × 10−7,

D = 3.3× 10−16 (note, they obtain a value D = 1.5× 10−16).

In Figures 3.1 and 3.2 we compare the results of the present model with experimental

data from Refs. [17, 23, 85, 102]. The dots represent the experimental data, the solid line

the curve described by equation 3.19 with G provided by the least squares calculation,

the dashed line is obtained by using the parameter values quoted in the respective papers

in (3.19). Fig 3.1(a) shows the crystal growth reported by Chuang et al. [23]. The first

four points approximately follow a straight line, so we assume they occupy Stage 1 and

so take rp0, t0 as the position of the fifth data point. The maximum radius measured is

rm = 2.89nm, after substituting this into equation (3.19) and carrying out a least-squares

fit to the final six points we obtain G = 28.28. Note, in some experiments there is a clear

demarcation between zones but this is not always the case. However, provided we only

use data from Stage 2 the choice of starting point should be irrelevant. For example, if we

only use the final five points in the least squares calculation then we obtain G = 28.56,
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which is a 1% increase on the previous value. Taking the values from Table 3.1 we obtain

G = r2
m/(3a

3D) ≈ 60, with leads to a rather poor fit. In fact their paper shows a better fit to

data, but unfortunately they do not state the values of a, b obtained, only the value of D and

the ratio a/b = 2.885 (which is slightly below the experimental value), so it is not possible

to reproduce their fitting curve. Our result suggests D = r2
m/(3a

3G) ≈ 3.18× 10−16 which

is more than double their quoted value. The fact they obtain a good fit with a different

value for D is indicative of the non-uniqueness of solutions and the difficulties of fitting to a

number of parameters. For the data of Bullen et al. [17] we take rp0, t0 from the 4th point,

although from the figure it appears that the 3rd would be an equally good starting point.

This leads to G = 18.82. The data of Table 3.1 indicates a value G = rm/(3a
3k) ≈ 19.66

which also leads to good agreement between the data and equation (3.19).

Figures 3.2(a) and 3.2(b) show the comparisons between the data of Refs. [85, 102].

In these two cases the growth is much slower than the previous examples and G increases

accordingly. For Pan et al. [85] we take Stage 2 as starting at the 5th point (n = 5, the

first four points follow a clear straight line) to obtain G = 1166, the data quoted in Table

3.1 gives G = 7602 which leads to very poor agreement with the data. Note Pan et al. [85]

calculate a, b from their concentration data and only use the growth data to determine k.

Using their value for a3 = 8.25 × 10−5 and taking the final radius rp = 1.75nm as being

approximately the maximum radius and G = 1166, we obtain k = 6.06× 10−9 as opposed

to their quoted value of 9.74× 10−10. This new value is consistent with that quoted by Su

et al. [102]. For the final figure we start at the 9th point, since the first eight points appear

to follow a different trend. This leads to G = 789.3 which is very close to the value of Table

3.1, G = 824. Both G values provide an excellent approximation, although our prediction

obviously leads to a lower least squares error.

We have presented results for the growth of Cd crystals although it is clearly applicable

to other materials. Varghese et al. [107] study the growth of platinum. In their Figure 7

they show the evolution of the average diameter over time. They claim the data cannot be

fitted using the diffusion model alone, so they add an extra term (and so an extra fitting

parameter) to account for surface reaction and consequently find a good fit to the data.

However, if we set rm = 2.4nm (although their growth has clearly not finished) we find

an equally good fit to their final five data points, t > 18 minutes, with the one-parameter
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Figure 3.1: Chuang et al. [23] G = 28.28, rm = 2.892, n = 5 (n = 6, G = 28.56 = 1% change),

Bullen et al. [17] G = 18.82, n = 4, rm = 2.015.
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Figure 3.2: Pan et al. [85] G = 1166, n = 5, rm = 1.75, Su et al. [102] G = 789.3, n = 9, rm = 1.24.
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model and G = 22.12.

3.7 Conclusion

The analysis of this paper leads to five important conclusions.

• The standard pseudo-steady model is not valid for early times. The definition of

early time depends on the experimental conditions but, as has been noted by many

researchers, there is a clear shift in the trend of the growth data: results prior to this

shift constitute the early time. Only in the second stage may the pseudo-steady model

be applied. In fact this is hardly surprising. The assumption of smooth spherically

symmetric growth is far from realistic at early times, when the addition of new atoms

or ’blobs’ together with the presence of a co-ordinating solvent will ensure that the

initial growth is not well approximated by a symmetric growth model.

If all growth data obtained from an experiment, including that at early time, is used to

calculate the model parameters then these values will be incorrect and will not represent

the physical quantities.

• Within the assumptions of the standard pseudo-steady model it is not possible to

distinguish between diffusion or surface reaction driven growth. Consequently

researchers have been able to fit experimental data equally well assuming either one

as the dominant mechanism or retaining both.

• Within experimental error it is a simple matter to invert the well-known implicit

growth relation t = t(rp) to the more practically useful form rp = rp(t). This has

not previously been presented in the literature. In fact, assuming ak = bD then the

inversion is exact.

• At most the growth model can only determine two independent growth parameters. If

the maximum radius is known then the growth data determines just a single parameter.

Previous work where a number of parameters are calculated have redundant elements:

in Ref. [102] four parameters are calculated from the growth data, but ak ≈ bD and

rm ≈ a/b ≈ D/k (due to the use of fitting routines some accuracy is lost and therefore



3.7. Conclusion 43

the relations are not exactly equal). Fitting to a single parameter is generally simpler

and more accurate. For example, with more fitting parameters it is more likely that

incorrect values are found: we presented an example where the parameters differed

from those of other studies by an order of ten in magnitude.

• Depending on the material or initial size of the crystal neglecting the variation of the

particle solubility can be highly inaccurate. This error has not been picked up before

due to the fact that, certainly in the experiments examined in the present paper, it

influences the results during the initial growth stage when the pseudo-steady model

is incorrect anyway.
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Abstract

A mathematical model for the growth of a single nanocrystal is generalised to deal with

an arbitrarily large number of crystals. The basic model is a form of Stefan problem,

describing diffusion of monomer over a moving domain. Various levels of approximation

(an analytical solution, an ordinary differential equation model and an N particle model)

are compared and shown to agree well. The N particle model and analytical solution are

then shown to have excellent agreement with experimental data for the growth of CdSe

nanocrystals. The theoretical solution clearly shows the effect of problem parameters on

the growth process and, significantly, that there is a single controlling group. By increasing

the value of N it is shown that in the absence of Ostwald ripening the single particle model

may be considered as representing the average radius of a system with a large number of

particles. Consequently a system with N = 2 may represent either a two particle system or

a bimodel initial distribution. The solution of the N = 2 model provides an understanding

of Ostwald ripening. In general if Ostwald ripening is expected some form of the N particle

45
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model should be employed. Finally it is shown how the analytical solution may be employed

to represent a multi-stage growth process which can then guide and optimise crystal growth.

4.1 Introduction

Nanoparticles (NPs) are small units of matter with dimensions in the range 1-100 nm.

They exhibit many advantageous, size-dependent properties such as magnetic, electrical,

chemical and optical, which are not observed at the microscale or larger [11, 46, 74, 105].

Consequently the ability to produce monodisperse particles that lie within a controlled size

distribution is critical.

There exist a number of NP synthesis methods, including gas phase and solution based

synthesis techniques. Although the first method can produce large quantities of

nanoparticles, it produces undesired agglomeration and nonuniformity in particle size and

shape. Precipitation of NPs from solution avoids these problems and is one of the most

widely used synthesis methods [69]. The typical strategy is to cause a short nucleation

burst in order to create a large number of nuclei in a short space of time, and the seeds

generated are used for the latter particle growth stage. The resulting system consists of

varying sized particles. Small NPs are more unstable than larger ones and tend to grow or

dissolve faster. Thus at relatively high concentrations size focussing occurs (leading to

monodispersity). When the concentration is depleted by the growth some smaller NPs

shrink and eventually disappear while larger particles continue to grow, thus leading to a

broadening of the size distribution (which involves the process of Ostwald ripening).

Ostwald ripening is the process whereby smaller crystals dissolve and the material from

these crystals is redeposited onto the larger ones. Hence, below a certain size the crystals

start to decrease in size until they disappear, while larger crystals increase in size.

Perhaps the most well-known example of Ostwald ripening is the coarsening of crystals in

ice cream, giving a different texture to old ice cream. Depending on the system Ostwald

ripening can be rapid or very slow, as in the famous experiment of Faraday in the 1850’s

using colloidal gold which is still optically active.

The particle size distribution (PSD) can be refocused by changing the reaction kinetics.

For example, Peng et al. [90] observed size focusing during Cadmium Selenide growth
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following the injection of additional solute. Bastús et al. [10, 9] were also able to induce

size focusing of gold and silver nanoparticles by the addition of extra solute and adjusting

the temperature and pH. This type of technique for size focussing is still rather ad hoc in

that the precise relationships between particle growth, system conditions and the final PSD

are not fully understood [97]. Hence, in practice, the optimal reaction conditions are usually

ascertained empirically or intuitively.

In the 1960’s Lifshitz and Slyozov [62] and, independently, Wagner [115] were amongst

the first to provide theoretical descriptions of Ostwald ripening. Their classical theory,

hereafter referred to as LSW theory, consisted of a system of three coupled equations:

a growth equation for a single particle, a continuity equation for the PSD and a mass

conservation expression for the concentration. They solved the model to obtain pseudo-

steady-state asymptotic solutions for the average particle radius and PSD. Lifshitz and

Slyozov [62] focused on diffusion-limited growth, where growth is limited by the diffusion

of reactants to the particle surface, while Wagner [115] considered growth limited by the

reactions at the particle surface. In fact recent work described by Myers and Fanelli [79]

has shown that, within the restrictions of the steady-state assumption, the models cannot

distinguish between diffusion or reaction driven growth, so both approaches are equally valid.

For this reasons authors using either mechanism, or both, have been equally successful in

approximating experimental data.

Experimental studies on NP growth [23, 85, 102] show that LSW theory may provide

good predictions for the particle size but the observed PSDs are typically broader and more

symmetric. Possible explanations for this disparity is that LSW theory does not account

for the finite volume of the coarsening phase φ, and that it assumes a particle’s growth rate

is independent of its surroundings. In addition, LSW theory does not indicate how long it

takes to reach the final state. A further issue is that it purports to describe the dynamics in

the initial stages of the growth process. In [79] it is proven that the pseudo-steady solution

does not hold for small times.

Many studies have modified and built on the pioneering analysis of LSW theory. Ardell

[4] and Sarian and Weart [96] extended LSW theory to systems where the mean distance

between particles is finite. Several authors [14, 112, 113] have addressed the shortcomings

of LSW theory by statistically averaging the diffusional interaction of a particle of a given
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size with its surroundings to demonstrate that the resulting PSD becomes broader and more

symmetric with increasing φ. The inclusion of stochastic effects, due to temperature and

changes in concentration, in the modified population balance model of Ludwig et al. [67]

led to broader PSDs in line with experimental data. The population balance approach of

Iggland and Mazzotti [51] was used to examine the evolution of non-spherical particles at

the beginning of growth.

Most of the above studies were in relation to micron or larger-sized particles. As

measurement techniques have advanced many researchers have applied LSW theory and

the related modifications to the study of nanoparticle growth. Talapin et al. [104] used a

Monte Carlo approach to simulate the evolution of a nanoparticle PSD subject to

diffusion-limited growth, reaction-limited growth and mixed diffusion-reaction growth. In

contrast to other treatments, their simulations gave PSDs narrower than those predicted

by LSW theory. This was explained by the fact that they considered much smaller

particles. Their main conclusion was that Ostwald ripening occurs much more rapidly for

nanoparticles while PSDs are narrower than in their microscale counterparts. Similarly,

Mantzaris [69] used a population balance formulation and a moving boundary algorithm

to study the diffusion and reaction-limited growth regimes.

Another issue which is particularly relevant in the context of nanoparticles is the

applicability of the Ostwald-Freundlich condition which relates the radius of the particle,

r∗p, to its solubility, s∗. This condition can be written as

s∗ = s∗∞ exp

{(
2σVM
r∗pRGT

)}
≡ s∗∞ exp

{(
α

r∗p

)}
, (4.1)

where s∗∞ is the solubility of the bulk material, σ the interfacial energy, RG the universal

gas constant, T the absolute temperature. The capillary length α = 2σVM/(RGT ) defines

the length scale below which curvature-induced solubility is significant [104]. This

equation shows that the particle solubility increases as the size decreases (which promotes

Ostwald ripening). One approximation to the Ostwald-Freundlich condition is to assume

that the exponential term in (4.1) can be linearised to give the two term expression

s∗ ≈ s∗∞(1 + α/r∗p)[62, 63, 103, 115]. Obviously this expansion, which is based on α/r∗p, is

invalid for nanoparticles where the capillary length is of the same order of magnitude as

the particle radius [79]. Mantzaris [69] used an expansion for the exponential term in the
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Ostwald-Freundlich condition with n terms and showed that increasing n led to higher

average growth rates and a narrowing of the PSD. However, when comparing his

simulation to experimental data for CdSe nanoparticles from [89], he applied a linear

version for the solubility. Talapin et al. [104], noting that for nanoparticles of the order

1-5 nm the linearised Ostwald-Freundlich condition may be incorrect, applied the full

condition.

In the following we begin by analysing the growth of a single particle. This is the basic

building block for more complex models. The treatment leads to equations similar to those

of standard LSW theory, however we arrive at them following a non-dimensionalisation

which highlights dominant terms and those which may be formally neglected. In this way

we can ascertain which standard assumptions are appropriate and, more importantly, which

are not. Under conditions which appear easily satisfied for nanocrystal growth the governing

ordinary differential equation has an explicit solution, in the form rp = rp(t) and also shows

that the growth is controlled by a single parameter which may be calculated by comparison

with experiment. This section closely follows the work described in [79]. The single particle

model is obviously incapable of reproducing Ostwald ripening, where larger particles grow

at the expense of smaller ones. Consequently we then generalise the model to deal with a

large number of particles. In the results section we compare the analytical solution with

that of a full numerical solution and experimental data for the growth of a single particle

and show excellent agreement between all three. By setting the number of particles to two

in the general model we are able to clearly demonstrate Ostwald ripening. Simulations

with N =10 and 1000 particles demonstrate that increasing N leads to increasingly good

agreement between the average radius and that predicted by the single particle model. The

single particle model may thus be considered as a viable method for predicting the evolution

of the average radius of a group of particles.

4.2 Growth of a single particle

As shown in Figure 4.1, we initially focus on a single, spherical nanoparticle, with radius r∗p

in a system of particles. The ∗ notation represents dimensional quantities. The assumption

is that particles are separated at large but finite distances compared to their radius. Their
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morphologies remain nearly spherical and particle aggregation is neglected. Thus, the mass

flow from each particle can be represented as a monopole source located at the center of

the particle [111] and the problem becomes radially symmetric. We assume the standard

La Mer model [58], such that there has been a short nucleation burst and the system is now

in the period of growth.

Figure 4.1: Schematic of a single nanoparticle with radius r∗p and the surrounding monomer

concentration profile where s∗, c∗i and c∗b are the particle solubility, the concentration at the surface

of the particle and the far-field concentration, respectively.

The monomer concentration, c∗, is described by the classical diffusion equation in

spherical coordinates
∂c∗

∂t∗
=

D

r∗2
∂∗

∂r∗

(
r∗2

∂c∗

∂r∗

)
. (4.2)

This holds in the diffusion layer [r∗p, r
∗
p + δ∗] where r∗ is distance from the centre of the

particle, t∗ is time and D is the constant diffusion coefficient. To conform with standard

literature (see for example [69, 103, 108]), we have included a diffusion layer of length δ∗

around the particle, where the concentration adjusts from the value at the particle surface

to the value in the far-field. Equation (4.2) is then subject to

c∗(r∗p, t
∗) = c∗i (t

∗) , c∗(r∗p + δ∗, t∗) = c∗b(t
∗) ,

c∗(r∗, 0) = c∗b,0 forr∗p < r∗ < r∗p + δ∗,
(4.3)

where c∗i is the concentration adjacent to the particle surface, c∗b is the concentration in the

far-field and c∗b,0 = c∗b(0) is a constant describing the initial concentration when the solution

is well-mixed (and the crystal is at the initial size r∗p(0)). The value at the particle surface
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c∗i is very difficult to measure [103], hence it is standard to work in terms of the particle

solubility.

The particle solubility s∗ (with the same dimensions as concentration) is given by the

Ostwald–Freundlich condition (4.1). If s∗ < c∗b then monomer molecules diffuse from the

bulk towards the particle to react with the surface and the particle grows, whereas if s∗ > c∗b

the particle shrinks.

In order to determine an expression for the concentration at the particle surface, we

consider two equivalent relations for the mass flux at the particle surface, J . Firstly, Fick’s

first law states that the flux of monomer passing through a spherical surface of radius r∗ is

J = 4πr∗2D
∂c∗

∂r∗
. (4.4)

At the surface of the sphere the flux must also follow a standard first order reaction equation

J = 4πr∗2k(c∗i − s∗) , (4.5)

where k is the reaction rate, which is assumed to be constant for both growth and dissolution

contributions. Equating (4.4) with (4.5) gives

c∗i = s∗ +
D

k

∂c∗

∂r∗

∣∣∣∣
r∗=r∗p

, (4.6)

which defines the concentration c∗i for the surface condition of (4.3).

To complete the boundary conditions in the system, we require an expression for the

time-dependent bulk concentration, c∗b(t
∗). Mass conservation of the monomer in the

particle and in the surrounding solution is

1

N0
Mpc

∗
0 = Mpc

∗
b(t)

[
1

N0
− 4π

3
r∗p

3

]
+

4π

3
ρpr
∗
p

3, (4.7)

where c∗0 is the initial monomer concentration (measured before seed crystals appear), ρp

is density, Mp is molar mass and N0 the population density. The left hand side represents

the mass of monomer in the volume to be occupied by the single crystal. The right hand

side contains two components, the first is the mass of monomer in the solution surrounding

the crystal (this volume consists of the original region minus the volume occupied by the

crystal). The second component is the mass of the crystal. If the system is dilute then
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4πN0r
∗
p

3/3� 1. Writing the molar volume VM = Mp/ρp, equation (4.7) then leads to

c∗b(t) ≈ c∗0 −
4πN0

3VM
r∗p

3 , (4.8)

which will be used to represent the far-field concentration in (4.3).

The diffusion equation must be solved on a domain r∗ > r∗p, where the particle radius

is an unknown function of time. The flux of monomer to the particle is responsible for the

particle growth

VMJ =
d

dt∗

(
4

3
πr∗p

3

)
= 4πr∗p

2dr
∗
p

dt∗
. (4.9)

Eliminating J between (4.9) and (4.4) yields

dr∗p
dt∗

= VMD
∂c∗

∂r∗

∣∣∣∣
r∗=r∗p

, (4.10)

which describes the particle radius evolution. Equation (4.10) is subject to the initial

condition r∗p(0) = r∗p,0, where r∗p,0 is the initial particle radius. The combination of the

diffusion equation, (4.2), describing the monomer concentration which is solved over a

moving domain, determined by equation (4.10), indicates that we are dealing with a

Stefan problem. The classical Stefan problem models phase change due to temperature

variation and so is described by the heat equation with the boundary defined by an energy

balance. The phase change temperature is a specified constant. Since we do not consider

the monomer concentration within the crystal while the interface concentration c∗i (t
∗) is a

function of time our model is mathematically equivalent to a one-phase Stefan problem

with a supercooled liquid phase (also termed undercooled). A Cartesian version is studied

in [35]. A similar two-phase problem is studied in [36] which deals with spherically

symmetric nanoparticle melting, with a size-dependent melting temperature. In this case

it may be seen that as the particle shrinks the boundary condition acts to speed up the

melting process, in the limit of the radius tending to zero the shrinkage rate tends to

infinity. In the present case the crystal is growing, hence the boundary condition acts to

slow down the growth (as compared to a fixed concentration condition). The standard

Stefan problem is highly nonlinear, with a single exception, exact solutions have little

physical application. In the present case of a non-standard problem no exact solution is

available.
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The governing system is now fully defined and consists of equation (4.2), subject to the

initial and boundary conditions (4.3), where c∗i is defined by (4.6) and c∗b by (4.8), and the

unknown particle radius satisfies (4.10). As widely known, there are a very few practically

useful exact solutions to moving boundary problems due to the non-linearity caused by the

Stefan condition. A general approach involves the use of approximate methods in order to

analyse Stefan problems when no analytical solution exists, as in this case. Therefore, we

proceed to simplify the problem and use numerical approximations in order to understand

the behaviour of the solution.

4.2.1 Nondimensionalisation

The model is nondimensionalised via

r =
r∗

r∗p,0
, rp =

r∗p
r∗p,0

, t =
t∗

τ∗
, c =

c∗ − s∗0
∆c

, s =
s∗ − s∗0

∆c
, (4.11)

where ∆c = c∗b(0) − s∗0 represents the driving force for particle growth, s∗0 = s∗(0) =

s∗∞ exp
{

(α/r∗p,0)
}
is the initial particle solubility. The concentration and growth equations

yield two possible time scales τ∗D = r∗2p,0/D and τ∗R = r∗2p,0/(VMD∆c), respectively. To focus

on particle growth we choose the time scale τ∗ = τ∗R and the system is now transformed to

ε
∂c

∂t
=

1

r2

∂

∂r

(
r2 ∂c

∂r

)
,

drp
dt

=
∂c

∂r

∣∣∣∣
r=rp

, (4.12)

c(rp, t) = s+ Da
∂c

∂r

∣∣∣∣
r=rp

, c(rp + ,.t) = cb(t) = c0 − βr3
p , (4.13)

c(r, 0) = 1 , rp(0) = 1 , (4.14)

where

ε = VM∆c , δ =
δ∗

r∗p,0
, Da =

D

kr∗p,0
,

ω =
α

r∗p,0
, β =

4πN0r
∗3
p,0

3VM∆c
, c0 =

c∗0 − s∗0
∆c

. (4.15)

The above system contains a number of nondimensional groups. The first, ε, is generally

very small for nanoparticle growth. For example, Peng et al. [89] studied Cadmium Selenide

nanoparticles, with a capillary length of 6nm and initial radii in the range 1 − 100 nm, so

that ε = O(10−3). In general it should be expected that ε � 1. If we look at the time
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scales, we see that τ∗D/τ
∗
R = VM∆c = ε� 1. Physically, this indicates that growth is orders

of magnitude slower than the diffusion time scale, that is, the concentration adjusts much

faster than growth occurs and so the system can be considered as pseudo-steady. In terms

of the mathematical model, this means that the time derivative can be omitted from the

concentration equation, but since time also enters into the problem through the definitions

of rp and cb this is a pseudo-steady-state rather than a true steady-state.

The parameter Da is an inverse Damköhler number measuring the relative magnitude

of diffusion to surface reactions [69]. In the past similar models have been simplified by

considering diffusion-limited growth (Da� 1) or surface reaction limited growth (Da� 1).

In practice both mechanisms play a role. So, we will place no restrictions on Da.

A common simplification is to assume ω � 1 which reduces the Ostwald-Freundlich

condition, (4.1), to a constant s∗ = s∗∞ or a linear approximation is used, see [63, 103]. This

significantly simplifies the analysis. However, for particles that have just nucleated or very

small nanoparticles ω is not small and the simplification is not appropriate. Despite the

large errors in the prediction of s∗ caused by the small ω assumption authors obtain good

matches to data. In [79] it is shown that this is because the pseudo-steady model is not

valid for early times when the particle is small. By the time the model is valid so is the

linearisation. Basically, the variation of s∗ plays a minor role in the study of the growth of

a single nanoparticle. However, this is not the case with multiple particles where Ostwald

ripening is driven by the delicate balance between the bulk concentration and the particle

solubility.

The reason why the pseudo-steady model is invalid at small times is due to the thickness

of the boundary layer δ(t). The model involves the assumption δ(t)� rp yet initially, when

the fluid is well-mixed δ(0) = 0. Only when the boundary layer is sufficiently thick is it

reasonable to apply the pseudo-steady model. In [79] it is shown through comparison with

experiments that the initial stage can last for the order of 100s. The shift to the pseudo-

steady model can often be identified simply by looking at the trend in the data. In the

following we will present the model with the full Ostwald-Freundlich condition and then an

approximation where it is neglected. We will also neglect early data points when matching

to experimental data.
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4.2.2 Pseudo-steady state solution

Since ε = O(10−3) and all variables have been scaled to be O(1) neglecting terms of order

ε should result in errors of the order 0.1%. Consequently, we neglect the time derivative in

the diffusion equation and obtain the pseudo-steady state form

1

r2

∂

∂r

(
r2 ∂c

∂r

)
= 0 . (4.16)

After integrating and applying the boundary conditions we obtain

c = −A
r

+B , (4.17)

where

A =
r2
p(rp + ).(cb − s)
rp+. Da(rp + ).

, B = s+A

(
1

rp
+

Da

r2
p

)
. (4.18)

There is no way to calculate δ(t) in the pseudo-steady approach. A time-dependent

treatment, such as that described in [78] is required. Hence the standard method is to

assume rp � δ, which reduces the concentration to

c = cb −
r2
p(cb − s)

(rp + Da)r
. (4.19)

Note, provided δ(t) � rp the value of δ is irrelevant: we may neglect the time variation.

Substituting (4.17) into the growth condition (4.12) leads to

drp
dt

=
cb(rp)− s(rp)

Da + rp
=
c0 − βr3

p − s(rp)
Da + rp

. (4.20)

Hence, the problem has been reduced to the solution of a single first-order ordinary

differential equation for rp. It is a highly nonlinear equation which must be solved

numerically. The assumption that rp � δ means it only holds for relatively large times.

Approximate solutions, in various limits, may be found in the literature. For example if

we take cb constant and ω sufficiently small for the linear approximation to the

exponential to hold then equation (4.20) may be integrated in the limits of large and small

Da. In [79] it is shown that for sufficiently large times, for a single particle, the variation

of eω/rp is small in which case equation (4.20) may be integrated analytically to find an

implicit solution of the form t = t(r). By identifying negligible terms they are able to

invert this to find an explicit solution, r = r(t) which depends on a single parameter,

rp =
rm
2

[
1 + 2f(rps) exp

(
t−ts
G

)
−
√
−3 + 12f(rps) exp

(
t−ts
G

)][
−1 + f(rps) exp

(
t−ts
G

)] , (4.21)
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where rm is the (non-dimensional) experimental maximum radius, ts is the time at which

the second growth stage is judged to have begun, rps the radius at this time and f(rps) =

(r2
m+rmrps+r2

ps)/(rm−rps)2. Provided ts is chosen within the later growth stage the choice

should not greatly affect the results. However, in general we would prefer to choose ts as

close to the switch between the initial and later stages as possible to maximise the number

of data points for the fitting. This is discussed in further detail in [79]. The unknown

parameter G is defined as

G =
1

6ab

ak + bD

akbD
, a3 = Vm(c∗0 − c∗eq) , b3 =

4

3
πN0 . (4.22)

Its value is obtained by comparison with experimental data. The parameter c∗eq is an

approximation. It is a constant which replaces the variable s∞ exp(α/rp), in [79] the

concentration at the end of the experiment is used to provide its value. Once G is

determined, then the diffusion coefficient (D), the reaction rate (k), the solubility of the

bulk material (s∞) and population density (N0) may be systematically retrieved. In [79] it

is stated that ak ≈ bD, hence G ≈ 1/(3a2bk) = 1/(3ab2D). Further, since c∗0 � c∗eq a

reasonable approximation is a3 = Vmc
∗
0. Growth stops when the maximum radius

r∗m = a/b is achieved.

4.3 Evolution of a system of N particles

We now extend the above single particle model to a system of N particles where N is

arbitrarily large and may decrease with time due to Ostwald ripening. The particle radii,

initial radii and solubilities are denoted r∗i , r
∗
i,0 and s∗i , respectively, where i = 1, . . . , N

represents the ith particle. We nondimensionalise via (4.11) with the only difference being

that the length scale r∗p,0 is replaced by the mean value r̄∗i,0 = Σi=1..N (r∗i,0/N). It has to

be noted that this affects the concentration scale through the initial solubility which now

becomes s∗i,0 = s∗∞e
α/r̄∗i,0 , then ∆c = c∗b,0 − s∗i,0. Hence in what follows, all dimensionless

parameters defined in equation (4.15) carry an overbar to reflect the change in length scale.

Under the pseudo-steady approximation and assuming that there are no interparticle

diffusional interactions, the growth of each particle is now described by an equation of the

form (4.20). This requires an expression for the bulk concentration which must account for
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the fact that all particles remove monomer and that the volume is now N times that of the

single particle

N

N0
Mpc

∗
0 = Mpc

∗
b(t
∗)

[
N

N0
− 4π

3

N∑
i=1

r∗i
3

]
+

4πρp
3

N∑
i=1

r∗i
3 . (4.23)

Again assuming that the solution is sufficiently dilute that (4πN0/3N)
N∑
i=1

r∗3i � 1, we

obtain

c∗b(t
∗) ≈ c∗0 −

4πN0

3NVM

N∑
i=1

r∗3i . (4.24)

In the limit where all particles are identical
∑

i=1..N r
∗3
i = Nr∗3i and the single particle

model of equation (4.8) is retrieved. In dimensionless form the problem is then governed

by the system of differential equations

dri
dt

=
cb(ri)− s(ri)

Da + ri
=
c0 − (β/N)

∑N
i=1 r

3
i − s(ri)

Da + ri
(4.25)

for each i = 1, . . . , N and

Da =
D

kr∗i,0
, β =

4πN0r
∗3
i,0

3VM∆c
, c0 =

c∗0 − s∗i,0
∆c

s(ri) =
s∗∞
∆c

(
eω/ri − eω/ri,0

)
, ω =

α

ri,0
. (4.26)

Equation (4.25) represents a system of N non-linear ODEs which must be solved

numerically.

4.4 Comparison of model with experiment

Using the full numerical solution, defined by (4.12)–(4.14), on the N particles model would

be prohibitively expensive. For this reason the first goal of this section is to demonstrate that

the pseudo-steady state model of equation (4.20) is a good approximation to (4.12)–(4.14),

so justifying its use in our N particles model. We validate the models using experimental

data on CdSe nanocrystals synthesis taken from [89]. Certain parameter values concerning

the experiment and CdSe are provided in that paper, others, such as D, k, s∗∞, N0 must be

inferred. Here they will be determined through fitting to equation (4.21). Since this only

contains one free parameter the fitting is a very simple process.
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4.4.1 Parameter estimation via the analytical solution

In Figure 4.2 we show the first eleven data points from [89]. As discussed earlier not all

data points correspond to the pseudo-steady regime, here it is clear that the first three

points follow a linear trend so these will be neglected. In the experiment extra monomer

was added after three hours, so we have ignored all data beyond the eleventh point. Using

the remaining eight data points in the nonlinear least-squares Matlab solver lsqcurvefit to

fit to equation (4.21) we obtain G ≈ 958. To determine the necessary parameters for

the other models we first note that the maximum radius attained during this part of the

experiment is r∗m ≈ 3.8nm= a/b = D/k. The experimental concentration at the end of the

growth process is known, this defines c∗eq = s∗∞e
α/r∗m ≈ 0.08 mol/m3. This together with

the definition G = rm/(3a
3k) = r2

m/(3a
3D) and the information in Table 4.1 is sufficient to

determine D, k, s∗∞, N0. The values taken from [89] are shown as the first ten rows of Table

4.1, the final four (in italics) are the ones calculated after G has been determined.

The result of equation (4.21), with G = 958, is shown as the solid line in Figure 4.2.

The dashed line represents the result predicted by the PSS model. Clearly there is excellent

agreement between the two as well as with the data. This verifies the claim that the

solubility may be set to a constant without greatly affecting the solution (provided the

early time data is neglected).

Figure 4.2: The circles represent the experimental data from Peng et al. [89] and the solid line

the corresponding least-squares fit to the analytical solution, equation (4.21) with G = 958. The

dashed line is the PSS model with the same value of G.
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Quantity Symbol Value Units

Universal gas constant RG 8.31 J mol−1 K−1

Density ρp 5816 kg.m−3

Molar volume VM 3.29× 10−5 m3 mol−1

Molar mass Mp 0.19 kg mol−1

Solution temperature T 573.15 K

Surface energy σ 0.44 J mol−2

Capillary length α 6.00× 10−9 m

Initial bulk concentration c∗0 55.33 mol m−3

Volume of the liquid V 7.21× 10−6 m3

Maximum particle radius rm 3.78× 10−9 m

Diffusion coefficient D 3.01× 10−18 m−2 s−1

Reaction rate k 7.97× 10−10 m s−1

Solubility of bulk material s∗∞ 5.53× 10−2 mol m−3

Population density N0 8.04× 1021 No. m−3

Table 4.1: Physical parameters for the cadmium selenide (CdSe) nanoparticle synthesis method

used by Peng et al. [89]. The parameters in italics are not given explicitly and are obtained via a

fitting approach.

4.4.2 Validating the pseudo-steady state approximation

The PSS model is described by equations (4.17)-(4.20). Since this forms the basis for the

N particle model it is important to verify its accuracy. We do this by comparison with the

numerical solution of the full system (4.12)-(4.14) (referred to as the full model). Although

we have already shown that the PSS is very well approximated by the analytical solution

and that for a single crystal the solubility variation may be neglected, we must employ the

PSS in the N particle model. This is because when an individual particle’s solubility drops

below the bulk concentration Ostwald ripening occurs. The analytical solution neglects

variation in solubility, so cannot capture this behaviour.
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Problems similar to the full model frequently occur in studies of phase change where it is

termed the one-phase Stefan problem (one-phase because the temperature is neglected in one

of the phases, this is analogous to neglecting the concentration in the crystal). Examples of

one-phase problems occur in laser melting and ablation, Leidenfrost evaporation of a droplet

and in supercooled materials. At the nanoscale there are many studies on nanoparticle

melting and growth, see [33, 34, 81]. The nanoparticle studies are particularly relevant,

since they deal with a spherical geometry and at the nanoscale the melt temperature varies

in a manner similar to the variation of the solubility in the current problem. For this reason

we follow the numerical scheme outlined in the studies of [33, 34]. For the numerical solution

we choose a large, fixed domain (equivalent to stating δ is large and constant). The scheme

involves a standard boundary immobilization transformation and then a semi-implicit finite

difference scheme is applied to the resulting equations. The PSS model requires the solution

of a single nonlinear ordinary differential equation, (4.20). To do this we simply use the

Matlab ODE solver ode15s. Once rp is determined the concentration is given by equation

(4.19).

(a) (b)

Figure 4.3: Solution of the full and the PSS models (represented by circles and by a solid line,

respectively) for the growth of a single particle. Panel (a) shows the evolution of the particle radius

and panel (b) the concentration of monomer around the particle at five different times.

In Figure 4.3 we compare the numerical solution of the full and PSS models using the

parameters of Table 4.1, where panel (a) shows the evolution of the particle radius and

panel (b) the concentration profile at five different times. In both cases the agreement
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between the full and PSS models is excellent, thus justifying the use of the simpler PSS

model in the N particle system. All subsequent calculations will be based on the PSS model.

Panel (a) shows how the particle grows rapidly until around t ≈ 1 hr when the growth rate

decreases, subsequently the radius slowly approaches the maximum value of rp ' 3.8 nm.

This behaviour can be understood by analysing the concentration profiles presented in panel

(b). The growth rate is proportional to the concentration gradient adjacent to the particle.

From Figure 4.3(b) it is clear that the concentration gradient near the particle surface is

relatively large at small times, leading to rapid growth. After t ≈ 1 hr the concentration

profile is practically flat, resulting in a slow growth rate.

4.4.3 Ostwald ripening with N = 2

With the single particle model the growth rate tends to zero as the solubility and bulk

concentration approach each other. Initially all terms on the right hand side of Eq. (4.20)

are positive, indicating a positive growth rate. The increase in rp leads to a decrease in

bulk concentration and the growth rate tends to zero as this concentration approaches the

solubility. The analytical solution indicates that this approach is exponential and there

is no mechanism for the growth rate to become negative. Hence Ostwald ripening, where

a particle has a negative growth rate can only occur in a system with more than one

particle. For certain materials Ostwald ripening may take a very long time and so be

difficult to observe. Faraday’s experiment shows time-scales on the order of decades, in [25]

a broadening of the CdSe particle radii on the order 0.1nm occurs over a period of hours.

To demonstrate that the current model can predict Ostwald ripening we now investigate

the simplest possible case, with two particles. However, since we are using data for CdSe

we anticipate a slow process.

The system is defined by equation (4.25) with N = 2. We take parameter values from

Table 4.1 and choose initial radii 2 nm and 2.5 nm. The two governing equations may be

easily solved using the Matlab ODE solver ode15s. Results are presented in Figure 4.4. The

first figure shows the evolution of the radii for more than 25 hours. The solid line represents

the evolution of the 2.5 nm particle, the dashed line is the 2 nm one. As can be seen, for

small times both particles grow rapidly however, after around 1.7 hours the smaller particle

starts to shrink, while the larger one grows linearly. In Figure 4.4(b) the variation of the
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particle solubility and concentration is shown, solid and dashed lines correspond to the 2.5,

2nm particle’s solubility respectively, while the dotted line is the bulk concentration. With

reference to the variation of the radius it is clear that the rapid growth phase corresponds

to a sharp decrease in the bulk concentration. Initially the solubility of each particle is

below the bulk concentration and decreases as rp increases. Ostwald ripening begins when

the solubility of the smaller particle crosses the cb curve, at t ' 1.7h, and subsequently its

size decreases. The solubility of the larger particle keeps slowly decreasing, in keeping with

its slow growth, and remains below the bulk concentration until the end of the simulation.

If we continued the simulation the smaller particle would eventually disappear, the rate of

decrease in radius increasing with time.

(a) (b)

Figure 4.4: Evolution of two CdSe nanoparticles. (a) Change in time of the radii of two particles

with initial radii of 2 nm (dashed line) and 2.5 nm (solid line). (b) Change in bulk concentration

(dotted line) and solubilities of smaller (dashed line) and larger (solid line) particles.

4.4.4 N particles system

To simulate the experiments of [89] we consider a distribution of N nanoparticles where

the initial distribution is generated by random numbers, with an initial mean radius r̄∗i,0

of 2.92 nm and a standard deviation of σo = 8.9%. In the numerical solution if a particle

decreases below 2nm it is assumed to break up and all the monomer returns to the bulk

concentration.

In Figure 4.5 we compare the prediction for the average radius of 10 and 1000 CdSe
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particles (dashed lines) with the corresponding data of Peng et al. [89]. The single particle

analytical solution for r(t), equation (4.21), is shown as a solid line. The inset shows the

difference between the N particle and analytical solution. In Figure 4.5(a) the maximum

difference between the two solutions is of the order 1.5%, which decreases rapidly with time.

The solution with N = 1000, shown in Figure 4.5(b), has a maximum difference of the order

0.15% from the analytical solution.

(a) (b)

Figure 4.5: Comparison of the model for N particles (dashed lines) with experimental data from

Peng et al.[89] (dots) using N = 10 in (a) and N = 1000 in (b). The solid lines represent the explicit

solution for the one particle model, equation (4.21). The inset plots show the percentage difference

between the models.

In practice N would be much higher. In Table 4.1 the population density is given as

N0 = 8.04×1021 crystals/m3, so in a volume V ≈ 7×10−6m3 we would expect around 1016

crystals. The figure demonstrates that as N increases the solution tends to the analytical

solution. Given that N is typically very high it is then clearly not necessary to solve the

large system: the analytical solution is easier to understand and implement than a 1016

particle model. However, it is important to note that in the present example there is no

significant Ostwald ripening. From Figure 4.4 we observe defocussing starts around 1.7

hours and after nearly 30 hours the radius of the smaller particle has only decreased by

7%. In the experimental data used here extra monomer is added to the solution after three

hours and we stop our simulation then. So, in the absence of significant Ostwald ripening

we may assume that the analytical solution may be used to predict the average evolution
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of nanocrystal growth. In situations where Ostwald ripening is to be modelled some form

of N particle model should be used, since this accounts for the solubility of each particle.

4.4.5 Optimal strategies for growth

For commercial applications crystal growth is a multi-stage process, with extra monomer

being added whenever it is judged that the concentration is low. Generally this is an ad-hoc

process, with no clear rules on when or how much to add. The solutions provided in the

present study can help to inform this process.

Firstly, we note that equation (4.20) indicates a maximum growth rate when cb − s is

maximum. This suggests maintaining a high bulk concentration. However, if too much

is added the concentration will surpass the saturation level, leading to the nucleation of

small crystals and a possible, undesirable, bimodal size distribution. This may be avoided

since the radius is known, via equation (4.20), so the bulk concentration cb ≈ c0 − βr3
p

is also known. Hence at any given time we know how much monomer is in solution and

consequently how much may be added.

In theory a continuous drip, which matches the rate at which monomer is lost, could be

used to replace monomer and maintain the concentration at a constant high level. In practice

monomer is usually added in distinct stages, our solution can determine the maximum

possible amount. However, it must be noted that when using the present method, at each

injection new initial conditions must be applied. This means that the initial radius for, say,

the second stage would be the value at the end of the first stage and the initial time that of

the injection. The value of a must be adjusted since the new initial concentration will be

what remains at the end of the first stage plus what is added. This value then affects the

value of G.

In Figure 4.6 we show the evolution of the radius for an experiment with similar

conditions to those studied in Peng et al. [89]. Hence all parameter values from Table 4.1

are kept the same, with the single difference that we start with a value c∗0 = 50 mol/m3

and add 50 and 100 mol/m3 at different times. The solid curves have an addition at 0.25

and 0.5 hours, the dashed curves after 1, 3 hours. In both cases the final radius is around

5.8nm, but in the first case this is achieved after 2 hours, in the second close to 5 hours.
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Figure 4.6: Evolution of the radius varying the time of further injections.

4.5 Conclusions

We have developed a model for the growth of a system of N particles, where N may be

arbitrarily large. The model involves a system of first order nonlinear ordinary differential

equations, which are easily solved using standard methods. The basis of the N particle

model is the pseudo-steady approximation presented in [79] which was shown to be an

excellent approximation to the full numerical solution. This model incorporates the particle

solubility variation which then permits the model to capture Ostwald ripening.

The main drawback to a single particle model is that it cannot describe Ostwald ripening.

By studying the system with N = 2 we were able to emulate Ostwald ripening on a very

simple system. The method can be easily translated to any number of crystals.

By allowing N to become large and calculating the average particle radius we showed

that the results approached the single particle explicit solution, which may thus be

considered to represent the average growth of a large distribution of particles. A

consequence of this is that the N = 2 model can equally well represent the average radii

for an initially bimodal distribution of nanocrystals. An N > 2 model can represent a

much larger distribution of particles.

The main advantage of the current method is that since the single particle model may be

solved analytically, and this accurately describes the average radius of a distribution, then

the controlling parameters are apparent. This allows us to adjust them and so optimise the
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growth process. The method is easily adapted to multi-stage growth. Provided Ostwald

ripening is prevented, which is the usual procedure in a controlled environment, we only

have to deal with a single particle so the solution is rapid (almost instantaneous), as opposed

to previous large scale, time-consuming calculations.

In future work we intend to combine this with a detailed experimental study to derive

appropriate guidelines for nanocrystals production.
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5 | Magnetic drug targeting

5.1 Introduction

Currently the main approaches in cancer therapy include surgery, chemotherapy,

radiotherapy and hormone therapy [6]. However, since the latter three are non-specific

their efficacy is not only reduced but sometimes the cure is more aggressive than the

disease itself. There are two major disadvantages of a non-specific therapy for cancer

treatment: first of all, the systemic distribution of the drug normally generates several

side effects as the drugs attack healthy cells in addition to the tumour cells; secondly, the

high dosage of drugs required to target malignant cells. The goal of improving the efficacy

of the therapy was widely studied by researchers in the late 1970s, who proposed to use

magnetic carriers to target specific areas where the disease was concentrated [86]. In order

to specifically target tumours there are currently two standard techniques. The first

involves the inhibition, by various means, of drug delivery to healthy non-cancerous cells

while the second involves the direct conduction of drugs into the tumour site. It is now

accepted that one way to achieve the second technique is by using nanoparticles to deliver

the drugs directly to the tumour cells which results in minimum drug leakage into normal

cells [118]. The technique of magnetically targeted drug delivery involves binding a drug

to small biocompatible magnetic nanoparticles, injecting them into the bloodstream and

then using a high gradient magnetic field to direct them to the target region. Once they

arrive to the endothelium part near the tumour, they diffuse into the tumour tissue

through and deliver the encapsulated drug molecules into tumour sites [121].

The interest in the nanoscale began thanks to the discovery that tumours have a highly

69
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porous vasculature which allows access to nano-sized particles delivering therapeutic agents

[91]. There are several types of structures, called nanovectors, that can be filled with

anticancer drugs or can be used to attach molecules to their surface. Both methods are used

for in vivo visualization of markers of diseases and targeted delivery of therapeutic agents

in order to reduce collateral effects. The first example of successful nanovectors containing

inorganic nanoparticles, like gold, are a particular lipid system called liposomes. They are

FDA-approved and nowadays widely used for breast cancer treatments [87], and represent

the first generation of a huge field of on-going development of drug carriers [56, 88]. A

particularly interesting case is the one of metal-based nanovectors, called nanoshells, which

are composed of a silica core surrounded by a gold layer. As explained in the first part of this

thesis, gold nanoparticles can be precisely tuned in order to reach the result desired: in this

case this property is used to build a gold layer of different thickness that can be selectively

activated through tissue irradiation for therapeutic thermal ablation, a procedure widely

performed in cancer therapy which uses heat to remove tissue by burning it [5]. In fact, each

colour can be conjugated with antibodies to different molecular targets and, when irradiated,

a precise map of the distribution of many molecular markers is generated [31]. Moreover,

the size of the particle is crucial in the margination dynamics, which is the movement of

particles in the flow toward the walls of a channel, due to the risk of being filtered out of

the blood or via extravasation from a tumour [19]. It has been shown by Decuzzi et al.

[27] how particles used for drug delivery should have a radius smaller than a critical value

(which is ≈ 100nm) to facilitate margination and interaction with the endothelium, as a

result of the balance of the forces acting on the particles.

However, there are several open questions in this novel technique. From a chemical

point of view, the toxicity released by nanoparticles injected in the body and the possibility

of embolization of the blood vessel in the target region due to accumulation of magnetic

carriers are major concerns [28]. Moreover, the characteristics of the external magnetic field

(like intensity and position) is also still a topic of discussion, but it is widely recognised

that it can be used only with tumours near the surface of the body and not too far from the

target site [98]. At the present, there are many promising studies, both in vivo and in vitro

[2, 75, 116]. To our knowledge, only a few successful trials for magnetically drug delivery

on human patients have been carried on. A first study conducted a trial on 14 patients
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with advanced tumours unsuccessfully treated with other methods [66]; a second one used

this technique in order to improve the delivery of a magnetic targeted chemotherapy agent

in the treatment of inoperable hepatocellular carcinoma [117]; finally, in the same year 11

patients were examined with MRI before and after magnetic drug targeting [61]. All this

experimental studies have shown that, under particular circumstances, magnetic forces can

attract particles in the region near the magnet but there is a lack of knowledge about the

mechanism of this accumulation [32]. For this reason it is still difficult to scale-up the results

from small animals to human.

The focus of this chapter is based on physical aspects of this technique, and in particular

the delicate balance of the hydrodynamic and magnetic forces which cause the movement

and directing of the particles in drug delivery systems while modelling the blood as a non-

Newtonian fluid. The goal is to reach a deep understanding of the process in order to

optimize the success of the therapy by controlling the motions of the nanoparticles in the

bloodstream.

In the past, several authors studied the movement of particles subjected to a magnetic

field in the bloodstream considering different models for the flow of the blood. In order to

simplify calculations most of them used the approximation for a Newtonian fluid or the very

popular power-law model. Moreover, previous studies worked mostly at microscale, which

has the advantage to respond strongly to the external magnetic field (since magnetic force

scales with particle volume [82]), but in this case particles tend to agglomerate during the

delivery. Grief and Richardson [45] and then Richardson et al. [94] developed a continuum

model for the motion of particles subjected to a magnetic field, both using a Newtonian

flow model for the blood. In [45] it was shown, via a simple network model, that it is

impossible to specifically target interior regions of the body with an external magnetic field;

the magnet can be used only for targets close to the surface. The second work analysed

the boundary layers in which particles tend to concentrate during the delivery. Nacev et al.

[82] analysed this same process using a sophisticated numerical solver to simulate particle

behaviour under the influence of a magnetic field using a power-law assumption for the

flow of the blood in the vessels. Yue et al. [122] implemented a stochastic ODE model for

clusters of nanoparticles in a Hagen-Poiseuille flow in order to find the optimal injection

point. Cherry and Eaton [20] developed a comprehensive model for the motion of magnetic
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particles using a fitted value for the viscosity from experimental data given by Brooks et

al. [16] with a shear thinning model, then used a power-law expression for the behaviour

of the fluid in the case of a dilute suspensions of microscale particles suspended in blood.

Lunnoo and Puangmali [68] used a generalized power-law model for the rheology of the

blood in order to investigate the parameters which play a crucial role in the magnetic drug

targeting, showing how difficult it can be to keep small particles in the desired region.

More recently, Rukshin et al. [95] developed a stochastic system of differential equations in

order to simulate the behaviour of magnetic particles in small vessels, where the velocity

of the blood is described by a power-law profile. They claim to simulate the movement

of superparamagnetic nanoparticles, which have a radius smaller then 30nm, but then use

a value of the order of 10−7 for the simulations. Most of the literature shows that small

particles have a better chance to reach the target but a lack of accurate size determination

has been found in several studies [40]. In the same year, Boghi et al. [13] show a complete

numerical simulation of drug delivery in the blood in the coeliac trunk, where nanoparticles

are dragged into the liver by an external magnetic field, considering a Newtonian fluid.

The aim of this project is to analyse the forces and the parameters involved in the process

of magnetic drug delivery and to highlight the importance to consider realistic models for

both the flow of the blood and the motion of the nanoparticles in it. In particular, it is

crucial to consider the non-Newtonian behaviour of the blood in order to predict if particles

are able to reach the desired area. A mathematical model in a 2D channel is introduced in

Section 5.2. In Section 5.3, it is explained how choosing an oversimplified approximation

constitutive law for the fluid in the vessel or a wrong value for the viscosity in the centre

of the channel can lead to significant errors. Once obtained an accurate approximation for

the behaviour of the blood in the vessels, in Section 5.4 we show how magnetic forces act

on particles depending on their size. In fact, it is clear that in order to reduce the toxicity

of this method, particles need to be superparamagnetic and to lose their magnetism as

soon as the external magnetic field is removed. Numerical simulations by varying some key

parameters are presented in Section 5.5 and conclusions are drawn.
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5.2 A mathematical model for magnetic drug delivery

The physical process that we model here is related to the very promising technique of

magnetic drug targeting. Drugs bound to magnetic nanoparticles are injected into the

bloodstream and driven by an external magnetic field with the aim to reach the disease

area. In order to model this complex process, a clear understanding of the blood circulation

throughout the human body is needed. In Figure 5.1 it is shown how blood flows through

a system of vessels, called the circulatory system. As the heart beats, blood full of oxygen

and nutrients is carried away throughout the aorta, the main artery, to the tissues. Arteries

branch several times in arterioles which become smaller as they carry blood further from

the heart until becoming capillaries. At this point, they have thin walls which allow oxygen

and nutrients to pass through the tissue cells. Capillaries connect the arteries with the

veins, where blood flows back from the body to the heart. They become larger and larger,

from being venules to reach the size of the so-called vena cava, the largest vein that brings

the blood back into the heart. The average lengths (L) and widths (R) of the five types

by which blood vessels are classified can be found in Table 5.1, together with the values for

the aorta and the vena cava. Moreover, the average number of these vessels in the human

body (N) is given.

Figure 5.1: Different types of vessels in the circulatory system. Image credits to the U.S. National

Library of Medicine [92].
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Vessel L (m) R (m) N

Aorta 0.4 1.25× 10−2 1

Artery 0.1 1.5× 10−3 159

Arteriole 7× 10−4 2.5× 10−5 5.7× 107

Capillary 6× 10−4 4× 10−6 1.6× 1010

Venule 8× 10−4 1× 10−5 1.3× 109

Vein 0.1 2.5× 10−3 200

Vena cava 0.22 1.5× 10−2 2

Table 5.1: Typical values for the various types of vessels in human body: average length (L) and

width (R), estimation of the average number of a specific vessel in the circulatory system (N). All

values are adapted from [38].

The main assumption that we will make in order to simplify the system of equations is

that the width of the vessel is significantly smaller than its length. From the values in Table

5.1 it is clear that each type of vessel verify this property. Hence, this project is focused

on the simulation of magnetically drug delivery in an artery, since many of the parameters

needed for the simulation in this case have been extensively measured in literature and,

therefore, it is a good example for a realistic study. However the model can be easily used

to simulate different types of vessel since its dependence from their size is widely explained.

As represented in Figure 5.2, we approximate the vessel as a rectangular channel, with

the width significantly smaller than its length. We also assume that the magnetic particles

are injected from the left border and their motion is driven by the magnetic field generated

by a magnet located below the domain which counteracts the drag force on the particles

due to the blood.

A key issue in magnetic drug delivery is whether the applied magnetic forces can compete

with convective blood (drag) forces that tend to wash particles away. These drag forces have

different effects on the particle varying with the particles position in the blood vessel. A

particle at the vessel centerline will experience a higher drag force than a particle near the

wall, because the latter will be surrounded by a near zero blood velocity. The ‘no-slip’

condition is assumed at the walls, which means that the velocity of the blood is zero there.
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Figure 5.2: Sketch of the injection of magnetic nanoparticles in a vessel in the presence of red

blood cells and subject to an magnetic field.

Therefore, a particle near the vessel wall experiences a smaller drag force and is

attracted more severely by the magnetic field. Furthermore, the model takes into account

the interactions and collisions between moving red blood cells (RBCs) in the bloodstream

which cause a, so-called, shear-induced diffusive motion of the magnetic particles [45].

Moreover, the aggregation of RBCs strongly influences the blood flow characteristics,

being the major cause of the non-Newtonian nature of blood [53]. Brownian motion can

also be important due to the small size of the particles while gravity is assumed negligible.

We also have to pay attention to the rate at which the drug diffuses from the bloodstream

into the extravascular space, that is the permeability of the wall which varies according

to the types of the vessels. According to the definition of the Medical Subject Headings

(MeSH), the vascular permeability is the property of blood vessels that allows for the selective

exchange of substances between the blood and surrounding tissues and through membranous

barriers. This, however, is not easy to measure. Also, if the drug is lipid-insoluble, that is

capable of dissolving in fatty tissues, the capillary membrane permeability controls the rate

at which the drug is distributed between the blood and tissue regions. The distribution of

the drug is then said to be diffusion-rate limited [39].

Since blood containing nanoparticles can be considered a sort of nanofluid, its motion is

usually described by a coupled set of partial differential equations describing the fluid flow,

widely known as Navier-Stokes equations, and the particle concentration, whose behaviour

is described by an advection-diffusion equation. The general model describing the flow of a
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nanofluid in a vessel subject to an external magnetic field is then:

∇ · uF = 0, (5.1)

ρ

[
∂uF
∂t

+ uF · ∇uF
]

= −∇p+∇ · τ + FF , (5.2)

∂c

∂t
+∇ · [(uF + up)c] =∇ · (D∇c) , (5.3)

where uF is the fluid velocity, ρ is the fluid density, p is pressure, τ is the stress tensor, FF

the magnetic force acting on the fluid, c the particle concentration, up the particle velocity

and D the particle diffusion coefficient. In order to simplify the model for the blood flow

we will consider FF sufficiently small and we neglect it. In fact, even if it has been shown

that blood viscosity can reduce due to the magnetic field under certain circumstances (see

for example [106]), natural blood has negligible magnetization [3] and its overall character

is found to be paramagnetic [109]. On the wall of the vessel, the fluid obeys the no-slip

condition, while the particles are assumed to be able to pass through the vessel according to

some permeability coefficient κ. The particles are injected on the left of the domain (inlet)

during some injection interval Tinj, while the end of the vessel is sufficiently far from the

magnet that its effect is almost zero.

In the next sections, we will study the flow of the blood comparing different constitutive

laws in a vessel and their effect on the concentration of magnetic nanoparticles.

5.2.1 The magnetic field

The interest in magnetic nanoparticles as drug carriers stems from several of their properties

that are useful in medicine. The combination of the advantages of the small size with the

possibility to control them via an external magnetic field which can easily penetrate human

tissue makes them good candidates for drug delivery. However, an important question is

how near the magnetic field has to be to the target area in order to achieve the targeting.

In fact, since the magnetic gradient rapidly decreases with increasing the distance to the

target, alternative methods like implant magnets or ferromagnetic microwires has been used

as alternatives to external magnetic fields [68]. Moreover, the fact that due to this decreasing

in distance the area where magnetic forces can compete with drag forces is limited has been

one of the main difficulty in moving from animal to human trials [32].
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In order to evaluate the magnetic force acting on the particles in the vessel, let us

consider the Maxwell’s equations for stationary or slowly varying magnetic fields:

∇×H = j, (5.4)

∇ ·B = 0, (5.5)

B = µ0 (H + M) , (5.6)

where H is the intensity of the magnetic field B, j is the current density, µ0 is the

permeability of the vacuum and M is the materials magnetization. The magnetization is

usually correlated to the magnetic moment m = VmM, where Vm the volume of the

material, or it can be defined in terms of the magnetic susceptibility χ by the

Clausius–Mossotti formula for a spherical particle [95]

M =
χ

1 + χ/3
H. (5.7)

The susceptibility describes how the magnetization is induced in a material by the the

magnetic field. Most materials display little magnetism, with a low value of χ in the range

of [10−6, 10−1] in the case of paramagnets and depends not only on the temperature but

also on H. As mentioned earlier, the size of the magnetic particle plays a crucial role in this

physical process. In fact, only when the particle is smaller than a critical diameter (which

is about 30nm), does it exhibit superparamagnetic behaviour, which is the capacity of its

magnetization to be on average zero in the absence of an external magnetic field [68]. In

this case, the magnetic moment of the particle is free to fluctuate in response to thermal

energy while the individual atomic moments maintain their ordered state relative to each

other [86].

In order to exert a magnetic force on magnetic nanoparticles in the vessels, a magnetic

field gradient is required at a distance. We can define the magnetic force Fmag on a single

particle in a magnetic field B as

Fmag = (m · ∇)B, (5.8)

that is the derivative of the magnetic field B in the direction of m. One possible

approximation is to use the expression B = µ0 H in order to rewrite equation (5.8) as

Fmag = Vmµ0 (M · ∇)H =
4πa3

3

µ0χ

1 + χ/3
(H · ∇)H =

2πa3

3

µ0χ

1 + χ/3
∇|H|2, (5.9)
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where a is the radius of the particle and (5.7) has been applied. Equation (5.9) shows

two important features of the magnetic force: first of all, it is proportional to the particle

volume, which makes the nanoscale case so different from the microscale; secondly, it is

proportional to the gradient of the magnetic field intensity squared, which is one of the

parameters compared in several studies.

In the particular case of superparamagnetic nanoparticles, the magnetic moment

depends on the local magnetic flux density and we can use the Langevin function

m =
msatB
|B|

L(|B|) =
msatB
|B|

[
coth

(
msat|B|
kBT

)
− kBT

msat|B|

]
(5.10)

where kB is Boltzmann’s constant and T is the absolute temperature. The variable msat is

the magnetic saturation of the particle given by

msat =
4πa3

3
ρMsat, (5.11)

where ρ is the density of the magnetic particles and Msat is the mass saturation

magnetization. Grief and Richardson [45] have shown that for sufficiently weak fields on

superparamagnetic particles we can consider the approximation

Fmag ≈
m2

sat

3kBT
(B · ∇)B =

m2
sat

6kBT
∇|B|2. (5.12)

Nacev et al. [82] have shown that for a magnet held at a long distance compared to the

width of the vessel, we can assume the magnetic force is approximately constant in the

vertical direction which avoid the need to solve Maxwell’s equations. Richardson et al. [94],

for example, use a constant value for the magnetic force given by

F0 =
4

3
πa3ρMΥBg, (5.13)

where Υ is the magnetite volume fraction and Bg is the gradient magnetic field. This is

what we are going to assume in this work.

5.3 Blood as a non-Newtonian fluid

If we imagine the flow of the blood in a reduced space, it is clear that its behaviour will

be more complex than a simpler fluid such as water. To understand the reason of this



5.3. Blood as a non-Newtonian fluid 79

complexity, we have to study what is defined as the viscosity of a fluid. In fluid dynamics,

the viscosity of the fluid is a measure of its resistance to deformation by shear stress. We

can note that in a Newtonian fluid

τ = µ
(
∇u +∇uT

)
, (5.14)

the shear stress τ is proportional to the strain. According to Newton’s law of viscosity, this

momentum flow occurs across a velocity gradient, and the magnitude of the corresponding

momentum flux is determined by the viscosity µ, which is constant.

We can define a Newtonian fluid under constant temperature and pressure following the

description from Owen and Phillips [84]:

• The only stress generated in simple shear flow is the shear stress τ , the two normal

stresses being zero.

• The shear viscosity does not vary with shear rate.

• The viscosity is constant with respect to the time of shearing and the stress in the

liquid falls to zero immediately after the shearing is stopped.

• The viscosities measured in different types of deformation are always in a simple

proportion to one another.

Any liquid that deviates from the above behaviour is said to be non-Newtonian. Typical

examples of non-Newtonian fluids in nature are most of the body fluids, such as blood,

saliva, eye fluid, as well as many manufactured ones, such as toothpaste, paints, etc.

In particular, blood is a concentrated suspension of particles in plasma, which is mainly

made of water. There are three most important particles that constitute blood: red blood

cells (or erythrocytes), white cells (or leukocytes) and platelets (or thrombocytes). The first

ones, which are the most numerous, are the main responsible for the mechanical properties

of the blood [38]. In fact, their tendency to form (and then break down) 3D microstructures

at low shear rates and to align to the flow at high shear rates cause the blood’s shear thinning

behaviour, characterized by the monotonic decrease of the viscosity that tends to some limit

for very high shear-rates [39]. In the case of blood, the formed structures lead to significant

changes in its rheological properties and several models have been developed during the past
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50 years in order to catch the complexity of this behaviour (some examples can be found in

[8, 21, 22, 50, 53, 99]). However, none of those models has been universally accepted.

In mathematical terms, we define a fluid as non-Newtonian if the extra-stress tensor

cannot be expressed as linear function of the components of the velocity gradient. The

nonlinear relation between the shear stress and shear rate can be written as

τ = η(γ̇)γ̇, (5.15)

where η(γ̇) is the viscosity and

γ̇ = (2eijeij)
1/2 =

[
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)(
∂ui
∂xj

+
∂uj
∂xi

)]1/2

(5.16)

is the shear rate. For shear thinning fluids η is approximated by constant value as the shear

rate tends to zero. This indicates a Newtonian behaviour at very low shear rates. As the

shear rate is increased the viscosity varies in a non-linear manner until it reaches a second

plateaux value η∞, where the fluid behaviour can be considered Newtonian again.

The aim of this section is to compare different types of non-Newtonian fluids, focusing on

the accuracy of the approximation when varying η(γ̇). In particular, three famous models

for a non-Newtonian fluid are compared with the Newtonian case. These are:

1. Power–law model

The power–law model describes the viscosity by

ηp(γ̇) = m |γ̇|np−1 , (5.17)

where m is constant and γ̇ is the shear rate. If np < 1 the fluid is pseudoplastic or shear

thinning and if np > 1 it is dilatant or shear thickening. If np = 1 we obtain the Newtonian

viscosity.

2. Carreau model

The Carreau model describes the viscosity by

ηc(γ̇) = η∞ + (η0 − η∞)
[
1 + λ2γ̇2

](nc−1)/2
, (5.18)

where λ is a constant and η0 and η∞ are the limiting viscosities at low and high shear rates,

respectively. This model is very accurate to predict the shear thinning behaviour due to its
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ability to predict the two Newtonian plateaux values and the intermediate region observed

in experiments.

3. Ellis model

The Ellis model describes the viscosity in terms of shear stress

1

ηe
=

1

η0

(
1 +

∣∣∣ τ
τ1/2

∣∣∣α−1
)
, (5.19)

where η0 is the viscosity at zero shear and τ1/2 is the shear stress at which the viscosity is

η0/2. We note that this model cannot predict the viscosity in the second transition region

to the Newtonian plateaux value η∞. However, it is still very accurate for blood simulations

since very high level of shear strain are not reached.

In Figure 5.3 it is shown the behaviour of the models explained above in a logarithmic scale.

0

Figure 5.3: The viscosity/shear rate plot in logarithmic scale for the power law (red dotted-dashed

line), the Carreau (black solid line) and the Ellis models (green dashed line). The light grey dashed

lines represents the constant limit viscosities η0 and η∞.

Several theoretical studies to compare the accuracy of these models have been made

considering different types of fluids (see for example [52, 76, 100]). Typical values for the

blood case can be found in Table 5.2 and will be used in the simulations.

In the next section we compare the results obtained from the different models and

demonstrate the importance of choosing the right model for the blood flowing under the

influence of an external magnetic force.
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Quantity Symbol Value Units References

Newtonian viscosity µ 0.00345 Pa s [52]

Power-law viscosity m 0.0035 Pa s [76]

Power-law exponent np 0.3568 No. [76]

Carreau coefficient λ 3.313 No. [39]

Carreau viscosity at low shear rates η0 0.056 Pa s [39]

Carreau viscosity at high shear rates η∞ 0.00345 Pa s [39]

Carreau exponent nc 0.3568 No. [39]

Ellis viscosity at low shear rate η0 0.056 Pa s [76]

Ellis shear stress at η0/2 β 0.026 Pa [76]

Ellis exponent α 3.4 No. [76]

Table 5.2: Typical parameters for the blood flow equations for each model.

5.3.1 Governing equations and nondimensionalisation

In order to approximate the physical behaviour, we study the motion of the blood in a vessel

assuming that the vessel is a rectangular domain of length L and width 2R, where R� L.

Lubrication theory can describe the flow when the diameter of the vessel is significantly

smaller than its length [83]. We will consider the lubrication model a good approximation

of the problem since all the vessels in the circulatory system comply this assumption, as we

can see from Table 5.1. As briefly introduced in Section 5.2, the flow is governed by the

Navier-Stokes equations (5.1)–(5.2). Equation (5.1) is the continuity equation and equation

(5.2) is the conservation of momentum. In our domain, the equations become:

∂u

∂x
+
∂v

∂y
= 0, (5.20)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+

1

ρ

[
∂τxx
∂x

+
∂τyx
∂y

]
, (5.21)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+

1

ρ

[
∂τxy
∂x

+
∂τyy
∂y

]
. (5.22)
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The velocity of the fluid is subject to the no-slip conditions at the vessel wall, so the fluid

has zero velocity at y = ±R. We compare three models where blood is consider as a

different non-Newtonian fluid. In order to understand the order of magnitude of the terms

in equations (5.20)–(5.22), we proceed with a standard non-dimensionalisation process for

the steady state flow. Consider the non-dimensional variables

x = Lx̂, y = Rŷ, u = Uû, v = V v̂, p = P p̂, τ = T τ̂ . (5.23)

Substituting (5.23) into (5.20) and dropping the hats, we have

U

L

∂û

∂x̂
+
V

R

∂v̂

∂ŷ
= 0 (5.24)

and rearranging the terms we obtain

R

L

∂û

∂x̂
+
V

U

∂v̂

∂ŷ
= 0. (5.25)

From (5.25) it is clear that we can balance the equation setting V = εU , where ε :=

R/L � 1. This suggests that there are very small changes in the y direction. Hence, the

nondimensional continuity equation is

∂û

∂x̂
+
∂v̂

∂ŷ
= 0. (5.26)

Substituting (5.23) into (5.21), we have

U2

L
û
∂û

∂x̂
+
V U

R
v̂
∂û

∂ŷ
= − P

ρL

∂p̂

∂x̂
+
T
ρ

[
1

L

∂τ̂x̂x̂
∂x̂

+
1

R

∂τ̂ŷx̂
∂ŷ

]
. (5.27)

Considering V = εU and choosing P = LT /R, we can write

εU2

[
û
∂û

∂x̂
+ v̂

∂û

∂ŷ

]
=
T
ρ

[
−∂p̂
∂x̂

+ ε
∂τ̂x̂x̂
∂x̂

+
∂τ̂ŷx̂
∂ŷ

]
(5.28)

and making the the further assumption

εU2ρ

T
� 1, (5.29)

at leading order we can neglect most of the terms obtaining

∂p̂

∂x̂
=
∂τ̂yx̂
∂ŷ

. (5.30)
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Notice that equation (5.29) is equivalent to assume that the reduced Reynolds number is

small for the classical lubrication theory [83]. Following the same idea we can neglect almost

all the terms of equation (5.22), since we have

ε3U2

[
û
∂v̂

∂x̂
+ v̂

∂v̂

∂ŷ

]
=
T
ρ

[
−∂p̂
∂ŷ

+ ε2∂τ̂x̂ŷ
∂x̂

+ ε
∂τ̂ŷŷ
∂ŷ

]
. (5.31)

Therefore, dropping the hats, the non-dimensional system (5.20)–(5.22) at the leading order

can be written as

∂u

∂x
+
∂v

∂y
= 0 (5.32)

∂p

∂x
=
∂τyx
∂y

(5.33)

∂p

∂y
= 0 (5.34)

which is a much simpler problem.

The final non-dimensional scales are V = εU and P = T /ε, where T depends on the

fluid chosen. That is, equations (5.20)–(5.22) will differ in the only term in the shear tensor

that appears in the equations, which is τyx. In this case we assume the shear rate given by

definition as the gradient of the velocity as in equation (5.16) and we are considering that

the fluid fluctuations in the x-direction are negligible due to the particular geometry, which

means γ̇ ≈ |uy|.

In the simple case of a Newtonian fluid, the shear stress (5.14) can be written as

τyx = µ

∣∣∣∣∂u∂y
∣∣∣∣ , (5.35)

where µ is constant.

For the power law model (5.17), we have

τyx = m

∣∣∣∣∂u∂y
∣∣∣∣np , (5.36)

where m is a constant.

For the Carreau model (5.18), then

τyx = η∞ + (η0 − η∞)

(
1 + λ2

∣∣∣∣∂u∂y
∣∣∣∣2
)nc−1

2
∣∣∣∣∂u∂y

∣∣∣∣ , (5.37)

where η0 is the initial shear rate and η∞ the equilibrium shear rate.
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For the Ellis model (5.19), we have an implicit equation relating the viscosity with the

stress-tensor
1

ηe
=

1

η0

(
1 +

∣∣∣τyx
β

∣∣∣α−1
)

(5.38)

where η0 is the constant viscosity at zero shear and β is the value of τyx when η = η0/2. In

this case, we will use the value fitted in [76].

Therefore, we will consider

T =



µUR if we choose τ as in (5.35),

m
(
U
R

)np if we choose τ as in (5.36),

η0

(
U
R

)nc if we choose τ as in (5.37),

η0

(
U
R

)α if we choose τ as in (5.38).

(5.39)

5.3.2 Comparison of the models

In order to choose the most accurate non-Newtonian law for our physical problem we start

from the simplest model for a Newtonian fluid. This was used in several previous works in

order to simplify the calculation. We then compare the result with more complex and more

accurate models with a non-Newtonian fluid. In all cases we consider a Hagen-Poiseuille

flow in a channel, which is driven by a pressure gradient ∆p/L. Since the movement of the

fluid in the y-direction is quite small compared with the x-direction, we will approximate

our solution by a uni-directional flow with ux = 0. Moreover, the flow has a constant

volumetric flow rate Q.

The Newtonian fluid model

The solution for the simplest model that we can use is given by solving equations (5.32)–

(5.34) where the shear-stress is described by (5.35). Since equation (5.34) implies that the

pressure does not vary with y, integrating (5.33) twice with respect to y, we can find

u(y) =
1

2µ

(
−∂p
∂x

)(
R2 − y2

)
. (5.40)

Therefore, we can consider the flux

Q =

∫ R

−R
u(y)dy =

(
−∂p
∂x

)
2R3

3µ
. (5.41)
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and, since mass is conserved, Q is constant. Hence, we can write

∂p

∂x
= −3µQ

2R3
, (5.42)

and substitute this expression in (5.40), obtaining the velocity as a function of the flux

u(y) =
1

2µ

(
3µQ

2R3

)(
R2 − y2

)
=

3Q

4R3

(
R2 − y2

)
. (5.43)

The power law model

The steady state equations of the motion of a non-Newtonian flow, considering the power-

law form for the viscosity, equation (5.33) is now replaced with

∂p

∂x
=

∂

∂y

(
m

∣∣∣∣∂u∂y
∣∣∣∣n) . (5.44)

Considering uy|y=0 = 0 and the no-slip condition at y = ±R, we can integrate (5.44) twice

with respect to y and obtain the solution for the velocity

u(y) =

(
− 1

m

∂p

∂x

) 1
n
(

n

n+ 1

)(
R
n+1
n − |y|

n+1
n

)
. (5.45)

Similarly to the Newtonian flow, we can find that Q is given by

Q =

∫ R

−R
udy =

(
− 1

m

∂p

∂x

) 1
n
(

n

2n+ 1

)
R

2n+1
n . (5.46)

Therefore, we can write

(
− 1

m

∂p

∂x

) 1
n

=

(
2n+ 1

n

)
Q

R
2n+1
n

, (5.47)

and this gives the velocity as function of the flux

u(y) =
Q

R
2n+1
n

(
2n+ 1

2n+ 2

)(
R
n+1
n − |y|

n+1
n

)
. (5.48)

One of the main advantages of this model is that it is easy to obtain the analytical

solution to the governing equation. However, there are two major disadvantages with

make it appropriate for the blood modelling: the viscosity is unbounded as γ̇ → 0 and the

limit as γ̇ →∞ is zero.
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The Carreau model

Choosing the Carreau model for the viscosity (5.37), the equations of the flow are reduced

to (5.32) and (5.34) coupled with

∂p

∂x
=

∂

∂y

η∞ + (η0 − η∞)

(
1 + λ2

∣∣∣∣∂u∂y
∣∣∣∣2
)n−1

2
∣∣∣∣∂u∂y

∣∣∣∣
 . (5.49)

This expression cannot be integrated analytically and we will have to solve it numerically

via the in-built bvp5c function in Matlab.

The Ellis model

When choosing the Ellis model (5.38), the equations of the flow are (5.32) and (5.34) coupled

with
∂u

∂y
=

(
∂p

∂x

1

η0

)[
1 +

∣∣∣∣(∂p∂x
)
y

β

∣∣∣∣α−1
]
y. (5.50)

Following [76], assuming uy(0) = 0, we can write an explicit expression for the velocity of

the fluid

u(y) =
1

η0

∂p

∂x

[
R2 − |y|2

2
+

(
1

β

∂p

∂x

)α−1 Rα+1 − |y|α+1

α+ 1

]
, (5.51)

where η0 is the viscosity at low shear rate. The flux is then calculated by

Q =
1

η0

∂p

∂x

[
R3

3
+

(
1

β

∂p

∂x

)α−1 Rα+2

α+ 2

]
, (5.52)

which gives only one real solution for the pressure gradient.

5.3.3 Velocity and viscosity

In order to compare the four models and their velocity field we have to pay attention to

the choice of the parameter values. As already explained, the viscosity strongly depends

on temperature, so for the whole chapter we use parameters consistent with temperature

equal to 37°C, which is a reasonable choice for the human body.

The geometry parameters are common for all the models and represents an artery with

length and width as in Table 5.1. The flow entering in a small artery can be approximated

by Q ≈ 1.9 × 10−6 m3/s [39]. Therefore, the pressure gradient driven the flow is obtained

from either (5.42), (5.47) or (5.52). The rest of parameters used for the simulations of
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the velocity and of the viscosity in the vessel are listed in Table 5.2. The parameters for

the Newtonian, power–law and Carreau models are widely used in the literature (see for

example [22, 38, 52]), while the parameters for Ellis model are taken from [76].

The velocity profiles and the corresponding viscosity profiles for blood obtained from the

four different models of Section 5.3.2 are compared in Figures 5.4(a) and 5.4(b), respectively.

We can observe that, even if a good agreement for the velocity behaviours is observed, the

relative viscosities can differ significantly. For the purpose of this project, the value for the

viscosity of the blood will be crucial in the calculation of the velocity of the particles which

will determinate whether the drug is able to reach the wall of the vessel or not. Figure

5.4(b) shows clearly that, for example, the viscosity of the power-law model, represented

by the red dashed-dotted line, tends to infinity as y → 0 while the other viscosities have

a very different value there. Both Ellis and Carreau models give similar approximations

for the blood flow given their capacity to catch its shear thinning behaviour. The Carreau

model is generally preferred due to its ability to predict both Newtonian plateaux but, in

the cases when high shear rates are not reached and considering this particular geometry,

the Ellis model can be treated analytically, which is a powerful tool.

(a) (b)

Figure 5.4: Comparison of (a) velocity and (b) viscosity profiles of Newtonian (represented by the

letter N and the blue dotted line), power-law (represented by PL and the red dashed-dotted line),

Carreau (represented by the letter C and the black solid line) and Ellis model (represented by the

letter E and the green dashed line).
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5.4 Concentration of nanoparticles in a non-Newtonian flow

subject to an external magnetic field

The behaviour of the concentration of magnetic nanoparticles in the bloodstream is obtained

following the continuum model developed by Grief and Richardson [45]. The governing

equation describing the motion of magnetic particles in the blood stream is an advection-

diffusion equation for the particle concentration c(x, y, t):

∂c

∂t
+∇ · [(uF + up)c] =∇ · (D∇c) (5.53)

where uF is the fluid velocity given by the solution of (5.32)–(5.34), up is the particle velocity

and D is the diffusion coefficient. We can decouple equation (5.53) from the equations for

the flow because we assume that we are in a dilute limit where the particles concentration

does not affect the flow.

The diffusive character of the equation is given by the contributions of the Brownian

motion, which is the random motion of particles under thermal fluctuations, and the

shear-induced diffusion, which is due to the fact that the red blood cells suspended in

plasma collide with each other causing random motion with a diffusive character. As

recently demonstrated by Liu and coworkers [64, 65] via a lattice-Boltzmann based

multiscale simulation, the diffusion due to the Brownian motion in the case of

nanoparticles transport in a small vessel can be important and, in some cases, even the

predominant diffusion process. Using the Stokes-Einstein equation for the diffusion of

spherical particles through a shear thinning fluid [39], we can write the Brownian diffusion

coefficient as

DBr =
kBT

6π η(γ̇) a
, (5.54)

where kB is Boltzmann constant, T the absolute temperature, η(γ̇) is the viscosity of the

blood (which depends on the model chosen) and a the particle radius. On the other hand,

the shear-induced diffusion contribution can be approximated by

Dsh = Ksh (rRBC)2 γ̇, (5.55)

where Ksh is a dimensionless coefficient that depends on the blood cell concentrations, rRBC

is the red blood cell radius and γ̇ is the fluid shear rate defined in (5.16). The coefficient
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Ksh is difficult to measure but the value used in Table 5.3 is considered representative in

literature [45]. Hence, the total diffusion will be Dtot = DBr +Dsh, obtaining:

Jdiff = −Dtot∇c = −
(

kBT

6π η(γ̇) a
+Ksh (rRBC)2 γ̇

)
∇c. (5.56)

The particle velocity is found by balancing hydrodynamic and magnetic forces. We can use

the definition of the Stokes drag, which is the force of viscosity on a spherical particle of

radius a moving through a viscous fluid, which is

FSt = 6πa η(γ̇)up, (5.57)

where η(γ̇) depends on the model chosen for the blood. The particles reaches its equilibrium

velocity when FSt balances the magnetic force Fmag and this leads us to the expression

up =
Fmag

6πa η(γ̇)
. (5.58)

Hence, finally the governing equation can be written as

∂c

∂t
+∇ · (utotc) =∇ · (Dtot∇c) , (5.59)

where utot = uF + up.

As introduced in Section 5.2.1, we can consider up = (0, vp(y)) for a magnet situated at

a long distance compared to the vessel width. Considering that the particles can flow out

of the vessel through the walls with a certain vascular permeability κ, we will impose Robin

boundary conditions at the top and the bottom of the channel of the form(
vpc−Dtot

∂c

∂y

) ∣∣∣
y=±R

= κ c|y=±R. (5.60)

We also need to specify the inlet and the outlet conditions. Assuming that the flux entering

in the channel is constant and equal to the inlet concentration cin for a certain interval of

time [0, Tinj], we set

c(x, y, t)|x=0 =


cin if 0 ≤ t ≤ Tinj,

0 otherwise,
(5.61)

and (
uF c−Dtot

∂c

∂x

) ∣∣∣
x=L

= 0, (5.62)

assuming that at the end of the channel we are sufficiently far from the magnet that its

effect is almost zero. The initial value problem is well-posed with the initial condition

c(x, y, 0) = 0.
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5.4.1 Nondimensionalisation of the advection-diffusion equation

As already noted in Section 5.3.1, due to the particular geometry chosen, in the y-direction

the movement of the fluid is quite small compared to the horizontal direction. In order

to simplify our problem we then assume in the analysis of the particle concentration that

the flow of the blood is horizontal and we can write uF = (uF (y), 0). Moreover, since

up = (0, vp(y)), the governing equation (5.59) becomes

∂c

∂t
+ uF

∂c

∂x
+
∂(vpc)

∂y
= Dtot

∂2c

∂x2
+

∂

∂y

(
Dtot

∂c

∂y

)
, (5.63)

since Dtot = Dtot(y). In this case, we will study the unsteady advection-diffusion equation

for the concentration, which will change more quickly in time with respect to the fluid.

Substituting the non-dimensional variables detailed in (5.23) and

t = T t̂, c = c0 ĉ, uF = UûF , vp = Wv̂p, Dtot = DD̂tot, (5.64)

into (5.63) we obtain

c0

T

∂ĉ

∂t̂
+
Uc0

L
ûF

∂ĉ

∂x̂
+
Wc0

R

∂(v̂pĉ)

∂ŷ
=
Dc0

L2

(
D̂tot

∂2ĉ

∂x̂2

)
+
Dc0

R2

∂

∂ŷ

(
D̂tot

∂ĉ

∂ŷ

)
. (5.65)

Rearranging the terms, choosing T = L/U in order to balance the time derivative with the

advection term, we can write

∂ĉ

∂t̂
+ ûF

∂ĉ

∂x̂
+
δ

ε

∂(v̂pĉ)

∂ŷ
=

1

εPe

[
ε2

(
D̂tot

∂2ĉ

∂x̂2

)
+

∂

∂ŷ

(
D̂tot

∂ĉ

∂ŷ

)]
, (5.66)

where δ = W/U and Pe = D/(RU) is the Péclet number and depends on the model chosen

since the Brownian diffusion is a function of η(γ̇). According to the values in Table 5.3,

O(εPe)−1 ≈ [10−6, 10−5] depending on the fluid chosen, while ε = O(10−2), hence both

terms of the right side of the equation are quite small. Therefore, as commonly happens,

the advective terms are dominant and when analysing them, it is important to understand

the order of magnitude of the fraction δ/ε. In particular we can distinguish three regions

in the domain (symmetric with respect to the center of the vessel): a central region where

O(δ) < O(ε), which is the broadest one where the drag force is winning over the magnetic

force; a second region where O(δ) ≈ O(ε) where both advective terms are order one and

balance each other; finally, very near to the wall of the vessel, we can find a narrow boundary

layer where O(δ) > O(ε) and the vertical motion is the dominant in the equation.
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5.4.2 Analytical solutions

In order to have an idea about the behaviour of the concentration, it can help to find

analytical solutions for some simpler problem. Firstly, since the diffusion contribution is

quite small, we will look for the solution of the associated advection equation with constant

coefficients. Secondly, constant diffusion terms are added and the equation is solved for a

particular initial condition.

Advection equation

Since in all of the realistic cases the diffusion coefficient is quite small, the advection terms

are going to dominate. In order to have an idea of the behaviour of the concentration, we

want to find the analytical solution of the advection equation in an unbounded domain with

constant coefficients
∂c

∂t
+ u0

∂c

∂x
+ v0

∂c

∂y
= 0, (5.67)

with a certain initial condition c(x, y, 0) = c0(x, y). It is well-known that in the case of

constant transport, the method of characteristics is a widely used technique which leads to

write the solution in terms of the initial condition, in the form

c(x, y, t) = c0(x− u0t, y − v0t). (5.68)

If we choose the initial condition in order to simulate a point injection at (x0, y0) which

corresponds to a function of the form c0(x, y) = Mδ(y− y0)δ(x−x0), where M is constant.

The solution is then easily found as

c(x, y, t) = Mδ(x− x0 − u0t)δ(y − y0 − v0t). (5.69)

Taking into account that the goal of this analysis is to plot the analytical solution in order

to have an initial idea of the original system, we consider the smoother function

c0(x, y) = exp

[
−(x− x0)2

r0x

− (y − y0)2

r0y

]
, (5.70)

which gives

c(x, y, t) = exp

[
−(x− x0 − u0t)

2

r0x

− (y − y0 − v0t)
2

r0y

]
. (5.71)
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Constant advection–diffusion equation

Let us consider now the full advection-diffusion equation in an unbounded domain with

constant coefficients
∂c

∂t
+ u0

∂c

∂x
+ v0

∂c

∂y
= Dx

∂2c

∂x2
+Dy

∂2c

∂y2
. (5.72)

where c(x, y, 0) = c0(x, y) represents a point injection at some (x0, y0), i.e. c0(x, y) =

Mδ(y− y0)δ(x− x0), where M is constant. Let us take (x0, y0) = (0, 0) and M = 1. Then,

as suggested in [123], we will look for a solution of the form

c(x, y, t) = g1(x, t)g2(y, t). (5.73)

Hence, g1 satisfies
∂g1

∂t
+ u0

∂g1

∂x
= Dx

∂2g1

∂x2
, (5.74)

with g1(x, 0) = δ(x). Applying the change of variables z = x − u0t we obtain the classical

diffusion equation
∂g1

∂t
= Dx

∂2g1

∂z2
. (5.75)

In the same way explained in Chapter 2, we can proceed with another coordinate

transformation via the similarity variables η = Atαz and g1(z, t) = Atαf(η). The

transformed derivatives become

g1t = (Atα)tf + fηηt = αAtα−1(f + ηfη), (5.76)

g1z = Atαfηηz = A2t2αfη, (5.77)

g1zz = (g1z)z = A2t2α(fη)ηηz = A3t3αfηη, (5.78)

and putting these expressions into (5.75) we have

αAtα−1(f + ηfη) = DA3t3αfηη, (5.79)

which when simplified gives

α(f + ηfη) = DA2t2α+1fηη. (5.80)

In order to remove the time dependence, we set α = −1/2 and A = 1/
√

2D, obtaining

fηη + ηfη + f = 0. (5.81)
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It easy to notice that ηfη + f = (ηf)η, hence we can rewrite (5.81) as

∂

∂η
(fη + ηf) = 0, (5.82)

which implies that fη+ηf has to be constant. It can be shown that without loss of generality,

we can assume fη + ηf = 0, and integrate∫
∂f

f
= −

∫
η∂η, (5.83)

which finally gives the solution for the function f as

log(f) = −η
2

2
+ C1 ⇒ f = C2e

η2

2 . (5.84)

It can be shown that, for mass conservation motivations, C2 = 1/(2
√
π) and recalling the

initial change of variables

η =
z√

2Dxt
, g1(z, t) =

f(η)√
Dxt

(5.85)

we can write the solution

g1(z, t) =
1

2
√

2πDxt
exp

(
− z2

4Dxt

)
. (5.86)

Finally, we can return to the original coordinates, obtaining the solution for the advection

diffusion equation (5.74)

g1(x, t) =
1

2
√

2πDxt
exp

(
−(x− ut)2

4Dxt

)
. (5.87)

This result is analogous for the function g2(y, t) and the solution can be generalized through

(5.73) for the two dimensional problem as

c(x, y, t) =
1

4πt
√
DxDy

exp

[
−(x− u0t)

2

4Dxt
− (y − v0t)

2

4Dyt

]
. (5.88)

Analytical solutions for the bounded problem in two dimensions would be more accurate but

also more complicated. For the purpose of this project they are not necessary but they can

be found in [30, 70]. The analytical solutions give us an idea about how the concentration

of particles will behave in the original problem and, especially, will be useful to understand

the behaviour for small times. This information will be used to avoid difficulties for the

initial condition in the numerical scheme.
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5.5 Numerical approximations

5.5.1 Small time analysis

A well-known difficulty when solving several problems numerically is to adapt the rapidly

changes in the variables that a continuum solution can include to the numerical code. In

this case, at the beginning of the process, there are no drugs flowing in the vessel, that is

c(x, y, 0) = 0, but as soon as t > 0 we inject a concentration of particles c(x0, y0, t) = cin. To

overcome this issue, a small time analysis on the related equation with constant coefficients

is performed. Let us consider a constant diffusion coefficient D̄tot, where the bar represents

the average value of the sum of the Brownian and shear-induced diffusive contributions

divided by Pe. Since the interest is to understand the solution for small times and close to

the inlet, let t = εt̄ and x = εbx̄, where ε� 1 and b is going to be determined.

Introducing these new variables in equation (5.66), we have

1

ε

∂c

∂t̄
+

1

εb
ūF

∂c

∂x̄
+
δ

ε
v̄p
∂c

∂y
=
D̄tot

ε

(
ε2

ε2b

∂c2

∂x̄2
+
∂c2

∂y2

)
, (5.89)

which can be rewritten as

∂c

∂t̄
+ ε1−būF

∂c

∂x̄
+ δv̄p

∂c

∂y
= D̄tot

(
ε2−2b ∂c

2

∂x̄2
+
∂c2

∂y2

)
. (5.90)

In order to remove the dependence on ε, we impose b = 1, i.e. x = εx̄ is scaled exactly like

the time variable. With the new scale, the leading order of equation (5.90) will be

∂c

∂t̄
+ ūF

∂c

∂x̄
+ δv̄p

∂c

∂y
= D̄tot

(
∂c2

∂x̄2
+
∂c2

∂y2

)
. (5.91)

In an unbounded domain, as explained in Section 5.4.2, the solution of (5.91) is

c(x̄, y, t̄) =
1

4πt̄D̄tot
exp

[
−(x̄− ūt̄)2

4D̄tott̄
− (y − δv̄pt̄)2

4D̄tott̄

]
, (5.92)

and since for small times the particles are far from the vessel walls, we can use this

information for the initial value of the system and avoid numerical problems due to the

initial jump of the continuum.

5.5.2 Parameter estimation

Several parameters are playing a crucial role in this dynamic. However, in order to show the

importance of the viscosity of the blood, the focus of the simulations will be to understand
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the behaviour of the particle concentration comparing the Newtonian and non-Newtonian

approximations of the flow. In this section, we will justify and estimate the others key

parameters, such as the dimensions of the vessel, the strength of the magnetic field and the

permeability of the vessel’s wall.

As many authors observed (see for example [31, 68, 95]), very different scenarios can

arise when looking at different types of vessel. In fact, the technique of magnetic drug

targeting is hard to conduct in the main vessels where particles must overcome a strong

flow and long distances, and on the other hand the smaller vessels have the complication

derived from the possible agglomeration of particles occluding the stream. Moreover, in the

case of capillaries, red blood cells are of the same dimension of the width of the vessel itself

and their elastic properties should be taken into account in the model. In arteries, even if

normally considered large vessels where the effect of RBCs aggregation is reduced, we can

observe the non-Newtonian behaviour due to the presence of spots of low shear rates, such

as bends and bifurcation junctions, or in the case of pathological conditions. For this reason

we choose to focus our study on them.

As highlighted in Section 5.4.1, if the magnetic force is too weak to overcome the strength

of the fluid drag, particles will be “washed away" with the blood along the vessel. On the

other hand, a too strong magnetic field cannot be applied in order to avoid damage to

human body. Hence, a balance that also takes into account the distance from the particles

to the wall needs to be found. In addition to the viscosity of the blood, the strength of

the magnetic field is a key parameter in the calculation of the velocity of the particles.

It is noted that the application of the magnetic field is dictated by international rules, in

order to minimise side effect damage. The World Health Organization states that a person

moving within a field above 2T can experience adverse effects such as nausea and vertigo

but static magnetic fields can cause acute effects only likely within fields in excess of 8T

(for example, MRI scanners produces one of about 3T). International guidelines for public

exposure to magnetic fields set an upper limit of 40mT which is around 1000 times stronger

than the Earth’s magnetic field. However, in the case of magnetic fields applied in drug

targeting therapies, between 0.1T–1.5T in animal trials and 0.2T–0.8T in human clinical

trials were used [28]. Most of the simulations cited in this thesis follow this range and all

the approximations explained in Section 5.2.1 lead to similar values for the magnetic force
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acting on particles. In both [45, 94] particles with a magnetite volume fraction Υ = 0.1,

i.e. that the particles contain the 10% magnetite by volume, are considered. They set

the mass magnetization Msat = 50 A m2 kg−1 and density ρ = 5 × 103 kg m−3, under

a magnetic field gradient BG = 10 T m−1. Taking the case of the artery, using equation

(5.13), they obtain a magnetic force F0 ∈ [10−15, 10−12] N, depending on the size of the

particle, which is in the range of µm. In [82], iron oxide nanoparticles are subjected to a

magnetic force of about 1.9× 10−13 N, whose value is obtained using equation (5.9) where

a = 250 nm, µ0 = 4π × 10−7 N A−2, χ = 20 and the the magnetic spatial gradient of the

order of 107 A/m2. The experiment is produced by a permanent magnet with B = 0.5T

which produces a magnetic field intensity H = 3.7 × 105 A/m. It is important to notice

that while smaller particles have as advantage to avoid agglomeration once magnetic field

is removed, we will need a stronger magnetic field gradient in order to compete with the

drag force, since magnetic force scales with volume. In Section 5.5, simulations show how

particles are affected by a magnetic force of the order O(10−13) N. The fact that a stronger

magnetic field is needed, with respect to the microscale choices, it is also explained by the

size of the particles. In fact, magnetic forces scale with volume, in contrast to the drag

force, therefore at the nanoscale a stronger field is needed to provide the same result.

Another key value is the permeability of the vessel. In fact, in the blood circulatory

system certain types of vessels have stronger walls, reducing the possibility of particles to

get out of the blood stream and into the surrounding tissue. The permeability coefficient κ

represents the capacity of the vessel to let the concentration of particles pass through the

wall. As theoretically predicted from Richardson et al. [94] via the matched asymptotic

technique, the parameter κ plays an important role in the determination of the position of

the particles deposited onto the vessel wall. In fact, their outer solution shows how small

values of the permeability are responsible for the formation of a boundary layer region

in the immediate vicinity of the wall where the advective flux balances the diffusive flux

and the thickness of the vessel wall prevents particles from flowing out. In this project, a

representative value for κ = O(10−4) is chosen in order to represent a type of wall where

particles are able to pass through but a small boundary layer is observed.

In Table 5.3 all the parameters needed for the advection-diffusion equation are listed.
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Quantity Symbol Value Units References

Blood cell radius rRBC 4.2× 10−6 m [45]

Coeff. blood cell conc. Ksh 5× 10−2 No. [45]

Inlet concentration cin 1 mol m−3 [82]

Particle radius a 15× 10−9 m [45]

Boltzmann constant kB 1.38× 10−23 m2 kg s−2 K−1 [39]

Temperature T 310.15 K [39]

Table 5.3: Dimensional parameters for the particles concentration equation.

5.5.3 Finite difference scheme

In order to simulate the behaviour of the concentration of particles, we will define a finite

difference scheme for the advection–diffusion equation (5.63), subject to the boundary

conditions (5.60)–(5.62) and initial condition c(x, y, 0) = 0. Advection terms will dominate

in the equation but the diffusive contribution becomes important near the wall of the

vessel, where the fluid have near zero velocity. Diffusion terms also help to stabilize the

numerical scheme. The finite difference scheme includes the approximation by forward

Euler in time, first order upwind for the advection terms and central differences for the

second derivatives. The velocity of the fluid uF , its derivatives and the velocity of the

particles vp are known values at each time step.

Let us consider a grid of length L and width 2R composed by nx×ny nodes. The spatial

steps will be ∆x = L/(nx − 1) and ∆y = 2R/(ny − 1), and ∆t is chosen in order to satisfy

the stability condition of the scheme. We will use the intuitive notation

cni,j := c(xi, yj , t
n), uFj := uF (yj), vpj := vp(yj), DTj := Dtot(yj). (5.93)

The choice of the direction of the upwind step is made considering that the solution of the

velocity of the fluid is always non negative and the direction of the velocity of the particle

is always negative (since we have positioned the magnet below the vein). Then, equation
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(5.63) can be approximated as

cn+1
i,j − cni,j

∆t
+ uFj

(
cni,j − cni−1,j

∆x

)
+

(
vpj+1c

n
i,j+1 − vpjcni,j

∆y

)
=

+DTj

(
cni+1,j − 2cni,j + cni−1,j

∆x2

)
+DT

j+1
2

(
cni,j+1 − cni,j

∆y2

)
−DT

j− 1
2

(
cni,j − cni,j−1

∆y2

)
,

(5.94)

where DT
j± 1

2

are evaluated by the arithmetic mean. We also need to specify the inflow

boundary conditions at x = 0 and y = ±R. On the left border, where the concentration of

drugs is injected for a limited interval of time, we have that

cn1,j =


cin for 0 ≤ tn ≤ Tinj,

0 otherwise,
(5.95)

for j = 1, . . . , ny, since we stop injecting nanoparticles at Tinj.

On the wall of the vessel, that is the upper and the lower side of the rectangle, we

approximated conditions (5.60), by which particles can pass through the vein with a constant

permeability coefficient equal to κ, through the three-point backward difference formula

vpny c
n+1
i,ny
−DTny

(
3cn+1
i,ny
− 4cn+1

i,ny−1 + cn+1
i,ny−2

2∆y

)
= −κcn+1

i,ny
(5.96)

and the three-point forward difference formula

vp1 c
n+1
i,1 −DT1

(
−cn+1

i,3 + 4cn+1
i,2 − 3cn+1

i,1

2∆y

)
= κcn+1

i,1 (5.97)

for i = 1, . . . , nx.

The right border is approximated again through the three-point forward difference

formula

uFjc
n+1
nx,j
−DTj

(
−cn+1

nx−2,j + 4cn+1
nx−1,j − 3cn+1

nx,j

2∆x

)
= 0 (5.98)

for j = 1, . . . , ny.

5.5.4 Results

In this section we present the results obtained by comparing the effects that the different

choices of the fluid models have on the motion of the particles in the bloodstream.

The geometry chosen represents a simplification of a small artery having width and

length like in Table 5.1. The velocity of the blood and the relative viscosity will be
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approximated by the solutions (5.40) and (5.51) and by the numerical approximation of

the solution of (5.49) for the Newtonian, the Ellis and the Carreau models, respectively.

The power-law model is not presented, since it has been shown that its viscosity

approximation does not fit the blood behaviour. The velocity of the particles vp will be

calculated via equation (5.58) considering a constant magnetic force F0 and a viscosity

η(γ̇) given by the constant value µ in the case of a Newtonian fluid, or calculated via

(5.19) and (5.18) for the Ellis and the Carreau models. A five seconds long initial injection

at x = 0 is applied (that is Tinj = 5s). The plots for the particles concentration are

obtained implementing the numerical scheme detailed in Section 5.5.3 in Matlab where

the parameters listed in Tables 5.2 and 5.3 are used. The aim of all the simulations is to

understand how the approximation can vary according to the model chosen for the blood.

Moreover, special attention will be paid to the strength of the magnetic force needed in

order to target particles to the disease area.

Figure 5.5 shows the behaviour of the concentration of nanoparticles in the vessel where

the Newtonian approximation for blood is considered. The first plot represents the velocity

field, which is given by the contribution of the drag of the fluid and the magnetic force acting

on the system. Since the velocity of the particles depends on the viscosity of the fluid and

the Newtonian approximation implies a constant value for η(γ̇), the changes in the velocity

field are only due to the parabolic profile of uF and, therefore, only in the x-direction. The

other images show the snapshots of the concentration of particles at six fixed times under

the influence of a constant magnetic force F0 = 1 × 10−13 N. We can observe how all the

particles entering the bloodstream from the left border are driven to the lower wall of the

vessel and captured into the tissue halfway through the channel in about 30s.

In Figures 5.6 and 5.7 the equivalent plots to those of Figure 5.5 are shown but now using

the Carreau and the Ellis models, respectively, instead of the Newtonian one. Both models

give a very similar approximation for the behaviour of the concentration of particles, which

is a direct consequence of what was demonstrated in Section 5.3.2. However, we can clearly

see that the same magnetic force used in the previous simulation is now unable to drive the

particles towards the same region. In fact, even if a slight movement in the y-direction can

be observed and the particles very near to the vessel’s wall are able to get into the tissue,

most of the particles are “washed away" by the drag force. This change can be observed
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in the first image of both figures, where the velocity field highlights the differences with

the previous case. This clearly shows that using a Newtonian fluid model can result in the

wrong conclusion that a magnetic force of that strength is able to target a specific region.

As shown in Figures 5.8 and 5.9, we will need a magnetic force eight times greater than

in the Newtonian case in order to be able to attract particles to the lower wall of the vessel

when considering the Carreau and the Ellis model, respectively. Looking at the first image

of both figures, the velocity field shows clearly how the different profiles for the viscosity

strongly changes the behaviour of the concentration. Furthermore, we can observe how the

particles near the vessel wall experience a much smaller drag force with respect to those at

the center of the vessel and, therefore, will react strongly to the magnetic force and deviate

from the typical parabolic behaviour of the fluid. Moreover, the diffusive contribution plays

an important role in this region and influence the motion of the particles at this scale. In

the six snapshots of the concentration for six different times we can observe how particles

driven by the balance of all the forces acting on this system are attracted by the external

magnetic field to the wall of the vessel and pass through it in about 40s. In these plots,

especially at t = 6s and t = 15s, we can also observe a thin boundary layer where particles

accumulate in the immediate proximity to the wall, as theoretically predicted in [94].

All the simulations confirm the importance of choosing the appropriate fluid model,

specifically one where the viscosity follows the shear-thinning behaviour of the blood in

order to correctly predict whether a specific magnetic field is able to attract particles to

the desired area and in which amount of time. Moreover, even if Brownian diffusion seems

negligible for the majority of the domain, it is important near the wall of the vessel and can

even be the predominant diffusive contribution for small particles.
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Figure 5.5: Snapshots of the concentration of particles in an artery at six different times (t = 0s,

t = 4s, t = 6s, t = 10s, t = 15s, t = 30s), choosing the Newtonian model for the blood flow and with

a constant magnetic force equal to F0 = 1× 10−13 N. The first image represents the velocity field.
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Figure 5.6: Motion of magnetic nanoparticles in an artery at six different times (t = 0s, t = 4s,

t = 6s, t = 10s, t = 15s, t = 30s and t = 40s), choosing the Carreau model for the blood flow

and with a constant magnetic force acting on particles equal to F0 = 8× 10−13 N. The first image

represents the velocity field.
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Figure 5.7: Snapshots of the concentration of particles in an artery at six different times (t = 0s,

t = 4s, t = 6s, t = 10s, t = 15s, t = 30s), choosing the Ellis model for the blood flow and with a

constant magnetic force equal to F0 = 1× 10−13 N. The first image represents the velocity field.
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Figure 5.8: Motion of magnetic nanoparticles in an artery at six different times (t = 0s, t = 4s,

t = 6s, t = 15s, t = 30s and t = 40s), choosing the Carreau model for the blood flow and with a

constant magnetic force acting on particles equal to F0 = 8 × 10−13 N. The first image represents

the velocity field.
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Figure 5.9: Motion of magnetic nanoparticles in an artery at six different times (t = 0s, t = 4s,

t = 6s, t = 15s, t = 30s and t = 40s), choosing the Ellis model for the blood flow and with a

constant magnetic force acting on particles equal to F0 = 8 × 10−13 N. The first image represents

the velocity field.
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5.6 Conclusion

We have formulated a model for the motion of magnetic nanoparticles in a vessel subject

to an external magnetic field in order to optimize the technique of magnetic drug targeting.

The model consists of a system of nonlinear partial differential equations formed by the

Navier-Stokes equations for the flow of blood coupled with an advection-diffusion equation

for the concentration of nanoparticles. Choosing a 2D vessel, the equations are simplified

and the system is solved via analytical and numerical techniques.

The aim of this project has been to account for all the forces acting in the physical

process, combined with realistic choices for parameters. It has been shown that, in order to

correctly simulate the delicate balance between hydrodynamic and magnetic forces in the

vessel, it is crucial to choose an accurate model for blood behaviour. Moreover, the correct

size for superparamagnetic nanoparticles is used, that is ≈ 30nm in diameter, which affects

the strength of the magnetic field needed and the effects given by the diffusion contribution.

The first part of this chapter describes the non-Newtonian behaviour of blood and the

importance of choosing the right model for the viscosity and the velocity of the fluid.

Newtonian approximations are inaccurate and the more commonly used power–law model

also has a critical unbounded value for the viscosity at the center of the vessel. The

Carreau and the Ellis model are found to be the best approach to simulate blood

behaviour. While the first one is able to capture the shear-thinning behaviour of the fluid

in both Newtonian plateaux and in the transition region between them, the second one

allows to find an analytical solution for particular choices of the geometry.

Secondly, the solutions for the flow are used to model the motion of the particles.

In order to reduce agglomeration and toxicity levels, superparamagnetic nanoparticles are

found to be good candidates, since they reduce their magnetism as soon as the magnetic

field is turned off. It is also shown that, since magnetic forces scale with volume, a stronger

magnetic field is needed with respect to the microscale to overcome the drag force of the

blood. Moreover, at the nanoscale the Brownian motion and the shear-induced diffusion

can be important in the proximity of the vessel’s wall. The main result demonstrated

that the approximations made by the different models for the blood flow strongly affect

the simulation for the concentration. In fact, under the influence of the same external
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magnetic field, while the Newtonian model predicted the movement of the particle from the

bloodstream into the tissue, both the Carreau and the Ellis model showed that the strength

of the magnetic force generated was not able to attract particles to the wall of the vessel.

In future work this theoretical model can be improved including for example pulsatile

flow, the elasticity of the vessels due to the change in pressure and more realistic geometries.

Furthermore, it can be combined with detailed experimental studies to optimize the deliver

of drugs to specific regions or other applications.
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The goal of this thesis was to analyse two innovative processes in the developing field of

nanotechnology. In the first part, the growth of nanoparticles by precipitation has been

deeply studied, identifying the main features of the process in order to avoid Ostwald

ripening and optimise the growth. In the second part of the thesis, we focused on a practical

applications in nanomedicine namely magnetic drug targeting and how the non-Newtonian

characteristics of the blood are found to be key to correctly modelling this medical technique.

Like many industrial applications, the growth of nanoparticles in solution can be

modelled by means of a so-called moving boundary value problem, where the evolution of

the radius of the particles depends on time and has to be found as a part of the solution.

In particular, at the nanoscale the variation in solubility in the current problem varies in a

similar manner to the behaviour of the melt temperature in the classical applications of

this kind of problems. In the first part of the thesis the idea was to identify the key

features of the growth of a single particle and then extend these results to solve the full

problem.

In Chapter 3 we analysed the growth of a single, spherical crystal in solution. The

main aim was to correctly interpret the governing equations of the process in order to

optimise the growth. We found that the standard model was applied incorrectly over the

years, for more than one reason. First of all, the particle growth occurs in two distinct

stages and the standard model holds only during the second one. The common procedure

to fit experimental data from the very beginning of the synthesis leads to incorrect values

for the parameters of the system. Secondly, we found via mathematical tools that the

model is not able to distinguish between diffusion and surface kinetics driven growth, within

the assumptions of the pseudo-steady state. This has also been possible thanks to the

109
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identification of an approximate explicit solution for the particle radius, a new easy tool

not previously presented in literature. This solution only depends on two independent

parameters strongly reducing the errors in the fitting process. The importance of the particle

solubility is also demonstrated. The Gibbs-Thompson equation gives the variation of the

particle solubility with the radius rp and this contribution is generally neglected based on the

assumption that the capillary length α� rp. However, since α is of the order nanometres,

at early times it is bigger than the particle radius, and therefore plays a controlling role

in particle growth at that stage. This effect has not been spotted before in the growth of

a single particle due to the fact that the model is not valid at early times but it gives an

important contribution when considering the growth of a group of particles.

The important role of the solubility in a system of particles has been widely

demonstrated in Chapter 4. It was found crucial in order to control the phenomenon

known as Ostwald ripening, where larger particles grow at the expense of smaller ones,

and to optimise the growth process. A model for the growth of N particles was developed

and dominant terms of the system were identified. The basis of this model is found in the

pseudo-steady approximation, already used in the model for the growth of a single particle

and based on the fact that the concentration adjusts much faster than growth occurs.

However, the problem is still time-dependent due to the definition of the particle radius

and the bulk concentration. The Ostwald-Freundlich condition shows how the particle

solubility s increases as size decreases and, when this value crosses the curve of the bulk

concentration cb, Ostwald ripening is observed. In fact, when s < cb then monomer

molecules diffuse from the bulk towards the particle to react with the surface and the

particle grows, whereas if s > cb the particle shrinks. Simulations with N = 2, which may

represent an initially bimodal distribution, clearly showed the role played by the changes

in solubility. As the process starts both values for the solubility are below the bulk

concentration and decrease as each rp increases, but when the solubility of the smaller

particle crosses the cb curve, its size decreases and Ostwald ripening occurs. This extended

model is able to predict in which range of parameters this undesired phenomenon can be

avoided. Moreover, making N arbitrarily large, the prediction of the particles size

distribution showed excellent agreement with experimental data and with the analytical

solution for the mean radius of the group of particles.
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As extensively highlighted in the first part of this thesis, the ability to control the

particles growth is crucial in a wide variety of industrial applications. Considering the

particular application in cancer therapy, nanotechnology-based approaches strongly rely on

precise sizes of the particles, depending on the technique developed and the unique biological

characteristics of each patient. The main aim of the second part of the thesis was to show

the great potential of the nanoscale contribution in cancer treatments and the importance

of a mathematical approximation when modelling such a delicate biological situation.

In Chapter 5 a mathematical model for the movement of drug nanocarriers in human

vessels under the influence of an external magnetic field was analysed. The main results

involved the solution of Navier-Stokes equations for the blood flow by means of geometry

simplifications and the approximation of the advection-diffusion equation for the

concentration of particles in the bloodstream via numerical techniques. The comparison

between four different models for the behaviour of the blood showed the importance of

including the variation of the viscosity, since the velocity of the particles in the vessel

strongly depends on it. Among the non-Newtonian models for the blood flow, the power

law approximation, the Carreau and the Ellis models have been used and discussed. While

the first one showed a criticality at the center of the vessel where the viscosity goes to

infinity as γ̇ → 0, the other two models were found to be both good approximations. In

particular, the Carreau model was found to be very accurate to predict the shear-thinning

behaviour of the blood, while the Ellis model is unable to capture the second Newtonian

plateaux, typical of this kind of fluids. However, since very high value of the shear rates

are not reached in our situation, their approximation are quite similar and the Ellis model

is preferred due to the possibility to write down an analytical solution for the flow in our

simplified geometry. Finally, the behaviour of the concentration of drugs bound to

magnetic nanoparticles was studied comparing the results obtained for the fluid.

Particular attention has been paid to correctly identify all the acting forces on the system

at this scale, which include the diffusive contributions given by both Brownian motion and

the scattering diffusion induced by the collisions of red blood cells, and the delicate

balance between the drag and the magnetic force needed in order to successfully attract

particles to the disease area. The identification of the dominant force strongly depends on

the position of the particles in the vessel. In the center of the stream the drag of the blood
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generally prevails over the magnetic forces but, as soon as we approach the wall of the

vessel, the external magnetic field is able to compete with the fluid flow, attracting the

particles to the desired region. Ideally, once they have reached the wall, particles

extravasate from the blood vessel to the tissue through the leaky vasculature and release

the therapeutic agent. However, we found that, if the approximation of the flow of blood

does not take into account its shear-thinning behaviour, the model can lead to wrong

conclusion regarding whether the particles are able to reach the disease region or not.

In summary, we have presented two mathematical models to study the features and

the applications of nanotechnology in real-life problems. The main goal was to show how

mathematical-based approaches are required to fully understand and optimise physical,

chemical and biological processes, allowing to make several steps forward even in the fight

against cancer.
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