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Summary 
 

Due to their intrinsic properties, nanomaterials (NMs) are the 
cornerstone of a wide range of technologically advanced applications, with 
metal oxide nanoparticles (MeO) NPs being the most used in areas such as 
electronics, optics, opto-electronics, pharmacy, medicine, cosmetics and 
textiles. However, there is still an important knowledge gap regarding how size 
influences their physicochemical properties as well as the risk to human 
health. Recent studies provided more insight on the size dependence of 
nanoparticle1 properties and reactivity, revealing that small sized 
nanoparticles (NPs) have a more variable behaviour in terms of their 
properties than larger size NPs, which have a more constant behaviour. 
Therefore, nanomaterials (NMs) need a specific regulation to assess their 
toxicity. The generation of in vitro and in vivo toxicity characterization data is 
essential for risk assessment and establishment of safe use of engineered 
nanomaterials (ENMs). However, this is a formidable task given the expected 
growth in number and diversity of ENMs. 

Nonetheless, toxicity assessment of NMs is a daunting task that 
involves multiple testing conditions and endpoints, and testing of different NP 
configurations. Computed based methods, in silico methods, based on 
theoretical and statistical domain, evaluate and determine and predict 
processes or even substance properties, this methodology is involved in very 
different disciplines given huge challenges. Apart from the legislation urgency 
for risk assessment exits a vacuum in literature, given that the data for the 
environmental risk assessment found in literature is uncertain and present 
knowledge gaps, though is not useful for the risk assessment for nanoparticles. 
This nanosafety data needs to be provided by standardised methods. One 
option to simplified this nanosafety data generation is the in silico 
methodology. In silico testing methods constitutes a cost-effective approach 
to fill the existing gaps in nanosafety data for being an effective tool for the 
safe-by-design of ENM. It exists an urgent necessity to develop nanosafety 
data for toxicity assessment in NPs, in particular for MeO NPs, and generate 
valuable QNAR (Quantitative Nano-Structure Activity Relationship) models for 
their risk assessment legislation using in silico methods to optimize time and 
resources to this purpose.  

 

The most popular in silico method based on quantum mechanics for chemistry 
is Density Functional Theory (DFT), which is postulated on approximations to 
the exact exchange–correlation functional (e.g. LDA, GGA, hybrid GGA, meta-
GGA) that are relatively computationally efficient; it is competitive in accuracy 
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for many interesting chemical phenomena, and it is computationally much less 
expensive than higher-level alternatives and useful for modelling chemical 
reaction pathways or for descriptor data in QSAR development. 2 DFT is the 
base of the huge part of the methodology implemented in this thesis.  

 
In this thesis, we performed a strict and deep study of the best 

methods to evaluate the band gap and the solubility of MeO NP from a 
computational point of view. The use of periodical-DFT methods has allowed 
us to optimise structures computing the electronic ground state energy for 
nanostructures as the nanotubes or spherical nanoparticles. To get more 
reliability for band gap determination, the exchange-correlation functional 
has been improved using the DFT+U methodology. This type of functional 
gives us a reasonable computational cost and accuracy in band gap 
calculations or geometry optimisation, without affecting the predictive 
capability on the influence of experimental environment. After that, to reach 
large systems up to 103 atoms in order to simulate more realistic biological 
systems, it has been used the DFTB development for band gaps determination 
in large nanoparticles. Furthermore, the coupling of DFTB and molecular 
dynamics simulations has allowed the description of water-NP interaction, 
giving and extra value to this work.  

In a work previous to this thesis, Liu et al. 3 determined that the 
descriptor EC (conduction band energy) in the range between -4.84 and -4.12 
eV of standard redox potential, can lead to the generation of cellular oxidative 
stress between NPs and cells developing then toxicity.3,4,5 Furthermore, the 
ionic index of metal cations (Z) in MeO is correlated with their hydration 
energy, which is a measure of the affinity of the metal ion for water molecules. 
Therefore, how soluble is the MeO in the biology environment is also an 
important descriptor correlated with the toxicity found in other works. 6 As a 
consequence, this is the first descriptor chosen for this thesis. Given these two 
important descriptors, Liu et al. 4 postulated a nano-SAR (Structure Activity 
Relationship) developed from the toxicity data of twenty two MeO NPs from 
10 to 70 nm of size. 

The second descriptor chosen was the band gap between the HOMO 
and LUMO band energy for each size of NP, because it is totally linked in the 
Ec mentioned above. This is a property easy to measure via DFT or DFTB for 
small NPs, but it needs a large amount of computing resources for NPs with 
sizes greater than 2 nm. Therefore, in order to obtain band gaps for bigger 
NPs, the strategy followed was to create a prediction model of band gap MeO 
and compare the results obtained with the experimental values found in 
bibliography.  
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The computational results obtained with the methodology developed 
in this thesis for the ZnO case have been promising and, in order to make more 
robust the method employed, it has been tested for TiO2 too, showing an 
excellent efficiency in results. 

 
Great part of the work has been spent in the solubility evaluation of 

the MeO NP, because there is a few quantity of bibliography about that (both 
experimentally and computationally), what indeed is reasonable because the 
MeO NP has a very low solubility and it is quite difficult its evaluation either 
experimentally or computationally. In my opinion, the results obtained with 
the implementation of the use of thermodynamical theory as the Ostwald–
Freundlich approach in the Molecular dynamics framework are fixing a new 
starting point for the solubility evaluation of NP in the near future, and it is a 
proof for computational engagement of legislation authorities for toxicity risk 
assessment. 

 

Finally, the data obtained from the prediction models of band gap as 
well as the solubility models have been used to create nano-QSAR models, 
This is the reason why we used a nano-QSAR model published for these two 
MeO NPs and we added our computed descriptors in the work of Papa et al.,7 
in order to improve or equal the accuracy of the method. The data that may 
be used in these models is not enough to avoid statistical biases, but in this 
case it has been used Matlab software to implement statistical methods such 
as cross validation method, leave-on-out technique or the calculation of the 
root mean square error. 

Finally, I would like to highlight that the work of this thesis has been 
carried out with the managing of different techniques, software and 
disciplines. So, this is an additional proof that the perfect combination of 
different disciplines can produce a great work. 
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Chapter 1. Introduction 
 

 

 

 

 

 

 

 

 

 

 

 

In Europe, nanotechnology is considered as a key enabling technology 
(KET) that provides the basis for new advances and innovations in many fields 
of science and technology. In terms of economic impact, the global market of 
nano-enabled products was valued at $26 billion in 2014 and is expected to 
reach about $64.2 billion by 2019.1 Due to their intrinsic properties, 
nanomaterials (NMs) are the cornerstone of a wide range of technologically 
advanced applications, with metal oxide (MeO) nanoparticles (NPs) being the 
most used ones in areas such as electronics, optics, opto-electronics, 
pharmacy, medicine, cosmetics and textiles. However, there is still an 
important knowledge gap regarding how size influences their physicochemical 
properties, and their toxic (cytotoxic, mutagenic or carcinogenic) effects on 
human health are still not well established. 

 
Particles with one or more of their dimensions in the range of a few 

nm up to tenths of μm have different properties, effects and behaviour 
relative to their microscale counterparts. Recent studies provided more 
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insight on the size dependence of nanoparticle 2 properties and reactivity, 
revealing that small sized NPs have a more variable behaviour in terms of their 
properties than larger size NPs, which have a more constant behaviour. For 
example, size dependent changes in NPs below 5 nm have more influence than 
changes in NPs in the range of 15 to 90 nm due to the quantum size and macro-
quantum tunnelling effects. 3 Another relevant effect of the smaller NPs is the 
direct exposure in an organism via the mechanism of entering directly inside 
the body and dissolving and delivering toxic metals, known as the Trojan 
effect. This effect is specific for nanoscale particles given the inadvertent 
recognition by cell receptors.4 

 
Therefore, NMs need a specific regulation to assess their toxicity. The 

generation of in vitro and in vivo toxicity characterization data is essential for 
risk assessment and the establishment of safe use practices for engineered 
nanomaterials (ENMs). However, this is a formidable task given the expected 
growth in number and diversity of ENMs. In the European Union (EU), the 
REACH5 (Registration, Evaluation, Authorisation and Restriction of Chemicals) 
agency directive is the current regulatory framework for chemical risk 
assessment and management. NMs are considered as independent “chemical 
substances” and therefore their registration and labelling are also regulated. 
Furthermore, REACH considers a “chemical element obtained by any 
manufacturing process, including any impurity deriving from the process 
used”. Any chemical element can be classified within different levels of 
impurities if it has hazardous properties. Therefore, REACH forces NP 
producers and importers to provide toxicological data and environmental 
impact assessments (e.g., environmental exposure) when the NP 
concentrations are lower than 0.1% in weight. 

 
The EU acknowledges that the application of REACH may cause 

administrative burden, affect time to market and increase marginal costs of 
nano-enabled products and technologies. In the United States, the 
Environmental Protection Agency (EPA) has a special regulation for NMs, the 
Toxic Substances Control Act (TSCA). NMs are referred to in TSCA as chemicals 
at the nanoscale. Due to their increased use in a huge range of products, in 
2015 the TSCA regulation was extended to include chemical substances 
manufactured or processed as nanoscale materials 
(https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-
control-act-tsca/control-nanoscale-materials-under). 

 
Nonetheless, toxicity assessment of NMs is a daunting task that 

involves multiple testing conditions and endpoints, and testing of different NP 
configurations (i.e., different combinations of core, shell and functionalization 
layers). Computer based methods, also known as in silico methods, can be 
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used to evaluate, determine and predict processes or even substance 
properties, this methodology is involved in very different disciplines given 
huge challenging solution Regarding the use of theoretical testing methods, 
REACH promotes the use of computational methods to implement 3R 
(replacement, reduction and refinement) approaches aimed at reducing and 
ultimately avoiding animal testing. 

In addition to the legislation urgency for risk assessment, exists a 
vacuum in literature given that the data for environmental risk assessment 
found in literature is uncertain and presents knowledge gaps and, therefore, 
it is not useful for the risk assessment of nanoparticles. This nanosafety data 
needs to be provided by standardised methods. One option to simplify this 
nanosafety data generation is the in silico methodology.  

In silico testing methods, specifically the establishment of quantitative 
(nano)structure–activity relationships (QNARs), nano quantitative structure–
property relationships (nano-QSPRs) or quantitative structure–toxicity 
relationships (QSTRs), constitute a cost-effective approach to fill the existing 
gaps in nanosafety data since they are an effective tool for the safe-by-design 
development of ENMs. Specifically, the development of QNAR models has 
been recognised as a key objective by the EU Nanosafety Cluster in its Strategic 
Research Agenda for 2015-2025.1 The establishment of nano-QSPRs and 
QNARs requires (i) a detailed physicochemical and biological characterization 
of NMs, and (ii) the development of computational nano-descriptors suitable 
to represent the electronic, atomic and molecular structures of NMs. The 
development and validation of standard protocols for the experimental and 
theoretical characterization of NPs is fundamental to the generation of the 
high-quality data required to develop reliable nano-QSPRs and QNARs. For 
models being acceptable for regulatory decision making, they need a clear 
applicability domain and clear definition of the endpoint. Several reference 
descriptions of experimental and theoretical research protocols have been 
published by the Organisation for the Economic Cooperation and 
Development (OECD). 6 In addition, the Nanosafety Cluster, 7 promoted by the 
EU commission, helps to monitor and harmonize the European activities 
related to the risk assessment of NMs. The majority of published nano-SAR 
studies8–12 have focused on MeO NPs8,10,11 that have a high commercial 
production volume.13 

Recent results have described mathematical models linking NM 
structure descriptors with toxicity effects. These descriptors include physical 
and chemical properties such as electronic band gap, or surface properties 
such as surface formation energy or reactive sites.8,9,14 Regarding this 
relationship, for example, a band gap descriptor can be used to estimate the 
oxidative stress of MeO NPs.10 Recent studies separate the surface modifiers 
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of NPs from the core of a MeO for predicting cellular uptake.16 In particular, 
QSAR models show that diverse combinations of NP properties can be used to 
classify different levels of biological response for ZnO and TiO2 NPs.12 

 

As we mentioned above, the majority of the toxicity studies are based 
on MeO NPs, given that they are widely used in many technological 
applications, such as semiconductors, capacitors, coatings, solar cells, etc. 
because of their highly efficient properties due to their limited size and high 
density of corner or edge surfaces that result in unique optical, chemical 
sensing, and semiconducting properties. However, the high diversity of MeO 
and sizes of NPs in use and the lack of standardized measurement protocols 
makes complicated the use of physicochemical parameters for risk 
assessment. Bulk oxides are stable in a well-defined solid crystallographic 
structure (or a few structures, in some cases) under standard conditions. 
However, for smaller sizes (e.g. microscopic scale), the lattice stress must be 
taken into account because it can affect the structural properties up to the 
total disappearance of the crystallographic structure at the NP limit. 
Accordingly, phases with low stability in bulk form can be found at the 
nanoscale. This structural phenomenon has been reported for TiO2, VOx, Al2O3 
and MoOx oxides.15 Nanoparticle size also influences other important features 
of electronic and physicochemical properties such as electrical conductivity 
and colour. At the nanoscale, semiconducting materials become metallic and 
non-magnetic particles become magnetic due to quantum-size and macro-
quantum tunnelling effects. From the point of view of solid-state physics, both 
the superposition of bulk states and the increase in the material strength may 
affect electronic properties such as the band gap.4 

Another point that shows the importance of size is the recent 
development of size-dependent nano-descriptors using in silico methods. 
1,16,17 The descriptors used required only one easy experimental part, just to 
know the crystallographic phase of the unit cell of the metal oxide it belongs 
to. These descriptors are size-dependent, what it is important to take in 
account given that in a recent study it has been shown that some QSARs 
developed for MeO NPs using the enthalpy of formation of gaseous metal 
cation or the SMILE code, they are not capable to predict toxicity properly well 
because they are not size-dependent.1 

The most popular in silico method based on quantum mechanics for 
the calculation of chemical properties from electronic structure is Density 
Functional Theory (DFT), which is postulated on approximations to the exact 
exchange–correlation functional (e.g. LDA, GGA, hybrid GGA, meta-GGA) that 
are relatively computationally efficient. It is competitive in accuracy for many 
interesting chemical phenomena, and it is computationally much less 
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expensive than higher-level alternatives and useful for modelling chemical 
reaction pathways or for descriptor data in QSAR development.18 DFT is the 
base of the huge part of the methodology implemented in this thesis and is 
explained in the chapter of methods. 

 
In a work previous to this thesis, Liu et al.13 determined that the 

descriptor EC (conduction band energy), in the range between -4.84 and -4.12 
eV of standard redox potential, can lead to the generation of cellular oxidative 
stress between NPs and cells developing then toxicity.10,13,19 Moreover, the 
ionic index of metal cations (Z) in MeO is correlated with their hydration 
energy, which is a measure of the affinity of the metal ion for water molecules. 
Therefore, how soluble is the MeO in the biology environment is also an 
important descriptor correlated with the toxicity found in other works. 10 
Given these two important descriptors, Liu et al.13 postulated a nano-SAR 
developed from the toxicity data of twenty two MeO NPs from 10 to 70 nm of 
size. Predictions regarding if NPs are toxic or not, they quantify the probability 
of NP x as being toxic (i.e., P(T|x)) from the intrinsic probability function used 
in a classification model. The results are plotted in Figure 1: 

 

 
Figure 1. Toxicity probability of NP (x) belonging to the toxic class  given by the 

SVM based nano-SAR. The posterior toxicity probability P(T|x) is depicted by the color scale 
in the descriptor space. The contour in the middle (i.e., P(T|x) = 0.5) defines the nano-SAR 
classification boundary, while the inner (P(T|x) = 0.73) and outer contours (P(T|x) = 0.27) 
correspond to the decision boundaries for penalty ratios of false negative relative to false 
positive predictions.13 

 
The nano-SAR classification boundary represented in Figure 1 spans 

the above suggested redox potential range. However, two (ZnO and CuO) of 
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the seven toxic NPs fall outside, while the non-toxic TiO2 is located inside the 
redox potential range. On the other hand, for the nano-SAR that includes both 
EC and Z2/r, all of the toxic and non-toxic NPs are correctly classified.  

 
As the ionic index decreases, the probability of a MeO becoming toxic 

increases. This behaviour is consistent with studies where it is shown that the 
metal ion toxicity increases transport across cell membranes for metal ions of 
lower hydration energy. 20 In this context, it is important to highlight that ZnO 
and CuO are classified as toxic despite their EC being outside the suggested 
redox potential range. Overall, the nano-SAR (Figure 1) suggests that the 
probability of a MeO NP being classified as toxic would increase if its EC is 
within or close to the redox potential range and its metal ionic index 
decreases.13,21 

 
In addition to this work, in our results the ZnO was identified in the 

category of soluble and the most toxic together with the CuO, in total 
agreement with the work of Liu et al.. According to the experimental results, 
ZnO does not dissolve in biological medium; this dissolution starts in tissue or 
environmental culture and goes through cells or organs. On the other hand, 
TiO2 was in the category of non-toxic effects at concentrations below 100 
mg/l. TiO2 is identified as an insoluble NP but its exposure to UV light can cause 
that the electrons are excited to conduction band creating a hole in the 
valence band and this effect could interact with H2O and O2 and generate 
reactive oxygen species (ROS). 

 
The results of the works above commented are the seed for this 

thesis. Because it exists an urgent necessity to develop nanosafety data for 
toxicity assessment in NPs, in particular for MeO NPs, and generate valuable 
QNAR models for their risk assessment legislation using in silico methods to 
optimize time and resources to this purpose.  

 
For both MeO NPs studied, ZnO and TiO2, two key descriptors to 

identify the toxicity were evaluated. The first descriptor used is the solubility 
of MeO NPs, because it is linked with the enthalpy of hydration and the ionic 
release facility mentioned in the nano-SAR work of Liu et al. The study of NPs 
dissolution in water has been highlighted as an important physicochemical 
property to assess their environmental impact, as well as the study of their 
behavior in biological media, because their toxicity mechanism is not well 
known. Some studies attribute the toxicity to Zn2+ ions dissolved, nanoscale 
properties, and generation of ROS. 22,23 After obtaining the key parameters for 
solubility evaluation of the MeO, one model of solubility prediction on MeO 
NP versus size has been created for the ZnO and another one for the TiO2, 
these two models are shown in the statistical chapter of this thesis. The 
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solubility study of NPs it has been a big challenge, because it was not still 
implemented at this level of theory for this purpose in literature, and for this 
reason all the work done has a special chapter in this thesis, the solubility 
chapter. 

 
The second descriptor chosen it was the band gap between the HOMO 

and LUMO band energy for each size of NP, because it is totally linked in the 
Ec mentioned above. This is a property easy to measure via DFT for small NPs, 
but it needs a large amount of computing resources for NPs with sizes greater 
than 2 nm. Therefore, in order to obtain band gaps for bigger NPs, the strategy 
followed it was to create a prediction model of band gap MeO and compare 
the results obtained with the experimental values found in bibliography. These 
models are shown in the statistical chapter of the present thesis. The results 
and the methods used for band gap calculation for all the sizes studied are 
explained in the chapters of each MeO. 

 
Finally, the data obtained from the prediction models of band gap as 

well as the solubility models have been used to create nano-QSAR models, in 
order to show if it is possible the goal proposed, to avoid some of the highly 
time consuming experimental part for the toxicity risk assessment. One of the 
main problems found in the course of this thesis, it was the experimental data 
scarcity for the two descriptors of interest (band gap and solubility) in the 
range of sizes of interest for comparing with our computed values. Because of 
the lack in standardisation of experimental measurements and details in the 
publications about the methodology used, it was not possible to get 
homogenised data. This is the reason why we used a nano-QSAR model 
published for these two MeO NPs and we added our computed descriptors in 
the work of E. Papa et al.,24 in order to improve or equal the accuracy of the 
method. All this work is explained in the chapter of statistical analysis. 
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2. Objectives of this thesis 
 
After the comprehension of the work explained, we fixed the 

objectives as it follows: 
 
- Calculation of MeO NP physicochemical properties from their atomic 

structure using in silico methods based on DFT. 
 
- Calculation of chemical and physical properties, such as band gap, 

solubility, surfaces energy, total energies, of MeO NPs at bigger sizes to predict 
solid behaviour in realistic sizes of nanoparticles. 

 
- Development of a normalised method to calculate the solubility for 

MeO NPs in aqueous media. 
 
- Generation of new data for realistic sizes of the descriptors band gap 

and solubility used for the modelling of toxicity prediction. 
 
- Compilation of the data generated with experimental data available 

in literature, to create a new nano-QSAR for toxicity prediction of MeO NPs. 
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Chapter 2. Methods 
 

 

 

 

 

 

 

 

 

 

 

 

 

1. Density Functional Theory 
 

A formal proof of the notion of Density Functional Theory (DFT) came 
in the 1960s, when Hohenberg and Kohn1,2 published their two well-known 
theorems,  where they reported that the total energy and properties of an 
electronic structure are a unique functional of the electron density (ρ) of a 
non-degenerate system, and that the electron density that minimises the total 
energy is the exact ground state density. 2  

In 1965, W. Kohn and L. Sham introduced the atomic orbitals in the 
DFT theory and proposed the Kohn-Sham equations. 3 This is a set of N/2 
equations (for closed shell systems with no spin polarization) describing the 
wave function of each pair of the N-electrons as a non-interacting particle. This 
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formulation developed the application of DFT in computational fields. In these 
Kohn-Sham equations (1.1) - (1.3): 

 
𝑑𝐸[𝜌]

𝑑𝜌(𝑟)⃗⃗⃗⃗ 
=

𝑑𝑇𝑠 [𝜌]

𝑑𝜌(𝑟)⃗⃗⃗⃗ 
+ ∫

𝜌(𝑟2⃗⃗⃗⃗ )

𝑟12
𝑑𝑟 2 + 𝑉𝑒𝑥𝑡(𝑟 ) +

𝑑𝐸𝑥𝑐

𝑑𝜌(𝑟 )
                                    (1.1) 

 

ℎ𝐾𝑆𝜑�̂�
= 𝜀𝜑𝑖                         (1.2) 

ℎ𝐾𝑆 =
1

2
∇2 + 𝑉𝑒𝑓𝑓(𝑟 )              (1.3) 

 
 

The electron is subjected to a modified effective potential from the 
nuclei and electrons, much easier to solve than a wave function of the whole 
three dimensional system, having this non-interacting system the same 
ground–state density as the real system.4,5 In fact, since the electron-electron 
interactions are always the same, it is the external potential due to ions that 
uniquely determines the Hamiltonian. Therefore, the total energy of the non-
interacting system is given in equation 1.4:  

E[ρ]DFT = TS [ρ] + Vext[ρ] + VH[ρ] + Exc[ρ]    (1.4) 

 
where TS is the kinetic energy of the electrons, Vext is the external 

potential created by the nuclei, VH is the electrons Coulombic repulsion, and 
EXC is the exchange-correlation (XC) term of the electronic energy, that 
represents the difference of kinetic energies expression and the energy of 
Coulombic repulsion. In this non-interacting system, the kinetic energy for the 
non-interacting particles is expressed in two parts: the first part is the kinetic 
energy exactly calculated for the non-interacting electrons, and the second 
part considers the interaction between electrons included in the Exc[ρ] terms. 
Therefore the expression of the total energy can be expanded as: 
 

E[ρ]DFT = −
1

2
∑ ∫φi

∗ (r1)∇i
2n

i=1 φi(r1)dr1 − ∑ ∫
Zx

rxi
 ρ(r1

N
x=1 )dr1 +

1

2
∬

ρ(r1)ρ(r2)

r12
dr1dr2 + Exc[ρ]           (1.5) 

 
In equation 1.5, 𝜑 i (i= 1,2…) are the Kohn–Sham orbitals, the first term 

in the right hand side is the kinetic energy for non-interacting electrons, the 
second term is the nuclear-electron interactions, the third part is the 
Coulombic interactions corresponding at the energy between the interacting 
electrons, and at the end there is the exchange-correlation term, which 
contains the correction of the kinetic part for the interacting electrons and the 
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classic correction for the electron-electron repulsion, the sum of the error 
made in using a non-interacting kinetic energy and the error made in treating 
the electron-electron interaction classically.  

The correspondence of the charge density and energy of the many-
body and the non-interacting system is only exact if the exact functional is 
known. For any particular system we could, in principle, solve the Schrödinger 
equation exactly and determine the energy functional and its associated 
potential. This, of course, involves a greater effort than a direct solution for 
the energy. Nevertheless, the ability to determine exact properties of the 
universal functional in a number of systems allows excellent approximations 
to the functional to be developed and used in unbiased and thus predictive 
studies of a wide range of materials – a property usually associated with an ab 
initio theory. For this reason the approximations to DFT discussed below are 
often referred to as ab initio or first principles methods. 

Depending on the treatment of the exchange-correlation term, the 
accuracy of the DFT calculations varies. Classically, these approximations have 
been classified depending on their complexity. This gave rise to the concept of 
DFT Jacob’s ladder, where each level of approximation adds more complexity 
in the treatment of the EXC term.6 The approximations are, in terms of 
increasing complexity, the Local Density Approximation (LDA), the Generalised 
Gradient Approximation (GGA), the meta-GGA, the Hybrid Functionals, and 
finally the exact electron density functional. In this thesis, we have made use 
of the GGA method. In order to explain how it works, we will start with the 
simplest model LDA, and the pass to the more sophisticated GGA. The use of 
higher levels of theory have been disregarded in this thesis because they do 
not substantially increase the quality of results (meta-GGA) or their 
computational cost is too high in periodic systems to take them into account 
(hybrid functionals).7,8  

 

1.1. Local Density Approximation 

The Local Density Approximation (LDA) was the first approach (and 
the simplest one used nowadays) to evaluate the exchange-correlation 
energy. In this approximation, the exchange-correlation energy is evaluated 
as a function of a uniform gas of electrons.4,9 The exchange part for the model 
of a homogeneous, constant density gas is:  

 

ELDA
X [ρ] =  −Cx ∫ ρ

4

3 (r)dr    ;    𝐶𝑥 = −
3

4
(
3

𝜋
)
1/3

        (1.6) 
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In LDA, the XC energy density at position r depends only on the particle 
density at that point, ρ(r). An important property of any density functional is 
the exchange–correlation hole, the region around any particle in which the 
probability of finding another identical particle is reduced. In other words, an 
electron never interacts with itself, thus, the exact exchange-correlation 
energy provides a self-interaction correction to the Hartree electrostatic 
energy. This hole arises from Pauli’s exclusion principle, and the total 
reduction of the density of the other particles should equal to −1. The LDA 
satisfies this exclusion principle exactly, meaning the shape of the LDA 
exchange-correlation hole is incorrect, although it has the correct average 
shape. 10 

As one can expect, LDA presents some limitations due to its simplicity, 
especially for the ionisation potentials and binding energies for molecules. 
However, it works well in electronic homogeneous systems as general solids, 
it improves the quality of the results with the size of the system, and it is a 
relatively computationally cheap methodology.11  

 

1.2. Generalised Gradient Approximation (GGA) and meta-GGA 

Although LDA gave some good results for systems with homogeneous 
electronic density structures, it also failed to describe many materials and 
properties. This is because one cannot consider most materials as a 
homogenous gas. The energy is not only dependent on the local value of the 
electronic density, but it is also dependent on the gradient of the density 
(∇ρ(r)). This leads to the formulation of the Generalised Gradient 
Approximation, or GGA. The typical expression of the energy for GGA is:  

 

EGGA
XC [ρ] ≈  ∫ ρ(r)εxc(ρ, ∇ρ)dr        (1.7) 

 
The GGA functional ensures the normalization condition of the 

spherical hole and a negative factor in the exchange correlation leading to a 
dependence in the density as in the gradient based on the weak of any 
perturbation on the homogenous electron gas. In addition, it gives an 
analytical improvement in the atomization energies and corrects the 
overbonding of H-bonding solids.8 Several versions for the GGA functional 
have been reported depending on the form of the functional: PW91,12 BLYP,13 
PBE,14 etc. In this work PBE has been chosen as work functional. 

Compared to LDA functionals, GGAs are more accurate for calculating 
total energies and atomization energies, because the method is more based 
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on the principles of the quantum mechanics scaling the densities, and then 
achieving correction in the upper and lower part of the scale of densities. 
Several approximations on the gradient have been implemented, and all of 
them give better results than LDA for geometries, vibrational frequencies and 
charge densities, being its computational cost higher.15,16 However, it is still 
not enough accurate for some chemical properties of the molecules, such as 
the Van de Waals interactions, ionization potentials or electron affinities. 

Although not being used in this thesis, it is noteworthy to mention that 
beyond the complexity of GGA functionals, the next step in Jacob’s ladder are 
the meta-GGA functionals, 17,6,18 where the semi-local information of the 
electronic density is introduced in the Laplacian in terms of spin density or 
kinetic energy density, which includes some derivation of the occupied Kohn-
Sham orbitals. The typical form for this functional is:  

 

Em−GGA
XC [ρ] ≈  ∫ ρ(r)εxc(ρ, ∇ρ, ∇2𝜌, 𝜏)dr      (1.8) 

 
where ∇2𝜌 is the kinetic energy. With this approximation, some 

properties such as atomization energies are slightly improved at a much larger 
computational cost respect to GGA. Among those functionals one can find 
derivations, such as TPSS 19 or the recent SCAN. 15  

  

1.3. Pseudopotentials, PAW method. 

For solid state chemistry, the goal in using pseudopotentials theory is 
to improve the convergence of the plane wave expansion. Bloch's theorem 
uses the periodicity of a crystal to reduce the infinite number of one-electron 
wavefunctions to be calculated to simplify the number of electrons in the unit 

cell of the crystal. The wavefunction of an electron (𝜑𝑗,𝑘(𝑟)) is written as the 

product of a cell periodic part and a wavelike part: 

𝜑𝑗,𝑘(𝑟) = 𝑢𝑗(𝑟)𝑒
𝑖𝑘·𝑟      (1.9) 

Where 𝑢𝑗(𝑟) is the lattice periodic part, 𝑒𝑖𝑘·𝑟 the wave part, j is the 

band index and k is an arbitrari vector that is confined to the first Brillouin zone of 
the reciprocal lattice.  

Since 𝑢𝑗(𝑟)  has the same periodicity as the direct lattice, it can be 

expressed in terms of a discrete plane-wave basis set with  the vectors G, that 
are reciprocal lattice vectors of the crystal : 

𝑢𝑗(𝑟) = ∑ 𝐶𝑗𝐺𝑒𝑖𝐺𝑟
𝐺                                                                       (1.10) 
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The above results show that the electron wavefunctions can be 
expanded in terms of a linear combination of plane-waves: 

𝜑𝑗,𝑘(𝑟) = ∑ 𝐶𝑗,𝑘+𝐺𝑒𝑖(𝑘+𝐺)𝑟
𝐺

𝑖𝑘·𝑟
                       (1.11) 

 Plane-waves are a simple way of representing electron 

wavefunctions. They offer a complete basis set that is independent of the type 
of crystal and treats all areas of space equally. To obtain its coefficients (k+G), 
it is need to insert this wavefunction into the Kohn-Sham equation. The Kohn-
Sham operator must, therefore, be diagonalized in the space of all plane 
waves of momentum k + G for any vector k chosen in the first Brillouin zone. 
Indeed, the periodicity of k in the reciprocal space implies that it is sufficient 
to choose the arbitrary vector k in the first Brillouin zone 

By the use of Bloch's theorem, the problem of the infinite number of 
electrons has now been mapped onto the problem of expressing the 
wavefunction in terms of an infinite number of reciprocal space vectors within 
the first Brillouin zone of the periodic cell, k . This problem is dealt with by 
sampling the Brillouin zone at special sets of k-points  

 Instead of applying Blöch theorem, and cutting kinetic energy of 
plane wave at huge values to have a good modelling of the core electrons of 
the atoms, the strategy is to use pseudopotentials to describe the core 
electrons. 1This strategy reduces the time demanding process of an all-
electron calculation.  

The electrons not used for bonding between atoms (non-valence 
electrons) are “frozen” in the called frozen –core electrons approximation. 
They are calculated as a reference configuration but kept constant in the rest 
of calculation. The core electrons are represented by pseudowave functions, 
which reproduce the energy levels obtained by an all-electron calculation. 
These pseudo-wave-functions are different from the all-electron wave-
functions because in the inner zone, near the nucleus, are designed not to 
have any node. This makes decrease in a substantial way the number of plane-
waves required. 20 

The pseudopotentials used in this thesis are PAW,21 because they have 
proven to give more accurate results in solid state chemistry, despite being 
more time-demanding than other pseudopotentials. 

The biggest difference between PAW pseudopotentials, non-
conserving pseudopotentials 21 or ultrasoft pseudopotentials 22 (US) and the 
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other ones is that PAW tries to reproduce the nodal structure of the upper 
core states in addition to valence states in the self-consistent iterations, so 
PAW is a frozen-core method, but it tries to introduce the advantages of all-
electron calculations. PAW describes core electrons with a frozen nodal 
structure and valence electrons by an all-electron wave-function. Thus, the 
quality of results improves substantially specially for first row atoms. 

 

1.4. Beyond classic DFT 

DFT methods have very favourable characteristics and a huge number 
of scientists of different areas employ them to compute and predict properties 
in numerous systems (in materials science, nanotechnology and nano-
engineering, chemistry, physics, Earth & environmental sciences, etc). 

Although DFT is a very powerful tool, as explained in the previous 
section, it still has some limitations in its use. Therefore, new developments 
based on DFT have been developed to compute and predict better a wider 
range of properties and materials. Nevertheless, the main limitation in DFT 
methods from my point of view is computational: at present, systems with 
more than 1000 atoms are difficult to compute, even in large supercomputers. 
This is due to the cubic increase in the computational requirements respect to 
the number of atoms. 

There are many fields where the current functionals are known to 
perform poorly. Current DFT methods describe poorly weak interactions due 
to dispersed forces such as Van der Waals interactions, and even stronger 
interactions such as hydrogen bonds present many difficulties for DFT 
functionals due to the electrostatic long-range interactions. 20 

In the next sections it is given an overview of computational methods 
beyond classic DFT, used in this work to improve results in the electronic 
structure properties calculations and to study large nanoparticles and their 
solubility in water. 

 

1.5. DFT+U 

In the Hartree-Fock (HF) method,23 the Coulombic interactions are 
correctly described with the presence of the exact exchange term, cancelling 
the self-interaction of the electron. However, due to the fittings of the 
functionals, in DFT that exchange is only approximated, and as a consequence, 
the self-interaction term is not correctly cancelled. This is known as the self-
interaction error. This error causes the poor description of electrons 
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interaction in strongly correlated systems. The Coulomb interaction between 
electrons is important and dominant for some transition metals, rare earth or 
insulating metal oxides, and the idea of a simple correlated electron gas is not 
enough to properly describe their properties. Because the local Coulomb 
repulsion of the d orbitals is underestimated by the classic LDA or GGA, an 
extra repulsion term needs to be added to correct this underestimation (U 
repulsion term, the Hubbard term). This correction is known as DFT+U (LDA+U 
or GGA+U, depending on the initial functional used) methodology.24 Simply 
said, DFT+U describes the “strongly correlated” electronic states of a system 
(typically, localized d or f orbitals) using the Hubbard model, whereas the rest 
of electrons are treated at the level of classic DFT functionals. This is a 
methodology that is similar to hybrid functionals, in the sense that it tries to 
correct the exchange term in the EXC, but in this case without mixing the exact 
correlation of the HF method. 

In the DFT+U method, two new parameters are needed: U and J. The 
U term represents the strengths of the on-site Coulomb interaction, and the 
parameter J adjusts the strengths of the exchange interaction. These two 
parameters are combined into a new single parameter called effective U or 
Ueff = U-J. With this correction, the electron potential is locally reduced for the 
specified orbitals of the respective atoms or elements, and, as a consequence 
reducing the hybridation with the orbitals of other elements and their 
interaction. The limit of Ueff = 0 (eV) represents the classic DFT. 25The value of 
the Ueff is fitted against experimental data for materials representative of the 
elements to be corrected with this methodology. Within DFT+U, the total 
energy is expressed as follows: 

 
EDFT+U

 [ρ] = EDFT
 [ρ] + E𝐻𝑢𝑏

 (𝜎𝑛𝑛) − E𝑑𝑐
 (𝜎𝑛𝑛) =  EDFT

 [ρ] +

∑
𝑈𝑒𝑓𝑓

2
𝑇𝑟(𝜎𝑛 − 𝜎𝑛𝜎𝑛)𝑛        (1.12) 

 
where ρ is the electronic density, EHub is the Hubbard correction 

energy, Edc is the energy that accounts for doubly counted electrons in the EDFT 

and EHub terms, and  is the electron density matrix. EDFT represents the 
approximate DFT total energy functional being corrected and 𝐸𝐻𝑢𝑏 is the term 
that contains the Hubbard Hamiltonian to model correlated states.26  

The DFT+U method has helped to improve the results on the band 
gaps of some insulators and semi-conductors that were underestimated with 
classic DFT, as the case of ZnO. Nevertheless, they depend on an empirical 
correction that can overlocalize the d- or f- electrons of the metals. Besides, 
different parameters U depend on the chemical environment of the element, 
not being transferable, what is a problem in elements with different oxidation 
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states. Besides, due to the overlocalization, unpaired electrons interactions 
and magnetic structures can be wrongly predicted.27 In this thesis, Ueff 
obtained from literature have been used for the metal elements. 

 

1.6. Density Functional Tight Binding 

As commented in the previous sections, DFT have some limitations, 
DFT cannot deal with large numbers of atoms (or electrons, to be fair) and has 
difficulties when performing long Molecular Dynamics simulations due to the 
expenses of the method.  

A powerful alternative developed in recent years is the application of 
Tight Binding (TB) theory into DFT implementation. In classic DFT, the energy 

of a system of M electrons in the field of N nuclei at positions �⃗�  is based on a 

functional of the electrons density n(𝑟 ) (or  in the section 1.1), following the 
Kohn-Sham equation. In Density Functional Tight Binding theory (DFTB), 28–30  
the energy is expressed as the second-order expansion of a small charge 

density fluctuation n(𝑟′⃗⃗ ) respect to the reference density n0(𝑟′⃗⃗ ) (the zero-th 
order expansion corresponds to the TB method). The total DFTB energy can 
be expressed after this expansion as: 

EDFTB = ∑ 〈Ψi|H0|Ψi〉 + Eii −
1

2

occ states
i=1 ∬

n0(r
′⃗⃗  ⃗)n0(r⃗ )

|r⃗ −r′⃗⃗  ⃗|

′
dr′⃗⃗  dr + EXC[n0(r )] −

∫EXC[n0(r )]n0(r ) dr +
1

2
∬ (

1

|r⃗ −r′⃗⃗  ⃗|
+

δ2EXC

δn(r⃗ )δn(r′⃗⃗  ⃗)
|
n0(r⃗ )

)
′

δn(r )δn (r′⃗⃗ ) dr′⃗⃗ dr  

        (1.13) 

 
where the first term is the Kohn-Sham energy of the occupied orbitals, 

the second one is the interatomic repulsion, the third one is the Coulombic 
repulsion, the fourth and fifth terms are the exchange-correlation energy 
derived terms, and the final term is related to the small fluctuation applied to 

the system n(𝑟′⃗⃗ ). 

The evaluation of EDFTB implies computing several elements depending 
on the fluctuation of the electronic charge density, which is not simple. The 
first approximation consists in neglecting the last term in equation 1.13, which 
is the classic form of DFTB. However, in doing this, the charge density on 
atomic centers is kept constant in the energy evaluation, and therefore this 
can only be applied to covalent systems. More commonly, one develops the 
last term of this expression and truncates the multipole expansion after the 
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monopole term. This approximation is known as the Self-Consistent Charge 
DFTB (SCC-DFTB), and the energy is expressed as:  

 

EDFTB = ∑ 〈Ψ𝑖|𝐻0|Ψ𝑖〉 + 𝐸𝑟𝑒𝑝
𝑜𝑐𝑐 𝑠𝑡𝑎𝑡𝑒𝑠
𝑖=1 +

1

2
∑ ∆𝑞𝛼∆𝑞𝛽𝛾𝛼𝛽

𝑁
𝛼,𝛽       (1.14) 

where the second term encloses the short-range repulsive terms of 
the nuclei-nuclei interactions plus other exchange-correlation factors, and the 
third term accounts for the charge transfer between different atomic 
constituents. In more detail, the Erep is defined as: 

Erep = Eii −
1

2
∬

n0(r
′⃗⃗  ⃗)n0(r⃗ )

|r⃗ −r′⃗⃗  ⃗|

′
dr′⃗⃗  dr + EXC[n0(r )] −

∫EXC[n0(r )]n0(r ) dr              (1.15) 

 
However, the full evaluation of all terms in equation 1.15 requires a 

huge computational effort and, since it is based on the exchange-correlation 
functional, the final result will depend on this election. Therefore, the strategy 
typically used in DFTB is to represent this repulsion energy as a sum of pair-
wise functions between atoms. These functions are obtained by fitting them 
to high-level theoretical calculations. 5 

The third term of equation 1.14 takes into account the charge 
fluctuations between atoms in the system and it is derived from the last term 
in equation 1.11. In this last term, for local XC functionals (see section 1.2), the 
second-order terms become a Dirac delta function, becoming this last term 

the electrostatic interaction shown in equation 1.14. 5 For equation 1.14, q 

represents the Mulliken charge change respect the neutral atom  and the  

is the extent of that charge interaction between centres  and . Finally, the 

 function is approximated using the Hubbard parameters U and U of the 
atoms (directly related to the chemical hardness of the element and used also 
in the DFT+U methodology) and the distance between those two centres. 4 
The Hubbard parameters are obtained from DFT simulations, and therefore 
we do not introduce at this point any empirical data for the fitting of the 
computational methodology. 

All the values parameterized for the Vrep of the different atoms 
required in the simulations, together with the symmetry transformations for 
the evaluations of the orbital energies, are saved in the Slater-Koster files (SK). 
32The SK files are tabulated for a large quantity of pairs of atoms (the full 
periodic table is still not available, but the database is increasing) and available 
to the general public in the DFTB project webpage, www.dftb.org. 
Alternatively, one can create his/her own files from ab-initio simulations, 
however at a large cost of computational and results analysis time. At present, 
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several codes and quantum chemistry packages include the DFTB 
methodology and are compatible with the SK files published for general use: 
DFTB+, 32,4 deMon, AMBER, ADF or Gaussian. 

With DFTB, one can compute systems formed by thousands of atoms 
in relatively small computational clusters, being a reliable method. 
Nevertheless, the SK files available are still relatively limited to organic 
molecules, some inorganic solids and transition metals. Besides, the results 
that one obtains are also determined by the functionals used to implement 
the SK files. As a consequence, for instance, when computing liquid water 
systems, the hydrogen bonds are not properly described as in the case of the 
GGA functionals, and DFTB trends to overestimate the intermolecular forces 
in water, forming voids in the water bulk.33  

As a final reminder of section 1.2, we present in table 1 a summary of 
those methods here explained, showing the advantages, possibilities and 
disadvantages of those methods. 

 

Table 1.  Summary of methods beyond classic DFT. 

Approximation Advantages Disadvantages 
DFT+U1,2,24   -Low cost methodology to 

accurately correct band gaps 
underestimation in GGA 

-It provides accurate results for 
strongly correlated systems: 

rare-earth compounds, 
transition metals, Mott 

insulators and impurity systems, 
superconductors 

- DFT+U solutions can 
overestimate the 

degree of localization 
-The accuracy in 

results depends on 
the functional used in 

the DFT part 
 

   
DFTB 4-6  -Systems of tens of thousands 

of atoms at quasi-DFT level with 
small effort (x100 quicker on 

average) 
-Same accuracy as the DFT 

reference model 
-Easy to implement for both 

molecular and periodic systems, 
as well as including fields in the 

simulations 

-The accuracy in 
results depends on 
the functional used 

for the 
parameterisation  

-Only databases for 
organic interactions, 

water and a few solids 
exist 
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2. Molecular Dynamics 
 

Classical Molecular Dynamics (MD) methods are essentially based in 
Newton’s mechanics to describe the nuclear motions. Treating atoms and 
molecules as classical particles gives valuable information about 
thermodynamics, structures and dynamical properties of the condensed 
matter from pure liquids to complex biomolecular systems. Molecular 
dynamics simulations compute motions, so it makes possible to describe 
position, velocities and changes versus time of individual molecules in solids, 
liquids o gases. In this thesis we have used MD methods to describe the 
physico-chemical behaviour of aqueous solutions of Nanoparticles. 

The equilibrium in MD usually is applied to an isolated system 
containing N number of molecules and a fixed volume, V. The total energy, E, 
is also constant. E is the sum of the molecular kinetic and potential energies, 
all of these variables determining the thermodynamic state. 

In a NVE-molecular dynamic position rN is solved by Newton’s 
equation: 

𝐹𝑖(𝑡) = 𝑚𝑟�̈�(𝑡) = −
𝑑𝑈(𝑟𝑁)

𝑑𝑟𝑖
                        (1.16) 

where Fi is the force on i caused by the N-1 other molecules, m is the 
molecular mass, and U is the intermolecular potential energy. 

Solving equation 1.16 yields the atomic momenta, atomic positions 
and individual atomic trajectories. Time averages ‹A› can be computed to 
obtain macroscopic properties: 

‹A› = lim
𝑡→∞

1

𝑡
∫ 𝐴(𝜏)𝑑𝜏

𝑡0+1

𝑡0
         (1.17) 

When time averages are o are obtained from positions, time average 
(1.17) represents static properties as thermodynamic properties; from 
momenta we obtain dynamics properties, as transport coefficients. 35 

Some applications of molecular dynamics in different fields nowadays 
are listed herewith, in fundamental studies as kinetic theory, transport 
properties, size dependence. For collective behaviour, it can be used to 
calculate the decay of space and time correlation functions, vibration, 
spectroscopic measurements, and dielectric properties. In complex fluids, it 
can be used for modelling structure and dynamics of glasses, molecular 
liquids, pure water and aqueous solutions, fluid interfaces, films, etc. In solid 
cases is used to the study of defects, fractures, mechanical properties, etc. 35 
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3. Radial distribution function. 
 

The relative average position of particles in a liquid state is expressed 
by the Radial Distribution Function (RDF), in other words, RDF represents the 
spherical average local organisation around an atom, and it means the 
probability to find another N atom at a distance r from such an initial atom. 
The equation 1.16 represents the RDF between the molecules 1 and 2 in a fluid 
with N particles: 

𝑔(𝑟12) =  
∬…∫𝑒−𝛽𝑉𝑁𝑑𝑟3𝑑𝑟4…𝑑𝑟𝑁

𝑁2 ∬…∫𝑒−𝛽𝑉𝑁𝑑𝑟1𝑑𝑟2…𝑑𝑟𝑁
                 (1.18) 

Where, β=1/kT and VN is the potential energy of the N particles. In 
order to introduce the intermolecular potential, it is considered a box 
containing around 103 particles (this value depends on the system to study and 
the level of theory to evaluate VN) and the rest of the liquid is simulated with 
infinite copies of this box surrounding the original. Therefore, the interactions 
between molecules are contemplated inside the box and if a molecule goes 
out the box where it was, its image arrives through the opposite face. 36  

In molecular dynamics, it is used the Newton law is used to estimate 
where will be each particle in a short period of time, around 10-15 s, a time 
period shorter than the collision time between particles. These calculations 
are repeated thousands of times giving snapshots of the liquid situatuion,36,37 
as we can see in the solubility chapter. The temperature of the system is 
inferred by computing the mean kinetic energy of the particles. 

This process must be repeated for many complete shells over r to be 
significant. For example, in an ideal gas g(r) = 4πr2 gives a simple quadratic 
curve. 38The fluid state is characterized by the absence of any permanent 
structure at medium and long range (RDF→1). Crystal solid state presents a 
very well defined long-range crystal structure. 

The RDF is related to the experimental parameter S(k), the key 
quantity in interpreting x-ray scattering measurements, by Fourier 
Transformation. 35 
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Figure 1. RDF of water box calculated with MD-DFTB 

For example, the RDF corresponding to water bulk simulation in this 
thesis is displayed in Figure 1.  

  

4. Solubility evaluation 
 

The solubility of Metal Oxide (MeO) nanoparticles has been evaluated 
from MD energy simulations, but with two different approximations 
depending on the size of the nanoparticles. To evaluate the solubility of bulk 
and for the smallest NPs, it has been calculated the solubility product constant 
using the Helmholtz free energy; the extensive energy evaluation of the 
system and the solubility constant have been computed using what we called 
the “water box method” for small nanoparticles. For larger NPs, a 
methodology based on the Ostwald-Freundlich nonextensive thermodynamic 
approach was used. 

 4.1. Thermodynamic property: Helmholtz free energy. 

The solubility product constant (Ksp) is a well-defined value for an ionic 
solid (in general a binary salt: AnXm) and is well defined from the ions in 
solution:  

Ksp = [A+m]n[X+n]m                                                       (1.19) 
 
However, in non-fully ionic solids, as in our case with metal oxides, 

this definition is more ambiguous since the solved product may not be an ion 
but a cluster or any other general species solved in water.37  

Accordingly to our non-dissociating MeO systems in water as an ionic 
solution, another way is to define the Ksp is the reactivity constant, K, of the 
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dissolution chemical reaction. From statistical thermodynamics point of view, 
it is possible calculate this K using Helmholtz free energy (A) and the 
corresponding definition for a given chemical reaction:35  

aA + bB →cC +dD 

𝐾 =
(
𝑞𝐶,𝑚
0

𝑁𝐴
)

𝑐

(
𝑞𝐷,𝑚
0

𝑁𝐴
)

𝑑

(
𝑞𝐴,𝑚
0

𝑁𝐴
)

𝑎

(
𝑞𝐵,𝑚
0

𝑁𝐴
)

𝑏 𝑒−∆𝑟𝐴/𝑅𝑇                           (1.20) 

where qm is the partition function of the components in the chemical 
reaction. In the systems simulated in this thesis, reactants were water, bulk 
materials and nanoparticles (in vacuum), and final products were defined as 
solved nanoparticles (in different aggregation models). This method has been 
used to calculate the Ksp of bulks and Ksp of small nanoparticle for both cases, 
ZnO and TiO2. More details will be given in the results section for each 
simulated system. 

 

 4.2. Water box method 

The periodic box concept is the way to represent the minimum 
expression of a solution, so a small nanoparticle of MeO is introduced in a 
cubic box of water. The cubic shape let to reproduce the boundary conditions 
of periodicity implicit in MD calculations with DFT-TB method. 

The cubic box, shown in the Figure 2, allows to perform MD 
simulations of water to achieve the maximum real conditions as experimental 
ones. Given the motion perhaps some atoms go through the boundary of the 
box, but because of the periodic conditions in the system, this same atom is 
reproduced in the other side of the cell given by the periodic image. 

Besides the “pure” water box, nanoparticles were included in the 
water box to simulate the interaction of the nanoparticles with water 
molecules. From these simulations, we computed the dissolution Helmholtz 
free energy of small nanoparticles. 

Water box models were created using the VMD code. 40 On the other 
hand, spherical nanoparticles were created from bulk making use of the 
package Nanocut. 40A Fortran code was developed to introduce pre-designed 
nanoparticles in the water box, which removed the overlapping water 
molecules with the particles at a certain critical distance (2.0 Å from any water 
molecules of the nanoparticle). 
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Figure 2. Cubic water box, 21 Å size. 

The Water box method, has been chosen to obtain the Helmotz 
energy in the cases where the NP are bigger, from the energy of the total 
system ( water and NP) is taking off either the energy of the water box without 
NP and the energy of the NP is the vacuum. More details and results are 
explained in the Solubility chapter of this thesis. 

 

 4.3. Ostwald-Freundlich thermodynamic approach.  

As Ostwald and Freundlich postuled on the 20th century, solubility at 
nanometric scale becomes a magnitude which varies with size and shape of 
the solid. 41In consequence, the solubility of a compound in a solvent at 
determined temperature, cannot be referenced as a thermodynamic property 
because it depends on its size. The theory postulated by Ostwald and 
Freundlich  describes the variation of the concentration at saturation point, 
Ci(sat), of a spherical particle of radius, r, of a molecular solid, i in a solvent as 
the equation: 

ln
𝐶𝑖(𝑠𝑎𝑡)

𝐶𝑖(𝑠𝑎𝑡)
∗ =

𝑉𝑖
∗

𝑅𝑇

2𝛾𝑆𝐿

𝑟
         (1.21) 

𝐶𝑖(𝑠𝑎𝑡)
∗  means concentration of i at saturation, when the solid i is in 

unlimited phase, no size effect. 𝑉𝑖
∗ molar volume of i, T is temperature, R 

perfect gas constant and 𝛾𝑆𝐿 is the solid-liquid interfacial tension. 

The application of this postulate to the solubility in spherical particles, 
which are represented by convention an Euler’s function order, m, is equal to 
two-thirds, 43if the  area is compose by solid-liquid and the volum, V, is the 
volume of the spherical particle, the postulated for spherical nanoparticles is: 

ln
𝐶𝑖(𝑠𝑎𝑡)

𝐶𝑖(𝑠𝑎𝑡)
∗ =

𝑉𝑖
∗

𝑅𝑇

2𝛾𝑆𝐿

3

4𝜋𝑟2

4

3
𝜋3

=
𝑉𝑖

∗

𝑅𝑇

2𝛾𝑆𝐿

𝑟
          (1.22) 
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It is interesting to observe that at the increase of particle radius 
involves a decrease in the concentration of i at saturation equilibrium. 

The same Ostwald Freundlich approach can be explained from the 
point of view of thermodynamics as: 

2.3𝑅𝑇𝑙𝑜𝑔
𝐾𝑆𝑂,𝐴

𝐾𝑆𝑂
=

2𝛾𝑀𝑛𝑎𝑛𝑜

𝜌𝑟
=

2

3
𝛾𝐴          (1.23) 

Where KSO,A is the solubility constant for the bulk material  (KSO) and 𝛾  
(J·m-2) is the surface tension of a specific area, A. ρ mass density (gm-3) , Mnano 
is the molar mass (g·mol-1). 42 

Using the 1.23 equation, in this work we simulate a bulk of each MeO 
surrounded by two layers of water. Using MD simulation, we obtain the energy 
of the interaction between water and solid, this can be used to calculated the 

surface tension  between the solids and water. From this point, it is possible 
the to achieve the Ksp and the solubility for each MeO. More details about 
these calculations are explained in the Solubility Chapter.  

 

5. STATISTICAL METHODS 
 

5.1. Nano-QSAR 
 

Quantitative Structure-Activity Relationship (QSAR) is a common tool 
used to develop valuable in silico models to screen and predict the desired 
endpoint/s employing the correlation of some descriptors (experimental or 
theoretical). The endpoint gives a value or indicator of a parameter related to 
the activity of chemicals under specific conditions without kwon interaction 
beaten them. This computational technique is used for the assessment of 
industrial chemicals, by agencies as the European REACH and even Australian 
NICNAS.44, 4  

The use of these models in industrial or other applications is strictly 
necessary to perform the OECD principles for the validation and regulatory 
purposes. These principles were dictated in the 37th Joint Meeting of the 
Chemicals Committee and Working Party on Chemicals, Pesticides and 
Biotechnologies in November 2004 and include: 

- A defined endpoint: is defined as a measure of activity for 

chemicals made under specific conditions. This is refereeing to 

any physicochemical property, biological effect or environmental 

parameter that can be measured or modelled. 44This means that 
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the endpoint for being predicted must be clear, since a given 

endpoint could be determined by different experimental or 

theoretic protocols. 

- An unambiguous algorithm: transparency in the model algorithm 

that generates predictions is required. Accurate mathematical 

description of the algorithm used to define the relationship 

between the descriptors and the activity, even a clear description 

of the descriptors calculation. 

- A defined domain of applicability: is the response and chemical 

structures space in which the model makes predictions with a 

given reliability. 44QSAR is a reductionist model which is limited at 

the type of chemical structures, properties of mechanisms used 

for model generation. 

- Appropriate measures of goodness-of-fit, robustness and 

predictivity:  this principal is for setting the next principle, the goal 

is it simplify the set of principles without losing the distinction 

between the internal performance of a model and the predictively 

of it.  

- A mechanistic interpretation, if possible: to find multiple 

mechanistic interpretation of a given model, then it is advisable to 

explain the interpretation. It not means that a model without an 

explanation is not valid in term of regulatory context.  

The extension of QSAR methodology to nanoscale has developed the 
nano-QSAR modelling. In 2013, the European Union reported the importance 
of developing nano-QSAR models to predict relevant endpoints of toxicity and 
ecotoxicity for NP hazards assessment. 43 The nano-structure characteristics 
can be described experimentally measuring physicochemical properties, such 
as size, surface area, zeta potential and theorical characteristics can be 
molecular descriptors such as quantum –mechanics descriptors, SMILES. 

At nano level, most of the descriptors used at micro or macro scales 
are not useful, because the reactivity of nanoparticles increases when the size 
is reduced and other properties also are being modified respect bigger scales 
as the solubility or hardnesses. Nanoparticle size also influences other 
important features of electronic and physico-chemical properties such as 
colour and electrical conductivity. Semiconducting materials become metallic 
and non-magnetic particles become magnetic due to the quantum-size effect 
and to the macro-quantum tunnelling effect related to nano-size. From the 
point of view of solid state physics, both the superposition of bulk states and 
the increase in the strength of the material may affect electronic properties of 
the material such as the band gap.4 
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5.2. Stepwise regression 

To search the best nano-QSAR model, in this thesis, we used the 
method stepwise regression to fix the best combination of the descriptors as 
candidates of a regression variables. Stepwise regression is a way to 
automatically determine which variables should be included in the multiple 
linear regression model. 

This classical statistical method calculates de F-value for the 
incremental inclusion of each variable in the regression. The F-value is 
equivalent to the square root of the student t-value, expressing how different 
two samples are from each other, where one sample includes the variable and 
the other samples does not. T-value is calculated: 

𝐹 =  √𝑡 − 𝑣𝑎𝑙𝑢𝑒             (1.24) 

t = difference in the sample means/standard deviation of differences 

F-value is sensitive to the number of variables used to calculate the 
numerator of this ratio and the denominator. Stepwise regression calculates 
the F-value both with and without using a particular variable and compares it 
with a critical F-value to either include the variable (forward stepwise 
selection) or to eliminate the variable from the regression; in a such way the 
algorithm can select the set of variables that meets the F-value criterion. It is 
assumed that the variables account for a sufficient amount of total variance 
of the variable at a given level of confidence specified in F-value (usually 95%). 
45 
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Chapter 3. ZnO, case of study 
 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 
 

Zinc oxide is a highly versatile material with a unique combination of 
electronic, catalytic, piezoelectric and pyroelectric properties, which lend it to 
a vast number of emerging technological applications. Zinc oxide may be 
fabricated in a wide variety of possible nanostructures, and nanostructured 
ZnO lends itself to a wide range of possible applications including 
nanogenerators, sensors, cosmetics, UV-absorbers and photovoltaics. ZnO 
exhibits a wide bandgap (3.37 eV), large exciton binding energy (60 meV) and 
low lasing threshold, which is applicable to optoelectronics, sensors, 
transducers and biomedical science. 1 

Mechanical and electromechanical properties of 1-D ZnO 
nanostructures have been the subject of numerous investigations to form part 
of the fundamental components of nanopiezotronics in nanotechnology in 
which piezoelectric nanostructures are employed for harvesting energy in self-
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powered wireless nanodevices. Size dependence of Young’s Modulus in ZnO 
nanotubes (NTB) has been experimentally and theoretically revealed. In 
particular, it has been shown that the Young’s modulus of ZnO Nanowires 
(Nws) with diameters smaller than about 120 nm increases dramatically with 
decreasing diameters. The reported ZnO nanotubes usually grow in 
experiments along the [0001] direction. 2,3 

The crystal structures shared by ZnO are wurtzite, zinc blende, and 
rocksalt. Most of the group II–VI binary compound semiconductors crystallize 
in either cubic zinc blende or hexagonal wurtzite (Wz) structure, where each 
anion is surrounded by four cations at the corners of a tetrahedron, and vice 
versa. This tetrahedral coordination is typical of sp3 covalent bonding nature, 
but these materials also have a substantial ionic character that tends to 
increase the bandgap beyond the one expected from the covalent bonding. 
ZnO is a II–VI compound semiconductor whose ionicity resides at the 
borderline between the covalent and ionic semiconductors. 

In this thesis we centered our studies in ZnO wurtzite crystalline 
phase. Under ambient and near-ambient conditions, ZnO forms with a 
wurtzite crystal structure and nano-structures. The wurtzite structure has 
three primary cleavage planes, the {1010}, {1120}, and {0001}. Cleavage along 
the {0001} axis results in two polar surfaces, the (0001)-Zn terminated and 
(0001)-O terminated surfaces, while cleavage along the (1010) and (1120) 
planes results in nonpolar surfaces. 4 

The wurtzite structure has a hexagonal unit cell formed by 4 atoms, 
with lattice parameters 5 a and c showed in Figure 1: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1. ZnO hexagonal 4-atoms unit cell (5th atom is the periodic image). Spatial 
group P6m3. 
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2. DFT calculations 
 

2.1.  Computational details. 

Density functional theory calculations were conducted using the 
Quantum espresso (QE) program. 6,7 The self-consistent calculations were 
performed under the Gradient Generalised Approximation (GGA) with the 
functional developed by Perdew-Burke-Ernzerhof (PBE)8 .  

The effect of the core electrons on the valence electron density was 
described by the projector augmented wave (PAW) method. The cut-off for 
the kinetic energy of the plane-waves was set to 85 Ry throughout, which 
ensures total energy convergence to better than 10-6 eV. A Gaussian smearing 
technique with a 0.005 eV width was applied to enhance convergence but all 
energies presented in the following were obtained by extrapolating to zero 
smearing (0K). 

Some calculations were carried out on parallel computers in an in-
house facility or in the ARCCA –Raven Supercomputing Cluster at the 
University of Cardiff, thanks to the collaboration of Professor Peter Kille. 
However, for the largest species here computed, a high performing computer 
(HPC) was required. The work of this thesis was been awarded twice with 
CSUC–RES grants QCM-2017-2-0025 and QCM-2017-3-0040, where 
calculations with up to 256 cores were performed. 

The analysis of electronic structure properties and the comparison of 
ZnO species (band gap, formation energies…) started with an analysis of 
properties, going from 3 dimensions material to 0 dimensions, this means 
from bulk, to surfaces, nanotubes and finally spherical and non-spherical 
nanoparticles. In the case of the bulk, nanotubes, surfaces and non-spherical 
nanoparticles, structures modelled were cut from the 3D expansion of the 
wurtzite-type structure (zincite) with the experimental lattice parameters of 
a=b=3.25 and c=5.20 Å. 5 The expansion was built with Avogadro, 9 an open-
source molecular builder and visualization tool. For the construction of 
spherical nanoparticles, it was used the software Nanocut, a program designed 
to cut out various objects from three dimensional crystal structures for atomistic 
simulations (https://aradi.bitbucket.io/nanocut/index.html ).  
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2.2. Bulk optimisation 

The energy of experimental crystallographic parameters of ZnO bulk 
crystal was minimized at various k-points grids and energy cut-offs to establish 
the optimum values for those parameters and for the bulk crystallographic 
parameters. Simulation cell was formed by 4 atoms as shown in Figure 1. 
Results converged for the bulk structure at plane-wave cut-off energy of 85 Ry 
and k-points 5x5x3, see Table 1. Results show good agreement with 
experimental and GGA values from literature.  

  

Table 1. ZnO bulk computational and experimental cell parameters. 

                                  CELL PARAMETERS (Å) 

           This thesis GGA/ Experimental 

    a & b 3.30    3.25 10/ 3.23, 3.2832 

       c 5.31       5.21 10/ 5.272 

      c/a 1.61 1.60 10/ 1.632 

 

The band gap obtained for the bulk is 0.7 eV, clearly underestimated 
at this level of theory but a result expected for GGA optimisation; other 
computational studies at the same level of theory are around 0.74 eV. 10 
 

 2.3. Surfaces  

Next step for the thesis was the building and optimization of three 
different surfaces geometries for ZnO wurtzite type structure, (100), (001) and 

(11̅0). These surfaces were found in the literature to be the most stable ones, 
10–12  and therefore the most adequate candidates to be exposed in 
nanoparticles or other reactive media.  The geometry of these three surfaces 
are showed in Figure 2a, 2b and 2c. 

 

 

 

 

 

 

   a. Surface (001)              b. Surface (100)                      c. Surface (1�̅�0) 

 

Figure 2. General representation of the three different surfaces of ZnO studied. 
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The work done for the ZnO surfaces was focused in the study of the 
total energy of the computed system, the calculation of the surface formation 
energy and band gap for each face. Since the slab can be formed by the 
repetition of unit cells normal to the surface, we explored the effect of 
increasing the number of those unit cells (it is, the thickness of the slab); for 
the surface (001), the surface unit cell; was (2x1), for the other two surfaces, 
the surface unit cell repeated was (1x1). The effect of varying the vacuum (dv) 
gap between the layers in calculations was also explored to ensure there was 
no interaction between adjacent slabs (i.e., between top surface and the 
bottom surface of two consecutive slabs). Vacuum regions (dv) of 6 to 15 Å in 
case of (001) face were explored, results showed in Table 2. In Figure 3 is 
represented a scheme of one surface of 3 slabs.  

 

Table 2. DFT optimization results for (001) face. 

 

Figure 3. Representation of (001) surface geometry with three slabs. In blue 
the initial unit cell of ZnO bulk 

 

d
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Unit cell 

dv (Å) Etotal (Ry)/slab ΔE band gap (eV)  Esurface formation   (J/m2)

6 -571.101 1.37 0.5139

8 -571.101 1.37 0.5167

10 -571.101 1.4 0.5157

12 -571.101 1.39 0.5174

15 -571.101 1.4 0.5170

6 -571.109 1.2 0.4286

8 -571.109 1.21 0.4285

10 -571.109 1.2 0.4301

12 -571.109 1.19 0.4306

15 -571.109 1.19 0.4309

6 -571.110 metallic 0.4130

8 -571.111 1.08 0.4010

10 -571.111 1.14 0.3996

12 -571.111 1.1 0.4031

15 -571.111 1.11 0.4019

6 -571.115 metallic 1.4447

8 -571.114 metallic 1.4594

10 -571.114 0.27 1.4689

12 -571.114 0.3 1.4734

15 -571.114 0.31 1.4773
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A Similar work was done for slabs on the (100) structure. However, 
after the findings for (001) surface, and single and double slabs in the (001) 
surface, it was concluded that a vacuum gap of 12 Å was enough to avoid any 
slab interactions (even 10 Å have given almost the same results). As a 
consequence, for the triple repetition (100) slab, only the calculation of 12 Å 
vacuum was performed. The results for (100) face are showed in Table 3 and 
for the face (11 0) in Table 4. 

 

Table 3. DFT optimization results for (100) face.  

 

 
 
 
 

 

Table 4. DFT optimization results for (1�̅�0) face 

 
 

In all cases, the thicker the slab, the more stable is the surface, 
because of the presence of more saturated atoms, less presence of dangling 
bonds in average, and also because the dangling bonds are further on the two 
exposed surfaces. We also want to mention that the small band gaps are also 

dv (Å) Etotal (Ry)/slab

ΔE band gap 

(eV)  Esurface formation   (J/m2)

6 -1142.102 1.80 0.684

8 -1142.101 1.85 0.686

12 -1142.100 2.35 0.688

15 -1142.100 3.35 0.689

6 -1142.174 1.90 0.846

8 -1142.173 1.41 0.853

12 -1142.173 1.42 0.853

15 -1142.173 1.42 0.853

triple slab 12 -1142.213 2.25 0.853
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dv (Å) Etotal (Ry)/slab

ΔE band gap 

(eV)  Esurface formation   (J/m2)

6 -1,142.174 3.95 0.732

8 -1,142.174 3.05 0.734

12 -1,142.173 2.06 0.735

15 -1,142.173 2.3 0.736

double slab 12 -1,142.226 1.3 0.816

triple slab 12 -1,142.248 2.2 0.811
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an effect of the use of GGA functionals, and this effect will be corrected in the 
next section. 

Comparing results of Esurface formation between Table 2, 3 and 4 
structures, the different surface (001) geometries are the most favourable to 
growth because of the lowest values in surface formation energy. The surface 

(100) is much less stable than the (001) and (11̅0). As a consequence, these 
two last ones will be predominant in nanomaterials. If we compare three 
structures of exposed surface with the same vacuum distance, we obtain the 
graphic of 4, where the stability of the surfaces can be observed easily. 

Results of optimized surfaces by DFT (B3LYP functional) found in 
bibliography are for the face (100) for slabs from 12 to 18 layers with values 
around 1.3 to 1.4 J/m2. 13 It is also noteworthy they report values for band gap 
in surfaces in the range of 2.8 to 3.1 eV using this hybrid functional. On the 
other hand, for the same surface, we have found values in literature from 0.84 
to 0.91 J/m2  from different works using GGA functional, PBE, 1.58 J/m2 using 
LDA or 0.94 J/m2 with GGA-PBE+U. 14 Then our results are in good agreement 
with bibliography. 

 
 

 
Figure 4. Surface formation energy for double slabs. 

 
 

 2.4. Nanotubes of ZnO, 1D structures. 

The ZnO nanotubes were constructed from wurtzite ZnO with 
optimized lattice parameters and dv of 10 Å. In the case of nanotubes, and 
after the analysis of  the energy interaction in slabs, we decided to use 10 Å 
instead of 12 Å because results were converged and it also helps to save 
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computational time. The model started from cutting a 3x3x3 unit cell with 
plane directions of interest and then expanding the minimum repetition unit 
cell until double or triple size a, b or c as required. With this, we obtained 3 
different combinations of faces, and in consequence, 3 different geometries 
of nanotubes. Nanotubes type 1 are combining the faces (100) & (001), 

nanotubes type 2 are combining the faces (100) & (11̅0) and finally nanotubes 

type 3 are combining (001) & (11̅0) face geometries. General view of each type 
of NTB are in Table 5. 

Table 5. General representation of the three different types of nanotubes studied 
with the direction expanded. 

           Type 1 Type 2 Type 3 

 
 
 
 
 
 
 
 
 

  
 

 
  The edge formation energies and the band gap of the nanotubes 

were evaluated to study their variation depending of the geometry used. 
Results of these studies are summarised in Table 6  
 

Table 6. Nanotubes results. 

 

  
Number 

of 
atoms 

a (Å) b  (Å) c  (Å) 

ΔE 
band 
gap 
(eV) 

E edges 
formation 
(eV/ nm) 

Type 
1 

NTB1 24 9.75 3.25 10.41 1.12 0.42 

NTB2 72 9.75 9.75 16.42 0.99 11.50 

Type 
2 

NTB1 16 6.60 6.60 5.33 1.55 0.50 

NTB2 32 6.60 6.60 10.66 1.55 0.73 

NTB3 36 9.91 9.91 5.33 0.00 2.19 

NTB4 108 9.91 9.91 15.99 1.45 2.14 

Type 
3 

NTB1 16 3.30 3.30 5.29 1.80 1.98 

NTB2 36 3.25 9.46 15.74 1.60 4.12 

NTB3 32 6.60 6.60 10.57 1.80 2.13 

NTB4 108 9.91 9.90 15.74 0.85 4.98 

c 
a 
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During this thesis we have tried to find some bibliography related to 

the study of the formation energies of ZnO nanotubes or similar results to 
compare, but it has been tricky and few results have been found. For 
nanotubes type 2, with different faces orientation, Wilson et al. 4  gave results 
between 0.71 and 0.93 eV/nm, which are in very good agreement with values 
computed in this work. The rest of results are in this order of magnitude or 
slightly higher values. Taking into account the reconstruction of surfaces for 
different size of the surfaces in the nanotubes, these Eedge variations can be 
explained according to this effect. 

About the band gap for nanotubes here showed, Band gaps of NTBs 
here presented are in the same order of magnitude than in bulk calculations, 
because is the same degree of theory. 

 

 2.5. Nanoparticles of ZnO, 0D structures. 

For the study of the 0 D structures, several types of nanoparticles (NP) 
were built. Non-spherical nanoparticles were built from the basis unit cell of 
wurzite type and cutting until the number of atoms desired. On the other 
hand, the spherical nanoparticles were built with the Nanocut software. In 
Table 7, the parameters of non-spherical nanoparticles and the band gap (eV) 
obtained after their optimisation. In Figure 5 are shown each non-spherical 
NP. In Table 8 we display the parameters of spherical NP and the band gap 
(eV), finally we can observe in Figure 6 the different views for each one. 

 

Table 7. Parameters and optimised results for non-spherical nanoparticles 

Parameters NP5         NP6 

a (Å) 3.676        8.728 

c (Å)          3.343         6.587 

Number       
of atoms 

            16           54 

ΔE Band gap 
(eV) 

         metallic          1.0 
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NP5                          NP6 

Figure 5. Representation of non-spherical nanoparticles, NP5 and NP6, optimized. 

 
 

Table 8. Parameters for spherical nanoparticles 

Parameters NP10 NP15 NP20 

d (nm) 1.0 1.5 2.0 

Number of 
atoms 

33 16 327 

ΔE Band 
gap (eV) 

1.2 0.25 0.52 

 
 
 
 
 
 
 
 
 
 

 

NP10                                            NP15                                            NP20 

Figure 6. Representation for each type of spherical nanoparticles optimized NP10, 
NP15 and NP20. 

In the case, of NP we have obtained small results of band gaps given 
the quantity of dangling bonds and small peaks in the density of state 
representation. In the case of spherical nanoparticles, it is not possible to 
calculate the nanoparticle formation energy given that the quantity of Zn and 
O are not stechiometric. 
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3. ZnO at DFT+U level 
  

As we mentioned in the Introduction chapter, one of the porpoise of 
this thesis is to get comparable computational results of band gap and 
solubility properties with the experimental results found. 

While satisfactorily reproducing structural parameters with DFT at 
GGA level, in some cases electronic properties substantially underestimate the 
bandgap of semiconductor oxides, with ZnO bulk representing a dramatic 
case. Due to the limitation of the band gap calculation in this type of metal 
oxides with the pure DFT GGA functional, we can introduce the Hubbard 
corrections to the GGA, GGA+U, for improving the bandgap determination. 

The on-site Coulomb correlation energy Hubbard-type interactions 
are included through the Hubbard parameters U and J in our calculations, the 
values used were 10.5 and 7.0 (eV) respectively for the metal centre. 15,16 The 
electronic structure of O atoms was not corrected. 

In order to obtain better band gap results, we ran the optimized 
geometry structures in DFT with DFT+U correction. Results are shown in Table 
9: 

Table 9. Resume of DFT+U results obtained. 

  Band gap Average (eV) 

  DFT DFT+U 

(001) 

single slab 1.39 3.58 

double slab 1.20 3.46 

triple slab 1.11 3.42 

(100) 

single slab 1.42 5.60 

double slab 1.42 4.05 

triple slab 2.25 3.40 

 (11̅0) 

single slab 2.68 4.10 

double slab 1.30 4.25 

triple slab 2.20 3.25 

 

As a difference with the band gap determination by DFT, no metallic 
results appeared. These results are in good agreement with similar results 
published either theoretical of 2.8-3.1 eV for surfaces, 13 3.36 eV 16 or 3.3-3.4 
theoretical and experimental 17,18 for ZnO bulk. In such a manner, results more 
similar to the experimental ones were achieved. Since the goal is to simulate 
computationally this parameter as a property for toxicity evaluation, we need 
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as much accuracy as possible when comparing with experimental results for 
further QSAR models development.   

The optimisation of NP with this functional was done using then so 
much time for running calculations, the results obtained are shown in Table 
10. As in the case of surfaces, the band gap obtained is better for smaller NP, 
the NP5, but for the rest of them is far of the experimental value for the bulk. 

 

4. DFTB, Optimization with Density functional Tight-Binding 
methodology. 

 
The next step in this thesis it was to implement DFTB for our 

simulations. The reason to use this method was because with pure DFT (or 
even worst with DFT+U) there are limitations in time consuming resources and 
with the capacity of the same resources. This means that for structures with 
more than 200 atoms, it is necessary lots of CPU time and memory capacity 
for the optimization of geometries and band gap calculations. The only way to 
achieve such results for bigger NP is running calculation in High Performance 
Computing (HPC) systems, where each calculation needs 256 cores or more 
and many days. 

An alternative to use HPC systems is DFTB methodology. The use of 
DFTB let us to increase the size of nanoparticles and run optimizations faster 
and with accurate results. 19,20. The results obtained comparing DFTB with 
DFT+U are showed in Table 10 (DFT results are neglected because of the poor 
results showed). 

Table 10. NP results comparison between DFTB and DFT+U. Band gaps in 
eV. 

 Name of NP 
DFTB 

Band gap  
DFT+U   

Band gap  
Number of 

atoms 

NP          no 
spherical 

NP5         3.03 2.95 16 

         NP6         1.35 1.8 54 

         NP8          3.11 0.54 568 

NP spherical 

  NP10          2.78 0.85 33 

        NP15          2.12 0.29 144 

  NP20           3.61 0.65 327 

 
 
The results showed in Table 10 for the DFT+U techniques for bigger 

sizes in both types of nanoparticles are far of the band gap found in literature 
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for ZnO NPs, as it can be seen in Table 1 of chapter 6. However, this effect is 
not happening for the DFTB simulations, which are around the values 
expected from experiments. So, after this work it is shown that DFTB has some 
advantages for band gap calculations respect the pure DFT and DFT+U in terms 
of results, as well as for the time consuming for running the calculations and 
the resources needed for that porpoise. 
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Chapter 4. TiO2, validation case. 
 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 
 

TiO2 has been commercially manufactured by millions of tons to be 
widely utilized such as pigment, paint additive, in sunscreen, due to its 
photostability and light dispersion, yet simultaneously strong UV light filtering, 
also serving as the electron transport scaffold in photovoltaic applications due 
to its electrical properties and for other advanced applications such as sensing, 
biomedicine, and electronics. 1,2 

Solid TiO2 presents in nature three common atomic arrangements: the 
anatase, which has a tetragonal crystallographic structure with space group 
I41/amd, brookite, which is orthorhombic with space group Pbca and rutile with 
tetragonal phase and the space group is P42/mnm. All aforementioned 
applications of TiO2 are possible thanks to the large band gap of 3.2, 3.02, and 
2.96 eV for the anatase, rutile and brookite phases, respectively. 1 Rutile is the 
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most stable structure in nature and in most temperatures and pressures, and 
for nanoparticles with sizes bigger than 14nm,1 though anatase is very close in 
energy and it is also easily observed.  

This thesis is centred in anatase phase and the derived nanoparticles 
from this structure, because it is preferred over other polymorphs for its high 
application in technology fields given its large band gap (better photocatalyst 
than rutile)1 and higher chemical reactivity. 3,4 Besides, anatase structure is 
preferred for nanostructures of TiO2 in the range of size that we are capable 
of simulating. 5,6 

The anatase phase has a tetragonal structure with a unit cell of 12 

atoms and lattice parameters a = b = 3.7842 Å and c = 9.5146 Å, = 90º. 
The basis cell of TiO2 anatase phase is shown in Figure 1, where blue balls 
represent Ti and red O. 

 

                     
  

 
Figure 1. Tetragonal cell of anatase phase. In blue Ti atoms, in red O atoms. 
 

As previously commented, the objective in studying TiO2 is to confirm 
the good agreement of results in this thesis in band gap determination and 
solubility by in silico methods with existing experimental results, trying to 
avoid more expensive experimental work and data dispersion given the 
experimental conditions. TiO2 anatase phase has been optimised by DFT at 
Gradient Generalised Approximation (GGA) level, as well as it was done with 
the ZnO; later with DFT+U to obtain improved results for the electronic band 
gap; finally, DFTB was used in order to compare results of this quasi pure DFT 
with the DFT and DFT+U electronic band gap values in case of TiO2 as in ZnO. 
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This was done given that the time consuming and resources needed for DFTB 
are much scarce in comparison with DFT and DFT+U.  

 

2. DFT and DFT+U Calculations 
 

 2.1. Computational details 

Density functional theory calculations are conducted using the 
Quantum espresso (QE) program. 7,8 The self-consistent calculations were 
performed under the (GGA) with the functional PBE. The effect of the core 
electrons on the valence electron density was described by the projector 
augmented wave (PAW) method. The cut-off for the kinetic energy of the 
plane-waves has been set to 90 Ry throughout, which ensures a total energy 
convergence better than 10-6 eV. A Gaussian smearing technique with a 0.005 
eV width has been applied to enhance convergence but all energies presented 
in the following have been obtained by extrapolating to zero smearing (0K). 

 
For the DFT+U calculations the on-site Coulomb correlation energy 

Hubbard-type interactions are included through the Hubbard parameters U 
and J for Ti atoms, the values used were 4.0 and 4.2, respectively. 9,10  

For DFTB calculations, Self-Consistent-Charge calculations were 
performed with electronic convergence energy of 10-6 eV. The Sloter-Koster 
files tiorg-0-1 for Ti and mio-0-1 for O used in current simulations were 
obtained from DFTB+ webpage distribution 
(http://www.dftb.org/parameters/download/ ). 

 

2.2. Bulk optimization 

Table 1 summarizes optimized parameters for anatase bulk phase at 
DFT and DFT+U levels. For comparison, we also include literature values both 
at DFT(+U) and at experimental level values. 
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Table 1. Optimized cell parameters and band gap. 

 

 
DFT (this 

work) 
DFT+U (this 

work) 
DFT DFT+U Experimental1 

a & b (Å) 3.801 3.827 
3.78,11  
3.73710 

3.809, 
3.79510 

3.784 

c (Å) 9.737 9.646 
9.777,11 
9.72110 

9.641, 
9.59510 

9.515 

Band gap 
(eV) 

2.35 3.15 
2.27,12 
2.1110 

3.03, 
3.3510 

3.20 

 

Our results at DFT+U level of theory are very close to experimental 
parameters, both for lattice vectors and for band gap. They also compare 
extremely well with previously published DFT parameters, being differences 
in the range of 0.03 Å and 0.2 eV for lattice parameters and energy band gaps, 
respectively. 

 

2.3. Results for Anatase surfaces at DFT level 

The following step for the thesis was, as it was done for ZnO, the 
optimization of two surface geometries, the (100) because is considered the 
most stable for anatase phase given the high surface free energy and the (001) 
is the next surface more stable, for TiO2 anatase, 2 as can be found in 
bibliography and the results obtained will show. The geometries of the 
surfaces are displayed in Figure 2, exposing both faces to vacuum. Surfaces 
were represented by periodically repeated slabs consisting of two atomic 
layers and separated by the vacuum. Simulation supercells in our calculations 
corresponded to the 3x1 surface unit cell and to the 3x3 surface unit cell, for 
the (100) and (001) surfaces, respectively. 

 
 
 
 
 
 
 

 
  

a) Surface (100)                                                   b) Surface (001) 

 
Figure 2. Representation of the surface structures studied. 
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The work done with TiO2 surfaces was centered in the study of the 
surface formation energy (Esurf) of the computed surfaces and band gaps. After 
a set of simulations with different distances of vacuum (dv), we present results 
for 10 Å gap between consecutive layers. This separation showed up to be 
enough to ensure there was no interaction between adjacent slabs, from the 
top of a slab and the bottom of the periodic slab image.  

Esurf for the (100) surface was 0.27 J/m2 (see Figure 2a). Although 
larger, this result is in good agreement with the 0.58 J/m2 found in 
bibliography for the work of Vittadini et al. 13. The discrepancy is possibly given 
by the use of larger unit cell larger than in the referenced work. This gives our 
systems more degrees of freedom for stabilitzation in the observed small 
surface reconstruction. For the case of the (001) surface (structure Figure 2b) 
the computed value is 0.52 J/m2. This result is in good agreement with the 
range of values showed in Table 2 of the work by Eduard Araujo-Lopez et al. 
for the same type of pseupotentials and DFT functionals. 10  Therefore, taking 
into account the presented results, it is clear to state that the surface (100) is 
more stable and less reactive, as previously observed in literature. 13  

As you can state, the study of the TiO2 anatase surfaces was not as 
deep as in the case of ZnO because this thesis is more centered in the NP 
optimization for the calculation of toxicity descriptors. The work for validating 
methodology was previously done with ZnO, and this part of the thesis is 
focused in the use of the validated methods for TiO2. 

 

 

3.  TiO2 Nanoparticles 
 

For the study of the 0-D limit of TiO2, a set of different kinds of 
nanoparticles were built as in the case of ZnO. The non-spherical nanoparticles 
were built from the basis unit cell of anatase type and cutting until the number 
of atoms desired. In Figure 3 there are represented the NPs calculated. It 
displays from the NP1, which is the smallest for TiO2 cluster for non-spherical 
nanoparticles and  the cluster was formed by 12 atoms in the stechiometric 
ratio (TiO2)4 , until the spherical NP 4 of 261 atoms. For this last NP4 an 
alternative NP4a structure was optimized with stechiometric proportion of 
TiO2 for the sake of comparison. 

The spherical nanoparticles were built with the nanocut software. As 
in the case of ZnO, this type of structure did not keep the stechiometric ratio, 
and the formation energy of the NP respect to cannot be obtained. In Figure 
3, there are the representative figures for the studied nanoparticles. All five 
NPs have been optimized at DFT, DFT+U and DFTB levels, but as it can be seen 
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in Table 2, for the case of NP 4 and NP4a it was not possible to run the 
calculations because of memory capacity necessity in the computational 
clusters at this sizes.  

 

 
 
 

 
  
 
 
 
 
 
 
 

               
 

Figure 3. Representation of the TiO2 nanoparticles studied. 
 

 
 
 
Table 2. Results for the TiO2 nanoparticles studied by the three methods of 

DFT. Eform is the formation energy in H/atom. Band gap in eV.  
 

Nº of 
NP 

Number 
of 

atoms 

           DFT             DFT+U             DFTB 

Eform 
Band 
gap 

Eform 
Band 
gap 

Eform 
Band 
gap 

1 12 0.028 1.550 0.041 3.000 0.030 2.610 

2 51 0.020 1.500 0.023 2.700 0.017 2.600 

3 143 3.345 0.500 3.429 2.400 -0.075 1.140 

4 261     0.031 metallic 

4a 258     0.031 metallic 

 

In Table 2 is observed that the band gap for DFT+U and DFTB methods 
are much closer than for DFT. Formation energy was computed from the bulk 
and per number of atoms. For non-stechiometric structures (NP3 and NP4), 
this value must be taken with great care, because the contribution of Ti and O 
atoms may be different in the different type of methods. NP3 presents an 
excess of 10% in O atoms, and NP4 an excess of 4% in Ti atoms. In the case of 
stechiometric structures (NP1, NP2 and NP4a), results for formation energy 
are consistent, and the trend that band gaps follows a decreasing line. In any 
case, we expect that for larger NP, the O excess or deficiency trends to 0, 

NP 1 NP 3 NP 2 NP 4 
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because the largest part of the system will be the stechiometric core of the 
NP, and the surface contribution to formation energy per atom becomes 
stable. 

 Taking into account that DFT+U is the most reliable method, but with 
the heaviest calculation time, DFTB is a good alternative for large NPs band 
gap evaluation. As a general trend, it is also observed that the bigger the NP, 
the smaller the values of band gap, describing a more metallic behaviour of 
the TiO2 NP.  

These optimized values at DFTB level will be used in the following 
chapters to create a band gap model for prediction as it was done in the case 
of ZnO.  

As a conclusion, and in accordance to the case of the ZnO, given the 
good results obtained with DFTB, this is the technique chosen to create more 
results for the descriptors used for QSAR modelling in Chapter 6 of this thesis 
and in the Chapter 5 for the solubility study. With this, we have validated this 
methodology of combining DFT methods to improve the quality of our results, 
and computing systems beyond the limits of classic DFT. 
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Chapter 5. Solubility 
 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

This chapter is dedicated to the determination of the solubility of 
metal oxides nanoparticles (in particular ZnO and TiO2 were the centre of our 
work) in aqueous environment. The work started with ZnO NP in deep detail, 
determining the most reliable method as a function of composition and NP 
size. Later on, the experience acquired in the work with ZnO was extrapolated 
to TiO2 NP in order to standardize the methodology used, and as a 
confirmation of the fruitful strategy in the evaluation of NP solubility. 

One extra skill introduced in this chapter is the creation of QR codes 
to facility the observation of the molecular dynamics simulations. The 
visualization of molecular dynamics is a powerful tool in understanding 
chemical processes, and in particular, the chemistry happening on NP surfaces 
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and the interaction with water molecules. The QR code is directly linked to a 
youtube channel created for this purpose, the caption of the pictures related 
to the MD simulations are direct links to the simulation too. 

As stated in the introduction of this thesis, one key parameter for the 
toxicology evaluation of nanoparticle is the solubility in the media. In this 
chapter, a new methodology for the solubility estimation of metal oxide 
nanoparticles based on MD simulations and in silico methods is presented. 
With the use of MD simulations coupled with DFTB, which can incorporate the 
direct description of liquid water, we can go a step further in the field of 
toxicology and calculate physical and chemical properties that can be 
subsequently used as descriptors for Quantitative Structure-Activity 
Relationship (QSAR) toxicology models.  

Current work focuses on the computational prediction of ZnO 
solubility as a first step to establish a purely computational workflow for in 
silico nanotoxicity assessment of metal oxides based on molecular dynamic 
(MD) simulations. The development and improvement of electronic structure 
calculations methods based on quantum mechanics, as is the case of the 
Density Functional Tight Binding (DFTB) theory, and the ever-growing 
computational capabilities in supercomputing in the last years, makes it 
possible nowadays to simulate dynamics models that were prohibitive a few 
years ago. As a step further, we have extrapolated the solubility estimation 
method used for ZnO to TiO2, in order to validate the methodology based on 
pure in silico data obtained from DFTB simulations and using non-extensive 
thermodynamic models.  

This chapter is divided as follows. First, we present how to evaluate 
Ksp for small nanoparticles directly form MD simulations for ZnO NP. After this, 
results obtained using this method are shown and compared with 
experimental values. Finally, in order to evaluate the solubility of large 
nanoparticles, we couple this methodology with the use on non-extensive 
methods based on thermodynamic properties for ZnO and TiO2 NP.  

 

2. Solubility evaluation for nanoparticles up to 2 nm  
 

 2.1. Computational details for MD Simulations and Ksp evaluation 

The solubility product constant (Ksp) is a well-defined value for an ionic 
solid (in general a binary salt: AnBm) and is well defined from the ions in 
solution: Ksp = [Am+]n[Bn+]m. However, in non-ionic solids, this definition is more 
ambiguous since the solved product may not be an ion but a cluster or any 

UNIVERSITAT ROVIRA I VIRGILI 
COMPUTATIONAL CHARACTERISATION OF METAL OXIDE NANOPARTICLES FOR HAZARD SCREENING AND RISK ASSESSMENT 
Laura Escorihuela Martí 
 



- 69 - 
 

other general species interacting with water. In the case of ZnO (it can be the 
bulk or any large nanoparticles), the general dissolution equation is: 

 
ZnO(s) + H2O(l) → ZnO(aq)      (5.1) 
 
Large ZnO nanoparticles, in solid state or already in solution, can react 

in water and become more dissolved in smaller nanoparticles or clusters as: 
 

ZnO(large NP, s) + H2O(l) → ZnO(small NP, aq)    (5.2) 
 
Another way to define the Ksp is as the reactivity constant, Kr, of the 

previous reactions. From statistical thermodynamics, one can define the 
reactivity constant of a reaction as:  

      𝐾𝑟 = ∏ 𝑄𝑖𝑒
−∆𝐸

𝑅𝑇⁄
𝑖                                        (5.3) 

 
where Qi are the partition functions of products and reactants, and ΔE 

is the free energy exchange in the dissolution reaction.1 In this work, the Q 
was approximated as 1, because in the dissolution reaction, the most 
important factor contributing to the partition function is the entropy of the 
liquid phases, both in the reactants and the products. Even if this value is not 
close to one, it will not be the predominant factor in the reaction constant and 
will barely change the order of magnitude or the Kr, since the exponential 
energy related factor is the most predominant in determining the order of 
magnitude of Kr.  

MD simulations were performed to model the solution of ZnO in 
water. Since liquid water is a reactive dynamic system, the use of quantum-
based MD simulations is mandatory at finite temperatures. In order to 
compute interatomic interactions, we made use of the Density Functional 
Tight Binding (DFTB) approximation as implemented in the DFTB+ code. This 
code uses Verlet’s algorithm to integrate the classical Newton’s equations of 
motion. A time step of 1.0 femtosecond (fs) was used for the integration. 
Simulations were performed in the canonical ensemble (at constant 
temperature, volume, and number of atoms, also named as NVT ensemble) 
using the Nosé-Hover thermostat, with a frequency of oscillation of the 
thermostating particles of 4000 cm-1. A convergence criterion of 10-4 eV in the 
energies of the k-point was used on the Self Consistent Charge (SCC) cycles. 
For charged systems, the Ewald summation technique was used to account for 
the periodic dipole images of the super unit cells, where DFTB+ automatically 
detects the optimum summation value for the computed systems. 2 

Simulations were performed at nominal room temperature (300 K) for 
all systems. Simulations were run for 10 picoseconds (ps) for most systems; 20 
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ps runs were performed on two reference systems to ensure the convergence 
of the energy and structural properties of the models. The average properties 
were obtained discarding the 2 first picoseconds of simulation to allow the 
system to equilibrate after the kinetic energy injection at the start of the 
simulation. Finally, Radial Distribution Functions (RDF) were used to follow the 
water and ZnO crystal structures during the simulations period. 

As a starting point in this work, we simulated the reactants in equation 
(1) using the aforementioned methodology. The solid ZnO bulk model 
consisted of a 5x5x3 supercell (figure 1a) of the wurtzite-type structure 
(zincite) with the experimental lattice parameters of 3.25 and 5.20 Å. RDF of 
solid ZnO is reproduced in Figure 1b, clearly depicting the interatomic 
distances and the coordination of Zn and O atoms. The cubic water simulation 
boxes of nominal 20 (figure 2a) 25, and 30 Å were obtained using the water 
creation plugging in the VMD code, 3 which produces water boxes of randomly 
distributed water molecules with a formal density around 0.9-0.95 g·cm-3. 

 

 

 
 

 
 
 
 
 

Figure 1. (a) 5x5x3 supercell ZnO wurtzite type. (b) Radial Distribution 
Function of the 5x5x3 unit cell of the wurzite-ZnO bulk at 300 K for 10 ps simulation. 
Zn-Zn and O-O curves overlap due to the crystal symmetry. 

 
 
 
 
 
 
 
 

 
Figure 2. (a) Model of a cubic box of 268 water molecules (20 Å) for 

simulations at 300 K and DFTB level and (b) its corresponding Radial Distribution 
Function of water molecules for a 10 ps simulation. In (a) oxygen is red and hydrogen 
is light grey. 

 

a b
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Water is a system that has been previously studied by means of SCC-
DFTB simulations. The system is very special from the atomistic simulations 
point of view due to the H-bond interactions between molecules. These 
interactions represent a big challenge, not only at SCC-DFTB level, but also in 
normal DFT. DFT functionals (at LDA, GGA and meta-GGA levels) do not 
describe properly the long range coulombic and exchange interactions4 
limiting the description of structural and thermodynamic properties of liquid 
water. 

The RDF corresponding to water bulk simulation is displayed in Figure 
2(b). At 0.9 Å appears the peak assigned to the O–H bonds in water molecules, 
at 1.8 Å there is the peak of to the O···H contact of the H-bonds of the first 
solvation shell and at 3.2 Å is a smooth peak of the other H atoms of this first 
solvation shell. The RDF of O-O interactions shows a pronounced peak at 2.8 
Å, corresponding to the first solvation shell, and then a broad peak at 5.5 Å, 
produced by an almost non-existing second coordination sphere. The 
integration of the first peak gives values of 2.3-3.6 water molecules, 
depending on how the first peak is deconvoluted, in accordance with results 
of 2.4-3.7 water molecules in the SCC-DFTB simulations of 128 water 
molecules.5  

The average properties resulting from a water box simulation of 20 Å 
up to 20 ps were used to check the convergence of the energy and RDF 
structural parameters in 10 ps simulations. Average energies (Table 1) per 
water molecule differ only 1 thousandth of eV in the longer simulation respect 
to the 10 ps one. The RDF analysis of the extended simulation is very similar 
to the one of 10 ps; however, the maximum of the first peak of the O-O 

interaction moves down 0.15 Å, indicating a slightly more compressed water 
system. This effect was also observed in longer simulations times (50 ps) of 
water with SCC-DFTB, where water created some voids in the water boxes.6 
Because we are mostly interested in the ZnO-water interactions to describe 
the solubility, and not the water itself, the simulation period of 10 ps is enough 
for non-reactive systems, avoiding also the formation of those voids in the 
water box.  
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Table 1. Computational data for water models. Size of boxes in Å; 

simulation time () in ps; density () in g·cm-3; number of water molecules (N); 
average energy (E) in hartrees per water molecule; computational time (t) per MD 

step in s (calculations were performed on a DELL PowerEdge R610 platform, with 32 
threads Intel Xeon E5530 2.40GHZ and 90 GB of RAM). 

 

Studies of bulk water (in relatively small unit cells in comparison to our 
work, between 128-512 atoms) at SCC-DFTB level have shown that there is an 
overcoordination of water molecules in the first solvation shell, and loss of 
order at the second and third shells; this has as a consequence that, in variable 
volume cell simulations, one overestimates the water density and 
underestimates the heat of vaporisation of water dimers. 6,5,7 Some 
corrections have been introduced in SCC-DFTB to account for the H-bond 
interactions in what is called DFTB3 approximation, and although improving 
matters, this still lacks the right description of bulk water.5,6 Despite these 
limitations in bulk water, the method has been applied quite successfully in 
studying the proton exchange reaction in water 6–8 or in anionic systems in 
water, 9 which still shows the possibilities of this method in complex reactions 
in solution. 

Table 1 also presents the average energies computed for larger cubes 
of water (nominal edges of 25 and 30 Å), and differences only differ in the 

fourth decimal of the energy in Hartrees (10-4 H are 2.7 meV), which is below 
the limit of precision of the DFTB+ energy evaluation for water boxes and 
proton transfers in water boxes.6 Another important factor here is the 
scalability of the system. The computational time increase in our simulations 
is in the order of N2.2-2.4 (N is the number of atoms); this is the classic behaviour 
of DFTB methodology.8  

 

2.2. Zn2+, O2- and NPs in water solution 

As a first model to describe the solubility of ZnO and its large 
nanoparticles, the fully dissolved system, i.e., the Zn2+ cation and O2- anion in 
water boxes were simulated and taken as the final products of the solving 
process. Furthermore, as we know that in those systems, the oxygen anion is 

Nominal 
size 

Real 
size 

 N  E t 

20 20.5 10 268 0.93 -4.0792 14.88 

20 20.5 20 268 0.93 -4.0790 14.97 

25 25.9 10 526 0.91 -4.0791 64.5 

30 31.9 10 995 0.92 -4.0793 354.3 
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especially unstable in water solutions, the simulation of the smallest ZnO 
cluster consisting of only two atoms was performed.  

Figure 3 shows the RDF analysis of those species in solution. For the 
RDF of O2- in the water box (Figure 3a) there is no substantial difference 
respect to Figure 2(b) of pure water, because the averaged effect of the O2- in 
the total number of water molecules is tiny. However, the O2- is tremendously 
reactive in water, and the immediate effect after starting the simulation was 
to start proton exchanges with other water molecules. This had as a result that 
the simulation ended being a box containing two solvated OH- groups. 

The case of Zn2+ is slightly different, since this cation is stabilized in 
water solutions due to the interaction with the lone-pair electrons of O-atoms 
of water. Beyond the features assigned to water (O-O, O-H and H-H contacts), 
the RDF of this system shows a clear Zn-O contact at 2.0 Å produced by a first 
solvation shell (Figure 3b), as well as a more diffused second solvation shell 
around 3.75 Å. The first peak integrates 6 water molecules, corresponding to 
an octahedral solvation shell around the Zn2+ cation. This same behaviour was 
observed both at DFTB and DFT level 10 in their tests calculations when 
studying the water/ZnO interfaces, or in QM/MM models when studying 
divalent cations in water. 11 

 

 

 

Figure 3. Radial Distribution Function of the (a) O2-, (b) Zn2+ species in a 

water box of nominal 20 Å, at 300 K, for 10 ps simulation. 
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The first NP introduced in water was the NP1 model, i.e. a linear 
cluster formed only by a Zn and an O atom. However, as in the case of the O2-

, this system showed a high reactivity vs. water, and once the simulation 
started, it hydrolysed immediately and formed the neutral Zn(OH)2 species. 
The RDF of this system is displayed in Figure 4, presents a first solvation shell 
of the Zn atom between 1.6-2.2 Å (Zn-O contact) with two peaks. The peak 
centred at 1.7 Å corresponds to the two Zn-OH contacts, and the one at 1.9 Å 
to three contacts to water molecules. This Zn(OH)2·(H2O)3 species adopts a 
trigonal bipyramidal structure, with the two OH groups in the equatorial plane 
during all the simulation period. This structure is different to the [Zn(H2O)6)]2+ 
species because there exists charge transfer between the OH- groups to the 
Zn2+ centre and it can stabilize another symmetry structure. Moreover, Zn2+ is 
a metallocenter known to easily stabilize different coordination numbers and 
structures. 12  

 

 

Figure 4. Radial Distribution Function of NP1 specie in a water box of 

nominal 20 Å, at 300 K, for 10 ps simulation. 

 

Because ZnO is an ionic solid with high covalent contributions, the 
final dissolved structure is probably a cluster of ZnO groups. More clusters of 
(ZnO)n were modelled as possible final species in the dissolution process, 
where n=3, 6 and 9 (NP3, NP6, and NP9 particles). The initial simulation 
clusters and water boxes are shown in Figure 5, where it can be observed that 
the NP6 and NP9 are the stacking of several NP3 clusters, which are layers of 
the (0001) wurzite-ZnO planes.  

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
COMPUTATIONAL CHARACTERISATION OF METAL OXIDE NANOPARTICLES FOR HAZARD SCREENING AND RISK ASSESSMENT 
Laura Escorihuela Martí 
 



- 75 - 
 

 

 

 

 

 

 

Figure 5. Models of (a) NP3, (b) NP6 and (c) NP9 in water boxes. Zinc atoms 
in electric blue, oxygen atoms in red and hydrogen atoms in light grey. 

During simulation of these nanoparticles, especially in the case of NP6 
and NP9, some of the surrounding water molecules hydrolysed. The OH 
groups linked to the Zn of the cluster and the protons of split water bonded to 
the O atoms of the nanoparticle. This reaction helps to stabilize the NP in the 
water environment, and therefore, increases the solubility of the ZnO. 

In the RDF of these three clusters (Figure 6), the first peaks of ZnO 
cluster, corresponding to the Zn-Zn and Zn-O contacts, show a large similarity 

with those of ZnO bulk, being the first Zn-O contact 2 Å, and the fist Zn-Zn 3 
Å. However, the second Zn-O peak is much more diffuse in the clusters, being 
the centre between 3.5-4 Å, indicating the liquid behaviour of the solution. 

 

Figure 6. Radial Distribution Function of the (a) NP3, (b) NP6 and (c) NP9 in 
a water box of nominal 20 Å, at 300 K, for 10 ps simulation. 

UNIVERSITAT ROVIRA I VIRGILI 
COMPUTATIONAL CHARACTERISATION OF METAL OXIDE NANOPARTICLES FOR HAZARD SCREENING AND RISK ASSESSMENT 
Laura Escorihuela Martí 
 



- 76 - 
 

 

 

Finally, it is important to mention that the NP6 simulation was 
extended up to 20 ps to compare the structural and energetic evolution. 
Results show, as in the case of water, no significant differences exist and the 
energies are well-equilibrated after 10 ps of simulation for our purposes in a 
system where we do not expect any important chemical reactivity beyond the 
dissolution.   

 

2.3. Spherical nanoparticles in water solution 

Although the solubility of the bulk material is an important issue, the 
solubility of nanoparticles is also of crucial relevance. For this reason bigger 
NP were created, in order to evaluate the solubility using equation (2). First a 
NP of 15 Å diameter, NP15 and secondly a NP of 20 Å diameter, NP20 were 
simulated using the Nanocut software were built, both within the water box 
and without the water box, as models to determine if the proposed 
methodology is also applicable for nanoparticles. Figure 7 shows the initial 
structures of these nanoparticle simulations in water boxes of nominal 30 Å 
edges. 

 

 

 

 

 

 

 

 

 

Figure 7. Models of (a) NP15, and (b) NP20. Zinc atoms in electric blue, 
oxygen atoms in red and hydrogen atoms in light grey. 

 

These two nanoparticles expose a larger surface to water than 
previous small ZnO clusters, as well as edges and vertices that could be the 
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source of possible chemical reactions with water or other species present in 
biological solutions (not modelled here). Both NP15 and NP20 have shown to 
be stable during the 10 ps of simulation, with no disaggregation into smaller 
parts. 

The RDF for NP15 and NP20 in a water box of 30 Å (Figure 8) are very 
similar to the respective RDF of NP6 and NP9, but with the peaks of Zn-Zn and 
Zn-O contacts of the solid nanoparticle present at longer distances, indicating 
that the internal structure of the nanoparticle conserves the longer range 
order of the solid. The Zn-O and Zn-H bands are very similar to those of NP6 
and NP9 showing a similar mechanism of the water interaction with the ZnO 
surfaces, for small and larger nanoparticles. 

 

 

Figure 8. Radial Distribution Function of the (a) NP15, and (b) NP20 in a 
water box of nominal 30 Å, at 300 K, for 10 ps simulation. 

 

2.4. Solubility evaluation of bulk and nanoparticles 

Table 2 summarizes both the solubility and solubility constant product 
(as computed from equation (3)) for the different reaction models that we 
have proposed, both from solid bulk to dissolved nanoparticles, as well as from 
nanoparticles in free space to the corresponding nanoparticulated solution. 
The dissolution of ZnO bulk reaches maximum values in our NP6 and NP9 
models as final products of the dissolution process of 0.2-0.5 mg·L-1. This value 
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differs by an order of magnitude from the experimental bulk solubility of 8-15 
mg·L-1, 13,14 which is in excellent agreement in terms of a theoretical evaluation 
for this value. As commented in the methods section, due to the exponential 
factor in the Kr formula, any small change in the free energy evaluation of the 
system will have a tremendous effect in the results. 

One has also to take into account that the solubility in experimental 
works is given as the equivalent [Zn2+] in the system, which can be in this form 
in solution or aggregated with other ZnO clusters and forming a large 
(Znx+1Ox)2+ cation. This can explain why we find in literature values of solubility 
for ZnO bulk in the range 8-15 mg·L-1 of equivalent [Zn2+] in the system, 13,14 
and at the same time a Ksp of 1.58·10-17.15  In order to obtain the solubility from 
the Ksp value, one has to assume a completely ionic model (as we have done 
in our values to obtain solubility from Ksp), and in the case of David et al. 15  
that would correspond to a low solubility of only 0.3 mg·L-1, a large variation 
respect to other experimental evaluations.  

The dissolution of ZnO bulk in other models (as the free ions in 
solution, to NP1 or to NP3) gives a much lower solubility, because of the 
instability of the final structures relative to the NP6 and NP9 models. In 
particular, the fully ionized system is highly unstable, therefore forming the 
incorrect conclusion that no Zn2+ or O2- exist in solution. This is just a 
consequence of this model, because the high instability of O2- in solution does 
not permit Zn2+ to appear in our models. In order to avoid this issue, we have 
studied another possibility. Since NP6 is the most stable small cluster we 
found, we decided to remove a Zn2+ atom from this structure, and take as the 
final results in ZnO bulk solution the system composed by solvated Zn2+ and 
solvated (Zn5O6)2-. Results show that this ionic system is much more stable for 
ZnO bulk dissolution than the Zn2+ or O2- mixture in solution (Ksp of 2.9·10-19 vs 
1.52·10-31 for Zn2++ (Zn5O6)2- and Zn2+ or O2-, respectively) to release ionic Zn in 
the systems; with this new model values of 45 µg·L-1 of free Zn2+ are found in 
solution. 

The evaluation of the solubility of ZnO bulk has only taken as final 
steps, for the dissolution reaction in equation 1, the small clusters and we have 
not evaluated it for NP15 or NP20 as final dissolution products. The reason 
why we have not done that is simple. NP15 and NP20 were obtained using the 
nanocut software, imposing a restriction only in the diameter of the particle, 
but not imposing the stoichiometry of ZnO, and NP15 and NP20 do not possess 
the same number of Zn and O atoms (as shown in Table 2). This has as a 
consequence that free energy change of the reaction cannot be defined 
unambiguously, and the corresponding solubility of the bulk is not evaluable. 

On the other hand, a key parameter would be the evaluation of the 
solubility of the nanoparticulated material. We have chosen as the final 
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products for the dissolution reaction the solvated NP15 and NP20, since 
smaller nanoparticles do not have the same Zn/O ratio. For initial products of 
the dissolution reaction we decided to choose the nanoparticles in the same 
conditions as in the water box, but with no water, i.e., the nanoparticles 
against the vacuum in free space and, of course, a water box separately. 
Results for this dissolution reaction (or maybe just a suspension reaction), are 
given in Table 2. Ksp is extremely high, in the order of 108. This means that 
NP15 and NP20 would dissolve completely in water.  

Table 2. Computational data for ZnO nanoparticles and ionic Zn2+ and O2- in 
water boxes. Nominal size of boxes in Å; N is the number of ZnO units in the cluster 
(for NP15 and NP20 in parenthesis the excess of Zn atoms); Esol (in hartrees) are 
formation energies of the clusters per ZnO unity as defined in reaction (1) for ionic, 
NP1, NP3, NP6 and NP9, and Esol (in hartrees) are the solution energies per ZnO units 
of reaction (1) from solid NP to aqueous NP for NP15 and NP20; [ZnO] is the nominal 
concentration of ZnO in the simulation boxes (g ZnO / g solution); Ksp as defined in 
equation (3) from the bulk to the corresponding NP for ionic, NP1, NP3, NP6 and NP9, 
and Ksp as defined in equation (3) from the solid NP to the aqueous NP for NP15 and 
NP20; Solubility (s) in mg·L-1.  

Nanoparticle Box size N Esol [ZnO] Ksp s 

Zn2++O2- 20 / 0.088 0.017 4.97·10-41 5.73·10-16 

NP1 20 1 0.0674 0.017 1.52·10-31 3.17·10-11 

NP3 20 3 0.0367 0.049 1.74·10-17 3.39·10-4 

NP6 20 6 0.0247 0.095 5.27·10-12 0.187 

NP6 (20 ps) 20 6 0.023 0.095 3.21·10-11 0.461 

NP9 20 9 0.025 0.136 3.57·10-12 0.154 

NP15 30 66(12) -0.0177 0.278 1.28·108 / 

NP20 30 159(9) -0.0177 0.484 1.23·108 / 

Expt (bulk)a     1.58·10-17  

Expt (bulk)b       

Expt (bulk)c       

Expt (NP 6nm)15     8.13·10-13  

Expt (NP)13       

Expt (NP 25-70 nm)14       

 

Experiments show that, although NPs are more soluble than ZnO bulk, 
they do not dissolve in such an extension completely. Although suspensions of 
1 g·L-1 of ZnO NP can be obtained, it is not a complete dissolution,16 and 
properties of the systems are different. The reason why we obtain such an 
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enormous value is because the choice of the initial reference system. 
Nanoparticles are not in free space, and this nanoparticulated material 
interacts with the adjacent nanoparticles in real systems, creating aggregated 
systems that are much more stable than our free space simulated NPs (NPs of 
15-20 nm in diameter of ZnO have been observed to aggregate forming large 
systems of 0.15-1.5 µm, as observed by Li et al.16 Therefore, the solubility of 
these NPs is more similar to the values of the bulk, than our values obtained 
from free space NPs. Although this last fact seems to be discouraging, the 
trends we have obtained are in the right direction, since we observe the 
qualitative solubility increase from the bulk to the nanoparticulated solid.  

 

 2.5. TiO2 small NP in water solution. 

TiO2 bulk shows a small solubility in form of equilibriums quantified at 
level of trace in aqueous media at room temperature and pH>1. Perhaps this 
is the reason that only experimental publications determinate aqueous 
solubility of Ti or hydrous species of TiO2. 17 In the work of Schmidt et al., we 
can find the study of the solubility of anatase nanoparticles in 0.1 mol·L-1 NaCl 
respect time and different pH values; at pH = 3 the solubility has values around 
10-3 mol·L-1 beyond the 500 h of experiment, and at pH=7 it is between 10-8 to 
10-9 mol·L-1 for the same equilibration time. These results are modelled under 
the assumption that the total concentration of dissolved Titanium(IV) is 
distributed among mononuclear titanium hydroxo complexes of general 
formula [Ti(OH)n](4-n)+. 17  

For experiments of 2h of assay, Avramescu et al. 18 give values of 
solubility  for anatase bulk around 2·10-9 mol·L-1 and for the anatase 
nanoparticles around 2.5·10-9 at neutral pH, which are in the same order of 
magnitude as the aforementioned work 

In this thesis, the Ksp of TiO2 bulk has been evaluated as the same way 
of the ZnO from equation 1 (with the appropriate substitution of ZnO by TiO2), 
using for MD simulations a small NP of 10 Å diameter of TiO2. This NP was 
introduced in a cubic water box of 30 Å and the simulation was equilibrated 
and then ran for 10 ps. Using the equation 3 of this chapter, the Ksp for the 
anatase bulk obtained was 3.72·10-18, which using an ionic solubility model 
gives a values of solubility of 9.76·10-7 ; this result compares very well with the 
experimental values mentioned above in the work of Schmidt and 
Vogelsberger and the one of Avramescu et al., which are in the same order of 
magnitude and we had to use some assumptions in the equilibrium model, as 
the ionic components and the final particle for dissolution (a (TiO2)4 cluster). 
Figure 9 shows a 10 Å NP of TiO2 mentioned above. 
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Figure 9. 10 Å diameter NP of TiO2 inside a water cubic box 

 

3. Solubility evaluation for nanoparticles beyond 2 nm 
 

After the limitations found in the methodology presented in the 
section 2 of this chapter, i.e. computational limitations in the size of particles, 
limitations in the solubility chemical models due to the break in the 
stochiometry and to the same ionic definition of solubility, an alternative 
methodology had to be searched. In the literature search, we found a possible 
solution in non-extensive thermodynamic models.  

 3.1. Non-extensive thermodynamic model: Oswalt-Freundlich 
equation 

Given the limitation found in our first model for bigger nanoparticles 
due to the computational time consumption and computational limits of the 
simulations, we decided to make use of a new model based on the Oswalt-
Freundlich approximation.19 In this approximation, they proposed that the 
variation of concentration at saturation, Ci(sat), of spherical particles of radius 
r, of a molecular solid i, in a solvent is described by the equation 5.4: 

ln
𝐶𝑖(𝑠𝑎𝑡)

𝐶𝑖(𝑠𝑎𝑡)
∗ =

𝑉𝑖
∗

𝑅𝑇

2𝛄𝑆𝐿

𝑟
      (5.4) 

 

𝐶𝑖(𝑠𝑎𝑡)
∗  is the concentration of i at saturation when the solid i is an 

unlimited phase, no size effect. 𝑉𝑖
∗ is the molar volume of i, T is the 
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temperatures, R the perfect gas constant and SL is the solid-liquid interfacial 
tension or interaction energy. 

This equation means that the decrease in particle radius evoques an 
increase in the concentration of i at saturation equilibrium. With this relation 
we can calculate, as is experimentally done, the solubility of the nanoparticles 

from the simulated SL parameter from small nanoparticles of size known or 
for water-MeO interfaces in 2D. 

 3.2. Computational details to evaluate SL 

The solid-liquid interface for a fluid and planar surface has been 
analysed using Molecular dynamics (MD). 20 The approach used involves 
calculating the thermodynamic free energy difference between two systems 
to estimate the interfacial tension. 

The method employed to evaluate the solubility has started with the 
definition of the equilibrium reaction for the ZnO in water, in our case we use 
the equilibrium equation described in this chapter (1), and the solubility is 
calculated by the equation: 

𝑠 = (
𝐾𝑠𝑝

4
)
1/3

       (5.5) 

This relationship comes from the following equilibrium: 

ZnO(s) + H2O(l) → Zn2+ + 2 OH-
(aq) 

We decided to use this dissolution equilibrium instead of the pure 
ionic system (Zn2+ + O2-), because we found in our simulations that O2- was 
tremendously unstable in water and formed 2 OH- anions. 

The relation between interfacial tension and solubility is introduced 
by the Ostwald Freundlich equation21: 

 
𝑆

𝑆(𝑏𝑢𝑙𝑘)
= exp (

4𝛾𝑉

𝑅𝑇𝑑
)      (5.6) 

Where S is the solubility (mol/kg) of spherical particles, d (m) 
diameter, gamma (mJ/m2) is the interaction energy, V is the molar volume 
(m3/mol), R gas constant (mJ/molK) and T(K) temperature. This equation is 
related to the Ksp of the bulk by the expression: 

ln 𝐾𝑠𝑝 = ln𝐾𝑠𝑝
𝑏𝑢𝑙𝑘 +

12𝛾𝑉

𝑅𝑇𝑑
      (5.7) 

The key part of this equation is the evaluation of interaction energy 

between the solid and the liquid SL. As previously done in literature,22 we 

UNIVERSITAT ROVIRA I VIRGILI 
COMPUTATIONAL CHARACTERISATION OF METAL OXIDE NANOPARTICLES FOR HAZARD SCREENING AND RISK ASSESSMENT 
Laura Escorihuela Martí 
 



- 83 - 
 

evaluated the SL as the Helmholtz free energy of interaction between water 

and ZnO or TiO2 surfaces. Since the SL values depend on the exposed faces on 
the NP, and we want to study large NP, where the most exposed surfaces will 

be those that are more stable, we decided to compute SL for stable surfaces 
using the slab approximation. 

 Computational method consists in the NVT (canonical ensemble) MD 
simulations using the Velocity Verlet algorithm in the DFTB+ programme. 
Simulations were run at 300K for 10 and 30 ps in the case of ZnO and 10ps for 
TiO2. The method consists to run the MD simulation for the whole system (slab 
and water layer), and later on, we run the same MD calculation for bulk 
without water and separately the water without the bulk using the trajectories 
of the whole system. To do this, a new python code was developed. The final 

SL is the difference of the total free energy of the system and the isolated 
parts. 

The simulation model used for ZnO is displayed in Figure 10; it consists 
of  a 5x5x2 ZnO slab, exposing the (001) surface enclosed by two layers of 
water containing 73 water molecules that represent a water density of ~1 
g·cm-3 in the interslab region of periodic images. We chose this surface 
because it is the most stable one found in the study shown in the chapter 3. 
Scanning the QR code, it is possible to observe how the simulation evolves and 
how the water system is restructured due to the presence of the slab. One can 
clearly observe the formation of a first water layer on the surfaces followed 
by a more fluid layer in the inner part of water slab. 

    

Figure 10. Initial structure of the slab of ZnO surrounded by water layer for 
periodic MD simulations. 

 

UNIVERSITAT ROVIRA I VIRGILI 
COMPUTATIONAL CHARACTERISATION OF METAL OXIDE NANOPARTICLES FOR HAZARD SCREENING AND RISK ASSESSMENT 
Laura Escorihuela Martí 
 

https://www.youtube.com/watch?v=ce-71Yp24hU
https://www.youtube.com/watch?v=ce-71Yp24hU


- 84 - 
 

For the evaluation of SL in the TiO2 case, we made use of a 3x3x2 TiO2 
slab, exposing the (100) surface, with 108 molecules of water that represent a 
water density of ~1 g·cm-3 in the interslab region of periodic images. This 
surface was chosen because in our study in chapter 4 was the most stable one 
Scanning the QR code, it is possible to observe how the simulation it evolves 
and how the water system is restructured due to the presence of the slab. 

 

 

Figure 11. Structure of the slab of TiO2 NP surrounded by a water layer for 
periodic MD simulations. 

 

After simulations, SL was computed as follows: 

𝛾𝑆𝐿 =
𝐸𝑀𝑒𝑂+𝐻2𝑂−𝐸𝑀𝑒𝑂−𝐸𝐻2𝑂

𝐴
     (5.8) 

where EMeO+H2O is the average total energy of the system after 10 ps 
calculation, EMeO is the average total energy of the MeO without water, and 
EH2O is the average total Energy of the water layer without MeO. For the 
isolated systems, energy was evaluated in the same structures obtained in the 
MD trajectories of the total system. A is the area of the interface (2 interfaces 
existed in simulations per superunit cell). 

In addition to the simulations previously mentioned, we also 
evaluated the interfacial force for ZnO with an extra layer of water, which is 
the double from Figure 10. This was done with the aim to check if the distance 

between slabs makes any variation to our SL evaluation. The representation 
of this system can be seen in Figure 12. 
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Figure 12. Structure of the slab of ZnO surrounded by a double water layer 
for periodic MD simulations. 

 

 

4. Results 
 

 4.1. Evaluating the solid-liquid interaction 

Table 3. Results of the interfacial tension solid-liquid for TiO2 and ZnO. 

Number of Water Molecules in the simulation (N H2O). Area of the interface in Å2.  
in mJ·m-2. See section 2.3 for details. 

 N H2O Area ϒ 

ZnO 73 292.60 1516 

ZnO (double water layer) 146 292.60 1579 

TiO2 108 432.06 1011 

 

Table 3 presents the results obtained from the MD simulations for 
evaluating the interaction solid-liquid between ZnO/TiO2 slabs and water. It is 
noteworthy to mention the computational effort included in the evaluation of 

SL to get proper solubility results. The solid-liquid interaction here computed 
is not only taking into account the interaction of a single water molecule with 
the surface, but we have evaluated with this methodology: i) the interaction 
of water molecules with the surface; ii) the effect of inter-water molecules 
interaction; ii) the possible reactivity on the surface (proton exchange); iii) the 
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entropy effect of the finite temperature at room conditions (300 K); and 
finally, iv) the own phonon structure of the slab. This means that, finding other 

theoretical works to compare our SL results at this level has not been easy, 
because, or they focused at the static level interaction of water molecules (no 
MD simulation), or they were simulations performed at Molecular Dynamics 
level, focusing more in the structural parameters of the interaction that in the 
value of the interaction. 23,24 

The results obtained for ZnO surfaces are 1516 and 1578 mJ·m-2. The 
change in doubling the water bulk is only of 4%, only 62 mJ·m-2, which lays in 
the limit of the precision of the computational method. Both cases show, that 
even modifying the system, the ϒSL is always in the same order of magnitude, 
meaning that the solid-liquid interaction is almost converged for the small 
system. Frequently, for this work it was very difficult to find bibliography to 
compare the results; for ZnO, we found that the solid-liquid interactions are 
in the range of 770±300 mJ·m-2 from thermodynamic measurements of the 
solubility in solid bulk, 25 and 1310 mJ·m-2 from calorimetric measurements in 
nanocrystals with different shapes and structures. 21   These values found show 
that the results obtained with our methods are in the same order of 
magnitude and have a very good agreement with experimental results, if we 
consider that we have only explored one surface in the case of the slab, 
whereas experimental results are for structures with random surfaces 
exposed to water. An extremely low value for ZnO nanoparticles (>20 nm and 
<130nm) of 60 mJ·m-2 was found in literature; however, the authors point out 
that probably the determination of their particle surface area is not accurate 
enough due to the formation of aggregates, and consequently the interfacial 
interaction found is too low.  

Given that for ZnO the smallest separation between slabs showed a 
high accuracy, in the work for TiO2 just the water bulk with a thickness of 18.9 
Å have been run. Results show a good agreement with the bibliography found, 
100  to 1000 mJ·m-2 depending on the solvent molecules and the ions 
absorbed 26 and 1030 mJ·m-2 for the hydrated surface (101) molecular water 
absorbed calculated by DFT.27 

 

 4.2. Solubility evaluation with the Ostwald-Freundlich model. 

Using the non-extensive thermodynamic model developed by 
Ostwald-Freundlich, we estimated the solubility of large nanoparticles (>2 nm 
from our definition of large) from the solubility of the bulk and from the ϒSL, 
both of them calculated from ab initio methodology in this thesis. 

UNIVERSITAT ROVIRA I VIRGILI 
COMPUTATIONAL CHARACTERISATION OF METAL OXIDE NANOPARTICLES FOR HAZARD SCREENING AND RISK ASSESSMENT 
Laura Escorihuela Martí 
 



- 87 - 
 

At this point, we estimated the concentration of ZnO NP in solution 
versus radius using the equation 5.4 and ϒ = 1515 mJ·m-2 from previous section 
(using the value of 1578 mJ·m-2 makes no significant difference). We also 
evaluated the Ksp for each NP radius size. The representation of the ZnO NP 
concentration results versus radius from the solving of the Ostwald–
Freundlich equation is shown in Figure 12. One observes the exponential 
behaviour for small nanoparticles, as well as the trend to the bulk solubility 
for large nanoparticles. 

 

Figure 12. Graphical representation of the solubility showing the 
concentration of ZnO NP in (mol/l) using the Ostwald-Freundlich model  using the 

slab model ϒSL. 

 

 

Table 4. Results  ZnO NP solubility using the Ostwald-Freundlich model  

using the slab model ϒSL. Solubility s in mol·L-1. 

r(nm) s  Ksp 

2 3,85·10-02 2,28·10-04 

3 2,03·10-03 3,36·10-08 

5 1,93·10-04 2,89·10-11 

15 1,84·10-05 2,48·10-14 

20 1,37·10-05 1,03·10-14 

35 9,38·10-06 3,30·10-15 

50 8,06·10-06 2,10·10-15 

80 7,06·10-06 1,41·10-15 

100 6,76·10-06 1,23·10-15 

 

The results of solubility found in literature, apart from the commented 
in the Table 2 of this chapter, have good agreement with results obtained by 
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Ostwald-Freundlich approximation. For example, Mudunkotuwa et al. 21 give, 
for pH around 7.8, values of solubility of ZnO between 1.8·10-4 mol·L-1 to 
4.1·10-5 mol·L-1 for a range of sizes between 4 and 130 nm.  The work of 
Avramescu et al. 28 presents solubility values for ZnO bulk 5.6·10-5 mol·L-1, and 
a range between 1.2·10-4 and 9.6·10-5 mol·L-1 for ZnO NP with sizes less than 
50 nm and 100 nm, respectively. Therefore, the results we obtained with the 
in silico approximation combining the Quasi- Ab Initio Molecular Dynamics 
simulations with the Ostwald-Freundlich model are very close to the 
experimental solubilities found in these works. 

We have represented in a graphic (Figure 13) experimental results 
found in literature for ZnO NP solubility and compared with results obtained 
with our combination of MD simulations with the Ostwald-Freundlich 
approach. Collected experimental Ksp results show a trend in values, though it 
is not so clear as in the theoretical evaluation given the variability that the 
experimental proceedings have implicated. With several experimental 
conditions; it has been a difficult task to add new values for comparing due to 
the variability in experiments. Also, it has to be taken into account the 
experimental difficulty given the low solubility of ZnO NPs form aggregates, or 
the definition of sizes of these NPs from microscopic techniques, adding a new 
variability in the Ksp calculation. For this reason, one conclusion in our work is 
that the modeling results are more homogeneous than the experimental ones 
helping to predict the solubility easily. 

 

 

Figure 13. Graphical representation of the Ksp modelled in this thesis vs. Ksp 
experimental found in literature of ZnO NPs. 

.  
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Then, using the previous mentioned parameters we have evaluated 
the solubility for TiO2 nanoparticles. Results as a function of spherical diameter 
are shown in Table 5. We again appreciate the exponential behavior of the 
model for small nanoparticles. However, in this case, because TiO2 is more 
insoluble than ZnO, the TiO2 nanoparticles also present a degree of solubility 

lower than ZnO, and the slope of the curve is different due to the lower SL of 
TiO2-water system. 

 

Table 5. Results of Ostwald-Freundlich model for TiO2 NP using values from 
MD simulations in this thesis Radius r is in nm. Solubility s in mol·L-1. 

r s 

2 6.01·10-7 

3 4.04·10-8 

5 4.66·10-9 

15 5.37·10-10 

20 4.10·10-10 

35 2.90·10-10 

50 2.52·10-10 

80 2.23·10-10 

100 2.14·10-10 

 

These results are in good concordance with values found in 
bibliography. For example, for TiO2 NP of diameter less than 25 nm a solubility 
of 2.5·10-9 mol·L-1 have been found, which is in good agreement with our size 
of 5 nm, the disagreement with one unit in the exponential is not considered 
high given the error of the experimental measurements and the 
approximations made in the theoretical framework. Other results found are 
2.8·10-9 mol·L-1 for NP with diameter of less than 100 nm. 17 Also in the work 
of Schimdt et al. 17 are given results of solubility of anatase nanoparticles 
around 10-9 mol·L-1 for neutral pH. 

In the case of TiO2, it has been considered not necessary to evaluate 
Ksp. Because this MeO is clearly non soluble in neutral pH, the reaction then is 
not an ionic reaction but it is can be an equilibrium where multiple species can 
exist at the same time, for this reason and for the purpose of this thesis is not 
justified to evaluate the Ksp for this case.  
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5. Final Remarks 
 

As an extra in this chapter, I include this paragraph to highlight the 

results achieved in this voluminous chapter. The study of the interaction 

liquid-solid has been performed using a well established method based on the 

combination of DFTB and MD simulations; however, it is not so known the 

method for the solid-liquid interfacial tension characterization, from the 

Ostwald Freundlich equation. Results obtained are encouraging to implement 

this methodology for other MeO and compute the interaction energy and 

interfacial tension for the solubility evaluation. Moreover, instead of 

concentrating all efforts in the interfacial tension evaluation for the solubility 

calculation, we also have estimated the ksp for bulks, and in addition to this, 

the great results in the study of small NP inside a water cubic box, taking also 

in account the limitations found of this method for big NPs or aggregates. 
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Chapter 6. Statistical Analysis 
 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 
 

One of the goals of this thesis is to highlight the experimental 
variability that exists when measuring experimental properties such as band 
gap and/or solubility, and the lack of detailed information on experimental 
conditions that sometimes is found in literature. It is difficult to compare 
different experiments when variables such as time of assays, intervals of time 
during which the diverse biological systems have been exposed to the NP, 
temperatures, etc., are missing. On the other hand, modelling toxicological 
properties is a challenging task and computational methods can help in the 
prediction of these properties, avoiding the variability that the experimental 
process suffers. 
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Another objective of this thesis is to improve existing QSAR models 
adding computational descriptors, such as band gap and solubility, calculated 
in silico following the methodology we have explained in previous chapters. 
This is very helpful to understand better the toxicological behaviour of NP, 
what is essential for their safe use under regulations such as the REACH 
legislation. However, the lack of information and experimental data for this 
type of materials makes the development of QSAR and QNAR methods a more 
challenging task. 

TiO2 and ZnO NP are probably the most studied metal oxide NP given 
their widely applicability and their association of carrying toxicological effects. 
As a matter of fact, the Scientific Commission on Consumer Safety (SCCS) of 
the European Commission does not recommend these two types of NP in 
spray products that could be exposed to consumers by inhalation.1 

With the aim to achieve the goals of this thesis, predictive models 
have been created for the prediction of ZnO and TiO2 band gap and solubility 
and, later on, improving of QSAR existing models introducing our in silico 
descriptors. 

 

2. Band gap prediction models 

 2.1. ZnO NP case 

For band gap determination different experimental methods exist. In 
this thesis, around 60 values of experimental band gap have been gathered 
together from literature and compared with ZnO band gap determination by 
in silico prediction. The same procedure has been done in case of solubility, 
where the results are shown in Chapter 4. 

In the case of ZnO, we present in Table 1 the different experimental 
values obtained from literature for spherical ZnO NP and also in Table 2 some 
results from computational works. What we can see is that the determination 
of the NP sizes can be done by two techniques, with microscopy (TEM, SEM, 
etc) or using X-Ray diffraction (XRD) by Debye-Scherrer’s formula2. Another 
important difference between the experimental data is the technique used to 
calculate or measure the band gap. For this purpose, some experimental 
groups use the UV-absorption spectroscopy, where the direct band gap of ZnO 
is estimated from the absorption graph of hν versus (αhν)2 through the 
absorption coefficient α, which is related to the band gap energy (Eg) as 
(αhν)2=k(hν−Eg), where hν is the incident light energy and k is a constant. The 
extrapolation of the straight line to (αhν)2=0 gives the value of band gap 
energy Eg.  
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Another experimental technique used to calculate the optical band 
gap from UV-visible spectra is to equate Eg

 with the wavelength at which the 
absorption is 50% of that at the excitonic peak (or shoulder), called λ1/2. 3 

From the Eg calculated is also possible to estimate the size of the 
particles (R), using the effective mass model4,5 in Equation 6.1: 

𝑅 = √
2𝜋2ℎ2𝐸𝑔𝑏

𝑚∗(𝐸𝑔𝑛
2 −𝐸𝑔𝑏

2 )
                                                        (6.1) 

where R is the radius, m* is the effective mass of the specimen 
(m*=29.15×10−31 kg for ZnO), Egb is bulk band gap, h is Planck's constant 
(6.626×10−34 J s) and Egn is the band gap at strong absorption edge. Egn can be 
calculated by the formula Egn=hc/λgn, where c is the velocity of light 
(3×108 m s−1) and λgn is the strong absorption edge (~298.8 nm). 

With the in silico results obtained during this thesis for different sizes 
of spherical ZnO NP, we have developed a model to predict band gap for bigger 
NP. The same exercise has been repeated with the values obtained from 
bibliography, dividing the experimental data by the type of the technique used 
for size characterisation. Therefore, there is a model for microscopy 
techniques and another for XRD method. The results are shown in Figure 1. 

What can be observed in Figure 1 is that, for NP sizes smaller than 10 
nm, the XRD technique is giving better results in band gap determination, since 
the sizes calculated by this method are more precisse than the ones obtained 
with microscopy techniques, maybe caused by the tendency to form 
agglomarates in case of small NP in solution. For bigger sizes, three techniques 
are in good agreement in terms of size determination and band gap. However, 
in case of NP bigger than 60nm, the microscopy model is showing a negative 
tendency. This means that for bigger sizes it is difficult to identify the real size 
of NP because of the agglomaration, and then the band gap determination is 
giving low values. 
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Table 1. Experimental results of ZnO NP Band gap from literature 

Ex
p

e
ri

m
e

n
ta

l 
size(nm) Band gap (eV) particle shape 

17.1 3.87 Spherical6 

13-16 3.38 Powder7 

8.5 3.63 Spherical8 

1.8 4.5 Spherical9 

2 4 Spherical9 

2.5 3.74 Spherical9 

2.6 3.35 Spherical9 

3.6 3.3 Spherical9 

22.6±5.1 3.31 Spherical10 

23.12 3.25 Spherical11 

16 3.5 Spherical12 

5 3.78 Nanorod13 

5 3.29 thin film14 

4.7 3.44 Spherical14 

2.5 3.85 Spherical3 

3 3.64 Spherical3 

3.6 3.58 Spherical3 

4 3.54 Spherical3 

4.5 3.46 Spherical3 

5 3.44 Spherical3 

6 3.39 Spherical3 

6.5 3.39 Spherical3 

2 >4 Spherical5 

3 3.35 Spherical5 

4 3.29 Spherical5 

6 3.27 Spherical5 

2 >4 Spherical4 

3 3.8 Spherical4 

4 3.55 Spherical4 

6 3.48 Spherical4 

8 3.45 Spherical4 

10 3.44 Spherical4 

12 3.43 Spherical4 

14 3.41 Spherical4 

100 3.76 Spherical15 
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Table 2. Computational results of ZnO NP Band gap from literature 

C
o

m
p

u
ta

ti
o

n
al

 
shape 

Band gap 
(eV) 

particle shape and 
size(nm) 

unpuckered 
Zn18O18 

1.7 Needles16 

puckered Zn18O18 1.67 Needles16 

unpuckered 
[Zn6O6] 

1.6 Needles16 

puckered [Zn6O6] 1.84 Needles16 

Hexagonal 1 2.28 
c(A)=5.379; D(A) 

=3.71117 

Hexagonal 2 1.55 c(A)=5.371; D(A) =9.8617 

Hexagonal 3 1.14 c(A)=5.34 ; D(A) =16.2617 

Triangular 1 1.81 c(A)=5.38; D(A) =7.34417 

Triangular 2 1.48 
c(A)=5.356; D(A) 

=11.0917 

Triangular 3 1.25 
c(A)=5.349; D(A) 

=14.78617 

(ZnO)20 4.11 Cluster18 

 

 

 

Figure 1. Evolution of band gap prediction models versus NP sizes. 

 

The computational method gives good results in the range of 10 to 90 
nm, and it is always much cheaper than experimental methods. So, we can say 
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that DFTB is a good methodology to create a model for band gap prediction, 
since this method always needs less resources than calculations based on pure 
DFT. There is no need to say that, the more resources available from the 
computational point of view, the bigger sizes can be calculated and the more 
refined the prediction model can be.  

After the analysis and the demonstration how computational 
methods can help in this prediction, another statistical analysis has been 
applied in order to implement computational methods in the prediction of 
toxicological properties, i.e. the QSAR modelling. 

 

 2.2. TiO2 NPs case of study 

After the work done in the ZnO case and the good results obtained 
from the in silico prediction model, a similar work has been done for TiO2 NP.  

In this case, not so many experimental data have been found but 
enough to create a good experimental prediction model and compare it with 
the computational model created with this thesi’s results. In this case, for the 
computational model, the results used have been a mixture between DFTB 
and DFT+U, since both techniques have given similar results. 

In Table 3 are shown the experimental data found in literature. And in 
Figure 2, both prediction models are represented. 

Table 3. Experimental data found in bibliography for TiO2 NPs. 

size (nm) Band gap 
(eV) 

particle shape 

22.5 3.15 spherical19 

39 3.2 spherical20 

7.00 3.36 spherical20 

7.9 3.32 spherical20 

6.3 3.47 spherical21 

4.8 3.79 spherical22 

35 3.27 spherical23 

100 3.2 spherical24 

 

As it can be observed in the Figure 2, the computational prediction 
model gives very similar results to the experimental prediction model as bigger 
as the particles are. The maximum discrepancy in prediction results for small 
NP is about 5%, taking into account that it is a comparison between prediction 

UNIVERSITAT ROVIRA I VIRGILI 
COMPUTATIONAL CHARACTERISATION OF METAL OXIDE NANOPARTICLES FOR HAZARD SCREENING AND RISK ASSESSMENT 
Laura Escorihuela Martí 
 



- 99 - 
 

models, not true values. For this reason the computational model is 
considered good enough to generate data for the QSAR band gap evaluation. 

 

Figure 2. Data representation of prediction models for TiO2 case. Y axis the 
band gap (eV) and in the X axis the radius of TiO2 NP. 

 

 

3. QSAR modelling 
 

For this part of the work, we based our study in the data obtained in 
the study by Sayes and Ivanov6  and the multiple linear regression models 
made by E. Papa et al.1 for ZnO NP and TiO2 NP. Membrane disruption was 
used as the toxicity indicator and the experimental descriptors used were the 
ones published by Sayes and Ivanov. In addition to these descriptors, in this 
work we added two more: the solubility and the band gap calculated by 
computational tools as it is explained in this thesis. In Table 4 are shown the 
data available for the model of ZnO NP. 
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Table 4. Data used to build the QSAR models for ZnO NP. 

x0, eng 
size 
(nm) 

x1, size 
in 

water 
(nm) 

x2, size 
in PBS 
(nm) 

x3, size in 
CCM (nm) 

x4,concen
tration 
[mg/l] 

x5,Zpoten
tial (mV) 

y,membran
e damage 
(units/l) 

x6, 
band 
gap 
(eV) 

x7,solubility 
(mol/l) 

50 55 158 107 25 -55.00 1.1 3.20 8.06·10-06 

60 68 208 145 25 -45.00 1.03 3.23 7.60·10-06 

70 71 198 152 25 -50.00 1.08 3.26 7.29·10-06 

50 56 258 203 50 -50.00 1 3.20 8.06·10-06 

60 78 386 243 50 -50.00 0.92 3.23 7.60·10-06 

70 95 279 261 50 -50.00 0.99 3.26 7.29·10-06 

50 168 314 283 100 -25.00 1.12 3.20 8.06·10-06 

60 151 385 250 100 -30.00 1.25 3.23 7.60·10-06 

70 172 354 273 100 -29.00 1.19 3.26 7.29·10-06 

1.000 1.245 1.319 1.102 25 -44.00 1.58 3.68 5.77·10-06 

1.200 1.268 1.325 1.057 25 -33.00 1.69 3.71 5.75·10-06 

1.000 1.243 1.925 1.372 100 -20.00 1.25 3.68 5.77·10-06 

1.200 1.124 1.805 1.458 100 -21.00 1.39 3.71 5.75·10-06 

1.500 1.269 2.109 1.578 100 -21.00 1.45 3.75 5.72·10-06 

1.500 1.198 1.381 1.073 25 -25.00 1.59 3.75 5.72·10-06 

 

The model postulated by E. Papa et al. for the ZnO case is given in 
Equation 2:  

LDH (ZnO) = 1.041+ 0.001X1-0-001X2 + 0.001X4                              (6.2) 

N=15, r2= 0.91, Q2
loo=0.80, Q2

lmo 30%=0.76, , F=35 

Where N is the number of samples, r2 is the coefficient of 
determination, F is the ratio test, Q2

loo is the leave-one-out correlation 
coefficient and Q2

lmo is the coefficient for leave-many-out. 7 

In order to look for the best combination between the existing 
descriptors and the new ones, solubility and band gap, a stepwise regression 
method (SWR) has been run using Matlab software8. SWR is a systematic 
method for adding and removing terms from a multilinear model based on 
their statistical significance in a regression. At each step, the p value of an F-
statistic is computed to test models with and without a potential term. If a 
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term is not currently in the model, the null hypothesis is that the term would 
have a zero coefficient if it is added to the model. P-values are: the p-enter 
value, in the range from 0.05 to 0.5, representing the maximum p-value for a 
term to be added; and p-remove value, from 0.01 to 0.8, representing the 
minimum p-value for a term to be removed. Depending on the terms included 
in the initial model and the order in which terms are moved in and out, the 
method may build different models from the same set of potential terms. The 
method terminates when no single step improves the model.9 

In order to measure the predictive ability and check the overfitting of 
the QSAR model, a cross validation (CV) method has been applied to describe 
the relationship between predictors and response. One can talk about 
overfitting when the r2 value is larger than 25% of the cross validated 
correlation coefficient (Q2) value, this difference between them should not be 
more than 0.3.10,11 The Q2 value is used to indicate the robustness and 
predictive ability of the model, where Q2 > 0.5 corresponds to a model with a 
good predictive power. Q2 values increase while useful variables are added to 
the variables of a model in a previous step. 

 
One of the most used methods of CV is the leave-one-out method 

(LOO), this is the most used method to evaluate the internal validation.12 LOO 
consists in excluding each sample once and constructing a new model without 
this sample. 

 
Q2 for LOO method has been calculated as: 
 

𝑄𝐿𝑂𝑂
2 = 1 −

𝑃𝑅𝐸𝑆𝑆

𝑇𝑆𝑆
= 1 −

∑ (𝑦𝑝𝑟𝑒𝑑,𝑖−𝑦𝑖)
2𝑁

𝑖=1

∑ (𝑦𝑖−𝑦𝑚)2𝑁
𝑖=1

                          (6.3) 

 

where PRESS is the sum of the squared differences between the 
experimental response y and the response predicted by the regression model, 
and TSS is the Total Sum of Squares and represents the total variance that a 
regression model can explain. 𝑦𝑝𝑟𝑒𝑑,𝑖  indicates that the response is predicted 

by a model estimated when the i sample was left out from the training set. 𝑦𝑖  
is each experimental measure. Finally, 𝑦𝑚 is the mean of the experimental 
values. 

 
The root mean square error (RMSE) is also calculated to evaluate the 

predictive quality of the models generated, because it shows the error 
between the mean of the experimental values and the predictive subjects 
calculated, a good value of RMSE is < 0.3 11 
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 3.1. ZnO NP models 

After applying the SWR algorithm to our data set, we present our best 
QSAR models in Table 5 for the ZnO NP case: 

Table 5. Best QSAR models created by SWR method for ZnO NP. 

Model Descriptors 
used 

R2 F Q2
LOO RMSE 

Cross Val. 

E. Papa et al. x1, x2, x4 0.91 35.46 0.80 0.10 

Model 1-ZnO x2, x4, x6, x7 0.92 27.14 0.81 0.11 

Model 2-ZnO x1, x2, x4, 
x6, x7 

0.94 25.99 0.79 0.11 

Model 3-ZnO x1, x2, x4, x6 0.93 31.19 0.82 0.10 

 

After applying the SWR algorithm to our data set, we can see that the 
best models, where both solubility (x7) and band gap (x6) are included, are the 
models number 1 and number 2, because the F-value and Q2

LOO obtained are 
higher than in other SWR models tested, and r2 and Q2

LOO are higher than in 
the model of reference by E. Papa et al. The model obtained where only the 
band gap is included, the model number 3, it could be considered even better 
than models 1 and 2 because Q2

LOO and F-value are superior. It must be noted 
that none of these parameters is related in any way to the model prediction 
power, and they are only related to the goodness of fit. 

As it can be seen in the Table 5, the models generated using band gap 
and/or solubility have similar values of RMSE to the model of reference, so the 
predictive quality is similar for all of them.   

The coefficients for the model number 1 are: 

Y = -12.20 -7.53E-04 X2 + 3.06E-03 X4 +3.86 X6+1.86E+05X7                       (6.4) 

And the coefficients for the model number 3 are: 

Y= -3.29 + 6.09E-04 X1 -6.82E-04 X2 + 2.37E-03 X4 + 1.35 X6                  (6.5) 

  
 3.2. TiO2 models 

The model postulated by E. Papa et al. for the TiO2 case is given in 
Equation 6:  

LDH (TiO2) = 0.599+ 0.003X4 + 0.004X0                                                     (6.6) 

N=22, r2= 0.84, Q2
loo=0.79, Q2

lmo 30%=0.78, F=48 
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As in the case of the ZnO, for the generation of new QSAR models it 
has been introduced the solubility and the band gap of TiO2 NP of the size 
indicated in Table 6 to the data used in the work of E. Papa et al.: 

Table 6.  Data set used for TiO2 QSAR modelling. 

x0 x1 x2 x4 x5 x6 x7 y 

30 125 1250 25 -10 3.23 3.13·10-10 0.90 

30 102 987 25 -12 3.23 3.13·10-10 1.00 

30 281 1543 50 -15 3.23 3.13·10-10 0.75 

30 101 1045 50 -9 3.23 3.13·10-10 0.70 

30 299 1754 100 -11 3.23 3.13·10-10 1.04 

30 134 961 100 -11 3.23 3.13·10-10 1.09 

30 600 1876 200 -12 3.23 3.13·10-10 1.15 

30 298 1165 200 -12 3.23 3.13·10-10 1.20 

45 129 2567 25 -9 3.21 2.61·10-10 0.90 

45 129 2309 25 -10 3.21 2.61·10-10 0.85 

45 201 2431 50 -9 3.21 2.61·10-10 0.75 

45 201 2987 50 -11 3.21 2.61·10-10 0.78 

45 876 1965 200 -11 3.21 2.61·10-10 1.35 

45 876 2109 200 -10 3.21 2.61·10-10 1.40 

125 136 3215 25 -11 3.05 2.08·10-10 1.25 

125 136 2667 25 -10 3.05 2.08·10-10 1.17 

125 149 3782 50 -10 3.05 2.08·10-10 1.00 

125 149 2144 50 -15 3.05 2.08·10-10 1.10 

125 343 3871 100 -12 3.05 2.08·10-10 1.50 

125 343 2890 100 -9 3.05 2.08·10-10 1.42 

125 967 3813 200 -9 3.05 2.08·10-10 1.60 

125 967 2671 200 -8 3.05 2.08·10-10 1.65 

  

Applying the same methodology as before, i.e. using SWR, the best 
combinations of variables to create prediction models are found. For these 
models the statistics parameters to evaluate the fitting of the data and the 
predictive quality have been calculated too, and all of these data are shown in 
Table 7. 
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Table 7. Parameters values for the best TiO2 QSAR models.  

Model Descriptors 
used 

R2 F Q2
LOO RMSE Cross 

Val. 

E. Papa et 
al. 

x0, x4 0.84 48.44 0.79 0.13 

Model 1-
TiO2 

x4, x6 0.84 48.89 0.79 0.10 

Model 2-
TiO2 

x0, x1, x4, 
x7 

0.84 23.09 0.76 0.11 

Model 3-
TiO2 

x1,x2,x4,x6 0.85 24.14 0.72 0.10 

 

At a glance, for the three best models calculated, the best one is the 
Model number 1 because it has almost all the statistical parameters equal to 
the reference model by E. Papa et al., even the number of variables employed. 
The other two models could be good enough but having the model 1, there is 
no need to discuss which other could be taken into account. 

The coefficients for the model number 1 are: 

Y= 7.19 + 2.71E-03 X4 -2.002 X6                                                                    (6.7) 

The coefficients for the model number 2 are: 

Y= 8.08 + 1.96E-04 X0 + 1.98E-03 X1 - 2.36 X4 + 9.33E08 X7               (6.8) 

The coefficients for the model number 3 are: 

Y= 8.12 + 2.03E-04 X1 – 4.56E-05 X2 +1.97E-03 X4  - 2.26X6              (6.9) 

 

 3.3. ZnO and TiO2 models 

At the same work of E. Papa et al. we can find also a model generated 
for both metal oxides NP, the model is: 

LDH (ZnO+TiO2) = 0.66+ 0.003X4 + 0.005X0 -4.46E-5X2                               (6.10) 

N=31, r2= 0.82, Q2
loo=0.76, Q2

lmo 30%=0.74, F=40 

In this thesis, in order to generate a model for both MeO NP we have 
used the data shown in Table 8, the variables numeration corresponds at the 
same variables as in the cases before mentioned: 
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Table 8. Data set for ZnO + TiO2 QSAR modelling 

x0 x1 x2 x4 x5 x6 x7 y 

50 55 158 25 -55 3.20 8.06·10-06 1.1 

60 68 208 25 -45 3.23 7.60·10-06 1.03 

70 71 198 25 -50 3.26 7.29·10-06 1.08 

50 56 258 50 -50 3.20 8.06·10-06 1 

60 78 386 50 -50 3.23 7.60·10-06 0.92 

70 95 279 50 -50 3.26 7.29·10-06 0.99 

50 168 314 100 -25 3.20 8.06·10-06 1.12 

60 151 385 100 -30 3.23 7.60·10-06 1.25 

70 172 354 100 -29 3.26 7.29·10-06 1.19 

30 125 1.250 25 -10.00 3.23 5.15·10-05 0.9 

30 102 987 25 -12.00 3.23 5.15·10-05 1 

30 281 1.543 50 -15.00 3.23 5.15·10-05 0.75 

30 101 1.045 50 -9.00 3.23 5.15·10-05 0.7 

30 299 1.754 100 -11.00 3.23 5.15·10-05 1.04 

30 134 961 100 -11.00 3.23 5.15·10-05 1.09 

30 600 1.876 200 -12.00 3.23 5.15·10-05 1.15 

30 298 1.165 200 -12.00 3.23 5.15·10-05 1.2 

45 129 2.567 25 -9.00 3.21 4.30·10-05 0.9 

45 129 2.309 25 -10.00 3.21 4.30·10-05 0.85 

45 201 2.431 50 -9.00 3.21 4.30·10-05 0.75 

45 201 2.987 50 -11.00 3.21 4.30·10-05 0.78 

45 876 1.965 200 -11.00 3.21 4.30·10-05 1.35 

45 876 2.109 200 -10.00 3.21 4.30·10-05 1.4 

125 136 3.215 25 -11.00 3.05 3.42·10-05 1.25 

125 136 2.667 25 -10.00 3.05 3.42·10-05 1.17 

125 149 3.782 50 -10.00 3.05 3.42·10-05 1 

125 149 2.144 50 -15.00 3.05 3.42·10-05 1.1 

125 343 3.871 100 -12.00 3.05 3.42·10-05 1.5 

125 343 2.890 100 -9,00 3,05 3,42·10-05 1,42 

125 967 3.813 200 -9,00 3,05 3,42·10-05 1,6 

125 967 2.671 200 -8,00 3,05 3,42·10-05 1,65 

 

The best models obtained for the data in Table 8 are shown in Table 
9: 
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Table 9. Best QSAR models for ZnO + TiO2  

Model Descriptors 
used 

R2 F Q2
LOO RMSE Cross 

Val. 

E. Papa et al. x0, x2, x4 0.82 39.87 0.76 0.08 

Model 1- 
ZnO+TiO2 

x4, x6, x7 0.80 35.61 0.74 0.09 

Model 2- 
ZnO+TiO2 

x0, x1, x2, 
x4, x6 

0.83 24.23 0.75 0.08 

Model 3- 
ZnO+TiO2 

x0, x4, x7 0.81 38.50 0.76 0.08 

 

The coefficients for the model number 1 are: 

Y= 6.94 + 2.65E-03 X4 - 1.92 X6 + 2.39E 04 X7                         (6.11) 

The coefficients for the model number 2 are: 

Y= 2.74 + 3.54E-03 X0 + 2.11E-04 X1 – 7.09E-05 X2 + 1.91E-03 X4 -                                                            
6.20E-01 X6                                                (6.12) 

The coefficients for the model number 3 are: 

Y= 0.61 + 3.81E-03 X0 + 2.66E-03 X4 + 1.13E 04 X7                 (6.13) 

 

In this case there are two models, the 1 and 3, that could be 
considered as the best models, highlighting the model 1 where both 
computational variables are included, and the statistical parameters are in the 
same range of the proposed by E. Papa et al., then this is a clue result for the 
work developed in this thesis, showing that including more data and variability 
in the initial data to generate a QSAR model, computational descriptors give 
one of the best models. Model 2 is also good but has more variables in the 
model and the statistical parameter F is not so high, then a good quality in the 
predictions is not achieved. 

In this chapter it has been shown how the inclusion of computational 
variables in the existing models has given either a good fitting in the QSAR 
models and predictive quality. It is important to highlight that in the cases of 
the TiO2 model or the model for ZnO+TiO2, an experimental variable can be 
substituted by a computational parameter, obtaining a model with the same 
number of variables without decreasing the predictive power. Then, at this 
point, it has been achieved the main goal of this work: to achieve the same 
quality of prediction in QSAR modelling using computational descriptors, 
saving experimental work, time, resources and animal testing for toxicology 
risk assessment. 
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Chapter 7. Conclusions 
 

 

 

 

 

 

 

 

 

 

 

 

In this thesis we performed a strict and deep study of the best 
methods to evaluate the band gap and the solubility of MeO NP from a 
computational point of view. The use of periodical-DFT methods has allowed 
us to optimise structures computing the electronic ground state energy for 
nanostructures as the nanotubes or spherical nanoparticles. To get more 
reliability for band gap determination, the exchange-correlation functional 
has been improved using the DFT+U methodology. This type of functional 
gives us a reasonable computational cost and accuracy in band gap 
calculations or geometry optimisation, without affecting the predictive 
capability on the influence of experimental environment. After that, to reach 
large systems up to 103 atoms in order to simulate more realistic biological 
systems, it has been used the DFTB development for band gaps determination 
in large nanoparticles. Furthermore, the coupling of DFTB and molecular 
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dynamics simulations has allowed the description of water-NP interaction, 
giving and extra value to this work.  

As seen in bibliography, there is an important gap in experimental 
data, and this situation creates a use of time-consuming resources for which 
the combination of experimental with computational work can make this task 
more affordable. In my opinion, the implementation of a computational 
methodology for nanomaterials is still in primary stage, but as it is shown in 
this thesis, there is a promising way for these methods.  

The computational results obtained with the methodology developed 
in this thesis for the ZnO case have been promising and, in order to make more 
robust the method employed, it has been tested for TiO2 too, showing an 
excellent efficiency in the results. 

This work is a clear example of how computational chemistry can 
provide data for toxicity risk assessment without the variability that the 
experimental work gives and without spending so much time and resources in 
animal testing. 

The efforts were focused first in testing our theory that descriptors, 
physico-chemical properties that are size-dependent and considered the clue 
for nanomaterial behaviour description, can be calculated computationally 
and later added to experimental data for QNAR modelling as is shown. 

Great part of the work has been spent in the solubility evaluation of 
the MeO NP, because there is a few quantity of bibliography about that (both 
experimentally and computationally), what indeed is reasonable because the 
MeO NP has a very low solubility and it is quite difficult its evaluation either 
experimentally or computationally. In my opinion, the results obtained with 
the implementation of the use of thermodynamical theory as the Ostwald–
Freundlich approach in the Molecular dynamics framework are fixing a new 
starting point for the solubility evaluation of NP in the near future, and it is a 
proof for computational engagement of legislation authorities for toxicity risk 
assessment. 

Finally, QSAR methods is the statistical tool chosen to give an accurate 
assessment in the toxicity behaviour of these NP. Indeed, QSAR modelling is 
an effective tool to assess biological activity of nanomaterials with a reduced 
cost and can help to understand the toxicity mechanism that exists in 
nanomaterials that are in the market; additionally, it can also provide a tool 
for safer nanomaterials design. 

It is very difficult to find comparable experimental data in 
bibliography, for this reason it has been decided to use the QSAR methods 
created by Ester Papa et al., as it is explained in the statistical chapter, with 
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the aim to show how the combination of both philosophies can provide more 
affordable and reliable results. 

It is true that the data that may be used in these models is not enough 
to avoid statistical biases, but making use of Matlab software to implement 
statistical methods such as cross validation method, leave-on-out technique 
or the calculation of the root mean square error, we have made a deep study 
of the contributing factors for toxicity models. Even with the use of these 
statistical methods to avoid overfitting, I am not saying that is not necessary 
to use more data; totally on the contrary, it would be better if we could make 
the same QSAR models with thousands of values, but nowadays this is quite 
impossible. 

Moreover, in the statistical chapter it has been shown how the 
inclusion of computational variables in the existing models has given either a 
good fitting in the QSAR models and predictive quality. It is important to 
highlight that in the cases of the TiO2 model or the model for ZnO+TiO2, an 
experimental variable can be substituted by a computational parameter, 
obtaining a model with the same number of variables without decreasing the 
predictive power. Then, at this point, it has been achieved the main goal of 
this work: to achieve the same quality of prediction in QSAR modelling using 
computational descriptors, saving experimental work, time, resources and 
animal testing for toxicology risk assessment. 

Finally, I would like to highlight that the work of this thesis it has been 
carried out with the managing of different techniques, software and 
disciplines. So, this is an additional proof that the perfect combination of 
different disciplines can produce a great work. 
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