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life was very beautiful with you. Çiğdem, you will be always very special
for me. Your deep soul inspired me so much. I’m missing you. Ioanita, my
Greek beauty, I guess we did it very well. It was lovely to sit in between

iv



“main” — 2019/5/21 — 16:12 — page v — #5

of you and Francesco. All those lovely moments....
And music... I shared many amazing memories with my musician

friends during 5 years. It is hard to express verbally all those feelings.
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especially in İstanbul. Fatih is much more beautiful with you. There is a
lot to say for each of you...

Most importantly, I felt in love several times. Argentina, Uruguay,
todo muy guay. Thanks life! Thanks Barcelona! Hope to stay always in
between Sex, Drugs & Rock’n Roll and Peace, Wisdom & Unity.

v



“main” — 2019/5/21 — 16:12 — page vi — #6



“main” — 2019/5/21 — 16:12 — page vii — #7

Abstract
Word embeddings are a building block of many practical applications
across NLP and related disciplines. In this thesis, we present theoreti-
cal analysis and algorithms to learn word embeddings. Moreover, we
present applications of word embeddings that concern Web Search and
Advertising.

We start by presenting theoretical insights for one the most popular
algorithm to learn word embeddings word2vec. We also model word2vec
in Reinforcement Learning framework and showed that it’s an off-policy
learner with a fixed behavior policy. Then we present an off-policy learning
algorithm word2vecπ that uses word2vec as a behavior policy.

Then, we present a method to learn word embeddings that are re-
silient to misspellings. Existing word embeddings have limited appli-
cability to malformed texts, which contain a non-negligible amount of
out-of-vocabulary words. We propose a method combining FastText with
subwords and a supervised task of learning misspelling patterns. In our
method, misspellings of each word are embedded close to their correct
variants.

Lastly, we propose two novel approaches (one working at the character
level and the other working at word level) that use deep convolutional
neural networks for a central task in NLP, semantic matching. We exper-
imentally showed the effectiveness of our approach using click-through
rate prediction task for Sponsored Search.
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Özet
Günümüzde birçok Doğal Dil İşleme ve ilgili alanlarda, kelimeleri çok
düzlemli uzayda temsil eden vektörler temel yapı taşı olarak kullanılmaktadırlar.
Bu tezde, bu vektörleri öğrenebilen algoritmalar ve onların teorik analizini
sunacağız. Bunun yanında, Web Search ve Web Reklamcılığında alanlarını
gözeterek, bu vektörlerin çeşitli uygulamalarını sunacağız.

Öncelikle, bu alandaki en popüler olan algoritma olan word2vec’in
teorik analizini sunacağız. Dahası, word2vec’i Reinforcement Learning
ekosistemine taşıyacak, onun bir off-policy learning methodu olduğunu
ve sabit bir behaviour policye sahip olduğunu göstereceğiz. Akabinde,
word2vec’i behaviour policy olarak kullanan word2vecπ’ı sunacağız.

Var olan kelime vektörü üreten methodlar, yazım hatalı kelimeler için
efektif sonuçlar üretememektedirler. Kullanıcaların Web’de ürettikleri
birçok yazının yazım hatası içerdiğini göz önüne alırsak, bunun ne kadar
önemli bir problem olduğu görülecektir. Bu nedenle, yazım hatalı ke-
limeleri tolere edebilecek bir kelime vektörü öğrenme metodu sunucağız.
Bu metod, FastText metodunu temel alırken, aynı zamanda yazım hataları
patternlerini öğrenmeye çalışmaktadır.

Son olarak, anlamsal eşleme problemini hedef alan, 2 önemli çözüm
sunacağız. Bunlardan bir tanesi karakter seviyesinde, diğeri ise kelime
seviyesinde çalışan derin sinir ağları olacak. Bu çözümlerin var olan
diğer çözümlerden daha iyi sonuçlar verdiğini click-through rate tahmini
problemini gözeterek, deneysel bir biçimde göstereceğiz.
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Resum

Dins del món del Processament del Llenguatge Natural (NLP) i d’altres
camps relacionats amb aquest àmbit, les representaciones latents de pa-
raules (word embeddings) s’han convertit en una tecnologia fonamental
per a desenvolupar aplicacions pràctiques. En aquesta tesi es presenta
un anàlisi teòric d’aquests word embeddings aixı́ com alguns algoritmes
per a entrenar-los. A més a més, com a aplicació pràctica d’aquesta re-
cerca també es presenten aplicacions per a cerques a la web i màrqueting.
Primer, s’introdueixen alguns aspectes teòrics d’un dels algoritmes més
populars per a aprendre word embeddings, el word2vec. També es presenta
el word2vec en un context de Reinforcement Learning demostrant que
modela les normes no explı́cites (off-policy) en presència d’un conjunt
de normes (policies) de comportament fixes. A continuació, presentem
un nou algoritme de d’aprenentatge de normes no explı́cites (off-policy),
word2vecπ, com a modelador de normes de comportament. La validació
experimental corrobora la superioritat d’aquest nou algorithme respecte
word2vec.

Segon, es presenta un mètode per a aprendre word embeddings que
són resistents a errors d’escriptura. La majoria de word embeddings tenen
una aplicació limitada quan s’enfronten a textos amb errors o paraules fora
del vocabulari. Nosaltres proposem un mètode combinant FastText amb
sub-paraules i una tasca supervisada per a aprendre patrons amb errors.
Els resultats proven com les paraules mal escrites estan pròximes a les
correctes quan les comparem dins de l’embedding. Finalment, aquesta
tesi proposa dues tècniques noves (una a nivell de caràcter i l’altra a
nivell de paraula) que empren xarxes neuronals (DNNs) per a la tasca de
similaritat semàntica. Es demostra experimentalment que aquests mètodes
són eficaços per a la predicció de l’eficàcia (click-through rate) dins del
context de cerces patrocinades.
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Resumen
Los Word Embeddings son piezas fundamentales de muchas aplicaciones
prácticas de Procesamiento del Lenguaje Natural y disciplinas afines.
En esta tesis presentamos un análisis teórico y algorı́tmos para aprender
Word Embeddings. Adicionalmente, mostramos aplicaciones de los Word
Embeddings en el campo de los motores de busqueda y publicidad en
internet.

Comenzamos mostrando alguno de los aspectos teóricos de uno de
los algorı́tmos más populares para aprender Word Embeddings: word2vec.
También modelamos word2vec en un marco de Aprendizaje por Reforza-
miento (Reinforcement Learning), mostrando.

Luego, presetanmos un metodo para aprender Word Embeddings que
es resiliente a errores en la escritura. Los actuales Word Embeddings tienen
limitaciones para su aplicación en textos malforados, que contienen un
cantidad no menor the palabras fuera del vocabulario. Para lidiar con este
problema, propoenes un método que combina FastText con sub-palabras
(subwords) y una tarea de aprendizaje supervisado de patrones de errores en
la escritúra. En nuestor método, los errores en cada palabra son embebidos
cerca su versión correcta.

Finalmente, proponemos dos aproximaciones novedosas (una que tra-
baja a nivel de caracteres y otro a nivel de palabras) que usan redes neu-
ronales profundas de convolución (deep convolutional neural networks)
para un de las tareas centrales del procesamiento de lenguaje natural: las
relaciones semánticas. Mostramos experimentalmente la efectividad de
nuestra aproximación prediciendo el ratio de clicks (click-through rate) en
el contexto de busquedas patrocinadas.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Throughout the ages, knowledge has been mostly transferred by words.
They are fundamental entities to understand and transfer knowledge.
In order to process/understand/organize/summarize knowledge in huge
databases such as the World Wide Web, we need computers. And comput-
ers need compact and powerful representations for words.

Before dense word embeddings, words were represented using sparse
models like bag-of-words and n-grams. Although they were successful
for many tasks, they suffer from the curse of dimensionality and scala-
bility issues [6]. Observing that, researchers proposed dense, distributed
representations of words [33, 14, 6].

Recently, an algorithm to learn neural distributed word embeddings
word2vec [52, 53] has gained lots of attention both, from industry and the
research community. word2vec has been used in several domains such as
natural language processing [43], information retrieval [27], biology [2]
and social networks [55].

There are different problems to study in the word embeddings research.
Despite its popularity, theoretical background of word2vec algorithms are
not well studied. Beyond loss function and optimization method, there

1
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is not so much known about it, i.e, the sampling mechanism of context
words.

Moreover, another important issue of word embeddings is that they are
often not able to deal with malformed words, i.e. misspellings. Based on
research [13], it is shown that human generated data has significant amount
of malformed. On the other hand, word2vec cannot provide embeddings
for words that have not been observed at training time such as misspelled
words. Although, FastText [8], a subword variant of word2vec can generate
representations for misspellings, it does not provide a satisfactory result.

One important application of word embeddings is semantic matching
which is one of the central tasks in web search and advertising. The
research community proposed models that use word level embeddings or
models that require a lot of engineering efforts to define, compute, and
select the appropriate features [35, 64, 70]. Hence, it is very appealing to
apply deep character level models since they won’t suffer from malformed
text and also they are able to exploit a richer character level representation.

1.2 Goals and Contributions
The purpose of this thesis is to understand, improve and apply word
embeddings at word, sub-word and character level. Our main contributions
are:

• Learning Word Vectors with Non-Fixed Policy (Chapter 3).
word2vec algorithm iterates over text word by word. For each
word, it samples other words around it as context words based on a
fixed probability distribution. We derive a closed-form formulation
of the context words conditional probability distribution and show
experimentally that it improves over a uniform distribution.

Then, we give new insights about word2vec algorithm, by describ-
ing it as off-policy reinforcement learning algorithm with fixed
behaviour policy. Moreover, We introduce an off-policy learning
mechanism that uses word2vec as behavior policy and show on

2
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state-of-the-art tasks, and languages used in the literature that the
off-policy embeddings outperform the word2vec embeddings.

• Misspelling Oblivious Word Embeddings (Chapter 4). In this part
of the thesis, we present a novel problem and a non-trivial solution to
build word embeddings resistant to misspellings. Moreover, a novel
evaluation method specifically suitable for evaluating the effective-
ness of Misspelling Oblivious Word Embeddings MOE is presented.
Lastly, a dataset on which such embeddings can be evaluated is
released for the research community.

Our work on misspelling oblivious word embeddings is accepted at
North American Conference of the Association for Computational
Linguistics in 2019, under the title “Misspelling Oblivious Word
Embeddings” [23].

• Character Level Embeddings and its Applications to Web Ad-
vertising (Chapter 5). In this part of the thesis, we present a deep
neural model to learn textual relationships. To the best of our knowl-
edge, we are first to learn meaningful textual similarity between
two pieces of text (i.e, query and ad) from scratch, i.e, at character
level. Moreover, we are first to directly predict the click-through
rate (CTR) in the context of sponsored search with little feature
engineering (i.e., page position as the only feature in addition to
text).

Our work on character level embeddings and its applications to
web advertising was published in Proceedings of the 40th Interna-
tional ACM SIGIR Conference on Research and Development in
Information Retrieval in 2016 [22].

The semantic structure of the thesis and its contributions is summarized
in Figure 1.1.
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Figure 1.1: Diagram that illustrates the flow in the thesis.

1.3 Organization
This thesis is organized as follows. In Chapter 2, we present the state-of-
the-art. In Chapter 3, we demystify sampling mechanism of word2vec
algorithm. Then, we show that word2vec is an off-policy reinforcement
learning method with fixed behavior policy, and introduce and off-policy
with word2vec as behavior policy. In Chapter 4, we move from word
level to sub-word level and study the problem of generating embeddings
for misspelled words. In Chapter 5, we study the problem of learning
textual relationships between 2 pieces of text where we compare word
level models with character level models using a CTR prediction task.
Lastly, in Chapter 6, we present conclusions of this thesis. Moreover, we
discuss some possible future directions for word embeddings research.
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CHAPTER 2

STATE OF THE ART

In this chapter, we present the state-of-the-art related to word embeddings.
They are organized under three sections; (1) Word, (2) Sub-Word and (3)
Character Level Word Embeddings.

2.1 Word Level Word Embeddings
One of the first works to introduce the concept of distributed representation
for symbolic data was [33]. Later on, the Information Retrieval (IR)
community proposed techniques of embedding words into a vector space.
Latent Semantic Indexing (LSI) [14] was one of the most influential works
in this area.

The first neural language model which jointly learns word embeddings
was [6]. Although such a language model was outperforming the baselines,
it was not practical because of long training time requirements. Collobert
et al. [11] proposed new neural architectures for word embeddings and
showed that pre-trained word embeddings can be very valuable for some
downstream NLP tasks. Later on, when word2vec [53, 52] became very
popular, both, because of its effectiveness and its ability to train a model on
a very large text corpus efficiently, Levy et al. [47] showed that word2vec’s
skip-gram with negative sampling model (SGNS) is implicitly equivalent
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to word co-occurrence matrix factorization. Besides neural approaches,
Pennington et al. [54] proposed an SVD based architecture which gained
a lot of attention because it allows to effectively consider the popularity of
each word in the model definition. Next, we would like to dive into the de-
tails of [53, 52]. word2vec embeddings can be learned using two different
models: skip-gram and Continuous Bag of Words (CBOW). Formally, let V
be a vocabulary of words, and let T = w1, w2, . . . , wn be a text represented
as a sequence of words from V ; given a word wi in the text, we define the
context of length l as Ci = {wi−l, . . . , wi−1, wi+1, . . . , wi+l}. In the skip-
gram model the task is to predict each word of context Ci given a word
wi, i.e., P (ci|wi; θ), and the overall objective of the optimization problem

associated with the task is that of maximizing
n∑
i=1

∑
wc∈Ci

logP (wc|wi; θ).
In the CBOW model the task, instead, is to predict a word wi given its
context Ci, i.e., P (wi|Ci; θ), and the overall objective of the optimization
problem is analogous to that of skip-gram. The probability measure P is
usually parametrized as a softmax on each word wc of the context Ci,

P (wc|wi; θ) = 1
Zi
es(wi,wc) (2.1)

where s (wi, wc) is a scoring function measuring how “similar” the
words are and Zi = ∑

j∈V
es(wi,wj) is the normalization term. Finally, θ is

the set of parameters of the model corresponding to the union of the set of
input embedding vectors v, and the set of output embedding vectors u. We
parametrize the scoring function s with the dot product uTc vi, where uc
is an output vector associated with the word wc and vi is an input vector
associated with the word wi. Therefore, s (wi, wc) = uTc vi.

As it is well known, computing the normalization term Zi is com-
putationally expensive. Several methods have been proposed to avoid
computing it directly. The approach adopted in word2vec is known as
Negative Sampling. Negative sampling replaces the original multi-class
classification task with binary classification where the model uses k neg-
ative samples for each positive training pair (wc, wi). We encourage the
reader to consult [20] for more details about Negative Sampling. The

6
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skip-gram with negative sampling is therefore defined as follows:

LW2V :=
n∑
i=1

∑
wc∈Ci

[`(s(wi, wc)) +
∑

wn∈Ni,c
`(−s(wi, wn))] (2.2)

where ` denotes the logistic loss function `(x) = log(1 + e−x), wn ∈ Ni,c

represents negative samples, number of negative samples for each positive
example that is k = |Ni,c|.

2.2 Sub-Word Level Word Embeddings

Besides word level embedding models like word2vec, sub-word level
embedding models have become popular, such as FastText [8]. Indeed,
the major innovation of FastText is the introduction of subword level
features to the word2vec framework. It uses the same loss function LW2V
as word2vec but it extends the way words are represented. In word2vec’s
skip-gram model, a word wi is represented by a single input vector vi. In
FastText we additionally embed subwords of a word and make use of the
subwords representations to represent wi. We will refer to subwords as
character n-grams. Formally, given an integer n with m ≤ n ≤M , where
M (resp. m) is the maximum (resp. minimum) length of an n-gram, the
FastText model embeds all possible character n-grams of the word. For
example, if m = 3, M = 5 and the word is banana, the set of n-grams is
“ban, ana, nan, bana, anan, nana, banan, anana”. Let Gwi denote the set of
all subwords of a word wi plus the word itself (e.g. for the word banana
Gbanana is the set defined in the example above plus the word “banana”
itself). Given Gwi , FastText’s scoring function for word wi and context wc
is defined as follows:

s(wi, wc) =
∑

vg ,g∈Gwi

vgTuc (2.3)

7
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Therefore, the representation of wi is simply the sum of the representations
of each of the n-grams derived from wi plus the representation of wi
itself. As like word2vec, FastText also uses a Negative Sampling technique.
With extensive experiments, FastText showed clear improvements over
the original word2vec skip-gram model [8]. We present a loss function of
FastText LFT as follows:

LFT :=
n∑
i=1

∑
wc∈Ci

[`(
∑

vg ,g∈Gwi

vgTuc) +
∑

wn∈Ni,c
`(−

∑
vg ,g∈Gwi

vgTun)] (2.4)

An alternative to FastText is MIMICK [57]. MIMICK’s goal is that of
representing pre-trained word embeddings by means of character-based
embeddings that learn to minimize the distance between embeddings
produced by a char-based approach and the pre-trained embeddings. The
rationale is that MIMICK is a generalization of FastText that should work
also on out of vocab words.

2.3 Character Level Word Embeddings

There are a number of works learning at character level for different natural
language processing (NLP) tasks in recent years. Nogueira dos Santos et
al. [18] are among the first to use character-level information for part-of-
speech tagging. They propose to jointly use character-level representation
and the more traditional word embedding in a deep neural network for this.
Later on, they propose to use a similar deep neural network with character-
level and word-level representations to perform name entity recognition
[61].

Several following works [5, 12, 39, 71] demonstrate the power of
character-level information alone in NLP tasks. Ballesteros et al. [5]
discuss the benefits of replacing word-level representation by character-
level representation in long short-term memory (LSTM) recurrent neural

8
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networks to improve transition-based parsing. Kim et al. [39] show in
their work that character inputs are sufficient for modeling most of the
languages, and their LSTM recurrent neural network language model
processing character inputs are as good as the state-of-the-art models using
word-level or morpheme-level inputs for English. Zhang et al. [71] explore
the use of character-level convolutional networks for text classification
and show that character-level convolutional networks achieve competitive
results against traditional models and deep models such as word-based
ConvNets [44]. Conneau et al. [12] further show that when using very
deep networks of up to 29 convolutional layers, a model that operates
directly at character level achieves significant improvements over the
state-of-the-art on several public text classification tasks. Interestingly, in
the case of big datasets, they report good results using shallower neural
networks. Bojanowski et al. [8] extends the skip-gram model by learning
representations for character n-grams. Words are then represented as a
bag of character n-grams. The model shows state-of-the-art performance
on word similarity and analogy tasks, especially for morphologically rich
languages.

9
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CHAPTER 6

CONCLUSIONS

6.1 Summary

Word embeddings and its applications are becoming more popular and
fundamental components of many real world applications. In this thesis,
we attempt to understand, improve and apply word embeddings.

Even though there are many works on the topic of word embeddings,
there are still many knowledge gaps. Even though famous approach
word2vec is widely used, its sampling mechanism was not clear from
theoretical point of view. In Chapter 3, we present an analysis of sampling
mechanism of famous approach word2vec. We experimentally demon-
strate that context words conditional probability distribution improve over
uniform distribution. Later on, we approach to sampling mechanism from
a different angle. We formulate word2vec algorithm, by describing it
as off-policy reinforcement learning algorithm where behavior policy is
fixed. Also, We develop an off-policy learner where behavior policy uses
word2vec policy. On state-of-the-art tasks and languages, we show that
proposed off-policy embeddings outperform the word2vec embeddings. In
this work, we consider words as an atomic unit.

In Chapter 4, we present a novel problem, generating embeddings
for malformed text i.e. misspellings. While working with misspellings,
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using words as atomic unit is not practical. That’s why, we move into
sub-word atomic level instead of word. We extend the original FastText
loss function by adding a supervised loss in order to learn misspelled
words. Experimental results show that proposed supervised loss is success-
fully mapping misspellings to its corrected versions. Moreover, a novel
evaluation method suitable for evaluating the embeddings of misspelled
words is presented. For the sake of reproducibility of study, we release a
dataset collected from a social network. We hope that, released dataset will
increase the number works about misspellings which is a clear problem
for real life applications.

In Chapter 5, we work on a very central task in Natural Language
Processing: Semantic Matching. In this chapter, we use characters as
atomic units and present we present a deep neural model to learn textual
relationships. To the best of our knowledge, we are first to learn meaningful
textual similarity between two pieces of text (i.e., query and ad) from
scratch, i.e., at character level. Moreover, we are first to directly predict
the click-through rate in the context of sponsored search with little feature
engineering.

6.2 Future Directions

In Chapter 3, we propose an off-policy learner to learn word embeddings.
Since we formulate the problem in Reinforcement Learning setting, there
can be many different approaches to check such as introducing a mean-
ingful reward function. Another possible extension can be learning a
value function. From word embeddings point of view, we can apply our
off-policy learner for FastText.

Misspelling Oblivious Embeddings presented in Chapter 4 is the first
work to deal with embedding of words that are resistant to misspellings.
For this reason, there is plenty of open problems to address. First, we are
also planning to test different ways of training embeddings for misspellings
including the extension of the same technique to multi-lingual embeddings.
Moreover, We are going to test deep architectures to combine the n-grams
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in misspellings to better capture various interdependencies of n-grams and
correct versions of words. Finally, we will assess the robustness of both
character-based [40] and context-dependent embeddings [16], [56] with
respect to misspellings.

In Chapter 5, a character level deep neural network to predict CTR of a
query-ad pair is predicted. The Proposed model can be applied to different
NLP problems where matching two pieces of text is needed. Moreover, it
would be interesting to make runtime analysis of proposed models to see
whether it can be used in a demanding, time-critical industrial settings.
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[42] M. Köper, C. Scheible, and S. Schulte im Walde. Multilingual
reliability and “semantic” structure of continuous word spaces. In
Proceedings of the 11th International Conference on Computational
Semantics, pages 40–45. Association for Computational Linguistics,
2015.

[43] Q. Le and T. Mikolov. Distributed representations of sentences and
documents. In Proceedings of the 31st International Conference on
Machine Learning (ICML-14), pages 1188–1196, 2014.

[44] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[45] V. I. Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, volume 10, pages
707–710, 1966.

[46] I. Leviant and R. Reichart. Judgment language matters: Multilingual
vector space models for judgment language aware lexical semantics.
CoRR, abs/1508.00106, 2015.

[47] O. Levy and Y. Goldberg. Neural word embedding as implicit matrix
factorization. In Advances in neural information processing systems,
pages 2177–2185, 2014.

[48] T. Luong, R. Socher, and C. Manning. Better word representations
with recursive neural networks for morphology. In Proceedings of
the Seventeenth Conference on Computational Natural Language
Learning, pages 104–113, 2013.

[49] X. Ma and E. Hovy. End-to-end sequence labeling via bi-directional
lstm-cnns-crf. arXiv preprint arXiv:1603.01354, 2016.

94



“main” — 2019/5/21 — 16:12 — page 95 — #115

[50] H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady,
L. Nie, T. Phillips, E. Davydov, D. Golovin, et al. Ad click prediction:
a view from the trenches. In Proceedings of the 19th ACM SIGKDD,
pages 1222–1230, 2013.

[51] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani. Adwords and
generalized on-line matching. In Proceedings of the 46th IEEE
FOCS, pages 264–273, 2005.

[52] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation
of word representations in vector space. CoRR, abs/1301.3781, 2013.

[53] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Dis-
tributed representations of words and phrases and their composition-
ality. In Advances in neural information processing systems, pages
3111–3119, 2013.

[54] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors
for word representation. In Proceedings of EMNLP, pages 1532–
1543, 2014.

[55] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pages 701–710, 2014.

[56] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer. Deep contextualized word representations. In
Proc. of NAACL, 2018.

[57] Y. Pinter, R. Guthrie, and J. Eisenstein. Mimicking word embeddings
using subword rnns. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pages 102–112,
2017.

[58] T. Qin and T. Liu. Introducing LETOR 4.0 datasets. CoRR,
abs/1306.2597, 2013.

95



“main” — 2019/5/21 — 16:12 — page 96 — #116

[59] M. Richardson, E. Dominowska, and R. Ragno. Predicting clicks:
estimating the click-through rate for new ads. In Proceedings of the
16th WWW, pages 521–530, 2007.

[60] H. Robbins and S. Monro. A stochastic approximation method. The
annals of mathematical statistics, pages 400–407, 1951.

[61] C. N. d. Santos and V. Guimaraes. Boosting named entity recognition
with neural character embeddings. CoRR, abs/1505.05008, 2015.

[62] M. Saveski and A. Mantrach. Item cold-start recommendations:
learning local collective embeddings. In Proceedings of the 8th ACM
RecSys, pages 89–96, 2014.
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