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Abstract

Partial synchronization is an important phenomenon observed in
nature and model systems. Chimera states are the most studied
type of partially synchronized dynamics and attract interest from
many fields of science. In homogeneous networks of identical
oscillators, a chimera state is a symmetry broken dynamics in
which the oscillators spontaneously split into two complementary
groups: one in which they are synchronized and one in which
they are not. The quest for chimera states in real-world scenarios
has been made challenging by their unstable nature in systems of
finite size. Therefore, it became crucial to find ways to control
them. In this thesis we propose a new control method based on
a pacemaker oscillator. We show how it can control all of the
chimeras’ instabilities in networks of phase oscillators and we
generalized this concept to more complex scenarios by applying it
to multiplex networks of phase and FitzHugh-Nagumo oscillators.

Keywords: Chimera states, control, synchronization, oscillator
networks.
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Resum

La sincronització parcial és un fenomen que s’observa en la na-
turalesa i en models matemàtics. Els anomenats estats quimera
són entre els exemples més estudiats de sincronització parcial i
atrauen l’interès de molts àmbits científics. En xarxes homogènies
d’oscil·ladors idèntics, un estat quimera és una dinàmica en què es
trenca la simetria perquè els oscil·ladors es divideixen espontània-
ment en dos grups complementaris: en un grup estan sincronitzats
i en l’altre no. La cerca d’estats de quimera en escenaris del món
real s’ha vist dificultada per la seva naturalesa inestable en sistemes
finits. Per tant, és crucial trobar formes de controlar-les. En aquesta
tesi proposem un nou mètode de control que utilitza un pacemaker
(oscil·lador marcapassos). Mostrem com el pacemaker pot contro-
lar totes les inestabilitats de les quimeres en xarxes d’oscil·ladors
de fase i generalitzem aquest concepte a escenaris més complexos
aplicant-lo a xarxes formades per capes d’oscil·ladors de fases i
models de neurones de FitzHugh-Nagumo.

Paraules claus: estats quimera, control, sincronització, xarxes
d’oscil·ladors.

vii





Resumen

La sincronización parcial es un fenómeno importante que se obser-
va en la naturaleza y en modelos matemáticos. Los denominados
estados quimera son el tipo más estudiado de dinámica parcialmen-
te sincronizada y atraen el interés de muchos campos de la ciencia.
En redes homogéneas de osciladores idénticos, un estado quimera
es una dinámica con simetría rota en la que los osciladores se divi-
den espontáneamente en dos grupos complementarios: en uno están
sincronizados y en el otro no. La investigación de estados quimera
en escenarios reales se ha convertido en un desafío por su naturale-
za inestable en sistemas finitos. Por lo tanto, es crucial encontrar
forma de controlarlos. En esta tesis proponemos un nuevo método
de control basado en un oscilador marcapasos (pacemaker). Mostra-
mos cómo esto puede controlar las inestabilidades de las quimeras
en redes de osciladores de fase y generalizamos el concepto a esce-
narios más complejos al aplicarlo a redes multi-capa de osciladores
de fase y de modelos de neuronas de FitzHugh-Nagumo.

Palabras claves: estados quimera, control, sincronización, re-
des de osciladores.
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Sinossi

La sincronizzazione parziale è un fenomeno che si osserva in natura
e in modelli matematici. I cosiddetti stati chimera sono uno dei
piú studiati esempi di sincronizzazione parziale e hanno suscitato
interesse in molti ambiti scientifici. In reti omogenee di oscillatori
identici, uno stato chimera è una dinamica in cui si rompe la sim-
metria, poiché gli oscillatori si dividono spontaneamente in due
gruppi complementari: in uno sono sincronizzati e nell’altro no. La
ricerca di stati chimera nel mondo reale è resa difficile dalla loro
natura instabile in sistemi finiti. Per questo motivo, è di cruciale
importanza trovare modi per controllare questi stati. In questa tesi
proponiamo un nuovo metodo di controllo che si basa sull’idea
di un pacemaker. Dimostriamo che un pacemaker può controllare
tutte le instabilità degli stati chimera in reti di oscillatori di fase.
Inoltre, generalizziamo questo concetto a scenari più complessi ap-
plicandolo a reti formate da più strati di oscillatori di fase e modelli
di neuroni di FitzHugh-Nagumo.

Parole chiave: stati chimera, controllo, sincronizzazione, reti
di oscillatori
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CHAPTER 1

Introduction

Synchronization is a fundamental and universal concept in nature,
technology and human life [74]. From fireflies lighintg up in syn-
chrony, crowds clapping in unison, neurons in the brain firing
simultaneously, to power generators maintaing the same frequency
in a power grid, the examples are abundant and come from all sorts
of fields [15]. In 1665, the Dutch physicist Christian Huygens
observed two coupled pendulum clocks synchronizing and started
to investigate a phenomenon that later turned out to be omnipresent
in natural and man-made systems. It was not until 1967 that syn-
chronization was given a formal mathematical framework by Art
Winfree [103]. His equations are the foundation for a variety of
models that are used nowadays to simulate the behaviour of systems
of coupled oscillators. The most famous model that originated from
Winfree’s equations is undoubtedly the Kuramoto model, proposed
by Japanese physicist Yoshiki Kuramoto in 1974 [46]. Kuramoto’s
equations were born as an attempt to simplify Winfree’s model and
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they became ubiquitous in the study of globally coupled systems.
Despite its wide applicability, the Kuramoto model has one limita-
tion: it describes the transition to global synchronization, a state
where all the components of the system become synchronized. But
at the beginning of the new millenium it became clear that global
synchronization is only part of a bigger picture.

In 2002, Kuramoto and Battogtokh discovered a new kind of
partially synchronized spatiotemporal pattern emerging in a ring
network of nonlocally coupled phase oscillators [47]. On a ring,
oscillators are nonlocally coupled if each one of them is connected
only to some of its nearest neighbours. This is an intermediate
configuration between global coupling and local coupling, in which
each oscillator is coupled only to its two nesarest neighbours. The
authors observed that the spatial rotational symmetry is not pre-
served in the evolution of the dynamics. The oscillators sponta-
neously split into two complementary groups: one in which they
are synchronized and one in which they perform a seemingly erratic
motion. This peculiar phenomenon was then named chimera state
by Abrams and Strogatz in 2004 [3]. After a few years, chimera
states became one of the most studied partially synchronized dy-
namics. Research on chimera states developed in many different
directions, going towards more complex models in which they can
appear and unveiling analogies with various real-world phenomena.

After their discovery in ring networks of phase oscillators,
chimeras were observed in networks formed by oscillators with
more complex dynamics. In 2013, Omelchenko et al. observed
chimera states in networks of FitzHugh-Nagumo oscillatory units,
which model features of neuronal dynamics [69]. In the follow-
ing year, Hizanidis and coauthors observed chimera states in net-
works of nonlocally coupled Hindmarsch-Rose neuron models [36].
Chimera states also appear in networks of Stuart-Landau oscillators
[90]. Here they take the form of amplitude chimeras, which were
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also later reported in Ref. [108]. In Ref. [65], the authors reported
the appearence of chimera states in networks of van der Pol oscilla-
tors. Furthermore, chimera patterns also appear in networks of time
discrete maps, as it was shown for the first time by Omelchenko and
colleagues in Ref. [64]. Subsequently chimeras have been found in
networks and ensembles of logistic maps [8, 17–19, 28, 67, 101],
Hénon maps [20, 85, 92, 93] and other types of time-discrete maps
[8, 35, 62, 95].

Not only have chimeras been observed for different types of
oscillators and maps, but also in networks with topologies that
are far more complex than the ring structure originally considered
by Kuramoto in 2002. For example, the previously mentioned
study with Stuart-Landau oscillators used a spatially extended sys-
tem with global coupling [90]. Spatial configurations with two
and three dimensions have also been used as models to generate
chimera states [41, 53, 71, 84]. Interestingly, they can also emerge
in bidimensional networks with fractal topologies [22, 76, 88].
Also, increasing the complexity of the interactions between the
network nodes can lead to the formation of chimera states in more
sophisticated scenarios. For example the introduction of delays
has an impact on the emergence of chimera states [14, 94, 107].
Furthermore, chimeras can appear in phase oscillator networks in
which the coupling function includes higher order harmonics [14,
98]. Another important category of structures in which chimera
states have been observed is the one formed by populations of
oscillators. In this case the oscillators are coupled all to all within
a population and weakly across populations. This type of structure
was considered by Montbriò and coauthors in Ref. [60], where
they studied how oscillators synchronize in interacting populations,
and found chimera patterns. Other examples of chimera states in
populations of oscillators were studied also from an analytical point
of view in Refs. [2, 48].
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Given that real systems are rarely isolated but instead are al-
most always interacting among them, scientists also explored the
possibility of obtaining chimera states in multilayer networks. This
line of research developed only recently and opened a path to ob-
taining richer dynamical profiles and synchronization scenarios. In
multilayer networks the interactions among the nodes are classified
into different groups which correspond to different layers and there
are also interactions among the layers [4, 16, 42]. For example,
transportation networks can be modelled as multilayer networks,
since different places may be connected by different means of trans-
port [24]. The brain can be seen as a multilayer network, as one
might picture a layer corresponding to the anatomical network and
one to the functional network [12]. Many other examples show
how powerful multilayer modelling is and how important it is to
extend previous theoretical studies in single-layer networks to this
new, richer scenario. The research on chimera states in multilayer
networks has focused mainly on a subcategory of these networks
known as multiplex networks. In the literature about chimera states,
multiplex networks are structures in which all the layers have the
same type and number of nodes and the coupling is one-to-one
among nodes belonging to different layers. Furthermore, in this
configuration one can introduce mismatches in the parameters of
oscillators belonging to different layers. In classical network sci-
ence papers, in multiplex networks all layers are supposed to be
identical [4, 16, 42]. Chimera states were observed in two- and
three-layer multiplex networks of Hindmarsh-Rose neurons in Ref.
[57]. In Refs. [54, 55], Majhi and coauthors considered a two-layer
network of Hindmarsh-Rose neurons and observed the emergence
of chimera states via multiplexing when the neurons were uncou-
pled in one of the two layers. When there are different interacting
layers, it is important to study if and how their dynamics synchro-
nize. In the study in Ref. [5] the authors detected generalized
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synchronization between chimera states in a two-layer network of
phase oscillators. In [87] it was shown that in a multiplex scheme
with three layers formed by ring networks of FitzHugh-Nagumo
oscillators, time delays can control relay synchronization between
chimera states. For a two-layer network of oscillatory FitzHugh-
Nagumo units, a control strategy based on weak multiplexing was
developed allowing to induce or suppress chimera states [59]. As
we said, all the previous studies are focused on multiplex networks.
In Ref. [7] for the first time, the authors observed chimera states
in a network with layers of different sizes. They modelled a mean
field interlayer coupling and observed that the phases of the order
parameters of the two layers synchronize forming Arnold-tongues
in the parameter space [7].

This rich body of research on chimera states based on analyt-
ical results and numerical simulations in the context of coupled
oscillators was accompanied by the discovery of analogies between
chimera states and real-world phenomena. Since synchronization
in general is so fundamental in many natural and technological
processes, it is only natural to ask if such peculiar partial syn-
chronization phenomena such as chimera states can be observed
in real-world systems or engineered in the lab. The connections
between partial synchronization and neuroscience opened a fasci-
nating research line in the past decade. In their seminal 2004 paper
[3], Abrams and Strogatz already suggested an analogy between
chimera states and unihemispheric sleep in dolphins and birds [79].
This analogy was later modelled by Ramlow and colleagues in Ref.
[78], where they used a network based on an empirical human brain
connectivity matrix and FitzHugh-Nagumo oscillators to model the
activity of different brain areas. Furthermore, in 2016, Andrzejak
and coauthors found strong analogies between chimera states col-
lapses and epileptic seizures [6]. In this study they showed how the
collapse of a chimera state in a network of phase oscillators was
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preceded by a drop of coherence in the dynamics, and something
very similar happens at the onset of an epileptic seizure. In 2018,
Chouzouris and colleagues were able to model epileptic seizures
by tuning the coupling strength in a network of FitzHugh-Nagumo
oscillators with an empirical connectivity obtained from magnetic
resonance images of human brains [22]. A recent study from Bansal
et al. showed how the interactions of different brain regions during
the performance of cognitive tasks give rise to partial synchroniza-
tion patterns that can be interpreted in the framework of chimera
states [10]. Partial synchronization patterns similar to chimera
states can also be found in a study on C. elegans by Pournaki et al.
[75]. But neuroscience is not the only field in which chimera states
are investigated. Studies have shown that these partial synchroniza-
tion patterns appear also in social systems [31, 44], ecology [9, 45],
and models of quantum systems [11]. Efforts to create chimera
states in the laboratory gave positive results using different struc-
tures and materials. In 2012, Hagerstrom and colleagues observed
chimera states in coupled-map lattices [33]. The study combined
numerical simulations on chimeras in networks of time-discrete
maps and the results obtained using an apparatus that produces an
optical nonlinearity in a spatially extended optical system. Another
remarkable experiment is the one performed by Martens and col-
leagues [58]. They took two sets of metronomes and positioned
each set on a swing. The two swings were connected via a spring.
Modifying the coupling strength between the swings, the system
went through different synchronization scenarios, and in particular
one in which one population of metronomes is synchronized and
the other is asynchronous, which is a chimera state. Chimeras do
not only live in physics labs, but also in chemistry labs. Observing
chemical oscillators, scientists found that also there partial syn-
chronization appears [99, 100, 102]. In the study [100], Totz and
colleagues observed spiral patterns in large populations of non-
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locally coupled Belousov-Zhabotinsky chemical oscillators. The
core of the spiral is incoherent while the spiral waves are coherent,
forming a two-dimensional chimera state.

An important question arises on the road to the observation
of chimeras in the physical world and towards their technological
applications: is it possible to control chimera states? This issue
is a crucial one, since it was proven that chimera states are un-
stable, and their instabilities become more and more pronounced
as one considers smaller systems, which are the most relevant in
experimental situations. In general the relative position of the two
complementary groups within the network strongly depends on
the initial conditions. Furthermore, in small networks, the inco-
herent group of the chimera state (or equivalently, the coherent
group) drifts along the network showing a Brownian motion of
its position [72]. Bick and Martens, in Ref. [13], state that the
location of the coherent group may have a functional significance,
and they envision the possibility of constructing a digital chimera
computer where location encondes information. In addition to their
drifting along the network, another feature of chimera states that
makes them difficult to observe is that in finite-size systems they
are chaotic transients [105]. In finite networks of nonlocally cou-
pled oscillators, chimeras coexist with the fully synchronous state.
Although in some systems chimeras have a long lifetime, they even-
tually collapse to the fully synchronous state, which is stable [105].
The properties of this tendency to collapse to full synchronization
were extensively investigated in Ref. [6, 105]. Finding ways to
prevent this collapse and prolong the chimera’s lifetime is one of
the goals of control studies.

Methods to achieve control of chimera states have been imple-
mented in models featuring different types of oscillators. In 2014,
Sieber and coworkers published a closed-loop method for ring-
shaped networks of phase oscillators which used a time-dependent
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phase-lag parameter to prevent chimera states from collapsing to
the synchronized state [96]. Another closed-loop method based
on a gradient dynamics which allows one to maintain the posi-
tion of the chimera state was proposed by Bick and Martens in
2015 [13]. In 2016, Omelchenko et al. [68] developed a feedback
control mechanism, called tweezers, to control chimera states in
small networks of FitzHugh-Nagumo and van der Pol oscillators.
This method uses two components, a symmetric one to prevent
the collapse of chimeras and an asymmetric one to control their
position [68]. The tweezers mechanism was optimized in Ref. [66]
allowing one to control the size of the domains forming the chimera
state and the frequency difference among the oscillators in each
domain. Gambuzza and Frasca [25] used spatial pinning to control
the position of chimera states in networks of FitzHugh-Nagumo
and phase oscillators. Isele and collaborators conducted a study
about control of the position of chimeras in networks of oscilla-
tory FitzHugh-Nagumo units [38]. They introduced a barrier of
excitable units in the network, which attracts the incoherent region
[38]. In the work by Andrzejak et al. [6], closed-loop feedback
control schemes were used to suppress or promote the collapse
of the chimera to the synchronous state in networks of phase os-
cillators. Recently, the possibility of controlling some features of
chimera states in networks of Stuart-Landau oscillators acting on
the initial conditions and coupling scheme has been developed by
Kalle and collaborators [39]. It was also proven that it is possible
to control not only classical phase chimeras, but also amplitude
chimeras which are observed in networks of Stuart-Landau oscilla-
tors [30]. Furthermore, in phase oscillator networks with coupling
functions involving higher order harmonics, chimera states can be
stabilized without external influence [14, 98]. In contrast to this
variety of methods for single-layer networks, control of chimera
states in multilayer networks is still widely unexplored. In 2019,
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Omelchenko and coauthors showed that the tweezers control mech-
anism introduced in [68] can also be used to control chimera states
in multiplex networks of van der Pol oscillators [63].

The studies mentioned so far on control of chimeras rely on
modifications of parameters of the oscillators and in some cases
these changes are made according to information extracted from the
system in a closed loop. However, in real-world scenarios, it might
be difficult to alter the individual oscillators that form a network.
Closed-loop feedback methods could also result unreliable, for
example when measurements of system features are affected by
noise.

In this thesis we propose a new control method based on the idea
of a pacemaker oscillator [82, 83]. This is an oscillator that does not
receive any input from other nodes of the network but sends infor-
mation to them, and therefore it oscillates at a constant frequency.
This method is implemented by modifying only the connectivity
structure of the network. Therefore, it does not require one to act on
individual oscillators, nor to retrieve any feedback from the system.
These characteristics make it appealing for possible experimental
applications. In what follows, we first introduce the pacemaker
mechanism in single-layer networks of phase oscillators and we
analyze its effects on the drifting and collapse. Furthermore, we
generalize the idea of a pacemaker oscillator to investigate which
is the minimal modification of the network connectivity needed to
control chimeras. Secondly, we study the applicability of this mech-
anism in multiplex networks of phase oscillators and oscillatory
FitzHugh-Nagumo neuron models. In the analysis, we use classical
tools introduced to characterize chimera states and we develop new
measures to assess the effectiveness of our control mechanism.
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CHAPTER 2

Chimera states

In this chapter we introduce the basic concepts about chimera states
in networks of phase oscillators and FitzHugh-Nagumo oscilla-
tors which are of fundamental importance for all the subsequent
chapters of this thesis. We describe how to detect chimera states
and how to determine which oscillators are in the coherent and
incoherent groups.

2.1 Nonlocal coupling

An essential element to obtain classical chimera states like the ones
discovered by Kuramoto [47] is the nonlocal coupling structure
in the network. This type of coupling is used in the majority of
studies about chimeras states. Nonlocal coupling is the middle
point between local and global coupling. Local coupling means
that each oscillator is coupled only to its closest neighbours. On

11



Figure 2.1: Nonlocal coupling. Panel (a) shows a schematic representa-
tion of a ring network with nonlocal coupling. In panel (b) we display
the connectivity matrix of the network in panel (a). The parameters are
N = 12 and R = 3.

the contrary, global coupling means that each oscillator is coupled
to all other oscillators, therefore it can be implemented also in
populations and does not imply any spatial ordering. Most of the
studies on chimera states use ring-shaped networks, which can
also be thought of as chain of oscillators with periodic boundary
conditions. In a ring-shaped network, nonlocal coupling is obtained
connecting each oscillator to more than one neighbour on each side.
A schematic representation of this kind of coupling is given in
Figure 2.1(a). Given one oscillator, its links can have all the same
strength, or their intensity can decrease with increasing distance
from that oscillator. The former case is represented by a regtangular
coupling kernel, while the latter by an exponential or sinusoidal
coupling kernel. We will consider a rectangular coupling kernel
throughout this thesis. The connectivity matrix G for a nonlocally
coupled ring-shaped network of N oscillators with a rectangular
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coupling kernel has the following mathematical expression:

G(j, k) =

{
1, if |j − k| ≤ R,

0, otherwise
(2.1)

Here j, k are spatial indeces with ranges j, k = 1 . . . N , andR is the
broadness of the coupling kernel, that is the number of oscillators
connected to a given oscillator on each side.

2.2 Phase oscillators

As a first model that can produce chimera states we use a ring
network of N nonlocally coupled phase oscillators (see Figure2.1).
This network is described by the following system of differential
equations for the time-dependent phases φj(t) of the oscillators
[72, 105]:

φ̇j(t) = ω − 1

2R

N∑
k=1

G(j, k) sin (φj(t)− φk(t) + α) (2.2)

where j = 1, . . . N . The oscillators’ natural frequency ω is set
to zero without loss of generality. The connectivity matrix G

corresponds to a rectangular coupling kernel with broadness R [72,
105] (see Eq. (2.1)). The phase-lag parameter is set to α = 1.46

[105]. Reflecting the periodic boundary conditions of the network’s
ring shape, all sums and differences of indices are to be understood
modulo N . In Figure 2.2 we show two typical solutions for the
system of equations (2.2) with parameters N = 50, R = 18. The
system was integrated using the classical 4th order Rung-Kutta
algorithm in an interval I = [t1, tn] with time steps of width dt,
corresponding to (tn − t1 + 1) · dt dimensionless time units. The
initial conditions were chosen randomly and uniformly distributed
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Figure 2.2: Chimera states vs. full synchronization. Two exemplary
solutions of Eq. (2.2) for two different initial conditions. We show the
spacetime evolutions of the phases φj(t). In panel (a), a chimera state
was formed and we can see the two complementary groups. In panel (b),
the sytem collapsed almost immediately to the fully synchronous state,
without ever forming a chimera state. Network parameters: N = 50,
R = 18, α = 1.46. Integration interval I = [1, 100000] and time step
dt = 0.05.

in the interval [0, 2π). In Figure 2.2(a) we see the phase variables
φj(t) of a solution in which a chimera state has formed. The two
complementary groups are clearly visible, the coherent one showing
an almost periodic dynamics and the incoherent one performing an
erratic motion. In Figure 2.2(b) we show another possible solution
of Eq. (2.2), obtained from different random initial conditions, that
is the fully synchronized state, in which, after a short transient, all
oscillators perform a synchronous motion.

Apart from the display of the phases such as the one in Fig-
ure 2.2, chimera states can be visualized by means of their in-
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Figure 2.3: Different representations of a chimera state. In panel
(a) we replicate the chimera state of Figure 2.2(a). Panel (b) shows
the instantaneous phase velocities φ̇j(t) and panel (c) the local order
parameter Rj(t). All parameters are the same as in Figure 2.2.
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Figure 2.4: Order parameter and mean phase velocity. Panel (a)
shows a chimera states and panel (b) its order parameter Z(t). Panel (c)
and shows the chimera’s mean phase velocity profile Ωj in a time window
W of 100 dimensionless units starting at t = 200. All parameters are the
same as in Figure 2.2.
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stantaneous phase velocities or local order parameter. From the
phases displayed in Figure 2.2(a), (b) we can calculate these local
quantities useful to characterize the different dynamical regimes.
The instantaneous phase velocities are defined as follows for j =

1, . . . , N :

φ̇j(t) =
φj(t)− φj(t− 1)

dt
. (2.3)

The local order parameter measures the local degree of coherence
of one oscillator with its δ neighbours on each side and it is defined
as:

Zj(t) =

∣∣∣∣∣∣ 1

2δ + 1

∑
|k−j|≤δ

eiφk(t)

∣∣∣∣∣∣ . (2.4)

Figure 2.3(b) shows the spacetime evolution of the instantaneous
phase velocities φ̇j . We see an irregular pattern corresponding
to the incoherent group and a region of almost uniform colour
corresponding to the coherent region of the chimera. The range
of Zj(t) is the interval [0, 1], where a value of 1 corresponds to
full synchrony and 0 to complete incoherence. For the local order
parameter Zj(t) in Figure 2.3(c), we see a uniform part with values
of Zj(t) close to 1 corresponding to the coherent group and an
irregular pattern with values Zj(t) < 1 for the incoherent group.

The local order parameter can be generalized to measure the
degree of coherence of the whole network calculating the following
quantity Z(t), known simply as order parameter:

Z(t) =

∣∣∣∣∣ 1

N

N∑
k=1

eiφk(t)

∣∣∣∣∣ (2.5)

In Figure 2.4(b) we show the typical behaviour for the order pa-
rameter Z(t) of a chimera state. During the short initial transient
which leads to the chimera’s formation, Z(t) increases rapidly and
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subsequently it oscillates around a mean value of approximately
0.75.

Another quantity that characterizes the spatial profile of a
chimera state is the mean phase velocity Ωj , calculated in a time
window W ⊂ I:

Ωj =
〈
φ̇j(t)

〉
W

(2.6)

where j = 1 . . . N and 〈 〉 is the time average over the window
W . Figure 2.4(c) shows the profile of the chimera’s mean phase
velocity calculated in a time window W of 100 dimensionless units
of the solutions shown in Figure2.4(a). The constant part of Ωj

corresponds to the coherent group.

2.2.1 Detection of chimera states

The content of this section was adapted from Appendix A of G. Ruzzene,
I. Omelchenko, E. Schöll, A. Zakharova, R. G. Andrzejak, Controlling
chimera states with minimal coupling modifications, Chaos: an interdisci-
plinary journal of nonlinear science, 29, 051103 (2019) [82].

The algorithm used in this thesis to detect chimera states is an
adaptation of the one proposed in Ref. [38]. We integrate Equation
(2.2) to obtain a solution φj(t), then we calculate the Kuramoto
global order parameter Z(t) and compute its temporal average
Z = 〈Z(t)〉W over a time window W located at the end of the
integration interval I . We compute the mean phase velocities Ωj in
the same time window W and we determine the range of the mean
phase velocity profile [3]:

Ω = max
j=1,...,N

Ωj − min
j=1,...,N

Ωj. (2.7)

If we find that Z ∈ [0.65, 0.8] and Ω ∈ [0.1, 1] then the solution
φj(t) is classified as a chimera state. All of these threshold values
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were chosen after pre-analysis of the considered system. The
other possible scenarios for Equation 2.2 are solutions which are
completely incoherent and solutions in which the oscillators are all
synchronized or almost all synchronized. The former are discarded
by the lower bound on the order parameter. The latter are also
ruled out because Z = 1 if all oscillators are synchronized. The
condition on the mean phase velocity comes into play when we
have values of Z close to 0.65. There are some cases in qhich there
is no clear distinction between the coherent and incoherent group
and Ω < 0.1. The upper-bound for Ω discards situations that are
rarely observed in presence of high coupling, in which a chimera
state is not formed but the synchronized state is disturbed by few
oscillators that have a different frequency from the synchronized
block.

2.2.2 High- and Low-Coherence groups

The content of this section was adapted from Appendix B of G. Ruzzene,
I. Omelchenko, E. Schöll, A. Zakharova, R. G. Andrzejak, Controlling
chimera states with minimal coupling modifications, Chaos: an interdisci-
plinary journal of nonlinear science, 29, 051103 (2019) [82].

Following the terminology introduced in [6], we refer to the
two complementary groups that form the chimera states as the high
coherence group (HCG) and low coherence group (LCG). These
two groups are defined following the algorithm presented in Ref.
[6]. In what follows all indices and sums of indices are to be
understood modulo N . For the j-th oscillator we consider its two
nearest neighbors on each side, that is oscillators j − 2, j − 1, j +

1, j + 2. For every time instant t we calculate the pairwise local
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Figure 2.5: Center of the chimera’s low coherence group. Panel (a) is
the temporal evolution of the phases φj(t) of a chimera state,o and panel
(b) represents the positions of its different compnents: the LCG (black),
the HCG (red), the border B(t) between HCG and LCG (yellow) and the
center c(t) of the incoherent group (white). All parameters are the same
as in Figure 2.2.
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order parameters:

Zj1,j2(t) =

∣∣∣∣12 (eiφj1 (t) + eiφj2 (t)
)∣∣∣∣ . (2.8)

We define the following function:

χ(j, t) =


1 if Zj+2,j+1(t), Zj+1,j(t),

Zj,j−1(t) and Zj−1,j−2(t) > 0.995,

0 otherwise.

(2.9)

At time t the HCG is formed by all oscillators with indices j such
that χ(j, t) = 1. The LCG is formed by the remaining oscillators.
Once we defined the HCG and LCG, we can define the border of
the LCG and its center. Descarding the initial transients during
which the chimera is formed, for every t we look for indices kB, jB
which satisfy the following conditions:

χ(kB − 1, t) = 1 and χ(kB, t) = χ(kB + 1, t) = 0

χ(jB − 1, t) = χ(jB, t) = 0 and χ(jB + 1, t) = 1
(2.10)

If such indices exist we say that the border of the LCG is B(t) =

{kB, jB}. Apart from the main LCG, it may happen that there
are small islands of incoherent oscillators inside the HCG. In this
case we find multiple pairs of indices satisfying the conditions
above. We then choose the pair which corresponds to the biggest
incoherent group. The position c(t) of the center of the LCG at
time t is defined according to the following rule:

- if kB < jB then c(t) = kB+jB
2

;

- if kB > jB then c(t) = kB+jB+N
2

mod N .

The center position c(t) defined above can be an integer or half-
integer between 0.5 and the network sizeN . The size of the LCG at
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time t is s(t) = N −
∑N

k=1 χ(k, t). Figure 2.5 illustrates the results
obtained applying the algorithms in this subsection to the chimera
state shown in panel (a). The position of the center of the LCG will
be one of the main subjects of interest in the next chapters.

2.3 FitzHugh-Nagumo oscillators
The FitzHugh-Nagumo model [23, 61] is a two-dimensional simpli-
fication of the Hodgkin-Huxley model [37], which descibes spike
generation by neurons. The equation of one isolated FitzHugh-
Nagumo unit can be written as follows [50]:

ε
du(t)

dt
= u− u(t)3

3
− v(t)

dv(t)

dt
= u(t) + a.

(2.11)

Here, u is the activator variable that describes the neuron’s
membrane potential, and v is the inhibitor variable. The parameter
ε� 1 provides a time-scale separation between the two variables.
Throughout this thesis, we will set ε = 0.05. Therefore, u is
a fast variable while v is a slow variable. The parameter a is
a bifurcation parameter which determines whether the neuron is
excitable (a > 1) or oscillatory (a < 1). The FitzHugh-Nagumo
model gives a qualitative description of a neuron’s spiking activity.
In this thesis we will consider only oscillatory FitzHugh-Nagumo
units, by setting the bifurcation parameter a = 0.5. The temporal
evolution of the two variables u and v in Eq. (2.11) is shown in
Figure 2.6(a). In Figure 2.6(b) one can see the characteristic phase
portrait of an individual FitzHugh-Nagumo unit and its nullclines.

In analogy with the setting described for phase oscillators in
Section 2.2, we use a ring-shaped network of nonlocally coupled
FitzHugh-Nagumo oscillators. The dynamics of this network is
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Figure 2.6: Dynamics of an isolated FitzHugh-Nagumo neuron.
Panel (a) shows the temporal evolution of variables u(t) (blue) and v(t)
(red). Panel (b) shows the corresponding phase portrait (green) and the
nullclines of Eq. (2.11) (dashed black).
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governed by the following set of differential equations [69]:

ε
duj(t)

dt
= uj(t)−

uj(t)
3

3
− vj(t)

+
σ

2R

j+R∑
k=j−R

[buu(uk(t)− uj(t)) + buv(vk(t)− vj(t))]

dvj(t)

dt
= uj(t) + aj

+
σ

2R

j+R∑
k=j−R

[bvu(uk(t)− uj(t)) + bvv(vk(t)− vj(t))]

(2.12)

Here, j = 1 . . . N and σ is the coupling strength and R is the
broadness of the rectangular coupling kernel. The coupling is
obtained using a rotational matrix:(

buu buv
bvu bvv

)
=

(
cos θ sin θ

− sin θ cos θ

)
(2.13)

It was shown in Ref. [69] that for θ slightly smaller than π/2 this
system can sustain chimera states. Therefore, throughout this thesis
we will set θ = π/2 − 0.1. Also the coupling strength σ plays
an important role in the formation of chimera states in this model.
We will always choose σ ∈ [0.1, 0.2] [59, 69]. We again use the
classical 4th order Runge-Kutta algorithm to integrate this system
during an integration interval I with time step dt.

To extract a phase φj(t) from the variables uj(t) and vj(t) we
use [69]:

φj(t) = arctan
uj(t)

vj(t)
. (2.14)

In Figure 2.7(a) we display a chimera state obtained from the

24



model in Eq. (2.12) by showing the spatiotemporal evolution of the
activator variables uj(t), including the initial formation. In Figure
2.7(b) we show the phases of the same chimera state.

Once we extract phases from the variables of FitzHugh-Nagumo
oscillators we can calculate all the quantities introduced in the
previous section for phase oscillators. Specifically, we can define
local and global order parameters Zj and Z (Eqs. (2.2) and (2.5)),
and the mean phase velocity Ωj (Eq. (2.6)). We also apply the same
algorithms for chimera detection (Section 2.2.1) and to compute
the HCG, the LCG and its center (Section 2.2.2).
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Figure 2.7: A chimera state in a network of FitzHugh-Nagumo oscil-
lator. Network parameters: N = 50, R = 18, σ = 0.2. Integration
interval I = [1, 500000] with a time step dt = 0.01.
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CHAPTER 3

Control of chimera states in networks of
nonlocally coupled phase oscillators

The content of this chapter was adpted from: G. Ruzzene, I. Omelchenko,
E. Schöll, A. Zakharova, R. G. Andrzejak, Controlling chimera states
with minimal coupling modifications, Chaos: an interdisciplinary journal
of nonlinear science, 29, 051103 (2019) [82].

In this chapter we introduce the main idea of this thesis: a con-
trol method for chimera states based on a pacemaker oscillator. The
first model we consider to define the control and study its effects is
a ring-shaped network of phase oscillators. This model was defined
in Section 2.2. The phase variables φj(t) evolve according to Eq.
(2.2). In Figure 3.1 we show three realizions of this model which
illustrate the instabilities of chimera states that we will control. The
first one, Figure 3.1(a), is a chimera state, and we see that the two
complementary groups drift along the network [72]. In the second
realization, a chimera state is formed and its groups drift along the
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Figure 3.1: Uncontrolled chimera states drift along the network over
time and may collapse to the fully synchronous state. In panels (a),
(b), (c), we display instantaneous phase velocities φ̇j(t) for three different
realizations of Eq. (2.2) for N = 35, R = 12, α = 1.46, ω = 0. (a)
Chimera state, (b) chimera state collapses, (c) chimera state is never
formed. Panels (d), (e), (f) illustrate the corresponding representations
of the high coherence group (HCG) and the low coherence group (LCG)
obtained using the algortihm described in Section 2.2.2.
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network, but the chimera collapses before the end of the simulation
(Figure 3.1(b)). In Figure 3.1(c) we display the last realization, in
which a chimera does not form, but instead all of the oscillators
synchronize after a short initial transient. The collapse of chimeras
to the fully synchronized state in finite-size systems was studied
in Refs. [6, 105]. To analyze the effects of our control mechanism
we need to be able to characterize the chimera’s high coherence
and low coherence groups (HCG and LCG). In Figure 3.1(d),(e),(f)
we show a binary representations of the groups corresponding to
the solutions in panels (a), (b) and (c) respectively. These were
obtained using the algorithm described in Section 2.2.2.

3.1 Modifying network connectivity to con-
trol chimeras

Our control mechanism acts on the connectivity matrix G defined
in Chapter 2 in Eq. (2.1). We implement the idea of a pacemaker
oscillator in the model in the following way. We decide to have
the pacemaker in position p, which corresponds to setting to zero
all nondiagonal elements of the p-th row of G. Accordingly, the
p-th oscillator does not receive any input and as a consequence
it oscillates at a constant angular frequency φ̇p(t) = − sin(α).
However, since the p-th column of G is maintained, this constant
frequency is received by all oscillators within the coupling range
R of oscillator p (see Figure 3.2, panels (b), (d)). In Figure 3.3 we
show the effects of the pacemaker which we found in this thesis:
attracting the low coherence group and preventing the collapse to
the synchronized state. In panels (d), (e), (f) we start the system
with the same initial conditions as in panels (a), (b), (c) respectively,
but now a pacemaker is present in position p = 18. We see how the
pacemaker attracts the low coherence groups and in both panels (e)
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Figure 3.2: Implementation of the full pacemaker in position p = 1.
In panel (a) we show a network of 12 oscillators which are nonlocally
coupled with R = 3. The links of one oscillator are highlighted to better
show the nonlocal coupling configuration. In panel (b) we show how
we change the connectivity to implement the pacemaker: we choose one
oscillator (the one with highlighted links in panel (a)) and we make its
link unidirectional. The corresponding coupling matrices G(j, k) are
shown in panels (c) and (d) respectively.
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Figure 3.3: A pacemaker prevents the chimera’s drifting and col-
lapse. (a), (b), (c) are replicas from Figure 3.1(a), (b), (c). In panels (d),
(e), (f) we display the effects of the presence of a pacemaker in position 18
on the solutions shown in panels (a), (b), (c) respectively. The pacemaker
was activated at the beginning of the simulations. The constant frequency
of the pacemaker appears as a uniform stripe in line 18 of panels (d), (e),
(f).
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Figure 3.4: A pacemaker generates chimera states. (a),(b),(c) are
replicas from Figure 3.1(a),(b),(c). Panels (d), (e), (f) are analogous to
the same panels in Figure 3.3 but here the pacemaker was activated after
150 dimensionless time units.
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and (f) the collapse to the synchronous state is avoided. In Figure
3.4, we see how the same effects are obtained when we activate the
pacemaker after a certain time from the beginning of the simulation.
The pacemaker attracts the LCG in all simulations and it does not
only prevent the collapse in Figure 3.4(e), but it can also trigger the
formation of a chimera from the synchronous state in Figure 3.4(f).

After studying the effects of this full pacemaker, we implement
gradually less invasive modifications of the coupling matrix G.
Like we just described, in the pacemaker configuration, only the
diagonal element is maintained at G(p, p) = 1. Starting from this
most invasive control, we then restore the pair of first off-diagonal
elements G(p, p− 1) = G(p, p + 1) = 1, then the pair of second
off-diagonal elements G(p, p − 2) = G(p, p + 2) = 1, etc. This
process is continued until we set the elements G(p, p−R + 1) =

G(p, p + R − 1) = 1. Therefore, at this stage only the elements
G(p, p − R), G(p, p + R) remain modified to zero. We refer to
the case in which all coefficients of the p-th row of G are set to
zero as full pacemaker (Figure 3.2 (b), (d)), and to the intermediate
modifications of G described above as partial pacemaker. The
pacemaker intensity ψ is defined as the ratio between the number
of removed links and the initial number of bidirectional connections
of the pacemaker. The lowest possible nonzero value of ψ is 1/R,
which corresponds to just two unidirectional links of oscillator p.
Finally, we set G(p, p − R) = 1 and G(p, p + R) = ξ, where
ξ is varied form 0 to 1. That means, for ξ = 1 the unchanged
connectivity matrix G is restored (see Eq. (2.1)).

3.2 Triggering chimera states
In this section we demonstrate how we can use a pacemaker to
induce chimera states for parameters and initial conditions for
which they do not form spontaneously (see again Figure 3.3, panels
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Figure 3.5: A pacemaker triggers chimeras for initial conditions for
which they do not form spontaneously. Comparison of the number
of chimera states observed for different values of the network size N
and coupling broadness R (the other network parameters are α = 1.46,
ω = 0). For each pair of values we solved the model 100 times without
control (panel (a), ψ = 0), with low control intensity ψ = 1

R (panel
(b)), intermediate control intensity ψ ≈ 0.5 (panel (c)) and with a full
pacemaker corresponding to ψ = 1 (panel (d)).
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(e), (f)). We compare the percentage of chimeras obtained with
different pacemaker intensities ψ and for every pacemaker intensity
we use the same set of initial conditions. It is known that the
lifetime of chimeras increases with the number of oscillators N
(Ref. [105]) and the drifting increases with decreasing N [72].
Since our control aims to counteract these instabilities, we focus
on small networks of up to N = 50, and we insert a pacemaker
in position p = 1 of the network. To detect chimeras we use the
algorithm described in Section 2.2.1. For each value of the network
size we consider all the possible values of coupling rangeR varying
from local coupling R = 1 to global coupling R = N−1

2
when N

is odd, or from R = 1 to the maximum possible value R = N−2
2

when N is even. For this section, the integration was performed
over 4 · 105 sampling times, corresponding to 2 · 104 dimensionless
time units, and all analyses were performed over an evaluation
interval of 2500 dimensionless time units W = [17500, 20000].
We considered 100 independent realizations for all pairs of values
of network size N and coupling range R. Results are displayed in
Figure 3.5. We clearly see that the region of the parameter space
in which chimeras are detected is broader when a pacemaker is
present in the network (see Figure 3.5 (b), (c), (d)). When no
control is applied to the network (Figure 3.5 (a)), no chimeras are
found for N < 32 and for relative coupling range R/N outside
the interval [0.25, 0.4]. This is due to the presence of chimera
states whose lifetime is shorter than the integration time (Figure
3.1(c)) and to initial conditions that collapse immediately to the
synchronous state without ever forming a chimera state (see again
Figure 3.1(b)). In the region where chimera states are present for
the unchanged connectivity (Figure 3.5 (a)) we observe an increase
in their percentage when the pacemaker is present (Figure 3.5
(b),(c),(d)). In particular, a low intensity pacemaker with ψ = 0.06,
obtained cutting only two incoming links, already induces chimeras
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Figure 3.6: The center c(t) of the LCG is attracted by a pacemaker
with different intensities. Panel (a) is the temporal evolution of the
center of the LCG for the same realization of Eq. (2.2) with different
pacemaker intensities, starting with no control up to the full pacemaker.
In panel (b) we show four independent realizations of Eq. (2.2) with low
pacemaker intensity. The pacemaker is in position p = 25.

for small values of N < 32 (see Figure 3.5 (b)). For pacemaker
intensity ψ ≈ 0.5 (panel (c)) we obtain results that are close to the
case of the full pacemaker (panel (d)).

3.3 Controlling the position of chimeras

Our study proceeds with the control of the position of chimera
states. In Figure 3.1 (a) we already saw that the two complementary
groups LCG and HCG drift along the network [72]. This drifting is
particularly pronounced for small networks and it was characterized
as a Brownian motion [72]. We study how different pacemaker
intensities ψ affect the chimera’s position. To do this, we set N =

50 and R = 18. For these parameters the occurrence of chimera
states is more likely in comparison with smaller sizes N , while the
drifting of the LCG and HCG is still substantial. The pacemaker
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Figure 3.7: Gradually cutting incoming links of one oscillator allows
one to increasingly control the position of the chimera state. We show
the effects on chimera states of the presence of a partial/full pacemaker
in position p = 25, in a network with N = 50, R = 18, α = 1.46. The
color scale in panels (a), (b), (c), (d) represents values of the distributions
of the LCG center C(c(t), ψ) over 100 independent realizations. Panel (a)
shows how the center c(t) of the LCG is positioned without any control,
that is with an unmodified matrix G. In (b) the pacemaker intensity is
ψ = 0.06, while in (c) we have ψ = 0.5. In panel (d) the configuration
corresponding to the full pacemaker, i.e. ψ = 1 is displayed. In panel
(e) we show the corresponding time averages of the spatial distributions
C(c(t), ψ) of the LCG center position over the interval W2.
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is in position p = 25. For this section, integration was performed
over 2 · 105 sampling times, corresponding to 104 dimensionless
time units, and all analyses were performed over an evaluation
interval of 2500 dimensionless time units W2 = [7500, 10000].
Following Ref. [5], if at some point the system synchronized, we
started over with new initial conditions. For every time step t

we define the position of the center of the LCG, denoted by c(t),
following the algorithm in Chapter 2, Section 2.2.2. The values of
c(t) vary in the set L of numbers from 0.5 to N = 50 in steps of
0.5. Furthermore, we calculate the size s(t) of the LCG and the
distance d(t) = c(t)− 25 of its center from the pacemaker position
p = 25 (see Section 2.2.2). In Figure 3.6 (a) we show the temporal
evolution of the position of the center c(t) of the LCG for four
solutions of Eq. (2.2) corresponding to four different pacemaker
intensities ψ = 0, 0.06, 0.5, 1, where 0.06 ≈ 1

R
. The initial

conditions were the same in every realization. In panel (b) we show
four different realizations of Eq. (2.2) with low pacemaker intensity
ψ = 0.06. This is the lowest possible value in our setting, as it
corresponds to only two unidirectional links. In both panels one
can appreciate the attracting effect of the pacemaker on the center
of the LCG. In the presence of a pacemaker, even with low intensity,
the center of the LCG is attracted by the pacemaker, as it becomes
evident from the difference in the characteristics of the blue to the
red curve in Figure 3.6 (a). The control effect becomes stronger
for increasing pacemaker intensity (purple and black curves in
Figure 3.6 (a)). In Figure 3.6 (b) we see how even the weakest
possible pacemaker with ψ = 0.06 attracts the center of the LCG
for different initial conditions, but the motion of the center is more
pronounced in these curves than in the black curve in panel (a),
which corresponds to the full pacemaker.

Next, we study the position of the center c(t) of the LCG
throughout 100 independent realizations for each pacemaker in-
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tensity. For every time step t and every control intensity ψ, we
thus have a distribution C(c(t), ψ) of the position of the LCG cen-
ter. For the uncontrolled system, there cannot be any preferred
position for the LCG of the chimera state over time and across
different realizations. The distribution C(c(t), 0), corresponding
to the uncontrolled system, is shown in Figure 3.7(a). As we can
see from the blue curve in Figure 3.7 (e), the distribution C(c(t), 0)

is uniform on L during the interval W2. As soon as we break the
symmetry of the coupling topology of the network, the distribution
of the position of the center changes and we see how the center
position is attracted by the partial or full pacemaker. Figure 3.7(b),
(c), (d) shows the effect of increasing the pacemaker intensity ψ in
position 25. In Figure 3.7 (b) only 2 incoming links of oscillator 25
were cut, while 18 links were removed in panel (c) (corresponding
to ψ = 0.06 and ψ = 0.5, respectively). Figure 3.7 (d) corresponds
to 36 links removed, i.e. the full pacemaker (ψ = 1). The control
effect is clearly visible already in panel (c). Looking at the time
averaged spatial distributions in panel (e) one can also observe how
these become narrower with a pronounced peak around position 25
as we approach the case of the full pacemaker (see Figure 3.7 (e),
black curve).

To further quantify the effects of our control mechanism, we
define the following order parameter:

ρ(t, ψ) =

∣∣∣∣∣ 1

2N

∑
l∈L

C(c(t), ψ)eiθl

∣∣∣∣∣ , (3.1)

where θl = 2πl
N

for l ∈ L, t is in the evaluation interval W2 and |·|
is the modulus of complex numbers. We calculate the order param-
eter ρ(t, ψ) for 20 distributions of the LCG center position which
were obtained from 20 sets of 100 independent initial conditions.
For every pacemaker intensity ψ we obtained order parameters
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ρ1(t, ψ), . . . , ρ20(t, ψ), average distances d1(t, ψ), . . . , d20(t, ψ) and
average LCG sizes s1(t, ψ), . . . , s20(t, ψ). We then calculated the
mean of their temporal averages over the interval W2, thus obtain-
ing functions of the pacemaker intensity ρ(ψ), d(ψ), s(ψ). These
values are shown in Figure 3.8 (a),(b),(c). In panel (a) we see how
the value of ρ(ψ) sharply increases when passing from pacemaker
intensity ψ = 0 to ψ = 0.06 (the lowest possible intensity in this
setting), and then increases more slowly towards the value corre-
sponding to the full pacemaker. The results in Figure 3.8 confirm
that the pacemaker attracts the LCG, in the sense that the distance
d(ψ) of the LCG center from the pacemaker position decreases as
the pacemaker intensity ψ increases. In panel (c) another effect of
our control mechanism is shown: an increase in the size s(ψ) of
the LCG.

The last step of our analysis is to modify only one value of
G. We repeated the analysis described before, setting the value of
the coefficient G(25, 7) = ξ, where 7 = p − R and ξ goes from
1 (unchanged matrix G) to 0 (one unidirectional link). Results
are represented in Figure 3.8 (d), (e), (f). In panel (d) we observe
an increase of the order parameter ρ(ξ) when the modification of
the coupling matrix becomes stronger. In particular we see that,
as we decrease the value of G(25, 7) = ξ (which corresponds to
increasing the control intensity), the distribution of the position of
the LCG center becomes more and more similar to the one obtained
in Figure 3.7 (b), where two links were made unidirectional, as it
is reflected in the increasing values of ρ(ξ) (Figure 3.8 (d)) and
the decreasing values of the distance d(ξ) of the LCG center from
the pacemaker (Figure 3.8 (e)). The effect on the size of the LCG
shown in Figure 3.8 (f) is not as pronounced as it was in the case
of the transition from no control to the full pacemaker.
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Figure 3.8: Partial pacemaker is sufficient to control the chimera’s
position. Panel (a) shows the order parameter ρ(ψ). In panel (b) we
display values of the distance d(ψ) of the LCG center from the pacemaker
position p = 25. The average size s of the LCG is shown in panel (c),
depending on the pacemaker intensity ψ. Panels (d),(e),(f) are analogous
to (a),(b),(c) respectively, but here ρ, d, s are calculated for varying ξ =
G(25, 7). For ξ = 1 we have the uncontrolled system, while ξ = 0
corresponds to one unidirectional link. In all panels, the network size is
N = 50, the coupling range is R = 18 and the phase lag is α = 1.46.
All time averages were calculated over the evaluation interval W2. The
error bars display the standard deviation of the averages over the 20 sets
of 100 independent initial conditions.
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3.4 Control Impact

In the previous section we introduced the order parameter ρ to
measure the controlling effect of the pacemaker across many real-
izations. It is also useful to define a quantity that measures how
controlled the position of a chimera state is over time. To do this,
we define the control impact Γ. We introduced this measure for
our studies of multilayer networks of FitzHugh-Nagumo neurons
which is the subject of Chapter 5 and our publication [83]. It can
however be defined for single layer networks of phase oscillators.
We therefore include its definition already here. Following the
algorithm in Section 2.2.2, we calculate the position c(t) of the
center of the chimera’s low coherence group. The center position
c(t) takes integer and half-integer values c in the interval [0.5, N ].
We then define a binary function λ that codifies the evolution of
this center position in space and time:

λ(c, t) =

{
1 if c = c(t)

0 otherwise.
(3.2)

Denoting the temporal average over the evaluation interval W by
〈 〉W , we define γ(c) = 〈λ(c, t)〉W , which determines the propor-
tion of times for which the center of the low coherence group was in
every possible position. We then define the control impact Γ(p,∆)

as

Γ(p,∆) =

p+∆∑
c=p−∆

γ(c). (3.3)

This control impact counts how many times the center of the
chimera’s low coherence group lies in a neighborhood of width
2∆ + 1 of the pacemaker position p during the interval W . This
corresponds to the area highlighted in green in Figure 3.9(b),(d).
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Figure 3.9: Control impact. Different chimera states arise from the
same initial conditions in a network of phase oscillators without control
(a) and with a pacemaker (c) in position p = 25. Panel (b) and (d) show
the distribution γ of the position of the LCG center. The green area
corresponds to the control impact Γ(25, 5) where p = 25 and ∆ = 5
(p± = p±∆). Network parameters: N = 50, R = 18, α = 1.46.
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It follows from the definition (3.3) that the control impact takes
values between 0 and 1. In an uncontrolled network, there is no
preferred position for the center of the low coherence group. There-
fore, when the evaluation window W becomes arbitrarily long, the
expected value of Γ is 4∆+1

2N
. This means that the center of the

chimera’s low coherence group is equally likely to occupy all posi-
tions c ∈ [0.5, N ] while it drifts along the network (Figure 3.9(a),
(b)). If the low coherence group is attracted by a pacemaker then
γ(c) has a pronounced peak around the pacemaker positon and flat
tails, therefore Γ has a value close to 1 (Figure 3.9(c), (d)).

3.5 Alternative symmetry breaking mech-
anism

To further understand which are the important aspects of the con-
trol mechanism introduced in this paper, we analyze here what
happens when we reverse the pacemaker idea. That is, we select
one oscillator with index p and we cut all of its outgoing links. In
terms of the coupling matrix G of Eq. (2.1), this corresponds to
settingG(j, p) = 0 for a fixed column p and for all j 6= p. This new
configuration is equivalent to isolating oscillator p from the rest of
the network, but we continue to show its dynamics in our results.
Figure 3.10 shows what happens when we repeat the simulations
of Figures 3.1, 3.3, 3.4 substituting the pacemaker with the new
symmetry breaking configuration, which consists in cutting the
outgoing links of oscillator p = 18. Panels (a), (b) and (c) of Figure
3.10 are replicas of panels (a), (b), (c) of Figure 3.1 (uncontrolled
chimeras), and we can see how the remaining panels of Figure 3.10
are qualitatively similar to the corresponding panels obtained in
Figures 3.3, 3.4 using the full pacemaker. These findings show that
the essential element for chimera control is the disruption of the
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Figure 3.10: Cutting the outgoing links of one oscillator acts like a
full pacemaker. In panels (a), (b), (c), we display instantaneous phase
velocities for three different realizations of Eq. (2.2) forN = 35, R = 12,
α = 1.46, ω = 0 (same initial conditions as in Figures 3.1, 3.3, 3.4).
In panels (d), (e), (f) we display the effects of the symmetry breaking
described in Section 3.5 with p = 18 on the solutions shown in panels (a),
(b), (c) respectively. The symmetry breaking was activated at the begin-
ning of the simulations. Panels (g), (h), (i) are analogous to panels (d), (e),
(f) but here the symmetry breaking was activated after 150 dimensionless
time units.
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spatial symmetry of the ring network.

3.6 Discussion
We introduced a method based on the idea of a pacemaker oscilla-
tor which allows one to control chimera states in small networks
of phase oscillators. By varying the control intensity, we were
able to investigate which is the minimal action needed to control
chimera states. We found that modifying only one coefficient in
the connectivity matrix is enough to control the chimera’s position.
Appealing features of our method are the simplicity of its imple-
mentation, which lies in the fact that no feedback from the system is
needed and that it does not intervene on the oscillators’ parameters.
Interestingly, there are strong analogies between our results and
the ones elaborated by Isele and colleagues [38]. Although they
use a different model and a completely different control mecha-
nism, they also observed that the symmetry breaking element in
the network attracts the low coherence group and stabilizes the
chimera state. The effects of symmetry breaking in the evolution
of chimera states also emerge in the recent work by Yao et al. in
Ref. [106]. They perturbed the dynamics of a ring-shaped network
of phase oscillators by selecting a target oscillator and forcing it to
have a fixed phase difference with respect to the local mean field
of its neighbours. This perturbation induces the low coherence
group to be centered around the target oscillator. Our results con-
firm the occurrence of this self-adaptation [106] of the chimera
position, and generalize the findings in Ref. [106] showing that
weaker changes in the network are sufficient not only to control
the chimera’s position, but also to trigger chimeras for parameters
and initial conditions for which they do not form spontaneously.
Moreover, the full pacemaker can be used to generate a chimera
state after the system has collapsed to the synchronous solution.
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It is worth to point out that the idea of a pacemaker was already
introduced in the study of synchronization of the Kuramoto model.
In Ref. [43, 77] a pacemaker was used to synchronize random
networks of phase oscillators. We showed that the same mechanism
produces the opposite effect for the Kuramoto-Sakaguchi model. In
fact, it promotes the existence of chimera states when the oscillators
are nonlocally coupled. This comparison underlines the importance
of the interplay of nonlocal coupling, the phase lag and the control
mechanism in the control of chimera states. Given that our method
acts exclusively on the connectivity of the network and not on the
intrinsic dynamics of the oscillators, we conjecture that it may work
also for networks made of different types of oscillators and more
complex topologies. To verify this conjecture will be the scope of
the next two chapters.
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CHAPTER 4

Control of chimera states in multiplex
networks of phase oscillators

As we discussed in Chapter 1, the study of chimera states in multi-
layer networks represents a growing field of research [5, 7, 20, 27,
32, 54, 55, 57, 59, 86, 87, 89, 104]. In this chapter we briefly review
previous work about synchronization of chimera states across the
different layers of a multilayer network and then we generalize the
control mechanism introduced in Chapter 3 to multiplex networks
of phase oscillators. We want to answer three main questions: is it
possible to remotely control a chimera states in layer 2 via the cou-
pling, using a pacemaker in layer 1? Is a pacemaker stronger than
interlayer coupling or viceversa? And finally, which is the effect of
having pacemakers in both layers, but in antipodal positions?
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4.1 Synchronization between chimera states

When considering multilayer networks it is important to assess the
synchronization of the dynamics in the different layers. In 2017,
Andrzejak and coauthors found that chimera states in a multiplex
network can enter in a regime of generalized synchronization [5].
For nonidentical systems it is impossible to synchronize identically,
but there can be a relationship between the dynamics due to the
coupling. If we consider two systems X, Y with a driver-response
coupling from X to Y , then we say that there is generalized syn-
chronization between X and Y if there exists a function F such
that Y = F (X) [81]. This means that the dynamics of Y is com-
pletely determined by the dynamics of X , although in general the
function F may be arbitrarily complex and difficult to detect. In
Ref. [5] the authors used the auxiliary system approach to detect
generalized synchronization [1]. In this approach one considers an
identical copy Y ′ of the repsonse system Y which is also driven
by X . If Y and Y ′ get identically synchronized after being ini-
tialized with different initial conditions, then there is generalized
synchronization between X and Y . This is because, if there is
generalized synchronization, the states of Y and Y ′ are completely
determined by X and not by their respective initial conditions. The
concept of generalized synchronization has some limitations which
make it difficult to apply in realistic systems. First, generalized
synchronization is only defined for a driver-response configuration.
In the context of chimera states, this implies that we can only use
this concept in multiplex networks with unidirectional coupling.
Secondly, methods to detect the existence of the function F such
that Y = F (X) can be difficult to apply in realistic scenarios. For
example, it may not be possible to construct an identical copy of Y
driven by X .

To further invesitgate how chimeras can synchronize, in Ref.

50



[7] the authors extended the previous study [5] to more realistic
settings and proposed to use the concept of phase synchroniza-
tion introduced for low dimensional chaotic systems [80] to study
chimeras in multilayer networks with layers of different sizes and
bidirectional coupling between them. The coupling between the
layers was obtained using the mean-field obtained from the phase
of the order parameter (Eq. (2.5)). For sufficiently strong coupling,
the phases of the order parameters of the two layers became weakly
locked [7].

In this thesis we study a weaker kind of synchronization linked
to the position of the chimera states within the layers. In Ref. [5]
the authors already observed how, along with generalized synchro-
nization, the chimeras in different layers align their positions. Here
we further investigate this effect and see whether it can be enhanced
or suppressed using the pacemaker control.

4.2 Model and integration

We consider a multiplex network with two layers of N phase oscil-
lators each [5]. Each layer is a ring network of nonlocally coupled
phase oscillators with a rectangular kernel of broadness R (see
Section 2.2, Eq. (2.2)). Each variable φ1j(t) in layer 1 is coupled to
the corresponding phase φ2j(t) in layer 2, with j = 1, . . . , N [5]:

φ̇1j(t) = ω − 1

2R

j+R∑
k=j−R

sin(φ1j(t)− φ1k(t) + α1)

− σ2→1 sin(φ1j(t)− φ2j(t))

φ̇2j(t) = ω − 1

2R

j+R∑
k=j−R

sin(φ2j(t)− φ2k(t) + α2)

− σ1→2 sin(φ2j(t)− φ1j(t)).

(4.1)
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.1: Different combinations of multiplexing and control. Mul-
tiplex networks formed by two layers with nonlocal coupling. Red circles
are the oscillators and the blues ones are the oscillators which act as
pacemaker. The left column corresponds to unidirectional coupling. (a)
No control, (b) pacemaker in layer 1, (c) pacemaker in layer 2. The right
column corresponds to bidirectional coupling between the layers. (d) No
control, (e) pacemaker in layer 1, (f) pacemakers in layer 1 and layer 2 in
antipodal positions.
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If σ1→2 > 0 and σ2→1 is zero, then we have unidirectional coupling,
corresponding to a driver-response configuration. If also σ2→1 > 0,
then we set σ2→1 = σ1→2 = σ1↔2 and we obtain a bidirectional
coupling scheme. We introduce a mismatch between the layers via
the phase-lag parameters α2 as we set α2 = α1 + ∆α [5].

All equations are integrated using the classical fourth-order
Runge-Kutta algorithm with time step dt = 0.01 spanning 106

time steps, corresponding to 104 dimensionless time units. We
caculate averages in a time window W of 2500 dimensionless units
positioned at the end of the simulation.

Since in this chapter we are focusing on controlling the position
of chimera states, each time we start the system with random initial
conditions, we use the order parameter defined in Eq. (2.5) to
check whether the system has synchronized and, if this is the case,
we discard the realization and restart the simulation, following the
strategy described in Ref. [5].

We use a pacemaker oscillator [82] to control chimera states in
one or both layers. The details on how to implement this control
mechanism were explained in Chapter 3, section 3.2. There are
many possibilities regarding the position of the pacemaker or pace-
makers within the multiplex structure. Here, we will first consider
the situation in which no control is present and then four different
configurations in which 1 or 2 pacemakers are present. In Figure
4.1 we show schematic representations of the six configurations
that we will consider in this chapter. The first row corresponds to
unidirectional coupling between the layers (Fig. 4.1(a), (b), (c))
and the second one to bidirectional coupling (Fig. 4.1(d), (e), (f)).
The pacemaker oscillators are coloured in blue.
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4.3 Control impact and Synchronization

To assess the interplay between chimera states across the two layers
we here introduce two quantities that measure the alignment of the
low coherence groups of the chimera states and the across-layer
synchronization of the two dynamics. First, we want to measure
the degree to which the chimera states in the two layers align
their positions. To do this we calculate the difference between the
positions of the centers of the low coherence groups c1(t), c2(t) in
the two layers on a ring with circumference of length N :

D12 = 〈min{|c1(t)− c2(t)| , N − |c1(t)− c2(t)|}〉W , (4.2)

where 〈 〉W continues to denote the time average over the evaluation
interval W . To quantify synchronization between the two layers
we use a normalized phase difference which was defined in Ref.
[5] as follows:

δ12(t) =
1

N

N∑
j=1

∣∣∣∣sin(φ2j(t)− φ1j(t)

2

)∣∣∣∣ (4.3)

Also for δ12(t) we calculate the temporal average over the time
window W , obtaining δ12 = 〈δ12(t)〉W .

4.4 Results

4.4.1 Unidirectional coupling

We start by studying the position of chimera states and the align-
ment between their low coherence groups in a multiplex network
with two layers organised in a driver-response configuration. This
setup is described by Eq. (4.1) with σ2→1 = 0 and σ1→2 > 0.
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Figure 4.2: Chimera states align across different layers with unidi-
rectional coupling in the absence of control. Results for a multiplex
network with two layers of nonlocally coupled phase oscillators. (a), (b)
control impact Γ1(25, 5) and Γ2(25, 5). (c), (d) Snapshots of the position
of the LCG centers c1(ts)) and c2(ts) at time ts = 500000 time steps. (e)
D12, measure of the alignment between the centers c1(t) and c2(t). (f)
Normalized phase difference δ12. Network parameters: N = 50, R = 18,
α1 = 1.46.
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Figure 4.3: A pacemaker in layer 1 can control chimeras in layer 2
through unidirectional coupling. Same as Figure 4.2, but here there is
a pacemaker in layer 1, position p1 = 25.

56



Figure 4.4: The unidirectional coupling is stronger than a pace-
maker. Same as Figure 4.2, but here there is a pacemaker in layer 2,
position p2 = 25.
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The parameter space is spanned by the mismatch ∆α between the
phase-lag parameters α1 and α2, and by the interlayer coupling
σ1→2. The phase-lag mismatch ∆α is sampled logarithmically in
49 steps from 10−15 to 0.01, and we also consider the case of identi-
cal systems with ∆α = 0. The interlayer coupling σ1→2 is sampled
linearly in 50 steps from 0 (which corresponds to isolated layers)
to 0.25. Since we plan to have a pacemaker in positon p = 25 in
layer 1 or layer 2, for each configuration displayed in Figure 4.1(a),
(b), (c) and for every pair of ∆α and σ1→2 we calculate the control
impact values Γ1(25, 5) and Γ2(25, 5) (for details, see Section 3.4).
We also take a snapshot of the position of the centers c1(ts), c2(ts)

at time ts. We then calculate D12 and δ12 as defined in Section 4.3.
The snapshot time ts was chosen prior to the averaging window W

so that the values c1(ts) and c2(ts) give us further information on
where the center of the low coherence group is found earlier in the
simulations.

We start with an uncontrolled network with unidirectional cou-
pling. A schematic view of this configuration is displayed in Figure
4.1(a). This is the same model studied in Ref. [5]. Since there is
no preferred position for the low coherence group of the chimera
states in uncontrolled networks, we expect a uniform distribution
for the values of Γ1. This is what we see in Figure 4.2(a), where
we show values of Γ1(25, 5). This result is also reflected in Figure
4.2(c), where we see a snapshot of the position of the LCG center
c1(ts). The analogous quantities Γ2(25, 5) and c2(ts) for layer 2
behave in a similar fashion (Figure 4.2(b), (d)). In panel (e) we
show the distance D12 (Eq. 4.2) between the centers of the LCGs
c1(t) and c2(t) and we can see how the centers are aligned for a
wide range of parameters where D12 = 0. The same holds for the
position of the center c2(t), which is shown in Figure 4.2(d). The
interlayer error δ12 reaches the value zero only when the two layers
are identical, i.e. for ∆α = 0.
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As a second scenario, we introduce a pacemaker in layer 1,
position p1 = 25 (Figure 4.1(b)). In this case we want to see
whether the control can be transferred from layer 1 to layer 2 via
the interlayer coupling. In Figure 4.3(a) we see how the position of
the low coherence group in layer 1 is controlled by the pacemaker.
The control effect exerted by the pacemaker in layer 1 is effective
also in layer 2 starting from a value of σ1→2 as low as 0.12 as we can
see in Figure 4.3(b). This result is reflected in the values of c1(ts)

and c2(ts) (Figure 4.3(c) and (d) respectively). As a consequence,
the centers become aligned for increasing coupling (Figure 4.3(e)).
In this case δ12 never becomes zero because the presence of the
pacemaker makes the two layers non-identical even for ∆α = 0.

Finally, we study what happens when we introduce a pacemaker
only in layer 2, in position p2 = 25. Given that layer 2 is driven by
layer 1, we use this configuration to answer the second of the three
questions that we asked at the beginning of this chapter, whether
a pacemaker can overrule the driving. Since layer 1 does not
receive any input from layer 2, the behaviour of the LCG center is
the same as in the first case considered in this section, so we see
that the coupling impact Γ1(25, 5) in Figure 4.4(a) looks similar
to Figure 4.2(a). In layer 2, the pacemaker attracts the center
of the low coherence group around its position p2 = 25 for low
coupling σ1→2 which causes the control impact Γ2(25, 5) to take
values close to 1 (white area in Figure 4.4(b)). As the coupling
increases though, we see how the pacemaker cannot control the
position of the center anymore, and Γ2 follows the pattern of Γ1.
This behaviour is reflected in the distributions of the values of c1(ts)

and c2(ts) in Figure 4.4(c) and (d), respectively. Since now there is
a pacemaker in layer 2, identical synchronization is not achieved
even for ∆α = 0. We see in Figure 4.4(e) that the centers of the
low coherence groups never completely align. Also the normalized
phase difference δ12 takes always positive values which get closer
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to zero as the coupling increases.

4.4.2 Bidirectional coupling

We now activate also the coupling σ2→1 from layer 2 to layer 1,
thus obtaining bidirectional coupling between the layers. This
configuration corresponds to the schemes in Figure 4.1(d), (e), (f).
First we consider what happens if there is no control (Figure 4.1(d)),
secondly if there is a pacemaker in layer 1, position p1 = 25 (Figure
4.1(e)) and lastly if there are two pacemakers in the network, in
layer 1, position p1 = 25 and in layer 2, position p2 = 50 (Figure
4.1(f)). We compute the same measures Γ1(25, 5), Γ2(25, 5), c1(ts),
c2(ts), D12 and δ12 as in the previous Section 4.4.1. In the last
setting with two pacemakers, Γ2(25, 5) is substituted by Γ2(50, 5).

Following the analysis of the unidirectional case, we start by
considering the multiplex network without control (Figure 4.1(d)).
The results are shown in Figure 4.5 and they are analogous to
the results obtained for unidirectional coupling shown in Figure
4.2. We see that there is no preferred position for the centers
of the low coherence groups and that the chimera states quickly
align for increasing interlayer coupling (Figure 4.5(a), (b), (c),
(d)). The alignment region in Figure 4.5(e) is comparable to the
unidirectional case. The identical synchronization when ∆α = 0

(green line in Figure 4.5(f)) starts from lower values of the interlayer
coupling σ1→2 compared with the unidirectional case.

When we introduce a pacemaker in layer 1, as in Figure 4.1(e)
we observe an interesting effect. The center c1(t) is attracted by
the pacemaker in position p1 = 25 except for a narrow region
of parameter space (Figure 4.6(a)). The LCG of the chimera in
layer 2 is remotely controlled by the pacemaker in layer 1, as the
values of Γ2(25, 5) are close to 1 when the coupling σ1↔2 becomes
stronger. These results are confirmed in Figure 4.6(c), (d) which
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Figure 4.5: Chimera states align across different layers with bidirec-
tional coupling. All parameters are the same as in Figure 4.2, but here
there is bidirectional interlayer coupling σ1↔2.
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Figure 4.6: A pacemaker remotely controls chimera states through
bidirectional coupling. Same as in Figure 4.5, but here there is a pace-
maker in layer 1, position p1 = 25.
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Figure 4.7: Conflicting pacemakers lead chimeras to compromise
on a middle position. Same as in Figure 4.5, but here there are two
pacemakers: one in layer 1, position p1 = 25 and one in layer 2, position
p2 = 50.
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show snapshots of the LCG centers c1, c2. It follows that the centers
are aligned, but in this case we only get values of D12 which are
low, but still positive. The same holds for the interlayer error δ12,
given that now, because of the pacemaker, the two layers are not
identical even when ∆α = 0.

Lastly, we investigate what is the effect of having pacemakers
in both layers in antipodal positions. We insert a pacemaker in layer
1, position p1 = 25 and one in layer 2, position p2 = 50 (Figure
4.1 (f)). For low coupling σ1↔2 both pacemakers are attracting
the LCGs to their respective positions. However, as the coupling
increases, the values of Γ1(25, 5) and Γ2(50, 5) get close to zero.
Looking at the snapshots of the LGC centers c1 and c2 in Figure
4.7(c), (d) we understand that this happens because the centers c1

and c2 align close to positions that are equidistant from the two
pacemakers on the circle (these positions are 12.5 and 37.5).

4.5 Discussion
In this section we demonstrated that a pacemaker can be used to
control chimera states in a multiplex network of phase oscillators.
Given that the model is more complex with respect to the ring
network in Chapter 3, we had to consider a variety of ways in
which the pacemaker control can be applied. Our main results
are that it is possible to remotely control a chimera state in layer
2 through a pacemaker in layer 1 and that the driving effect is
stronger than a pacemaker. The possibility of using remote control
is important for situations in which one has access only to parts of a
system. The results obtained for bidirectional coupling strengthen
the flexibility of our method, which still shows its effects in a
situation in which the layers are mutually influencing each other.
Our next challenge now is to investigate whether the pacemaker
control works not only with more complex network topologies, but
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also with more realistic oscillators. For this purpose, in the next
chapter we will generalize the analysis of this chapter to networks
of FitzHugh-Nagumo neuron models.
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CHAPTER 5

Control of chimera states in networks of
FitzHugh-Nagumo oscillators

As a further application of our control method, we use it in multi-
plex networks of FitzHugh-Nagumo oscillators. This chapter will
therefore offer an insight on the possibility of using the pacemaker
control with complex node dynamics. We investigate the same
multilayer network architectures which we studied in Chapter 4 for
phase oscillators, but here for FitzHugh-Nagumo oscillators.

5.1 Model and integration

We study the dynamics of a two-layer network of FitzHugh-Nagumo
oscillators. Each unit is characterized by two variables u(t) and
v(t). Each layer is formed by N oscillators arranged in a ring topol-
ogy. Following Ref. [69], inside each layer l = 1, 2, the oscillators
are coupled nonlocally with range R and strength σl (see Section
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2.3). The dynamics of the multiplex network is governed by the
following set of differential equations [59]:

ε
du1j(t)

dt
= u1j(t)−

u1j(t)
3

3
− v1j(t)

+
σ1

2R1

N∑
k=1

G1(j, k)[(buu(u1k(t)− u1j(t)) + buv(v1k(t)− v1j(t)))]

+ σ2→1(u2j(t)− u1j(t))

dv1j(t)

dt
= u1j(t) + a

+
σ1

2R1

N∑
j=1

G1(j, k)[(bvu(u1k(t)− u1j(t)) + bvv(v1k(t)− v1k(t)))]

ε
du2j(t)

dt
= u2j(t)−

u2j(t)
3

3
− v2j(t)

+
σ2

2R2

N∑
k=1

G2(j, k)[(buu(u2k(t)− u2j(t)) + buv(v2k(t)− v2j(t)))]

+ σ1→2(u1j(t)− u2j(t))

dv2j(t)

dt
= u2j(t) + a

+
σ2

2R2

N∑
k=1

G2(j, k)[(bvu(u2k(t)− u2j(t)) + bvv(v2k(t)− v2j(t)))].

(5.1)

Regarding the interlayer coupling scheme, Eq. (5.1) models a
bidirectional multiplex configuration where each oscillator’s u1j(t)

variable in layer 1 is coupled to the corresponding u2j(t) variable
in layer 2, and viceversa. The interlayer coupling strength is σ2→1

from layer 2 to layer 1, and σ1→2 in the other direction. We also con-
sider unidirectional coupling, i.e. a driver-response configuration
which corresponds to σ1→2 > 0 and σ2→1 = 0.
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We integrated the system using a fourth order Runge-Kutta
algorithm with a time-step of 0.01 and we took an integration
interval of 106 time steps. We then excluded transients from the
measurements by taking an evaluation interval W in which the
first 104 steps are discarded. Following [69], for each layer, initial
conditions were taken to be uniformly distributed on a circle of
radius 2.

As control mechanism we use a pacemaker oscillator in one or
both layers. We implement the control and interlayer coupling like
we did in Chapter 4 for multiplex networks of phase oscillators.
The different configurations are the ones illustrated in Figure 4.1.

5.2 Control impact and synchronization

In Eq. (2.14) we described how to extract phases φj(t) from the
variables uj(t), vj(t) of the FitzHugh-Nagumo oscillators. Once
we calculate these phases, we can use the measures introduced in
the previous chapters for phase oscillators. To study the interplay of
control and interlayer coupling in multiplex networks of FitzHugh-
Nagumo oscillators we use the control impact Γ introduced in
Section 3.4 (see Figure 3.9). To assess the degree of alignment
of the two chimera states, we use the distance D12 defined in
Eq. (4.2) which measures the distance between the centers of the
incoherent groups c1(t), c2(t). The centers are calculated applying
the algortihm in Section 2.2.2 to the phases φj(t). To study the
synchronization between the dynamics of the two layers we use
the measures introduced in Ref. [87]. For j = 1, . . . , N , the local
interlayer synchronization error is defined as:

E12(j) = 〈‖x1j(t)− x2j(t)‖〉W , (5.2)
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where xlj =

[
ulj
vlj

]
for l = 1, 2, and ‖ ‖ is the euclidean norm. By

taking also the spatial average in Eq. (5.2), one obtains the global
interlayer synchronization error [87]:

E12 =
1

N

N∑
j=1

E12(j). (5.3)

5.3 Results

5.3.1 Unidirectional coupling

First we consider the case of unidirectional interlayer coupling from
layer 1 to layer 2. We study three possible configurations: without
any control, with a pacemaker in layer 1 in position p1 = 25 and
finally with a pacemaker in layer 2 in position p2 = 25 while layer
1 is uncontrolled.

Figure 5.1(a), (b) confirms that in the absence of a control
mechanism there cannot be any preferred position for the center
of the incoherent group. This is reflected in values of Γ1(25, 5)

and Γ2(25, 5) that are close to the expected value of 4∆+1
2N

. This
means that in each realization the drifting causes the chimera’s
center to occupy all positions almost uniformly. This is confirmed
by the snapshot of the centers of incoherence shown in Figure
5.1(c), (d). At a certain moment in time, the center of the LCG is
in different positions in different realizations. For strong interlayer
coupling, the incoherent groups of the chimera states align (dark
area in Figure 5.1(e)) and, in general, the two layers synchronize
their dynamics, as it is shown in Figure 5.1(f) where the global
synchronization error E12 reaches values close to zero.

The scenario described so far in the uncontrolled case is quite
intuitive, while it is less obvious what happens when there is also
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Figure 5.1: Unidirectional coupling causes alignment of chimera
states in a two-layer network of FitzHugh-Nagumo oscillators. The
interlayer coupling σ1→2 varies from 0 to 0.05 and the nonzero values
are sampled on a logarithmic scale, while σ2→1 is kept equal to 0. The
intralayer coupling σ2 varies linearly from 0.1 to 0.2. Other parameters
are: N = 50, R = 18, σ1 = 0.2, φ = π/2− 0.1. Panels (a) and (b) show
control impact values Γ1(25, 5) and Γ2(25, 5), while panels (c) and (d)
are snapshots of the position cl(ts) of the LCG center with ts = 500000 in
layer l = 1, 2, respectively. The rightmost column shows synchronization
measures: the alignment D12 in panel (e) and the global synchronization
error E12 in panel (f).
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Figure 5.2: Unidirectional coupling, pacemaker in layer 1: remote
control of one layer through a pacemaker in the other. Same as Figure
5.1, but here there is a pacemaker in layer 1 in position p1 = 25.
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Figure 5.3: Unidirectional coupling, pacemaker in layer 2: the driv-
ing becomes stronger than control. Same as Figure 5.1, but here there
is a pacemaker only in layer 2 in position p2 = 25.
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a pacemaker present in the network. The results for the second
configuration, obtained for a network with a pacemaker in position
p1 = 25 of the driving layer (layer 1), are shown in Figure 5.2.
Because of the unidirectional coupling, layer 1 is not receiving any
input from layer 2, therefore it behaves as an isolated ring network.
The almost constant value of Γ1(25, 5) close to 1 shows that the
pacemaker can control the position of a chimera state (Figure 5.2(a))
in an isolated layer of FitzHugh-Nagumo oscillators. These new
results generalize our observations for phase oscillators in Chapter
4 to FitzHugh-Nagumo oscillators. The question now is whether
the pacemaker in layer 1 can remotely control the position of the
chimera state in layer 2 via the coupling. When the chimeras are
aligned across the layers (see Figure 5.2(e) and (f)), we see that the
answer is affirmative (yellow region in Figure 5.2(b)). It is worth
noticing that before the control becomes effective in layer 2 there is
an intermediate region of parameters in which we observe that the
center of the incoherent group in layer 2 tends to be diametrically
opposed to the pacemaker position (yellow region in Figure 5.2(e)).
This means that the distance between the centers of the two low
coherence groups reaches its maximum. The pacemaker has a
repulsive action on the center of incoherence in layer 2 before the
remote control starts to be effective.

Another interesting question is which one is stronger, the pace-
maker or the driving? To address this problem, we move to the third
configuration. In this case we still have unidirectional coupling
from layer 1 to layer 2 and a pacemaker only in position p2 = 25

of layer 2. As a consequence, there is no preferred position for the
chimera states in layer 1, as we can see from the values of Γ1(25, 5)

in Figure 5.3(a). In fact, Figure 5.3(a) is equivalent to Figure 5.1(a)
(uncontrolled case). As the chimera states align for high values of
the interlayer coupling σ1→2 (Figure 5.3(b) and (e)), the driving
effect of layer 1 eventually wins over the controlling effect of the
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pacemaker in layer 2 (Figure 5.3(b)). Nevertheless, it is interesting
that there is a wide region in the parameter space in which it is
possible to control the position of the chimera in layer 2 despite the
driving by layer 1.

5.3.2 Bidirectional coupling

We now consider bidirectional interlayer coupling and three possi-
ble configurations: without any control, with a pacemaker in layer
1 in position p1 = 25 and lastly with two conflicting pacemakers,
one in layer 1 in position p1 = 25 and one in layer 2 in position
p2 = 50. We vary the parameter σ2 like in the unidirectional case
and the parameter σ1↔2 like σ1→2 in the unidirectional case.

In the first configuration (Figure 5.4), we observe a similarity
with the results obtained in the case of unidirectional coupling (Fig-
ure 5.1). In this case, again there cannot be any preferred position
for the chimera states in the two layers (Figure 5.4(a) and (b)). This
is reflected also in the snapshots of the center positions c1(ts), c2(ts)

in Figure 5.4(c) and (d). The incoherent groups become aligned
through a monotonic process (Figure 5.4(e)) and in the same way
the dynamics of the two layers become synchronized for increasing
interlayer coupling (Figure 5.4(f)).

The second configuration, in which a pacemaker is present in
layer 1 at position p1 = 25, leads to results that are different from
the unidirectional case. In Figure 5.5(a) we see that the pacemaker
is able to control the chimera’s position in layer 1 only up to a
certain value of interlayer coupling σ1↔2 (yellow region). Above
this value, the coupling between the layers takes over and the
chimera states are aligned (Figure 5.5(e)), but still do not have a
preferred position. The main difference with the unidirectional case
is that the remote control of the chimera state in layer 2 via the
pacemaker in layer 1 and the coupling is possible only in a small
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Figure 5.4: Bidirectional coupling favours the alignment of chimera
states across layers in the absence of control. Same as Figure 5.1. Here
we have σ2→1 = σ1→2 = σ1↔2.
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Figure 5.5: Bidirectional coupling reduces the region in which re-
mote control is possible. Same as Figure 5.4, but here a pacemaker is
present in layer 1, position p1 = 25.
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Figure 5.6: Pacemakers in different positions control chimeras in
both layers and find compromise for stronger coupling. Same as Fig-
ure 5.4, but here in each layer there is a pacemaker, in position p1 = 25
and p2 = 50.

78



region of the parameter space (yellow stripe in Figure 5.5(b)).
In the third and last configuration we have conflicting pacemak-

ers trying to control the chimera states in the two layers, one in layer
1 in position p1 = 25 and one in layer 2 in position p2 = 50. In this
case we see that the control works in both layers in a certain region
of the parameter space, corresponding to the yellow areas in Figure
5.6(a) and (b). Note that there is another small region for which
the control in layer 1 continues to work. A similar effect, even
more pronounced, is observed with a single pacemaker in layer 1
(Figure 5.5(a)) and is correlated with antipodal alignment in Figure
5.5(e). An analogous effect can also be observed in the transition
to remote control with unidirectional coupling and a pacemaker in
layer 1 (Figure 5.2(e)). For stronger interlayer coupling, the control
effect ceases to exist, but the chimeras become aligned, as it is
to be expected (see Figure 5.6(e)). Interestingly, the two centers
are aligned but their positions do not coincide with neither of the
pacemakers’ positions, as we can deduce from the low values of
both coupling impact measures Γ1(25, 5) and Γ2(50, 5) (rightmost
part of panels (a),(b) in Figure 5.6). Looking at the center snapshots
in Figure 5.6(c),(d), we see that the center is positioned close to
12.5 or 37.5 which are halfway from the pacemakers’ positions. It
is worth noticing that the synchronization region in Figure 5.6(f)
becomes smaller when two or more pacemakers are present in the
network.

5.4 Discussion
To summarize, in a two-layer multiplex network with a driver-
response configuration given by unidirectional coupling between
the layers, we observe a nontrivial interplay between pacemaker
control of chimera states and interlayer synchronization that can be
used to construct networks in which chimera states are present in
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both layers and in certain positions. Furthermore, the possibility of
controlling remotely the chimera states in layer 2 via a pacemaker
in layer 1 is important for scenarios in which there is limited access
to some parts of the network. A bidirectional coupling scheme
makes the remote control of layer 2 via a pacemaker in layer 1
more difficult. When there are two conflicting pacemakers, for
low values of interlayer coupling, both pacemakers attract the
incoherent groups to their respective positions. As the coupling
becomes stronger, the incoherent groups of the chimeras in the
two layers align in a position that is halfway between the two
pacemakers.

In general, we find that it is a nontrivial problem to transfer
control methods for chimera states from single-layers networks
to multilayer networks, given the many possible configurations in
which this can be done. We show that there are ample regions of
the parameter space in which the control mechanism introduced
in Chapter 3 allows to control chimeras in one or both layers. The
present study generalizes the finding of [82] in two directions: we
go from phase to FitzHugh-Nagumo oscillators and from single-
layer to multiplex networks. It will be interesting in the future to
further investigate the counterintuitive effect in Figure 5.2. There
the control becomes effective through a nonmonotonic process. We
observe a resistance of layer 2 to being remotely controlled by layer
1, in the sense that the center of incoherence in layer 2 positions
itself as far as possible from the pacemaker position before the
control becomes effective.

In this chapter we saw many effects that are similar to the ones
obtained for phase oscillators described in Chapter 4. There are
some differences though. The most evident is that remote control
with bidirectional coupling and a pacemaker in layer 1: for phase
oscillators, once the control becomes effective in layer 2, it stays
effective (Figure 4.6(b)), while for FitzHugh-Nagumo oscillators
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the control is effective only for a limited region inside the parameter
space (Figure 5.5(b)). In the case of unidirectional coupling and
a pacemaker in layer 1, for phase oscillators (Figure 4.3) we did
not observe the nonmonotonic behaviour that we saw for FitzHugh-
Nagumo oscillators.
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CHAPTER 6

Conclusion

The main contribution of this thesis is a new method to control
chimera states, one of the most studied partially synchronized dy-
namics. This control mechanism is based on a simple idea, that
of inserting a pacemaker oscillator in the network, but it provokes
powerful effects. We saw how a pacemaker oscillator can induce
chimera states in single-layer networks of phase oscillators and how
it can also control the position of the incoherent group in this setting
(Chapter 3). We also showed how even minimal modifications of
the network connectivity allow one to control chimera states, and
this fact indicates how the key aspect in control of chimeras is to
break the spatial symmetry of the network. Moreover, we showed
that the pacemaker mechanism can be used in different settings. In
Chapter 4 we used the interplay of a pacemaker oscillator and the
coupling betweeen two networks to control chimera states in multi-
plex networks of phase oscillators. In Chapter 5 we demonstrated
that our control mechanism does not only work for phase oscil-

83



lators, but also for more complex FitzHugh-Nagumo oscillators.
We also showed for which combinations of parameters the pace-
maker control works in multiplex networks of FitzHugh-Nagumo
oscillators. Transferring the ability of the pacemaker method to
control chimera states to more realistic multilayer networks helps
to bridge the gap between theoretical studies on chimera states and
real-world applications.

This thesis provides several ideas for future studies. For ex-
ample, for single-layer network for phase oscillators we studied
how it is possible to induce a chimera state from full synchroniza-
tion. It remains to be determined if this effect carries on to more
complex dynamics and network topologies. The combinations of a
pacemaker and multiplexing that we used in Chapter 4 and 5 are
just some exemplary cases, and there are many more that can be
considered. For instance, one could think about the possibility of
introducing a barrier of pacemakers, and see if it can overcome the
driving effect of unidirectional coupling. Moreover, in Chapter 4
we introduced a mismacth between the layer of phase oscillators
via the phase-lag parameters and in Chapter 5 via the intralayer
coupling for FitzHugh-Nagumo oscillators. Of course there are
many other possible parameters to choose from to further test the
robustness of our results. Finally, the most interesting future devel-
opment of the present study would probably be to see the method
introduced here in some experimental setting, to help sustaining
these partially synchronized states.
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