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Abstract

As a fundamental research topic, visual tracking plays an important role in computer
vision. It has been widely applied in many fields, including autonomous driving,
navigation, and robotics. The target of visual tracking is to estimate the trajectory
of an object in a sequence of images, where the object is selected manually in
the first frame. Tracking is regarded as a difficult task because real-world videos
exhibit a large range of variations. In recent years end-to-end training of deep
learning methods has dominated tracking research. Visual tracking can be applied
to different modalities, such as RGB and thermal infrared (TIR).

In this thesis, we identify several problems of current tracking systems. The lack
of large-scale labeled datasets hampers the usage of deep learning, especially end-
to-end training, for tracking in TIR images. Therefore, many methods for tracking
on TIR data are still based on hand-crafted features. This situation also happens
in multi-modal tracking, e.g. RGB-T tracking. Another reason, which hampers the
development of RGB-T tracking, is that there exists little research on the fusion
mechanisms for combining information from RGB and TIR modalities. One of
the crucial components of most trackers is the update module. For the currently
existing end-to-end tracking architecture, e.g, Siamese trackers, the online model
update is still not taken into consideration at the training stage. They use no-update
or a linear update strategy during the inference stage. While such a hand-crafted
approach to updating has led to improved results, its simplicity limits the potential
gain likely to be obtained by learning to update.

To address the data-scarcity for TIR and RGB-T tracking, we use image-to-image
translation to generate a large-scale synthetic TIR dataset. This dataset allows
us to perform end-to-end training for TIR tracking. Furthermore, we investigate
several fusion mechanisms for RGB-T tracking. The multi-modal trackers are also
trained in an end-to-end manner on the synthetic data. To improve the standard
online update, we pose the updating step as an optimization problem which can
be solved by training a neural network. Our approach thereby reduces the hand-
crafted components in the tracking pipeline and sets a further step in the direction
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of a complete end-to-end trained tracking network which also considers updating
during optimization.

Extensive experiments on several benchmark datasets from the RGB, TIR and
RGB-T modalities demonstrate the effectiveness of our proposed methods. Specifi-
cally, synthetic TIR data is effective for end-to-end training, our fusion mechanisms
outperform the single modality counterparts, and our update network outperforms
the standard linear update.

Key words: computer vision, deep learning, visual tracking, multi-modal track-
ing, end-to-end training, learning to update
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Resumen

Siendo un tema de investigación fundamental, el seguimiento visual juega un
importante papel en la visión por computador. Se ha aplicado extensamente en
diversos campos, incluyendo la conducción autónoma, navegación y robótica.
El objetivo del seguimiento visual es estimar la trayectoria de un objeto en una
secuencia de imágenes, habiendo seleccionado manualmente el objeto en el primer
fotograma del video. El seguimiento se considera una tarea compleja debido a la
gran grama de variaciones que presentan los videos del mundo real. En los últimos
años, los métodos de aprendizaje profundo entrenados de extremo-a-extremo
han dominado la investigación sobre seguimiento. El seguimiento visual se puede
aplicar a diferentes modalidades tales como RGB o infrarrojo térmico (TIR).

En esta tesis, identificamos varios problemas de los sistemas de seguimiento
actuales. La falta de conjuntos de datos etiquetados a gran escala dificulta el uso
del aprendizaje profundo, especialmente en relación al entrenamiento de extremo-
a-extremo para el seguimiento de imágenes TIR. Por lo tanto, numerosos métodos
para el seguimiento en TIR todavía se basan en representaciones diseñadas ma-
nualmente. Esta situación también ocurre en el seguimiento multimodal, como
por ejemplo, el seguimiento en RGB-T. Otra razón que dificulta el desarrollo del
seguimiento RGB-T es que existe poca investigación sobre los mecanismos de fu-
sión para combinar imágenes de modalidades RGB y TIR. Por otra parte, uno de
los componentes más importantes de la mayoría de los seguidores es el módulo de
actualización. En las arquitecturas de seguimiento de extremo-a-extremo actuales,
como por ejemplo los seguidores Siameses, la actualización en línea del modelo no
se tiene en cuenta durante la etapa de entrenamiento. Suelen utilizar una estrategia
de actualización lineal durante la etapa de inferencia, o no actualizan el modelo en
absoluto. A pesar de los positivos resultados obtenidos mediante esta actualización
diseñada a mano, su simplicidad limita la ganancia potencial que se podría obtener
al aprender a actualizar de manera automática.

Para abordar la escasez de datos para el seguimiento TIR y RGB-T, proponemos
la traducción de imagen-a-imagen para generar un conjunto de datos TIR sintéticos
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a gran escala. Este conjunto de datos nos permite realizar una entrenamiento de
extremo-a-extremo para el seguimiento TIR. Además, investigamos varios mecanis-
mos de fusión para el seguimiento RGB-T. Los seguidores multimodales también
reciben entrenamiento de extremo-a-extremo sobre los datos sintéticos. Para mejo-
rar la actualización en línea estándar, planteamos la tarea de actualización como un
problema de optimización que puede resolverse mediante el entrenamiento de una
red neuronal. Por lo tanto, nuestro enfoque reduce los componentes diseñados a
mano en el proceso de seguimiento y da un paso más en la dirección de una red de
seguimiento entrenada de extremo-a-extremo que incluye la actualización durante
la optimización.

Extensos experimentos en varios conjuntos de datos de referencia de las mo-
dalidades RGB, TIR y RGB-T demuestran la eficacia de los métodos propuestos.
Específicamente, los datos sintéticos de TIR son efectivos para el entrenamiento
de extremo-a-extremo, nuestros mecanismos de fusión superan a los equivalentes
de modalidad única, y nuestra red de actualización supera a la actualización lineal
estándar.

Palabras clave: visión por computador, aprendizaje profundo, seguimiento vi-
sual, seguimiento multimodal, entrenamiento de extremo-a-extremo, aprendizaje de
la actualización
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Resum

Sent un tema de recerca fonamental, el seguiment visual juga un important paper
en la visió per computador. S’ha aplicat extensament en diversos camps, incloent
la conducció autònoma, navegació i robòtica. L’objectiu del seguiment visual és
estimar la trajectòria d’un objecte en una seqüència d’imatges, havent seleccionat
manualment l’objecte en el primer fotograma del vídeo. El seguiment es considera
una tasca complexa a causa de la gran quantitat de variacions que presenten els
vídeos del món real. En els últims anys, els mètodes d’aprenentatge profund entre-
nats d’extrem a extrem han dominat la investigació sobre seguiment. El seguiment
visual es pot aplicar a diferents modalitats com ara RGB o infraroig tèrmic (TIR).

En aquesta tesi, identifiquem diversos problemes dels sistemes de seguiment
actuals. La manca de conjunts de dades etiquetats a gran escala dificulta l’ús de
l’aprenentatge profund, especialment en relació a l’entrenament d’extrem a extrem
per al seguiment d’imatges TIR. Per tant, nombrosos mètodes per al seguiment
en TIR encara es basen en representacions dissenyades manualment. Aquesta
situació també ocorre en el seguiment multimodal, com per exemple, el seguiment
en RGB-T. Una altra raó que dificulta el desenvolupament del seguiment RGB-T és
que existeix poca investigació sobre els mecanismes de fusió per combinar imatges
de modalitats RGB i TIR. D’altra banda, un dels components més importants de la
majoria dels seguidors és el mòdul d’actualització. En les arquitectures de segui-
ment d’extrem a extrem actuals, com ara els seguidors Siameses, l’actualització en
línia del model no es té en compte durant l’etapa d’entrenament. Solen utilitzar
una estratègia d’actualització lineal durant l’etapa d’inferència, o bé no actualitzen
el model en absolut. Malgrat els positius resultats obtinguts mitjançant aquesta
actualització dissenyada manualment, la seva simplicitat limita el guany potencial
que es podria obtenir en aprendre a actualitzar de manera automàtica.

Per abordar l’escassetat de dades per al seguiment TIR i RGB-T, proposem la
traducció d’imatge a imatge per generar un conjunt de dades TIR sintètiques a gran
escala. Aquest conjunt de dades ens permet realitzar un entrenament d’extrem a
extrem per al seguiment TIR. A més, investiguem diversos mecanismes de fusió
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per al seguiment RGB-T. Els seguidors multimodals també reben entrenament
d’extrem a extrem sobre les dades sintètiques. Per millorar l’actualització en línia
estàndard, plantegem la tasca d’actualització com un problema d’optimització que
es pot resoldre mitjançant l’entrenament d’una xarxa neuronal. Per tant, el nostre
enfocament redueix els components dissenyats a mà en el procés de seguiment i fa
un pas més en la direcció d’una xarxa de seguiment entrenada d’extrem a extrem
que inclou l’actualització durant l’optimització.

Extensos experiments en diversos conjunts de dades de referència de les modali-
tats RGB, TIR i RGB-T demostren l’eficàcia dels mètodes proposats. Específicament,
les dades sintètiques de TIR són efectives per a l’entrenament d’extrem a extrem,
els nostres mecanismes de fusió superen els equivalents de modalitat única, i la
nostra xarxa d’actualització supera l’actualització lineal estàndard.

Paraules clau: visió per computador, aprenentatge profund, seguiment visual,
seguiment multimodal, entrenament d’extrem a extrem, aprenentatge de la actualit-
zació
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1 Introduction

Videos play a crucial role in the world. They are of the utmost importance in many
industrial applications, such as autonomous driving, video surveillance, robotics,
and traffic control. They are also widely present in everyday life, where people
watch movies or matches, conduct video chat and play video games. One of the
most important fields of video usage is in the social media: for example 300 hours
of video are uploaded to YouTube every minute. YouTube receives more than 90
PB of video data every year, and has more than 7 billion videos (Youtube Statistics,
2019).

As a consequence of this enormous amount of data, video understanding is one
of the main research lines of computer vision. Videos provide more information
than still images as they add a temporal component through which motion and
other information can be exploited. There are many tasks on video understanding
such as action recognition, visual tracking, and optical flow. Among them, visual
tracking, which follows the location of a selected object across frames, plays a
fundamental role, and also has a wide range of applications for the real-world,
including navigation, surveillance, robotics, traffic control, autonomous driving,
and augmented reality. In general visual tracking involves two parts: it aims to
calculate the target location using a classifier and it estimates the target bounding
box using a target estimation component given its first frame state, as depicted in
Figure 1.1.

Nowadays, deep learning has achieved huge success and has unleashed a revo-
lution in computer vision. It has had a significant impact on almost all computer
vision research directions, including image classification (He et al., 2016), image
segmentation (Chen et al., 2017), object detection (Redmon et al., 2016), super-
resolution (Dong et al., 2015), etc. The success of deep learning is mainly due to two
factors: the development of new accessible hardware (GPUs) and the presence of
large labelled datasets. One of the main advantages of deep learning is its capabil-
ity to learn end-to-end, meaning that optimal discriminative representations are
learned jointly with final classifiers.

In recent years, visual object tracking, especially tracking in color videos (re-

1



Chapter 1. Introduction

Target state
estimation

Feature
extractor

Classifier

[x,y,w,h]

Frame 1,2,...,N

Figure 1.1 – The pipeline of tracking. Given the target state in the first frame, the
tracker predicts the target locations and bounding boxes in subsequent frames.

ferred to as RGB tracking) has undergone profound changes (Bertinetto et al., 2016b;
Bolme et al., 2010; Danelljan et al., 2017, 2019, 2014a, 2016b, 2014b; Henriques et al.,
2015; Li et al., 2018b; Lukezic et al., 2017; Zhu et al., 2018). Researchers have mainly
focused on RGB tracking as large datasets are available (Kristan et al., 2016a; Val-
madre et al., 2018; Wu et al., 2015). The training of end-to-end networks was found
to be difficult for visual tracking, and the introduction of deep learning for visual
tracking was later than in many of the other research fields of computer vision. Only
recently have appeared some end-to-end trackers (Bertinetto et al., 2016b; Valmadre
et al., 2017) for RGB tracking. However, these trackers still contain some elements
which are not optimized in an end-to-end sense, such as the online update. Training
end-to-end trackers is one of the research themes of this thesis.

Another development in recent years is the wider accessibility of multi-modal
data. In the tracking community special attention has been paid to the thermal
infrared (TIR) modality because of its robustness to bad environmental conditions,
e.g. low illumination, rain, and smog. Videos from TIR modality can provide
complementary information to the information present in RGB videos. As a result
RGB-T tracking is also becoming a promising direction in visual tracking. In this
thesis, we investigate several aspects of TIR and multi-modal tracking.

This thesis research was performed in the turbulent period in which deep learn-
ing was introduced to RGB tracking and TIR tracking was receiving growing research
attention. We identified three challenges for tracking which we describe in more
detail in the following.
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1.1 Towards End-to-End Training for Visual Tracking
in RGB and TIR Videos

Despite the astounding development of visual tracking, there are still many open
research questions. In this thesis, we focus on the two different modalities and
their combination in visual tracking, i.e. RGB tracking, TIR tracking, and RGB-T
tracking, aiming to achieve end-to-end training. We also propose to replace the
’hand-crafted’ model update by an update which is automatically learned.

1.1.1 Synthetic Data Generation for End-to-End Thermal Infrared
Tracking

Visual tracking aims to estimate a trajectory of an object through a video based on
only one bounding box annotation at the beginning of the sequence. This tracking
mechanism also applies to TIR tracking, with the only difference that TIR tracking
uses the TIR images instead of the RGB images. The importance of TIR tracking
increases as improvements of thermal infrared sensors in resolution and quality are
currently being developed. The advantage of thermal images is that they are not
influenced by illumination variations and shadows, for example the left and right
examples in Figure 1.2. Also objects can be distinguished from the background as
the background is normally colder, as depicted in the center and right examples
in Figure 1.2. In addition, thermal infrared tracking can be used in total darkness,
where visual cameras have no signal.

As far as we know, there are still no deep neural networks specifically trained
for TIR tracking. As a consequence, the usage of hand-crafted features remains
dominant for TIR tracking. For example, at present, the leading TIR trackers still
employ hand-crafted features in their models. The winner (Yu et al., 2017) of
VOT-TIR2017 (Kristan et al., 2017a) challenge employs HOG and motion features.
Furthermore, there are other trackers (Felsberg et al., 2015; Zhu et al., 2016) with
top-performance which are based on hand-crafted features. The outperforming
results of these methods show that hand-crafted features are still a better choice for
tracking on TIR modality.

Generally the deep neural networks are trained on a large amount of labeled
training data, which allows the network to learn discriminative features for the
classifier. Despite its astounding success, the impact of deep learning on generic
TIR tracking has been limited. One of the key issues when employing deep features
for TIR tracking is the unavailability of large-scale labeled TIR tracking data for
training. Therefore, data scarcity is the crucial issue hampering end-to-end training
applied on TIR tracking.
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Figure 1.2 – Visualization of the imaging difference between ‘RGB’ and ‘TIR’ for
the same scene. On the upper half, we show three exemplar videos from the RGB
modality and we show their corresponding videos from TIR modality on the lower
half. In the left example, the dog is covered with the shadow from the pole in the
RGB modality, but in the TIR modality, this shadow disappears and the target is
much clearer than that in RGB modality. In the center example, the human is
also discriminative as his temperature is much higher and the shadow from the
car disappears in the TIR image. Conversely, the RGB images can also provide
complementary benefits over the TIR images. For example, in the right example,
the appearance of the person in the TIR image is vague and is heavily influenced by
the surrounded tree. While in the RGB modality, the person is clearly distinguished
from the surroundings as the color and shape information is very discriminative.

1.1.2 Multi-Modal Fusion for End-to-End RGB-T Tracking

RGB-T tracking aims to predict the states of the object in videos by fusing RGB and
TIR modalities (corresponding to the visible and thermal infrared spectrum data
respectively), given the initial ground-truth bounding box. Normally, RGB images
have the advantage that they contain high-frequency shape and texture information,
which provides discriminative information for describing the objects, as shown in
Figure 1.2. TIR images are sometimes superior in the sense that the image quality is
more robust under unfavourable scenarios, such as adverse illumination, rain and
smog. This is because the thermal sensors capture the image pixels depending on
the temperature of the objects. Therefore, tracking in general can be significantly
improved with the benefit of the complementary data information from different
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modalities. Thus RGB-T tracking comes into existence accordingly. Specifically,
images from the RGB modality and images from the TIR modality can compensate
each other’s deficiencies during tracking. Due to these advantages, some research
works have focused on the RGB-T tracking (Li et al., 2016, 2018c, 2017b, 2018d).

But currently, there exists relatively little research on multi-modal tracking com-
pared with RGB tracking. Among them, most are still using sparse representations,
normally based on hand-crafted features for multi-modal tracking (Li et al., 2016,
2017a, 2018d; Liu & Sun, 2012). These approaches utilize the pixel intensity as
the feature representation, which seriously limits their applicability for handling
complex scenarios.

For comparison, some researchers design a baseline RGB-T tracker by extending
a normal single modality tracker to a multi-modal fusion tracker (Li et al., 2018d).
This extension is done by directly concatenating the features from RGB modality
and TIR modality into a single vector, which is input to the tracker. In these ex-
tended RGB-T trackers, there are some using deep features as input. But they still
use off-the-shelf features (Simonyan & Zisserman, 2014) which are pre-trained from
training datasets for other tasks. So far, there is still no research on how to imple-
ment end-to-end training for RGB-T tracking. We identify two reasons for this. First,
it is not obvious in what part of the tracking pipeline the fusion should be done.
Ideally, we should fuse the information of the different modalities in such a way
that it allows for optimal end-to-end training. Second, data scarcity of multi-modal
tracking data is a major obstacle to end-to-end training. Currently, there are no
large-scale aligned multi-modal datasets for training. These two issues, i.e. no
specific fusion scheme and a lack of data, limit the progress of end-to-end training
for multi-modal tracking.

1.1.3 Learning the Model Update for Siamese Trackers

Visual tracking has undergone a profound development during these years. Re-
cently, the Siamese network based trackers have drawn much attention. These
Siamese trackers formulate the visual object tracking problem as learning a general
similarity map by cross-correlation between the feature representations learned for
the target template and the search region. To ensure tracking efficiency, the offline
learned Siamese similarity function is normally fixed during the running time. How-
ever, appearance changes are often large and failing to update the template could
lead to early failure of the tracker, as can be seen in the exemplar video in the upper
half of Figure 1.3. In such scenarios, it is important to adapt the model to the current
target appearance. To accommodate this problem, more recent Siamese trackers (Li
et al., 2018b; Wang et al., 2018; Zhu et al., 2018) have implemented a simple lin-
ear update strategy using a running average with a fixed learning rate (Stauffer &
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(a)

(b)

Figure 1.3 – Visualization of failure samples during tracking with no-update (a)
and linear update (b). In (a), tracking is starting from left to right, where the aim
is to track the gymnast. In the center and right frame, the tracking prediction is
misaligned due to the complex appearance changes of the target. In (b), the target
is the athlete. The tracker cannot adapt to the complex scenarios, e.g. fast motion
and background clutter, as the update mechanism is a linear function. In both
aforementioned cases, the tracker cannot predict the accurate location both with
no-update or simple linear update.

Grimson, 1999).
While template averaging provides a simple means of integrating new informa-

tion, it has several severe drawbacks. Firstly, the tracker cannot recover from object
drift. Partially, this is caused by the fact that it loses access to the initial template,
which is the only real template without doubt on the sequence. Secondly, the linear
update function is constrained to a simple weighted combination of previous ap-
pearance templates. This severely limits the flexibility of the update mechanism,
important when the target undergoes complex appearance changes. Considering
more complex combination functions is expected to improve results.

Thus with a simple linear update, the tracker cannot adapt the object appear-
ance changes in complex scenarios, see for example the video in the lower half of
Figure 1.3. The development of more complex update schemes is therefore expected
to improve tracking performance.

1.2 Objectives and Approach

Above we have indicated two challenges in TIR tracking and RGB-T tracking. We
also analyze the drawbacks of linear update in RGB tracking. In this dissertation,
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Encoder Decoder

......

RGB videos TIR videos

Synthetic data
generation

End-to-end TIR tracking

......

TIR
tracker

BackpropagateBackpropagate

Figure 1.4 – Overview of our synthetic data generation and end-to-end TIR track-
ing. In the pipeline, firstly we use image to image translation models to generate
abundant synthetic TIR videos. Then use these labeled TIR videos to train an
end-to-end TIR tracker, detailed in chapter 3.

we aim to tackle these issues in order to advance end-to-end training for visual
tracking in RGB and TIR videos. In section 1.2.1, we introduce our method which
accommodates the issue of data-scarcity for TIR tracking. This data generation
technique and end-to-end training method will be described in Chapter 3. As the
issues of no specific fusion scheme and lack of data limit the progress of end-to-end
multi-modal training, we will briefly explain our methods for addressing them in
section 1.2.2 and will present the comprehensive approaches and experiments in
Chapter 4. In section 1.2.3, we introduce our update mechanism for updating the
template during tracking, which improves the tracking performance compared with
the linear update. The motivation and training for the novel update mechanism
will be described in Chapter 5.

1.2.1 Synthetic Data Generation for End-to-End TIR Tracking

Recently, Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have
attracted much attention as they can generate images which are indistinguishable
from real images. A GAN learns a discriminative model that tries to classify whether
the output image from a generative model is real or fake, while simultaneously
training the generative model to fool the discriminator. Later on, image-to-image
translation networks (Isola et al., 2017) have extended the GAN model and have
experienced fast progress. An image-to-image translation network is able to gener-
ate samples from complex image distributions conditioned on an input image. As
a consequence, they can learn a translation model between domains from paired
images. Furthermore, these translation networks are extended to learn mappings
between domains from unpaired images (Zhu et al., 2017). This work uses cycle
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consistency: transferring an image to another domain and then transferring it back
to the initial domain, where the second generated image should be the same as the
original image. These generative networks can be used to generate large-scale syn-
thetic data to compensate training datasets in data-scarce domains, such as depth
and TIR images. In this work, we investigate on how to effectively transfer labeled
RGB videos to synthetic TIR videos along with the labels by using image-to-image
translation networks.

End-to-end training is generally expected to improve results, and is therefore
also a desired objective for TIR tracking. However, one of the main issues, which is
obstructing end-to-end training applied on TIR tracking, is the lack of large-scale
labeled training TIR datasets. Inspired by the successful application of translation
networks in other fields (Chen et al., 2017; Dong et al., 2015; He et al., 2016; Redmon
et al., 2016), we propose to use the translation models to abundantly generate
synthetic TIR data from available labeled RGB data. We explore both the usage
of paired and unpaired image translation models for this purpose and find the
optimal one as our final generation model. Through this generation model, we
can obtain a large-scale labeled dataset of synthetic TIR sequences by transferring
from corresponding RGB sequences. With the access of the large-scale TIR training
datasest, we can implement end-to-end training for TIR tracking. To the best of our
knowledge, we are the first to train end-to-end networks for TIR tracking.

Extensive evaluations on the latest TIR tracking challenge (Kristan et al., 2017a)
verifies the efficiency of our different models trained on synthetic TIR datasets. One
of the more important results shows that a tracker trained on only synthetic data
can outperform the tracker trained on available real TIR data.

1.2.2 Multi-Modal Fusion for End-to-End RGB-T Tracking

RGB-T tracking has drawn much attention, as jointly using RGB and TIR images
provides rich information which can assist trackers in complex tracking scenarios as
depicted in Figure 1.2. But still now, most of the works on RGB-T tracking use sparse
hand-crafted representations since these can effectively suppress the noise present
in TIR images (Li et al., 2016, 2018c, 2017b, 2018d). Furthermore, in benchmarks (Li
et al., 2018c, 2017b), some trackers using off-the-shelf deep features appear. For
comparison with other trackers, they design some RGB-T baseline trackers by
directly concatenating the feature representations from RGB and TIR modalities.
Because these deep features are trained from the training datasets for other tasks
such as image classification in computer vision, the objects cannot be described in
optimal way during tracking. In conclusion, there is still no work which investigates
end-to-end training for RGB-T tracking. We identify two reasons for this: the first
one is that there is no specific end-to-end framework for fusing the RGB and TIR

8



1.2. Objectives and Approach
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Tracker
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Figure 1.5 – Overview of our end-to-end RGB-T tracking. In the pipeline, we use
technique developed in Chapter 4 to generate large-scale paired synthetic RGB-T
datasets to train an end-to-end RGB-T tracker. We also investigate three different
fusion mechanisms in different parts of the tracker, including pixel-level, feature-
level and response-level fusion as depicted in the upper part of the pipeline.

modalities; the second one is that there are no large-scale training datasets.
We propose two methods to address the two issues. First, we investigate how

to effectively fuse multi-modal data in different parts of the tracker, and find the
one which can make optimal use of information from both modalities. We propose
three end-to-end multi-modal fusion mechanisms, consisting of pixel-level fusion,
feature-level fusion and response-level fusion. Second, we use the technique devel-
oped in Chapter 3 to generate large-scale paired synthetic RGB-T datasets. These
datasets allow us to train a multi-modal tracking in an end-to-end manner.

Comprehensive experiments have been conducted to analyze the different
fusion mechanisms on VOT-RGBT2019 dataset. We obtain the best results when
fusing at the feature-level of the tracker. With this fusion mechanism we achieve
the state-of-the-art performance on RGBT210 dataset.
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UpdateNet

RGB
tracker

Figure 1.6 – Overview of the tracking pipeline with UpdateNet. In the pipeline,
we focus on the update component for the RGB tracker. We propose to use a
convolutional neural network to update the object template (Chapter 5), which is
more robust in complex scenarios during tracking than the linear update.

1.2.3 Learning the Model Update for Siamese Trackers

The principle of the Siamese trackers is to learn the similarity between an object
appearance template and a feature representation of a search region and finally pre-
dict a response map by cross-correlation. They extract the feature representations
for the object and the search region through a deep convolutional neural network
which is trained offline on a large RGB dataset. Such a deep similarity learning
strategy has shown to provide discriminative representations for visual tracking.
During the online tracking phase, the object template is initialized in the first frame
and is then fixed for matching with the search region in the following frames. Later
on, some researchers proposed to use a linear update strategy to adapt the object
change with a small and fixed update rate (Valmadre et al., 2017). This update
strategy accommodates the issue of large appearance changes in complex scenarios
to a certain degree. But there exist several drawbacks for the linear update, as this
strategy assumes a constant rate of appearance change across all frames in the
video, as well as across different videos. In practice, the tracking situations can be
various as it depends on a complex combination of external factors such as motion,
blur and background clutter. Thus, the update requirements for the object template
are greatly varied. As a result, a simple linear update is normally inadequate to cope
with changing update requirements and is unable to generalize to all potentially
encountered situations. Also, excessive reliance on the initial template results in an
inability to recover from tracking failures when catastrophic drift happens.

To address this issue, we propose to learn the object template update itself in
Chapter 5 of this thesis. Our learned update strategy utilizes object and background
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information, and is thus adaptive to the present circumstances of each particu-
lar situation. In our approach, the predicted template is calculated as an update
function of the initial ground-truth template, the accumulated template from all
previous frames, and the template at the predicted object location in the current
frame. Hence, the new accumulated template contains an effective historical sum-
mary of the object appearances across all the frames in a video. More specifically,
the update function is implemented with a convolutional neural network, which
we call UpdateNet. This is a compact network that can be applied to any Siamese
tracker to enhance its online update capabilities while maintaining its efficiency
properties. Furthermore, the complex structure makes it able to effectively learn
the nuances of template update and be adaptive to various tracking situations.
Extensive experiments on four benchmark datasets (VOT2016, VOT2018, LaSOT,
and TrackingNet) demonstrate that the proposed approach significantly improves
the performance of the trackers with respect to the linear update or no-update. As a
result, UpdateNet achieves competitive results in these datasets.
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2 Visual Tracking

The aim of this chapter is to present the general context and overall background of
the topics which are covered in the next chapters. We will first provide an overview
of trackers and then discuss the existing datasets.

2.1 Visual Trackers

Visual object tracking is a fundamental subject in computer vision whose appli-
cations range from autonomous driving to robotics and video analysis. The main
idea is to estimate the trajectory of an object in a sequence of images, given that
the tracker is initialized at the object region in the first frame. Then the model of
the object appearance is learned online during tracking. Such knowledge can be
used in multiple scenarios. For example, first, tracking pedestrians in a surveillance
context to perform video analysis and conflict detection. Second, tracking objects
of interest, e.g. cars and cyclist, to estimate their trajectories and take a navigational
decision accordingly. Both of them indicate that tracking is an important aspect
of visual perception in robotics and autonomous systems, where the extraction of
high-level information from the camera sensor can be helpful to assist the human
in tracking decisions.

There are two prevalent paradigms for visual tracking in recent years. One is
the optimization based trackers, also called Discriminative Correlation Filter (DCF)
trackers (Bolme et al., 2010; Danelljan et al., 2014a, 2015a,b, 2014b; Galoogahi et al.,
2013; Henriques et al., 2012). The other paradigm is the Siamese network based
trackers (Bertinetto et al., 2016b; Li et al., 2018b; Valmadre et al., 2017; Zhu et al.,
2018).

Since Bolme et al. (2010) proposed the Minimum Output Sum of Squared Er-
ror (MOSSE) model, the formulation framework of the DCF was defined and it
also brings about a majestic development for DCF in visual tracking. Later on,
Galoogahi et al. (2013) extended it to multi-channel DCF, where the HOG and SIFT
features can be used. Meanwhile, Henriques et al. (2012) extended it by adding a
kernel technique, which defines the inner product between two samples in some
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high-dimensional feature space. Moreover, Danelljan et al. (2014b) integrated the
multi-dimensional feature maps, e.g. color feature (Van De Weijer et al., 2009),
into DCF, which is computationally efficient while maintaining high discriminative
power. Additionally, Danelljan et al. (2014a) proposed to learn a scale correlation
filter, parallel with the translation correlation filter, for scale estimation. To further
improve the correlation filter, Danelljan et al. (2015b) introduced a spatial regular-
ization component in the DCF formulation, and improved the performance by a
large margin. Kiani Galoogahi et al. (2017) proposed to use the mask to crop the
correlation filter. This can extract much more realistic negative samples for training
correlation filter, thus effectively alleviating the issue of boundary effect for DCF
trackers. Lastly, convolutional features are also used to learn the correlation filter
by Danelljan et al. (2015a).

The other paradigm is based on Siamese networks. Bertinetto et al. (2016b)
proposed to learn a similarity metric, i.e. Siamese network, offline for conducting
the tracking procedure by template matching. Then, Bertinetto et al. (2016b) ex-
tended it by adding a correlation filter component on the exemplar branch for final
cross-correlation with the feature map of the search region. However this results
in limited improvement. Later on, Li et al. (2018b) introduced the region proposal
network (RPN) from object detection (Ren et al., 2015) to Siamese tracking. This
uses a classification branch and a regression branch for the tracking prediction.
This training framework, called SiamRPN, significantly improved the performance
of SiamFC. Based on SiamRPN, Zhu et al. (2018) used large amounts of diverse cate-
gories of positive pairs and semantic negative pairs, along with data augmentation
and an incremental learning technique to learn distractor-aware Siamese networks
for accurate tracking.

2.1.1 Optimization Based Trackers

The DCF based trackers have undergone prosperous development in recent years.
In this section, we introduce the typical correlation filter. Then we describe Efficient
Convolution Operators (ECO) (Danelljan et al., 2017) which is an advanced DCF
based tracker and achieved high-performance in several datasets (Kristan et al.,
2016a; Wu et al., 2013, 2015). We use it as the correlation filter for our experiments
in Chapter 3.

DCF (Henriques et al., 2015): To discriminate the target appearance from the
background, the discriminative correlation filter learns a linear correlation filter
f . Then the filter f is used to predict the target location. The desired filter f is
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calculated by minimizing the following least squares objective:

E( f ) =
∥∥∥∥∥ D∑

d=1
f d ?xd − y

∥∥∥∥∥
2

+λ
D∑

d=1
‖ f d‖2. (2.1)

Here ? denotes the circular correlation. xd denotes feature maps of training sam-
ples x, where d indexes the channel, d ∈ {1, . . . ,D}. y is the desired regression target
which is a Gaussian-shaped function. λ is a regularization weight to control overfit-
ting. By periodically shifting the sample x to a circulant matrix X , X =C (x) where C
is a cyclic shift operator, the correlation filter f can be calculated with a closed-form
solution at all cyclic shifts.

There are many beneficial properties for the circulant matrix. One of them is that
the circulant matrix can be made diagonal by the Discrete Fourier Transform (DFT).
Thus, the closed-form solution of f can be transferred into Fourier domain, where
the process is efficient and versatile. In addition, the storage and computation are
reduced by several orders of magnitude. As a consequence of the above advantages,
the DCF framework achieves excellent performance and is therefore broadly applied
in the tracking community.

The filter is calculated with:

f̂ d = x̂d ŷ∗∑D
d=1 x̂d (x̂d )∗+λ , (2.2)

where x̂d is the Discrete Fourier Transform (DFT) of input sample xd , ŷ∗ denotes
the complex conjugate of the DFT F (y), and f d denotes the DFT of the generating
vector, f̂ d =F ( f d ). From now on, we will always use a hat ·̂ as shorthand for the
DFT of a vector.

Due to the circulant property, the correlation filter generates a large amount of
shifted patches of the foreground target as the negative training samples. While
these shifted synthetic samples are not truly representative of negative patches in
real-world scenes. Thus, the DCF tracker is generally affected by circular boundary
effects.

ECO (Danelljan et al., 2017): The tracker uses a pre-trained model to extract the
deep features for the follow-up components of the tracker. The model is trained
on an image classification dataset. It learns a projection matrix P to reduce dimen-
sionality of the deep features. This technique effectively alleviated the problem of
computational complexity and overfitting for the trackers with multi-feature fusion.

The model filter f is learned based on a set of M training samples {x j }M
1 and
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corresponding target maps {y j }M
1 . The label y j is the desired target score, which

is defined as a periodically repeated Gaussian function centered at the sample
location (Danelljan et al., 2016b; Henriques et al., 2015). Each training sample
consists of multiple feature layers xd

j ∈RNd×Nd , where Nd is the spatial resolution

of layer d ∈ {1, . . . ,D}. These feature layers contain both shallow and deep features
of varying resolutions, specifically for the first and fifth convolutional layers in the
VGG-M network (Chatfield et al., 2014). The tracker predicts the object location
using the target score operator, defined as below:

S f ,P {x} =
D∑

d=1
f d ∗P Jd {xd } . (2.3)

Here, the detection score function of the target is predicted by S f ,P {x}. The feature-
wise operator Jd is used to interpolate the sample x to a continuous domain. It per-
forms in Fourier domain by using a cubic spline kernel, see more details in (Danell-
jan et al., 2016b). The projection matrix P can effectively reduce the dimensionality
of the feature space.

To learn the detection score operator, we use the following least squares loss,

E( f ) =
M∑

j=1
α j ‖S f ,P {x j }− y j ‖2 +

D∑
d=1

‖w f d‖2 +λ‖P‖2
F . (2.4)

Here, the filter f are regularized by w . The spatial regularization weight function w
is employed to mitigate the effects of periodic repetition (Danelljan et al., 2015b).
Each sample x j is weighted by α j . The label functions y j are set to Gaussian
functions centered at the target location.

An equivalent loss is obtained by using Parseval’s formula as follows:

E( f ) =
M∑

j=1
αk‖áS f ,P {x j }− ŷ j ‖2+

D∑
d=1

‖ŵ ∗ f̂ d‖2 +λ‖P‖2
F . (2.5)

Here ·̂ denotes the Fourier coefficients. The projection matrix P and the filter f
are jointly trained by the Gauss-Newton method in the first frame. In subsequent
frames, the resulting normal equations are efficiently solved using the method of
Conjugate Gradients (Nocedal & Wright, 2006), assuming a fixed P . For more details,
we refer to (Danelljan et al., 2017, 2016b).
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Figure 2.1 – Fully-convolutional Siamese architecture. Figure from (Bertinetto
et al., 2016b).

2.1.2 Siamese Network Based Trackers

Siamese approaches learn a feature embedding network and a similarity metric of-
fline and during inference, the response map is obtained by the cross-correlation of
template and search region. Cross-correlation is a measure of similarity of two tem-
plates using dot product. In this section, firstly we introduce the original Siamese
tracker, i.e. SiamFC (Bertinetto et al., 2016b). Then we introduce its high-quality
variant, i.e. DaSiamRPN (Zhu et al., 2018). We use both of them as our baseline
trackers equipped with UpdateNet in Chapter 5.

SiamFC (Bertinetto et al., 2016b): The tracker uses a Siamese network (two-
stream architecture) for finding the optimal matched template with an end-to-end
training manner, as depicted in Figure 2.1. One stream extracts the object template’s
features based on an exemplar image that contains the object to be tracked. The
other stream receives as input a large search region in the target image. The two
outputs are cross-correlated to generate a response map of the search region. Many
trackers (He et al., 2018; Li et al., 2018b; Valmadre et al., 2017; Wang et al., 2018;
Zhang et al., 2018; Zhu et al., 2018) have extended the SiamFC architecture for
tracking. The Siamese-based trackers have gained popularity since they provide a
good trade-off between computational speed and tracking performance.

They use a deep convolutional neural network, formulated as ϕ, to extract the
feature representations. Then the template of the object and the feature of search
region are represented as T = ϕ(z) and S = ϕ(x), respectively. Finally they use a
cross-correlation layer to compute the response map as: f (z, x) = T ∗S +b1, where
b1 denotes a signal which uses value b in every position. The Siamese network is
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trained on positive and negative pairs, with a logistic loss as below:

l (y, v) = log(1+exp(−y v)) (2.6)

where v is a real-valued response map which is obtained by a cross-correlation
layer v = f (z, x). y ∈ {+1,−1} is the ground-truth label. The pairs are obtained from
a dataset of annotated videos by extracting exemplar and search images that are
centred on the target. The images are extracted from two frames of a video that both
contain the object and are at most T frames apart. The fully-convolutional network
is trained with the loss of a score map (Eq. (2.6)) by using the pairs that consist of an
exemplar image and a larger search image. During the inference stage, the Siamese
tracker performs efficiently as no online learning. While these can easily result in
the fact that they often struggle at the problem of target classification and do not
explicitly account for distractors, on the other hand.

SiamRPN (Li et al., 2018b): This tracker takes inspiration of the region proposal
network (RPN) from object detection (Ren et al., 2015), by using correlation feature
map of the two branches for proposal extraction. The RPN happens after the
Siamese network, where there exist two branches, one is for classification and
the other for regression, as depicted in Figure 2.2. The RPN uses the channels of
features maps to represent the foreground, background and four coordinates of the
five anchors. The outputs of the two branches are obtained by cross-correlation
separately. The template branch of the Siamese network is used to represent the
target appearance, which is encoded into feature map of RPN to discriminate
foreground from background.

Assuming that ϕ(z) and ϕ(x) are the output feature representations of the
Siamese network, where z is the exemplar template, and x is the search region.
The correlation is computed on both the classification branch and the regression
branch:

Acl s
w×h×2k = [ϕ(x)]cl s ? [ϕ(z)]cl s (2.7)

Ar eg
w×h×4k = [ϕ(x)]r eg ? [ϕ(z)]r eg (2.8)

The template feature maps [ϕ(z)]cl s and [ϕ(z)]r eg are used as kernels and? denotes
the cross-correlation operation.

When training the network with several anchors, they employ the loss function
used in Faster R-CNN (Ren et al., 2015). The classification loss Lcl s is cross-entropy
loss over two classes (foreground v s. background). The loss is defined as: Lcl s =
−(ylog (p)+(1−y)l og (q)), where p and q denote the predictions for the foreground
and background, y ∈ {+1,−1} is the ground-truth label.
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Figure 2.2 – Main framework of Siamese-RPN. It includes feature extraction net-
work and region proposal network. Figure from (Li et al., 2018b).

They adopt smooth L1 loss with normalized coordinates for regression. Let Ax ,
Ay , Aw , Ah denote the center point and shape of the anchor boxes and Tx , Ty , Tw ,
Th denote those of ground truth boxes. The normalized distance is:

δ0 = Tx − Ax

Aw
,δ1 =

Ty − Ay

Ah
,δ2 = ln

Tw

Aw
,δ3 = ln

Th

Ah
(2.9)

Then they pass through smooth L1 loss which is formulated as:

smoothL1 (x,σ) =
{

0.5σ2x2, |x| < 1
σ2

|x|− 1
2σ2 , |x| ≥ 1

σ2

(2.10)

Then the regression loss is calculated as below:

Lr eg =
3∑

i=0
smoothL1(δi ,σ) (2.11)

The final loss function is calculated by combining the classification loss and
regression loss:

loss = Lcl s +λLr eg , (2.12)
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Figure 2.3 – The tracking architecture of DiMP. It includes feature extraction and
model predictor. Figure from (Bhat et al., 2019).

where λ is the trade-off value for balancing classification task and regression task.
DaSiamRPN (Zhu et al., 2018) observes that the features of Siamese trackers are

less discriminative from the non-semantic backgrounds which are usually consid-
ered as distractors. They investigate that this is mainly due to the imbalance of the
non-semantic background and semantic distractors in the training data. To tackle
this issue, they propose an effective sampling strategy to control the distribution
and make the model focus on the semantic distractors. During inference of on-
line tracking, a novel distractor-aware module is designed to perform incremental
learning, which can explicitly suppress distractors.

2.1.3 Optimization and Siamese Network Based Trackers

In this section, we introduce a tracker consisting of both the Optimization part and
Siamese network part, called DiMP (Bhat et al., 2019) as the Figure 2.3. We use this
tracker in Chapter 4.

DiMP (Bhat et al., 2019): To enable the tracker to be trained completely end-to-
end, they embed the online learning of the target model into the tracker itself by
learning a powerful discriminative filter. DiMP consists of the three components:
feature extractor, model predictor, and IoU-Net (for target estimation as also used
in Jiang et al. (2018)). With this carefully designed end-to-end network and an
effective optimization method, they achieve superior performance by setting a new
state-of-the-art on several recent RGB tracking datasets (Fan et al., 2018; Huang
et al., 2018; Kristan et al., 2018; Muller et al., 2018; Wu et al., 2015).

Optimization part. The model predictor is an optimization component in the
DiMP tracker. It is followed by the feature extractor and predicts the final optimized
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filter f . The model predictor consists of the model initializer and model optimizer.
The model initializer is to provide a reasonable initial estimate of the filter, i.e. f (0).
The model optimizer is to solve the final model f with the steepest descent (SD). The
model predictor uses a set of Str ai n to train the discriminative model f = D(Str ai n).
The classification loss is calculated as:

Lcl s =
1

Ni ter

Ni ter∑
i=0

∑
(x,c)∈ Stest

∥∥∥l (x ∗ f (i ), zc )
∥∥∥2

, (2.13)

where zc is a Gaussian shape function centered on the target c . l is a hinge loss. The
final response map is obtained by s = x ∗ f , x ∈ Stest .

Siamese network part. In DiMP, both of the feature extractor and IoU-Net use
Siamese architecture, as two streams of images are fed to the reference branch and
test branch separately. The backbone feature extractor F normally employs the
ResNet-18 or ResNet-50 (He et al., 2016), pre-trained on ImageNet (Russakovsky
et al., 2015), to extract the deep feature representations for the follow-up implemen-
tation models. Specifically, the deep features are extracted for the model predictor
and IoU-Net. The feature extractor F is shared and is fine-tuned during the end-to-
end training. When fine-tuning, the input data for F is a pair of sets (Mtr ai n , Mtest ).

Each set M = {(I j ,b j )}
N f r ames

j=1 contains images I j along with their object bounding

box b j . The images are passed through the feature extractor F , and the train set
Str ai n = {(x j ,c j )} is obtained by x j = F (I j ), where c j is the center coordinate of b j .

Next, IoU-Net model is used to predict the IoU between the deep feature x
and a bounding box candidate B as in the ATOM tracker (Danelljan et al., 2019).
ATOM aims to use the IoU network to predict the target estimation instead of using
multi-scale search. IoU-Net is also a Siamese network and has two branches, i.e.
IoU modulation and IoU predictor. The first one calculates the modulation vector
from the reference image, and the second branch predicts the IoU values from the
test image. Both of the branches are added with convolutional layers. Then they are
followed by Precise ROI Pooling (PrPool) and fully connected layer g . The reference
branch outputs a precomputed vector c to modulate the feature of the test image.
The IoU is calculated in terms of x and B as follows,

I oU (B) = g (c(x0,B0) · z(x,B)), (2.14)

where, x0,B0 and x,B are from the reference and test images separately, and z is the
feature after PrPool layer in test branch.
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Modality Dataset Sequences Frames

RGB

OTB100 (Wu et al., 2015) 98 58,610
VOT2018 (Kristan et al., 2018) 60 21,356

LaSOT (Fan et al., 2018) 1,400 3.52M
TrackingNet (Muller et al., 2018) 30,643 14,431,266

GOT-10k (Huang et al., 2018) 10,000 1.5M

TIR
VOT-TIR2015 (Felsberg et al., 2015) 20 11.3K
VOT-TIR2017 (Kristan et al., 2017b) 25 18.5K

RGB-T
VOT-RGBT2019 (VOT challenge, 2019) 60 20,083

RGBT210 (Li et al., 2017b) 210 210K

Table 2.1 – Comparison of several datasets in three modalities for visual tracking.

2.2 Datasets

In this section, we introduce the datasets for the different modalities for visual
tracking. They are divided into RGB datasets, TIR datasets and RGB-T datasets.
There are several standard tracking datasets for each modality as described in
Table 2.1, where we categorize several datasets into their respective modalities and
show their sequences numbers, frame numbers, and frame rate. For example, in
the RGB modality, there are OTB (Wu et al., 2013, 2015), VOT (Kristan et al., 2016a),
LaSOT (Fan et al., 2018), TrackingNet (Muller et al., 2018) and GOT-10k (Huang et al.,
2018). Among them, OTB and VOT are the typical tracking datasets, which appeared
at the early stage as a unified evaluation benchmark for tracking. And also there are
the recent proposed large-scale training datasets, e.g. LaSOT, TrackingNet and GOT-
10k, which can provide abundant data for training deep neural networks for tracking.
In the TIR modality, there are mainly two datasets, i.e. VOT-TIR2015 (Felsberg et al.,
2015) and VOT-TIR2017 (Kristan et al., 2017b). In the RGB-T modality, the two
popular datasets, i.e. VOT-RGBT2019 (VOT challenge, 2019) and RGBT210 (Li et al.,
2017b), are used for evaluating multi-modal tracking.

2.2.1 RGB Datasets

In this section, we introduce several popular RGB datasets. We present six exemplar
frames from these RGB datasets as shown in Figure 2.4.

OTB dataset (Wu et al., 2013, 2015): This dataset consists of the OTB2013 (Wu
et al., 2013) and OTB100 datasets (Wu et al., 2015). OTB2013 has 51 sequences
containing more than 29,000 frames in total. OTB100 has 98 sequences containing
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Figure 2.4 – Selected frames from the datasets of OTB2013, OTB100, VOT, LaSOT,
TrackingNet, and GOT-10k respectively.

more than 58,610 frames in total. Their main protocol is One Pass Evaluation (OPE),
in which tracking continues after failure and thus only the ground-truth from the
absolute initial frame is used. The evaluation metrics are the precision plot and the
success plot. Precision is measured by the center location error, calculated by the
average Euclidean distance between the center location predicted by the tracker and
the ground-truth location. The precision plot shows the percentage of frames whose
estimated location is within the given precision threshold for different threshold
values, and the representative score is the precision taking 20 pixels as threshold.
On the other hand, success is measured through the intersection over union (IoU)
between the predicted bounding box and the ground-truth. The success plot shows
the ratio of bounding boxes whose IoU is higher than a given threshold. Trackers
are then ranked in terms of Area Under the Curve (AUC) of the success plots.

VOT dataset (Kristan et al., 2016a): At present, seven editions of the challenge
have been opened for visual object tracking challenge (VOT) (Kristan et al., 2016a),
i.e. from VOT2013 to VOT2019. In VOT2015, there are 60 RGB sequences for the main
challenge. In VOT2018, the long-term challenge is added requiring the trackers to
determine when the target has disappeared and re-detect the target after losing the
target. The main VOT protocol, the supervised experiment, establishes that when
the evaluated tracker fails, i.e. when the overlap with the ground-truth is below a
given threshold, it is re-initialized in the correct location five frames after the failure.
Since VOT2015, the main evaluation measure used to rank the trackers is Expected
Average Overlap (EAO), which is a combination of accuracy (A) and robustness (R).
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While the unsupervised experiment conducts the OPE similar as the OTB protocol.

LaSOT dataset (Fan et al., 2018): To benefit object tracking using deep learning,
LaSOT is proposed to present large-scale high-quality videos including a training
and testing subset. Thus deep trackers trained on the training subset can be evalu-
ated on the testing subset. LaSOT consists of two protocols, the protocol I evaluates
the trackers across whole videos including the training and testing subsets. The
protocol II, only evaluates on the testing subset. LaSOT is a much larger and more
challenging dataset which includes long-term sequences. The total LaSOT dataset
contains 1400 sequences with 3.52M frames. The testing subset, split from the
whole LaSOT dataset, has 280 sequences with 690K frames. The LaSOT dataset (Fan
et al., 2018) follows the OPE criterion of OTB (Wu et al., 2013). Besides precision
plot and success plot, LaSOT also uses normalized precision plot to counter the
situation that target size and image resolution have large discrepancies for different
frames and videos, which heavily influences the precision metric.

TrackingNet dataset (Muller et al., 2018): This is a large-scale tracking dataset
consisting of videos in the wild. TrackingNet is built to address the issue of data-
hungry algorithms for deep tracking. It contains a large variety of frame rates,
resolutions and object classes. It has a total of 30,643 videos split into 30,132
training videos and 511 testing videos, with an average of 471 frames. The testing
videos have a similar distribution as the training set which is carefully selected from
Youtube-BoundingBoxes dataset (Real et al., 2017). TrackingNet uses precision,
normalized precision and success as the evaluation metrics.

GOT-10k dataset (Huang et al., 2018): It is an abbreviation of Generic Object
Tracking Benchmark. GOT-10k dataset has over 10,000 video segments, covering 563
classes of real-world moving objects and more than 80 motion patterns, amounting
to a total of over 1.5 million manually labeled bounding boxes. It also provides
additional supervision in terms of attribute labels such as ratio of object visible or
type of motion. The GOT-10k is split into unified training, validation and testing
subsets. The training set contains 9,335 videos (1,403,359 frames), with 480 object
classes and 69 motion classes. The validation set consists of 180 videos segments,
with 150 object classes and 15 motion classes. The testing set consists of 180 videos
segments, with 84 object classes and 32 motion classes, allowing trackers to carry
out effective evaluation. GOT-10k chooses the widely used average overlap (AO)
and success rate (SR) as the evaluation metrics.
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Figure 2.5 – Selected frames from the datasets of VOT-TIR2015 and VOT-TIR2017.

2.2.2 TIR Datasets

From 2015, the VOT challenge introduced the VOT-TIR dataset as a sub-challenge.
We present three exemplar frames from the TIR datasets as shown in Figure 2.5.

VOT-TIR2015 dataset (Felsberg et al., 2015): This is the first standard TIR track-
ing benchmark which provides the dataset and toolkit to fairly evaluate TIR trackers.
The dataset contains 20 TIR image sequences, with an average sequence length of
563 frames. It consists of six kinds of challenges such as dynamics change, occlusion,
camera motion, motion change, size change, and empty. The VOT-TIR2015 dataset
follows the standard VOT protocol (including the EAO evaluation) for testing.

VOT-TIR2017 dataset (Kristan et al., 2017b): It consists of 25 TIR sequences, with
an average sequence length of 740 frames. Their resolutions range from 305×225
to 1920×480 pixels. VOT-TIR2017 is more challenging than VOT-TIR2015. There are
11 global attributes (per-sequence), including: blur, dynamics change, temperature
change, object motion, size change, camera motion, background clutter, aspect
ratio change, object deformation, scene complexity, neutral. There are 6 local
attributes (per-frame), including: occlusion, dynamics change, motion change,
size change, camera motion, neutral. They follow the evaluation protocol as in the
VOT-TIR 2015.

2.2.3 RGB-TIR Datasets

Integrating RGB and TIR (called RGB-T in the thesis) spectrum data has been proven
to be effective in boosting the performance of visual trackers. The integration of
RGB and TIR also allows tracking target objects in both the conditions of daytime
and night time. RGB and TIR information complement each other and contribute
to visual tracking in different aspects. Recently, two popular RGB-T datasets, i.e.
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Figure 2.6 – Selected frames from the datasets of VOT-RGBT 2019 and RGBT210.

VOT-RGBT 2019 (VOT challenge, 2019) and RGBT210 (Li et al., 2017b), are used as
the benchmarks for the evaluation of RGB-T trackers. We present three pairs of
exemplar frames from the RGB-TIR datasets in Figure 2.6.

VOT-RGBT 2019 dataset (VOT challenge, 2019): In VOT2019, two new multi-
channel datasets, i.e. VOT-RGBD and VOT-RGBT, are introduced for multi-modal
tracking. This is because of that the multi-modal fusion information can definitely
help visual tracking in the real world. There are 60 public pairs of RGB and TIR
sequences for VOT-RGBT 2019 dataset. The total frame pairs reach about 20.1K.
There are five attributes labeled for each sequence of the 60 pairs for both modal-
ities. The list of attributes is: camera motion, dynamics change, occlusion, size
change, and motion change. They adopt four metrics, i.e. Accuracy (A), Robustness
(R), Expected Average Overlap (EAO), and Frames Per Second (FPS) for evaluating
the performance of trackers. Among them, the main metric for the final ranking of
trackers is normally EAO.

RGBT210 dataset (Li et al., 2017b): It consists of 210 RGB-T videos, each of them
containing a pair of RGB video and TIR video. It totally contains about 210K frames
and the maximum number of frames of each video pairs reaches 8K. Moreover, they
annotate each frame with an exact bounding box of the target for both modalities.
The videos in this dataset also cover various environmental challenges, such as rain-
ing, night, and cold days. To analyze the attribute-based performance of different
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trackers, RGBT210 dataset annotates 12 attributes, including No Occlusion (NO),
Partial Occlusion (PO), Heavy Occlusion (HO), Low Illumination (LI), Low Resolu-
tion (LR), Thermal Crossover (TC), Deformation (DEF), Fast Motion (FM), Scale
Variation (SV), Motion Blur (MB), Camera Moving (CM), and Background Clutter
(BC). In addition, they set five widely used metrics for evaluating the performance of
RGB-T trackers. These metrics are Precision Rate (PR), Success Rate (SR), Accuracy,
Robustness, and Expected Average Overlap (EAO).
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3 Synthetic Data Generation for End-to-End
Thermal Infrared Tracking *

3.1 Introduction

Visual tracking aims to estimate a trajectory of an object through a video based on
only one bounding box annotation at the beginning of the sequence. Tracking is
important for applications in surveillance (Emami et al., 2012), video understand-
ing (Renoust et al., 2016) and robotics (Liu et al., 2012). One of the main challenges
of tracking is the limited data problem: the tracker should be able to track an object
based on only a single annotated bounding box. The success of a tracker is therefore
very dependent on the quality of the discriminative features which are used by the
tracker.

Recently, specialized tracking subproblems have emerged. Among these is the
field of tracking in thermal infrared (TIR) images, whose importance is further
increasing due to improvements of thermal infrared sensors in resolution and qual-
ity (Felsberg et al., 2015, 2016; Kristan et al., 2017a). The advantage of thermal
images is that they are not influenced by the illumination variations and shadows,
and objects can be distinguished from the background as the background is nor-
mally colder. In addition, thermal infrared tracking can be used in total darkness,
where visual cameras have no signal. Considering these advantages, thermal in-
frared tracking has a wide range of applications in car and pedestrian surveillance
systems as well as various defense systems (Gade & Moeslund, 2014).

In recent years, Discriminative Correlation Filter (DCF) based methods (Bolme
et al., 2010; Danelljan et al., 2017; Henriques et al., 2015) have shown to provide ex-
cellent tracking performance on existing benchmarks (Kristan et al., 2016a; Mueller
et al., 2016; Wu et al., 2015). The DCF based trackers learn a correlation filter
from example patches to discriminate between the target and background appear-
ance. Further, the DCF based framework efficiently utilizes all spatial shifts of
the training samples by exploiting the properties of circular correlation to train
and apply a discriminative classifier in a sliding window fashion. Lately, the DCF
based framework has been significantly advanced by employing high-dimensional

*This chapter is based on a publication in IEEE Transactions on Image Processing 2018
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visual features (Danelljan et al., 2016a, 2014b; Henriques et al., 2015), powerful
learning methods (Danelljan et al., 2017; Song et al., 2017b), reducing boundary
effects (Danelljan et al., 2015b), and accurate scale estimation (Danelljan et al.,
2014a). Due to their superior performance in RGB tracking, some of these methods
have also been applied with success to TIR (Danelljan et al., 2017, 2015b).

Recently, deep learning has revolutionized the field of computer vision signifi-
cantly advancing the state-of-the-art in many applications (Krizhevsky et al., 2012).
Generally the deep networks are trained on a large amount of labeled training
data. Despite its astounding success, the impact of deep learning on generic vi-
sual tracking (RGB data) has been limited. One of the key issues when employing
deep features for tracking is the unavailability of large-scale labeled tracking data
for training. Further, the tracking model is desired to be learned using a single
labeled frame. Therefore, most existing deep learning based DCF trackers (Danell-
jan et al., 2017, 2016b; Ma et al., 2015a) employ deep features pre-trained on the
ImageNet dataset (Russakovsky et al., 2015) for image classification task. Other ap-
proaches (Song et al., 2017b; Valmadre et al., 2017) have investigated the integration
of DCF in a deep network by adapting the end-to-end philosophy, but did not result
in major improvements over features from pre-trained networks.

Even more than for RGB tracking, introducing deep learning to TIR tracking
is hampered by the absence of large datasets. The datasets which are available
for thermal infrared videos are relatively small. Moreover, there is no ImageNet
counterpart of infrared still images on which a large network could be pre-trained.
Therefore, the usage of hand-crafted features remains dominant for TIR tracking.
For instance, the top three trackers in VOT-TIR2017 (Kristan et al., 2017a, 2016a) are
still exploiting hand-crafted features. The winner (Yu et al., 2017) of VOT-TIR2017
challenge employs HOG (Dalal & Triggs, 2005) and motion features. Further, the
other top-performing methods (Felsberg et al., 2015; Zhu et al., 2016) are based
on hand-crafted features. The success of these methods show that hand-crafted
features are still the best choice for TIR tracking.

Deep learning has also resulted in fast progress in generative models which
are able to generate samples from complex image distributions (Goodfellow et al.,
2014). These models have been further extended to image-to-image translation
models (Isola et al., 2017) which allow to learn mappings between image domains.
A further extension of this work allows to learn mappings between unpaired do-
mains (Zhu et al., 2017), which is based on the observation that transferring an
image to another domain and then transferring it back to the first domain should
result in the same image which was provided as input. One of the more interesting
applications of these generative networks is that they can be used to construct
synthetic datasets of small data domains, such as TIR. In this work, we show that
labeled data from RGB can be translated to TIR data as well as the labels.
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In this work we tackle the key limited-data problem for TIR-tracking by utilizing
recent developments in image-to-image translation methods (Isola et al., 2017; Zhu
et al., 2017). The idea is to automatically transfer RGB tracking videos to the TIR
domain. We can then automatically transfer the labels from these RGB videos to the
synthetic TIR videos. The resulting data can then be used to extract discriminative
deep features for the TIR domain. The advantage is that we can generate the TIR
counterpart of the available RGB tracking datasets which are much larger compared
to the current TIR tracking datasets. The main contributions of this chapter are:

• We address the scarcity of labeled data for TIR tracking. Therefore, we propose
a framework which transfers RGB data to synthetic TIR data. The labels
available for the RGB data are also transferred to the TIR data, resulting in a
large synthetic TIR data set for tracking.

• We are the first to perform end-to-end training for TIR tracking, showing that
this can significantly improve results (see Table 3.3). We also show that a
tracker trained on only synthetic data can outperform trackers trained on
available labeled TIR data (see Fig. 3.1).

• We perform extensive evaluations on the latest TIR tracking challenge (Kris-
tan et al., 2017a) verifying the efficiency of our different models trained on
synthetic TIR datasets. We show that when combined with motion features
our method obtains state of the art on the TIR tracking challenge.

The rest of the Chapter is organized as follows. In section 3.2 we briefly discuss
related work. In section 3.3 we introduce the standard correlation filter and the
current end-to-end deep correlation filter. In section 3.4 and section 3.5 we describe
the prevalent generative adversarial networks and present our generated synthetic
tracking videos. In section 3.6 we present our experiments on standard thermal
infrared tracking dataset. In section 3.7 we conclude our work and plan our further
research.

3.2 Related Work

3.2.1 DCF Tracking

In recent years, discriminative correlation filter (DCF) based tracking methods have
shown excellent performance in terms of accuracy and robustness on benchmark
tracking datasets (Kristan et al., 2016a; Wu et al., 2015). The DCF based trackers aim
at learning a correlation filter in an online fashion from example image patches to
discriminate between the target and background appearance. The seminal work
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#271#66#29#1

#136#79#12#1

Groundtruth Ours Baseline-ECO

Figure 3.1 – Qualitative comparison of our approach trained on generated data
only (red) with baseline ECO (Danelljan et al., 2017) (green) on the quadro-
copter2, car2 and garden videos. The ground truth bounding box is provided
in yellow. Owing to the synthetic TIR data our model is able to follow the object
successfully in case of out-of-plane rotation, partial occlusion and scale changes.

of Bolme et al. (2010) was restricted to a single feature channel (grayscale image).
Later, the DCF framework was extended to use multi-dimensional hand-crafted
features (Danelljan et al., 2014b; Galoogahi et al., 2013; Henriques et al., 2015),
such as HOG (Dalal & Triggs, 2005) and Color Names (Van De Weijer et al., 2009).
Some of the recent advances in DCF frameworks can be attributed to reducing
boundary effects (Danelljan et al., 2015b), robust scale estimation (Danelljan et al.,
2014a), integrating context (Mueller et al., 2017a), and adding a long-term memory
component (Ma et al., 2015b).

Even after more than five years of flourishing, discriminative correlation filter
based tracking is still the mainstream in single object tracking. Recent modifications
on DCF include: Mueller et al. (2017a) sample four context patches around the target
and incorporate these to regularize the regression function, which has the same
effect as hard negative mining. Lukezic et al. (2017) enlarge the search region and
improve tracking of non-rectangular objects by using spatial maps to restrict the
correlation filter. They also give the learned filter adaptive channel-wise weights,
which improves the quality of the filter. Kiani Galoogahi et al. (2017) use a mask
to crop the object in the spatial domain and get a new closed-form solution of
the correlation filter in the Fourier domain by embedding the mask matrix into
the formulation. This yields significantly more shifted examples unaffected by
boundary effects.

Compared to hand-crafted features (e.g. HOG (Dalal & Triggs, 2005), intensity
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and Color Names (Van De Weijer et al., 2009)), deep CNN features significantly
improve the robustness of the tracker against geometric variations (Danelljan et al.,
2015a), resulting in a significant improvement of the performance. This is mainly
caused by the high discriminative power of deep features, since CNNs are trained on
large datasets such as ILSVRC2012 (Russakovsky et al., 2015). Later, Ma et al. (2015a)
propose to encode the target appearance on several convolutional layers and each
layer has a corresponding correlation filter. This hierarchical architecture locates
targets by maximizing the response of each layer with different weights. They find
an optimized position in a coarse to fine way. Directly using different layers may
not take full advantage of the CNN features because of the discrete distribution of
features. To exploit the continuity between different layers of networks, Danelljan
et al. (2016b) propose to learn a convolution operator in the continuous spatial
domain called CCOT. As CCOT is very slow, Danelljan et al. (2017) propose to
factorize the convolution operator to reduce the dimensions of feature maps. Then
they use GMM to generate samples, which significantly accelerate the tracker,
enabling the tracker to run in real-time, while still maintaining the same or higher
accuracy.

3.2.2 TIR Tracking

Currently, the leading TIR trackers still employ hand-crafted features in their models.
Yu & Yu (2018) propose structural learning on dense samples around the object.
Their tracker uses edge and HOG features and transfers them into the Fourier
domain, to obtain a real-time tracker. Later they extend this work, called DSLT (Yu
et al., 2017), by integrating HOG (Dalal & Triggs, 2005) and motion features. With
this tracker they won the VOT-TIR2017 challenge (Kristan et al., 2017a). Another
TIR tracker, called EBT (Zhu et al., 2016), uses edge features to devise an objectness
measure specific for each instance. This enables the generation of high quality
object proposals and the use of richer features. Concretely, for each proposal they
extract a 2640-dimensional histogram feature as well as a 5-level pyramid computed
from the intensity channel. They achieve the runner-up position in the VOT-TIR2017
challenge. SRDCFir (Felsberg et al., 2015) extends the SRDCF (Danelljan et al.,
2015b) tracker for TIR data by adding motion features. SRDCF is a DCF-based
tracker that introduced a spatial regularization function to penalize those DCF
coefficients that reside outside the target region, which mitigates the damaging
boundary effects present in the traditional DCF.

Another branch for TIR tracking combines the input TIR data with the visual
modality, concretely with the image intensity given as a grayscale image. For exam-
ple, Li et al. (2016) propose an adaptive fusion scheme to incorporate information
from grayscale images and TIR videos during tracking. Similarly, the approach by Li
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et al. (2017a) samples a set of patches around the object and extracts a joint sparse
representation in both grayscale and TIR modalities.

The usage of generating other modalities was pioneered by Hoffman et al. (2016).
They used generation of depth data to improve classification on the abundant-data
modality (RGB), whereas we use data generation as a source of labeled data for
the scarce-data modality (TIR). Xu et al. (2017) use a network which generates TIR
images to pre-train the weights. These weights are then applied in a network which
is used on RGB data with the aim to improve tracking of pedestrians. Other than
them, we use the generation of TIR data for data augmentation; we create large
synthetic labeled data sets of TIR data to be able to train end-to-end features for
TIR data.

3.2.3 Image-to-Image Translation

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have achieved
promising results in several tasks such as image generation (Denton et al., 2015),
image editing (Perarnau et al., 2016), and representation learning (Salimans et al.,
2016). The conditional variants of GANs (Mirza & Osindero, 2014) enable to con-
dition the image generation on a selected input variable, for example, an input
image. In this case, the task becomes image-to-image translation, and this is the
variant we use here. The general method of Isola et al. (2017), pix2pix, was the
first GAN-based image-to-image translation work that was not designed for a spe-
cific task (e.g. colorization (Zhang et al., 2016b)). The architecture is based on an
encoder-decoder with skip connections (Ronneberger et al., 2015) and it is trained
using a combination of two losses: a conditional adversarial loss (Goodfellow et al.,
2014) and a loss that maps the generated image close to the corresponding target
image. This method achieves excellent results, but requires matching pairs of train-
ing images, which limits the applicability of the model as such data might not be
easily accessible. In order to overcome this limitation, Zhu et al. (2017) extended
this model to the case in which paired data is not available. Their method, called
CycleGAN, relies on the assumption that mapping an image from the input domain
to the target and then back to the input (i.e. the cycle) should result in the identity
function. Based on this, they add a cycle consistency loss that enforces the correct
reconstruction of the input image resulting of the composition of the two mappings.
They demonstrate the effectiveness of their method for multiple tasks such as edges
to real images or photo enhancement. In this chapter, we use image-to-image
translation to generate a synthetic large-scale TIR tracking dataset from a labeled
RGB dataset, with the goal of learning better deep features for tracking.

Related to our work is the research (Berg et al., 2018) where they convert TIR im-
ages to RGB images. This task is more difficult than the task which we address in this
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chapter, because the TIR modality contains less information than the RGB modality.
Berg et al. (2018) proposed two Convolutional Neural Networks based methods
which colorize TIR images to plausible visual luminance and chrominance. These
methods are fully automatic. They do not require any user input, pre-processing,
and post-processing, while they are still robust to image pair misalignment. Exten-
sive qualitative and quantitative experiments on the public dataset demonstrate
the proposed methods generate perceptual effects.

3.3 Method Overview

We aim to train end-to-end deep features for tracking in TIR data. However, to train
effective deep features for TIR data, we need a large dataset of labeled TIR videos.
Unfortunately, the amount of labeled TIR data is very scarce. To the best of our
knowledge, only BU-TIV dataset (Wu et al., 2014) contains a considerable amount
of labeled TIR videos, but most of them depict only one object class (pedestrian).
Therefore, most state of the art TIR tracking methods are still based on hand-crafted
features (Felsberg et al., 2015; Yu et al., 2017; Zhu et al., 2016). On the other hand,
there are vast amounts of RGB videos labeled for tracking (Kristan et al., 2016a; Wu
et al., 2015). One solution could therefore be to use the pre-trained features which
are optimal for tracking in RGB data for TIR data. However, this is unlikely to be
optimal because TIR and RGB data differ significantly.

To illustrate the difference in nature of RGB and TIR data we measure the aver-
age activation of the 96 filters of the first layer of a pre-trained AlexNet on the KAIST
dataset. This dataset contains both RGB and TIR images of the same scenes (a
similar study for depth images has been performed by Song et al. (2017a)). The pre-
trained network is trained to recognize objects in RGB images (i.e. on ImageNet).
We present the results in Fig. 3.2. The graph shows the average activation of the
filters in descending order. When applied to data which is similar to that on which
the network is trained, the average activations tend to produce a uniform distribu-
tion. This can be seen for RGB images where most filters yield the same average
activation and only a few filters differ from this pattern. When we perform the same
experiment on TIR data the pattern changes. We can now observe clear differences
between filters which have a higher average activation and filters which have lower
average activation. This shows that these filters are probably not optimal for TIR
tracking. When we look at the exact filters which have low and high activation, we
see that low frequency patterns (blobs and edges) are prevalent for the TIR data,
whereas high-frequency filters are seldom found in TIR data. This is not surprising
since most textures, responsible for most of the high-frequency content of images,
do not appear in TIR data. In conclusion, given the different nature of the image
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Figure 3.2 – Average activation of filters from the first layer of pre-trained AlexNet
on the test set of KAIST for RGB and TIR images.

statistics of RGB data and TIR data it is probable that a network which is trained on
TIR data would outperform a network trained on RGB data.

In this chapter, we aim to address the problem of data scarcity of labeled videos
for tracking in TIR data. We do this by exploiting the vast amount of labelled
RGB videos which are available, in combination with recent advances in image-
to-image translation techniques. We will use these image-to-image translation
models to transfer large labeled RGB datasets to synthetic TIR dataset together with
the tracking annotations. As a result we now have a large labeled synthetic TIR
dataset. We use this synthetic TIR dataset to train end-to-end deep networks to
obtain optimal TIR features for tracking. Then we plug the optimal TIR feature
model into a state-of-the-art tracker. Here we use ECO (Danelljan et al., 2017). An
overview of our method is provided in Fig. 3.3. In the following section we detail the
various parts of our algorithm.

3.4 Deep Learning Features for Correlation Filter Track-
ing

In this section, we introduce the standard correlation filter and the current end-
to-end deep correlation filter. Then we describe Efficient Convolution Operators
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Figure 3.3 – Overview of our approach. (a) Image-to-image translation component
(proposed by Isola et al. (2017)) for generating a large labeled synthetic TIR tracking
dataset. We use blue dashed line to represent the baseline RGB training model and
the green dashed line represents our proposed synthetic data training model. After
the translation of RGB data to TIR data, we acquire enough suitable data for end-to-
end training networks for TIR tracking. (b) Two-branch architecture for training the
network to obtain adaptive features for TIR tracking (proposed by Valmadre et al.
(2017)). The optimal correlation filter is computed in the discriminative correlation
filter layer (DCFL) for the image processed in the upper branch. This filter is then
applied on the image in the bottom branch.

(ECO) (Danelljan et al., 2017) which we will use as the correlation filter for our
experiments.

3.4.1 Correlation Filter Tracking

The conventional discriminative correlation filters (DCF) formulation (Henriques
et al., 2015), learns a linear correlation filter f that discriminates the target ap-
pearance from the background. The target location is predicted by applying the
correlation filter to a sample feature map. The desired filter f can be obtained by
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minimizing a least squares objective:

E( f ) =
∥∥∥∥∥ D∑

d=1
f d ∗xd − y

∥∥∥∥∥
2

+λ
D∑

d=1
‖ f d‖2. (3.1)

Here ∗ denotes circular correlation. xd denotes feature maps of training samples x,
where the layer d ∈ {1, . . . ,D}. f d denotes channel d of filter f . y is the regression
target and λ is a regularization weight to control over-fitting. A closed-form solution
is obtained in the Fourier domain,

f̂ d = x̂d ŷ∗∑D
d=1 x̂d (x̂d )∗+λ . (3.2)

Where the ŷ∗ denotes the complex conjugate of the discrete Fourier transform
F (y).

Recently, researchers have proposed several methods for end-to-end training
of features for tracking: CFNet (Valmadre et al., 2017), DCFNet (Wang et al., 2017),
and CFCF (Gundogdu & Alatan, 2017). All use a two-branch Siamese network,
of which one branch is used to compute the optimal correlation filter, which is
applied in the other branch to obtain the response map (see Fig. 3.3). Both branches
share the weights of their convolutional layers. Training is performed with paired
images from same video. It backpropagates the gradients through the discriminative
correlation filter layer (DCFL) with a closed-from solution (Valmadre et al., 2017).
Surprisingly, trackers based on end-to-end training only slightly outperformed
off-the-shelf features. It should be noted that all end-to-end trackers train on
RGB datasets, mainly on the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC15) (Russakovsky et al., 2015), and no results for end-to-end tracking on
other modalities like TIR are available.

In this chapter, we use the end-to-end CFNet training procedure proposed by
Valmadre et al. (2017). This method obtains stable and fast network training due to
their Fourier domain implementation of the discriminative correlation filter layer.
Other than them we will apply it to TIR tracking. Since current available datasets
for TIR tracking are rather small, we propose in the next section our approach to
generating synthetic TIR tracking data from labeled RGB tracking data.

3.4.2 Efficient Convolution Operators

Previously, we have explained how to train end-to-end features for tracking. These
features can be used in different discriminative correlation filter methods. In our
work we use the Efficient Convolution Operator (ECO) (Danelljan et al., 2017)
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Figure 3.4 – Results for the two image translation methods considered: pix2pix
and CycleGAN. The video frames are taken from the test set of KAIST, and have not
been seen during training.

method, shown to obtain state-of-the-art results while being computationally effi-
cient. However, its original implementation is based on features extracted from a
pre-trained CNN model trained on the ImageNet 2012 classification dataset (Rus-
sakovsky et al., 2015). Even though these features are extracted from a model which
is trained for image classification, ECO obtains excellent results for tracking. In
our experiments we combine ECO with the end-to-end trained features for TIR
tracking.

The ECO tracker aims at combining shallow and deep features by learning a
multi-channel continuous convolution filter in a joint optimization scheme across
all feature channels. Furthermore, it learns a projection matrix, to reduce the
dimensionality of high-dimensional features. Here we briefly describe the training
and inference procedures applied in ECO.

ECO learns the target model parameters based on a set of training samples
{x j }M

1 and corresponding labels {y j }M
1 . The label function y j consists of the desired

target scores at all spatial locations in the corresponding training sample x j . It
is defined as a periodically repeated Gaussian function centered at the sample
location (Danelljan et al., 2016b). Each training sample contains multiple feature
layers xd

j ∈RNd×Nd , where Nd is the spatial resolution of layer d ∈ {1, . . . ,D}. These

feature layers correspond to both shallow and deep features of varying resolutions.
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The tracker predicts the target location using the target score operator, defined as

S f ,P {x} =
D∑

d=1
f d ∗P Jd {xd } . (3.3)

Here, x is the input sample and f is the learned filter that predicts the detection
score function S f ,P {x} of the target. The sample x is first interpolated to the contin-
uous domain using the operator Jd , by applying a cubic spline kernel in the Fourier
domain (see the method by Danelljan et al. (2016b) for more details). The projection
matrix P is then applied to reduce the dimensionality of the feature space.

The detection score operator is learnt via minimization of a least squares objec-
tive,

E( f ) =
M∑

j=1
α j ‖S f ,P {x j }− y j ‖2 +

D∑
d=1

‖w f d‖2 +λ‖P‖2
F . (3.4)

Here, the projection and filter are regularized by a constant λ. The spatial regular-
ization weight function w is employed to mitigate the effects of periodic repetition
(Danelljan et al., 2015b). Each sample x j is weighted by α j , based on a learning rate
parameter γ. The label functions {y j }M

1 are set to Gaussian functions centered at
the target location.

Using Parseval’s formula an equivalent loss is obtained as,

E( f ) =
M∑

j=1
αk‖áS f ,P {x j }− ŷ j ‖2+

D∑
d=1

‖ŵ ∗ f̂ d‖2 +λ‖P‖2
F . (3.5)

Here ·̂ denotes the Fourier coefficients. We learn the projection matrix P jointly with
the filter f in the first frame by applying Gauss-Newton and adopting the Conjugate
Gradient method (Nocedal & Wright, 2006) for each iteration. In subsequent frames,
the resulting normal equations are efficiently solved using the method of Conjugate
Gradients, assuming a fixed P . For more details, we refer to the trackers Danelljan
et al. (2017, 2016b).

3.5 Generating TIR images

In this section we discuss image-to-image translation methods and compare them
for the task of transferring RGB to synthetic TIR data.
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3.5.1 Image-to-Image Translation Methods

We use two different image-to-image translation methods to transform labeled
RGB videos into labeled TIR videos. First, we use pix2pix (Isola et al., 2017), which
requires paired training data. Therefore, we need matching frames in both RGB and
TIR, which we can obtain from multispectral video datasets such as KAIST (Hwang
et al., 2013). Second, we use CycleGAN (Zhu et al., 2017), an extension on pix2pix
that can be trained from unpaired data. As a consequence, any videos in the RGB
and TIR modalities can be used to train CycleGAN. Despite the higher availability of
unpaired training data, we expect the weaker supervision of CycleGAN to result in
synthesized TIR images of lower quality. In this section, we present both translation
methods and experimentally confirm this intuition. In later sections, we generate
TIR data using only pix2pix given its empirically superior performance.

Both methods are based on Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014) conditioned on input images. GANs consist of two networks,
generator G and discriminator D , that compete against each other. The generator
tries to generate samples that resemble the original data distribution, whereas the
discriminator tries to detect whether samples are real or have been generated by
G . When the GAN architecture is conditioned on an input image, the task becomes
image-to-image translation. In our case, the input image is a color frame from an
RGB video and the target is the matching frame in the TIR modality.

Paired - pix2pix. pix2pix (Isola et al., 2017) is an effective, task-agnostic method
that can be applied to translate between many domain pairs, including maps to
satellite pictures, edge maps to real pictures, or grayscale images to color images.
The generator is based on an encoder-decoder architecture with skip connections
(U-Net proposed by Ronneberger et al. (2015)). The discriminator is a convolutional
PatchGAN (Li & Wand, 2016), which classifies each local image patch independently,
making it especially suited for modifying textures or styles.

Let x be an image from the input domain X and y an image from the target
domain Y . In pix2pix, both the generator and discriminator are conditioned on the
input image x. The conditional GAN objective function is defined as

LcG AN (G ,D) = Ex,y [logD(x, y)]

+ Ex,z [log(1−D (x,G (x, z)))], (3.6)

where z is a random noise vector used as input for the generator. Additionally,
pix2pix also includes an L1 loss to increase the sharpness of the output images

LL1 (G) = Ex,y,z [
∥∥y −G(x, z)

∥∥
1]. (3.7)
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The final objective function is the weighted sum of these two losses. Following the
original adversarial training (Goodfellow et al., 2014), G tries to minimize this final
objective while D tries to maximize it:

G∗ = argmin
G

max
D

LcG AN (G ,D)+λLL1 (G) . (3.8)

We translate an RGB video to TIR by applying pix2pix independently for each video
frame. The original model of Isola et al. (2017) achieves mild stochasticity in its
outputs by keeping the dropout layers at test time, which are normally used only
during training. In our case, this is not only unnecessary but also damaging, as
it makes the output video less stable. For this reason, we only use dropout layers
during training.

Unpaired - CycleGAN. Paired data might be hard to come by for particular tasks
including RGB to TIR conversion, as the amount of paired videos in both modalities
is rather limited. Zhu et al. (2017) present CycleGAN, a method for learning to
translate between image domains when paired examples are not available. The
main idea consists in adding a cycle consistency loss, based on the assumption
that mapping an image x ∈ X to domain Y and back to X should leave it unaltered.
For this reason, besides the classic generator G : X → Y , CycleGAN also learns a
generator to perform the inverse mapping F : Y → X . The method is then trained
with a weighted combination of an unconditional adversarial loss (Goodfellow et al.,
2014) and the cycle consistency loss in both directions

Lc yc (G ,F ) = Ex [‖F (G(x))−x‖1]

+ Ey [
∥∥G(F (y))− y

∥∥
1], (3.9)

See the method (Zhu et al., 2017) for more details. As in pix2pix, we apply CycleGAN
independently per frame, and we remove the dropout layers at test time to generate
a more stable video output.

3.5.2 Datasets

We consider multiple datasets for training our image translation methods, spanning
the two presented supervision levels: paired and unpaired. Table 3.1 details the
number of images of all the considered datasets. Among the paired datasets, the
biggest and most relevant is KAIST Multispectral Pedestrian Dataset (Hwang et al.,
2013), which contains a significant amount of aligned images in the RGB and TIR
modalities, captured from a moving vehicle in different urban environments and
under different lighting conditions. We follow the official data split (Hwang et al.,
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Type Dataset
Number of images

RGB TIR

Paired

KAIST (Hwang et al., 2013) 50,184 50,184
CVC-14 (González et al., 2016) 8,473 8,473

OSU Color Thermal (Davis & Keck, 2005) 8,545 8,545
VAP Trimodal (Palmero et al., 2016) 5,924 5,924

Bilodeau (Bilodeau et al., 2014) 7,821 7,821
LITIV2012 (Torabi et al., 2012) 6,325 6,325

total 87,088 87,088

Unpaired

VOT2016 (Kristan et al., 2016b) 21,455 -
VOT2017 (Kristan et al., 2017a) 4,049 -

OTB (Wu et al., 2015) 58610 -
ASL (Portmann et al., 2014) - 6,490

Long-term (Gade et al., 2013) - 47,423
InfAR (Gao et al., 2016) - 46,121

total 84,114 100,034

Table 3.1 – Datasets used for training the image-to-image translation models.
We test all models using a subset of three videos from the official test set of
KAIST (Hwang et al., 2013).

2013) as in Isola et al. (2017) and use all the frames from training videos for training.
We evaluate both image translation methods using 3 randomly left out videos from
the test set, amounting to 5,728 images. Train and test sets have no videos in
common.

Other paired datasets include images of people captured under different condi-
tions: pedestrians during day or night (CVC-14 (González et al., 2016)), static cam-
eras at a busy intersection (OSU Color-Thermal Database (Davis & Keck, 2005)) or in
different positions and zooms (LITIV2012 dataset (Torabi et al., 2012), interactions
in indoor scenes with controlled lighting settings (VAP Trimodal People Segmenta-
tion Dataset (Palmero et al., 2016)), or moving in different planes (Bilodeau et al.,
2014). This amounts to a total of 87K image pairs.

We use all paired datasets to train both pix2pix and CycleGAN. Additionally, we
collect an RGB-TIR unpaired dataset as extra training data for CycleGAN. As RGB
data we include all the sequences from VOT2016 (Kristan et al., 2016b), VOT2017 (Kris-
tan et al., 2017a), and OTB (Wu et al., 2015). As TIR data we include the TIR images
from ASL (Portmann et al., 2014), Long-term (Gade et al., 2013), and InfAR (Gao
et al., 2016). This amounts to a total of about 230K images, almost 5× more images
than the paired training dataset.
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3.5.3 Implementation Details

We train all networks in pix2pix and CycleGAN from scratch, initializing the weights
from a Gaussian distribution with zero mean and standard deviation of 0.02. We
use the same network architectures as in the original papers (Isola et al., 2017; Zhu
et al., 2017). As the method (Isola et al., 2017), we apply random jittering by slightly
enlarging the input image and then randomly cropping back to the original size. We
train pix2pix for 10 epochs, with batch size 4 and learning rate 0.0002. CycleGAN is
trained for 3 epochs, batch size 2 and learning rate 0.0002. Note that both models
are trained for an equivalent number of iterations given the size of their training
sets.

3.5.4 TIR Image Translation Quality

In order to test the two image translation methods considered we select a random
subset of the test set of KAIST (Hwang et al., 2013), amounting to about 10% of the
entire dataset. We translate the RGB videos into TIR using pix2pix or CycleGAN,
and then compute the Euclidean distance of the translations with the TIR ground-
truth images. Finally, we average the distance for all frames. pix2pix obtains an
average distance of 35.3, whereas CycleGAN obtains 69.5. This demonstrates the
superiority of pix2pix for this task, showing how a paired training signal is more
valuable than the unpaired counterpart, despite the bigger training dataset of the
latter. Fig. 3.4 shows a qualitative comparison of both approaches. We can observe
how the translated images using pix2pix are clearly superior to those translated by
CycleGAN. Moreover, they look remarkably similar to the ground-truth TIR images,
confirming the validity of the proposed data augmentation approach. Therefore,
we select pix2pix as our method to generate TIR tracking data from RGB videos.

In addition we compare the statistics of the image gradients of real TIR data and
synthetic TIR data generated by pix2pix. The histogram of the gradient magnitude
for both datasets on the test set of KAIST is provided in Fig. 3.5. We have also
added the gradient magnitude of the grayscale images from which the synthetic
dataset is generated. The results show that the gradient magnitude of the synthetic
data closely follows that of the real data. Only small variations can be seen for low
magnitude gradients. The similarity of the image statistics of real and synthetic data
suggests that trackers trained on the synthetic data could also be successful.
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Figure 3.5 – Histogram of the gradient magnitude for real and synthetic TIR data
computed on the test set of KAIST (Hwang et al., 2013). For comparison we have
also added the gradient magnitude histogram for grayscale images from which the
synthetic dataset has been generated.

3.6 Experimental Results

3.6.1 Datasets

We train several versions of our tracker using both real and generated TIR tracking
data, summarized in Table 3.2. As real TIR data we use BU-TIV (Wu et al., 2014),
ASL (Portmann et al., 2014), and OTCBVS (Davis & Keck, 2005). The predominant
class in these datasets is human/pedestrian, although BU-TIV (Wu et al., 2014)
includes some vehicles and ASL (Portmann et al., 2014) also contains animals like
cat and horse. We select all those sequences that include annotated bounding boxes
around the objects, leading to a total of 375K bounding boxes from 34K images. On
the other hand, we generate synthetic TIR tracking data using the RGB videos from
VOT2016 (Kristan et al., 2016b), VOT2017 (Kristan et al., 2017a), and OTB (Wu et al.,
2015), which are standard tracking benchmarks used by the community. In total,
we obtain 168 TIR videos with tracking annotations by translating the original RGB
frames using pix2pix and transferring the corresponding bounding box annotations.
The total number of bounding boxes is 4.5× greater than in the real TIR images.
Furthermore, the generated TIR videos contain a wider variety of object classes
than the real TIR videos. This increases the generality of the learned deep features.
In both cases, we leave out around 10% of videos during training as validation set.
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Type Dataset Videos Images Bounding-boxes

Real

BU-TIV (Wu et al., 2014) 5 23,393 34,7291
ASL (Portmann et al., 2014) 13 6,490 7,773

OTCBVS (Davis & Keck, 2005) 4 4861 19,944
Total 22 34,744 375,008

Generated

VOT2016 (Kristan et al., 2016b) 60 21,455 21,455
VOT2017 (Kristan et al., 2017a) 10 4,049 4,049

OTB (Wu et al., 2015) 98 58,610 58,610
Total 168 84,114 84,114

Table 3.2 – Datasets used for training the tracker, using real TIR data or generated
TIR data from RGB images.

We evaluate our TIR tracker on the VOT-TIR2017 dataset (Kristan et al., 2017a),
which is identical to VOT-TIR2016 dataset (Felsberg et al., 2016) as the 2016 edition
of this benchmark was far from being saturated. It contains 25 TIR videos of varying
image resolution, with an average sequence length of 740 frames adding up to a
total of 13,863 frames. Each sequence has been manually annotated with exactly
one bounding box per frame around a particular object instance. There is a wide
variety of object classes, including pedestrian, animals such as rhino or bird, and
vehicles like quadrocopter or car. Moreover, the dataset includes extra annotations
in the form of attributes, either at frame level (e.g. camera motion, occlusion) or at
the sequence level (e.g. blur, background clutter). This test dataset has no videos in
common with the RGB modality of VOT2016-17 used for training.

3.6.2 Evaluation Measures and Protocol

We follow the measures and evaluation protocol proposed by the VOT-TIR2017
benchmark (Felsberg et al., 2016). The two primary measures are accuracy (A) and
robustness (R), which have been shown to be highly interpretable and only weakly
correlated (Čehovin et al., 2016). Accuracy is computed as the overlap (intersection
over union) between the predicted track region and the ground-truth bounding
box, averaged over frames. The VOT protocol establishes that when the evaluated
tracker fails, i.e. when the overlap is below a given threshold, it is re-initialized in
the correct location five frames after the failure. In order to reduce the positive bias
introduced by this protocol, the accuracy measure ignores the first ten frames after
the re-initialization when computing the average overlap. Robustness measures
the number of times the tracker fails for each sequence and then takes the average
over all sequences. These two measures are conflated into a third, the Expected
Average Overlap (EAO), which is the main measure used to rank the trackers. The
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Figure 3.6 – The EAO on VOT-TIR2017 (Kristan et al., 2017a) when using deep
features extracted from different layers.

EAO estimates the expected average overlap of a tracker for a particular sequence
of a fixed, short length. We refer the reader to the paper (Kristan et al., 2016a) for
more details.

Besides the standard VOT metrics, we also report results following the One-
Pass Evaluation (OPE) protocol originally proposed by Wu et al. (2015). The most
standard evaluation metric used with this protocol is success rate. For each frame
in the test video, we compute the overlap between the predicted track and the
ground-truth bounding box. A predicted track is considered successful if its overlap
with the ground-truth is above a particular threshold. We obtain a success plot
by evaluating the success rate at different overlap thresholds. Conventionally, the
Area Under the Curve (AUC) of the success plot is reported as a summary measure.
Note how this protocol does not reset the tracker in case of failure. We use the VOT
toolkit (Kristan et al., 2017a) to compute the measure and plot the results.

3.6.3 Implementation Details

We train CFNet following the method (Valmadre et al., 2017). We perform tests
with three different networks as base model: AlexNet (Krizhevsky et al., 2012), VGG-
M (Chatfield et al., 2014), and ResNet-50 (He et al., 2016). As the method (Valmadre
et al., 2017), we reduce the total stride of the networks from 16 to 4 by changing
the stride of the first and second pooling layers from 2 to 1 in AlexNet, and that
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Figure 3.7 – The EAO on VOT-TIR2017 (Kristan et al., 2017a) when using deep
features extracted from different networks. Our synthetic data can benefit general
networks for fine-tuning.

of second convolutional and pooling layers in VGG-M. This allows us to obtain
bigger feature maps, which benefits the correlation filters. For fairness, we apply
this modification to all trained models. As training input data for the network, we
randomly pick object regions from pairs of images from the same video. Specifically
we crop a centered region on the object of approximately twice the object’s size,
and resize it to 125×125 pixels. We use Stochastic Gradient Descent (SGD) with
momentum of 0.9 and weight decay of 0.0005 to fine-tune the network, which is
pre-trained for image classification on ILSVCR12 (Russakovsky et al., 2015). The
learning rate is decreased logarithmically at each epoch from 10−4 to 10−5. The
model is trained for 50 epochs with mini-batches of size 128.

For the baseline tracker ECO (Danelljan et al., 2017) (Fig. 5.2, blue dashed
lines), we use the recommended settings (‘OTB_DEEP_settings’) detailed in the
code provided by the authors (ECO, 2017). ECO is an RGB tracker, so we have
adapted the following parameters given the different nature of TIR data. Following
the method (Nam & Han, 2016; Park & Berg, 2018) we use the feature map of the
third convolutional layer as the input of the correlation filter, (convolutional block
in case of ResNet-50). We confirm these results in the following section. We reduce
the learning rate used to update the correlation filter from the 0.009 used for RGB
data to 0.003. A smaller learning rate is more suitable for TIR data, as TIR images
have less detailed information than RGB, for example lacking texture, and thus
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the object appearance remains more stable during tracking. In order to optimally
leverage the learned CNN features, we do not add the dimensionality reduction
step at the output of each layer as the method (Danelljan et al., 2017). ECO uses this
to increase the tracker’s efficiency, which is not a priority in our work.

Our trained models are available at https://github.com/zhanglichao/generatedTIR_
tracking.

3.6.4 Network Layers

Our tracker uses deep features from a particular network layer. Previous works (Nam
& Han, 2016; Park & Berg, 2018) selected mid-level features from the third convolu-
tional layer as optimal for tracking in RGB videos. Here, we validate this choice for
TIR data by analyzing the performance of the selected tracker across all layers for the
three networks considered. We perform these experiments using only pre-trained
features, i.e., we do not fine-tune the networks for tracking. Fig. 3.6 presents the
tracking performance measured by EAO on VOT-TIR2017 (Kristan et al., 2017a) as a
function of the network layer. Trackers that use features extracted from the third
layer offer best results. Thus we select this features for the remainder of the paper.

3.6.5 Network Architectures

In this section, we experiment with all three base networks with different types of
data used for training. All models use ECO (Danelljan et al., 2017) as base tracker, in
some cases with the adaptations detailed in section 3.4. We consider two baselines,
‘pretrained’ and ‘real’. The first baseline uses features from the corresponding CNN
pre-trained for the image classification task. On the other hand, ‘real’ is also fine-
tuned using real TIR tracking datasets (sec. 3.6.1). Our tracker (‘generated + real’)
combines both real TIR and synthesized from RGB with pix2pix for the fine-tuning
process. Fig. 3.7 presents these results. For all base networks, fine-tuning helps
when learning effective features for tracking. This shows that the generated data is
complementary to the available real data, making the generated data beneficial even
when a good amount of real data is available. Moreover, the gain granted by fine-
tuning the network is significantly higher when augmenting the training dataset
with our generated TIR data. The performance boost is especially remarkable for
higher capacity models such as ResNet-50, since networks with more parameters
require more data to train. For all following experiments, we use ResNet-50 as base
network for the trackers.
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Tracker
without motion features with motion features
EAO A R EAO A R

handcrafted 0.235 0.60 2.74 0.361 0.62 1.12
pretrained 0.307 0.62 2.00 0.381 0.69 1.06

real 0.316 0.62 2.01 0.409 0.67 1.24
generated 0.321 0.63 2.00 0.419 0.65 0.83

generated → real 0.331 0.61 1.76 0.429 0.63 0.82
generated + real 0.347 0.63 1.68 0.436 0.65 0.80

Table 3.3 – Comparison of different tracker variants with and without motion
features. Results are on the VOT-TIR2017 benchmark (Kristan et al., 2017a) with
ResNet-50 (He et al., 2016) as base network. Boldface indicates the best results. In
both cases, the best results are achieved when combining both real and generated
TIR data.

3.6.6 Results on Real and Generated Data

We now present more detailed results for different configurations of our ECO tracker
with ResNet-50. We include another baseline (‘handcrafted’) that employs hand-
crafted features as it is prevalent in TIR tracking (Felsberg et al., 2015; Yu et al.,
2017; Zhu et al., 2016), and thus has not been trained using data. The variant called
‘generated’ is fine-tuned using only our generated TIR data with pix2pix. Finally,
we consider another way of combining real and generated data to train the model,
‘generated → real’, which besides uses a two-step fine-tuning mechanism, first
using generated data and then real data. This is opposed to ‘generated + real’, which
fine-tunes using both real and generated data simultaneously without distinction.
Table 3.3 presents the results for all these models using metrics EAO, A, and R on
the VOT-TIR2017 dataset (Kristan et al., 2017a).

First, we observe how the use of deep features is fundamental for the success
of this tracker, given the low accuracy of the hand-crafted model. Simply using
pre-trained features already provides a significant improvement in terms of EAO.
Fine-tuning the model on real data brings further benefits. Interestingly, fine-tuning
only on the generated data with pix2pix results in better performance than fine-
tuning on the real data; with an EAO of 0.289 on real data and 0.300 on generated
data. This demonstrates our intuition that having great amounts of diverse data
is very relevant when learning specialized deep features for TIR tracking. Finally,
simultaneously using both real and generated data to fine-tune the network results
in our best model. Moreover, training without distinguishing between the two types
of data leads to better results, as opposed to a more complex two-stage fine-tuning
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Figure 3.8 – The success plot of one-pass evaluation (OPE) on the the VOT-
TIR2017 benchmark (Kristan et al., 2017a). We show the AUC score of each tracker
in the legend. The best results are obtained when using both real and generated
data.

process.
We present results using the OPE evaluation metric in Fig. 3.8. Also under this

metric, hand-crafted features show a clearly inferior performance compared to deep
features. Simple pre-trained deep features obtain higher success rates, especially
for mid-range overlap thresholds. Fine-tuning on real data gives the tracker a small
boost, and when fine-tuning using our generated data, the performance is further
improved. Finally, the best performance is achieved when fine-tuning using both
types of data simultaneously.

Finally, we analyze the performance of our generated + real tracker for different
amounts of generated TIR data. Fig. 3.9 shows EAO as a function of the percentage
of synthetic TIR data in the total training set. Interestingly, increasing the amount
of synthetic data monotonically improves the tracker performance. The rightmost
point, which corresponds to using all our generated data (90% of the training set),
does not seem to be saturated, and thus additional generated data could bring an
even further performance boost.
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Figure 3.9 – Performance of our tracker (generated+real) on VOT-TIR2017 (Kris-
tan et al., 2017a) for different percentages of synthetic data. The leftmost point
indicates using only real data.

3.6.7 Adding Motion Features

As detailed in the paper (Felsberg et al., 2015), the use of hand-crafted motion
features can substantially improve tracking performance for TIR data. Following the
implementation of the SRDCFir tracker (Felsberg et al., 2015), we compute motion
features by thresholding the absolute pixel-wise difference between the current and
the previous frame. We then use this motion mask as an extra feature channel.

Table 3.3 presents the results of our trained models when motion features are
used alongside deep features. We can see how motion features provide significant
performance improvements to all models. Furthermore, the conclusions drawn
in the previous experiment still hold. The models trained with generated data
outperform both the pre-trained model and the model trained with real data only.
Finally, the model trained with a combination of generated and real data achieves
an impressive performance, surpassing other methods.

We show a qualitative comparison baseline ECO (pretrained) and ours (gener-
ated) in Fig. 3.1. In challenging cases (e.g. third row), the improved deep features
learned using our generated TIR data lead to a tracking model that is accurate
while robust to various problematic conditions such as occlusion, scale change, and
out-of-plane rotation.
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Tracker EAO A R
CREST 0.215 0.56 4.13

CSRDCF 0.248 0.57 3.49
TCNN 0.287 0.62 2.79

SRDCFir 0.364 0.63 1.10
EBT 0.368 0.44 0.82

DSLT 0.401 0.60 0.91
Ours 0.436 0.65 0.80

Table 3.4 – Comparison with state-of-the-art trackers on VOT-TIR2017 (Kristan
et al., 2017a). Boldface indicates the best results. The results are reported in terms
of expected average overlap (EAO), robustness (failure rate) and accuracy. Our
proposed tracker significantly outperforms the state-of-the-art by achieving an EAO
score of 0.436.

3.6.8 State-of-the-Art Comparison

Here, we compare our best model with the three top TIR trackers in the VOT-TIR2017
challenge (Kristan et al., 2017a), i.e. DSLT (Yu et al., 2017), EBT (Zhu et al., 2016),
and SRDCFir (Felsberg et al., 2015). We also include in our comparison the best
CNN-based tracker in VOT-TIR2016, TCNN (Nam et al., 2016). Additionally, we
compare with recently introduced CF-based (CSRDCF by Lukezic et al. (2017)) and
spatial CF-based (CREST by Song et al. (2017b)) trackers. These trackers have shown
excellent performance on VOT (Kristan et al., 2016a) and OTB (Wu et al., 2015) RGB
datasets.

Table 3.4 shows the comparison of our best model (generated+real) including
motion mask with the state-of-the-art methods in literature on the VOT-TIR2017
benchmark (Kristan et al., 2017a). Among the existing methods, SRDCFir and EBT
achieve EAO scores of 0.364 and 0.368 respectively. An EAO score of 0.287 is achieved
by the TCNN tracker. The recently introduced CREST and CSRDCF trackers achieve
EAO scores of 0.215 and 0.248 respectively. The current state-of-the-art on this
dataset is the DSLT tracker with an EAO score of 0.401. Our tracker significantly
outperforms DSLT by setting a new state-of-the-art with an EAO score of 0.448. Our
approach also achieves superior performance in terms of accuracy and obtains
second best results in terms of robustness. We further analyze the robustness of our
tracker and found our approach to have promising improvements with respect to
robustness in all videos except trees2, compared to EBT.

53



Chapter 3. Synthetic Data Generation for End-to-End Thermal Infrared Tracking

Figure 3.10 – Qualitative comparison of our approach trained on generated and
real data with state-of-the-art trackers. CREST, TCNN, EBT and DSLT are tested
on the some challenging sequences, excavator, jacket, mixed_distractors, garden,
quadrocopter2, boat2, bird and trees2 in VOT-TIR2017 (Kristan et al., 2017a). Yellow
dashed bounding box means Groundtruth and red solid bounding box is Ours. The
last two rows show failure cases of our tracker.

54



3.6. Experimental Results

Sequence length

Ex
pe

ct
ed

 o
ve

rla
p

Camera_motion

200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Ours [0.309]
EBT [0.297]
DSLT [0.282]
TCNN [0.266]
SRDCFir [0.239]
CREST [0.210]
CSRDCF [0.195]
ECO [0.189]

Sequence length

Ex
pe

ct
ed

 o
ve

rla
p

Dynamics_change

200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
TCNN [0.295]
DSLT [0.246]
Ours [0.226]
ECO [0.200]
CREST [0.195]
EBT [0.182]
CSRDCF [0.137]
SRDCFir [0.125]

Sequence length

Ex
pe

ct
ed

 o
ve

rla
p

Motion_change

200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Ours [0.564]
DSLT [0.521]
SRDCFir [0.498]
CSRDCF [0.412]
TCNN [0.408]
ECO [0.360]
EBT [0.349]
CREST [0.311]

Sequence length

Ex
pe

ct
ed

 o
ve

rla
p

Others

200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Ours [0.704]
SRDCFir [0.433]
DSLT [0.431]
EBT [0.205]
ECO [0.049]
TCNN [0.046]
CSRDCF [0.039]
CREST [0.039]

Sequence length

Ex
pe

ct
ed

 o
ve

rla
p

Occlusion

200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Ours [0.316]
TCNN [0.307]
DSLT [0.296]
EBT [0.295]
SRDCFir [0.261]
CREST [0.260]
CSRDCF [0.238]
ECO [0.216]

Sequence length

Ex
pe

ct
ed

 o
ve

rla
p

Size_change

200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
EBT [0.477]
DSLT [0.448]
Ours [0.388]
SRDCFir [0.356]
TCNN [0.350]
ECO [0.341]
CSRDCF [0.298]
CREST [0.241]

Figure 3.11 – Attribute-based comparison of our trackers with state of-the-art
methods on VOT-TIR2017. We show expected overlap measure for four attributes:
camera motion, dynamics change, motion change, occlusion, size change, and
others. Our trackers provide consistent improvements in case of camera motion,
motion change, occlusion and others, compared to existing methods.

Fig. 3.10 shows a qualitative comparison of our tracker with state-of-the-art
methods. Our tracker follows the target object more accurately and is robust to
challenging conditions such as scale change and occlusion. Among existing meth-
ods, DSLT also provides improved tracking performance but struggles with accurate
target localization. The proposed TIR-specialized deep features learned through
abundant generated TIR data enable precise target localization, leading to superior
tracking results. Finally, the last two rows of the figure show two example cases
in which our tracker fails. In the first case, the object is rather tiny and lies on
a cluttered background region, which increases the probability of confusing the
tracked object with the background. In the second case, there is a considerable
scale change combined with heavy occlusion, leading to a poor estimation of the
object extent and the corresponding tracking failure.

3.6.9 TIR Data Attributes Analysis

In order to provide a more detailed analysis of the results, we present in Fig. 3.11 the
per-attribute performance comparison of our tracker and several state-of-the-art
methods. The attributes are: camera motion, dynamics change, motion change,
occlusion, size change, and others. Each attribute plot indicates the expected
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overlap for every tracker as a function of the sequence length, computed on a par-
ticular subset of videos annotated with the corresponding data attribute. For most
attributes, including the challenging scenarios of heavy camera motion, motion
change, and occlusion, our proposed tracker outperforms state-of-the-art trackers.
This consistent improvement on challenging attributes is likely due to specialized
discriminative features, learned specifically for TIR tracking. In case of dynamics
change, both TCNN and DSLT provide superior tracking performance. The TCNN
tracker (Nam et al., 2016) can accurately match object proposals due to a tree struc-
ture encompassing multiple CNNs. The DSLT tracker (Yu et al., 2017) also uses
dense proposals and structural learning classifier. In case of size change, the EBT
tracker (Zhu et al., 2016) and DSLT provide superior results. In this attribute, our
approach provides the third best results by outperforming trackers such as SRDCFir
and TCNN. Overall, our approach achieves best results on 4 out of 6 attributes.

3.7 Conclusion

In this Chapter, we have proposed a method to generate synthetic TIR data from
RGB data. We use recent progress on image to image translation models for this
purpose. The main advantage of this is that we can generate a large dataset of
labeled TIR sequences. This dataset is far larger than datasets with real labeled
sequences which are currently available for TIR tracking. These larger datasets allow
us to perform end-to-end training for TIR features. To the best of our knowledge we
are the first to train end-to-end features for TIR tracking. We show that our features
trained on the synthetic data outperform other features for TIR tracking, including
features which are computed by fine-tuning a network on real TIR sequences. In
addition, we show that a combination of both real and generated data leads to a
further improvement. Once we combine our feature with the motion feature we
obtain state of the art results on the VOT-TIR2017.
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4 Multi-Modal Fusion for End-to-End RGB-T
Tracking *

4.1 Introduction

As an important task in computer vision, visual object tracking, especially RGB
tracking (Bertinetto et al., 2016b; Bolme et al., 2010; Danelljan et al., 2017, 2019,
2014a, 2016b, 2014b; Henriques et al., 2015; Li et al., 2018b; Lukezic et al., 2017;
Zhu et al., 2018), has undergone profound changes in recent years. Researchers
mainly focus on RGB tracking as large datasets are available (Kristan et al., 2016a;
Valmadre et al., 2018; Wu et al., 2015). However, RGB tracking obtains unsatisfactory
performance in bad environmental conditions, e.g. low illumination, rain, and
smog. It was found that thermal infrared sensors provide a more stable signal for
these scenarios. Therefore, RGB-T tracking has drawn more research attention
recently (Li et al., 2016, 2018c, 2017b, 2018d).

As multi-modal data, i.e. from the RGB and TIR modalities, can provide com-
plementary information for tacking, multi-modal tracking is a promising research
direction. Images from the RGB modality have the advantage that they contain
high-frequency texture information and provide rich representations for describ-
ing objects. Images from the TIR modality have the advantage that they are not
influenced by illumination variations and shadows. Moreover, objects with ele-
vated temperature can be distinguished from the background as the background is
normally colder. Therefore, fusing the information from multi-modal data could
benefit the tracker because it can exploit the complementary information of the
modalities to improve tracking performance.

There exists relatively little research on multi-modal tracking (Li et al., 2016,
2017a, 2018d; Liu & Sun, 2012; Wu et al., 2011). Most of these works are still using
the sparse representation, normally with the hand-crafted features, for multi-modal
tracking (Li et al., 2016, 2017a, 2018d; Liu & Sun, 2012). Later on in the tracker (Li
et al., 2018d), for comparison they design some baseline RGB-T trackers by extend-
ing the single modal tracker to a multi-modal tracker. This extension is done by

*This chapter is based on a publication in Proceedings of the IEEE International Conference on
Computer Vision Workshops 2019
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Figure 4.1 – Qualitative comparison between ‘mfDiMP’ and ‘DiMP’. Two exemplar
videos from RGB modality and TIR modality on the top and bottom separately,
where DiMP performs on each of them with single modality input. Our mfDiMP
can effectively track the object by fusing both modalities.

directly concatenating the features from the RGB and the TIR modalities into a
single vector, which is then fed into the tracker. They also use some deep features
for concatenation, but they are still off-the-shelf features pre-trained for other tasks.
Therefore, there is still no previous work which investigates end-to-end training. We
mention two main reasons for this: first, it is not obvious in what part of the tracking
pipeline the fusion should be done. Ideally, we should fuse the information of the
different modalities in such a way that it allows for optimal end-to-end training.
Second, data scarcity of multi-modal tracking data is a major obstacle to end-to-end
training. Currently there are no large-scale aligned multi-modal datasets. These
two issues, i.e. no specific fusion scheme and lack of data, limit the progress of
end-to-end multi-modal training.

To tackle this problem, in this chapter we investigate how to effectively fuse
multi-modal data in an end-to-end training manner, which could make optimal
use of information from both modalities (see Figure 4.1). We propose three end-to-
end multi-modal fusion architectures, consisting of pixel-level fusion, feature-level
fusion and response-level fusion. Here we use as a baseline tracker the RGB tracker
DiMP (Bhat et al., 2019). To ensure that the proposed fusion tracker can be trained in
an end-to-end manner, we also generate large-scale paired synthetic RGB-T datasets
with the same method as proposed in Chapter 3. We perform extensive experiments
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on two commonly used benchmarks for RGB-T tracking: VOT-RGBT2019 (VOT
challenge, 2019) and RGBT210 (Li et al., 2017b). Our multi-modal fusion tracker
sets a new state-of-the-art on both datasets, achieving an EAO score of 0.391 on
VOT-RGBT2019 and AUC score of 55.5% on RGBT210.

This chapter is organized as follows. In section 4.2, we discuss the successful
single modality tracking methods of recent years and the situation of current multi-
modal tracking. In section 4.3, we introduce the baseline tracker and analyze its
components. In section 4.4, we describe the proposed methods and formulations
for the fusion of multi-modal tracking and provide the synthetic data for end-to-
end training. In section 4.5, we present our extensive experiments on the VOT-
RGBTIR2019 dataset and RGBT210 dataset. Finally, in section 4.6, we conclude our
work and propose future research directions.

4.2 Related Work

4.2.1 Single Modality Tracking

Most current tracking algorithms focus on RGB images (Bertinetto et al., 2016b;
Bolme et al., 2010; Danelljan et al., 2017, 2019, 2014a, 2016b, 2014b; Henriques
et al., 2015; Li et al., 2018b; Lukezic et al., 2017; Zhu et al., 2018), although several
approaches track in the TIR modality instead (Li et al., 2018d; Yu & Yu, 2018; Yu
et al., 2017; Zhang et al., 2019a). Despite the development of deep learning in
many computer vision tasks, object tracking continued to use hand-crafted features
during the first stage of deep learning (Danelljan et al., 2017, 2016b; Ma et al., 2015a;
Nam & Han, 2016; Song et al., 2018). Later on, some trackers (Danelljan et al., 2017,
2016b; Ma et al., 2015a) pioneered in the involvement of deep features in tracking
by using the pre-trained models for an image classification task (Russakovsky et al.,
2015). The main reasons for only using pretrained models were the lack of large-
scale training datasets and the difficulty of designing a suitable end-to-end training
framework for tracking. Bertinetto et al. (2016b) proposed to train a network end-
to-end by using a video object detection dataset (Russakovsky et al., 2015). Recently,
several large-scale tracking datasets (Fan et al., 2018; Huang et al., 2018; Muller et al.,
2018; Valmadre et al., 2018), e.g. GOT-10k (Huang et al., 2018), have been released
with millions of images and various categories for training. Therefore, some current
tracking approaches (Bhat et al., 2019; Danelljan et al., 2019; Li et al., 2018a) perform
end-to-end training by leveraging these large-scale datasets.

RGB trackers. Bertinetto et al. (2016b) proposed to use a fully-convolutional
architecture to learn a similarity metric offline, i.e. a Siamese network. After training,
the Siamese network is deployed for online tracking with high efficiency. To learn
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attention on the cross correlation, Wang et al. (2018) include additional attention
components in the Siamese network and learn the spatial and channel weights for
the exemplar model. Li et al. (2018b) utilize a proposal network to estimate the score
maps and bounding boxes using two branches, which provides more accurate object
scales than the traditional multi-resolution scale estimation. Later it is extended to
use deeper and wider networks achieving significant improvement (Li et al., 2018a).

An alternative approach to Siamese networks is correlation filter (CF) based
tracking (Bolme et al., 2010; Danelljan et al., 2014a, 2015b, 2016a, 2014b; Galoogahi
et al., 2013; Henriques et al., 2015; Kiani Galoogahi et al., 2017; Lukezic et al., 2017;
Ma et al., 2015b; Mueller et al., 2017a; Zhang et al., 2014, 2016a, 2019b), which has
occupied top positions for many years given its discriminative abilities and efficient
tracking speed. The core part of CF trackers is the calculation of a filter that is later
applied to detect the object in the search region of next frame. The calculation is
performed in the Fourier domain, which makes it highly efficient. To overcome
the issue of boundary effect in correlation filter in tracking, Danelljan et al. (2015b)
proposed to regularize the filter with a Gaussian window and Kiani Galoogahi
et al. (2017) proposed to use a mask formulated in the correlation filter. Some CF
trackers (Danelljan et al., 2017, 2015a, 2016b; Ma et al., 2015a) also benefited from
pre-trained convolutional features. CFNet (Valmadre et al., 2017) added end-to-end
training by formulating CF as one layer of the network, although this only gives a
marginal gain with respect to the baseline model, SiamFC (Bertinetto et al., 2016b).
Park & Berg (2018) proposed to learn an initial model for the correlation filter offline,
accelerating the convergence speed for the filter optimization.

TIR trackers. Contrarily to RGB tracking, most of the top performing TIR trackers
still use hand-crafted features in their models. For example, SRDCFir(Felsberg et al.,
2015) extends the SRDCF(Danelljan et al., 2015b) tracker for TIR data by combining
motion features with hand-crafted visual features, e.g. HOG(Dalal & Triggs, 2005),
color names(Van De Weijer et al., 2009), intensity, etc. EBT(Zhu et al., 2016) uses
edge features to devise an objectiveness measure that generates high quality object
proposals. Yu & Yu (2018); Yu et al. (2017) propose structural learning on dense
samples around the object, using edge and HOG features (Dalal & Triggs, 2005),
transferred to the Fourier domain for efficiency. In Chapter 3, we propose using
an end-to-end trainable deep network. They generate a large-scale TIR tracking
dataset for training from existing RGB tracking datasets. They use a current image
translation approach (Isola et al., 2017) to synthesize a large amount of TIR images
from RGB and they transfer the corresponding object annotations. By training
the network with this data, they achieve state-of-the-art results in TIR tracking.
Following this idea, we obtain a large-scale RGB-T dataset that enables the use of
deep learning for RGB-T tracking.
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4.2.2 Modality Fusion Tracking

Fusing the RGB and TIR modalities is a promising direction. Some RGB-T trackers
once have been proposed. Conaire et al. (2008) proposed to efficiently combine
visible and thermal features by fusing the outputs of multiple spatiogram trackers,
which is a derivation from mean-shift type algorithm (Birchfield & Rangarajan,
2005). Wu et al. (2011) used a sparse representation for the target template by
concatenating RGB and TIR image patches. Similarly, Liu & Sun (2012) also use
a sparse representation by minimizing the coefficients from each modality. How-
ever, these methods provide sub-optimal fusions as both modalities contribute
equally, while in practice one modality may have more valuable information than
the other. Li et al. (2016, 2017a) addressed this with an adaptive fusion scheme to in-
tegrate visual and thermal information in the sparse representation by introducing
weights to balance the contribution of each modality. In order to limit the effect of
background clutter during tracking, Li et al. (2018d) introduced a ranking between
the two modalities, which is taken into account in the used patch-based features.
They effectively avoided background effects by using the learned features with a
structured SVM.

As far as we know, all of the current RGB-T approaches use hand-crafted features,
which significantly limits their tracking performance. Although several RGB-T
tracking datasets (Li et al., 2016, 2018c, 2017b) have been recently released, they
are only for testing purposes only and are not large enough for training a deep
learning based RGB-T tracker. We propose adapting a deep RGB tracker for RGB-T
by exploring different types of modality fusion, and performing end-to-end training
with partly synthesized RGB-T data.

4.3 Baseline RGB Tracker

In this section, we describe the architecture of the tracker we have selected for our
multi-modal tracking experiments. We use the Discriminative Model Prediction
(DiMP) tracker (Bhat et al., 2019), which was originally proposed for single modality
tracking.

Discriminative Model Prediction. DiMP (Bhat et al., 2019) proposed an end-to-
end trainable tracking architecture, capable of learning a powerful discriminative
filter by embedding the online learning of the target model into itself. DiMP con-
sists of the following components: feature extractor, model predictor, and target
estimation network (IoU-Net (Jiang et al., 2018)). With these carefully designed
components and an effective optimization method, they achieve excellent perfor-
mance on RGB tracking by setting a new state-of-the-art on several RGB tracking
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Figure 4.2 – Overview of our multi-modal fusion framework on feature-level. We
input images from RGB and TIR modalities to the feature extractor separately. Then
we fuse deep features from different blocks of the backbone. Fused features from
block3 and block4 are input to IoU modulation and IoU predictor. Fused features
from block4 are input to model predictor to predict final response map.

datasets (Fan et al., 2018; Huang et al., 2018; Kristan et al., 2018; Muller et al., 2018;
Wu et al., 2015).

Feature extractor. The backbone feature extractor F normally aims to extract
the deep feature representations for the follow-up implementation models. Here,
specifically in DiMP (Bhat et al., 2019), the deep representations are extracted for
the model predictor and target estimation network.

DiMP (Bhat et al., 2019) employs the ResNet-18 and ResNet-50 architectures,
which is trained on ImageNet, as the backbone feature extractors for DiMP-18 and
DiMP-50 separately. They implement fine-tuning the backbone for the end-to-end
training. After an analysis on the impact of different feature blocks in DiMP (Bhat
et al., 2019), they use the features from block3 and block4 for IoU-Net, and only
from block4 for the classifier. The feature extractor F is shared and only performed
on a single image patch per frame.

For training the feature extractor F , they input data for F with a pair of sets

(Mtr ai n , Mtest ). Each set M = {(I j ,b j )}
N f r ames

j=1 contains images I j along with their

object bounding box b j . The target model is predicted by using Mtr ai n and then
evaluated on the test frames Mtest . Mtr ai n and Mtest are constructed by sampling
N f r ames frames for both from first and second halves of the segment respectively.
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They pass the images through the feature extractor F , and obtain the train set
Str ai n = {(x j ,c j )}, where x j = F (I j ), and c j is the center coordinate of the box b j .

Model predictor and response map. The Model predictor is to obtain the final
optimized filter f , which consists of model initializer, which is a convolutional layer
followed by a precise ROI pooling (Jiang et al., 2018), and model optimizer, which is
to solve the final model f by the steepest descent (SD). The model filter f is solved
by using multiple samples in Str ai n , which happens in the model initializer. The
input of the model predictor is a set of Str ai n , and obtain the model f by training
on the model predictor: f = D(Str ai n). Then the filter f is evaluated on the test
samples Stest and finally classification loss for offline training is computed as:

Lcl s =
1

Ni ter

Ni ter∑
i=0

∑
(x,c)∈ Stest

∥∥∥l (x ∗ f (i ), zc )
∥∥∥2

. (4.1)

Where, zc is a Gaussian function centered as the target c . f (0) is the output of model
initializer. The response map can be calculated as: s = x ∗ f , x ∈ Stest .

Bounding box estimation. DiMP uses an IoU-Net based architecture from the
ATOM tracker (Danelljan et al., 2019). The function of the IoU-Net model is to pre-
dict the IoU between the deep feature x of an image and a bounding box candidate
B . Bounding box estimation is then performed by maximizing the IoU predic-
tion. The network has two branches, one is the IoU modulation for calculating the
modulation vector from reference image, and the other branch is IoU predictor for
predicting the IoU values from test image. Then the reference branch is added with
a convolutional layer, while the test branch is added with two convolutional layers
as it dominates the IoU prediction. Both of them then are followed by PrPool (Pre-
cise ROI Pooling) (Jiang et al., 2018) and a fully connected layer. Here the interaction
between the two branches is that a precomputed vector in the reference branch
is used to modulate the feature representation of the test image via channel-wise
correlation. The IoU is predicted in terms of the bounding box B as follows:

I oU (B) = g (c(x0,B0) · z(x,B)) (4.2)

Where, x0,B0 are from the reference image, and x,B are from the test image. z is
the feature representation after PrPool layer in test branch. g is the IoU predictor
with three fully connected layers. c is a modulation vector.
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4.4 End-to-End Multi-Modal Tracking

There are two main issues when extending state-of-the-art RGB trackers to multi-
modal data such as RGB-T. First, a fusion component is not considered as a native
design component for the RGB tracker architecture, since the tracker only considers
a single modality as input. Therefore, when extending to multi-modal data these
trackers must be equipped with a fusion strategy. Second, the lack of large-scale
paired RGB-T training datasets complicates training of end-to-end representations,
which have shown to significantly improve results for RGB tracking. To tackle the
former, we investigate how to effectively fuse multi-modal data for tracking, aiming
to make the best use of all available data modalities, in this case, RGB and TIR. To
tackle the latter, we ensure that the proposed multi-modal tracker can be trained in
an end-to-end manner by generating a large-scale paired synthetic RGB-T dataset,
similarly to the method proposed in Chapter 3.

In this section, we first comprehensively explain our three end-to-end multi-
modal fusion architectures, including pixel-level fusion, feature-level fusion and
response-level fusion. We also explain how we apply the method in Chapter 3 to
generate a large multi-modal data set.

4.4.1 Multi-Modal Fusion for Tracking

In this subsection, we investigate three different mechanisms for multi-modal
fusion, with the aim to find the optimal fusion architecture. We start the fusion
work on the input of the network (pixel-level). Then we explore the fusion on
the intermediate of the network. Li et al. (2018d) extended some RGB trackers by
concatenating the RGB and TIR features into a single vector, and then used them as
off-the-shelf features for the classifier of the trackers. In contrast, we fuse end-to-
end features which are prepared for both the model predictor and target estimation
network (feature-level). Moreover, we explore fusion on the final response maps of
the network (response-level). Our fusion mechanisms all benefit from end-to-end
training. In the experiments (section 4.5), we evaluate and analyze all these fusion
strategies and obtain the optimal one.

Pixel-level fusion. The first modality fusion we consider is at the input of the
network. We propose to fuse the RGB and TIR images by directly concatenating the
images along the channel direction and then inputting the fused RGB-T image to
the feature extractor. To complete this fusion, we extend the filter size of the first
layer in feature extractor from 7×7×3×64 to 7×7×4×64. The images which are
input to the feature extractor should be concatenated as following: I F = [I V |I T ].
Here I V is the image from RGB modality, I T is the image from TIR modality, and
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finally the fused image is I F .

Feature-level fusion. To delay the fusion to a more semantically aware stage of the
network, we evaluate the effectiveness of fusion in the intermediate of the network
architecture. Concretely, we implement the fusion after the feature extractor, i.e.
fusing the deep feature representations from the RGB and TIR modalities. We pass
the RGB and TIR images through the feature extractor separately and extract fea-
tures from both modalities independently. Then we concatenate the features from
each modality and feed them into the IoU predictor and model predictor. Because
of this, the representation is more expressive for the IoU predictor and also more
discriminative for the model predictor. The framework of our proposed method for
multi-modal fusion on feature-level is shown in Figure 4.2. We concatenate the fea-
ture representations, output from the feature extractors. The feature concatenation
can be expressed as intuitive syntax: xF = [xV |xT ]. Here, xV is the features from the
RGB modality, xT is the features from the TIR modality, and xF is the fused features.

Response-level fusion. To evaluate the effectiveness of ensemble of independently
trained trackers on each modality, we perform the multi-modal fusion on the final
part of the training architecture in DiMP (Bhat et al., 2019), i.e. response-level
fusion. For the response-level fusion, we use a pair of feature extractors and model
predictors, for passing each images from RGB and TIR modalities separately. Finally
we sum together their response maps to get the fused response map. But we use
only one IoU-Net component which only passes single modality, so there are two
cases for training the whole network. One is using RGB modality to fine-tune the
IoU-Net and the other is to use TIR modality instead. For the fusion on the response
map, assuming that we obtain two response maps, sV from RGB modality and sT

from TIR modality. Then we sum them together to calculate the fused response
map, expressed as: sF = sV + sT .

4.4.2 RGB-T Data Generation

The lack of large-scale paired RGB-T training datasets also hampers end-to-end
tracking in RGB-T datasets. We use the same method in Chapter 3, which pro-
poses to use image-to-image translation methods to generate synthetic TIR data for
tracking. In that chapter we show that such data improves results for end-to-end
trained TIR trackers. Here we explain how we generated the training data aiming
for fine-tuning the pre-trained DiMP models. We take advantage of a normal RGB
training dataset for RGB tracking, and then generating the TIR images by a well-
trained image-to-image translation model (Isola et al., 2017). With the above steps,
we obtain an aligned synthetic RGB-T training dataset for RGB-T tracking. As a
result, our proposed fusion architectures (see section 4.4.1) can also benefit from
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Fusion level Feature extractor IoU-Net Model predictor Response map EAO (↑) A (↑) R (↓)

Single modality

RGB RGB RGB RGB 0.327 0.586 0.345
TIR TIR TIR TIR 0.331 0.584 0.332
TIR TIR (ft) TIR (ft) TIR 0.336 0.587 0.331

TIR (ft) TIR TIR (ft) TIR 0.339 0.589 0.329
TIR (ft) TIR (ft) TIR (ft) TIR 0.341 0.590 0.328

Pixel-level RGB+TIR (ft) RGBT (ft) RGBT (ft) RGBT 0.345 0.552 0.281

Response-level
RGB/TIR (ft) RGB (ft) RGB/TIR (ft) RGB+TIR 0.342 0.546 0.309
RGB/TIR (ft) TIR (ft) RGB/TIR (ft) RGB+TIR 0.349 0.554 0.291

Feature-level

RGB/TIR (ft) RGB (ft) RGB+TIR (ft) RGBT 0.346 0.545 0.266
RGB/TIR (ft) TIR (ft) RGB+TIR (ft) RGBT 0.359 0.564 0.243
RGB/TIR (ft) RGB+TIR (ft) RGB (ft) RGB 0.354 0.563 0.276
RGB/TIR (ft) RGB+TIR (ft) TIR (ft) TIR 0.366 0.601 0.261
RGB/TIR (ft) RGB+TIR (ft) RGB+TIR (ft) RGBT 0.389 0.605 0.224

RGB/TIR (ft,×10) RGB+TIR (ft) RGB+TIR (ft) RGBT 0.391 0.615 0.228

Table 4.1 – Fusion mechanisms analysis on VOT-RGBT2019 (VOT challenge,
2019). We evaluate several fusion mechanisms at different levels of DiMP (Bhat
et al., 2019). The results are reported in terms of EAO, normalized weighted mean of
accuracy (A), and normalized weighted mean of robustness score (R). We explicitly
show the input modality for each component of the tracker. Here, ‘RGB’ and ‘TIR’
are the single modality,‘RGB/TIR’ means each modality input separately, ‘RGB+TIR’
means that both modalities are input simultaneously, and ‘RGBT’ indicates fused
features from both modalitites used in the remaining of network. Finally, (‘ft’)
means fine-tuning and (‘×10’) means a higher learning rate for fine-tuning. The
best results are highlighted in bold font.

end-to-end training. We hope that this allows us to see a similar performance gain
as has been observed for RGB tracking.

Specifically as input data for multi-modal tracking, the elements in each set of

the training data (Mtr ai n , Mtest ) are M = {(I V
j , I T

j ,b j )}
N f r ames

j=1 . Here, I T
j represents

the j -th synthetic TIR image generated from the aligned RGB image I V
j . b j is their

identical bounding box.

4.5 Experiments

In this section, we provide a comprehensive evaluation of the proposed tracker
mfDiMP on two benchmarks, VOT-RGBT2019 (VOT challenge, 2019) and RGBT210 (Li
et al., 2017b), and describe all implementation and evaluation details.
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4.5.1 Generating the Training RGB-T Dataset

We use the recent Generic Object Tracking Benchmark (GOT-10k) (Huang et al.,
2018) to train our fused modality networks. GOT-10k has over 10,000 video seg-
ments, covering 563 classes of real-world moving objects and more than 80 motion
patterns, amounting to a total of over 1.5 million manually labeled bounding boxes.
It also provides additional supervision in terms of attribute labels such as ratio of
object visible or type of motion. We employ GOT-10k’s training set, which contains
9,335 videos (1,403,359 frames), with 480 object classes and 69 motion classes. We
refrain from using the set of 1000 prohibited videos listed in the VOT challenge
website (VOT challenge, 2019), and so we train our model with the remaining 8,335
videos (1,251,981 frames).

With this reduced version of GOT-10k RGB dataset, we generate a large-scale
RGB-T dataset by synthesizing paired TIR images using an image-to-image trans-
lation approach, as the work in Chapter 3. Specifically, we select pix2pix (Isola
et al., 2017) for image-to-image translation given its superior performance. To train
the pix2pix model, we use a total of 87K pairs of aligned images in the RGB and
TIR modalities, depicting several different scenarios. These images are carefully
collected and arranged from many current existing RGB-TIR datasets as depicted in
Chapter 3. We train the pix2pix model using the default settings described in Chap-
ter 3. After training, we use it to transfer the selected RGB videos in GOT-10k (Huang
et al., 2018) to synthetic TIR videos, along with the labels.

4.5.2 Evaluation Datasets and Protocols

VOT-RGBTIR2019 dataset (VOT challenge, 2019) contains 60 public testing se-
quences, with a total of 20,083 frames. It is used as the most recent edition of
the VOT challenge. We follow the VOT protocol, which establishes that when the
evaluated tracker fails, i.e. when the overlap with the ground-truth is below a given
threshold, it is re-initialized in the correct location five frames after the failure. The
main evaluation measure used to rank the trackers is Expected Average Overlap
(EAO), which is a combination of accuracy (A) and robustness (R). We compute all
results using the provided toolkit (VOT challenge, 2019).

RGBT210 dataset (Li et al., 2017b) contains 210 highly-aligned public RGB and
TIR video pairs for testing, with 210K frames in total and a maximum of 8K frames
per sequence pair. There are a total of 12 representative attributes, such as camera
moving, large scale variations and environmental challenges, which are annotated
for each video. These facilitate attribute-sensitive evaluation analyses. We compare
our results with other trackers using the provided toolkit (RGB-T dataset, 2018). We
use precision plot and success plot to evaluate the trackers.
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Figure 4.3 – Precision plot and success plot by comparing our mfDiMP with the
top-10 trackers on RGBT210 dataset (Li et al., 2017b) We can see our mfDiMP
outperforms DiMP with an absolute gain of 6.7% and 4.2% in terms of precision
rate and success rate respectively.

4.5.3 Implementation Details

We use DiMP (Bhat et al., 2019) as our base tracker with ResNet-50 (He et al., 2016)
as backbone network. The base architecture of DiMP is pre-trained on several
large-scale RGB training datasets (Fan et al., 2018; Huang et al., 2018; Lin et al.,
2014; Muller et al., 2018). To test the single modality versions, we simply input the
images from either modality as in traditional RGB trackers (Bertinetto et al., 2016b;
Danelljan et al., 2017; Henriques et al., 2015). RGB images have 3 image channels
while TIR images have 1 channel, and so the pixel-level fusion uses 4-channel
images. For the feature-level fusion, we concatenate the convolutional features
after the feature extractor. Finally, for the response-level fusion we add together the
final confidence maps independently predicted by the RGB and TIR modalities.

We use separate, modality-specific feature extractors for the response-level
fusion and feature-level fusion. As hyperparameters for fine-tuning our architecture,
we use the default values used to train each component in DiMP (Bhat et al., 2019),
which have been carefully set and described by the authors in section 3.2 of the
work (Bhat et al., 2019). We keep the default learning rates as for each component
in the DiMP model and then decrease them by collaboratively multiplying a small
gain learning rate, i.e. 0.001, and for two feature extractors with the learning rate
of 0.01 and 0.001 separately for TIR modality and RGB modality. We do this here
as considering that the feature extractor for RGB modality was pre-trained with
large-scale RGB datasets already, and less RGB features need to be learned. On the
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other hand, the feature extractor of TIR modality needs to catch up with that of RGB
modality in terms of learning, hence we set a higher learning rate for fine-tuning
the feature extractor of the TIR modality.

As a result of the stochastic nature of DiMP, the tracker generates different results
for every run. Following the procedure employed in the work (Bhat et al., 2019), we
compute default 15 runs of our mfDiMP tracker for vot-toolkit and 5 for RGBT210
dataset. Then obtain the stable result finally by averaging the various multi-run
results.

4.5.4 Analysis of Fusion Mechanisms

In this section, we present an analysis to see where is the best to fuse the modalities
in DiMP as shown in Table 4.1. This table is an extensive evaluation of all considered
fusions under different configurations. We start with a comprehensive evaluation
of the baseline tracker DiMP (Bhat et al., 2019) for single modality. We present
several configurations in the upper part of Table 4.1. First, the ‘Single modality’
with the RGB modality or TIR modality in the first two rows, is the original DiMP
(pre-trained for RGB) using either RGB or TIR images during online tracking. It
shows how using TIR images provides a higher result. For the next three rows, we
fine-tune the feature extractor and/or IoU-Net with synthetic TIR images. It shows
fine-tuning the single modality network improves the pre-trained networks with an
absolute gain of 1%. In the lower part of Table 4.1, we analyzed the effectiveness of
each fusion mechanism for DiMP (Bhat et al., 2019), which we discuss in detail in
the remainder of this section.

Pixel-level fusion. First, we evaluate the pixel-level fusion. From Table 4.1, we can
observe that pixel-level fusion improves the performance of baseline tracker from
0.331 to 0.345 with an absolute gain of 1.4%. The images from the RGB modality
and TIR modality have complementary information. Therefore, using the fused
images to train the network end-to-end, can help the model to learn better deep
feature representations, which in turn improves tracking performance.

Response-level fusion. The fusion now takes place in the final response map,
which belongs to the classifier. The signals from both modalities pass through the
classifier separately and both compute the response map. Then we sum together
the two response maps, obtaining the final fused response map. Meanwhile for the
IoU-Net, there is only a single modal input. Here we use two strategies, one uses the
features from RGB modality to feed into IoU-Net and the other uses TIR features
instead. Both fusion mechanisms enhance the tracking performance, and using
the TIR modality for IoU-Net outperforms using RGB, achieving scores of 0.349 and
0.342, respectively. The results show that fusion on response-level obtains the same
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ECO SiamFC DaSiamRPN ATOM DiMP
mfDiMP

(Danelljan et al., 2017) (Bertinetto et al., 2016b) (Zhu et al., 2018) (Danelljan et al., 2019) (Bhat et al., 2019)

EAO(↑) 0.265 0.254 0.324 0.318 0.327 0.391
A (↑) 0.580 0.594 0.604 0.575 0.586 0.615
R (↓) 0.480 0.533 0.482 0.374 0.345 0.228

Table 4.2 – State-of-the-art comparison on VOT-RGBT2019 dataset. Our mfDiMP
improves the baseline tracker DiMP with an absolute gain of 6.4% in terms of EAO.
The best results are highlighted in bold font.

ECO CSR CMRT SGT CNN+KCF+ CFnet+
mfDiMP

(Danelljan et al., 2017) (Lukezic et al., 2017) (Li et al., 2018d) (Li et al., 2017b) RGBT (Henriques et al., 2015) RGBT (Valmadre et al., 2017)
No Occlusion 87.7/64.3 68.1/45.2 86.1/59.4 82.4/50.7 63.7/42.9 69.7/52.2 88.9/67.3
Partial Occlusion 72.2/52.5 52.7/36.6 77.1/52.2 75.4/48.3 56.0/36.4 57.2/38.4 84.0/60.1
Heavy Occlusion 58.3/41.3 37.1/24.3 54.6/34.8 53.1/34.1 36.6/25.9 39.3/27.3 68.4/45.8
Low Illumination 66.6/45.6 47.3/31.1 71.4/46.4 71.6/44.7 52.8/34.5 49.8/33.6 77.1/53.7
Low Resolution 64.1/38.1 46.0/23.1 64.7/37.4 65.8/37.5 54.6/32.5 45.2/27.7 69.2/43.6
Thermal Crossover 82.1/58.8 43.2/29.3 65.8/43.0 64.9/40.7 49.6/33.2 42.8/29.4 76.5/55.2
Deformation 61.2/45.0 44.7/33.0 65.2/45.8 65.3/45.9 44.8/34.4 48.9/35.2 77.7/56.6
Fast Motion 58.2/39.2 42.6/25.0 58.8/34.9 58.0/33.1 37.1/24.1 36.5/23.0 76.7/52.6
Scale Variation 74.5/55.4 53.3/37.5 72.5/49.2 67.4/41.7 50.3/32.6 56.7/40.6 82.2/59.5
Motion Blur 67.8/49.9 34.7/23.8 58.4/40.5 58.6/39.6 30.4/22.0 30.3/22.4 72.5/51.2
Camera Moving 61.7/45.0 38.9/27.4 60.0/41.9 59.0/40.7 36.2/27.0 37.2/27.9 75.3/53.8
Background Clutter 52.9/35.2 38.4/23.7 58.3/35.6 58.6/35.5 42.3/28.4 43.7/28.1 71.5/45.7
ALL 69.0/49.8 49.1/33.0 69.4/46.3 67.5/43.0 49.3/33.1 51.8/36.0 78.6/55.5

Table 4.3 – Attribute-based Precision Rate and Success Rate (PR/SR %) on
RGBT210 dataset with several trackers. These trackers include popular RGB track-
ers such as ECO and CSR, recent multi-modal fusion tracker like CMRT and SGT,
and also extended RGB-T trackers from KCF and CFnet. Our tracker surpasses
almost all the trackers over all the attributes.

effectiveness as pixel-level fusion. For both of them, the fusion takes place in the
extra part of the network, which is easier to implement and only fewer variants are
evaluated. Next we move to the feature-level fusion and consider several fusion
variants in detail.

Feature-level fusion. We consider inputting fused feature representations into two
different DiMP components, i.e. model predictor and IoU-Net. In the former case,
only the model predictor receives fused features, whereas the remaining component
(IoU-Net) still uses features from a single modality. In both cases, we improve over
single modality tracking, and the version with TIR for IoU-Net obtains a better result
with 0.359, an absolute gain of 2.8% with respect to the TIR fine-tuned best model in
single modality. In the latter case, we use fused features for IoU-Net. We obtain the
highest score, 0.366, when using TIR features for the other component (the model
predictor). It demonstrates that using fused features for IoU-Net outperforms using
fused features for the model predictor. We attribute it to that IoU-net is a more
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complex network than the model predictor, where the fused feature representations
can be more effective to prompt IoU-Net to its ultimate capacity. Finally, we use
fused features to feed both the model predictor and IoU-Net, which significantly
improves the result to 0.389 with a substantial absolute gain of 5.8%. Considering
that the feature extractor is pre-trained on RGB images, it is natural to assume
that the feature extractor for TIR images needs a stronger training signal. For this
reason, we propose a variant in which the feature extractor for the TIR modality has
a higher learning rate (×10). This variant achieves 0.391, which is the best result
and significantly outperforms the best single modality tracker with a big jump.

Form Table 4.1, we can see that fusion on feature-level with end-to-end training,
provides distinguished improvements for the performance of tracker. Specifically,
fusion of the feature representations for both of model predictor and IoU-Net
achieves the best result on VOT-RGBT2019 dataset (VOT challenge, 2019). In the
following sections, we select this best performing variant as our final tracker, which
we call mfDiMP.

4.5.5 VOT-RGBT2019 Dataset

In this section, we evaluate our mfDiMP on the VOT-RGBT2019 dataset in terms
of EAO in Table 4.2. We compare with several high-quality RGB trackers including
ECO (Danelljan et al., 2017), ATOM (Danelljan et al., 2019), DiMP (Bhat et al., 2019),
SiameseFC (Bertinetto et al., 2016b), DaSiamRPN (Zhu et al., 2018), which also
input with RGB modality as their natural designs. The single modality baseline
tracker DiMP (Bhat et al., 2019), which shows dominant performances on various
RGB datasets (Fan et al., 2018; Huang et al., 2018; Kristan et al., 2018; Muller et al.,
2018), also achieves excellent results on VOT-RGBT2019. By using our multi-modal
fusion with end-to-end training, we improve DiMP by an absolute gain of 6.4% in
terms of EAO. This significant improvement demonstrates that our selected fusion
mechanism is effective for maximally exploiting the multi-modal nature of the given
images.

4.5.6 RGBT210 Dataset

We evaluate mfDiMP on the recent RGBT210 dataset (Li et al., 2017b) using their
two evaluation matrics (Figure 4.3). We compare against the top-10 trackers on
this dataset, including CCOT (Danelljan et al., 2016b), ECO (Danelljan et al., 2017),
CMRT (Li et al., 2018d), BACF (Kiani Galoogahi et al., 2017), SRDCF (Danelljan et al.,
2015b), SGT (Li et al., 2017b), Staple (Bertinetto et al., 2016a), Staple-CA (Mueller
et al., 2017b), SiameseFC (Bertinetto et al., 2016b). We can see how our tracker
significantly outperforms the second best tracker (DiMP) with an absolute gain
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of 6.7% and 4.2%, in terms of precision rate and success rate respectively. As a
result, mfDiMP achieves a new state-of-the-art also on this dataset, bringing further
evidence to the advantages of end-to-end training for multi-modal tracking in terms
of accurate object localization.

4.5.7 Attribute Analysis on RGBT210 Dataset

There are totally 12 kind of different attributes as in the RGBT210 datasets (Li et al.,
2017b). We analyze the performance of our method on these attributes in terms
of precision rate and success rate (PR/SR %) in Table. 4.3. We compare with some
popular RGB trackers such as ECO (Danelljan et al., 2017), CSR (Lukezic et al.,
2017). We also comapre with the state-of-the-art RGB-T trackers on this dataset,
e.g. CMRT (Li et al., 2018d) and SGT (Li et al., 2017b), and some extended RGB-T
trackers from KCF, CFnet as in the work (Li et al., 2018d). The further comparison on
specific scenarios, proves the robustness and generality of our mfDiMP on RGB-T
tracking. Our tracker outperforms most trackers on all the attributes. Specifically in
the attributes such as partial occlusion, low illumination, deformation, fast motion,
camera moving, and background clutter, mfDiMP achieves a significant gain of
about 10% in terms of Success Rate (SR), compared with the second best.

4.6 Conclusions

Most of the multi-modal trackers are still using hand-crafted features, or simple off-
the-shelf features. In this Chapter we investigate how to effectively fuse multi-modal
data in an end-to-end training manner, which could make optimal use of infor-
mation from both modalities. We propose three end-to-end multi-modal fusion
architectures, consisting of pixel-level fusion, feature-level fusion and response-
level fusion. To ensure that the proposed fusion tracker can be trained in an end-
to-end manner, we also generate large-scale paired synthetic RGB-T datasets. We
perform extensive experiments on two recent benchmarks for RGB-T tracking: VOT-
RGBT2019 (VOT challenge, 2019) and RGBT210 (Li et al., 2017b). The results show
that the proposed fusion tracker does significantly improve the performance of the
baseline tracker with respect to single modality. As a consequence, our end-to-end
multi-modal fusion tracker sets new state-of-the-art results on both datasets.
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5 Learning the Model Update for Siamese
Trackers *

5.1 Introduction

Generic visual object tracking is the task of predicting the location of a target object
in every frame of a video, given its initial location. Tracking is one of the fundamen-
tal problems in computer vision, spanning a wide range of applications including
video understanding (Renoust et al., 2016), surveillance (Emami et al., 2012), and
robotics (Liu et al., 2012). It is a highly challenging task due to frequent appear-
ance changes, various types of occlusions, the presence of distractor objects, and
environmental aspects such as motion blur or illumination changes.

Currently, there are two prevalent tracking paradigms: Siamese tracking meth-
ods (Bertinetto et al., 2016b; Li et al., 2018b; Wang et al., 2018; Zhu et al., 2018) and
tracking-by-detection methods (Bolme et al., 2010; Danelljan et al., 2017, 2016b;
Henriques et al., 2015; Nam & Han, 2016; Zhang et al., 2014, 2019b). In this work, we
consider Siamese trackers, since they provide competitive accuracy while achieving
impressive computational efficiency. The basic principle of these trackers is to
match an object appearance template with a corresponding feature representation
of the search region in the test frame. The features for the object template and the
search region are acquired through a deep neural network trained offline on a large
dataset. Such a training strategy has shown to provide excellent visual descriptors
for the tracking task (Bertinetto et al., 2016b; Zhu et al., 2018).

In the original Siamese tracker (Bertinetto et al., 2016b), the object template is
initialized in the first frame and then kept fixed during the remainder of the video.
However, appearance changes are often large and failing to update the template
could lead to early failure of the tracker. In such scenarios, it is important to adapt
the model to the current target appearance. To accommodate this problem, more
recent Siamese trackers (Li et al., 2018b; Wang et al., 2018; Zhu et al., 2018) have
implemented a simple linear update strategy using a running average with a fixed
learning rate (Stauffer & Grimson, 1999). This strategy assume a constant rate

*This chapter is based on a publication in Proceedings of the IEEE International Conference on
Computer Vision 2019
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UpdateNet-SiamFC SiamFC GT

#063 #290 #291

#022 #199 #226

#008 #015 #016

Figure 5.1 – Qualitative comparison between model updates. We learn to update
the model template using UpdateNet. When combined with Siamese trackers such
as SiamFC (Bertinetto et al., 2016b), our learned updating strategy can be effectively
adapted to current circumstances, unlike the simple linear update commonly used.

of appearance change across all frames in the video, as well as across different
videos. In practice, the update requirements for the object template greatly vary for
different tracking situations, which depend on a complex combination of external
factors such as motion, blur, or background clutter. Therefore, a simple linear
update is often inadequate to cope with changing updating needs and to generalize
to all potentially encountered situations. Moreover, this update is also constant in
all spatial dimensions, which does not allow for localized partial updates. This is
especially damaging in situations such as partial occlusions, where only a certain
part of the template needs to be updated. Finally, excessive reliance on the initial
template may suffer from catastrophic drift and the inability to recover from tracking
failures.

In this Chapter, we propose to learn the target template update itself. Our
learned update strategy utilizes target and image information, and is thus adaptive
to the present circumstances of each particular situation. In our approach, the
updated template is computed as a function of (i) the initial ground-truth template,
(ii) the accumulated template from all previous frames, and (iii) the feature template
at the predicted object location in the current frame. Hence, the new accumulated
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template contains an effective historical summary of the object’s current appear-
ance, as it is continually updated using the most recent information while being
robust due the strong signal given by the initial object appearance. More specifically,
the aforementioned template update function is implemented as a convolutional
neural network, UpdateNet. This is a compact model that can be combined with
any Siamese tracker to enhance its online updating capabilities while maintaining
its efficiency properties. Furthermore, it is sufficiently complex to learn the nuances
of effective template updating and be adaptive enough to handle a large collection
of tracking situations.

We evaluate UpdateNet by combining it with two state-of-the-art Siamese track-
ers: SiamFC (Bertinetto et al., 2016b) and DaSiamRPN (Zhu et al., 2018). Through
extensive experiments on common tracking benchmarks, such as VOT2018 (Kristan
et al., 2018), we demonstrate how our UpdateNet provides enhanced updating capa-
bilities that in turn result in improved tracking performance (see Figure 5.1). We also
present results in the recent LaSOT dataset (Fan et al., 2018), which is substantially
more challenging as it contains abundant long-term sequences. Overall, we propose
an efficient model to learn how to effectively update the object template during
online tracking and that can be applied to different existing Siamese trackers.

5.2 Related Work

Tracking Frameworks. Most existing tracking methods are either based on tracking-
by-detection or employ template matching. Object trackers based on tracking-by-
detection pose the task of target localization as a classification problem where the
decision boundary is obtained by online learning a discriminative classifier using
image patches from the target object and the background. Among the tracking-by-
detection approaches, discriminative correlation filter based trackers (Danelljan
et al., 2017, 2016b; Henriques et al., 2015; Zhang et al., 2019b) have recently shown
excellent performance on several tracking benchmarks (Kristan et al., 2018, 2016b;
Wu et al., 2013, 2015). These trackers learn a correlation filter from example patches
of the target appearance to discriminate between the target and background ap-
pearance.

The other main tracking framework is based on template matching, typically
using Siamese networks (Bertinetto et al., 2016b; Held et al., 2016; Li et al., 2018b;
Valmadre et al., 2017; Wang et al., 2018; Zhu et al., 2018), that implement a similarity
network by spatial cross-correlation. Bertinetto et al. (2016b) proposed a Siamese
tracker which is based on a two-stream architecture. One stream extracts the object
template’s features based on an exemplar image that contains the object to be
tracked. The other stream receives as input a large search region in the target image.
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The two outputs are cross-correlated to generate a response map of the search
region. Many trackers have extended the SiamFC architecture (He et al., 2018; Li
et al., 2018b; Valmadre et al., 2017; Wang et al., 2018; Zhang et al., 2018; Zhu et al.,
2018) for tracking. The Siamese-based trackers have gained popularity since they
provide a good trade-off between computational speed and tracking performance.
However, most of these approaches struggle to robustly classify the target especially
in the presence of distractors due to no online learning. In this work, we analyze
the limitations of Siamese trackers regarding the update of the template model and
propose a solution to address them.

Updating the object template. Most trackers either use simple linear interpola-
tion to update the template in every frame (Bolme et al., 2010; Choi et al., 2018;
Danelljan et al., 2015b, 2016b; Henriques et al., 2015; Kiani Galoogahi et al., 2017)
or do not update the initial template at all (Bertinetto et al., 2016b; Li et al., 2018b;
Wang et al., 2018; Zhu et al., 2018). Such update mechanisms are insufficient in
most tracking situations, as the target object may suffer appearance changes given
by deformations, fast motion, or occlusion. Moreover, fixed update schedules also
result in object templates that are more focused on recent frames (Danelljan et al.,
2016a), while forgetting the historical appearances of the object. To address this
issue, Danelljan et al. (2016a,b) propose to include a subset of historic frames as
training samples when calculating the current correlation filter, which leads to bet-
ter results than the traditional linear frame-by-frame update. Nonetheless, storing
multiple samples in memory results in increased computation and memory usage,
which in turn heavily decreases the tracking speed. The ECO tracker (Danelljan
et al., 2017) tries to alleviate this problem by modelling the distribution of training
samples as a mixture of Gaussians, where each component represents a distinct
appearance. This significantly reduces required storage and, combined with a
conservative update strategy (only every five frames), leads to increased tracking
efficiency. Even with more previous samples, the correlation filter is still updated
by averaging the filters of their corresponding samples (as still linear interpolation
update).

Recently, Yang & Chan (2018) employed a Long Short-Term Memory (LSTM)
to estimate the current template by storing previous templates in memory dur-
ing on-line tracking, which is computationally expensive and a rather complex
system. Choi et al. (2017) also uses a template memory but uses reinforcement
learning to select one of the stored templates. This method fails to accumulate
information from multiple frames. The meta-tracker (Park & Berg, 2018) extends
the initialization of the target model in the first frame by a pre-trained approach,
but still need a linear update in on-line tracking. Yao et al. (2018) propose to learn
the updating coefficients for CF trackers using SGD offline. While the solution for
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...

Figure 5.2 – Overview of our tracking framework with UpdateNet. (Left) The on-
line update of the object template is performed by UpdateNet, which receives as
input the initial ground-truth template, last accumulated template and current
predicted template, and outputs updated accumulated template. (Right) Training
of UpdateNet using the distance to the ground-truth object template on next frame.

correlation filter is still the hand-crafted manner, and these coefficients are fixed
without updating during tracking.

To adapt to the object variations, Guo et al. (2017) propose to compute a trans-
formation matrix with respect to the initial template through regularized linear
regression in the Fourier domain. Since only the initial template is considered when
estimating the transformation, this approach ignores the historical object variations
observed during tracking, which may result important for a smoother adaptation
of the exemplar template. Moreover, they compute the transformation matrix as a
closed-form solution on the Fourier domain, which suffers from issues related to
the boundary effect (Kiani Galoogahi et al., 2015). Our work instead uses a powerful
yet easily trainable model to update the object template based not only the first
frame, but also on the accumulated template using all previous frames, leveraging
the observed training data. Furthermore, our UpdateNet is trained to learn how to
perform an effectively update the object template, based on the observed training
tracking data.

5.3 Updating the Object Template

In this section, we present our approach to learn how to update the object template
during online tracking. We start by revisiting the standard update mechanism in
tracking and identifying its drawbacks. Then, we introduce our formulation to
overcome them and describe our model and training procedure in detail. The focus
of this chapter is on Siamese trackers. Note, however, that our approach is not
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limited to Siamese trackers and the same formulation could be applied to other
types of trackers, e.g. DCF (Danelljan et al., 2017, 2016b; Henriques et al., 2015).

5.3.1 Standard Update
Several recent tracking approaches (Bolme et al., 2010, 2009; Henriques et al., 2015;
Li et al., 2018b; Valmadre et al., 2017; Wang et al., 2018; Zhu et al., 2018) use a simple
averaging strategy to update the object appearance model given a new data sample.
This strategy dates from early tracking methods (Stauffer & Grimson, 1999) and has
long been the standard for online updating given its acceptable results and in spite
of its limitations. The template is updated as a running average with exponentially
decaying weights over time. The choice of exponential weights yields the following
recursive formula for updating the template,

T̃i = (1−γ)T̃i−1 +γTi . (5.1)

Here, i is the frame index, Ti is the new template sample computed using only the
current frame, and T̃i is the accumulated template. The update rate γ is normally
set to a fixed small value (e.g. γ= 0.01) following the assumption that the object’s
appearance changes smoothly and consistently in consecutive frames. In DCF
trackers (Bolme et al., 2010; Henriques et al., 2015), T corresponds to the correlation
filter. In Siamese trackers, instead, T is the object appearance template extracted
from a particular frame by a fully convolutional feature extractor. While the original
SiamFC tracker (Bertinetto et al., 2016b) does not perform any model update, more
recent Siamese trackers (Bertinetto et al., 2016b; Li et al., 2018b; Wang et al., 2018;
Zhu et al., 2018) have adopted (5.1) to update their templates.

While template averaging provides a simple means of integrating new informa-
tion, it has several severe drawbacks:

• It applies a constant update rate for every video, despite the possibly differ-
ent updating necessities caused by multiple factors such as camera motion.
Even within the same video, the required update on the object template may
dynamically vary at different times.

• The update is also constant along all spatial dimensions of the template,
including the channel dimension. This prevents updating only part of the
template, which is desirable under partial occlusions, for example.

• The tracker cannot recover from drift. Partially, this is caused by the fact that
it loses access to the appearance template T0, which is the only template
which is without doubt on the object.

• The update function is constrained to a very simple linear combination of
previous appearance templates. This severely limits the flexibility of the up-
date mechanism, important when the target undergoes complex appearance
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changed. Considering more complex combination functions is expected to
improve results.

5.3.2 Learning to Update

We address the drawbacks listed above by proposing a model that learns an adaptive
update strategy. Since the focus of this chapter is on Siamese trackers, T represents
here the object appearance template. To address the limitations of simple template
averaging, we propose to learn a generic function φ that updates the template
according to,

T̃i =φ(T GT
0 , T̃i−1,Ti ). (5.2)

The learned function φ computes the updated template based on initial ground-
truth template T GT

0 , the last accumulated template T̃i−1 and the template Ti ex-
tracted from the predicted target location in the current frame. In essence, the
function updates the previous accumulated template T̃i−1 by integrating the new
information given by the current frame Ti . Therefore, φ can be adapted to the spe-
cific updating requirements of the current frame, based on the difference between
the current and accumulated templates. Moreover, it also considers the initial tem-
plate T GT

0 in every frame, which provides highly reliable information and increases
robustness against model drift. The function φ is implemented as a convolutional
neural network, which grants great expressive power and the ability to learn from
large amounts of data. We call this neural network UpdateNet and describe it in
detail in the following section.

5.3.3 Tracking Framework With UpdateNet

We present here the structure of UpdateNet and describe how it is applied for
online tracking. Figure 5.2 (left) presents an overview of our adaptive object update
strategy using UpdateNet with a Siamese tracker. We extract deep features from
image regions with a fixed fully convolutional network ϕ, employing the same
feature extractor as in the SiamFC tracker (Bertinetto et al., 2016b). We extract T GT

0
from the ground-truth object location in the initial frame (number 0 in Figure 5.2).
In order to obtain Ti for the current frame, we use the accumulated template from
all previous frames T̃i−1 to predict the object location in frame i (dashed purple
line) and extract the features from this region (solid blue line). Note that T̃i−1

corresponds to the output of UpdateNet for the previous time step, not shown
here for conciseness. We concatenate the extracted features T GT

0 and Ti with the
accumulated features T̃i−1 to form the input of UpdateNet. This input is then
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processed through a series of convolutional layers (sec. 5.4.3) and outputs the
predicted new accumulated template T̃i . For the first frame, we set Ti and T̃i−1 to
T GT

0 as there have not been any previous frames.
The only ground-truth information used by UpdateNet is the given object loca-

tion in the initial frame, all other inputs are based on predicted locations. Hence,
T GT

0 is the most reliable signal on which UpdateNet can depend to guide the update.
For this reason, we employ a residual learning strategy (He et al., 2016), where
UpdateNet learns how to modify the ground-truth template T GT

0 for the current
frame. This is implemented by adding a skip connection from T GT

0 to the output of
UpdateNet. This approach still takes into account the set of historical appearances
of the object for updating, but pivots such update on the most accurate sample. We
have also experimented with adding skip connections from other inputs as well as
no residual learning at all (see sec. 5.4).

5.3.4 Training UpdateNet

We train our UpdateNet to predict the target template in the coming frame, i.e. the
predicted template T̃i should match the template T GT

i+1 extracted from the ground-
truth location in the next frame (Figure 5.2, right). The intuition behind this choice
is that T GT

i+1 is the optimal template to use when searching for the target in the next
frame. In order to achieve this, we train UpdateNet by minimizing the Euclidean
distance between the updated template and the ground-truth template of the next
frame, defined as

L2 =
∥∥φ(T GT

0 , T̃i−1,Ti )−T GT
i+1

∥∥
2 . (5.3)

In the remainder of this section we describe the procedure employed to generate
the training data and introduce a multi-stage training approach for UpdateNet.

Training samples. In order to train UpdateNet to minimize (5.3), we need pairs of
input triplets (T GT

0 , T̃i−1,Ti ) and outputs T GT
i+1 that reflect the updating needs of the

tracker during online application. The object templates of the initial frame T GT
0 and

target frame T GT
i+1 can be easily obtained by extracting features from ground-truth

locations in corresponding frames. In case of the current frame’s template Ti , how-
ever, using the ground-truth location represents a seldom encountered situation in
practice, for which the predicted location in the current frame is very accurate. This
unrealistic assumption biases the update towards expecting very little change with
respect to Ti , and thus UpdateNet cannot learn a useful updating function. There-
fore, we need to extract Ti samples for training by using an imperfect localization in
the i -th frame. We can simulate such situation by using the accumulated template
T̃i−1, ideally presenting localization errors that occur during online tracking.
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Multi-stage training. In theory, we could use the accumulated template T̃i−1

output by UpdateNet. However, this would force the training to be recurrent, making
the procedure cumbersome and inefficient. To avoid this, we split our training
procedure into sequential stages that iteratively refine UpdateNet. In the first stage,
we run the original tracker on the training dataset using the standard linear update

T̃ 0
i = (

1−γ)
T̃ 0

i−1 +γT 0
i , (5.4)

which generates accumulated templates and realistically predicted locations
for each frame. We set the update rate γ to the recommended value for the tracker.
This corresponds to a first approximation to likely inputs for UpdateNet during
tracking inference, albeit with the less sophisticated linear update strategy. In every
posterior training stage k ∈ {1, ...,K }, we use the UpdateNet model trained in the
previous stage to get accumulated templates and object location predictions as
follows

T̃ k
i =φk

i

(
T GT

0 , T̃ k−1
i−1 ,T k−1

i

)
. (5.5)

Such training data samples closely resemble the expected data distribution at infer-
ence time, as they have been output by UpdateNet. We investigate a suitable value
for the total number of stages K in the experimental section (sec. 5.4).

5.4 Experiments

5.4.1 Training Dataset

We use the recent Large-scale Single Object Tracking (LaSOT) (Fan et al., 2018) to
train our UpdateNet. LaSOT has 1,400 sequences in 70 categories, which amounts to
a total of 3.52M frames. Each category contains exactly twenty sequences, making
the dataset balanced across classes. It also provides longer sequences that contain
more than 1,000 frames (2,512 frames on average) in order to satisfy the current
long-term trend in tracking. We used the official training and test splits, which
preserve the balanced class distribution. In fact, we only employ a subset contain-
ing 20 training sequences from 20 randomly selected categories, with a total of
45,578 frames. We have found experimentally that this suffices to learn an effective
updating strategy, and that additional data brings only a small performance boost
while increasing training time.
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5.4.2 Evaluation Datasets and Protocols

We evaluate results on standard tracking benchmarks: VOT2018/16 (Kristan et al.,
2016a), LaSOT (Fan et al., 2018) and TrackingNet (Muller et al., 2018).

VOT2018/16 (Kristan et al., 2016a). VOT2018 dataset has 60 public testing se-
quences, with a total of 21,356 frames. It is used as the most recent edition of the VOT
challenge. The VOT protocol establishes that when the evaluated tracker fails, i.e.
when the overlap with the ground-truth is below a given threshold, it is re-initialized
in the correct location five frames after the failure. The main evaluation measure
used to rank the trackers is Expected Average Overlap (EAO), which is a combination
of accuracy (A) and robustness (R). We also use VOT2016 (Kristan et al., 2016b) for
comparison purposes, which has 10 different sequences with VOT2018 (Kristan
et al., 2018). We compute all results using the provided toolkit (Kristan et al., 2018).

LaSOT (Fan et al., 2018). LaSOT is a much larger and more challenging dataset
including long-term sequences, Following recent works that use this dataset (Fan &
Ling, 2018; Li et al., 2018a), we report results on protocol II, i.e. LaSOT testing set.
The testing subset has 280 sequences with 690K frames in total. LaSOT dataset (Fan
et al., 2018) follows the OPE criterion of OTB (Wu et al., 2013). It consists of precision
plot which is measured by the center location error, and success plot which is mea-
sured through the intersection over union (IoU) between the predicted bounding
box and the ground-truth. Besides precision plot and success plot, LaSOT also
uses normalized precision plot to counter the situation that target size and image
resolution have large discrepancies for different frames and videos, which heavily
influences the precision metric. We use success plot and normalized precision plot
to evaluate the trackers in the article. We use their code (Fan et al., 2018) to create
all plots.

TrackingNet (Muller et al., 2018). This is a large-scale tracking dataset consisting
of videos in the wild. It has a total of 30,643 videos split into 30,132 training videos
and 511 testing videos, with an average of 470,9 frames. It uses precision, normalized
precision and success as evaluation metrics.

5.4.3 Implementation Details

We use SiamFC (Bertinetto et al., 2016b) and DaSiamRPN (Zhu et al., 2018) as our
base trackers, and the backbone Siamese network adopts the modified AlexNet.
We do not perform any changes except for in the updating component. The orig-
inal implementation of SiamFC did not perform any object update. We borrow a
linear update rate from CFNet (Valmadre et al., 2017) as γ= 0.0102 for templates
generating in the training stage 1. We use the original version of DaSiamRPN, which
does not employ any update strategy. We analyze the effect of the linear update
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Update for SiamFC Skip EAO (↑) A (↑) R (↓)

Linear - 0.188 0.50 0.59

UpdateNet (K = 1) - 0.205 0.48 0.58
UpdateNet (K = 1) Ti 0.207 0.47 0.57
UpdateNet (K = 1) T̃i−1 0.214 0.49 0.58
UpdateNet (K = 1) T GT

0 0.250 0.50 0.53

UpdateNet (K = 2) T GT
0 0.257 0.51 0.50

UpdateNet (K = 3) T GT
0 0.262 0.52 0.49

Table 5.1 – Ablation study on VOT2018 (Kristan et al., 2018). We present several
update strategies for SiamFC (Bertinetto et al., 2016b). The results are reported in
terms of EAO, normalized weighted mean of accuracy (A), and normalized weighted
mean of robustness score (R). ‘Skip’ column indicates the origin of the skip connec-
tion, if any. Here, K is the number of stages UpdateNet is trained for.

rate in the tracking performance in sec. 5.4.7. To train UpdateNet, we set a group
of templates, including T GT

0 , T̃i−1, Ti and T GT
i+1 as the input. They are all sampled

sequentially from a same video. It is noteworthy that T̃i−1 and Ti are generated
by the real tracking procedure, while T GT

0 and T GT
i+1 are ground-truth templates.

We store all training object templates on disk, extracted using either linear/no up-
date (stage k = 1) or a previous version of UpdateNet (k > 1). Let the template
size be H ×W ×C . UpdateNet is a two-layer convolutional neural network: one
1×1×3 ·C ×96 convolutional layer, followed by a ReLU and a second convolutional
layer of dimensions 1×1×96×C . For SiamFC, H = W = 6 and C = 256, whereas
DaSiamRPN C = 512. In the first stage, the weights are initialized from scratch and
the learning rate is decreased logarithmically at each epoch from 10−6 to 10−7. In
next stage, the weights are initialized by the best model from the last stage, and the
learning rate is decreased logarithmically at each epoch from 10−7 to 10−8. We train
the model for 50 epochs with mini-batches of size 64. We use Stochastic Gradient
Descent (SGD) with momentum of 0.9 and weight decay of 0.0005.

5.4.4 Ablation Study

We start our evaluation by ablating our approach on different components in order
to analyze their contribution to the final performance. Table 5.1 shows the results
using VOT2018 (Kristan et al., 2018) dataset under the EAO measure. In the middle of
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#155

#45

#38

#372

#354

#227

Frame GT No-update Linear UpdateNet

Figure 5.3 – Visualization of accumulated templates for SiamFC. ‘Frame’ column
shows the search region and ground-truth box used to extract the templates, whose
top four channels we show in ‘GT’. ‘No-update’ presents the response map resulting
from applying the inital template to the search region. For ‘Linear’ and ‘UpdateNet’
stategies we also show their accumulated templates.

the table, it shows that updating the object template with the first stage of UpdateNet
results beneficial when it is residually trained with respect to T GT

0 , as the learned
update strategy is grounded on a reliable object sample. Moreover, our multi-stage
training further increases the performance achieved by UpdateNet, reaching a total
improvement of 7.4% with respect to the original SiamFC with no update. For
the remainder of the chapter, we use UpdateNet trained on 3 stages and with skip
connection from T GT

0 .
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5.4.5 Analysis on Representation Update

This section attempts to provide insights regarding the performance improvements
achieved by UpdateNet. Siamese networks are trained to project the images into a
feature space in which spatial correlation is maximal. Update strategies operate on
the learned features, possibly interfering with their correlation abilities and poten-
tially damaging the tracking performance. In order to study the interference of the
update strategies on the features we visualize the accumulated templates of SiamFC
for both linear update and UpdateNet in Figure 5.3. We also include the ground-
truth template extracted from the annotated bounding-box. For each template we
show the feature maps of the four most dynamic channels in the ground-truth tem-
plate, arranged in a 2×2 grid. For comparison reasons, the accumulated templates
are generated using the ground-truth object locations instead of the predicted lo-
cations during tracking. Moreover, next to each accumulated template we also
show the response map generated when correlating the template with the search
region. We observe several interesting properties that support the performance
gains seen in practice. First, the accumulated templates using UpdateNet resemble
the ground-truth more closely than those in linear update (see e.g. highlight on
bottom-right channel for frame 38, first example). Second, response maps tend
to be sharper on the object location for UpdateNet, which shows how our strategy
does not negatively interfere with the desired correlation properties of the learned
features. Finally, the accumulated templates of the linear update change at a very
slow rate and are clearly deficient in keeping up with the appearance variation
exhibited in videos.

In order to further study this observation, we propose quantifying the change
rate between templates of contiguous frames. For each i ∈ {1, ..., N } we compute the
average difference in the template as δi = 1

|E |
∑

E |Ti −Ti−1|, where N is the number
of frames in a video and the sum runs over each element of the feature maps (e.g.
E = 6×6×256). We present the results in Figure 5.4. The bottom row contains the
average change rate δ of all 60 videos in VOT2018 (Kristan et al., 2018). It is clear that
the linear update strategy cannot deliver the updating rate required by the change in
the features of the ground-truth template. UpdateNet, on the other hand, provides a
much more adaptive strategy that is substantially closer in magnitude to the change
rate of the ground-truth template. The top and middle rows also show the change
rate of the two individual sequences in Figure 5.3, ’book’ and ’soccer1’. We can see
UpdateNet mimics the real template in high change periods, as indicated by the
high correlation on their extremes. This leads to predicting better response map as
shown in Figure 5.3.
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1
0

1

1.2
book

soccer1

All

Figure 5.4 – Change rate between contiguous frames. We present individual results
for two example videos (top, middle) and average results for all videos in VOT2018.

5.4.6 Generality and Tracking Speed

In this section, we evaluate the generality of our UpdateNet by applying it to other
Siamese trackers as shown in Figure 5.5. It presents results on VOT2018 in terms of
EAO with respect to the tracking speed. We measure tracking speed in frames per
second (FPS) and use a logarithmic scale on its axis. We observe that we improve
on Siamese trackers, e.g. SiamFC (Bertinetto et al., 2016b) and DaSiamRPN (Zhu
et al., 2018) by adding a very small temporal overhead. Finally the top-performance
trackers are shown in Figure 5.6. We compare with trackers including DRT (Sun et al.,
2018a), DeepSTRCF (Li et al., 2018e), LSART (Sun et al., 2018b), R_MCPF (Zhang
et al., 2019b), SRCT (Lee & Kim, 2018), CSRDCF (Lukezic et al., 2017), LADCF (Xu
et al., 2018), MFT (Kristan et al., 2018), UPDT (Bhat et al., 2018) and ATOM (Danelljan
et al., 2019) among others as in the challenge report (Kristan et al., 2018). Among
the top trackers, our approach achieves superior performance while maintaining
a very high efficiency. Further, our tracker obtains a performance relative gain of
2.8% over the base tracker DaSiamRPN (Zhu et al., 2018).
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UpdateNet-DaSiamRPN

DaSiamRPN

SiamFC

UpdateNet-SiamFC

DSiam

CSRDCF

ECO

DeepSTRCF

LSART

SRCT

R_MCPF

CFCF

DRT

UPDT
MFT

LADCF

MEEM

Figure 5.5 – EAO vs. speed on VOT2018. We compare our UpdateNet combined
with two different Siamese trackers against the state-of-the-art methods. UpdateNet
can substantially improve the tracking performance without significantly affecting
the speed.

5.4.7 Fine-tuning the Linear Update Rate

The linear update in the previous section uses the update rate for SiamFC recom-
mended by the authors (Valmadre et al., 2017) (γ = 0.0102) and for DaSiamRPN
from the original tracker (Zhu et al., 2018) (γ= 0). We now investigate whether the
linear update strategy can bring higher performance gains when fine-tuning the
update rate on the test set. We test several update rates uniform sampled from the
[0,0.2] interval. Figure 5.7 shows the performance of the linear update for DaSi-
amRPN (light green) and SiamFC (dark green). The red dashed line at the top and
pink dashed line in the middle are the performance of our UpdateNet applied on
DaSiamRPN and SiamFC respectively. We can see for SiamFC the peak performance
is indeed achieved between 0.01 and 0.05. For DaSiamRPN, the original tracker with
no-update performs best, which proves that for more complex Siamese trackers
trained off-line, on-line linear update may even damage the performance. This
shows that even a fine-tuned linear update cannot improve its results any further.
Moreover, our UpdateNet outperforms all update rate values without requiring any
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Figure 5.6 – EAO performance on VOT2018. We compare our method with the
state-of-the-art methods on VOT2018. Our proposed approach achieves superior
performance.

DSiam MemTrack SiamFC DaSiamRPN
(Guo et al., 2017) (Yang & Chan, 2018) Linear UpdateNet Linear UpdateNet

EAO 0.181 0.273 0.235 0.289 0.439 0.481
A 0.492 0.533 0.529 0.543 0.619 0.610
R 2.934 1.441 1.908 1.320 0.262 0.206

Table 5.2 – Results for other updating strategies on VOT2016. DSiam (Guo et al.,
2017) and MemTrack (Yang & Chan, 2018) use SiamFC as base tracker. The best two
results are highlighted in red and blue fonts, respectively.

manual fine-tuning. Despite the need of a higher update rate for some videos, we
can see how the performance continuously and rapidly decreases as the update
rate increases, evidencing the unsuitability of a fixed and general update rate for all
videos.

5.4.8 Comparison With Other Updating Strategies

Some recent approaches (Guo et al., 2017; Yang & Chan, 2018) proposed alternative
updating strategies for Siamese trackers. Table 5.2 presents a comparison with
DSiam (Guo et al., 2017) and MemTrack (Yang & Chan, 2018) on VOT2016, as the
work (Yang & Chan, 2018) only reports results on this VOT edition (see Figure 5.5
for DSiam results on VOT2018). Our UpdateNet leads to a more effective update
and higher tracking performance, while also being applicable to different Siamese
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Figure 5.7 – The linear update rate evaluation for DaSiamRPN and SiamFC on
VOT2018 (Kristan et al., 2018). The x-axis is the update rate values. The y-axis is
the EAO scores on VOT protocol (Kristan et al., 2018). The red and pink dashed lines
are our UpdateNet performances with DaSiamRPN and SiamFC, respectively.

architectures. Despite the already excellent performance of DaSiamRPN, UpdateNet
brings an improvement of 4.2%, reaching state-of-the-art. Moreover, our approach
yields a substantial absolute gain of 5.6% in terms of robustness, which is a common
weak point of Siamese trackers.

5.4.9 LaSOT Dataset

We test our model on the recent LaSOT dataset (Fan et al., 2018). Since long-term
sequences are common in LaSOT, the updating component of the tracker is cru-
cial, as more sudden variations may appear and object appearance may depart
further from the input object template. We show the top-10 trackers, including
MDNet (Nam & Han, 2016), VITAL (Song et al., 2018), StructSiam (Zhang et al.,
2018), DSiam (Guo et al., 2017), SINT (Tao et al., 2016), STRCF (Li et al., 2018e),
ECO (Danelljan et al., 2017), SiamFC (Bertinetto et al., 2016b) and DaSiamRPN (Zhu
et al., 2018) in Figure 5.8. The results are presented following the official protocol.
We can see how UpdateNet enhances the updating capabilities of DaSiamRPN and
leads to a significant performance boost on all measures. As a result, our tracker
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Figure 5.8 – Evaluation on LaSOT testing set. Normalized precision and success
plots following the OPE protocol II.

ATOM ECO CFNet MDNet SiamFC DaSiamRPN

(Danelljan et al., 2019) (Danelljan et al., 2017) (Valmadre et al., 2017) (Nam & Han, 2016) Linear UpdateNet Linear UpdateNet

Precision (%) 64.8 49.2 53.3 56.5 53.3 53.1 59.1 62.5
Norm. Prec. (%) 77.1 61.8 65.4 70.5 66.3 67.4 73.3 75.2

Success (%) 70.3 55.4 57.8 60.6 57.1 58.4 63.8 67.7

Table 5.3 – State-of-the-art comparison on TrackingNet. Our UpdateNet signifi-
cantly improves DaSiamRPN (Zhu et al., 2018) with an absolute gain of 3.4% and
3.9%, in terms of precision and success. The best two results are highlighted in red
and blue fonts, respectively.

with learned update strategy surpasses all state-of-the-art trackers on this dataset.
This brings further evidence to the advantages of adaptive update strategy in terms
of accurate object localization.

5.4.10 TrackingNet Dataset

We evaluate our UpdateNet-DaSiamRPN on the testing set of TrackingNet (Muller
et al., 2018) using their three evaluation metrics (Table 5.3). Compared with DaSi-
amRPN, our UpdateNet+DaSiamRPN obtains absolute gains of 3.4%, 1.9% and
3.9% in terms of precision, normalized precision and success. UpdateNet leads
to a significant performance improvement on all three metrics. This shows how a
learning the model update can greatly benefit Siamese trackers on several datasets
and under different measures.
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5.5 Conclusions

Siamese trackers usually update their appearance template using a simple linear
update rule. We identify several shortcomings of this linear update and propose to
learn the updating step as an optimization problem. We employ a neural network,
coined UpdateNet, that learns how to update the current accumulated template
given the appearance template of the first frame, the current frame, and the accu-
mulated template of the previous step. The proposed UpdateNet is general and
can be integrated into all Siamese trackers. Comparable results on four benchmark
datasets (VOT2016, VOT2018, LaSOT, and TrackingNet) show that the proposed
approach to updating does significantly improve the performance of the trackers
with respect to the standard linear update (or with respect to no-update at all).

5.6 Difference With Offline Weighted Fusion

Another possible update mechanism that improves on the linear update could be
learning an offline weighted fusion of three templates (the input of UpdateNet). In
order to demonstrate the benefits of more sophisticated updating mechanisms, we
propose the following experiment.

UpdateNet uses a convolutional neural network that leverages previous tem-
plates to predict an accumulated template that is similar to the real one. Therefore,
the fusion mechanism implemented by UpdateNet is more sophisticated than a sim-
ple offline weighted fusion, which depends on the actual input features and can be
adapted accordingly. In order to confirm this, we propose here the following experi-
ment to compare UpdateNet to an offline weighted fusion. We express the template
update as a weighted linear combination T̃i =αi ni t T GT

0 +αaccu T̃i−1 +αcur r Ti . We
initialize the three weights to 0, 0.9898, and 0.0102 respectively following the default
settings for the linear update. Then, we train these weights with the same training
process as UpdateNet until convergence, as shown in Figure 5.9.

Next we compare the EAO results on VOT2018. SiamFC with an offline weighted
fusion achieves 0.198, which is a little higher than the baseline linear update (0.188)
but much lower than 0.262 achieved with UpdateNet. These results show that
our UpdateNet is significantly better than an offline weighted fusion. We mainly
attribute the superior results of UpdateNet to the following reasons. The offline
weighted fusion learns a high value for αcur r . In this case, the tracker is likely to
succumb to drift when the current template is not reliable. Instead of excessively
relying on the current template, UpdateNet can benefit from all the input templates
due to the representation bottleneck in the channel dimension. Furthermore,
UpdateNet includes a non-linearity which allows it to better adjust to the non-linear
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Figure 5.9 – Training of the learned fusion weights offline.

variations, such as rotation and object motion. Thus, yielding more expressive and
reliable representations for the predicted template.

5.7 Visualization of Updating Templates

We provide additional accumulated templates of SiamFC for both linear update
and UpdateNet in Figure 5.10 (similar to Figure 5.3 in the chapter). By visualizing
more exemplar videos, we can see that UpdateNet learns templates which are more
similar to the ground-truth and predicts more accurate response maps for cross-
correlation. For visualization ease, we add a red cross ‘+’ to split the four channels
of the template feature. The four channels are the most dynamic channels in the
ground-truth template for the corresponding video. We select them as follows.
For each j ∈ {1, ...,C } we compute the average difference in the template as ∆ j =

1
|N |

∑
N

1
|A|

∑
A |T GT

i −T GT
i−1|, where N is the number of frames in a video and the sum

runs over the spatial area of each channel of the feature maps (e.g. A = 6×6). We
select largest 4 channels in terms of ∆ j .

We can observe multiple interesting behaviors in Figure 5.10. Firstly, the accu-
mulated templates using UpdateNet resemble the ground-truth more closely than
those with linear update, see e.g. the bottom-right channel (106) in frame 125 of A,
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and the bottom-right channel (121) in frame 42 of F, where the same highlighted
region appears for both UpdateNet and the ground-truth. The template of the
linear update, instead, does not resemble the ground truth for either of these two
sequences. In general, the accumulated templates from UpdateNet are almost as
dynamic as the ground-truth templates, meaning that our UpdateNet can adapt to
the template change in a video much better than linear update, which changes very
slowly. Secondly, we can see in the cross-correlation response map how UpdateNet
better predicts the object location, while linear update predicts many spurious
peaks on the response map and the true peak in the center is less sharp, see e.g.
frame 115 in example C with an additional peak, frame 76 in example C and frame
106 in example D with blurred peaks, frame 88 in example A and frame 7 in example
B with multiple peaks, among others. To summarize, Figure 5.10 clearly shows that
our strategy does not negatively interfere with the desired correlation properties of
the learned features, on the contrary, it helps by adaptingly updating the templates.
On the other hand, the accumulated templates of the linear update change at a very
slow rate and are inefficient in keeping up with the appearance variation exhibited
in videos.

5.8 Change Rate for Update

In addition to Figure 5.4 in the chapter, we here provide similar results for the
sequences shown in Figure 5.11 of this section. We calculate the change rate δ
between templates of contiguous frames and show the results in Figure 5.11. Our
UpdateNet provides an adaptive update strategy that is close to the change rate of
the real template, while linear update can only offer a constant change rate. The
change rate for UpdateNet follows the same trends as the ground-truth, see for
example the high correlation with the high peaks in e.g. frame 50 in ‘soldier’, frame
60 in ‘butterfly’ and frame 61 in ‘blanket’. This leads to predicting better response
maps as shown in Figure 5.10.
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Figure 5.10 – Visualization accumulated and ground-truth templates for SiamFC.
The first column shows the search region and the ground-truth box. ‘GT’ shows top
four channels of the real template extracted from the ground-truth box. For each
update strategy (‘Linear’ and ‘UpdateNet’) we show the accumulated templates and
the resulting response map when applied to the search region, respectively.
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Figure 5.11 – Change rate between contiguous frames. We present additional
results for six example videos in VOT2018.
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6 Conclusions and Future Directions

This thesis aims at improving visual tracking in different modalities, including RGB
modality, TIR modality and multi-modal RGB-T setting. First we summarize main
conclusions of the thesis. Finally, we discuss possible directions for future work.

6.1 Conclusions

In this thesis, we investigate visual tracking in various modalities. Based on an
analysis of tracking literature we identified three shortcomings of tracking existing
systems:

• Data-scarcity of TIR tracking: The lack of large labeled datasets hampers the
usage of convolutional neural networks for tracking in thermal infrared (TIR)
images. Therefore, most state of the art methods on tracking for TIR data are
still based on hand-crafted features.

• End-to-end training for RGB-T tracking: The RGB-T tracking predominantly
uses hand-crafted methods for visual tracking, while these have limited per-
formance. Deep learning methods are not yet applied into this field.

• The model-update in RGB tracking: In general, the appearance template in
Siamese approaches is linearly combined with the accumulated template
from the previous frame, resulting in an exponential decay of information
over time. While such an approach to updating has led to improved results, its
simplicity limits the potential gain likely to be obtained by learning to update.

In this thesis, we have explored three deep learning methods to address these
issues. In Chapter 3, we propose to use image-to-image translation models. These
models allow us to translate the abundantly available labeled RGB data to synthetic
TIR data. We explore both the usage of paired and unpaired image translation
models for this purpose. These methods provide us with a large labeled dataset of
synthetic TIR sequences, on which we can train end-to-end optimal features for
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tracking. To the best of our knowledge we are the first to train end-to-end features
for TIR tracking. We perform extensive experiments on VOT-TIR2017 dataset. We
show that a network trained on a large dataset of synthetic TIR data obtains better
performance than one trained on the available real TIR data. Combining both data
sources leads to further improvement. In addition, when we combine the network
with motion features we outperform the state of the art with a relative gain of over
10%, clearly showing the efficiency of using synthetic data to train end-to-end TIR
trackers.

In Chapter 4, we propose an end-to-end tracking framework for fusing the RGB
and TIR modalities in RGB-T tracking. Our baseline tracker is DiMP (Discriminative
Model Prediction), which employs a carefully designed target prediction network
trained end-to-end using a discriminative loss. We analyze the effectiveness of
modality fusion in each of the main components in DiMP, i.e. feature extractor,
target estimation network, and classifier. We consider several fusion mechanisms
acting at different levels of the framework, including pixel-level, feature-level and
response-level. Our tracker is trained in an end-to-end manner, enabling the com-
ponents to learn how to fuse the information from both modalities. As data to
train our model, we generate a large-scale RGB-T dataset by considering an anno-
tated RGB tracking dataset (GOT-10k) and synthesizing paired TIR images using an
image-to-image translation approach. We perform extensive experiments on VOT-
RGBT2019 dataset and RGBT210 dataset, evaluating each type of modality fusing
on each model component. The results show that the proposed fusion mechanisms
improve the performance of the single modality counterparts. We obtain our best
results when fusing at the feature-level on both the IoU-Net and the model predic-
tor, obtaining an EAO score of 0.391 on VOT-RGBT2019 dataset. With this fusion
mechanism we achieve the state-of-the-art performance on RGBT210 dataset.

In Chapter 5, we propose to replace the hand-crafted update function with a
method which learns to update. We use a convolutional neural network, called
UpdateNet, which given the initial template, the accumulated template and the
template of the current frame aims to estimate the optimal template for the next
frame. The UpdateNet is compact and can easily be integrated into existing Siamese
trackers. We demonstrate the generality of the proposed approach by applying
it to two Siamese trackers, SiamFC and DaSiamRPN. Extensive experiments on
VOT2016, VOT2018, LaSOT, and TrackingNet datasets demonstrate that our Up-
dateNet effectively predicts the new target template, outperforming the standard
linear update. On the large-scale TrackingNet dataset, our UpdateNet improves the
results of DaSiamRPN with an absolute gain of 3.9% in terms of success score.
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6.2 Future Directions

We have identified several directions for future work. Large networks are known to
provide excellent feature embedding (Bhat et al., 2019; Li et al., 2018a), but are often
impractical for real-life applications. Network distillation has been successfully
applied to improve image classification (Hinton et al., 2015). Normally it uses a
teacher-student setup in which a teacher (large) network is used to guide a small
student network. This is done by using a loss function that minimizes cross-entropy
between the outputs of the student and teacher network for classification. As is well
known in tracking, real-time tracking is an essential requirement. As now there are
deep trackers which use many large network, achieving high-quality performance,
but with high efficiency cost. Therefore, as a next step we plan to use network
distillation for training efficient small networks which can significantly improve
the tracking performance compared to directly training the student network on the
data.

Recently, multi-modal tracking is attracting more and more attentions in the
tracking community. In this thesis, we have made an effort to improving the RGB-T
tracking and achieved significant tracking performance with the utility of synthetic
TIR data generation. Next step, we will extend this method to other modalities, e.g.
the RGB-D tracking which is also an important subject on VOT2019 challenge (VOT
challenge, 2019). Similar as the RGB-T tracking, the hand-crafted trackers are still
dominating the RGB-D tracking. We will propose specific and effective end-to-end
training mechanism for RGB-D racking, in order to benefit the RGB-D tracking
with deep learning. For the implementation, we will refer to the technique in the
paper (Li et al., 2019) and train an effective depth data generator. Then we apply it
to generate large scale paired RGB-D data for training end-to-end RGB-D trackers.

Visual object tracking (VOT) and semi-supervised video object segmentation
(VOS) have the identical task that both of them require estimating the position of
an arbitrary target specified in the first frame of a video. Recently, more attention is
paid on the VOS (Johnander et al., 2019) and also multi-task for VOT and VOS (Wang
et al., 2019). There are certainly many relations between the two tasks considering
their same track flow. We will make some efforts on the combination of the two
tasks by referring to the works (Johnander et al., 2019; Wang et al., 2019). We will
also investigate more video tasks, e.g. video object recognition, which is similar to
visual tracking. The benefits of co-training of multi-tasks could be: on the one hand,
we can improve the performance of visual tracking by introducing similar tasks. On
the other hand, we can use one unified framework to solve multiple visual tasks.

97





A Publications

A.1 Scientific Articles

• Lichao Zhang, Abel Gonzalez-Garcia, Joost van de Weijer, Martin Danelljan,
Fahad Shahbaz Khan. "Synthetic Data Generation for End-to-End Thermal
Infrared Tracking." In IEEE Transactions on Image Processing (TIP), 28.4 (2018):
1837-1850.

• Lichao Zhang, Martin Danelljan, Abel Gonzalez-Garcia, Joost van de Weijer,
Fahad Shahbaz Khan. "Multi-modal fusion for end-to-end RGB-T tracking."
In Proceedings of the IEEE International Conference on Computer Vision Work-
shops (ICCVW), 2019.

• Lichao Zhang, Abel Gonzalez-Garcia, Joost van de Weijer, Martin Danelljan,
Fahad Shahbaz Khan. "Learning the Model Update for Siamese Trackers." In
Proceedings of the IEEE International Conference on Computer Vision (ICCV),
2019.

• Yaxing Wang, Lichao Zhang, Joost van de Weijer. "Ensembles of generative
adversarial networks." In Workshop on Adversarial Training, NIPS, Barcelona,
Spain, 2016.

• Lu Yu, Lichao Zhang, Joost van de Weijer, Fahad Shahbaz Khan, Yongmei
Cheng, and C. Alejandro Parraga. "Beyond eleven color names for image
understanding." In Machine Vision and Applications, 29.2 (2018): 361-373.

A.2 Contributed Code and Models

• Synthetic TIR Data Generator

https://github.com/zhanglichao/generatedTIR_tracking

• End-to-end Multi-modal Tracking Models
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https://github.com/zhanglichao/end2end_rgbt_tracking

• Siamese Trackers with UpdateNet

https://github.com/zhanglichao/updatenet
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G., Porikli, F., & Čehovin, L. (2016a). A novel performance evaluation methodology
for single-target trackers. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 38(11), 2137–2155.

Kristan, M., Pflugfelder, R., Leonardis, A., Matas, J., Porikli, F., Cehovin, L., Nebehay,
G., Fernandez, G., Vojir, T., Gatt, A., et al. (2016b). The visual object tracking
vot2016 challenge results. In Proceedings of the European Conference on Computer
Vision Workshops.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Annual Conference on Neural Information
Processing Systems (NIPS).

Lee, H., & Kim, D. (2018). Salient region-based online object tracking. In 2018 IEEE
Winter Conference on Applications of Computer Vision (WACV), (pp. 1170–1177).
IEEE.

Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., & Yan, J. (2018a). Siamrpn++: Evolution
of siamese visual tracking with very deep networks. CoRR, abs/1812.11703.

Li, B., Yan, J., Wu, W., Zhu, Z., & Hu, X. (2018b). High performance visual tracking
with siamese region proposal network. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Li, C., Cheng, H., Hu, S., Liu, X., Tang, J., & Lin, L. (2016). Learning collaborative
sparse representation for grayscale-thermal tracking. Transactions on Image
Processing, 25(12), 5743–5756.

Li, C., Liang, X., Lu, Y., Zhao, N., & Tang, J. (2018c). Rgb-t object tracking: benchmark
and baseline. CoRR, abs/1805.08982.

Li, C., Sun, X., Wang, X., Zhang, L., & Tang, J. (2017a). Grayscale-thermal object
tracking via multitask laplacian sparse representation. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 47(4), 673–681.

106



Bibliography

Li, C., & Wand, M. (2016). Precomputed real-time texture synthesis with markovian
generative adversarial networks. In European Conference on Computer Vision
(ECCV).

Li, C., Zhao, N., Lu, Y., Zhu, C., & Tang, J. (2017b). Weighted sparse representation
regularized graph learning for rgb-t object tracking. In Proceedings of the 25th
ACM international conference on Multimedia, (pp. 1856–1864). ACM.

Li, C., Zhu, C., Huang, Y., Tang, J., & Wang, L. (2018d). Cross-modal ranking with soft
consistency and noisy labels for robust rgb-t tracking. In European Conference
on Computer Vision (ECCV), (pp. 808–823).

Li, F., Tian, C., Zuo, W., Zhang, L., & Yang, M.-H. (2018e). Learning spatial-temporal
regularized correlation filters for visual tracking. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Li, Z., Dekel, T., Cole, F., Tucker, R., Snavely, N., Liu, C., & Freeman, W. T. (2019).
Learning the depths of moving people by watching frozen people. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 4521–
4530).

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., &
Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In European
Conference on Computer Vision (ECCV), (pp. 740–755). Springer.

Liu, H., & Sun, F. (2012). Fusion tracking in color and infrared images using joint
sparse representation. Science China Information Sciences, 55(3), 590–599.

Liu, L., Xing, J., Ai, H., & Ruan, X. (2012). Hand posture recognition using finger
geometric feature. In International Conference on Pattern Recognition (ICPR).

Lukezic, A., Vojír, T., Zajc, L. C., Matas, J., & Kristan, M. (2017). Discriminative
correlation filter with channel and spatial reliability. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Ma, C., Huang, J.-B., Yang, X., & Yang, M.-H. (2015a). Hierarchical convolutional
features for visual tracking. In IEEE International Conference on Computer Vision
(ICCV).

Ma, C., Yang, X., Zhang, C., & Yang, M.-H. (2015b). Long-term correlation tracking.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784.

107



Bibliography

Mueller, M., Smith, N., & Ghanem, B. (2016). A benchmark and simulator for uav
tracking. In European Conference on Computer Vision (ECCV).

Mueller, M., Smith, N., & Ghanem, B. (2017a). Context-aware correlation filter
tracking. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Mueller, M., Smith, N., & Ghanem, B. (2017b). Context-aware correlation filter
tracking. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
(pp. 1396–1404).

Muller, M., Bibi, A., Giancola, S., Alsubaihi, S., & Ghanem, B. (2018). Trackingnet: A
large-scale dataset and benchmark for object tracking in the wild. In European
Conference on Computer Vision (ECCV).

Nam, H., Baek, M., & Han, B. (2016). Modeling and propagating cnns in a tree
structure for visual tracking. arXiv preprint arXiv:1608.07242.

Nam, H., & Han, B. (2016). Learning multi-domain convolutional neural networks
for visual tracking. In IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

Nocedal, J., & Wright, S. J. (2006). Numerical optimization 2nd.

Palmero, C., Clapés, A., Bahnsen, C., Møgelmose, A., Moeslund, T. B., & Escalera, S.
(2016). Multi-modal rgb–depth–thermal human body segmentation. Interna-
tional Journal of Computer Vision, 118(2), 217–239.

Park, E., & Berg, A. C. (2018). Meta-tracker: Fast and robust online adaptation for
visual object trackers. arXiv preprint arXiv:1801.03049.

Perarnau, G., van de Weijer, J., Raducanu, B., & Álvarez, J. M. (2016). Invertible
conditional gans for image editing. In Advances in Neural Information Processing
Systems 2016 Workshop on Adversarial Training.

Portmann, J., Lynen, S., Chli, M., & Siegwart, R. (2014). People detection and
tracking from aerial thermal views. In International Conference on Robotics and
Automation (ICRA).

Real, E., Shlens, J., Mazzocchi, S., Pan, X., & Vanhoucke, V. (2017). Youtube-
boundingboxes: A large high-precision human-annotated data set for object
detection in video. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, (pp. 5296–5305).

108



Bibliography

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, (pp. 779–788).

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time
object detection with region proposal networks. In Annual Conference on Neural
Information Processing Systems (NIPS).

Renoust, B., Le, D.-D., & Satoh, S. (2016). Visual analytics of political networks from
face-tracking of news video. IEEE Transactions on Multimedia, 18(11), 2184–2195.

RGB-T dataset (2018). https://sites.google.com/view/ahutracking001.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 115(3), 211–252.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016).
Improved techniques for training gans. In Annual Conference on Neural Informa-
tion Processing Systems (NIPS).

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556.

Song, X., Herranz, L., & Jiang, S. (2017a). Depth cnns for rgb-d scene recognition:
Learning from scratch better than transferring from rgb-cnns. In AAAI Conference
on Artificial Intelligence (AAAI).

Song, Y., Ma, C., Gong, L., Zhang, J., Lau, R. W., & Yang, M.-H. (2017b). Crest: Convo-
lutional residual learning for visual tracking. In IEEE International Conference on
Computer Vision (ICCV).

Song, Y., Ma, C., Wu, X., Gong, L., Bao, L., Zuo, W., Shen, C., Lau, R. W., & Yang,
M.-H. (2018). Vital: Visual tracking via adversarial learning. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

Stauffer, C., & Grimson, W. E. L. (1999). Adaptive background mixture models for
real-time tracking. In IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

109

https://sites.google.com/view/ahutracking001


Bibliography

Sun, C., Wang, D., Lu, H., & Yang, M.-H. (2018a). Correlation tracking via joint
discrimination and reliability learning. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Sun, C., Wang, D., Lu, H., & Yang, M.-H. (2018b). Learning spatial-aware regres-
sions for visual tracking. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Tao, R., Gavves, E., & Smeulders, A. W. (2016). Siamese instance search for tracking.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Torabi, A., Massé, G., & Bilodeau, G.-A. (2012). An iterative integrated framework for
thermal–visible image registration, sensor fusion, and people tracking for video
surveillance applications. Computer Vision and Image Understanding, 116(2),
210–221.

Valmadre, J., Bertinetto, L., Henriques, J., Vedaldi, A., & Torr, P. H. (2017). End-to-end
representation learning for correlation filter based tracking. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

Valmadre, J., Bertinetto, L., Henriques, J. F., Tao, R., Vedaldi, A., Smeulders, A. W.,
Torr, P. H., & Gavves, E. (2018). Long-term tracking in the wild: A benchmark. In
European Conference on Computer Vision (ECCV), (pp. 670–685).

Van De Weijer, J., Schmid, C., Verbeek, J., & Larlus, D. (2009). Learning color names
for real-world applications. Transactions on Image Processing, 18(7), 1512–1523.

VOT challenge (2019). www.votchallenge.net/vot2019.

Wang, Q., Gao, J., Xing, J., Zhang, M., & Hu, W. (2017). Dcfnet: Discriminant
correlation filters network for visual tracking. arXiv preprint arXiv:1704.04057.

Wang, Q., Teng, Z., Xing, J., Gao, J., Hu, W., & Maybank, S. (2018). Learning attentions:
residual attentional siamese network for high performance online visual tracking.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Wang, Q., Zhang, L., Bertinetto, L., Hu, W., & Torr, P. H. (2019). Fast online object
tracking and segmentation: A unifying approach. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, (pp. 1328–1338).

Wu, Y., Blasch, E., Chen, G., Bai, L., & Ling, H. (2011). Multiple source data fusion via
sparse representation for robust visual tracking. In 14th International Conference
on Information Fusion, (pp. 1–8). IEEE.

110

www.votchallenge.net/vot2019


Bibliography

Wu, Y., Lim, J., & Yang, M.-H. (2013). Online object tracking: A benchmark. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Wu, Y., Lim, J., & Yang, M.-H. (2015). Object tracking benchmark. Transactions of
Pattern Recognition and Machine Analyses (PAMI), 37(9), 1834–1848.

Wu, Z., Fuller, N., Theriault, D., & Betke, M. (2014). A thermal infrared video
benchmark for visual analysis. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops.

Xu, D., Ouyang, W., Ricci, E., Wang, X., & Sebe, N. (2017). Learning cross-modal deep
representations for robust pedestrian detection. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Xu, T., Feng, Z.-H., Wu, X.-J., & Kittler, J. (2018). Learning adaptive discriminative
correlation filters via temporal consistency preserving spatial feature selection
for robust visual tracking. CoRR, abs/1807.11348.

Yang, T., & Chan, A. B. (2018). Learning dynamic memory networks for object
tracking. In European Conference on Computer Vision (ECCV).

Yao, Y., Wu, X., Zhang, L., Shan, S., & Zuo, W. (2018). Joint representation and
truncated inference learning for correlation filter based tracking. In European
Conference on Computer Vision (ECCV).

Youtube Statistics (2019). https://merchdope.com/youtube-stats.

Yu, X., & Yu, Q. (2018). Online structural learning with dense samples and a weight-
ing kernel. Pattern Recognition Letters, 105, 59–66.

Yu, X., Yu, Q., Shang, Y., & Zhang, H. (2017). Dense structural learning for infrared
object tracking at 200+ frames per second. Pattern Recognition Letters, 100,
152–159.

Zhang, K., Zhang, L., Liu, Q., Zhang, D., & Yang, M.-H. (2014). Fast visual tracking via
dense spatio-temporal context learning. In European Conference on Computer
Vision (ECCV).

Zhang, L., Bi, D., Zha, Y., Gao, S., Wang, H., & Ku, T. (2016a). Robust and fast visual
tracking via spatial kernel phase correlation filter. Neurocomputing, 204, 77–86.

Zhang, L., Gonzalez-Garcia, A., van de Weijer, J., Danelljan, M., & Khan, F. S. (2019a).
Synthetic data generation for end-to-end thermal infrared tracking. Transactions
on Image Processing, 28(4), 1837–1850.

111

https://merchdope.com/youtube-stats


Bibliography

Zhang, R., Isola, P., & Efros, A. A. (2016b). Colorful image colorization. In European
Conference on Computer Vision (ECCV).

Zhang, T., Xu, C., & Yang, M.-H. (2019b). Learning multi-task correlation particle fil-
ters for visual tracking. Transactions of Pattern Recognition and Machine Analyses
(PAMI), 41(2), 365–378.

Zhang, Y., Wang, L., Qi, J., Wang, D., Feng, M., & Lu, H. (2018). Structured siamese
network for real-time visual tracking. In European Conference on Computer Vision
(ECCV).

Zhu, G., Porikli, F., & Li, H. (2016). Beyond local search: Tracking objects everywhere
with instance-specific proposals. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image transla-
tion using cycle-consistent adversarial networks. In IEEE International Confer-
ence on Computer Vision (ICCV).

Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., & Hu, W. (2018). Distractor-aware siamese
networks for visual object tracking. In European Conference on Computer Vision
(ECCV).

112


	Abstract (English/Spanish/Catalan)
	List of figures
	List of tables
	Introduction
	Towards End-to-End Training for Visual Tracking in RGB and TIR Videos
	Synthetic Data Generation for End-to-End Thermal Infrared Tracking
	Multi-Modal Fusion for End-to-End RGB-T Tracking
	Learning the Model Update for Siamese Trackers

	Objectives and Approach
	Synthetic Data Generation for End-to-End TIR Tracking
	Multi-Modal Fusion for End-to-End RGB-T Tracking
	Learning the Model Update for Siamese Trackers


	Visual Tracking
	Visual Trackers
	Optimization Based Trackers
	Siamese Network Based Trackers
	Optimization and Siamese Network Based Trackers

	Datasets
	RGB Datasets
	TIR Datasets
	RGB-TIR Datasets


	Synthetic Data Generation for End-to-End Thermal Infrared Tracking
	Introduction
	Related Work
	DCF Tracking
	TIR Tracking
	Image-to-Image Translation

	Method Overview
	Deep Learning Features for Correlation Filter Tracking
	Correlation Filter Tracking
	Efficient Convolution Operators

	Generating TIR images
	Image-to-Image Translation Methods
	Datasets
	Implementation Details
	TIR Image Translation Quality

	Experimental Results
	Datasets
	Evaluation Measures and Protocol
	Implementation Details
	Network Layers
	Network Architectures
	Results on Real and Generated Data
	Adding Motion Features
	State-of-the-Art Comparison
	TIR Data Attributes Analysis

	Conclusion

	Multi-Modal Fusion for End-to-End RGB-T Tracking
	Introduction
	Related Work
	Single Modality Tracking
	Modality Fusion Tracking

	Baseline RGB Tracker
	End-to-End Multi-Modal Tracking
	Multi-Modal Fusion for Tracking
	RGB-T Data Generation

	Experiments
	Generating the Training RGB-T Dataset
	Evaluation Datasets and Protocols
	Implementation Details
	Analysis of Fusion Mechanisms
	VOT-RGBT2019 Dataset
	RGBT210 Dataset
	Attribute Analysis on RGBT210 Dataset

	Conclusions

	Learning the Model Update for Siamese Trackers
	Introduction
	Related Work
	Updating the Object Template
	Standard Update
	Learning to Update
	Tracking Framework With UpdateNet
	Training UpdateNet

	Experiments
	Training Dataset
	Evaluation Datasets and Protocols
	Implementation Details
	Ablation Study
	Analysis on Representation Update
	Generality and Tracking Speed
	Fine-tuning the Linear Update Rate
	Comparison With Other Updating Strategies
	LaSOT Dataset
	TrackingNet Dataset

	Conclusions
	Difference With Offline Weighted Fusion
	Visualization of Updating Templates
	Change Rate for Update

	Conclusions and Future directions
	Conclusions
	Future Directions

	Publications
	Scientific Articles
	Contributed Code and Models

	Bibliography

	Títol de la tesi: Towards End-to-End Networks forVisual Tracking in RGB and TIR Videos
	Nom autor/a: Lichao Zhang


