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Abstract

Urgent actions are required to mitigate climate change and global warming. Decarbonizing our en-
ergy systems represents an important step in that direction. For the power grid, this means integrating
larger share of renewable sources (RES), such as solar and wind power. Due to their variability and un-
predictability, these sources however pose some challenges to the grid if they constitute the main elec-
tricity supply: possible supply-demand mismatch, consequent necessity to curtail RES production or
to use peak fossil-fueled plants, grid congestions due to prosumers and decentralization, inviability of
the other peak power plants without subsidies. Demand-side management (DSM), which consists in
increasing the flexibility of the demand-side, constitutes a promising set of solutions to help manage
the operation of the grid with high shares of RES. In particular, buildings and their embedded thermal
mass can be regarded as thermal storage, and heat pumps represent one of the most ideal means to
couple such storage with the power grid and cover the heating, cooling and hot water loads in a more
flexible manner.

Smart controls for heat pumps are required to harness the full energy flexibility potential of build-
ing thermal loads. A thorough literature review revealed that most strategies used for this purpose can
be classified in two categories: rule-based control (RBC) and model predictive control (MPC). RBC
is made of simple rules of the form ”if a condition is verified, then take an action”. MPC is a more
advanced strategy that makes use of models and forecasts the behaviour of the systems in the near
future in order to find the optimal plan of action. It requires the prior development of models, and
the solving of an optimization problem at regular time intervals. For this reason, its development and
operating costs are higher, although it outperforms RBC strategies in most cases. Both RBC and MPC
can use external signals (named penalty signals in this thesis) to prompt their actions. The price of
electricity is most often used for this purpose, leading to strategies that aim to reduce the costs. It was
suggested to use also other signals, for this purpose a CO2 emissions signals was developed and used.
This signal was derived from a new methodology presented in this work, and represents the marginal
emissions of the grid (MEF): it thus gives a more accurate estimation of the potential impacts of DSM
actions in terms of carbon footprint.

In the mark of this thesis, both an RBC and an MPC controllers were developed as supervisory
controls for an air-to-water heat pump supplying the heating, cooling and hot water needs of a res-
idential building. The RBC strategy consists in modulating the set-points in the indoor space and
in a hot water tank, using the penalty signal as trigger for the modulation. The MPC strategy con-
sists in minimizing the overall summed penalties due to the heat pump use, while balancing with
comfort constraints and a proper operation of the systems. Two versions of these controllers were
produced: one using the electricity price as penalty signal, the other using the marginal emissions.
The MPC controller in particular required the development of a simplified model of the building en-
velope (resistance-capacitance grey-box model) and of the heat pump performance, both adjusted
differently for heating or cooling operation. The MPC included several novelties in its configuration,
such as the mixed-integer formulation, the heat pump simplified model based on experimental data
and the consideration of its computational delay.

The developed controllers were then tested, firstly in an experimental setup. This laboratory setup
applies the hardware-in-the-loop concept, with a real heat pump installed in the laboratory facilities,
and connected to thermal benches that emulated the thermal loads from a building model running in
real time. The study case was a residential flat representative from the Mediterranean area of Spain,
and the boundary conditions therefore also were taken from this location (weather and grid data for
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a summer period and a winter period). Implementing the control strategies on a real heat pump en-
abled to highlight some practical challenges such as model mismatch in the MPC, communication
issues, interfacing and control conflicts with the heat pump local controller. These observations also
form part of the valuable output of the thesis.

Further than the experimental setup, a simulation-only framework was also developed to test other
configurations of the controllers. In that case, the real heat pump was replaced by a detailed model
which was specially developed for this purpose, since such model did not previously exist in the con-
sidered simulation framework. The detailed model is based on static tests performed in the laboratory,
and therefore reproduces the dynamic behavior of the heat pump with high fidelity. The co-simulation
framework uses TRNSYS as the main dynamic building simulation tool, coupled with MATLAB for the
implementation of the MPC controller, and can be used to perform numerous simulations with the
same boundary conditions, enabling repeatability and comparison across cases.

The results from experimental and simulation studies revealed the ability of both types of con-
trollers to shift the building loads towards periods where the electricity was either cheaper or less
CO2-emitting. These two objectives were in fact contradictory, a cost reduction leading to an increase
in emissions and vice-versa. In the cases where the reference thermostat control presented a large
margin for improvements, the RBC and MPC controllers performed equally and provided important
savings: around 15% emissions savings in heating mode, and 30% cost savings in cooling mode. In
the cases where the reference control already performed close to optimally, the RBC controller failed
to provide improvements, while the MPC benefitted from its stronger optimization and prediction
features, reaching 5% cost savings in heating mode and 10% emissions savings in cooling mode.

The research carried out in the framework of this thesis covered many aspects of energy flexibility
in buildings: creation of input penalty signals, graphical representation of flexibility, development of
controllers, performance in realistic experimental setup, fitting of appropriate models and compared
performance in heating and cooling. The development efforts and barriers hindering the deployment
of MPC controllers at large scale for building climate control have additionally been discussed. The
performance of the developed controllers was evidenced in the thesis, proving their potential for load-
shifting incentivized by different penalty signals: they could become a strong asset to unlock demand-
side flexibility and in fine, help integrating a larger share of RES in the grid.

Keywords: heat pumps, model predictive control, building model, rule-based control, energy flexi-
bility, HVAC control, smart grid, mixed-integer MPC formulation, energy-flexible building.



Resumen

La situación de emergencia climática en la que se encuentra nuestro planeta requiere de acciones
urgentes e inaplazables para mitigar los efectos del cambio climático. Una de las importantes es-
trategias que se están adoptando en esta dirección es la descarbonización de los sistemas energéticos,
desde el transporte a la industria pasando por la edificación. En el caso de la red eléctrica, la estrategia
pasa por integrar una mayor proporción de fuentes de energı́a renovables, con la intención de reducir
al máximo o a cero la producción de electricidad basada en combustibles fósiles. Debido a su vari-
abilidad y su dependencia meteorológica, la alta penetración de fuentes de energı́a renovables como
la energı́a solar o eólica plantea una serie de desaf́ıos tecnológicos al sistema de producción, trans-
misión y distribución eléctrica. Entre estos desaf́ıos a solucionar podemos citar: el posible desequi-
librio entre la demanda y la producción eléctrica, la consecuente necesidad de restringir la producción
basada en energı́as renovables en ciertos momentos, o de recurrir a centrales de generación que usan
combustibles fósiles para puntas de demanda, la potencial congestión de las redes de distribución
por la descarbonización de ciertos consumos energéticos, la proliferación de sistemas de generación
renovable descentralizada y de los prosumidores. La gestión de la demanda (DSM del inglés Demand
Side Management) define un conjunto de estrategias cuyo objetivo es aumentar la flexibilidad en los
puntos de demanda para contribuir de forma eficiente a la gestión de una infraestructura eléctrica
con un alto nivel de penetración de energı́as renovables. En particular, los edificios y su masa térmica
incorporada tienen una capacidad de almacenamiento térmico y pueden ser activados como fuentes
de flexibilidad para el sistema eléctrico. El uso de bombas de calor y su gestión inteligente para cubrir
las demandas de climatización y agua caliente sanitaria en la edificación representan una herramienta
ideal para poder gestionar los edificios como un activo flexible para el sistema eléctrico.

Para aprovechar de forma adecuada todo el potencial de flexibilidad energética de las cargas térmicas
en los edificios equipados con bombas de calor se requiere de sistemas de control inteligente. Una ex-
tensa revisión bibliográfica ha revelado que la mayorı́a de las estrategias de gestión utilizadas para esta
finalidad pueden ser clasificadas en dos categorı́as: control predictivo en base a modelos (MPC, del
inglés Model Predictive Control) o control en base a reglas (RBC, del inglés Rule-based control). RBC
se basa en reglas simples de la forma “si una condición se cumple, entonces realiza una acción”. La
gestión tipo MPC constituye una estrategia más avanzada que utiliza modelos y previsiones para pre-
decir el comportamiento de los sistemas en el futuro cercano y encontrar un plan de acción óptimo.
Los sistemas MPC requieren el desarrollo preliminar de modelos y la resolución de un problema de
optimización cada cierto paso de tiempo. Por esta razón, su desarrollo y sus costes de operación son
más elevados, aunque generalmente funcionan mejor que las estrategias tipo RBC. Ambos sistemas,
tanto RBC como MPC, pueden utilizar señales externas de gestión dinámicas (llamadas señales de
penalización en esta tesis) para fundamentar sus decisiones. El precio de la electricidad es utilizado
de forma habitual como señal de penalización en estrategias que tienen como objetivo la reducción
del coste económico, aunque la utilización de otro tipo de señales es posible. En el marco de esta
tesis también se han utilizado señales de penalización basadas en las emisiones de CO2. Para ello, se
ha desarrollado una nueva metodologı́a que permite definir una señal de las emisiones marginales
de CO2 basada en la información del sistema eléctrico, con el objetivo de tener en cuenta con más
precisión el impacto en términos de huella de carbono de las estrategias de gestión de la demanda
implementadas.

En el marco de esta tesis, se han desarrollado controles para sistemas de bombas de calor aire-agua
de capacidad variable que cubren las demandas de calefacción, refrigeración y agua caliente sanitaria
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en el ámbito residencial. Se han desarrollado estrategias basadas en controladores tipo RBC y MPC.
La estrategia RBC consiste en modular las temperaturas de consigna en la zona de la vivienda y en
el tanque de almacenamiento de agua caliente, respondiendo a la forma de la señal de penalización.
La estrategia MPC consiste en minimizar las penalizaciones totales del sistema al mismo tiempo que
se consideran las restricciones operativas de los equipos y las derivadas del confort térmico de los
ocupantes de la vivienda. Se han desarrollado y testeado dos versiones de ambos controladores us-
ando el precio de la electricidad y las emisiones marginales de CO2 como señales de penalización.
En particular, el controlador tipo MPC ha requerido el desarrollo de modelos simplificados, llama-
dos de caja-gris, para predecir la demanda del edificio y el rendimiento de la bomba de calor, tanto
en modo calefacción como en modo refrigeración, que presentan avances significativos en su aprox-
imación metodológica. Otras novedades añadidas en la configuración del MPC son la formulación
entera mixta, y la consideración del retraso debido al tiempo de cómputo.

Un aspecto altamente relevante de este trabajo es que los controladores fueron testeados en primer
lugar en un entorno experimental semi-virtual. Este entorno basado en el concepto “hardware-in-the-
loop” posibilita el test de una bomba de calor real instalada en un laboratorio conjuntamente con los
sistemas de control desarrollados, conectados a unos bancos térmicos que emulan en tiempo real y
de forma dinámica las cargas térmicas de un edificio modelizado mediante un software especializado.
El caso testeado corresponde a una vivienda residencial representativa de la región mediterránea de
España, y las condiciones de contorno (datos meteorológicos, ocupación de la vivienda, condiciones
de la red eléctrica, etc.) se han seleccionado para reproducir periodos significativos de invierno y ver-
ano. Los resultados obtenidos en el entorno experimental han permitido poner de manifiesto algunos
retos prácticos en la implementación de las estrategias de control, tales como la discrepancia en el
modelo del MPC y conflictos de comunicación, de interconexión y de control con el controlador lo-
cal de la bomba de calor. Estas observaciones forman parte de los resultados de la tesis al aportar
conocimientos valiosos en la implementación práctica del control de bombas de calor de capacidad
variable y sobre los beneficios esperados de las diferentes estrategias implementadas.

De forma complementaria al entorno experimental, un entorno completo de co-simulación ha
sido creado con el objetivo de testear y analizar diversas configuraciones de los controladores. Para
ello, se ha desarrollado un modelo altamente detallado de la bomba de calor, basado en ensayos de
caracterización realizados en laboratorio, que reproduce el comportamiento dinámico de la bomba
de calor con alta fidelidad. El entorno de co-simulación usa TRNSYS como la herramienta de sim-
ulación principal acoplada con MATLAB para la implementación del controlador MPC. El entorno
ha sido validado con los resultados experimentales y ha sido utilizado para realizar simulaciones que
permiten la comparación entre casos y el análisis del impacto de variaciones en la formulación de los
controladores.

Tanto los resultados experimentales como los simulados han revelado la capacidad de los dos tipos
de controladores de desplazar las cargas del edificio en el tiempo hacia periodos donde la electricidad
era más barata o habı́a menos emisiones de CO2. Por la forma de las señales de penalización, es-
tos dos objetivos presentaban, de hecho, impactos contradictorios, ya que una reducción del coste
económico producı́a un aumento de emisiones y viceversa. En los casos donde el control de referen-
cia con termostato y control por sonda exterior presentaba un amplio margen de mejora, los contro-
ladores RBC y MPC han demostrado la capacidad de actuar eficientemente y proveer ahorros impor-
tantes: alrededor de un 15% de emisiones en modo calefacción y de un 30% de coste económico en
modo frı́o. En aquellos casos testeados en los que el control de referencia actuaba de forma cercana a
la óptima, los controladores RBC no han sido capaces de actuar eficientemente y aportar mejoras sig-
nificativas, mientras que las estrategias basadas en MPC han demostrado la capacidad de conseguir
ahorros de un 5% de coste económico en modo calefacción y de un 10% de emisiones en modo frı́o,
gracias a su formulación basada en optimización y predicción.

La investigación realizada en esta tesis ha abarcado amplios aspectos de la flexibilidad energética
en los edificios: la generación de señales de penalización, la representación gráfica del potencial de
flexibilidad energética de los edificios residenciales, el ajuste de modelos simplificados y detallados
para este análisis, el desarrollo de controladores y ensayo tanto en un entorno experimental como
en un entorno de simulación, con la consecuente evaluación de su rendimiento comparado tanto
en periodos de invierno con predominancia de cargas de calefacción como en verano con cargas de
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refrigeración. Las conclusiones extraı́das en el proceso de desarrollo e implementación práctica han
permitido discutir las ventajas y potencial impacto del despliegue de controladores RBC y MPC a gran
escala, ası́ como las barreras que dificultan su implementación. Finalmente, la tesis ha evidenciado
el rendimiento de los controladores desarrollados si se formulan de forma adecuada, demostrando
su potencial para el desplazamiento del consumo eléctrico en la edificación residencial con sistemas
de bomba de calor respondiendo a diferentes señales de penalización. En conclusión, los sistemas
propuestos pueden ser elementos muy valiosos para favorecer la necesaria flexibilidad de la demanda
térmica en la edificación y posibilitar la integración de sistemas de generación renovables en la red.

Palabras clave: bombas de calor, control predictivo, modelización de edificios, control basado en
reglas, flexibilidad energética, control de climatización y refrigeración, red inteligente, formulación de
MPC mixta entera, edificio de energı́a flexible.
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Chapter I

Introduction and motivations

1 Motivations

1.1 Urgency of climate change mitigation

The work developed during this thesis is largely driven by the general emergency of the climate
crisis and of the global warming situation. It certainly does not come as fresh news, but the Earth
is warming up at an unprecedented pace in the known history of our planet. The latest report of
the Intergovernmental Panel on Climate Change (IPCC) establishes clearly that the Earth has already
warmed on average by 1°C compared to pre-industrial levels, and that global warming will certainly
reach at least 1.5°C by 2030 due to manmade activities [1]. A constant flow of new science and infor-
mation tells us every day how urgent is the situation, and how global warming has already become a
reality.

July 2019 was the hottest month recorded on Earth. It followed June 2019 which was the warmest
June ever measured globally [2]. All previous records also belonged to recent years. The Greenland ice
sheet broke records on 1 August 2019 by losing more water volume in 1 day than on than any other day
since records began in 1950, shedding 12.5 billion tons of water into the sea [3]. This extreme event
is only a manifestation of the constant decline in the Arctic sea ice extent, with a rate of 7.3% every
decade. In the Arctic circle, temperatures almost 10°C higher than the 1980-2010 average have caused
unprecedented wildfires in large parts of Siberia, releasing 50 Mt CO2 in June 2019 only. These few
pieces of news are only a sample taken from this summer, and there is no doubt that the remaining of
the year 2019, until this thesis will be defended, will bring its own lot of alarming news and sad records.

Although the assessment of the global situation is now clear and consensual, insufficient actions
are being implemented to counteract global warming and decrease the rate of emissions due to mankind
activities. As proof of the global awareness on this matter, 935 jurisdictions have already declared of-
ficially a climate emergency as of the 13th of August 2019, including for instance the cities of Paris and
London or the regional government of Catalonia in Spain [4]. Acknowledging the problem represents
a first step, however the governing bodies should not stop there, and actually put policies into action
in order to mitigate the climate crisis and its effects on the planet.

To avoid a global warming beyond 1.5°C and the catastrophic consequences related to such an
important climate change, an inflection of the human-made emissions curve is urgently needed [1].
The acknowledgement of the climate phenomenon has been delayed for decades because of counter-
forces such as lobbies, industries and politics. There is now little time left for action to avoid reaching
the tipping point which would completely deregulate the Earth’s climate. For this reason, the emis-
sions must be drastically reduced in the very near future. However, the current predictions rather
anticipate a constant increase of the global emissions, although probably at a slower pace or reaching
a plateau if some measures are taken.

Even though the current policies clearly lack ambition in terms of climate change mitigation, sev-
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eral initiatives are being taken in the good direction. At the global level, the Paris agreement accorded
at the end of the COP21 conference in 2015 led to the outline of an overall plan for actions at an in-
ternational level [5]. However the text was not binding and the USA have unfortunately withdrawn
from the agreement afterwards. In Europe, the Commission has enforced its latest package on energy
in mid-2019 [6]. Called the ”Clean energy for all Europeans”, this package contains the targets for the
European Union for 2030: 40% cuts in greenhouse gas emissions, 32% of renewables in the energy
consumption, and 32.5% energy efficiency. The Member States must implement these targets into
their national law in the upcoming 1 or 2 years.

1.2 Penetration of renewable energies in the power grid

The first two goals of the Clean energy for all Europeans package can be partly reached by increas-
ing the proportion of renewable energies in the energy mix of the EU countries. The IPCC also calls
among other recommendations for a deep and fast decarbonization of our energy systems [1]. In
particular, we focus here on the power grid, hence not considering directly thermal networks or the
transport sector, which also form a great proportion of the overall energy systems.

Decarbonizing the power systems will require an ever increasing proportion of energy coming from
renewable sources (RES). Achieving 100% of RES in the grid remains a very challenging goal towards
which we must aim, the current goal of the EU for 2030 being 32%, as a reminder. Hydropower already
contributes significantly to the penetration of RES in several countries, but this resource is geograph-
ically limited to a few sites where it is mostly already exploited [7]. Nowadays, the fastest growing RES
sectors consist of solar and wind power: the rapid decline in the cost of these technologies has made
them cost-competitive against other fossil or nuclear fuels, and has led to their accelerated deploy-
ment [8]. Figure I.1 shows the installed capacity of wind and solar power plants, over the period 2006
- 2018, based on data from [9], [10]. In a little bit more than a decade, the capacity of these two tech-
nologies has been multiplied by 10. The capacity of solar plants was almost nonexistent in 2006, and
has now reached more than 500 GW in the world in 2018.
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Figure I.1. Global installed capacity of wind and solar power in the period 2006-2018, and auction prices for PV
and wind plants in the period 2010-2018. The percentages show the increase in the total installed capacity (wind
and PV) from one year to the next. Sources: REN21 and IRENA reports [9], [10].

Figure I.1 also displays the evolution of the auction prices for new power solar and wind power
plants over the years 2010 to 2018. The price has only slightly decreased for new wind farms, reaching
the level of 55 USD/MWh, since this technology was already mature in 2010. On the other hand,
photovoltaic (PV) technology has seen its auction price decreased significantly, almost divided by 5
between 2010 and 2018, from 241 to 62 USD/MWh. New record low prices are often beaten, the latest
to date being 14.67 =C/MWh (around 16 USD/MWh) in Portugal in July 2019 [11]. These constantly
declining costs have been the driving force behind the rapid growth of these technologies, which are
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now entirely competitive against other non-renewable sources of energy, even without subsidies.

The situation is not uniform across the globe, with China for instance still building new coal plants
- the most emitting source of energy. Overall, the rapid growth of RES still constitutes a satisfactory
trend for all states committed to reduce their greenhouse gas emissions. However, the inherent in-
termittency of solar and wind power also poses certain threats to the stability of the electricity grids.
Indeed, these two power sources highly depend on climatic conditions, which can result in possible
mismatch between this variable production and the demand when the penetration of RES is high.
This energy transition might thus provoke challenges and instability in the electricity grids, if non-
dispatchable sources such as solar and wind become predominant. Some regions already experience
the effects of a high penetration of renewable energy sources (RES): in Germany for example, where
the share of solar energy is high, prices can become negative at times of high production. In such
cases, curtailment of the RES constitutes an easy solution, but basically consist in wasting free avail-
able energy, like these days of December 2012 where 300 MW of wind power were curtailed [12].

A high proportion of RES can have different adverse effects. As already mentioned, at some times
of the day, it can happen that the production surpasses the demand, because of the high availability
of these sources. At other times, the production from renewables might be insufficient to cover the
demand, and other peak power plants must be activated. These plants must be easily dispatchable
and often rely on coal or natural gas as their main source of energy. Such peak power plants must
be maintained all year round to ensure an availability of their power capacity at times where the pro-
duction from solar and wind would be insufficient. Some economical problems then occur regarding
their profitability: they would be activated only during few hours of the year, only when RES are not
available. If there is enough RES, gas or coal cannot compete, since the marginal costs of solar or wind
is virtually null (they do not consume any fuel, contrary to a gas or coal plant). In these conditions,
owning, investing or running a gas or coal plant is not anymore profitable on a yearly basis. However,
these peak power plants are still needed to guarantee a power supply in case of low RES availability all
year round. Their financial viability is thus challenged by a high RES penetration.

Another challenge raised by the emergence of cleaner sources of energy is the possible emergence
of congestion problems in the grid. The current power grid was built under the assumption of a very
centralized system, with large power plants at the core of the system, and a ramified distribution sys-
tem dispatching the electricity until the end-users. RES are by essence often decentralized, and spread
over the territory. Consumers can now become prosumers by installing small scale PV panels or wind-
millls, and also inject power into the grids. The power lines have not been dimensioned to support
such large power flows, and this could cause congestions in the grid. The most famous example about
this issue is the ”duck curve” in California: this American state has had a very high penetration of solar
energy in its grid in recent years. For this reason, the residual load (load minus production of RES)
is rather low during midday hours, when solar production is at its maximum: this is the belly of the
duck. However in the evening, the sun sets and the PV panels stop producing, causing all users to
switch from their PV production to the grid supply. In a very short time, the residual load increases at
a high pace (it is the neck of the duck), potentially provoking congestions, and requiring other power
sources which must ramp very fast to supplant the solar supply every evening. This is another illus-
tration of adverse effects provoked by a high penetration of variable RES.

To summarize, increasing the share of renewable sources in our energy mix is an absolute necessity
if we are to decarbonize our energy systems and reduce our greenhouse gas emissions. Solar and wind
power show a good potential to achieve these goals, since they provide electricity with a low carbon
footprint. However, their introduction in a high proportion can pose some challenges:

• They are variable and weather-dependant, therefore they are not controllable like conventional
power plants.

• Because of this weather dependency, they are more difficult to manage since their production
output is unpredictable.

• Since they cannot be controlled, mismatch can occur between production and demand. Both a
surplus or a lack of energy are problematic.

• The recent decline in costs of solar and wind plants can lead to the traditional gas or coal peak
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plants becoming financially non-viable. Since these plants are still needed to ensure a continuity
of supply at times of low RES availability, important subsidies would have to be put into place to
keep them afloat.

• The emergence of decentralized RES means of productions and prosumers can lead to conges-
tion problems within the grid.

These challenges can be overcome, as will be explained later, and should not constitute obstacles
to the deployment of solar and wind power, given their enormous benefits as providers of low-carbon
electricity. To manage high penetration levels of these RES sources, better ways of matching the supply
and the demand will thus be needed. Overall, the traditional vision where the “production follows the
demand” needs a paradigm shift towards a concept where the “demand follows the production”.

1.3 Demand-side management

Some solutions have already been developed and implemented to solve the problems raised by a
high penetration of variable RES:

• Curtailment, as already mentioned, consists in interrupting some power plants in case of over-
production to preserve the stability of the grid, but this involves dumping renewable electricity
that is available, and it also impacts the return on the investments realized in these plants.

• The surplus of electricity occurring at certain times can be absorbed by storage to be used later
on. However, storage technologies are so far not enough cost-efficient to perform such oper-
ation on the large-scale of the power grid. Storage can take multiple forms, such as pumping
water over hydroelectric dams, batteries of electric vehicles (EVs), thermal storage, hydrogen
production etc.

• Supply-side flexibility can be activated to compensate for a lack of renewable energy production,
but it requires the all-year maintenance of power plants used only punctually, and these peaking
plants are based on fossil fuels, which goes against the overall goal of decarbonization.

• The voltage or frequency of the grid can also be deviated from their nominal points to absorb
part of the supply-demand mismatch, but this is only possible within narrow limitations and it
degrades the quality of the electricity delivered to the end users.

• Transmission lines can be upgraded to enable the higher short-term peaks and variations in
the grid caused by the increasing number of prosumers and decentralized RES sources. These
transmission lines are however costly and their building process is very long and complex, since
they cross large parts of the land territory.

• Transmission lines can also increase the possibilities of electricity import/export with neighbor-
ing countries which have a different energy mix, but these are costly to build and require co-
operation among nations. The idea can even be pushed until the establishment of a global grid
[13], where for example the solar production of the Sahara could be supplied to Northern Europe
during daytime, while the windfarms of the Baltic Sea would cover the nighttime demand of the
Southern hemisphere.

• The prediction models for the production of wind and solar plants are becoming more accu-
rate, therefore managing their operation and the overall grid becomes a more manageable task.
Furthermore, the predictions enable to anticipate the variations in RES production and to act
accordingly, for instance by starting other types of power plants before a predicted drop in solar
or wind production. Even with the recent advances, predictions will however never be perfect.

• To compensate for the low profitability of peak power plants against the ever cheaper renew-
ables, subsidies can be put into place by governing bodies in order to maintain their needed
availability, but these measures are of course costly.
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None of these existing solutions is therefore ideal, even though they can be used to support the grid
operation. It should be stressed that all of them can partly contribute to solving the problem. For such
a large-scale and complex issue, there won’t be a single technology which will miraculously emerge
as a single powerful solution, but rather a multiple set of solutions which will each help in improving
certain aspects, each to its own proportion.

This situation also calls for new and better solutions, and notably for an increase in the flexibility
of the demand side. The momentum towards a more flexible electricity system based on RES is in-
creasing [14] and it has definitely become a “hot topic”, given the large amount of literature recently
published on the matter [12]. Through an increased flexibility, energy systems could have inherent ca-
pabilities to accommodate a larger share of variable RES without requiring massive new investments.
In particular, treating thermal and electrical systems as a whole could offer major new opportunities
[12]. Increasing the flexibility of the loads rather than that of the supply-side represents a whole set
of methods, grouped under the denomination of Demand-Side Management (DSM) or Demand Re-
sponse (DR).

DSM has been identified as a promising solution to help balance energy production and demand
at any time [15], [16]. DSM generally consists in adapting the demand loads to the grid requirements;
and this demand profile can be made flexible in different ways: load-shifting, peak shaving, reduction
of energy use or valley filling. DSM has historically been applied with larger energy consumers such
as industries or factories, which can be subject to load shedding or rolling blackouts in exchange for
monetary compensation. Recently, more research has focused on the DSM potential of smaller users,
aggregated or not. In the present work, attention is drawn to DSM applied to buildings and their
embedded systems.

Demand response can be activated in different manners for the end-consumers. Two categories
are normally distinguished: explicit and implicit demand response. With explicit demand response,
also called ”incentive-based”, the consumers receive direct payments in retribution for changing their
consumption pattern upon request. They can receive the payments directly or through the intermedi-
ary of an aggregator. With implicit demand response, also called ”price-based”, the consumers react to
a dynamic signal, which is often a time-varying price [17]. Those two types of DR are not exclusive and
could both be enabled in a certain geographic area. The present thesis focuses on the specific case of
Spain. In this country, explicit DR schemes are not possible so far with small consumers, since aggre-
gators are still not legal. For large industrial consumers, interruptible load programmes do exist, but
are limited to emergency situations. On the other hand, implicit demand response is more advanced
in Spain, since it was the first country to set its default electricity price as an hourly price based on the
spot market. Implicit DR is also facilitated by the large rollout of smart meters in Spain, which reached
99.1% of the consumers of less than 15 kW contracted in the end of of 2018 [18]. Smart meters enable a
direct communication, notably sending the hourly prices to the consumers and receiving their hourly
consumption. For this reason, this thesis focuses on implicit demand response schemes rather than
on explicit ones.

1.4 Buildings as energy flexibility assets

Buildings represent interesting subjects for DSM, first and foremost because they account for ap-
proximately 40% of the total energy consumption in the EU, and around 36% of the total CO2 emis-
sions, as stated in the Energy Performance of Buildings Directive (EPBD) [19]. For this reason, the
building stock represents a great potential as flexibility provider [20] if made available for demand re-
sponse. The trend for increasing the energy flexibility of the demand side will thus soon reach the
building sector. The European Union already requires its member states to only construct nearly zero
energy buildings (nZEB) by 2020, which means they should achieve a nearly annual zero energy bal-
ance [19]. In the future, buildings not only will need to be energy-efficient and reach the nZEB target,
they will also have to be energy-flexible. In fact, buildings are becoming micro-energy hubs, including
production units, storage, demand response possibilities, and flexible loads. Taking into account this
evolution, the nZEB 2.0 of the future will be an interactive player in the energy grids and could even
play an important role as such in the transformation of the European energy market [21]. The EU
has even impulsed the development of a Smart Readiness Indicator for buildings to make the level of
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building smartness more tangible for different stakeholders [22].

Following this trend, enhancing the flexibility of buildings energy use has concentrated an impor-
tant amount of research in recent years. It lead to the creation of the ”Annex 67 - Energy-flexible build-
ings” project of the International Energy Agency - Energy in Buildings and Communities (IEA - EBC)
programme [23]. The experts participating in this work have defined energy flexibility of a building
as the “ability to manage its demand and generation according to local climate conditions, user needs
and grid requirements”. Local climate conditions and user needs have long been considered when
designing buildings, in order to provide a comfortable, sheltered space to the occupants at a reason-
able price. Taking into account the grid requirements represents here the new dimension, as shown in
the principle graph of Figure I.2. Buildings must now be considered as part of a larger community in
which they are connected, and where they can be valued as flexibility assets.

Introduction & Motivations
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Figure I.2. Principle of energy flexibility in buildings.

Several components of a building energy use can be considered for the activation of flexibility. The
control of smart appliances has been notably investigated for that purpose, but heating and cooling
loads have maybe concentrated the most interest, because they are the major entry in a building’s
energy use. Heating, Ventilation and Air Conditioning (HVAC) systems operate inherently shiftable
loads which can contribute to the energy flexibility of a building. Furthermore, buildings possess an
intrinsic thermal mass which can be regarded as a storage means and activated by appropriate control
strategies [24]. Additional storage options such as water tanks or embedded phase-change materials
can also be valued as Thermal Energy Storage (TES) means for that purpose [25].

In particular, the present thesis focuses on two types of TES: water storage tanks and the proper
building thermal mass. Water is one of the best storage mediums for low temperature applications, it
is widely available and at low cost, therefore water stratified tanks represent a promising source of TES
[26]. Furthermore, small tanks for Domestic Hot Water (DHW) are already installed in a significant
share of residential buildings, representing a large storage potential where flexibility can be activated.
The air and structural mass of a building can also be exploited for short-term energy storage: they
are highlighted as a key technology for implementing DSM [27] because they are readily available and
do not require further equipment investment. Both water tanks and thermal mass show promising
potential to enhance the energy flexibility of buildings [23]. Numerous studies have already proven
that they can effectively be used with that purpose, for example by means of load-shifting [28], storing
excess energy from an on-site RES plant [29], and resulting more cost-effective than batteries [30].

Another reason of the recent interest towards energy flexibility in buildings is the current electri-
fication of dwellings. This trend has notably been pushed by governmental decisions: for instance,
the recast of the EPBD [19] obliges its member states to only build nZEBs from 2020. The definition
of nZEB has long been difficult to clarify with a wide consensus [31], but Sartori et al. proposed a
framework definition in 2012 [32]. Its basic principles consist in reducing the energy use of the build-
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ing while providing the remaining with renewable sources, aiming to achieve an annual zero energy
balance. So far, the most promising nZEBs seem to be all-electrical [33], with a photovoltaic system for
the production of the renewable energy part, and a heat pump for the heating or cooling supply. This
combination is up until now the most simple and effective way to reach the nZEB target, and is the
most implemented in real cases, as seen for example in the prototype houses presented regularly dur-
ing the Solar Decathlon competitions [34], [35]. In fact, the markets for both types of systems (PV and
heat pump) have seen an important increase over the last years, and this trend is bound to continue.
The electrification of residential households also includes the rapid deployment of electric vehicles,
which can also be considered as a source of flexibility.

For all these reasons, buildings are deemed worthy of further investigations with regards to their
potential for energy flexibility. They can become active elements in the energy grids, providing flexi-
bility services when needed.

1.5 Heat pumps as a coupling means between thermal storage and power grid

To sum up, it appears we have on the one hand upcoming challenges in the power grid, with an
increased penetration of variable RES. On the other hand, the loads from buildings show a good po-
tential for demand-side flexibility thanks to their integrated thermal storage, and are becoming more
and more electrified. To bridge the gap, heat pump technologies represent an ideal tool to couple the
electrical grids with thermal storages and to provide demand-side management [36].

Heat pumps provide heating and cooling from electricity through a highly efficient thermodynamic
cycle. Their efficiency is characterized by a coefficient of performance (COP), which usually takes val-
ues higher than 2, meaning that for every kWh of electricity used, they produce more than 2 kWh
of heat or cold. Supplied by renewable electricity, heat pumps are a 100% renewable and emission-
free solution. They can thus deliver major economic, environmental and energy system benefits, no-
tably by decarbonising heating and cooling [37]. Furthermore, a heat pump transfers heat from a low-
temperature energy source to a higher temperature energy sink, therefore it can either provide heating
or cooling, or both at the same time. This is particularly relevant in locations where both heating and
cooling demand are present, and given that the global energy demand for cooling is steadily increas-
ing. In fact, cooling is the fastest-growing end use in buildings, notably because of global warming and
the rising of the living conditions across the globe. Energy demand for cooling has more than tripled
from 1990 to 2018, reaching 2000 TWh of electricity last year [38].

Although the heat pump concept has been around for more than 150 years, it is still not widely
adopted, even though the market shows interesting dynamics [40]. Figure I.3 shows the sales of heat
pumps in Europe per country and per heat pump type in 2016, retrieved from the European Heat
Pump Association (EHPA) website [39]. The market has grown of 12% that year in all the continent,
with reversible air-to-air units as the predominant technology. France leads by the number of units

Figure I.3. Sales of heat pumps in Europe in 2016, per country and heat pump type. Source: EHPA [39].
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sold, with 220k, while if normalized by the number of households in the country, Norway performs
best, with 3.3 heat pumps per 100 households (0.76 in France for instance). The Italian market has
seen a considerable growth with +46.3% over the previous year. In Spain, 89k units were sold, which
represents 0.48 heat pumps per 100 households and a market growth of 7%. With a current electricity
to gas price ratio around 3, heat pumps face a hard competition with gas boilers, which are the pre-
dominant technology for space and water heating in Spanish households, given their cheaper price
compared to heat pump units. There is thus an important potential for the heat pump sector to in-
crease its share in the market.

This increase in the share of heat pumping technologies for heating and cooling will be completely
necessary to cope with ambitious climate change mitigation targets. This statement is illustrated and
supported by Figure I.4. The Energy Technology Perspectives 2017 report [41] from the IEA states
that electric heat pumps must increase from roughly 3% of installed heating equipment in buildings
today to nearly 50% of the total heating stock in 2060, so as to reach its most ambitious B2DS scenario
(i.e. where global warming is kept below 2°C). At the same time, the average energy performance of
heat pumps in buildings, with COPs of around 2 to 2.5 today, must double by 2060 to achieve average
COPs of 4 to 4.5 or greater. [41]. As an illustration that this transition has already started, most heat
pump manufacturers have now developed new models with R32 as a refrigerant instead of the most
common R410A used so far: they claim higher COPs, and less refrigerant needed to operate the heat
pump. Furthermore, R32 has a lower greenhouse potential than R410A, which limits the overall impact
of installing heat pumps, when considering potential leaks.

As a summary, heat pumps represent a very efficient and necessary technology to both decarbonise
heating and cooling, and enable their demand-side flexibility. Since heat pumps still remain to this day
more expensive than their fossil-fuelled counterparts, policy-makers must act consequently to guide
investments towards such kinds of emission-free technologies.

Figure I.4. Evolution of heating equipment in buildings to 2060. The Reference Technology Scenario (RTS) re-
flects the world’s current ambitions in terms of climate policies, while the scenarios 2DS and B2DS consider more
ambitious plans to reduce global warming by maximum 2°C or below 2°C, respectively. Source: IEA Energy Tech-
nology Perspectives 2017 [41].

1.6 Need for adequate control strategies

To exploit the thermal storage of buildings and unlock the flexibility potential of heat pumps, ap-
propriate control strategies are however needed. The flexibility of heating or cooling loads can be con-
trolled in different manners. The first group of methods consists of simple rule-based controls (RBC),
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which aim at avoiding peak periods with fixed schedules [42], reducing the peak power exchange be-
tween buildings and the grid [43], reducing the energy cost [44] or increasing the consumption of RES
[45]. More advanced control strategies revolve around model predictive control (MPC), which con-
sists of an optimization problem, most commonly used for decreasing the energy bills when variable
electricity tariffs are applied [46]–[48]. However, the implementation of this second group of con-
trol strategies remains more complex due to the prior need of models to forecast the behavior of the
systems in the future, and the high computation efforts required to solve the resulting optimization
problem [49].

Supervisory control for improving demand-side flexibility with heat pumps has largely been in-
vestigated in recent literature [50]. Both RBC and MPC present advantages as well as drawbacks for
improving the energy flexibility of heating and cooling loads. However, there is still a lack of knowledge
in certain aspects of these types of controllers, notably regarding their development, tuning and test-
ing in realistic setups. The present thesis thus intends to address these lacks and produce scientific
knowledge about the performance of these controllers and the contexts in which they can be used.
This knowledge will be useful to help performing a successful transition towards smarter and more
energy-flexible buildings and more sustainable integration of heating and cooling demands.

2 Research questions and objectives of the thesis

2.1 General objective

The final aim of this doctoral thesis consists in facilitating the integration of RES in the energy mix
by enhancing the energy flexibility of buildings in the future context of the smart grids. To this end, in-
novative control strategies for building energy systems such as heat pumps should be designed, which
make use of short-term heat storage within the building thermal mass or within water tanks. The main
research question can thus be formulated as follows: which control strategies can be implemented to
improve the energy flexibility of a building equipped with a heat pump, and thus to help manage the
smart grid of the future?

2.2 Research gaps and specific objectives

The general objective of the thesis is then declined into several specific sub-objectives, according
to the identified research gaps.

Although energy flexibility has become a trending research topic in recent years, the role that build-
ings can play as flexible assets in the energy grids might still not be evident for the utilities. Energy flex-
ibility is still not an absolute and immediate need, or it is still confined to certain specific geographic
areas, which explains why the exploitation of energy-flexible buildings is yet very timid or even nonex-
istent. Research in this area is still mainly restricted to academia or theoretical studies, and too few
on-site implementations have been carried out so far. However, the constant increase of variable re-
newable energies in the grid will soon make the need for energy-flexible buildings a more tangible
and urgent reality. For this reason, the research in this domain must be brought one step further, with
tests in experimental or field setups, so as to prove their viability and performance in more realistic
contexts.

The existing research on energy flexibility in buildings has often focused on how to exploit the heat-
ing loads for this purpose, sometimes the cooling loads, but seldom for both with the same building.
However, some regions such as the Mediterranean area have mild climates where the cooling peaks in
summer might be of similar amplitude than the heating peaks in winter. In this context, energy flexi-
bility might present an interest in both seasons to support the operation of the grid. The constraints
are nevertheless different, with the cooling demand peaking in the afternoons, while the heating de-
mand generally peaks in the mornings and evenings. Consequently, the peak demand matches differ-
ently for instance with the peak of solar energy production, according to the season. To the knowledge
of the author, little research has been carried out on this topic, and the adaptations potentially needed
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to exploit a single building for its energy flexibility in a heating or cooling context are still little known,
as well as the differences of flexibility resources in different seasons.

Regarding the type of controllers that can be utilized to exploit the energy flexibility of buildings,
a detailed state-of-the-art is reported in chapter II. They can mostly be classified between rule-based
controllers and predictive controllers. Their formulation, and more particularly their declared objec-
tives have been investigated in the existing literature. They usually intend to enhance the energy flexi-
bility in different ways, but these are not necessarily specific to heat pump systems. Especially in MPC
formulations, the representation of the heat pump is often simplified drastically and does not take
into account practical constraints that apply to a real pump functioning in an actual building. A lack
of suitability of the controllers to the particularities of heat pumps was thus observed and should be
addressed. Regarding the MPC in particular, it is known that such controllers have high development
costs compared to simpler strategies, but there exists little previous work that puts into perspective
their development costs with the benefits they can achieve when operational. Further than that, there
is also a lack a comprehensive comparisons between MPC and RBC operated in a controlled environ-
ment with the exact same boundary conditions: such studies would be very beneficial to help inform
decisions on what type of controller can be used for energy flexibility in buildings.

In the state-of-the-art of chapter II, the flexibility objectives declared in existing studies often con-
sist in reducing the operational costs. Few other objectives than the economic one have been studied,
although recent studies have chosen to go in this direction. In particular, since the final aim is to de-
carbonize our energy systems, other objectives should be tested, especially the reduction of the CO2

emissions related to the heating and cooling of buildings. The carbon footprint of the electricity from
the grid must thus be known precisely, and the impact of the flexibility strategies in terms of emissions
should be studied.

The specific objectives that stem from these identified research gaps are explained hereafter.

I A first goal of the PhD thesis consists in developing and obtaining supervisory controllers for
heat pumps, capable to enhance the energy flexibility of the heating and cooling demand. Both
RBC and MPC controllers will be developed. For the RBC controller, the development steps are
rather straightforward:

a) Choosing the input data and the type of rules which makes up the RBC.

b) Tuning the parameters present in the RBC to obtain the best performance.

For the MPC, which is a more complex controller, the methodology requires more prior work.
The most important steps to develop the MPC are:

a) Obtaining and validating reduced-order models of buildings and of the heat pump for the
controller. The MPC solving will notably be influenced by the linearity of those models.

b) The implementation of the cost function. Since Economic MPC has already been largely in-
vestigated in the context of building energy management, other MPC configurations should
be tested, notably introducing the carbon footprint in the objective.

c) The optimization and tuning of the MPC configuration, especially taking into accounts con-
straints representative of the real operation of heat pump systems.

The thesis should thus answer the following: which are the best parameters to include in an en-
ergy flexibility controller? How does changing the objectives or constraints affect the performance
of said controller? What are the pros and cons of different RBC or MPC configurations? How can
flexibility controllers be better adapted to the particularities and operational constraints of heat
pump systems? For MPC, how does the required modelling and formulation affect the performance
of the controller?

I The thesis shall also demonstrate the benefits of using innovative control strategies for managing
energy in buildings. If new control strategies are developed, they should present some advan-
tages for the grid side (for example reducing the peak demand, shifting loads to non-peak peri-
ods, or more generally enabling a larger integration of renewable energy) and for the user side
(regarding comfort or energy bills for instance). In this regard, which criteria should be used for
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the evaluation of the control strategies? Using these criteria, what are the improvements brought
by MPC or RBC compared to traditional controls? Are these improvements worth the efforts in
development and implementation required by these new smart controllers?

I Few real implementations of flexibility controllers for heat pump systems have been realized so
far. The performance of the control strategy could be subject to variations between simulation
and on-site implementation, due to external disturbances, inaccuracies in the modelling or in
the forecasting. Especially for MPC, the operation on a physical device in real conditions should
be carried out, to answer the following questions: how do the MPC strategy and the heat pump
perform in a more realistic setup such as a semi-virtual environment or in a real building? Is the
performance coherent with the expected behavior reported in simulations? What are the observed
differences and by which factors can they be explained?

I The geographical context and the type of buildings can also impact the efficiency of the consid-
ered control strategies. In particular, several parameters such as the climate, characteristics of
the grid or the energy mix can be used as input for the developed control strategies. In order to
address some of these issues, the following questions will be researched: especially focusing on
the Mediterranean context, can we use reversible heat pumps for energy flexibility both in the heat-
ing and the cooling season? What differences does it make in the formulation and in the results?
What is the expected performance of energy-flexibility controllers in the Mediterranean context for
residential buildings?

3 Framework and structure of the thesis

3.1 Framework

This PhD project forms part of the INCITE Innovative Training Network (ITN) described below,
in which the training of the PhD candidates constitutes an important objective, aside from the pro-
duction of valuable scientific research. Training includes the attendance to several technical courses
(summer schools, master courses at the UPC) to acquire specific knowledge, as well as complementary
skills courses (project management, responsible conduct in research etc.). The aim is to enhance the
career prospects of the candidate in the R&D field through a complete and inter-disciplinary train-
ing. The candidate was also exposed to multi-sectoral and international work environments which
enabled him to start building a professional network. In addition, the PhD candidate is involved in
the activities of IEA EBC Annex 67. Those different entities which form the framework of the PhD are
described in the following paragraphs. In addition, the PhD candidate also performed two external
stays in international institutions: one in 3E, a consulting company based in Brussels, and the second
one in EnergyVille, an entity of VITO, the Flemish Research Institute, dedicated to energy research and
located in Genk, Belgium.

INCITE ITN The PhD project has been fully financed by INCITE, a European project that received
funding from the Horizon 2020 Research Programme of the European Union. The project has the for-
mat of an Innovative Training Network (ITN) of the Marie Sklodowska-Curie Actions (MSCA), which
means that several PhD fellows (14) were hired simultaneously in different European countries (7) to
work on a common topic, with each his/her individual research project. INCITE focuses on developing
innovative controls for the integration of renewable sources into smart energy systems. As an ITN, the
project offers networking opportunities among the member institutions and with the other fellows,
network-wide courses and seminars (twice a year) and secondment possibilities in non-academic in-
stitutions. More information on the project can be found on the following website: www.incite-itn.eu.

IEA EBC – ANNEX 67 The International Energy Agency (IEA) and its programme on Energy in Build-
ings and Communities (EBC) organize several transnational projects named ‘annexes’. The Annex
numbered 67 focuses on the Energy Flexibility of Buildings, which is therefore totally in the scope of

http://www.3e.eu
https://www.energyville.be/en
https://www.incite-itn.eu
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the present project. The aim is to increase the knowledge on this specific topic and to demonstrate
the potential that buildings possess with regards to energy flexibility. Spain and IREC in particular
are involved in this Annex 67, which includes the participation in the bi-annual expert meetings and
different work subtasks. Specifically, the present PhD project contributed to the Subtask B.3 about
control strategies and algorithms, and to the writing of different deliverables and reports. More infor-
mation on the project can be found on the following webpage: http://annex67.org.

3.2 Publications and outreach activities

In the mark of the thesis, several publications were written for international journals and confer-
ences. The thesis is partly based on those contributions. They are referenced here, firstly listing the
ones where the PhD candidates was the first author: 4 journal articles, and 6 papers in international
conference proceedings. The PhD candidate has also been involved in other publications, such as re-
ports and deliverables of the IEA EBC Annex 67, or as co-author of journal articles and conference pa-
pers. These are listed as other contributions. Furthermore, several outreach activities also contributed
to disseminating the knowledge related to this PhD thesis to a broader and more general audience.

Journal articles:

• T. Péan, J. Ortiz, and J. Salom, “Impact of Demand-Side Management on Thermal Comfort and
Energy Costs in a Residential nZEB,” Buildings, vol. 7, no. 2, p. 37, 2017, ISSN: 2075-5309. DOI:
10.3390/buildings7020037 [51].

Impact factor: not indexed in JCR, CiteScore 2018 from Scopus: 2.28 (#7/111 Q1 in Engi-
neering Architecture)

• T. Péan, J. Salom, and R. Costa-Castelló, “Review of control strategies for improving the energy
flexibility provided by heat pump systems in buildings,” Journal of Process Control, vol. 74C,
Special Issue on Efficient Energy Management, pp. 35–49, Apr. 2019, ISSN: 09591524. DOI:
10.1016/j.jprocont.2018.03.006 [50].

Impact factor: 3.316 (2018 JCR, Q2: #38/138 in Chemical Engineering, Q2: #21/62 in Au-
tomation & Control Systems)

• T. Péan, R. Costa-Castello, E. Fuentes, and J. Salom, “Experimental testing of variable speed heat
pump control strategies for enhancing energy flexibility in buildings,” IEEE Access, vol. 7, no. 1,
pp. 37 071–37 087, 2019, ISSN: 2169-3536. DOI: 10.1109/ACCESS.2019.2903084 [52].

Impact factor: 4.098 (2018 JCR, Q1: #24/148 in Computer science & information systems,
Q1: #48/260 in Electrical and electronic engineering, Q1: #19/87 in Telecommunications)

• T. Péan, R. Costa-Castelló, and J. Salom, “Price and carbon-based energy flexibility of residential
heating and cooling loads using model predictive control,” Sustainable Cities and Society, vol.
50, Oct. 2019, ISSN: 22106707. DOI: 10.1016/j.scs.2019.101579 [53].

Impact factor: 4.624 (2018 JCR, Q1: #6/63 in Construction & Building Technology, Q1:
#25/103 in Energy & Fuels, Q2: #10/35 in Green & Sustainable Science & Technology)

Conference papers:

• T. Péan, J. Ortiz, and J. Salom, “Potential and optimization of a price-based control strategy for
improving energy flexibility in Mediterranean buildings.” in Proceedings of CISBAT 2017 Interna-
tional Conference – Future Buildings and Districts – Energy Efficiency from Nano to Urban Scale,
Lausanne, Switzerland, 2017 [54].

• T. Péan, E. Fuentes, J. Ortiz, and J. Salom, “Performance of a gas boiler under dynamic operation
conditions: experimental studies in semi-virtual environment,” in Proceedings of COBEE2018 -
Conference On Building Energy & Environment, Melbourne, Australia, 2018.[55]

http://annex67.org
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• T. Péan, B. Torres, J. Salom, and J. Ortiz, “Representation of daily profiles of building energy flexi-
bility,” in Proceedings of eSim 2018, the 10th Conference of IBPSA-Canada, Montréal (QC), Canada,
2018, pp. 153–162, ISBN: 9782921145886 [56]

• T. Péan, J. Salom, and J. Ortiz, “Environmental and Economic Impact of Demand Response
Strategies for Energy Flexible Buildings,” in Proceedings of BSO 2018 Building Simulation and
Optimization,11-12th September 2018, Cambridge, United Kingdom, 2018, pp. 277–283 [57].

• T. Péan, J. Salom, and R. Costa-Castelló, “Configurations of model predictive control to exploit
energy flexibility in building thermal loads,” in Proceedings of the 57th IEEE Conference on Deci-
sion and Control, Miami Beach, FL, USA, 2018 [58].

• T. Péan, I. Bellanco and J. Salom, ”Impact of the weather forecast on a predictive controller per-
formance: experimental studies with a residential heat pump for space cooling”, in Proceedings
of the 13th IEA Heat Pump Conference (Jeju, Korea), May 2020 (abstract accepted 16 August 2019).

Other contributions:

• T. Péan and J. Salom, “Laboratory facilities used to test energy flexibility in buildings - A technical
report from IEA EBC Annex 67 Energy Flexible Buildings,” IEA EBC Annex 67, Tech. Rep., 2019. .
Available from: http://annex67.org/media/1708/laboratory-facilities-used-to-test-energy-flexibility-
in-buildings-2nd-edition.pdf [59].

• R. Toffanin, T. Péan, J. Ortiz, and J. Salom, “Development and Implementation of a Reversible
Variable Speed Heat Pump Model for Model Predictive Control Strategies,” in Proceedings of
Building Simulation 2019 - 16th IBPSA International Conference, Rome, Italy, 2019 [60].

• C. Finck, P. Beagon, J. Clauß, T. Péan, P. Vogler-Finck, K. Zhang, and H. Kazmi, “Review of applied
and tested control possibilities for energy flexibility in buildings - A technical report from IEA
EBC Annex 67 Energy Flexible Buildings,” International Energy Agency - Energy in Buildings and
Communities, Tech. Rep., 2018, 61 p. [Online]. Available from: http://annex67.org/media/1551/review-
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3.3 Structure of the thesis

Following this introductory chapter, the remaining of the thesis is structured as follows.

Chapter II relates the state-of-the-art of heat pump controls for energy flexibility, by performing a
thorough review of the existing literature on this topic. In particular, the objectives utilized by different
authors in RBC and MPC controllers are analyzed in details.

Chapter III groups all the methodology needed to analyze the energy flexibility of buildings and
the performance of the developed controllers. Firstly, the simulation and experimental frameworks
used to test the controllers are explained. Then the Key Performance Indicators (KPIs) and input data
used to enhance the energy flexibility are detailed. The next section of this chapter relates the charac-
terization and modelling of the studied heat pump system, while the last one relates the modelling of
the building study case.

Chapter IV reports the development of the energy-flexibility controllers. It starts by the develop-
ment of the RBC controller and its tuning. The MPC controller is then detailed, and in particular also
its formulation and the tuning of its different parameters.

Chapter V concerns the results of the experimental studies carried out in the mark of this the-
sis with a real heat pump system. Using the controllers developed in the previous chapter and the
methodology of Chapter III, the performed experiments are analyzed in details, bringing practical in-
sights on the performance of the controllers operating with a real heat pump.

Chapter VI then describes the results of simulation-only studies. Learning from the experiments,
some adjustments are made and the results from the controllers operating in a simulated framework
are analyzed and compared with the experimental ones, providing a further validation of the models.

Finally, Chapter VII concludes the thesis by summarizing the learnings from both the experiments
and the simulations. The performance results of the RBC and MPC controllers is summed up, dis-
cussions are drawn regarding the practical implementation of such controllers, and an outlook on
potential further research is proposed.

Several appendices complete the body of the thesis; they give additional details on some aspects
which were not required within the main text.



Chapter II

State of the art in heat pump controls

Buildings equipped with heat pumps are deemed worthy of further investigations with regards to
their potential for energy flexibility. They can become active elements in the energy grids, provid-
ing flexibility services when needed [63]. A quite extensive amount of research and articles has been
published on these topics in the recent years. Because of the relatively new interest shown on energy
flexibility with heat pumps, a clear overview is still lacking in this field. Several reviews on close topics
have nevertheless been published: Afram and Janabi-Sharifi [64] reviewed MPC techniques applied to
HVAC systems, but their study did not focus on heat pumps specifically. Atam and Helsen [65] stud-
ied modelling challenges and control techniques, but only for ground-source heat pumps. Fischer
and Madani [36] recently published a review on the use of heat pumps within smart grid contexts, but
their study did not go in depth into the different control strategies used in the studied literature. Based
on this assessment, the present chapter proposes a detailed review of the control strategies used for
activating energy flexibility with heat pumps, detailing in particular the different objectives claimed
and the constraints included.

In the reviewed publications, a scheme similar to the one presented in Figure II.1 was generally
observed. The control strategies presented here are acting at the supervisory level, assuming the pres-
ence of local controllers within the heat pump, which enable a proper operation of the different com-
ponents (compressor, pumps, defrost. . . ). The supervisory controller receives information from dif-
ferent sensors in the building (room temperature, temperature in a storage tank, PV production, net
power exchange with the grid etc.) as well as data on weather and energy tariffs. Based on this informa-
tion, the control algorithm defines a strategy for operating the system, and sends the corresponding
signal to the local controller in the heat pump.

The control strategies reviewed have been classified in two distinct categories: rule-based con-
trols (RBC) and Model Predictive Control (MPC), because of their conceptual difference. Rule-based
controls are simple heuristic methods which generally have the form “if (condition is verified), then
(action is triggered)”. RBC usually rely on the monitoring of a specific “trigger” parameter (PV power,
room temperature for example) on which a threshold value has been fixed. When the threshold is
reached, the operation of the heat pump is changed, according to the predefined strategy. On the
other hand, Model Predictive Control is a more complex strategy, which relies on a model of the build-
ing to project its behavior in the future. MPC is an optimization problem, therefore it intends to find
the best solution for the management of the heat pump operation, over a certain time horizon and
within certain constraints. Further than this classification between RBC and MPC, the reviewed pa-
pers have been sorted by the objective that the control strategy aims for.

15
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Figure II.1. General scheme of supervisory control systems for heat pumps. The supervisory control receives
information from different sources, and defines a control input which is then sent to the heat pump.

1 Common characteristics

1.1 Control inputs

The control strategies act upon certain parameters, which are called control inputs (or manipu-
lated variables). No major differences were found for the control inputs between RBC and MPC. In the
reviewed papers, the following control inputs have been identified:

• Temperature set-points: several control strategies modulate the temperature set-points, whether
in the room thermostats [66], [67], the supply of the systems [68], or in a water storage tank [66],
[69].

• Power of the heat pump: this variable can be binary, which means the heat pump is completely
switched on/off depending on the control algorithm decisions [70]. If the heat pump is inverter-
controlled, the power of the heat pump can be modulated by regulating the speed of the com-
pressor [71], therefore the control input can vary between the minimum and the maximum avail-
able power of the heat pump. This is easily done in simulations, however in practice, this mod-
ulation can also be achieved indirectly by adjusting the set-points, like previously mentioned
[43].

1.2 Sensors

A supervisory control system usually receives measurement data from different sensors. The most
common sensors encountered in the literature are the following:

• Temperatures: the indoor temperature is normally the main parameter monitored to ensure
comfort. Usually the operative temperature is considered, which is an average between the air
temperature and the mean radiant temperature (taking into account the radiation effects from
the surrounding surfaces)[72]. When using radiant systems for cooling, the relative humidity
must be measured as well to calculate the dew point and thus avoid condensation on the sur-
faces. In the case of a storage tank, a sensor can measure the water temperature inside it, which
is sometimes converted into a “state of charge” of the tank [43], [73].

• Power measurements: when applicable, the energy consumption of the building can be mon-
itored, through a simple electricity meter for example. If a production unit like PV is present,
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the production can usually be retrieved from the inverter. Specific control strategies rely on the
measurement of other parameters like the voltage level at the distribution feeder [45].

• Outside conditions: when weather compensation is utilized (see subsection 1.3), a probe needs
to measure the outside temperature to adapt the system supply temperature consequently.

1.3 Reference weather compensation control

The simplest type of rule-based control for a heat pump consists in applying a target set-point to
its supply temperature. The set-point is then tracked with traditional PID or hysteresis controller [68].
The main objective is therefore to provide the necessary comfort to the end-user, by reaching this set-
point. No flexibility is intended at this stage, only the users’ needs and the local climate constraints
are taken into account, that is why such strategies are normally used as reference cases. As there is
no need for supervisory control, a low-level controller integrated in the heat pump is sufficient for the
operation of such simple strategies.

Rather than applying a constant set-point, the use of ‘heating curves’ (also known as ‘weather com-
pensation’) has become state of the art in most of the heat pumps available on the market. A heating
curve enables to adapt the water supply temperature set-point according to the outdoor temperature,
and consequently to reduce the energy consumption in part-load conditions. Some parameters are
needed as input for the heating curve (conditions at design outdoor temperature and threshold when
heating is not anymore needed), which are often determined in practice by trial and error [67].

Several authors mention the use of weather compensation control in the reference case of their
publications [43], [46], [68], [73], [74]. The set-point obtained from the heating curve can be applied in
a water storage tank or directly in the water circulated into the heating circuit of a building (radiators,
floor heating). A room thermostat is then necessary to control the water flow (either from the tank or
directly from the heat pump) or heat pump activation and deliver the proper amount of heat to the
building zone, according to the occupancy.

2 Rule-based controls

2.1 Classification of rule-based controls

When the building’s designers intend to provide some flexibility from the building side, further
than only comfort, they usually define certain objectives to reach. Especially in RBC, these objectives
are not always mentioned explicitly, but most of the time a clear goal can still be identified. In the
present review, the following objectives have been identified: load shifting with fixed scheduling, peak
shaving, reduction of energy cost and increasing the consumption of renewables. These are summa-
rized in Table II.1 and detailed in subsection 2.2. Most of these rule-based controls follow the same
principle: a trigger parameter is monitored (time, power, energy price, residual load) and associated
with predefined threshold values. When the threshold is reached, it triggers a control action on the
heat pump (start/stop or change in set-point among others).

2.2 Flexibility objectives

Load shifting with fixed scheduling is maybe the most evident form of rule-based control for energy
flexibility. Daily peak periods can usually be identified in a national electricity grid. The controller can
therefore try to avoid or force the operation of the heat pump during fixed hours. For instance, Lee
et al. use set-point modulation to reduce the use of the heat pump during the grid peaks (14:00 to
17:00 in summer and 17:00 to 20:00 in winter) [66]. They achieved a reduction in the energy consump-
tion during peak hours of 80% and 64% in cooling and heating respectively (Figure II.2a). In the study
by Carvalho et al., the heat pump was forced to stop during peak hours (9:00 to 10:30 and 18:00 to
20:30)[42], reducing the energy cost by 17 to 34% (Figure II.2b). Fixed scheduling can also be used to
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Table II.1. Classification of rule-based controls according to their objectives and trigger parameters.

Flexibility objectives References with rule-based controls (RBC) Trigger

Load shifting with fixed
scheduling

Lee et al. (2015)[66]; Carvalho et al. (2015)[42];
De Coninck et al. (2010)[73]; De Coninck et al.
(2014)[45]

Time

Peak shaving, reduction
of peak power exchange

Dar et al. (2014)[43]; De Coninck et al. (2010)[73];
De Coninck et al. (2014)[45]

Power

Reduction of energy cost
Schibuola et al. (2015)[44]; Le Dréau and Heisel-
berg (2016)[75]

Electricity price

Increase consumption of
renewables

Dar et al. (2014)[43]; Schibuola et al. (2015)[44];
De Coninck et al. (2014)[45]; Reynders et al.
(2013)[74]; Miara et al. (2014)[69]; Hong et al.
(2012)[67]

PV power, voltage
deviation, residual
load
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Figure II.2. Examples of fixed scheduling strategies from [66](a) and [42](b). The peak periods (identified in grey)
are constant, and the control strategies thus aim to avoid the heat pump operation (red lines) during these fixed
periods. In both cases, this objective is reached. The dashed lines show the profile of the heat pump operation
prior to the implementation of the control.

force the charging of a thermal energy storage (TES) tank: for instance, De Coninck et al. used this
strategy to charge a tank from 12:00 to 19:00 every day, benefitting from the higher Seasonal Perfor-
mance Factor (SPF) of the heat pump during daytime [73]. In another study they used clock control,
raising the Domestic Hot water (DHW) heating set-point from 12:00 to 16:00 in order to force the heat
pump operation during this period, and achieving best results than more advanced rule-based con-
trols [45]. Overall, fixed scheduling strategies are simple and easy to implement, and they can already
achieve a substantial performance. Even though the schedule can be changed seasonally as for in-
stance in Lee et al. [66], this method is not dynamic enough since the fixed schedule does not adapt to
the real conditions.

Another objective targeted by RBC strategies is peak shaving, i.e. the reduction of the demand peak,
in order to support the grid operation. In these cases, the monitored parameter is the power exchange
of the building with the grid. Thresholds can be defined both for the export and in the import powers,
or only in one of them. For instance, Dar et al. set an import limit of 2500 W and an export limit of
5000 W in a nZEB equipped with a PV system [43]. When the building is consuming more than the
import threshold, the heat pump is switched off. Conversely, if the building injects more power in the
grid than the export thresholds, the heat pump is started. This control method results in a reduction
of the import hours (over the threshold limit) down to 41-108 hours, compared to 346 hours for the
reference case. De Coninck et al. present a similar “grid-load strategy”, with both consumption and
injection thresholds set at 3500 W [73]. This method could reduce the number of peaks by up to 50%
and the one percent peak power (mean power of the one percent highest quarter hourly peaks) by
up to 20%. However, the highest peaks could not be eliminated, since they were not caused by the
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heat pump nor the PV systems, but by non-controllable loads such as domestic appliances. In a later
study, De Coninck et al. investigated a similar approach [45], but applied to a cluster of 33 buildings
instead of a single one. When the power injection in the grid surpasses the predefined limit, the set-
points for the DHW tanks are raised, thus increasing the self-consumption from the PV systems. This
strategy reduces effectively the curtailing losses, though not as much as the fixed scheduling strategy
also investigated in [45] (because the latter is active every day and not only during sunny days). To sum
up, peak shaving control strategies enable to support the grid by limiting the peak demand or injection
of the building. Another conclusion drawn from the review is that the threshold values should be
chosen with precaution, since their setting will highly influence the outcome of the control strategy.

Certain control strategies rely on the variations of energy price in time with the objective of reduc-
ing the energy costs for the end-users. As evidenced notably by [76], [77], time-varying price structures
produce incentives for the consumers to shift their loads or reduce their peak demand, while reducing
their energy budget. It is therefore profitable for both parties, the grid side and the consumer side. In
this case, the controller monitors the electricity price and takes action when the price becomes too
high or too low. The main differences in the reviewed papers therefore consist in the definition of the
high and low price thresholds. Schibuola et al. propose two different approaches [44]: the first one
analyzes the price data of two entire years (2012 and 2013), and fixes thresholds based on this distri-
bution. The second approach compares the current electricity price with the forecasted price over the
next 12 hours, hence relying on prediction data rather than on past data. Both methods enabled to
reduce the yearly electricity costs of around 15%. Le Dréau and Heiselberg also based their approach
on recorded past data [75]: their thresholds were calculated using the first and the third quartiles from
the price distribution of the two weeks prior to the current moment. Changes of ±2 K in the heat-
ing set-points were then implemented when the current electricity price reached the thresholds. A
high flexibility was thus obtained and the cost savings ranged from 3 to 10%. This type of price-based
control is bound to grow in the coming years with the increasing development of smart-grids, where
dynamic pricing can easily be sent to the end-users. The performance of the controls then highly
depends on the processing of this price data and the definition of the threshold parameters.

The last category of rule-based controls reviewed here aims at improving the consumption of re-
newable energy sources (RES). This can be done at the scale of the building, which means a local gen-
eration unit is present and the objective consists in improving its self-consumption. It can also be
done at the scale of the overall electricity grid, which means the control relies on the analysis of the
residual load calculated at a national level. The residual load equals the power demand less the power
generation from fluctuating RES (solar and wind), hence representing the electricity demand not cov-
ered by renewables. In the study by Dar et al. [43], the building is equipped with a PV system. The
controller starts the heat pump when the PV production exceeds the non-heating loads. This method
leads to an improvement of the load cover factor from 19.6 to 26-32%, hence a better coincidence be-
tween photovoltaic generation and electricity consumption of the heat pump. A similar approach is
presented by Schibuola et al. [44], but with a more straightforward method: the heat pump is simply
forced to switch on when the PV panels are generating electricity, regardless of the current loads. This
method enabled to reduce the electricity exported by up to 12% and the electricity imported by up to
22%, thus improving the self-consumption. De Coninck et al. use a different trigger for the activation
of DSM: voltage measurement [45]. Their study assumes that an excess PV production induces an in-
crease of voltage of the distribution feeder. The voltage is therefore monitored, and when it surpasses
a defined value (around 250 V), the set-point for the DHW tank is raised in order to utilize more elec-
tricity and avoid the PV inverter shutdown. This method enables to reduce the curtailing losses by up
to 74%. The residual load at a national scale has been identified by [78] as a potential input signal for
DSM control of heat pumps. Miara et al. make use of this residual load profile to design their own
Time of Use (ToU) signal [69]. This technique enables an efficient load shifting: the percentage of en-
ergy spent during the most profitable periods (e.g. with high residual load) is increased from 30% to
around 60% in the best case. To summarize, the improvement of RES consumption can be realized
by monitoring different trigger parameters: voltage at the distribution feeder, PV production, residual
load at the local or global scale, but it remains difficult to compare these approaches since they use
different evaluation criteria.
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2.3 Interaction with the constraints

Rule based controls also need to deal with additional constraints, to account for the comfort of
users or the physical limitations of the systems. Similarly than the control objective, the constraints
are more difficult to identify in the case of RBC, since they are not always formally identified. For
instance, setting a threshold on the grid power exchange as presented in [43], [45], [73], could be con-
sidered as a constraint on this parameter (or alternatively as a peak shaving objective, as mentioned
previously). Control inputs are usually constrained by construction, therefore these constraints are
normally always satisfied. For instance, the temperature set-points are obviously chosen within the
desired comfort boundaries during occupancy periods. It is however more difficult to ensure that the
constraints on the control outputs will always be formally fulfilled. In the case of building climate con-
trol, the control outputs almost always include the room temperature. For instance in [42], a preheat-
ing strategy is implemented and the heat pump is switched off during peak hours. The authors do not
mention a backup control strategy for ensuring comfort during this switched off period. Even though
the preheating strategy is specially designed to avoid discomfort, such punctual inconveniences could
occur. In several publications, a buffer storage is present. Such device enables to decouple the zone
heating circuit from the buffer heating circuit. In this way, the fulfilment of the constraints on the zone
temperature is less affected by the flexibility-oriented RBC: the zone heating circuit operates normally,
retrieving thermal energy from the storage, while the flexibility strategy is applied directly on the stor-
age. In this case, additional constraints can be applied to maintain a minimum or maximum state of
charge (SOC) in the storage [43], [69], [73]. In general, constraints in RBC can be seen as additional
rules which are given priority over the rule defining the flexibility objective. The physical integrity
and the satisfaction of users must normally be met at all times, and the flexibility can be improved
only once these constraints are satisfied. This principle is well illustrated in the form of a flow chart
in [67]: the algorithm first checks if the zone temperature lies between the upper and lower comfort
boundaries. If and only if this condition is satisfied, the flexibility strategy can be started. Even if fa-
vorable conditions appear (i.e. high production of renewables) while comfort is not guaranteed, the
controller will still operate the system normally to promptly return within the defined temperature
boundaries, before to consider the activation of flexibility. Several RBC strategies use modulation of
temperature set-points as the main driver for energy flexibility [51], [66], [75]. If these set-points are
always chosen within the desired comfort boundaries (considering the dead-bands too), the output
temperature should also stay within these boundaries (unless the system is badly dimensioned or has
too much inertia). With this technique, the comfort constraints are fulfilled while the loads are shifted
in time. To sum up, in the case of RBC, the fulfilment of constraints is difficult to guarantee, given the
lack of tools to formally analyze the system behavior. Furthermore, rule-based controls do not allow
to balance the satisfaction of the constraints with the desired objective (and thus to allow for instance
small constraint violations if it provides greater benefits for the achievement of the objective). How-
ever, the rules are normally designed to guarantee constraints fulfilment and thus ensure a satisfactory
performance of RBC.

2.4 Conclusions and limits of RBC

In view of the presented papers and their respective conclusions, it is observed that rule-based
controls can yield significant performance with regards to improving the energy flexibility. Applying
simple heuristic algorithms enables for example to delay the use of a heat pump for several hours, or
to realize significant cost savings by reorganizing its operation schedule. The good performance of
the heuristic control strategies obviously depends a lot on the good choice of the thresholds values
placed on the “trigger” parameters [79]. It is therefore crucial to draw some attention on the tuning
of these values, as highlighted also by [80]. Another advantage of RBC resides in its simplicity. No
complex models are required, neither computationally demanding algorithms. Most of the reviewed
papers consider algorithms of the form “if condition is fulfilled” then “send a signal to the heat pump”.
This simplicity could consequently facilitate the potential implementation of such controls at a larger
scale, having a greater impact ultimately. However, rule-based controls also feature several lacks, usu-
ally concerning their poor dynamics. The fact that the trigger parameters or threshold values are fixed
makes it difficult for this kind of control to adapt to changing external conditions. For instance, the
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study [66] uses fixed scheduling because the peaks in the grid are identified between 17:00 and 20:00
in winter days. However, this assumption is based on the analysis of previous data and rules of thumb,
but it could very well happen that the peaks occur outside this time window. This will become truer
and truer in the future, as the penetration of variable renewable energies increases in the overall mix:
Klein et al. [78] predicted that the variability of the residual load will be substantially higher in 2030.
In particular in Spain, the calculated standard deviation of the residual load was very high compared
to other countries, which means that the profile of this residual load could vary drastically from one
day to the next. For this reason, the performance of fixed-rule controls appears rather limited, and
better control strategies are needed in order to react faster to rapid changes in the grid conditions.
Finally, rule-based controls lack the possibility to anticipate and optimize the heat pump operation
over a certain time horizon. This deficiency is clearly visible when analyzing the result graphs from
[67] presented in Figure II.3: the rule-based control implemented here results in a better fit of the
demand power curve to the supply power curve (wind turbine), which is a good example of demand
flexibility. However, a peak of electricity generation occurs just before the start of the heating system,
but it is not exploited by the controller. A more optimal strategy would have preheated the building
before, benefitting from the availability of electricity at that moment, and limiting the impact on the
occupants’ comfort afterwards. Another example of these deficiencies is given by [74] in mid-season:
their control strategy charges the thermal mass of the building in the morning, because the local PV
system produces electricity at that time. The building therefore reaches the upper limit of temper-
ature comfort, and when the solar gains (unanticipated by the control strategy) later enter the room,
overheating occurs. With this review, the performance and simplicity of rule-based controls have been
highlighted, as well as the importance of a good design in the choice of the parameters defining the
rule. It should be mentioned that it remains difficult to evaluate the performance of RBC, since they
usually do not define an explicit cost a priori. Furthermore, their lacks in dynamics, adaptation and
anticipation call for better control strategies based on optimization methods, as will be presented in
the next section.
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Figure II.3. Results extracted from the rule-based control algorithm proposed by [67]. The reference case is
presented on the left and the rule-based control on the right. The rule-based control clearly provides a flexibility
of the demand, since the consumption (orange line) adapts to the production (blue line). However, it does not
optimize the energy management: the production peak before the activation of the heat pump is not exploited
for storing energy, since the rule-based control is unable to make anticipated decisions.

3 Model predictive controls

3.1 Classification of MPC and decomposition of the different objective functions

Even though rule-based controls can already yield significant improvements with regards to de-
mand response and flexibility, MPC is expected to produce further improvements but it also requires
more investments and is more complex due to the prior need of a model [45]. As recalled by [81],
model predictive control covers a wide range of different control techniques. They have in common
to “make explicit use of a model of the process to estimate a future control signal by minimizing an
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objective function” over a receding horizon N . At each time step k, the best sequence of future con-
trol inputs is calculated by the optimizer, and only the first one is then applied to the actual systems.
The case of an application of MPC to building climate control with MPC is presented schematically in
Figure II.4. The first applications of MPC to building climate control intended to enhance the energy
efficiency and reduce the energy consumption [82], without too much focus on flexibility or demand-
side management. Recently, more research has been developed for the use of MPC within smart-grids,
with emphasis on flexibility. In this regard, MPC is an ideal framework to use weather and price pre-
dictions in order to make use of the thermal storage of a building appropriately [79]. In MPC (and
contrary to RBC), the objective of the controller is relatively simple to identify due to the presence of
an explicit cost function. Its expression represents the quantity that the control should optimize, for
instance the energy cost. In general, this function contains multiple terms that represent multiple ob-
jectives, which are balanced with appropriate weights. The optimal values of the weighting factors are
usually computed using Pareto fronts, such as mentioned in [83]. Table II.2 summarizes the objective
terms used in the referenced papers (see also detailed table in the Appendix A), and indicates whether
the studies rely on simulation or experimental work. It can thus be observed that few articles have
validated the performance of their control strategies through experimental implementation; most of
them only rely on computer simulations.

Figure II.4. Principle of MPC applied to building climate control with heat pumps, partially derived from [79] and
[84]. The controller finds the sequence of future control inputs that will minimize the objective function over the
receding horizon, taking into account the constraints, disturbances, and behavior of the model. The first control
input is then applied to the real system.

3.2 Economic MPC

In the reviewed literature, one sort of MPC clearly stands out: Economic MPC (EMPC), where the
objective is to reduce monetary costs. This cost optimization relies on time-varying energy prices. The
objective function Jcost has in most of the cases indexed in Table II.2 the following form:

Jcost =
∑
k

[
Pel(k) · cel(k) +

∑
i

Pi(k) · ci(k)

]
(II.1)

Where k is every time step from 0 to the receding horizon N , Pel is the control input (the heat pump
power in this case), cel is the electricity price (varying in time according to different tariffs). When
several energy carriers are present, their respective price ci and consumption Pi are also taken into
account. The optimization process then must minimize this cost function over the receding horizon,
logically leading to monetary savings. Even though the claimed objective is to reduce the costs, this
method will normally result in load shifting towards periods of lower energy prices. Depending on
how the price profile is constructed, this load shifting can constitute an interesting form of energy
flexibility, and therefore a more general objective. The price profiles tested either have a day/night
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Table II.2. Decomposition of the objective functions in MPC strategies. A more detailed version of this table can
be found in the Appendix, with the mathematical formulations of the different terms. Furthermore, it is indicated
in the left column if the MPC strategy has been tested with simulations, experimentally, or both.
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SIMULATIONS
Masy et al. (2015)[46] X X
Tahersima et al. (2012)[85] X X
Li and Malkawi (2016)[86] X X
Verhelst et al. (2012)[83] X X
Pedersen et al. (2013)[87] X X
Kajgaard et al. (2011)[88] X X X
Halvgaard et al. (2012)[47] X X
Santos et al. (2016)[89] X X
Bianchini et al. (2016)[90] X X
Knudsen and Petersen (2016)[91] X X
Sichilalu et al. (2015)[92] X
Mendoza-Serrano et al. (2014)[93] X
Salpakari and Lund (2015)[94] X
Toersche et al. (2012)[95] X
BOTH SIMULATIONS AND EXPERIMENTS
Ma et al. (2014)[48] X X
Sturzenegger et al. (2013)[96] X
Oldewurtel et al. (2013)[97] X
EXPERIMENTS
De Coninck et al. (2016)[98] X X X
Vana et al. (2014)[99] X X X

structure [46], [71], [86], [92], [98], or an hourly variation corresponding to the spot prices on the day-
ahead market (often the Nordpool market for instance)[45]–[47], [88], [90], [91]. Masy et al. use EMPC
precisely to compare three different electricity tariffs [46]: flat rate, day-night tariff and ToU (see Fig-
ure II.5a). Constraints are implemented for the output temperature range and the maximum power
of the heat pump. It is clear from the middle graph of Figure II.5a that the electricity consumption of
the heat pump is shifted to low-price hours when a time-varying price is applied. At the optimum,
this load shifting reaches 80%, while the procurement costs are reduced by up to 15%. However, an
increase in the overall energy consumption of 20% is observed.

De Coninck et al. used a very similar method [98]. A major difference is that the building here is
equipped with a gas boiler and a heat pump, therefore the system can alternate between both sources,
depending on their cost. In the summation of Jcost, the cost of gas is implemented through the addi-
tional term Pg(k) · cg(k), with Pg the gas consumption and cg the constant price of natural gas (similar
method in [86]). Furthermore, this study is experimental and measures the effects of the control strat-
egy on a real building. A reduced-order model and a day-night electricity tariff were used. Compared
to RBC, the MPC enabled to reduce the costs by 30-40%, and the primary energy by 20-30%, which
is an additional benefit since this parameter is not included in the objective function. To achieve this
result, the MPC controller tends to preheat the building with the heat pump during the night at a lower
supply temperature, and enhances the use of the heat pump as a priority over the gas boiler.

Halvgaard et al. also present an EMPC scheme [47]. The studied house is heated by floor heating
supplied by a ground-source heat pump (GSHP) which is linked to a storage tank, and is represented
by a single zone state-space model. The EMPC strategy minimizes the electricity cost while keeping
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constraints of indoor temperature, by acting on the power used by the compressor of the heat pump.
The method resulted in 35% economic savings, compared to a case with constant electricity price. The
energy consumption is clearly shifted towards low-price periods as can be seen in Figure II.5b.
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Figure II.5. EMPC examples from (a) Masy et al. (2015)[46] and (b) Halvgaard et al. (2012)[47]. The top graphs
show the electricity price variations (on the left, three different tariffs were tested). The middle graphs show
the resulting heat pump power profiles, and on the bottom graphs, the resulting indoor temperature profiles. A
coincidence is observed between the utilization of the heat pump and the periods of lower energy price.

3.3 Other flexibility objectives

Aside from EMPC, MPC has sometimes been used with other flexibility objectives than the sole
monetary one. For instance, Sturzenegger et al. used an MPC strategy to control a Swiss office build-
ing’s HVAC systems (including thermal slab, ventilation and blinds)[96]. The goal of the objective
function is to minimize the non-renewable primary energy (NRPE) consumption, through the follow-
ing formulation:

Jq =
∑
k

c(k) · u(k) (II.2)

Where u(k) is the vector of the control inputs and c(k) is a vector representing the conversion factors
(“cost”) of each control input, depending on the systems efficiency. MPC used 17% less NRPE energy
(including lighting and equipment energy consumption) compared to an RBC strategy, most savings
occurring during the heating season. Reynders et al. used a model-based predictive control approach
[74], but not formulated explicitly as an optimization problem. The controller defines the heating set-
point Tint,SP according to the following equation: Tint,SP = Tint + 1

C ·
∫ N

0
Qpred(t)dt, where Tint is the

minimum temperature for comfort, and C is the thermal storage capacity of the building. The model
and prediction aspects of the controller are present within the term Qpred(t) which is the predicted
heating demand, computed using detailed building model simulation, assuming perfect prediction
of weather and future internal gains. The aim of the set-point calculation is to preheat the building
taking into account the future energy demand, thus avoiding overcharging. In this way, the electricity
use of the heat pump during peak period is reduced by 47 to 88%, depending on the cases.

Few articles use a term for peak shaving within their objective function. Notably Ma et al. [48]
present the following formulation:

Jp = cp ·max
k

Pel(k) (II.3)
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Where cp represents the peak demand cost. In this way, the peak power is penalized in the objective
function, therefore the MPC will try to reduce it, leading to peak shaving. Unfortunately in [48], the
authors do not analyze the results in terms of peak shaving. [95] use a different formula, where the
objective function is the difference in heat pump power between time steps k and k+ 1, summed over
the control horizon. By minimizing it, the power curve is smoothed, resulting in 25% lower peaks.

Reducing the CO2 intensity is an alternative objective implemented in MPC. Dahl Knudsen et al.
[91] notably use the same formulation than Jq in Equation II.2, except that the cost vector c(k) here
represents the prediction of the CO2 intensity associated with the electricity production. An MPC
solely aiming at minimizing this term reaches effectively a reduction of CO2 emissions, but only re-
duces costs marginally and can potentially increase consumption in peak hours, in contrast to an
EMPC.

Other terms can be introduced in the objective function to increase the robustness of the control.
They do not represent a flexibility objective in their own, but enable a smoother operation of the sys-
tems. Santos et al. for example introduce the following term [89]:

Jε =
∑
k

cε · ε(k) (II.4)

Where cε is a penalty factor and ε(k) a slack variable [84]. The constraint on the room temperature
is then formulated as follows: Tint − ε(k) ≤ Tint ≤ Tint + ε(k). Without the slack variable, the MPC
cannot find a solution if the output Tint accidentally exceeds the constraint boundaries

[
Tint;Tint

]
.

Introducing the slack variable enables to soften the constraints imposed on the output, and thus the
optimizer can find a solution outside the strict range, although at the cost of a certain penalty [47],
[99]. It therefore enlarges the feasible range of the problem.

In one article by De Coninck et al. [98], the authors introduce directly a term for energy flexibility
in the objective function:

Jf =

(
ke∑
k=ki

Pel(k) · k − Ftarget

)2

= (F − Ftarget)2 (II.5)

Where the optimizer should track a pre-defined energy consumptionFtarget during a specified flexibil-
ity interval [ki; ke]. In this scenario, a third party (energy provider for example) requires the activation
of energy flexibility during a certain period [ki; ke]. If the required flexibility consists in increasing
the energy consumption, Ftarget can be set to a high value, while if it consists in limiting the energy
consumption during the time interval, Ftarget can be set to zero.

Finally, it is important to mention that these different objectives are usually combined in a single
objective function. Most papers use linear combinations of the different J terms, setting different
weights to put more emphasis on certain aspects of the optimization. For instance, De Coninck et al.
[98] present a global objective function of the form J = Jcost + αd · Jd + αf · Jf , which is an EMPC but
also taking into account a discomfort term Jd with weight αd and a flexibility term Jf with weight αf .
The MPC controller then tries to minimize the total J over the receding horizon, taking into account
the constraints of the problem. Some terms like Jd are not linear (because of the maximum function)
and therefore require more numerical efforts for solving.

3.4 Accounting for comfort

Accounting for the users’ comfort is a crucial aspect when designing HVAC control strategies, be-
cause it will eventually affect the acceptance and thus the viability of such methods. It was observed
in the literature that comfort can be included in the MPC toolchain either as a constraint, or as an
objective.

As a hard constraint, the comfort requirements take the form of a temperature range in which
the indoor temperature (control output) should stay: for example, 22-25°C in winter and 22-27°C in
summer mentioned by [96], 21-24°C in [48], 20-22°C in [46]. The constraints can be relaxed during
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non-occupancy periods: in [46], outside the time frame [7:00 – 22:00], the problem is unconstrained.
Halvgaard et al. change the constraint at night, with a minimum output temperature of 18°C, while
this lower bound is set to 21°C during daytime [47]. The temperature range constraint can also be
applied into storage tanks when applicable, for instance when using DHW that needs to be kept warm
enough to avoid Legionnaire’s disease.

Constraining the optimization problem in such a way makes it impossible to find an explicit solu-
tion (numerical methods must be used)[84]. Furthermore, it can happen that the optimizer does not
find a solution that respects these constraints (because of the dynamics of the building for example).
For these reasons, many authors prefer to integrate the comfort as a term in the objective function: in
this way, violations of the comfort requirements are always possible, but they are penalized. This term
can take the following form:

Jd =
∑
k

θocc(k) · (Tint(k)− Tint,SP (k))
2 (II.6)

With θocc a binary occupancy factor, Tint and Tint,SP respectively the actual zone temperature and
set-point. The controller thus has to track the reference set-point Tint,SP . The temperature error
Tint − Tint,SP is here considered as squared, which means that large temperature deviations will be
more penalized than small ones, but some papers only consider the absolute value of this error. An-
other remark raised by [48] concerns the use of unconstrained temperature range in real building
applications: it might cause problems because the actuators (room thermostats) might have a specific
acceptable range of temperature set-points.

Li and Malkawi [86] propose an original approach, using the Predicted Mean Vote (PMV). This indi-
cator reflects the thermal sensation of the occupants and varies from -3 (too cold) to +3 (too hot), while
0 corresponds to a neutral sensation. Aiming to achieve this optimal (neutral) comfort with PMV = 0,
the comfort term in the objective function is expressed as in Equation II.7

Jd =
∑
k

(θocc(k) · PMV (k))
2 (II.7)

This method enables to keep the PMV within the limits recommended by ASHRAE standard (−0.5 <
PMV < 0.5)[100] for most of the occupancy time. However, this approach requires a high computa-
tion demand (around 3 hours to solve the optimization problem with detailed building simulation),
given the complex calculation of the PMV which depends on the occupants’ clothing and metabolic
rate as well as the indoor temperature and air velocity [101].

3.5 Other constraints

Accounting for comfort mainly leads to constraining the control output (indoor temperature),
which must be anticipated beforehand by the controller. However, some constraints should also be
set to the control inputs, to account for the physical limitations of the devices in use. For instance,
Dahl Knudsen et al. [91] bounds the power of the heating system to [0 – 0.5 kW], and Masy et al. [46]
to [0 – 3 kW], which corresponds to the devices used in their respective studies. The MPC controller
can then pick a thermal power within this interval at every time step. In the studies [96], [97], the MPC
also controls blinds or ventilation in addition to the heat pump, therefore constraints are also imposed
on these systems (minimum and maximum air supply temperature, only non-closed position for the
blinds during occupancy hours to guarantee some daylight). A minimum air ventilation flow rate is
also implemented as a constraint for health reasons, to guarantee air renewal indoors. Sometimes,
constraints are also imposed on the changes in the control inputs u(k + 1) − u(k), to avoid frequent
cycling behavior or steep ramping, and increase the controller robustness, like in [47] or [89].

3.6 Challenges in modelling

One of the greatest challenges residing within MPC is obtaining the model used in the controller.
It remains a difficult task to create an accurate model for every building, yet simple enough to limit
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the computation effort for the controller. Indeed, detailed models (developed for energy calculations
for instance) are not commonly used for MPC applications since they drastically increase the com-
putation time required by the optimization solver (example: 3 hours in [86] for the total solving of
the optimization problem with EnergyPlus and Genopt). Instead, simplified RC-models (resistance-
capacity, analog to electrical models) are utilized in the great majority of the reviewed cases, but they
provide less accurate description of the heat dynamics of the building. RC-models have the general
form presented in Equation II.8 [99]:

CnTn =
∑
j

Tj − Tn
Rj,n

+
∑
l

Ql (II.8)

Where j is the j-th node with temperature Tj , Rj,n is the thermal resistance between points j and
n, Cn and Tn are respectively the thermal capacity and temperature of the point of interest, and Ql
represents the different additional heat fluxes. This form of model is therefore linear and corresponds
to a network of thermal capacities and resistances, which can either be assigned to the real elements
of the building (interior air, walls, furniture etc. . . ) or be lumped into a reduced order model. Santos
et al. [89] experimented the use of non-linear models, expressing some of the thermal resistancesRj,n
with power laws in function of the wind speed. This non-linear controller proved to be more efficient,
especially when the weather conditions are determinant and the non-linearity of the models become
essential to describe the dynamics of the system.

Some of the issues related to modelling in MPC are related by [98]. For example, the model of MPC
can require a lot of meta-information (like room sizes, insulation level etc.), but these data are often
not available. The authors of [98] therefore suggest creating simpler models, so that the method is
applicable in a larger number of cases. This can cause some problems: the identification dataset used
for the model of [61] was retrieved in January/February, therefore the solar radiation was discarded as
a significant input. This situation is not true anymore in the summer season, hence the control model
is mainly valid for winter season and this becomes problematic. Several attempts at solving the model
inaccuracy issues have been reported in the literature. Masy et al. used a simplified model for the
controller, which induced some error [46]. Therefore a feedback loop was implemented from a more
detailed emulator, to introduce a correction for the possible mismatch between the simplified model
and the emulator.

For obtaining easily a model adapted to a specific building, De Coninck et al. created a specific
toolbox [49]. Its toolchain facilitates and automates the different steps in the system identification pro-
cedure like data-handling, model selection, parameter estimation and validation. It was tested for a
single-family dwelling for which measured data was available for validation. One experiment showed
poorer results and the authors identified a poor information content in the identification dataset as
the likely reason. To create a dataset sufficient for the identification process, [102] proposed a method
based on the excitation of the building by a pseudo-random binary sequence signal. This signal ap-
plied to the heating system reveals and facilitates the creation of suitable models representing the
heat dynamics of buildings. To analyze the obtained time series, the CTSM tool (Continuous Time
Stochastic Modelling) has been proposed by Juhl et al. [103]. It enables to identify grey-box models
using multivariate time series data, and to identify the embedded parameters (thermal resistances
and capacities for example).

3.7 Disturbances

An MPC controller usually simulates the response of the building model to several external distur-
bances, not only to the control inputs. The most common disturbances taken into account by MPC
are the outside weather conditions, since they will affect the most the heating or cooling needs of the
building. The external temperature is considered in the model of almost all the reviewed papers. A
notable exception is the paper [48], where the authors found out that the outside temperature did not
have as much influence on the output as the set-points or the heating power, and therefore neglected
it. The articles [92], [96]–[98] only consider the external temperature when accounting for weather
conditions. Several papers additionally consider the solar irradiation [47], [90], [91], [99]. Besides the
external temperature and the solar irradiation, [89] and [46] also take into account the effects of wind
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speed. In many cases, it is assumed that the forecast of these disturbances is perfect. When the MPC
is implemented in a real building, weather forecast is retrieved from external services or derived from
a local measurement.

Another major source of disturbance is the internal heat gains. They group the heat gains from
occupants, appliances and equipment. Most commonly, a deterministic approach is applied, with a
fixed schedule representing these internal gains [46], [90], [99]. When the MPC is implemented in real
buildings, other methods can be employed: an occupancy sensor like in [92], or deriving the internal
gains from measurements of the plug and lighting electricity circuits [98].

For all the EMPC strategies relying on cost optimization, the time-varying price of energy consti-
tutes an additional cost signal to be taken into account by the controller. Time-of-use electricity tariffs
are applied most often, with different values for peak periods and off-peak periods, and sometimes
with an additional medium price in-between. In other papers, hourly tariffs are applied, reflecting
day-ahead prices on the spot market.

Regarding the prediction of the disturbances, different concepts are found in the literature. Sev-
eral publications consider a perfect knowledge of the future (in the case of simulations), which corre-
sponds to the highest achievable performance of MPC. Most of the time, a forecast of the electricity
price and weather for the next 24 hours can be retrieved, which is an imperfect prediction. This so-
lution is implemented in most of the studied papers, especially when the MPC is applied to a real
building. Finally, the MPC can also be left without any knowledge of the future, and therefore needs
to build its own disturbances’ forecast. To this end, one can utilize black-box models using past data.
In the case of energy price and weather, an oscillatory behavior with a period of one day is observed.
Shaping filters on historic data can be applied, considering a 24 hours period and adding white noise
to account for the stochastic behavior. Pawlowski et al. [104] present different time-series methods for
estimating disturbance forecasts to be used in MPC. In [93], the authors compare the three approaches
(full, imperfect or zero knowledge about the future). With perfect predictions, the EMPC achieves cost
reduction of 31%, while with perfect ignorance of the future, the cost reductions amount to 27%. The
performance thus improves with a better forecast, but the margin remains relatively small.

4 Thermal energy storage

When studying the potential flexibility offered by buildings, the thermal energy storage plays a
key role, since it enables to stock energy for later use, hence shifting the loads in time. In general
for DSM with heat pumps, two fundamentally different types of thermal storage are considered [24]:
building thermal mass and water buffer storage tanks, which are sometimes combined together. In
some reviews, the first type is called passive storage whereas the second one is referred to as active
storage [105]. Many other types of thermal storage do exist, such as Phase Change Materials (PCM),
thermo-chemical or ice storage [106] but most of the studied cases in the present work rely on existing
thermal mass and water storage tanks for activating flexibility.

When their storage losses are neglected [93], [107], [108], water tanks are found to provide greater
flexibility. However when these losses are considered [44]–[46], [66], [73], larger water tanks induce a
degradation in the system efficiency due to these increased thermal losses. Furthermore, water storage
tanks are costly in monetary terms and in terms of space occupied within the building.

On the other hand, thermal mass does not require prior investment since it is already available
within the construction of the building. However, the comfort constraints are more restrictive because
of the limited temperature variations allowed in the occupied zones, while less problematic in a water
tank. Building thermal mass has been identified and tested by several studies as a good storage means
for demand-side management and flexibility initiatives [74], [75], [109], [110], but its potential highly
depends on the type of building [46], [74], [75]. Further investigations are needed since the existing
literature contains some lacks in this regard [75], [111].



5. DISCUSSIONS AND CONCLUSIONS 29

5 Discussions and conclusions

To summarize, even though RBC strategies can yield significant improvements, they do not achieve
the optimal performance. For this reason, MPC has shown strong advantages over classical control,
but some challenges remain concerning its implementation. The largest one resides in obtaining a
satisfactory building model for the controller, which is a costly and complicated process. A trade-off
needs to be found between the accuracy of the model and its simplicity. To tackle this issue, sev-
eral methods have been developed to facilitate the obtaining of building models to be used by MPC
controllers [49], [102], [103]. Furthermore, it would be relevant for further studies to include the com-
putation times, so that the efficiency of different modelling approaches can be evaluated.

Another challenge consists in realizing the connection of MPC with different data services. It might
result difficult to realize a connection to weather forecast services from a third party; and even if it is
realized, the closest forecast might not be adapted to the local conditions. The automatic access to
the day-ahead electricity price (in case it is variable) might not either be straightforward. However,
the upcoming large implementation of smart meters (the EU aims to replace at least 80% of electricity
meters with smart meters by 2020 wherever it is cost-effective to do so [112] and by 2018 in Spain [113])
could facilitate this communication between the end-consumer and the grid. Moreover, the numer-
ous examples of smart grid projects usually already consider that the users have access to electricity
price data.

Despite these potential barriers, MPC has been identified as a very powerful tool to activate energy
flexibility and optimize heat pump operation. Globally, MPC overcomes the limitations encountered
by simpler rule-based controls and outperforms them [80], [114]. MPC projects the behavior of the
system in the future, and thus optimizes the heat pump operation over a certain control horizon, for
instance storing energy at times where it is more profitable, and releasing it afterwards when needed.
The lack of dynamics and anticipation of RBC are therefore clearly surmounted by MPC. From their
review about optimal design and control of GSHP, [65] deduced that model-based control methods
are better by far than any other approaches and that RBC is suboptimal compared to MPC.

Among the different studies reviewed on MPC, a large majority resorted to Economic Model Pre-
dictive Control (EMPC). The primary objective of such strategy is thus to minimize the energy cost.
This objective is generally achieved, with reductions of up to 40% in the reviewed papers and with-
out jeopardizing thermal comfort, compared to conventional heating curve (or cooling curve) control
strategies [36]. Reduction of energy use or improvement of the comfort can also occur with EMPC even
though they are not formally identified as an objective. In this regard, it would be interesting if further
research would analyze the effects of EMPC further than the reduction of the energy cost (which some
articles also do). In particular, the correlation of the variable electricity price with the primary energy
factors or the CO2 emissions should be studied, so that EMPC can be used for more global objectives
than the sole monetary one. In this way, the EMPC framework can be kept, but by adapting the price
profile to the desired effect, one can instead achieve a reduction of the primary energy use or the CO2

emissions.

Along the same lines, it should be mentioned that few articles were found with MPC strategies that
considered other objectives than the reduction of the energy costs. EMPC seems the most common
way to provide energy flexibility, but it has been extensively studied, therefore the research efforts
should now concentrate on other aspects. In particular, other objective terms should be integrated
in the MPC framework, such as the heat pump COP (coefficient of performance), flexibility indicators
or primary energy use. The study [114] notably compares different MPC objectives, concluding that
the reduction of the energy use or the maximization of renewable energy use are the most interesting
options. If energy flexibility is bound to become the new target for energy efficient buildings [115],
then it should be integrated directly as an objective in the optimization problem through different
indicators [116], to maximize this flexibility. Furthermore, it would be relevant to include multi and
contradictory objectives in the same MPC, and evaluate the trade-off made by the controller. For
instance, it could seem like a good strategy to operate a heat pump at night to benefit from traditionally
lower electricity prices, but the COP is also reduced at night because of lower outdoor temperature (in
heating case). These two aspects need to be balanced by the MPC, and it should be noted that rule-
based controls can only deal with such issues in an intuitive (non-optimal) manner.
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Overall, despite its complexity and the identified challenges residing in the modelling and the im-
plementation of such control, MPC strategies are bound to be increasingly used in the future. Old-
ewurtel et al. put forward several reasons for this foreseen development [79]: drastic increase in com-
putational power, standardized use of simulation tools, increase in the quality of weather forecasting,
rising of energy costs and the desire to handle time-varying electricity prices (within smart grids for
instance). However, the existing work on MPC for heat pump control primarily relies on simulations;
few implementations in real buildings have been realized [45] (see also Table II.2). Now that this tech-
nology is mature enough, it should be deployed and studied in more realistic environments. In partic-
ular, the heat pump functioning in real-time, its efficiency, the part-load conditions, the interactions
between supervisory and local controls, the comparison between simulation and experiments have
rarely been mentioned in the literature, and thus constitute interesting paths for new investigations
that steered the present thesis. Furthermore, the studied articles often focus on a single heat pump
system in one building. Energy flexibility has much greater potential when aggregated for numerous
buildings, therefore this aspect should also be studied: multiple MPC algorithms that collaborate to
reach a common goal, aggregation potential and drawbacks, impact of market penetration. Several
works have already been published on these topics [45], [117], but more research is needed.

Based on this review of the state of the art, the following conclusions have led the work later devel-
oped for this thesis:

• Both an RBC controller and an MPC controller have been developed. These two types of con-
troller were tested in the same framework, enabling a thorough comparison of their perfor-
mance. Furthermore, the development of the MPC controller and the production of the needed
control models has been detailed, so as to put into perspective the development efforts with the
achieved performance for such complex controllers.

• The developed controllers (RBC as well as MPC) have been declined with several objectives, so
as to study different flexibility goals than the cost reduction. In particular, the reduction of the
CO2 emissions was targeted to reduce the environmental impact of heating and cooling.

• The developed control strategies have been tested experimentally on a real heat pump. This pro-
cess enabled to give more realistic results of the system performance, and highlighted practical
issues encountered during the implementation.

• Along the same line, models of heat pump were developed, validated using experimental data.
These more accurate models provide a better representation of the heat pump dynamics and
operation, while the existing literature often relied on very simplified models, e.g. a constant
COP. Using more realistic models enabled to evaluate the performance of the control strategies
in a more tangible manner and to put the claimed savings into perspective.

The work developed following the outcome of this review is described in the following chapters, start-
ing from the methodology to evaluate the flexibility and followed by the development of the two con-
trollers.



Chapter III

Methodology for the analysis of energy
flexibility in buildings

1 Co-simulation and experimental frameworks for testing

To test the controllers described in chapter IV, different frameworks were developed. Firstly, a
simulation-only configuration is presented in subsection 1.1. In that scheme, the controller is tested
on a detailed model of heat pump. Secondly, a semi-virtual environment setup is described in sub-
section 1.2. In that case, the heat pump model is replaced by a real heat pump system operated in a
laboratory, and managed by the tested controller.

1.1 Co-simulation framework
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Section III.4.2
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Figure III.1. Co-simulation scheme between TRNSYS and MATLAB (case of an MPC controller).

This testing scheme relies entirely on dynamic simulations, with different software interacting,
hence the ”co-simulation” designation. The scheme of the co-simulation and the exchange of vari-
ables is presented in Figure III.1, and relies on TRNSYS as the main software. TRNSYS is a transient
systems simulation program [118] that enables to perform dynamic simulations of most commonly
found thermal, electrical and control systems. It has a modular structure, with blocks called ”Types”
available from existing libraries, and which are connected with each other (e.g. the air-source heat
pump model is Type941).

31
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The detailed model in TRNSYS here serves as the ”real building”, in other words it constitutes a
virtual plant with which the control strategies can be tested. This principle is commonly known as
”hardware-in-the-loop” (HiL) and enables to run a great quantity of simulations to test the controller,
without the costs of performing actual physical tests in a real building. The details of the model and
the building study case used for this purpose are described in section 4. The TRNSYS simulation runs
using the necessary inputs (weather, occupancy, DHW tapping profiles, grid etc...) from external files.
Considering perfect predictions, these external files also provide the forecasts necessary for the MPC
to project the future behavior of the systems. Part of the intelligence for the flexibility exploitation
actually originates from the design of the input signals such as the price or emissions of the power
grid: the analysis of these signals is detailed in subsection 2.1.

In the case of an RBC controller, the control can be implemented directly in TRNSYS (classic ther-
mostat control). In the case of MPC, TRNSYS does not contain suitable tools for optimization, there-
fore the MPC calculation must be externalized in another software, MATLAB in the present case, sim-
ilarly to the method applied by Alibabaei et al. [119]. When the MPC controller in MATLAB is called,
it is provided with the necessary input, namely the initial values of the states and the forecasts for the
next 24h, taken from the same files. The control problem is formulated in MATLAB with the YALMIP
tool [120] and solved with GUROBI [121]. To limit the computation efforts, the MPC controller requires
simplified or low order models of the building envelope and the heat pump performance: these are de-
tailed respectively in subsection 4.2 and subsection 3.3. From the optimal control trajectory calculated
over the horizon of the next 24 hours, the first values are sent to TRNSYS, before a new computation
of the MPC is carried out and new values are obtained. The MPC controller is called every 15 minutes,
while the detailed TRNSYS simulations runs with a finer resolution of 1 minute, so as to better observe
the intrasampling behavior of the systems within one control action. In practice, the Type155 of TRN-
SYS enables to establish the connection between both software. It should be noted that for clarity, the
term ”detailed” generally refers to the TRNSYS framework, while the term ”simplified” refers to the
MPC framework, since the models and time steps of these two frameworks are notably distinct. The
results from the co-simulation studies performed in this framework are later presented in chapter V.

1.2 Semi-virtual environment laboratory framework

The performed tests presented in chapter V were carried out in a semi-virtual environment exper-
imental setup. The main difference with the co-simulation framework resides in the real heat pump
system, which replaces the heat pump model. The schematic of the control and communication setup
is presented in Figure III.2. The Labview interface centralizes all the commands and exchanges of vari-
ables between the different pieces of software. The TRNSYS simulation, set to a calculation time step
of 1 minute, calculates the energy loads of the real building, and thus still serves as the virtual plant
that enables to try the different control strategies, following the HiL concept. HiL allows for the testing
of a complex real-time embedded system [122]. In this case, the controller is interfaced with its related
systems which are partly real (the heat pump), and partly virtual (the mathematical representation the
building dynamics, also called the ”plant simulation”).

Similarly, the MPC controller is implemented externally in MATLAB to benefit from its optimiza-
tion features, and the external files containing time series data of weather, occupancy and grid vari-
ables provide the necessary input for TRNSYS. The same weather conditions are emulated dynami-
cally in the laboratory climate chamber in which the heat pump is placed. The data acquisition sys-
tem saves the measured data at a sampling time of 10 s, while it updates the control set-points for the
laboratory every minute.

The mechanical schematic of the experimental laboratory setup is represented in Figure III.3. It il-
lustrates the concept of semi-virtual environment, where a real device (a heat pump in the present
case) is coupled with a virtual simulation software (building simulation in TRNSYS in the present
case). Such setup is used in many laboratories where energy flexibility of buildings is tested [59]. The
air-to-water heat pump is installed as shown in the photographs of Figure III.4: the outdoor unit is
placed into a climate chamber, and the floor standing indoor unit containing the DHW tank is placed
outside the chamber in the laboratory space room. Both units are connected through a refrigerant
fluid circuit. The walk-in climate chamber is a 45 m3 room space, where the air properties can be con-
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Figure III.2. Schematic of the co-simulation and the software environment in the experimental setup.

trolled in a temperature range of -30 to +60°C and a relative humidity range of 15 to 98%, enabling to
recreate a wide spectrum of climatic conditions. In the reported experiments, this climate chamber
is used to emulate dynamically the outdoor conditions of the chosen location. Such setup enables to
perform repetitive experiments with the exact same boundary conditions and thus to ensure repro-
ducibility and a valid comparison between the different control configurations.

The coupling between the virtual building and the heat pump is done by means of two thermal
benches. The first thermal bench emulates the space heating or cooling load from the building emis-
sion system (here Fan-Coil Units or FCU): when the heat pump runs in this mode, its output water flow
and supply temperature are recorded in the laboratory. These measurements are sent to the TRNSYS
building model, which calculates the corresponding return temperature considering the dynamics of
the building. This return temperature is emulated with the thermal bench that extracts or delivers
heat to the water flow by means of a heat exchanger to reproduce the thermal load of the building.

In all the presented experiments, the water flow in the heat pump circuit is kept at a constant value
of 26 l/min for the space heating/cooling loop and 33 l/min in the internal DHW tank charging loop,
both in the normal range of operation of the machine.

A second thermal bench allows reproducing the DHW tapping profiles of the building occupants.
Following a predefined daily tapping schedule derived from the standard [123], a water flow is drawn
from the top of the DHW tank, so as to deliver 45°C at the tapping point. A buffer tank with cold
water (1000 liters) is used to provide water at the temperature of the mains network during the DHW
extractions. This tank is kept at a temperature of 10°C in the winter cases, and 19°C in the summer
cases. The water from the bottom of this cold tank is circulated into the heat pump DHW tank during
each tapping event. The water flow during the DHW extractions is controlled with the 3-way valves
and a flow controller loop in the corresponding test bench.



34 CHAPTER III. METHODOLOGY FOR THE ANALYSIS OF ENERGY FLEXIBILITY IN BUILDINGS

Thermal Bench 4

DHW

Cold water

tank 1000 l

Thermal Bench 1

SH / SC

Pressure gauge

Temperature sensor

Flow meter

Pump

3-way valve

Electricity meter
Electricity supply

Building

model

(TRNSYS)

Demand profiles for

DHW and SH/SC

REALVIRTUAL

Climate

chamber

Controller

Integrated

DHW tank

200 l

Modbus

interface

Chiller

Weather file

Outdoor unit

Heat pump

Indoor unit

Control of the

return temperature

Figure III.3. Schematic of the mechanical and control systems, illustrating the principle of the semi-virtual envi-
ronment, with the separation between the real systems and the plant simulation.

Several sensors are placed in the laboratory to measure the status of the different components in
the circuit. The main logged variables are the following, with their respective accuracies:

• Supply temperature Tsup: measured on the output pipe of the heat pump with a PT100 sensor
that has a precision of± 0.25 K

• Return temperatureTret: measured on the input pipe of the heat pump, also with a PT100 sensor
of the same precision (thus for the temperature difference in the water loop, the precision is ±
0.5 K).

• Water mass flow meter ṁ: measured in the water loop circuit with an induction flow meter
which has a high precision of± 0.2 to 0.5%, which makes its error negligible. The thermal power
Qth can be deduced from the three previous measurements (see later Equation III.16).

• Power used by the heat pump Pel: measured by a power meter where the heat pump is plugged
to the grid, with a precision of± 1%.

• Air temperature Tamb: measured throughout the climate chamber by 10 temperature sensors
which are arithmetically averaged.

• Frequency of the compressor f : measured by the internal sensors of the heat pump and re-
trieved through its Modbus interface, with a resolution of 1 Hz.

• Temperature in the DHW tank TTES : measured by the internal temperature sensor of the heat
pump placed outside the tank in the middle of its height, with a resolution of 1 K.
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Figure III.4. Photograph of the laboratory with the floor standing indoor unit of the heat pump, and the outdoor
unit in the climate chamber which is closed in (a) and open in (b).
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2 Energy flexibility: inputs and indicators

2.1 Input penalty signals

The control strategies presented in this thesis belong to the class of indirect control, or implicit
demand response: in these cases, the controller receives external signals as inputs, also called penalty
signals [124], and can then choose whether or not to react to them. On the other hand, in an explicit
demand response scheme, the controller would receive an order from an external party (e.g. an aggre-
gator) to modify the energy consumption of the building for a certain period, and would be required
to comply with this plan in exchange for a reward. The only explicit demand response programmes
available in Spain are reserved for large consumers and are only activated to curtail the load in emer-
gency situations. Explicit demand response for smaller consumers is not possible so far in this country,
since aggregation is still not legal [17], [125], therefore explicit demand response strategies have been
discarded in the present research.

In implicit demand response schemes, the input penalty signal for the controller (often a price
signal) constitutes one of the most important elements. A large part of the intelligence actually comes
from the design of the signal, since this will determine to which periods the end-users are incentivized
to shift their loads. The signal must therefore be constructed to solve a specific problem. A famous
example is the ”duck curve” case in California [126] in recent years, the share of solar energy in the grid
of this American state has increased in an important manner. As a result, the residual load presents
a valley during the day hours, while in the early evening, all customers shift from their PV supply and
connect to the grid at the same time, causing an important ramping during a short period, which the
grid has to sustain. To respond to this specific issue, the grid operators designed time-of-use (ToU)
rates to increase the electricity tariff in the evening hours, and thus spread the connection of the users
to the grid on a larger period.

Time-varying electricity prices constitute the great majority of penalty signals used in implicit de-
mand response programmes; the ones used for this research are detailed in section 2.1.1. Given the
urge to decarbonize our energy systems, the use of signals representing the carbon footprint of the
grid has gained interest in recent research: the construction of such signals is detailed in section 2.1.2.
These are the two signals tested in the present thesis. Following this method, penalty signals based
on other criteria could easily be constructed for use in the same control framework, without changing
the nature of the control problem. For instance, the residual load of the grid (total load less the RES
production)[69], [78] or the non-renewable primary energy factor constitute interesting alternatives
of penalty signal.

2.1.1 Price signals

When a certain controller is designed to minimize the energy costs, it must be supplied with a
signal of the time-varying price of energy. As seen in the literature review, a majority of the existing
research on MPC for energy flexibility relied on this type of economic optimization. The price profiles
used either have a day/night structure [46], [71], [86], [92], [127], or an hourly variation corresponding
to the spot prices on the day-ahead market (often the Nordpool market for instance)[45]–[47], [88],
[90], [91]. In Spain, different time-varying tariffs are also available for small customers, in fact it was
the first country in the world where the default price for households was based on hourly spot prices
[17]. In the absence of explicit demand response programmes in this country, this policy supposes a
large roll-out of hourly electricity tariffs in the country, and thus an important potential for implicit
demand response.

To exploit the energy flexibility of buildings to their full potential, the end users must have a di-
rect access to the hourly prices in advance. This is made possible with smart meters, which enable
easy communication with the grid operators and facilitate this data collection. In fact, the European
Union plans to replace at least 80% of electricity meters by smart meters by 2020 wherever it is cost-
effective to do so [112], and in Spain this deployment has been achieved in 2018 [113]. The rollout
reached 99.14% of all the meters for customers of less than 15 kW contracted, which corresponds to
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28.6 millions of meters replaced, as of the 31st of December 2018 [18]. The direct access to the varying
electricity price profiles is therefore considered as given (the prices are usually published at 22:00 for
the next day). Moreover, the numerous examples of smart-grid projects usually consider that the users
already have access to electricity price data.

The Spanish hourly tariffs are named PVPC (Precio Voluntario para el Pequeño Consumidor, or
Voluntary Tariff for Small Consumers) and are targeted for small consumers with a contracted power
of less than 10 kW. These prices are indexed on the spot price of the Spanish market and determined
with information from the Spanish TSO, Red Eléctrica de España [128]. Three different tariffs exist,
as illustrated in Figure III.5 for a sample week of March 2019. The default PVPC tariff follows the
evolution of the spot market price, but at a higher level since it is aimed for end-consumers. The ”2-
periods PVPC” tariff also varies hourly, but presents a clear peak/off-peak structure: the price is higher
during daytime (from 11:00 to 21:00) and lower during the rest of the day. This is the preferred tariff
when used in an implicit demand response configuration, since the large variations between peak and
off-peak prices make more room for optimizing the energy costs and shift the loads to the cheapest
hours. Finally, the PVPC tariff for EV is only applied for electric vehicles and show approximately the
same pattern than the 2-periods tariff. The three available tariffs include an energy term for the access
tolls, the charges and the cost of production, but exclude taxes.
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Figure III.5. Sample of the different electricity tariffs existing in Spain, for one week of March 2019 (week 11).

It is observed on the last day in Figure III.5 (Sunday March 17th) that around midday, the spot price
presents an important drop: this is due to the coincidence of high solar energy availability and a low
load, typical on a Sunday when industrial activities are stopped. All the other tariffs also reflect this
price drop. It is expected that in the future, with the increase penetration of RES, the volatility of the
prices will increase, making the research on demand-side flexibility particularly relevant. Negative
prices have for example already been observed for some hours in regions like Germany or California
where the penetration of solar energy is particularly important.

2.1.2 Carbon intensity signals

Given the urgent need to decarbonize our societies, it was suggested earlier that other objectives
than cost minimization could be studied, since the ultimate goal is actually to reduce the carbon foot-
print of our energy use. An alternative approach thus consists in using the carbon intensity of the grid
as an input penalty signal for the controller. In this way, the main objective of the controller would
consist in minimizing the CO2 emissions due to the energy use of the building. This concept has
gained a lot of interest in recent years, with several articles reporting the use of CO2-based signals in
their control strategies [52], [53], [91], [129], [130].

Moreover, when the impacts in terms of carbon footprint are evaluated, the CO2 emissions are
usually calculated with average values. In this work, we propose a novel approach, by calculating the
marginal CO2 emissions, instead of the average emissions of the grid. The marginal emissions con-
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sider the merit order in which the production plants are activated in a given grid, and thus the emis-
sions savings are meant to be calculated more accurately. For instance, if a demand-side management
action triggers a reduction of the energy use, this will not affect a base plant like nuclear, which is too
slow to start and stop for balancing the grid. Instead, this variation will be compensated for example
by a gas turbine, and therefore the resulting marginal emissions saved will be greater. The Marginal
Emissions Factor (MEF) will thus be used in this study, as it gives a more accurate representation of
the environmental impact of DSM actions. The calculation methodology for the MEF is based on the
statistical analysis of historical data obtained from the grid operator [57] and is detailed hereafter.

The MEF highly depends on the national context and the energy mix of a country [131]. It is cal-
culated here at the national scale for Spain and represents the quantity of CO2 emissions which are
avoided for every kWh of electricity saved at a certain moment in that context. To calculate the MEF,
the following steps have been followed: firstly, the hourly data of the energy mix have been retrieved
from the Transmission System Operator (TSO) [132]. The data contains the breakdown of the electric-
ity production for every hour, detailed per energy source. Considering the CO2 emission coefficients
of each energy source [133], the average CO2 emission factor (EF, in kgCO2/kWh) can be computed for
every hour of the year. Secondly, two time series are calculated: the difference in the system load and
the difference in the average CO2 emissions, from one data point to the next. These data are repre-
sented as a scatter plot in Figure III.6a.
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Figure III.6. (a) Average MEF (0.238 tCO2/MWh) in the Spanish electricity mix, based on hourly data from 2016.
(b) MEF calculated per clusters of RES share and system load (data for Spain from 2016).
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From this figure, the overall MEF can be derived: it corresponds to the slope of the linear regression,
here 0.238 kgCO2/kWh (for comparison, the average MEF found by Hawkes [131] for Great Britain was
0.69 kgCO2/kWh) . However, it is observed in Figure III.6a that the data points are relatively scattered.
In fact the MEF varies substantially at different scales, both seasonally and according to the system
load, the time of the day or the proportion of renewable energy sources (RES) in the energy mix. For
this reason, the data points of Figure III.6a have been clustered according to the following rules:

• First the data are clustered per ascending system load, into 10 clusters of equal size (same num-
ber of data points),

• Inside these 10 datasets, the data are then clustered per proportion of RES (from 10% to 70% and
with steps of 10%), with at least 50 points.

• For the data points of each obtained cluster, a linear regression similar to the one presented in
Figure III.6a is realized, to obtain the MEF of the cluster.

The resulting MEF values are plotted in Figure III.6b with colour mapping, in function of both the
average system load and the RES share of the clusters. These MEF values have been obtained with
an average correlation coefficient of 76% in the different clusters, thus the linear regression results
are considered reliable. Figure III.6b clearly demonstrates the dependency of the CO2 MEF with the
RES share and the national load. When both the RES and the load are low, the MEF reaches higher
values, because the remaining base load must be covered with CO2 emitting sources. At middle load
levels and high RES share, the MEF displays its lowest values: at these points, there is enough margin
to increase the load and benefit from the high availability of renewable sources. Finally, when the
load is high, the dependency of the MEF on the RES share tends to disappear. To obtain a more direct
expression of the MEF, a quadratic fit is derived from the data points presented in Figure III.6b. The
equation of this model is shown in Equation III.1, withL the system load (GW),RES the RES share (%)
and ai the fitting coefficients. The comparison between the model and the data points is represented
in Figure III.7. The model is fitted by minimizing the root mean square error (RMSE), which reaches
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Figure III.8. Time series of the system load, the RES share, the electricity price and both the CO2 EF and MEF, for
a few days of February 2016 (left) and August 2016 (right).
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the value of RMSE=0.00062 kgCO2/kWh or as a normalized value: NRMSE=0.28%.

MEF = a0 + a1RES + a2L+ a3RES
2 + a4L

2 + a5RES · L (III.1)

When analysing a particular period of time, the MEF can then be obtained by applying Equa-
tion III.1 to the time series of the power grid. An example is represented in Figure III.8: the system
load (a) and the RES share (b), enable to calculate the MEF (d) thanks to the quadratic fit equation.
The MEF and the average EF curves (compared in Figure III.8 (d)) globally follow the same trends.
However, the MEF displays variations of larger amplitude than the average EF, and therefore leaves
more room for optimization, which is the main reason behind the whole MEF signal calculation.

To interpret the curves, it should be reminded that a low MEF corresponds to a favourable case
to use electricity, since the related CO2 emissions will be lower, while a high MEF will trigger higher
emissions. The MEF signal and the price signal (the latter being more traditionally used as an input
signal for load-shifting) show a rather similar behaviour, although the price signal (PVPC) has a clear
day/night discrepancy by construction. It should be noted that for instance, the MEF signal shows a
clear valley around midday, which is also present, but less evident in the PVPC signal. This situation
is foreseen to amplify in the future: Klein et al. [78] have analysed the energy mix of Spain in 2030 and
deduced that it will be more profitable to use energy during day hours for a grid-optimal scenario, i.e.
when the residual load is negative, due to the importance of solar-based energy. These statements are
highly dependent on the country (see observed differences between Spain and Great Britain for the
average MEF), the energy mix, and the dispatching of the energy sources within the grid. The opera-
tion of the grid also influences greatly the MEF calculation: for instance, it seems from Figure III.8 that
mainly hydropower and gas are used to absorb the daily load fluctuations, while another management
strategy would probably lead to different results in terms of marginal emissions.

2.2 Quantification - Key Performance Indicators

To evaluate the control strategies discussed in this thesis, it is necessary to pre-establish certain
Key Performance Indicators (KPIs) to quantify the controller performance in different areas. Firstly,
integrated values of energy and other quantities are calculated: they constitute the most intuitive KPIs
that one would usually compute (section 2.2.1). Secondly, indicators specific to the context of energy
flexibility are defined (section 2.2.2). Those mostly come from recent literature reviews on this topic.
Thirdly, the control strategies must not jeopardize the comfort of the users, therefore some comfort
indicators are also utilized (section 2.2.3).

2.2.1 Integrated energy values

The first indicators to observe when acting on HVAC control are the integrated energy values. In
chapters IV and V, simulations and experiments of three days duration are reported. One can naturally
calculate the integrated values over these three days: thermal energy delivered, electrical energy used,
primary energy, costs or emissions due to the use of the heat pump. These primary KPIs already give
a first indication about the performance of the controller.

Thermal energy The integrated thermal energy delivered by the heat pump Qth,Σ simply corre-
sponds to the integral of the thermal powerQth over the considered period, as shown in Equation III.2.
When dealing with relatively short simulations (like three days in the present case), it is also important
to consider the overall energy balance: between the final state and the initial state of the simulation,
some energy has also been charged or discharged from the thermal storage (building mass and wa-
ter tank), and the building is not left in the exact same state where it was found at the beginning of
the simulation. To quantify this gap between initial and final state, the quantity ∆Qth is computed,
according to Equation III.3. For every state of the model Ti associated with the capacitanceCi, we cal-
culate the difference of energy content between the final state Ti,fin and the initial state Ti,init. ∆Qth
provides an approximate calculation of the difference of energy content of these states. The overall
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thermal energy used Qth,use is then calculated with Equation III.4 and enables to consider both the
energy produced by the heat pump and the energy charged/discharged in the building. Note that in
the case of cooling, the sign of ∆Qth is reversed, butQth is always counted positive, whether as heating
or cooling thermal power.

Qth,Σ =

∫
Qth(t)dt (III.2)

∆Qth,SH/SC =
∑

i∈{states}

Ci(Ti,fin − Ti,init) and ∆Qth,TES = CTES(TTES,fin − TTES,init) (III.3)

Qth,use =

{
Qth,Σ + ∆Qth,TES + ∆Qth,SH in heating mode
Qth,Σ + ∆Qth,TES −∆Qth,SC in cooling mode

(III.4)

Electrical energy The electrical power used by the heat pump Pel is integrated over the considered
period, as shown in Equation III.5. To get a more complete picture, the consumption of other elements
can also be included in the integral, such as the consumption of the FCU, additional pumps or valves,
or even of the other electric loads of the building. However in this thesis, the focus lies on the operation
of the heat pump, therefore we only consider the electricity use of the heat pump alone (including all
its components).

Pel,Σ =

∫
Pel(t)dt (III.5)

Efficiency (COP) To understand how efficiently the heat pump has operated over a certain period, an
average COP value can be computed, as shown in Equation III.6. It simply consists in the ratio between
the thermal energy produced by the heat pump and its electrical consumption. This quantity would
correspond to the Seasonal Performance Factor (SPF) if calculated over an entire year. As mentioned
in Equation III.5, the power consumption includes all the components of the heat pump (compressor,
fan, controller, pump), but excludes any exterior device (FCUs for instance), so as to consider the COP
of the heat pump only.

COPavg =
Qth,Σ
Pel,Σ

(III.6)

Penalties - Cost, emissions and primary energy The objectives of the control strategies studied in
this thesis often consist in minimizing the monetary costs, energy use or emissions due to the heat
pump use. To evaluate if these goals have been reached, the integrated penalties are computed as
described in the general formulation of Equation III.7. Considering a time-varying penalty c (price,
emissions or primary energy factor PEF), the electricity use is multiplied by this penalty at every time
step. The obtained cΣ correspond to the integrated penalties. The specific formulation is shown in
Equation III.8 for the energy costs with the electricity price cel, and in Equation III.9 for the primary
energy with the primary energy factor cPEF . The time-varying PEF is defined for every kind of primary
energy (coal, nuclear, solar etc.)[134], and the overall PEF for Spain is calculated every hour, accord-
ing to the breakdown of its energy mix. The PEF, expressed in kWhprim/kWhel, takes into account
resource extraction, transport and conversion of energy carriers, the use of fuels in power plants and
the auxiliary energy use.

In the case of the marginal emissions, the general calculation must be slightly adapted, since such
savings must be calculated considering a difference of energy use in comparison with a reference case.
This calculation is reported in Equation III.10. cMEF,Σ corresponds to the marginal CO2 emissions
saved compared to the reference case (not to the global emissions of the considered case).

cΣ =

∫
Pel(t) · c(t)dt (III.7)
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cel,Σ =

∫
Pel(t) · cel(t)dt (III.8)

cPEF,Σ =

∫
Pel(t) · cPEF (t)dt (III.9)

cMEF,Σ =

∫
[Pel(t)− Pel,ref (t)] · cMEF (t)dt (III.10)

2.2.2 Flexibility indicators

Since energy flexibility applied to buildings is a relatively recent research topic, there does not exist
a clear consensus about how to quantify this potential. Several recent reviews published in the frame
of the IEA EBC Annex 67 have revealed the variety and numerous approaches in attempting to quantify
the energy flexibility of buildings [116], [135], [136]. Most of them take into account one or several
of these quantities to characterize the energy flexibility: power, energy, time or costs. Other articles
attempted to define new indicators or methods, such as the standardized building assessment for
demand response by Oldewurtel et al. [97], the flexibility factor by Le Dréau and Heiselberg [137], the
quantification with cost curves by De Coninck and Helsen [138] or the flexibility function developed
by Grønborg-Junker et al. [124].

The work of Reynders et al. [27], [139] exposes a distinction between two types of flexibility assess-
ment: an evaluation beforehand, which would correspond to a prediction of the flexibility potential
that one could obtain from a given building in the future, and an evaluation a posteriori, where a
certain flexibility strategy has already been implemented and one wants to assess its performance
afterwards. The first approach is more useful in an explicit demand response scheme, where for ex-
ample an aggregator wants to know how much flexibility it can expect from its building portfolio and
make biddings based on this prediction. It often relies on a comparison with a theoretical reference
case where no flexibility is activated, which questions the choice of a standard reference case. The
second approach is more relevant in implicit demand response scheme, where a signal is for example
sent to the individual buildings, and the evaluation focuses on how much energy flexibility actually
occurred with the considered controller. In this case, the indicators are often related to the strategy
implemented (e.g. which input penalty signal was used), which limits their generalization.

This thesis focuses on implicit demand response, therefore an indicator able to quantify the per-
formance of the load-shifting was chosen (the Flexibility Factor from [137]) and is presented in the
next section. A set of indicators for explicit demand response was also chosen (the ADR indicators
from [27]) and used in the later subsection 2.3 about the representation of flexibility.

Flexibility factor One major goal of implementing energy flexibility control strategies consists in
shifting the loads towards periods of lower electricity price or lower CO2 emissions from the grid. To
quantify this shifting, the flexibility factor (FF) as defined in [137] is utilized. This indicator is calcu-
lated both with regards to the electricity price (FFcost) and the CO2 marginal emissions input signal
(FFCO2). In a generic formulation, p refers to the penalty signal being used (price or emissions), with
hp,mp and lp respectively the high, medium and low penalty periods1. One can then compute the sum
of electricity use during each one of these periods: Pel,Σ,hp, Pel,Σ,mp and Pel,Σ,lp, which already gives a
first quantification of the load shifting. The flexibility factor is then defined as in Equation III.12: FFp
varies between -1 (all the electricity use occurs during hours of high price/emissions) and 1 (all the
electricity use occurs during hours of low price/emissions).

Pel,Σ,lp =

∫
lp

Pel(t)dt , Pel,Σ,mp =

∫
mp

Pel(t)dt and Pel,Σ,hp =

∫
hp

Pel(t)dt (III.11)

1The method to obtain the thresholds for low and high penalty is discussed later in chapter IV about the development of the
rule-based controller.
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FFp =
Pel,Σ,lp − Pel,Σ,hp
Pel,Σ,lp + Pel,Σ,hp

=

∫
lp
Pel(t)dt−

∫
hp
Pel(t)dt∫

lp
Pel(t)dt+

∫
hp
Pel(t)dt

(III.12)

ADR indicators The ADR indicators used for evaluating explicit demand response originate from
[27]. They consider active demand response (ADR) events, where from t = 0 to t = tADR, a deviation
of the energy consumption is observed (e.g. requested by an aggregator at higher level), in comparison
with a reference case where this ADR event does not occur. Before t = 0, it is assumed that the ADR
scenario and the reference scenario are equal.

In this context, the first indicator CADR represents the available storage capacity during the ADR
event, and is calculated with Equation III.13. It corresponds to the deviation in energy of the ADR
case compared to the reference case, expressed in kWh. In the integrals, Qth,ADR and Qth,ref are re-
spectively the thermal heating powers of the ADR case and the reference case. To obtain Qth,ref , it is
supposed that one can get the results for a reference case with the exact same boundary conditions,
but without the flexibility activation, through a parallel simulation for instance. It was chosen to use
the thermal power in the equations to have a result independent of the heating system. To get an
insight more directly relevant for the grid side, the electrical power of the heat pump could be used
instead in the same formulas. It should be noted that in the present work and contrary to [27], Qth,ref
does not correspond to the case which minimizes the heating energy, but rather a case with average
set-point temperature in the middle of the comfort range. In this way, both upwards and downwards
modulation can be studied. In the case of an upwards modulation, CADR is positive and represents
the additional energy stored within the building mass during tADR. In the case of a downwards mod-
ulation, CADR is negative and represents the energy “saved” compared to the reference case, during
tADR.

CADR =

∫ tADR

0

(Qth,ADR(t)−Qth,ref (t)) dt (III.13)

Charging/discharging energy within the building thermal mass or storage tank comes at a certain
cost, due to the extra losses caused by this operation. In order to take into account the effect of these
losses, a storage efficiency is defined, as shown in Equation III.14.

ηADR = 1−
∫∞

0
(Qth,ADR(t)−Qth,ref (t)) dt

|
∫ tADR

0
(Qth,ADR(t)−Qth,ref (t)) dt|

(III.14)

By reorganizing this equation, the storage efficiency can alternatively be interpreted as the ratio
between the “rebound effect” and the “ADR event”. The rebound effect corresponds to what happens
immediately after the end of the ADR event. This is illustrated in Figure III.9 for a downwards mod-
ulation: during the event, the building had to decrease its energy consumption (of 10 kWh in this
case). Because of this prolonged reduction, once the modulation is no longer required, the building
has to compensate and will use more energy just after the ADR event. The storage efficiency ηADR
thus consists in comparing the amplitude of the rebound effect with the actual capacity stored during

Time
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r

Demand response tADR

CADR = -10 kWh

Rebound = 5 kWhADR = 1.5

Qth, ADR Qth, ref

Figure III.9. Principle of the rebound effect, and example of calculation of the ADR efficiency ηADR.
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the event. In the case of an upwards modulation, it corresponds to the ratio between the energy saved
after the ADR event and the surplus energy stored during the ADR event. In the case of a downwards
modulation, it corresponds to the ratio between the surplus energy spent in the period after the ADR
event and the energy saved during the ADR event.

The integrals used in the calculation of ηADR are theoretically summed over an infinite period of
time. In the present work, only the 24 hours ahead from the start of the ADR event have been consid-
ered. It is assumed that the ADR event has little to no effect on the behavior of the system after this
limit.

2.2.3 Comfort indicators

To ensure that the control strategies do not affect the thermal sensations of the building occupants,
thermal comfort indicators are evaluated over the considered simulation periods. The main variable
examined for this purpose is the average operative temperature of the building. Indoor Environmen-
tal Quality (IEQ) is a vast topic including lighting and acoustics, and thermal comfort alone does also
depend on many other parameters, such as the relative humidity, the air velocity and the clothing and
activity levels. Since the controller manages and is aware only of the temperature (it does not take
into account the humidity for instance), it was chosen to only analyze this parameter. Furthermore,
temperature is the most relevant parameter in accounting for thermal sensations, therefore the com-
fort analysis focused on it. It should be added that the operative temperature is considered instead of
the air temperature, therefore the radiation component is also taken into account, and in this way the
results can be compared with the recommended ranges from the standard for buildings mechanically
heated or cooled, which are also expressed in terms of operative temperature.

Table III.1. Comfort ranges as defined in the standard EN 15251.

Category Description PPD PMV
Range
(heating
season)

Range
(cooling
season)

I

High level of expectation and
is recommended for spaces
occupied by very sensitive and
fragile persons with special re-
quirements

< 6% |PMV | < 0.2 21-25°C 23.5-25.5°C

II
Normal level of expectation
and should be used for new
buildings and renovations

< 10% |PMV | < 0.5 20-25°C 23-26°C

III
An acceptable, moderate level
of expectation and may be
used for existing buildings

< 15% |PMV | < 0.7 18-25°C 22-27°C

IV

Values outside the criteria for
the above categories. This cat-
egory should only be accepted
for a limited part of the year

> 15% |PMV | > 0.7 - -

The results are represented as the percentage of time where the operative temperature stays within
the ranges defined in the European standard EN 15251 [140]. Those ranges are recalled in Table III.1:
they correspond to different levels of PPD (percentage of people dissatisfied by the thermal condi-
tions) or PMV (Predicted Mean Vote as a measure of the thermal sensation). These ranges of PPD/PMV
are translated into different operative temperature ranges for the heating and cooling seasons. The
percentage of time spent in each of the categories can be represented as in Figure III.10, as suggested
by the standard and used in the analyses of this thesis.
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Figure III.10. Representation of the thermal comfort according to the European standard EN 15251.

2.3 Representations of energy flexibility

Using adapted KPIs enables to quantify the energy flexibility potential of buildings. However in
certain contexts, a graphical representation can be more relevant, especially since the energy flexi-
bility (and consequently most of the associated KPIs) can change over time. Since there is no clear
consensus on how these results could be represented visually, the present section presents differ-
ent proposals about how to create a daily profile showing the amount of flexibility available from a
building. Such graphical content could be useful for several types of end-users: aggregators, utilities,
electrical or mechanical engineers, designers. A standard representation could help them evaluate at
a glance the available flexibility that a building can offer and at what cost, along the next day. This
research question arose from internal discussions within the IEA EBC Annex 67, and it fits more in
an explicit demand response scheme (therefore it stands out a little from the remaining of the thesis,
which principally deals with implicit demand response).

The present section thus intends to perform an energy flexibility analysis on a test case, which is
the same building than exposed later in section 4. The ADR indicators are used to assess the flexibility
capacity and efficiency: in this case, the ADR events consist in modulating the room temperature
set-point for a duration of tADR. The reference set-point is 21.5°C (or 20.5°C at night and when the
building is unoccupied). From this reference, different amplitudes of the modulation are tested (1 or
2°C), and the upwards modulation means the set-point is increased, while a downwards modulation
that the set-point is decreased by that value. The nomenclature is as follows: for a case 1D2H, the
set-point is modulated of 1°C for a duration tADR of 2 hours. To obtain a full daily profile, a different
simulation is carried out for every hour of the day: in each simulation, the ADR event starts at that
hour, from hour 0 to hour 23. It is considered that only one ADR event can happen per day (therefore
we discard the influence of successive events on each other).

From the obtained results, some examples of daily profile representations showing both the ca-
pacity CADR and the efficiency ηADR of energy flexibility are proposed. The focus lies more on how to
represent the results than on the actual values of the flexibility. For this reason, only one sample day,
the 30th of January, was used for testing the proposed approach, and only in heating mode. The first
proposed representation is shown in Figure III.11. In red are represented the results of the upwards
modulations, and in green, the results of the downwards modulations; the bars represent the capacity
CADR while the symbols represent the efficiency ηADR. It should be noted that for the downwards
case, the efficiency is plotted reversely, so as to obtain a symmetrical graph with regards to the zero
horizontal axis (see the vertical axis on the right). When CADR = 0, ηADR is not computed since an
efficiency is meaningless when there is no actual capacity for flexibility.

The shape of the daily profile presented in Figure III.11 corresponds to the expectations, consid-
ering the occupancy profile. During the peak hours (5:00 to 8:00 and 18:00 to 20:00), the occupants
are present in the building, and the set-point is thus already increased. Therefore, the heat pump is
generally switched on already in the reference case. Increasing the set-point at these moments does
not allow for supplementary upwards flexibility (CADR = 0 at 6:00 and 19:00). However, a downwards
flexibility is logically available if the set-point is reduced during these hours: up to 8.5 kWh can be
saved during the 2 hours of the ADR event (at 6:00 in the morning). Conversely, the system presents
the opposite behavior during non-occupied and night hours, mainly from 0:00 to 4:00 and from 9:00 to
15:00. In these periods, the setback provokes a switching off of the heat pump already in the reference
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scenario. The only available flexibility thus consists in forcing the heat pump to operate, by raising the
set-point. In this way, a maximum of CADR = 9.4 kWh can be reached during the 2 hours ADR event
(maximum reached at 3:00).
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Figure III.11. Profile of the flexibility capacity and efficiency, in upwards and downwards modulations (case
1D2H).

The analysis of ηADR shows some discrepancies between the upwards and the downwards modu-
lation cases. The efficiency ranges from 59 to 94% in the upwards case, and is relatively stable. In the
downwards cases, and more specifically those with a high capacityCADR, the efficiency reaches levels
above 100%, up to 123%. Concretely, this means that the system saves energy that was not necessary
to use in the first place: the energy saved during the ADR event is not compensated entirely by a pos-
terior use of energy (rebound effect is thus limited). This operation causes obviously a slight decrease
in the temperature, but since the reference case was not the case of minimum comfort, some margin
still exists until the bottom comfort boundary is reached, and thus the comfort requirements are still
met.
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Figure III.12. Representation of the daily profile of CADR for different durations of the ADR event.

An alternative graphical representation of the daily CADR profile is proposed in Figure III.12, com-
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paring different durations of the ADR event, keeping the same amplitude of the temperature variation
(±1°C). In red, the upwards modulation is shown, and in green the downwards modulation. From
lighter to darker color indicates a longer duration of the ADR event: 1h, 2h and 5h. With a longer ADR,
the flexibility capacity obviously increases, and with a 5h event, there is a potential for flexibility all
day long (while some hours presented little to no flexibility with an ADR event of only 1 or 2h). The in-
terest of this representation is to show at a glance the comparison between different configurations of
the ADR event. It does however not reveal the drop of efficiency due to the longer ADR events, which
should be taken into account when actually using the flexibility.
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Figure III.13. Flexibility capacity profile including the reference load profile, aggregated per clusters of 2 hours
(cases 1D2H and 2D2H).

Another suggestion for representation consists in additionally plotting the reference energy con-
sumption, as shown in Figure III.13 (black solid line). This enables to put in relation the actual energy
consumption with the flexibility potential. From the black line representing the load, the additional
upwards flexibility is shown as a red area above the line, and the downwards flexibility is shown as a
green area below the line. It can be seen that the periods of high energy consumption logically cor-
respond to a downwards flexibility potential, while the periods with no consumption corresponds to
upwards flexibility potential. This graph however does not provide information on the efficiency of
the ADR event, therefore it should be complemented with another graph representing this aspect, so
as to obtain a global overview of the flexibility potential. In the case of Figure III.13, ADR events of 2
hours duration are represented, and thus the reference load profile should be as well aggregated per
clusters of 2 hours, to enable an easier comparison. Furthermore, events of different modulation am-
plitude are plotted in this graph: the flexibility capacity of a set-point modulation of ±1°C is shown
in light green and red, while the modulation of ±2°C is shown in dark green and red. In this way, the
additional benefits of amplifying the set-point modulation are revealed. It can be seen for example
that further increasing the set-point provides greater upwards flexibility only in the early hours of the
day (0:00 to 2:00) and after the morning occupancy (8:00 to 12:00). Further decreasing the set-point
usually does not provide greater downwards flexibility, except at 18:00.

To summarize this study on the representations of flexibility, the first graph type enables to show
graphically both the flexibility energy capacity and its storage efficiency along the day, and for both
upwards and downwards flexibility. This representation thus gives a good overview of the different
aspects of energy flexibility for a building in a single graph. When comparing different configurations
of the ADR event, the area graph (second type) seems a better option for the flexibility capacity, but
then the efficiency profiles should be plotted apart. In all representations, it was found that the ex-
isting occupancy schedule has a crucial influence on the flexibility potential: it actually shapes the
daily profile of energy flexibility. Roughly, the occupancy periods (with already increased energy con-
sumption) correspond to downwards flexibility potential, while the periods of unoccupancy or night
correspond to upwards flexibility potential. Considering a flat temperature set-point of reference or a
different occupancy schedule would considerably change the flexibility evaluation. Moreover, a set-
point modulation of ±1°C during 2 hours enables to provide a maximum of 9.4 kWh in available flex-
ibility capacity (upwards), and -8.6 kWh (downwards). Lengthening the duration of this ADR event
enables to increase the capacity, but saturation is observed and the storage efficiency then tends to
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decrease.

The relevance of the chosen KPIs can also be discussed. In this section, two distinct metrics have
been used to quantify the different facets of energy flexibility, the flexibility capacity CADR and the
flexibility efficiency ηADR. They should be considered together, since one represents the amount of
flexibility that can be offered, and the other which ’costs’ the provision of this amount of flexibility
would incur. Ideally, these two dimensions could be merged into a single indicator that would cover
all the aspects of the energy flexibility. However, a loss of information would thus become inevitable.
For instance, the other flexibility indicator used in this thesis, the Flexibility Factor, is a single indicator
that provides information about the amount of load shifting, and also an estimation of the consequent
losses or savings since it informs about the amount of energy used in the low-price hours. However,
it is only a relative indicator (normalized between -1 and 1), and therefore does not give insights on
the absolute savings. For instance, a certain scenario can present an excellent flexibility factor, but a
shifting of very little energy in volume. So far, no common and global indicator has been found in the
literature to cover all aspects of energy flexibility in a single metric. As a partial answer to this issue,
the graphical representation presented here, with both the CADR and ηADR parameters on the same
graph thus provides a solution enabling to catch both information at the same time.
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3 Heat pump system

The present thesis treats the subject of heat pump controls, hence it is deemed worthy to first
provide in subsection 3.1 a short reminder of what is a heat pump system, how it operates and which
components it is made of. To fully characterize the heat pump considered in this study, static tests
were carried out in a laboratory setup: they are reported in subsection 3.2. Then, the simple models
derived from the static tests measurements are described in subsection 3.3; such models will be used
by the MPC controller. Furthermore, detailed models of the heat pump were developed to represent
more accurately the dynamics of such systems in building simulation tools (TRNSYS), this modeling
approach is finally presented in subsection 3.4.

3.1 Description of an air-to-water reversible heat pump system

A heat pump is a machine that enables to transfer heat from one fluid (the heat source) to an-
other (the heat sink). This transfer is made possible through a closed circuit of refrigerant fluid which
changes states along a cycle of compression/decompression. The heat source can consist of water
(sea, lake etc...), earth (geothermal applications) or the ambient air. The heat sink can consist of wa-
ter or air depending on the end application. In the present study, we consider an air-to-water heat
pump. Heat pumps represent an ideal tool to couple the electrical and thermal networks, since they
can cover thermal loads from electricity at a high efficiency. Their use within smart grids is therefore
very promising and has already been largely studied in the literature [36].
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Figure III.14. Principle of the functioning of a heat pump in (a) heating and (b) cooling modes.

Figure III.14a represents the principle of the heat pump cycle for covering a heating load. The
refrigerant fluid starts the cycle after the expansion valve as a cold liquid at low pressure. Passing
through the evaporator heat exchanger (HX), it evaporates, absorbing heat from the air which is circu-
lated through the heat exchanger by the circulating fans. The obtained gas is then compressed by an
electrical compressor, which is the main source of energy use in the cycle. After the compressor, the
refrigerant is a hot liquid: it passes through the condenser heat exchanger where it transfers the heat
to the water circuit connected to the heating load. The pressure of the cold liquid refrigerant is then
lowered in the expansion valve and the cycle resumes.

Some models of heat pumps are reversible, meaning they can either provide heating or cooling
by inverting their cycle. The principle of a reversible heat pump in cooling mode is presented in Fig-
ure III.14b. It is similar than in heating mode, but the role of the heat exchangers has changed: the one
placed in the outdoor unit now acts as the condenser while the one connected to the load now acts
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as the evaporator. The place of the compressor and expansion valve is also inverted in the circuit. In
practice, the inversion of the cycle is achieved by means of three-way valves.

The former description represents the basic operation of the heat pump at full load. If the load
is reduced, the compressor (and hence the whole cycle) can be operated intermittently, and the heat
pump thus presents an on-off behavior. Nowadays, most heat pumps on the market possess an addi-
tional inverter that enables to control the frequency of the compressor, and thus to reduce the heating
or cooling load without stopping the whole cycle. Such devices are named variable speed heat pumps
(VSHP) or inverter-controlled heat pumps.

To characterize the efficiency of a heat pump system, one commonly refers to the instantaneous
Coefficient of Performance (COP), which is defined in Equation III.15 as the ratio between the thermal
powerQth produced by the heat pump and its electricity use Pel (which includes the power consump-
tion of all the heat pump components, but excludes any system exterior to the heat pump). In cooling
mode, the COP is called Energy Efficiency Ratio (EER), but the formula is the same: the thermal power
Qth is always considered positive, whether it represents a heating or cooling power. In the case of a
water loop on the load side,Qth is calculated with Equation III.16, where ṁ is the water flow rate in the
load circuit, cp the specific capacity of water and ∆T the temperature difference between the supply
and the return of the water loop.

COP =
Qth
Pel

(III.15)

Qth = ṁ · cp (Tsup − Tret) = ṁ · cp∆T (III.16)

Among other important parameters that characterize the functioning of the heat pump, the fre-
quency of the compressor f , expressed in Hz, informs on how fast is the machine running, since a
VSHP can modulate its output. Another way to represent the modulation of the system is through
the capacity ratio CR at part-load, defined in Equation III.17 as the ratio between the current thermal
power Qth and the maximum capacity of the machine Qth,FL at full load, in the same operating con-
ditions. CR is expressed as a number between 0 and 1 or as a percentage: if it is running at full load,
then CR = 1 or 100%. Moreover, Equation III.18 defines the part-load performance, which is the ratio
between the COP in the current conditions and the COP of the machine at full load in the same con-
ditions. A relationship normally exists between the CR and the PLF , see section 3.4.4 on this subject.

CR =
Qth

Qth,FL
(III.17)

PLF =
COP

COPFL
(III.18)

A heat pump does not provide heat (or cold) like an electrical resistance would, it only transfers
heat from one medium to another. This transfer process requires some energy but not as much as it
provides, therefore the COP is normally higher than 1, and usually in the range of 2 to 6, depending
on the operating conditions. Heat pumps are thus very efficient devices, and depending on where
comes their electricity supply, can be considered as a sustainable option. For instance, considering an
efficiency of the power system of 45.5% (value for 2010), a heat pump operating with a seasonal COP
higher than 2.5 can be considered as renewable energy, as declared by the European Commission
[141].

In the present thesis, a heat pump model available from the market was used to realize tests in both
steady-state and dynamic operating conditions. The studied machine is an air-to-water, reversible
VSHP from the series Yutaki S Combi of Hitachi. As a split system, it consists of both an outdoor unit
and an indoor unit, which itself contains a 200 liters tank for storing DHW. The main specifications of
the chosen heat pump are given in Table III.2.
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Table III.2. Specifications of the studied Hitachi Yutaki S combi heat pump.

Parameter Unit Value
Nominal heating power 1 kW 11
Nominal COP1 - 3.98
Nominal cooling power2 kW 7.2
Nominal EER2 - 3.3
DHW tank capacity liters 200
Tank insulation polyurethane heat loss kWh/day 1.4
Refrigerant - R-410A
Compressor type - Scroll DC inverter driven
Nominal air flow m3/min 80
Water flow rate range m3/h 1.0 to 2.7
Heating working range - Ambient temperature °C -25 to 25
Heating working range - Supply temperature °C 20 to 60
Cooling working range - Ambient temperature °C 10 to 46
Cooling working range - Supply temperature °C 5 to 22
DHW working range - Ambient temperature °C -25 to 35
DHW working range - Tank temperature °C 30 to 75

3.2 Static tests and experimental characterization of the heat pump

3.2.1 Principle for the static tests

 

Figure III.15. (Schematic of the experimental setup for the measurement of the static tests points.

To fully characterize the heat pump and understand its functioning and performance under dif-
ferent conditions, static tests were realized in the laboratory setup previously described. These tests
were performed in accordance to the European standards EN 14511 [142] and EN 14825 [143]. The
schematic of the installation used for the steady-state tests is presented in Figure III.15: only the loop
for space heating or cooling is used and connected to the corresponding thermal bench, while the
DHW part of the machine is not activated.

1Standard rating conditions in heating mode [142]: outside air temperature 7°C, inlet water temperature 40°C, outlet water
temperature 45°C

2Standard rating conditions in cooling mode [142]: outside air temperature 35°C, inlet water temperature 12°C, outlet water
temperature 7°C
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The static tests consist in fixing the triplet of temperatures (Tsup,SP , Tret, Tamb): the supply set-
point temperature Tsup,SP is set in the local controller of the heat pump, the return water temperature
Tret is controlled in the thermal bench of the laboratory, and the ambient temperature Tamb is con-
trolled by the climate chamber where the outdoor unit is situated. The values of these temperatures
correspond to standard rating conditions according to EN 14511 [142], enabling to compare with the
manufacturer’s data. They are presented in Table III.3. In the heating case, a maximum ∆T of 8°C was
sufficient to reach the maximum capacity of the machine, while in cooling mode it was necessary to
reach the value of ∆T = 11◦C for this purpose. It should be noted that we fix the set-points for those
three temperatures, but the actual output might differ from that desired set-point (especially for Tsup
where in certain conditions, the machine cannot reach the set-point Tsup,SP ).

Table III.3. Combinations of temperatures tested in the steady-state experiments.

Parameter Heating mode Cooling mode
Ambient temperature Tamb ∈ {−7◦C, 2◦C, 7◦C, 12◦C} Tamb ∈ {20◦C, 25◦C, 30◦C, 35◦C}
Supply temperature Tsup,SP ∈ {35◦C, 45◦C, 55◦C} Tsup,SP ∈ {7◦C, 12◦C, 18◦C}
Temperature lift ∆T ∈ J1◦C, 8◦CK ∆T ∈ J1◦C, 11◦CK
Number of points 96 132

3.2.2 Static points
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Figure III.16. Measured parameters in two exemplary static points (a) at high load with constant parameters and
(b) at lower load with a cyclic on-off behavior.

For each experimental point, at least 30 minutes of data were recorded in steady state, after leaving
20 minutes of transition between one point and the next one. It was ensured that no defrost operation
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occurred during the measuring period, to avoid distorted measurements. The following parameters
were measured and averaged over the measuring period of 30 minutes: supply and return tempera-
tures Tsup and Tret, water mass flow rate ṁ, thermal and electrical powersQth and Pel, air temperature
Tamb in the climate chamber and frequency of the compressor f .

Two examples of static points in heating mode are presented in Figure III.16a and Figure III.16b.
The first one represents a normal steady-state point at high load (high demand) where all parameters
are almost constant. The second one represents a case where the load is very low: a temperature lift
of only 1°C is imposed between the return water which is kept at 34°C and the supply water which is
set to 35°C in the heat pump integrated controller. Even if the compressor speed is variable, it has a
minimum below which it cannot operate. In the present case, this minimum has the value of 30 Hz.
To avoid providing a load too much higher than the desired heating for this static point, the compres-
sor has to switch on and off regularly: this cycling behaviour is clearly visible in Figure III.16b. The
measured values of that static point correspond to the average of the parameters, and therefore they
take into account the on-off cycling, which is a detail of importance when using such static points to
form a model of the heat pump performance.

Figure III.17 shows the average temperature measured in the climate chamber for every static
point. The control of the climate chamber is not perfect, especially in the heating mode (hence when
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Figure III.17. Average air temperature measured in the climate chamber during the static points in heating and
cooling modes.
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the climate chamber is cold) as seen in Figure III.17a. The standard EN 14511-2 [142] mentions that
the arithmetic mean of the air temperature can deviate of a maximum of ±0.3 K from the set-point.
In the heating mode, only 27 points out of 96 belong to this allowed limit, and the deviation reaches
3.5 K in two extreme cases. Several reasons explain the large deviation in some cases: in heating con-
figuration, defrosting operation occurs regularly (internally controlled by the heat pump) to avoid the
formation of ice on the heat exchanger of the outdoor unit. Defrosting1 consist in briefly inverting the
heat pump cycle to melt the ice. The resulting water accumulates on the floor of the climate cham-
ber below the outdoor unit, and complicates the task of the climate chamber controller which must
maintain a certain level of humidity, temperature and air flow at the same time in the enclosed space.
The deviation of the ambient temperature with respect to its set-point affects the comparison with
the manufacturer’s data, which are normally collected under the strict conditions defined in the stan-
dard [142]. Therefore when it is referred to ”the experimental series at Tamb = 7 °C”, the reader must
understand that not all points of the series were performed at exactly 7°C, but with some deviations.
However, even though the ambient temperature did not reach exactly the set value, these points are
still valid for fitting adequate models, if we consider the measured value and not the set-point.

3.2.3 Results of the static tests in heating mode
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Figure III.18. COP in heating mode in function of the supply, return and ambient temperatures.

Coefficient of Performance The efficiency of the heat pump operation, i.e. the COP as defined in
Equation III.15 is calculated for each static point and shown in both Figure III.18 and Figure III.19 with
different representations. In Figure III.18, one can observe the degradation of COP which corresponds
either to a higher supply temperature or a lower ambient temperature. In all the measured static
points, the COP ranges from 1.4 to 5.3. Figure III.19 displays the same points, but the graph has been
split in four subgraphs, one per series at a common ambient temperature set-point. Additionally,
the error bars of COP calculation are represented, calculated with the precision of the measurements
given in previous section 3.2.2: the points with low capacity have the highest error bars, given that a
precision of 0.5 K in the temperature lift measurement has a great impact on the error of the thermal
capacity (following Equation III.16). It is also observed that at low load (∆T ≤ 3°C), the heat pump is
not able to modulate and exhibits an on-off cycling behavior that induces a low COP. In the cases with
a high load (∆T ≥ 6°C) and low Tamb, the heat pump cannot reach the desired set-point despite the
compressor running at full speed, and a lower COP is also generally observed2.

1It should be noted that if defrosting occurred during the measurement of a static point, this experimental point was dis-
carded and redone to avoid the influence of such specific behavior. None of the measured static points include defrosting
operation, and thus they represent the behavior of the heat pump under normal operation.

2An additional figure is shown in Appendix B where both the supply and return temperatures are represented on the same
graph, so as to appreciate when the set-point is reached or not.
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Figure III.19. COP in heating mode in function of the supply, return and ambient temperatures.
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Figure III.20. Thermal capacity in heating mode, in function of the supply, return and ambient temperatures.
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Thermal heating capacity The thermal capacity is calculated according to Equation III.16 and rep-
resented in Figure III.20. It is proportional to the temperature lift ∆T , therefore for a fixed supply
temperature, Qth follows normally a straight line when the return temperature decreases (i.e. ∆T in-
creases). The dashed lines represent the maximum capacity declared in the manufacturer’s catalogue
for each operating conditions. In several cases, the experimental points reach a higher capacity than
the theoretical maximum, revealing that the machine can be pushed to operate at higher capacity
in certain conditions. However, as a precautionary measure, the maximum capacity declared in the
catalogue was chosen as the upper boundary for the thermal power in the MPC framework, as fur-
ther explained in section IV.2.3. A saturation plateau is observed for the high loads, especially when
the supply temperature is higher (Tsup = 55°C), due to internal protections of the heat pump. At low
loads, the capacity does not decrease linearly either: since the heat pump cannot modulate below a
certain level, it cycles on and off, but still provides on average more capacity than required.

Compressor frequency Figure III.21 displays the average frequency of the compressor measured for
all the experimental static points. Here the previously described limitation of the thermal capacity
can clearly be correlated with the physical limitations of the compressor: its frequency is restricted to
a maximum of 90 Hz. When the supply temperature is set to 55°C, the limit imposed by the heat pump
local controller is even lower and set to 75 Hz. Such constraints explain the plateau observed for the
thermal capacity at high loads. The graph of the heat pump electrical consumption was not plotted,
although it would have a similar trend than the frequency graph of Figure III.21, since the compressor
represents the principal consumer of electricity in the heat pump system.
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Figure III.21. Frequency in heating mode, in function of the supply, return and ambient temperatures.

3.2.4 Results of the static tests in cooling mode

Energy Efficiency Ratio The EER in cooling mode is represented in Figure III.22. The first notable
difference with respect to the heating mode is that the efficiency of the heat pump depends much
less on the outdoor conditions. The EER tends to be lower at high ambient temperature, but this
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Figure III.22. EER in cooling mode in function of the supply, return and ambient temperatures.
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Figure III.23. Thermal capacity in cooling mode, in function of the supply, return and ambient temperatures.
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degradation remains slender. The efficiency also starts at low values (below 1) when the load is low,
due to the on-off cycling in such conditions. The EER then increases rapidly with the load, and reaches
a maximum before to remain either constant or to decrease.

Thermal cooling capacity The thermal cooling capacity is represented in Figure III.23, with the max-
imum capacities declared in the catalogue plotted as colored dashed lines. In cooling mode, it was
necessary to use a temperature lift of up to ∆T = 11°C, since 8°C were not sufficient to reach the max-
imum capacity of the machine1. A similar linear behavior than in heating is observed, with Qth being
proportional to ∆T , except at low and high loads where the behavior is different. The capacity satu-
rates at high loads with a bending of the cooling power curve, although not forming a clear plateau
like in heating mode.

Compressor frequency The measured frequency of the static experimental points in cooling more
is represented in Figure III.24. The compressor has an upper limit of 75 Hz in cooling (vs 90 Hz in
heating mode), this limit is reached for all the experimental series, but at different moments: when
∆T reaches 11°C at Tsup = 18°C, when ∆T reaches 10°C at Tsup = 12°C and when ∆T reaches 8 or 9°C
at Tsup = 7°C.
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Figure III.24. Frequency in cooling mode, in function of the supply, return and ambient temperatures.

3.3 Simple black-box models of the heat pump

The experimental static tests previously described enable to have a comprehensive view of the
heat pump performance in a wide range of operating conditions. Based on this performance map,
black-box models can be derived, such as adequate polynomial regressions fitted using the average

1See also Appendix B to observe the thermal power in function of both the supply and return temperatures, in relation with
the set-point Tsup,SP .
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values of the different measured parameters. To characterize the performance of the system, the most
interesting output is the final electricity consumption of the heat pump Pel, therefore we will derive
models ofPel in function of the other parameters. Making a model of the COP instead could have been
an alternative approach, as done in previous literature, however the MPC framework uses the electrical
power of the heat pump in its cost function, therefore it appears more relevant to create directly a
model ofPel. Among the other quantities that can be used as the model input parameters, the possible
options are: Tamb, Tsup, Tret, ∆T , ṁ,Qth, CR, PLF and f . Most of these parameters are closely related
to one another, therefore choosing a subset of them is sufficient for fitting an appropriate model.

The methodology for fitting a model is the following: a polynomial model structure is defined, with
a certain set of coefficients. In the dataset of the experimental static tests, the points with saturation
(i.e. where the frequency limit of the compressor is reached or where the set-point of Tsup cannot
be met) are excluded, hence the model is only valid within these limits. The least square method is
then used to fit the model to this restricted dataset, obtaining the optimal values of the polynomial
coefficients.

If the fitted model is to be used within the MPC framework, some restrictions apply, since the
model must be adapted to this specific final use. The following points must thus be considered:

• Null consumption when the heat pump is off: since the models are fitted only on points where
the heat pump is functioning, it might happen that such models give Pel 6= 0 when Qth = 0.
The heat pump does have a residual electricity consumption when it is turned off, but it is small
(around 95 W). It is preferred to approximate this standby consumption to 0 with the condition
Pel(Qth = 0) = 0, so that the MPC has more incentives to turn the heat pump off.

• Parameters to include in the model: the parameters chosen as inputs of the model must be
easily accessible in the MPC framework, either as controllable inputs, as states of the building
model, or as disturbance forecasts. Qth is the main controllable inputs chosen in the current
MPC, therefore this parameter must appear in the model. The on-off binary variables are ex-
cluded from the model since Qth already contains the information of the on-off status. Addi-
tionally, the outdoor air temperature Tamb is included in the model (it is normally available as a
weather forecast in the MPC), as well as the supply temperature Tsup (it can be derived from the
state Tdis, which is the water temperature of the distribution circuit in the state-space model of
the building). A different MPC framework could be envisioned, where the MPC controller can
decide directly at which frequency f to operate the compressor. In such case, the heat pump
model should include this parameter as an input, so as to reflect the influence of the decided
control actions on the heat pump performance. However, such configuration is not possible
with the chosen heat pump machine because the frequency is internally adjusted by its local
controller and cannot be commanded from an external signal, therefore f is excluded from the
model.

• Linearity (or convexity): to be used in the cost function of the MPC optimization problem, the
heat pump must be represented by a convex function (with respect to the controllable variable
Qth), and preferably linear. This includes for example a quadratic function with a term in αQ2

th

(if α > 0). However, to limit even further the computational burden within the MPC calculation
process, it is preferable to keep the heat pump model as a simple linear function.

Taking into account these constraints, the chosen model for the heat pump performance to be
included in the MPC cost function is presented in Equation III.19.

Pel,simpl = [a0 + a1Tamb + a2Tsup] ·Qth = [1/COP (Tsup, Tamb)] ·Qth (III.19)

It has the form of a polynomial in Tsup and Tamb, multiplied by the thermal capacity Qth. The polyno-
mial in fact represents the quantity 1/COP, or 1/EER in cooling mode. Models found in the literature
usually represent the COP itself, since it is more easily interpretable. However, since it is the inverse of
the COP that is used to obtain the electrical consumption of the heat pump, it makes more sense to di-
rectly create a model of the quantity 1/COP. Furthermore, 1/COP has a more linear behavior than the
COP, which enables to fit a linear equation with lower error. This modeling strategy has not yet been
found in the existing literature to the knowledge of the authors and thus constitutes a novel approach.
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Most of the existing publications have developed similar models of the COP or the powerPel, but with-
out the concern of the linearity. For instance in [144], Verhelst et al. derived polynomials of the COP,
and includes the quantity Pel = Qth/COP in its objective function, later highlighting that the divi-
sion of two optimization variables is a nonlinear operation which makes the overall optimal control
problem (OCP) nonlinear. In their case, no binary variables were included in the OCP and therefore
they could cope with these non-linearities in the objective function. In the case of the present thesis,
with the presence of the on-off binary variables, the linearity concern becomes more imperative, and
therefore the proposed 1/COP modeling constitutes the most promising approach.

It should be noted that the model of Equation III.19 does not take into account the part-load perfor-
mance of the heat pump. Neither the compressor frequency f nor the capacity ratio CR at part-load
are included as model parameters. The influence of the part-load operation on the performance of
the heat pump will be discussed in further section 3.4.4. However, to justify this simplification, the
conclusions of [144] provide interesting insights: the authors have compared a similar optimal control
problem with or without including the part-load performance of the heat pump. They found that the
OCP performed almost as good with or without this extra information.
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Figure III.25. Heat pump performance models based on static tests in heating mode (a)(b) and cooling mode
(c)(d). Graphs (a) and (c) (left column) represent the quantities 1/COP and 1/EER respectively, in function of
the ambient and supply temperatures. (b) and (d) (right column) represent the Pel models compared to the
experimental data.

The model of Equation III.19 was fitted according to the aforementioned methodology with the
static points both in heating and cooling modes. The obtained optimal values of the coefficients ai
are reported in Table III.4: with a NRMSE value of 6.44%, the heating model fits slightly better than
the cooling model, which has a NRMSE of 8.76%. In Figure III.25, the models are represented along
with the experimental points. On the left graphs, only the 1/COP part (or 1/EER) of the model is rep-
resented: it can clearly be observed that the hypothesis of the linear behavior is a good approximation
in that case. Furthermore, the dependency of the heat pump performance with the ambient tempera-
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Table III.4. Fitted coefficients and RMSEs of the heat pump performance black box models in heating and cooling
modes.

Model Mode a0 a1 a2 RMSE NRMSE
1/COP Heating mode -0.01859 -0.01017 0.00886 0.1993 kW 6.44%
1/EER Cooling mode 0.3576 0.00197 -0.01002 0.2236 kW 8.76%

ture can be appreciated: in heating mode, the curves present a clear slope, revealing that the efficiency
drops (i.e. 1/COP increases) when it is colder outside. In cooling mode, the curves are almost flat, re-
vealing that the outdoor conditions barely affect the heat pump efficiency in this configuration. This
could also be observed from the coefficient a1, associated with Tamb in the model, which is 5 times
smaller in cooling mode than in heating mode (in absolute value). On the right graphs of Figure III.25,
one can observe that the chosen models provide a satisfactory fitting over the experimental data. It
should be noted that the cooling model performs slightly worse in the extreme ranges of powers, when
the heat pump runs at very low or very high load, the model tends to underestimate the power con-
sumption in both of these cases.

3.4 Modelling in TRNSYS

3.4.1 Overall detailed modeling in TRNSYS

In the co-simulation framework presented in subsection 1.1, a detailed model of the heat pump
operation is needed to run the dynamic simulations. In TRNSYS, the existing models of heat pumps
remain rather simple and do not capture the full dynamic behavior of heat pump systems, especially
the variable speed sort. Type941 enables to reproduce an air-to-water heat pump, and resorts to a per-
formance map of different points (usually derived from catalogue data) to determine the performance
in the current conditions of the simulation, by interpolation of the existing points of the map. To the
knowledge of the authors, no models of air-to-water VSHP currently exist as an available Type in TRN-
SYS libraries. In [145], the authors have created the new Type3254 to model a VSHP, but the considered
system was air-to-air. It thus represents an opportunity to develop a similar approach for air-to-water
variable speed systems, given that most heat pumps on the market are nowadays equipped with an
inverter and no longer work only with on/off cycles.
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Figure III.26. Schematic of the detailed TRNSYS heat pump model.

Figure III.26 shows the principle of the adopted modeling strategy for the heat pump system. It
mimics the actual operation of the heat pump, and especially the behavior of its local controller. For
a standard user, this local controller normally acts as a black-box based on different rules and protec-
tions, but usually the manufacturers do not disclose any information about these rules or their param-
eters. Only by performing some tests or with direct information from the producer, one can guess the
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rules adopted in the local controller, and try to reproduce them in the TRNSYS model. In the proposed
configuration, the supervisory control sends a command of activation (on-off signal δ) and a supply
temperature set-point Tsup,SP (i.e. the supervisory control can be an RBC or MPC). The VSHP model
receives these commands as well as the return temperature Tret from the building FCU model. A PID
controller then performs the set-point tracking on the supply temperature output, by controlling the
frequency of the compressor. The performance of the heat pump is represented by two detailed black-
box models of the thermal and electrical powers Qth and Pel, which are in this case functions of the
frequency f as well as the other operating conditions. Additional rules sometimes override the PID
controller: these rules were determined based on observations made in the experiments, as well as
from discussions with the manufacturer of the chosen heat pump. In the proposed approach, the fre-
quency of the compressor is thus an actual visible variable1, and it enables to reproduce the behavior
of the heat pump with higher accuracy, since the output of a heat pump mostly depends on how fast
the compressor is running. When this parameter did not exist as a variable within the formulation, as
in the previous simpler models, this high accuracy could not be reached. After calculation, the overall
VSHP model sends the actual supply temperature Tsup and the mass flow rate ṁ to the model of the
emission system, FCU in this case.

3.4.2 Detailed black-box polynomial models

The detailed black box models used in the TRNSYS VSHP framework are detailed in this section.
The methodology is the same than in subsection 3.3, except that the restrictions due to the MPC no
longer apply. For this reason, there are no constraints of linearity, the compressor frequency f can be
integrated as an input to the model, and the model can give Pel 6= 0 when f = 0 (the heat pump can
be ”shut down” by other means in TRNSYS, like binary variables). The equations thus can present a
higher degree of complexity, notably with quadratic and bilinear terms. The chosen polynomial func-
tions, partially inspired from [144], are presented in equations III.20 and III.21. The coefficients were
fitted on the experimental static points data: only the points without switching off of the compressor
were considered to fit the Qth,det model, since the model will then switch the compressor on or off af-
terwards, while all the points were considered to fit the Pel,det model, in order to still take into account
the lower efficiency due to the on-off operation.

The obtained values and fitting results are presented in Table III.5, while Figure III.27 and Fig-
ure III.28 displays the models versus the experimental data points. Given the higher complexity of the
detailed equations, a better fitting is obtained compared to the simple black-box models, especially
concerning the electrical power Pel: its NRMSE decreased from 6.44% to 1.95% in heating, and from
8.76% to 2.72% in cooling. The curve of this model overlaps almost perfectly with the experimental
data. The thermal power model displays a similar fitting, with satisfactory NRMSE values of 2.54%
and 2.42% in heating and cooling respectively. It should be noted that the Pel model fits better than
theQth model: this is due to the fact that the frequency of the compressor (a parameter of the model) is
directly correlated with the electrical consumption of the heat pump, since the compressor represents

1An alternative approach was also developed, using the capacity ratio CR instead of the frequency as the variable regulated by
the PID. This approach was used in [60], but not in the present thesis, therefore it is presented in Appendix C. In that alternative
approach, the part-load performance characterization shown in subsubsection 3.4.4 is used as an input.

Table III.5. Fitted coefficients of the detailed heat pump polynomial models.

Coefficients of the thermal capacity Qth model
Mode a0 a1 a2 a3 a4 a5 a6 a7 RMSE NRMSE
Heat 2.04 9.19e2 -6.64e-2 1.94e-1 -3.57e-4 6.75e-4 2.13e-3 5.43e-5 0.267 kW 2.54%
Cool -4.72 2.82e-3 1.36e-1 2.60e-1 -1.23e-3 1.25e-3 -1.07e-3 3.09e-3 0.256 kW 2.42%
Coefficients of the electrical power Pel model
Mode b0 b1 b2 b3 b4 b5 b6 b7 RMSE NRMSE
Heat -0.50 -4.21e-3 1.43e-2 1.42e-2 1.66e-4 2.44e-4 -1.01e-4 8.40e-4 0.0719 kW 1.95%
Cool 0.94 -1.59e-2 -2.34e-2 2.06e-2 2.71e-4 5.79e-4 2.45e-4 1.02e-4 0.0593 kW 2.72%
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almost the entire electrical consumption of the system.

Qth,det = a0 + a1Tamb + a2Tret + a3f + a4f
2 + a5TambTret + a6Tambf + a7Tretf (III.20)

Pel,det = b0 + b1Tamb + b2Tret + b3f + b4f
2 + b5TambTret + b6Tambf + b7Tretf (III.21)
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Figure III.27. Detailed Qth and Pel models represented with the experimental data points, in heating mode.
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Figure III.28. Detailed Qth and Pel models represented with the experimental data points, in cooling mode.

3.4.3 Tuning and performance of the detailed heat pump model

Once the detailed black-box models have been implemented, the local controller of the VSHP
model in TRNSYS must be tuned appropriately. In particular, the values of the PID parameters must
be adjusted so as to fit as good as possible with the dynamics observed in the experiments. The tuning
methodology is explained in the following paragraphs.

Dataset used for the fitting process The PID values were fitted using an experimental dataset of
the real heat pump operation. The dataset produced for the static tests was utilized for this purpose,
however in this case all the transient phases were kept, as they reveal the reaction of the controller to
changes in the inputs or in the set-point. This dataset contains regular changes of the Tsup set-point
in the forms of steps, as well as regular steps of the input return temperature Tret. The TRNSYS heat
pump model is provided with the time series of the ambient temperature Tamb and the return temper-
ature Tret observed in the experimental tests, and tries to reproduce the same supply temperature Tsup
by choosing the frequency f . The PID values must be adjusted so that the profiles of the frequency f ,
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temperature Tsup, powers Qth and Pel match with the experimental measurement. The piece of the
dataset chosen1 lasts 4 hours, with time steps of 1 minute, as in the TRNSYS model.

Methodology To find the best PID parameters, a great number of simulations was run using the
MOBO tool [146] with a brute-force algorithm. The gain constantKp was varied between 1 and 10, and
the integral time ti between 0.005 and 0.2 h. The derivative time constant td was set to 0, as changing
its value did not have an influence on the results, therefore it is in fact a PI controller. For each simu-
lation, the RMSE of the frequency f was archived, because it is the output of the PID controller. The
configuration with the minimal RMSE was chosen eventually.

Scope and limitations The tuning of the PID presents some limitations. In fact, the real heat pump
does not operate with a PID controller, instead it updates the frequency of the compressor every
minute following a set of rules of the form: if Tsup,SP − Tsup > XX◦C then f = f + Y Y Hz. It
was considered that these rules are highly specific to the chosen heat pump machine, therefore the
PID modelling approach was chosen instead, as it represents a more general and common control ap-
proach. Furthermore, the behavior of the rules is very similar to a PID controller, as will be seen in the
fitting results. The overall heat pump model was developed here in TRNSYS, but could be translated
easily to other dynamic simulation tools, as polynomial functions and PID controllers are very usual
components available in all software such as Modelica, EnergyPlus etc. However, the values of the PID
parameters might need an adjustment if used in a different context, since a PID controller in TRNSYS
with a 1 minute sampling time step does not necessarily correspond to the same values for a real PID
controller, which would have a much smaller sampling time closer to real time.

Results of the tuning The best values for the PID parameters wereKp = 3 and ti = 0.025 h. The pro-
files of temperatures, powers and frequency are represented in Figure III.29 for this configuration. The
evolution of the compressor frequency is well reproduced by the controller, and thus all the simulated
profiles match satisfactorily with the experimental data. The integrated values are also close: in the
experiment, the heat pump delivered 54.1 kWh, and the simulation gives 53.2 kWh (-1.8% difference).
On the other hand, the model slightly overestimates the electrical energy use: in the experiment, the
heat pump used 18.8 kWh, while the model simulated an energy use of 20.3 kWh (+7.1 % difference).
In cooling mode, the PID gain is negative (Kp = −3) and the model fits more neatly, as shown in
Figure III.30. The model gives a fair representation of the electricity use, with 6.72 kWh simulated, a
variation of -0.74% compared to the 6.77 kWh measured with the real heat pump. The thermal energy
delivered is slightly overestimated, with 21.5 kWh simulated, a variation of +2.6% compared to the 21.0
kWh measured experimentally.

Additional control rules Additional rules override the decisions of the PID controller in some cases.
The rules implemented follow the behavior observed experimentally or mentioned by the heat pump
manufacturer:

• the compressor starts at a middle level of frequency (50 Hz) during 3 minutes, to reach stability
in the system, and then starts to modulate with the PID controller,

• if the compressor switches off because of the low load, it must remain switched off for a mini-
mum of 3 minutes (minimum down time),

• if the supply temperature reaches its set-point Tsup,SP + 5°C, the compressor is automatically
shut down,

1A longer fragment of the dataset could have been used. However, since the model has no inertia contrary to the experimental
setup, the periods of the dataset where Tret was too close to Tsup were discarded: in such cases, the heat pump controller
decisions also have an influence on the return temperature Tret because of the on-off operation and the fact that the control
of the thermal bench return loop is not perfect. We are not able to reproduce this behavior in the model without adding the
inertia and connecting the supply and the return circuits, therefore it was preferred to keep only the periods where Tret is more
constant, to not disturb the identification process.
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Figure III.29. Comparison between the experimental data with the real heat pump, and the simulation with the
detailed HP in TRNSYS, in heating mode.
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Figure III.30. Comparison between the experimental data with the real heat pump, and the simulation with the
detailed HP in TRNSYS, in cooling mode.

• the reading of theTsup temperature sensor was corrected by -0.4 K (-1.7 K in cooling), as this is the
average offset observed between the heat pump internal data and the laboratory measurements.

• ECO mode for DHW: the frequency is limited to 40 Hz during the DHW charging, if this mode is
activated.
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3.4.4 Part-load performance characterization

Another interesting approach to characterize the heat pump consists in observing the variation of
its efficiency at part-load. This is characteristic of variable-speed systems, able to modulate their out-
put to run at a lower load without entering in on-off operation. Such characterization is useful for the
alternative modeling approach presented in Appendix C, but also provides interesting insights in itself
about the functioning of the heat pump. The characterization takes the form of a curve showing the
change of performance at part-load, hence linking the part-load performance PLF with the capacity
ratio CR. For VSHP systems, this relationship is not straightforward, and therefore it is explained here
in details how such curve was obtained.
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Figure III.31. Experimental series of curves PLF=f(CR) in (a) heating and (b) cooling mode.

Figure III.31 shows the experimental values of the PLF / CR relation (taken from the static points
data); all series clustered by values of Tsup,SP and Tamb are represented independently. Hence for each
curve, we first fix Tsup,SP and Tamb, and consider the capacity of the heat pump at full load Qth,FL in
these specific conditions, as well as the COP at full loadCOPFL. This point is thus chosen as the refer-
ence for these fixed conditions, therefore both its PLF and its CR are equal to 1 (CR = Qth,FL/Qth,FL
and PLF = COPFL/COPFL). Then the load is being reduced, with lower values of thermal power: we
can then calculateCR = Qth/Qth,FL and PLF = COP/COPFL for every part load conditions, but still
with Tsup,SP and Tamb fixed. The reference point at full load therefore changes for each curve. To use
these curves, it is thus necessary to know beforehand the full-load capacity in the current conditions
(for instance using catalogue data or the relations developed later in Equation IV.16).

A quadratic function is then fitted to these experimental curves and additionally represented in
the figure. As expected, when the load decreases, the efficiency of the system increases: this is charac-
teristic of variable speed heat pumps. However, the increase is relatively small, since the PLF reaches
only maximum values of 1.15 for the quadratic curve (1.4 in all the data). For low values of CR, the
efficiency decreases rapidly since the heat pump enters in on-off operation, which degrades its COP.

The experimental curves of PLF in function of CR can be compared with other models found in
the literature or derived from catalogue data, as shown in Figure III.32. The obtained quadratic fits are
represented in red and blue for heating and cooling respectively. For reference, some models men-
tioned in [147] are plotted (straight dashed lines with the slopes mentioned in that article). Although
these apply to water-to-water heat pumps, no other PLF/CR relations were found in the literature for
air-to-water heat pumps. On the other hand, the green curve was created using the part-load data
available in the datasheet of the manufacturer (some points at part-load in heating mode following
standard EN 14825 [143]). The method used to obtained this curve was detailed in [60]. A large dis-
crepancy is observed with the experimental curves. This is due to a different understanding of the
notion of ”part-load” in the standards and in dynamic simulations like TRNSYS. In TRNSYS, part-load
simply refers to the machine itself, and how much it is producing relatively to its maximum capacity.
In the standard EN 14825, part load refers to the overall system, hence including both the heat pump
and the building load itself: therefore, this definition links the modulation of the machine with the
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outdoor conditions (which define the load of the building). To explain this difference, an example is
described hereafter: let us consider full load conditions (100%) of 10 kW thermal for a temperature
of Tamb = −10°C. Per the definitions of the standard, a 30% load (CR=0.3) will for instance occur at
Tamb = +10°C, hence the efficiency of the heat pump will obviously increase since the outdoor air is
warmer. There is thus a inherent link between the CR and Tamb. This explains the high values of PLF
(up to 2) in the green curve. On the other hand, as per the definitions of CR in TRNSYS, a 30% load can
also occur at the same outdoor temperature Tamb = −10°C, if we only consider the machine.

This distinction is quite important when heat pumps are used in predictive control frameworks
such as MPC. An MPC controller has the proper characteristic to operate the heat pump in an optimal
way, but not necessarily following the normal ”building load” corresponding to the current outdoor
conditions. For instance, it might want to overheat the building just before a price increase, running
the heat pump at 100% for a short period, while the outdoor temperature is mild and would normally
require an operation of the heat pump at only 30%. For this reason, the PLF/CR curves obtained
experimentally are more interesting to use for such applications.

0.0 0.2 0.4 0.6 0.8 1.0
Capacity ratio at part-load CR=QPL/QFL

0.0

0.5

1.0

1.5

2.0

2.5

Pa
rt 

lo
ad

 fa
ct

or
 P

LF
=C

O
P P

L/C
O

P F
L

On-off behavior Continuous modulation

Experimental curve PLF=f(CR) - Heating
Experimental curve PLF=f(CR) - Cooling
Curve PLF=f(CR) from catalogue data at part-load
Slope -0.13 (Blervaque et al. 2015)
Slope -0.57 (Blervaque et al. 2015)
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68 CHAPTER III. METHODOLOGY FOR THE ANALYSIS OF ENERGY FLEXIBILITY IN BUILDINGS

4 Using and modeling buildings as thermal energy storage

4.1 Residential building study case: white-box model

The present study focuses on the Mediterranean climate and the residential buildings constructed
in this zone. They present the characteristics of having relatively balanced heating and cooling loads
in winter and summer. Therefore such buildings can be used for demand response in both seasons.
However, despite the great amount of literature on MPC and building energy flexibility published in
the recent years, few studies have focused on cooling applications, and even less on study cases that
make use of flexibility in both seasons [50]. Given this state of the art, the authors have deemed worthy
to investigate in more details the potential of energy flexibility of Mediterranean buildings.

A typical block of flats of the region of Catalonia in Spain was chosen as a case study to analyze the
benefits of the different control strategies. In particular, one flat situated on the first floor is studied
in details. The apartment, where lives a family of four, comprises 4 bedrooms, a living room, kitchen
and bathroom for a total surface of 110 m2. The external walls contain 12 cm of insulation which
represents a high insulation level for the Spanish climate. The HVAC systems comprise the air-to-
water heat pump which provides heating or cooling to the Fan-Coil Units (FCU) situated in the rooms.
The heat pump also contains an integrated 200 liters tank for storing DHW. The apartment is simulated
in TRNSYS, with a detailed model that was previously validated with experimental metered data [148],
[149]. This detailed model runs with a time step of 1 minute, enabling to capture short-term variations
with sufficient accuracy. The main parameters of the building are summarized in Table III.6, and the
building is represented in Figure III.33.

It should be noted that the detailed modeling of the building did not belong to the work of this
thesis, an existing model was used and modified for this purpose. The building envelope, infiltration
and occupancy were not changed from the original version of the TRNSYS model, and taken as is.
Mostly the part of the HVAC systems has been modified, with the detailed heat pump model, the FCU,
the distribution circuit and the tank.

Figure III.33. Sketch and photograph of the building.

Table III.6. Main parameters of the chosen
building study case.

Parameter Unit Value
Location - Spain
Building date - 1991-2007
Floor area m2 108.5
Window area m2 19.6
Protected volume m3 263.6
U-value walls W/m2K 0.2
U-value windows W/m2K 2.5 to 5.7
g-value windows 0.5 to 0.76
Infiltration n50 h-1 3
Emission system - Fan-coil units

4.2 Simplified modeling through thermal RC networks

4.2.1 RC model structure

For reasons of computation effort, simplified and linear models are necessary in the MPC frame-
work to predict the dynamic behavior of the building [150]. A state-space model of the building study
case was thus developed and identified through grey-box modeling techniques. The structure repre-
sented in Figure III.34 was chosen, with four temperature states x = [ Tint Tw Tdis TTES ]

T : the indoor
temperature, an intermediate temperature at the inside surface of the walls, the water temperature of
the distribution circuit, and the average water tank temperature. It should be emphasized that such
simplified models are developed only for control purposes, and not for matching exactly with the real
building structure, therefore the level of details is kept to a minimum. Such simple models are broadly
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used for similar applications, like for example in the thesis of Benedetelli on MPC [151].
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Figure III.34. RC model representation.

4.2.2 Description of the model states and parameters

The first state Tint lumps all the rooms of the apartment into one single operative temperature
state, which is sufficient for MPC applications as shown for example in [152]. Its associated capacity
Cint mostly represents the heat capacity of the air, furniture and internal partitions present within the
entire inside zone, and considered as a single body [153], [154]. Lumping these elements of different
thermal capacities into the single parameterCint represents an important simplification, however the
purpose of the simplified model is only to provide a general prediction of the building dynamics for
the controller, and in this scope such assumption is valid, even if the physical phenomena are not
represented in the most accurate manner. External heat inputs enter the building at the level of the
state Tint: the heat naturally emitted by the occupants and the equipment Qocc, the heat gains due to
the ground horizontal solar irradiation IH (buffered by the aperture area coefficient gA) and the heat
coming from the heat pump through the distribution system. The differential equation governing the
behavior or the state Tint is presented in Equation III.22.

Cint · Ṫint =
1

Rint
(Tw − Tint) +

1

Rdis
(Tdis − Tint) + gA · IH +Qocc (III.22)

The second state Tw represents an intermediate temperature at the surface of the external walls,
and its associated capacity Cw covers the heat capacity of the massive walls. Tw is linked with the
outside temperature Tamb through the resistance of the walls Rw. The different dynamics of the two
states Tint and Tw are therefore both captured by this type of model. A first order model lumping all
the thermal capacitances into a single parameter would not have been able to capture both the fast
dynamics of the indoor zone and the slower dynamics of the massive structural elements. On the
other hand, a third order model with an additional capacity accounting for internal walls and/or fur-
niture could represent an alternative modeling approach, but adding unknown parameters increases
the complexity of the obtained model and of the identification process. The second order modeling
approach presented here (e.g. for the building part of the model) is thus considered sufficient for MPC
applications [154], and was used in many previous works as shown in the introductory review of [155].
The differential equation governing the behavior or the state Tw is presented in Equation III.23.

Cw · Ṫw =
1

Rint
(Tint − Tw) +

1

Rw
(Tamb − Tw) (III.23)

Apart from the two states of the building part of the model, an additional third state Tdis accounts
for the distribution system (pipes and fan coil units). It acts as a small buffer between the heat pump
output and the building zone, and enables to reproduce the inertia of this water circuit. The asso-
ciated capacity Cdis represents the thermal capacity of the water contained in the pipes (around 40
liters), while the resistanceRint models the heat transfer of the FCU between the water circuit and the
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indoor air. The distribution circuit receives directly the heat input from the heat pump QS (negative
in case of cooling). The differential equation governing the behavior or the state Tdis is presented in
Equation III.24.

Cdis · Ṫdis =
1

Rdis
(Tint − Tdis) +QS (III.24)

Finally, the DHW tank constitutes the fourth state TTES , which represents the average water tem-
perature of the tank under a fully mixed tank assumption. The capacityCTES covers the heat capacity
of the 200 liters of water and the resistance RTES takes into account the insulation of the tank. The
DHW tank is charged through the heat QTES (positive term) coming from the heat pump circuit, and
discharged with the heat tapped by the occupants QDHW (negative term, which follows the deter-
ministic tapping program L from the standard [123]). Despite its insulation, the tank loses heat to its
surrounding environment Tenv. This environment temperature could differ according to the cases: if
the DHW tank was placed in the conditioned space, for instance in the kitchen or the bathroom, then
Tenv = Tint, or if it was placed outside, then Tenv = Tamb. In the present case, we consider that the tank
is placed in a non-conditioned space like a utility room, basement or balcony, which temperature is
approximated by Tenv = (Tint + Tamb)/2. The differential equation governing the behavior or the state
TTES is presented in Equation III.25.

CTES · ṪTES =
1

RTES
(Tenv − TTES) +QTES −QDHW with Tenv =

Tint + Tamb
2

(III.25)

4.2.3 State-space matrix format

To conform to the state-space model format, the model takes the form of Equation III.26, which
stems from joining the differential equations III.22 to III.25 into a single system. For clarity, the ma-
trix B is separated into Bu, which corresponds to the controllable inputs u = [QS QTES ]

T , and Be
which corresponds to the exogenous, non-controllable inputs e = [ Tamb IH Qocc QDHW ]

T , also called
disturbances. The considered relevant outputs are y = [ Tint Tdis TTES ]

T , hence discarding the wall
temperature Tw. The matrices and vectors forming the state-space model are described in equations
III.27 to III.30. {

ẋ = A · x+Bu · u+Be · e
y = C · x

(III.26)

With:

A =



−
1

RintCint
−

1

RdisCint

1

RintCint

1

RdisCint
0

1

RintCw
−

1

RwCw
−

1

RintCw
0 0

1

RdisCdis
0 −

1

RdisCdis
0

1

2RTESCTES
0 0 −

1

RTESCTES


and x =


Tint
Tw
Tdis
TTES

 (III.27)

Bu =



0 0

0 0

1

Cdis
0

0
1

CTES


and u =

[
QS
QTES

]
(III.28)
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Be =



0
gA

Cint

1

Cint
0

1

RwCw
0 0 0

0 0 0 0

1

2RTESCTES
0 0 − 1

CTES


and e =


Tamb
IH
Qocc
QDHW

 (III.29)

C =

1 0 0 0

0 0 1 0

0 0 0 1

 and y =

 TintTdis
TTES

 (III.30)

This state space model is derived from the differential equations and thus has a continuous form.
In the MPC scheme, the model must be discretized with the sampling time ts, using the formulas of
Equation III.31 and leading to the discrete state space model of Equation III.32. The transformed dis-
crete matrices here have a superscript d to differentiate from their continuous form. However in the
remaining of the thesis and to lighten the notation, we only use the general notation A, B, C without the
superscript, assuming that the matrices have their discrete form in a discrete context and their con-
tinuous form in a continuous context. The choice of the discretization time step is further discussed
in subsection 2.6 of chapter IV; the value of ts = 15 minutes is chosen as a general rule.

Ad = eAts , Bd =

(∫ ts

t=0

eAtdt

)
B = A−1(Ad − I)B, and Cd = C (III.31)

{
x(k + 1) = Ad · x(k) +Bdu · u(k) +Bde · e(k)

y(k + 1) = Cd · x(k)
(III.32)

4.2.4 Parameter identification for the building part

The building part of this RC model was identified with data generated by the detailed model cre-
ated and previously validated in TRNSYS [148]. The parameters to be identified were Rint, Cint, Rw,
Cw and gA. The inputs were the outdoor temperature Tamb, the ground horizontal solar irradiation IH
and the total heat provided to the indoor zoneQocc +QS . In order to have enough dynamic content in
the generated data, the building model was excited following a Pseudo Random Binary Signal (PRBS)
of the heating QS , similarly to the methodology described in [102] and the guidelines of the IEA EBC
Annex 68 [156]. The PRBS contains on-off cycles at different frequencies so that both the fast and slow
responses of the building are captured in the data, making the identification of the parameters easier
and more reliable. Finally, the observation measurements consisted of the temperatures of the states
Tint and Tw. The model identification was realized with the system identification toolbox of MAT-
LAB [157] (“greyest” method which uses Gauss Newton least square search), and the data generated
covered 1400 hours, with time steps of 3 minutes. The results for heating season are presented in Fig-
ure III.35 and Table III.7 (first row). The obtained fit reached 82.3%, which is satisfactory considering
the low order of the simplified model.

The RC model preserves a certain structure which can be interpreted physically, therefore the resis-
tance and capacity values can be compared to an order of magnitude expected for these parameters.
Since a lot of smaller parameters are lumped into a limited number of R and C values (4 in this case), it
can still result a difficult task to find suitable comparisons. Furthermore, the virtual intermediate state
Tw can “move” within the thickness of the wall, which would modify the balance between the inside
zone values (indexed int) and the wall values (indexed w). However, the overall resistance Rint + Rw
and the overall capacityCint +Cw should remain approximately at the same level. In the present case,
the RC model gives Rint + Rw = 10.1 K/kW. When considering the resistance of the materials in all
individual layers of the external walls, a parallel calculation gives Req = 11.5 K/kW, which is relatively
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Figure III.35. Representation of the data (generated by a detailed model in TRNSYS) and the fitted RC model in
heating mode.

close. For the capacities, we obtainCint+Cw = 26.0 kWh/K. Summing all the capacities of the materi-
als in the building givesCeq = 41 kWh/K. However, only a part of the external walls mass is activated by
the heating of the room (mostly until the insulation layer), the most external layers not being affected
by a change of the indoor air temperature [153]. This concept is known as the effective capacity Ceff ,
and is calculated as a portion ofCeq. The ratio can vary in a great range and is not known precisely; val-
ues ranging from 1/2 to 1/3 are for example mentioned in [158]. Applying this rule to the present case
Ceff = 1/3 · Ceq = 13.7 kWh/K, which should be compared to 26.0 kWh/K. A discrepancy is observed,
in fact the ratio in the present case is closer to 2/3: Cint + Cw = 0.63 · Ceq. Since there does not exist
any agreement in the literature about the calculation of the effective capacity, it is preferred to keep
the values originating from the model identification process, given that they offer a good fit with the
data, and that the primary goal of the model consists in predicting well rather than being physically
meaningful. Furthermore, the balance between the wall and the inside zone values is conserved with
the obtained values of R and C: Rw and Cw are much greater than Rint and Cint respectively, which is
expected since the massive walls have a higher resistance and capacity than the air of the inside zone.

Table III.7. Parameters of the building RC model for heating and cooling.

Coefficient Rint Rw Cint Cw gA

Unit K/kW K/kW kWh/K kWh/K m2

Value (heating) 1.089 9.013 1.771 24.22 1.948
Value (cooling) 0.286 9.404 1.771 45.65 1.558

Theoretically, the values of resistances and capacities obtained in the heating case should also be
valid for the cooling case, since they are intrinsic parameters of the building. However, they are subject
to changes, for instance the thermal resistance or capacity of a material depend on its temperature,
therefore the situation varies with the different boundary conditions in winter and summer. This is es-
pecially true for the aperture area gA, which represents the proportion of the outside solar irradiation
entering the building, since the sun angle changes significantly between seasons. It can be observed
in Figure III.36 that keeping the same parameters results in a poor model fit (38.5%) and the appari-
tion of temperature peaks in the cooling season. It is assumed that another form of reduced-order
model might be better suited for the cooling season, for instance differentiating the incoming solar
irradiation from every façade instead of only considering one horizontal solar irradiation as the ex-
ogenous input. This would probably improve the model in cooling mode, since the solar gains have
more importance in the summer period, with regards to the cooling demand. However this would
also increase the number of parameters and complicate the identification process, therefore the same
model structure than for heating is kept.

Even though the structure of the model is maintained, the model identification process is repeated
in the cooling mode, so as to obtain a new set of the R and C parameter values that suits better the
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summer period. This illustrates the limits of using simplified models. The methodology remains the
same however: the building is virtually excited with a PRBS signal on the cooling parameterQS , which
is negative in this case. The parameters obtained for the heating case are used as initial values of
this identification process. The obtained values of the parameters for cooling are presented in the
second row of Table III.7. The simulation results of this model are compared in Figure III.36 with the
original TRNSYS model and with the simulation results the heating RC model would have given in the
cooling scenario. The total resistance of the model Rint + Rw = 9.69 K/kW stays stable compared to
the heating case (10.1 K/kW), although the internal resistance has decreased. On the other hand, the
total capacity increases toCint+Cw = 47.4 kWh/K (compared to 26.0 kWh/K in heating). One possible
explanation resides in the fact that in reality, the solar irradiation also hits the wall directly (and thus
affects the intermediate state Tw), and this phenomenon has greater amplitude in summer. Since this
is not represented in the chosen RC model, the parameter estimation process instead decreased the
resistanceRint between the two states, so that the external input IH also affects the state Tw in a more
direct manner. As a compensation for this reduced resistance, the capacity stateCw is increased to act
as a buffer. Moreover, the aperture area gA has decreased in the cooling model, since the sun angle is
higher and thus direct irradiation do not penetrate as deep into the building as in the heating case.
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Figure III.36. Two different fittings of the RC model for cooling.

The parameter estimation process enabled to emphasize that simplified models for MPC applica-
tions in heating and cooling mode should be differentiated. In fact, the RC model simply is a lineariza-
tion of a detailed model (or a real building) around an operation point; and since this operation point
changes significantly between winter and summer, it is preferable to adapt the model as well. In the
present case, the RC model was obtained from data created by another, more detailed model, but the
identification process would be similar with monitoring data recorded from a real building, although
some challenges would arise with the uncertainties of the input data, or if the wall temperature mea-
surement is needed.

4.2.5 HVAC systems: TES and FCU

For the remaining of the system, the values of the RC parameters were mostly derived from man-
ufacturer’s datasheets and calculated data. The chosen values are presented in Table III.8. The two
capacities Cdis and CTES correspond to the thermal capacity of the water contained in the pipes of
the FCU circuit and in the DHW storage tank, respectively. The tank contains 200 liters of water, while
the pipes around 40 liters (the minimum being 38 liters specified in the heat pump manufacturer’s
datasheet). RTES corresponds to the heat losses of the tank, considering its insulation layer, while
Rdis corresponds to the heat transfer of the FCU from the water side to the air side.
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Table III.8. Parameters of the system RC model.

Coefficient Rdis RTES Cdis CTES

Unit K/kW K/kW kWh/K kWh/K
Value (heating) 4.496 601 0.044 0.29
Value (cooling) 2.681 601 0.044 0.29

5 Conclusions on the methodologies

This chapter has reported in details the different methodologies used for the studies developed in
the thesis. Although the methods and tools do not represent an actual goal or research question of the
thesis on their own, they actually represent the most important part of the work, and their detailed
description enables to understand later where do the obtained results stem from.

Firstly, the experimental and simulation frameworks have been described, and they are later used
respectively in chapter V and VI. The experimental setup reproduces the hardware-in-the-loop testing
principles, and the co-simulation framework enables to couple different pieces of software to investi-
gate the effects of a controller on a specific study case. Those two frameworks developed in the mark of
the thesis can be reused later, for instance to test further variations or configurations of the controllers
and of the boundary conditions (building type, climate...).

Secondly, advances have been presented with regards to the penalty signals used to trigger the en-
ergy flexibility and the quantification or representation of this energy flexibility. The penalty signals
play in particular a very important role, as they in fact contain the information on which the flexibil-
ity controllers will react. A significant part of the intelligence therefore consists in designing proper
signals, so as to incite load shifting towards certain desired periods. Regarding this, a novel signal
representing the marginal CO2 emissions from the grid was created, with the aim to reduce the car-
bon footprint when such signal is used. An hourly price signal typical in Spain for small consumers
was also chosen. These two signals are the ones later used to trigger the actions of the flexibility con-
trollers, both the RBC and the MPC. Further than that, several KPIs have been selected and discussed,
and graphical representation of the energy flexibility indicators have been proposed.

Finally, progress was made regarding the modelling of the different systems playing a part in the
evaluation of energy flexibility in buildings. For the modelling of the building envelope, although the
use of reduced order grey-box models is well-documented in existing literature, the use of such mod-
els for use in both heating and cooling modes has been investigated and reported in this chapter, and
it constitutes an interesting outcome of the research. For the modelling of the heat pump systems,
several advances have been made: a simplified model was first created, based on an experimental
performance map, for use within the MPC framework. A detailed heat pump model was then devel-
oped in TRNSYS to be included in the simulation-only framework: this high-fidelity model reproduces
well the control and dynamics of the real heat pump, and can thus be reused in a great variety of sim-
ulations.

All these elements, models and methods constitute in themselves valuable outputs of the work.
Further than the reporting of their development, they are then used to produce the desired results
which will be analyzed in the following chapters of the thesis.



Chapter IV

Development of controllers for energy
flexibility

The main contribution of this thesis consist in developing and testing control strategies for heat
pump systems in residential buildings. In this chapter, the development and tuning of those con-
trollers is described in details: first in section 1, the rule-based controller is presented, and secondly in
section 2 the MPC controller. Both of these controller types include different parameters that must be
adjusted for an optimal performance. A special attention is thus given to the adequate methodology
for tuning these parameters, since choosing proper values has a significant impact on the final results.

1 Rule-based controller

1.1 Description of the rule-based control methodology

To exploit the flexibility of heating or cooling loads, rule-based controls (RBC) constitute the sim-
plest type of method to implement. RBC can for example aim at avoiding peak periods with fixed
schedules [42], reducing the peak power exchange between buildings and the grid [43], reducing the
energy cost [44] or increasing the consumption of RES [45]. In the case described in this thesis, the
focus lies on reducing the costs or emissions linked to covering the thermal loads of the building. In
this way, the RBC can later be compared with the MPC: both types of controllers react to the same
input signals, them being the time-varying price of electricity or the marginal emissions of the grid, as
explained in the previous chapter.

Before to explain the principle of the chosen RBC controller, let us describe first the reference con-
trol strategy. It simply consists in applying fixed set-points to maintain in the indoor space (i.e. con-
trolling the indoor temperature Tint) and in the DHW tank (i.e. controlling the water temperature
TTES). A set-point of TTES,SP = 45°C is fixed for the DHW tank, with a negative deadband of 5°C,
hence the temperature oscillates between 40 and 45°C. For the room thermostat, the reference set-
points are chosen based on the recommendations from standard EN15251 [140]: Tint,SH,SP = 21°C
in the winter season, and Tint,SC,SP = 25°C in the summer season. These values were chosen so that
the operative temperature stays within comfort Category II (normal level of expectation), considering
a deadband of±1°C.

Starting from this reference with fixed set-points, the implemented RBC consists in modulating the
set-points according to the current value of a penalty signal (e.g. electricity price or emissions). This
method was partly inspired from [137], and it is illustrated in Figure IV.1. The dashed lines shown in
Figure IV.1 show the common lower or upper bound for the temperature: the same values are chosen
as constraints in the MPC controller, so that the three control strategies can be compared (reference,
RBC and MPC).
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Figure IV.1. Principles of the RBC set-point modulation, for space heating and space cooling.

Firstly, thresholds representing the limits of the high and low penalty are defined. At a given mo-
ment, the data of the varying penalty signal c of the next 24 h is collected. These data are treated as
follows: the 40th percentile of the distribution constitutes the threshold for low price clow and the 60th

percentile constitutes the threshold for high price chigh. These values of the percentiles have shown to
be the best compromise; the methodology for choosing them is discussed in subsection 1.2. At every
time step, the calculation of clow and chigh is repeated, and the current penalty signal c is compared
with the thresholds; if it falls below clow, the set-point TSP is increased to store thermal energy in the
mass of the building while energy is cheap (decreased in the case of cooling). If the current value of
the penalty is above chigh, the set-point is decreased to discharge the stored thermal energy instead
of using active systems while energy is expensive (set-point increased in case of cooling). To realize
these variations, a modulation factor r is introduced, as shown in Equation IV.1. The calculation of the
temperature set-points is then summarized in equations IV.2 and IV.3. The amplitude of the modula-
tion is δTSH = δTSC = 1°C for space heating and cooling, and δTTES = 5°C for DHW, in comparison
with the reference case aforementioned. It should be noted that the flexibility control strategy could
be applied either to only one set-point, either for both the indoor temperature and the TES set-points
at the same time. Overall, the strategy aims at shifting the loads towards periods of lower penalty.

r =


+1 if c < clow
0 if clow < c < chigh
−1 if c > chigh

(IV.1)

Tint,SP =

{
Tint,SH,0 + r · δTSH in heating mode
Tint,SC,0 − r · δTSC in cooling mode

(IV.2)

TTES,SP = TTES,0 + r · δTTES (IV.3)
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1.2 Tuning of the RBC

The core of the RBC intelligence lies in how to choose the thresholds for the low and high penalty
clow and chigh, since they will determine when to modulate the set-points. The tuning of the thresholds
was performed on a study case, and reported in [159]. Only the electricity price was used as penalty
signal in this process, hence in this subsection, c corresponds to the electricity price only, but the same
would apply for other signals like the CO2 emissions from the grid.

Let us define the k-th percentile of the price data for the next day: clow,k represents the lower thresh-
old, while chigh,100−k represents the high threshold, the (100−k)-th percentile. For the tuning, k is var-
ied between 10 to 50 and the effect on the performance of the controller is studied. The performance
indicator chosen for this parametric analysis is the flexibility factor FF , as defined in subsection 2.2: it
enables to quantify the actual load-shifting provoked by the RBC controller. This flexibility factor also
depends on the thresholds of low and high price. It should be noted that the control strategy can be
implemented using the percentile k but analyzed with a different percentile i: let us then define the
i-th percentile of the price data, which will be used in the FF calculation. The modulation factor r in
function of the k-th percentile and the flexibility factor in function of the i-th percentile are recalled in
equations IV.4 and IV.5.

rk =


+1 if c < ck
0 if ck < c < c100−k

−1 if c > c100−k

(IV.4)

FFk =
Wlowprice −Whighprice

Wlowprice +Whighprice
=

∫
c<ci

Pel(t)dt−
∫
c>c100−i

Pel(t)dt∫
c<ci

Pel(t)dt+
∫
c>c100−i

Pel(t)dt
(IV.5)

Where W corresponds to the integrated energy used by the heat pump during low or high price peri-
ods.

Simulations of one week were carried out in TRNSYS, with time steps of three minutes, on the same
residential study case. The weather data was retrieved from a weather station situated in Terrassa
(Barcelona, Spain) during the year 2015. A selected week in January 2015 was chosen (cold season),
as well as one in April 2015 (mid-season). The corresponding price profile of the same weeks was
retrieved from the Spanish TSO (PVPC tariff). The simulated cases of this parametric analysis are
summarized in Table IV.1.

Table IV.1. Simulation cases for the parametric analysis of the RBC controller.

Case Percentile for modulation Percentile for FF analysis Price and weather input
0a Reference case k =10 to 50 January 2015
1a k =10 i =10 to 50 January 2015
2a k =20 i =10 to 50 January 2015
3a k =30 i =10 to 50 January 2015
4a k =40 i =10 to 50 January 2015
5a k =50 i =10 to 50 January 2015
0b Reference case i =10 to 50 April 2015
1b k =10 i =10 to 50 April 2015
2b k =20 i =10 to 50 April 2015
3b k =30 i =10 to 50 April 2015
4b k =40 i =10 to 50 April 2015
5b k =50 i =10 to 50 April 2015

The flexibility factor analysis is presented in Figure IV.2 for cases 1 to 5. On the horizontal axis, the
different simulated cases correspond to different values of k (10 to 50) used to define the thresholds
for the control; the different series show the different values of i used to define the thresholds of the
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flexibility factor. The flexibility factor highly depends on both values. It can be observed in January
(Figure IV.2 (a)) that for a fixed case, the value of i = k shows the highest flexibility factor, which is only
logical since the evaluation factor then coincides with the actual control implemented. The overall
highest flexibility factor of 0.69 is obtained in case 4a, with k = i = 40. In spring season (Figure IV.2
(b)), this tendency is less clear, but in most cases, the configurations k = i also present the highest
flexibility. The highest values of the flexibility factor are obtained with k = 50 (case 5b) and i=10 and
50. As the heating needs are reduced in mid-season, and thus provide less interest in load-shifting,
the control strategy is preferably optimized for the winter season. Therefore, the values k = i = 40
are chosen for later studies, which means the 40-th percentile is the low threshold while the 60-th
percentile is the high threshold. An example applied on a real case with the electricity price is shown
in Figure IV.3, with two different tariffs, the calculated thresholds and the resulting modulation factor
r.
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Figure IV.2. Flexibility factor computed for the total electricity use of the heat pump in cases 1 to 5, both in January
2015 (a) and April 2015 (b). Cases 1 to 5 correspond respectively to values of the percentiles k=10 to 50, applied to
the price thresholds for the control strategy.

25-01 26-01 27-01 28-01 29-01 30-01 31-01
Time [dd-mm]

0

50

100

150

200

Pr
ice

 [E
UR

/M
W

h]

Price signal c
chigh threshold

clow threshold
Modulation factor r

25-01 26-01 27-01 28-01 29-01 30-01 31-01
Time [dd-mm]

0

50

100

150

200

Pr
ice

 [E
UR

/M
W

h]

2

0

2

4

6

8

10

M
od

ul
at

io
n 

fa
ct

or
 r 

[-]

2

0

2

4

6

8

10

M
od

ul
at

io
n 

fa
ct

or
 r 

[-]

(a) (b)

Figure IV.3. Electricity price for end-users contracted on the PVPC tariff in Spain in January 2015 (standard tar-
iff (a) and 2-periods tariff (b)). The calculated thresholds and the resulting modulation factor are additionally
represented.

This tuning process enabled to find the best calculation method for the thresholds of high and low
penalty. The chosen percentile values have shown to be appropriate for the considered price signal,
and the same values were used for other penalty signals, such as the CO2 emissions from the grid,
even though these signals can have a different shape. The tuning was only carried out with data of
the heating season, however the shape of the price signal is very similar across the entire year, since
it is constructed ’artificially’ with a high price period in the afternoons and a low-price period in the
mornings. For this reason, it is considered that the tuning is also valid in the cooling season, since the
values of the appropriate percentiles would be identical.

Apart from the thresholds of the high and low penalty, other parameters can be tuned in the RBC
controller. Notably the amplitude of the set-point modulation can also be modified: higher values of
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δTSH = 2°C and δTTES = 10°C were tested, but they resulted in a considerable increase of the energy
use, although comfort was not significantly impacted [159]. The original values δTSH = δTSC = 1°C
and δTTES = 5°C were thus conserved.
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2 Development of a model predictive controller

2.1 MPC algorithm

The overall MPC control algorithm was developed to manage the heating and cooling loads of the
building, and to exploit their flexibility. The mathematical formulation of this problem is presented
in Algorithm 1; it consists of a classical optimization problem with constraints. The controller intends
to minimize a certain objective function J over the time horizon N , by choosing the values of the
following variables: δ = [δS , δTES ]

T is the vector of the two binary variables which activate respectively
the space heating or cooling mode and the DHW production mode, u = [QS , QTES ]

T is the vector of
the continuous variables which represent the thermal power to deliver either to the building space or
to the TES tank. The constraints ruling these control inputs are clarified in subsection 2.3. Different
forms of the objective function have been tested: they are detailed in subsection 2.2, along with the
tuning of the weighting coefficients in the multi-objective cost function. During the optimization,
the controller must take into account the dynamics of the building through a simplified state-space
model as previously described in chapter III. Finally, some constraints on the output temperatures
y = [Tint, TTES ]

T must be met to guarantee the satisfaction of the users, these comfort constraints are
detailed in subsection 2.4.

Algorithm 1 - MPC controller

minimize
u,δ

J = αε · Jε + α∆u · J∆u + (1− αε − α∆u) Jobj
(IV.6)

subject to ∀k ∈ 1, . . . , N :

Model of the building
dynamics:

{
x(k + 1) = A · x(k) +Bu · u(k) +Be · e(k)
y(k + 1) = C · x(k)

(IV.7)

Constraints on the
control inputs1:

{
δ � u ≤ u(k) ≤ δ � u
‖δ‖1 ≤ 1
Minimum up and down times

(IV.8)

Comfort constraints on
the control outputs:

{
y(k)− ε(k) ≤ y(k) ≤ y(k) + ε(k)
ε(k) ≥ 0

(IV.9)

1 Where � is the Hadamard product (matrix product term by term).

2.2 Objectives and tested MPC configurations

As seen in Algorithm 1, the MPC algorithm intends to minimize a certain objective over the pre-
diction horizon. In the present case, the objective comprises in fact three aspects, weighted by the
corresponding coefficients α :

• maintaining the comfort level with the objective Jε, as shown in Equation IV.10. In fact, it con-
sists in limiting the discomfort, or in other words, avoid the excursions outside the defined tem-
perature boundaries. ε is a slack variable that enables to soften the constraints on the output
temperatures. In principle ε = 0, but exceptionally, the temperature is allowed to trespass the
boundaries (ε > 0); the cost of this constraint violation is reflected in the objective Jε, as shown
in Equation IV.10. As another advantage, this formulation avoids infeasibility of the MPC in the
case where the initial states are found outside the boundaries (which typically happens at start-
up for instance, or due to discrepancies of the model when operating close to the boundaries).
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Jε =
N∑
k=1

ε(k) (IV.10)

• smoothing the control actions to avoid too frequent on-off switching with the objective J∆u, as
shown in Equation IV.11.

J∆u =
N∑
k=2

‖u(k)− u(k − 1)‖1 (IV.11)

• an actual objective Jobj which can be the minimization of the thermal energy delivered to the
building Jen, the minimization of the cost of the electricity used by the heat pump for delivering
this energy Jcost, or the minimization of the CO2 emissions related to this electricity use JCO2.
The formulation of these objectives is detailed in the next subsections 2.2.1 to 2.2.4, while the
global multi-objective function is summarized in Table IV.2 for the different configurations.

Table IV.2. Multi-objective function for the different MPC configurations.

MPC configuration Main objective Jobj Full objective function J

MPC ThEnerg
Minimizing the thermal
energy Jobj = Jen

J = αε · Jε + α∆u · J∆u + (1− αε − α∆u) Jen

MPC Cost
Minimizing the mone-
tary costs Jobj = Jcost

J = αε · Jε +α∆u · J∆u + (1− αε − α∆u) Jcost

MPC CO2
Minimizing the CO2

emissions Jobj = JCO2
J = αε ·Jε+α∆u ·J∆u+ (1− αε − α∆u) JCO2

2.2.1 Minimization of the thermal energy (MPC ThEnerg)

In this configuration, the quantity minimized by the MPC over the control horizon is the thermal
energy delivered to the building (in addition to the smoothing and discomfort terms), hence without
taking into account the variable efficiency of the heat pump system. The mathematical formulation
with Jobj = Jen is written in Equation IV.12.

Jen =
N∑
k=1

‖u(k)‖1 =
N∑
k=1

(QS(k) +QTES(k)) (IV.12)

In the overall objective of the MPC, Jen is combined with two other objectives (comfort and smoothing
of the control). To determine the weighting coefficients α between these different quantities, Pareto
fronts are plotted, where several values of the coefficients are tested on simulations. The results are
plotted separating the different components of the objective function, as can be seen in Figure IV.4.
In this graph, the Jε objective is represented on the y-axis, Jen on the x-axis, and J∆u through color
mapping of the points. The different lines correspond to different values of αu, while the different
points of a line correspond to different values of αε.

To choose appropriate values of the weighting coefficients, one must remain in the right horizon-
tal part of the lines, where the discomfort Jε is at its minimum. At the same time, it is preferable to
minimize the thermal energy Jen, therefore to stay as much on the left of the graph as possible. Fur-
thermore, one must also avoid unreasonably high computation times and high values of J∆u (yellow
colors on the present graph), even though this is the least relevant parameter (with a time step of 15
minutes, a cyclic on-off behavior would not cause many problems). As a compromise between all
these considerations, the values chosen are α∆u = 0.05 and αε = 0.8 for the Jen objective in heat-
ing mode; α∆u = 0.05 and αε = 0.6 in cooling mode. The same approach is repeated for every MPC
configuration.
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Figure IV.4. Pareto fronts for the Jen configuration, in (a) heating and (b) cooling modes.

2.2.2 Minimization of the operational costs (MPC Cost)

In this configuration, the cost of the electricity used by the heat pump is minimized by the MPC.
This configuration presents an increased complexity, since the electricity use Pel is introduced in
the equation (and not only the delivered heat as previously), and therefore the heat transmission
by the emitter and the performance of the heat pump must both be taken into account into the
objective function. For this purpose, the simplified models detailed in subsection 3.3 of chapter III
are utilized. The electricity used by the heat pump is then multiplied at every time step by a time-
varying cost of electricity cel (in EUR/MWh, changing every hour), normalized by cel,max. The value
of cel,max = 200=C/MWh is chosen reasonably above the highest price observed in the whole year, so
that the ratio cel/cel,max stays between 0 and 1. Normalizing all the subobjectives facilitates the sub-
sequent balancing of the multi-objective function with the weighting coefficients. In the present case,
the Spanish PVPC tariff is used, since its historical data and forecasts are public [132]. More informa-
tion on the price signals is given in subsection 2.1 of chapter III. Introducing such a penalty signal
helps the decision-making process of the MPC since it already predefines favorable or non-favorable
periods for when to operate the systems. The formulation of Jcost is presented in Equation IV.13.
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Figure IV.5. Pareto fronts for the Jcost configuration, in (a) heating and (b) cooling modes.
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The costs related to the FCU (which are synchronized with the space heating/cooling operation)
can be considered or not in the equation (the term Pel,FCU ). If they are, a constant electricity con-
sumption for the FCU is used when the SH/SC circuit is activated, amounting to 30 W per each of the
eight FCUs (Equation IV.14). It should be noted that the other non-shiftable electricity costs of the
building are not included in the cost objective Jcost, since they would not influence the calculation of
the optimal MPC plan for the heat pump. The Pareto fronts for Jcost are presented in Figure IV.5. In this
configuration, the chosen values are α∆u = 0.01 and αε = 0.15 for cooling, α∆u = 0.01 and αε = 0.5 for
heating.

Jcost =
N∑
k=1

[Pel,S(k) + Pel,TES(k) + Pel,FCU (k)] · cel(k)

cel,max
(IV.13)

Pel,FCU = δS(k) · PFCU,on (with PFCU,on = 0.24 kW) (IV.14)

2.2.3 Minimization of the CO2 emissions (MPC CO2)

This formulation resembles the previous Jcost, except that the monetary cost cel is replaced by a
cost in terms of CO2 emissions cMEF (in kgCO2/kWh). The marginal emissions factor (MEF) is used
for this purpose, and normalized by the value cMEF,max = 0.5 kgCO2/kWh. This parameter estimates
the emissions savings that can be realized from a change in the load (i.e. a demand response action),
given the state of the electrical grid. It differs from the average emissions factor since it considers
the supposed merit order in which the different sources of electricity generation are activated. The
MEF is computed for every hour according to the model and calculations described in section 2 of
chapter III. The formulation with Jobj = JCO2 is presented in Equation IV.15. The Pareto curves for
JCO2 are plotted on Figure IV.6. In this configuration, the chosen values are α∆u = 0.05 and αε = 0.15
for heating, α∆u = 0.01 and αε = 0.15 for cooling.

JCO2 =
N∑
k=1

[Pel,S(k) + Pel,TES(k) + Pel,FCU (k)] · cMEF (k)

cMEF,max
(IV.15)
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Figure IV.6. Pareto fronts for the JCO2 configuration, in (a) heating and (b) cooling modes.

2.2.4 Summary of the MPC configurations

The summary of the previously determined coefficients for the multi-objective function are re-
called in Table IV.3.
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Table IV.3. Summary of the weighting coefficients in heating and cooling modes for the different objectives.

HEATING COOLING
Objective Jen Jcost JCO2 Jen Jcost JCO2

Value of αε 0.8 0.5 0.15 0.6 0.15 0.15
Value of α∆u 0.05 0.01 0.05 0.05 0.01 0.01
Value of αobj = 1− αε − α∆u 0.15 0.49 0.8 0.35 0.84 0.84

2.3 Constraints on the control inputs

Continuous variables (i.e. the thermal powers QS and QTES delivered respectively to the building
and the tank) were chosen as the inputs controllable by the MPC. They enable to represent the variable
speed characteristic of the studied system, which can modulate its delivered capacity within a certain
range. In order to switch from the space heating/cooling to the DHW production mode, it is however
necessary to introduce the additional binary variables δS and δTES . They equal 1 when their respective
mode is activated, 0 otherwise. The heat pump can only operate in one mode at a time, so the binary
variables are constrained by ‖δ‖1 ≤ 1, which is equivalent to δS + δTES ≤ 1. Introducing binary
variables transforms the nature of the control problem, and thus the MPC must resort to Mixed Integer
Linear Programming (MILP) instead of simpler Linear Programming (LP) to solve it [160].

The binary variables also enable to limit the heating power Q in a certain range
[
Q;Q

]
when the

heat pump is turned on. With only the continuous variables QS and QTES and simple constraints of
the form 0 ≤ Q ≤ Q, the MPC could have decided to provide very low values of the thermal capacity
Q, without turning it off. In reality, a heat pump system has a minimum power below which it cannot
operate; for instance with the considered equipment, the frequency of the compressor cannot drop
below 31 Hz, if the load is still too low for that frequency, the heat pump would switch off. The binary
variables and the ranges of heating power enable to reproduce this behavior. The general constraints
expressed in Equation IV.8 can therefore be reformulated as follows:

Constraints on the control
inputs at each time step k:

 δS ·QS(k) ≤ QS(k) ≤ δS ·QS(k)

δTES ·QTES(k) ≤ QTES(k) ≤ δTES ·QTES(k)
δS(k) + δTES(k) ≤ 1

Two approaches exist when considering the values of the maximum and minimum values of the
capacity Qth. The first approach considers that the range of operation is constant. In that case, the
chosen values correspond to the manufacturers specifications and the range of operation observed in
static tests:

•
[
QSC ;QSC

]
= [−8 kW ;−2.5 kW ] in cooling mode,

•
[
QSH ;QSH

]
= [3 kW ; 10 kW ] in heating mode,

•
[
QTES ;QTES

]
= [5 kW ; 5 kW ] in DHW production mode. In fact, the charging power of the

internal loop of the DHW tank charging cannot be controlled independently. Furthermore, when
using the ECO mode for DHW production as is the case here, the compressor is limited to work
at 40 Hz and for this reason it is assumed that DHW is always produced at a constant load of the
heat pump.

This first approach represents a simplification, since the capacity range of the machine depends on
the operating conditions, and more specifically on the ambient temperature Tamb and the chosen sup-
ply temperature Tsup. This dual dependency is illustrated in Figure IV.7, where the maximum capacity
of the heat pump is represented in function of the two parameters. To take into account the variation
of the maximum capacity in function of the operating conditions, a second approach is developed:
the maximum capacity is modeled with a quadratic function which will serve as the upper constraint
of the MPC. The constraint cannot depend on Tsup, which depends itself on the decision of the MPC,
so the quadratic expression is only function of Tamb. For conservative reasons, the model takes into
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account only the extreme supply temperatures: Tsup = 55◦C in heating mode and Tsup = 7◦C in cool-
ing mode. In this way, it is guaranteed that the heat pump can deliver the thermal capacity within this
bound, even though in theory it could deliver more, if the supply temperature is milder than these
extreme values (as shown by the scatter points above the plotted curves in Figure IV.7)
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Figure IV.7. Quadratic model of the maximum thermal capacity based on catalogue data in (a) heating and (b)
cooling mode.

The quadratic function of the maximum capacity is shown in Equation IV.16 and the fitted coeffi-
cients for heating and cooling are presented in Table IV.4. The minimum capacity is kept as a constant
in the second approach, as in the first one. The results presented in this thesis consider the second
approach, hence with the upper constraint dependent on the ambient temperature.

QS(k) = a0 + a1 · Tamb(k) + a2 · Tamb(k)2 (IV.16)

Table IV.4. Coefficients of the fitted quadratic models for the capacity constraints in heating and cooling models.

Mode a0 a1 a2

Heating 10.70 0.2298 0.00211
Cooling 14.02 0.02646 -0.00262

Finally, additional constraints must be set to impose minimum operation times of the heat pump.
As an alternative to the smoothing objective, such constraints avoid the heat pump to switch on and
off too often from one time step to the next. For this purpose, let us define the binary variable σ(k) =
δ(k) − δ(k − 1): in this way, σ(k) is equal to 1 if the heat pump is switched on at instant k, to -1 if
the heat pump is switched off, and 0 if the heat pump remains in the same state. We would like to
impose that if the heat pump is switched on (i.e. σ(k) = 1), it stays activated during at least Lup
time steps (i.e. δ = 1 in the interval [k, k + Lup]). The constraint is thus formulated mathematically
as in Equation IV.17. In a similar fashion, a minimum down-time constraint can be enforced with
Equation IV.18: if the heat pump is switched off (σ(k) = −1), then it has to remain in this state during
at least Ldown time steps (i.e. (i.e. δ = 0 in the interval [k, k + Ldown]). The value of Lup was chosen as
3 time steps for the space heating/cooling circuit: as observed in the experiments, 2 time steps of 15
minutes were required to reach a steady-state, hence the constraint ensures that the heat pump enters
and functions in this steady state phase for some time. For DHW tank charging, the value of Lup = 2
time steps was also deducted from experimental observations: a single time step did not allow the
system to reach temperatures sufficiently high to actually warm the tank. Ldown was chosen as 2 time
steps for both circuits.

δ(k : k + Lup) ≥ σ(k) (IV.17)
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δ(k : k + Ldown) ≤ 1 + σ(k) (IV.18)

2.4 Comfort constraints on the control outputs

For comfort reasons, additional constraints are set to the two outputs of the MPC controller. For the
indoor conditions, the room temperature Tint must stay within the boundaries

[
Tint;Tint

]
. The ranges

are chosen from the standard [140] according to the season and for a normal level of acceptation of
the occupants for comfort (Category II):

•
[
Tint;Tint

]
= [20◦C; 24◦C] in winter season,

•
[
Tint;Tint

]
= [22◦C; 26◦C] in summer season.

These constraints are relaxed with the slack variable ε : in this way, small excursions outside the
hard constraints are permitted at a certain cost (see also section 2.2 about the comfort objective).

Regarding the tank storing DHW, its temperature TTES must stay in the range:

•
[
TTES ;TTES

]
= [40°C; 55°C], regardless of the season.

To avoid the spread of the Legionnaire’s disease, an additional anti-legionella protection (rising the
temperature of the tank to 70°C for 10 minutes) is normally activated every week for more safety, but
this feature is not studied in the present work since the considered simulations only last 3 days and
the anti-legionella setting make use of an additional electrical resistance to reach 70°C, not the heat
pump itself1. Finally, the output constraints can be reformulated as follows:

Constraints on the control
outputs at each time step k:

 Tint − ε(k) ≤ Tint(k) ≤ Tint + ε(k)
TTES − ε(k) ≤ TTES(k) ≤ TTES + ε(k)
ε(k) ≥ 0

2.5 Compensating the computational delay

2.5.1 Principles of computational delay

MPC controllers belong to the class of computer-based control systems. As such, they always re-
quire a certain finite time period for processing the computation of the next control actions, as well as
for performing analog-to-digital conversions in the case of exchanging information with sensors and
actuators [162]. In the case of the studied system, its inertia is large and the considered time steps are
long (15 minutes), but the optimization calculation of the MPC is computationally expensive and time
consuming, therefore the time delays for such systems are not negligible. According to [163] there are
two different ways to deal with this computational delay:

• if the delay h is small enough in comparison with the time step ts, the next steps are followed: the
controller receives the inputs at time step k, computes the control actions as quickly as possible
during the time h, and sends them to the plant. These control actions will be applied for the
remaining of the time step, until next control actions are computed and sent. This approach
somehow neglects the influence of the computational delay.

• if the delay h cannot be neglected as is the present case, a delay of one time step can be intro-
duced. The next steps are thus followed: the controller receives the inputs at time step k, and
will use the whole time step ts to perform the calculations. At the time step k + 1, the controller

1On this topic, some research was carried out by Bleys et al. [161], on how and at which frequency to use these anti-legionella
thermal shocks in a flexible manner.
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sends the obtained control actions to be applied to the plant immediately and during the entire
next time step. However in this configuration, the process model must include a delay equal to
ts to take into account the fact that the control actions arrive to the plant with a delay of one time
step.

The principle of these two approaches is presented in Figure IV.8. Other works have already con-
sidered including the computational time delay for model predictive controllers in the control systems
literature [164], but it has seldom been studied within the field of heat pumps and HVAC systems. For
this reason the adopted approach is reported in the following subsection.
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y(k)

y(k+1)
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output y

u(k-1)

u(k)

u(k+1)Control 
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Delay h
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y(k+1)
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Control 
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h = Ts

k-1 k k+1 Time
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Figure IV.8. Including the computational delay according to the two proposed approaches (inspired from [163]):
(a) if the delay is small compared to ts and therefore its effects are neglected, or (b) if the delay is fixed to one
entire time step for the MPC to reach its solution.

2.5.2 Compensation of computational delay in the state-space model

To compensate for the computational delay, the second approach is adopted: an entire time step
is left for the MPC to calculate the control actions before to send them to the heat pump. To account
for this delay in the state-space model, we operate a change of variables: instead of declaring the
control variables u(k), we declare directly the control variables v(k) = u(k + 1) shifted by one time
step. The variables of u become new states to be included in the states vector x. The new vector of
spaces is thus noted X̃ and concatenates the previously considered states x as well as the variables
u. The other inputs which are not controllable should not be delayed, therefore the vector of the
exogenous disturbances remains unchanged: Ẽ = e. All the new variables after the change of variables
are noted with a tilde (˜). The new vectors are presented in Equation IV.19 in their short version and in
Equation IV.20 in their expanded version. The new matrices of the state space model are presented in
Equation IV.21, leading to the complete new state space formulation of Equation IV.22.

X̃(k) =

[
x(k)
u(k)

]
, Ũ(k) = v(k) , Ẽ(k) = e(k) and Ỹ (k) = y(k) =

[
x1(k)
x2(k)

]
(IV.19)

X̃(k) =


Tint(k)
Tw(k)
TTES(k)
QS(k)
QTES(k)

 , Ũ(k) =

[
QS(k + 1)
QTES(k + 1)

]
, Ẽ(k) =


Tamb(k)
IH(k)
Qocc(k)
QDHW (k)

 and Ỹ (k) =

[
Tint(k)
TTES(k)

]
(IV.20)
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Ã =

[
A Bu
(0) (0)

]
, B̃u =

[
(0)
I2

]
, B̃e =

[
Be
(0)

]
and C̃ =

[
1 0 0 0 0
0 0 1 0 0

]
(IV.21)

{
X̃(k + 1) = Ã · X̃(k) + B̃u · Ũ(k) + B̃e · Ẽ(k)

Ỹ (k + 1) = C̃ · X̃(k)
(IV.22)

After the computation of the MPC, the first control actions v(1) are retrieved and applied to the
heat pump, and the model has already taken into account that they will be applied with a delay of one
time step. This configuration compensating for the computational delay is useful for real-time appli-
cations, such as the experiments reported in chapter V. However it is not necessary for co-simulation
only studies, where the time of the simulation can be ”stopped” until the computation of the MPC is
finished, therefore the co-simulations of chapter VI do not include this correction.

2.6 Time parameters, formulation and solving of the MPC

Further than the constraints and objectives, several other parameters have an important influence
on the outcome of an MPC controller.

Discretization time step First of all, the discretization time step ts should be chosen with care. In
the MPC configurations, a value of ts =15 minutes was chosen. Given the inertia of the system, choos-
ing a shorter time step does not bring further interest: the heat pump has a warm up period that
lasts a few minutes when it is started, therefore enabling short activations does not make sense since
only the warm up period would occur, without exploiting the subsequent steady-state operation after-
wards. Furthermore, most heat pumps actually integrate minimum runtime protections to avoid too
frequent switching that would damage the machine in the long term. Choosing a discretization time
step long enough enables to reflect such behavior. In the considered machine, the minimum up and
down times are parameters than can be set in the local controller of the heat pump, between a value
of 0 to 15 minutes. A larger time step also reduces the amount of decision variables for the MPC (for
the same time horizon), and thus limits the computational burden of the optimization process. How-
ever, the time step should also be also short enough to enable a precise control of the heat pump in an
optimal way and to receive feedback frequently to be able to react in case of unexpected disturbances.
The chosen value of 15 minutes correspond to a satisfactory tradeoff between these different aspects
for the considered system. Moreover, 15 minutes is the smallest time interval in which the aggrega-
tor market enables biddings for demand response, therefore in the view of utilizing the flexibility of
buildings, the value of 15 minutes is preferred for the discretization time step of the MPC.

Prediction horizon The prediction horizon N , expressed as a number of time steps, constitutes an-
other important parameter in the MPC framework. In the present work, a value of 24 hours ahead was
chosen (i.e. N = 96 time steps of 15 minutes). A very long prediction horizon would in theory enable
to better anticipate the changes of the disturbances on the long term, but it also increases the compu-
tational complexity (the longer the horizon, the more control variables to optimize, for the same time
step). Furthermore, the quality of the forecasts decreases with time, therefore choosing a prediction
horizon of more than several days presents little interest. On the other hand, a shorter prediction hori-
zon would simplify the optimization problem but also reduce its power of anticipating future changes
of the external disturbances. As a balance, a value of 24 hours for the prediction enables to capture the
daily patterns occurring in the occupancy, weather and grid status evolutions. It was shown in [165]
that 24 hours is the most common prediction horizon for MPC in buildings; longer horizons might be
better suited if the time constant of the building is large (e.g. TABS applications), but are not necessary
otherwise.

Software and solvers Finally, the software tools to write and solve the code of the MPC algorithm
are briefly described in this paragraph. MATLAB was utilized to write the core of the MPC code. MAT-
LAB possesses built-in functions that enable to easily write and identify state-space models, as well as
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tools for performing optimization. Furthermore, MATLAB can be coupled with TRNSYS through the
Type155 for carrying out co-simulations (see subsection 1.1 in chapter III). Within MATLAB, YALMIP
[120] constitutes a powerful tool for optimization based algorithm development. YALMIP provides a
general framework for writing optimization problems in a control context, and simplifies the inter-
facing with different available solvers for the resolution of said problems. The optimization problems
considered in the present thesis include both binary and continuous variables, and therefore require
mixed-integer linear programming algorithms to solve them. The commercial solver GUROBI [121]
was used to solve the MPC problem. YALMIP formulates the optimization problem and calls GUROBI
to solve it. GUROBI resorts to the branch-and-bound algorithm to find the solution [84].

2.7 Final tested formulation

To summarize, and given the precisions made in the previous sections, the full final formulation of
the MPC controller is shown in the following algorithm. Several remarks should be noted:

• The inclusion of the computational delay was implemented for the version of the controller used
in the experimental setup, but not in the version for the simulation-only framework, where it was
not necessary since the time can artificially be paused until the calculation of the OPC is finished.

• Regarding the objectives, although the configuration Jobj = Jen was developed, it was not tested
in the experimental nor in the simulation setup. Only the configurations with penalty signals,
minimizing the costs or the emissions were tested, with Jobj = Jcost and Jobj = JCO2 respectively,
since they present more interest in terms of energy flexibility.

• To avoid too frequent switching operation on and off, it was mentioned that several strategies
can be utilized: the smoothing objective J∆U , or the minimum up and down constraints, or both
at the same time. To limit the computation time of the controller, it was chosen to only keep
the constraints but not the smoothing objective, so that there is one objective less in the multi-
objective cost function.

Algorithm of the MPC controller

minimize
u,δ

J = αε · Jε + (1− αε) Jobj

subject to ∀k ∈ 1, . . . , N :

Model of the building
dynamics:

{
x(k + 1) = A · x(k) +Bu · u(k) +Be · e(k)
y(k + 1) = C · x(k)

Constraints on the control
inputs:



δS(k) ·QS ≤ QS(k) ≤ δS(k) ·QS(k)

δTES(k) ·QTES ≤ QTES(k) ≤ δTES(k) ·QTES
δS(k) + δTES(k) ≤ 1
σ(k) = δ(k)− δ(k − 1)
δ(k : k + Lup) ≥ σ(k)
δ(k : k + Ldown) ≤ 1 + σ(k)

Comfort constraints on the
control outputs:

 Tint(k)− ε(k) ≤ Tint(k) ≤ Tint(k) + ε(k)
TTES(k)− ε(k) ≤ TTES(k) ≤ TTES(k) + ε(k)
ε(k) ≥ 0
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3 Conclusions on the development of the controllers

In this chapter, the development and tuning of two different controllers for exploiting the energy
flexibility in buildings has been reported. Following the outcome of the state-of-the-art presented in
chapter II, both a rule-based and a model predictive controller have been created. The literature re-
view had outlined the advantages and drawbacks of those two types of controllers, therefore one of
each has been developed in this thesis for further testing. In particular, the process of their devel-
opment was reported in this chapter with a level of details seldom seen in previous literature, which
enabled notably to highlight the parts which require more development work.

The RBC strategy consisted in a modulation of the room temperature set-point triggered by the
considered penalty signal. Its development therefore did not require a significant amount of work.
However, an appropriate tuning was necessary to obtain a better performance. This tuning process
enabled to highlight the sensitivity of the considered strategy to the design parameters of the controller
(here the percentiles of the penalty signal that define the high and low thresholds of the penalty).

The design of the MPC required significantly more work. In particular, the models needed within
its formulation and reported in chapter III represent a large part of its development efforts. Apart
from the models, the MPC created in this thesis was designed specifically for the control of heat pump
systems, and therefore it took into account their intrinsic particularities. In the existing literature on
automatic control, heat pumps are often considered with very simplified models, like a constant COP
for instance, or without considering operational constraints representative of a real heat pump system
functioning. For instance, the formulation of the MPC optimization algorithm in this thesis includes
binary variables to enable the MPC to decide whether to operate the heat pump in space heating or
cooling, or for the production of DHW. Such variables also permit to impose lower constraints on the
operating load of the heat pump, when it is switched on. Without those, the MPC could decide to op-
erate the heat pump at very low load, which is not realistic and would result in a poor performance.
Additional elements in the formulation, such as the inclusion of the computational delay, the min-
imum up and down constraints, the tuning of the multi-objective function, the adaptations needed
between the heating and the cooling mode, complete the range of novelties brought to the developed
MPC controller in the present work. Overall, this MPC is entirely adapted for the control of heat pump
systems, taking into account real-life constraints and performance, which makes it quite advanced
and thus constitutes a real contribution from this thesis to the research in this domain.

The two developed controllers are then tested in different frameworks in Chapters V (experiments)
and VI (simulations). They are fed with the exact same penalty signals and are tested with the same
boundary conditions, to enable a thorough comparison of their performance. Such repetitive tests are
made possible by the experimental and co-simulation frameworks described in chapter III.



Chapter V

Results of the experimental studies

In this chapter, the results of the experimental tests of the proposed controllers are reported. They
were carried out in the semi-virtual environment laboratory setup previously described (see chap-
ter III). Firstly, the considered boundary conditions for the tests are exposed, as well as the references
cases considered in heating and cooling. Then, all the experimental cases are analyzed jointly, using
the Key Performance Indicators defined in chapter III: integrated energy values, heat pump perfor-
mance, energy flexibility and comfort. Finally, conclusions and discussions that arose from the prac-
tical implementation of MPC with the heat pump are reported.

1 Boundary conditions, reference cases and tested configurations

The boundary conditions used in the simulation setup are the same for all the experimental cases,
respectively in heating and cooling seasons. They come from real data or assumptions, and are syn-
chronized (e.g. the weather data corresponds to the price data of the exact same day). A duration of
3 days was chosen for performing each experiment, as a trade-off between the constraints of the lab-
oratory installation and having long enough tests to obtain significant results. In heating mode, the
chosen period is from the 24th to the 26th of February 2018 (both days included), and in cooling mode
from the 8th to the 10th of July 2016 (both days included). The boundary conditions are represented
graphically in Figure V.1 and detailed in the subsequent paragraphs. They were chosen for different
reasons: firstly, they represent periods of high heating and cooling loads, which means the outdoor
temperature is low in the first case, and high in the second case, given the considered climate. Having
a high thermal load ensures that the flexibility action will be visible in comparison with the reference
case. In the opposite case of a period of low load, the heat pump would be activated very few times,
and thus the effects of the flexibility strategies might have been less evident (although such cases of
mid-season would be worth investigating too in further work). However, choosing periods of high load
might result in an overestimation the estimated flexibility, since a larger amount of energy consump-
tion can potentially be shifted in time if the base consumption is already high. This effect should be
kept in mind when analyzing the results, and extrapolation to the annual potential of flexibility should
not be performed without special care. Secondly, the chosen periods present a degree of variety in the
weather conditions, which enable to see the effects of flexibility activation in different contexts. For
instance, the two first days of the chosen winter period are very sunny, with an ambient temperature
peak at noon, while the third day is very cloudy with an almost constant temperature and low solar
irradiation. In the chosen summer period, the two first days are slightly cloudy while the third day is
entirely sunny, resulting in a prolonged period with temperatures above 30°C.

Weather data The weather data was collected from a weather station situated in Tarragona (Spain).
The measurements include the ambient air temperature, the relative humidity, the total and diffuse
horizontal solar irradiation, the wind velocity and direction. In the experiments, the air temperature
and humidity conditions are reproduced dynamically in the climate chamber. It can be observed in
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Figure V.1. Boundary conditions and measurement of the reference cases in heating (left) and cooling (right).

Figure V.1 that the climate chamber temperature is not exactly equal to the tracked set-point, due to
the difficulties of the internal controller of the chamber, however the temperature always stays in a
close range around the desired value. The three days in winter and summer were chosen because of
their high heating/cooling load and variety of weather conditions (cloudy and sunny days among the
three days).

Penalty signals The penalty signals used for triggering the activation of the demand-side flexibility
were already described in chapter III. As a reminder, the price signal (PVPC 2 periods) is downloaded
from the official website of the Spanish TSO Red Eléctrica de España [132]. The marginal emissions
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factor for the Spanish grid is calculated with the methodology of section III.2.1.2, using the hourly
energy mix of Spain also downloaded from the TSO. In Figure V.1, the periods of high and low penalty
have been highlighted with colors; they were determined using the calculated high and low thresholds.

Occupancy and DHW extractions The occupancy profile was generated using a stochastic tool, tak-
ing into account the probability of the 4 occupants to be present in the dwelling at each moment, and
to be active or not. However, once the stochastic profile has been generated, the same one is used for
all the experiments covering the same period, to enable the comparison across cases. The resulting
heat gains from the occupancy profile are shown on the middle graph of Figure V.1. They are im-
plemented in the TRNSYS model of the apartment previously described in chapter III. For the DHW
extraction profile, a deterministic profile is used, originating from the standard EN 12976-2 [123]. The
profile includes 9 draws representing showers and small draws for washing and cleaning, summing up
to 7.647 kWh per day, and with a maximum flow rate of 10 l/min for the showers. The same profile is
repeated for every day of the experiments, both in winter and summer. The temperature of the water
mains is set to 10°C in winter and 19°C in summer.

Reference cases in winter and summer The reference cases are represented in the 3 bottom graphs
of Figure V.1, both in heating and cooling modes. In the reference case, the controller is a room ther-
mostat, set to a constant value of 21°C in winter and 25°C in summer, with a deadband of±1°C around
this set-point. In the storage tank, the set-point is 45°C with a negative deadband of 5°C. These two
thermostats determine whether to activate or not the heat pump, with priority for the DHW. At the
level of the heat pump, the supply temperature set-point is then determined by a heating or cooling
curve, which enables to adapt the supply temperature to the ambient temperature (e.g. when the out-
door temperature is higher in winter, the supply temperature can be reduced). This type of control,
available in most heat pumps on the market, enables to operate the heat pump at higher efficiency
when the outdoor conditions are milder. A sensor measuring the ambient temperature is needed for
that purpose; it is included in the outdoor unit. The utilized heating and cooling curves are repre-
sented in Figure V.2: their extreme values correspond to the operating range of the FCU in heating and
cooling modes.
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Figure V.2. Heating and cooling curve.

The integrated energy values for the two reference cases are presented in Table V.1. The other
flexibility cases will then be analyzed in comparison with these values.

Tested flexibility cases After running the two reference experimental cases, the different flexibility
controllers have been used one by one. The RBC controller and the MPC controller are tested, both
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Table V.1. Summary table of the integrated energy values for the reference cases in heating and cooling.

Experimental case Ref. Heating Ref. Cooling

Electrical energy use Pel,Σ [kWh] 38.3 35.8

Thermal energy produced for SH/SC Qth,Σ,SH/SC [kWh] 63.5 65.6

Thermal energy produced for DHW Qth,Σ,TES [kWh] 29.1 23.4

Total thermal energy produced Qth,Σ [kWh] 92.6 89.1

COP (only space heating/cooling) COPavg,SH/SC [-] 2.74 2.69

Thermal energy change in the ”storage” ∆Qth [kWh] -8.47 -21.1

Total thermal energy used Qth,use [kWh] 101.0 110.2

Cost of electricity use cel,Σ [=C] 3.61 3.33

CO2 emissions cMEF,Σ [kgCO2] 10.7 8.39

Primary energy cPEF,Σ [kWh] 84.6 77.0

with the objectives of reducing the costs or the emissions related to the heat pump use. It should
be noted that the MPC controller also requires data to forecast the future behavior of the systems.
The same time series as previously described were utilized for this purpose (weather, penalty signals,
occupancy), hence we consider here an MPC with a perfect forecast, which is perfectly aware of the
future. For the MPC controller, the data are sampled every 15 minutes, which is the discretization
time step of the optimization problem. To summarize, there are 8 flexibility experimental cases: the
4 configurations MPC Cost, MPC CO2, RBC Cost and RBC CO2 are tested both in heating and cooling
modes.

2 Integrated energy and cost values

A fair overview of the performance of the control strategies can already be concluded from ob-
serving the integrated energy values presented in Tables V.2 and V.3. It is first observed that the MPC
configurations all achieve their objectives of cost or emissions reductions compared to the reference
case, while the RBC controller, in its current configuration, does not manage to reduce them.

In heating mode, MPC Cost actually induces a very small cost reduction of less than 1%. The ref-
erence heating case is already close to optimal regarding electricity costs, leaving little room for im-
provement. The MPC Cost configuration still manages to keep the costs at a constant level, while
slightly improving the flexibility (see next section). In cooling mode on the other hand, the reference
case shows an adverse behavior with regards to cost optimization, using most of the energy in the
afternoon where the price is high. In that case, the MPC can really display its full optimization poten-
tial by effectively shifting most of the load towards periods of lower prices, and thus achieving a cost
reduction of 37.4%, similar to the levels observed in the literature [36].

MPC CO2 performs well both in the winter and summer configurations, reaching marginal CO2

emissions savings of 11% and 22% respectively in both seasons. These results are however mostly
achieved thanks to a reduction of the energy use which leads to a slight degradation of the occupant’s
thermal comfort, especially in cooling mode (see next section on this topic).

The RBC configurations do not perform satisfactorily when only looking at the costs or emissions
reductions. In fact, by keeping the same lower bound for the temperature set-point than in the ref-
erence case, the modulation has to operate at higher levels, which causes an increase in the energy
use and in the overall temperature levels in the dwelling. RBC Cost thus increases the costs by almost
50% in heating mode, although it performs very well in shifting all the loads to lower price periods. In
cooling mode, since the reference case is far from the cost optimal, RBC Cost manages to keep the cost
increase at +7%, even though the increase in electricity use is actually +64%. All RBC configurations
improve considerably the comfort conditions, therefore a reduction of the set-point is considered as
further improvement and will be tried out with simulations in the next chapter.
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Table V.2. Integrated energy values of the heating experimental cases.

HEATING Ref.
MPC
Cost

MPC
CO2

RBC
Cost

RBC
CO2

Electrical energy use
[kWh] 38.3 38.5 35.2 60.8 48.7

[%] +0.56% -8.16% +58.9% +27.3%

Thermal energy
produced for SH

[kWh] 63.5 72.5 61.6 126.7 100.7

[%] +14.2% -2.93% +99.7% +58.6%

Thermal energy
produced for DHW

[kWh] 29.1 22.7 25.3 31.2 27.5

[%] -21.9% -13.0% +7.0% -5.6%

Total thermal energy
produced

[kWh] 92.6 95.2 86.9 157.8 128.1

[%] +2.8% -6.1% +70.5% +38.4%

COPavg,SH
[-] 2.74 3.41 3.50 2.77 2.94

[%] +24.5% +27.7% +1.2% +7.3%

Total thermal energy
used

[kWh] 101.0 100.9 88.6 127.2 122.6

[%] -0.1% -12.3% +25.9% +21.4%

Cost of electricity use
[=C] 3.61 3.58 3.51 5.39 4.87

[%] -0.84% -2.64% +49.4% +35.1%

Marginal CO2 emissions
savings

[kgCO2] 10.7 +0.23 -1.16 +6.32 +2.21
[%] +2.11% -10.9% +59.2% +20.7%

Primary energy
[kWh] 84.6 85.9 76.7 136.0 106.8

[%] +1.6% -9.3% +60.8% +26.3%

Table V.3. Integrated energy values of the cooling experimental cases.

COOLING Ref.
MPC
Cost

MPC
CO2

RBC
Cost

RBC
CO2

Electrical energy use
[kWh] 35.8 31.8 27.8 58.8 64.1

[%] -11.2% -22.4% +64.3% +79.2%

Thermal energy
produced for SC

[kWh] 65.6 58.5 36.2 129.3 143.5

[%] -10.9% -44.8% +96.9% +118.7%

Thermal energy
produced for DHW

[kWh] 23.4 21.8 21.6 22.7 22.5

[%] -6.7% -7.7% -3.0% -3.8%

Total thermal energy
produced

[kWh] 89.1 80.3 57.8 152.0 166.1

[%] -9.8% -35.1% +70.6% +86.5%

COPavg,SC
[-] 2.69 3.07 2.96 2.57 2.55

[%] +14.0% +10.0% -4.6% -5.4%

Total thermal energy
used

[kWh] 110.2 108.5 105.1 148.2 134.5

[%] -1.6% -4.6% +34.5% +22.1%

Cost of electricity use
[=C] 3.33 2.09 2.56 3.58 6.05

[%] -37.4% -23.1% +7.4% +81.5%

Marginal CO2 emissions
savings

[kgCO2] 8.39 -0.70 -1.87 +7.24 +6.51
[%] -8.3% -22.3% +86.3% +77.6%

Primary energy
[kWh] 77.0 69.5 59.8 132.6 136.9

[%] -9.7% -22.3% +72.3% +77.9%
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It should be noted that the thermal energy produced by the heat pump for DHW is an estimation,
since it could not be measured directly. In fact, when the heat pump operates in this mode, it only
uses its internal circuit to warm up the TES tank (see Figure III.3), and therefore no sensors can be
placed in the laboratory to record what is happening. The own sensors of the heat pump do record the
temperatures at the supply and return side as well as the water flow rate, but these measurements are
highly uncertain to obtain a reliable thermal power measurement (temperature measurement with a
resolution of ±1°C). For this reason, thermal energy produced for DHW is estimated along the three
days of the experiment with a thermal energy balance, as shown in Equation V.1.

Qth,DHW,Σ = Qextr +Qlosses + ∆Qth,TES (V.1)

WhereQextr is the extracted heat from the tank, measured accurately in the DHW thermal bench of the
laboratory, Qlosses are the thermal losses of the tank, estimated to a constant 47.3 W as per catalogue
data, and ∆Qth,TES is the difference of energy content in the tank between the end and the beginning
of the experiment.

3 Efficiency of the heat pump operation

Next, the efficiency of the heat pump operation is analyzed in details. On Figure V.3, the thermal
energy produced and the electrical energy used for space heating/cooling1 are represented, as well
as their ratio, the average COP or EER. The MPC configurations operate the heat pump at a higher
efficiency for space heating and cooling, reaching around 3.5 for the heating COP and around 3 for
the cooling EER, while the RBC configurations operate at a same level of efficiency than the reference
case.
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Figure V.3. Thermal energy produced, electrical energy used and COP/EER during space heating/cooling opera-
tion.

The MPC controller can make use of its knowledge about the future to operate the heat pump
in the moments where the efficiency is potentially higher. This is illustrated in Figure V.4 where the
box plots of the supply temperature and the ambient temperature during the space heating/cooling
operation are represented. In heating mode, the MPC controller operate the heat pump at a lower
supply temperature, with a median of around 43°C, while the RBC controller on the other hand op-
erates it at higher supply temperature of median 50°C. This explains partly the better COP observed
in these experiments. Furthermore, the MPC controller chooses periods where the ambient temper-
ature is warmer, especially for MPC CO2, with a median around 8°C while the reference case median
is around 6°C. The RBC configurations operate in a very similar manner than the reference case. As

1The analysis is constrained to space heating and cooling because of the uncertainty regarding the thermal energy produced
in DHW mode.
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Figure V.4. (a) Box plots of the ambient temperature distribution, only during space heating/cooling operation.
(b) Box plots of the supply temperatures distribution, only during space heating/cooling operation.

previously shown in chapter III, both a lower supply temperature and a milder outdoor temperature
have a positive effect on the COP.

The analysis differs a little in cooling mode: in that case, MPC Cost and the RBC controllers oper-
ate at a slightly higher supply temperature, which is beneficial. On the other hand, MPC CO2 uses a
slightly lower supply temperature, which explains why its efficiency is not as high as MPC Cost. The
ambient temperature has little effect on the efficiency in cooling mode as shown in chapter III, al-
though the RBC configurations operate the heat pump when the outside temperature is cooler.

4 Energy flexibility and load shifting

The core of the implemented flexibility control strategies consists in shifting the thermal loads
of the building towards periods of lower electricity price or grid CO2 emissions. To analyze if this
shifting effectively occurs and in which proportion, Figure V.5 is plotted: it represents the breakdown
of the electricity use of the heat pump according to the low, medium or high penalty periods (price
or emissions). Additionally, the consumption is split between the operation modes of the heat pump:
space heating (SH) or cooling (SC), DHW and standby mode (SB). In this way, the load shifting can be
analyzed in details.

Firstly, it is observed that in heating mode, the reference case uses most of the electricity in the
low price periods. MPC Cost manages to increase a little the energy use in these hours, while RBC
Cost increases it significantly, while reducing especially the DHW operation in high price hours. The
reference case also uses most of the energy in high emissions periods, and MPC CO2 reduces this
amount, although without increasing the energy used in low emissions periods. On the other hand,
RBC CO2 increases the energy use in low emissions periods without decreasing the high emissions
periods consumption.

In cooling mode, the reference case uses most electricity at high price hours (afternoon periods,
where the cooling demand is highest but also the price). MPC Cost effectively transfers this energy
use to the low price hours, almost eliminating space cooling operation when the price is high. RBC
Cost also provides this effective load shifting, although dramatically increasing the energy use in the
low-price hours and resulting in a higher energy use in total. The reference cooling case also uses
most energy in low emissions hours. MPC CO2 nonetheless manages to eliminate the space cooling
operation in high emission hours, without increasing the low emissions periods operation. RBC CO2
on the other hand increases dramatically the energy use in low emissions hours, while also slightly
increasing it in the high emissions hours, resulting in a poor performance.
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Figure V.5. Breakdown of the electricity use according the the price or emissions periods. The most relevant
graphs have been highlighted by color rectangles: MPC Cost and RBC Cost when analyzing the price periods,
MPC CO2 and RBC CO2 when analyzing the emissions periods.
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These observations are reflected in the analysis of the flexibility factors, as shown in Figure V.6. In
heating mode, FFcost is increased from 0.37 in the reference case, to 0.42 by MPC Cost, and to 0.55 by
RBC Cost. Similarly, FFCO2

is increased from -0.46 in the reference case to -0.37 by MPC CO2 and -
0.22 by RBC CO2. All strategies therefore operate a load shifting in their desired directions (i.e. towards
periods of lower penalty), with a higher amplitude achieved by the RBC controllers.

In cooling mode, the reference case has a low FFcost of -0.34. MPC Cost manages to increase this
value to 0.57, and RBC Cost to 0.73: both controllers thus achieve a significant load shifting, with a
higher performance for the RBC. On the other hand, FFCO2 = 0.35 in the reference case, and MPC
CO2 fails to increase this value, instead it slightly decreases it at 0.32. RBC CO2 manages to increase it
but by a small margin, reaching the value of 0.46.

In summary, it is observed that the RBC configurations operate a more radical load shifting, which
results in a general increase of the energy use, while the MPC configurations have a milder but more
controlled effect. It is also noted that the control strategies have opposite behaviors: when FFcost is
increased, FFCO2 is decreased, and vice-versa. This is due to the fact that the two penalty signals have
symmetric shapes, the peaks of the price signal corresponding approximately to the valleys of the CO2

signal. Hence shifting the loads to the low price hours also means shifting them to the high emission
hours, and it will thus result very difficult to reach both objectives at the same time.
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Figure V.6. Flexibility factors relative to cost or emissions, both in heating and cooling modes. The flexibility
factors of the reference cases are highlighted with dashed lines to clearly display in which direction each controller
modifies the factor.

5 Comfort

Thermal comfort is guaranteed in the RBC configurations by the deadband zone around the set-
point, and in the MPC framework by the introduction of temperature range constraints on the indoor
temperature. These constraints are softened to increase the robustness of the controller, therefore it
is important to verify that comfort is not jeopardized during the actual operation of the systems. The
comfort analysis is represented in Figure V.7, with the percentages of time where the indoor operative
temperature stays within the bounds defined in the standard [140]. These bounds take different values
seasonally: Cat.I corresponds to the interval 21-25°C in winter, and 23.5-25.5°C in summer, Cat.II to
the interval 20-25°C in winter and 23-26°C in summer.

It can be firstly observed that all the RBC configurations provide a great increase of the comfort
conditions, with 100% of the time spent in Cat.I in all cases except RBC CO2 in heating mode with
70% of the time. This partly explains the poor performance of the RBC controller in the other aspects,
notably the reduction of the costs or emissions.

The MPC configurations have a more mitigated effect on the thermal comfort of the occupants: in
heating mode, MPC Cost does show some improvements, with 35% of the time spent in Cat.I (against
15% in the reference case) while MPC CO2 remains at a similar level than the reference case. In cooling
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Figure V.7. Comfort analysis of the experimental cases.

mode, the MPC configurations cause a slight degradation of the comfort conditions, with around 30%
of the time spent in Cat. III, against 0% in the reference case. In the case of MPC CO2, 7% of the time is
even spent in Cat. IV, which is an unacceptable level of comfort. This suggests that the weighting co-
efficient for the comfort objective in the MPC cost function should be increased a little. In the cooling
mode, it can be concluded that the excellent results of MPC in terms of flexibility were achieved at the
cost of some degradation in the thermal sensations of the occupants. The difficult trade-off between
the comfort of the occupants and the increased flexibility, as reflected in the multi-objective function
of the MPC, is thus perfectly illustrated by these results.

6 Conclusions and discussions on the practical implementation of
MPC

6.1 Conclusions on the experimental results

Each of the studied controller have some positive and negative effects, depending with which KPIs
they are evaluated. To have a more complete overview, each case is now analyzed as a whole, and
suggestions for improvements are drawn.

In heating mode, the 4 controllers performed as follows:

• MPC Cost: although this configuration operates some load shifting and improves both the effi-
ciency of the heat pump and the comfort conditions, it barely managed to reduce the costs. It
is therefore suggested to reduce the α2 coefficient for comfort, since more flexibility can only be
obtained by being less strict on the comfort constraints.

• MPC CO2: this configuration performed well, it managed to reach 11% lower CO2 emissions than
the reference case. This result was achieved by shifting the loads towards low emission periods,
which coincidentally also correspond to the periods where the operation of the heat pump is
more efficient (higher ambient temperature inducing a higher COP). The controller had little
effect on the comfort conditions and can thus be kept in its current configuration.

• RBC Cost: this configuration operated a radical load shifting towards periods of lower prices.
To avoid using energy during the high price periods, it had to compensate by overcharging the
building during the low price hours, which resulted in an increased energy consumption, and for
this reason the costs were not decreased but instead increased by 49%. Furthermore the comfort
conditions were largely improved which is not necessarily needed, therefore the overall set-point
of this configuration should be decreased.

• RBC CO2: very similarly, this configuration shifted almost all the loads towards periods of low
carbon emissions, but still increased the energy use, and consequently the emissions by 20.7%.
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Its set-point should thus also be decreased since the occupants do not require a comfort of Cat.I
for 100% of the time.

In cooling mode, the 4 controllers performed as follows:

• MPC Cost: since the reference cooling case was largely suboptimal with regards to the energy
costs, MPC Cost managed to efficiently produce a load shifting towards periods of cheap electric-
ity, reaching a very satisfactory value of 37% cost savings. Part of this performance also derives
from operating the heat pump at a higher efficiency, namely when the outdoor temperature was
cooler and at higher supply temperatures. Only a slight degradation of comfort was observed,
therefore this configuration can be kept as is.

• MPC CO2: this controller also performed well, reaching 22% savings in the carbon emissions,
even though its load-shifting was limited. However, some incursions of the zone temperature
occurred outside of the acceptable comfort range (Cat. IV during 7% of the time), therefore the
α2 coefficient for comfort should be slightly raised to always stay within at least comfort Category
III.

• RBC Cost: this configuration produced a radical load shifting, eliminating the space cooling load
during the high price hours. This provision of energy flexibility caused an important increase of
the electricity use of 64%. This extra energy use mostly occurred during low price hours, there-
fore the energy costs was only increased by 7%: the ”value for money” of the heat pump was
improved, but without reducing the absolute costs. The comfort conditions were significantly
improved (100% of the time in Category I), suggesting that there is some margin to increase the
zone temperature set-point in order to improve the performance in terms of flexibility.

• RBC CO2: this controller performed relatively poorly, because the reference cooling case was
already close to optimal regarding the CO2 emissions. The energy use was significantly increased
during low emission hours, which resulted in a better FFCO2 value, but the absolute emissions
were increased by 77% compared to the reference case. The set-point for room temperature
should be frankly decreased to hope for a better performance in terms of flexibility, since the
comfort conditions were again at 100% in Category I.

Overall, the analyzed results revealed that the RBC controllers could be improved. On the other
hand, the implemented MPC strategies had a positive performance, although with a lower effective-
ness than expected. In fact, in some cases the savings were not as important as expected from similar
studies in the literature, where savings of 7 to 35% have been reported [36]. For instance in the MPC
Cost for heating, the savings were almost nonexistent. The MPC configurations can of course be im-
proved, as will be seen in the next chapter with co-simulations.

However, there are also other reasons which can explain the discrepancies observed between the
experimental results and the expected performance. In fact, the present study implemented the MPC
with an actual heat pump, while most of the existing literature relied only on simulations. Working
with real systems enables to obtain more realistic results and to reveal certain bottlenecks that appear
when interfacing the supervisory controller with the physical system, which includes its own local
controller. Two of these effects are discussed in the following sections: the DHW tank charging control
and the transient effects (ramping especially). Such practical challenges could only be brought up
by experimental studies (or alternatively simulation studies with very detailed transient models), and
they are therefore considered as valuable learnings and part of the work output.

6.2 Practical implementation of MPC - DHW tank charging

It was seen in the flexibility analysis that the MPC strategies sometimes failed to shift the DHW
load to the low penalty periods (see Figure V.5), and even sometimes shifted this load to high penalty
periods. This adverse effect can partly be explained by the interfacing between the supervisory and
the local controllers of the heat pump. The command to activate the DHW tank charging through the
Modbus gateway is called “Control DHW Run/Stop” in the manufacturer manual. Sending a 0 to this
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input effectively prevents the DHW operation of the heat pump. However, sending a 1 does not auto-
matically provoke the tank charging: it only corresponds to an “availability” of the DHW operation, the
built-in controller then determines if it needs to be activated, based on the temperature in the tank.
The local controller considers the actual set-point and a negative deadband of 5°C which can be set in
the local controller (5°C is the minimum): for instance, if the set-point is 55°C and the water in the tank
is 51°C when the activation signal for DHW is sent, the heat pump will not start. This is problematic
if the MPC intends to precharge the tank at some times where the local controller would not deem it
necessary. The principle of MPC to utilize the TES by overheating it in some favorable periods and dis-
charging it at others periods is thus hindered by the interaction with the local controller. This problem
does not occur in the other circuit of the heat pump which supplies SH/SC: the equivalent command
is called “Control Circuit 1 Run/Stop”, and sending a 1 to this input always results in an activation of
the heat pump.

An example of the DHW charging bottleneck is illustrated in Figure V.8. On the top graph, the SC
binary command is represented, on the second graph the DHW binary command, on the third graph
the response of the heat pump in terms of its compressor frequency, and in the bottom graph the tank
temperature. One can observe that the first 5 activation requests (4 of SC, 1 of DHW) are correctly
followed by an activation of the heat pump compressor. The 6th requested activation (DHW) does
not result in an actual operation of the heat pump: the water temperature at that moment was 50°C,
therefore not sufficiently low for the built-in controller to order the DHW tank charging. As a result, the
MPC must reschedule the tank charging at the subsequent iterations, and two later DHW activations
are thus observed. This can pose a problem to the performance of the MPC: if the tank charging was
initially planned at a low-penalty period, the reschedule could occur at less favorable periods in terms
of price or CO2 emissions. This partly explains the poor performance of the DHW load shifting and
the fact that it is sometimes shifted to high penalty periods.
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Figure V.8. Example of non-execution of the DHW production command. This particular case comes from [52],
where the set-point for DHW was higher, at 55°C.

On average, the charging of the DHW tank occurred 17 times over the studied periods of 3 days. A
DHW command was sent on average 12 additional times and ignored by the local controller of the heat
pump. This situation thus occurred quite frequently, which explains why the MPC struggled to shift
the DHW loads. This offers as valuable learning that the implementation of an MPC controller with a
real heat pump is not a straightforward process. Oftentimes, the functioning of the local controllers
built in the machine are not described clearly by the manufacturer, and the developer must therefore
consider the heat pump as a black box and realize tests to observe its behavior in-situ. This increases
the development costs of the controller and its implementation, while they are already high due to the
required modelling (60% of the costs mentioned in [165]).
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Potential solutions to overcome the DHW charging limitation include:

• Instead of using the set-point determined by the MPC solution, always set it to the maximum
(55°C for instance). The modulation potential of the MPC would be lost, and the tank might be
overheated for its actual use, but the DHW charging should occur with more probability.

• The deadband could also be reduced. In the present case, the minimum is 5°C so it is not pos-
sible, but other heat pump models might let the installer set smaller values. Such protection
enables to avoid too many switching of the DHW charging mode, but this can be managed in
other ways by an MPC controller.

• Another possibility would be to choose a heat pump where an explicit control of the DHW charg-
ing is possible, or to use other inputs (such as the booster or the anti-legionella setting, but these
are made for other purposes and generally use the electrical resistance to provide fast heating at
high temperatures).

6.3 Practical implementation of MPC - Transient and dynamic effects

The transitory phases constitute another aspect proper to the dynamics of a real heat pump oper-
ation. The MPC controller computes an optimal plan considering that the heat pump will effectively
deliver heat at the correct set-point, with the desired constant thermal power. However, many dy-
namic effects occur in reality which make the actual operation differ from the MPC scheduled plan.

To illustrate this point, Figure V.9 is plotted. On the top graph, the plan of the MPC is shown:
the controller scheduled to operate space heating during 48 minutes, at a thermal power of around
6 kW. The measured thermal power (calculated with the temperature lift and the mass flow rate) is
also represented, and a clear discrepancy can already be observed. On the second graph, the supply
and return temperatures are plotted, on the third graph the frequency of the heat pump compressor
and on the bottom graph, the zone temperature in the building (both predicted by the MPC and as
happened in the actual simulation) is represented.

In this example, the operation of the space heating activation is separated in 5 phases highlighted
by different background colors. The last phase is the quasi steady-state during which the heat pump
operate according to plan: the measured and planned thermal powers coincide, and the heat pump
supplies water at a temperature close to the desired set-point of 48°C. This operation confirms that
the heat pump performance has been represented correctly, since its model was based on points mea-
sured in steady-state too. However, before to reach this steady-state operation, the systems go through
other successive phases, which are not anticipated by the MPC.

Firstly, a delay is observed before the heat pump reacts, and the compressor only starts few min-
utes after the commands are sent. Secondly, after the compressor has started running, a ramping
phase occurs: the heat pump starts with a plateau due to its internal control, and then increases its
power gradually. Since the water had cooled down since the last activation, the system starts a lower
temperature and must ramp progressively to achieve the desired set-point. However, this increase is
slow and takes at least 15 minutes in the present case. Contrary to a boiler, the temperature lift of a
heat pump is rather limited (around 5°C normally), and thus the system must “wait” for the return
temperature to also increase so that the supply temperature can reach the desired value. At the end of
the ramping phase, the compressor frequency has reached a maximum and therefore the actual ther-
mal power is significantly higher than anticipated by the MPC. This observation partly explains why
the delivered thermal energy is increased in most MPC cases. During the third phase, an overshoot
effect occurs: the supply temperature overcomes the desired set-point and thus the heat pump starts
to decrease the compressor frequency. However, due to the inertia of the systems and the delayed
internal control of the machine, the supply temperature still reaches the value of a protection dead-
band (+5°C above the set-point), causing a shutdown of the compressor, which is the fourth phase.
The shutdown lasts around 5 minutes, and then the compressor is switched on again and starts the
steady-state phase.

The transient phases partly explain why the MPC strategies have a relatively limited performance.
For instance, if the space heating activations are short, the heat pump stays in the transient phases
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Figure V.9. Example of an activation of space heating, where the delay and the ramping effects can clearly be
observed.

and do not reach the steady state, therefore its delivered power is higher than anticipated and this
causes the final increase in thermal energy observed in most cases. The fluctuations in power could
also cause trouble for direct control schemes of demand response with heat pumps: if an aggregator
or utility requires a certain level of power from the heat pump load during a fixed period, they must
be aware that this power might be delayed or not guaranteed during the whole period (shutdown or
cycling).

These transient phases only explain partly the performance, other phenomena can play a role in
the observed effects. Notably, the heat pump operates at milder temperatures as demonstrated in
Figure V.4 and this displacement of the operating point to another region of the performance map
can also cause an increase of the thermal power with respect to the reference case. The inability of
the compressor to modulate its output below 30 Hz additionally participates in increasing the on-off
cycling and to generate discrepancies compared to the desired MPC plan.

To quantify the actual effect of the thermal power overshoot on the overall dynamic behavior, Fig-
ure V.10 is plotted. It represents the thermal powers (planned by the MPC and measured) in the MPC
Cost case over 24 hours, compared to the reference case. The increase of thermal energy compared
to the MPC plan is clearly visible: the MPC solution required to deliver only 16.7 kWh during this day,
while 24.4 kWh were actually supplied to the building, which represents an increase of 45%. Further-
more, in this case space heating is activated 4 times in the reference case, and 8 times in the MPC
case: doubling the number of cycles results in a higher impact of the overshooting effect on the overall
performance.

The overshoot and transient phases also occur in the reference case, however since the thermostat
controller do not work in a predictive manner, this mismatch does not affect it as much as in the MPC
cases. For that case, the thermostat shuts down the heating when the delivered energy equals what is
needed to reach the desired set-point, thus if the heat pump delivers more heat, the thermostat will
stop before. On the other hand, a predictive controller makes a plan beforehand and expects it to be
complied with, therefore the unexpected transient effects have a greater influence on it.
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Figure V.10. Comparison over one day between the reference case and one MPC case (MPC cost).

The main issue regarding the start-up phase is that it is difficult to model within the MPC frame-
work. The model is correct in steady-state as previously mentioned, only a correction is needed to
account for the successive transient phases when the heat pump is switched on. Potential solutions
include:

• Applying a constant coefficient to consider the excess thermal power of the start-up transitory
phases. This coefficient should reflect the ratio between the delivered energy during a total acti-
vation period and the planned energy (integrals of the two curves on the top graph of Figure V.9).
In this way, the set-point sent to the heat pump will be slightly lower, and the delivered thermal
energy should match better with the MPC plan.

• Increasing the discretization time step of the MPC might also improve the performance: in this
way, the heat pump will stay activated during longer periods and thus the start-up phase will
have a lesser importance overall.

• Encouraging longer periods of heat pump activation can also be enforced in several ways, for
example increasing the minimum up time constraint, or increasing the relative importance of
the smoothing term in the multi-objective function. The latter would provoke the heat pump to
operate for longer periods since too many switching will be highly penalized. The steady-state
will thus last longer and take a larger proportion compared to the transient phases, reducing the
influence of the latter.
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Chapter VI

Results of the co-simulation studies

After having performed the experimental tests, simulation-only studies have been carried out. As
a first step, the heat pump model developed in chapter III was further validated against the data of the
experimental cases. After that, different configurations of the flexibility controllers were explored and
tuned, and they were subsequently tested within the co-simulation framework. The boundary condi-
tions and the performance indicators used in these analysis were the same than for the experimental
cases of the previous chapter, enabling a thorough comparison.

1 Boundary conditions, reference cases and tested configurations

The boundary conditions used for the co-simulation tests are the exact same than in the exper-
imental ones. The operation of the heat pump is simulated over the same three days in winter and
summer, from the 24th to to the 26th of February 2018 and from the 8th to the 10th of July 2018 re-
spectively, with the corresponding weather and penalty signals. The description of these boundary
conditions is thus not repeated here, the reader is referred to section 1 of chapter V for further details.

1.1 Reference cases

The reference cases for heating and cooling were simulated similarly to the experimental reference
cases. This gives an opportunity to perform a second validation of the heat pump detailed model, by
comparing the values obtained in the co-simulation with the ones obtained in the laboratory setup.
This comparison is presented in Figure VI.1, where the left part of each graph shows side to side the
co-simulation values and the experimental values in heating mode, and in cooling mode on the right
side.

Analyzing the heating case, it appears that the model underestimates slightly the energy use com-
pared to the heat pump in the experiment. Both the thermal energy and the electrical energy have a
little lower values, but stay in the same order of magnitude than what was observed experimentally. As
a consequence, the costs and emissions are also slightly lower. It should be noted that a perfect fit is
difficult to attain, since the model, and particularly the building envelope part, are not found exactly
in the same state at the beginning of the simulation and of the experiment. In fact, a few days of sim-
ulation are always run beforehand, to bring the building to a preconditioned state at the start of the
analyzed period. The heat pump model is different also during this pre-simulation, therefore when
the experiment/simulation starts, the temperature states might differ. However, it is observed that the
efficiency of the heat pump operation, displays very similar values than in the experiments.

In cooling, the underestimation of the energy levels is more severe. The amount of produced cool-
ing is slightly lower than in the experiment (-5%), however the electricity needed presents an even
higher reduction, of around 15%. This means that the model slightly overestimates the efficiency of
the heat pump, as can be seen in the bottom right graph of Figure VI.1. Two main factors can ex-
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Figure VI.1. Validation of the model with the experimental data in the two reference cases.

plain this. The first reason concerns the model for the production of DHW: for this part, the model of
the heat pump made for the heating mode was used. However this model was fitted using the static
points data of cold season, with outdoor temperatures ranging from -7 to 12°C, according to the stan-
dard [142]. The model is therefore valid mainly in this range of outdoor temperatures. Roughly, the
model shows that the COP increases with the outdoor temperature. However in the cooling season,
the outdoor temperature reaches 20 to 35°C, and the heat pump still runs in heating mode to produce
DHW. In this range of outdoor conditions, the COP does not increase as much with the ambient tem-
perature, it tends to saturate and to still increase, but in different proportions. The extrapolation of
the model for warmer weather thus provokes this overestimation of the COP. The second reason con-
cerns the operation in space cooling mode: it was observed in the experiment that since the cooling
demand is relatively small, the compressor of the heat pumps turns on and off frequently when the
machine operates in this mode. This provokes a reduction of the efficiency in the experimental re-
sults. In theory, this efficiency degradation is also included in the model, since the static points at low
load presented this on/off behavior and were averaged to take it into account. It appears that the fre-
quent on/off cycling causes a higher degradation of the COP in cooling mode for the real heat pump,
due to the losses at every start-up and the uninterrupted pumping operation during the off periods of
the compressor. An additional degradation coefficient Cc = 0.9 could be implemented to reflect this
behavior: this is the default value suggested by the standard EN14825 [143]. This correction was not
implemented, as the present work focuses on the improvements of certain control strategies relatively
to a reference case, less so on the absolute values of the efficiency.

Despite the small discrepancies observed between the simulation and the real heat pump exper-
iments, the overall dynamics of the system are well captured by the model. Selected time series are
represented in Figure VI.2 to illustrate this point. The operation of the heat pump is sometimes shifted
a bit in time, notably because of the different initial state. However, it is observed that the simulated
compressor works at levels of frequency close to the experimental cases, that the activations of the
heat pump occur at similar moments and for the same duration, and the evolution of the temper-
atures is also very similar. These observations enable to consider the detailed heat pump model as
satisfactory for the purpose of the present work, and it will thus be used for the further co-simulation
case studies.
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1.2 Tested configurations

The detailed model of heat pump in TRNSYS has been validated both as a stand-alone model in
chapter III, and as a system integrated in the overall building model in the previous section. This
double validation provides guarantees about the reliability of the model, and ensures that said model
reproduces the behavior of the real heat pump in a satisfactory manner, at least for the purpose of
the present thesis. Co-simulations can then be run without the costs and physical limits of laboratory
testing, in a wider range of configurations than in the experimental tests presented so far.

Looking back at the experimental results, it appeared that the most difficult task in tuning the
controller resides in adjusting the balance between the comfort and the provision of flexibility. For
this reason, in the co-simulation studies, this trade-off has been improved, and the comfort conditions
were further tuned in relation with the flexibility objective. In the case of RBC, this can be adjusted by
the ”normal” set-point during the periods of no modulation. In the case of MPC, it is the weighting
coefficient α2 associated with discomfort that plays this role. Varying these parameters, the selected
cases for the co-simulations are presented in Table VI.1.
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Figure VI.2. Time series comparing the reference cases in the experiments and in the simulation-only framework,
in terms of compressor frequency and temperatures in the room and the tank.
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In heating mode, for the MPC Cost case, the weighting coefficient for comfort αε was decreased
from 0.5 tested in the experimental case, to 0.4, since that configuration had barely managed to reduce
the costs while improving the comfort conditions. For the MPC CO2, the coefficient was unchanged
at 0.15 since this value provided good results in the experiments. In cooling mode, the coefficient was
slightly raised for MPC CO2 from 0.15 to 0.155, to avoid degrading too much the comfort conditions as
observed in the experiments, where some incursions in the comfort Category IV were observed. The
coefficient was unchanged at 0.15 for the MPC Cost configuration.

For the RBC configurations, the adjustment can be made by choosing the ”normal” set-point, in the
periods where there is no modulation. In the reference cases, this set-point is fixed to 21°C in winter
and 25°C in summer, with a symmetric deadband of ±1°C. The thermostat forces the temperature to
stay within this deadband. In the RBC cases, so as to provide a certain amount flexibility, it is necessary
to widen the bounds between which the temperature is allowed to evolve. ”Bounds” here refers to
the maximum and minimum temperature that are allowed in a certain configuration. Amplifying the
range defined by the lower and the upper bounds can be done in different manners. Three different
RBC configurations are thus tested, numbered from 1 to 3:

• RBC1: the critical bound is kept at the same value than in the reference case. The critical bound
is the lower one in winter (20°C) and the upper one in summer (26°C), in other words the bound
to which the temperature must stay close in order to minimize the energy use. The other bound
is moved of 2°C. These bounds are the same one than used in the MPC configurations. This is
a very conservative option, since it only allows the temperature to move in a more energy-using
direction. RBC1 is the configuration that was previously tested in the experiments.

• RBC2: both temperature bounds are moved symmetrically. The upper bound is raised of 1°C
while the lower bound is decreased of 1°C.
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Figure VI.3. Set-points, deadbands and bounds for the tested RBC configurations, in heating (top) and cooling
mode (bottom). The notches correspond to the possible upwards and downwards set-point modulation occur-
ring with the RBC controller.
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Table VI.1. Cases studied in the co-simulation framework.

HEATING COOLING

Case
”Normal”
set-point1

Lower and up-
per bounds2

Weighting
coefficient αε

”Normal”
set-point1

Lower and up-
per bounds2

Weighting
coefficient αε

[°C] [°C] [-] [°C] [°C] [-]

Ref. 21 [20, 22] - 25 [24, 26] -

MPC Cost - [20, 24] 0.4 - [22, 26] 0.15

MPC CO2 - [20, 24] 0.15 - [22, 26] 0.155

RBC1 Cost 22 [20, 24] - 24 [22, 26] -

RBC2 Cost 21 [19, 23] - 25 [23, 27] -

RBC3 Cost 20 [18, 22] - 26 [24, 28] -

RBC1 CO2 22 [20, 24] - 24 [22, 26] -

RBC2 CO2 21 [19, 23] - 25 [23, 27] -

RBC3 CO2 20 [18, 22] - 26 [24, 28] -
1 The normal set-point when there is no modulation.
2 In RBC, this interval corresponds to the absolute lower and upper bounds, considering the extreme cases of up-
wards/downwards modulation plus the deadband of ±1°C. In MPC, it corresponds to the interval of constraints
imposed on the output room temperature, which can sometimes be violated depending on the discomfort objec-
tive.

• RBC3: the critical bound is moved of 2°C, while the other bound stays at the same value than in
the reference case. The upper bound is then 28°C in cooling and the lower bound 18°C in heating
mode.

The concept of the three RBC configurations is illustrated in Figure VI.3 for more clarity. All the
configurations are then analyzed in the following sections, using the same indicators than in the pre-
vious chapter about the experiments.

2 Integrated energy and cost values

The integrated energy values are presented in Table VI.2 for the heating cases. It is observed that
the improved version of MPC Cost performed slightly better, reaching cost savings of 4.5%, however
the order of magnitude of these savings remain small. As for the RBC Cost configurations, none of
them managed to actually reduce the energy costs compared to the reference case, the best one being
RBC3 Cost, with only a 4.6% increase. The results of RBC1 Cost can be compared with the experimental
results, since the controller had the same configuration: the 55% cost increase observed here in the
simulations is coherent with the 49% cost increase seen in the experimental part.

The ”CO2” controllers performed better in the heating season. MPC CO2 managed to reduce the
marginal emissions by 15%. RBC1 CO2 did increase them by 19.8% (20.7% in the experiment with
the same configuration), while RBC2 CO2 reached an almost similar level of emissions savings than
MPC, with namely 11.8% decrease compared to the reference case. RBC3 CO2 achieved the highest
level of CO2 emissions saved, with 35.7%, although this great performance came at the cost of comfort
degradation as will be seen later on.

The integrated energy values for the cooling season are presented in Table VI.3. It is first observed
that all the cost controllers managed to actually reduce the costs. The savings reach 31.8% for the MPC
Cost controller, and from 1.5 to 41.2% for the three RBC Cost configurations. The RBC Cost thus can
reach a similar performance than the MPC in that case, although the 41.2% savings of RBC3 Cost are
attained at the cost of some comfort degradation.

Regarding the performance of the CO2 controllers, a clear difference can be seen between the MPC
configuration and the three RBC configurations. MPC CO2 reduces the carbon emissions by 10% while
none of the the RBCs manages to reach a reduced carbon footprint compared to the reference case.
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Table VI.2. Integrated energy values of the heating simulated cases. Firstly the reference case values are pre-
sented, then the values for the ”cost” controllers (MPC and RBCs), and finally the values for the ”CO2” controllers
(MPC and RBCs).

HEATING Ref.
MPC
Cost

RBC1
Cost

RBC2
Cost

RBC3
Cost

MPC
CO2

RBC1
CO2

RBC2
CO2

RBC3
CO2

Electrical energy
use

[kWh] 34.7 36.2 56.0 45.2 35.9 32.2 44.5 32.3 23.1

[%] +4.4% +61.5% +30.4% +3.6% -7.1% +28.3% -6.8% -33.3%

Thermal energy
produced for SH

[kWh] 57.0 53.4 113.5 83.9 55.1 40.3 88.8 50.9 21.9

[%] -6.3% +99.2% +47.3% -3.3% -29.2% +55.9% -10.6% -61.5%

Thermal energy
produced for DHW

[kWh] 26.2 31.6 29.0 29.1 29.1 30.6 27.9 28.0 28.0

[%] +20.5% +10.7% +10.9% +11.1% +16.9% +6.4% +6.7% +6.9%

Total thermal
energy produced

[kWh] 83.2 85.0 142.5 113.0 84.2 79.9 116.7 78.9 50.0

[%] +2.1% +71.3% +35.8% +1.2% -4.0% +40.3% -5.1% -39.9%

COPavg
[-] 2.40 2.35 2.54 2.50 2.34 2.48 2.62 2.44 2.16

[%] -2.1% +6.1% +4.1% -2.3% +3.3% +9.3% +1.8% -9.9%

Total thermal
energy used

[kWh] 98.9 104.7 111.8 102.3 92.1 93.7 112.4 102.5 90.9

[%] +5.9% +13.0% +3.4% -6.9% -5.2% +13.6% +3.6% -8.2%

Cost of electricity
use

[=C] 3.27 3.12 5.08 4.25 3.42 3.46 4.60 3.31 2.41

[%] -4.5% +55.5% +30.1% +4.6% +5.8% +40.8% +1.3% -26.4%

Marginal CO2

emissions savings
[kgCO2] 9.7 +0.3 +5.8 +2.8 +0.3 -1.5 +1.9 -1.1 -3.5
[%] +3.2% +59.8% +29.3% +3.5% -15.1% +19.8% -11.8% -35.7%

Primary energy
[kWh] 76.8 80.0 125.0 100.4 79.5 68.9 97.3 70.6 50.2

[%] +4.2% +62.8% +30.8% +3.5% -10.2% +26.8% -8.0% -34.5%

Table VI.3. Integrated energy values of the cooling simulated cases. Firstly the reference case values are presented,
then the values for the ”cost” controllers (MPC and RBCs), and finally the values for the ”CO2” controllers (MPC
and RBCs).

COOLING Ref.
MPC
Cost

RBC1
Cost

RBC2
Cost

RBC3
Cost

MPC
CO2

RBC1
CO2

RBC2
CO2

RBC3
CO2

Electrical energy
use

[kWh] 30.4 28.5 44.1 34.1 24.3 27.7 51.7 43.0 31.3

[%] -6.3% +45.1% +12.1% -19.9% -9.0% +69.9% +41.3% +3.0%

Thermal energy
produced for SC

[kWh] 64.4 55.1 104.7 74.1 42.2 52.1 128.5 100.8 64.6

[%] -14.5% +62.6% +15.1% -34.4% -19.2% +99.5% +56.5% +0.3%

Thermal energy
produced for DHW

[kWh] 25.8 30.3 28.7 28.5 28.2 31.3 28.8 28.7 28.9

[%] +17.6% +11.2% +10.5% +9.4% +21.2% +11.6% +11.4% +12.1%

Total thermal
energy produced

[kWh] 90.2 85.4 133.4 102.7 70.5 83.3 157.3 129.5 93.5

[%] -5.3% +47.9% +13.8% -21.9% -7.6% +74.4% +43.6% +3.6%

COPavg
[-] 2.97 3.00 3.02 3.01 2.90 3.01 3.04 3.01 2.98

[%] +1.1% +1.9% +1.6% -2.4% +1.5% +2.6% +1.6% +0.6%

Total thermal
energy used

[kWh] 105.1 110.6 100.3 117.8 119.2 116.2 83.3 100.8 110.3

[%] +5.2% -4.6% +12.1% +13.4% +10.6% -20.8% -4.1% +4.9%

Cost of electricity
use

[=C] 2.78 1.90 2.74 2.16 1.63 2.71 4.94 3.98 2.88

[%] -31.8% -1.5% -22.2% -41.2% -2.5% +77.9% +43.4% +3.6%

Marginal CO2

emissions savings
[kgCO2] 7.1 +0.0 +4.7 +1.8 -1.0 -0.7 +6.2 +4.1 +1.5
[%] +0.2% +65.9% +25.5% -14.7% -10.0% +87.1% +57.9% +21.0%

Primary energy
[kWh] 65.2 63.1 99.8 76.7 53.8 59.4 110.2 91.6 66.9

[%] -3.2% +53.1% +17.6% -17.5% -9.0% +69.0% +40.4% +2.7%

In fact, the best RBC configuration still increases the emissions by 21%, which is a quite poor perfor-
mance.

3 Efficiency of the heat pump operation

The efficiency of the heat pump operation is represented in Figure VI.4, with the summed energy
values and the resulting COP/EER, only in space heating/cooling mode (i.e. the DHW mode is not
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studied here). In heating mode, the cost controllers present a COP very similar to the reference one.
The CO2 controllers however all present an increase of the COP. These controllers naturally move the
heat pump loads towards periods of low emissions, typically the afternoons, where the outdoor tem-
perature is higher which also improves the efficiency of the heat pump. This can be further observed in
Figure VI.5 where the ambient temperature recorded during space heating operation is represented as
box plots. All the CO2 configurations operated the heat pump when the outdoor air was warmer. MPC
CO2 performed especially well, reaching a COP of 3.19 during the space heating operation. This good
performance was also attained thanks to lowering the supply temperature, as seen in Figure VI.5b.
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Figure VI.4. Thermal energy produced, electrical energy used and COP/EER during space heating/cooling oper-
ation.
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(a) Ambient temperature box plots during the space heating/cooling operation.
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(b) Supply temperature box plots during the space heating/cooling operation.

Figure VI.5. Box plots of the ambient and supply temperatures distribution during space heating/cooling opera-
tion.

In cooling mode, it is mostly the MPC controllers that provide a better efficiency of the heat pump.
They both reach EER values of 3.45 for MPC Cost and 3.48 for MPC CO2, while the reference case was
at 3.18. The reasons for this improvement are less evident than in cooling, given that the EER depends
less on the outdoor conditions than the COP. For instance RBC1 Cost is the configuration that operates
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the heat pump at periods of lowest levels of outdoor temperature, which should be beneficial for the
efficiency, and still presents the lowest EER of 3.07. The supply temperature varies very slightly among
all the cooling configurations, as seen in Figure VI.5. The RBC controllers also provide satisfactory
heat pump efficiencies, with EER values of 3.36 for RBC3 Cost and 3.20 for RBC3 CO2.

4 Energy flexibility and load shifting

Similarly as in the analysis of the experiments, the energy flexibility is first evaluated looking at the
graphs of the energy used in the low, medium and high penalty periods, presented in Figure VI.6.

Observing firstly the cost controllers in heating mode, MPC Cost managed to eliminate the space
heating operation during high price hours, while raising the energy use in low price hours, which
corresponds to its expected behavior. The RBC configurations also increased significantly the energy
use in low price hours, without managing to also reduce it in high price hours. RBC3 presents in fact a
very similar distribution than the reference case.

Still in heating mode, the load shifting of the CO2 controllers is analyzed (second graph of Fig-
ure VI.6). It appears that the reference case used most of the energy in the high emissions periods,
therefore the CO2 controllers manage to reverse this tendency and to reduce significantly the energy
use in those high emission hours. MPC CO2 and RBC3 CO2 both do a good job in this regard.

Now analyzing the cost controllers in cooling mode (third graph of Figure VI.6), all of them manage
to eliminate the use of space cooling during high price hours. However, this is compensated by a severe
increase of the energy use in low price hours for RBC1 Cost and RBC2 Cost, while MPC Cost and RBC3
Cost manage to keep this increase at a reasonable level.

Finally the CO2 controllers in cooling mode are analyzed. RBC1 and RBC2 CO2 both increase very
significantly the energy use in low emissions periods, which gives positive results in terms of flexibility
factors, but negative results in terms of absolute emissions savings. MPC CO2 and RBC3 CO3 have a
very similar distribution that the reference cooling case, only with a slightly lower energy use for all
periods. Thus they only operated a limited load shifting, which resulted in actual emissions savings
only for the MPC controller.

The previous analysis in terms of load-shifting is reflected in the values of the flexibility factors, as
shown in Figure VI.7. Firstly analyzing the factors in heating mode, MPC Cost shows the best results in
terms of FFcost: it manages to reach the value of 0.62 compared to the reference case with 0.36. On the
other hand, the RBC cases barely improve this value, their FFcost ranging from 0.34 to 0.45, the best
being RBC1 Cost. In terms of CO2 flexibility factor, the MPC and RBC controllers perform in a very
similar way: their FFCO2

values are contained in a small range, from -0.22 to -0.15, while the reference
case presented a much lower value of -0.64.

In cooling mode, the RBC controllers present better values of flexibility factors than the MPC con-
troller. Regarding the cost flexibility, FFcost took the value of -0.22. The MPC Cost controller managed
to increase this value to 0.51 which is already a great improvement, and RBC1 Cost to an even greater
value of 0.69. Regarding the CO2 flexibility, the reference case had a FFCO2

value of 0.36: MPC CO2
stayed at the same level with 0.33, and the RBC configurations reached the value of 0.52 (RBC1 and 2).

It should be noted that increasing the flexibility factors can be achieved in two ways: by decreasing
the energy use in the high penalty periods, or by increasing it during the low penalty periods, and
oftentimes with a combination of both. The MPC controllers tend to use the first approach, while the
RBC controllers resort more to the second one. However, this latter strategy - increasing too much
the load during the low penalty periods - often leads to a significantly increased energy use overall,
even though it gives positive results in terms of flexibility factors. This effect might offset the benefits
of using energy during low penalty periods, and cause in the end a failure in reducing the summed
penalties, as seen in some of the RBC cases.
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Figure VI.6. Breakdown of the electricity use according the the price or emissions periods. The most relevant
graphs have been highlighted by color rectangles: MPC Cost and the RBCs Cost when analyzing the price periods,
MPC CO2 and the RBCs CO2 when analyzing the emissions periods.
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Figure VI.7. Flexibility factors relative to cost or emissions, both in heating and cooling modes. The flexibility
factors of the reference cases are highlighted with dashed lines to clearly display in which direction each controller
modifies the factor.

5 Comfort

The comfort analysis is presented for all cases in Figure VI.8. The configurations presenting the
best results in terms of energy flexibility logically all present a degradation of the comfort conditions to
some extent. The main question then consists in deciding how much degradation is acceptable. Some
flexibility in the comfort conditions is almost inevitable to harvest the benefits of energy flexibility,
although this should be limited and barely noticeable by the occupants.
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Figure VI.8. Comfort analysis of the simulated cases.

For the cost controllers in heating mode, MPC Cost and RBC3 Cost present similar levels of thermal
comfort, however MPC Cost would be the preferred option since it provided better performance in
terms of energy flexibility and cost savings. For the CO2 still in heating mode, both MPC CO2 and
RBC3 CO2 display a large percentage of time in Category III, between 60 and 70%. In relation to their
emission savings, RBC2 CO2 or MPC CO2 could be chosen as a preferred controller.

In cooling mode, the cost controllers MPC Cost and RBC3 Cost both degrade the comfort condi-
tions with respectively 32 and 43% of the time spent in Category III. RBC2 Cost manages to improve
the comfort conditions compared to the reference, while still decreasing the costs. One of those three
options are possible, depending on the desired level of comfort. For the CO2 controllers, MPC CO2
slightly degrades comfort with 14% in Category III, however it is the only configuration that manages
to provide emissions savings and therefore should constitute the favored option, compared to the
RBCs that all increase the time spent in Category I.
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6 Conclusions from the co-simulation cases

After having tested various configurations, and in particular balancing the comfort conditions with
the provision of energy flexibility, general conclusions can be drawn about the performance of the en-
ergy flexibility controllers. The first learning from this process was the high sensitivity of the controller
to their tuning parameters. In particular for MPC, slightly modifying the weighting coefficient had a
great impact on the results: this could be seen when changing the αε coefficient for comfort from 0.15
in the experimental MPC CO2 case for cooling, to 0.155 in the simulated case. This slight change of
0.005 in the coefficient modified the emissions savings from -22.3% to -10.0%, which is a consequent
difference, probably due to the passing of a certain threshold between one case and the other. This
highlights the necessity of an appropriate tuning for the controllers.

To summarize the performance of the RBC and MPC controllers, the results can be analyzed in
relation to their reference case. When the reference case is far from optimal or showing an adverse
behavior with regards to the considered objective, the MPC and RBC controller can both manage to
generate consequent savings. For instance, in winter the reference case is not optimal with regards
to the carbon emissions, since most of the energy is used at night, when outdoor temperatures are
lower, COP is also lower and the emissions are high. In that case, the RBC CO2 or MPC CO2 enable
to save at least around 15% on the emissions. Similarly in summer, the reference case is far from
optimal regarding the costs, since it uses most of the energy for cooling during the afternoons, when
the price is high. In that case, RBC Cost or MPC Cost can reach cost savings of around 30%. On the
other hand, when the reference case already approaches the optimal, MPC really takes advantage of
its prediction capacities, and reaches a better performance than RBC. In winter, the reference case is
already cheap, therefore RBC CO2 fails to provide further savings in the studied configurations, while
this context brings out the best of the MPC CO2 which manages to reach small cost savings of around
5%. Likewise in summer, the reference case already causes relatively low emissions, therefore the
RBC CO2 only causes a deterioration of the carbon footprint, while MPC CO2 can displays its full
optimization potential and manages to provide emission savings of around 10%.
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Figure VI.9. Time series comparing the MPC Cost and the RBC3 Cost configurations in cooling mode.
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Choosing an RBC or MPC controller therefore depends on the season and the objective one wants
to achieve. MPC guarantees a good performance in all cases, but has an extra development cost. In
some cases, RBC performs as well as MPC, therefore these extra costs are not necessary and the RBC
controller might be sufficient. It should be noted that the two controllers have slightly different ways
to reach their objective. The RBC controllers increase in general the consumption during low penalty
periods, but do not necessarily decrease it during the high penalty periods. This might still result in
a positive impact on the flexibility factors, but not necessarily on the overall savings, since the overall
energy use will increase significantly. The MPC controller on the other hand tried to reduce the energy
use during the high penalty hours, but also tries to limit its transfer to the low penalty hours. This
strategy is normally smarter and more subtle; it benefits from the prediction and optimization features
of the MPC, to operate the heat pump in more favorable periods and when it is more energy-efficient.

The different dynamics of RBC and MPC are also illustrated with an example of time series in Fig-
ure VI.9. It can be seen on the two middle graphs, representing the heat pump power draw in the MPC
Cost and one of the RBC Cost configurations that both controllers tend to avoid the high price hours,
by shifting the load before or after them. MPC presents this behavior more systematically than the
RBC: it precools the building until the last moment before the price increases so as to fully rely on the
pre-cooling effect and avoid the heat pump operation during all the periods of expensive electricity.
It also provokes a rebound effect every time the price drops, therefore the cooling load is spread both
before and after the high price period. RBC has a generally similar behaviour, but since it does not
have any knowledge of the future, it does not act as efficiently: for example during the third and last
day, before the high price period, the RBC pre-cools the building, but stops one hour before the price
increase. During that last hour, the temperature in the zone increases, while the heat pump could have
continued to provide cheap cooling, and thus could have limited the subsequent comfort violations
during the high price hours. This reveals the superiority of MPC due to its prediction and anticipation
abilities.



Chapter VII

Discussions, conclusions and outlook
on further research

1 Discussions

The obtained results are put into perspective and discussed in this section. In particular, the de-
velopment, tuning and computational efforts of the flexibility controllers are discussed, as well as as
the differences between costs or emissions optimization, and the practical barriers still hindering the
large-scale deployment of such controllers.

1.1 Development efforts

Along this thesis, and more specifically in chapter III and IV, the whole development process of the
flexibility controllers has been reported in details. The costs of elaboration of the controller are not
negligible and should be considered in balance with their performance, to have a global overview of
their potential.

The development of the RBC controller is not particularly complicated. It requires the choice and
obtaining of an input signal, and the calculation of the adapted thermostat set-point. The latter would
represent the most effort-intensive task: the thermostat must be programmable, and some hardware
piece is needed to receive the input penalty signals and calculate the thresholds and adapted set-point
automatically. Other than that, the RBC is a rather straightforward controller, which actually only acts
on the thermostat, and not directly on the heat pump.

On the other hand, the development of the MPC is a more complex and expensive process. It re-
quires precise models of both the specific building and heat pump on which the controller will be
implemented, otherwise its performance might deteriorate. Because it is so case-specific, an MPC
controller can hardly be bought ”off-the-shelf”, an almost new controller must be developed practi-
cally every time. The required modelling is responsible for this situation in large proportions [166]: it
represents around 60% of the total development costs for MPC controllers [165].

However, given the superior performance of MPC over other types of controllers, as demonstrated
in this thesis, efforts are made to reduce their development costs and make them more accessible.
Regarding the building modelling, a lot of research has focused on how to obtain reliable RC models
in a simple way [102], [154], [167], [168]. For instance, De Coninck et al. developed a toolbox to help
automatize the process of the parameter estimation [49]. These methods could be used to produce a
bank of simplified RC models, based on the few building archetypes encountered in each country as
classified from the TABULA project [169]. Since creating a building model, even simplified, requires
a lot of meta-information that is sometimes not available, a database of several standard RC building
models would be useful in this regard. The advantage of grey-box models here is that the parame-
ters still have a certain level of physical interpretation and thus can be modified by the designer of
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the controller: for instance, starting from a standard RC model, if the designer knows that the build-
ing has more insulation than the standard building of this archetype, they can increase the resistance
parameter of the external walls Rw accordingly. The same principle could be adapted for the heat
pump models, with the creation of database of simplified models for different kinds of heat pumps
(air-source, water-source, ground-source etc.). When inserting such model in an MPC scheme, the
designer would only need to inform the capacity of the real heat pump to make it function. Making
these models scalable and easily configurable thus constitutes the key to facilitate an easier imple-
mentation of MPC at a larger scale.

Another path to minimize the modelling efforts consists in relying on online parameter estima-
tion. Since the MPC constantly records the operation of the heat pump and the response of the build-
ing, these data could be used as training dataset to correct the models automatically at regular time
intervals. Starting from a common standard model, the MPC controller would thus learn from the
functioning of the systems, and adapt the model parameters given the response of the specific build-
ing to heating or cooling excitation found in its past data. Such methods are being investigated and
represent promising research paths [170], [171]. It would be particularly relevant in the context of
Mediterranean climate studied in the present thesis, where the model would need changes notably
between the heating and cooling seasons: an online parameter estimation method would adapt the
model little by little as time passes by, instead of an abrupt transition.

1.2 Controller tuning: balancing energy flexibility and comfort

Once the controller is operational, it still requires an appropriate tuning to reach an optimal perfor-
mance. The tuning principally consists in balancing the comfort of the users with the provision of the
energy flexibility, which is the main objective of the controller. It represents a crucial step, and aside
from the modelling part, another resource-intensive task. The development process of the controllers
revealed this difficult task of finding a trade-off between the different aspects of building energy flex-
ibility, so that it benefits all involved parties (utilities, end-users and society as a whole). In general,
the controller manages to find a balance between the sometimes contradictory objectives (cost, com-
fort, carbon footprint, flexibility etc.), although they sometimes emphasize one aspect at the cost of
another one.

In the case of RBC, the tuning consisted in finding the appropriate values of the percentiles for the
thresholds of the penalty signals. This process should in theory not be repeated, although if the shape
of the signal is very different or irregular, other percentiles might result in a better performance. Once
the calculation method of the thresholds is fixed, the base set-point (i.e. when there is no modulation)
also needs to be adapted, as shown in the co-simulation chapter. This process is rather straightforward
and should be fixed for a given controller (with a certain objective and during a certain season). The
choice of the base set-point also influences greatly the outcome of the controller.

In the case of the MPC, the fine-tuning consisted in finding the appropriate values of the weighting
coefficients in the multi-objective cost function, through the Pareto analysis. This process revealed
that different values of the coefficients were required for every configuration, and that the outcome
of the controller was very sensitive to their values. In particular, the value of the coefficient αε, asso-
ciated with the objective Jε determines whether the controller will rather emphasize comfort or the
flexibility objective; it should thus be chosen with specific care. Its sensitivity was evidenced in the
thesis, notably with the MPC CO2 configuration in cooling: a significant change was observed in the
results by passing from a value of αε = 0.15 to a value of αε = 0.155. Considering hard constraints
rather than soft ones (hence eliminating the discomfort term Jε in the objective function) could solve
this sensitivity issue, however the Jε objective considerably improves the robustness of the controller
[46] and therefore it remains interesting to keep it.

Since it remains complicated to find a priori the satisfactory tradeoff between comfort and energy
flexibility, it is proposed to leave a certain margin of action to the users to adapt this trade-off in a more
dynamic manner. This was performed in a similar way by Wood et al. [172], where the occupants were
provided with feedback on their energy consumption and indoor environmental conditions, so that
they could make informed decisions about the operation of the systems. A suggestion for a potential
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future implementation would be a visual interface with a slider that can be moved by the user, either
towards better comfort, either towards a cheaper or a more environmentally-friendly operation of the
systems. An graphical example is shown on Figure VII.1. After some period, the occupants might
decide to move the cursor in one direction or the other, for instance if they experienced discomfort for
their taste, or if they consider that their energy bill became too expensive. The occupants should not
be bothered with numbers, but the position of the cursor should be translated back-end into a more
concrete input usable by the controller. For the RBC, the slider’s position would determine the level
of the normal room temperature set-point, and for the MPC, the value of the weighting coefficient,
which gives more or less importance to the comfort objective relatively to the reduction of the costs or
the emissions.
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Figure VII.1. Example of possible implementation for a user-friendly interface, where the users can tune them-
selves if they would rather emphasize comfort or energy flexibility. In the case of RBC, the position of the slider x
would change the level of the normal set-point TSP,0 +2 ·x (before the modulation r · δT for flexibility). For MPC,
the position of the slider would determine the weighting coefficient αε which balances the comfort objective Jε
and the other flexibility objective Jflex.

1.3 Computational burden of the MPC

The computational burden of the controllers should also be examined in details. RBC does not
require any complex calculations, therefore this is not a limitation for this type of controller. On the
other hand, MPC by nature consists in solving an optimization problem at regular time intervals. This
causes an important computational burden, which should also be put in balance with the significant
advances brought by this type of controller, since it could represent a barrier to their implementation.
Furthermore, the computational efforts have rarely been reported in details in the literature on MPC
for building climate control. Additionally, such complex control strategies could actually backfire by
taking on a more important part of a building’s energy use than what they enable to save, notably for
nZEB (for instance, up to 39% of the energy use was reportedly use for control and monitoring in a
prototype nZEB [173], although they did not use MPC).

For these reasons, the calculation process of the MPC is discussed here. Especially for the experi-
mental part, the calculation time was limited to 600 seconds, since the OCP must be solved within one
time step of 15 minutes. 15 minutes are 900 seconds, but the lower value of 600 seconds was chosen
as a safety measure to also allow some time for the precalculations and data communication in the
experimental setup. If the solver finds a solution to the OCP within these 600 seconds, the calculation
is flagged as a success, and its actual calculation time is collected. If the solver fails to find a solution in
the allotted time, the calculation is stopped, and the last solution is kept as the output of the MPC, as
if it was the optimal solution. In fact, after a certain time in the calculation, the progression becomes
very slow, because the objective function is flat near the optimum [144]. It is therefore preferable to
stop the computation and retrieve the current best solution found by the solver, which is oftentimes
not very far from the optimal one.

On average, it was observed that MPC Cost took the same amount of time to solve the OCP in the
winter and summer configurations: 224 and 214 s respectively. MPC CO2 presents larger differences:
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it took it 391 s on average to solve the OCP in the winter configuration, while only 5 s in the summer
configuration. These durations are not negligible, but in the present case, they do not cause issues
since the controlled plant has a large inertia and its discretization time step is large, enabling suffi-
cient time for the calculation (especially considering the delay within the model, see subsection 2.4 in
chapter IV). The reason for the long computation time of the present optimal control problem resides
in its nature: it mixes integer and continuous variables, and thus the problem must be solved nu-
merically through Mixed Integer Linear Programming, which increases significantly the computation
effort [84].

The MILP formulation is however necessary, because the binary variables enable to reproduce
more accurately the behavior of the heat pump, notably its minimum capacity and the switch be-
tween DHW and space heating or cooling modes. The high computational burden of MPC might raise
concerns about whether it is reasonable to have a computer or small hardware device constantly com-
puting the new optimal trajectory, and how much energy use this would represent. To the knowledge
of the author, no studies so far have studied the potential impact of the energy use caused by these re-
peated computations of MPC. Ideally, this extra consumption should be put into perspective with the
additional savings provided by the MPC. It is hoped that with the ever increasing calculation capacities
of computers nowadays, the computation barrier becomes less and less of an obstacle. Furthermore,
the solving of the OCP might be decentralized through cloud-based services so that the energy use
due to calculation would occur in a remote server with high energy efficiency.

1.4 Penalty signals: cost vs carbon footprint optimization

The penalty signals play an important role in the activation of building energy flexibility. In the
present work, two different signals have been used: the time-varying electricity price and the marginal
CO2 intensity of the grid. Both normalized signals can be seen in Figure VII.2 for comparison. From
the analyzed cases, it appears that they often display opposite behavior: the high penalty occurs in
the afternoons for the price (the grid operators want to incentivize peak shaving in this way), while
it corresponds to the low penalty for CO2 (due to the high share of solar and renewable energy at
this moment). For this reason, it results complicated to optimize both objectives at the same time:
increasing the cost flexibility will provoke a decrease of the CO2 flexibility and vice-versa. This was
clearly observed with the analysis of the flexibility factors: whenFFcost moves in one direction, FFCO2

generally moves in the other direction. It is however expected that the price signal will evolve in the
future to better reflect the carbon footprint of the power generation, so that eventually, both signals
will tend to present the same shape, making economical and environmental benefits coincide. This
could be achieved for instance through a global carbon tax.

The patterns of these signals also affect the outcome of the flexibility controllers: the price signal
presents large day-night variations, and thus already provides a pre-defined pattern for the electric-
ity use, which facilitates the consequent optimization of the MPC. On the other hand, the CO2 signal
presents smaller variations, and therefore gives less prior information to the MPC as to which periods
are more interesting for operating the systems. The marginal emissions signal was chosen precisely
because it varies more than the average emissions signal. Some seasonal changes in the signals can
also be observed: the average price was for example 22% lower in the cooling case than in the heating
case. This is one reason behind the different weighting coefficients obtained by the Pareto analysis
in heating and cooling mode for the MPC configurations; it compensated for the lower price differ-
ence by decreasing accordingly the αε coefficient. A more meticulous sensitivity analysis could be
conducted on these weighting parameters as a further research topic, for instance trying to obtain co-
efficients independent from the utilized penalty signal. This could be done by dynamically adapting
the coefficients to the level of the input signal, or a prior normalization of the input signal realized in
a more dynamic way than the present study (i.e. not considering a fixed maximum cost cmax).

As already mentioned earlier, other penalty signals could be used by the controllers to activate the
flexibility, such as the residual load of the grid, the primary energy factor, or the percentage of re-
newables in the energy mix. The principle of the controllers, either RBC or MPC, would not change
since conceptually and from a pure control viewpoint, it does not really matter what represents the
penalty signal. Only a further tuning might be required. Furthermore, whichever signal is used to
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Figure VII.2. Normalized penalty signals (price and marginal emissions) in heating and cooling seasons.

trigger the energy flexibility, it is anticipated that their variations will increase in the future, notably
due to the higher penetration of RES in the grid. The prices might become more volatile for instance.
Klein et al. also demonstrated that the residual load will have very large daily variations in 2030, espe-
cially in Spain with negative residual load at midday due to the high share of solar power [78]. In this
context, MPC might become an even more profitable option in the future, since it can benefit from
its optimization and prediction features to operate the systems optimally in any situation, even with
important changes from one day to the next.

1.5 Practical implementation and barriers for flexibility controllers

As partly discussed already, several barriers still hinder the deployment of flexibility controllers
at a large scale, and especially for MPC. The implementation of RBC does not represent particular
challenges since it acts only on the thermostat and not on the heat pump. It requires the possibility to
act on this room thermostat and the availability of a communication channel to automatically receive
the predictions of the penalty signals. For this reason, RBC can constitute a cheap and promising
solution in some cases, reaching satisfactory results in many cases, sometimes as good as MPC.

In view of its higher level of complexity, MPC presents more challenges in its implementation, as
shown notably in the conclusion section of the chapter on the experimental results. Technological
barriers notably appear when interfacing the MPC controller with the heat pump. Difficulties were
encountered during this thesis work with the real heat pump system, for instance when attempting
to control the DHW production loop, while the local controller was overriding the MPC decisions.
Finding the inputs of the heat pump which can be controlled, and understanding their exact effects
requires prior work. For instance in the present studies, the level of thermal power delivered was con-
trolled by adapting the supply temperature of the heat pump. It would be preferable to control directly
the frequency of the compressor for a VSHP system, since all the functioning of the heat pump mainly
depends on this variable (thermal output and electricity use notably). However, the frequency of the
compressor is not controllable directly for most heat pumps available on the market, it is regulated
by a robust internal controller installed by the manufacturer for safety purposes, and which cannot
be overridden. Hu et al. notably considered in their study [174] an MPC scheme that could directly
control the frequency of an air conditioner, but this work was based on simulations and did not con-
template this practical barrier: most probably, their strategy cannot be implemented in reality, unless
with a close collaboration with the heat pump manufacturer. Other ways to control the operation of
the heat pump exist: for instance one can ”trick” the controller by modifying the input for the sensor
which is supposed to measure the outdoor temperature. In this way, the heat pump internal controller
believes it is colder or warmer outside, and adapts its supply temperature according to its programmed
heating or cooling curve (weather compensation control). This is a convoluted manner of controlling
a black-box system which leaves little options for supervisory control.

Additionally to the operation of the heat pump, the MPC faces other technical challenges, such
as the lack of measurements needed for a proper functioning of the controller. The MPC controller
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requires feedback about the building status and the current operation of the heat pump: sometimes
sensors are not available to provide these data. In most residential buildings, only one temperature
sensor is placed in the living room. If the states of the building are not known, they can still be esti-
mated [152]. Other times, they are measured but with a very low precision: for instance in the present
work, the temperature of the water in the tank is recorded by a sensor of the heat pump internal unit,
but its resolution is only ±1 K, making this measurement not much accurate for the controller. Fur-
thermore, a single temperature measurement at the middle height of the tank is little representative
of the state of charge of this tank, given the stratification that can occur between its top and bottom
parts.

Apart from the technological aspects, other barriers which belong more to the sociological side
also slow down the deployment of MPC. Killian and Kozek [166] have notably mentioned several of
them:

• engineering efforts needed for modelling and design: this was already discussed in previous sec-
tion,

• lack of qualification of control engineers: MPC requires certain qualifications and few experts in
the field of the building sector know how to set up or maintain such complex controller,

• industry’s reluctance to innovation: the building automation sector being fairly conservative,
MPC faces difficulties to compete with traditional control methods which are tried, tested and
known in the big companies.

Despite these barriers, a number of encouraging trends also promise a bright future for MPC tech-
nology in the building automation sector. The heat pump market is getting ready for enabling demand
response in its products: for instance, the label ”Smart-Grid Ready” or ”SG-ready” has emerged in Ger-
many, with most heat pumps on the European market now presenting this label [175]. The principle of
SG-ready consists in implementing 2 binary inputs in the heat pump controller, which makes a total
of 4 possible combinations. These 4 inputs can be activated to enable demand-response as follows:

• Input 1 (positions 1:0): the heat pump must be switched off,

• Input 2 (positions 0:0): the heat pump runs in an energy-efficient mode,

• Input 3 (positions 0:1): the heat pump runs at an increased level (for instance at an increased
temperature set-point),

• Input 4 (positions 1:1): the heat pump is forced to operate at full load (within its operational
limits).

Some research has already been carried out about using such standardized inputs to facilitate DSM
with heat pumps, notably by Fischer et al. who investigated the use of SG-ready from the perspective
of an aggregator of energy flexibility [176]. In the US, the OpenADR protocol has also been developed:
it is meant as a Smart Grid standard, to ”standardize the message format used for DSM” and so that
”communication signals can be exchanged in a uniform and interoperable fashion among utilities,
grid operators and energy management and control systems” [177]. These important progresses in
standardization will solve the issues of compatibility and communications, and establish a common
ground for enabling DR in buildings.

Furthermore, the increased use of home automation systems provides a favorable context for the
development of MPC controllers [166]. With the boom of the Internet of Things (IoT), wireless sensors
can easily be deployed to obtain the additional measurements needed for the good functioning of the
MPC. In addition, smart home automation products have shown an important increase in sales num-
ber: this represents a great opportunity for MPC solutions, as they can fit neatly as integrated parts of
such products. For instance, smart home automation systems can take the form of a user-friendly app
which gives feedback to the occupants about their comfort and energy management, let them control
remotely certain systems and decide which objectives they would like to emphasize. Such app could
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leverage the full potential of an MPC controller, notably thanks to their adaptive features which reduce
the prior work in developing control models.

To summarize, MPC is only at its premises in the building automation sector: 15 years ago only,
this type of control was barely known in this industry, while nowadays, most of the research about
intelligent climate control schemes includes MPC. The recent progresses in standardization, mod-
elling techniques, inclusion in home automation systems, availability of sensors and data, computing
power, suggest that MPC will see an important development in the coming years, including in smaller
residential buildings.

2 Conclusions and further research

2.1 General conclusions - Activating flexibility in residential heating and cooling
loads

Along this thesis, control strategies have been developed for enhancing the energy flexibility of
residential buildings equipped with heat pumps. From development and modelling, to tuning, ap-
plication and testing, all the process has been documented, and the results analyzed in details from
different angles. All the steps enable to have a complete overview of not only the performance of
the controllers, but also the workload necessary to their development. The work focused on implicit
demand response with two types of controllers: a rule-based controller and a model predictive con-
troller.

Energy flexibility can be triggered by different penalty signals: such signals incite the operation of
the heat pump at the times where the signal is low, and discourage it otherwise. The hourly-varying
price of electricity, widely spread for small consumers in Spain, was used for this purpose, leading to
a cost optimization strategy, as done in most research in energy-flexible buildings. In addition, a new
penalty signal reflecting the marginal CO2 emissions of the grid was developed. This novel approach
enables the controller to focus instead on the minimization of the carbon footprint of the heat pump
use. It was found that these two objectives (cost or emissions minimization) were contradictory, and
improving one aspect generally leads to the deterioration of the other, since the variations of the two
signals have opposite behaviors.

RBC and MPC had both been largely studied in the existing literature about energy flexibility for
HVAC control. However, little research had previously investigated such in details MPC for controlling
heat pump systems. In particular, the present thesis includes a large part of experimental work, where
the strategies were tested on a real heat pump in a laboratory setup. The full dynamics of the heat
pump functioning could thus be observed. This hardware-in-the-loop process enabled to highlight
interesting insights regarding the practical implementation of such controllers, notably communica-
tion challenges and discrepancies between predicted and actual behavior. It also gives more credibility
and reliability to the presented results: in the existing literature, a number of articles made important
simplifications regarding the heat pump behavior, while in this thesis this bias could be eliminated
thanks to the experimental nature of the studies.

Further than the experimental part, advances in modelling have also been achieved in the mark
of this thesis. Regarding the building simplified model for the MPC controller, a grey-box RC model
was adjusted with a satisfactory fit of 77 to 82% with a much more detailed white-box model. It was
shown that it is preferable to adapt the model and change the values of resistance and capacities for
use in cooling or heating modes. Regarding the heat pump models, two types of models were de-
veloped: simplified polynomial models for use in the MPC, and detailed transient model in TRNSYS.
Both models were based on a performance map obtained experimentally with the heat pump func-
tioning in a wide variety of operation points, therefore they represent the actual behavior of the heat
pump, and are not only based on catalogue data. Especially the detailed VSHP model, which includes
its local PID controller, is a novelty since such model did not exist thus far in the existing TRNSYS li-
braries. Assembled together, the building and heat pump models together with the controllers form
a complete co-simulation framework which was used to test different control configurations. It con-
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stitutes a trustworthy test benchmark, which can be reused for further research in the same domain,
for instance to perform sensitivity analysis on the numerous parameters present in the flexibility con-
trollers.

Applying the controllers on the heat pump in the experimental and simulation frameworks, their
benefits were demonstrated. When optimizing the energy costs, monetary savings of around 5% were
achieved in heating mode, and around 30% in cooling mode, compared to a reference thermostat con-
trol. When optimizing the CO2 emissions, savings of around 15% were reached in heating mode, and
around 10% in cooling mode. The amplitude of these savings depended a lot on whether the refer-
ence case already performed close to optimally regarding the costs or emissions. Minimizing the costs
in winter and the emissions in summer result a more complicated task, since these respective refer-
ence cases already operated the heat pump in favorable periods. The most important savings were
achieved when minimizing the costs in summer and the emissions in winter. Globally, in all seasons
and all configurations, an improvement of the energy flexibility could be achieved. The differences
between the RBC and the MPC will be discussed in the next section. Furthermore, the performance of
the controllers was also analyzed in terms of flexibility factors (comprised between -1 and 1), which
reveal the amount of energy use that was shifted to the low-penalty periods. The CO2 flexibility factor
was increased by +0.15 in summer and by +0.45 in winter, while the cost flexibility factor was increased
by +0.75 in summer and +0.25 in winter. These results confirm that the flexibility controllers effectively
managed to shift the operation of the heat pump towards the periods of lesser penalty, and this load-
shifting correspond to the energy flexibility effect sought after in this work.

To conclude, the present thesis has covered many aspects of energy-flexibility control strategies for
heat pump systems in residential buildings: trigger input signals, models and formulation required
for MPC, implementation on a real heat pump, adaptations needed for heating and cooling modes,
practical bottlenecks, results in experimental and simulation setups. The positive performance of RBC
and MPC observed along the work of this thesis confirm the potential of such controllers to actively
exploit the thermal mass of buildings and water tanks, which can be considered as thermal energy
storage widely available at low cost. Through this sort of DSM strategy, the thermal loads of buildings
can be made more flexible, and thus help the smart grids of the future to integrate larger shares of RES.

2.2 Pros and cons of the energy flexibility controllers: RBC and MPC

The performance of the RBC and the MPC has been analyzed in details in the thesis. A more direct
comparison is proposed here, to highlight the pros and cons of both controllers in the light of different
criteria.

Regarding the development efforts, it was already clearly stated that this still represents a large
obstacle for MPC. RBC only consists in an adaptation of a classical thermostatic control, therefore it
does not represent a particular challenge. On the other hand, the creation of adequate control models
represents a large workload before the MPC can be operational, and it also means that an MPC can
hardly be sold as a ”plug-and-play” solution. It is hoped that with the accumulated experience and
the development of this sector, the costs associated with the development of MPC will decrease in
the future. RBC still possess a strong advantage in this regard thanks to its simplicity: it only needs
plugging to the thermostat, and does not require to act directly on the heat pump, which limits the
communication problems and uncertainties.

About the formulation of MPC more specifically, some innovative features have been developed
in this thesis. Firstly, the performance of the heat pump was included as a model based on experi-
mental data, providing the optimizer with a more accurate representation of its behavior. Secondly, a
mixed-integer formulation was implemented, where the introduction of binary variables enabled to
reproduce the dynamics of the heat pump, as seldom done in existing literature. In fact, a variable-
speed heat pump has a lower threshold below which it switches off, and the binary variable enables to
constrain the heat pump power between its minimum and maximum capacity to reproduce that. The
binary variable also permits to switch between the operation in DHW production mode, or provision
of space heating/cooling. However, the mixed-integer nature of the optimization problem increases
the complexity and the solving time needed, but it is hoped that the computation barriers will be-
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come less limiting with the ever increasing calculation capacities. Computational burden is on the
other hand not an issue for RBC.

Both types of controllers require some amount of tuning to reach an optimal performance. The
tuning process is probably more complex and resource-costly in the case of MPC, but also exists in
RBC. It mainly consists in balancing the comfort of the occupants vs the optimization of energy flexi-
bility. It was shown that a preliminary fixing of this trade-off is complicated to achieve, and letting the
users make this decision in a more dynamic manner could constitute a good solution.

Regarding the performance, MPC clearly outperforms RBC, since it manages to operate effective
load-shifting in all cases, while RBC only in some of the cases. Both controllers have a rather distinct
way of improving the energy flexibility of the building: RBC tends to increase the heat pump use during
the low penalty periods, without necessarily decreasing it in the high penalty periods. MPC tends to
decrease the energy use during high penalty periods, and to limit the consequent increase in low-
penalty periods. The results in terms of flexibility factors might be equal, but would lead to a generally
higher thermal energy use in the RBC case.

Operating a building flexibly is a subtle compromise between different aspects that are all related
and sometimes contradictory. RBC can only manage this balance to a certain extent, limited by its pre-
defined rules. The strength of MPC is that such control is capable to explicitly quantify and balance
different objectives, and to benefit from its knowledge of the future. Furthermore, it can sometimes
lead to improving several objectives at a time: for instance, certain configurations enable simultane-
ously to realize some load shifting towards low-penalty periods, to reduce the electricity bill of the
users, while maintaining comfortable conditions indoors. These findings are of utmost importance
since the deployment of flexibility at a large scale will require the acceptance of all parties involved:
the occupants of the buildings (interested in their comfort and energy bills), the grid stakeholders (in-
terested in load shifting and the moments when electricity is consumed) and the society as a whole
(which should be concerned about the reduction of the CO2 emissions and climate change).

A thorough comparison between an RBC and MPC controller in the exact same experimental setup
had not been performed so far, to the knowledge of the author. To sum up, it can be stated that MPC
is a preferred option for any of the configurations studied, since it will enable to always reach a cer-
tain level of savings, thanks to its finer optimization features and ability to predict the future behavior.
However, its development, tuning and implementation costs are considerable, and might hinder its
deployment on a large scale. In some cases where a radical load-shifting is required (namely for re-
ducing the emissions in winter or the costs in summer), RBC performs just as good as MPC, and can
provide similar services for a much simpler and cheaper implementation. In these cases, RBC should
be preferred since its simplicity and low-cost provide higher chances of implementation in the field,
and thus higher chances to eventually make an impact. It is also anticipated that the penalty signals
(price or emissions) are bound to become more volatile in the future: MPC might have better abilities
to cope with these rapid changes and therefore remains a very promising type of controller for energy
flexibility in buildings.

2.3 Contributions of the thesis

The present thesis brought several contributions to the knowledge area of energy flexibility in
buildings. The principal contribution represents the development of the flexibility controllers, a pro-
cess which has been reported with a high level of details. The first step consisted in identifying dif-
ferent penalty signals to inform the decisions of the controllers regarding the best periods when to
operate the heat pump. In addition to the price of electricity, traditionally used for this purpose, a
novel penalty signal representing the marginal CO2 emissions of the power grid has been created fol-
lowing a new methodology. This signal better estimates the effects of DSM actions in terms of carbon
footprint than an average emissions factor would. The cost reduction objective was in fact found to
be conflicting with the reduction of the emissions in the considered context. Secondly, a rule-based
controller was developed and tuned: it consisted in a set-point modulation triggered by thresholds set
on the penalty signal. A high sensitivity of the RBC was observed regarding the base set-point and the
thresholds of high and low penalty. Thirdly, a model predictive controller was also developed. To this
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end, simplified models of both the building envelope and the heat pump performance were fitted. It
was shown that these models needed adaptations between heating and cooling operation, so that they
could be used in the winter and the summer seasons. The necessity of a mixed integer formulation
of the MPC was also highlighted, to represent better the real operation of a variable speed heat pump
used for DHW and space conditioning. Considering the computational delay constitutes another nov-
elty of the developed MPC. Similarly than for the RBC, the importance of tuning and the sensitivity to
the tuning parameters in the MPC was evidenced, showing that considering too restrictive constraints
on the comfort side does not enable to provide energy flexibility. Further than the controllers them-
selves, the simulation frameworks developed for their testing are another valuable output of this work,
since they can be reused to test additional configurations.

To evaluate the benefits brought by the developed controllers, certain performance indicators have
been chosen, such as the flexibility factors, the costs and marginal emissions savings. Additionally,
graphical representations of the flexibility potential have been proposed, to be used for example by
aggregators of flexibility. The RBC and MPC controllers showed the ability to provide cost savings of
5% and emissions savings of 15 % in heating mode, and in cooling mode, 30% cost savings and 10%
emissions savings. These results were achieved by shifting the heat pump loads to periods of lesser
penalty, increasing the flexibility factors by up to +0.7 in the best scenario. It was shown that in certain
contexts (i.e. when the reference control is far from optimal regarding the considered objective), the
RBC controller could perform as well as the MPC, which suggests that the development costs of MPC
are not worth it in such cases. When the reference case is already close to optimal, the MPC could
perform better, which justifies the efforts put into fitting appropriate models and implementing the
optimization framework of the MPC. The better abilities of MPC to anticipate and optimize the heat
pump operation have been highlighted as strong advantages for its development in the future.

Another strong contribution of the thesis is the testing of the flexibility controllers in an experi-
mental setup with a real heat pump. In addition to the experiments, a high-fidelity heat pump model
was created based on the observed behavior of the real heat pump in the laboratory. Both frameworks
thus conferred a high reliability to the reported results, even if these results showed sometimes lower
claimed savings than reported in literature studies where much simpler heat pump models have been
used. Moreover, the implementation on a real heat pump enabled to highlight some practical chal-
lenges such as the MPC model mismatch, and conflicts of communication, control and connection
with the local controller of the heat pump, which also constitute valuable learnings obtained from this
thesis work.

Overall, the thesis evidenced the potential of using RBC or MPC controllers to provide energy flex-
ibility in a residential context under a Mediterranean climate in Spain. In particular, the capacities for
flexibility offered in the heating and the cooling season have been differentiated, with for example a
higher potential for cost savings in the summer season, and for emissions savings in the heating sea-
son. Reversible heat pumps can thus be used as enablers of implicit demand response in both seasons
for residential buildings. In this way, the thermal loads of such buildings can be made more flexible,
and eventually permit a larger integration of renewable energy sources in the power grid.

2.4 Recommendations for further research

The energy flexibility of buildings is a relatively new field, which means a lot of potential further
research could be carried out to cover unexplored aspects.

Firstly, the field of application can be broadened: this thesis has focused on residential buildings of
the nZEB type in a Mediterranean climate. Other building typologies and climates could be included
in the study, reusing the testing framework developed in this thesis. In particular, investigating the
other building archetypes of Spain, trying different levels of insulation/refurbishment, including the
production of a local PV system and comparing the results in terms of energy flexibility would pro-
vide interesting insights. Furthermore, a single building can only provide a little amount of flexibility,
therefore research should now also focus on aggregation of demand-side flexibility and scaling ex-
isting strategies at the higher level of building clusters [178]. A new Annex project following IEA EBC
Annex 67 might look closely into these research topics. Regarding the climate, more research would be
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needed regarding shoulder seasons (spring and autumn), where the needs for heating or cooling are
very limited, or where the system might switch from one mode to the other. In these seasons, the flex-
ibility capacity for load-shifting should be low, but its efficiency high, since it would be easier to retain
heat (or cold) over long periods if the losses to the outside are lower (milder outdoor temperatures).
A better understanding of these phenomena would enable to have a more representative overview of
the energy flexibility potential all year round, since this thesis only focused on short periods of the
most extreme weather in the considered climate.

The formulation of the MPC also constitutes a subject for further research. It has already been de-
tailed in this thesis, but only one configuration of the controller was then tested. Possible variations
of the controller includes for example time-varying temperature constraints: instead of considering a
constant comfort range all day long, the constraints can be adapted to the presence of the occupants,
relaxing them when the inhabitants are absent, or introducing a night setback to allow for lower tem-
peratures at night in heating mode. The constraints on the inputs can also be improved: we have
here considered a conservative option, where the capacity of the heat pump is limited to a maximum
calculated from a certain model (see Equation IV.16). In reality, the capacity of the heat pump can hap-
pen to be greater in certain conditions of supply temperature, therefore amplifying the range would
give more possibilities to the optimization problem. Additionally, the MPC studied in the thesis has
only been tested in conditions of perfect forecast: the controller had a perfect knowledge of the future
weather and penalty signal. Functioning in real time, such controller would need to rely on imperfect
weather predictions obtained from forecast services. Introducing this level of uncertainty and com-
paring with the perfect predictions base case is an interesting topic, to evaluate if the controller can
get close enough to this ideal base case.

Finally, mainly implicit demand response has been studied in this thesis, since it was the only
possibility for enabling energy flexibility in buildings in Spain. Recent political changes and evolutions
in the market might enable also explicit demand response and aggregation of flexible loads in the
future, therefore this other type of DSM should also be studied for small consumers. Explicit demand
response consists in actively requesting a customer to change its consumption patterns in exchange
for a direct reward. This was only touched on in the thesis in section III.2.3, with active rule-based DR
events and how to represent their potential graphically. Further research is certainly needed in this
field regarding how to make such explicit DR strategies viable both for a potential aggregator and the
final users.

To sum up, there are plenty of new topics and facets of existing topics to be investigated further,
and this is a booming field of research. It will be very exciting to see what is coming in this sector in
the upcoming years, and in which directions the markets and research will move.
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[49] R. De Coninck, F. Magnusson, J. Åkesson, and L. Helsen, “Toolbox for development and valida-
tion of grey-box building models for forecasting and control,” Journal of Building Performance
Simulation, no. July, pp. 1–16, 2015, ISSN: 1940-1493. DOI: 10.1080/19401493.2015.1046933
(Cited on pages 9, 27, 29, 119).
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[99] Z. Váňa, J. Cigler, J. Široký, E. Žáčeková, and L. Ferkl, “Model-based energy efficient control
applied to an office building,” Journal of Process Control, vol. 24, no. 6, pp. 790–797, 2014, ISSN:
09591524. DOI: 10.1016/j.jprocont.2014.01.016 (Cited on pages 23, 25, 27, 28).

[100] ASHRAE, ANSI/ASHRAE Standard 55: Thermal Environmental Conditions for Human Occu-
pancy. Atlanta, USA, 2013. DOI: ISSN1041-2336 (Cited on page 26).

[101] UNE, ISO 7730: Ergonomics of the thermal environment - Analytical determination and inter-
pretation of thermal comfort using calculation of the PMV and PPD indices and local thermal
comfort criteria. 2006 (Cited on page 26).

[102] P. Bacher and H. Madsen, “Identifying suitable models for the heat dynamics of buildings,”
Energy and Buildings, vol. 43, no. 7, pp. 1511–1522, 2011, ISSN: 03787788. DOI: 10.1016/j.
enbuild.2011.02.005 (Cited on pages 27, 29, 71, 119).

[103] R. Juhl, J. K. Møller, and H. Madsen, “ctsmr – Continuous Time Stochastic Modeling in R,” The
R Journal, vol. XX, pp. 1–11, 2015. arXiv: 1606.00242 (Cited on pages 27, 29).

https://doi.org/978-1-5090-3358-4/
https://doi.org/978-1-5090-3358-4/
https://doi.org/10.1016/j.apenergy.2016.01.088
https://doi.org/10.1016/j.enbuild.2016.04.053
https://doi.org/10.1016/j.enconman.2015.03.087
https://doi.org/10.1016/j.jprocont.2014.06.005
http://dx.doi.org/10.1016/j.jprocont.2014.06.005
http://dx.doi.org/10.1016/j.jprocont.2014.06.005
https://doi.org/10.1016/j.apenergy.2015.10.036
https://doi.org/10.1016/j.apenergy.2015.10.036
https://doi.org/10.1109/ISGT.2012.6175662
http://www.opticontrol.ethz.ch/Lit/Stur%7B%5C_%7D13%7B%5C_%7DProc-Clima2013.pdf
http://www.opticontrol.ethz.ch/Lit/Stur%7B%5C_%7D13%7B%5C_%7DProc-Clima2013.pdf
https://doi.org/10.1109/CDC.2013.6761012
https://doi.org/10.1016/j.apenergy.2015.10.114
https://doi.org/10.1016/j.apenergy.2015.10.114
http://dx.doi.org/10.1016/j.apenergy.2015.10.114
http://dx.doi.org/10.1016/j.apenergy.2015.10.114
https://doi.org/10.1016/j.jprocont.2014.01.016
https://doi.org/ISSN 1041-2336
https://doi.org/10.1016/j.enbuild.2011.02.005
https://doi.org/10.1016/j.enbuild.2011.02.005
https://arxiv.org/abs/1606.00242


138 BIBLIOGRAPHY

[104] A. Pawlowski, J. L. Guzman, F. Rodrı́guez, M. Berenguel, and J. Sanchez, “Application of time-
series methods to disturbance estimation in predictive control problems,” IEEE International
Symposium on Industrial Electronics, pp. 409–414, 2010. DOI: 10.1109/ISIE.2010.5637867
(Cited on page 28).

[105] R. Ooka and S. Ikeda, “A review on optimization techniques for active thermal energy storage
control,” Energy and Buildings, vol. 106, pp. 225–233, 2015, ISSN: 03787788. DOI: 10.1016/j.
enbuild.2015.07.031. [Online]. Available: http://dx.doi.org/10.1016/j.enbuild.2015.
07.031 (Cited on page 28).

[106] A. Arteconi, N. J. Hewitt, and F. Polonara, “State of the art of thermal storage for demand-side
management,” Applied Energy, vol. 93, pp. 371–389, 2012, ISSN: 03062619. DOI: 10.1016/j.
apenergy.2011.12.045. [Online]. Available: http://dx.doi.org/10.1016/j.apenergy.2011.
12.045 (Cited on page 28).

[107] D. Six, J. Desmedt, J. V. A. N. Bael, and D. Vanhoudt, “Exploring the Flexibility Potential of Resi-
dential Heat Pumps,” 21st International Conference on Electricity Distribution, no. 0442, pp. 6–
9, 2011 (Cited on page 28).

[108] D. Vanhoudt, D. Geysen, B. Claessens, F. Leemans, L. Jespers, and J. Van Bael, “An actively con-
trolled residential heat pump: Potential on peak shaving and maximization of self-consumption
of renewable energy,” Renewable Energy, vol. 63, pp. 531–543, 2014, ISSN: 09601481. DOI: 10.
1016/j.renene.2013.10.021 (Cited on page 28).

[109] H. Wolisz, H. Harb, P. Matthes, R. Streblow, and D. Müller, “Dynamic simulation of thermal
capacity and charging / discharging performance for sensible heat storage in building wall
mass,” in 13th Conference of International Building Performance Simulation Association, 2013,
pp. 2716–2723 (Cited on page 28).
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Appendix A

Detailed table of the MPC objective
functions

Table A.1, found in the next page, shows the comparison of the objective functions found in existing
literature about MPC for the control of heat pumps. It is an extended version of Table II.2 in chapter II.
The table is also available in [50].
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150 APPENDIX A. DETAILED TABLE OF THE MPC OBJECTIVE FUNCTIONS

Table A.1. Objective functions used in the MPC in existing literature.
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Appendix B

Thermal power of the heat pump in
function of the supply and return
temperatures

Figure B.1 shows the thermal power levels observed in the static tests both in heating and cooling
modes. In heating mode, the left point of each line correspond to the return temperature, and the right
point the supply temperature. In cooling mode, they are reversed. In these graphs, the actual value of
Tsup can be compared with its set-point Tsup,SP . In heating mode, mostly when Tsup,SP is set to high
values like 55 or 45°C, and when the outdoor temperature is colder (-7 or 2°C), the heat pump cannot
reach the desired set-point. In cooling mode, it is mostly when Tsup,SP is set to low values like 7°C that
the heat pump cannot reach this value. Furthermore, an offset can be observed in the ”normal cases”,
especially in cooling mode: the internal heat pump sensor must measure a lower supply temperature
than the one of the laboratory (the one represented in the graphs), which explains why it seems that
the heat pump never reaches the set-point.
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Figure B.1. Thermal power of the heat pump in the heating (a) and cooling (b) static tests, showing both the
supply and return temperatures.



Appendix C

Alternative modeling approach for
VSHP in TRNSYS

In the thesis, the chosen approach for developing a detailed heat pump model in TRNSYS was
through black-box polynomial models and a PID controller regulating the frequency of the compres-
sor. An alternative approach would consist in combining existing Types of TRNSYS in order to obtain
a reliable VSHP model: Type941 gives the performance at full-load, and Type43 enables to modulate
that performance at part-load, with a curve obtained from experimental or catalogue data. In that
case, the PID controller determines the capacity ratio at part-load (CR), or in the other words, the
percentage of the full capacity at which the heat pump has to operate.

This approach is presented here in Figure C.1. This model was used in [60], but not in the co-
simulations of the present thesis; for this reason it is mentioned as an appendix. Two TRNSYS types
require some input about the specific heat pump system used in the simulation for such model. Type
941 needs to be provided with a map of different points describing the performance in different condi-
tions, at full load capacity. These data can usually be retrieved from manufacturer catalogues, where
the points following the testing standard for heat pumps must be reported. Type 43 uses the part-
load performance data reported in section 3.4.3 of Chapter III, namely the curve linking the part-load
performance PLF with the capacity ratio CR.
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Figure C.1. Schematic of the alternative detailed TRNSYS heat pump model.
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