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SUMMARY AND CHAPTER OVERVIEW 

The main motivation behind this doctoral thesis is the development of novel and low-cost 

(bio)chemical sensors that can set the basis to design robust, affordable, scalable and user-friendly 

sensing platforms. The first approach is based on the incorporation of conducting polymers to 

achieve enhanced analytical performance as well as desirable final device features, such as 

affordability and simple operation. The second part of the thesis is addressed on the exploration 

and development of biosensors for non-invasive diagnostics, with the aim of improving the quality 

of life of potential end-users. 

The work begins by introducing the importance of the determination of hydrogen peroxide, 

including some of its several applications in different fields and a brief description of the thesis 

structure and objectives. It continues by presenting some of the most recent works on hydrogen 

peroxide detection using conducting polymers. A critical comparison of the analytical performance 

and some of the future challenges are described. Fruit of these challenges, the first part of the 

thesis is based on the development of new approaches for such detection in the form of 

experimental work. The frame of the second part of the thesis points out the development of 

electrochemical sensors based on enzymes in order to determine hydrogen peroxide as a 

byproduct of the main oxidase reaction. In addition, some background of scientific foundation, 

technological methods and principles on which the work stands is also provided. A more detailed 

information about each chapter is provided below:  

CHAPTER 1 briefly illustrates the fundamentals of the electrochemical techniques used 

throughout the development of this thesis together with a comparison of their main features.  

CHAPTER 2 displays a general view of current works and methodologies in hydrogen peroxide 

detection using conducting polymers. The chapter explains the importance of its detection, the 

attractive features of conducting polymers and the different strategies which are currently carried 

out when applied to sensing.  

CHAPTER 3 & 4 depict two different approaches based on two different electrochemical 

techniques carried out as alternative ways to directly determine hydrogen peroxide through the 

use of conducting polymers. First CHAPTER 3 focusses on the conductometric approach, and 

CHAPTER 4 on the potentiometric one. 
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CHAPTER 5 & 6 present two different approaches based on two different electrochemical 

techniques performed in order to indirectly detect hydrogen peroxide. Both chapters are based on 

the use of enzymatic-based electrochemical sensors for the detection of glucose. CHAPTER 5 

describes the construction and characterization of assembled macro- and micro-electrodes for 

glucose determination using amperometric sensors. CHAPTER 6 presents the characterization and 

validation of a potentiometric platinum paper-based sensor for glucose determination in saliva. It 

is presented as an alternative and noninvasive methodology for glucose quantification.  

CHAPTER 7 outlines the main conclusions derived from the experimental work as well as 

details on next steps in order to continue with the improvement of these devices in the field.  

 

Finally, some appendices have been added with additional information corresponding to: 

 Appendix 1 presents the list of abbreviations. 

 Appendix 2 shows the figure, scheme and table index.  

 Appendix 3 points out the list of publications resulting from this thesis as well as the 

corresponding congress contributions. 
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RESUM I ÍNDEX DE CAPÍTOLS 

La motivació principal darrera d’aquesta tesi és el desenvolupament de nous sensors 

(bio)químics de baix cost que puguin assentar les bases pel disseny de plataformes de detecció 

robustes, econòmicament assequibles, escalables i fàcils d’utilitzar. La primera estratègia es basa 

en la incorporació de polímers conductors per aconseguir un rendiment analític millorat i al mateix 

temps, unes característiques finals del dispositiu d’assequibilitat i senzillesa en el seu ús. La segona 

part aborda l’exploració i el desenvolupament de sensors per al diagnòstic no invasiu, amb 

l’objectiu de millorar la qualitat de vida dels usuaris finals.   

El treball comença introduint la importància de la detecció de peròxid d’hidrogen, incloent 

algunes de les seves moltes aplicacions en diferents camps, i una breu descripció de l’estructura 

de la tesi i els objectius. A continuació es presenten alguns dels treballs més recents en la detecció 

de peròxid d’hidrogen utilitzant polímers conductors. La comparació del rendiment analític així 

com els reptes a afrontar en un futur també són descrits. Fruit d’aquests reptes, la primera part de 

la tesi es basa en el desenvolupament de noves estratègies per la determinació de peròxid 

d’hidrogen en forma de treball experimental. La segona part enfoca el desenvolupament de 

sensors electroquímics basats en l’ús enzims oxidasa per la detecció de peròxid d’hidrogen com a 

producte de la reacció principal. A més a més, s’expliquen també els fonaments científics de les 

tècniques utilitzades i els principis de detecció en que es basa la tesi. Tot seguit s’adjunta 

informació més detallada de cada capítol en concret: 

El CAPÍTOL 1 explica breument els fonaments de les tècniques electroquímiques utilitzades al 

llarg de la tesi juntament amb la comparació de les seves característiques principals. 

El CAPÍTOL 2 mostra una visió general dels treballs més recents i metodologies emprades en 

la detecció de peròxid d’hidrogen utilitzant polímers conductors. El capítol explica la importància 

de la seva detecció, les característiques principals dels polímers conductors, així com les diferents 

estratègies utilitzades actualment.  

Els CAPÍTOLS 3 & 4 descriuen dos estratègies diferents basades en dos tècniques 

electroquímiques diferents que s’han portat a terme com a mètodes alternatius per la detecció de 

peròxid d’hidrogen utilitzant polímers conductors. Primer, el CAPÍTOL 3 es basa en un mètode 

conductomètric, i el CAPÍTOL 4 en un mètode potenciomètric.  
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Els CAPÍTOLS 5 & 6 mostren dos estratègies diferents basades també en dos tècniques 

electroquímiques diferents per la detecció indirecta de peròxid d’hidrogen. Ambdós capítols es 

basen en l’ús de sensors electroquímics basats en enzims per la detecció de glucosa. El CAPÍTOL 5 

descriu la construcció i la caracterització de macro- i micro-elèctrodes per la determinació de 

glucosa utilitzant sensors amperomètrics. El CAPÍTOL 6 presenta la caracterització i la validació d’un 

sensor potenciomètric de paper per la detecció de glucosa en saliva. Aquest mètode es presenta 

com una alternativa no invasiva per la quantificació de glucosa.  

El CAPÍTOL 7 descriu les principals conclusions derivades de la part experimental d’aquesta 

tesi, així com les possibles estratègies a seguir per al futur desenvolupament d’aquests dispositius.  

Finalment, la informació addicional s’ha afegit en forma d’apèndix, corresponent a: 

 L’ Apèndix 1 mostra la llista d’abreviatures.  

 L’Apèndix 2 mostra la llista de figures, esquemes i taules.  

 L’Apèndix 3 mostra la llista de publicacions derivades d’aquesta tesi, així com les 

corresponents participacions a congressos.  

  

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL SENSORS FOR HYDROGEN PEROXIDE DETERMINATION 
Marta Borràs Brull 
 



 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL SENSORS FOR HYDROGEN PEROXIDE DETERMINATION 
Marta Borràs Brull 
 



 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL SENSORS FOR HYDROGEN PEROXIDE DETERMINATION 
Marta Borràs Brull 
 



DEVELOPMENT OF ELECTROCHEMICAL SENSORS FOR HYDROGEN PEROXIDE DETERMINATION   

Hydrogen peroxide (H2O2) is a simple molecule with relevant roles in several fields. For 

example, in the food industry H2O2 has been used as sterilizing compound in packaging and food 

manufacturing due to its antimicrobial and fungicidal properties and biological degradability [1]. It 

is also used to rate the quality and safety of cosmetic and pharmaceutical formulations [2]. In 

cosmetic and personal care it is used to form dyestuffs during oxidative hair dyeing (by eliminating 

black-brown melanins) or to oxygenate stains or teeth to increase whiteness. Hydrogen peroxide is 

also used in paper products and textiles bleaching, providing a high degree of brightness and 

preserving the mechanical properties of the fibers. In metallurgical processes, hydrogen peroxide 

is used for ore leaching in order to save eluents and acids application and to simplify the 

management of chemical and waste. Since it is an oxidizing agent, its use in the chemical synthesis 

of flame retardants, catechol or herbicide production, among others, has also been reported for 

industrial purposes. We can also find hydrogen peroxide acting as oxidizing agent on waste water 

treatment, soil remediation or in air pollution control.  

It is considered an important analyte in clinical diagnostics due to its implication in several 

routes of aerobic metabolism, in which its level can be used as a biomarker of some metabolic 

disorders related to the oxidative stress (e.g. asthma, osteoporosis or cardiovascular disorders, 

among others) [3,4]. It is also involved in some cellular signal transduction, mediating some 

physiological responses such as cell proliferation, differentiation and migration [5]. It also creates 

intracellular thermogenesis, which is extremely important for life’s processes [6] and it is an 

analyte  

                                                           
[1]       E. Gómez-Plaza, M. Cano-López, A review on micro-oxygenation of red wines: Claims, benefits and the 

underlying chemistry, Food Chem., 2011 DOI:10.1016/j.foodchem.2010.10.034. 

[2]        J. Liu, Y. Lin, L. Liang, J.A. Voigt, D.L. Huber,  Z.R. Tian, E. Coker, B. Mckenzie, M.J. Mcdermott, 

Templateless assembly of molecularly aligned conductive polymer nanowires: A new approach for 

oriented nanostructures, Chem. Eur. J., 2003  DOI:10.1002/chem.200390064. 

[3]       C.C. Winterbourn, Reconciling the chemistry and biology of reactive oxygen species, Nat. Chem. Biol., 

2008 DOI:10.1038/nchembio.85. 

[4]       T.J. Preston, W.J. Muller, G. Singh, Scavenging of extracellular H2O2 by catalase inhibits the 

proliferation of HER-2/Neu-transformed Rat-1 fibroblasts through the induction of a stress response, 

J. Biol. Chem., 2001 DOI:10.1074/jbc.M004617200. 

[5]     S.G. Rhee, Y.S. Bae, S-R. Lee, J. Kwon, Hydrogen peroxide: A key messenger that modulates protein 

phosphorylation through cysteine oxidation, Science’s STKE, 2000 DOI:10.1126/stke.2000.53.pe1. 

[6]       W.C. Douglas, Hydrogen peroxide: Medical miracle, Rhino Publishing S.A., Panama, 2003 pp.20.  
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under study for inducing apoptosis on cancer cells [7]. Within the clinical field, it is also important 

due to its nature as a side product generated from biochemical reactions catalyzed by enzymes, 

such as glucose oxidase, cholesterol oxidase, glutamate oxidase, lysine oxidase, etc.  

It is of great significance then, to design and develop a reliable and cost-effective method 

for H2O2 determination, which can generate a great impact in all the above-mentioned fields. 

Although several methods have already been proposed such as spectrometry [8,9], titrimetry [10], 

chemiluminescence [11,12], fluorimetry [13] or chromatography [14], electrochemical approaches 

present simple and compact tools able to provide great performance (high sensitivities and 

selectivity and low limits of detection).  

A large number of electrochemical sensors have been described for the determination of 

hydrogen peroxide, either by direct detection or by using enzyme reactions which generate H2O2 

as a byproduct. 

This thesis aims to contribute to the development of electrochemical analytical tools for 

H2O2 determination. The thesis is divided in two main blocks according to the strategy used for 

                                                           
[7]    W.A. Wlassoff, C.D. Albright, M.S. Sivashinski, A. Ivanova, J.G. Appelbaum, R.I. Salganik, Hydrogen 

peroxide overproduced in breast cancer cells can serve as an anticancer prodrug generating 

apoptosis-stimulating hydroxyl radical under the effect of tamoxifen-ferrocene conjugate, J. Pharm. 

Pharmacol., 2007 DOI:10.1211/jpp.59.11.0013. 

[8]       C. Matsubara, N. Kawamoto, K. Takamura, Oxo[5, 10, 15, 20-tetra(4-pyridyl)porphyrinato]titanium(IV): An 

ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide, Analyst, 1992 

DOI:10.1039/AN9921701781. 

[9]       R.F. Nogueira, M.C. Oliveira, W.C. Paterlini, Simple and fast spectrophotometric determination of 

H2O2 in poto-Fenton reactions using metavanadate, Talanta, 2005 

DOI:10.1016/j.talanta.2004.10.001. 

[10]     E.C. Hurdis, H. Romeyn, Accuracy of determination of hydrogen peroxide by cerate oxidimetry, Anal. 

Chem., 1954 DOI:10.1021/ac60086a016. 

[11]   W. Chen, B. Li, C. Xu, L. Wang, Chemiluminescence flow biosensor for hydrogen peroxide using 

DNAzyme immobilized on eggshell membrane as a thermally stable biocatalyst, Biosens. Bioelectron., 

2009 DOI:10.1016/j.bios.2009.01.010. 

[12]     S. Hanoka, J-M. Lin, M. Yamada, Chemiluminescent flow sensor for H2O2 based on the 

descomposition of H2O2 catalyzed by cobalt(II)-ethanolamine complex immobilized on resin, Anal. 

Chim. Acta., 2001 DOI:10.1016/S0003-2670(00)01181-8. 

[13]   A. Mills, C. Tommons, R.T. Bailey, M.C. Tedford, P.J. Crilly, Reversible, fluorescence-based optical 

sensor for hydrogen peroxide, Analyst, 2007 DOI:10.1039/B618506A. 

[14]    K. Nakashima, M. Wada, N. Kuroda, S. Akiyama, K. Imai, High-performance liquid chromatographic 

determination of hydrogen peroxide with peroxyoxalate chemiluminescence detection, J. Liq. 

Chromatogr., 1994 DOI:10.1080/10826079408013535. 
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such determination. A schematic representation of the chapter’s organization is shown in Scheme 

0.1. The first part of the thesis addresses the direct electrochemical determination of hydrogen 

peroxide by the integration of conducting polymers into the proposed electrodes. The possibility 

of using alternative electrochemical techniques as the most reported ones is explored. The second 

part of the thesis aims at the indirect electrochemical determination of hydrogen peroxide, 

focused mainly on glucose detection through enzymatic reactions. In this case, two different 

electrochemical approaches are explored as well.  

 

Scheme 0.1. Basic scheme of the main topics addressed in this thesis 

(classified into different chapters). 

Overall, the general objective of the thesis is the development and optimization of novel 

and affordable electrochemical electrodes with robust analytical parameters for the hydrogen 

peroxide determination. This general goal can be divided in the following specific objectives: 

 To explore the possibility to develop low-cost conducting polymer-based electrodes for 

H2O2 determination, taking advantage of the conducting polymer properties (CHAPTER 2, 3 

and 4). 

 To explore new strategies in order to understand the contribution of the conducting 

polymers in the sensing field (CHAPTER 3 and 4). 

 To explore the determination of a physiological relevant target by using different 

techniques (CHAPTER 5 and 6). 

 The validation of a paper-based potentiometric sensor based on enzymatic reaction to 

monitor glucose in a complex matrix (CHAPTER 6).  
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In this chapter we provide an overview of the foundational aspects of the different 

electrochemical techniques used in this thesis, namely conductometry, potentiometry and 

amperometry. For each detection technique, the working principle will be briefly described in 

order to rationalize the sensor response. 

 

ELECTROCHEMICAL TECHNIQUES 

Conductometric detection 

Conductometry is conceptually the simplest electroanalytical technique, which is based on 

the detection of a change in the electrical conductivity (inverse of resistance) of a material due to 

a recognition event. There are several devices to measure the conductometric response of a 

sensor. The most used and simplest configuration is a chemiresistor, where the conducting layer is 

deposited between two electrodes separated by a narrow gap. Typically, the electrodes are 

interdigitated electrodes patterned on an insulator substrate, in order to increase the surface area 

of the sensing layer. A typical scheme of chemiresistor configuration is shown in Figure 1.1. The 

conductivity is measured by applying a constant current or voltage (DC or AC) between the two 

electrodes and measuring the resulting voltage or current [1]. There is another measurement 

based on four-point technique which measures the conductance of the bulk layer without the 

influence of the potential drop on the sensing layer-metal contacts. The combination of both 

techniques allows simultaneous measurements [2].  

 

Figure 1.1. Schematic representation of a conductometric measurement with chemiresistors. 
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Chemiresistors are usually measured in DC mode and the capacitance in the equivalent 

circuit can be neglected. Thus, the analytical information is obtained from the modulation of the 

surface (RS), contact (RC) or bulk (RB) resistances. Chemiresistors which use organic semiconductors 

usually depend on the chemical modulation of the bulk resistance, while the ones which use 

inorganic semiconductors operate on the principle of chemical modulation of the surface 

resistance.  

Ohm’s law states that the resistance of a material is given by: 

𝑅 =
𝐸

𝑖
                                                                                        1.1. 

where 𝑅 is the resistance of the material (Ω), 𝐸 is the voltage applied to the material and 𝑖 is 

the current of electrons flowing through the material. The resistance R depends on the dimensions 

of the conductor, then: 

𝑅 =
𝜌 𝐿

𝐴
                                                                                     1.2. 

where 𝜌 is the resistivity (Ω m), 𝐿 is the length and 𝐴 is the cross-sectional area. The 

resistance is then expressed in “ohm meter” (Ω m). Both resistance and resistivity indicate how 

difficult is to make the electrical current flow through a certain material.  

If the measurements are done with AC current, conductance becomes frequency-dependent 

and resistance becomes impedance [3].  

 

Potentiometric detection 

Potentiometry is a well-stablished technique which revolutionized analytical chemistry in 

the last century [4] and since then, it has experienced a massive growth [5]. The principle of 

potentiometry is based on the measurement of the difference of potential between two 

electrodes (working (WE) and reference (RE)) in open circuit potential conditions (negligible 

current flowing through the system). The electrochemical cell is constructed by dipping these two 

electrodes into the solution to complete the circuit. A typical scheme of an electrochemical cell 

with potentiometric configuration is shown in Figure 1.2. The reference electrode has a well-

stablished electrode potential, which is reached by the use of a redox system (for instance Ag/AgCl 

in saturated KCl) with constant concentration of the two redox components. The working 
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electrode potential varies according to the composition of the solution. To name two possible 

mechanisms studied in our group: 

 If a recognition element is incorporated embedded in an electrode membrane, the 

electrode can be selective for a particular target. In this way if the membrane contains a given 

ionophore, the electrode will be selective for a certain ion. In this mechanism the potential is 

explained by the phase-boundary model [6] and the potentiometric response is Nernstian.  

 If the electrode is modified by a bioreceptor, then targets can be biomolecules or even 

microorganisms.  In this mechanism the potentiometric response is not Nernstian.  

The electric potential (referred in terms of electromotive force (EMF)) is related to the 

analyte concentration when thermodynamic equilibrium is reached between the free analyte in 

solution and the analyte present at the recognition element.  

 

Figure 1.2. Schematic representation of an electrochemical potentiometric measurement.  

 

Potentiometric response 

The electrochemical potential is the combination of electrical and chemical potentials. The 

electric potential is the work required to bring a charge from infinity to a point in the electric field 

per unit of charge, and the chemical potential of a substance in a mixture is related to the Gibbs 

free energy of the mixture.  
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The electrochemical potential is the sum of potential of the working and the reference 

electrodes. Potentials generated across the circuit are also included at the potential measured 

sum, such as the phase boundary potential (potential at the interfaces electrode-membrane and 

membrane-solution) and the diffusion potential inside the membrane. 

While the open circuit potential of ion-selective electrodes can be explained by the 

conventional redox approaches using the Nernst equation, the potentiometric response generated 

on H2O2 determination depends on different factors that makes the response non-Nernstian, and 

it is driven by the mixed potential mechanism. The concept of mixed potential was firstly 

introduced by Wagner and Traud back to 1938 [7] and was mainly used in corrosion field, reaction 

kinetics and catalysis. Electrochemically, the mixed potential theory encompasses the combination 

of simultaneous reactions occurring in parallel, balancing all the redox reactions and conditions 

interfering with the electrode potential, as the total potential of the system. Unlike in redox 

equilibrium, where the overpotential is zero, the mixed potential results in a non-zero 

overpotential net, due to the need to balance the Faradaic production of different kinetically 

controlled reactions on the surface of the electrode, generated by the absence of a well-defined 

redox couple in solution in the electrochemical cell. It has been recently reported by Baez et al. [8] 

that the mixed potentials are originated by the current exchange of different reactions involving 

the electrode material, the solvent and other solution components. Indeed, they reported the use 

of polyelectrolytes as a way to modulate the kinetic factors controlling the response on platinum-

based electrodes, under the control of oxygen reduction reaction.  

Therefore, and as part of these different reactions occurring simultaneously on the surface 

of the electrode, the mixed potential mechanism also includes the generation of redox potentials 

(caused by the energy transfer of an electron from a donor to acceptor species in the 

electrochemical cell), as well as the Donnan potential (caused when a different charged substance 

is unable to pass through the membrane due to differential mobility near the semi-permeable 

membrane, and thus, creates an electrical charge distribution). 

All in all, the measured electrochemical potential in a two electrode electrochemical cell is 

the sum of all the potentials generated, taking into account all the boundaries from the electrode, 

membrane and solution, and the electroactive behavior of all the compounds in solution.  
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Amperometric detection 

Amperometry is included in the group of voltammetric techniques which are based on the 

application of a potential that causes an electrochemical oxidation or reduction of an electroactive 

compound, by means of generating a measurable current. When the applied operating potential is 

constant, the voltammetric method is called amperometry (for instance, when the potential is 

cycled, the technique is called cyclic voltammetry, and when the potential is swept linearly in time, 

linear swept voltammetry).   

Amperometry is based on a three-electrode electrochemical cell (Figure 1.3.); using the 

working and reference electrode (as in potentiometry) plus an auxiliary electrode (also called 

counter electrode (CE)). The current flowing between the working and the counter electrode is 

recorded as a function of its potential against the reference electrode.  

 

Figure 1.3. Schematic representation of an electrochemicall amperometric measurement. 

The limiting current (𝐼𝑙) measured at the electrochemical reduction of the analyte, T, under 

hydrodinamically controlled conditions, can be expressed as: 

𝐼𝑙 = 𝑛 𝐹 𝐴 𝑚𝑇𝑐𝑇                                                                            1.3. 

where 𝑚𝑇 is the mass transport coefficient, which is flow-rate dependent, 𝑐𝑇 is the analyte 

concentration, 𝑛 is the number of electrons in the redox reaction, 𝐹 is the Faraday constant and 𝐴 

is the electrode surface area. If the mass transport coefficient is constant (which can be 
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maintained constant by ensuring a constant diffusion layer thickness), then the concentration 

variation of the analyte can be monitored by the current measurement [9].  

In amperometry, as the solution is moving, the diffusion layer thickness is constant and thus 

a steady-state current is monitored, which is independent of time. The recorded current is, then, 

directly correlated to the bulk concentration of the electroactive species or their production-

consumption rate within a contiguous catalytic layer. The generated current is stablished by the 

equilibrium in the diffusion of the analyte through the matrix onto the electroactive surface that 

undergoes oxidation or reduction of its species. Thus, the analyte concentration will be 

proportional to the equilibrium and the generated current.  

In the case of amperometric biosensors which involve enzymes to achieve the signal-analyte 

concentration relationship, the kinetics of the enzyme reactions influences the monitored current 

[4]. In this thesis, we have used oxidase enzymes, which kinetic steps are: 

𝑆 + 𝐸𝑜𝑥  
 𝑘−1/𝑘1
↔     𝐸𝑜𝑥𝑆

𝑘2
→𝑃 + 𝐸𝑟𝑒𝑑                                                           1.4. 

𝐸𝑟𝑒𝑑 + 𝑂2  
𝑘3
→ 𝐸𝑜𝑥 + 𝐻2𝑂2                                                               1.5. 

Where 𝑆 stands for the substrate (target analyte), 𝐸 stands for the enzyme and 𝑃 stands for 

the product of the reaction. Thus, taking into account that the steady-state current at an 

amperometric electrode under diffusion control (𝐼𝑑) is: 

𝐼𝑑 =
𝑛 𝐹 𝐷 [𝑆]

𝑑
                                                                                  1.6. 

where 𝑑 is the diffusion layer thickness, 𝐷 the diffusion coefficient of the measured species 

in the layer and [S] the substrate concentration. The rate of an enzyme-catalyzed reaction is given 

by: 

𝑑 [𝑆]

𝑑𝑡
=
𝑘2[𝐸0] [𝑆]

𝐾𝑀 + [𝑆]
                                                                          1.7. 

where 𝐾𝑀 is the Michaelis-Menten constant and 𝐸0 the total enzyme concentration. The 

current at an electrode under enzyme kinetic control can approximate to: 

𝐼𝑘 =
𝑛 𝐹 𝑑 𝑘2 [𝐸0] [𝑆]

𝐾𝑀 + [𝑆]
                                                                    1.8. 
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In order to evaluate and compare the characteristics of each electrochemical technique, 

Table 1.1. displays some of the features attributed to these different approaches, evidencing  their 

advantages and limitations. 

Table 1.1. Comparison of the characteristics of the three electrochemical techniques used in this thesis. 

 CONDUCTOMETRY POTENTIOMETRY AMPEROMETRY 

SIGNAL READOUT 

conductivity or resistance 

through ions movement in 

solution 

potential difference 

during redox process 

difference on current 

intensity at an applied 

voltage 

CELL electrolytic galvanostatic electrolytic 

SENSITIVITY high sensitivity 

Nernstian sensitivity in 

ISEs, high sensitivity for 

molecules 

high sensitivity 

LOD low (ppb) Moderate (µM-mM) extremely low (nM- µM) 

ROBUSTNESS high high high 

POWER 

CONSUMPTION 
low low higher 

COST 

interdigitated electrodes use 

to be expensive due to the 

required techniques (e.g. 

nanolithography) 

the advances in miniaturization procedures for 

massive production and low-cost substrates has 

decrease the final cost for both techniques 

INSTRUMENTATION 

SIMPLICITY 
uses only one WE uses WE and RE uses WE, RE and CE 
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The role of hydrogen peroxide in a wide range of biological processes has led to a steady 

increase in research into hydrogen peroxide determination in recent years, and conducting 

polymers have attracted much interest in electrochemistry as promising materials in this area. We 

present an overview of electrochemical devices for hydrogen peroxide determination using 

conducting polymers, either as a target or as a byproduct of redox reactions. We describe 

different combinations of electrode modifications through the incorporation of conducting 

polymers as the main component along with other materials or nanomaterials. We critically 

compare the analytical performances cited and highlight some of the future challenges for the 

feasible application of such devices.  

The content of this chapter has been published in the journal Critical Reviews of Analytical 

Chemistry with the corresponding DOI:10.1080/10408347.2020.1718482, and co-authored by 

Pascal Blondeau and Jordi Riu.  

INTRODUCTION 

Hydrogen peroxide (H2O2) is a key marker in biological processes because it is involved in 

signaling paths such as cellular growth, senescence [1] and apoptosis [2], and can be generated by 

means of different stimuli [3]. It may be related to some neurological disorders such as 

Parkinson’s, rheumatoid arthritis and Alzheimer’s together with other reactive oxygen species [4]. 

In addition, it plays a crucial role in many other sectors including chemical, pharmaceutical and 

food manufacturing [5]. It is also important in wastewater treatment and wood and paper 

bleaching [6]. Moreover, it is a byproduct of many biochemical reactions involving oxidase 

enzymes such as glucose, cholesterol and lactate oxidase, among many others [7]; therefore, 

detecting H2O2 can indirectly detect those biomolecules in different fluids. For these reasons, and 

due to their wide range of applications, the development of H2O2 sensors has recently been the 

focus of extensive research.  

Many different techniques have been developed to determine H2O2 including fluorimetry 

[8,9], chemiluminescence [10,11], chromatography [12,13] and spectrometry [14]. Nevertheless, 

the implementation of some of these techniques requires complex or expensive instrumentation 

as well as qualified personnel. Of all the techniques, electrochemical approaches measure H2O2 

relatively simply and with better sensing parameters, including high sensitivity and fast response 

time [15]. The ease of miniaturization [16,17] and the broad range of electrode modification 
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possibilities make electrochemical devices suitable for in situ H2O2 determination. In spite of all the 

advantages, electrochemical devices have limitations, such as inefficient electron transfer from the 

recognition element to the substrate, only moderate selectivity with some real samples and lack of 

measurement reproducibility. The body of research into electrode modification has been 

continuously expanding in recent years in an effort to overcome these drawbacks while still 

encompassing essential electrode requirements: conductivity, chemical stability and appropriate 

surface area and properties.  

Conducting polymers (CPs) are interesting candidates as sensing and transducer materials 

due to their electrical properties, and offer an alternative to metallic and inorganic 

semiconductors [18]. Conducting polymers are organic materials capable of conducting electricity 

along their backbones due to the conjugated π-electron or C=C conjugated bonds. Conducting 

polymers have been extensively studied in the thirty years since they were first discovered by 

Hegger, McDiarmid and Shikarawa [19]. Nevertheless, and in spite of reaching high conductivity 

values, early conducting polymers were unstable in air and were considered difficult to prepare 

[20]. Further research on the polymerization of polyanilines, polypyrroles and polythiophenes 

improved the preparation methods and led to a drastic increase in conductivity and stability under 

electrical and thermal conditions. The structures of the most commonly used conducting polymers 

in sensing applications, polyaniline (PANI), polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) 

(PEDOT), are shown in Figure 2.1. 

 

Figure 2.1. Structures of polyaniline, polypyrrole and poly(3, 4-ethylenedioxythiophene). 

CPs offer unusual electronic properties such as low ionization potential and high electron 

affinity, and they have been successfully used as sensing elements, immobilization matrices and 
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even as semi-permeable membranes for electrodes [21]. The ability to change their electrical 

conductivity by several orders of magnitude and their electron affinity depending on their redox 

state make CPs especially attractive for enhancing sensing performance [22]. Many factors can 

influence the properties of conducting polymer film, such as the deposition method, the solution 

pH and temperature, the dopant and the extent of doping material used and the surface 

conditions of the electrode [20]. Controlling the polymerization method and how the polymer is 

deposited on the electrode surface are key factors in tailoring CP properties. Polymerization can 

be either chemical or electrochemical, and the thickness and conductivity of the film can vary 

depending on the technique used (e.g. potentiostatic or galvanostatic [23]). The deposition 

method defines the adhesion of the conducting polymer to the electrode surface, which is mainly 

established by weak physical interactions. Roughening the electrode surface and covalently 

attaching the polymer to the substrates are the most frequently used ways to improve adhesion 

and avoid delamination or cracking of the coating film when the electrodes are exposed to wet 

conditions or mechanical stress [24]. Doping is based on the insertion of molecules that modify the 

electronic structure via the formation of local excitations in the way of polarons and bipolarons as 

delocalized charge carriers that allow the electrons to move along the polymer backbone [25,26]. 

Depending on the nature of the dopant, the polymer can undergo oxidation (p-doping) and have a 

positive charge, or reduction (n-doping) and have a negative charge. The size of the dopant is also 

variable. The doping process not only modulates the final conductivity of the film, but also its bulk 

properties such as density, volume, porosity, solubility and color, and its ultimate electrochemical 

stability. In addition, the doping process is reversible and the polymer can switch from the 

insulator to the conducting redox state by means of the incorporation or release of the dopant by 

applying potential to the polymer [27]. The ability to tailor the characteristics of conducting 

polymers expands their range of application to include, for instance, field-effect transistors, 

supercapacitors, solar cells and biosensors [18]. However, the intrinsic limitations of conducting 

polymers can hinder their application in these fields. The over-oxidation mechanism of conducting 

polymer is not yet fully understood and it is a considerable barrier for advancing polymer-based 

devices towards real-world applications: It irreversibly changes the structure of the polymer by 

reducing the conjugation lengths and inducing chain scission, leading to a decrease in or loss of 

conductivity. Over-oxidation is influenced by pH, and the properties of conducting polymers are 

also affected and modulated by pH, temperature, humidity and sensitivity to O2 and CO2. To 
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overcome some of these inherent limitations, conducting polymers have been hybridized with 

other suitable materials.  

Nanostructured and carbon-based materials such as metal nanoparticles, nanowires, carbon 

nanotubes and graphene sheets are very attractive components for use in sensor development. 

Their surface can be easily modified and they have a large surface-area-to-volume ratio, which 

enhances the transduction mechanism, thereby providing higher sensitivity towards the target 

analytes. The insertion of graphene or carbon nanotubes into the structure of conducting 

polymers by covalent functionalization and π-π or electrostatic interactions improves the order of 

the CP backbone and the delocalization of the charge carriers, leading to a higher conductivity 

[28]. Although the applications of hybrid composites combining nanomaterials and CPs have 

recently been reviewed for sensing and, especially, biosensing purposes [22,29,30], we focus on 

the use of CPs for the development of electrochemical sensors for the detection of H2O2. 

This review includes reports from the last five years and highlights those which have 

addressed the analytical performance for H2O2 determination in real samples such as body fluids 

or beverages, among others.  We have divided the review into two sections based on the 

electrochemical techniques used to determine H2O2: amperometry and organic electrochemical 

transistors (OECTs), as depicted in scheme 2.1. . 

 

 

Scheme 2.1. The main electrochemical detection of H2O2 using CPs as a component of the device. 
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DETERMINATION OF HYDROGEN PEROXIDE 

Amperometric H2O2 determination 

In general, H2O2 can undergo electrochemical oxidation and reduction (equations 2.1. and 

2.2.) depending on a variety of factors, from the type of substrate to the experimental conditions 

[31]. Electrochemical H2O2 sensors turn chemical information into electrical information, enabling 

the specific quantification of the target analyte within a complex matrix. 

𝐻2𝑂2 +  2𝐻
+ +  2𝑒− → 2𝐻2𝑂                                                                2.1. 

𝐻2𝑂2 → 2𝐻
+ + 𝑂2 + 2𝑒

−                                                                     2.2. 

Most of the electrochemical sensors developed to detect H2O2 are voltammetric sensors, 

which take advantage of the redox reaction that occurs upon the application of a time-dependent 

potential to the working electrode (changing its potential relative to the fixed potential of the 

reference electrode), which produces a measurable current that flows between the working and 

auxiliary electrodes. Among the voltammetric techniques, amperometry, in which a constant 

potential is applied to the working electrode and the current is measured as a function of time, 

uses Faraday’s law to calculate the amount of analyte, making this method the most commonly 

used tool for detecting H2O2 with high sensitivity and with low limits of detection. The following 

Scheme 2.2. shows the most frequently used combinations of sensor elements within the 

developed amperometric sensors, from the simplest, with only two components, to the most 

elaborate configuration combining up to four elements: 

 

Scheme 2.2. The main combinations of components of amperometric sensors: substrate, CP-composite, 

enzyme and coating layer. 
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In this review, most of the sensors mentioned mainly use glassy carbon electrodes (GCE) 

and screen-printed electrodes (SPE) as their electrode substrates, while the CPs are basically those 

shown in Figure 2.1. . We have classified the sensors based on their H2O2 detection strategy: direct 

detection as the main target, or indirect detection as a byproduct of a redox reaction. We can also 

differentiate the sensors by the additional components they incorporate in their membranes to 

improve selectivity, and other analytical parameters such as polymeric coatings (e.g. Nafion), 

nanomaterials like nanoparticles or nanofibers, and enzymes, among others.  

 

Direct amperometric H2O2 determination 

Among the amperometric sensors that solely use CPs for the detection of H2O2, Agrisuelas et 

al. [32] have recently achieved direct H2O2 detection in commercial hair lighteners and antiseptics 

with recoveries of between 98.9 and 100.8% by electropolymerizing poly(azureA) on disposable 

screen-printed carbon electrodes (SPCEs), together with sodium dodecyl sulfate. The 

amperometric response to H2O2 was measured at 0.5 V with sensitivities of 72.4 nA µM-1 cm-2 in a 

concentration range from 5 µM to 3 mM. Ethanol, sodium citrate, glucose, caffeine and L-

dehydroascorbic acid were tested as interfering species in order to assess the potential 

applicability of the sensor in real samples. None of these substances interfered with the H2O2 

response. 

Direct H2O2 determination can also be achieved using catalyzers or cofactors such as 

cytochrome C, hemoglobin and peroxidase enzymes. The most frequently used enzyme to 

decompose H2O2 is horseradish peroxidase (HRP) which can be easily isolated from plant radish, 

Escherichia coli or yeast, and is classified as oxidoreductase (1.11.1.7). HRP catalyzes the oxidation 

of a substrate using H2O2 as the oxidizing agent, allowing for direct electron transfer through the 

electrode. In these cases, the presence of the conducting polymer improves the performance of 

the sensor due to its intrinsic conductivity and its mechanical function as a matrix for the 

immobilization of the enzyme. For example, very low detection limits, 0.03 nM, were achieved by 

Zhang et al. [33] by preparing a hybrid composite via electrostatic interactions with PEDOT:PSS 

(poly (styrenesulfonate)) and chitosan micelles on top of a GCE surface. HRP was entrapped 

between the conducting polymer and a layer of Nafion by the drop-casting technique, and 

exhibited an excellent electrocatalytic activity towards H2O2, while the electron transfer was 

enhanced by the presence of the conducting polymer composite. Figure 2.2. shows the differential 
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normal pulse voltammograms and calibration curves, with a linear range of between 0.1 nM and 

0.01 mM. The wide detection range was attributed to the large surface area of the hybrid film due 

to the ability to immobilize a large amount of enzyme. In addition, this large surface area 

facilitated the signal transduction from the enzyme to the electrode. The sensor was tested in real 

samples, testing the applicability to detect H2O2 in a commercial disinfectant and it was validated 

via the potassium permanganate titration method with satisfactory results and a relative standard 

deviation (RSD) from 3.1% to 4.8%. 

 

Figure 2.2. A) Differential normal pulse voltammograms for Nafion/HRP/PEDOT:PSS/CS micelle/GCE in 0.1 M 

PBS (pH 7) with different concentrations of H2O2. B) Calibration curves corresponding to the response 

recorded on the Nafion/HRP/PEDOT:PSS/CS micelle/GCE biosensor versus the concentration of H2O2. 

Reproduced with permission from ref. [33]. 

 

One‐dimensional ordered conducting polymers (especially CP nanowires) have also been 

successfully used on H2O2 sensors. The use of these one-dimensional ordered conducting polymers 

enhances, for example, the electron transfer through the electrode, not only because of the 

intrinsic conductivity of the conducting polymer, but also because of the increased surface area, 

thus obtaining more effective modified electrodes. Rizarullah et al. [34] demonstrated this effect 

by characterizing carbon paste electrodes with and without PANI nanofibers. The final 

performance of these modified electrodes (HRP/glutaraldehyde/PANI nanofibers/carbon paste 

electrodes) resulted in a linear range between 0.1 and 0.3 mM and a sensitivity of 12104 nA µM-1 

cm-2. Nevertheless, the optimal conditions for these electrodes were pH 7 (in phosphate buffer 

saline (PBS)) and a working temperature of 50 °C. Although this temperature does not denature 

the immobilized enzyme, it can represent a substantial drawback when measuring real samples.  
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As mentioned above, nanomaterials have attracted much attention in the exploration of 

surface modifications due to the different physical properties in nanoscale compared to their 

respective properties in bulk. The incorporation of different nanostructures into a system that 

already contains CP films generally improves the interaction and the electrocatalytic activity with 

the analyte in a synergistic way, which leads to amplified output.  

For example, the addition of Prussian Blue (PB) NPs on PEDOT [35] resulted in a modified 

GCE able to detect H2O2 with a limit of detection of 0.16 µM, within a linear range of 0.5 to 839 

µM and a time response within 5 s. No interference was observed due to the presence of 

dopamine (DA), ascorbic acid (AA), uric acid (UA) or lactose, and real milk samples were evaluated 

by the standard addition method, with recoveries between 98% and 102.7% and RSD between 

2.4% and 3.8%, demonstrating the viability of the sensor for use in real sample analyses. 

Mercante et al. [36] achieved considerably high sensitivity (677 nA µM-1 cm-2) using a 

ternary-graphene-based composite with reduced-graphene oxide (rGO), PEDOT:PSS and gold 

nanoparticles (AuNPs). HRP was immobilized on a screen-printed gold electrode by drop-casting 

and with the addition of a cross-linker to enhance the electron transfer between the heme group 

of HRP and the electrode surface. The electrocatalytic reduction of H2O2 was evaluated at -0.4 V 

and the obtained linear range, from 0.5 to 400 µM, was suitable for determining H2O2 in real tap 

water samples and bovine milk. Actually, the use of hydrogen peroxide as a pre-oxidant in 

municipal water treatment is well documented and has been practiced for over 20 years, and its 

use for the activation of the lactoperoxidase system in the preservation of milk has proven 

effective against both gram-positive and gram-negative bacteria [37,38]. Different electrode 

configurations were characterized to prove the synergistic effect between PEDOT:PSS and AuNPs, 

as well as the reduction in peak separation, which led to faster electron transfer with the whole 

electrode modification. However, all electrochemical measurements were performed under N2-

saturated solutions in order to avoid other reduced interferences. Thus, their real-world 

application in field measurements, for example, may be limited.  

Kumat et al. [39] used a polymer nanocomposite to obtain synergistic effects from the 

mixture of polymer, nanoparticles and graphene, and achieved a composite with superior 

conducting properties. Silver nanoparticles (AgNPs) were incorporated into the previously 

synthesized PANI-rGO system by means of a self-assembly method. The final electrode was 

assembled onto a glassy carbon surface by drop-casting. Nafion solution was also deposited to 
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enhance the adherence of the complex. The quantitative determination of H2O2 was performed 

amperometrically at -0.4 V in phosphate buffer. Results showed a linear relationship in the range 

of 0.01 and 1000 µM with a limit of detection (LOD) of 50 nM and a sensitivity of 14.7 µA mM-1 cm-

2. The authors demonstrated the synergistic effect of the system, with PANI being responsible for 

the electron transfer during the catalytic reaction occurring between H2O2 and AgNPs. The 

electrode modified with the conducting polymer composite exhibited a greater electroactive 

surface area (resistance of charge transfer, Rct=9 Ω with PANI versus Rct=27.5 Ω without PANI) and 

facilitated the electron transport through the electrode. However, and in spite of having checked 

for interference species, similarly to the previous example of Mercante et al. [36], amperometric 

measurements were also done under N2, which may represent a drawback for electrode 

implementation in terms of time and cost effectiveness.  

Systems incorporating one‐dimensional ordered conducting polymers and nanostructured 

materials exhibit better characteristics in terms of the individual performance of these 

components, demonstrating their synergistic effects. For instance, Yang et al. [40] presented a 3D-

macroporous PEDOT prepared by electrodeposition on a GCE surface where PB NPs were 

incorporated into the system by immersing the electrode in an electrolyte solution containing PB, 

generating the spontaneous growth of NPs on top of the polymer film. In this case, the use of the 

conducting polymer had two functions: first, it reduced the iron to initiate PB NP growth; and 

second, it provided a larger surface area on which to capture more NPs. Chronoamperometric and 

CV experiments showed improved H2O2 catalysis. Amperometric measurements were taken under 

0.11 V at pH 3 in a 0.1 KCl solution, yielding a linear range from 0.17 µM to 0.257 mM with an LOD 

of 80 nM for 3D-PEDOT-PB/GCE compared to the two linear ranges obtained from PB/GCE (from 

12 µM to 0.57 mM and from 0.57 mM to 1.57 mM) with an LOD of 3 µM obtained based on the 

first linear range. Figure 2.3. shows the synergy between the components of the conducting 

polymer-modified electrode, which clearly shows an enhancement of the analytical parameters.  
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Figure 2.3. Peak current responses for 0, 0.13, 0.26 and 0.4 mM H2O2 on the indicated modified electrodes. 

Adapted from ref. [40]. 

 

Additionally, interference studies have also been conducted using UA, DA, glucose, highly 

concentrated sodium chloride (NaCl) and AA with negligible responses which did not interfere with 

H2O2 determination. 95% of the signal was also retained after a month, suggesting the potential of 

this hybrid composite for use in bioelectrochemical sensors and devices.  

Baghayeri et al. [41] used a PPy nanocomposite made up of poly (styrene-alt-maleic 

anhydride) (PMSA) grafted with 4-aminobenzenesulfonate (4ABS) (PMSA-g-4ABS) with functional 

groups to improve the interaction with the redox protein hemoglobin (Hb). Hb has one 

electroactive iron heme group that allows for direct electron transfer from the protein to the 

electrode (GCE). The conducting polymer nanocomposite-based electrode demonstrated a fast 

response towards H2O2 detection of 4 s, a linear range of 0.8 to 460 µM and an LOD of 0.32 µM. 

With these characteristics, the sensor applicability was evaluated by detecting H2O2 in rainwater 

by means of the standard addition method, and human serum samples using 10-fold dilution and 

spiking known H2O2 concentrations. The overall recoveries of the sensor were between 97.8 and 

103.5% [41]. 
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Amperometric H2O2 detection as a byproduct of redox reactions 

Apart from developing sensors to directly detect H2O2, sensors for the detection of H2O2 as a 

byproduct of the oxidation reaction are an essential component in the development of biosensors. 

The primary group of these biomolecules is made up of molecules such as glucose, cholesterol and 

xanthine, which undergo oxidation by an oxidase enzyme and produce H2O2 as a detectable 

byproduct. An electron cascade is generated from the oxidation of the main component to the 

final reduction of H2O2, which is detected by the electrode. Of all the electrochemical sensors 

detecting H2O2 as a byproduct, glucose sensors are undoubtedly the most frequently used and 

studied because of the ease of operation and the efficiency of their specific enzyme (glucose 

oxidase, GOx) and the global market coming from the diabetic population. General equations of 

the electrochemical glucose determination are given below: 

𝑔𝑙𝑢𝑐𝑜𝑠𝑒 + 𝑂2   
𝐺𝑙𝑢𝑐𝑜𝑠𝑒 𝑂𝑥𝑖𝑑𝑎𝑠𝑒
→                   𝑔𝑙𝑢𝑐𝑜𝑛𝑖𝑐 𝑎𝑐𝑖𝑑 + 𝐻2𝑂2                                          2.3. 

𝐻2𝑂2   
                                     
→                  𝑂2 + 2𝐻

+ + 2𝑒−                                                     2.4. 

Kausaite-Minkstimiene et al. [42] demonstrated glucose detection in 10-fold diluted human 

serum samples using solely CP-based sensors. They described an environmentally friendly 

synthesis of poly (pyrrole-2-carboxylic acid) particles (PCPy) by means of chemical oxidative 

polymerization using H2O2 as the initiator of the polymerization. They took advantage of the 

carboxylic groups from the particles to attach the GOx, forming a covalent link between the 

conducting polymer and the enzyme. Thus, they achieved measurement recoveries in real samples 

of between 99.1 and 106%, with a linear range from 0.1 to 15 mM and an LOD of 39 µM.   

Functionalization of the conducting polymer was also reported by Tekbaşoğlu et al. [43], 

who described direct glucose detection in commercial beverages (cola and juice samples) with 

recoveries of between 96.8% and 99.6% with 87% of the initial response retained after eight 

weeks. Their graphite electrode modification consisted of the oxidative polymerization of EDOT 

and bis(2-pyrdylimino) isoindolato-palladium complex, which had been shown to mimic catalytic 

enzymes which decompose H2O2 into O2 and H2O. Further immobilization of GOx was achieved by 

cross-linking the enzyme with the free amino functional groups of the polymeric composite. 

Despite attaining good analytical performance, real-world applications of this sensor for glucose 

detection may be diminished due to the narrow linear range capable of measuring glucose, which 

ranges from 0.25 to 2.5 mM.  
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Glucose content in diluted grape juice and honey was also determined by electrochemical 

synthesized PEDOT-modified electrodes with polyacrylic acid and poly(4-lithium styrenesulfonic 

acid)  [44]. The amperometric glucose measurements were validated with a reference enzymatic 

method, and the sensor presented a linear range from 0.96 to 30 mM, with an LOD of 0.29 mM 

and proved stable for 30 days. Other recent examples involving the polymerization of the 

conducting polymer together with other electron mediator dopants are described, for instance, by 

Vagin et al. [45]  and Wannapob et al. [46]. However, apart from testing some interference species 

such as AA and UA, none of them have reported glucose determination in real samples.  

Hybrid composites using nanomaterials are also used to quantify glucose through H2O2 

detection. Screen-printed carbon electrodes were modified with PEDOT microspheres and 

platinum nanoparticles (PtNPs) by Liu et al. [47]. Polymeric microspheres were obtained using 

calcium carbonate template-assisted polymerization by first preparing the CaCO3 template 

particles, and then applying mild and advanced chemical oxidation. The colloid suspension was 

mixed with K2PtCl4 to obtain PtNPs on the surface of the conducting polymer microspheres. In this 

case, PtNPs worked as a catalyst for H2O2 oxidation, PEDOT-microspheres functioned as high-

surface area support for the deposition of the NPs, while both together facilitated the fast electron 

transfer during the process. Absorption of GOx was achieved by incubation for 12h on an 

appropriate solution. The whole mixture was drop-casted onto the surface of screen-printed 

carbon electrodes followed by the drop-casting of a Nafion layer in order to protect the enzyme-

hybrid composite. Amperometric measurements were taken at 0.6 V in a 10 mM PBS (pH 7.4) 

solution. Notably good results were obtained in terms of both linear range (from 0.1 to 10 mM, 

which includes main glucose blood levels in diabetic patients) and sensitivity (116.25 nA µM-1), 

which is attributable to the morphology of the sensing layer, where a large inter-particle space 

helped the diffusion of the substances in between. Moreover, UA and AA were tested as 

interfering species at their corresponding concentrations in human serum with no interference in 

H2O2 measurements. Despite the good performance of this type of enzymatic sensor combining 

biocomponents, inorganic and organic materials (enzymes, metal NPs and conducting polymer), 

the authors did not present the analysis of glucose in any biological fluid, although they envisioned 

developing ‘advanced functional bio-conductive inks’ for future successful approaches to 

biosensor manufacturing [47].  
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Another hybrid composite using metal nanoparticles was characterized by Gokoglan et al. 

[48] using a distinct conducting polymer (poly(9,9-di-(2-ethylhexyl)-fluorenyl-2,7-diyl) end capped 

with 2,5-diphenyl-1,2,4-oxadiazole (PFLO)). Glutaraldehyde cross-linking agent was used to 

immobilize the GOx-AuNPs solution on the polymer surface. The final graphene/PFLO/AuNPs-GOx 

electrode showed a sensitivity of 7.35 nA/µM-1 cm-2, within a linear range of 0.1 to 1.5 mM and an 

LOD of 81 µM. Different mono- and disaccharides, such as fructose, galactose and mannose, as 

well as AA and urea, were tested as interference species with no significant response. Commercial 

lemon soda and milk glucose content were evaluated and compared to the glucose concentrations 

reported on the product label with relative errors below 3.6%, pointing to the real-world 

applicability of such a sensor. Moreover, the authors claim that this constitutes the development 

of a portable and cheap biosensor due to the use of graphene-paper as substrate. Although 

substrate materials and portable devices are beyond the scope of this review, it is worth 

highlighting the importance of developing simple, robust, portable and cheap devices for glucose 

detection for the point-of-care market [49,50].  

More complex hybrid composites include the incorporation of ionic liquid into the system. 

Ionic liquids are characterized by their wide potential window, high ionic conductivity and 

electrochemical stability and high biocompatibility, which makes them suitable for use in 

biosensing. For instance, brominated 1-decyl-3-methyl imidazole ([Denim]Br) was used by Zhu et 

al. [51] in combination with a PANI-TNT composite (titanium oxide nanotubes) for an effective 

glucose amperometric determination with 177.16 nA µM-1 cm-2 sensitivity and a linear range from 

0.01 to 2.5 mM. In spite of the insignificant response of the examined interference species (UA, AA 

and acetaminophen), experiments with real samples were not reported. Therefore, the real-world 

applicability of this hybrid composite has not been satisfactorily demonstrated. Conversely, Zhou 

et al. [52] prepared a hybrid composite with ionic liquid for the accurate determination of glucose 

levels in pre-treated and diluted animal serum and human urine and serum with recoveries of 

between 96.8 and 101.2%. The composite was made up of PEDOT, multi-wall carbon nanotubes 

functionalized with carboxyl groups (MWCNT-COOH) and the ionic liquid BminPF6, which was 

obtained by on-step potentiostatical polymerization on GCE. GOx immobilization was done by 

COOH activation leading to covalent bonds between the enzyme and the polymer composite. 

After pH, temperature and working potential optimization, the electrodes showed a linear range 

of 0.6 µM to 2 mM with an LOD of 0.015 µM, with reproducibility RSD of 0.73% and repeatability 
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RSD of 1.01%. The electrodes maintained 98.3% of their response capability after 30 days within 

an RSD of 0.54%.   

A comparative study of the analytical parameters reported in the articles reviewed that 

described amperometric sensors tested in real samples is listed in Table 2.1. Good performance 

was obtained in these reports particularly concerning stability, reproducibility and limits of 

detection. Most of them have tested the hydrogen peroxide/glucose conducting polymer-based 

amperometric sensor against other electroactive species that could interfere in sensor selectivity 

and sensitivity, such as ascorbic acid, glucose and uric acid, among others, which are mainly 

present in human body fluid and food samples. However, only a few of them really focused their 

work on testing the electrodes in real relevant samples, such as hair lighteners, disinfectants and 

milk, in which peroxide is used as a preservative and sterilizing additive [53,54], or in beverages 

and human body fluids, where glucose is present. The studies show characterization information 

to demonstrate the superiority of conducting polymers in terms of sensing parameters. Indeed, 

they demonstrate an increase in peak currents and a decrease in peak separation during cyclic 

voltammetries in different electrode configurations in order to highlight the role of the CPs, which 

finally accelerate the electron transfer between the analyte or mediators and the electrode 

surface. This information is also consistent with most of the electrochemical impedance 

spectroscopy spectra done to characterize the electrode surfaces as well. In general, the measured 

resistances are much lower when a CP is part of the system, indicating the higher conductivity 

achieved was due to the CP, which is related to the larger active surface area obtained when 

working with conducting polymers, and even larger when dealing with nanostructured conducting 

polymers. Nevertheless, only one of the mentioned articles [40] demonstrates and characterizes 

the contribution of the CP to the final analytical parameters of the sensor, such as sensitivity, 

linear range and limit of detection: noticeably, the LOD improved by two orders of magnitude to 

the respective control-modified electrode. Although characterization steps are crucial in electrode 

configuration, and in all examples, the use of CPs demonstrated better characteristics than in their 

respective controls, the quantification of the enhancement of H2O2 determination performance 

due to the incorporation of CPs still needs to be addressed.  
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Table 2.1. Comparison of analytical performance of some H2O2 conducting polymer-based amperometric sensors used in real samples 

(R = recovery; RSD=relative standard deviation).

WORKING ELECTRODE 
LINEAR RANGE 

(mM) 

SENSITIVITY 

(nA µM-1 
cm-2) 

LIMIT OF 

DETECTION 

(µM) 
SAMPLE VALIDATION ACCURACY REF. 

H2O2 as target 

SPCE/PAA(DS) 0.005 – 3 72.4 1.43 
commercial hair lightener and 

antiseptic. 
R= 98-100 % 

reproducibility RSD=6.2 %, 
repeatability RSD=3.4 % 

[32] 

GCE/Cs 
micelle/PEDOT:PSS/HRP/Nafion 

0.0000001 – 
0.01 

 0.00003 
commercial disinfector diluted 

10,000,000-fold 
70 % signal after 4 weeks 
reproducibility RSD=3 % 

[33] 

GCE/PEDOT/PBNPs 
0.0005 – 

0.839 
 0.16 

milk 
R=98-102.7 % 

90.8 % signal after 4 weeks 
reproducibility RSD=4.5 % 

[35] 

SPGE/PEDOT:PSS/ 
rGO/AuNPs/HRP 

0.0005 – 0.4 677  0.08 
tap water and bovine milk  

R=99 % 
94 % signal after 1 week 
reproducibility R=7.8 % 

[36] 

GCE/Ppy-PMSA-g-4ABS 0.0008 – 0.46  0.32 
rainwater and diluted human serum 

R=97.8-103.5 % 

92 % signal after 4 weeks 
repeatability RSD=3.2 % 

reproducibility RSD=4.34 % 

[41] 

H2O2 as byproduct 

Graphite/GA/PCPy-Gox 0.1 – 15  39 
human serum 10-fold dilution 

R=99.17-106 % 

95.3 % signal after 4 weeks 
reproducibility RSD=5.21 %, 

repeatability RSD=1.83 % 

[42] 

ITO/(PEDOT-PdBI-co-HKCN)/Gox 0.25 – 2.5  176 
coke and juice 

R=96-99 % 
87 % signal after 8 weeks [43] 

Pt/PEDOT/PAA/Gox 0.96 – 30  290 
diluted grape juice and honey 

R=5 % 
30 days stability [44] 

Graphene/PFLO/AuNPs-Gox 0.1 – 1.5 7.357 81 
commercial lemon soda and milk 

relative errors 2.1 and 3.6 
repeatability RSD=3.35 % [48] 

GCE/ILs/PEDOTM-MWCNT-
COOH/GOx 

0.00006 - 2 0.0895 0.015 
diluted animal serum and human 

serum and urine 
R=96.8-101.2 % 

98.3 % signal after 4 weeks 
reproducibility RSD=0.73 % 
repeatability RSD=1.01 % 

[52] 
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Organic electrochemical transistors (OECTs) 

Since OECTs based on polypyrrole were first reported by Wrighton et al. [55], organic 

electrochemical transistors have attracted much attention due to the low working voltages 

required and their stability to operate in aqueous media. The working principle of OECTs is based 

on a three-electrode system where the current flowing along the organic semiconductor 

connecting two of these electrodes (source and drain) changes as a function of the polarization of 

the third electrode (gate). Therefore, the potential is applied on the gate electrode in contact with 

the electrolyte and it modulates the ion motion in solution through the organic semiconductive 

channel, which leads to a change in the conductivity of the channel. Scheme 2.3. shows a 

schematic representation of an OECT electrode configuration and its possible functionalizations.  

 

Scheme 2.3. A schematic of an OECT configuration. 

The most often used configuration, as reported later in this review, consists of using the 

conducting polymer as the channel component, connecting the source and drain electrodes. 

Therefore, the conducting polymers act as the sensing and transducer material, since it changes its 

electrical properties as a function of the analyte concentration. Moreover, conducting polymers 

can also be placed on the gate electrode, either acting as the transducer or as an immobilization 

matrix where other biomolecules, such as enzymes or polymeric coatings, will be incorporated on 

the same gate electrode. Different configurations are also reported in this review, considering, for 

example, the incorporation of the recognition site in the conducting polymer along the channel 

between source and drain, or for instance, the manufacturing of the three electrodes of the OECT 

with the same conducting polymer.  

PEDOT:PSS has been successfully used as the active layer bridging source and drain 

electrodes, and is the most used conducting polymer in OECTs due to its high conductivity, broad 

pH range of operation and electrochemical stability attributable to the bridging of the 

dioxyethylene group across the 3 and 4- positions of the heteroring. PEDOT:PSS goes from the 
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conductive (oxidized) PEDOT+ state to the semiconducting (neutral) PEDOT0 state due to the 

doping or de-doping caused by the oxidation/reduction process: 

𝑃𝐸𝐷𝑂𝑇+ : 𝑃𝑆𝑆− + 𝑀+ + 𝑒−  ↔  𝑃𝐸𝐷𝑂𝑇0 +  𝑀+: 𝑃𝑆𝑆−                                 2.5.  

where 𝑀+ is a cation in the electrolyte medium and 𝑒− an electron from the source 

electrode. The migration of cations into the polymer causes compensation with the sulfonate 

groups of PSS, thus changing the electronic structure of the polymer, leading to a decrease in the 

current along the conductive channel. 

Therefore, glucose sensors have been developed using OECTs based on the fact that the 

oxidation of glucose oxidase, and consequently, the production of H2O2, modifies the gate 

electrode voltage, which, in accordance with the working principles of OECTs, ultimately modifies 

the current along the channel as a function of glucose concentration. The working voltage on the 

gate is chosen depending on the gate modification materials as well as the change in conductivity 

it produces on the channel; the greater the difference in current before and after applying the 

corresponding voltage, the more sensitive the channel is.   

The earliest CP-based transistors for glucose detection through GOx incorporation were 

based on the sensitivity of the polymers to pH changes, such as PANI [56] and the change in the 

redox state of the conducting polymer due to the oxidase reaction [57]. H2O2 involvement in such 

transistors was first demonstrated by Malliaras et al. [58,59] who used PEDOT:PSS as a sensing 

layer and Pt wire as gate electrodes where the H2O2 produced was oxidized. The mechanism 

behind the detection was suggested to be due to the reduction of the polymer after the H2O2 

oxidation at the gate to maintain the charge balance, or due to the redistribution of the potential 

at the solution/conducting polymer interface after the H2O2 production. A better understanding of 

the sensing mechanism of those simple glucose sensors was reported afterwards [60], attributing 

it to the Faradaic current at the gate electrode generated by H2O2 production. Since then, different 

configurations and functionalizations of the channel and gate electrodes have been studied to 

improve sensing characteristics. Even transistors in which the channel, source, drain and gate 

electrodes were made from conducting polymer [61,62] were able to detect glucose down to 

micromolar concentrations. More sophisticated systems have emerged from the incorporation of 

nanomaterials or ionic liquid on gate electrode functionalization, which has greatly improved the 

sensitivity of such devices and has broadened the ranges of detection of different analytes 

determining the course for OECT implementation.  
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For example, Liao et al. [63] prepared gate electrodes by anodization of a Ti wire forming 

TiO2 nanotube arrays (TiNTAs). PtNPs were then electrodeposited on the surface. The electrode 

was immersed in a GOx solution and then covered by a layer of Nafion. NP and enzyme loading 

was higher than in a conventional Pt gate electrode due to the porosity of the TiNTAs. PEDOT:PSS 

was used to bridge the source and drain electrodes. Figure 2.4. shows the current response of the 

OECT device to successive additions of a) H2O2 and b) glucose. The insets show the normalized 

current responses (NCR, which represents the drain current before and after the addition of 

H2O2/glucose at the concentration of interest) as a function of their respective concentrations. A 

linear range was obtained from 1 to 500 µM of H2O2 with a detection limit of 1 µM. The same 

trend was observed when GOx and Nafion layers were incorporated to use glucose as the target. A 

wider linear range was obtained (from 100 nM to 5 mM) with a sensitivity of 0.009 NCR decade-1, 

with a lower detection limit of 100 nM. With the enzyme-Nafion configuration, selectivity tests 

were conducted by adding AA and UA as the main interferences in human body fluids without 

producing any significant interference. 

 

Figure 2.4. Current responses of the OECT to successive additions of A) H2O2 and B) glucose. Insets: NCR as a 

function of analyte concentration. Adapted with permission from ref. [63]. 

The same electrode configuration was tested amperometrically in order to compare the two 

different configurations. OECT resulted in better sensitivity and detection limits (100 µM 

amperometrically versus 100 nM with OECT). Real samples were also tested by diluting human 

serum and were validated against a hospital-used blood sugar instrument, achieving a relative 

error of less than 4%. 

The simultaneous detection of glucose and lactate was achieved by Ji et al. [64] (Figure 2.5.), 

who combined two transistor systems with two different oxidase enzymes in one microfluidic chip 

with a dual channel. The H2O2 produced from each oxidase reaction did not diffuse and there was 
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no crosstalk between the two sensors. While PEDOT:PSS was spin-coated in both transistors 

channels, the gate modifications consisted of the deposition of poly (N-vinyl-2-pyrrolidone)-

capped PtNPs with the subsequent drop-casting of a Nafion layer and enzyme immobilization 

using a chitosan matrix, both for GOx and lactate oxidase (LOx). The microfluidic chip had a 

detection time of around 1 min and an LOD of 1 µM for glucose and 10 µM for lactate. It was used 

to determine salivary glucose concentrations for both non-diabetic and diabetic patients in a 10-

fold dilution. Glucose results were compared to those obtained by their portable prototype for 

real-time glucose determination, which was successfully validated. Although neither the validation 

of the lab results nor the prototype results compared to standard glucose determination methods 

were reported, the integration of the microfluidic transistor into a portable device linked to a 

smartphone via Bluetooth was considered to have great potential for real-time, non-invasive 

glucose sensing applications.  

 

Figure 2.5. Normalized current response after addition of analyte A) 10-4 M lactate, B) 10-4 M glucose and C) 

10-4 M lactate and 10-4 M glucose simultaneously, at VDS -0.2 V and VG 0.5 V. Adapted with permission from 

ref. [64]. 

Apart from being the key component on the bridging source and the drain channel, 

PEDOT:PSS can also be included in gate modification as the transducer element, as Pappa et al. 

showed [65]. A multianalyte biosensing platform was built by functionalizing the gate electrode by 

mixing PEDOT:PSS with polyvinyl alcohol (PVA) in order to introduce hydroxyl groups where the 

corresponding oxidase enzyme (either GOx, LOx or cholesterol oxidase (ChOx)) was covalently 

attached. A ferrocene-chitosan hybrid electron mediator was added to the gate electrode to 

improve the efficiency of the electron transfer. The final Au/PEDOT/oxidase/ferrocene-chitosan 

gate, together with the spin-cast PEDOT:PSS on the channel, provide LODs of 10 µM, 50 µM and 

10 µM for glucose, lactate and cholesterol respectively, and linear ranges going from 0.02 to 1 mM 

for glucose, from 0.1 to 2 mM for lactate and from 10 to 700 µM for cholesterol. The multianalyte 
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platform consisted of a transistor microarray for the selective determination of the 

abovementioned three components, integrated together with a “finger-powered” microfluidic 

system, and was used to simultaneously determine glucose, lactate and cholesterol content in 

human saliva. As in the previous example, although the concentrations obtained were not 

validated against other conventional methods, the OECT array with finger-powered microfluidics 

resulted in a potential platform for use as a non-invasive, portable multianalyte device for point-

of-care diagnostics (Figure 2.6.).  

 

Figure 2.6. A) Schematic illustration of the embedded "finger-powered" microfluidic biosensing platform B) 

Photograph of the device, showing the red solution that was pressure-driven from the inlet through the 

sensing areas, as indicated by the arrow. Adapted with permission from ref. [65]. 

Another example in which PEDOT:PSS was used both for gate and channel modification is in 

the study conducted by Welch et al. [66]. PEDOT:PSS was spin-coated onto the Pt gate electrode 

and the surface activated by plasma oxidation. Poly(glycidyl methacrylate and poly(2-

hydroxyethylmethacrylate) (PGMA:PHEMA) brushes were immediately polymerized on the 

PEDOT:PSS surface by means of the “grafting” method using an atom transfer radical 

polymerization technique. GOx was covalently attached to the brushes. Electrochemical 

measurements were taken using a phosphate buffer (0.12 M). The device exhibited a strong 

response at low concentrations and an even higher response at concentrations ranging from 3.84 

to 100 mM. This range covers the physiological and pathological glucose levels in human blood, 

saliva and brain tissue.  

Furthermore, Liao et al. [67] used two different conducting polymers in the same OECT 

device to detect uric acid, cholesterol and glucose through H2O2 production by their respective 

oxidase enzymes. PEDOT:PSS was deposited as the sensitive part of the channel and PANI worked 

as the transducer element included in the gate modification. The platinum gate electrode was 
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modified by a bilayer made of graphene oxide sheets (GO) and Nafion with graphene flakes. The 

gate modification was already useful for repelling positively charged molecules by the protonated 

conducting polymer and the anionic electroactive species by the acidic sulfonic groups of Nafion. 

In addition, selectivity towards the targets was achieved with the subsequent enzyme 

immobilization (either uricase (UOx), ChOx or GOx) by means of a glutaraldehyde cross-linker. UA 

sensors showed an LOD of 10 nM with a sensitivity of 147 mV decade-1 and a linear range of 100 

nM to 500 µM. Comparatively, amperometric measurements with the same electrode 

configuration reached a limit of detection of around 3 µM, which was two orders of magnitude 

higher than the OECT configuration. The cholesterol sensors showed a limit of detection of 100 nM 

and glucose sensors showed an LOD of 30 nM. UA and glucose were also tested by adding saliva 

samples to PBS solution, and achieved consistent results for potential real-world applications.  

 

A comparative study of the analytical parameters mentioned in the reported OECTs is listed 

in Table 2.2. In general, OECTs can achieve lower limits of detection than amperometric methods 

due to the fact that a small change in the gate voltage of an OECT can be reflected as a significant 

variation in the channel current, making these devices highly sensitive biosensors. However, as we 

have concluded from the studies reported in this review, most transistors are fabricated based on 

thermal evaporation and photolithographic techniques. Additionally, some of them require UV or 

plasma treatment, which must be taken into consideration in terms of a final application, as some 

of these techniques are expensive and time-consuming. The fabrication steps may therefore 

hamper the practicality of using OECT in low-cost, portable devices. This impracticality is also 

reflected in the number of studies that have tested their devices in real samples for real-world 

applications. Most of the devices listed in Table 2.2. were analyzed as proof-of-concept for the 

detection of glucose (or other molecules) by means of highly sensitive sensors using an H2O2 

determination strategy, and wider applications have been suggested using other enzymes by 

modifying the gate electrode with the incorporation of other (nano)materials. Nevertheless, the 

demand for small portable sensor devices has driven the quest for other suitable substrates, such 

as fabrics or PET [68], and simpler fabrication techniques, such as screen printing or inkjet-printing 

[69] to allow for the low-cost mass fabrication of OECTs. 
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Table 2.2. Comparison of analytical performance of selected conducting polymer-based OECT based on H2O2 

detection for different targets. 

CP ON 

ELECTRODE 
ADDITIONAL MATERIALS 

LINEAR 

RANGE 

(µM) 

LIMIT OF 

DETECTION 
(µM) 

SAMPLE VALIDATION OBSERVATIONS REF. 

PEDOT:PSS 
on channel 

PtNPs/GOx/Nafion 
0.1 to 
5000 

0.1 
diluted human 

serum 
RSD <4% 

90 % signal after 10 
days. 

Reproducibility 
RSD=4.1 % 

[63] 

PEDOT:PSS 
on channel 

PtNPs/Nafion/GOx-
chitosan 

 

1 
simultaneous 

detection by 10-
fold diluted 

human saliva 

validated portable 
glucose prototype 

[64] 
PtNPs/Nafion/LOx-

chitosan 
10 

PEDOT:PSS 
on channel 

PEDOT:PSS/chitosan-
ferrocene/GOx 

20 to 
1000 

10 

Simultaneous 
detection in 

human saliva 
microfluidic device [65] 

PEDOT:PSS/chitosan-
ferrocene/LOx 

100 to 
2000 

50 

PEDOT:PSS/chitosan-
ferrocene/ChOx 

10 to 
700 

10 

PEDOT:PSS 
on channel 

and gate 

PGMA:PHEMA 
brushes/GOx 

-- 0.95  
100% signal after 

100 days 
[66] 

PEDOT:PSS 
on channel. 

PANI on gate 

UOx-GO/Nafion-
graphene 

 

0.01 
Saliva in standard 
addition method 

 [67] 
ChOx-GO/Nafion-

graphene 
0.1  

GOx-GO/Nafion-
graphene 

0.03 
Saliva in standard 
addition method 

 

SUMMARY AND CONCLUSIONS 

The main advantage of using conducting polymers as charge-transfer media is that they 

offer the possibility of tailoring their characteristics to adapt to the surrounding conditions. The 

chemical or electrochemical polymerization or the media in which they operate can help modulate 

the final performance of target detection and define the adhesion of the film to the electrode 

surface, even becoming a serious limitation for sensor development. In most of the works cited in 

this review, modified electrodes were compared to bare electrodes. The main electrochemical 

techniques used to characterize the electroactivity of the electrode surface were cyclic 

voltammetry and electrochemical impedance spectroscopy. In most cases, the incorporation of 

the conducting polymer improved the electrocatalytic activity towards hydrogen peroxide in 

comparison to bare electrodes, or in comparison to other modifications without the presence of 

the conducting polymer. Consequently, the main contribution found in the use of conducting 
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polymers in electrode modification is the increase in redox peak currents, leading to a faster 

electron transfer from the analyte to the electrode surface. The use of conducting polymers as a 

transducer material in hydrogen peroxide sensors provides an additional conduction path to the 

already conductive electrode surface, which theoretically results in enhanced H2O2 determination. 

Nevertheless, their use as a sensing material has not yet been demonstrated, since all the above 

mentioned examples report conducting polymers as the transducer part to facilitate or accelerate 

the electron transfer propagation in the devices, while the catalytic activity towards H2O2 is 

produced by the incorporated mediators or materials taking part in the blends and composites. 

The characteristics of conducting polymers increase the output signal in response to the chemical 

reaction taking place at the electrode: the determination of hydrogen peroxide is never due to the 

change in the polymer redox properties, but rather to the electrode redox properties. In most 

cases, the comparison of analytical parameters for H2O2 detection with and without conducting 

polymers has not been reported, although for OECTs this comparison would not be meaningful 

since it is the basic component of the channel. Thus, even if the increase in the sensitivities 

obtained for those sensors or the wider linear ranges reached have been demonstrated, the 

quantification of this improvement has yet to be addressed. 

In general, although a great number of works have focused on the use of conducting 

polymers for sensing applications, their sensing mechanisms are not yet fully understood. Some 

potentiometric and chemiresistor studies have also been found in the literature [70−72], but the 

need to control the redox state as well as the acid-base and ionic equilibria simultaneously has 

paved the way for the progress of CP-based sensors towards amperometric devices or OECTs, 

since they operate by amplifying the signal due to the catalytic properties, or as immobilizing 

agents due to their biocompatibility [73]. Some of the intrinsic limitations of CPs, such as pH 

dependence, over-oxidation and influence of the electrolyte nature, must be addressed in order 

for CP-based sensors to become practical in real-world applications and to overcome the 

challenging issues of market access.  

The applications of each conducting polymer also pose some limitations due to their 

intrinsic properties. For instance, PPy conductivity is irreversibly destroyed upon exposure to H2O2 

[74,75], which hinders its use where hydrogen peroxide is present in the vicinity of the sensor. 

Conversely, PANI does not react with H2O2, which facilitates its application in the field, although its 

electrochemical activity decreases at pH above 5 [74]. However, some of these limitations have 
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been overcome over time by the use of conducting polymer derivatives and by tailoring their 

characteristics through the use of composite films [75] which extend, for instance, the operational 

pH range. It is not surprising, therefore, that the majority of the amperometric electrodes and 

organic electrochemical transistors, as mentioned in this review, incorporate PEDOT in their 

systems because of its environmental and thermal stability, its high electroconductivity and good 

film-forming properties. It is worth mentioning that PEDOT:PSS has also attracted attention due to 

its biocompatibility for the immobilization of biomolecules, as demonstrated by Richardon-Burn et 

al. [76]. It is for this reason that PEDOT is mainly used in combination with oxidase enzymes in 

most sensor configurations to achieve highly sensitive transistors.  

Although hydrogen peroxide plays an important role in many different areas, as mentioned 

at the beginning of this review, most of the reported H2O2 sensors focus on healthcare 

applications, and especially on glucose determination. The increasing prevalence of diabetes 

mellitus, which an estimated 8.4% of the world’s population currently suffers from [77], and the 

growing demand for means of monitoring and controlling glucose levels, has obviously driven the 

analytical field towards glucose detection in order to generate simple, low-cost, sensitive and 

reliable sensors. Although the advantages of the incorporation of CPs for the electrochemical 

detection of hydrogen peroxide have been significantly demonstrated, the implementation of CPs 

may require their integration in a portable, low-cost substrate such as paper [78] in order to make 

their contribution a real breakthrough in the field. 
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INTRODUCTION  

Conductometric sensors, or chemiresistors, are chemical sensors made of materials that 

change their electrical resistance due to the presence of a chemical change in the nearby 

environment. They offer simplicity both in construction and signal measurement, since there is no 

need of a reference nor an auxiliary electrode) and do not require complex instrumentation (the 

output signal can be measured with a simple ohmmeter). Most common materials used in 

chemiresistors are metals and metal oxide semiconductors, such as SnO2, TiO2, MoO3, In2O3, etc. 

which operate at high temperatures (200-500 °C) to achieve high sensitivities. One of their 

drawbacks is their poor processability. The use of conducting polymers as an alternative to those 

inorganic materials, provide some advantages to conductometric sensor fabrication: their 

synthesis is easy and tunable according the desired properties and they provide fast response and 

high sensitivity at room temperatures [1]. 

From the first incorporation of CP into conductometric devices back on 1983 by Nylabder et 

al. [2] for ammonia (NH3) detection, many different conducting polymer-based chemiresistor 

formulations have been fabricated for many different compounds. The vast majority of conducting 

polymer-based chemiresisitive sensors are used to determine gaseous analytes [3,4], where the 

interaction of the electron donor/acceptor gas with the conducting polymer causes a change in 

the doping state of the polymer due to the oxidation/reduction or protonation/deprotonation 

reactions by means of a change in the measured conductivity [5]. For example, Kuberský et al. [6] 

reported NH3 and humidity sensors based on polyaniline (PANI) and poly(3, 4-

ethylenedioxythiophene) poly(styrene sulfonate) (PEDOT:PSS), respectively, which were fabricated 

onto flexible poly(ethylene terephthalate) (PET) foil substrates. Rañola et al. [7] developed an 

array of three different conducting polymers (PANI, polypyrrole (PPy) and poly-3-methylthiophene 

(P3MTp) electrodeposited on a Teflon substrate in between two gold electrical contacts. The array 

was able to distinguish among a variety of different coconut oils. Moreover, nanostructured 

conducting polymers have also attracted the interest of many studies due to the high sensitivity 

and fast responses provided due to the high surface-to-volume ratio given by the nanostructured 

material. For instance, Tang et al. [8] reported a conductometric gas sensor based on PEDOT:PSS 

nanowires which was sensitive to NH3 and NO2 at room temperature with a limit of detection 

(LOD) at the ppb range. Nevertheless, the authors pointed out the challenge of large-scale 

nanowire fabrication, which hampers the commercialization of devices based on such 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL SENSORS FOR HYDROGEN PEROXIDE DETERMINATION 
Marta Borràs Brull 
 



CHAPTER 3 – PEDOT:PSS PAPER-BASED CHEMIRESISTOR FOR H2O2 DETERMINATION  
 

46  | DEVELOPMENT OF ELECTROCHEMICAL SENSORS FOR HYDROGEN PEROXIDE DETERMINATION 

nanostructures. NO2 was also determined using PEDOT:PSS nanotubes by Shaik et al. [9] achieving 

ppb levels as well. In addition, chemiresistors based on conducting polymers have also taken 

advantages of the combination of two or more materials to obtain superior properties and 

characteristics. Thus, some conductometric sensors have been developed by the incorporation of 

nanomaterials such as metal nanoparticles or carbon based compounds (graphene, carbon 

nanotubes, etc.) [10]. NH3 was also determined using PANI-functionalized multiwall carbon 

nanotubes by Abdulla et al. [11] showing enhanced analytical performances when compared to 

the conductometric configurations without the presence of the conducting polymer (i.e. response 

time with and without PANI was 6 s and 938 s, respectively). More recently, the real-time 

monitoring of pH during microbial fermentation was achieved by Chinnathambi et al. [12] using a 

Nafion-coated chemiresistor based on PANI-reduced graphene oxide (rGO) composite. In addition, 

another biological application of CP-based conductometric sensors was reported by Olean-Oliveira 

et al. [13] who also used rGO together with Azo-polymer to monitor oxygen consumption on 

biological processes involving mitochondria respiration.  

Nevertheless, the use of conductometric sensors is not only restricted to gas analytes. The 

incorporation of molecular recognition elements into the sensing layer of the chemiresistive 

systems has broaden the variety of targets to detect, and consequently, it has allowed its 

application for detecting analytes in non-gaseous phase. Therefore, the ability to operate in liquid-

phase allows conductometric probes to be used in body fluids or residual water, for instance, and 

provides the advantage of eliminating the need of controlling the humidity. The use of 

chemiresistors in aqueous environments has been demonstrated to detect proteins at low 

concentrations [14], to discriminate among four different species of bacteria in a bacterial culture 

[15] or to monitor human perspiration [16], among others [17-19]. The use conducting polymer in 

chemiresistive sensors together with the incorporation of receptors attached to the sensing 

channel has mainly attracted the attention of biomedical sciences. The most used configuration in 

this field has been using nanostructured nanowires or nanotubes conducting polymers. Their 

increased sensitivity to electrical changes allows the determination of different targets with low 

limits of detection. The biofunctionalization of PPy-nanowires with antibodies has been used to 

detect bacterial spores in artificial samples [20], viruses in real lake water samples [21] or cancer 

biomarkers in spiked human blood plasma [22].  
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Although the sensing mechanism of such conducting polymers is still not completely 

understood, there are different hypothesis supporting the detection mechanism of PEDOT:PSS in 

chemiresistors. The first one considers redox reactions taking place when the adsorbed analyte 

releases or accepts electrons to or from the polymer. Electrons from the conduction band and 

holes from the valence band of the conducting polymer recombine and as a result, the 

concentration of carriers decreases while the resistance increases. The second hypothesis aims at 

a direct charge transfer between the analyte and the polymer, which compensates the polymer 

charge lowering the final conductivity (increasing the resistance). And the third hypothesis do not 

imply a change on the redox state of the polymer, but a physical interaction involving absorbing or 

swelling of the target analyte what influences the polymer resistance. This third hypothesis is 

mainly adopted for volatile organic compound (VOCs) sensing devices [3]. Thus, the increase in 

resistance is due to the increase in the PEDOT interchain distance (a decrease of the electrical 

interconnections) on account to a swelling process that hinders the electron hopping along the 

polymer [23].  

Taking this into account, we aimed at developing a simple and low-cost chemiresistive 

sensor based on commercial PEDOT:PSS able to determine H2O2 concentrations in aqueous 

environment. Our hypothesis held up the chemical interaction between the hydrogen peroxide 

and PEDOT:PSS, by an electron exchange due to the redox reaction occurred between the 

adsorbed hydrogen peroxide and the conducting polymer. Thus, a change on the redox state of 

the polymer by means of a change on the charge carriers from the polymer backbone, would 

cause a change in the polymer conductivity (or resistance). Therefore, the chemiresistor 

formulation was supported as transducing mechanism for turning such chemical change into an 

electrical detectable output. Hence this chapter describes the fabrication and analytical 

performance of a hand-made paper-based chemiresistor using PEDOT:PSS conducting polymer as 

the sensing layer for the determination of H2O2 concentration. In addition, the development of 

such conductometric sensor was carried out considering some breakthrough aspects on the 

implementation of devices in the sensing field; the low-cost of manufacturing techniques and 

materials and a final easy-to-use configuration.  
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EXPERIMENTAL 

Materials and Reagents 

Whatman® Grade 5 qualitative filter paper (GE Healthcare Life Sciences) was used as 

substrate of the chemiresistor and a carbon-based screen-printable electrically conductive ink 

(122-49, Creative materials, Inc., MA, USA) was used to build the contacts of the electrode. Poly(3, 

4-ethylenedioxythiophene)-poly(styrenesulfonate) 1.3 wt % dispersion in H2O conductive grade 

(Merck, KGaA, Damstadt, Germany) was used as the sensing  layer of the chemiresistor. Plastic 

mask (ARcare® 8565, Adhesives Research Inc., Limerick, Ireland) and silicon rubber compound (RS 

Components, Ltd. Northants, UK) were used as additional materials on sensor fabrication. 

Hydrogen peroxide solution 30% (w/w) and methanol 99.8% were purchased from Merck (KGaA, 

Damstadt, Germany). All solutions were prepared using 18.2 MΩ cm-1 double deionized water 

(Milli-Q water systems, Merck Millipore). Nafion® perfluorinated resin solution (5 wt % in a 

mixture of lower aliphatic alcohols and water, 45% water), was also from Merck and in all cases it 

was used as received.  

Electrochemical measurements and instrumentation 

Resistance measurements were carried out using a Tenma 72-7720 digital multimeter 

(Tenma Corp.) and a Keithley 6514 electrometer from Keithley Instruments, Inc. (Ohio, USA) with 

the ExceLinx software for data acquisition, at room temperature.  

Sensor fabrication 

The first and simplest configuration of the chemiresistor was built based on the procedure 

described in Qin et al. [24] with some modifications. Briefly, the filter paper was cut into square 

pieces of 6 cm2 and two carbon ink bands were manually drawn in order to form the electrical 

contacts with a gap in between of approximately 0.5 mm. The bands were dried at 90 °C for 15 

min. and a second layer of carbon ink was placed onto the already drawn contacts to obtain a 

more homogenous surface with a stable and constant resistance value around 200 KΩ. A second 

drying process was done exactly as the first one. Both electrical contacts were then bridged by the 

as-received PEDOT:PSS 1.3 wt % by drop-casting. (Figure 3.1.) 
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Figure 3.1. Scheme of chemiresistor configuration. 

Further modifications of this first configuration were done in different levels to find an 

optimal device: the substrate material, the geometry of the electrical contacts, the incorporation 

of additional materials and the conducting polymer ink. Such modifications are described in the 

next section.   

  

RESULTS & DISCUSSION 

Substrate materials 

The substrate of the chemiresistor was chosen out of four different low-cost materials with 

different properties. Hydrophobicity, porosity and robustness were the key differences among 

rubber, glass, laminated paper and filter paper materials tested. The carbon ink electrical contacts 

were drawn as previously described and the incorporation of the conducting polymer was done by 

drop-casting. The hydrophobicity and solubility of the commercial CP marked the adhesion of the 

film to the substrate: while on high hydrophobic substrates the PEDOT:PSS addition was not 

controlled and the CP was peeled off from the surface (e.g. in rubber and laminated paper), the 

porous nature of filter paper allows the CP seep through the paper fibers and remained embedded 

in it. In the case of glass substrates, and in spite of its hydrophobicity, the polymer film was held 

on the surface as well. Nevertheless, once the sensors were immersed for 24 h in MilliQ water, an 

obvious polymer delamination was observed on rubber, laminated paper and glass substrates, 

leading to sensors with an empty gap between electrical carbon ink contacts, leading a surface 

without CP. In the case of the paper, despite there was also some polymer detachment from the 

substrate, a great amount of polymer remained embedded into the paper fibers leading the gap 

between the electrical contacts still bridged with conducting polymer. Thus, further resistance 

measurements were viable.  
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Polymer adhesion 

The previous water resistance experiments mentioned above, allowed us to dismiss the 

substrate materials which peeled off the CP from the surface, and continue working with filter 

paper. Although filter paper allowed a great amount of conducting polymer to remain in the gap 

between electrical contacts, the polymer adhesion was still an issue to be addressed in order to 

optimize the amount of polymer that takes part of the sensor. Polymer adhesion to the substrates 

depends on many factors, from the nature of the polymer and surface to the polymerization 

procedure (chemical or electrochemical [5]). As the adhesion of conducting polymer is basically 

determined by weak physical interactions, cracking or delamination of the coating can occur 

when, for example, ions or molecules from the electrolyte are incorporated or expulsed from the 

polymer backbone [25]. In addition, in the case of PEDOT:PSS, the addition of the water-soluble 

PSS surfactant provides the polymer the solubility it lacks, making it more soluble in aqueous 

media. However, the excess of the PSS chains causes a deterioration of the physical forces the 

polymer has with the substrate and the film becomes more prone to crack or detach from the 

surface [26]. Therefore, from the intrinsic challenge of conducting polymer adhesion, there arose 

many different strategies to improve polymer-substrate adhesion and avoid cracking and 

delamination. Surface chemistry provides different modifications to enhance polymer adhesion by 

strong physical interactions or by forming covalent bonds to anchor the polymer to the substrate. 

Roughening the surface prior to CP deposition [27,28], covalently attaching the polymer to the 

substrate by the addition of thiol groups to the polymer chain [29,30], the addition of adhesive or 

crosslinking agents [26] or the incorporation of carbon-based nanomaterials [31] or ionic liquids 

[32], are some of the reported strategies to improve the mechanical stability of the polymer, and 

thus, facilitate their implementation in devices. 

In order to improve PEDOT:PSS adhesion to our surface and avoid delamination due to the 

polymer swelling when working in aqueous media, we tried two simple strategies found in 

literature. One was developed by Wagner et al. [33] and it was based on limiting the solubility of 

the polymer by adding cations that could stabilize the interaction of the positively charged PEDOT 

and the negatively charged PSS. The other was reported by Nakashima et al. [34] who could 

overcome ink-bleeding issues in conducting polymer deposition by mixing the polymer with 

methanol. The method was based on the hydrogen bond formation between the OH group of 

methanol and the sulfonate group of PSS [35]. It is supposed to induce screening effect of the 

charged particles of PEDOT:PSS, leading to gelation during the solvent evaporation. It consisted on 
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diluting the polymer solution with methanol at the following proportion: ink/methanol = 1/1 – 1/4 

(v/v).  

Delamination was not fully avoided with any of the two strategies tested and resistance 

stability measurements did not show any significant differences between both ink modifications. 

Therefore, since the method incorporating methanol [34] presented advantages over the addition 

of CTA+ cations [33] by being simpler, cheaper and allowing a faster ink treatment, further 

experiments were performed using PEDOT:PSS/methanol blend.  

In addition, resistance measurements were also performed during the in situ addition of 

water after chemiresistor fabrication with 25% PEDOT:PSS/ 75% methanol ink. As shown in Figure 

3.2., the resistance remained constant after water evaporation on each addition, demonstrating 

the mechanical stability of the conducting polymer blend as well as confirming the absence of 

chain scission or polymer cracking which would interfere to resistance values.  

 

Figure 3.2. Time trace of resistance versus time during the addition of MilliQ water drops on three different 

devices. The arrows indicate the time and volume of each drop. 

 

Thus, and taking into account the adhesion of the conducting polymer to the different 

tested substrates, 25% PEDOT:PPS/ 75% methanol ink was used to build chemiresistors and filter 

paper was chosen as the candidate substrate to perform all further experiments. 
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Practical considerations 

In addition, other important aspects for practical use of the chemiresistor configuration, 

such as a delimited active area, the isolation of the active area from the rest of the sensor and the 

electrode geometry, were taken into account. Therefore, a home-made plastic template was used 

in order to draw the electrical contacts in a more reproducible way. In addition, a plastic mask 

with a 3 mm diameter circular window was added at the top of the conducting polymer channel to 

delimit the active area exposed to the medium and thus, the analyte, and the edges were sealed 

with glue. At the same time, silicon rubber compound was manually applied on both sides of the 

sensor to protect the carbon ink contacts from the aqueous medium. Moreover, the two different 

geometries shown in Figure 3.3. were also tested for different purposes. 

 

Figure 3.3. Scheme of chemiresistor configuration. A) Single electrode configuration for drop-casting 

experiments B) Chemiresistor configuration for experiments in solution. 

The new configuration shown in Figure 3.3.A. was used for experiments were the analyte 

was drop casted onto the active area which is represented in the figure by the blue spot. In this 

case, the electrical contacts made of carbon ink were integrated in a single paper strip and the 

resistance was measured between the two extremes of the electrode. Regarding the configuration 

shown in Figure 3.3.B., the addition of the plastic mask was useful both for delimiting the active 

area and for protecting the electrical contacts from water media when working in solution.  

PEDOT:PSS stability 

Once chemiresistor configuration was well stablished, and conducting polymer delamination 

was overcome, we first tested the stability of the measured resistance depending on the amount 

of PEDOT:PSS placed on the channel bridging the two electrical contacts. Thus, a continuous 

resistance monitoring was performed with the Keithley electrometer while PEDOT:PSS was in situ 

drop-casted by drops of 5 µL in the gap of the electrode (Figure 3.4.). 
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Figure 3.4. Continuous monitoring of chemiresistor construction: time trace of resistance versus time 

corresponding to the in situ additions of 5 µL of PEDOT:PSS on the channel area. 

High and fluctuating resistance measurements were obtained from first and second drop 

additions. Thereafter, the resistance measurements stabilized to few KΩ and remained constant 

for the further conducting polymer additions. Thus, an amount of 15 µL of PEDOT:PSS was 

stablished as the minimum practical amount of conducting polymer required to achieve an stable 

resistance baseline. 

H2O2 determination 

Hydrogen peroxide experiments were conducted by monitoring the change in resistance 

with increasing H2O2 concentrations. As a first step, we tested the response of our chemiresistor to 

the hydrogen peroxide using the as-received H2O2 30% (w/w) which had an estimated 

concentration of 9.7 M. Figure 3.5. shows the time trace of resistance measurement versus time: 

first, the conducting polymer/methanol mixture was added in situ between the two electrical 

contacts as previously described, second, two drops of MilliQ water were added on top of the 

previously deposited PEDOT:PSS as a washing step and reference signal change for wet conditions, 

and third, the hydrogen peroxide was added at the same sensing region. The resistance signal 

increased drastically upon hydrogen peroxide addition with differences from the references values 

(ΔR) around 20,000 KΩ.  
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Figure 3.5. Magnification of the time-trace corresponding to  the monitoring of the addition of 25% 

PEDOT:PSS/ 75% methanol,  the washing procedure with additions of MilliQ water and  the detection of 

H2O2 (additions of each compound are indicated by arrows). 

 

Further H2O2 calibrations were done using H2O2 concentrations within a range from 10-6 to 

10-1.5 M (0.001 to 32 mM). The calibration plots are shown in Figure 3.6., represented as absolute 

resistance values and relative resistance values calculated using the following formula: 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
(𝑅𝑖 − 𝑅0)

𝑅0
 

 

 

Figure 3.6. Calibration curves for increasing H2O2 concentrations represented as A) absolute resistance 

values versus logarithm of H2O2 concentration and B) relative resistance values versus logarithm of H2O2 

concentrations. 
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As shown in both plots, the resistance of the conducting polymer measured in between the 

two electrical contacts increased with the increasing concentrations of H2O2. It suggested, thus, 

that the interaction between hydrogen peroxide and PEDOT:PSS lowered the amount of charge 

carriers available in the polymer backbone, an therefore, reduced the channel conductivity.  

Nevertheless, we were not able to reproduce such results: the starting resistance was not 

reproducible as well as the resistance changes corresponding to each hydrogen peroxide addition. 

As shown in Figure 3.7., the differences between chemiresistor devices are clear and meant very 

high standard deviations for the average values.  

 

Figure 3.7. Calibration curves represented as resistance measurements versus logarithm of H2O2 of A) 

absolute resistance values from individual chemiresistor sensors (N=3) and B) average of the relative 

resistance values obtained from chemiresistors used in A with the corresponding standard deviation (N=3). 

Limitations 

Sensor irreproducibility lied on different parameters. Regarding the manufacturing 

procedure the first limitation is faced by the fact that a hand-made fabrication implies intrinsic 

variability between sensors. Although the fabrication procedure was always the same and was 

performed always by the same person, and although templates were used to improve 

reproducibility in the construction, it is understandable that all sensors were not identically the 

same. Although the criteria was fixed as achieving 200 KΩ on the carbon ink electrical contacts, 

neither the thickness nor the spreading through the paper fibers were controllable parameters. In 

addition, since resistance is a distance-dependent parameter, some of the differences in the 

measured resistance may come from the practical monitoring procedure. Second, the deposition 

of the conducting polymer was also a variable parameter. In spite of having stablished a fixed 

amount to achieve stable measurements and having a similar gap between electrical contacts 
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among all chemiresistors, the way the polymer spread through paper fibers and remained 

embedded in the paper was never a constant factor. In addition, the polymer spreading through 

the paper could overlap with the carbon ink electrical contacts which may also affect the 

transduction of the electrical signal. Third, the use of the plastic mask provided the advantage of 

ensuring that the area exposed to the analyte was always the same in each addition. 

Nervertheless, the role of the mask for such area delimitation may cast doubts since there was no 

way to demonstrate that the added analyte drop was only interacting with the exposed area 

through the mask, and did not interact with part of the polymer on the surface and embedded in 

the paper in the areas under the mask.  

Different attempts on fabrication and practical optimizations in order to overcome some of 

these drawbacks were unsuccessfully performed. The use of glue on sensor edges, the addition of 

a Nafion-coating on the electroactive area or the different liquid ink deposition methods tested 

did neither depict any significant differences nor improved the already obtained first-time 

resistance results. Additional experiments in solution using Figure 3.3.B. configuration did not 

succeed either. 

Regarding the analytical point of view, during an analyte drop-casting calibration every drop 

carried a different amount of target compound (from the lowest to the highest). Considering a 

physical interaction between polymer and target, the calibration may present an accumulative 

effect on the signal change, meaning that the observable resistance change from one point of the 

calibration could not be an absolute value of signal change, but a sum from all the changes from 

previous calibration points. Moreover, since the signal was expected to be directly related to the 

amount of target in contact with the polymer on the channel, a study of the signal dependence on 

the volume of analyte was also performed. Indeed, we saw higher resistance changes when higher 

target volumes were drop casted, even though target concentration was constant in all volumes 

tested. Thus discloses the need of the definition of a sample volume in order to dismiss any 

influence on the recorded signal.  
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CONCLUSIONS 

In this section, the determination of hydrogen peroxide using conducting polymer-based 

conductometric electrode was described as a preliminary proof-of-concept. Although we 

demonstrated the sensitivity of paper-based conductometric sensor through hydrogen peroxide 

by the measured resistivity changes, we were not able to achieve a reproducible and reliable 

system in order to define the basic analytical parameters a sensor requires. Therefore, neither 

sensitivity, nor limits of detection or linear ranges, nor interference of different species were 

reported. Although the use of low-cost materials and processing techniques were successfully 

prioritized, the completely hand-made manufacturing procedure together with the unclear 

interaction between the PEDOT:PSS and the H2O2, hampered both analytical performance and 

optimization steps. Nevertheless, those preliminary results have revealed the need to define and 

control the redox state of the used conducting polymer and its stability over the time. Since long-

term stability and the influence of some environmental conditions such as humidity and 

temperature is a current challenge in the field, the control over the redox state of the polymer 

could improve signal changes based on the oxidation-reduction process responsible of the output 

signal. In addition, further research should also address the reversibility of the process, 

considering the possibility of a change in the polymer conformation and backbone induced by the 

interaction of the hydrogen peroxide, which could cause the degradation of the polymer making 

the process irreversible.  
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INTRODUCTION  

Potentiometric sensors are electrochemical sensors used to determine the concentration of 

an analyte in an electrochemical cell by measuring the potential difference between two 

electrodes (the working and the reference electrode) under zero current conditions (open circuit 

potential). As explained in CHAPTER 1, the electromotive force is related to the analyte 

concentration in solution when thermodynamic equilibrium is reached between the free analyte in 

solution and the analyte bound to the recognition element. Thus, analytes can be ions and small 

charged molecules selectively recognized by ionophores in the ion-selective membrane (ion-

selective electrodes -ISE), can be biomolecules if the recognition element is modified with a 

biorecognition element (antibodies, enzymes, etc.), can be small organic molecules based on 

redox reactions with a particular metal. Indeed, in previous work from our research group, ion-

selective electrodes were developed, for instance, for the determination of creatinine in urine 

samples [1] or for K+ in blood [2]. The use of low-cost materials, such as paper [3,4], cotton yards 

[5], carbon fiber [6] and even skin tattoos [7] was also studied for their application to the 

detection in different biofluids (sweat etc.). The transduction mechanism of carbon nanotubes in 

ion-selective electrodes was also characterized in a work from the group [12]. Moreover, the 

incorporation of graphene-based materials set also the basis for the development of all-solid-state 

ion-selective potentiometric electrodes [13] and for the detection of living bacteria [14]. In 

addition, the integration of aptamers as biorecognition elements allowed the determination of 

ultra-low concentrations of a specific strain of Salmonella [8], as well as the detection of 

Staphylococcus aureus [9]. In combination with carbon nanotubes as transducer elements for such 

electrodes, Escherichia coli was also determined in real time measurements on complex matrices 

such as milk or apple juice [10] and glycoprotein from African Trypanosomes in diluted blood [11].  

The application of conducting polymers to potentiometric sensors was firstly introduced by 

Dong et al. [15,16] in 1988. From then on, different studies have focused their attention to explain 

the transduction mechanism [17]. CP can act as cationic or anionic exchanger depending on the 

charge and the mobility of the dopant. Therefore if ions approach/move away from the CP layer, a 

redox reaction occurs and an ion-to-electron transduction process takes place [18]. In addition, 

conducting polymers in potentiometric sensors can play two different roles. First, the doping and 

de-doping process allows the polymer to become an ion-exchanger material and be used both as 

the sensing layer and as transducer, due to its intrinsic electrical conductivity. And second, it can 
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be used as a polymeric matrix for the immobilization of specific molecular receptors (such as 

complexation agents, enzymes or antibodies). For example, polypyrrole was used to determine 

lactate in real blood and sweat samples, with a limit of detection of 81 µM with the use of lactate-

modified polypyrrole electrode [19], while in a different study, the same CP was used to 

immobilize the ionophore which conferred selectivity towards fluoxetine [20]. Besides, the use of 

CPs as transducer element can be combined with the addition of a conventional ion-selective 

membranes, which confers the selectivity to the electrode, while the CP would transduce the 

chemical event into a detectable signal [21,22]. In this case, the CP is mainly used as solid-contact 

due to its redox capacitance and reversible charge transfer properties, which allows to control the 

standard potential of the electrodes [23]. Many different studies have been developed on the use 

of CP in potentiometric sensors [13,24] and the way to overcome the main limitations (such as 

their poor stability due to undesired secondary redox reactions or the formation of a water layer 

between the CP and the electrode) [25–27]. For example, poly(N-methylpyrrole) was 

electropolymerized using potassium nitrate as electrolyte to obtain a selective film towards 

nitrate, which exhibited good selectivity and a strong preference for nitrate over other ion tested 

as interferences [28]. In another work, both PEDOT:PSS and polypyrrole were used as solid-contact 

layers together with a calcium selective membrane, and calcium determination was achieved with 

Nernstian responses in real tap water samples [29]. Another CP, POT (poly(3-octylthiophene)), was 

used by Vázquez et al. [30] together with additional membrane components containing silver 

ionophore, to develop a potentiometric sensor able to determine silver ions with Nernstian 

sensitivity and high selectivity. Moreover, the incorporation of nanostructured conducting 

polymer structures, such as nanoparticles, was also evaluated by Jaworska et al. who studied the 

electrochemical properties of polypyrrole nanoparticles for its use in potentiometric sensors [31]. 

They demonstrated the higher electroactivity of the nanostructured polypyrrole membrane 

compared to classical pyrrole films [32]. 

As above-mentioned, CPs were mainly reported as solid-contact transducer for ion-selective 

electrodes. The objective of this work was to develop a solid-contact potentiometric electrode 

based on CP to determine H2O2 in aqueous environment. The deposited CP would act as the 

transducer element, expecting that the interaction with the target analyte would induce a change 

in the chemical potential of the CP, which could be transduced in a detectable potential 

difference. Therefore, this chapter describes the fabrication of a PEDOT:PSS based potentiometric 

electrode, using both paper and glassy carbon electrodes as main substrates. In addition, the 
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analytical performance of such sensors and the tested optimizations, both regarding analytical and 

practical considerations, are described.  

 

EXPERIMENTAL 

Materials and Reagents 

Whatman® Grade 5 qualitative filter paper (GE Healthcare Life Sciences) with carbon-based 

screen-printable electrically conductive ink (122-49, Creative materials, Inc., MA, USA) together 

with a plastic mask (ARcare® 8565, Adhesives Research Inc., Limerick, Ireland) and glassy carbon 

electrodes (GCE) with a Teflon® body were used as working electrodes. Poly(3,4-

ethylenedioxythiophene)-poly(styrenesulfonate) 1.3 wt % dispersion in H2O conductive grade, 2.8 

wt % dispersion in H2O, low-conductive grade and 3.0 -4.0% in H2O, high conductivity grade 

(Merck, KGaA, Damstadt, Germany) were used as the sensing  layer of the working electrode. The 

monomer 3,4-ethylenedioxythiophene 97% and sodium polystyrene sulfonate were purchased 

from Merck, and used for the electropolymerization of PEDOT:PSS films as sensing layers. 

Hydrogen peroxide solution 30% (w/w) and methanol 99.8% were purchased from Merck. 

Nafion® perfluorinated resin solution (5 wt % in a mixture of lower aliphatic alcohols and water, 

45% water), and polyvinyl butyral (PVB) were also from Merck. 

Potassium chloride (KCl), sodium chloride (NaCl), disodium phosphate dibasic (Na2HPO4), 

potassium phosphate (KH2PO4), sodium bicarbonate (NaHCO3), sodium L-lactate (C3H4NaO3), 

sodium acetate (C2H3NaO2), acetic acid (CH3COOH) were of analytical grade and were purchased 

from Merck. Urea, ascorbic acid (AA), uric acid (UA), dopamine and ᴅ-glucose (GLC) were also 

purchased from Merck. Potassium hexacyanoferrate (III) (K3Fe(CN)6) and potassium 

hexacyanidoferrate (II) (K4Fe(CN)6), and 2-(N-morpholino)ethanesulfonic acid (MES), low moisture 

content 99% were purchased from Merck as well.  

Solutions 

All solutions were prepared using 18.2 MΩ cm-1 double deionized water (Milli-Q water 

systems, Merck Millipore). Phosphate buffered saline (PBS) was prepared with 0.1 M at pH 7.4 

(100 mM Na2HPO4, 18 mM KH2PO4, 14 mM NaCl and 3 mM KCl). Artificial serum was prepared at 

pH 7.4 with 140 mM NaCl, 29 mM NaHCO3, 2.2 mM KCl, 0.8 mM MgCl2, 1 mM sodium lactate, 2.2 
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mM KH2PO4 and 2.5 mM urea. Acetate buffer was prepared with C2H3NaO2 0.01 M and CH3COOH 

0.05 M at pH 4.5. MES buffer was prepared at 0.01 M with 0.1 M KCl at pH 5. 

Ferricyanide/ferrocyanide characterization solution was prepared with (K3Fe(CN)6) 1 mM and 

(K4Fe(CN)6) 1 mM in MES buffer pH 5. Electropolymerization solution was prepared with 0.01 M 

EDOT and 0.1 M NaPSS and stirred overnight in dark conditions to ensure the proper dissolution of 

the monomer. The solution was bubbled with N2 for 30 min before polymerization as described in 

Sjӧberg et al. [33].  

Electrochemical measurements and instrumentation 

Electromotive force (EMF) was measured with a high input impedance (1015 Ω) EMF16 

multichannel data acquisition device (Lawson Laboratories, Inc. Malvern) at room temperature in 

a well stirred 4 mL cell. A double junction Ag/AgCl/KCl 3 M reference electrode (type 6.0726.100, 

Metrohm AG) containing a 1 M lithium acetate electrode bridge was used. The substrate of the 

working electrodes were either conductive paper or glassy carbon electrodes.  

Cyclic voltammetry and electropolymerization experiments were carried out using a 

potentiostat/galvanostat Autolab PGSTAT128N with a frequency response analyzer 

electrochemical impedance module (FRA2) (AUTOLAB, Eco Chemie, B.V., Utrecht, The 

Netherlands) fitted with a three electrode electrochemical cell and NOVA software (v.1.11, The 

Netherlands) as a measuring interface. The corresponding paper or glassy carbon electrodes were 

used as working electrodes, the Ag/AgCl/KCl 3 M (type 6.0733.100, Metrohm AG) single junction 

electrode was used as the reference electrode, and a glassy carbon rod with a diameter of 3.0 mm 

was used as the counter electrode. All measurements were performed at room temperature.  

Measurements of pH were made with a GLP 21 pH meter using Hamilton Polylite lab probe 

(reference 238403).  

Absorbance measurements were taken in an UV-Vis spectrophotometer (Agilent 

Technologies, Spain) with a 10 mm light path plastic cuvette (BRAND GMBH+CO KG, Germany). 

Sensor fabrication 

Drop-casting on paper-based electrodes 

For the fabrication of the paper-based electrode the filter paper was painted twice with 

carbon ink with a drying process at 90 °C for 15 min after each painting step. Then the paper was 

cut into strips of 0.5 cm x 2.0 cm leaving a non-painted region of around 0.5 cm in one extreme of 
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the strip. Commercial PEDOT:PSS (conductive, high-conductive or low-conductive grade) was drop 

casted in this region and then dried for at least 2 h at room temperature. Each strip was then 

sandwiched between two 1.0 cm x 1.5 cm plastic masks. The top mask had a 3.0 mm diameter 

circular window to expose the conducting polymer to the solution. In some cases, a layer of 

Nafion® was drop casted on top of the window area (Figure 4.1.). 

 

Figure 4.1. Hand-made paper-based electrode fabrication procedure. 

 

Electropolymerized PEDOT:PSS 

Prior to electropolymerization, the electrodes were cleaned with KCl 0.1 M by CV (potential 

from -2 to +2 V, 40 cycles and scan-rate of 100 mV/s) and the surface was stabilized 

electrochemically with MES buffer by CV (potential from -0.2 to +0.8 V, 10 cycles, and scan-rate of 

50 mV/s). A first characterization of the electrode surface before electropolymerization was done 

with the ferricyanide/ferrocyanide solution by CV (potential from -0.5 to +0.7 V, 3 cycles, scan-rate 

50 mV/s). The electropolymerization procedure was carried by CV (potential from -0.2 to +1.5 V, 

15 cycles and scan rate 50 mV/s) with 0.01 M EDOT and 0.1 M NaPSS solution. A second 

characterization step with ferricyanide/ferrocyanide solution with the same conditions as already 

mentioned was done after the electropolymerization to ensure the proper conducting polymer 

film formation on the surface of the electrode. 

The electropolymerization process was either applied to paper-based electrodes and GC 

electrodes. In the case of paper substrates, the strips were all covered by carbon ink and the 

polymerization was done with the window area exposed to the solution. In the case of glassy 

carbon electrodes, the Teflon body isolated the edges of the glassy carbon, thus, only the 3.0 mm 

surface exposed to the solution was polymerized (Figure 4.2.). 
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Figure 4.2. PEDOT:PSS electrodepositon on A) paper and B) GCE, by electropolymerization of EDOT and 

NaPSS. 

 

RESULTS & DISCUSSION 

Paper-based electrodes 

First approaches were done using the sensor configuration shown in Figure 4.1. In order to 

avoid polymer delamination as described in the previous chapter, a Nafion-coating was used to 

retain the polymer on the substrate. The use of such polymeric layer did not show significant 

differences regarding the EMF0 values nor the linear ranges obtained (both were from 10-3 to 10-1 

M). Indeed, the electrodes with the Nafion-coating exhibited slightly higher sensitivity (56.1 ± 12 

mV dec-1 versus 50.4 ± 13 mV dec-1). Figure 4.3. shows the time traces of both types of electrodes 

(without and with Nafion, respectively) with the logarithm of the added concentrations indicated 

by arrows. 

 

Figure 4.3. Time trace of EMF versus time in water media of H2O2 calibrations using paper-based electrodes 

A) without and B) with Nafion-coating. Insets: calibration curves with the corresponding sensitivities. 
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Nafion is a tetra-fluoroethylene polymer with negatively charged sulfonated chains which 

act as a permselective membrane. Therefore, apart from providing mechanical stability to the 

overall sensing area of the electrode and entrapping the PEDOT:PSS avoiding it to peel off the 

electrode surface, Nafion layer also acts as a proton exchange membrane blocking other 

negatively charged species to reach the electrode surface. Thus, Nafion is also useful to avoid 

possible interferences of other redox compounds that could interact with the conducting polymer 

and affect the final signal.  

Regarding interference species, H2O2 calibrations under the presence of uric acid (UA) and 

ascorbic acid (AA) were performed in order to determine the degree of such interferences in our 

system. These compounds are commonly found in body fluids, especially in blood in a well-known 

concentration. Therefore, the determination of H2O2 produced by oxidase enzyme (e.g. glucose 

oxidase) in blood or any other body fluid could be interfered by such compounds.  

 

Figure 4.4. Time traces of EMF versus time in water media of two different H2O2 calibrations under the 

presence of A) 0.1 mM uric acid and B) 0.1 mM ascorbic acid. The addition of the interference compounds 

are indicated by arrows. 

As depicted in Figure 4.4., the addition of uric acid did not interfere in the H2O2 calibration 

and it was performed following the same trend as shown in Figure 4.3. (without interference). On 

the contrary, the addition of ascorbic acid had a great impact on the formal potential of the 

electrode, which decreased about 200 mV. Therefore, the decrease of EMF generated a higher 

difference of potential between the initial potential and the final potential after H2O2 calibration, 

by means of an enhanced sensitivity towards H2O2. Thus, different ascorbic acid concentrations 

were tested to evaluate the effect on H2O2 determination. Table 4.1. depicts the sensitivities and 
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linear ranges obtained for H2O2 calibrations under the presence of the indicated concentrations of 

ascorbic acid. 

Table 4.1. H2O2 sensitivity after the addition of ascorbic acid at different concentrations. The electrodes 

were tested in MilliQ water. 

AA (M) SENSITIVITY  (mV dec-1) LR (log[H2O2] (M)) 

10-4 103.5 ± 9.7 (-4 to -1) 

10-3 152.1 ± 31.7 (-3 to -1) 

10-2 34.7 ± 2.0 (-2.5 to -1) 

 

As shown in the table, the effect of the addition of AA did not follow a linear tendency, thus, 

we were not able to conclude either there was a dependence or not between the electrodes 

sensitivities and AA concentration. However, in all cases the EMF0 decreased 150-200 mV, and the 

sensitivity was significantly affected by the presence of AA. The greatest sensitivity was obtained 

when operating under 10-3 M of AA, while the widest linear range for H2O2 determination was 

achieved when using 10-4 M. With the exception of the 10-2 M AA, the tested concentrations 

resulted in better sensor characteristics. Nevertheless, we were able to observe the recovery of 

the initial potential to the original value once the ascorbic acid was removed from the cell, 

indicating that the influence of ascorbic acid is not permanent and stable in time, but reversible 

depending on its presence or absence. Since the presence of AA at a certain concentration 

improved the analytical performance of the electrode, experiments with the incorporation of AA 

as a component of the electrode modification was studied for further H2O2 calibrations, and it is 

described in the next section.  

Redox state of the conducting polymer 

From results described above and the ones obtained from CHAPTER 3, we considered the 

control over the redox state of the polymer to be a key factor regarding the performance and 

stability of the signal readout. Therefore, and taking into account the influence of ascorbic acid on 

the EMF and on the analytical performance, two different strategies were performed in order to 

reach a more reduced state of the polymer to achieve better analytical performances of the 

electrode.  
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The first approach consisted on mixing the AA with the commercial PEDOT:PSS and use it as 

an ink. Therefore, sensors were fabricated as abovementioned using PEDOT:PSS/AA instead of 

solely PEDOT:PSS. In general, potentiometric experiments did not show improved analytical 

performances of the electrodes. Table 4.2. depicts the sensitivities and linear ranges obtained for 

H2O2 calibrations with electrodes made of PEDOT:PSS together with the corresponding 

concentration of AA. Additionally, each sensor was covered by two different polymeric matrices; 

i.e. Nafion and PVB (1:10 in methanol) in order avoid the delamination of the ink from the 

substrate.  

Table 4.2. Sensitivities and linear ranges for H2O2 calibrations with electrodes made of PEDOT:PSS blends 

with different AA concentrations, with either Nafion® or PVB coatings. The electrodes were tested in MilliQ 

water medium (N=4). 

 NAFION® COATING PVB COATING 

AA (M) 10-3 10-4 10-3 10-4 

SENSITIVITY (mV dec-1) 35.2 ± 7.0 49.8 ± 3.2 50.6 ± 24.2 155.8 ± 2.4 

LR (log[H2O2]) (M) -3 to -1.5 -3 to -1.5 -3 to -1.5 -2.5 to -1.5 

 

In almost all the cases, the linear range remained the same as in the previous section, and 

sensitivities were similar or even lower. Actually, only in one of the combinations the sensitivity 

towards H2O2 was improved almost three times, although the narrow linear range obtained and 

the lack of signal when tested in other media different from water, made us dismiss the electrode 

configuration for further experiments.  

The second approach tested in order to change the redox state of the polymer was the use 

of different oxidizing and reducing agents mixed with the PEDOT:PSS and used as an ink as well. 

Massonet et al. [34] treated commercial PEDOT:PSS 1.3 wt % aqueous solution with different 

moderate reducing agents (Na2SO3 and Na2S2O3) and strong reducing agents (TDAE and NaBH4) in 

order to change the redox state of the CP and determined it by UV-Vis-NIR absorbance 

spectroscopy (Figure 4.5.). They demonstrated the improvement of the thermoelectric properties 

of PEDOT:PSS by reductive treatments. 
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Figure 4.5. Top: chemical structures of PEDOT:PSS (left) neutral chain, (center) a radical cation charge 

carrier, (right) a dication charge carrier. Bottom: absorbance spectra of a) pristine PEDOT:PSS and thin films 

treated with b) Na2S2O3, c) Na2SO3, d) NaBH4, and e) TDAE (tetrakis (dimethylamino)ethylene. Reproduced 

with permission from ref. [34]. 

In our case, when using oxidizing agents such as NaClO, the ink turned to red, which 

suggested a possible degradation of the CP, since no significant differences were observed at the 

UV-Vis spectrum. Regarding reducing agents, although some variations in the UV-Vis spectra were 

observed (data not shown), the potentiometric experiments with such mixed inks (PEDOT:PSS with 

either Na2SO3, Na2S2O3 or NaBH4) were not carried out as expected since signal stabilization was 

never achieved. The incorporation of these compounds may turn the impedance of the deposited 

layer too high to allow potentiometric readouts.  

Different strategies for depositing the layer of PEDOT:PSS 

In order to explore other possibilities in the redox state of our conducting polymer, we also 

fabricated and tested the electrodes with two other commercial PEDOT:PSS (high conductive 

grade and low conductive grade). The difference relies on the amount of PSS added as a dopant, 

which actually makes the polymer more conducting (oxidized form) or less conductive (reduced 

form). Both types of PEDOT:PSS were drop-casted in paper-based electrodes in its pristine form. At 

the same time, all these ink combinations were also tested over a GCE to study a possible effect of 

the substrate on the potentiometric performances. In addition, the use of electropolymerized 

PEDOT:PSS on both substrates (paper and GC electrodes) was also considered for comparison. 
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In the case of the low conductive grade PEDOT:PSS, the delamination was clearly an issue 

when working both in paper and GC substrates. The addition of a polymeric coating such as Nafion 

or PVB prevented the delamination as abovementioned, but further potentiometric experiments 

could not be performed properly due to the instability of the signal readout. Stability was achieved 

only in some cases among the overall combinations, but no changes in the electromotive force 

were recorded during H2O2 calibrations. Thus, no further experiments were performed using low 

conductive grade PEDOT:PSS. 

In the case of high conductive grade PEDOT:PSS, no delamination was observed when 

working either with or without coating layers. Although potentiometric experiments were 

performed as usual, the analytical performances of such electrodes did not improve the ones 

obtained with the commercial PEDOT:PSS 1.3 wt % in aqueous solution. Therefore, the use of this 

high conductive grade PEDOT:PSS did not contribute to improve any of the analytical parameters 

already achieved. Indeed, the obtained sensitivities towards H2O2 were lower compared to the 

firsts obtained with PEDOT:PSS 1.3 wt %.  

Electropolymerization of PEDOT:PSS was successfully done both in paper and in GC 

electrodes. Figure 4.6. shows the characterization made by CV with ferricyanide/ferrocyanide 

solution before (grey) and after (blue) electrodeposition of the CP on each surface. Grey lines 

show the characteristic redox peaks Fe+2/Fe+3 indicating the electroactivity of the cleaned surface 

allowing electron transfer between the electrode and the solution. Blue lines show the 

displacement of the same redox peaks and the increase of its intensity due to the polymer 

deposition on the surface. Usually, the blocking of the surface due to polymer deposition makes 

the intensity to decrease. However, since the deposited polymer is conductive, the more polymer 

is deposited the more current is recorded until reaching a saturation point.  
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Figure 4.6. Surface characterization  before and  after PEDOT:PSS electropolymerization on A) carbon 

ink paper electrode and B) glassy carbon electrode. 

Potentiometric measurements for H2O2 determination with paper-based electropolymerized 

PEDOT:PSS electrodes were performed. Nevertheless, the analytical performances did not provide 

any advantage over the drop-casted PEDOT:PSS paper-based electrodes. 

In the case of glassy carbon electrodes with electropolymerized PEDOT:PSS, the 

potentiometric measurements showed improved results compared to the first obtained with drop-

casted commercial PEDOT:PSS (Figure 4.7.). Both the sensitivities and linear ranges obtained with 

electropolymerized PEDOT:PSS were slightly higher (56.3 ± 5.2 mV dec-1 in a range between 10-4 

and 10-1 M).  

 

Figure 4.7. H2O2 calibration curve in water media of electropolymerized PEDOT:PSS on GCE (N=4). 

In addition, electropolymerized electrodes provided an additional advantage over the drop-

casted electrodes; no coating layers were needed to entrap the CP since electrodeposited films 

were already stable on the surface of the electrodes. 
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Different media  

Since all experiments were carried out in MilliQ water, the electrodes were also tested in 

different media with different ionic strength or pH in order to evaluate the response to H2O2 under 

distinct conditions. GCE-based sensors were chosen to perform these experiments due to the 

higher stability they offer compared to paper-based sensors. Following the results obtained in the 

previous section, the response towards H2O2 in all these different media was tested with 

commercial PEDOT:PSS 1.3 wt %, high conductive grade PEDOT:PSS and electropolymerized films 

from EDOT and NaPSS.  

NaCl 0.1 M was used to test the H2O2 response under a high ionic force medium. 

Commercial PEDOT:PSS formulations showed negligible responses towards H2O2 additions leading 

in poor analytical performances. On the contrary, electropolymerized PEDOT:PSS electrodes 

presented sensitivity values of 35.0 ± 9.0 mV dec-1 within a linear range from 10-2 to 10-1 M. 

In acetate buffer 0.01 M at pH 4.5 the H2O2 calibration curves lead to sensitivities around 20 

mV dec-1 in narrow ranges of 10-2 to 10-1 M in high conductive grade PEDOT:PSS (either pristine 

polymer, coated with Nafion or PVB). PEDOT:PSS 1.3 wt % was only stable and allowed signal 

recording when it was coated with PVB membranes, reaching sensitivity values of 28.0 ± 2.0 within 

a linear range from 10-3 to 10-1.5 M. Electropolymerized PEDOT:PSS electrode provided the widest 

linear ranges (10-4 to 10-1 M) with sensitivities of 49.0 ± 6.0 mV dec-1.  

Regarding PBS (0.1 M, pH 7.4) medium, potentiometric responses to H2O2 were almost 

negligible or null with drop-casted electrodes (both 1.3 wt % and high conductive grade 

PEDOT:PSS). Electropolymerized films reached sensitivity values of 30.9 ± 0.8 mV dec-1 but in a 

narrow linear range (10-2 to 10-1 M).  

Artificial serum at pH 7.4 was also used to test the H2O2 potentiometric response. 

Commercial PEDOT:PSS 1.3 wt % undergo delamination immediately, while high conductive grade 

formulations were stable but with negligible responses to H2O2. In this medium, best results were 

obtained with electropolymerized electrodes achieving sensitivities of 52.9 ± 6.3 mV dec-1 within 

linear ranges from 10-4 to 10-1 M. 

In conclusion, we observed that the solution pH, and thus, the ion concentration in solution, 

affects the reduction potential of hydrogen peroxide. Therefore, in some conditions above-

mentioned, hydrogen peroxide may not have enough potential to undergo reduction and produce 
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a change in the redox state of the conducting polymer. Consequently, the electrochemical signal is 

hampered to be detected potentiometrically.  

Taking into account these last results, electropolymerized PEDOT:PSS was clearly the most 

stable formulation under all the different media tested. Electrodeposited films did not undergo 

delamination and showed significant response corresponding to H2O2 calibrations in all conditions 

tested. Table 4.3. summarizes the analytical parameters obtained from H2O2 determinations 

performed with electropolymerized PEDOT:PSS films. 

Table 4.3. Comparative table of different analytical parameters obtained from H2O2 calibration with 

electropolymerized PEDOT:PSS electrodes under different conditions. 

 
MILLIQ 
WATER 

NaCl 
0.1 M 

ACETATE  
pH 4.5 

PBS 
pH 7.4 

ARTIFICIAL 

SERUM pH 7.4 

LR 
(log [H2O2]) (M) 

-3.5 to -1.5 -2 to -1 -4 to -1 -2 to -1 -4 to -1 

SENSITIVITY 
(mV dec-1) 

52.9 ± 6.3 30.9 ± 0.8 49.0 ± 6.0 35.0 ± 9.0 56.3 ± 5.2 

LOD 
(log [H2O2]) (M) 

-3.8 -2.2 -4.3 -2.3 -4.5 

RESPONSE 
TIME (s) 

100 400 250 200 200 

 

Therefore, electropolymerized PEDOT:PSS on GCE was chosen as the electrode 

configuration to perform further experiments, in order to optimize sensor parameters.   

Electropolymerized PEDOT:PSS on GCEs 

Interference experiments were done with GCE/electropolyerized PEDOT:PSS to check which 

compound could compromise the performance of the sensor. From all the tested media, we chose 

artificial serum at pH 7.4 to perform all next experiments due to the complexity of its matrix and 

its similarity to human physiological serum.  

Figure 4.8. shows the calibration curves corresponding to each interference. The addition of 

UA in the cell did not affect the initial EMF of the electrode, but decreased the sensitivity towards 

H2O2 in approximately the half (23.4 ± 6.7 mV dec-1 versus 56.3 ± 5.2 mV dec-1) in the range of 10-

3.5 to 10-2.5 M. The initial EMF decreased around 50 mV when dopamine was added in the cell, and 
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further H2O2 calibration was affected due to dopamine’s presence, achieving sensitivity values no 

greater than 35.3 ± 6.9 mV dec-1 in the narrow range of 10-2.5 to 10-1 M. Under the presence of AA, 

the initial EMF decreased around 100 mV and further H2O2 calibration gave sensitivities of 60.9 ± 

8.2 mV dec-1 in the range of 10-4 to 10-1.5 M. So far, the addition of AA improved the sensor 

performance towards H2O2, as occurred with paper based sensors previously.  

 

Figure 4.8. H2O2 calibration curves for electropolymerized PEDOT:PSS on GCE under the presence of  0.1 

mM UA,  0.1 mM dopamine and  0.1 mM AA. 

Nevertheless, the rest of the tested substances also interfered to the signal response 

probably due to the electrochemical activity of the CP which results in an ionic and electronic 

equilibrium at the interface with the CP and the solution. The presence of such redox compounds 

hampered the development of further experiments considering further application in real samples 

with interference species.  

 

CONCLUSIONS 

In this chapter, the fabrication of a solid-contact conducting polymer-based potentiometric 

electrode has been described. Different formulations of the PEDOT:PSS, combined with different 

materials as substrates of the electrode have been developed and studied for the H2O2 

determination in aqueous environments at different conditions. It was shown that in presence of 

AA, the detection of hydrogen peroxide was improved although the mechanism is not 

straightforward. Nevertheless, the detection is highly affected by the presence of other 

electroactive species in the media such as uric acid. Further optimizations did not improve the 

performance. Moreover, control experiments displayed sensitivity to H2O2 without the presence of 
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the conducting polymer. At that point, and due to the irreproducibility between CP-based GCEs, 

we could not ensure the reliability of the CP-based electrodes. Cracking or partial delamination of 

the conducting polymer in the surface of the electrode could be one of the reasons of the 

unreliable recorded signals. Such instability can also be caused by the formation of a thin aqueous 

layer between the electrode and the CP, which is usually responsible of potential drifts and 

irreproducibility of CP-based potentiometric sensors [17].  

As we pointed out from results in the last chapter, we considered the control over the redox 

state of the conducting polymer a key factor for practical applications of such sensors. However, 

since the characterization of PEDOT:PSS was not fulfilled neither with UV-Vis spectroscopy nor 

FTIR spectroscopy, the redox state of the used polymer was not clearly determined. Therefore, the 

polymer could have been polymerized in one specific redox state but it could have varied and 

change its volume due to the absorption of small molecules after electropolymerization 

procedure. This uncontrolled parameter, could cause the irreproducibility and unrepeatability in 

the sensor response. In fact, Michalska et al [35] reported back to 1994 the influence of both the 

electrodeposition and conditioning steps on the open-circuit properties of CP films. While 

electropolymerzation is driven by the applied external electrical potential, in the conditioning 

process the chemical potential of the reactants in solution drives the reactions occurring at the 

electrochemical cell. Since electrodeposition conditions play an important role on the final 

properties of the CP film, (such as morphology, conductivity, etc.), the conditioning or soaking step 

also affects the CP characteristics, and therefore, the final analytical performance. Therefore, the 

lack of conditioning in our experimental part may be the reason behind non-reproducible results 

obtained due to a non-controlled re-distribution of charges within the polymer chain after the 

electropolymerization step [36]. 
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The work described in this chapter was performed under the supervision of Dr. Elena 

Ferapontova, leader of the Electrochemical Biosensors and Bioelectrocatalysis Group, at the 

Interdisciplinary Nanoscience Center at Aarhus University (Denmark). The group is focused on the 

research on fundamental studies of electron transfer and interfacial properties of enzymes and 

nucleic acids and on the development of advanced technologies for biosensors, among other 

purposes.  

The incorporation of enzymes on electrochemical biosensors provides selectivity towards a 

certain biomolecule. Detecting H2O2 from the reaction between a target and the corresponding 

oxidase enzyme provides a great opportunity to design platforms that may be then adapted for 

several targets. This work was focused on the assembly of enzymatic-based biosensors by studying 

their electron transfer properties in order to develop amperometric microsensors. Thus, the 

detection of H2O2 was performed to indirectly determine glucose. 

 

INTRODUCTION 

Although under certain stimuli lactate or ketone bodies can be used as energy substrates, it 

is known that glucose is the main energy source in mammalian brain. It is estimated than 25% of 

total glucose consumption from the human body is involved in cerebral functions [1]. Glucose 

metabolism provides the energy for physiological brain functions, the cellular maintenance and 

the generation of neurotransmitters [2]. There are also several intermediary metabolites, such as 

lactate, pyruvate and glutamate that are generated from glucose in the brain and can be oxidized 

for energy production. Disruptions on glucose pathways and metabolism may lead the brain to be 

sensible to many different diseases or brain disorders. Neuroglycopenia, cerebral ischemia 

phenomena, and Parkinson are considered to be related to the glutamate (and consequently to 

glucose) supply to the brain. Although it may not be the principal cause, energetic defects on 

pathophysiological mechanisms are important in neurodegenerative diseases [2]. 

The ability to measure glucose concentrations in human cerebral cortex has important 

implications in understanding the functions and signal transmission through the neural network in 

human brain. Several methods have been proposed for glucose monitoring, such as 

chromatographic techniques [3] and capillary electrophoresis [4]. However they are considered to 

be time-consuming and require sophisticated and expensive instrumentation. More recently, 
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different electrochemical biosensors based on enzymatic approaches have been reported [5]. 

These biosensors are usually based on the dispersion, adsorption or covalent cross-linking of the 

suitable enzyme onto an appropriate solid electrode. When using oxidase enzymes, the 

electrochemical measurement is based on the enzymatically generated hydrogen peroxide (H2O2) 

due to the oxidation of the substrate together with O2 consumption. Amperometric oxidase-based 

biosensors are usually developed as bienzymatic sensors towards H2O2 detection. As explained in 

CHAPTER 1 (equations 1.4. and 1.5.), the oxidation of the substrate by enzyme 1 generates 

electrochemically active H2O2 that is subsequently oxidized by enzyme 2 (usually horseradish 

peroxidase (HRP)). Electrons from the last reaction are detected amperometrically and are directly 

proportional to the concentration of the original substrate. However, the application of a fixed 

potential for amperometric detection may become an issue due to the oxidation of other 

electroactive species present in the sample or surface fouling problems. The use of organic and 

inorganic mediators immobilized on the surface of the electrode has been developed to overcome 

this type of problems. In addition, the use of inorganic compounds to biomimic enzyme catalysis is 

currently studied as well. For instance, hemin is an iron-containing porphyrin derived from a haem 

group (a coordination complex consisting of an iron ion coordinated to a porphyrin acting as a 

tetradentate ligand, and to one or two axial ligands), responsible of using H2O2 as electron 

acceptor to catalyze different oxidative reactions. Hemin is stable in solution and is relatively 

inexpensive [6]. The role of hemin on the study of electron transfer processes in order to 

understand the kinetics and thermodynamics of biological redox processes lies on its ability to 

mimic peroxidase activity. Thus, hemin is used as mediator for amperometric detection of 

different species, as for example O2, superoxides, tryptophan or H2O2 [7].   

The aim of this work was to develop amperometric enzymatic sensors for glucose detection 

as an important neurochemical in bran. The use of micro-electrodes provides a less invasive and 

fast technique for the study of brain tissue and allows the study of what is known as in vivo 

electrochemistry [8]. Rapid measurements of this compound allow the study of the dynamics of 

the energy balance of the brain. In this context, we are willing to develop assays to be stable and 

be simple to use. While in macrosensors eq. 1.4. and eq. 1.5. from CHAPTER 1 occur as expected, in 

the case of micro-electrodes the determination of H2O2 generated by the first enzyme becomes an 

issue due to the diffusion of H2O2 in the solution before reaching the electrode surface. Therefore, 

the search for the fastest electron transfer mediator to avoid H2O2 diffusion was the first objective 

of the work. In this sense, the strategy was based on: first, using oxidase enzymes (glucose oxidase 
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(GOx)) as these enzymes are stable (being of extracellular origin) and faste and have stable 

covalently bounds mediators, and second, the use of hemin as mediator, taking advantage of its 

trend to be adsorbed on carbonaceous materials. The fact of using hemin instead of HRP could 

avoid any interaction between the electrode and the rest of the enzyme chain and provide a faster 

system for micro-electrode configuration.  

 

EXPERIMENTAL 

Materials and reagents 

Graphite rods of spectro-grade ⅛ “ (3 mm) x 12” (304 mm) (SGL Carbon AG Werk Rigsdorff, 

Bonn, Germany) type RW001, 3.05 mm diameter, fitted in Teflon holders, were used as working 

electrodes on macro-electrode approach and were polished on emery paper (Waterproof Silicon 

Carbinde paper, FEPA grade P1000). Micro-electrodes were fabricated using carbon fiber 

electrodes (Carbonstar-1, E10011-standard) and were purchased from Kation Scientific 

(Minneapolis, USA).  

Glucose oxidase (GOx) from Aspergillus niger (type II-S, EC 1.1.3.4), hemin 

(chloroprotoporfhyrin IX iron-III, from bovine), glutaraldehyde (8% aqueous solution), ᴅ-glucose, 

polyethylenimine (PEI, 50% (m/v), Mw 750,000), sulfuric acid (H2SO4), and the buffer components, 

sodium chloride, mono- and di-basic sodium phosphate (NaH2PO4 and Na2HPO4, respectively) were 

obtained from Sigma Aldrich (Denmark). All reagents were of analytical grade and used without 

further purification. 

Stock solutions of glucose were prepared and stored at 4 °C overnight before their use. H2O2 

solutions were prepared immediately before measurements from 35 wt % H2O2 solution (Sigma 

Aldrich, Denmark). PBS buffer was prepared 20 mM of each sodium phosphate component, and 

NaCl 150 mM at pH 7. All solutions were prepared using 18.2 MΩ cm-1 double deionized water 

(Milli-Q water systems, Merck Millipore). 

Electrochemical measurements and instrumentation 

All electrochemical measurements were performed in a standard three-electrodes 

electrochemical glass cell with the spectroscopic graphite or carbon fiber corresponding working 

electrode, a platinum wire as counter electrode and a Ag/AgCl (3 M KCl) reference electrode 
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connected to a µAutolab potentiostat (Type III, Eco Chemie B.V., Utrecht, Netherlands) supported 

with NOVA (Type 1.8.17) software. Chronoamperometric measurements for glucose calibrations 

with micro-electrodes were supported with General Purpose Electrochemical System (GPES 

version 4.9.005). All measurements were performed at room temperature in 20 mM PBS/150 mM 

NaCl at pH 7. The reproducibility of the data was verified by measurements with at least three 

equivalently prepared electrodes.  

Cyclic voltammetry was used to study electron transfer and it was mostly carried out within 

a range of -0.8V to +0.5V, using 1 cycle/experiment. Different scan rates (ʋ=V/s) were tested for 

each sample (20, 50, 100, 300, 500, 1000, 2000 and 5000 mV/s). All samples were tested under 

both aerobic and anaerobic conditions (using N2 to de-aerate the cell).  

Sensor fabrication 

Macro-electrodes 

Macro-electrode preparation was done by cutting the graphite rods into pieces of 2 cm 

approximately. Their disk surface was polished on emery paper grade P1000. Functionalization of 

the macro-electrodes was done by drop-casting 10 µL of hemin (10% DMSO) mixed with the 

corresponding amount of PEI (m/V) onto the polished electrode and left it dry under a plastic lid 

for 1.5 h. N2 stream was also used to accelerate the drying process. Straightaway, 5 µL of 1 mg mL-

1 of GOx solution was drop-cast on the graphite-hemin electrode and left at room temperature 

under a plastic lid for 2 h. After modification, the electrodes were rinsed with PBS buffer solution, 

inserted in the electrochemical cell. When not in use, the electrodes were stored with a drop of 

PBS buffer pH 7 on top, at 4 °C. 

Micro-electrodes 

Micro-electrodes consisted on 7 µm diameter carbon fibers with borosilicate glass as the 

insulating layer. The micro-electrode tip must be cleaned/rejuvenated by dipping it in a H2SO4 0.5 

M solution for 15 min and after drying it has to be cleaned by dipping in MilliQ water for 15 more 

minutes. When not in use, the tip must be kept in distilled water or physiological saline (in case it 

dries, the forming microcrystals could destroy the tip’s structure).  

Functionalization of the micro-electrodes was done by dipping the protruding of the carbon 

fiber micro-electrode (Figure 5.1.) for 1 h at room temperature in a solution containing hemin 

mixed with PEI, followed by dipping in aqueous solution of glucose oxidase 0.5 U µL-1 . After the 
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coating, the electrodes were kept in a 5% glutaraldehyde chamber for 1 h for cross-linking. When 

not in use, micro-electrodes were kept at 4 °C.  

 

Figure 5.1. Micro-electrode functionalization by dipping. Inset: Tip magnification. 

 

RESULTS & DISCUSSION 

Electrode characterization 

Characterization experiments were done to define and characterize the conditions of the 

system. CV was run at different scan rates with bare graphite electrodes under aerobic (Figure 

5.2.A.) and anaerobic conditions (Figure 5.2.B.)  

 

Figure 5.2. Representative CV recorded under A) aerobic conditions and B) anaerobic conditions, at -0.8 to 

+0.5 V, with 20 mM PBS/150 mM NaCl (pH=7) at different scan rates of bare graphite electrodes. 
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At higher scan rates, under the presence of oxygen we can observe the anodic and cathodic 

peaks corresponding to the oxidation and reduction processes (around +0.1 V) of hydroquinone-

like groups formed on the surface of the graphite electrode, respectively [9]. However, working 

with N2 atmosphere allows the elimination of the interference of oxygen during the experiments 

and therefore non-quinone reactions were observed. Same characterization experiments were 

also performed at different pHs (6, 7 and 8) and not significant differences on peaks nor on trends 

were found (data not shown). 

Next, characterization experiments of modified graphite electrodes were done in order to 

check redox peaks of each component. Then CV under N2 atmosphere was performed on bare 

graphite, graphite-hemin 1 mM and graphite-PEI (1, 5 and 10%). Well-defined and quasi-reversible 

redox peaks (around -0.2 V and -0.4 V) indicated the involvement of Fe3+/Fe2+ redox couple 

coordinated in the porphyrinic ring, suggesting the favorable direct electron transfer between the 

electrode and the hemin molecules (Figure 5.3.). The oxidation of PEI was avoided by working at 

lower potential ranges than its redox potential (around +0.4 V), which allows its total integrity to 

immobilize and ensure hemin deposition on graphite electrodes.  

 

Figure 5.3. Representative CVs recorded under anaerobic conditions at -0.8 to +0.5V, with 20 mM PBS/150 

mM NaCl (pH=7) at 50 mV/s of three different electrodes. 

Henceforth, electrode modification was done by using different combinations of hemin/PEI 

looking for the configuration that conferred the fastest electron transfer to the system. Hemin 

concentrations were 0.01, 0.05, 0.1 and 0.5 mM, while PEI was tested with a mass/volume ratio of 

1, 5 and 10%. Cyclic voltammetry was carried out to characterize the electron transfer rate of each 

configuration, and peak separation and rate constant (e-/s) information was extracted from each 
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voltammogram by using Laviron’s theory [10]. Figure 5.4. depicts an example of the shifting of 

potential on cathodic and anodic peaks of hemin redox activity at ʋ=300 V/s on two different 

hemin concentrations (mM) (0.5 black line, and 0.01 dotted line). Among all the tested 

combinations, electrodes modified with 0.5 mM hemin and 10% PEI were the ones which showed 

lower peak separation (14.7 mV versus 446 mV), indicating, at the same time, a higher rate 

constant (23.4 e-/s versus 12.5 e-/s), and thus, a faster electron transfer.  

 

Figure 5.4. Representative CVs recorded under anaerobic conditions at -0.8 to +0.5V, with 20 mM PBS/150 

mM NaCl (pH=7) at 300 mV/s of ( ) graphite/0.5 mM hemin/PEI 10%, and ( ) graphite/0.01 mM hemin/PEI 

10%.  

H2O2 and glucose determination using macro-electrodes 

Since graphite/0.5 mM hemin/PEI 10% was pointed out as the fastest configuration on 

electron transfer, hydrogen peroxide calibration were performed with macro-electrodes modified 

with such configuration in order to assess the viability of the system and define the 

electrochemical potential where hydrogen peroxide catalysis takes place under the experimental 

conditions. Figure 5.5. shows the cyclic voltammogram for the different hydrogen peroxide 

concentrations (0, 1, 3, 5, 7 and 10 mM).  
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Figure 5.5. Cyclic voltammogram of increasing H2O2 additions on the electrochemical cell. Inset: 

magnification of the potential shifting indicated by an arrow. 

As the concentration of hydrogen peroxide increased, so did the intensity of the cathodic 

current (ΔI was approximately 20 µA) by means of shifting the peak (around 50 mV) to more 

positive potentials. Nevertheless, the reproducibility of sensors was not completely achieved 

probably due to the polishing process of graphite, which was hand-made, and may affect the 

structure and organization at the top surface of the electrode that may provide more surface-

volume ratio only in some electrodes, in which the signal was higher. 

Glucose calibration was also performed with GOx-modified macro-electrodes to ensure the 

electron cascade was properly performed using GOx/hemin system. Since glucose oxidase requires 

the presence of oxygen to let the catalysis to take place, experiments were performed in aerobic 

conditions. Figure 5.6. shows the obtained voltammogram and the same trend as with H2O2 can be 

observed. Glucose additions were 0, 1, 3, 5, 7 and 10 mM following the same color legend as 

mentioned above.  
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Figure 5.6. Cyclic voltammogram corresponding to increasing glucose concentrations. 

From the characterization part with macro-electrodes we concluded on having a hemin 

based system that allowed a fast electron transfer from the reduced H2O2, which at the same time 

was generated by the GOx oxidation under increasing glucose concentrations. Actually, when 

working with HRP iron is stabilized on its inside in the form of Fe5+ showing its oxidation peak 

around 0.6 V. Since we worked with hemin, the catalytic part of HRP, the stabilization potential 

decreases and becomes Fe3+, showing its peak around -0.2 V under the presence of oxygen. The 

addition of glucose in the solution, and the subsequent H2O2 production due to the oxidase 

reaction, makes the H2O2 reduction peak to shift to higher potentials until it reaches a saturation 

point. At the same time, O2 reduction takes place around -0.4 V and the current signal decreases 

with increasing glucose concentration in the cell, due to the higher consumption of O2 by the 

enzymatic reaction. On the contrary, the current decrease of the O2 oxidation peak can be 

explained by the implication of hemin in the H2O2 and O2 reduction, by means of having less hemin 

involved on the electron transfer at the electrode surface.  

Glucose determination using micro-electrodes 

After characterization on macro-electrodes, the system was extrapolated onto 

microelectrodes configuration. Microelectrodes were built as above-mentioned and 

chronoamperometry was used in order to determine the increasing glucose additions on 

calibration experiments. Since on H2O2 calibrations from macro-electrodes we were able to discern 

distinct H2O2 concentrations starting at 0 V, chronoamperometry was performed at a constant 
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potential of 0 V. In this technique, the mass transport is solely by diffusion, and the current-time 

monitored curve reflects the change in concentration gradient in the vicinity of the electrode 

surface. In the case of micro-electrodes, a time-independent current (proportional to the 

concentration) is obtained for times >0.1 s due to the large radial diffusion contribution.  

Therefore, the glucose sensors were tested with different concentrations of glucose (0, 0.1, 

0.5, 1, 2, 5 and 10 mM) at constant potential of 0 V while the glucose sensing current was 

recorded. Figure 5.7. shows the chronoamperograms (A) and calibration curves (B) for glucose 

determination by micro-electrodes.  

 

 

Figure 5.7. Glucose determination on 20 mM PBS/ 150 mM NaCl buffer at pH 7. A) Time trace of 

chronoamperometric sensing of glucose concentrations for four different modified carbon micro-electrodes. 

B) Corresponding calibration curves of the four different micro-electrodes.  
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Although the presented results were not conclusive, we were able to discern some 

correlation between current and glucose concentration at low concentrations (from 0 to 2 mM), 

but the electrodes reached saturation at higher glucose concentrations. More experiments are 

required to optimize the sensor response in order to reach significant analytical information (i.e. 

we were not able to characterize the sensor response in terms of sensitivity, linear range or limit 

of detection information, as basic analytical parameters). In addition, characterization experiments 

to ensure the presence of all the coatings (hemin and enzyme loading) on the microsensor tip 

should also be performed.  

 

CONCLUSIONS 

The electrochemical characterization of the graphite/hemin/PEI/GOx macro-electrodes was 

successfully performed and was encouraging to move the system to micro-electrodes. Although 

modified micro-electrodes seemed to allow glucose determination, the project was not 

completely fulfilled, and thus, we were not able to get the proper analytical information, such as 

sensitivity, linear range or limits of detection for such micro-electrodes. In addition, more 

characterization and optimization experiments are needed to achieve significant and valuable 

conclusions for the use of such glucose micro-electrodes.  
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INTRODUCTION 

According to the International Diabetes Federation, the global prevalence of diabetes was 

estimated at 451 million cases in 2017, and following the continuous increasing trend over the last 

40 years, it is expected to reach 693 million by 2045 [1]. Diabetes mellitus represents a group of 

metabolic disorders characterized by hyperglycemia. Uncontrolled blood glucose levels increase 

the risk of developing various serious vascular complications involving the heart, eyes, nerves and 

kidneys. Preventing these complications as well as improving patients’ quality of life are key 

factors in diabetes management. Monitoring of blood glucose levels can help determine the most 

appropriate treatment in terms of dietary uptake or insulin dosage adjustment.  

Blood glucose concentration is currently monitored by means of blood draw or finger-prick 

testing as a self-monitoring practice. Nevertheless, these invasive methods are painful and can 

generate anxiety or fear in the patients, who have to repeat the process from three to six times 

per day. This may lead them to forego the monitoring process, resulting in the inadequate control 

of glucose levels. Moreover, exposure to blood-borne pathogens such as hepatitis and HIV [2,3] 

poses a risk of infection to both patients and medical professionals. Therefore, non-invasive 

methods to monitor glucose levels have been studied to mitigate patient pain and discomfort. The 

correlation of blood glucose levels and body fluid glucose levels has been the focus of many 

studies in recent decades in attempts to develop non-invasive sensors that could replace 

phlebotomic techniques. For instance, numerous sensors have been developed to determine 

glucose concentrations in urine, tears, sweat or saliva [4–6]. 

Saliva is considered as advantageous biological fluid for use in the early diagnosis of many 

different cardiovascular, infectious and autoimmune diseases [7]. Although water is the main 

component of saliva, the solid content is based on inorganic ions, such as Na+, K+, Mg2+ or Cl- 

among others, and organic substances such as proteins, carbohydrates or lipids. In addition, saliva 

also contains exfoliated epithelial cells, bacteria and bacterial metabolites which confer an 

additional complexity to the matrix. These molecules can be used as biomarkers for the early 

detection of some physiological and pathological changes in the human body, and have already 

been used in the detection of different cancers, malaria, HIV and the diagnosis of diabetes [7,8].   

Since saliva is constantly produced, collecting and storing samples is a simple and low-cost 

process that is painless and safe both for patients and for medical personnel. At the same time, 
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saliva does not clot and is very stable. Therefore, salivary glucose determination provides a totally 

non-invasive and patient-friendly approach to monitoring glucose levels. However, some 

controversy remains regarding the correlation between glycaemia and salivary glucose [9–12] and 

some studies caution against using salivary glucose as diabetic diagnostic tool [13]. Although all 

studies confirm the fact that glucose concentration in saliva is higher in diabetic patient than in 

healthy ones, the differences on sample collection, glucose excretion rate and salivary flow 

hamper the correlation between salivary and blood glucose levels. These differences can be 

caused by multiple factors, such as medication, that can alter physiologic and metabolic regulation 

on diabetic patients. Nevertheless, many other studies have reported positive significant 

correlations between blood glucose levels and salivary glucose levels [14–19] with regression 

coefficient of 0.96, and thus, suggesting the determination of salivary glucose as reliable non-

invasive method for predicting glucose concentrations in diabetics. The use of saliva as a 

diagnostic fluid requires highly sensitive sensors, since glucose concentrations in saliva are much 

lower than in blood (8 to 210 µM versus 3 to 30 mM, respectively). Many different techniques, 

such as liquid chromatography mass spectrometry, near and mid-infrared spectroscopy or 

fluorescence [20], for instance, have already been used to determine glucose in saliva matrices . Of 

all the techniques tested, electrochemical sensors [21] have been found to provide good 

sensitivity and selectivity, low operational costs and easy miniaturization and multiplexing for 

integration in portable devices. Within the electrochemical techniques, potentiometry has the 

advantages of simplicity of operation and instrumentation, low power consumption and the low-

cost production of strips using, for instance, paper substrates, which facilitates miniaturization. 

Potentiometric devices can therefore be considered effective tools in the development of simple 

and affordable analytical platforms for use outside of the lab in keeping with the increasing trend 

towards self-monitoring in the field of health care and management. The combination of such 

instrumentation with the advantages provided by the use of paper-based substrates, as the 

accessibility and affordability, has made potentiometric paper-based analytical devices very 

attractive in the sensing community for the last decade [22–24]. Paper-based potentiometric 

sensors have been developed to determine multiple electrolyte concentrations of K+, NH4
+ and pH, 

[25] or Cl-, Ca2+, K+ and Na+ [26] among others. Indeed, our group has recently developed a fully 

integrated wireless electrochemical potentiometric platform to determine glucose in serum and 

whole blood based on the interaction of the hydrogen peroxide (H2O2) generated during the 

enzymatic redox reaction (using glucose oxidase (GOx)) with the Nafion-coated platinum paper-
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based electrode [27]. The group has also reported on the use of the potentiometric enzyme-based 

electrode for the determination of glucose in fruit juices with high sensitivity and selectivity[28].  

Taking advantage of the developed potentiometric electrodes and considering the 

advantages of using saliva as a means of non-invasive monitoring, this work aims to broaden the 

application of the paper-based potentiometric electrode with saliva determination as a new matrix 

of interest. Thus, the study presents the characterization and the analytical performance of the 

electrode for glucose detection in real human saliva. The results show good performance of the 

potentiometric electrode compared to a commercial enzymatic colorimetric assay, confirming the 

capability and versatility of the low-cost paper-based electrode to determine glucose levels in 

different human body fluids.  

 

EXPERIMENTAL 

Materials and methods 

Whatman® Grade 5 qualitative filter paper was used for the fabrication of the working 

electrode. Nafion® perfluorinated resin solution (5 wt % in a mixture of lower aliphatic alcohols 

and water, 45% water), glucose oxidase (GOx) from Aspergillus niger type X-S, lyophilized powder, 

100,000-250,000 units per g solid, hydrogen peroxide solution 30% (w/w) (H2O2), and ᴅ-glucose 

were purchased from Sigma-Aldrich. In all cases, Nafion solution was used as received. Analytical 

grade salts of potassium chloride, sodium chloride, calcium chloride, disodium phosphate, 

potassium phosphate and sulfuric acid were purchased from Sigma-Aldrich. All solutions were 

prepared using 18.2 MΩ cm-1 double deionized water (Milli-Q water systems, Merck Millipore). 

Phosphate buffered saline (PBS) was prepared 0.1 M at pH 7.4 (100 mM Na2HPO4, 18 mM 

KH2PO4, 14 mM NaCl and 3 mM KCl) and used in all the experiments. Artificial saliva samples 

contained 10 mM KCl, 7.4 mM NaCl, 2 mM CaCl2, 6.4 mM Na2HPO4, 2.5 mM NaHCO3 at pH 7.4 [29].  

Platinum sputtering was performed using a radiofrequency sputtering process (ATC Orion 8-

HV, AJA International) operated at 3 mTorr for 65 s at 200 W on one side of a conventional filter 

paper to build the redox-sensitive electrode surface. 
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Electrochemical measurements 

The electromotive force (EMF) was measured using a high input impedance (1015 Ω) EMF16 

multichannel data acquisition device (Lawson Laboratories, Inc., Malvern, PA, USA). A double 

junction Ag/AgCl/KCl 3 M reference electrode (type 6.0726.100, Metrohm AG) containing 1 M 

lithium acetate electrode bridge was used to study the working electrode. Laboratory 

measurements were taken using a 0.1 M PBS (pH 7.4) 4 mL cell at room temperature. 

Fabrication of the enzymatic paper-based glucose sensor 

The working electrode was built based on the procedure described in Cánovas et al. [27]. 

Briefly, the conducting platinum paper was cut into strips of 0.5 cm x 2.0 cm and then one strip 

was sandwiched between two 1.0 cm x 1.5 cm plastic masks (ARcare® 8565, Adhesives Research 

Inc., Limerick, Ireland). The top mask had a 3 mm diameter circular window to expose the 

electroactive platinized paper to cast the biosensing membrane and functionalize the electrode. A 

first layer of 7 µL Nafion solution was then drop cast and air-dried for at least 60 min at room 

temperature. Afterwards, 10 µL of a solution containing 20 mg mL-1 of glucose oxidase in distilled 

water was drop cast on top of the Nafion layer and left to dry for 24 h at 4 °C. Finally, a second 7 

µL Nafion layer was drop cast on top in order to entrap the enzymatic layer and was also left to dry 

for 24 h at 4 °C. The electrodes (denoted as Pt/Nafion/GOx/Nafion) were kept at 4 °C when not in 

use. Figure 6.1. shows the schematic representation of the electrode. 

 

Figure 6.1. Schematic representation of Pt/Nafion/GOx/Nafion electrode. 

Enzymatic assay 

As a reference method, a commercial colorimetric glucose assay (glucose oxidase assay kit 

from Sigma-Aldrich) was used. Absorbance measurements were taken in an UV-Vis 

spectrophotometer (Agilent Technologies, Spain) with a 10 mm light path plastic cuvette (BRAND 

GMBH+CO KG, Germany). Real saliva was centrifuged and supernatant was collected to be used as 
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a control test, without reagents, to avoid great turbid differences between the control and test 

samples.  

Analysis of real samples 

Real saliva volumes were provided by different non-diabetic volunteers directly by spitting 

with no previous stimulation, and used as received without any treatment. Highly viscous saliva 

samples were dismissed to ensure precision in volume measurements. To simulate diabetic 

salivary glucose levels, ᴅ-glucose was artificially added to the samples at different concentrations 

(from 2 to 10 mM). The glucose oxidase colorimetric test was used as the standard method for the 

validation of the Pt/Nafion/GOx/Nafion potentiometric electrode. 

 

RESULTS & DISCUSSION 

Principle of detection and electrode response 

The oxidation of ᴅ-glucose to gluconolactone uses oxygen as the electron acceptor and it is 

catalyzed by the enzyme glucose oxidase (GOx), generating hydrogen peroxide as a by-product of 

the reaction already mentioned in CHAPTER 2 (eq. 2.3 and 2.4). Since there is a direct relation 

between glucose consumption and hydrogen peroxide production, the glucose concentration can 

be calculated from the change in redox potential generated by the hydrogen peroxide production. 

However, most approaches, spectrophotometric or amperometric, for instance, require the use of 

a second enzyme or mediator (usually horseradish peroxidase) to break down hydrogen peroxide 

and produce a signal related to the glucose concentration, which increases the complexity of this 

method of indirect glucose detection. Nonetheless, since the potentiometric approach is based on 

monitoring the difference of potential generated at the boundary between the electrode and the 

solution, due to the generated gradient of electrochemical species, the hydrogen peroxide 

produced from the redox reaction can be directly detected potentiometrically without the need 

for a secondary enzyme. However, since platinum probes are sensitive to redox changes, they can 

also monitor any other redox-active substance present on the solution or sample, such as ascorbic 

acid, making the response non-selective due to the interference of the aforesaid substances. 

Therefore, in previous works, our group has demonstrated the improved performance of H2O2 

detection based on platinum electrodes by using a Nafion coating [30]. The use of Nafion layers on 

platinum electrodes has proven to increase both sensitivity and selectivity parameters in 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL SENSORS FOR HYDROGEN PEROXIDE DETERMINATION 
Marta Borràs Brull 
 



CHAPTER 6 – CHARACTERIZATION AND VALIDATION OF A PLATINUM-BASED POTENTIOMETRIC SENSOR FOR GLUCOSE DETECTION IN SALIVA 

106  | DEVELOPMENT OF ELECTROCHEMICAL SENSORS FOR HYDROGEN PEROXIDE DETERMINATION 

potentiometric H2O2 sensors. The increase in sensitivity is attributed to an enhanced potential due 

to the generation of a Donnan potential in the membrane interface, which is generated when 

there is a difference in the mobility of positive and negative charges. The use of Nafion increases 

the initial potential and the response to H2O2, which leads to an increased sensitivity dependent 

on the total ion concentration of the solution and the pH [30]. Selectivity is improved by Nafion by 

minimizing the interference of other negatively charged species. Moreover, the use of such a 

coating adds a level of complexity to the signal transduction, apart from the response dependence 

on the experimental conditions. Since the platinum surface is not homogeneous, the response to 

H2O2 varies depending on the Pt surface crystallinity, its interaction with the solution pH and 

composition and the different reactions involving H2O2 decomposition on the electrode surface, 

which may have parts acting simultaneously as anode or cathode due to the adsorption of 

oxygenated species on the electrode surface. Therefore, and taking into account that the 

detection principle is not fully understood yet, the mixed potential theory encompasses the 

combination from the balance of all the redox reactions and conditions interfering with the 

electrode potential, as the final potential of the system. Finally, the concentration of glucose is 

directly measured from the change in the mixed potential read-out generated by the hydrogen 

peroxide production near the platinum electrode. 

Indeed, a detailed description and characterization of the H2O2 detection through Nafion 

layers is described in Parrilla et al. [30,31]. Recently, our group has reported the use of 

polyelectrolytes, such as Nafion, as a way to control the mixed potential of the platinum based 

electrode [32]. The open circuit potential of the Pt electrode is indeed shown to work under 

kinetic control of the oxygen reduction reaction. 

Thus, experiments were conducted by monitoring the change in the electrochemical 

potential generated with increasing glucose concentrations. At an initial stage, the EMF was 

measured in a range from 10-4.5 to 10-2 M (0.03 to 10 mM) of H2O2 with sensors without enzyme 

(Pt/Nafion) to characterize the electrode response. Figure 6.2. shows the calibration plot of 

Pt/Nafion electrodes in 0.1 M PBS pH 7.4 and in artificial saliva medium for comparison, where the 

electrode potential decreases upon the addition of H2O2.  
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Figure 6.2. Calibration plot of Pt/Nafion electrodes with H2O2 additions in ●) 0.1 M PBS and ▪) artificial saliva 

medium. The error bars correspond to the standard deviation of 5 independent electrodes on each medium. 

The Pt/Nafion electrodes showed a sensitivity to direct H2O2 additions of -119.3 ± 5.9 

mV/dec in 0.1 M PBS pH 7.4 with a regression coefficient of 0.998, within a linear range from 10-4.5 

to 10-3. H2O2 sensitivity in artificial saliva was -98.6 ± 2.3 mV/dec with a regression coefficient of 

0.979 (same linear range). The difference in the electrode performances is related to the mixed 

potential theory. As first described by Parrilla et al. [30], the electrode response depends on the 

pH of the solution and on the total concentration of the supporting electrolyte. Although in both 

PBS and artificial saliva pH is 7.4, the composition and thus, total ion concentration are different 

and affect the potential between the electrode and solution, demonstrating the need for strictly 

controlling the measurement conditions. 

In the case of the Pt/Nafion/GOx/Nafion electrodes, the decrease in the electrochemical 

potential after glucose additions followed the same trend as when H2O2 was added, and the 

sensitivity to the H2O2 generated through the glucose oxidase reaction in 0.1 M PBS pH 7.4 was      

-93.2 ± 1.8 mV/dec with a regression coefficient of 0.985. The linear range in PBS measurements 

was from 10-3.5 to 10-2.5 M (0.3 to 3.2 mM), which is within the diabetic glucose saliva range values 

(10-3.7 to 10-2.2 M or 0.2 to 6.3 mM) found in the literature [33–37]. Even though the thickness of 

the biosensing membrane is obviously higher in the Pt/Nafion/GOx/Nafion than in the bare 

Pt/Nafion electrode, the analytical performance is not compromised since the second layer of 

Nafion also helps in the immobilization of the enzyme by entrapment, as well as in the 

confinement of the produced H2O2 within the membrane, avoiding the leaching of both the 

enzyme and the by-product.   
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Taking into account that the diabetic salivary glucose range exceeds the linear range of our 

electrode and its complex matrix may influence analyte quantification, experiments with artificial 

saliva samples were done considering the dilution of the sample with 0.1 M PBS in order to, first, 

be able to detect the glucose in samples of saliva within the linear range of our potentiometric 

electrode, and second, study the matrix effect behavior of the final potential of the electrode. 

Artificial saliva containing 10 mM glucose was diluted with 0.1 M PBS pH 7.4 to different 

concentrations within the linear range of the potentiometric sensor (10-3.5, 10-3 and 10-2.5 M or 

0.32, 1 and 3.16 mM) in order to evaluate the analytical performance of Pt/Nafion/GOx/Nafion for 

glucose prediction in saliva matrix. An initial glucose calibration at 0.1 M PBS pH 7.4 was required 

to settle the calibration curve equation as the reference for further glucose predictions made with 

the artificial saliva samples (Figure 6.3.). Before the first glucose addition in Figure 6.3. we made 

sure that the signal was stable and the EMF was constant. Henceforth, the other glucose additions 

were done every 300 s.  Electrodes were rinsed with double deionized water between each 

artificial saliva glucose prediction in order to clean the electrode surface.  

 

Figure 6.3. Time trace of glucose calibration in 0.1 M PBS pH 7.4 and following glucose predictions in 

artificial saliva pH 7.4 at 10-3.5, 10-3 and 10-2.5 M glucose. 

Table 6.1. shows the comparison between the theoretical and experimental values of 

glucose concentrations from predictions shown in Figure 6.3., showing the recoveries and dilution 

factors needed in each case. Potentiometric experimental values are given as an average and their 

corresponding standard deviation from 23 different electrodes is also shown.  
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Table 6.1. Comparison between theoretical and potentiometric values for 0.32, 1 and 3.16 mM glucose 

concentrations in artificial saliva (N=23). 

DILUTION 

FACTOR 
THEORETICAL 

[GLUCOSE] (mM) 
EXPERIMENTAL 

[GLUCOSE] (mM) 
% RECOVERY 

1:20 0.32 0.36 ± 0.05 113 

1:10 1.00 0.99 ± 0.29 98 

1:2 3.16 5.22 ± 2.97 165 

 

These results confirm the influence of the matrix composition on the electrode potential. As 

the dilution factor decreases, the bias and deviation from the reference value increases due to the 

interference of other electroactive compounds from the matrix with the final potential of the 

system. In this case, the signal is enhanced, resulting in an erroneous final glucose quantification 

that compromises both precision and selective detection. In contrast, potentiometric predictions 

were more precise and accurate the higher the dilution factor. Higher dilutions imply less matrix 

load in the cell, allowing a more homogeneous medium with control over experimental conditions, 

such as pH or ionic strength of the solution. They minimize the effect of the interfering compounds 

from the complex saliva matrix on the final electrode potential by stabilizing it with the PBS buffer. 

An intrinsic advantage of diluting the samples is reflected in the reproducibility and 

repeatability of the measurements, where the useful life of the sensors can be prolonged due to 

the reduced number of interfering species interacting with the sensing electrode surface. This is 

reflected by the low relative standard deviation (RSD) of initial EMF (EMF0) between calibrations, 

which were less than 1.7% in all the cases. However, this does not represent a disadvantage since 

the electrodes are built to be disposable, in keeping with the increasing trend of single-use low-

cost point-of-care devices for self-monitoring and management [23,38].   

In addition, repeatability and reproducibility among sensors on glucose calibrations were 

also evaluated in 0.1 M PBS pH 7.4 medium. Figure 6.4.A. depicts the relative EMF in % of the 

different glucose additions compared to the logarithm of the glucose concentration, from three 

consecutive calibrations with four different sensors. Standard deviation is also represented and 

indicates the excellent repeatability of the measurements, and suggests the reusability of the 

electrodes for multiple measurements (at least three) while maintaining the same electrochemical 

response for each glucose concentration. Initial potential recoveries were 98.7% ± 1.2 for the 
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second and 94.9% ± 1.5 for the third calibration compared to the original EMF0 from the first 

calibration, resulting in an average RSD of 1.4%. 

 

Figure 6.4. A) Measurement repeatability. Calibration plot of three glucose calibrations represented as % of 

the EMF0. The error bars correspond to the standard deviation of 4 independent sensors B) Sensor precision 

at different days represented as the relative EMF compared to EMF0 of each glucose concentrations from 80 

different sensors. 

Moreover, Figure 6.4.B. shows the corresponding average and standard deviation in % of 

the EMF at each glucose addition from glucose calibrations made with 80 individual sensors. The 

intermediate precision RSD from calibrations of 80 sensors on different days varies from an 

average of 2.9% for concentrations below 10-3.5 M to 8.8% for concentrations above 10-3.5 M.   

Table 6.2. provides a comparison of the analytical performances of the potentiometric 

electrode described in this study with those of other recently reported electrochemical glucose 

sensors with different electrode configurations for glucose determination in real saliva matrices. 

Although the limit of detection is two orders of magnitude higher than the other examples, 

including amperometric ones (which usually give lower limits of detection than potentiometric 

sensors), the Pt/Nafion/GOx/Nafion provides the highest upper limit of the linear range. In this 

way, the sensor fits the purpose of determining glucose concentrations of diabetic people, which 

tends to be higher than healthy individuals. In comparison, the Pt/Nafion/GOx/Nafion electrode 

also exhibits good sensitivity for glucose detection in saliva and provides the intrinsic advantages 

of simplicity and low power consumption of the potentiometric devices.  
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Table 6.2. Comparison of analytical performances from different salivary glucose electrochemical based 

sensors. 

WORKING ELECTRODE TECHNIQUE SENSITIVITY 
LINEAR 

RANGE (µM) 
LIMIT OF 

DETECTION (µM) 
REF. 

Pt/PAA/SWCNT/Cs/AuNPs/GOx amperometric 
61.4 

µA mM-1 cm2 
17 - 810 5.60 [17] 

Tin bronze amperometric 
77 

µA mM-1 cm2 
20 - 320 4.70 [39] 

GCE/IrO2@NiO/Nafion amperometric 
1439.4 

µA mM-1 cm2 
0.5 - 2500 0.31 [40] 

SPCE/AuNPs/pTBA/MIP potentiometric 
76.6 

mV/dec 
0.32 - 1000 0.19 [41] 

Pt/Nafion/GOx/Nafion potentiometric 
-93.2 ± 1.8 

mV/dec 
316 - 3160 180.00 This work 

Pt – Platinum // PAA – Poly (allylamine) // SWCNT – Single wall carbon nanotubes // CS – Chitosan // AuNPs – Gold 

nanoparticles// GOx – Glucose oxidase // GCE – Glassy carbon electrode // IrO2 – iridium oxide // NiO – Nickel oxide // 

SPCE – Screen printed carbon electrodes // pTBA  - poly (2,2’ :5’5”-terthiophene-3’ –p-benzoic acid) // MIP – molecular 

imprinted polymer. 

Analysis of real samples 

The Pt/Nafion/GOx/Nafion potentiometric electrode was validated by comparing its results 

with the results from a commercial enzymatic assay for glucose determination. Five different 

saliva samples were obtained from non-diabetic volunteers, with no restrictions on sample 

collection. Saliva collection was not induced, and neither fasting conditions nor differences in 

salivary gland production were considered for fluid extraction. Since non-diabetic people have low 

glucose concentrations in saliva, ᴅ-glucose had to be added to reproduce diabetic glucose levels 

(from 2 mM to 10 mM). In the potentiometric approach, a two-point calibration curve with 

glucose standards corresponding to both limits of the linear range of the sensor was used to 

determine the concentration of glucose. Saliva samples (2, 4, 6, 8 and 10 mM) were diluted 1:2, 

1:4, 1:7, 1:10 and 1:13, respectively, to fit in an intermediate detectable concentration (1 mM) of 

the linear range of the potentiometric sensor. The same procedure was carried out with the 

colorimetric approach, diluting each sample by factors of 1:8, 1:16, 1:24, 1:32 and 1:40, 

respectively, to reach a final glucose concentration of 0.25 mM which fit in the linear range of the 

commercial kit. Figure 6.5. shows the comparison between the potentiometric and the 

commercial enzymatic assay results. As expected from previous results obtained with artificial 
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saliva, the matrix effect is enhanced at lower dilution factors in the potentiometric electrodes 

leading to inaccurate concentration measurements where dilutions below 1:4 are required. 

Indeed, this effect was also evaluated by monitoring the pH and the conductivity of the solution 

during the potentiometric experiments in order to monitor possible changes in solution 

parameters that may affect the final potential read-out of the electrode. Since usual saliva pH 

ranges from 6 to 7.5 and the dilution buffer used was at pH 7.4, the pH of the solutions remained 

almost constant among all the different glucose concentrations tested (pH 7.40 ± 0.04). 

Meanwhile, the conductivity remained constant with a value of 23.4 ± 1.9 mS cm-1 in all cases 

except from dilution 1:2, which showed a decrease of 32% compared to the initial solution 

conductivity. It is not surprising then that changes in solution parameters due to the influence of 

the matrix compounds and characteristics may affect the charge distribution on the electrode 

membrane interfaces, resulting in an interfered change of potential, and thus, an erroneous 

glucose quantification.  

 

Figure 6.5. Comparison of glucose determination in five real saliva samples determined by potentiometric 

sensor (mean ± S.D. N=10) vs. a commercial enzymatic assay (mean ± S.D. N=3). Linear regression 

corresponds to four values (from 4 to 10 mM). 

In contrast, the influence of saliva matrix was diminished when operating with dilutions of 

higher factors (above 1:4), which actually introduces fewer matrix components into the system. In 

these cases, neither pH nor conductivity changed significantly, and thus, glucose was properly 

quantified with the potentiometric Pt/Nafion/GOx/Nafion electrodes.  

Our results show that the Pt/Nafion/GOx/Nafion electrode is able to accurately quantify 

glucose content in real saliva matrix with a dilution factor higher than 1:4. Changing the dilution 
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buffer to one that could maintain optimum solution conditions without compromising the 

simulated physiological conditions may be one way to overcome issues in samples with low 

dilution factors. However, since salivary glucose levels in diabetic patients are usually high 

(reaching maximum concentrations of around 6.3 mM), the Pt/Nafion/GOx/Nafion electrode could 

be used to monitor glucose in saliva with the proper dilution factor without much inconvenience. 

Therefore, and taking into account the results from 4 to 10 mM (corresponding to dilutions 

higher than 1:4), we performed a statistical study to validate our results. To check if the 

potentiometric and the commercial enzymatic results are comparable over the tested linear range 

(4 to 10 mM), one has to check if the coefficients of the regression line would be comparable to 

the coefficients of the theoretical regression line obtained if the results in comparison were 

identical (intercept=0 and slope=1). The joint confidence interval for the intercept and the slope of 

the regression line [42] consisting of verifying the presence of the theoretical point (0,1) within the 

limits of the joint confidence region of the experimental intercept and slope was used to compare 

the results of the two methods. As Figure 6.6. shows, since the theoretical point (0,1) is within the 

limits of the joint confidence region for an  significance value of 5% we can conclude that the 

potentiometric and the commercial enzymatic results are comparable for the interval tested (4 to 

10 mM).  

 

 

Figure 6.6. Joint confidence region plot comparing the slope of the regression line from validation process 

with enzymatic and potentiometric methods against the theoretical one 
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CONCLUSIONS 

We have described the characterization and validation of a potentiometric enzyme-based 

electrode for the determination of glucose in human saliva. The combination of the 

potentiometric approach with a paper-based sensor, together with the use of Nafion to improve 

the analytical parameters, represents a simple and low-cost alternative for glucose detection in 

human saliva. Since saliva has been the focus of many studies into early diagnosis and glucose 

monitoring for decentralized and self-monitored health, the potentiometric sensor may be an 

effective alternative tool for that purpose. Results showed the potentiometric approach to be 

comparable to a conventional enzymatic commercial assay within an interval of glucose 

concentrations. The definition of this interval comes from the matrix effect that can somehow be 

modulated by diluting the sample. We have demonstrated accurate glucose quantification with 

dilutions higher than a factor of 1:4. Nevertheless, it is worth mentioning that real saliva samples 

were used as received without any pretreatment, which may have helped to broaden the interval 

of operation by decreasing the matrix effect.  
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CONCLUSIONS AND FUTURE PROSPECTS 

This doctoral thesis was designed to explore the development of low-cost sensors for 

hydrogen peroxide determination due to its important implications in nature and its use in various 

fields. While low-cost feature was ensured by the use of non-expensive substrates and techniques 

requiring low power consumption, reliable hydrogen peroxide determination was not always 

reached. In fact, we can divide the conclusions following the same main blocks of the thesis: 

 On one hand, we addressed the direct detection by taking advantage of the electrical 

properties of conducting polymers. According to the conducting polymer features, we based our 

research aiming at causing a variation in the conducting polymer backbone that would lead in a 

detectable change in the corresponding signal readout. Although having reached hydrogen 

peroxide detection in both tested strategies, namely conductometric (CHAPTER 3) and 

potentiometric (CHAPTER 4) approaches, the exact mechanism of the conducting polymer-hydrogen 

peroxide interaction is still beyond our reach, since in practical terms, reliable and reproducible 

sensors were not achieved.   

 

 On the other hand, the indirect hydrogen peroxide determination was successfully done by 

detecting glucose through different strategies; amperometric (CHAPTER 5) and potentiometric 

(CHAPTER 6) approaches. Despite the first project was not completed, the glucose detection using 

micro-electrodes configuration was achieved. Regarding the potentiometric approach, we have 

actually broaden the application of the purposed platinum paper-based electrode for glucose 

determination in saliva, introducing an alternative methodology for the non-invasive diagnostics. 

 

Nevertheless, there are many challenges beyond this thesis in order to improve the 

analytical performance of the developed electrodes: 

 Regarding conducting polymer incorporation into electrodes, an exploratory path towards 

conducting polymer interaction with hydrogen peroxide is required to a better understanding of 

the mechanism. This would allow adapting sensor construction and consequently modifying the 

resulting analytical parameters. Future options to keep workin on could be based on fisrt, the 

development of a methodology that would ensure polymer adhesion on the substrate to facilitate 

the experimental procedures as well as the conducting polymer characterization in order to tailor 
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its characteristics by controlling its synthesis. The specific redox state in which the polymer is 

synthetized is also an important parameter to control and tune depending on the desired sensors 

characteristics. In addition, the characterization of the recognition event in different conditions is 

also an essential consideration that can pave the way of the final purpose. Although having some 

intrinsic limitation that can hamper conducting polymer application in sensing field, the 

combination of controlled conducting polymer characteristics together with the use of suitable 

materials for sensor assembly, can be improved to finally achieve a robust approach for an 

enhanced hydrogen peroxide determination.  

 

  Concerning glucose detection, the incorporation of enzymes provides attractive analytical 

features such as the exceptional selectivity in complex matrix, good reproducibility and low limits 

of detection. Nevertheless, and in order to achieve a sensing platform able to contribute in the 

advancement of non-invasive monitoring platforms, optimizations on the analytical parameters of 

the developed sensors should be performed. Future works could entail non-diluted glucose 

detection by tuning the operational range of the sensor, the consideration of more complex 

matrices that could hamper reliable glucose detection in real samples, or even the use of other 

body fluids to broaden the applicability of the developed electrode.  
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APPENDIX 1 

LIST OF ABBREVIATIONS 

AA – Ascorbic acid 

AC – Alternating current 

Ag – Silver 

AgCl – Silver chloride 

AgNPs – Silver nanoparticles 

Au – Gold 

AuNPs – Gold nanoparticles 

BminPF6 – 1-Butyl-3-methylimidazolium 

hexafluorophosphate ionic liquid 

C – Carbon 

C2H3NaO2 – Sodium acetate 

C3H4NaO3 – Sodium L-lactate 

Ca2+ – Calcium cation 

CaCl2 – Calcium chloride 

CaCO3 – Calcium carbonate 

CE – Counter/auxiliary electrode 

CH3COOH – Acetic acid 

ChOx – Cholesterol oxidase 

Cl- – Chloride anion 

CO2 – Carbon dioxide 

COOH – Carboxilic acid 

CPs – Conducting polymers 

Cs – Chitosan 

CTA+ – Hexadecyltrimethylammonium cation 

CV – Cyclic voltammetry 

DA – Dopamine 

DC – Direct current 

DOI – Digital Object Identifier 

EMF – Electromotive force 

EMF0 – Initial potential 

etc. – “Et cetera” 

FTIR – Fourier-transform infrared 

spectroscopy 

GA – glutaraldehyde 

GCE – Glassy carbon electrode 

GLC – ᴅ-glucose 

GO – Graphene oxide 

GOx – Glucose oxidase 

H2O – Water 

H2O2 – Hydrogen peroxide 

H2SO4 – Sulfuric acid 

Hb – Hemoglobin 

HIV – Human immunodeficiency virus 

HRP – Horseradish peroxidase 

IL – Ionic liquid 

In2O3 – Indium (III) oxide 

IrO2 – Iridium oxide 

ISE’s – Ion-selective electrodes 

ITO – Indium tin oxide 

K+ – Potassium cation 
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K2PtCl4 – Potassium tetrachloroplatinate (II) 

K3Fe(CN)6 – Potassium hexacyanoferrate (III) 

K4Fe(CN)6 – Potassium hexacyanidoferrate (II) 

KCl – Potassium chloride 

KH2PO4 – Potassium phosphate 

LOD – Limit of detection 

LOx – Lactate oxidase 

MES – 2-(N-morpholino)ethanesulfonic acid 

Mg2+ – Magnesium cation 

MgCl2 – Magnesium chloride 

MIP – Molecular imprinted polymer 

MoO3 – Molybdenum trioxide 

MWCNT-COOH – Multi-wall carbon 

nanotubes functionalized 

with carboxyl groups 

N – Number of electrodes 

N2 – Nitrogen 

Na+ – Sodium cation 

Na2HPO4 – Disodium phosphate dibasic 

Na2S2O3 – Sodium thiosulfate 

Na2SO3 – Sodium sulfite 

NaBH4 – Sodium borohydride 

NaCl – Sodium chloride 

NaClO – Sodium hypochlorite 

NaHCO3 – Sodium bicarbonate 

NaPSS– Sodium polystyrene sulfonate 

NCR – Normalized current response 

n-doping – Negative doping 

NH3 – Ammonia 

NH4
+ – Ammonium 

NiO – Nickel oxide 

NIR – Near-infrared spectroscopy 

NO2 – Nitrogen dioxide 

NP – Nanoparticles 

O2 – Oxygen 

OECTs – Organic electrochemical transistors 

P3MTp – Poly-3-methylthiophene 

PAA – Poly (allylamine) 

PANI – Polyaniline 

PB – Prussian Blue 

PBS – Phosphate buffered saline 

PCPy – Poly (pyrrole-2-carnpxylic acid) 

PdBI-co-HKCN – Bis(2-pyrdylimino) 

isoindolato-palladium 

complex 

p-doping – Positive doping 

PEDOT – Poly(3,4-ethylenedioxythiophene) 

PEDOT+ – Oxidized form of PEDOT 

PEDOT0 – Neutral form of PEDOT 

PEI – Polyethylenimine 

PET – Polyethylene terephthalate 

PFLO – Poly(9,9-di-(2-ethylhexyl)-fluorenyl-

2,7-diyl) end capped with 2,5-

diphenyl-1,2,4-oxadiazole 

PGMA – Poly(glycidyl methavrylate) 

PHEMA – Poly(2-hydroxyethylmethacrylate) 

PMSA – Poly (styrene-alt-maleic anhydride) 
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POT – Poly-(octylthiophene) 

PPy – Polypyrrole 

PSS – Poly (styrene sulfonate) 

Pt – Platinum 

pTBA  – poly (2,2’ :5’5”-terthiophene-3’ –p-

benzoic acid) 

PtNPs – Platinum nanoparticles 

PVA – Polyvinyl alcohol 

PVB – Polyvinyl butiral 

R – Recovery 

RB – Bulk resistance 

RC – Contact resistance 

Rct– Resistance of charge transfer 

RE – Reference electrode 

rGO – Reduced-graphene oxide 

RS – Surface resistance 

RSD – Relative standard deviation 

SnO2 – Tin (IV) oxide 

SPCEs – Screen-printed carbon electrodes 

SPE – Screen-printed electrode 

SPGE – Screen-printed gold electrodes 

SWCNT – Single wall carbon nanotubes 

TDAE  – Tetrakis(dimethylamino)ethylene 

TiNTAs – Titanium oxide nanotubes arrays 

TiO2 – Titanium oxide 

TNT – Titanium oxide nanotubes 

UA – Uric acid 

UOx – Uricase 

UV-Vis – Ultraviolet and visible 

V – Volts 

VOCs – Volatile organic compounds 

WE – Working electrode 

𝐴 – cross-sectional area 

𝑐𝑇 – Analyte concentration 

𝐷 – Diffusion coefficient 

𝑑 – Diffusion layer thickness 

𝑒−– Electron 

𝐸 – Potential / voltage 

𝐸𝑜𝑥  – Oxidized form of the enzyme 

𝐸𝑟𝑒𝑑  – Reduced form of the enzyme 

[𝐸0] – Total enzyme concentration 

𝐹 – Faraday constant 

𝐻+ – Hydrogen proton 

𝐼𝑑 – Steady-state current under diffusion 

control 

𝐼𝑙  𝑜𝑟 𝑖 – Current 

𝐾𝑀 – Michaelis Menten constant 

𝑘−1 – Equilibrium constant inverse of 

reaction 1 

𝑘1 – Equilibrium constant reaction 1 

𝑘2 – Equilibrium constant reaction 2 

𝐿 – Length 

𝑀+ – Cation in the electrolyte medium 

𝑚𝑇– Mass transport 

𝑛 – Number of electrons 

𝑅 – Resistance 
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ΔR – Resistance difference 

𝑅0 – Initial resistance 

𝑅𝑖 – Resistance at a certain point 

𝑃 – Product of the reaction 

 [𝑆] – Substrate concentration 

[Denim]Br – Brominated 1-decyl-3-methyl 

imidazole 

3D – Three dimensional 

4ABS – 4-aminobenzenesulfonate 

°C – Degree Celsius 

ρ – Resistivity 

ʋ – Scan rate 
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APPENDIX 2 

LIST OF FIGURES, SCHEMES AND TABLES 

FIGURES 

Figure 1.1. Schematic representation of a conductometric measurement with chemiresistors. 

Figure 1.2. Schematic representation of an electrochemical potentiometric measurement.  

Figure 1.3. Schematic representation of an electrochemicall amperometric measurement. 

Figure 2.1. Structures of polyaniline, polypyrrole and poly(3, 4-ethylenedioxythiophene). 

Figure 2.2. A) Differential normal pulse voltammograms for Nafion/HRP/PEDOT:PSS/CS micelle/GCE in 0.1 M 

PBS (pH 7) with different concentrations of H2O2. B) Calibration curves corresponding to the response 

recorded on the Nafion/HRP/PEDOT:PSS/CS micelle/GCE biosensor versus the concentration of H2O2. 

Reproduced with permission from ref. [33]. 

Figure 2.3. Peak current responses for 0, 0.13, 0.26 and 0.4 mM H2O2 on the indicated modified electrodes. 

Adapted from ref. [40]. 

Figure 2.4. Current responses of the OECT to successive additions of A) H2O2 and B) glucose. Insets: NCR as a 

function of analyte concentration. Adapted with permission from ref. [63]. 

Figure 2.5. Normalized current response after addition of analyte A) 10-4 M lactate, B) 10-4 M glucose and C) 

10-4 M lactate and 10-4 M glucose simultaneously, at VDS -0.2 V and VG 0.5 V. Adapted with permission from 

ref. [64]. 

Figure 2.6. A) Schematic illustration of the embedded "finger-powered" microfluidic biosensing platform B) 

Photograph of the device, showing the red solution that was pressure-driven from the inlet through the 

sensing areas, as indicated by the arrow. Adapted with permission from ref. [65]. 

Figure 3.1. Scheme of chemiresistor configuration. 

Figure 3.2. Time trace of resistance versus time during the addition of miliQ water drops on three different 

devices. The arrows indicate the time and volume of each drop. 

Figure 3.3. Scheme of chemiresistor configuration. A) Single electrode configuration for drop-casting 

experiments B) Chemiresistor configuration for experiments in solution. 

Figure 3.4. Continuous monitoring of chemiresistor construction: time trace of resistance versus time 

corresponding to the in situ additions of 5 µL of PEDOT:PSS on the channel area. 

Figure 3.5. Magnification of the time-trace corresponding to  the monitoring of the addition of 25% 

PEDOT:PSS/ 75% methanol,  the washing procedure with additions of miliQ water and  the detection of 

H2O2 (additions of each compound are indicated by arrows). 

Figure 3.6. Calibration curves for increasing H2O2 concentrations represented as A) absolute resistance 

values versus logarithm of H2O2 concentration and B) relative resistance values versus logarithm of H2O2 

concentrations. 
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Figure 3.7. Calibration curves represented as resistance measurements versus logarithm of H2O2 of A) 

absolute resistance values from individual chemiresistor sensors (N=3) and B) average of the relative 

resistance values obtained from chemiresistors used in A with the corresponding standard deviation (N=3). 

Figure 4.1. Hand-made paper-based electrode fabrication procedure. 

Figure 4.2. PEDOT:PSS electrodepositon on A) paper and B) GCE, by electropolymerization of EDOT and 

NaPSS. 

Figure 4.3. Time trace of EMF versus time in water media of H2O2 calibrations using paper-based electrodes 

A) without and B) with Nafion-coating. Insets: calibration curves with the corresponding sensitivities. 

Figure 4.4. Time traces of EMF versus time in water media of two different H2O2 calibrations under the 

presence of A) 0.1 mM uric acid and B) 0.1 mM ascorbic acid. The addition of the interference compounds 

are indicated by arrows. 

Figure 4.5. Top: chemical structures of PEDOT:PSS (left) neutral chain, (center) a radical cation charge 

carrier, (right) a dication charge carrier. Bottom: absorbance spectra of a) pristine PEDOT:PSS and thin films 

treated with b) Na2S2O3, c) Na2SO3, d) NaBH4, and e) TDAE (tetrakis (dimethylamino)ethylene. Reproduced 

with permission from ref. [34]. 

Figure 4.6. Surface characterization  before and  after PEDOT:PSS electropolymerization on A) carbon 

ink paper electrode and B) glassy carbon electrode. 

Figure 4.7. H2O2 calibration curve in water media of electropolymerized PEDOT:PSS on GCE (N=4). 

Figure 4.8. H2O2 calibration curves for electropolymerized PEDOT:PSS on GCE under the presence of  0.1 

mM UA,  0.1 mM dopamine and  0.1 mM AA. 

Figure 5.1. Microelectrode functionalization by dipping. Inset: Tip magnification. 

Figure 5.2. Representative CV recorded under A) aerobic conditions and B) anaerobic conditions, at -0.8 to 

+0.5 V, with 20 mM PBS/150 mM NaCl (pH=7) at different scan rates of bare graphite electrodes. 

Figure 5.3. Representative CVs recorded under anaerobic conditions at -0.8 to +0.5V, with 20 mM PBS/150 

mM NaCl (pH=7) at 50 mV/s of three different electrodes. 

Figure 5.4. Representative CVs recorded under anaerobic conditions at -0.8 to +0.5V, with 20 mM PBS/150 

mM NaCl (pH=7) at 300 mV/s of ( ) graphite/0.5 mM hemin/PEI 10%, and ( ) graphite/0.01 mM hemin/PEI 

10%.  

Figure 5.5. Cyclic voltammogram of increasing H2O2 additions on the electrochemical cell. Inset: 

magnification of the potential shifting indicated by an arrow. 

Figure 5.6. Cyclic voltammogram corresponding to increasing glucose concentrations. 

Figure 5.7. Glucose determination on 20 mM PBS/ 150 mM NaCl buffer at pH 7. A) Time trace of 

chronoamperometric sensing of glucose concentrations for four different modified carbon microelectrodes. 

B) Corresponding calibration curves of the four different microelectrodes.  

Figure 6.1. Schematic representation of Pt/Nafion/GOx/Nafion electrode. 
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Figure 6.2. Calibration plot of Pt/Nafion electrodes with H2O2 additions in ●) 0.1 M PBS and ▪) artificial saliva 

medium. The error bars correspond to the standard deviation of 5 independent electrodes on each medium. 

Figure 6.3. Time trace of glucose calibration in 0.1 M PBS pH 7.4 and following glucose predictions in 

artificial saliva pH 7.4 at 10-3.5, 10-3 and 10-2.5 M glucose. 

Figure 6.4. A) Measurement repeatability. Calibration plot of three glucose calibrations represented as % of 

the EMF0. The error bars correspond to the standard deviation of 4 independent sensors B) Sensor precision 

at different days represented as the relative EMF compared to EMF0 of each glucose concentrations from 80 

different sensors. 

 

SCHEMES 

Scheme 0.1. Basic scheme of the main topics addressed in this thesis (classified into different chapters). 

Scheme 2.1. The main electrochemical detection of H2O2 using CPs as a component of the device. 

Scheme 2.2. The main combinations of components of amperometric sensors: substrate, CP-composite, 

enzyme and coating layer. 

Scheme 2.3. A schematic of an OECT configuration. 

 

TABLES 

Table 2.1. Comparison of the characteristics of the three electrochemical techniques used in this thesis. 

Table 2.1. Comparison of analytical performance of some H2O2 conducting polymer-based amperometric 

sensors used in real samples. 

Table 2.2. Comparison of analytical performance of selected conducting polymer-based OECT based on H2O2 

detection for different targets. 

Table 4.1. H2O2 sensitivity after the addition of ascorbic acid at different concentrations. The electrodes 

were tested in miliQ water. 

Table 4.2. Sensitivities and linear ranges for H2O2 calibrations with electrodes made of PEDOT:PSS blends 

with different AA concentrations, with either Nafion® or PVB coatings. The electrodes were tested in miliQ 

water medium (N=4). 

Table 4.3. Comparative table of different analytical parameters obtained from H2O2 calibration with 

electropolymerized PEDOT:PSS electrodes under different conditions. 

Table 6.1. Comparison between theoretical and potentiometric values for 0.32, 1 and 3.16 mM glucose 

concentrations in artificial saliva (N=23). 

Table 6.2. Comparison of analytical performances from different salivary glucose electrochemical based 

sensors. 
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