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Abstract
This thesis consists of three chapters on topics in Macroeconometrics.
Chapter 1 proposes a method to analyze the relationship between models’
in-sample fit and their out-of-sample density forecasting performance. To
this end, I further develop a formal test to capture density forecast break-
downs (DFBs); situations in which the out-of-sample density forecast per-
formance is significantly worse than its anticipated performance. Chapter
2 proposes a novel methodology for identifying and estimating structural
breaks in the factor loadings of a high dimensional approximate factor
model with an unknown number of latent factors. The approach is robust
to structural changes in the volatility of the factors (the second moment
of the factors), applicable to multiple structural breaks, and easy to im-
plement for practitioners. Chapter 3 introduces time variation into the
local projections framework and proposes an impulse responses estima-
tion methodology under unstable local projections.
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Resum
Aquesta tesi consta de tres capı́tols sobre temes en Macroeconometria.
El capı́tol 1 proposa un mètode per analitzar la relació entre l’ajust en
mostra de models i el seu rendiment de previsió de densitat fora de mos-
tra. Amb aquesta finalitat, desenvolupo una prova formal per capturar
els desglossaments de previsió de densitat (DFB); situacions en què el
rendiment previst de la densitat fora de mostra és significativament pitjor
que el rendiment previst. El capı́tol 2 proposa una nova metodologia per
identificar i estimar les ruptures estructurals en les càrregues de factors
d’un model aproximat dimensional de factor aproximat amb un nombre
desconegut de factors latents. L’enfocament és robust a canvis estructu-
rals en la volatilitat dels factors (segon moment dels factors), aplicables a
múltiples ruptures estructurals i fàcils d’implementar per als practicants.
El capı́tol 3 introdueix la variació de temps en el marc de les projeccions
locals i proposa una metodologia d’estimació de la resposta d’impuls en
projeccions locals inestables.
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Preface

This thesis consists of three chapters on topics in Macroeconometrics.
In Chapter 1, Detecting Density Forecast Breakdowns, I propose a

method to analyze the relationship between models’ in-sample fit and
their out-of-sample density forecasting performance. To this end, I de-
velop a formal test to capture density forecast breakdowns (DFBs); situ-
ations in which the out-of-sample density forecast performance is signi-
ficantly worse than its anticipated performance. This test can be used to
evaluate both parametric and non-parametric models. For parametric mo-
dels, it allows for model misspecification and takes parameter estimation
uncertainty into account. For non-parametric models, I provide conditions
under which estimation uncertainty is asymptotically irrelevant. The pro-
posed test accommodates conditional density forecast models, which nest
unconditional density forecast models, and robust versions are provided
for practical use. Monte Carlo results indicate that the test has good size
properties in moderately large samples and has power against changes in
mean and variance, as well as shifts in distribution type. The empirical
study finds that: (i) DFBs occur sporadically in the lower quantiles of the
one-quarter-ahead and one-year-ahead predictive densities of real GDP
growth in the US, modeled with current financial and economic conditi-
ons and skewed-t distributed errors; and (ii) DFBs occur in the one-day-
ahead predictive densities for the S&P 500, considering GARCH(1,1) and
GARCH-t(1,1) models.

In Chapter 2, Identification and Estimation of Parameter Instability in
a High Dimensional Approximate Factor Model, I propose a novel met-
hodology for identifying and estimating structural breaks in the factor lo-
adings of a high dimensional approximate factor model with an unknown
number of latent factors. The methodology is based on the fact that the
sum of the number of pseudo factors in the pre- and post-split subsamples
will be minimal if the sample is split at the structural break. I demonstrate
that an appropriate transformation of such criteria, based on the eigenva-
lue ratios of the covariance matrices of the pre- and post-split subsamples,
provides a consistent estimator of structural break ratios in large panels.
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Importantly, this new method is robust to structural changes in the vo-
latility of factors, uncomplicated to implement for practitioners, and can
easily be extended to multiple structural breaks. A Monte Carlo simu-
lation confirms that the approach works well for estimating moderately
large breaks under different data-generating processes, as well as compa-
res favorably to an existing method ([Baltagi et al., 2017]) in moderately
large samples. In an empirical study of disaggregated US inflation series,
I find two structural breaks in the factor loadings around the 1973 oil price
shock and the 2008 financial crisis, as well as one structural break in the
volatility of the factors around January 1991.

In Chapter 3, Impulse Responses Estimation under Unstable Local
Projections, we introduce local time variation into the local projections
framework, in the sense that the instability in local projections will be
detected with a probability smaller than 1 even in the limit, and propo-
se an impulse responses estimation methodology under unstable local
projections. Importantly, the local time variation is considered in both
the coefficients and the variances, thus modeling and estimating chan-
ges both in structural shocks and in the transmission mechanism. The
impulse responses estimation methodology builds upon [Muller and Pe-
talas, 2010] path estimators in a multivariate system. The chapter contains
ample Monte Carlo evidence illustrating that [Muller and Petalas, 2010]
asymptotically WAR minimizing path estimators and WAP maximizing
parameter stability test statistics perform well in the unstable local projec-
tions framework with flexible specifications. To illustrate the estimation
methodology, we revisit the small quarterly time-varying SVAR model of
the U.S. economy studied in [Primiceri, 2005].
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Chapter 1

DETECTING DENSITY
FORECAST BREAKDOWNS

1.1 Introduction

The emergence of density forecasting as an established method springs
largely from its ability to fully characterize the uncertainty associated with
a prediction in ways that point forecasting, its alternative, does not con-
vey. Research such as [Adrian et al., 2019] demonstrates the additional
information that density forecasting provides. Density forecasting has
therefore become important to both macroeconomics and finance1, with
central banks putting great effort into generating density forecasts for key
macroeconomic variables. The Survey of Professional Forecasters, con-
ducted by the Federal Reserve Bank of Philadelphia, provides density
forecasts for inflation, output growth, and the unemployment rate. Mean-
while, the Bank of England was among the first institutions to officially
adopt density forecasts, published in the form of fan charts.

The finding that in-sample fit is not indicative of out-of-sample fore-
casting performance is widespread in economics and finance; [Rossi, 2013]
provides a review. Considering the increasing importance of reliable den-

1See [Tay and Wallis, 2000] for a survey.
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sity forecasting, I propose a new method for evaluating density forecast
models by developing a formal test to answer the following question:
How to formally assess whether the in-sample fit of a predictive den-
sity is indicative of its out-of-sample forecasting ability? Note that the
goal of this paper is distinct from a predictive density evaluation, which
examines the accuracy or the correct specification of predictive densities
(e.g., [Corradi and Swanson, 2006] and [Rossi and Sekhposyan, 2013]).
Rather, I focus on whether the in-sample fit is a reliable indicator of the
out-of-sample density forecasting ability, that is, whether future density
forecasting performance is in line with the anticipated performance based
on past information. [Clements and Hendry, 1998] explored this question,
describing a forecast failure as a deterioration in forecast performance rel-
ative to anticipated performance, while [Giacomini and Rossi, 2009a] for-
mally implemented the concept in their point forecast breakdown test. I
generalize the forecast breakdown concept to density forecasting and de-
velop a formal test to capture density forecast breakdowns. I formalize the
definition of a density forecast breakdown (DFB) as a situation in which
the out-of-sample density forecast performance, judged by an evaluation
function, is significantly worse than its anticipated performance. Further,
a scoring surprise is defined as the difference between out-of-sample den-
sity forecast performance and average in-sample performance. Thus, the
DFB test is built on the idea that, in the absence of a DFB, the expectation
of the average scoring surprise should be zero. The DFB test is formulated
as a problem of inference about expectations of the scoring surprise, and is
constructed based on the conditional density forecast models, which nest
the unconditional density forecast models regarding the choice of condi-
tioning set. In particular, applying the DFB test to conditional density
forecast models based on current economic conditions helps to determine
whether a density forecast model adapts well to changes in the economy.
This framework applies to both conditional and unconditional densities,
which can be informative for different research objectives.

This paper’s primary theoretical contribution is to propose the DFB
test for evaluating density forecast models and establish theories for the
asymptotic behavior of the test statistics. ”Model” is understood in a wide

2
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sense, including both parametric and non-parametric models, and I estab-
lish theories for both settings. In the parametric case, the test allows for
model misspecification and takes into account parameter estimation un-
certainty2 under both hypotheses. In the non-parametric case, I provide
conditions under which estimation uncertainty is asymptotically irrele-
vant.

The DFB test is valid under general assumptions. It permits paramet-
ric estimation procedures, including ordinary least squares (OLS), gen-
eralized method of moments (GMM), and (quasi-) maximum likelihood
(QML), as well as non-parametric density estimation, such as kernel den-
sity estimation (KDE). It also considers different algorithms for rolling
and recursive window schemes for density estimation and forecasting.
Most importantly, it permits a wide range of evaluation functions, or scor-
ing rules. I propose the following three evaluation functions. The first is
the logarithmic score (LS; e.g., [Amisano and Giacomini, 2007]), which
is closely related to the Kullback Leibler Information Criterion (KLIC;
e.g., [White, 1982], [Vuong, 1989], [Fernandez-Villaverde and Rubio-
Ramirez, 2004]), and rewards density forecasts that assign a high proba-
bility to events that actually occurred. Here, evaluating density forecast
performance amounts to understanding whether the realized values are,
indeed, low-probability events. The second suggested evaluation func-
tion is the continuous ranked probability score (CRPS), analogous to the
distributional generalization of mean squared error (DMSE) proposed in
[Corradi and Swanson, 2006], which, compared with the LS, is sensitive
to distance. That is, no credit is given for assigning a high probability to
the value near, but not identical to, the event that actually occurred. The
third suggested evaluation function is a confidence interval version of the
DMSE, proposed in [Corradi and Swanson, 2006]. The advantage of this
evaluation function, in contrast to the LS and CRPS, is its focus on the
specific regions of the distribution, rather than the overall performance of
the whole distribution.

Extending the DFB test to a more robust version in a context of in-
stability increases its practical use. Indeed, as originally formulated, the

2Here, I adopt a similar framework to that developed by [West, 1996].

3
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test is inadequate for detecting DFBs in an environment characterized by
instability (see [Giacomini and Rossi, 2010]). This is because the out-of-
sample density forecast performance may vary over time relative to the
in-sample fit. Thus, a fluctuation DFB test is proposed to analyze scoring
surprises over the entire time path, which circumvents the problem of use-
ful information potentially being lost when averaging the global scoring
surprises. Making the DFB test robust to the choice of the estimation win-
dow size is also important, since using arbitrary window sizes may lead
to spurious empirical results in practice; see [Inoue and Rossi, 2012].

From an empirical perspective, this paper investigates the presence
of DFBs in the density forecasting of real gross domestic product (GDP)
growth and daily Standard and Poor’s (S&P) 500 returns in the US. The
first application investigates the relationship between the in-sample fit
and the out-of-sample density forecasting ability of the model adopted by
[Adrian et al., 2019]. This model forecasts the conditional distribution of
future real GDP growth using a function of current financial and economic
conditions, while the error term is modeled with a skewed t-distribution.
The density forecasts of one-quarter-ahead and one-year-ahead real GDP
growth are constructed by applying the quantile regressions of [Koenker
and Bassett, 1978] and fitting the skewed t-distribution developed by [Az-
zalini and Capitanio, 2003] to the empirical conditional quantile function,
using data from the first quarter of 1971 (1971Q1) to the fourth quarter
of 2017 (2017Q4) with both rolling and recursive window schemes. The
main finding is that the model’s overall in-sample fit is indicative of the
out-of-sample density forecasting ability, but DFBs occur sporadically in
specific regions of the conditional distribution. In particular, the model’s
in-sample fit is not a reliable indicator of the out-of-sample density fore-
casting ability for the left tails (i.e., the lower quantile of the conditional
distribution) of either the one-quarter-ahead or the one-year-ahead density
forecasts. Meanwhile, the model’s density forecasting ability of the right
tails (i.e., the upper quantile of the conditional distribution) is consistent
with in-sample fit. Furthermore, I find that excluding the current finan-
cial condition from the model results in DFBs occurring more often and
in more regions of the conditional distribution. Thus, including financial

4
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conditions in the density forecast model of real GDP growth helps narrow
the gap between the in-sample fit and the out-of-sample density forecast-
ing ability.

These results align with [Adrian et al., 2019], who find a correlation
between financial conditions and higher moments of real GDP growth.
They assert that the estimated lower quantiles of the future GDP growth
exhibit strong variation as a function of current financial conditions, while
the upper quantiles are stable over time. My findings further support their
conclusions in that asymmetry exists not only in the estimated distribution
but also in the out-of-sample density forecasting ability relative to the in-
sample fit. The model is therefore very likely to experience DFBs in the
region of the distribution exhibiting strong variation, and the in-sample fit
is more likely to provide reliable guidance for the out-of-sample density
forecasting ability in the relatively stable region. Moreover, I find that
even if the model includes the current financial condition as a predictor,
the in-sample fit still provides unreliable guidance for the out-of-sample
density forecasting ability for lower quantiles since the financial crisis,
and that misspecification of the out-of-sample predictive densities may
cause DFBs, even though the in-sample density estimators are correctly
specified and have good fit. The DFB test therefore implies that the in-
sample fit of the model adopted by [Adrian et al., 2019] provides reliable
guidance for researchers focusing on the overall performance of out-of-
sample predictive densities. However, if the focus is on specific regions of
the distribution, for example the 25%-50% quantile, care should be taken
in choosing predictors, especially during the financial crisis.

Another application of the DFB test is to evaluate the generalized
autoregressive conditional heteroskedasticity (GARCH) model’s ability
to construct the density forecasts of daily S&P 500 returns. Daily S&P
500 returns, ranging from Janury 3, 1981 to December 31, 2018, are fit-
ted with GARCH(1,1) and GARCH-t(1,1) models with both rolling and
recursive window schemes, and the one-day-ahead density forecasts are
constructed accordingly. The empirical results show that, DFBs occur
in the one-day-ahead density forecasts of S&P 500 returns of both the
GARCH(1,1) and GARCH-t(1,1) models. This means that the overall

5
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in-sample fit of the GARCH(1,1) and GARCH-t(1,1) is not indicative of
their out-of-sample density forecasting abilities.

The proposed test is closely related to the work of [Giacomini and
Rossi, 2009a], who propose a theoretical framework to capture a point
forecast breakdown. However, I introduce several novel aspects. First,
evaluating predictive densities differs from evaluating point forecasts. The
former considers distinct evaluation functions, focusing on either the over-
all performance or the specific regions of the distributions. In contrast,
evaluating point forecasts does not need to consider ”specific regions”.
Second, parameter estimation uncertainty is much more complicated in
density estimation. Taking the simple linear model with normal errors as
an example, constructing density forecasts requires both coefficient and
variance estimators, while constructing point forecasts does not require
the latter. Including higher moment estimators makes study of asymptotic
distribution of the test statistic more complicated. Additionally, when
evaluating point forecasts, the parameter estimation uncertainty is asymp-
totically irrelevant in the common situation where the loss function used
for estimation is the same as that used for evaluation. However, in most
density forecast evaluations, parameter estimation uncertainty component
is non-negligible. Finally, the proposed test can be applied not only to
parametric density forecast models, but also to non-parametric models
in which correcting estimation uncertainty is not a technically feasible
option. I consequently provide conditions under which estimation uncer-
tainty is asymptotically irrelevant.

This paper differs from the specification testing literature (e.g., [Diebold
et al., 1998], [Bai, 2003b], [Hong and Li, 2004] and [Corradi and Swan-
son, 2006] for testing the correct specification of parametric in-sample
density estimators; [Rossi and Sekhposyan, 2017] for testing the correct
specification of out-of-sample predictive densities; [Berkowitz, 2001],
[Corradi and Swanson, 2006], [Hong et al., 2007] and [Knuppel, 2015]
for additional approaches for assessing the correct calibration of pre-
dictive densities) in its focus on the consistency between future density
forecasting performance and the expectations based on past performance,
which allows for model misspecification and the consideration of situa-

6
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tions closer to reality, as opposed to concentrating exclusively on correct
specification.

The break testing literature has largely been concerned with distri-
butional change testing (e.g., [Inoue, 2001]) and structural break testing
(e.g., [Andrews, 1993], [Bai and Perron, 1998], [Hansen, 2000] and [El-
liott and Muller, 2006]). In contrast, I focus on the stability of forecasting
performance instead of the stability of parameters or distributions; [Gia-
comini and Rossi, 2009a] and [Rossi, 2013] provide theoretical examples
showing that structural breaks in the parameters are neither necessary nor
sufficient to generate instabilities in forecasting performance. The test
proposed in this study thus captures all the various changes that affect
density forecasting performance, including parameter changes, distribu-
tional changes and other changes. Furthermore, this test can be applied to
non-parametric predictive densities, which do not require assuming para-
metric forms. I use similar evaluation functions to those employed in the
predictive density comparison literature (e.g., [Vuong, 1989], [Amisano
and Giacomini, 2007], and Corradi and Swanson (2005a, 2006b)). How-
ever, I focus on model evaluation by comparing the performance of pre-
dictive densities with the anticipated performance, rather than by compar-
ing the performances of various predictive density models.

A wealth of empirical studies have explored whether in-sample fit pro-
vides guidance for out-of-sample forecasting ability in predicting stock
returns (e.g., [Ang and Bekaert, 2006])3, exchange rates (e.g., [Meese
and Rogoff, 1983], [Sarno and Valente, 2009], [Rossi and Sekhposyan,
2011]), and output growth (e.g., [Swanson and White, 1997], [Swanson,
1998], [Giacomini and Rossi, 2009b]). I investigate this relationship in
the context of forecasting a target variable’s entire density/distribution
rather than its mean value. Furthermore, a large literature has docu-
mented GDP volatility change, especially during the Great Moderation

3Other literature in this area includes Campbell (1987), Campbell and Shiller (1988),
Bekaert and Hodrick (1992), Fama and French (1988), Perez-Quiros and Timmermann
(2000), and Pesaran and Timmermann (1995), Bossaerts and Hillion (1999), Cooper et
al. (2005), Marquering andVerbeek (2004), Sullivan et al. (1999), Paye and Timmer-
mann (2006), Goyal and Welch (2003).

7
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(e.g., [Kim and Nelson, 1999], [McConnell and Perez-Quiros, 2000],
[Blanchard and Simon, 2001], [Bernanke, 2004] and [Giannone et al.,
2008]). Here I focus on the whole density/distribution rather than the sec-
ond moment of real GDP growth and investigate the relationship between
in-sample fit and out-of-sample density forecasting ability.

The remainder of this paper is organized as follows. Section 1.2 dis-
cusses the framework of the DFB test in parametric density forecast mod-
els. Section 1.3 extends the method to the non-parametric case. Section
2.5 introduces the robust and adapted versions of the DFB test. Section
3.3 gives the results of the Monte Carlo simulation study. Section 3.4
applies the DFB test to evaluate the density forecast models of real GDP
growth and daily S&P 500 returns. Section 3.5 concludes.

1.2 Detecting Density Forecast Breakdowns for
Parametric Models

This section introduces the theoretical framework of the density forecast
breakdown test for parametric models.

1.2.1 Environment

Consider a stochastic process {Zt : Ω → Rm+1}Tt=1 defined on a com-
plete probability space (Ω;F;P ), the observed vector Zt is partitioned
as Zt = (yt;X ′t )′, where yt : Ω → R is the variable of interest and
Ft = σ(Z ′1; . . . ;Z ′t)

′ is the true information set available at time t. The
true but unknown h-step-ahead (1 ≤ h < ∞) predictive density for the
scalar4 variable yt+h conditional on Xt is denoted by φ0(·) = φ(·|Xt, θ0),
where θ0 is the true parameter vector. The researcher may observe a sub-
set of the true information set and characterize the unknown h-step-ahead
conditional predictive density for the scalar variable yt+h using the model
φ(·|·, ·) based on the observed information set Ft (Ft ⊆ Ft). In this case,

4The multivariate case would be similar.

8



“thesis” — 2020/5/5 — 9:55 — page 9 — #23

the model is misspecified unlessFt = Ft. SupposeXt (Xt ⊆ Xt) is a vec-
tor of k predictors included in the density forecast model, the pseudo-true
predictive density of the scalar variable yt+h conditional on Xt is denoted
by φ∗t+h(·) = φ(·|Xt, θ

∗), where θ∗ corresponds to the probability lim-
its of the estimated parameters.5 This possibly misspecified conditional
density forecast model is the focus of this paper.

To construct the h-step-ahead predictive density of the variable of in-
terest yt+h, the available sample of size T is divided into an in-sample
portion of size R and an out-of-sample portion of size P such that R +
P−1+h = T . The data that comprise the in-sample window are based on
the estimation schemes. The following two estimation schemes should be
considered: (i) a rolling estimation scheme, in which the in-sample win-
dow at time t contains observations indexed t − R + 1, . . . , t, and (ii)
a recursive estimation scheme in which the in-sample window includes
observations indexed 1, . . . , t.6 At each period t = R, . . . , T − h, the
estimated parameter θ̂t is obtained based on the corresponding in-sample
window data, and the predictive density function for the scalar variable
yt+h conditional on Xt is denoted as φ̂ft+h(·) ≡ φ(·|Xt, θ̂t), where the
superscript f refers to the ”out-of-sample forecast.” Similarly, the con-
ditional density estimator for period j (j varying over the corresponding
in-sample window) is denoted as φ̂ej(·) = φ(·|Xj−h, θ̂t), where the super-
script e refers to ”estimated in-sample.” Figure 1.1 gives an illustration of
the out-of-sample conditional predictive density φ̂ft+h(·), as well as the in-
sample conditional density estimators φ̂ej(·), j = t−R+1, . . . , t, standing
at period t using a rolling window estimation scheme.

The conditional density forecast model discussed above nests the un-
conditional forecast model based on the choice of conditioning set. For

5In this context, we are concerned with direct multi-step forecasting, where the pre-
dictors are lagged h periods; that is, the model specifies the relationship between yt+h
and Xt. The indirect approach, not considered here, is to compute iterated h-step-ahead
density forecasts, i.e., first predict yt+1 using observations up to time t, and then use this
predicted value in order to predict yt+2, and so on.

6Although not widely used in practice, the fixed estimation scheme, in which the
in-sample window at time t contains observations indexed 1, . . . , R, can also be nested
in this context.

9
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Figure 1.1: Illustration of estimation and forecasting at t

example, an unconditional predictive density for the scalar variable yt+h
constructed at period t would be φ̂ft+h(·) ≡ φ(·|θ̂t).7 For simplicity, the
notation used here is that of the conditional case. I extend the setting to
the non-parametric case in Section 1.3.

1.2.2 Evaluation functions
Evaluation functions, or scoring rules, are loss functions whose arguments
are the density forecast and the actual outcome of the variable (e.g., [Win-
kler, 1967], [Diebold and Lopez, 1996], and [Lopez, 2001]). Scoring
rules provide summary measurements for evaluating probabilistic fore-
casts by assigning a numerical score based on the predictive distribution
and on the event or value that materializes (for a review and theory of
proper scoring rules, see [Gneiting and Raftery, 2007]). I propose three
evaluation functions in this paper: the logarithmic score (LS), the contin-
uous ranked probability score (CRPS), and a confidence interval version
of the distributional generalization of the mean squared error (CI).

Logarithmic score
The logarithmic scoring rule proposed by [Good, 1952] is defined as
S(f, Y ) = log f(Y ), where Y is the observed value of the variable and

7Similarly, the density estimator for period j, with j varying over the corresponding
in-sample window, would be φ̂e(·) = φe(·|θ̂t). There is no subscript j since there is no
conditioning variable.

10
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f(.) is the density function (see also [Amisano and Giacomini, 2007]).
This LS is closely related to the Kullback-Leibler Information Criterion
(KLIC), since the divergence function associated with the expected LS is
the classical Kullback-Leibler divergence. The LS intuitively rewards a
density forecast that assigns a high probability to events that have actually
occurred. The LS is also mathematically convenient, since it is the only
scoring rule that is solely a function of the density’s value at the variable’s
realization.

In the present context, the LS denotes the score for the h-step-ahead
density forecast for the scalar variable yt+h constructed at period t by

St+h(θ̂t) ≡ S(φ̂ft+h(·), yt+h) = log φ(yt+h|Xt, θ̂t)

and also denotes the score for period j (with j varying over the in-sample
window) as

Sj(θ̂t) ≡ S(φ̂ej(·), yj) = log φ(yj|Xj−h, θ̂t)

Continuous ranked probability score
The CRPS is defined in terms of a cumulative distribution function (CDF)
as CRPS(F, x) = −

∫∞
−∞ (F (y)− 1(y ≥ x))2 dy, where x is the ob-

served value of the variable and F (·) is the cumulative distribution func-
tion. The CRPS is closely related to the distributional generalization
of the mean square error (DMSE) introduced by [Corradi and Swan-
son, 2006] as a measurement of distributional accuracy,8 and the term

8Suppose the true distribution is F0(·|θ0). [Corradi and Swanson, 2006] define the
mean square error associated with F1(·|θ∗1), θ∗1 = θ0 if correctly specified, in terms of an
average over U of E

[
(F1(u|θ∗1)− F0(u|θ0))2

]
, where u ∈ U . [Corradi and Swanson,

2006] adopt this DMSE to compare multiple (mis)specified predictive density models.
In particular, Model 1 outperforms Model 2 if∫

U

E[(F1(u|θ∗1)− F0(u|θ0))2 − (F2(u|θ∗2)− F0(u|θ0))2]φ(u)du < 0

where
∫
U
φ(u)du = 1 and φ(u) ≥ 0. A confidence interval version can be written as

E[(F1(u|θ∗1)−F1(u|θ∗1))−(F0(u|θ0)−F0(u|θ0)))2−(F2(u|θ∗2)−F2(u|θ∗2))−(F0(u|θ0)−F0(u|θ0)))2] < 0

11
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F (y) − 1(y ≥ x) can be interpreted as the ”error” term9 for the cumula-
tive distribution functions.

In the present context, the CRPS denotes the score for the h-step-
ahead density forecast for the scalar variable yt+h constructed at period t
by

St+h(θ̂t) ≡ S(Φ̂f
t+h(·), yt+h) = −

∫
U

(
1(yt+h ≤ u)− Φ(u|Xt, θ̂t)

)2

du

and also denotes the score for period j (with j varying over the in-sample
window) as

Sj(θ̂t) ≡ S(Φ̂e
j(·), yj) = −

∫
U

(
1(yj ≤ u)− Φ(u|Xj−h, θ̂t)

)2

du

where Φ(·) denotes the cumulative distribution function of φ(·).
Compared with the LS, which is defined in terms of a probability den-

sity function (PDF), the CRPS (or DMSE) is defined directly in terms of
a cumulative distribution function (CDF). Considering CRPS (or DMSE)
complements the LS in a number of ways. First, it helps circumvent the
problem that restrictions to predictive densities are often impractical. For
example, not all distributions have PDFs, and PDFs may involve a point
mass. Thus, a scoring rule defined directly in terms of a CDF can be more
compelling. Furthermore, CRPS (or DMSE) is also sensitive to distance;
no credit is given for assigning a high probability to the value close but
not identical to the event that actually occurred. In this sense, the CRPS
(or DMSE) is a more accurate measurement than the LS.

A confidence interval version of measurement
A CI is more natural to use when measuring performance in specific re-
gions. In the present context, the CI denotes the score for the h-step-ahead
density forecast for the scalar variable yt+h constructed at period t by

St+h(θ̂t) ≡ S(Φ̂f
t+h(·), yt+h)

= −
(

1(u ≤ yt+h ≤ u)− (Φ(u|Xt, θ̂t)− Φ(u|Xt, θ̂t))
)2

9E [1(y ≥ x)] = Pr(x ≤ y) = F0(y), where F0(y) is the true cumulative distribu-
tion function. See [Corradi and Swanson, 2005] for a similar explanation.

12
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and also denotes the score for period j (with j varying over the in-sample
window) as

Sj(θ̂t) ≡ S(Φ̂e
j(·), yj)

= −
(

1(u ≤ yj ≤ u)− (Φ(u|Xj−h, θ̂t)− Φ(u|Xj−h, θ̂t))
)2

Compared with the LS and CRPS, which measure the overall perfor-
mance of the density function or distribution function, CI measures the
performance of the distribution function over a specific region. Thus,
tests involving a CI complement those that consider the LS and CRPS by
capturing DFBs in specific regions, whereas performances of different re-
gions may offset each other in the latter tests. An alternative method for
considering the performance of a specific region is adding a weighting
function so as to focus on certain regions of U that are of interest (see
[Corradi and Swanson, 2006] and [Amisano and Giacomini, 2007]).10

It is worth noting that the evaluation function S(·) can take a general
form, and other types of evaluation functions can be considered, includ-
ing scoring rules for quantile (e.g., value-at-risk) and interval forecasts
(see [Gneiting and Raftery, 2007] for interval scores). Furthermore, the
probability integral transform (PIT) may also be employed as an evalua-
tion function11, although in this context, the CRPS (or DMSE) is a better

10For example, the adjusted score for the h-step-ahead density forecast for the scalar
variable yt+h constructed at period t by

St+h(θ̂t) ≡ S(φ̂ft+h(·), yt+h) = −
∫
U

(
1(yt+h ≤ u)− Φ(u|Xt, θ̂t)

)2
g(u)du

and denotes the score for period j, with j varying over the in-sample window, by

Sj(θ̂t) ≡ S(φ̂ej(·), yj) = −
∫
U

(
1(yj ≤ u)− Φ(u|Xj−h, θ̂t)

)2
g(u)du

where
∫
U
g(u)du = 1 and g(u) ≥ 0. By setting the value of g(u), one can measure the

performances using varying weights given for different regions.
11In this case, St+h(θ̂t) ≡ S(φ̂ft+h(·), yt+h) =

∫ yt+h
−∞ φ(y|Ft, θ̂t)dy, and Sj(θ̂t) ≡

S(φ̂ej(·), yj) =
∫ yj
−∞ φ(y|Ft, θ̂t)dy.

13
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choice. Although both the PIT and CRPS (or DMSE) are CDF-based
measurements, accuracy measurements based on the PIT may cause a
problem in estimation uncertainty correction, which requires the deriva-
tive of the measurements. Moreover, the test herein cannot make use of
the PIT’s properties of being uniform, independent and identically dis-
tributed if the density forecast is correctly specified as I focus on con-
sistency between the future density forecasting performance and the in-
sample fit, rather than the correct specification. In addition, evaluating
the out-of-sample performance relative to the in-sample fit is similar to
model comparisons that commonly use the LS and CRPS (or DMSE)
to compare relative performance (e.g., [Corradi and Swanson, 2005] and
[Amisano and Giacomini, 2007]).

For simplicity, St+h(θ̂t) and Sj(θ̂t) are hereon denoted as St+h and
Sj , and a superscript ∗ is used to refer to counterparts evaluated by the
pseudo-true parameter θ∗.

1.2.3 Test
In this paper, DFBs are defined as situations in which the out-of-sample
density forecast performance, judged by an evaluation function, is signifi-
cantly worse than its anticipated performance as measured by average in-
sample performance. I further formalize this idea by defining the ”scoring
surprise” at time t+h as the difference between the out-of-sample density
forecast performance (the score for the density forecast for yt+h) and the
averaged in-sample performances (the average score over the in-sample
window). This definition is as follows:

SSt+h = St+h − St (1.1)

where St is the average in-sample score computed over the in-sample
window implied by the estimation schemes: St = 1

R

∑t
j=t−R+1 Sj for

the rolling scheme and St = 1
t

∑t
j=1 Sj for the recursice scheme.12 A

positive scoring surprise indicates better out-of-sample density forecast

12St = 1
R

∑R
j=1 Sj for the fixed scheme.

14
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performance relative to the in-sample fit while, conversely, a negative
scoring surprise indicates worse relative out-of-sample density forecast
performance.

Consider the out-of-sample mean of the scoring surprise:

SSR,P ≡
1

P

T−h∑
t=R

SSt+h (1.2)

The DFB test is based on the concept that, in the absence of a DFB,
this sum should be close to zero. More formally, the expectation of the
averaged scoring surprise evaluated by the pseudo-true model should be
zero. This implies a no-DFB null hypothesis constructed as follows:

H0 : E

[
1

P

T−h∑
t=R

SS∗t+h

]
= 0 (1.3)

against the alternative that

Ha : E

[
1

P

T−h∑
t=R

SS∗t+h

]
< 0 (1.4)

where SS∗t+h is the counterpart of SSt+h evaluated with the pseudo-true
parameter θ∗. The DFB test is a one-sided test, since a breakdown refers
to worse out-of-sample density forecast performance relative to the in-
sample fit. Similarly, if one is interested in testing whether there is a
density forecast improvement (DFI), then the alternative should be Ha :

E
[

1
P

∑T−h
t=R SS

∗
t+h

]
> 0. If one is interested in testing whether there is a

density forecast break, either a breakdown or an improvement, then a two-
sided test can be constructed with the alternativeHa : E

[
1
P

∑T−h
t=R SS

∗
t+h

]
6=

0.
The DFB test statistic is

tR,P,h =
P 1/2SSR,P

σ̂R,P
(1.5)

15
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where σ̂2
R,P is the asymptotic variance estimator of P 1/2SSR,P . A level

α test rejects the null hypothesis whenever tR,P,h > zα, where zα is the
1 − α-th quantile of a standard normal distribution. The asymptotic dis-
tribution for the DFB test is provided by Theorem 1.

1.2.4 Assumptions
The following assumptions are made for the asymptotic distribution of
the DFB test.

Assumption P1. {Zt} is a mixing sequence with α of size −r/(r − 2),
r > 2.

Assumption P2. (a) St is measurable and twice continuously differen-
tiable with respect to θ; (b) Under H0, in the neighbourhood N of θ∗,
there exists a constant D < ∞ such that for all t, supθ∈N | ∂

2St
∂θ∂θ′
| < mt,

for a measurable mt such that E[mt] < D.

Assumption P3. Under H0, supt≥R
∥∥∥θ̂t − θ∗ −B∗tH∗t ∥∥∥ →a.s 0, where

θ̂ is k × 1. B∗t is a k × q matrix of column k such that supt≥1|B∗t | <
∞. H∗t = 1/R

∑R
s=1 h

∗
s(fixed scheme); H∗t = 1/R

∑t
s=t−R+1 h

∗
s(rolling

scheme); H∗t = 1/t
∑t

s=1 h
∗
s(recursive scheme); for a q×1 orthogonality

condition h∗s such that E[h∗s] = 0.

Assumption P4. supt≥1 ‖[S∗t , ∂S∗t /∂θ, h∗′t ]′‖2r < ∞, where ∂S∗t /∂θ is
1× k.

Assumption P5. 1
T

∑T
t=1 E

[
∂S∗t
∂θ

]
<∞ for all T .

Assumption P6. Var
(
T−1/2

∑T
t=1 S

∗
t

)
> 0 for all T sufficiently large.

Assumption P7. R,P →∞, P
R
→ π, 0 ≤ π <∞.

Assumption P1 restricts the dependence and allows heterogeneity in
the data. This assumption follows Assumption A1 made by [Giacomini
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and Rossi, 2009a]. Assumption P2 is adapted from Assumption A1 made
by [West, 1996] and Assumption A2 made by [Giacomini and Rossi,
2009a], implying that (i) φ(y|Xt, θ) 6= 0 for all y, and (ii) φ(y|Xt, θ)
is twice continuously differentiable w.r.t θ.13 Assumption P3 follows As-
sumption A2 made by [West, 1996] and Assumption A3 made by [Gi-
acomini and Rossi, 2009a]). It permits a number of estimation proce-
dures for the model’s parameters, including ordinary least squares (OLS),
generalized method of moments (GMM), and (quasi-) maximum likeli-
hood (QML). The important difference between Assumption P3 and the
assumptions made by [West, 1996] and [Giacomini and Rossi, 2009a]
is that the point forecast only requires coefficient parameters, while the
density forecast also requires the variance parameter. For example, for
the OLS estimation of the parameters in the linear model Ys = X ′sβ

∗ +
εs, s = 1, . . . , t, the estimation uncertainty adopted in point forecast is∥∥∥β̂t − β∗ −B∗tH∗t ∥∥∥ →a.s 0 with B∗t = (E(1

t

∑t
s=1 XsX

′
s))
−1 and h∗s =

Xsεs; while the density forecast requires the estimation uncertainty of the
parameter vector θ = [β′σ2]′. In the density forecast,

θ̂t − θ∗ =

[
β̂t − β∗
σ̂2
t − σ∗2

]
=

[
(1
t

∑t
s=1 XsX

′
s)
−1 0

−1
t

∑t
s=1 εsX

′
s(

1
t

∑t
s=1XsX

′
s)
−1 1

] [
1
t

∑t
s=1 Xsε

′
s

1
t

∑t
s=1 εsε

′
s − σ∗2

]
= BtH

∗
t

and requires thatB∗t =

[
(E[1

t

∑t
s=1 XsX

′
s])
−1 0

0 1

]
and h∗s =

[
Xsε

′
s

εsε
′
s − σ∗2

]
.

14

Assumption P5 is a relaxed version of Assumption A5 made by [Gi-
acomini and Rossi, 2009a]. In the point forecast, estimation uncertainty

13The reason being that, for a parametric model, the second derivative of St =

log φ(yt|Xt, θ) with respect to θ is ∂2St
∂θ∂θ′ =

∂2φ(yt|Xt,θ)
∂θ∂θ′ ·φ(yt|Xt,θ)−(∂φ(yt|Xt,θ)/∂θ)2

φ(yt|Xt,θ)2 .

14Bt =

[
( 1
t

∑t
s=1XsX

′
s)
−1 0

− 1
t

∑t
s=1 εsX

′
s(

1
t

∑t
s=1XsX

′
s)
−1 1

]
→[

(E[ 1t
∑t
s=1XsX

′
s])
−1 0

0 1

]
= B∗t
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can be irrelevant if the loss function is the same for the estimation and
evaluation.15 However, in the density forecast, this can only hold when
the LS and QMLE are adopted simultaneously, and the derivatives of the
evaluation functions are the derivatives of the log-likelihood functions
(see Corollary 1). For all other cases, estimation uncertainty cannot be
omitted. Assumption P5 ensures that estimation uncertainty converges.
Assumption P7 follows Assumption A7 made by [Giacomini and Rossi,
2009a]. It ensures that the test statistic has an asymptotically normal dis-
tribution when the in-sample and out-of-sample sizes reach infinity at the
same rate or when the in-sample size grows faster than the out-of-sample
size. In particular, when π = 0 (i.e., when the in-sample size grows faster
than the out-of-sample size), the estimation uncertainty component can
be asymptotically irrelevant (see Theorem 1).

1.2.5 Main results
In what follows, I show how to construct a valid asymptotic variance es-
timator for the DFB test statistic. The averaged scoring surprise is rewrit-
ten as a weighted average of in-sample and out-of-sample scoring with
weights dependent on (R,P ) and the estimation schemes. Additionally,
the averaged estimation uncertainty component is rewritten as a weighted
average of in-sample and out-of-sample ht(θ∗) as defined in Assumption
P3, with weights that are dependent on (R,P ) and the estimation scheme
and that are computed using B∗t as defined in Assumption P3. Therefore,
the asymptotic variance estimator is simply a (rescaled) heteroskedastic-
ity and autocorrelation consistent (HAC) estimator of the variance and
covariance of these two weighted averages. A HAC estimator is used for
the asymptotic variance due to the possible presence of serial correlation
in both the scores and the estimation uncertainty.

For simplification, the algorithm for the fixed scheme is given here
in detail, and the algorithms for the rolling and recursive schemes are

15If the loss function is the same for the estimation and evaluation, then E[∂Lt(β
∗)

∂β ] =
0. To this regard, [Giacomini and Rossi, 2009a] demonstrate that estimation uncertainty
is irrelevant if this assumption holds.
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provided in Appendix 1.8.2.
Algorithm 1 Construct the following: (1) a 1× T vector S∗ of in-sample
and out-of-sample scores, with element S∗t , t = 1, . . . , T , and its counter-
part S with element St, t = 1, . . . , T :

S∗ ≡

S∗1(θ∗), . . . , S∗R(θ∗)︸ ︷︷ ︸
R

, SR+1(θ∗), . . . , SR+h−1(θ∗)︸ ︷︷ ︸
h−1

, S∗R+h(θ
∗), . . . , S∗T (θ∗)︸ ︷︷ ︸

P



S ≡

S1(θ̂R), . . . , SR(θ̂R)︸ ︷︷ ︸
R

, SR+1(θ̂R), . . . , SR+h−1(θ̂R)︸ ︷︷ ︸
h−1

, SR+h(θ̂R), . . . , ST (θ̂R)︸ ︷︷ ︸
P


and the corresponding vector S̃ of demeaned scorings, where S̃t ≡ St −
T−1

∑T
j=1 Sj; (2) a 1× T vector of weights, depending on the estimation

scheme, with elements ωSt , t = 1, . . . , T :

ωS ≡

−P
R
, . . . ,−P

R︸ ︷︷ ︸
R

, 0, . . . , 0︸ ︷︷ ︸
h−1

, 1, . . . , 1︸ ︷︷ ︸
P


so that

T∑
t=1

ωSt S
∗
t =

T−h∑
t=R

SS∗t+h

Algorithm 2 Construct the following: (1) a (k + 1) × T vector of in-
sample and out-of-sample h∗, as defined in Assumption P3, with element
h∗t , t = 1, . . . , T , and its counterpart h with element ht, t = 1, . . . , T :

h∗ ≡

h∗1(θ∗), . . . , h∗R(θ∗)︸ ︷︷ ︸
R

, h∗R+1(θ∗), . . . , h∗T−h(θ
∗)︸ ︷︷ ︸

P−1

, O, . . . , O︸ ︷︷ ︸
h



h ≡

h1(θ̂R), . . . , hR(θ̂R)︸ ︷︷ ︸
R

, hR+1(θ̂R), . . . , hT−h(θ̂R)︸ ︷︷ ︸
P−1

, O, . . . , O︸ ︷︷ ︸
h


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(2) a 1 × T vector of weights ωh∗, depending on the estimation scheme,
with elements ωh∗t , t = 1, . . . , T and its counterpart ωh with elements
ωht , t = 1, . . . , T :16

ωh∗ ≡

−∑T−h
t=R D

∗
t+hB

∗
R

R
, . . . ,−

∑T−h
t=R D

∗
t+hB

∗
R

R︸ ︷︷ ︸
R

, O, . . . , O︸ ︷︷ ︸
T−R

 D∗t+h =
∂SS∗t+h(θ

∗)

∂θ

ωh ≡

−∑T−h
t=R Dt+hBR

R
, . . . ,−

∑T−h
t=R Dt+hBR

R︸ ︷︷ ︸
R

, O, . . . , O︸ ︷︷ ︸
T−R

 Dt+h =
∂SSt+h(θ̂R)

∂θ

so that
T∑
t=1

ωh∗t h
∗
t =

T−h∑
t=R

D∗t+hB
∗
tH
∗
t

The asymptotic variance estimator is then simply a (rescaled) het-
eroskedasticity and autocorrelation consistent (HAC) estimator of the vari-
ance and covariance of these two weighted averages.

σ̂2
R,P =

T

P
(V SS

T + V hh
T + 2V Sh

T ) (1.6)

with V SS
T ,V hh

T ,V Sh
T defined as follows:

VT =

[
V SS
T V Sh

T

V Sh
T V hh

T

]
V SS
T =

1

T

T∑
t=1

(ωSt S̃t)
2 +

2

T

pT∑
j=1

vT,j

T∑
t=j

ωSt S̃tω
S
t−jS̃t−j

V hh
T =

1

T

T∑
t=1

ωht hth
′
tω

h′
t +

2

T

pT∑
j=1

vT,j

T∑
t=j

(ωht hth
′
t−jω

h′
t−j + ωht−jht−jh

′
tω

h′
t )

V Sh
T =

1

T

T∑
t=1

ωSt S̃th
′
tω

h′
t +

2

T

pT∑
j=1

vT,j

T∑
t=j

(ωSt S̃th
′
t−jω

h′
t−j + ωSt−jS̃t−jh

′
tω

h′
t ),

(1.7)
16Bt is the consistent estimate of B∗t .
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where bandwidth pT and weights vT,j are appropriately chosen as per
[Newey and West, 1987].

Theorem 1. (Generalization of Asymptotic Distribution of the DFB Test
for Parametric Models)
(i) Given Assumption P 1-7, if VT defined in eq (1.7) is p.d., then under
H0 in (1.3), tR,P,h

d→ N (0, 1), where tR,P,h is defined in (1.5) and σ̂2
R,P

defined in (1.6).
(ii) In the special case that π = 0 in Assumption P7, σ̂2

R,P = T
P
V SS
T with

V SS
T defined in (1.7).

When the LS and QMLE are adopted simultaneously, the evalua-
tion function and the estimation objective function are the same, such
that E

[
∂S∗t
∂θ

]
= E

[
∂ log φ∗t
∂θ

]
= 0 for all t. Therefore, it is satisfied that

1
T

∑T
t=1 E

[
∂S∗t
∂θ

]
< ∞ for all t, leading to a simple expression for σ̂2

R,P ,
where the estimation uncertainty is asymptotically irrelevant. The fol-
lowing corollary illustrates the situation in which the LS is adopted as the
evaluation function and the QMLE.

Corollary 1. (Special case: variance estimator under the LS and QMLE)
Given Assumption P 1-7, under H0 in (1.3), tR,P,h

d→ N (0, 1), where
tR,P,h is defined in (1.5) and σ̂2

R,P = T
P
V SS
T with V SS

T defined in (1.7).

1.2.6 Causes of DFBs

It is of interest to investigate why the in-sample fit provides unreliable
guidance for the out-of-sample density forecasting ability. To this end,
Proposition 1 considers the expectation of the DFB test statistic’s numer-
ator so as to analyze the causes of the DFBs.

Proposition 1. Causes of density forecast breakdowns for parametric
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models

E

P−1/2
T−h∑
t=R

SSt+h(φ̂)

 = E

P−1/2
T−h∑
t=R

(
St+h(θ

∗
t+h)−

∑
jSj(θ

∗
j )
)

︸ ︷︷ ︸
Other Instabilities

+ P
−1/2

T−h∑
t=R

E

[
∂St+h(θ

∗
t+h)

∂θ

] (
θ
∗
t − θ

∗
t+h

)
− P−1/2

T−h∑
t=R

∑
jE

[
∂Sj(θ

∗
j )

∂θ

] (
θ
∗
t − θ

∗
j

)
︸ ︷︷ ︸

Parameter Instability I

+
1

2
P
−1/2

T−h∑
t=R

{(
θ
∗
t − θ

∗
t+h

)′
E

[
∂2St+h(θ

∗
t+h)

∂θ∂θ′

] (
θ
∗
t − θ

∗
t+h

)
−
∑
j

(
θ
∗
t − θ

∗
j

)′
E

[
∂2Sj(θ

∗
j )

∂θ∂θ′

] (
θ
∗
t − θ

∗
j

)}
︸ ︷︷ ︸

Parameter Instability II

+ P
−1/2

T−h∑
t=R

E

[
∂St+h(θ

∗
t )

∂θ

(
θ̂t − θ∗t

)]
︸ ︷︷ ︸

Estimation Uncertainty I

+P
−1/2

T−h∑
t=R

E


(θ̂t − θ∗t )′ ∂2Lt(θ̂t)

∂θ∂θ′
+
∂Lt(θ

∗
t )

∂θ
−
∂St(θ

∗
t )

∂θ

(θ̂t − θ∗t )
︸ ︷︷ ︸

Estimation Uncertainty II

+
1

2
P
−1/2

T−h∑
t=R

E

(θ̂t − θ∗t )′
 ∂2St+h(θ̂t)

∂θ∂θ′
−
∂2Sj(θ̂t)

∂θ∂θ′

(θ̂t − θ∗t )


︸ ︷︷ ︸
Estimation Uncertainty III

where L(·) denotes the loss function/objective function for estima-
tion,

∑
j denotes the in-sample average that corresponds to the estimation

scheme17, and (θ∗t+h, θ
∗
j , θ̂t) denote some intermediate points between the

intervals (θ∗t , θ
∗
t+h), (θ

∗
t , θ
∗
j ), (θ̂t, θ

∗
t ), respectively.

Proposition 1 implies that the DFB can result from parameter insta-
bility, estimation uncertainty and other instabilities. ”Other Instabilities”
include any changes, other than parameter instabilities, that cause an ex-
pected scoring surprise. ”Parameter Instability I” captures changes in pa-
rameters with magnitude θ∗t − θ∗ = Op(P 1/2), which is the same mag-
nitude as that considered in the structural break literature. ”Parameter
Instability II” indicates changes in parameters with magnitude θ∗t − θ∗ =
Op(P 1/4), which is instead smaller than that considered in the aforemen-
tioned literature.

When the LS and QMLE are adopted simultaneously, ”Estimation Un-

certainty II” degenerates to P−1/2
∑T−h

t=R E

{(
θ̂t − θ∗t

)′
∂2Lt(θ̂t)
∂θ∂θ′

(
θ̂t − θ∗t

)}
,

which is a quadratic form and is always positive. This form results from

17For example,
∑
j = 1

R

∑R
j=1 for the fixed scheme.
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the average in-sample score computed at the parameter estimates being
maximized by construction according to the QMLE. It is therefore greater
than the expected out-of-sample score and can be interpreted as a measure
of ”overfitting.” In this case, Corollary 2 in the appendix proposes a sim-
ple correction to the DFB test statistic by subtracting an approximated
”Estimation Uncertainty II” from the numerator of the DFB test statistic
in Proposition 1.

1.3 Detecting Density Forecast Breakdowns for
Non-parametric Models

This section extends the DFB test to non-parametric models. The re-
searcher may characterize the h-step-ahead predictive density for the scalar
variable yt+h based on the conditioning information set Ft (denoted by
φ(·|Ft)) without imposing a parametric form. Hence, the sequence of
P out-of-sample density forecasts evaluated at the ex-post realizations
would be denoted as φ̂ft+h(yt+h) = φ(yt+h|Ft), t = R, . . . , T − h. Simi-
larly, the density estimator evaluated at the realization for period j (with j
varying over the corresponding in-sample window) would be denoted by
φ̂ej(yj) = φ(yj|Ft). Considering that only a subset of the true information
set (Ft ⊂ Ft) may be observed, the pseudo-true conditional density of the
scalar variable yt+h would be denoted by φ∗t+h(·) = φ(·|Ft). In the para-
metric case, the evaluation function becomes a function of the parameter
vector θ. However, in this case, the evaluation function for the h-step-
ahead density forecast for the scalar variable yt+h constructed at period
t would be a function of the predictive density function evaluated at the
corresponding realization. The LS, for example, denotes the score for the
h-step-ahead density forecast for the scalar variable yt+h constructed at
period t as

St+h ≡ S(φ̂ft+h(·), yt+h) = log φ(yt+h|Ft)
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and denotes the score for period j (with j varying over the in-sample
window) as

Sj ≡ S(φ̂ej(·), yj) = log φ(yj|Ft)
Similarly, ·∗ is used to refer to counterparts evaluated by the pseudo-true
density φ∗(·).

A fundamental difference between the parametric case and the non-
parametric case is that correcting the estimation uncertainty is difficult in
the non-parametric case, since the estimation uncertainty is a function of
the derivatives of the density estimators. To solve this problem, I provide
the following conditions to ensure that the estimation uncertainty compo-
nent is asymptotically irrelevant for the non-parametric case.

Assumption NP1. (a) The Hadamard Derivative of the scoring St(φ∗)
exists, denoted asD∗t,φ, and supt≥1

∥∥D∗t,φ∥∥ <∞. (b) supt≥1 ‖St(φ∗)‖2r <

∞. (c) Var
(
T−1/2

∑T
t=1 St(φ

∗)
)
> 0 for all sufficiently large T .

Assumption NP2. R,P → ∞.
√
P supy |φ̂t(y) − φ∗(y)| = op(1),∀t =

R, . . . , T .

Assumption NP1 is similar to Assumption P2, P4, P5 and P6 in the
parametric case. Apart from the regular conditions, Assumption NP1 en-
sures that the functional derivative of the scoring exists and is bounded.
Assumption NP2 is then a general assumption, ensuring that the estima-
tion uncertainty is asymptotically irrelevant.

These high level assumptions are very realistic and can be replaced
with more detailed assumptions when adopting different non-parametric
estimation methods. Below is an example list of detailed assumptions
for the kernel density estimation (KDE), one of the most commonly used
non-parametric estimation methods.

Example (KDE): To determine the h-step-ahead unconditional pre-
dictive density for the scalar variable yt+h based on the information set
Ft = σ(y′1; . . . ; y′t)

′ available at time t, KDE with kernel function K(·) is
adopted at each period t to obtain the density estimator φ̂t(·) and used as
the density forecast for yt+h. In this case, the following assumptions are
considered.
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Assumption NP-KDE1. {yt} is i.i.d, and have a three-time differentiable
pdf φ(y) with infy φ(y) ≥ δ > 0.

Assumption NP-KDE2. The kernel function K(.) is bounded and satis-
fies: (a)

∫
K(u)du = 1. (b) K(u) = K(−u). (c)

∫
u2K(u)du = κ2 > 0.

Assumption NP-KDE3. The estimation window size R and the corre-
sponding bandwidth parameter hR satisfy that, as R → ∞, hR → 0 and
RhR →∞.

Assumption NP-KDE4. R,P →∞, P lnR
RhR

→ 0 and Ph4
R → 0.

Assumption NP-KDE5. (a) The Hadamard Derivative of the scoring
St(φ

∗) exists, denoted asD∗t,φ, and supt≥1

∥∥D∗t,φ∥∥ <∞. (b) supt≥1 ‖St(φ∗)‖2r <

∞. (c) Var
(
T−1/2

∑T
t=1 St(φ

∗)
)
> 0 for all sufficiently large T .

Assumption NP-KDE1 can be relaxed to allow the data to be mix-
ing, because time series dependence has no effect on the asymptotic bias
and variance of the kernel estimator. In addition, KDE averages the data
locally in the y-dimension, where there is no time-series dependence.
Assumptions NP-KDE2 and NP-KDE3 are standard assumptions for the
kernel function and bandwidth parameter, respectively, which ensure the
consistency of the KDE. Assumption NP-KDE5 ensures that the density
estimation uncertainty component converges to zero asymptotically and
works similarly to Assumptions P4, P5 and P6 in the parametric case.

Theorem 2. (Generalization of Asymptotic Distribution of the DFB Test
for Non-parametric Models) Given Assumptions NP1 and NP2, if VT
defined below is p.d., then under H0 in (1.3), tR,P,h

d→ N (0, 1), where
tR,P,h is defined in (1.5) and σ̂2

R,P is defined as

σ̂2
R,P =

T

P

{
1

T

T∑
t=1

(ωSt S̃t)
2 +

2

T

pT∑
j=1

vT,j

T∑
t=j

ωSt S̃tω
S
t−jS̃t−j

}
where bandwidth pT and weights vT,j are appropriately chosen as per
[Newey and West, 1987].
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Similar to the parametric case, Proposition 2 below again considers
the expectation of the DFB statistic’s numerator in order to analyze the
causes of the DFB.

Proposition 2. Causes of density forecast breakdowns for non-parametric
models

E

P−1/2
T−h∑
t=R

SSt+h(φ̂)

 = E

P−1/2
T−h∑
t=R

(
St+h(φ

∗
t+h)−

∑
jSj(φ

∗
j )
)

︸ ︷︷ ︸
Other Instabilities

+ P
−1/2

T−h∑
t=R

E

[
∂St+h(φ

∗
t+h)

∂φ(y)

] (
φ
∗
t (yt+h)− φ

∗
t+h(yt+h)

)
− P−1/2

T−h∑
t=R

∑
jE

[
∂Sj(φ

∗
j )

∂φ(y)

] (
φ
∗
t (yj)− φ

∗
j (yj)

)
︸ ︷︷ ︸

Density Instability I

+
1

2
P
−1/2

T−h∑
t=R

{(
φ
∗
t (yt+h)− φ

∗
t+h(yt+h)

)′
E

[
∂2St+h(φ

∗
t+h)

∂φ(y)∂φ(y′)′

] (
φ
∗
t (y
′
t+h)− φ

∗
t+h(y

′
t+h)

)
−
∑
j

(
φ
∗
t (yj)− φ

∗
j (yj)

)′
E

[
∂2Sj(φ

∗
j )

∂φ(y)∂φ(y′)′

] (
φ
∗
t (y
′
j)− φ

∗
j (y
′
j)
)}

︸ ︷︷ ︸
Density Instability II

+ P
−1/2

T−h∑
t=R

E

[
∂St+h(φ

∗
t )

∂φ(y)

(
φ̂t(yt+h)− φ

∗
t (yt+h)

)]
︸ ︷︷ ︸

Estimation Uncertainty I

−P−1/2
T−h∑
t=R

∑
jE

[
∂Sj(φ

∗
t )

∂φ(y)

(
φ̂t(yj)− φ

∗
t (yj)

)]
︸ ︷︷ ︸

Estimation Uncertainty II

+
1

2
P
−1/2

T−h∑
t=R

E

(φ̂t(yt+h)− φ∗t (yt+h))′
 ∂2St+h(φ̂t)

∂φ(y)∂φ(y′)′
−

∂2Sj(φ̂t)

∂φ(y)∂φ(y′)′

(φ̂t(y′j)− φ∗t (y′j))


︸ ︷︷ ︸
Estimation Uncertainty III

where (φ∗t+h, φ
∗
j , φ̂t) denotes some intermediate functionals evaluated

at the corresponding realizations between the intervals (φ∗t , φ
∗
t+h), (φ

∗
t , φ
∗
j), (φ̂t, φ

∗
t )

respectively.

Proposition 2 implies that the DFB can result from density instabil-
ity, estimation uncertainty and other instabilities. Similar to the para-
metric case, ”Other Instbility” captures any changes, other than a shift
in the density itself, that cause an expected scoring surprise. ”Density
Instability I” captures changes in the density function with magnitude
φ∗t (y)−φ∗(y) = Op(P 1/2), and ”Density Instability II” captures changes
in the density function with magnitude φ∗t (y)− φ∗(y) = Op(P 1/4).
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1.4 Extensions

1.4.1 Fluctuation DFB test

The DFB test discussed above focuses on the global performance of the
density forecast model. However, the relative out-of-sample performance,
compared with the in-sample performance, may itself be time-varying.
The fluctuation test formulated by [Giacomini and Rossi, 2010] can thus
be used to construct a fluctuation DFB test for this case18. The fluctua-
tion DFB test statistics are based on measurements of the entire time path
of the local averaged scoring surprise, computed over the rolling out-of-
sample windows of size M (M is defined formally below). Compared
with the DFB test, this fluctuation DFB test considers the possibility that
useful information may be lost when averaging the global scoring sur-
prise.

The fluctuation DFB test statistic is built on measurements of the local
averaged scoring surprise and assesses whether the averaged scoring sur-
prise equals zero at each point in time. In contrast to the null hypothesis
in (1.3) for the DFB test, it focuses on the robust null hypothesis HF

0 :

HF
0 : E

[
SS∗t+h

]
= 0,∀t = R, . . . , T − h (1.8)

Define the local out-of-sample mean of the scoring surprise:

SSR,M,t ≡
1

M

t+M/2−1∑
j=t−M/2

SSj, t = R+M/2, . . . , T −M/2 + 1 (1.9)

The following proposition describes the asymptotic distribution of the
fluctuation DFB test.

Proposition 3. The Fluctuation DFB Test Suppose the assumptions for
the DFB test hold. Suppose the following conditions are satisfied: (i)

18[Giacomini and Rossi, 2010] elaborated a fluctuation test for forecast comparisons
in an unstable environment.
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{P−1/2
∑R+[τP ]

t=R SS∗t+h} obeys a Functional Central Limited theorem; (ii)
M/P → µ ∈ (0,∞) as M →∞, P →∞. Let

Ft,R,M =
M−1/2

∑t+M/2−1
j=t−M/2 SSj

σ̂R,P
, t = R +M/2, . . . , T −M/2 + 1

(1.10)
where σ̂2

R,P is the asymptotic variance estimator of P 1/2SSR,P . Under
the null hypothesis HF

0 in (1.8):

Ft,R,M ⇒ [B(τ + µ/2)− B(τ − µ/2)]/
√
µ (1.11)

where t = [τP ], M = [µP ] and B(·) is a standard univariate Brownian
motion. Then,

sup
t
Ft,R,M

d→ sup
τ

[B(τ + µ/2)− B(τ − µ/2)]/
√
µ (1.12)

The critical value κα for a significance level α solves the problem that
Pr
[
supτ |[B(τ + µ/2)− B(τ − µ/2)]/

√
µ| > κα

]
= α.

The fluctuation DFB test is a [Giacomini and Rossi, 2010] fluctua-
tion test applied to the DFB test. Additionally, it can be applied to both
parametric and non-parametric cases, with the corresponding scoring sur-
prises as defined in sections 1.2.3 and 1.3.

1.4.2 DFB test robust to the choice of R
The choice of window size presents an additional issue, since arbitrarily
choosing the size of the estimation window might lead to different empir-
ical results in practice. For example, satisfactory results might simply be
obtained after data snooping over window sizes. To solve this problem,
[Inoue and Rossi, 2012] proposed a methodology for evaluating the out-
of-sample forecasting performance of models that is robust to the choice
of in-sample window size. The DFB test can be similarly adapted to be
robust to the choice of estimation window size by regarding the window
size R as a nuisance parameter.
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Proposition 4. (Asymptotic Distribution of the Test Statistics Robust to
the Choice of R) Let TT (R) denote the DFB test statistic as a function of
the in-sample size R, that is

TT (R) ≡ tR,P,h =
P 1/2SSR
σ̂R,P

=
P−1/2

∑T−h
t=R SSt+h(θ̂t,R)

σ̂R,P
(1.13)

where σ̂2
R,P is the asymptotic variance estimator of P 1/2SSR,P , and θ̂t,R

is the estimator at period t with the in-sample window size R.
Suppose the test statistic TT (·) satisfies

TT ([ı(·)T ])⇒ T (·) (1.14)

where ı(·) is the identity function, that is, ı(x) = x and⇒ denotes weak
convergence in the space of cadlag functions on [0, 1] equipped with the
Skorokhod metric. Then,

sup
[µT ]≤R≤[µT ]

TT (R)
d→ sup

[µT ]≤R≤[µT ]

T (µ) (1.15)

1

[µT ]− [µT ] + 1

[µT ]∑
R=µT

TT (R)
d→
∫ µ

µ

T (µ)dµ (1.16)

where 0 < µ < µ < 1.

This approach assumes that R is growing with the sample size and
asymptotically becomes a fixed fraction of the total sample size, an as-
sumption that is consistent with the approaches used by [West, 1996],
[West and McCracken, 1998], [McCracken, 2000], and [Inoue and Rossi,
2012]. In the existing DFB test, µ = limT→∞R/T is fixed, and condition
(1.14) holds pointwise for a given µ. In Proposition 4, however, condi-
tion (1.14) requires that the convergence holds uniformly in µ rather than
pointwise.
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1.4.3 Other extensions

Other extensions of the DFB test are possible. For example, while the
DFB test discussed above focuses on the averaged scoring surprises, which
give equal weight to each out-of-sample period, there may be a need to
weight periods differently. Unlike the null hypothesis used in (1.3) for
the DFB test, a weighted version of the DFB test would focus on a null
hypothesisHw

0 : E
[

1
P

∑T−h
t=R wtSS

∗
t+h

]
= 0 where the weight function wt

depends on t and can be chosen to weight the desired periods. It could,
for instance, be of interest to capture a DFB over a particular period of
time. In this case, targeted periods could be given more weight and other
less weight. A simple example of investigating whether there is a DFB
between period T1 and T2 (R < T1 < T2 < T − h) could be

wt =

{
1 if T1 6 t < T2

0 otherwise,

which keeps the scoring surprises between period T1 and T2 and drops
those outside this range. Furthermore, since the weighting wt is deter-
mined separately from the evaluation function and the data, the only addi-
tional assumption required to retain the properties of the DFB test statistic
is wt <∞,∀t.

Additionally, the DFB test can be easily extended to evaluate joint
density forecast models, since the evaluation functions can be adjusted
to evaluate joint predictive densities. For example, the DFB test statistic
can be constructed based on a multivariate CPRS in the same way as with
the univariate setting; one such multivariate CRPS is defined by [Gneiting
and Raftery, 2007].

1.5 Monte Carlo Evidence

This section analyzes the size and power properties of the DFB test in
finite samples, considering both parametric and non-parametric models.
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1.5.1 Size properties
In what follows, I describe the simulation study investigating the size
properties of the DFB test. The data generating process (DGP) consid-
ered here is:

yt+h = c∗ + xtγ
∗ + ytβ

∗ + εt+h (1.17)

for t = 1, . . . , T , with i.i.d. regressors xt
i.i.d∼ N (0, 1), and error terms

εt
i.i.d∼ N (0, σ∗2). The parameters are set as follows: (c∗, γ∗, β∗) =

(0.5, 0.2, 0.3), σ∗2 = 1. The choice of this autoregressive model that
contains additional regressors (i.e., an ARX model) is inspired by the em-
pirical application in Section 3.4. Additional examples of the ARX model
include the Phillips curve, which, as a forecast model of inflation, relates
changes in inflation to past values of the unemployment gap and of infla-
tion (see [Stock and Watson, 2003], [Corradi and Swanson, 2006], and
[Giacomini and Rossi, 2009a]).

I consider three scenarios.
Scenario 1: Conditional density forecasts with a correctly speci-

fied model
This scenario focuses on the conditional density forecasts of yt+h

where the model is correctly specified. The OLS estimation is applied
to eq (1.17) at each period with the corresponding in-sample observations
and the OLS estimators θ̂t = (ĉt, γ̂t, β̂t, σ̂

2
t ) are obtained at each period t.

Given the OLS estimators, the conditional density forecast of yt+h is

φ̂ft+h(y) = φ(y|xt, yt, θ̂t) =
1√

2πσ̂2
t

e
− (y−ĉt−xtγ̂t−ytβ̂t)

2

2σ̂2t

Scenario 2: Conditional density forecasts with a misspecified model
This scenario focuses on the conditional density forecasts of yt+h

where the model is misspecified. The OLS estimation is applied on the
following regression at each period with the corresponding in-sample ob-
servations, and the OLS estimators θ̂t = (ĉt, γ̂t, β̂t, σ̂

2
t ) are obtained at

each period t.
yt+h = c∗ + ytβ

∗ + εt+h
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Given the OLS estimators, the conditional density forecast of yt+h is

φ̂ft+h(y) = φ(y|yt, θ̂t) =
1√

2πσ̂2
t

e
− (y−ĉt−ytβ̂t)

2

2σ̂2t

Scenario 3: Unconditional density estimation using the KDE
This final scenario focuses on the unconditional density forecasts of

yt+h. In this case, the KDE is applied at each period with the correspond-
ing in-sample observations, and the KDEs φ̂et (y) are obtained at each pe-
riod t. Given the KDEs, the unconditional density forecast of yt+h is:

φ̂ft+h(y) = φ̂et (y) =
1

RhR

R∑
t=1

κ(
yt − y
R

), hR = cR−1/5

where hR is the bandwidth parameter. In this simulation study, the kernel
function κ(·) is a standard normal kernel κ(ν) = 1√

2π
e−

1
2
ν2 , 19 and the

constant c = 1.06.20

All three scenarios consider different combinations given by R,P ∈
{50, 100, 200, 400} for the in-sample and out-of-sample sizes (R,P ) along
with h = 1, 4 for the forecast horizons. For each grouping (R,P, h), 5000
Monte Carlo replications are conducted, generating T = R + P + h− 1
data points as in (1.17). All three evaluation functions discussed in Sec-
tion 1.2.2 are considered: LS, CRPS and CI. The DFB test is consid-
ered for the rolling window scheme and recursive window scheme using
the general asymptotic variance estimator of Theorem 1, Corollary 1 and
Theorem 2, with truncation lags for the HAC estimator set to be T 1/3.

Tables 1.1, 1.2, and 1.3 provide the rejection frequencies of the DFB
test for various (R,P ) pairs for each scenario. The results imply that
the DFB test has good size properties for (i) moderate-large samples (i.e.,
both R and P are large), (ii) both parametric and nonparametric mod-
els, and (iii) all three evaluation functions. When the in-sample size is

19Other kernel functions can also be used.
20See the pilot estimate of the optimal bandwidth for a standard normal kernel func-

tion in [Li and Racine, 2007].
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much smaller than the out-of-sample size, the test performed poorly for
the rolling window scheme.21 However, the test performed well for the
recursive window scheme.

1.5.2 Power properties
This section describes the simulation study investigating the power prop-
erties of the DFB test. The following scenarios with various sources of
DFBs (DGP-P1, DGP-P2, DGP-P3) are considered and are described in
detail below.

DGP-P1: Change in mean Consider a one-time change in mean in
DGP:

yt = αβ · 1(t > Tb) + εt, εt
i.i.d∼ N (0, 1) (1.18)

Let (R,P ) = (200, 100), and let Tb = R + 0.15P . αβ controls the size
of the change in mean. The power curve is obtained by letting αβ vary
between 0 and 2.

DGP-P2: Change in variance Consider a one-time change in vari-
ance in DGP:

yt = εt, εt
i.i.d∼ N (0, σ∗2t )

σ∗2t = 1 + ασ · 1(t > Tb)
(1.19)

Let (R,P ) = (200, 100), and let Tb = R + 0.15P . ασ controls the size
of the change in variance. The power curve is obtained by letting ασ vary
between 0 and 2.5.

DGP-P3: Change in type of distribution Consider a one-time change
in the type of the distribution in DGP:

yt = εt

εt
i.i.d∼ N (0, σ∗2t ), t = 1, . . . , Tb

εt
i.i.d∼ (1− αd)N (0, σ∗2t ) + αdχ

2
k∗ , t = Tb + 1, . . . , T

(1.20)

21This is due to the overfitting component, which becomes asymptotically relevant
when the out-of-sample size P grows faster than the R3/2, causing the test statistics to
diverge (for a detailed discussion, see [Giacomini and Rossi, 2009a]). An overfitting
corrected DFB test statistic is provided in Corollary 2 in the appendix.
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Let (R,P ) = (200, 100), and let Tb = R + 0.15P . The parameter k∗

controls the degree of freedom of the χ2 distribution. k∗ is set to be 2, and
the power curve is obtained by letting αd vary between 0 to 1.

For each scenario, both the parametric and the non-parametric mod-
els are considered for the h-step-ahead (un)conditional density forecast
of yt+h. For the parametric case, the OLS estimation is applied to the
following regression at each period with the corresponding in-sample ob-
servations:

yt+h = β∗0 + xtβ
∗
1 + εt+h

As for forecasting, given the OLS estimators β̂0,t, β̂1,t and σ̂t at each pe-
riod t, the h-step-ahead density forecast of yt+h, assuming normality of
εt, is

φ̂ft+h(y) = φ(y|β̂0,t, β̂1,t, σ̂
2
t ) =

1√
2πσ̂2

t

e
−

(y−β̂0,t−xtβ̂1,t)
2

2σ̂2t

For the non-parametric case, the KDE is applied at each period with
the corresponding in-sample observations, and the KDEs φ̂et (y) are ob-
tained at each period t. As for forecasting, the h-step-ahead density fore-
cast is the same as the density estimator at period t:

φ̂ft+h(y) = φ̂et (y) =
1

RhR

t∑
s=t−R+1

κ(
ys − y
R

), hR = cR−1/5

where hR is the bandwidth parameter. The kernel function κ(·) is a stan-
dard normal kernel (κ(ν) = 1√

2π
e−

1
2
ν2) and the constant c = 1.06.

I conducted 5000 Monte Carlo replications for each scenario for both
the rolling and the recursive window schemes, as well as for the general
asymptotic variance estimator of Theorem 1, Corollary 1, and Theorem
2, with truncation lags for the HAC estimator set to be 0.

Figures 1.2, 1.3, and 1.4 display the power curves of the DFB test with
DGP-P1, P2, and P3 using both parametric and nonparametric models.
These power curves imply that the DFB test has power against changes
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in mean, variance, and distribution type for both parametric and non-
parametric models. In most cases, the CI evaluation function has rela-
tively less power compared with the LS and the CRPS evaluation func-
tions. This could be due to the fact that the CI, especially compared to the
CRPS, focuses on specific regions of the distributions. Hence, it is less
powerful against certain changes in mean and variance.

(a) Parametric (OLS) (b) Non-parametric (KDE)

Figure 1.2: Power function, a one-time change in mean

(a) Parametric (OLS) (b) Non-parametric (KDE)

Figure 1.3: Power function, a one-time change in variance
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(a) Parametric (OLS) (b) Non-parametric (KDE)

Figure 1.4: Power function, a one-time shift in distribution type

1.6 Empirical Analysis

To illustrate the empirical usefulness of the proposed test, I investigate
whether there are DFBs in the density forecast models of real GDP growth
and daily S&P 500 stock price returns in the US.

1.6.1 Real GDP growth in the US

This section evaluates the density forecast model of real GDP growth in
the US adopted by [Adrian et al., 2019], where the distribution of the
future annualized average real GDP growth rate between t and t+ h, de-
noted as yt+h, is modeled as a function of current financial and economic
conditioning variables, denoted as xt, with the constant included.22

Real GDP growth is calculated as the percentage change from the pre-
ceding quarter.23 The dependent variable is the annualized average of the
quarter-to-quarter real GDP growth. As for the conditioning variables, the
economic condition is characterized by the quarter-to-quarter real GDP
growth and the financial condition is characterized by the National Fi-

22That is P [yt+h < y|xt] = Fyt+h|xt(y − xtβ), where the shape of F·(·) is not
precisely known.

23Downloaded from FRED.
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nancial Conditions Index (NFCI)24, which is a weighted average of 105
measures of financial activity, each expressed relative to their sample av-
erages and scaled by their sample standard deviations. The NFCI provides
a weekly estimate of US financial conditions in money markets, debt and
equity markets, and the traditional and shadow banking systems. Positive
NFCI values indicate that financial conditions are tighter than average.
[Brave and Butters, 2012] show that the NFCI is a highly predictive and
robust leading indicator of financial stress for horizons of up to one year.
The NFCI is converted to a quarterly frequency by averaging weekly ob-
servations over each quarter. The data covers 188 quarters (T = 188),
ranging from 1971Q1 to 2017Q4. Hereafter, yt+h denotes the annualized
average real GDP growth rate between t and t+h, and xt denotes a vector
containing the conditioning variables (the current financial and economic
conditioning variables), with the constant included.

Estimation and forecasting procedure

I follow the two-step linear quantile regression estimation procedure adopted
by [Adrian et al., 2019] to construct the conditional predictive distribu-
tion. In the first step, the quantile regressions of [Koenker and Bassett,
1978] is used to estimate the conditional quantile function of future real
GDP growth as a function of current financial and economic conditioning
variables. The regression slope β̂τ in a quantile regression of yt+h on xt
is obtained as follows:

β̂τ = arg min
βτ

T−h∑
t=1

(
τ · 1(yt+h≥xtβ)|yt+h − xtβτ |+ (1− τ) · 1(yt+h<xtβτ )|yt+h − xtβτ |

)
where 1(·) denotes the indicator function. The predicted value from the
regression is the quantile of yt+h conditional on xt, that is Q̂yt+h|xt(τ |xt) =

xtβ̂τ .
In the second step, the estimated quantile distribution is smoothed for

each quarter by interpolating between the estimated quantiles using the

24The NFCI is computed by the Federal Reserve Bank of Chicago.
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skewed t-distribution developed by [Azzalini and Capitanio, 2003] and
the probability density function (PDF) is recovered accordingly.

f(y;µ, σ, α, ν) =
2

σ
t

(
y − µ
σ

; ν

)
T

(
α
y − µ
σ

√
ν + 1

ν + y−µ
σ

; ν + 1

)

where t(·) and T (·) respectively denote the PDF and CDF of the Student
t-distribution. The four parameters of the distribution pin down the lo-
cation µ, scale σ, fatness ν, and shape α. Relative to the t-distribution,
the skewed t-distribution adds the shape parameter, which regulates the
skewness effect of the PDF.

For each quarter, the parameters of the skewed t-distribution function
are obtained by minimizing the squared distance between the estimated
quantile function Q̂yt+h|xt(τ |xt) and the quantile function of the skewed
t-distribution F−1(τ ;µt, σt, αt, νt) to match the 5, 25, 75, and 95 percent
quantiles.

{µ̂t+h, σ̂t+h, α̂t+h, ν̂t+h} = arg min
µ,σ,α,ν

∑
τ

(
Q̂yt+h|xt(τ |xt)− F

−1(τ ;µ, σ, α, ν)
)2

Using the procedure discussed above, I construct the one-quarter-
ahead and the one-year-ahead density forecasts of real GDP growth us-
ing both recursive and rolling window schemes. Following [Adrian et al.,
2019], the predictive distributions for 1993Q1 (one-quarter-ahead) and
1993Q4 (one-year-ahead) are estimated using data from 1971Q1 to 1992Q4,
the initial in-sample range, via the two-step linear quantile regression es-
timation procedure introduced above. I then repeat the same procedure
until the end of the sample. The total size of the out-of-sample is 99
quarters for one-quarter-ahead density forecasts and 96 quarters for one-
year-ahead density forecasts.

Results for the model with financial conditions

I use the DFB test to evaluate the model, denoted as ”GDP+NFCI”, and
Table 1.4 displays the results for the one-quarter-ahead and one-year-
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ahead density forecasts using the recursive window scheme. The findings
of the rolling window scheme are provided in the appendix.25

The main finding is that DFBs occur sporadically in specific regions
of the conditional distribution. The DFB test using the LS and CRPS
as evaluation functions indicate no DFB. This means that the overall in-
sample fit of the model, including the financial conditions (NFCI) in the
predictors, along with the skewed-t errors, is indicative of the overall out-
of-sample density forecasting ability. But more strikingly, the DFB test
using the CI as the evaluation function to focus on specific intervals, in-
dicates that the left tails (especially the lower quantile between 25% and
50%) of the conditional distribution do experience DFBs. The right tails
of the conditional distribution are stable (with the upper quantile between
75% and 100% experiencing improvement). Thus, the in-sample fit, with
respect to specific intervals, does not provide reliable guidance for the
out-of-sample density forecasting ability. The in-sample fit overstates the
out-of-sample density forecast ability for lower quantiles while understat-
ing it for the upper quantiles.

I further apply the fluctuation DFB test to study the entire time path
of the local out-of-sample density forecast performance relative to its in-
sample fit. Figure 1.5 and 1.6 display the fluctuation DFB test statistics
FR,M,t built on the CI evaluation function for the one-quarter-ahead and
one-year-ahead density forecasts using the recursive window scheme. Re-
sults for the rolling window scheme are provided in the appendix. The
fluctuation DFB test indicates that both the 0%-25% quantile and the
25%-50% quantile sporadically experience DFBs. DFBs occur during
the financial crisis.

My findings are consistent with those of [Adrian et al., 2019], who
find that asymmetry exists between the upper and lower conditional quan-

25[Adrian et al., 2019] adopted a two-step semi-parametric estimation procedure such
that the estimation uncertainty component cannot be corrected in a regular way. I thus
rely more on the results of the recursive scheme where the in-sample window size R
expands, while the out-of-sample size P remains constant and the estimation uncertainty
component is asymptotically irrelevant. That said, I also provide the results of the rolling
window scheme as a complement.
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Table 1.4: P-values of Density Forecast Breakdown test, GDP+NFCI,
recursive

LS CRPS CI
Q0:Q0.25 Q0.25:Q0.5 Q0.5:Q0.75 Q0.75:Q1

h = 1 0.961 0.884 0.248 0.003 0.637 0.954
h = 4 0.688 0.803 0.124 0.005 0.341 0.986

Note: The table reports p-values of the one-sided DFB test, considering different
evaluation functions (LS, CRPS, and CI), different forecasting horizons (h = 1, 4 quar-
ters), and a recursive estimation scheme. A small p-value implies a DFB, and a large
p-value implies a DFI. For CI, four different intervals are considered. For example,
Q0.25 : Q0.5 refers to that (u, u) = (quantile(yt, 0.25), quantile(yt, 0.5)). T = 188,
R = 89. The HAC truncation is T 1/3.

tiles when characterizing future real GDP growth as a function of current
economic and financial conditions. They demonstrate that the estimated
lower quantiles of the distribution of future GDP growth exhibit stronger
variation, while the upper quantiles are stable over time. The DFB test
mirrors these findings, since the density forecasts using the model are
more likely to experience DFBs in the more volatile region of the dis-
tribution, while the in-sample fit is more likely to be indicative of the
out-of-sample forecasting ability in the relatively more stable region.

Results for the model without financial conditions

I further use the DFB test to evaluate the model without financial con-
ditions, i.e., modeling the future annualized average real GDP growth
rate as a function of current economic conditioning variables with the
constant included. This model is denoted as ”GDPonly” in contrast to
”GDP+NFCI”. Real GDP growth data considered in this ”GDPonly”
model ranges from 1948Q1-2017Q4 (T = 280), and the initial in-sample
ranges from 1948Q1 to 1983Q4 (R = 144). Findings from different
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Figure 1.5: FR,M,t statistics, GDP+NFCI, h = 1, recursive

Note: The figure shows Fluctuation DFB test statistics considering specific quantiles of the distribution and

the critical values of the Fluctuation DFB/DFI test. ’cv-5% DFB’ is the critical value for the one-sided

Fluctuation DFB test, and ’cv-5% DFI’ is the critical value for the one-sided Fluctuation DFI test. Larger

statistics imply worse out-of-sample performance relative to in-sample fit. T = 188, R = 89, M
P

= 0.7.

The shaded bands correspond to US recessions reported by the National Bureau of Economic Research.

choices of R are provided in the appendix. Table 1.5 displays the results
for the DFB test for the recursive scheme. Figure 1.7 and 1.8 further dis-
play the results for the fluctuation DFB test for specific regions. Findings
from the rolling window scheme are provided in the appendix.
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Figure 1.6: FR,M,t statistics, GDP+NFCI, h = 4, recursive

Note: The figure shows Fluctuation DFB test statistics considering specific quantiles of the distribution and

the critical values of the Fluctuation DFB/DFI test. ’cv-5% DFB’ is the critical value for the one-sided

Fluctuation DFB test, and ’cv-5% DFI’ is the critical value for the one-sided Fluctuation DFI test. Larger

statistics imply worse out-of-sample performance relative to in-sample fit. T = 188, R = 89, M
P

= 0.7.

The shaded bands correspond to US recessions reported by the National Bureau of Economic Research.

Table 1.5: P-values of Density Forecast Breakdown test, GDPonly, recur-
sive

LS CRPS CI
Q0:Q0.25 Q0.25:Q0.5 Q0.5:Q0.75 Q0.75:Q1

h = 1 1.000 1.000 0.925 0.000 0.002 0.997
h = 4 1.000 1.000 0.472 0.002 0.003 1.000

Note: The table reports p-values of the one-sided DFB test, considering different
evaluation functions (LS, CRPS, and CI), different forecasting horizons (h = 1, 4 quar-
ters), and a recursive estimation scheme. A small p-value implies a DFB, and a large
p-value implies a DFI. For CI, four different intervals are considered. For example,
Q0.25 : Q0.5 refers to that (u, u) = (quantile(yt, 0.25), quantile(yt, 0.5)). T = 280,
R = 144. The HAC truncation is T 1/3.
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Figure 1.7: FR,M,t statistics, GDPonly, h = 1, recursive

Note: The figure shows Fluctuation DFB test statistics considering specific quantiles of the distribution and

the critical values of the Fluctuation DFB/DFI test. ’cv-5% DFB’ is the critical value for the one-sided

Fluctuation DFB test, and ’cv-5% DFI’ is the critical value for the one-sided Fluctuation DFI test. Larger

statistics imply worse out-of-sample performance relative to in-sample fit. T = 280, R = 144, M
P

= 0.5.

The shaded bands correspond to US recessions reported by the National Bureau of Economic Research.

Table 1.5 indicates that the model without financial conditions experi-
ences DFBs in both the 25%-50% and 50%-75% quantiles. Figure 1.7 and
1.8 further show that DFBs frequently occur, i.e., the in-sample fit of the
model without financial conditions provides unreliable guidance for the
out-of-sample density forecasting ability in the 25%-50% and 50%-75%
quantiles most of the time.
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Figure 1.8: FR,M,t statistics, GDPonly, h = 4, recursive

Note: The figure shows Fluctuation DFB test statistics considering specific quantiles of the distribution and

the critical values of the Fluctuation DFB/DFI test. ’cv-5% DFB’ is the critical value for the one-sided

Fluctuation DFB test, and ’cv-5% DFI’ is the critical value for the one-sided Fluctuation DFI test. Larger

statistics imply worse out-of-sample performance relative to in-sample fit. T = 280, R = 144, M
P

= 0.5.

The shaded bands correspond to US recessions reported by the National Bureau of Economic Research.

Compared with the results for the model that includes financial con-
ditions (see Figure 1.5 and 1.6), this finding confirms that the financial
sector plays an important role in shaping macroeconomic performance.
Indeed, including financial conditions helps narrow the gap between the
in-sample fit and the out-of-sample density forecasting ability before the
2008 financial crisis. That said, discussion is warranted over which pre-
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dictors to include after the financial crisis as the model including financial
conditions still experiences DFBs.

Alternative test results

I also carry out alternative tests to evaluate either the in-sample density
estimators or the out-of-sample predictive densities constructed using the
model adopted by [Adrian et al., 2019]. These alternative tests include
the [Inoue, 2001] change in distribution tests26, as well as the [Corradi
and Swanson, 2006] and the [Rossi and Sekhposyan, 2013] correct spec-
ification tests. Table 1.6 displays the results of the alternative tests. The
[Inoue, 2001] tests do not reject the null hypothesis that there is no distri-
butional change in either the in-sample density estimators or the out-of-
sample density forecasts at the 5% significance level. However, in some
cases, the null is rejected at the 10% significance level. The [Corradi
and Swanson, 2006] and the [Rossi and Sekhposyan, 2013] correct spec-
ification tests imply that the in-sample density estimators are correctly
specified, but the out-of-sample density forecasts are misspecified at the
5% significance level.

These results suggest that the DFBs in certain regions of the distri-
bution may result from the misspecification of the out-of-sample density
forecasts; that is, when using in-sample data to construct density fore-
casts, the predictions look poor, even though the in-sample density es-
timators are correctly specified and have good fit. Nonetheless, the in-
sample fit can still be indicative of the out-of-sample density forecasting
ability in some regions (e.g., the 50%-75% quantile), in spite of the out-
of-sample density forecasts being misspecified.

Implications

Whether or not the density forecast model should be used is an important
question for researchers. As I have shown in this paper, the answer de-

26While Inoue’s (2001) approach is designed for in-sample density estimators, I apply
an out-of-sample version of Inoue’s (2001) test to evaluate the out-of-sample predictive
densities.
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Table 1.6: P-values of alternative tests, GDP+NFCI, recursive

h = 1
Inoue-KS Inoue-CvM CS-KS CS-CvM RS-KS RS-CvM

in-sample 0.228 0.068 0.994 0.970 - -
out-of-sample 0.052 0.104 0.000 0.000 0.000 0.000

h = 4
Inoue-KS Inoue-CvM CS-KS CS-CvM RS-KS RS-CvM

in-sample 0.128 0.056 0.998 0.998 - -
out-of-sample 0.198 0.098 0.026 0.000 0.018 0.000

Note: The table reports p-values of the [Inoue, 2001] distributional change tests
based on Kolmogorov-Smirnov-type and Cramer-von Mises-type statistics (denoted as
Inoue-KS and Inoue-CvM), the [Corradi and Swanson, 2006] and the [Rossi and Sekh-
posyan, 2013] correct specification tests based on with Kolmogorov-Smirnov-type and
Cramer-von Mises-type statistics respectively (denoted as CS-KS, CS-CvM, RS-KS, and
RS-CvM). The in-sample density estimators are constructed using the whole sample
(1971Q1 to 2017Q4, T = 188), and the out-of-sample predictive densities are con-
structed using a recursive estimation scheme with R = 89.

pends on the regions in question. The DFB test indicates that the model
proposed in [Adrian et al., 2019] is a good choice for applications as-
sessing whether the overall in-sample fit is a good indicator of the out-of-
sample density forecasting ability. However, studies looking at specific
regions of the distribution, e.g., the 25%-50% quantile, may find that the
out-of-sample density forecasting ability is not as good as the in-sample
fit. Furthermore, my results provide insights relative to which predictors
to include in forecasting real GDP growth. Including financial conditions
helps narrow the gap between the in-sample fit and the out-of-sample den-
sity forecasting ability before the financial crisis. However, care should
be taken in choosing predictors thereafter.
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1.6.2 S&P 500

Density forecasting is popular not only in macroeocnomics but also in
finance, where a large literature has analyzed the uncertainty associated
with asset and portfolio returns, with empirical evidence showing that the
distributions of stock returns, interest rates and other financial series have
non-normal higher moments - see [Tay and Wallis, 2000] for an overview.
Density forecasting in finance has roots in the literature on modeling and
forecasting stock market volatility, e.g., the ARCH model proposed in
[Engle, 1982] and the generalized ARCH proposed (GARCH) model pro-
posed in [Bollerslev, 1986] and [Taylor, 1986].

In this section, I employ the DFB test to evaluate the density forecast
models of daily stock price returns. Daily stock price returns are calcu-
lated as the percentage change of daily S&P 500 adjusted prices27. The
data cover 9,581 daily returns, ranging from January 5, 1981 through De-
cember 31, 2018. The sample is split such that there are 4,298 in-sample
observations (January 5, 1981 - December 31, 1997) and 5,283 out-of-
sample observations (January 1, 1998 - December 31, 2018). In what
follows, I consider the GARCH(1,1) and GARCH-t(1,1) models28 for fit-
ting the data and constructing the one-day-ahead density forecasts of the
S&P 500 returns, with both the rolling and recursive window schemes.

Model 1: GARCH(1,1)

yt = σtεt, εt ∼ N (0, 1)

σ2
t = w + ay2

t−1 + bσ2
t−1

At each period t, the MLE is applied with the corresponding in-sample
observations. As for forecasting, given the MLE estimators ŵt, ât and b̂t

27Downloaded from Yahoo! Finance
28Applications of (G)ARCH models on financial data date back to [Engle, 1982],

[Bollerslev, 1986], [Taylor, 1986], and have become widespread tools for the analysis
of financial data. [Diebold et al., 1997], for instance, studied stock price returns using a
GARCH model, selecting an MA(1)-GARCH(1,1) model based on both the Akaike and
Schwarz information criteria. More generally, numerous studies show the effectiveness
of GARCH type models for forecasting stock market volatility.
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at each period t, the one-day-ahead density forecast of yt+1 is

φ̂ft+1(y) = φ(y|ŵt, ât, b̂t) =
1√

2πσ̂f2
t+1

e
− y2

2σ̂
f2
t+1

where σ̂ft+1 is constructed using MLE estimators ŵt, ât and b̂t.

Model 2: GARCH-t(1,1)

yt = σtεt, εt ∼ tdf

σ2
t = w + ay2

t−1 + bσ2
t−1

At each period t, the MLE is applied with the corresponding in-sample
observations. As for forecasting, given the MLE estimators ŵt, ât, b̂t and
ν̂ at each period t, the one-day-ahead density forecast of yt+1 is

φ̂ft+1(y) = φ(y|ŵt, ât, b̂t, ν̂) =
Γ( ν̂t+1

2
)√

(ν̂t − 2)σ̂f2
t+hπΓ( ν̂t

2
)

(
1 +

y2

(ν̂t − 2)σ̂f2
t+1

)− ν̂t+1
2

where σ̂ft+1 is constructed using MLE estimators ŵt, ât and b̂t.

Table 1.7 shows the findings of the DFB tests for GARCH(1,1) and
GARCH-t(1,1), using the LS and CRPS as evaluation functions. Most
of the test results demonstrate that, both the GARCH(1,1) and GARCH-
t(1,1) models experience DFBs in their one-day-ahead density forecasts
of S&P 500 returns. Thus, the performance of the in-sample density esti-
mators is not informative for the performance of the out-of-sample density
forecasts in GARCH(1,1) and GARCH-t(1,1).
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Table 1.7: P-values of Density Forecast Breakdown test

GARCH(1,1) GARCH-t(1,1)
LS CRPS LS CRPS

rec 0.0495 0.0078 0.0027 0.0081
roll 0.1074 0.0008 0.2434 0.0006

Note: The table reports the p-values of the one-sided DFB test, considering different
evaluation functions (LS and CRPS) for one-day-ahead (h = 1) predictive densities. A
small value implies a DFB, and a large value implies a DFI. T = 9581, R = 4298. The
HAC truncation is T 1/3.

1.7 Conclusion

This paper proposes the DFB test to investigate the relationship between
in-sample fit and out-of-sample density forecasting ability. For the para-
metric case, the test allows for model misspecification and takes into ac-
count parameter estimation uncertainty under both hypotheses. For the
non-parametric case, I provide conditions under which estimation uncer-
tainty is asymptotically irrelevant. The DFB test is valid under general
assumptions. It permits a wide range of estimation procedures (e.g., OLS,
GMM, QML, and KDE), different estimation window schemes, as well
as a plethora of evaluation functions focusing on either the overall or the
specific regions of the distribution. In addition, robust versions of this test
are provided for practical use.

The DFB test I introduce in this study makes a number of novel con-
tributions to the literature on density forecast evaluation. (i) Rather than
specification testing, I focus on the extent to which the future density fore-
casting performance is consistent with in-sample fit. (ii) The test captures
all the various changes that affect density forecasting performance, in-
cluding parameter changes and distributional changes. This is important
to forecasters, since it also allows the test to be robust to cases involv-
ing the effects of different structural breaks that offset one another. (iii)
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Moreover, it can be used to evaluate both parametric and non-parametric
density forecast models.

The Monte Carlo results indicate that the test has good size property
in moderately large samples and has power against changes in mean and
variance, as well as shifts in distribution type.

To illustrate the usefulness of this test, I carry out an empirical study
that investigates whether there are DFBs in the density forecast models
of real GDP growth and daily S&P 500 returns in the US. I find that (i)
DFBs occur sporadically in the lower quantiles of the one-quarter-ahead
and one-year-ahead predictive conditional densities of real GDP growth in
the US, modeled with current financial and economic conditions as well
as skewed-t distributed errors; and (ii) DFBs occur in the one-day-ahead
predictive densities for S&P 500, using GARCH(1,1) and GARCH-t(1,1)
models.

1.8 Proof Appendix

1.8.1 Notation

Let ·∗ denote the counterparts evaluated at the pseudo parameter θ∗; let
·̃ denote the demeaned counterparts. We omit the parameters of a func-
tion for simplicity. For example, St, St+h and SSt+h is used for St(θ̂t),
St+h(θ̂t) and SSt+h(θ̂t).

Define Dt+h ≡ ∂St+h
∂θ
− ∂St

∂θ
= ∂SSt+h

∂θ
, for t = R, . . . , T − h, which

is a 1× k vector; define D∗t+h ≡
∂SS∗t+h
∂θ

; D̃∗t+h ≡ D∗t+h − E[D∗t+h].

1.8.2 Algorithm

Algorithm 1 Construct the following: (1) a 1× T vector S∗ of in-sample
and out-of-sample scorings, with element S∗t , t = 1, . . . , T , and its coun-
terpart S with element St, t = 1, . . . , T :
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S∗ ≡

S∗1(θ∗), . . . , S∗R(θ∗)︸ ︷︷ ︸
R

, SR+1(θ∗), . . . , SR+h−1(θ∗)︸ ︷︷ ︸
h−1

, S∗R+h(θ
∗), . . . , S∗T (θ∗)︸ ︷︷ ︸

P



fixed S ≡

S1(θ̂R), . . . , SR(θ̂R)︸ ︷︷ ︸
R

, SR+1(θ̂R), . . . , SR+h−1(θ̂R)︸ ︷︷ ︸
h−1

, SR+h(θ̂R), . . . , ST (θ̂R)︸ ︷︷ ︸
P


rolling S ≡

S1(θ̂R), . . . , SR(θ̂R)︸ ︷︷ ︸
R

, SR+1(θ̂R+1), . . . , SR+h−1(θ̂R+h−1)︸ ︷︷ ︸
h−1

, SR+h(θ̂R), . . . , ST (θ̂T−h)︸ ︷︷ ︸
P


recursive S ≡

S1(θ̂R), . . . , SR(θ̂R)︸ ︷︷ ︸
R

, SR+1(θ̂R+1), . . . , SR+h−1(θ̂R+h−1)︸ ︷︷ ︸
h−1

, SR+h(θ̂R), . . . , ST (θ̂T−h)︸ ︷︷ ︸
P



and the corresponding vector S̃ of demeaned scorings, where S̃t ≡
St−T−1

∑T
j=1 Sj; (2) a 1×T vector of weights, depending on estimation

scheme, with elements ωSt , t = 1, . . . , T :
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fixed ωS ≡

−P
R
, . . . ,−P

R︸ ︷︷ ︸
R

, 0, . . . , 0︸ ︷︷ ︸
h−1

, 1, . . . , 1︸ ︷︷ ︸
P



rolling(P < R) ωS ≡

− 1

R
, . . . ,−P

R︸ ︷︷ ︸
P

,−P
R
, . . . ,−P

R︸ ︷︷ ︸
R−P

,−P − 1

R
, . . . ,−P − h+ 1

R︸ ︷︷ ︸
h−1

, 1− P − h
R

, . . . , 1− 1

R︸ ︷︷ ︸
P−h

, 1, . . . , 1︸ ︷︷ ︸
h



rolling(P ≥ R) ωS ≡

− 1

R
, . . . ,−R

R︸ ︷︷ ︸
R

,−R
R
, . . . ,−R

R︸ ︷︷ ︸
h−1

, 0, . . . , 0︸ ︷︷ ︸
P−R−h−1

, 1− R− 1

R
, . . . , 1− 1

R︸ ︷︷ ︸
R−1

, 1, . . . , 1︸ ︷︷ ︸
h


recursive ωS ≡

−aR,0, . . . ,−aR,0︸ ︷︷ ︸
R

, aR,1, . . . , aR,h−1︸ ︷︷ ︸
h−1

, 1− aR,h, . . . , 1− aR,P−1︸ ︷︷ ︸
P−h

, 1, . . . , 1︸ ︷︷ ︸
h


aR,j =

1

R + j
+

1

R + j + 1
+ · · ·+ 1

T − h

so that
T∑
t=1

ωSt S
∗
t =

T−h∑
t=R

SS∗t+h

Algorithm 2 Construct the following: (1) a (k + 1) × T vector of in-
sample and out-of-sample h∗), as defined in Assumption P3, with element
h∗t , t = 1, . . . , T , and its counterpart h with element ht, t = 1, . . . , T :

h∗ ≡

h∗1(θ∗), . . . , h∗R(θ∗)︸ ︷︷ ︸
R

, h∗R+1(θ∗), . . . , h∗T−h(θ
∗)︸ ︷︷ ︸

P−1

, O, . . . , O︸ ︷︷ ︸
h


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fixed h ≡

h1(θ̂R), . . . , hR(θ̂R)︸ ︷︷ ︸
R

, hR+1(θ̂R), . . . , hT−h(θ̂R)︸ ︷︷ ︸
P−1

, O, . . . , O︸ ︷︷ ︸
h


rolling h ≡

h1(θ̂R), . . . , hR(θ̂R)︸ ︷︷ ︸
R

, hR+1(θ̂R+1), . . . , hT−h(θ̂T−h)︸ ︷︷ ︸
P−1

, O, . . . , O︸ ︷︷ ︸
h


recursive h ≡

h1(θ̂R), . . . , hR(θ̂R)︸ ︷︷ ︸
R

, hR+1(θ̂R+1), . . . , hT−h(θ̂T−h)︸ ︷︷ ︸
P−1

, O, . . . , O︸ ︷︷ ︸
h


(2) a 1 × T vector of weights ωh∗, depending on estimation scheme,

with elements ωh∗t , t = 1, . . . , T

fixed ω
h∗ ≡

−
∑T−h
t=R

D∗t+hB
∗
R

R
, . . . ,−

∑T−h
t=R

D∗t+hB
∗
R

R︸ ︷︷ ︸
R

, O, . . . , O︸ ︷︷ ︸
T−R



rolling(P < R) ω
h∗ ≡

−
D∗R+hB

∗
R

R
, . . . ,−

∑T−h
t=R

D∗t+hB
∗
t

R︸ ︷︷ ︸
P

,−
∑T−h
t=R

D∗t+hB
∗
t

R
, . . . ,−

∑T−h
t=R

D∗t+hB
∗
t

R︸ ︷︷ ︸
R−P

,−

∑T−h
t=R+1

D∗t+hB
∗
t

R
, . . . ,−

D∗TB
∗
T−h
R︸ ︷︷ ︸

P−1

, O, . . . , O︸ ︷︷ ︸
h



rolling(P ≥ R) ω
h∗ ≡

−
D∗R+hB

∗
R

R
, . . . ,−

∑2R−1
t=R

D∗t+hB
∗
t

R︸ ︷︷ ︸
R

,−
∑2R
t=RD

∗
t+hB

∗
t

R
, . . . ,−

∑T−h
t=P

D∗t+hB
∗
t

R︸ ︷︷ ︸
P−R

,−

∑T−h
t=P+1

D∗t+hB
∗
t

R
, . . . ,−

D∗TB
∗
T−h
R︸ ︷︷ ︸

R−1

, O, . . . , O︸ ︷︷ ︸
h



recursive ω
h∗ ≡

b∗R,0, . . . , b∗R,0︸ ︷︷ ︸
R

, b
∗
R,1, . . . , b

∗
R,P−1︸ ︷︷ ︸

P−1

, 0, . . . , 0︸ ︷︷ ︸
h


b
∗
R,j =

D∗R+h+jB
∗
R+j

R + j
+
D∗R+h+j+1B

∗
R+j+1

R + j + 1
+ · · · +

D∗TB
∗
T−h

T − h

so that
T∑
t=1

ωh∗t h
∗
t =

T−h∑
t=R

D∗t+hB
∗
tH
∗
t

and the counterpart ωh with elements ωht , t = 1, . . . , T by replacing
D∗. , B

∗
. with D., B. evaluated with estimated parameters.
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1.8.3 Lemmas

Lemma 1. (a) For 0 ≤ a < 0.5, P−1/2
∑T−h

t=R t
−1+a → 0; (b) P−1/2

∑T−h
t=R t

−1/2 =
O(1).

Proof: See [West, 1996] Lemma 1.

Lemma 2. For 0 ≤ a < 0.5, (a) supt |taH∗t |
p→ 0; (b) supt |ta(θ̂−θ∗)|

p→
0.

Proof: (a) is shown in [West, 1996] Lemma 3(a). (b) By Assumption
3 with new definition of Bt and H∗t , it still holds that supt |Bt−B∗t |

p→ 0.

sup
t
|ta(θ̂ − θ∗)| ≡ sup

t
|taBtH

∗
t |

≤ sup
t
|ta(Bt −B∗t )H∗t |+ sup

t
|taB∗tH∗t |

≤ sup
t
|Bt −B∗t | sup

t
|taH∗t |+ sup

t
|B∗t | sup

t
|taH∗t |

p→ 0

Lemma 3. (a)R1 ≡ P−1/2
∑T−h

t=R D̃
∗
t+hB

∗
tH
∗
t = op(1); (b)R2 ≡ 1

2
P−1/2

∑T−h
t=R (θ̂t−

θ∗)′ ∂
2SSt+h(θ∗)
∂θ∂θ′

(θ̂t − θ∗) = op(1), where θ∗ is an intermediate point be-
tween θ̂t and θ∗.

Proof: (a) is analogous to proof of Lemma 1 (a) in [Giacomini and
Rossi, 2009a] by replacing L with S in this context and redefining B,D
in this context.

(b) For some a, 0 < a < 0.5, C a positive constant, mt defined in
Assumption A2(b) and denoting by mt the mean of the mt’s over the
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relevant in-sample window at time t, we have

R2 =
1

2
P−1/2

T−h∑
t=R

t1−a(θ̂t − θ∗)′
(
ta−1∂

2SSt+h(θ
∗)

∂θ∂θ′

)
(θ̂t − θ∗)

≤ C sup
R≤t≤T

|t0.5−0.5a(θ̂t − θ∗)|2P−1/2

T−h∑
t=R

ta−1|∂
2SSt+h(θ

∗)

∂θ∂θ′
|

≤ C sup
R≤t≤T

|t0.5−0.5a(θ̂t − θ∗)|2P−1/2

T−h∑
t=R

ta−1

(
|∂

2St+h(θ
∗)

∂θ∂θ′
|+ |∂

2St(θ
∗)

∂θ∂θ′
|
)

≤ C sup
R≤t≤T

|t0.5−0.5a(θ̂t − θ∗)|2P−1/2

T−h∑
t=R

ta−1(mt+h +mt) = op(1)

using Lemma 1(a) and Lemma 2(b), Assumption 2(b).

Lemma 4. T
P
V SS∗
T ≡ var

(
P−1/2

∑T
t=1 ω

S
t S̃
∗
t

)
> 0 for all T sufficiently

large.

Proof: The proof is analogous to proof of Lemma 2 in [Giacomini and
Rossi, 2009a] by replacing L with S in this context.
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1.8.4 Proof of Theorem 1
Apply a second order mean value expansion on the numerator of tR,P,h in
(1.5), we have

√
P

[
1

P

T−h∑
t=R

SSt+h(θ̂t)− E[
1

P

T−h∑
t=R

SSt+h(θ
∗)]

]

= P−1/2

T−h∑
t=R

(SSt+h(θ
∗)− E[SSt+h(θ

∗)]) + P−1/2

T−h∑
t=R

∂SSt+h(θ
∗)

∂θ
(θ̂t − θ∗)

+
1

2
P−1/2

T−h∑
t=R

(θ̂t − θ∗)′
∂2SSt+h(θ

∗)

∂θ∂θ′
(θ̂t − θ∗)

= P−1/2

T−h∑
t=R

(SSt+h(θ
∗)− E[SSt+h(θ

∗)]) + P−1/2

T−h∑
t=R

E

[
∂SSt+h(θ

∗)

∂θ

]
(θ̂t − θ∗)

+ P−1/2

T−h∑
t=R

(
∂SSt+h(θ

∗)

∂θ
− E

[
∂SSt+h(θ

∗)

∂θ

])
(θ̂t − θ∗) +

1

2
P−1/2

T−h∑
t=R

(θ̂t − θ∗)′
∂2SSt+h(θ

∗)

∂θ∂θ′
(θ̂t − θ∗)

= P−1/2

T−h∑
t=R

(SSt+h(θ
∗)− E[SSt+h(θ

∗)]) + P−1/2

T−h∑
t=R

E
[
D∗t+h

]
B∗tH

∗
t + P−1/2

T−h∑
t=R

D̃∗t+hB
∗
tH
∗
t

+
1

2
P−1/2

T−h∑
t=R

(θ̂t − θ∗)′
∂2SSt+h(θ

∗)

∂θ∂θ′
(θ̂t − θ∗)

(1.21)
Apply Lemma 3, it holds that

√
P

(
1

P

T−h∑
t=R

SSt+h(θ̂t)− E[
1

P

T−h∑
t=R

SSt+h(θ
∗)]

)

= P−1/2

T−h∑
t=R

(SSt+h(θ
∗)− E[SSt+h(θ

∗)]) + P−1/2

T−h∑
t=R

E
[
D∗t+h

]
B∗tH

∗
t + op(1)

Given Assumption P5, the term P−1/2
∑T−h

t=R E
[
D∗t+h

]
B∗tH

∗
t retains.

So it holds that
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√
P

(
1

P

T−h∑
t=R

SSt+h(θ̂t)− E[
1

P

T−h∑
t=R

SSt+h(θ
∗)]

)

= P−1/2

T−h∑
t=R

(SSt+h(θ
∗)− E[SSt+h(θ

∗)]) + P−1/2

T−h∑
t=R

E
[
D∗t+h

]
B∗tH

∗
t + op(1)

underH0= P−1/2

T−h∑
t=R

SSt+h(θ
∗) + P−1/2

T−h∑
t=R

E
[
D∗t+h

]
B∗tH

∗
t + op(1)

underH0=
[
1 1

]
P−1/2

[ ∑T−h
t=R SSt+h(θ

∗)∑T−h
t=R E[D∗t+h]B

∗
tH
∗
t

]
+ op(1)

Now we show that, under H0,(
T

P
VT

)−1/2

P−1/2

[ ∑T−h
t=R SSt+h(θ

∗)∑T−h
t=R E[D∗t+h]B

∗
tH
∗
t

]
d→ N (O, I2)

With notations defined above, we can write(
T

P
VT

)−1/2

P−1/2

[ ∑T−h
t=R SSt+h(θ

∗)∑T−h
t=R E[D∗t+h]B

∗
tH
∗
t

]
= V

−1/2
T T−1/2

[∑T
t=1 ω

S
t S
∗
t∑T

t=1 ω
h∗
t h
∗
t

]
= V

−1/2
T T−1/2

[∑T
t=1 ω

S
t S̃
∗
t∑T

t=1 ω
h∗
t h
∗
t

]

where the last equality holds under H0 as T−1/2
∑T

t=1 ω
S
t E[S∗t ] =

T−1/2
∑T

t=1E[ 1
P

∑R
t=R SS

∗
t+h] = 0.

Now we show that,

V
∗−1/2
T T−1/2

[∑T
t=1 ω

S
t S̃
∗
t∑T

t=1 ω
h∗
t h
∗
t

]
d→ N (O, I2) , V ∗T = var

(
T−1/2

[∑T
t=1 ω

S
t S̃
∗
t∑T

t=1 ω
h∗
t h
∗
t

])

We verify that the zero-mean vector sequence
{

[V
∗−1/2
T ωSt S̃

∗
t , V

∗−1/2
T ωh∗t h

∗
t ]
′
}T
t=1

satisfies the conditions of [Wooldridge and White, 1988] Central Limit
Theorem for mixing processes (also see Theorem 5.20 in [White, 2001]).
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• gt = [V
∗−1/2
T ωSt S̃

∗
t , V

∗−1/2
T ωh∗t h

∗
t ]
′ is a function of only a finite num-

ber of leads and lags of Zt, it follows from Lemma 2.1 of [White
and Domowitz, 1984] that it is mixing of the same size as Zt, which
is mixing with α of size −r/(r − 2), r > 2.

• By Assumption P4, we have |S̃∗t |2r <∞. And |ωSt | <∞ for all t.(It
holds for the fixed and rolling schemes by Assumption P7; it holds
for recursive scheme by the fact that am,j < am,0 → ln(1 + π) <

∞.) Since V ∗T is p.d., it holds that E|V ∗−1/2
T ωSt S̃

∗
t |2r <∞.

• By defining λt = V
∗−1/2
T ωh∗t = V

∗−1/2
T

1
T

∑T
j=1 E[∂S∗j ]Pt,j , where

Pt,j is defined in the proof Lemma 1, and by the fact that |λt,i| <∞
for all t, i (using Assumption P5, Pt,j having bounded component
shown in the proof of Lemma 1, and that V ∗T is p.d.), we can write

E|V ∗−1/2
T ωh∗t h

∗
t |2r = E|λth∗t |2r = E|

q∑
i=1

λt,ih
∗
i,t|2r ≤

[
q∑
i=1

|λt,i|(|E|h∗i,t|2r)1/2r

]2r

<∞

where the first inequality uses Minkowski’s inequality and the sec-
ond inequality uses Assumption P4.

This implies that we can apply [Wooldridge and White, 1988] Central
Limit Theorem for mixing processes on the zero-mean vector sequence{

[V
∗−1/2
T ωSt S̃

∗
t , V

∗−1/2
T ωh∗t h

∗
t ]
′
}T
t=1

, and get

V
∗−1/2
T T−1/2

[∑T
t=1 ω

S
t S̃
∗
t∑T

t=1 ω
h∗
t h
∗
t

]
d→ N (O, I2) , V ∗T = var

(
T−1/2

[∑T
t=1 ω

S
t S̃
∗
t∑T

t=1 ω
h∗
t h
∗
t

])
The result then follows from the fact that VT − V ∗T

p→ 0, owing to
consistency of θ̂t for θ∗ under H0.

1.8.5 Proof of Corollary 1

By using LS and QMLE, it is trivially satisfied that E[
∂S∗t
∂θ

] = 0 for all
t, as S(·) takes the form of a logarithm of the density estimator/forecasts
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evaluated at the realization. Thus, it holds that

E[D∗t+h] = E[
∂SS∗t+h
∂θ

] = E[
∂S∗t+h
∂θ

]− E[
∂S∗t
∂θ

] = 0

The result then follows from reasonings analogous to those in the proof
of Theorem 1.

1.8.6 Proof of Theorem 2
√
P

{
1

P

T−h∑
t=R

SSt+h(φ̂t)− E[
1

P

T−h∑
t=R

SSt+h(φ
∗)]

}

=
1√
P

T−h∑
t=R

(SSt+h(φ
∗)− E[SSt+h(φ

∗)]) +
1√
P

T−h∑
t=R

(
SSt+h(φ̂t)− SSt+h(φ∗)

)
=

1√
P

T−h∑
t=R

(SSt+h(φ
∗)− E[SSt+h(φ

∗)]) +
1√
P

T−h∑
t=R

(
St+h(φ̂t)− St+h(φ∗) +

1

R

t∑
j=t−R+h+1

Sj(φ̂t)− Sj(φ∗)

)

=
1√
P

T−h∑
t=R

(SSt+h(φ
∗)− E[SSt+h(φ

∗)])

+
1√
P

T−h∑
t=R

D∗φ(yt+h)
(
φ̂t(yt)− φ∗(yt)

)
+

1

R

t∑
j=t−R+h+1

D∗φ(yj)
(
φ̂t(yj)− φ∗(yj)

)
(1.22)

The proof of the asymptotic distribution of the first component fol-
lows from reasonings analogous to those in the proof of Theorem 1. As
for the second component, here we show that the second component is
asymptotically irrelevant in the case of kernel density estimation.

Proof of Example (KDE)
Given Assumption NP-KDE1 to NP-KDE3, according to Theorem 1.4

in [Li and Racine, 2007], it holds that

sup
y
|φ̂t(y)− φ(y)| = O(

√
lnR

RhR
+ h2

R) ∀t
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See [Li and Racine, 2007] for detailed proof.
Given Assumption NP-KDE5, D∗φ(.) is bounded.
Thus, it then holds that

1√
P

T−h∑
t=R

D∗φ(yt+h)
(
φ̂t(yt)− φ∗(yt)

)
+

1

R

t∑
j=t−R+h+1

D∗φ(yj)
(
φ̂t(yj)− φ∗(yj)

)

≤ 1√
P

T−h∑
t=R

|D∗φ(yt+h)||
(
φ̂t(yt)− φ∗(yt)

)
|+ 1

R

t∑
j=t−R+h+1

|D∗φ(yj)||
(
φ̂t(yj)− φ∗(yj)

)
|

≤ 1√
P

T−h∑
t=R

sup
y
|D∗φ(y)| sup

y
|φ̂t(y)− φ(y)|+ 1

R

t∑
j=t−R+h+1

sup
y
|D∗φ(y)| sup

y
|φ̂t(y)− φ(y)|

≤ 1√
P
P sup

y
|D∗φ(y)|max

t
sup
y
|φ̂t(y)− φ(y)|2

=
√
PO(

√
lnR

RhR
+ h2

R)

Therefore, given Assumption NP-KDE4, P lnR
RhR

→ 0 and Ph4
R → 0

imply
√
PO(

√
lnR
RhR

+ h2
R) = op(1).

1.8.7 Proof of Proposition 1 and 2
A mean value expansion of P−1/2

∑T−h
t=R SSt+h around θ∗t is

P−1/2

T−h∑
t=R

SSt+h(θ̂t) = P−1/2

T−h∑
t=R

SSt+h(θ
∗
t ) + P−1/2

T−h∑
t=R

∂SSt+h(θ
∗
t )

∂θ

(
θ̂t − θ∗t

)
+

1

2
P−1/2

T−h∑
t=R

(
θ̂t − θ∗t

)′(∂2SSt+h(θ̂t)

∂θ∂θ′

)(
θ̂t − θ∗t

)
where θ̂t denotes some intermediate point between the interval (θ̂t, θ

∗
t ).

The first term can be expressed as

P−1/2

T−h∑
t=R

SSt+h(θ
∗
t ) = P−1/2

T−h∑
t=R

St+h(θ
∗
t )−St(θ∗t ) = P−1/2

T−h∑
t=R

St+h(θ
∗
t )−
∑

jSj(θ
∗
t )
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The mean value expansions of St+h(θ∗t ) and Sj(θ∗t ) around θ∗t+h and
θ∗j respectively are

St+h(θ
∗
t ) = St+h(θ

∗
t+h) +

∂St+h(θ
∗
t+h)

∂θ

(
θ∗t − θ∗t+h

)
+

1

2

(
θ∗t − θ∗t+h

)′(∂2St+h(θ
∗
t+h)

∂θ∂θ′

)(
θ∗t − θ∗t+h

)
Sj(θ

∗
t ) = Sj(θ

∗
j ) +

∂Sj(θ
∗
j )

∂θ

(
θ∗t − θ∗j

)
+

1

2

(
θ∗t − θ∗j

)′(∂2Sj(θ
∗
j)

∂θ∂θ′

)(
θ∗t − θ∗j

)
where (θ∗t+h, θ

∗
j) denote some intermediate points between the interval

(θ∗t , θ
∗
t+h), (θ

∗
t , θ
∗
j )respectively.

Thus, it follows that

SSt+h(θ
∗
t ) = St+h(θ

∗
t )−

∑
jSj(θ

∗
t )

+
∂St+h(θ

∗
t+h)

∂θ

(
θ∗t − θ∗t+h

)
−
∑

j

∂Sj(θ
∗
j )

∂θ

(
θ∗t − θ∗j

)
+

1

2

(
θ∗t − θ∗t+h

)′(∂2St+h(θ
∗
t+h)

∂θ∂θ′

)(
θ∗t − θ∗t+h

)
−
∑

j

1

2

(
θ∗t − θ∗j

)′(∂2Sj(θ
∗
j)

∂θ∂θ′

)(
θ∗t − θ∗j

)
Then, it holds that

P−1/2

T−h∑
t=R

SSt+h(θ̂t) = P−1/2

T−h∑
t=R

St+h(θ
∗
t )−

∑
jSj(θ

∗
t )

+ P−1/2

T−h∑
t=R

∂St+h(θ
∗
t+h)

∂θ

(
θ∗t − θ∗t+h

)
−
∑

j

∂Sj(θ
∗
j )

∂θ

(
θ∗t − θ∗j

)
+ P−1/2

T−h∑
t=R

1

2

(
θ∗t − θ∗t+h

)′(∂2St+h(θ
∗
t+h)

∂θ∂θ′

)(
θ∗t − θ∗t+h

)
−
∑

j

1

2

(
θ∗t − θ∗j

)′(∂2Sj(θ
∗
j)

∂θ∂θ′

)(
θ∗t − θ∗j

)
+ P−1/2

T−h∑
t=R

∂SSt+h(θ
∗
t )

∂θ

(
θ̂t − θ∗t

)
+

1

2
P−1/2

T−h∑
t=R

(
θ̂t − θ∗t

)′(∂2SSt+h(θ̂t)

∂θ∂θ′

)(
θ̂t − θ∗t

)
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By taking expectation, Proposition 1 is obtained. Besides, ”Estima-
tion Uncertainty II” component is obtained by adding in the mean square

expansion of the term ∂Lt(θ̂)
∂θ

= 0 around θ∗t , that is, ∂Lt(θ̂)
∂θ

=
∂Lt(θ∗t )

∂θ
+

∂2Lt(θ̂t)
∂θ∂θ′

(
θ̂t − θ∗t

)
= 0.

The proof of Proposition 2 follows from reasonings analogous to those
in the proof of Proposition 1.

Corollary 2. (Special case: DFB test statistic with overfitting correction
under LS and (Q)MLE)
In this case, the DFB test statistic is modified as:

tcR,P,h =
P 1/2SSR,P − c

σ̂R,P
, c = −γk

where k is the number of parameters; γ =
√
P
R

for fixed and rolling win-
dow schemes, and γ = P−1/2 ln(1 + P/R) for recursive window scheme.

Here a proof for the rolling window scheme is provided:
Since QMLE and LS are adopted together, then it holds that St(θ∗t ) =∑
j log φ(yj|θ∗t ) = Lt(θ

∗
t ). Suppose θ∗t = θ∗, then ”estimation uncertainty

II” degenerates to
√
P
∑

tE
(
θ̂t − θ∗t

)′
∂2Lt(θ̂t)
∂θ∂θ′

(
θ̂t − θ∗t

)
.

Apply Mean Value Expansion on ∂Lt(θ̂t)
∂θ

:

0 =
∂Lt(θ̂t)

∂θ
=
∂Lt(θ

∗)

∂θ
+
∂2Lt(θ̂t)

∂θ∂θ′

(
θ̂t − θ∗t

)
where the first equality holds according to (Q)MLE.

Thus it holds that

(
θ̂t − θ∗t

)
=

[
−∂

2Lt(θ̂t)

∂θ∂θ′

]−1

∂Lt(θ
∗)

∂θ
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so
√
R
(
θ̂t − θ∗t

)
=

[
−∂

2Lt(θ̂t)

∂θ∂θ′

]−1√
R
∂Lt(θ

∗)

∂θ

Thus,

√
P
∑

tE
(
θ̂t − θ∗t

)′ ∂2Lt(θ̂t)

∂θ∂θ′

(
θ̂t − θ∗t

)
=
√
P
∑

tE

(
∂Lt(θ

∗)

∂θ

)′ [
−∂

2Lt(θ̂t)

∂θ∂θ′

]−1

∂2Lt(θ̂t)

∂θ∂θ′

[
−∂

2Lt(θ̂t)

∂θ∂θ′

]−1(
∂Lt(θ

∗)

∂θ

)

=−
√
P

R

∑
tE

(√
R
∂Lt(θ

∗)

∂θ

)′ [
−∂

2Lt(θ̂t)

∂θ∂θ′

]−1(√
R
∂Lt(θ

∗)

∂θ

)
≈−

√
P

R
k

as
∑

tE

(√
R∂Lt(θ

∗
)

∂θ

)′ [
−∂2Lt(θ̂t)

∂θ∂θ′

]−1(√
R∂Lt(θ

∗
)

∂θ

)
∼ χ2

k.

1.8.8 Proof of Proposition 3

σ−1M−1/2

t+M/2−1∑
j=t−M/2

SSj = σ−1M−1/2

t+M/2−1∑
j=R+h

SSj − σ−1M−1/2

t−M/2−1∑
j=R+h

SSj

= (M/P )−1/2

σ−1P−1/2

t+M/2−1∑
j=R+h

SSj − σ−1P−1/2

t−M/2−1∑
j=R+h

SSj


By the conditions (i)(ii) in Proposition 3, together with reasonings

analogous to those in the proof of Theorem 1, it holds that

Ft,R,M ⇒ [B(τ + µ/2)− B(τ − µ/2)]/
√
µ

The result then follows from the fact that σ̂2
R,P is a consistent estimator

of σ2 under the null hypothesis.

66



“thesis” — 2020/5/5 — 9:55 — page 67 — #81

1.8.9 Proof of Proposition 4

This high-level assumption of condition (1.14) can be shown to hold for
the existing DFB test of interest under Assumptions 1-7. Because the ex-
isting test had already imposed assumptions for the FCLT to take into ac-
count recursive, rolling, and fixed estimation schemes and because weak
convergence to stochastic integrals can hold for partial sums. Now we
verify that condition (1.14) is satisfied by the DFB test, provided that we
assume that the relevant variance estimate is uniformly consistent over all
window sizes, that is:

sup
R≤R≤R

|σ̂2
R,P − σ2| = op(1)

We follow the proofs of [Inoue and Rossi, 2012], [West, 1996], [West
and McCracken, 1998], and [Clark and McCracken, 2001] very closely
and extend their results to weak convergence in the space of functions on
[µ, µ]. By replacing the notations f in [West, 1996] with the notations
SS in our setting, as well as the new coefficient parameter θ and the new
B, D, h in our setting, Assumptions we adopted are identical to Assump-
tions 1-4 in [West, 1996], with Assumption P7 holding for all values of
R = [µT ], [µT ] + 1, . . . , [µT ]. It is relatively straightforward to show that
lemmas A1-A6 of [West, 1996] hold under these assumptions, with the
supt replaced by sup[µT ]≤R≤[µT ] supR≤t≤T ≡ sup[µT ]≤t≤T .

Thus, the key is to prove our version of lemma 4.1 in [West, 1996],
and it suffices to verify that assumptions C1, C2, and A5 in corollary 3.1
in Wooldridge and White (1988) are satisfied by the counterpart of the
statistics in our setting.

Step 1: We prove our version of lemma 4.1 in [West, 1996]. We have
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shown in proof of Theorem 1 that

√
P

(
1

P

T∑
t=R

SSt+h(θ̂t)− E[
1

P

T∑
t=R

SSt+h(θ
∗)]

)

= P−1/2

T∑
t=R

(SSt+h(θ
∗)− E[SSt+h(θ

∗)]) + P−1/2

T∑
t=R

E
[
D∗t+h

]
B∗tH

∗
t + op(1)

=
[
1 1

]
P−1/2

[∑T
t=R SSt+h(θ

∗)− E[SSt+h(θ
∗)]∑T

t=R E[D∗t+h]B
∗
tH
∗
t

]
+ op(1)

H0=
[
1 1

]
P−1/2

[∑T
t=1 ω

S
t S̃
∗
t∑T

t=1 ω
h∗
t h
∗
t

]
+ op(1)

and that(
T

P
V ∗T

)−1/2

P−1/2

[ ∑T
t=R SSt+h(θ

∗)∑T
t=RE[D∗t+h]B

∗
tH
∗
t

]
= V

∗−1/2
T T−1/2

[∑T
t=1 ω

S
t S̃
∗
t∑T

t=1 ω
h∗
t h
∗
t

]
d→ N (O, I2)

V ∗T = Var

(
T−1/2

[∑T
t=1 ω

S
t S̃
∗
t∑T

t=1 ω
h∗
t h
∗
t

])
=

[
V ∗SST V ∗ShT

V ∗ShT V ∗hhT

]
This result corresponds to lemma 4.1 in [West, 1996].
Step 2: Now we verify that assumptions C1, C2, and A5 in corol-

lary 3.1 in Wooldridge and White (1988) are satisfied. We focus on∑T
t=R E[D∗t+h]B

∗
tH
∗
t , or say

∑T
t=1 ω

h∗
t h
∗
t , because we have already as-

sumed that SSt satisfies these assumptions.
1. Assumption C1 is a nominal assumption and is trivially satisfied

for the test statistics with rolling, recursive, and split-sample estimation
techniques.

2. We show that assumption C2 is satisfied for ωh∗t h
∗
t .

• Assumption C2(i) is satisfied as ωh∗t and h∗t are bounded in all
schemes. ωh∗t is bounded because our Assumption P3 and P4 bound
B∗ and D∗. h∗t is bounded in Assumption P4.
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• Because {ωh∗t } is a sequence of deterministic bounded values as
B∗ and D∗ are deterministic and bounded, and h∗t is strong mixing
by Assumption P1, ωh∗t h

∗
t is near-epoch dependent, as required by

Assumptions C2(ii)(iii).

• Assumptions C2(iii) is satisfied according to our Assumption P1.

• Assumption C2(iv) is satisfied because of our Assumption on h∗t
and the boundedness of ωh∗t .

3. Finally, assumption A5 is satisfied since

Var

T−1/2

[sT ]∑
t=R

E[D∗t+h]B
∗
tH
∗
t

 = Var

s1/2[sT ]−1/2

[sT ]∑
t=R

E[D∗t+h]B
∗
tH
∗
t

→ (s−µ)V ∗hhT

Var

T−1/2

[sT ]∑
t=R

E[D∗t+h]B
∗
tH
∗
t

 = Var

T−1/2

[sT ]∑
t=1

ωh∗t h
∗
t

 = Var

s1/2[sT ]−1/2

[sT ]∑
t=1

ωh∗t h
∗
t

→ sV ∗hhT

Thus according to corollary 3.1 in Wooldridge and White (1988),

1

σ
T−1/2

[sT ]∑
t=1

(
SSt+h(θ̂t)− E[SSt+h(θ

∗)]
)

=
1

σ

T−1/2

[sT ]∑
t=1

(SSt+h(θ
∗)− E[SSt+h(θ

∗)]) + T−1/2

[sT ]∑
t=1

E
[
D∗t+h

]
B∗tH

∗
t

+ op(1)

=
1

σ

[
1 1

]
T−1/2

[∑[sT ]
t=1 SSt+h(θ

∗)− E[SSt+h(θ
∗)]∑[sT ]

t=1 E[D∗t+h]B
∗
tH
∗
t

]
+ op(1)

d→ B(s)

converge to B(s) uniformly in s, where σ2 is the variance derived in The-
orem 1.
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Thus,

TT (R) =
P−1/2

∑T−h
t=R SSt+h(θ̂t,R)

σ̂R

= (
P

T
)−1/2 1

σ̂R
T−1/2

T−h∑
t=1

SSt+h(θ̂t,R)− (
P

T
)−1/2 1

σ̂R
T−1/2

R−1∑
t=1

SSt+h(θ̂t,R)

d→ (1− µ)−1/2[B(1)−B(µ)]

Combined with the assumption of uniform convergence sup
R≤R≤R

|σ̂2
R,P−

σ2| = op(1), the sketch of the proof is completed.
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Chapter 2

IDENTIFICATION AND
ESTIMATION OF
PARAMETER INSTABILITY
IN A HIGH DIMENSIONAL
APPROXIMATE FACTOR
MODEL

2.1 Introduction
I propose a novel methodology for identifying and estimating structural
breaks in the factor loadings of a high dimensional approximate factor
model with an unknown number of latent factors. The approach is robust
to structural changes in the volatility of the factors (the second moment
of the factors), applicable to multiple structural breaks, and easy to im-
plement for practitioners. Factor models are widely adopted in structural
analyses (e.g., [Bernanke et al., 2005]) and forecasting (e.g., [Stock and
Watson, 2002b]) in macroeconomics and finance. Empirical studies that
consider a factor model generally assume that the parameters of the fac-
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tor model are time-invariant, see [Connor and Korajczyk, 1986, Connor
and Korajczyk, 1988, Connor and Korajczyk, 1993], [Forni and Reich-
lin, 2000, Forni and Reichlin, 2004], [Forni and Lippi, 2001], [Bai and
Ng, 2002], [Bai, 2003a], and [Forni and Zaffaroni, 2015, Forni and Zaffa-
roni, 2017]. However, this assumption is in contrast to a strand of litera-
ture where structural breaks are deemed important features of macroeco-
nomic panels, see [Stock and Watson, 1996], [Bates et al., 2013], [Corradi
and Swanson, 2014], [Ma and Su, 2016], [Massacci, 2017], and [Su and
Wang, 2017].

The consequences of ignoring large structural breaks in factor models
are severe. First, standard estimators for the number of common factors
become inconsistent ([Bates et al., 2013]). Second, forecasting perfor-
mance, one of the major selling points of the factor model, deteriorates
([Banerjee et al., 2008]). Third, in structural analyses, incorrect conclu-
sions regarding the mapping of the common factors to the observations
can lead to misguided policy decisions. An example for the monetary
transmission mechanism is provided in [Korobilis, 2013]. It is thus in-
dispensable to develop reliable techniques to test and estimate structural
breaks in factor models.

A number of studies have tested structural breaks in factor loadings,
see [Stock and Watson, 2009], [Breitung and Eickmeier, 2011], [Yamamoto
and Tanaka, 2015], [Chen et al., 2014], [Han and Inoue, 2015], [Cheng
and Schorfheide, 2016], and [Barigozzi and Trapani, 2017]. In addition,
a smaller body of recent work has focused on the estimation of struc-
tural breaks, see [Chen, 2015] and [Baltagi et al., 2017]. Yet the methods
employed have predominantly relied on estimated factors (or loadings),
assuming the second moment of the factors as constant. This makes it
difficult to distinguish between a structural break in the factor loadings
and a structural break in the volatility of the factors themselves, which in
turn complicates understanding the relative importance of common fac-
tors and idiosyncratic terms.

In this article, I introduce a new methodology based on the observa-
tion that the sum of the numbers of pseudo factors (i.e., the factors needed
to describe the samples) in the pre- and post-split subsamples is mini-
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mized if the sample is split at the correct structural break. In other words,
if the split point is incorrectly chosen, the number of factors in either
the pre-split subsample or the post-split subsample will be overestimated
([Bai and Ng, 2002], [Breitung and Eickmeier, 2011]). This identification
scheme is applicable regardless of the number of structural breaks. I oper-
ationalize the methodology by estimating the number of factors at differ-
ent potential break points using the eigenvalue ratio criterion developed
by [Ahn and Horenstein, 2013] and then adopting an appropriate criterion
based on the eigenvalue ratios of the covariance matrices in the pre- and
post-split subsamples. Each potential break yields the eigenvalue ratios of
the pre- and post-break subsamples. By appropriately transforming these
statistics, the true structural break ratio is consistently detected based on
the well-known property that the r largest eigenvalues of the variance ma-
trix of N response variables grow unboundedly as N increases, whereas
the other eigenvalues remain bounded.

This study builds on previous work, including [Han and Inoue, 2015],
who developed tests to detect structural breaks in factor loadings so as to
determine whether all factor loadings are constant over time. They con-
sidered three different types of structural breaks, and used the second mo-
ments of the estimated factors to reduce the infinite-dimensional problem
into a finite-dimensional problem. Relatedly, [Baltagi et al., 2017] dis-
cussed estimations of factor loading instability points based on changes
in the second moments of the estimated factors. In this article, I adopt the
same definitions and types of breaks as [Han and Inoue, 2015] and [Balt-
agi et al., 2017], but propose a different criterion. The new methodology
does not, in fact, incorrectly attribute a structural break in the volatility
of the common factor to a structural break in the factor loadings as the
criterion proposed in this article is a function of eigenvalue ratios, which
does not require the identification or estimation of the factors. In contrast,
the approaches developed by [Han and Inoue, 2015] and [Baltagi et al.,
2017] suffer from this problem, as they assume a constant second moment
of the factors, and their statistics are functions of estimated factors. More-
over, most studies testing structural breaks in factor loadings are subject
to the same limitation if their criteria are functions of estimated factors.
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A combination of the methodologies of [Han and Inoue, 2015] and [Bal-
tagi et al., 2017], together with this new methodology, allows instead to
distinguish between a structural change in the factor loadings and a struc-
tural change in the volatility of the factors. This distinction is potentially
quite important because of the need to distinguish between changes in the
coefficient (i.e., the relative importance of the factors) and changes in the
variance (i.e., the volatility of the factors) in macroeconomic and financial
studies.

In a related paper, [Barigozzi and Trapani, 2017] tested the null hy-
pothesis that the factor structure does not change based on the well-known
property of the (r + 1)-th eigenvalue of the sample covariance matrix of
the data. Under the null hypothesis, the (r+ 1)-th eigenvalue is bounded,
under the alternative of a change it becomes spiked. The methodology in
this article differs in that the criterion in [Barigozzi and Trapani, 2017] is
based on randomized eigenvalues, while the criterion I adopt is a trans-
formation of eigenvalue ratios, and is simple to implement. Furthermore,
our approach is robust to structural changes in the volatility of factors, and
offers a procedure to distinguish between structural changes in the factor
loadings and structural changes in the volatility of factors, as well as to
estimate both instability points.

I carry out a Monte Carlo simulation study to evaluate the proposed
methodology. The panels are simulated in different data-generating pro-
cesses that involve different types of structural breaks in the factor load-
ings, allowing for different degrees of heteroskedasticity, and serial auto-
correlation in idiosyncratic shocks as well as in the factors. The results
show that the application of the new methodology is satisfactory in mod-
erately large samples. Moreover, it compares favorably to the approach
in [Baltagi et al., 2017].

Finally, I demonstrate the usefulness of this novel methodology in an
empirical analysis. The analysis investigates whether there are structural
breaks in a large panel of disaggregated US inflation series, which were
studied in [Clark, 2006], [Boivin et al., 2009], [Reis and Watson, 2010],
and [Stock and Watson, 2016]. The empirical results imply two structural
breaks in the factor loadings, which correspond to the 1973 oil price shock
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and the 2008 financial crisis, respectively. Furthermore, in combining this
new approach and the existing methodologies in [Han and Inoue, 2015]
and [Baltagi et al., 2017], I find empirical evidence in favor of a structural
change in the volatility of the factors in January 1991. The results also
provide empirical evidence that no structural breaks occurred either in the
factor loadings or in the volatility of the factors from November 2008 to
July 2017. The stability of the inflation panel during this period suggests
that an unconventional monetary policy is as effective as a conventional
one in stabilizing the economy, consistent with the findings in [Debortoli
et al., 2018].

The remainder of this article is organized as follows. Section 3.2 in-
troduces the factor model with one structural break in the factor loadings.
Sections 2.3 and 2.4 discuss the identification and estimation of the struc-
tural breaks. Section 2.5 extends the methodology to allow for multiple
structural breaks. Section 2.6 presents the results of the Monte Carlo sim-
ulation study and Section 2.7 explains the results of the empirical study.
Section 3.5 concludes.

Notation: For any real number z, bzc denotes the integer part of
z. For a positive semidefinite matrix A, I use ψk(A) to denote the kth

largest eigenvalue of a positive semidefinite matrix A, and .̂ to denote
the estimated counterpart. I denote the norm of a matrix A as ‖A‖ =
[trace(A′A)]1/2.

2.2 Statistical model

In this section, I outline the theoretical framework and the types of struc-
tural breaks considered. For exposition purposes, the methodology is de-
veloped for the case of one structural break. In Section 2.5, I extend the
framework to allow for multiple structural breaks. The extensions are
conceptually straightforward, but notationally somewhat cumbersome.

Consider N time series that are each observed for T time periods. Let
xit denote the observation of series i at period t for i = 1, . . . , N and
t = 1, . . . , T . At each point in time, the observations are modeled by a
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factor model with r common factors, e.g. [Stock and Watson, 2002a]. But
it deviates from the standard set-up by assuming that there is a break in
the factor loadings at period T ∗ = bπ∗T c, with π∗ ∈ (0, 1). The loadings
of r0 < r factors do not change across T ∗, while the loadings of the
remaining r1 factors change after period bπ∗T c. Let us write the model
with a structural break in the factor loadings as

xit =

{
f ′0,tλ0,i + f ′1,tλ1,i + eit if 1 6 t 6 bπ∗T c
f ′0,tλ0,i + f ′1,tλ2,i + eit if bπ∗T c+ 1 6 t 6 T

(2.1)

where f0,t is the r0 × 1 vector of common factors at period t with time-
invariant factor loadings λ0,i, f1,t is the r1×1 vector of common factors at
period t with pre-break factor loadings λ1,i and post-break factor loadings
λ2,i, and eit is the idiosyncratic shock for series i at period t. In matrix
notation, model (2.1) can be written as

X =

[
F0,1Λ′0 + F1,1Λ′1
F0,2Λ′0 + F1,2Λ′2

]
+ E (2.2)

where X is the T × N matrix of observations with element xit in the
ith column and tth row. The common factors are collected in F0,1 =
(f0,1, . . . , f0,bπ∗T c)

′, F0,2 = (f0,bπ∗T c+1, . . . , f0,T )′, F1,1 = (f1,1, . . . , f1,bπ∗T c)
′

and F1,2 = (f1,bπ∗T c+1, . . . , f1,T )′. The corresponding loading matrices
are Λ0 = (λ0,1, . . . , λ0,N)′, Λ1 = (λ1,1, . . . , λ1,N)′ and Λ2 = (λ2,1, . . . , λ2,N)′,
respectively. Finally, E is the T × N idiosyncratic matrix with elements
eit.

Following [Han and Inoue, 2015], different types of breaks in the fac-
tor loadings around T ∗ can be defined in terms of the following pseudo
model.

X =

[
F0,1 F1,1 O
F0,2 O F1,2

]Λ′0
Λ′1
Λ′2

+ E = GΘ′ + E (2.3)

In particular, the rank of Θ′Θ/N characterizes the types of breaks in the
following way. Rank(Θ′Θ/N) = r0 + r1 + l, where 0 ≤ l ≤ r1. When
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l = r1, it follows that Λ1 and Λ2 are linearly independent, i.e., the load-
ings change in a completely different direction. In contrast, when l = 0,
it follows that Λ2 = Λ1Z, and two cases can be distinguished: if Z is
singular, some common factors disappear after the break, for example, if
Λ2 = O, then r1 factors disappear after the break; if Z is non-singular,
it can be treated as a break in the volatility of the factors, for example,
if Λ2 = 2Λ1, then the factors are less volatile while the relative strength
between factors still remain the same. When 0 < l < r1, it is a combina-
tion of the aforementioned breaks. Note that by construction [Λ0,Λ1,Λ2]
may not be of full column rank, but at least one of Λ1 and Λ2 is set to
be of full rank, that is, the case when there are some factors appearing
and some factors disappearing at the same time is not considered in this
context. Summarizing, based on Rank(Θ′Θ/N), it is able to distinguish
between different types of structural breaks.

2.3 Identification of structural breaks

In this section, I show that the sum of the numbers of pseudo factors in
the pre- and post-split subsamples can be used to identify the structural
break. In particular, when viewing the break as a parameter of choice that
selects T ∗, the structural break minimizes the numbers of pseudo factors
needed to describe both the pre- and the post-split panel.

Let us split the whole sample into two subsamples at period bπT c
with π ∈ (0, 1), and denote the pre- and post-split subsamples as Xpre

π =

(x
′
1, . . . , x

′

bπT c)
′ and Xpost

π = (x
′

bπT c+1, . . . , x
′
T )′. Gpre/post

π , Θ
pre/post
π and

E
pre/post
π are similarly defined. Three cases can be considered based on

the relationship between π and π∗: π < π∗, π = π∗ and π > π∗. Let us
denote the number of pseudo factors1 of the pre-split subsample as rpre(π)
and the number of pseudo factors of the post-split subsample as rpost(π).
Both rpre(π) and rpost(π) are functions of π. Let us denote them as rpre

1The number of ”pseudo” factors means the number of factors needed to describe the
corresponding sample, i.e. G in (2.3), which are not necessarily the true factors.
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and rpost for simplicity. Next, let us discuss the three cases separately.

Case 1: π < π∗

In this case, the break in the loadings lies in the post-split subsample. The
model for this case can be written as

Xpre
π = Gpre

π Θpre′

π + Epre
π =

[
F pre

0,1 F pre
1,1

] [Λ′0
Λ′1

]
+ Epre

π

Xpost
π = Gpost

π Θpost′

π + Epost
π =

[
F post

0,1 F post
1,1 O

F0,2 O F1,2

]Λ′0
Λ′1
Λ′2

+ Epost
π

(2.4)
where F pre

0,1 and F pre
1,1 denote the the pre-split part of F0,1 and F1,1; while

F post
0,1 and F post

1,1 denote the post-split part of F0,1 and F1,1. Equations (2.4)
imply that when π < π∗, the number of factors of the pre-split subsample
is r0 + r1 and the number of factors of the post-split subsample depends
on the rank of Θ′Θ/N . The π < π∗ column of Table 2.1 summarizes rpre

and rpost for each type of breaks when π < π∗.

Case 2: π = π∗

When π = π∗, both the pre-split subsample Xpre
π∗ and the post-split sub-

sampleXpost
π∗ do not have any breaks in the factor loadings. The following

expression is obtained:

Xpre
π∗ = Gpre

π∗ Θpre′

π∗ + Epre
π∗ =

[
F0,1 F1,1

] [Λ′0
Λ′1

]
+ Epre

π∗

Xpost
π∗ = Gpost

π∗ Θpost′

π∗ + Epost
π∗ =

[
F0,2 F1,2

] [Λ′0
Λ′2

]
+ Epost

π∗

(2.5)

In the same spirit as above, the number of factors for the pre- and post-
break subsamples can be deduced. The number of factors of the pre-split
subsample is r0 + r1 and the number of factors of post-split subsample
depends on [Λ0 Λ2], which in its turn depends on the type of breaks. The
π = π∗ column in Table 2.1 lists the different outcomes. The integer c
in the table depends on [Λ0 Λ2], which could have columns of zeros. Es-
pecially, if there is a break in the volatility of the factor, i.e., there is a
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non-singular Z such that Λ2 = Λ1Z, then c = r1. Otherwise, c = 0, i.e.,
some factors disappear.

Case 3: π > π∗

When π > π∗, the pre-split subsampleXpre
π has a break in the factor load-

ings while the post-split subsample Xpost
π does not have any break in the

factor loadings. The pre- and post-split subsamples have the expression
as equation (2.6).

Xpre
π = Gpre

π Θpre′

π + Epre
π =

[
F0,1 F1,1 O
F pre

0,2 O F pre
1,2

]Λ′0
Λ′1
Λ′2

+ Epre
π

Xpost
π = Gpost

π Θpost′

π + Epost
π =

[
F post

0,2 F post
1,2

] [Λ′0
Λ′2

]
+ Epost

π

(2.6)

where F pre
0,2 and F pre

1,2 denote the the pre-split part of F0,2 and F1,2; while
F post

0,2 and F post
1,2 denote the post-split part of F0,2 and F1,2.

The number of factors of the pre-split subsample depends on the pseudo
factor loading matrix, that is, the rank of Θ′Θ/N ; while the number of
factors of the post-split subsample depends on [Λ0 Λ2], which in turn de-
pends on the type of breaks. The π > π∗ column in Table 2.1 summarizes
rpre and rpost for each type of breaks when π > π∗.

Adding up the numbers of pesudo factors of the implied pre- and post-
split subsamples, I find that:

• For the case of a structural break in the factor loadings at period
T ∗ = bπ∗T c, i.e. Type 1 and 3 in Table 2.1, it holds that

rpre(π∗) + rpost(π∗) < rpre(π) + rpost(π) ∀π 6= π∗ (2.7)

• For the case of factors disappearing at period T ∗ = bπ∗T c, i.e. Type
2 in Table 2.1 with c = 0, it holds that

rpre(π∗) + rpost(π∗) < rpre(π) + rpost(π) ∀π < π∗

rpre(π∗) + rpost(π∗) = rpre(π) + rpost(π) ∀π ≥ π∗
(2.8)
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• For the case of a structural break in the volatility of the factors at
period T ∗ = bπ∗T c, i.e. Type 2 in Table 2.1 with c = r1, it holds
that

rpre(π∗) + rpost(π∗) = rpre(π) + rpost(π) ∀π (2.9)

Summarizing, rpre(π)+rpost(π) depends on where the sample is split,
and at the same time, it characterizes the type of breaks. Table 2.1 shows
that this information is sufficient to identify structural breaks.
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2.4 Estimation and inference
In this section, I operationalize the identification strategy of the previ-
ous section. The sum of the pre- and post-split subsamples’ numbers of
common factors of different choices of split point π can be used to detect
π∗.

Given the identification results described in equations (2.7), a natural
estimator for the structural break in the factor loadings is given by

π̃ = arg min
π∈Π

r̃pre(π) + r̃post(π) (2.10)

where r̃pre(π) is the estimated number of factors of the pre-split subsam-
ple and r̃post(π) is the estimated number of factors of the post-split sub-
sample. Different estimators can be considered for the estimation of the
number of factors, see for example [Bai and Ng, 2002], [Onatski, 2010]
and [Ahn and Horenstein, 2013].

While estimator defined in eq (2.10) is intuitively appealing, it has
some considerable drawbacks. First, the case of factors disappearing,
where the sum of pre- and post-split numbers of factors remains con-
stant after the break, see eq (2.8), will not be detected by this estimator.
Second, the objective function defined in eq (2.10) is an integer-valued
function, which has one single drop at the break. It is difficult to con-
struct the convergence theory based on such objective function.

Instead, I modify the objective function by (a) looking at the values
of the eigenvalue ratios instead of their index and (b) differencing the
criterion to be able to detect breaks of factors (dis)appearing, i.e., the case
in eq (2.8).

I first introduce some notations. I define, as [Ahn and Horenstein,
2013], that

µ̂preNT,k(π) = ψk

(
Xpre′Xpre

NbπT c

)
, µ̂preNT,0(π) =

∑min(T,N)
k=1 µ̂preNT,k(π)

ln(min(bπT c, N))

µ̂postNT,k(π) = ψk

(
Xpost′Xpost

N(T − bπT c)

)
, µ̂postNT,0(π) =

∑min(T,N)
k=1 µ̂postNT,k(π)

ln(min(T − bπT c, N))
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With these notations introduced, I consider the following criterion

∆Q̂(π) = Q̂ (π)− Q̂ (π −∆π) (2.11)

with

Q̂ (π) =
1

N
max

k1,k2, s.t. k1+k2=R̂

{
µ̂preNT,k1

(π)

µ̂preNT,k1+1(π)
+

µ̂postNT,k2
(π)

µ̂postNT,k2+1(π)

}
(2.12)

and
R̂ = min

π̃

{
r̂pre(π̃) + r̂post(π̃)

}
(2.13)

where ∆π is a small measurement of distance.2 r̂pre/post(·) is the esti-
mated number of factors of the corresponding pre- or post-split subsam-
ples’ covariance matrices using the eigenvalue ratio estimator proposed in
Ahn and Horenstein(2013) 3.

The estimator for the structural break based on eq (2.11) is given by

π̂ = arg max
π∈Π

∆Q̂(π). (2.14)

As shown in [Ahn and Horenstein, 2013], the kth eigenvalue ratio, if
k is the correct number of factors of the corresponding covariance matrix,
will explode; while the other eigenvalue ratios will be bounded. The al-
ternative objective function adopted in (2.14) will capture the structural
break and the intuition is the following: in population, with the restriction
k1 + k2 = minπ̃ {rpre(π̃) + rpost(π̃)}, at the correct split point (i.e., split
at the break), the objective function will attain the largest eigenvalue ra-
tios of both pre- and post-break subsamples’ covariance matrices; while at

2In theory, the convergence of π̂ requires ∆π = T ε

T → 0 as T → ∞. In practice, I
suggest choosing ∆π based on the sample size and economic meaning. For example, if
a researcher deals with a quarterly panel with T = 100 and he/she may search through
π ∈ Π = {0.15, 0.16, . . . , 0.84, 0.85}, then he/she can choose ∆π = 0.01 with ∆πT
refers a quarter or choose ∆π = 0.04 with ∆πT refers a year.

3Ahn and Horenstein (2013) Eigenvalue Ratio estimator(ER): r̂ER =
max
r6rmax

µ̃NT,r
µ̃NT,r+1

, µ̃NT,r ≡ ψr[X
′X/(NT )], where ψk(.) denotes the kth largest

eigenvalue of the corresponding matrix.
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the incorrect split point, the objective function cannot attain both largest
eigenvalue ratios of the two subsamples’ covariance matrices simultane-
ously, which makes Q(.) maximized at the break. Besides, taking differ-
ence of the criterions Q(.) help achieve a general form of the estimator in
cases of different types of breaks, as in the case of factors disappearing,
Q(.) is supposed to remain at a high level after the break while ∆Q(.) will
be maximized at the break. Therefore, the alternative objective function
adopted in (2.14) captures the structural break and in the same time help
circumvent the problems in estimation equation (2.10).

Next, I set up the conditions under which π̂ is a consistent estimator
of π∗. Let X be generated by model (2.2), which has a representation
(2.3). Let rwhole denote the true pseudo number of factors of the whole
sample. For any π ∈ Π ⊂ (0, 1), let rpre/post(π) denote the true pseudo
pre- and post-split numbers of factors as described in Table 2.1, and let
G
pre/post
π ,Θpre/post

π denote the true pseudo pre- and post-split factors and
loadings as described in eq (2.4)-(2.6). Finally, let m = min(N, T ), M =
max(N, T ). I assume that

Assumption 1. T ∗ = bπ∗T c, where η < π∗ < 1− η, η > 0.

Assumption 2. (i) Let µwholeNT,k = ψk

[
Θ
′
Θ
N

G
′
G
T

]
for k = 1, . . . , rwhole. Then

for each k = 1, . . . , rwhole, plim
m→∞

µwholeNT,k = µwholek , and 0 < µwholek < ∞.

(ii) Let µpreNT,k(π
∗) = ψk

[
Θpre

′
π∗ Θpre

′
π∗

N

Gpre
′

π∗ Gpre
π∗

bπ∗T c

]
for k = 1, . . . , rpre(π∗), and

µpostNT,k(π
∗) = ψk

[
Θpost

′
π∗ Θpost

π∗
N

Gpost
′

π∗ Gpost
π∗

T−bπ∗T c

]
for k = 1, . . . , rpost(π∗). Then

for each k = 1, . . . , rpre/post(π∗), plim
m→∞

µ
pre/post
NT,k (π∗) = µ

pre/post
k , and

0 < µ
pre/post
k <∞. (iii) rwhole, rpre/post(π∗) are finite.

Assumption 3. (i)E ‖ft‖4 < c1, ‖λi‖ < c1, for all i and t. (ii)E
∥∥N−1/2

∑
i εitλi

∥∥2
< c1,

for all t. (iii) E
∥∥T−1/2

∑
i εitft

∥∥2
< c1.

Assumption 4. (i) 0 < y ≡ lim
m→∞

m/M 6 1. (ii) Let the idiosyn-

cratic shocks E take the structure E = R
1/2
T UG

1/2
N where R

1/2
T and
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G
1/2
N are symmetric square roots of positive semidefinite matrices RT and

GN , U = [uit]T×N . (iii) uit are i.i.d random variables, E(u4
it) < ∞.

(iv) ψ1(RT ) < c1, and ψ1(GN) < c1, uniformly in T and N respectively.

Assumption 5. (i)ψT (RT ) > c2 for all T . (ii) Let y∗ = lim
m→∞

m/N = min(y, 1).

Then there exists a real number d∗ ∈ (1−ηy∗, 1] such thatψbd∗Nc(GN) > c2,∀N .

Assumption 1 describes the structural break. It indicates that the struc-
tural break is not at two extremes of the whole sample and each segment
increases proportionately as the sample size increases. Later this assump-
tion will be extended to allow multiple breaks. Assumption 2 naturally ex-
tends the Assumption A of [Ahn and Horenstein, 2013]. Assumption 2(i),
following many factor model literatures (see [Ahn and Horenstein, 2013],
[Connor and Korajczyk, 1993], [Bai and Ng, 2002, Bai and Ng, 2006],
[Bai, 2003a]), assumes that the cumulative effect of the ”least influential
factor” diverges in probability to infinity as the sample size grows. In As-
sumption 2(ii), I extend this assumption such that it applies for pre- and
post-break subsamples, i.e., the cumulative effect of the ”least influential
factor” of the pre- and post-break subsample also diverges in probability
to infinity as the sample size grows. Note that each segment increases
proportionately as the sample size increases is ensured in Assumption 1.
Assumptions 3-4 are exactly the same assumptions of [Ahn and Horen-
stein, 2013]. Assumption 3 allows weak dependence between factors and
idiosyncratic shocks, as well as loadings and idiosyncratic shocks. As-
sumption 4 restricts the covariance structure of the idiosyncratic shocks, it
allows both autocorrelation, determined byRT , and cross-sectional corre-
lation, governed by GN , in the idiosyncratic shocks. Assumption 5 states
that none of the idiosyncratic shocks and their linear functions can be
perfectly predicted by their past values, and it permits multicollinearity
among variables (see examples in [Ahn and Horenstein, 2013]) so long
as an asymptotically nonnegligible portion of the eigenvalues of GN is
bounded below by a positive number. I restrict ∃d∗ ∈ (1−ηy∗, 1] to ensure
that it holds for subsamples. Assumptions 2-5 ensure that the eigenvalue
ratio estimator for the number of common factors in [Ahn and Horen-
stein, 2013] can consistently identify the number of common factors for
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different pre- and post-split subsamples.
With the assumptions introduced above, I achieve the following result.

Theorem 3. Let xi,t be generated by model (2.1). Suppose Assumptions
1-5 hold, π̂ is defined in equation (2.14), then π̂ = π∗ +Op(T

−1).

The criterion function (2.12) can shed some insights into which type
of breaks is being detected. If Q̂(.) is smooth across time, then there are
neither structural breaks in the factor loadings nor factors (dis)appearing,
but there still might be structural breaks in the volatility of the factors; if
Q̂(.) has a peak, then there is a structural break in the factor loadings; if
Q̂(.) jumps to a high value and then remains (or vice versa), then there are
factors disappearing (appearing). Moreover, combining this new method
with the literature (see [Han and Inoue, 2015], [Baltagi et al., 2017]), re-
searchers can distinguish between a structural break in the factor loadings
and a structural break in the volatility of the factors. If the existing meth-
ods in the literature capture a structural break while the new method does
not, i.e., Q̂(.) is smooth, then there is a structural break in the volatility of
the factors.

2.5 Detecting multiple structural breaks

In this section, I extend the results from the previous sections to the case of
multiple structural breaks. In general, I assume that there are q structural
breaks and denote the structural breaks by π∗j for j = 1, . . . , q. The detec-
tion procedure is based on the observation that at each structural break,
the true data generating process can be rewritten in a representation that
is conceptually equivalent to model (2.3).

2.5.1 Identification of multiple structural breaks

A factor model with q structural breaks is given by eq (2.15).
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xit =



f ′0,tλ0,i + f ′1,tλ
1
1,i + f ′2,tλ

2
1,i + · · ·+ f ′q,tλ

q
1,i + eit if 1 6 t 6 bπ∗1T c

f ′0,tλ0,i + f ′1,tλ
1
2,i + f ′2,tλ

2
1,i + · · ·+ f ′q,tλ

q
1,i + eit if bπ∗1T c+ 1 6 t 6 bπ∗2T c

f ′0,tλ0,i + f ′1,tλ
1
2,i + f ′2,tλ

2
2,i + · · ·+ f ′q,tλ

q
1,i + eit if bπ∗2T c+ 1 6 t 6 bπ∗3T c

. . .

f ′0,tλ0,i + f ′1,tλ
1
2,i + f ′2,tλ

2
2,i + · · ·+ f ′q,tλ

q
2,i + eit if bπ∗q−1T c+ 1 6 t 6 T

(2.15)
where f0,t is a r0 × 1 vector prepresenting factors at period t with time-
invariant factor loadings λ0,i. For j = 1, . . . , q, fj,t is a rj × 1 vector
representing factors whose loadings change at jth break (T ∗j = bπ∗jT c),
with pre-jthbreak factor loadings λj1,i and post-jthbreak factor loadings
λj2,i. eit is the idiosyncratic shock for series i at period t. In matrix nota-
tion, model (2.15) can be written as eq (2.16).

X =


F0,1 F1,1 F2,1 . . . Fq,1

... O O . . . O

F0,2 O F2,2 . . . Fq,2
... F1,2 O . . . O

...
...

F0,q+1 O O . . . O
... F1,q+1 F2,q+1 . . . Fq,q+1





Λ
′

0

Λ1′

1

Λ2′

1
...

Λq
′

1

Λ1′

2

Λ2′

2
...

Λq
′

2


+ E

(2.16)

Consider structural break T ∗j = bπ∗jT c. The panel includes j − 1
breaks before T ∗j and q − j breaks after T ∗j . Both the pre- and post-
jth break subsample can be written as an alternative pseudo factor model
with constant loading matrices as in (2.16). Given that rj factor loadings
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change at T ∗j , the data generating process can be written as

X = GΘ′ + E =

[
F̃0,1Λ̃′0 + F̃1,1Λ̃′1
F̃0,2Λ̃′0 + F̃1,2Λ̃′2

]
+ E =

[
F̃0,1 F̃1,1 O

F̃0,2 O F̃1,2

]Λ̃′0
Λ̃′1
Λ̃′2

+ E

(2.17)
where F̃0,1 and F̃1,1 are T ∗j × r̃0 and T ∗j × r̃1 pseudo pre-jthbreak factor
matrices, i.e., the upper-left part and upper-right part of big factor matrix
in eq (2.16) respectively. F̃0,2 and F̃0,2 are (T − T ∗j ) × r̃0 and (T −
T ∗j ) × r̃1 pseudo post-jthbreak factor matrices, i.e., the bottom-left part
and bottom-right part of big factor matrix in eq (2.16) respectively. The
number of pseudo factors before T ∗j is r̃0. Λ̃0 is an N × r̃0 pseudo factor
loading matrix that denotes loadings that remain constant at T ∗j , Λ̃1 and
Λ̃2 are N × r̃1 matrices that denote pre- and post-jthbreak loadings that
change at T ∗j .

Based on the representation in eq (2.17), I deduce that different types
of breaks at point T ∗j can be described by the rank of Θ̃. Similar to the
results in Table 2.1, after adding up the numbers of factors of the implied
pre- and post-split subsamples, it follows that:

• For the case of a structural break in the loadings at period T ∗j =
bπ∗jT c, it holds that

rpre(π∗j ) + rpost(π∗j ) < rpre(π) + rpost(π) ∀π 6= π∗j , π
∗
j−1 < π < π∗j+1

(2.18)

• For the case of factors disappearing at period T ∗j = bπ∗jT c, it holds
that
rpre(π∗j ) + rpost(π∗j ) < rpre(π) + rpost(π) ∀π∗j−1 < π < π∗j
rpre(π∗j ) + rpost(π∗j ) = rpre(π) + rpost(π) ∀π∗j ≤ π < π∗j+1

(2.19)

• For the case of a structural break in the volatility of the common
factors at period T ∗j = bπ∗jT c, it holds that

rpre(π∗j ) + rpost(π∗j ) = rpre(π) + rpost(π) ∀π, π∗j−1 < π < π∗j+1

(2.20)
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2.5.2 Estimation and inference for multiple structural
breaks

Given the identification results described in equations (2.18), a natural
estimator for the structural break π∗j is given by

π̃j = arg min
π∗j−1<π<π

∗
j+1

r̃pre(π) + r̃post(π) (2.21)

Similarly, I modify the objective function and consider

∆Q̂j(π) = Q̂j (π)− Q̂j (π −∆π) (2.22)

with

Q̂j (π) =
1

N
max

k1,k2, s.t. k1+k2=R̂j

{
µ̂preNT,k1

(π)

µ̂preNT,k1+1(π)
+

µ̂postNT,k2
(π)

µ̂postNT,k2+1(π)

}
(2.23)

and
R̂j = min

π∗j−1<π̃<π
∗
j+1

{
r̂pre(π̃) + r̂post(π̃)

}
(2.24)

The estimator for the instability point based on (2.22) is given by

π̂j = arg max
π∗j−1<π<π

∗
j+1

∆Q̂j(π) ∀j = 1, 2, . . . , q (2.25)

Note that in multiple structural breaks case, when identifying and es-
timating the jth break, I use the trimming Πj that satisfies πj ∈ Πj ⊆
(π∗j−1, π

∗
j+1). In practice, π∗j−1 and π∗j+1 are unknown, so I suggest replac-

ing R̂j in eq (2.23) and (2.24) with

R̂j(π, h) = min
max(π0,π−h)<π̃<min(π+h,1−π0)

{
r̂pre(π̃) + r̂post(π̃)

}
(2.26)

π0 and 1−π0 are the starting and ending points of the trimming set of π ∈
Π = (π0, π0), which is usually set that π ∈ (0.15, 0.85) in practice. Idealy,
h ∈ (0, 1) should be set no less then half the duration between adjacent
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breaks to ensure that the interval (max(π0, π − h),min(π + h, 1 − π0))
contains a structural break if there are any through the whole sample.
For example, if the duration between adjacent breaks is assumed to be
no longer than 0.4T periods, say π∗1 = 0.3, π∗2 = 0.7, then the ideal
h satisfies that h ∈ (0.2, 1), for example, h = 0.5. Then at any π ∈ Π,
(max(0.15, π−h),min(π+h, 0.85)) will contain one break, which makes
the restriction (2.26) valid across the sample. In practice, researchers may
choose h based on information of the economy. But, if a small h is chosen,
there could be a chance that the interval (max(π0, π−h),min(π+h, 1−
π0)) contains no break; if a large h is chosen, the interval (max(π0, π −
h),min(π + h, 1 − π0)) may contain more than one breaks. I’ll suggest
a large h, as in the Monte Carlo simulations and empirical studies, it is
shown that the results are robust to large h.

Next, I set up the conditions under which π̂j is a consistent estimator
of π∗j . Now let X be generated by model (2.15), which has a representa-
tion (2.17). And accordingly, I denote rpre/post(π),Gpre/post

π and Θ
pre/post
π ,

for any π ∈ Π ⊂ (0, 1). Finally, let m = min(N, T ), M = max(N, T ). I
replace Assumptions 1 and 2 the following assumptions.

Assumption 1′. For j = 1, 2, . . . , q T ∗j = bπ∗jT c, where 0 < π∗1 < π∗2 <
· · · < π∗q < 1.

Assumption 2′. (i) Let µwholeNT,k = ψk

[
Θ
′
Θ
N

G
′
G
T

]
for k = 1, . . . , rwhole.

Then for each k = 1, . . . , rwhole, plim
m→∞

µwholeNT,k = µwholek , and 0 < µwholek <∞.

(ii) For each πj , let µpreNT,k(π
∗
j ) = ψk

[
Θpre

′
π∗
j

Θpre
π∗
j

N

Gpre
′

π∗
j
Gpre
π∗
j

bπ∗j T c

]
for k = 1, . . . , rpre(π∗j ),

and µpostNT,k(π
∗
j ) = ψk

[
Θpost

′
π∗
j

Θpost
π∗
j

N

Gpost
′

π∗
j

Gpost
π∗
j

T−bπ∗j T c

]
for k = 1, . . . , rpost(π∗j ).

Then for each k = 1, . . . , rpre/post(π∗j ), plim
m→∞

µ
pre/post
NT,k (π∗j ) = µ

pre/post
k,j ,

and 0 < µ
pre/post
k,j <∞, for j = 1, . . . , q. (iii) rpre/post(π∗j ) is finite for all

j.
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Assumption 1′ is a standard requirement to permit the development of
an asymptotic theory and allows the structural breaks to be asymptotically
distinct. It considers the asymptotic experiments under the assumption
that each segment increases proportionately as the sample size increases.
I refer to the quantities π∗ = (π∗1, . . . , π

∗
q ) as the break fractions and let

π∗0 = 0 and π∗q+1 = 1. Assumption 2′ is an extension of Assumption 2. In
Assumption 2′(ii), I extend Assumption 2(ii) such that at each structural
break, the cumulative effect of the ”least influential factor” of the pre- and
post-break subsamples diverges in probability to infinity as the sample
size grows.

Theorem 4. Let xi,t be generated by model (2.15). Suppose Assumptions
1′, 2′ and 3-5 hold, π̂j is defined in equation (2.25), then π̂j = π∗j +
Op(T

−1) for j = 1, 2, . . . , q.

2.6 Monte Carlo simulation
In this section, a Monte Carlo simulation study is conducted to verify the
small sample properties of this new methodology of detecting structural
breaks. I evaluate for different simulation designs the frequency by which
the true structural break can be recovered. I compare this new methodol-
ogy to the method of [Baltagi et al., 2017].

2.6.1 Simulation design
For the single break case, the data is generated from

xit =

{
f ′0,tλ0,i + f ′1,tλ1,i + eit if 1 6 t 6 bπ∗T c
f ′0,tλ0,i + f ′1,tλ2,i + eit if bπ∗T c+ 1 6 t 6 T

for i = 1, . . . , N and t = 1, . . . , T . I consider different combinations
of N and T given by (N, T ) ∈ {(300, 400), (100, 100)}. The structural
break is chosen as T ∗ = π∗T with π∗ = 0.5. The number of factors is
equal to r0 = 3 and r1 = 2, corresponding to the dimensions of f0,t and
f1,t respectively.
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For the multiple breaks case, I generate the data from

xit =


f ′0,tλ0,i + f ′1,tλ

1
1,i + f ′2,tλ

2
1,i + eit if 1 6 t 6 bπ∗1T c

f ′0,tλ0,i + f ′1,tλ
1
2,i + f ′2,tλ

2
1,i + eit if bπ∗1T c+ 1 6 t 6 bπ∗2T c+ 1

f ′0,tλ0,i + f ′1,tλ
1
2,i + f ′2,tλ

2
2,i + eit if bπ∗2T c+ 1 6 t 6 T

for i = 1, . . . , N and t = 1, . . . , T . I consider combinations of N and
T given by (N, T ) ∈ {(300, 400)}. Two structural breaks are considered
and the structural breaks are chosen as T ∗1 = π∗1T with π∗1 = 0.35 and
T ∗2 = π∗2T with π∗2 = 0.65. The number of factors is equal to r0 = 3,
r1 = 2, and r2 = 2, corresponding to the dimensions of f0,t, f1,t and f2,t

respectively.
The individual factors are all generated by the autoregressive process

fj,t,p = ρfj,t−1,p+uj,t,p, for t = 1, . . . , T, j = 0, . . . , q, p = 1, . . . , rj

where q is the number of the breaks, i.e., q = 1 for single break case,
q = 2 for multiple breaks case; ρ is the autoregressive parameter and uj,t,p
is the disturbance. I consider different values of ρ given by ρ ∈ {0, 0.5}.

The idiosyncratic shocks ei,t are generated from

ei,t = αei,t−1 + vi,t, for t = 1, . . . , T, i = 1, . . . , N

where vt = (v1,t, . . . , vN,t)
′ and vt ∼ NID(0,Ω) for t = 2, . . . , T . The

elements of the matrix Ω are given by Ωij = β|i−j|. The parameters α
and β capture the serial correlation and cross-sectional dependence in the
idiosyncratic shocks, respectively. I consider different combinations of α
and β given by α ∈ {0, 0.2}, β ∈ {0, 0.2}.

To investigate the different types of structural breaks, I consider the
following scenarios.

(i) Scenario 1: A structural break in the factor loadings: I assume
there is a single break and generate data based on the single break
model. I generate λ0,i, λ1,i and λ2,i from normal distribution respec-
tively, i.e. after the break, the loadings of r1 factors(f1,t,p) change
from λ1,i to λ2,i. And for all p, I generate uj,t,p ∼ NID(0, 1) for
t = 1, . . . , T , i.e. there is no break in the volatility of the factors.
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(ii) Scenario 2: Factors (dis)appearing: I assume there is a single
break and generate data based on the single break model. I generate
λ0,i and λ1,i from normal distribution respectively, and set λ2,i = 0,
i.e. after the break, r2 factors(f2,t,p) disappear. And for all p, I
generate uj,t,p ∼ NID(0, 1) for t = 1, . . . , T , i.e. there is no break
in the volatility of the factors.

(iii) Scenario 3: Multiple structural breaks: I assume there are two
breaks and generate data based on the multiple breaks model. I
generate λ0,i, λ1

1,i and λ1
2,i from normal distribution respectively,

i.e. after the first break, the loadings of f1,t,p change from λ1
1,i to

λ2
2,i. I generate λ2

1,i from normal distribution, and set λ2
2,i = 0, i.e.

after the second break, r2 factors(f2,t,p) disappear. And for all p, I
generate uj,t,p ∼ NID(0, 1) for t = 1, . . . , T , i.e. there is no break
in the volatility of the factors.

(iv) Scenario 4: A structural break in the volatility of the factors:
Data are generated based on the single break model. I set λ2,i =
λ1,i = 0, so that there is no break in the factor loadings and the total
number of factors is r = r0. But, for all p = 1, . . . , r I generate
uj,t,p ∼ NID(0, 1) for t = 1, . . . , τ ∗ and uj,t,p ∼ NID(0, θ) for
t = τ ∗ + 1, . . . , T . I set τ ∗ = 0.5 and θ = 4.

For each simulation design, I generate J = 1000 panels, set the trim-
ming Π = 0.15 : 1

T
: 0.85 and ∆π = 1

T
. I calculate Q̂(.) at each pos-

sible period and get estimated π̂ based on ∆Q̂ = Q̂( t
T

) − Q̂( t−1
T

), for
t = b0.15T c, b0.15T c+ 1, . . . , b0.85T c.

2.6.2 Monte Carlo results
The main outcome criterion is the frequency by which the estimators
(2.14) and (2.25) are within certain periods around the true structural
breaks. Table 2.2 displays the main results of Scenario 1-3. Table 2.2(a)
and 2.2(b) display the results of the single break case, where I compare
this method (denoted as ER and displayed in the first big column) with
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[Baltagi et al., 2017] (denoted as BKW and displayed in the second big
column). Table 2.2(c) displays the results of the multiple breaks case,
where I display the results of each break in each column. I find that this
new method performs well in moderately large samples, for all combina-
tions of parameters. In moderately large samples, it performs better than
[Baltagi et al., 2017] most of the time, especially in the case of factors
disappearing. Small sample results for Scenario 1-2 are provided in Table
?? in Appendix 1.9.

Besides, I provide the average criterions Q̂ and |∆Q̂| as well as the
histogram of the estimated structural break across 1000 iterations for each
scenario with different combinations of (ρ, α, β) in Appendix 1.9. It con-
firms that the criterion has a peak around the structural breaks as dis-
cussed in the theory, the histogram of the estimated structural break are
distributed around the true structural breaks, and that this criterion will
not treat a structural break in the volatility of factors as a break in the
factor loadings.

2.7 Structural breaks in US inflation
To illustrate the new methodology, I investigate whether there are struc-
tural breaks in a large panel of disaggregated US prices that was previ-
ously studied by [Reis and Watson, 2010]. The price data, ranging from
1959:M1-2017:M74, comprise monthly chained price indices for US per-
sonal consumption expenditures by major type of product and expendi-
ture. Inflation is measured in percentage points at an annual rate prorated
each month: πi,t = 100× ln(Pi,t/Pi,t−12), where Pi,t are monthly prices.
And I end up with a panel consisting of N = 167 monthly time series,
which refer to price series for goods and services at the highest avail-
able level of disaggregation and covering T = 690 periods, after taking
first difference to ensure stationarity. I aim to answer the following ques-
tions. First, I question whether there are structural breaks in the factor
loadings in this large panel of disaggregated US prices. Second, I adopt

4Jan 1959 to Jul 2017
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Table 2.2: Main Results
(a) A structural break in the factor loadings, T = 400, N = 300, π∗ = 0.5

ER BKW
(ρ, α, β) P (|π̂ER − π∗| < 0.01) P (|π̂ER − π∗| < 0.025) P (|π̂BKW − π∗| < 0.01) P (|π̂BKW − π∗| < 0.025)
(0, 0, 0) 0.853 0.998 0.87 0.988

(0, 0, 0.2) 0.839 0.996 0.844 0.978
(0, 0.2, 0) 0.803 0.998 0.848 0.982

(0, 0.2, 0.2) 0.771 0.996 0.854 0.974
(0.5, 0, 0) 0.897 1 0.834 0.968

(0.5, 0, 0.2) 0.879 0.999 0.83 0.968
(0.5, 0.2, 0) 0.872 0.999 0.836 0.964

(0.5, 0.2, 0.2) 0.852 0.996 0.816 0.966

(b) Factors disappearing, T = 400, N = 300, π∗ = 0.5

ER BKW
(ρ, α, β) P (|π̂ER − π∗| < 0.01) P (|π̂ER − π∗| < 0.025) P (|π̂BKW − π∗| < 0.01) P (|π̂BKW − π∗| < 0.025)
(0, 0, 0) 0.84 0.995 0.744 0.9

(0, 0, 0.2) 0.831 0.993 0.72 0.926
(0, 0.2, 0) 0.794 0.982 0.752 0.926

(0, 0.2, 0.2) 0.789 0.992 0.726 0.908
(0.5, 0, 0) 0.884 0.998 0.726 0.89

(0.5, 0, 0.2) 0.868 0.993 0.702 0.902
(0.5, 0.2, 0) 0.856 0.995 0.712 0.91

(0.5, 0.2, 0.2) 0.841 0.994 0.71 0.892

(c) Multiple structural breaks, T = 400, N = 300, π∗1 = 0.3, π∗2 = 0.7

Break 1 Break 2
(ρ, α, β) P (|π̂ER1 − π∗1 | < 0.01) P (|π̂ER1 − π∗1 | < 0.025) P (|π̂ER2 − π∗2 | < 0.01) P (|π̂ER2 − π∗2 | < 0.025)
(0, 0, 0) 0.841 0.998 0.818 0.989

(0, 0, 0.2) 0.834 0.995 0.783 0.994
(0, 0.2, 0) 0.817 0.997 0.752 0.991

(0, 0.2, 0.2) 0.757 0.984 0.715 0.986
(0.5, 0, 0) 0.877 1 0.843 0.996

(0.5, 0, 0.2) 0.869 0.999 0.854 0.998
(0.5, 0.2, 0) 0.843 0.996 0.802 0.996

(0.5, 0.2, 0.2) 0.859 0.993 0.794 0.993

Note: In the single break case, I use π̂ER and π̂BKW to denote the estimators using the
new method and using [Baltagi et al., 2017] respectively; in the multiple breaks case, I
use π̂ERj , j = 1, 2 to denote the estimators using the new method. This table displays

the frequency by which each estimator is within δT (δ ∈ {0.01, 0.025}) periods around
the true structural breaks.115
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conventional macro-econometric methods to determine how the underly-
ing structure changes before and after a break. Third, I question whether
there are structural breaks in the volatility of the factors in this panel.

2.7.1 Detecting structural breaks in the factor loadings

I apply the estimator for multiple breaks to the inflation panel with the
trimming π∗j ∈ Π = (0.15, 0.85),∀j = 0, 1, . . . . The starting and ending
points correspond to the time period from Oct 1965 to Oct 2011. The
whole period covers events such as oil price shocks (1973, 1979), the
Great Moderation period of the 1980s, and the 2008 financial crisis.

Figure 2.1 displays the |∆Q̂| of the inflation panel from 1960 to 2017,
with h set to equal 0.5 and b∆πT c = 12.5 I identify two big breaks in the
panel, which correspond to the two peaks in Figure 2.1.6 The estimated
structural breaks are around May 1974 and Nov 2008, which are identi-
fied by picking the period corresponding to the highest value among each
cluster of peaks. I find that each estimated structural break corresponds
to some economic/financial event. The break of May 1974 is close to the
1973 oil price shock, while the Nov 2008 break coincides with the 2008
financial crisis. Some other economic/financial events seem not to point
to any structural breaks here, however, for example, the 1979 oil price
shock and the 1984 Great Moderation. This might lead researchers to
consider what could influence the underlying structure of disaggregated
inflations.

5This criterion is robust to the choice of big h as well as different choices of ∆π.
Appendix ?? provides criterions measured with different values of h and ∆π (b∆πT c =
1, 4, 6, 12 which correspond to a month, a quarter, half a year and a year respectively).

6When b∆πT c is small, there might be clusters of peaks. I identify each cluster of
peaks as one break, as I assume the adjacant breaks are not too close.
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Figure 2.1: Criterions |∆Q̂| from Inflation Panel, 1960 to 2017

2.7.2 Conventional analysis of subsamples

I split the whole sample into three subsamples: 1960:M2-1973:M12, 1974:M9-
2008:M6, and 2009:M3-2017:M7, excluding several periods around each
estimated break point. Figure 2.2 displays the first 10 largest eigenvalues
of each subsample, confirming that the structure of the eigensystem of
each subsample does differ.

To get a clearer view of how the co-movement of the disaggregated
inflation panel changes at each break, I regress each series on the first
common factor for each subsample, and display the R2 value of each in
Figure 2.3.7 Figure 2.3 implies that the structure of the co-movement

7In Figure 2.3, the x-axis refers to the ID of each disaggregated series, and the dotted
vertical lines divide the series into good inflation series and service inflation series. There
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of these inflation index series changes over time. For example: (1) Se-
ries 116 (Fuel Oil in Gasoline and Other Energy Goods) contributes only
a small part to the first factor in subsamples 1 and 2, but it contributes
greatly to the first factor in subsample 3; (2) Almost 90% of the volatil-
ity of series 180-182 (Hospitals in Health Care) can be explained by the
first factor in subsample 1, while, in subsamples 2 and 3, this percent-
age crashes greatly; (3) Series 221-223 (Gambling in Recreation Service)
have an increasing contribution to the first factor.

2.7.3 Are there structural breaks in the volatility of the
factors?

It is very surprising that some economic/financial events are not accom-
panied by structural breaks, especially the 1984 Great Moderation, which
is identified as a common break in the literature (e.g., see [Stock and
Watson, 2009]). However, even though the empirical result implies no
structural break in the factor loadings around 1984, there could still be a
structural break in the volatility of the factors. As mentioned at the end
of Section 2.4, by combining this new method with the literature ([Han
and Inoue, 2015], [Baltagi et al., 2017]), which adopts a similar model
framework to eq (2.2)(2.3), a structural break in the factor loadings and
a structural break in the volatility of the factors can be distinguished. If
the methods in [Han and Inoue, 2015] and [Baltagi et al., 2017] capture
a break when this new method does not, then there is a structural break
in the volatility of the factors. Below, I conduct a three-step analysis on
periods 1974:M5-2008:M11 and 2008:M11-2017:M7, which researchers
may be interested in, but I find no structural breaks.

• Step 1: Apply test in [Han and Inoue, 2015] on the targeted period.
If their null hypothesis is not rejected, skip Step 2-3 and conclude
that there is neither structural break in the factor loading nor struc-
tural break in the volatility of the factors during this period. If their
null hypothesis is rejected, go to Step 2.

are 167 series. Note that the IDs are distinct from the series numbers.
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Figure 2.2: First 10 Eigenvalues of 3 Subsamples
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(a) R2 on Subsample 1 (1960M2-1973M12), First Factor

(b) R2 on Subsample 2 (1974M9-2008M6), First Factor

(c) R2 on Subsample 3 (2009M3-2017M7), First Factor

Figure 2.3: R2 on Subsamples

• Step 2: Apply the estimation method in [Baltagi et al., 2017] on the
targeted period and conclude that there is a structural break in the
volatility of the factors around the estimated structural break.
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• Step 3: Apply test in [Han and Inoue, 2015] on subsamples divided
at the estimated structural break in Step 2 to check whether there
are multiple breaks. If yes, repeat Step 2-3 until there are no more
breaks in any subsamples.8

Table 2.3: Rejection results of testing for unknown break date
(a) 1974M5-2008M11

sup-Wald exp-Wald mean-Wald sup-LM exp-LM mean-LM
White 1 1 1 1 1 1
HAC 0 1 1 1 1 1

(b) 1974M5-1991M1
sup-Wald exp-Wald mean-Wald sup-LM exp-LM mean-LM

White 0 0 0 1 1 0
HAC 0 0 0 0 0 0

(c) 1991M1-2008M11
sup-Wald exp-Wald mean-Wald sup-LM exp-LM mean-LM

White 0 0 0 0 0 0
HAC 0 0 0 0 0 0

(d) 2008M11-2017M7
sup-Wald exp-Wald mean-Wald sup-LM exp-LM mean-LM

White 0 0 0 0 0 0
HAC 0 0 0 0 0 0

Note: The result is at 5% significance level. 1 indicates rejection; 0 otherwise. White
refers to White’s heteroskedastic robust variance estimator and HAC refers to using

HAC Bartlett kernel.

Period 1974M5-2008M11

Period 1974:M5-2008:M11 experienced several economic/financial events,
such as the 1979 oil shock, the 1984 Great Moderation and the early 1990s

8Step 3 is conducted as both [Han and Inoue, 2015] and [Baltagi et al., 2017] assume
there is only one break during the targeted period.
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recession, but there is no consensus in the literature on exactly when there
are structural breaks in the macro panel data. [Stock and Watson, 2009]
identify 1984 as a common break in the factor model, while [Chen et al.,
2014] find a structural break around the 1979 oil shock but no structural
break around 1984. The result in Table 2.3(a), 2.3(b), 2.3(c) can shed
some light on these discrepancies. Table 2.3(a) gives the rejection results
for period 1974:M5-2008:M11 at the 5% significance level. For period
1974:M5-2008:M11, all the tests except the sup − Wald test using an
HAC Bartlett kernel reject the null hypothesis that there is no break at the
5% significance level. So, for this period, I apply the estimation method
of [Baltagi et al., 2017] and get the estimated structural break at 1991:M1.
Additionally, Table 2.3(b) and 2.3(c) give the rejection results for periods
1974:M5-1991:M1 and 1991:M1-2008:M11 at the 5% significance level.
For period 1974:M5-1991:M1, all tests except the sup/exp − LM tests
using White’s heteroskedastic robust variance estimator do not reject the
null hypothesis that there is no break at the 5% significance level. For
period 1991:M1-2008:M11, all the tests do not reject the null hypothesis
that there is no break at the 5% significance level. Therefore, I conclude
that there is only one structural break in the volatility of the factors around
1991:M1, which corresponds to the early 1990s recession.

Period 2008M11-2017M7

Period 2008:M11-2017:M7 experienced the zero lower bound (ZLB) pe-
riod, from January 2009 through December 2015, during which the fed-
eral funds rate reached its ZLB. Recently, a growing body of literature has
aimed to empirically evaluate the effectiveness of various unconventional
monetary policies. For example, [Debortoli et al., 2018] finds no signifi-
cant changes in the estimated responses over the period when the federal
funds rate reached the ZLB. Considering that inflation plays an impor-
tant role in the Taylor rule, which can be greatly influenced by monetary
policy, the result in Table 2.3(d) sheds light on empirically evaluating the
effectiveness of various unconventional monetary policies. Table 2.3(d)
gives the rejection results for period 2008:M11-2017:M7 at the 5% signif-
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icance level. All the tests do not reject the null hypothesis that there is no
break at the 5% significance level. Thus, I conclude that there is neither a
structural break in the factor loading nor a structural break in the volatil-
ity of the factors during this period. The empirical result implies that the
inflation panel is stable during 2008:M11-2017:M7, which is consistent
with the hypothesis of ”perfect substitutability” between conventional and
unconventional monetary policies, suggesting that unconventional mon-
etary policy works as well as conventional monetary policy in terms of
stabilizing the economy.

2.8 Conclusions
This article proposes a novel methodology for identifying and estimat-
ing structural breaks, which occurr at unknown common dates, in the
factor loadings of a high dimensional approximate factor model with an
unknown number of latent factors. The approach is robust to structural
changes in the volatility of factors, uncomplicated to implement, and can
easily be extended to multiple structural breaks. Furthermore, combining
this new methodology with the existing methodology allows to distin-
guish between a structural change in the factor loadings and a structural
change in the volatility of factors. In an empirical study of disaggregated
US inflation series, I find two breaks in the factor loadings around the
1973 oil price shock and the 2008 financial crisis, one break in the volatil-
ity of the factors in January 1991, and no break from November 2008 to
July 2017.
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Chapter 3

IMPULSE RESPONSES
ESTIMATION UNDER
UNSTABLE LOCAL
PROJECTIONS

(joint with Atsushi Inoue and Barbara Rossi)

3.1 Introduction

This paper introduces time variation into the local projections framework
and proposes an impulse responses estimation methodology under unsta-
ble local projections.

Impulse responses have been important tools to estimate the effect
on the economy of unanticipated structural disturbances, i.e., structural
shocks, in empirical macroeconomics analysis. Conventional impulse re-
sponse estimators are obtained by recursively iterating vector autoregres-
sions (VARs) to characterize the structure of successive observations, see
[Sims, 1980] and [Stock and Watson, 2016] for detailed identification

125



“thesis” — 2020/5/5 — 9:55 — page 126 — #140

strategies. As VARs may indeed be a significantly misspecified repre-
sentation of the underlying DGP,1 an increasingly widespread alternative
to estimating impulse responses from VARs is the method of local pro-
jections in [Jorda, 2005]. The idea of local projections is to projects fu-
ture outcomes on current covariates for each forecast horizon, see, for
instance, [Ramey, 2016], [Angrist et al., 2018], [Miranda-Agrippino and
Ricco, 2018], and [Stock and Watson, 2018]. local projections are favored
due to its flexible specifications and easy accommodation of nonlineari-
ties that may be impractical in a multivariate context, as well as its simple
estimation and inference.

As there is substantial evidence of instabilities both in the systematic
part of monetary policy2 and in the transmission mechanism, i.e., how
macroeconomics variables respond to structural shocks, it is natural to
model and estimate time variation in multivariate linear structures, in both
the coefficients and the variances. Much work has been done following
the line of time-varying parameter vector autoregressions (TVP-VAR),
see, for instance, [Primiceri, 2005] and [Koop and Korobilis, 2010] for
time-varying parameter Bayesian vector autoregressions.3

However, fewer works have studied the time variation in impulse re-
sponses under unstable local projections. [Auerbach and Gorodnichenko,
2012] and [Ramey and Zubairy, 2018] find evidence that impulse re-
sponses under local projections vary under different economic conditions.
But their researches focus on time variation in local projections with dis-
crete breaks, i.e., a small number of switching regimes, rather than a
smooth stochastic evolution of the parameters.

This paper, from an estimation standpoint, introduces local time vari-
ation into the local projections framework, in the sense that the instability
in local projections will be detected with a probability smaller than 1 even
in the limit, and proposes an impulse responses estimation methodology

1See, for instance, [Zellner and Palm, 1974] and [Wallis, 1977].
2See, for instance, [Cogley and Sargent, 2005] and [Boivin and Giannoni, 2006].
3Other research includes [Canova, 1993], [Stock and Watson, 1996], [Uhlig, 1997],

[Boivin, 2005], [Cogley and Sargent, 2005] who model and estimate VARs with drifting
coefficients and/or time varying variances.
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under unstable local projections. Importantly, the local time variation
is considered in both the coefficients and the variances, thus modeling
and estimating changes both in structural shocks and in the transmission
mechanism. Documenting the time variation in impulse responses, i.e.,
the path estimators under unstable local projections, is useful for several
purposes. First, the path estimators themselves are helpful in describing
the potential sources of instability. Second, the path estimators under lo-
cal projections have insights on how macroeconomics variables respond
to structural shocks at different periods, implying different transmission
mechanisms under different economic conditions. Third, the endpoint of
the parameter path provides useful and the latest information from the
perspective of forecasting.

The impulse responses estimation methodology introduced in this pa-
per builds upon [Muller and Petalas, 2010] path estimators in a multi-
variate system. [Muller and Petalas, 2010] consider an unstable time
series model with a log-likelihood function of the form

∑T
t=1 lt(θt) =∑T

t=1 lt(θ + δt), while its corresponding stationary and stable model has
the same likelihood with time invariant parameters θ ∈ Θ ⊂ Rk. [Muller
and Petalas, 2010] derive asymptotically weighted average risk (WAR)
minimizing path estimators for {θt}Tt=1 = {θ+ δt}Tt=1 and weighted aver-
age power (WAP) maximizing parameter stability test statistics, assuming
an approximately stationary model and a weighting function for the vari-
ability {δt}Tt=1 that is a (demeaned) multivariate Gaussian random walk.
The covariance matrix of the approximate posterior of the path estima-
tors is further provided as a WAR minimizing interval estimator to gain
some sense of the accuracy of the path estimators. In the context of un-
stable local projections, proper elements in the path estimators coincide
with the impulse responses of the corresponding structural shocks, while
proper elements in the covariance matrix of the approximate posterior of
the path estimators help gain some sense of the accuracy of the impulse
responses.

The Monte Carlo scetion contain evidence illustrating that [Muller and
Petalas, 2010] asymptotically WAR minimizing path estimators and WAP
maximizing parameter stability test statistics perform well in the unstable
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local projections framework with flexible specifications.
To illustrate the estimation methodology, in this paper, we revisit the

small quarterly time-varying SVAR model of the U.S. economy studied in
[Primiceri, 2005]. The findings can be summarized as follows. First, the
time-varying standard deviation of the identified monetary policy shocks
has a similar pattern with that in [Primiceri, 2005], confirming the path
of the relative importance and changes of the monetary policy. How-
ever, the path estimators indicate that the estimated coefficients experi-
ence much time variation under these different economic conditions, es-
pecially around 1975:Q1, 1981:Q3, and 2008:Q3, corresponding to the
NBER business cycle trough date, the NBER business cycle peak date,
and the financial crisis respectively, while [Primiceri, 2005] time-varying
SVAR indicates little time variation in the estimated coefficients. Fur-
thermore, compared with impulse responses computed based on the time-
varying SVAR model in [Primiceri, 2005], impulse responses under un-
stable local projections share similar trends most of the time, but are gen-
erally less smooth and imply that the monetary policy shocks have effects
of larger magnitude and that last longer.

The remainder of this paper is organized as follows. Section 3.2
discusses the unstable local projections framework and the impulse re-
sponses estimation methodology. Section 3.3 presents the Monte Carlo
simulation studies. Section 3.4 revisits the small quarterly time-varying
SVAR model of the U.S. economy. Section 3.5 concludes.

3.2 Impulse Responses under Unstable Local
Projections

As described in [Hamilton, 1994] and [Koop et al., 1996], an impulse
response can be defined as the difference between two forecasts and sta-
tistically obtains the best, mean-squared, h-step ahead predictions:

IR(t, h, di) = E[Yt+h|vt = di;Xt]− E[Yt+h|vt = 0;Xt], h = 0, 1, . . .
(3.1)
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where Yt is a K × 1 vector that Yt = [yt,1, yt,2, . . . , yt,K ]′, Xt =
(Yt−1, Yt−2, . . . , Yt−p)

′, vt is the K × 1 vector of reduced-form distur-
bance, and di represents the structural shock to the ith element in Yt. Note
that the identification strategy is not the focus of this paper.

An impulse response can be calculated by recursively iterating a model
to characterize the structure of successive observations, e.g., recursively
iterating VARs, or based on direct linear regressions of future outcomes
on current covariates for each forecast horizon, e.g., local projections in
[Jorda, 2005] considering projecting Yt+h onto the linear space generated
by (Yt−1, Yt−2, . . . , Yt−p)

′:

Yt+h = C + Θ
(h)
1 Yt−1 + · · ·+ Θ(h)

p Yt−p + U
(h)
t , (3.2)

where C is a K× 1 vector of constants, and Θj, j = 1, . . . , p are matrices
of coefficients for each lag j and horizon h, and the residuals U (h)

t are
moving averages of the past forecast errors and therefore serially corre-
lated that U (h)

t ∼ N (O,Σ
(h)
u ).

The collection of regressions in eq (3.2) for h = 0, 1, . . . , H is denoted
as local projections. Thus, the impulse responses computed based on
local projections are:

ˆIR(t, h, di) = Θ̂
(h)
1 di, h = 0, 1, . . . , H (3.3)

with the normalization on Θ
(0)
1 = I . The local projections framework

does not require correct specification and estimation of the unknown true
multivariate data generating process.

Let θ, a q×1 vector, be the vectorized verion of the coefficient matrice
Θ

(h)
j , j = 1, . . . , p and the variance matrix of U (h)

t in eq (3.2) for a certain
h = 0, 1, . . . , H . Then eq (3.2) is a stationary and stable system of local
projections with a known log-likelihood function of the form

∑T
t=1 lt(θ),

with parameter θ ∈ Θ ⊂ Rk.
Consider the corresponding unstable local projections which has the

same likelihood with time-varying parameters {θt}Tt=1 = {θ + δt}Tt=1:

Yt+h = C + Θ
(h)
1,t+hYt−1 + · · ·+ Θ

(h)
p,t+hYt−p + U

(h)
t , (3.4)
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where Θj,t+h, j = 1, . . . , p are time-varying matrices of coefficients for
each lag j and horizon h.

As shown in [Muller and Petalas, 2010], the sample information about
θ and {δt}Tt=1 is approximately independent and described by the pseudo
model

θ̂ = θ + T−1/2Ĥ−1ν0

st(θ̂) = Ĥδt + νt, νt ∼ i.i.d.N (0, Ĥ), t = 1, . . . , T
(3.5)

where st(θ) = ∂lt(θ)/∂θ, t = 1, . . . , T is the sequence of q × 1 score
vectors, and matrix Ĥ is defined as Ĥ = 1

T

∑T
t=1 ht(θ̂) with ht(θ) =

−∂st(θ)/∂θ, t = 1, . . . , T the sequence of q × q Hessians.
[Muller and Petalas, 2010] derive asymptotically weighted average

risk (WAR) minimizing path estimators {θ̂t}Tt=1 and weighted average
power (WAP) maximizing parameter stability test statistics qLL(10) as-
suming an approximately stationary model and a weighting function for
{δt}Tt=1 that is a (demeaned) multivariate Gaussian random walk as fol-
lows:

1. For t = 1, . . . , T , let xt and ỹt be all the elements of Ĥ−1st(θ̂)
and ĤV̂ −1st(θ̂), respectively.

2. For ci ∈ C = {0, 5, 10, . . . , 50},4 i = 1, . . . , 10, compute

(a) ri = 1− ci
T

, zi,1 = x1, and zi,t = rizi,t−1 + xt − xt−1, t =
2, . . . , T ;

(b) the residuals of {z̃i,t}Tt=1 of a linear regression of {zi,t}Tt=1

on {rt−1
i Iq}Tt=1;

(c) z̄i,T = z̃i,T , and z̄i,t = riz̄i,t+1 + z̃i,t− z̃i,t+1, t = 1, . . . , T −
1;

4For the factor of proportionality c2

T 2 , [Muller and Petalas, 2010] suggest a default
choice of minimizing WAR relative to an equal-probability mixture of nG = 11 values
c ∈ {0, 5, 10, . . . , 50}, which represents the standard deviation of the end point of the
random walk weighting function and covers a wide range of magnitudes for the time
variation.
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(d) {θ̂i,t}Tt=1 = {θ̂ + xt − riz̄i,t}Tt=1;

(e) qLL(ci) =
∑T

t=1(riz̄i,t − xt)′ỹt and

w̃i =
√
T (1− r2

i )r
T−1
i /((1− r2T

i ))exp[−1
2
qLL(ci)] (set w̃0 =

1).

3. Compute wi = w̃i/
∑10

j=0 w̃j .

4. The parameter path estimator is given by {θ̂t}Tt=1 = {
∑10

i=0 wiθ̂i,t}Tt=1.

5. The statistic qLL(10) tests the null hypothesis of stability of θ
and rejects for small values. Critical values depend on q and are
tabulated in Table 1 of [Elliott and Muller, 2006].

The covariance matrix of the approximate posterior for θt, with weight-
ing function for {δt}Tt=1 and θ interpreted as priors from a Bayesian per-
spective, is further provided as follows:

Ωt =
10∑
i=0

wi

(
T−1Ŝθκt(ci) + (θ̂i,t − θ̂t)(θ̂i,t − θ̂t)′

)
,

where Ŝθ = Ĥ−1V̂ Ĥ−1, κt(c) = c(1+e2c+e2ct/T+e2c(1−t/T ))
2e2c−2

, and κt(0) = 1.
This approximate posterior distribution is a mixture of multivariate nor-
mals N (θ̂i,t, T

−1Ŝθκt(ci)), i = 1, . . . , 10, with mixing probabilities wi.

Thus, the confidence interval
[
θ̂t,j − 1.96

√
Ωt,jj, θ̂t,j + 1.96

√
Ωt,jj

]
with

θ̂t,j the j-th element of θ̂t and Ωt,jj the (j, j) element of Ωt is approxi-
mately the 95% equal-tailed posterior probability interval for θt,j , the j-th
element of θ at time t.5

Thus, the impulse responses computed based on eq (3.4) are:

ˆIR(t, h, di) = Θ̂
(h)
1,t+hdi, h = 0, 1, . . . , H (3.6)

5This interval can be justified without explicit Bayesian reasoning as a WAR mini-
mizing interval estimator – see Chapter 5.2.5 of Schervish (1995).

131



“thesis” — 2020/5/5 — 9:55 — page 132 — #146

where Θ̂
(h)
1,t+h are the proper elements in the [Muller and Petalas, 2010]

path estimators θ̂t+h. Furthermore, to get some sense of the accuracy of
the impulse responses, the confidence bands can be constructed based on
Ωt, the covariance matrix of the approximate posterior for θt.

3.3 Monte Carlo Simulation
This section introduces Monte Carlo simulations analyzing performances
of qLL statistics testing the null hypothesis of stability of the correspond-
ing parameters in VARs, Muller-Petalas path estimators in VARs, as well
as Muller-Petalas path estimators under unstable local projections.

3.3.1 Data generating process
Consider the following time-varying parameter VAR (TVP-VAR) as the
data generating process (DGP):

Yt = At(L)Yt + ut = A1,tYt−1 + · · ·+ Ap,tYt−p + Ut, Ut ∼ N (O,Σu)
(3.7)

where Yt is aK×1 vector that Yt = [yt,1, yt,2, . . . , yt,K ]′,Aj,t, j = 1, . . . , p
are (K ×K) time-varying parameter matrices.

Let αt be the vectorized version of the time-varying coefficient matri-
ces Aj,t, j = 1, . . . , p. Consider the following time-varying process:

αt = αt−1 + ηt, ηt
i.i.d∼ N

(
O,Ση

c2

T 2

)
(3.8)

where ηt is a (K2p× 1) vector. We set A1,0 = A2,0 = O, Ση = IK2p, and
c is interpreted as the standard deviation of the end point of the random
walk weighting function.

Thus, equation (3.7) is a TVP-VAR(p) process, which degenerates to
(i) a univariate process whenK = 1 and (ii) a time-invariant VAR(p)/AR(p)
process when c = 0. For simplicity, we exclude constant terms from the
model.
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3.3.2 QLL statistics in a multivariate setting
Now let’s consider a time-invariant model with c = 0. This subsection in-
troduces the exercise examining the performance of qLL statistic6 testing
the null hypothesis of stability of the corresponding parameters.

We consider both univariate and multivariate cases. For the univariate
case, we consider an AR(p) process, i.e., K = 1 and consider the number
of lags p ∈ {2, 3, 4}. Especially, we set the parameters Aj = 0.2, j =
1, . . . , p and Ut ∼ N (0, 1). For the multivariate case, we consider a
VAR(1) with two variables, i.e., K = 2 and p = 1. We set the coefficient

matrix to be lower triangular A1 =

[
0.2 0
0.1 0.3

]
. The error term Ut is

drawn from Ut ∼ N (O,Σu), and we consider two cases: Σu = IK and

Σu =

[
1 0.2

0.2 0.6

]
.

For each grouping (K, p), 2000 Monte Carlo replications are con-
ducted, each generating T data points as in Equation (3.7) with T ∈
{2000, 4000, 10000}.7 In each replication, and large sample weighted av-
erage power (WAP) maximizing parameter stability test statistic, denoted
as qLL(10), are obtained following procedures in [Muller and Petalas,
2010].8 We focus on the first q elements in all the parameters.9 For exam-
ple, if we focus on all the elements in parameter matricesAj, j = 1, . . . , p,
then q = K2 × p. Besides, critical values for the WAP maximizing pa-
rameter stability test, tabulated in Table 1 of [Elliott and Muller, 2006],
also depend on q.

Table 3.1-3.2 display the frequency we reject the null hypothesis of
stability of the first q parameters in the parameter matricesAj, j = 1, . . . , p

6See details of qLL(10) in [Muller and Petalas, 2010].
7We generate T + 100 data points and discard the first 100 data points. The very first

p data points of y are drawn from Normal distribution, i.e., yt ∼ N (O, IK).
8The approximately weighted average risk (WAR) minimizing path estimator under

truncated quadratic loss with large truncation point is obtained in step 4, and large sample
weighted average power (WAP) maximizing parameter stability test statistic is obtained
in step 5. See [Muller and Petalas, 2010] for more details.

9This notation q corresponds to the notation p in [Muller and Petalas, 2010]. We
change the notation because p refers to the lags in this setting.
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according to the test statistic qLL(10) for different scenarios. Table 3.1
displays the results for the univariate scenario AR(p). Table 3.2 dis-
plays the results for the multivariate scenario VAR(1) with Σu = IK .
Table 3.3 displays the results for the multivariate scenario VAR(1) with

Σu =

[
1 0.2

0.2 0.6

]
. Table 3.2 and 3.3 show that the large sample WAP

maximizing parameter stability test statistic qLL(10) performs well in
the multivariate setting.

3.3.3 Muller-Petalas path estimators in unstable VARs
as well as by LPs

This subsection examines the performance of Muller-Petalas path estima-
tors in unstable VARs, as well as Muller-Petalas path estimators based
on local projections. Let’s consider a TVP-VAR process with different
choices of c, and without losing generality, we consider a TVP-VAR(2)
from now on, i.e., equation (3.7) with p = 2.

Local Projections
Suppose we are interested in h-step ahead impulse response function

with h = 2. By iterating eq (3.7), we get the following

Yt+2 = A1,t+2Yt+1 + A2,t+2Yt + Ut+2

= A1,t+2

(
A1,t+1Yt + A2,t+1Yt−1 + Ut+1

)
+ A2,t+2Yt + Ut+2

=
(
A1,t+2A1,t+1 + A2,t+2

)
Yt +

(
A1,t+2A2,t+1

)
Yt−1 +

(
Ut+2 + A1,t+2Ut+1

)
= Θ

(2)
1,t+2Yt + Θ

(2)
2,t+2Yt−1 + U

(2)
t+2

(3.9)
where Θ

(2)
1,t+2 = A1,t+2A1,t+1 +A2,t+2, Θ

(2)
2,t+2 = A1,t+2A2,t+1, and U (2)

t+2 =

Ut+2 + A1,t+2Ut+1. Thus, {U (2)
t }Tt=1 is serially correlated.
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Similarly, if h = 3, we get

Yt+3 = A1,t+3Yt+2 + A2,t+3Yt+1 + Ut+3

= A1,t+3

(
A1,t+2Yt+1 + A2,t+2Yt + Ut+2

)
+ A2,t+3Yt+1 + Ut+3

=
(
A1,t+3A1,t+2 + A2,t+3

)(
A1,t+1Yt + A2,t+1Yt−1 + Ut+1

)
+
(
A1,t+3A2,t+2

)
Yt +

(
Ut+3 + A1,t+3Ut+2

)
=
(
A1,t+3A1,t+2A1,t+1 + A2,t+3A1,t+1 + A1,t+3A2,t+2

)
Yt

+
(
A1,t+3A1,t+2A2,t+1 + A2,t+3A2,t+1

)
Yt−1

+
(
Ut+3 + A1,t+3Ut+2 +

(
A1,t+3A1,t+2 + A2,t+3

)
Ut+1

)
= Θ

(3)
1,t+3Yt + Θ

(3)
2,t+3Yt−1 + U

(3)
t+3

(3.10)
where Θ

(3)
1,t+3 = A1,t+3A1,t+2A1,t+1+A2,t+3A1,t+1+A1,t+3A2,t+2, Θ

(3)
2,t+3 =

A1,t+3A1,t+2A2,t+1 + A2,t+3A2,t+1, and U
(3)
t+2 = Ut+3 + A1,t+3Ut+2 +(

A1,t+3A1,t+2 + A2,t+3

)
Ut+1 is serially correlated.

Recursively, we will get

Yt+h = Θ
(h)
1,t+hYt + Θ

(h)
2,t+hYt−1 + U

(h)
t+h (3.11)

where Θ
(h)
j,t+h, j = 1, 2 are functions of {Aj,t}Tt=1, j = 1, 2. According to

[Jorda, 2005], the h-step ahead impulse response functions by LP depend
on Θ

(h)
1,t+h.

Two estimation procedures are considered to estimate Θ
(h)
j,t , j = 1, 2, h =

1, 2, . . . .

• Procedure 1: Apply Muller-Petalas estimation pocedures on eq (3.7)
and generate path estimators of parameters Aj,t, j = 1, 2, denoted
as ÂMP−V AR

j,t , j = 1, 2. Then the path estimators of Θ
(h)
j,t , j = 1, 2,
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denoted as Θ̂
(h),MP−V AR
j,t , j = 1, 2, are computed accordingly as

Θ̂
(2),MP−V AR
1,t+2 = ÂMP−V AR

1,t+2 ÂMP−V AR
1,t+1 + ÂMP−V AR

2,t+2

Θ̂
(2),MP−V AR
2,t+2 = ÂMP−V AR

1,t+2 ÂMP−V AR
2,t+1

Θ̂
(3),MP−V AR
1,t+3 = ÂMP−V AR

1,t+3 ÂMP−V AR
1,t+2 ÂMP−V AR

1,t+1

+ ÂMP−V AR
2,t+3 ÂMP−V AR

1,t+1 + ÂMP−V AR
1,t+3 ÂMP−V AR

2,t+2

Θ̂
(3),MP−V AR
2,t+3 = ÂMP−V AR

1,t+3 ÂMP−V AR
1,t+2 ÂMP−V AR

2,t+1 + ÂMP−V AR
2,t+3 ÂMP−V AR

2,t+1

...
(3.12)

• Procedure 2: Apply the Muller-Petalas estimation procedures on
eq (3.9) and generate path estimators of parameters Θ

(h)
j,t , j = 1, 2,

denoted as Θ̂
(h),MP−LP
j,t , j = 1, 2.

We consider the multivariate scenario VAR(2), i.e., K = 2, p = 2,
and set q = 8, T = 4000. 5000 Monte Carlo replications are con-
ducted. In each replication i, we obtain {ÂMP−V AR,(i)

j,t , j = 1, 2}Tt=1,
{Θ̂(h),MP−V AR,(i)

j,t , , j = 1, 2}Tt=1, and {Θ̂(h),MP−LP,(i)
j,t , , j = 1, 2}Tt=1. For

each period t, we compute the average values of the path estimators across
5000 replications, that is, ¯̂

AMP−V AR
j,t = 1

5000

∑
i Â

MP−V AR,(i)
j,t , j = 1, 2,

¯̂
Θ

(h),MP−V AR
j,t = 1

5000

∑
i Θ̂

(h),MP−V AR,(i)
j,t , j = 1, 2, h = 2, 3, and ¯̂

Θ
(h),MP−LP
j,t =

1
5000

∑
i Θ̂

(h),MP−LP,(i)
j,t , j = 1, 2, h = 2, 3.

Figure 3.1 plot the average values of the path estimators { ¯̂
AMP−V AR
j,t }Tt=1

for j = 1, 2 in unstable VARs with different choices of c = 4, 8, 12. It
shows that the average Muller-Petalas path estimators are close to the true
time-varying parameters in unstable VARs.

Figure 3.3-3.5 plot the average values of the path estimators { ¯̂
Θ

(h),MP−V AR
j,t }Tt=1,

{ ¯̂
Θ

(h),MP−LP
j,t }Tt=1 together with the true {Θ(h)

j,t }Tt=1 computed using true
{Aj,t}Tt=1, j = 1, 2 h = 2, 3, for model with time-varying process in eq
(3.8), with different choices of c. Figure 3.3-3.5 imply that Muller-Petalas
path estimators by LPs perform well with proper choices of c = 4, 8, 12,
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that is, moderate variability gives good results. But if c is too small, say
c = 1, Muller-Petalas path estimators by LPs perform badly for h = 3,
see Figure 3.2. In the meanwhile, too large c causes nonstationarity.

3.3.4 Bayesian credible intervals of Muller-Petalas path
estimators

This subsection further analyzes the accuracy of Muller-Petalas path es-
timators in unstable VARs, obtained in the context of eq (3.7), as well
as Muller-Petalas path estimators by LPs for h = 2, 3, obtained in the
context of eq (3.11), by checking the Bayesian credible intervals.

Let θt denotes the vector of the targeted parameters (the first q param-
eters) at period t, t = 1, . . . , T . We estimate θt by applying the Muller-
Petalas path estimator on eq (3.7) under VAR setting, and eq (3.11) based
on LPs for h = 2, 3. Thus, under VAR setting, θ̂t = vec

(
ÂMP−V AR
j,t , j = 1, 2

)
,

and for h = {2, 3}, θ̂t = vec
(

Θ̂
(h),MP−LP
j,t , j = 1, 2

)
by LPs. Along

with the Muller-Petalas path estimators θ̂t, a (q × q) covariance matrix of
the approximate posterior for θt is obtained, denoted as Ωt. The interval[
θ̂t,j − 1.96

√
Ωt,jj, θ̂t,j + 1.96

√
Ωt,jj

]
with θ̂t,j the j-th element of θ̂t and

Ωt,jj the (j, j) element of Ωt is thus approximately the 95% equal-tailed
posterior probability interval for θt,j , the j-th element of θ at time t.

With the group of parameters (K = 2, p = 2, T = 4000), nD = 100
datasets are generated from eq (3.7) with time-varying parameters follow-
ing eq (3.8), each dataset denoted by Dd, d = 1, . . . , nD. The path esti-
mators and their Bayesian credible intervals obtained from dataset Dd are

denoted by θ̂(d)
t and BCI(d)

t,j =

[
θ̂

(d)
t,j − 1.96

√
Ω

(d)
t,jj, θ̂

(d)
t,j + 1.96

√
Ω

(d)
t,jj

]
for t = 1, . . . , T, j = 1, . . . , q, d = 1, . . . , nD. For each dataset Dd, d =
1, . . . , nD, we do the following:

• Step 1: For each scenario, either eq (3.7) or (3.11), we estimate
them as a time-varying parameter Bayesian VAR (TVP-BVAR) and
generate nsim draws from the posterior distribution of θt, denoted
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as {θ(d,i)
t }nsimi=1 , using Gibbs sampling (see [Carter and Kohn, 1994]

and [Koop and Korobilis, 2010]). As for the priors, all parameters
are initialized at their estimates at period 1, i.e., θ̂1, with the nat-
ural conjugate priors, that is, we assume Normal distribution for
coefficient parameter vectors and inverted Wishart distribution for
variance parameter matrices.

• Step 2: We calculate the rejection rate sequence across these nsim
draws, denoted by {rdt }Tt=1, with the j-th element of rd at time t
computed as rdt,j = Pr(θ

(d)
t,j /∈ BCI

(d)
t,j ). That is, for each i =

1, . . . , nsim, we reject if θ(d,i)
t,j falls out of the interval BCI(d)

t,j =[
θ̂

(d)
t,j − 1.96

√
Ω

(d)
t,jj, θ̂

(d)
t,j + 1.96

√
Ω

(d)
t,jj

]
, for j = 1, . . . , q.

From step 1 and 2 above, we get nD rejection rate sequences, {r(d)
t }Tt=1, d =

1, . . . , nD. We calculate the average of the rejection rate sequences across
nD datasets, denoted as r̄t = 1

nD
r

(d)
t , t = 1, . . . , T . Figure 3.6 - 3.11 dis-

play {r̄t}Tt=1 of all the parameters for the scenario VAR (h = 1) and LP
(h = 2, 3) with different choices of c = 4, 8, 12, respectively. The results
show that {r̄t}Tt=1 deviate a little bit from 5% at each period t = 1, . . . , T .

3.4 Empirical Study

This section applies the Muller-Petalas path estimators for the estimation
of the small quarterly time-varying SVAR model of the U.S. economy
studied in [Primiceri, 2005].

Following [Primiceri, 2005], we consider a small VAR with three vari-
ables: inflation rate (the annual percentage change in a chain-weighted
GDP price index), unemployment rate (seasonally adjusted civilian un-
employment rate, all workers over age 16), and a short-term nominal in-
terest rate (yield on the three month Treasury bill rate).10 These three

10The data are obtained from the Federal Reserve Bank of St. Louis website.
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variables are typically used in New Keynesian VARs. The same, or simi-
lar, dataset is studied in [Stock and Watson, 2001], [Cogley and Sargent,
2005], [Primiceri, 2005], and [Koop and Korobilis, 2010]. The alternative
would be larger sets of variables, see for example [Bernanke and Mihov,
1998] and [Sims and Zha, 1998]. The sample ranges from 1953:Q1 to
2019:Q4. Two lags are used for the estimation. The same identification
scheme as in [Primiceri, 2005] is adopted.

Figure 3.12 presents a plot of the Muller-Petalas path estimators in
a VAR setting and the [Primiceri, 2005] posterior mean of the standard
deviations of each equation. The time-varying standard deviation of the
identified monetary policy shocks, i.e., the interest rate equation, mea-
sures the relative importance and changes of the monetary policy. The
two measurements are very close. Similar to [Primiceri, 2005] time-
varying measurement, the Muller-Petalas measurement of the monetary
policy shocks also (i) exhibits a substantially higher variance during pe-
riod 1979-1983, i.e., the Volcker period; and (ii) is less volatile and re-
mains very low and substantially constant in the post-Volcker period com-
pared with the pre-Volcker period, implying that Taylor rules have been
good approximations of the U.S. monetary policy after the Volcker pe-
riod. Compared with the [Primiceri, 2005] time-varying measurement,
the Muller-Petalas measurement of the monetary policy shocks is lower
around 1981 and slightly higher after the 2008 financial crisis.

Figure 3.13 presents a plot of the Muller-Petalas path estimators in a
VAR setting and the [Primiceri, 2005] posterior mean of the coefficient
matrix A1 for the first lag. It shows that the Muller-Petalas path estima-
tors are much more volatile compared with the [Primiceri, 2005] time-
varying posterior mean estimators, especially around 1975:Q1, 1981:Q3,
and 2008:Q3. These three dates correspond to the NBER business cycle
trough date, the NBER business cycle peak date, and the financial crisis
respectively, which are meant to capture very different economic condi-
tions. The Muller-Petalas path estimators indicate that the estimated co-
efficients experience much time variation under these different economic
conditions, while [Primiceri, 2005] time-varying SVAR indicates little
time variation in the estimated coefficients.
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Figure 3.14 presents the effects of the monetary policy shocks, that
is, the impulse responses of inflation, unemployment rate, and interest
rate, computed based on the Muller-Petalas path estimators under lo-
cal projections. We explore the effects at various dates of the sample:
1975:Q1, 1981:Q3, 1996:Q1, 2002:Q1, 2008:Q3, and 2016:Q1, which
are either representative of the typical economic conditions or arbitrarily
chosen.11 The plot implies that the effects of the monetary policy shocks
differ across time, especially at period 1981:Q3. At period 1981:Q3, the
effects of the monetary policy shocks are opposite to the other periods,
which is not surprising due to the Volcker period. Among the other dates
of the sample, the impulse responses of inflation and unemployment rate
at 1975:Q1 and 2008:Q3 are slightly more volatile.

Figures 3.15-3.20 further compare the effects of the monetary pol-
icy shocks computed based on the Muller-Petalas path estimators under
local projections with the effects computed based on [Primiceri, 2005]
time-varying SVAR at each period. These graphs present several inter-
esting features. Compared with [Primiceri, 2005] time-varying SVAR,
the impulse responses based on Muller-Petalas path estimators under lo-
cal projections (i) share similar trends most of the time, (ii) are generally
less smooth and imply that the monetary policy shocks have effects of
larger magnitude and that last longer. Compared with impulse responses
computed based on the time-varying SVAR model in [Primiceri, 2005],
which replies on linearity, the impulse responses based on Muller-Petalas
path estimators under local projections could better uncover the true im-
pulse response as they are robust to misspecification of the data generating
process and they easily accommodate the situation when GDP follows a
non-linear model which are often impractical or infeasible in a multivari-
ate context. Besides, this new procedure is easy to implement as doesn’t
require the complicated MCMC algorithm.

11As mentioned in [Primiceri, 2005], 1975:Q1, 1981:Q3, and 1996:Q1 are represen-
tative of the typical economic conditions of the chairmanships of Burns, Volcker and
Greenspan.
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3.5 Conclusion
This paper introduces local time variation into the local projections frame-
work, considering a smooth stochastic evolution of both the coefficients
and the variances, and proposes the impulse responses estimation method-
ology under unstable local projections built on [Muller and Petalas, 2010]
weighted average risk (WAR) minimizing path estimators in a multivari-
ate system. Proper elements in the path estimators coincide with the im-
pulse responses of the corresponding structural shocks, and proper ele-
ments in the covariance matrix of the approximate posterior of the path
estimators help gain some sense of the accuracy of the impulse responses.

The Monte Carlo studies show that [Muller and Petalas, 2010] asymp-
totically WAR minimizing path estimators and WAP maximizing param-
eter stability test statistics perform well in the unstable local projections
framework with flexible specifications.

In the empirical study, we revisit the small quarterly time-varying
SVAR model of the U.S. economy studied in [Primiceri, 2005], and find
that (i) the time-varying standard deviation of the identified monetary pol-
icy shocks has a similar pattern with that in [Primiceri, 2005], (ii) the path
estimators experience much time variation under these different economic
conditions, which is opposite to [Primiceri, 2005], and (iii) impulse re-
sponses under unstable local projections share similar trends most of the
time, but are generally less smooth and imply that the monetary policy
shocks have effects of larger magnitude and that last longer.
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Table 3.1: Rejection Rates of qLL(10), Normal Size 0.05, Univariate

AR(p): K = 1, Σu = 1

p = 2
q T Rejection Rate (%)
2 2000 5.55
2 4000 4.40
2 10000 4.65

p = 3
q T Rejection Rate (%)
2 2000 5.50
2 4000 5.35
2 10000 5.10
3 2000 4.90
3 4000 5.40
3 10000 4.35

p = 4
q T Rejection Rate (%)
2 2000 4.90
2 4000 5.75
2 10000 5.80
3 2000 5.60
3 4000 6.35
3 10000 6.05
4 2000 5.70
4 4000 5.25
4 10000 5.90

Note: This table reports rejection frequencies over 2000 Monte Carlo replications
for the univariate scenario AR(p), i.e., K = 1, using the qLL(10) statistic in [Muller
and Petalas, 2010] and critical values in Table 1 in [Elliott and Muller, 2006]. T and q
denote the number of observations and the number of targeted parameters, respectively.
The parameter matrices are set to be Aj = 0.2, j = 1, . . . , p and and Σu = 1.
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Table 3.2: Rejection Rates of qLL(10), Normal Size 0.05, Multivariate

VAR(1): K = 2, p = 1, Σu = IK
q T Rejection Rate (%)
2 2000 4.40
2 4000 3.90
2 10000 4.60
4 2000 5.80
4 4000 5.00
4 10000 4.60

Note: This table reports rejection frequencies over 1000 Monte Carlo replications
for the multivariate scenario VAR(1) with 2 variables, i.e., K = 2, p = 1, using the
qLL(10) statistic in [Muller and Petalas, 2010] and critical values in Table 1 in [Elliott
and Muller, 2006]. T and q denote the number of observations and the number of tar-

geted parameters, respectively. The parameter matrices are set to be A1 =

[
0.2 0
0.1 0.3

]
and Σu = IK .
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Table 3.3: Rejection Rates of qLL(10), Normal Size 0.05, Multivariate

VAR(1): K = 2, p = 1, Σu 6= IK
q T Rejection Rate (%)
2 2000 5.00
2 4000 4.80
2 10000 4.80
4 2000 4.70
4 4000 5.10
4 10000 4.90

Note: This table reports rejection frequencies over 1000 Monte Carlo replications
for the multivariate scenario VAR(1) with 2 variables, i.e., K = 2, p = 1, using the
qLL(10) statistic in [Muller and Petalas, 2010] and critical values in Table 1 in [Elliott
and Muller, 2006]. T and q denote the number of observations and the number of tar-

geted parameters, respectively. The parameter matrices are set to be A1 =

[
0.2 0
0.1 0.3

]
and Σu =

[
1 0.2

0.2 0.6

]
.
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(a) c = 4

(b) c = 8

(c) c = 12

Figure 3.1: Path estimators of {Aj,t}Tt=1, VAR
Note: This figure plots the average values of the parameter path estimators for Aj,t, j = 1, 2 across 5000

replications for DGP TVP-VAR(2) with K = 2, p = 2, q = 8, T = 4000, and different choices of

c = 4, 8, 12 under VAR setting. The blue lines are the true parameter values of {Aj,t}Tt=1, j = 1, 2, and the

red lines are the average path estimators { ¯̂
AMP−V AR
j,t }Tt=1, j = 1, 2. The x-axis refers to period, and

y-axis refers to the parameters. For example, Aj,rs, j = 1, 2 refers to the rth row and sth column element

in the parameter matrix Aj,t, j = 1, 2.
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(a) h = 2

(b) h = 3

Figure 3.2: Path estimators of {Θ(h)
j,t }Tt=1, c = 1

Note: This figure plots the average values of the parameter path estimators for Θj,t, j = 1, 2 across 5000

replications for DGP TVP-VAR(2) with K = 2, p = 2, q = 8, T = 4000, and c = 1, using different

estimation procedures. The blue lines are the true parameter values of {Θj,t}Tt=1, j = 1, 2, the red lines are

the average path estimators { ¯̂
ΘMP−V AR
j,t }Tt=1, j = 1, 2, and the orange lines are the average path

estimators { ¯̂
ΘMP−LP
j,t }Tt=1, j = 1, 2. The x-axis refers to period, and y-axis refers to the parameters. For

example, Θj,rs, j = 1, 2 refers to the rth row and sth column element in the parameter matrix

Θj,t, j = 1, 2.
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(a) h = 2

(b) h = 3

Figure 3.3: Path estimators of {Θ(h)
j,t }Tt=1, c = 4

Note: This figure plots the average values of the parameter path estimators for Θj,t, j = 1, 2 across 5000

replications for DGP TVP-VAR(2) with K = 2, p = 2, q = 8, T = 4000, and c = 4, using different

estimation procedures. The blue lines are the true parameter values of {Θj,t}Tt=1, j = 1, 2, the red lines are

the average path estimators { ¯̂
ΘMP−V AR
j,t }Tt=1, j = 1, 2, and the orange lines are the average path

estimators { ¯̂
ΘMP−LP
j,t }Tt=1, j = 1, 2. The x-axis refers to period, and y-axis refers to the parameters. For

example, Θj,rs, j = 1, 2 refers to the rth row and sth column element in the parameter matrix

Θj,t, j = 1, 2.
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(a) h = 2

(b) h = 3

Figure 3.4: Path estimators of {Θ(h)
j,t }Tt=1, c = 8

Note: This figure plots the average values of the parameter path estimators for Θj,t, j = 1, 2 across 5000

replications for DGP TVP-VAR(2) with K = 2, p = 2, q = 8, T = 4000, and c = 8, using different

estimation procedures. The blue lines are the true parameter values of {Θj,t}Tt=1, j = 1, 2, the red lines are

the average path estimators { ¯̂
ΘMP−V AR
j,t }Tt=1, j = 1, 2, and the orange lines are the average path

estimators { ¯̂
ΘMP−LP
j,t }Tt=1, j = 1, 2. The x-axis refers to period, and y-axis refers to the parameters. For

example, Θj,rs, j = 1, 2 refers to the rth row and sth column element in the parameter matrix

Θj,t, j = 1, 2.
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(a) h = 2

(b) h = 3

Figure 3.5: Path estimators of {Θ(h)
j,t }Tt=1, c = 12

Note: This figure plots the average values of the parameter path estimators for Θj,t, j = 1, 2 across 5000

replications for DGP TVP-VAR(2) with K = 2, p = 2, q = 8, T = 4000, and c = 12, using different

estimation procedures. The blue lines are the true parameter values of {Θj,t}Tt=1, j = 1, 2, the red lines are

the average path estimators { ¯̂
ΘMP−V AR
j,t }Tt=1, j = 1, 2, and the orange lines are the average path

estimators { ¯̂
ΘMP−LP
j,t }Tt=1, j = 1, 2. The x-axis refers to period, and y-axis refers to the parameters. For

example, Θj,rs, j = 1, 2 refers to the rth row and sth column element in the parameter matrix

Θj,t, j = 1, 2.

149



“thesis” — 2020/5/5 — 9:55 — page 150 — #164

Figure 3.6: Bayesian credible interval check of {Aj,t}Tt=1, c = 4, VAR

Note: This figure plots the coverage rates of the parameter path estimators for AMP−V AR
j,t , j = 1, 2 across

5000 replications for DGP TVP-VAR(2) with K = 2, p = 2, q = 10, T = 4000, and c = 4, under VAR

setting. The blue lines are the rejection rates, the red lines are 5%. The x-axis refers to period, and y-axis

refers to the parameters. For example, Aj,rs, j = 1, 2 refers to the rth row and sth column element in the

parameter matrix Aj,t, j = 1, 2.
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(a) h = 2

(b) h = 3

Figure 3.7: Bayesian credible interval check of {Θ(h),MP−LP
j,t }Tt=1, c = 4,

LP

Note: This figure plots the coverage rate of the parameter path estimators Θ
(h),MP−LP
j,t , j = 1, 2, h = 2, 3

across 5000 replications, i.e., the frequency when nsim = 500 draws from the posterior distribution of the

parameters are within the 95% Bayesian credible interval across nD = 100 datasets, for DGP TVP-VAR(2)

with K = 2, p = 2, q = 10, T = 4000, and c = 4, by LPs. The Bayesian credible interval is constructed

based on the covariance matrix of the approximate posterior for the path estimators discussed in [Muller and

Petalas, 2010]. The blue lines are the rejection rates, the red lines are 5%. The x-axis refers to period, and

y-axis refers to the coverage rate. And Θj,rs, j = 1, 2 refers to the rth row and sth column element in the

parameter matrix Θj,t, j = 1, 2.
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Figure 3.8: Bayesian credible interval check of {Aj,t}Tt=1, c = 8, VAR

Note: This figure plots the coverage rates of the parameter path estimators for AMP−V AR
j,t , j = 1, 2 across

5000 replications for DGP TVP-VAR(2) with K = 2, p = 2, q = 10, T = 4000, and c = 8, under VAR

setting. The blue lines are the rejection rates, the red lines are 5%. The x-axis refers to period, and y-axis

refers to the parameters. For example, Aj,rs, j = 1, 2 refers to the rth row and sth column element in the

parameter matrix Aj,t, j = 1, 2.
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(a) h = 2

(b) h = 3

Figure 3.9: Bayesian credible interval check of {Θ(h),MP−LP
j,t }Tt=1, c = 8,

LP

Note: This figure plots the coverage rate of the parameter path estimators Θ
(h),MP−LP
j,t , j = 1, 2, h = 2, 3

across 5000 replications, i.e., the frequency when nsim = 500 draws from the posterior distribution of the

parameters are within the 95% Bayesian credible interval across nD = 100 datasets, for DGP TVP-VAR(2)

with K = 2, p = 2, q = 10, T = 4000, and c = 8, by LPs. The Bayesian credible interval is constructed

based on the covariance matrix of the approximate posterior for the path estimators discussed in [Muller and

Petalas, 2010]. The blue lines are the rejection rates, the red lines are 5%. The x-axis refers to period, and

y-axis refers to the coverage rate. And Θj,rs, j = 1, 2 refers to the rth row and sth column element in the

parameter matrix Θj,t, j = 1, 2.
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Figure 3.10: Bayesian credible interval check of {Aj,t}Tt=1, c = 12, VAR

Note: This figure plots the coverage rates of the parameter path estimators for AMP−V AR
j,t , j = 1, 2 across

5000 replications for DGP TVP-VAR(2) with K = 2, p = 2, q = 10, T = 4000, and c = 12, under VAR

setting. The blue lines are the rejection rates, the red lines are 5%. The x-axis refers to period, and y-axis

refers to the parameters. For example, Aj,rs, j = 1, 2 refers to the rth row and sth column element in the

parameter matrix Aj,t, j = 1, 2.
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(a) h = 2

(b) h = 3

Figure 3.11: Bayesian credible interval check of {Θ(h),MP−LP
j,t }Tt=1, c =

12, LP

Note: This figure plots the coverage rate of the parameter path estimators Θ
(h),MP−LP
j,t , j = 1, 2, h = 2, 3

across 5000 replications, i.e., the frequency when nsim = 500 draws from the posterior distribution of the

parameters are within the 95% Bayesian credible interval across nD = 100 datasets, for DGP TVP-VAR(2)

with K = 2, p = 2, q = 10, T = 4000, and c = 12, by LPs. The Bayesian credible interval is constructed

based on the covariance matrix of the approximate posterior for the path estimators discussed in [Muller and

Petalas, 2010]. The blue lines are the rejection rates, the red lines are 5%. The x-axis refers to period, and

y-axis refers to the coverage rate. And Θj,rs, j = 1, 2 refers to the rth row and sth column element in the

parameter matrix Θj,t, j = 1, 2.
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Figure 3.12: Standard deviation of the residuals

Note: This figure plots the standard deviation of (a) residuals of the inflation equation, (b) residuals of the

unemployment equation and (c) residuals of the interest rate equation or monetary policy shocks.
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Figure 3.13: Path estimators

Note: This figure plots the path estimators of all the elements in parameter matrix A1. A1,rs refers to the

rth row and sth column element in the parameter matrix A1.
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Figure 3.14: Impulse responses at different periods

Note: This figure plots the impulse responses of each variables to a monatary policy shock, computed based

on Muller-Petalas path estimators under local projections, at various periods: 1975:Q1, 1981:Q3, 1996:Q1,

2002:Q1, 2008:Q3, and 2016:Q1. The x-axis refers to horizons.
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Figure 3.15: Impulse responses, 1975:Q1

Note: This figure plots the impulse responses of each variables to a monatary policy shock, computed based

on Muller-Petalas path estimators under local projections and time-varying SVAR in [Primiceri, 2005]

respectively. The x-axis refers to horizons.
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Figure 3.16: Impulse responses, 1981:Q3

Note: This figure plots the impulse responses of each variables to a monatary policy shock, computed based

on Muller-Petalas path estimators under local projections and time-varying SVAR in [Primiceri, 2005]

respectively. The x-axis refers to horizons.
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Figure 3.17: Impulse responses, 1996:Q1

Note: This figure plots the impulse responses of each variables to a monatary policy shock, computed based

on Muller-Petalas path estimators under local projections and time-varying SVAR in [Primiceri, 2005]

respectively. The x-axis refers to horizons.
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Figure 3.18: Impulse responses, 2002:Q1

Note: This figure plots the impulse responses of each variables to a monatary policy shock, computed based

on Muller-Petalas path estimators under local projections and time-varying SVAR in [Primiceri, 2005]

respectively. The x-axis refers to horizons.
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Figure 3.19: Impulse responses, 2008:Q3

Note: This figure plots the impulse responses of each variables to a monatary policy shock, computed based

on Muller-Petalas path estimators under local projections and time-varying SVAR in [Primiceri, 2005]

respectively. The x-axis refers to horizons.
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Figure 3.20: Impulse responses, 2016:Q1

Note: This figure plots the impulse responses of each variables to a monatary policy shock, computed based

on Muller-Petalas path estimators under local projections and time-varying SVAR in [Primiceri, 2005]

respectively. The x-axis refers to horizons.
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Foundations and TrendsÂ R© in Econometrics, volume 3.

[Koop et al., 1996] Koop, G., Pesaran, M., and Potter, S. (1996). Im-
pulse Response Analysis in Nonlinear Multivariate Models. Journal
of econometrics, 74.

[Korobilis, 2013] Korobilis, D. (2013). Assessing the Transmission
of Monetary Policy Using Time-varying Parameter Dynamic Factor
Models. Oxford Bulletin of Economics and Statistics, 75:157–179.

[Li and Racine, 2007] Li, Q. and Racine, J. (2007). In Nonparametric
Econometrics: Theory and Practice. Princeton University Press.

172



“thesis” — 2020/5/5 — 9:55 — page 173 — #187

[Lopez, 2001] Lopez, J. (2001). Evaluating the Predictive Accuracy of
Volatility Models. Journal of Forecasting, 20.

[Ma and Su, 2016] Ma, S. and Su, L. (2016). Estimation of Large Di-
mensional Factor Models with an Unknown Number of Breaks. Work-
ing Paper, University of California, Riverside and Singapore Manage-
ment University.

[Massacci, 2017] Massacci, D. (2017). Least Squares Estimation of
Large Dimensional Threshold Factor Models. Journal of Economet-
rics, 197:101–129.

[McConnell and Perez-Quiros, 2000] McConnell, M. and Perez-Quiros,
G. (2000). Output Fluctuations in the United States: What Has
Changed Since the Early 1980’s?. American Economic Review, 90.

[McCracken, 2000] McCracken, M. (2000). Robust Out-of-sample In-
ference. Journal of Econometrics, 99.

[Meese and Rogoff, 1983] Meese, R. and Rogoff, K. (1983). Empirical
exchange rate models of the seventies: Do they fit out of sample? Jour-
nal of International Economics, 14.

[Miranda-Agrippino and Ricco, 2018] Miranda-Agrippino, S. and
Ricco, G. (2018). The Transmission of Monetary Policy Shocks.

[Muller and Petalas, 2010] Muller, U. and Petalas, P. (2010). Efficient
Estimation of the Parameter Path in Unstable Time Series Models. The
Review of Economic Studies, 77.

[Newey and West, 1987] Newey, W. and West, K. (1987). A Simple, Pos-
itive Semi-definite, Heteroskedasticity and Autocorrelation Consistent
Covariance Matrix. Econometrica, 55:703–708.

[Onatski, 2010] Onatski, A. (2010). Determining the Number of Factors
from Empirical Distribution of Eigenvalues. Review of Economics and
Statistics, 92:1004–1016.

173



“thesis” — 2020/5/5 — 9:55 — page 174 — #188

[Primiceri, 2005] Primiceri, G. (2005). Time Varying Structural Vector
Autoregressions and Monetary Policy. The Review of Economic Stud-
ies, 72.

[Ramey, 2016] Ramey, V. (2016). Macroeconomic Shocks and Their
Propagation. In Handbook of Macroeconomics, volume 2, pages 71–
162.

[Ramey and Zubairy, 2018] Ramey, V. and Zubairy, S. (2018). Govern-
ment Spending Multipliers in Good Times and in Bad: Evidence from
us Historical Data. Journal of Political Economy, 126.

[Reis and Watson, 2010] Reis, R. and Watson, M. W. (2010). Relative
Goods’ Prices, Pure Inflation, and the Phillips Correlation. American
Economic Journal: Macroeconomics, 2:128–57.

[Rossi, 2013] Rossi, B. (2013). Advances in Forecasting under Instabil-
ity. In Handbook of Economic Forecasting, volume 2, pages 1203–
1324.

[Rossi and Sekhposyan, 2011] Rossi, B. and Sekhposyan, T. (2011). Un-
derstanding Models’ Forecasting Performance. Journal of Economet-
rics, 164.

[Rossi and Sekhposyan, 2013] Rossi, B. and Sekhposyan, T. (2013).
Conditional Predictive Density Evaluation in the Presence of Instabil-
ities. Journal of Econometrics, 177.

[Rossi and Sekhposyan, 2017] Rossi, B. and Sekhposyan, T. (2017). Al-
ternative Tests for Correct Specification of Conditional Predictive Den-
sities.

[Sarno and Valente, 2009] Sarno, L. and Valente, G. (2009). Exchange
Rates and Fundamentals: Footloose or Evolving Relationship? Jour-
nal of the European Economic Association, 7.

[Sims, 1980] Sims, C. (1980). Macroeconomics and Reality. Economet-
rica.

174



“thesis” — 2020/5/5 — 9:55 — page 175 — #189

[Sims and Zha, 1998] Sims, C. and Zha, T. (1998). Bayesian Methods
for Dynamic Multivariate Models. International Economic Review.

[Stock and Watson, 1996] Stock, J. H. and Watson, M. W. (1996). Ev-
idence on Structural Instability in Macroeconomic Time Series Rela-
tions. Journal of Business and Economic Statistics, 14:11–30.

[Stock and Watson, 2001] Stock, J. H. and Watson, M. W. (2001). Vector
Autoregressions. Journal of Economic Perspectives, 15:101–115.

[Stock and Watson, 2002a] Stock, J. H. and Watson, M. W. (2002a).
Forecasting Using Principal Components From a Large Number of
Predictors. Journal of the American Statistical Association, 97:1167–
1179.

[Stock and Watson, 2002b] Stock, J. H. and Watson, M. W. (2002b).
Macroeconomic Forecasting Using Diffusion Indexes. Journal of Busi-
ness and Economic Statistics, 20:147–162.

[Stock and Watson, 2003] Stock, J. H. and Watson, M. W. (2003). Fore-
casting Output and Inflation: The Role of Asset Prices. Journal of
Economic Literature, 41.

[Stock and Watson, 2009] Stock, J. H. and Watson, M. W. (2009). Fore-
casting in Dynamic Factor Models Subject to Structural Instability. In
Castle, J. and Shephard, N., editors, The Methodology and Practice of
Econometrics, A Festschrift in Honour of Professor David F. Hendry.
Oxford University Press, Oxford.

[Stock and Watson, 2016] Stock, J. H. and Watson, M. W. (2016). Core
Inflation and Trend Inflation. Review of Economics and Statistics,
98:770–784.

[Stock and Watson, 2018] Stock, J. H. and Watson, M. W. (2018). Identi-
fication and Estimation of Dynamic Causal Effects in Macroeconomics
Using External Instruments. The Economic Journal, 128.

175



“thesis” — 2020/5/5 — 9:55 — page 176 — #190

[Su and Wang, 2017] Su, L. and Wang, X. (2017). On Time-Varying
Factor Models: Estimation and Testing. Journal of Econometrics,
198:84–101.

[Swanson, 1998] Swanson, N. (1998). Money and Output Viewed
Through a Rolling Window. Journal of Monetary Economics, 41.

[Swanson and White, 1997] Swanson, N. and White, H. (1997). A
Model Selection Approach to Real-time Macroeconomic Forecasting
Using Linear Models and Artificial Neural Networks. Review of Eco-
nomics and Statistics, 79.

[Tay and Wallis, 2000] Tay, A. and Wallis, K. (2000). Density Forecast-
ing: a Survey. Journal of forecasting, 19.

[Taylor, 1986] Taylor, S. (1986). Modelling Financial Time Series. Wi-
ley, Chichester.

[Uhlig, 1997] Uhlig, H. (1997). Bayesian Vector Autoregressions with
Stochastic Volatility. Econometrica: Journal of the Econometric Soci-
ety.

[Vuong, 1989] Vuong, Q. (1989). Likelihood Ratio Tests for Model Se-
lection and Non-nested Hypotheses. Econometrica: Journal of the
Econometric Society.

[Wallis, 1977] Wallis, K. (1977). Multiple Time Series Analysis and the
Final Form of Econometric Models. Econometrica: Journal of the
Econometric Society.

[West, 1996] West, K. (1996). Asymptotic Inference about Predictive
Ability. Econometrica: Journal of the Econometric Society.

[West and McCracken, 1998] West, K. and McCracken, M. (1998).
Regression-based Tests of Predictive Ability. International Economic
Review, 39:817–840.

176



“thesis” — 2020/5/5 — 9:55 — page 177 — #191

[White, 1982] White, H. (1982). Maximum Likelihood Estimation of
Misspecified Models. Econometrica: Journal of the Econometric So-
ciety.

[White, 2001] White, H. (2001). In Asymptotic Theory for Econometri-
cians. Academic press.

[White and Domowitz, 1984] White, H. and Domowitz, I. (1984). Non-
linear Regression with Dependent Observations. Econometrica: Jour-
nal of the Econometric Society.

[Winkler, 1967] Winkler, R. (1967). The Quantification of Judgment:
Some Methodological Suggestions. Journal of the American Statistical
Association, 62.

[Wooldridge and White, 1988] Wooldridge, J. and White, H. (1988).
Some Invariance Principles and Central Limit Theorems for Depen-
dent Heterogeneous Processes. Econometric Theory, 4.

[Yamamoto and Tanaka, 2015] Yamamoto, Y. and Tanaka, S. (2015).
Testing for Factor Loading Structural Change under Common Breaks.
Journal of Econometrics, 189:187–206.

[Zellner and Palm, 1974] Zellner, A. and Palm, F. (1974). Time Series
Analysis and Simultaneous Equation Econometric Models. Journal of
Econometrics, 2.

177



“thesis” — 2020/5/5 — 9:55 — page 178 — #192


