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Abstract
Due to the recent advances in virtual and augmented reality,
ambisonics has emerged as the de facto standard for immersive
audio. Ambisonic audio can be captured using spherical
microphone arrays, which are becoming increasingly popular.
Yet, many methods for acoustic and microphone array signal
processing are not specifically tailored for spherical geometries.
Therefore, there is still room for improvement in the field of
automatic analysis and description of ambisonic recordings. In
the present thesis, we tackle this problem using methods based on
the parametric analysis of the sound field. Specifically, we present
novel contributions in the scope of blind reverberation time
estimation, diffuseness estimation, and sound event localization
and detection. Furthermore, several software tools developed for
ambisonic dataset generation and management are also presented.

Resum
Ambisonics ha esdevingut l’estàndard d’àudio immersiu als últims
anys, afavorit pels avançaments en realitat virtual i augmentada.
L’àudio ambisonic es pot obtindre mitjançant arrays de micròfons
esfèrics, que són cada vegada més populars. Tot i això, la majoria
de mètodes acústics i de processament de senyal basats en arrays
de micròfons no estan adaptats al cas específic de geometries
esfèriques. Per tant, encara hi ha moltes possibilitats de millora en
l’àmbit d’anàlisi automàtica i descripció de gravacions ambisonic.
En la present tesi plantegem aquest problema basant-nos en
l’anàlisi paramètrica del camp acústic. Més concretament,
presentem contribucions originals en les àrees d’estimació de
reverberació, estimació de difusió acústica, i detecció i localització
d’esdeveniments sonors. Així mateix, presentem diverses eines de
programari desenvolupades per la generació i manteniment de
bases de dades d’àudio ambisonic.
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Chapter 1

Introduction

1.1 Motivation
Ambisonics is a spatial audio theory based on the directional
decomposition of the sound field. Conceived in its primal form
during the 70s [Gerzon, 1973], it was not until the 21st century,
with a modern mathematical formulation [Daniel, 2000] and
much more computational power available, that it definitely drew
the attention of the research community.

Nevertheless, the greatest contributor to the current interest in
ambisonics has been the rise of Virtual Reality (VR) in recent
years. Although VR focuses primarily on visual cues, the
immersive experience can be greatly enhanced by spatial
audio [Begault and Trejo, 2000]. In this context, Ambisonics has
been rapidly adopted as de facto standard for spatial audio
transmission, supposedly due to a variety of factors:

Layout independence As opposed to other audio spatialization
techniques that rely on specific playback layouts, ambisonics
makes use of an intermediate sound field representation,
known as B-Format (or just ambisonic audio). This
representation, often referred to as scene-based, can be then
further processed to match any playback configuration.
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Recording device independence Regardless of the specific
characteristics of an ambisonic microphone, the recorded
signal is usually converted into B-Format, which is
effectively the standard exchange format.

Ease of manipulations Signal-independent transformations of
the ambisonic stream, and specifically rotations, are
computationally inexpensive.

Binaural transformation Spatial audio in VR is mostly consumed
as binaural; methods for ambisonic to binaural conversion
have been known for a long time [Noisternig et al., 2003].
Furthermore, VR headsets can easily provide head rotation
information, which can be used in combination with scene
rotations to provide head-locked audio, which greatly
improves localization accuracy and inmersiveness [Begault
and Trejo, 2000]. This is a key feature of ambisonics when
compared to static binaural recordings.

Coming back to the issue of the popularity of Virtual Reality,
we have selected three events that might epitomize the growth
undergone in the second half of the 2010s:

1. The billionaire acquisition by Facebook of the VR headset
manufacturer Oculus, in March 2014 [Facebook, 2014]

2. Time maagazine cover page devoted to VR: "The surprising
joy of Virtual Reality. And why it’s about to change the world"
(August 2015) [Time, 2015];

3. M. Zuckerberg’s invited talk at the Samsung Unpacked event
within the World Mobile Congress 2016 in Barcelona: "VR
is the next platform where anyone can experience anything they
want" [BBCNews, 2016].

2
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Figure 1.1: Number of ambisonic microphones released in last
years (from [Wikipedia, 2020]). From left to right, the vertical lines
correspond to (1) Oculus acquisition, (2) Time cover page on VR, (3)
M. Zuckerberg’s speech in MWC, and (4) Jaunt announcement of
shift towards AR.

Given this context, many microphone manufacturers and
audio-related companies have followed the industry trend in the
search for new markets. Only in the interval 2016-2019, 12
different ambisonic microphones have reached the market
(Figure 1.1) — a greater amount than all previous existing
ambisonic microphones together. A comprehensive list of recent
ambisonic microphone releases is shown in 1.1.

At the present time, however, the high expectations put into VR
have significantly lowered, as shown in Figure 1.2. This is due to
a variety of reasons, including lack of interesting content and the
high production cost of the headsets [Fortune, 2019]. The change
of focus of Jaunt (formerly one of the biggest VR film production

3
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Table 1.1: List of ambisonic microphones released in recent years
(from [Wikipedia, 2020]).

Manufacturer Model Year Order

MH Acoustics EigenMike 2013 4
Brahma (Brahma) 2014 1

Sennheiser Ambeo 2016 1
Twirling 720 VR 2016 1
Zoom H2n 2016 1
Zylia ZM-1 2017 3

Twirling 720 Lite 2017 1
Ricoh TA-1 2017 1

Nevaton Nevaton VR 2017 1
Rode Rode NT-SF1 2018 1

CoreSound OctoMic 2018 2
Zoom H3-VR 2018 1
Brahma Brahma 8 2019 2

Voyage Audio Spatial Mic 2019 2

companies) towards Augmented Reality (AR), as of October 2018,
might be a paradigmatic example of this tendency [TheVerge, 2018].

In any case, the current high availability and affordability of
ambisonic microphones brings new challenges from the signal
processing perspective. More specifically, ambisonic microphones
conform a subset of near-coincident spherical microphone arrays,
a category which possesses some specific characteristics.

Although the VR momentum has also reached spherical
microphone array processing, many challenges remain still open,
and the number of research works specifically focusing on such
geometry are low yet. Besides that, the growing interest in AR
posses new problems related to acoustical signal processing. But
since ambisonics is still the standard choice for immersive audio,
existing solutions might be successfully adapted.

4
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Figure 1.2: Venture investments in VR in the period 2014-2018.
Adapted from [Fortune, 2019].

Lastly, the advance in signal processing methods for
ambisonics can give rise to applications that enhance the work of
immersive audio producers, providing meaningful information
about the recorded scenes and automating some of the repetitive
tasks, thus allowing a more flexible and creative workflow.

1.2 Problem Description
The scientific context of the work developed in this thesis is shown
in Figure 1.3, which has been inspired by [Jarrett et al., 2017]. As
we can observe, there are two main topics related with B-Format
audio: generation and analysis, with the signal flow going from the
former to the latter. Although the conceptual approach of the
scheme might be very similar for any type of audio, the spatial
information conveyed by the ambisonic signal places an emphasis
on the informed analysis and description of the sound scene.

5



“manuscript” — 2020/7/6 — 1:42 — page 6 — #26

Figure 1.3: General scheme of the B-Format audio generation and
analysis framework. Solid lines represent audio signals, while
outlined arrows refer to non-audio information.

The problem of B-Format generation is mostly related with
dataset generation, which is a common issue for many audio
signal processing problems. In our case, we consider two different
approaches to the data generation problem:

Recording Using spherical microphone arrays for the recording of
ambisonic material.

Simulation Using numerical methods for the simulation of
acoustic scenes.

While recordings are by definition more similar to real scenarios,
they are expensive to perform, and can only provide a limited set
of parameter possibilities. Simulations, on the other hand, have
the potential to cover any desired condition. Therefore, it is of our
interest to consider the strengths of both signal generation paths.

6
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Ambisonic signal analysis has been divided in three categories:

Signal Enhancement Modification of the input signal in order to
obtain one or more output signals with desired attributes.
There are a variety of well known signal enhancement
problems, including dereverberation [Braun, 2018], source
separation [Gannot et al., 2017], or foreground-background
segmentation [Stefanakis and Mouchtaris, 2015]. As it has
been shown, many of them benefit (or even depend) from
the knowledge derived by acoustic parameter estimation
methods.

Acoustic Parameter Estimation Low-level analysis of the sound
field, which yields quantitative information about different
acoustic parameters used to model the acoustic scene.
The knowledge about the acoustic parameters of a sound
field can be considered either as a goal by itself, or
alternatively as a preprocessing step which complements the
other analysis categories. Examples of typical estimated
acoustic parameters are the Direction-of-Arrival (DOA), the
sound field diffuseness, or the reverberation time of the
enclosure [Jarrett et al., 2017].

Scene Description Textual representation of different high-level
characteristics of the sound field.
Under the scene description typology we can find a set of
applications that provide abstract representations of the
sound scene under analysis. Most of the recent research
performed in this scope is grouped around the Detection
and Classification of Acoustic Scenes and Events (DCASE)
community [DCASE, 2013]. Examples of the problems
under consideration are acoustic scene
classification [Mesaros et al., 2018], sound event localization
and detection [Adavanne et al., 2018] or audio
captioning [Drossos et al., 2017].

7
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1.3 Scientific Objectives
The list that follows concentrates the main scientific objectives to
be developed on this thesis:

1. To develop methods for the characterisation of acoustic
parameters from recordings originated from ambisonic
microphones.

2. To propose methodologies for sound event localization and
detection in ambisonic domainwhich are groundedon spatial
parametric analysis.

3. To contribute to the generation and storage of ambisonic
sound scenes, for their usage in controlled experimental
environments.

1.4 Outline
The present dissertation is organised as follows.

Chapter 2 introduces the basic concepts that will be developed
throughout this thesis, including spherical harmonics and
ambisonics, coherence estimation, parametric analysis or room
acoustics. The Chapter also defines the signal models and the
mathematical terminology.

Chapters 3, 4 and 5 develop the most significant academic
contributions of this thesis. Chapter 3 presents a novel method for
blind reverberation time in ambisonic recordings. To the best of
our knowledge, this is the first method proposal specifically
focusing on that problem. The method is based on a Multichannel
Auto-Regressive model of the late reverberation, which allows for
an effective dereverberation of the ambisonic sound scene, and
enables computation of the reverberation time from an estimation
of the room impulse response. The evaluation metrics show a
method performance similar to other state-of-the-art methods.

8
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Figure 1.4: General scheme of the B-Format audio generation and
analysis framework, including the thesis contributions in form of
Chapter numbers.

Chapter 4 analyses the response of tetrahedral microphone
arrays, which are the simplest and most common form of
ambisonic microphones, under spherically isotropic sound field.
The analysis is performed using both simulated and recorded
diffuse field, and the results quantify the differences between
ideal and real values under a variety of conditions and estimators.

In Chapter 5, a complete system for Sound Event Localization
and Detection of ambisonic sound scenes is described. The
algorithm comprises two different parts. First, a parametric
analysis is performed on the ambisonic signal. The analysis yields
spatial localization and temporal activities of the sound events
present in the scene. Then, each of those events is assigned to a
class label by means of a deep-learning classifier. The method is
able to perform in a similar way to the baseline system, while
greatly improving its localization capabilities.

9
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Finally, Chapter 6 presents some libraries and software utilities
developed throughout this thesis. All the code has been publicly
released under open source licenses. The libraries include utilities
for the creation of datasets, the storage and exchange of impulse
response files in a standard way, and the implementation of
convenience tools for acoustic and microphone array signal
processing analysis. Although the libraries do not directly involve
any scientific contribution, they can be a great help for scientific
and innovative purposes; given the industrial nature of this thesis,
we have considered relevant to include them in the present
dissertation.

In order to provide a schematic representation of the thesis
structure and scope, Figure 1.4 features the problem structure
stated in Figure 1.3, with the addition of the Chapter numbers
with the contributions of this thesis.

10
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Chapter 2

Scientific Background

2.1 Conventions

2.1.1 Reference system
In what follows, we will make use of a right-handed coordinate
system, where the positive x-axis points towards the front, the
positive y-axis points towards the left, and the positive z-axis
points towards the zenith (North Pole).

Any position in the unit sphere may be described in spherical
coordinates by two angles: the inclination angle ϑ, which accounts
for the aperture with respect to the z-axis, and the azimuth angle
ϕ, which represents the counter-clockwise angle with respect to
the x-axis from the top-view. The value ranges are 0 ≤ ϑ ≤ π for
the inclination, and 0 ≤ ϕ ≤ 2π for the azimuth. The spherical
coordinate system used in this thesis is depicted in Figure 2.1.

Table 2.1 shows the spherical coordinate values for some
reference points on the unit sphere. Notice that the poles
(ϑ = 0, π) are a special case for the spherical coordinate system –
in that case, the azimuth angle is not defined.

11
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Figure 2.1: Spherical coordinate system used.

The transformation between spherical and cartesian coordinate
systems is given by the following relationship:

x = cosϕ sinϑ

y = sinϕ sinϑ

z = cosϑ

(2.1)

Table 2.1: Cartesian and spherical representation of characteristic
points along the unit sphere.

Position Cartesian ϑ ϕ

front [1, 0, 0] π/2 0
back [−1, 0, 0] π/2 π
left [0, 1, 0] π/2 π/2
right [0,−1, 0] π/2 −π/2
zenith [0, 0, 1] 0 *
nadir [0, 0,−1] π *

12
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The elevation angle θ provides an alternative way of describing
the relationship with respect to the z-axis. θ is defined as the
aperture with respect to the xy-plane, with positive values
towards the positive z-axis. The relationship between elevation
and inclination angles is:

θ = π/2− ϑ (2.2)

For the sake of compactness, a point in the unit sphere will be
often represented by Ω = (ϑ, ϕ).

Given the periodic nature of the azimuth angle, the descriptive
statistic operations applied to ϕwill refer to the 2π-periodic version
or the operator; this situation does not affect the
inclination/elevation coordinate.

2.1.2 Nomenclature
Throughout the Thesis, we refer to time-domain signals with
lowercase, e.g. x(t), with t as the time index.

Time-domain signals transformed by the Short-Time Fourier
Transform (STFT) are represented with uppercase, e.g. X(k, n),
where k ∈ [0, K − 1] is the frequency bin index, and n ∈ [0, N − 1]
the time frame index.

Multichannel signals are in general denoted by a subscript
variable index, usually with the letter m; for example, xm(t) or
Xm(k, n). Signals with an integer subscript index, such as x0(t),
represent a specific channel of the corresponding multichannel
signal.

In the context of ambisonic, subscripts and superscripts are
used in signal names with a specific meaning; check Section 2.3 for
a detailed explanation.

Vector notation is represented with boldface characters, e.g.
X(k, n). When used, the way to construct the vectors will be
specified.
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2.2 Spherical Harmonics

2.2.1 Definition
Spherical harmonics are continuous functions defined on the
sphere surface. Due to their mathematical properties, any
spherical function can be decomposed as a combination of
spherical harmonics, in what is known as the Spherical Harmonics
Expansion [Jarrett et al., 2017].

Many different spherical harmonic definitions exist in the
literature, with minor variations among them. In the following,
we will use the real-valued, fully normalized spherical harmonics
as defined by [Zotter and Frank, 2019]:

Y m
n (ϕ, ϑ) = N |m|n P |m|n cos(ϑ)Φm(ϕ), (2.3)

where the normalization factor Nm
n is:

Nm
n = (−1)m

√
2n+ 1

2

(n−m)!

(n+m)!
(2.4)

the Legendre polynomials Pm
n are defined as:

Pm
n+1 =

{
2n+1
n−m+1

xPm
n , for n = m,

2n+1
n−m+1

xPm
n − n+m

n−m+1
Pm
n−1 else,

(2.5)

with P n
n = (−1)n(2n)!

2nn!

√
1− x2n and the initial term P 0

0 = 1,
and Φm is the azimuthal part of the spherical harmonics:

Φm(ϕ) =
1√
2π


√

2 sin(|m|ϕ), form < 0,

1, form = 0,√
2 cos(mϕ), form > 0.

(2.6)
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One of the properties of the spherical harmonics is
orthonormality on the sphere surface:∫

S2
Y m
n (ϕ, ϑ)Y m′

n′ (ϕ, ϑ) dcosϑ dϕ = δnn′δmm′ , (2.7)

where δxy represents the Kronecker delta operator:

δxy =

{
1, if x = y,

0, else.
(2.8)

The spherical harmonics depend on the order n ≥ 0 and the
degree m, |m| ≤ n for each value of n. In practice, the maximum
order N , n ≤ N determines the spatial resolution of the sound
field expansion.

Through the spherical harmonic expansion, any sound field
may be represented with a limited spatial resolution by the finite
combination of all spherical harmonics up to order N . For a given
order n, the number of spherical harmonic functions is 2n+1. With
the accumulation of all orders up toN , the total number of spherical
harmonics is given byM = (N+1)2. Figure 2.2 depicts all spherical
harmonics from orders 0 to 3.

2.2.2 Spherical array processing
Let us consider a sound field capturedwith a spherical microphone
array, which contains Q capsules distributed around a spherical
surface of radius R at the positions Ωq, 1 ≤ q ≤ Q. The captured
frequency-domain signalsXq(k) can be represented as the spherical
harmonic domain signals Xm

n (k) through the spherical harmonic
transform of order n and degreem [Moreau et al., 2006]:

Xm
n (k) =

Q∑
q=1

Xq(k)Y m
n (Ωq)Γn(kR), (2.9)
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Figure 2.2: Spherical harmonics up to order N = 3. The rows
correspond to the spherical harmonics of a given order n, and the
columns span all possible degree values.

where the term Γn(kR) models the radial transfer function,
and depends on a number of factors, being the sphere configuration
one of the most prominent considerations. Sphere configuration,
in its basic form, refers to the physical properties of the baffle
where the capsules are mounted, and it can be either open or rigid.
While open configuration is the simplest solution, it might present
numerical problems in the form of zeros in its frequency response.
Conversely, a rigid baffle interferes with the sound field and might
create undesired interferences, but it improves the numerical
condition from the open case. Fig. 2.3 shows the simulated
magnitude response of Γn(kR) for a spherical array considering
both configurations. The reader is referred to [Moreau et al., 2006]
and [Rafaely, 2004] for a deeper insight into the topic of spherical
microphone array design.
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Figure 2.3: Magnitude of Γn(kR) for different ambisonic orders, in
the case of (a) rigid sphere, and (b) open sphere configurations.
Adapted from [Rafaely, 2004].

By using the model from Eq. 2.9, the maximum spherical
harmonic order N that can be retrieved with negligible spatial
aliasing depends on the number of microphone capsules [Moreau
et al., 2006]:

N ≥ (Q+ 1)2. (2.10)

17



“manuscript” — 2020/7/6 — 1:42 — page 18 — #38

Furthermore, the sphere radius R has also an effect on the
operational bandwidth of the microphone. According to [Moreau
et al., 2006], the maximum aliasing-free operational frequency of a
spherical microphone array is given by:

fmax =
c

2Rγ
, (2.11)

with c being the sound speed, and γ the maximum aperture
angle between two capsules. It is important to notice the existence
of a practical minimum frequency of the spherical microphone
array, given by the low magnitude in low frequencies of high
ambisonic order components, as shown in Fig. 2.3.

2.3 Ambisonics

2.3.1 Ambisonics Theory
Ambisonics is a spatial sound recording and playback technology
initially developed during the 1970s [Gerzon, 1973], and further
expanded into its modern formulation around the 2000s [Daniel,
2000]. Ambisonics is based on the idea of decomposing a sound
field into its spherical harmonic representation.

Originally, the decomposition was limited to first-order
spherical harmonics, as the so-called First Order Ambisonics (FOA);
mainly because of practical limitations. The technique was later
formalized for arbitrary spherical harmonic orders, known as
Higher Order Ambisonics (HOA). In general, with the term
ambisonics we will be referring to the latter definition.

18
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Ambisonic encoding

Let us consider a sound field composed of a point sound source S
located in far-field at the angular position Ωs. The sound pressure
at the coordinate originP can be expressed in terms of the spherical
harmonic expansion of order N as:

P =
N∑
n=0

n∑
m=−n

Y m
n (Ωs)S (2.12)

The ordered set of values of all spherical harmonics up to
order N , evaluated at the source position, is known as the
ambisonic coefficients:

Y m
n (Ωs) = [Y 0

0 (Ωs), Y
−1

1 (Ωs), . . . , Y
N
N (Ωs)] (2.13)

Furthermore, the process of multiplying the signal S by the
ambisonic coefficients is known in the literature as the ambisonic
encoding. The resulting signal vector is usually referred to as the
ambisonic (or B-Format) signal Smn :

Smn = Y m
n (Ωs)S (2.14)

Note that, because of the superposition principle, a sound field
composed of several different point sources can be broken down to
the addition of the individual contributions.

Although the term B-Format was initially introduced as an
alternative name for first-order ambisonic signals [Daniel, 2000], it
is nowadays common to use it as a synonim of ambisonic signals,
without any order restriction. We will use the latter acception in
what follows.

Historically, the name B-Format was used as an opposite of
A-Format, which describes the signals recorded by a tetrahedral
microphone array [Gerzon, 1975a]. The tetrahedron is the
simplest and most common form of spherical microphone arrays
(indistinctly referred to as ambisonic microphones) with uniform
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capsule distribution. Again, the term A-Format is also currently
employed for referring to the signals recorded by any spherical
microphone array, regardless of the number or arrangement of
capsules.

Likewise, the process of signal conversion from the spatial
domain (microphone capsules) to the spherical harmonic domain
(ambisonic signals), as in Eq. 2.9, is known as A-B conversion. A
number of different approaches have been developed for this
process, and the interested reader is referred to [Moreau et al.,
2006] for more information.

In practice, there are two alternative ways to generate
ambisonic signals. The first one is the synthesis, based on the
direct application of ambisonics encoding (Eq. 2.12) to a
monophonic signal. The second one is the recording with a
spherical microphone array, followed by the aforementioned
domain conversion.

Ambisonic Decoding

Conversely, the sound field reconstruction is performed by the
ambisonic decoding operation. This process is equivalent to
weight-and-sum beamforming in the spherical harmonic domain,
and it is sometimes also referred to as the virtual microphone
technique [Zotter and Frank, 2019].

Let us consider a loudspeaker located at the angular position
Ωp. In accordance with Eq. 2.12, the signal feed P is decoded from
the ambisonic signal as:

P =
N∑
n=0

n∑
m=−n

Y m
n (Ωs)SY

m
n (Ω`)αn (2.15)

where αn is a weighting factor which accounts for the beam
directivity. There are several standardweightings used for different
purposes; their values are shown in Table 2.2, and the first-order
directive patterns are plotted in Figure 2.4.
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Figure 2.4: Directive patterns of first-order ambisonic decoding.
21
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Table 2.2: Ambisonic decoding: standard values of alphan
weightings. Adapted from [Daniel, 2000].

Decoding N n
0 1 2 3

basic 0 1
1 1 1
2 1 1 1
3 1 1 1 1

max-rE 0 0.577
1 0.775 0.4
2 0.861 0.612 0.305
3 0.906 0.732 0.501 0.246

in-phase 0 0.333
1 0.5 0.1
2 0.6 0.2 0.029
3 0.667 0.286 0.071 0.008

The decoding equation 2.15 can be written in matrix form as:

P = Smn Y
m
n (Ωp)

Tαn (2.16)

where the superscript T represents the matrix transposition.
This equation can be extended to the usual case of decoding to
a loudspeaker array, comprised of L loudspeakers located at the
positions ΩL = [Ωp1 , . . . ,ΩpL ] . In such case, the loudspeaker feed
vector PL can be written as:

PL = Smn D, (2.17)

where
D = diag(αn)[Y m

n (Ωp1)
T , . . . , Y m

n (ΩpL)T ] (2.18)
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is aM ×Lmatrix known as the decoding matrix, and diag(αn) is
a diagonal matrix of size M containing the values of αn along the
main diagonal. Although the matrix D is frequency-independent
and depends solely on the loudspeaker array geometry, in
practical scenarios it is usual to include frequency-dependent
weightings, αn(k), to improve the broadband sound field
reconstruction [Daniel, 2000].

Furthermore, sound field reconstruction with Eq. 2.17 is only
possiblewhen the loudspeakers are evenly located on the 3D space;
in other words, the speaker layout must take the form of one of the
five Platonic solids: tetrahedron, cube, octahedron, dodecahedron
or icosahedron. Provided that this condition is usually difficult
to fulfil in real scenarios, there are several methods which allow
ambisonic decoding for such irregular layouts. One of the most
commonly used is the AllRAD method [Zotter and Frank, 2012].
AllRAD proposes a two step decoding: first, the ambisonic signal
is decoded to a nearly-uniform layout of virtual speakers. Then,
the signals of the virtual speakers are further distributed into the
real speakers by theVector-Based Amplitude Panning (VBAP)method
[Pulkki, 1997].

2.3.2 Practical considerations

Due to historical and practical reasons, there are two aspects that
must be taking into account when working with ambisonic
signals: channel normalization and channel ordering. In the
following, the term channels will be used as a synonym for
spherical harmonics, as they are usually referred to in sound
engineering contexts1.

1In fact, ambisonic signals are inherently multichannel, even though each
channel corresponds to a spherical harmonic, and not to a loudspeaker feed as
in traditional channel-based audio.
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Channel normalization

Let us consider the spherical harmonics Y m
n (Ω) as defined in Eq. 2.3.

Due to the orthonormal property showed in Eq. 2.7, they follow the
fully 3d normalized or N3D channel normalization convention.

Alternatively, the Schmidt 3d semi-normalized or SN3D [Daniel,
2000] convention is also of widespread usage. The conversion
between N3D and SN3D is driven by the following expression:

Y m
n (Ω)(N3D) =

√
2n+ 1Y m

n (Ω)(SN3D) (2.19)

MaxN is another existing convention. It defines all spherical
harmonics as having a maximum absolute value of 1:

max
Ω
|Y m
n (Ω)(MaxN)| = 1,∀(n,m) (2.20)

Finally, the Furse-Malham (or FuMa) normalization only differs
from Max-N in the scaling of the zero-th order component:

Y m
n (Ω)(FuMa) =

{
1/
√

2, if n = 0,

Y m
n (Ω)(MaxN), else.

(2.21)

Each of the normalization schemes has its own particularities.
For instance, N3D is the most mathematically straightforward,
and spherical harmonics defined in that way can be directly used
for both encoding and decoding (as in Eqs 2.12 and Eq. 2.15) –
however, from a sound engineer point of view, other
normalization schemes with maximum values below the unity
might be preferred, such as SN3D. Besides this, FuMa has been
historically the default normalization [Gerzon, 1985], while the
more modern N3D and SN3D were popularized after J. Daniel’s
work [Daniel, 2000].

As a summary, Figure 2.5 displays the different normalization
schemes. The reader is referred to [Carpentier, 2017] for an
extensive review on the topic.

24



“manuscript” — 2020/7/6 — 1:42 — page 25 — #45

Figure 2.5: Maximum value of each ambisonic channel up to order
5, for all different normalization schemes. Image from [Carpentier,
2017].
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Channel ordering

Channel ordering refers to the manner in which spherical
harmonics, inherently organized in the 2D space by dimensions n
andm, are sorted into a one-dimensional vector.

The ACN (from Ambisonic Channel Number) scheme follows
from the mathematical description given in Eq. 2.13. The spherical
harmonics are first ordered by ascending order n and, inside each
order, by ascending degree m. The index of a given channel
i ∈ [0 . . .M − 1] can be thus obtained by the following relationship:

i = n2 + n+m (2.22)

Historically, first-order ambisonic audio has followed what it
might be called traditional B-Format channel ordering [Gerzon,
1985]. By this scheme, the four channels of a FOA signal Smn are
referred to by the axis where the corresponding spherical
harmonic steers, plus the nameW for the zeroth order component:

Smn (Ω)(FuMa CO) = [W,X, Y, Z] (2.23)

where:
W = S0

0(Ω)

X = S1
1(Ω)

Y = S−1
1 (Ω)

Z = S0
1(Ω)

(2.24)

This nomenclature was extended to second and third order,
and is currently known as the Furse-Malham or FuMa channel
ordering. The channel names use all english alphabet letters from
K to Z in third order and, although there would be enough letters
to go up to fourth order, the unconvenience of the system was
clear [Malham, 2003]. Figure 2.5 shows the equivalence between
FuMa ("letter code") and ACN channel names.
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In practice, there exist two main combinations of channel
normalization and ordering schemes:

• The classical approach, usually limited to first-order
ambisonics, which uses FuMa normalization and channel
ordering2.

• The modern approach, inspired by the ambix file format [cite
ambix], withSN3Dnormalization andACN channel ordering.

Anyhow, the classical B-Format channel naming and ordering is
still widely used when referring to first-order ambisonics.

2.4 Parametric Spatial Audio Analysis
Trough parametric analysis, soundfieldsmay be described in terms
of a small amount of sound sources and associate parameters. Such
representation might reduce to a great extent the complexity of
processing methods [Jarrett et al., 2017].

One of the most successful sound field parametric models is
DirAC [Pulkki, 2007], which was originally conceived as a method
for impulse response processing and spatial sound reproduction
[Merimaa and Pulkki, 2005].

DirAC (acronym for Directional Audio Coding) is a perceptually
motivated time-frequency (TF) domain method, based on the
assumption that any sound field may be reproduced with high
perceptual quality by considering two parameters: the sound field
diffuseness and the most prominent sound Direction-of-Arrival
(DOA) [Pulkki et al., 2018].

2In general, it may be expected that early ambisonic material follow these
conventions without any explicit mention to them.
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Let us consider a SN3D-normalized first-order ambisonic signal
in time-frequency domain, Smn (k, n). For the sake of clarity, we will
use in this section FuMa channel notation and ordering (Eq. 2.23):

Smn (k, n) = [W (k, n), X(k, n), Y (k, n), Z(k, n)] (2.25)

Given this representation, we can express the pressure P (k, n) of
the sound field as:

P (k, n) = W (k, n) (2.26)

as well as the sound pressure-gradient (or velocity) UUU(k, n) as:

UUU(k, n) = − 1

ρ0c
[X(k, n), Y (k, n), Z(k, n)], (2.27)

where ρ0 is the mean medium density, and c is the sound speed.
The active intensity III(k, n), defined as the amount of transmitted

acoustic energy, can be expressed in terms of sound pressure and
velocity [Fahy and Salmon, 1990]:

III(k, n) = <{P ∗(k, n)UUU(k, n)}

= − 1

ρ0c
<{W ∗(k, n)[X(k, n), Y (k, n), Z(k, n)]},

(2.28)

where ∗ represents the complex conjugate operator.
An estimate of the instantaneous DOA Ω(k, n) can be extracted

from the intensity vector, interpreting each of its time-frequency
bins as a point in the cartesian space. Effectively, the sound
propagation direction is the opposite to the observed arrival
direction.

Ω(k, n) = ∠(−III(k, n)), (2.29)

with ∠ representing the spherical angle operator of a cartesian
vector. The result of this computation must be understood as the
direction of the net energy flow, which in the case of a single
plane-wave will correspond to the source position.
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Another useful parameter is the energy density E(k, n) [Stanzial
et al., 1996]:

E(k, n) =
1

2ρ0c2
|P (k, n)|2 +

1

2
‖UUU(k, n)‖2

=
1

2ρ0c2

(
|W (k, n)|2 + ‖[X(k, n), Y (k, n), Z(k, n)]‖2

)
.

(2.30)

Finally, the diffuseness Ψ(k, n) can be computed from the sound
intensity and energy density [Merimaa and Pulkki, 2005]:

Ψ(k, n) = 1− ‖〈I
II(k, n)〉‖

c〈E(k, n)〉

= 1− 2
‖〈<{W ∗(k, n)[X(k, n), Y (k, n), Z(k, n)]}〉‖
〈|W (k, n)|2 + ‖[X(k, n), Y (k, n), Z(k, n)]‖2〉

,

(2.31)

where the symbols 〈·〉 represent the expectation operator, which
is usually implemented as time-domain averaging.

Even though Eq. 2.31 (known as DirAC’s diffuseness) is one of
the most common ambisonic diffuseness estimators, several
alternative formulations exist. Other diffuseness estimation
procedures include the coefficient of variation method [Ahonen and
Pulkki, 2009] and the more recent COMEDIE estimator [Epain and
Jin, 2016]. In any case, in what follows, the term diffuseness and the
symbol Ψ will refer by default to Eq. 2.31.

As a mathematical convenience, we will define the B-Format
coherence as the complement of the diffuseness:

∆(k, n) = 1−Ψ(k, n) (2.32)

In conclusion, Figure 2.6 plots the spectrograms of the DOA
Ω(k, n) and diffuseness Ψ(k, n) of a FOA recording, which consists
of a sound source located at the front, plus a moderate amount of
reverberation and background noise.
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Figure 2.6: Parametric time-frequency spatial audio analysis of a
first order ambisonic recording. From top to bottom: 1.) Magnitude
spectrogram of the omnidirectional channel. 2.) and 3.) Azimuth
and elevation of the estimated instantaneous narrowband DOAs
Ω(k, n). 4.) Instantaneous narrowband diffuseness Ψ(k, n).
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2.5 Spatial Coherence Analysis
In the context of microphone array signal processing, diffuseness
is commonly estimated through the Magnitude Squared Coherence
(MSC) [Elko, 2001] between two frequency-domain signals S1 and
S2, as a function of the wavenumber k and the capsule distance r:

MSC12(kr) =
| 〈S1(kr)S2(kr)∗〉 |2

〈|S1(kr)|2〉 〈|S2(kr)|2〉
, (2.33)

where the 〈·〉 operator represents the temporal expected value,
and ∗ defines the complex conjugate operator. In the case of
spherical isotropic noise fields, Eq. (2.33) can be expressed in
terms of microphone directivity patterns T (φ, θ, kr) as [Elko,
2001]:

MSC12(kr) =
|N12(kr)|2

|D12(kr)|2

=
|
∫ π

0

∫ 2π

0
T1(φ, θ, kr)T ∗2 (φ, θ, kr)e−jkrcosθsinθdθdφ|2

|
√∫ π

0

∫ 2π

0
|T1(φ, θ, kr)|2sinθdθdφ

√∫ π
0

∫ 2π

0
|T2(φ, θ, kr)|2sinθdθdφ|2

.

(2.34)
Moreover, the general expression of the directivity of a

first-order differential microphone is given by the following
relationship:

Ti(Ωi) = αi + (1− αi) cos Ωi, (2.35)

where i ∈ [1, 2] is the microphone index, Ωi is the angle
between wave incidence and microphone orientation axis, and
αi ∈ [0, 1] is the directivity parameter of the microphone i, which
ranges from bidirectional (αi = 0) to omnidirectional (αi = 1).
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For first-order differential microphones, there is a closed-form
expression for the numerator and denominator of Eq. (2.34):

N12(kr) =
α1α2sin(kr)

kr

+
(1− α2)(1− α2)(x1x2 + y1y2)

(kr)3
(sin(kr)− krcos(kr))

+
z1z2

kr3
[((kr)2sin(kr) + 2krcos(kr))(1− α1)(1− α2) + 2sin(kr)(1− α1)(1− α2)]

+
z1

(kr)3
[j(kr)2α2cos(kr)(α1 − 1) + jkrα2sin(kr)(1 + α1)]

+
z2

(kr)3
[j(kr)2α1cos(kr)(α2 − 1) + jkrα1sin(kr)(1 + α2)],

D12(kr) =

√
3α2

1 + (1− α1)2
√

3α2
2 + (1− α2)2

3
,

(2.36)
where xi, yi and zi are the cartesian coordinates of the wave
incidence angle Ωi = (ϕi, ϑi).

2.6 Reverberation
In the context of room acoustics, reverberation refers to "the energy
of a sound source that reaches a listener indirectly, by reflecting from
surfaces within the surrounding space occupied by the sound source and
the listener" [Begault and Trejo, 2000]. Conversely, in anechoic or
free-field conditions, where reverberation is not present, only the
direct path of the sound source exists. Assuming linearity and
time-invariance, room reverberation can be fully characterised by
its impulse response (IR).

Reverberation models often consider two differentiated parts
of the reverberant tail, based on both physical and perceptual
characteristics: the early reflections and the late reverberation. Early
reflections, as the name suggests, refers to the individual sound
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Figure 2.7: Room impulse response model, from [Murphy et al.,
2017].

paths arriving to the listener after a few reflections on the room
surfaces, which cause some degree of attenuation. Early
reflections typically arrive with a time difference between 1 and 80
ms after the direct path [Begault and Trejo, 2000]. The term late
reverberation encompasses all sound paths arriving to the listener
after many reflections. Since the temporal density of such
reflections increases with time, late reverberation is often
modelled in statistical terms. An schematic representation of a
room impulse response (RIR) is shown in Figure 2.7.

By following this model, a RIR h(t) can be described as a
sequential combination of responses:

h(t) = hD(t) + hR(t), (2.37)

where hD(t) and hR(t) represent the direct (direct path plus early
reflections) and reverberant (late reverberation) components of the
RIR. respectively.
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The room impulse response is a function of both the source
and the receiver locations. Different levels, delays and directions
of direct path and early reflections can obtained from
measurements in the same room. However, it is generally
assumed that the late reverberation is fixed for a given room,
regardless of source/receiver positions.

Room reverberation plays an important role in
psychoacoustics. While early reflections are usually perceived
together with the direct path as a single auditory event, due to the
precedence effect [Haas, 1972], late reverberation has often an
influence on the received signal. In the specific case of speech, late
reverberation is associated with a loss of intelligibility [Braun,
2018]. In the context of spatial perception, it has been shown that
early reflections help the localization and externalization of
sources [Rudrich and Frank, 2019], while the late reverberation is
associated with a spaciousness perception of the room [Begault
and Trejo, 2000].

There are a number of measurable parameters which help to
characterise room acoustics. Perhaps one of the most widespread
is the reverberation time T60 [Kuttruff, 2016]. It represents the time
required for the reverberant sound field power to decay by 60 dB.
Reverberation time can be accurately computed from the room
geometry [Sabine, 1927] or from the IR [Schroeder, 1965].

In the latter case, the T60 value is usually estimated from the
Energy Decay Curve (EDC), which is defined as:

EDC(t) = 10 log10

∞∑
t′=t

h2(t), (2.38)

where h(t) represents the room impulse response. The values
are normalized such that the maximum peak of the curve
corresponds to 0 dB.

The EDC is usually modelled as a straight line in logarithmic
scale. Therefore, the T60 estimation is performed by estimating the
slope of a straight line between two reference levels on the EDC
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Table 2.3: Reverberation time computation: usual reference levels

EDT T10 T20 T30

Lmax(dB) 0 -5 -5 -5
Lmin(dB) -10 -15 -25 -35

time series. Some of the most used reference levels receive specific
names: Early Decay Time (EDT), T60, and reverberation times T10, T20

andT30. Table2.3 shows their correspondent reference levels, where
the maximum energy peak is normalized to 0 dB. An schematic
representation of the reference levels is depicted in Figure 2.8.

An alternative parameter is the decay rate α60, which is related
to reverberation time T60 as:

α60 =
3 ln (10)

T60

(dB/s). (2.39)

The decay rate is thus the slope of the EDC curve, in logarithmic
scale, expressed in dB per second.

To conclude, it is important to notice that reverberation time is
frequency-dependent. Accordingly, it is usual to report it for
octave or third-octave bands, or alternatively to provide its value
at a specific frequency.

The Direct to Reverberant Ratio (DRR) is another relevant
acoustic parameter. DDR represents the ratio between direct and
reverberant parts of the RIR, as defined in Eq. 2.37:

DRR = 10 log10

∑LD

t=1 h
2
D(t)∑LR

t=1 h
2
R(t)

, (2.40)

with LD and LR as the length of the direct hD(t) and reverberant
hR(t) filters, respectively. At a psychoacoustic level, the direct to
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Figure 2.8: Room impulse response model, adapted from
[AV_INFO, 1995].

reverberant ratio is one of the main cues for distance perception
[Begault and Trejo, 2000].

Since the direct path and early reflections (but not the late
reverberation) depend on the relative position between source and
receiver , the filter hD(t) and therefore the DRR are as well
location-dependent. For a given room, the source-receiver
distance that produces a DRR of 0 dB is known as the critical
distance.

2.7 Signal Models
Let us consider a sound source represented by the signal s(t),
located in a given acoustic enclosure characterised by its room
impulse response h(t). The resulting reverberant signal x(t) can be
therefore described as the convolutive mixture of the source and the
RIR:

x(t) = s(t) ∗ h(t). (2.41)
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When dealing with multichannel room impulse responses, as
it is the case in ambisonics, the multichannel reverberant signal
xm(t) is obtained by the convolutive mixture of each RIR channel
independently:

xm(t) = s(t) ∗ hm(t). (2.42)

The time domain convolution operation, under certain
assumptions, is equivalent to the multiplication in frequency
domain. By doing so, Eq. 2.41 can be expressed as:

X(k, n) = S(k, n)H(k, n). (2.43)

Eq. 2.43, also known as theMultiplicative Transfer Function (MTF)
model is only valid when the length of the filter h(t) is smaller than
the length of the analysis window used in the STFT.

On the contrary, when the filter h(t) spans across several
analysis windows, the resulting model is referred to as the
Convolutive Transfer Function (CTF) model:

X(k, n) =

Lh−1∑
l=0

H(k, l)S(k, n− l), (2.44)

where Lh is the length of the filter H(k, n) in time frames.
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Chapter 3

Blind reverberation time
estimation

3.1 Introduction
Knowledge about the acoustic properties of an enclosure is a
fundamental topic with many applications in the microphone
array and acoustic signal processing field. Problems such as
dereverberation [Braun et al., 2018] or source separation [Gannot
et al., 2017] may benefit from this information, and may require
prior estimation of the related parameters.

The 2016 Acoustic Characterisation of Environments (ACE)
Challenge [Eaton et al., 2016] gathered dozens of methods
designed for blind T60 and Direct-to-Reverberation Ratio (DRR)
estimation; nowadays, it is still considered as a state-of-the-art
source for performance evaluation and comparison among
methods.

Most of the model-based T60 estimation algorithms consider
the reverberant signal envelope as an exponential decay, so that
the problem is reduced to finding a signal offset and estimate the
decay rate. Moreover, in last years, data-driven models have
outperformed the previous state-of-the-art results [Gamper and
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Tashev, 2018, Looney and Gaubitch, 2020, Bryan, 2020]. A
comparative review on single-channel blind T60 estimation
algorithms was recently published [Löllmann et al., 2019].

However, most of the existing reverberation time estimation
methods focus on the single-channel case. A representative
example can be drawn from the ACE Challenge, where, despite
the fact that one of the reverberant datasets was recorded with an
em32 Eigenmike spherical microphone array, none of the methods
use of it for the T60 estimation task.

On the other hand, recent years have witnessed a growing
interest in immersive audio for virtual and augmented reality.
This situation has consolidated Ambisonics [Zotter and Frank,
2019] as the de facto standard for spatial audio. Dedicated
spherical microphone arrays have reached the market in last years;
their multichannel nature makes possible spatial manipulations
that complement traditional signal enhancement methods.

In this chapter, we present a novel approach to the problem
of multichannel blind reverberation time estimation, specifically
focusing on first order ambisonic (FOA) recordings. The method is
based on a dereverberation stage followed by system identification.
To the best of our knowledge, the proposed algorithm is the first
reverberation time estimationmethod specifically designed for first
order ambisonic audio.

The rest of the chapter is organized as follows. Section 3.2
introduces the nomenclature and the signalmodel. Sections 3.3 and
3.4 describe the baseline and the proposed methods, respectively.
The experimental setup is described in Section 3.5, and the results
are discussed in Section 5.5. Finally, a conclusion is presented in
Section 3.7.

40



“manuscript” — 2020/7/6 — 1:42 — page 41 — #61

3.2 Signal Model
Let us consider a FOA signal xmn (t), with M = 4 as the number
of channels. Let us further assume the convolutive mixture signal
model described in Eq. 2.42, where the reverberant signal xmn (t)
represents the signal captured by an ideal spherical microphone
array located in a reverberant enclosure. Let s(t) denote the signal
of the only sound source present in the scene, and hmn (t) denote the
ambisonic RIR modelling the acoustic enclosure:

xmn (t) = s(t) ∗ hmn (t) (3.1)

It is important to remark that T60 estimation here assumes no
receiver directionality. In an ambisonic context, this corresponds
to the zeroth order component. Therefore, in what follows, all
methods estimating IR parameters will be applied to the zeroth
order channel, x0(t).

3.3 Baseline method
The baseline algorithm, taken from [Prego et al., 2012], is based on
the detection of abrupt event offsets in the time-frequency
domain. The subband energy decay on the transitions can be then
used to compute an estimate of the full-band decay. This method
performed best in the ACE Challenge regarding the Pearson
correlation coefficient between estimated and true T60 [Eaton et al.,
2016].

Let us consider the zeroth order channel of the recorded signal,
x0(t), and its Short-Time Frequency Transform (STFT) counterpart
X0(k, n). The subband energy Ē(k, n) of the recorded signal can be
expressed as:

Ē(k, n) = |X0(k, n)|2. (3.2)

A Free Decay Region (FDR) is defined as a group of consecutive
bins within the same subband which exhibit a monotonically
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decreasing energy. A FDR search is performed on the subband
energy spectrogram Ē(k, n): for each band, the algorithm tries to
find at least one FDR, iterartively reducing the FDR length if no
candidates are found.

The next step is the estimation of the reverberation time, which
is performed using a subband equivalent of Schroeder’s
method [Schroeder, 1965]. The Subband Energy Decay Function
(SEDF) associated with a given FDR is computed as:

c̄(k, n) = 10 log10

∑Lc−1
ν=n Ē(k, ν)∑Lc−1
ν=0 Ē(k, ν)

dB, (3.3)

where n = 0 . . . , Lc − 1 spans the length of the FDR. A linear
regression is then performed on each SEDF curve: T60 is
computed as the time required by the resulting line to reach the
−60 dB reference.

This procedure yields a T60 estimate per FDR. In order to
obtain a global estimate, the algorithm proposes a two-step
statistical filtering. First, it obtains a narrowband estimate as the
median of all estimates within each subband. Then, the resulting
broadband value T̄60 is computed as the median of all subband
estimates. The last step of the method is the expansion of the
resulting dynamic range by a linear mapping. This procedure is
required because of the compression introduced by the median
operator. The final value T60 is thus a linear mapping of T̄60, where
the parameters α and β might be obtained by linear regression on
a training stage:

T60 = αT̄60 + β (3.4)

3.4 Proposed method
We propose a novel method for reverberation time estimation,
based on two steps: signal dereverberation, and system
identification. The main idea consist in obtaining an estimate of
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the dereverberated signal, which is later used for estimating the
multichannel IR given the recorded reverberant signal. The
reverberation time can be thus computed by the decay slope of the
estimated IR.

3.4.1 Dereverberation
Let us consider now the CTF model (Eq. 2.44) version of the
proposed signal model:

Xm(k, n) =

Lh−1∑
l=0

Hm(k, l)S(k, n− l), (3.5)

where themultichannel filterHm(k, l) of lengthLh contains theCTF
coefficients between the source and the microphones.

Considering the room impulse response model of Eq. 2.37, it is
possible to sequentially split the former expression in the following
way:

Xm(k, n) = Dm(k, n) +Rm(k, n) =

=
τ−1∑
l=0

Hm(k, l)S(k, n− l) +

Lh−1∑
l=τ

Hm(k, l)S(k, n− l),
(3.6)

where the parameter τ represents the mixing time, which states the
transition time between early reflections and late reverberation. In
other words, the captured signal is divided between a direct part
Dm(k, n), containing the direct path and the early reflections, and
a reverberant part Rm(k, n), which mainly contains the diffuse part
of the reverberation.

Assuming a Multichannel Auto-Regressive (MAR) model,
Rm(k, n) can be expressed as a multichannel Infinite Impulse
Response (IIR) filter applied to the recorded signal:

Rm(k, n) =
M∑
i=1

Lg−1∑
l=0

Xi(k, n− τ − l)Gmi(k, l), (3.7)
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where the coefficients Gmi(k, l) ∈ C model the relation between
channelsm and i, and have a length of Lg frames.

By grouping all time frames n = 1 . . . , N − 1, it is possible to
express Eq. 3.7 in vector notation:

Rm(k) = X̃τ (k)Gm(k), (3.8a)

X̃τ (k) = [X̃τ,1(k), . . . , X̃τ,M(k)], (3.8b)

where X̃τ,m(k) is aN×Lgmatrix, andRm(k) andGm(k) are column
vectors with lengths N and LgM , respectively.

Finally, the expression can be further simplified by omitting the
frequency dependence, and by expressing the channels as columns
in the vector notation. Substituting this expression in Eq. 3.6 leads
to the MAR equation:

D = X − X̃τG. (3.9)

Here, the dereverberation problem consists in the estimation of
theMIMOfilterG, so that the clean signalD (containing both direct
path and early reflections) can be computed.

The algorithm proposed here is based on the method
described in [Jukić et al., 2015]. In this case, the dereverberation
problem is tackled as an optimization problem, considering that
the spectrograms of the reverberant signal are less sparse than
those of the corresponding clean, and ensuring that the
inter-channel signal properties are mantained. Although the
presented method is applied on the whole signal in batch mode,
alternative online methods could be also used, e.g. [Braun and
Habets, 2016].

By using iteratively reweighted least squares (IRSL) [Chartrand
and Yin, 2008], it can be shown that an iterative solution for the
estimation of G at the iteration (i) is given by the following
expression:

G(i) = (X̃H
τ W (i)X̃τ )

−1X̃H
τ W (i)X, (3.10)
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whereW (i) is aN×N diagonal matrix whose diagonal values,w(i)
n ,

can be updated as:

w(i)
n = (dH(i−1)

n Φ−1(i−1)d(i−1)
n )

p−2
2 + ε. (3.11)

In turn, dn represents the rows ofD arranged as column vectors
of lengthM ,Φ is theM×M Spatial CovarianceMatrix (SCM) ofD,
ε is an arbitrary small positive value, and p ≤ 1. The computation
and update of the SCM matrix is given by:

Φ(i) =
1

N
DT (i)W (i)D∗(i). (3.12)

To conclude the dereverberationmethod, Eqs. 3.9, 3.10, 3.11 and
3.12 can be applied iteratively, starting by updating Eq. 3.11, until
convergence is reached:

‖D(i) −D(i−1)‖F/‖D(i)‖F < η, (3.13)

where η is an arbitrary small positive value, or alternatively until
the maximum number of iterations imax is exceeded. For the
initialization, the following values are proposed: D = X and
Φ = IM (the identity matrix of sizeM ×M ).

3.4.2 System Identification
The output of the dereverberation step is the multichannel signal
Dm, which ideally contains the direct plus early reflection
components of the source. Therefore, given the reverberant signal
Xm and the dereverberated signal Dm, an estimate of the late
room impulse response might be derived by identifying the filter
connecting the two. As stated in Section 3.2, we are primarily
interested on the response of the omnidirectional channel; for that
reason, the filter estimation is performed with the zeroth order
components of both recorded and dereverberated signals. We
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perform system identification directly in the STFT through a
linear fit between input and output independently for every
frequency bin:

Ĥ0(k) =
dH

0 (k)x0(k)

dH
0 (k)d0(k)

, (3.14)

where d0,x0 are N × 1 length vectors. To avoid complex
cross-band modeling of the system response, we use a long STFT
window, assumed longer than the twice the length of the IR so
that a reduction of the CTF to a Multiplicative Transfer Function
(MTF) holds [Avargel and Cohen, 2007].

As a last sep, the estimated time-frequency filter Ĥ0(k, n) is
transformed into the time domain filter ĥ(t). The T60 is then
computed by linear fitting of the Schroeder integral in the
[−5,−15] dB range (T10 estimation method), after filtering ĥ(t)
with an octave-band filter centered at 1 kHz.

3.5 Experimental setup
3.5.1 Dataset
The proposed method is evaluated using two different reverberant
datasets, containing recordings of speech and drums respectively.
In order to have full control over the reverberation conditions in
the experimental setup, the audio clips under consideration have
been rendered by the convolutive mixture of clean monophonic
recordings with FOA IRs.

The speech dataset is composed of the LibriSpeech [Panayotov
et al., 2015] test-clean audio samples longer than 25 s, making a total
of 30 audio clips. It contains English language sentences by male
and female speakers, often with a small level of background noise.
We have used only a 20 s long excerpt of each clip, preceded by
an initial offset of 5 s. The drums dataset is the test subset of the
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isolated drum recordings from the DSD100 dataset [Liutkus et al.,
2017]. It contains 50 different audio clips, covering a wide range of
music and mixing styles. The same audio lengths and offsets as in
the previous case are applied.

The IRs are FOA room impulse responses simulated by the
image method with the Multichannel Acoustic Signal Processing
library (Section 6.2). There are 9 different IRs of 1 s, with random
T60 values in the range between 0.4 s and 1.1 s approximately,
estimated by the T10 method at the 1 kHz band. The angular
position of the sources is randomized for each IR, while the
receiver position is fixed at the room center, which has a size of
10.2 × 7.1 × 3.2 m. The source distance is set to half the critical
distance, thus providing positive DRRs.

The combination of the dry audio clips with the IRs yields a
total of 270 and 450 audio clips for the speech and drums datasets,
respectively, after removing the audio clips which mostly contain
silence. Those datasets will be referred in the following as the
evaluation datasets.

Finally, the baseline method requires a previous fitting step for
the computation of the mapping parameters α and β from Eq. 3.4.
The procedure has been performed as follows. For the speech
dataset, we selected again the subset of audio clips longer than 25
s, but in this case on the dev-clean dataset, which yields a total of
20 audio clips. For the drums dataset, we used the 50 clips of the
development subset. The generation of the convolutive mixes has
followed the same procedure as in the previous case. We will refer
to the resulting datasets as the development datasets.
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Table 3.1: Baseline system: linear regression parameters

Dataset α β σ

Speech 6.6619 -1.4517 0.2131
Drums 8.2421 -2.1939 1.0055

3.5.2 Setup
The sampling frequency for all methods is 8 kHz. For the baseline
system, the window size is 1024 samples long, with an overlap of
256 samples. The FDR length is set to 500 ms, which has been
reported as the ideal theoretical minimum [Prego et al., 2012]; it
corresponds to a FDR length of Lc = 15 samples. At any frequency
band, the value of Lc is iteratively decreased if no FDR is found,
until a minimum value of 3 samples (96 ms). If still no FDR is
found, the sound clip is discarded.

In order to compute α and β, we run the baseline method on
both development datasets. For each IR, the mean and standard
deviation of the results are computed across all sound clips. Then,
these values are used for a weighted least squares linear regression
against the true T60 values. The results are shown in Table 3.1,
where σ represents the joint standard deviation of α and β after the
linear regression; the resulting values are in the same range as the
values reported in [Prego et al., 2012].

In the dereverberation stage, the STFT uses a small window
size of 128 samples, with 64 samples overlap. The value of p is
0.25, given the good results reported in [Jukić et al., 2015]. Other
parameter values are τ = 2, imax = 10, η = 10−4 and ε = 10−4. After
an exploratory search, the length of the IIR filter Lg = 20 has been
chosen as a compromise between performance and computation
time. We have observed a tendency towards poor dereverberation
and non-convergence of the IRSL when using small values of Lg.
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Table 3.2: Experiment results

speech drums
Metric Baseline MAR+SID Baseline MAR+SID
Bias -0.0599 0.0305 0.1521 0.2568
MSE 0.6366 0.0594 13.9376 16.5261
ρ 0.8212 0.9848 0.3705 0.7552

For the SID, the recorded and dereverberated signals are
reshaped into much larger STFTs, with a window size of 8 s and a
hop size of 0.5 s. The predicted filter size is 1 s.

For both evaluation datasets, the two presented methods are
employed; we will refer to them as Baseline and MAR+SID.
Furthermore, with the aim of evaluating the performance of the
SID method in an isolated manner, we have included a third
method, Oracle SID. As its name suggests, it performs the System
Identification step using the true anechoic signal.

3.5.3 Evaluation metrics

We have considered the three metrics from the ACE
Challenge [Eaton et al., 2016], all of them based on the differece
between estimated and true values: the bias, or mean error; the
Mean Squared Error (MSE); and the Pearson correlation
coefficient. The evaluation has been performed after discarding
the outliers, defined as the reverberation time estimates greater
than 1.5 s.
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3.6 Results

Figure 3.1 shows the experiment result specified for all audio clips
individually. Each boxplot represents the statistics of the mean
estimation error (bias) for a single audio clip subject to all 9
different IRs. The results are organized by method (rows) and
dataset (columns). Figure 3.2 aggregates all experiment results
into the same plot, showing the statistical distribution of the bias
per method and dataset. In this case, the Oracle SID results are
omitted for clarity. The evaluation metrics for all methods are
shown in Table 5.3.

According to the results, the proposed method clearly
outperforms the baseline in the speech dataset by a tenfold MSE
improvement. For the drums dataset, our method only
outperforms the baseline regarding correlation. Nevertheless, an
inspection of the statistical distribution of mean estimation errors
in Figure 3.2 brings in an interesting observation: the variability of
the results given by our method is substantially smaller than the
results of the baseline system. This behaviour is consistent across
datasets: the mean error distributions with the speech dataset are
approximately five times narrower than with the drums dataset,
regardless of the method.

Moreover, all methods behave significantly better on the speech
dataset. The main reason might be the heterogeneity of the drums
dataset with respect to dynamic range or timbre, and the potential
application of audio effects of any kind. Furthermore, some audio
clips of the drums dataset contain sounds with a high degree of
self-similarity, such as cymbal rolls or exaggerated reverbs; these
characteristics would explain the outliers on the proposed method
results. It is also interesting to notice the robustness of our method
against noise, present in the speech dataset; such robustness is
consistent with the behavior reported in [Jukić et al., 2015].
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The performance of the ORACLE SID method is close to ideal.
The bias is in all cases under 0.05 s (excepting a drums clip containing
mostly silence). This result validates the system identification,
and allows, in practical terms, a direct evaluation of the proposed
method against the groundtruth values.

The results obtained in our analysis are very similar to the
results reported in recent deep-learning state-of-the-art proposals,
e.g. [Gamper and Tashev, 2018]. Since all those methods perform
single-channel estimation, and our method requieres FOA
recordings, the results are not directly comparable. However,
given the similar results obtained with the same evaluation
metrics, it might be anticipated that out method may perform as
well as other recent data-driven algorithms.

3.7 Conclusion
In this Chapter, we have presented a novel method for blind
reverberation time estimation for multichannel audio, with the
aim of applying it to the context of ambisonic recordings. Our
method is based on a first dereverberation step, performed by a
multichannel autoregressive model of the late reverberation. The
resulting dry signal is then used to estimate the impulse response
decay by means of system identification. The performance of the
method is evaluated in a simulated experimental environment
with two different reverberant datasets, and compared against a
state-of-the-art method. Results show that our method
outperforms the baseline method in a majority of evaluation
metrics and conditions, and consistently provides results with less
variability than the baseline method.
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Figure 3.1: Experiment results for speech (left column) and drums
(right column) datasets. Estimation error computed for each audio
clip.
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Figure 3.2: Experiment results for speech (left column) and drums
(right column) datasets. Total estimation error across audio clips
and acoustic conditions. Top: boxplot. Bottom: histogram and
density plot
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Chapter 4

Coherence Estimation

4.1 Introduction
A number of practical applications benefit of the knowledge about
the diffuseness of a sound field, including speech enhancement
and dereverberation [Habets et al., 2006], noise suppression [Ito
et al., 2010], source separation [Duong et al., 2009] or background
estimation [Stefanakis and Mouchtaris, 2015]. In the field of
spatial audio, diffuseness estimation is often used for
parametrization [Pulkki, 2006, Politis et al., 2018],
Direction-of-Arrival estimation [Thiergart et al., 2009] or source
separation [Motlicek et al., 2013].

In this Chapter, we study diffuseness estimation by subjecting
a tetrahedral microphone array to spherically isotropic noise
fields. The motivation for this work is, first, that tetrahedral arrays
are a well known type of microphone arrays, which have today
become popular for applications related to Virtual and
Augmented Reality. Second, the spherical isotropic sound field is
known to be a good approximation to the reverberant part of the
sound field in a room [Elko, 2001,McCowan and Bourlard, 2003],
and therefore it would be interesting to investigate how different
microphone arrays behave under such conditions.
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4.1.1 Problem definition

Under spherical isotropic noise, the theoretical coherence between
any pair of zeroth- and first-order ambisonic virtual microphones
is equal to 0 for all frequencies, due to the spherical harmonic
orthogonality (Eq. 2.7) [Elko, 2001]. This result can also be assessed
by Eq. (2.36).

However, there are several practical factors that might corrupt
the coherence estimation, such as the approximation of the
temporal expectation by time averaging [Thiergart et al., 2011] in
Eq. (2.31), or the non-ideal implementation of the radial filters
Γn(kR) (Eq. 2.9) for the A-B conversion [Schörkhuber and Höldrich,
2017].

In the following sections, we present several experiments that
illustrate the behavior of different coherence estimators applied
on the signals captured with a tetrahedral microphone subjected
to spherical isotropic noise, using both simulated and real sound
recordings.

4.2 Methods

4.2.1 Simulation

Spherical isotropic noise has been generated following the
geometrical method [Habets and Gannot, 2007,Habets and Gannot,
2010], using I = 1024 plane waves. The resulting A-Format signals
correspond to a virtual tetrahedral microphone array mimicking
the Ambeo1 characteristics (R = 0.015 meter, α = 0.5). The
generated audio has a duration of 60 seconds.

1Sennheiser Ambeo VR Mic [Sennheiser, 2020].
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4.2.2 Recording
Spherical isotropic noise has been rendered to a spherical
loudspeaker layout with 25 Genelec 8040. The loudspeakers are
arranged into three azimuth-equidistant 8-speaker rings at
inclinations ϑ = [π/4, π/2, 3π/4], plus one speaker at the zenith.
The different speaker distances to the center are delay- and
gain-corrected, and the signal feeds are equalized to compensate
for speaker coloration. The room has an approximate T60 of 300
ms measured at the 1 kHz third-band octave.

The spherical isotropic noise has been also created by the
geometrical method, encoding a number of uncorrelated noise plane
waves in ambisonics with varying orders N ∈ [1, 5]. Due to
practical limitations related with the software, the minimum
number of sources I = 256 for an accurate sound field
reconstruction [Habets and Gannot, 2010] could not be reached -
instead, the analysis has been performed parametrically with
I = [8, 16, 32, 64]. For each value of N and I , approximately 15
seconds of audio have been recorded with an Ambeo microphone
located at the center of the speaker array.

Ambisonics decoding is performed with an AllRAD decoder,
passing through a spherical 64-point 10-design virtual speaker
layout, and includes an imaginary speaker at the nadir. The
decoding matrix uses in-phase weights.

4.2.3 Data processing and metrics
The sampling rate of all signals is 48 kHz. All frequency-domain
results have been obtained by averaging their time-frequency
representations over time. A-B conversion has been computed
using Ambeo A-B converter AU plugin, version 1.2.1.

Two error metrics are considered: the frequency-dependent
squared error ε(k):

ε(k) = |X1(k)−X2(k)|2, (4.1)
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and the mean squared error ε̄:

ε̄ =
1

K

K∑
k=1

|X1(k)−X2(k)|2 (4.2)

4.3 Results and discussion

4.3.1 A-Format
The coherence of the generated A-Format signals is exemplified in
Fig. 4.1 (left), which shows the MSC between the capsule pair
(BLD,BRU) for the theoretical, simulated and recorded cases. The
theoretical coherence is derived from Eq. (2.36), while simulated
and recorded MSC have been computed by Welch’s method, using
a hanning window of 256 samples and 1/2 overlap.

The difference between theoretical and simulated coherence is
negligible for practical applications. However, there is a noticeable
difference when compared to the recorded coherence. In general,
the recorded MSC follows the tendency of the simulated curve up
to around 5 kHz. Above this frequency, the recordedMSC presents
several spectral peaks, which might be partially explained by the
interference of the microphone itself in the recorded sound field,
and by the non-ideal directivity of the capsules.

The squared error ε(k) with respect to the simulated curve is
shown in Fig. 4.1 (left), while Fig. 4.1 (right) represents the same
error averaged over frequency ε̄ for different spatial resolution
values of the diffuse field reproduction algorithm. As expected, ε̄
decreases with increasing values of N and I .
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Figure 4.1: A-Format coherence between microphone signals. Left:
MSC as a function of the frequency of theoretical, simulated and
recorded ((BLD,BRU),N = 5, I = 64) signals. Right: meanerror ε̄of
the recorded signals’MSC (BLD,BRU) compared to the simulated
values, for all values of N and I .

4.3.2 B-Format

In order to evaluate the dependency of the B-Format coherence ∆ on
the number of time frames used for averaging, the following
procedure is presented. The simulated A-Format sound field has
been transformed into the spherical harmonic domain, with and
without the application of radial filters Γn(kR) (Eq. 2.9). Then, ∆
has been computed with Eq. (2.32) for exponentially growing
values of r between 1 (8 ms) and 2048 (10.92 s), where r is the
vicinity radius used for time averaging, and the number of time
windows is given by T = 2r + 1. The time-frequency
representation is derived by applying the STFT with the same
window parameters as in Subsection 4.3.1.

Figure 4.2 (left) shows the great dependence of ∆ on r. The
estimated coherence tends to the theoretical values with increasing
values of r. This tendency is better appreciated in Fig. 4.2 (right):
the curve asymptotically decreases to a value ∆min ≈ 0.
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Figure 4.2: EstimatedB-Format coherence (∆) of a simulateddiffuse
sound field, as a function of the temporal averaging vicinity radius
r. Left: ∆(k) for different values of r, with (coarse) and without
(fine) application of radial filters. Right: mean and standard
deviation of ∆(k) as a function of r.
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Another interesting observation comes from the frequency
response of the curves. For all values of r, the coherence of the
compensated B-Format signal (with Γm(kR)) is roughly flat up to
around 7 kHz, which approximately corresponds to the
operational spatial frequency range of the microphone [Gerzon,
1975a]. Above this value, the coherence response looses the
flatness due to spatial aliasing (Eq. 2.11). The response above the
maximum frequency could be stabilized, if needed, by alternative
diffuseness estimation methods [Politis et al., 2015].

The coherence level differences along frequency are inversely
proportional to r — the effect is better depicted by the standard
deviation values (right). The effect of the radial filters in the
coherence measurement is also shown: for a given r, the shape of
the coherence is always less flat if no filters are applied.
Conversely, in this case, coherence values are always smaller for
the same r. This effect might be explained taking into account the
inter-channel coherence introduced by microphone and encoder
imperfections in real scenarios [Schörkhuber and Höldrich, 2017].

As a remark, the comparison between Figs. 4.1 and 4.2
provides evidence that the application of the spherical harmonic
transform might be able to yield more accurate diffuseness
estimations, due to a better signal conditioning [Epain and Jin,
2016].

Figure 4.3 (left) shows the estimated coherence for the
recorded sound field with N = 5 and I = 64, using a vicinity
radius of r = 1024 (≈ 5 s). The curve is centred around ∆ = 0.25
and presents several spectral peaks, as in the A-Format case. It is
important to notice here that the deviations between the
coherence of the simulated and the recorded sound fields are
much stronger compared to those of Fig. 4.1.
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Figure 4.3: B-Format coherence between microphone signals. Left:
∆ of simulated and recorded (N = 5, I = 64) signals. Right: ε̄ of
the recorded signals coherence across all values of N and I .

This effect can be also appreciated in Fig. 4.3 (right): the mean
squared error is around two orders of magnitude higher in
B-Format. Nevertheless, similar as in Fig. 4.1 (right), ε̄ decreases
with increasing values of N and I . This behavior suggests that the
deviations between the recorded and the simulated coherence can
be to a large degree explained by the low spatial resolution of the
reproduction system; given a higher number of loudspeakers, we
expect that the reproduced diffuseness will tend to the theoretical
expression.

4.4 Conclusions
The diffuseness of a sound field is an important parameter for
several applications. In this work, two different metrics of
diffuseness have been defined and measured with a tetrahedral
microphone subjected to spherical isotropic noise.

The analysis shows, first, the impact of the time-averaging
window length on the B-Format diffuseness estimator. This result
might be useful for designing coherence estimators that are
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parametrized with respect to the length of the analysis
window [Thiergart et al., 2011].

Second, the feasibility of diffuse sound field reproduction by a
spherical loudspeaker array using ambisonics plane-wave
encoding and the geometrical method is studied. Results suggest
that this approach is viable, given a sufficient spatial resolution; a
quantification of the impact of the number of loudspeakers
remains for future work.
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Chapter 5

Sound Event Localization and
Detection

5.1 Introduction
Sound Event Localization and Detection (SELD) refers to the
problem of identifying, for each individual event present in a
sound field, the spatial location Ω, temporal activity Υ, and
sound class κ to which it belongs.

The organization of a dedicated SELD task within the IEEE
AASP Challenge on Detection and Classification of Acoustic
Scenes and Events (DCASE) 2019 can be considered as a milestone
for the development of the SELD research problem. Indeed, a
large number of novel methodologies were developed for the
Challenge, most of them based on Convolutional Recurrent
Neural Networks (CRNN). The performance of the baseline
method, a CRNN that performed jointly the localization and
classification tasks [Adavanne et al., 2018], was vastly exceeded by
a variety of deep-learning based algorithms [Kapka and
Lewandowski, 2019,Cao et al., 2019,Grondin et al., 2019]. Some of
these improvements have been included in the baseline system for
the SELD Challenge of DCASE 2020.
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Despite the predominant trend towards high-complexity
deep-learning architectures, some recent works have been able to
match or even improve CRNN-based methods with regard to
localization, by using parametric analysis of the ambisonic sound
field [Pérez-López et al., 2019,Nguyen et al., 2020b]. Apart from
the benefit derived by their simplicity, these approaches are able
to resolve the case of overlapping events of the same class, a
situation difficult to disambiguate for CRNN-based
methods [Politis et al., 2020].

The present work continues the exploration of possibilities of
parametric SELD methods, focusing on a low-complexity
architecture that makes use of traditional, feature-based machine
learning techniques. The method has been developed in the
context of the SELD task within DCASE 2020 Challenge, and
therefore utilizes the proposed dataset, baseline system and
evaluation metrics.

Finally, it is important to remark that the method described
here is the continuation of an algorithm presented at the DCASE
2019 Challenge [Pérez-López et al., 2019]; both algorithms share a
common structure and a similar approach to the SELD problem.
However, the current proposal tries to solve some of the problems
identified on our early approach, mainly related with a low frame
recall derived from a naive approach to event segmentation.
Moreover, the current method also presents a complexity
reduction, regarding the single-source DOA estimation and the
classifier.
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5.2 System description
The proposed method, referred to as PAPAFIL, can be summed up
in four steps:

1. Estimate single-source time-frequency bins.

2. Use a particle tracking system to estimate event trajectories
and activation times from single-source bins.

3. Perform spatio-temporal filtering on the input signal.

4. Assign a class label to the estimated event.

A scheme of the method is shown in Fig. 5.1.

Figure 5.1: Architecture of the proposed methodology.

5.2.1 Single-source estimation
The first step is the transformation of the B-Format input signal
xmn (t) using the Short-Time Fourier Transform (STFT) into the
time-frequency (TF) signal Xm

n (k, n).
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In the resulting spectrogram, the frequencies above a given limit
fmax are discarded; this procedure speeds up the method while
maintaining the directional information, given that themicrophone
geometry produces spatial aliasing above approx. 5 kHz [Bertet
et al., 2006].

Assuming that the sources are sparse in time-frequency, it
could be possible to identify TF bins which contain a significant
energetic contribution from only one source. These bins could be
then used to produce accurate DOA estimates. The effectiveness
of this approach has already been demonstrated [Tho et al.,
2014,Nguyen et al., 2020b].

Single-source TF bins are computed from the DirAC parametric
analysis. A variety of alternative subspace methods are known
[Epain and Jin, 2016,Madmoni and Rafaely, 2018]; however, those
methods require local estimation of eigenvalues through the Spatial
Covariance Matrix (SCM), which is a computationally expensive
procedure; this is the main reason for the choice of DirAC-based
analysis in this work.

A TF bin is counted as single-source if its diffuseness Ψ(k, n) is
lower than a threshold Ψmax. Diffuseness is computed here using
Eq. 2.31. Finally, the DOA Ω(k, n) of the TF bins passing the
aforementioned single-source test is computed as the angle of the
active intensity vector by Eq. 2.29. To illustrate the process, an
example of the method output is plotted in Fig. 5.2 (top).

5.2.2 Particle tracking
Once a set of reliable TF DOA estimates is obtained, the next step
is the generalization of the individual measurements into
trajectories and temporal activations. In our case, we opted for the
Rao-Blackwellized Monte-Carlo Data Association (RBMCDA)
algorithm [Särkkä et al., 2004], which decomposes the multiple
target tracking problem in two: it solves first the data association
problem, and then performs the single target tracking
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Figure 5.2: Estimation of localization and temporal activation.
Top: azimuth spectrogram after diffuseness mask; color indicates
estimated position of a TF bin passing the single-source test.
Bottom: input/output of the particle tracking; the crosses represent
the measurement space, and the continuous lines are the resulting
events.

individually. This method has been recently used in the context of
sound event localization and tracking with successful
results [Adavanne et al., 2018, Adavanne et al., 2019b]; the code
used for our implementation has been adapted from the same
authors1.

1https://github.com/sharathadavanne/multiple-target-tracking
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The system takes as the input the set of TF DOA values passing
the single source test, and produces spatio-temporal event
trajectories, considering an event as an entity with contiguous
temporal activation and continuous spatial position. More
specifically, for each time frame, the median2 of all narrowband
masked DOA estimates is computed. The resulting value is added
to the measurement space of the tracker if the number of
single-source frequency bins for that frame exceeds a minimum
Kmin.

The performance of the RBMCDA algorithm is controlled by
several parameters. Some of the most relevant ones are the
angular velocity prior v, the standard deviation σν and the
spectral density sν of the measurement noise, the prior
probabilities of birth pbirth and noise percentage pν , and the
number of Monte-Carlo particles N . Position-related parameters
are adjusted with respect to their ranges, so that azimuth-related
magnitudes double elevation values.

The procedure is followed by a numerical post-processing step,
which includes data interpolation, resampling (if needed), and
removal of elements shorter than Tmin. Finally, the system
provides a list of J events, each one having an instantaneous
position Ωj(t) and a temporal activation Υj . An example of the
system inputs and outputs is depicted in Fig. 5.2 (bottom).

5.2.3 Signal filter
The information provided by the particle tracking system is used
to spatially filter the input signal. This can provide an enhanced
monophonic estimate of an event s̃j(t) with reduced influence of
simultaneous events. The process is performed by steering a
virtual first-order cardioid in the direction of interest, using
Eq. 2.15. The result of this process is a monophonic estimate for
each event, s̃j(t), temporally delimited by Υj . As a last step, each

2Circular median in the case of azimuth.
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estimate is amplitude peak-normalized, in order to minimize
potential amplitude variability due to arbitrary configurations of
the scene.

5.2.4 Event classification

As a final step, a class label is assigned to each estimated event
s̃j(t) using a single-class classifier. Since the objective is to keep
complexity low andmake results interpretable, a machine learning
algorithm is used instead of deep learning frameworks. The main
advantages of this choice are: (i) low number of parameters; (ii)
low train and predict computational time, easing reproducibility;
and (iii) relative importance of the features in the output can be
interpreted, which is not possible with deep learning approaches.

Gradient Boosting Machine (GBM, Fig. 5.3) has been selected
as the classification algorithm since it is a powerful yet simple
technique for predictive modeling. In essence, the algorithm is
aimed to minimize the loss of the objective function by adding
many weak learners. These learners are typically simple decision
trees and their parameters are tuned using gradient descent
techniques. GBM implementation makes use of the scikit-learn
library [Pedregosa et al., 2011].

Sound features are obtained using extractors from Essentia, an
open-source library for audio analysis [Bogdanov et al., 2013].
Given the heterogeneous nature of the sound classes, a mixture of
spectral, temporal and harmonic features are used, as shown in
Table 5.1. Features are be computed either frame-based or on the
whole event; in the former case, the classifier is fed with their
temporal first-order statistics.
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Figure 5.3: Gradient boosting machine learning process. Adding
weak estimators allows reducing overall error in the predictions.

Table 5.1: Acoustic features used for classification, groupedby type.

Type Features Number

Low-level Mel bands 24
MFCC 13

Spectral Features 26

SFX Duration 2
Harmonic 4

Sound envelope 11
Pitch envelope 4

5.3 Experiments

5.3.1 Dataset and baseline system

The dataset used is the FOA subset of the development set of the
TAU-NIGENS Spatial Sound Events 2020 [Politis et al., 2020], which
features 600 different B-Format clips of 60 seconds long each. Each
clip contains multiple sound events, which belong to one of the
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fourteen sound classes from the NIGENS database [Trowitzsch
et al., 2019]. Events are also located at a potentially time-varying
positions, and the maximum instantaneous overlapping of
sources allowed is limited to two. Fifteen different Room Impulse
Responses (RIR) are used for scene reverberation, covering a vast
range of acoustic conditions. Furthermore, the audio clips contain
a moderate amount of recorded background sounds.

The baseline method is based on the recently proposed
SELDnet architecture [Adavanne et al., 2018], which features a
Convolutional Recurrent Neural Network (CRNN) that solves
both localization and classification problems jointly. Additionally,
the baseline implementation has been improved with several
changes inspired by one of the best performing methods in
DCASE 2019 Task 3 Challenge [Cao et al., 2019].

5.3.2 Experimental setup
In order to explore the performance of the system, two different
approaches have been undertaken regarding the creation of the
training dataset for the monophonic single-class classifier. The first
approach, referred to as PAPAFIL1, collects all event localization,
temporal activation and class informationbyparsing the annotation
files. Conversely, the second approach, called PAPAFIL2, uses the
proposed parametric particle filter to estimate localizations and
activations, and the class label is assigned to each event by a custom
association algorithm based on spatio-temporal distance. In both
cases, the input signal is filtered with the obtained information in
order to conform the monophonic event estimates.

Therefore, the difference between training datasets is
noticeable: while the training events in PAPAFIL1 are more
accurately determined than in PAPAFIL2, the differences with
respect to the prediction scenario are much bigger in the former
case. The number of individual events for each of the approaches
is plotted in Fig. 5.4. Approximately half of the classes have
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Figure 5.4: Number of occurrences of each event class in the training
set, for both proposed methods.

similar number of instances in both datasets. However, the other
half presents noticeable differences, which might be explained by
the different criteria applied for the consideration of event
temporal activations: the groundtruth seems to follow a
frame-based activity detection approach, while the output of the
proposed method tends to consider events as time-continuous
manifestations, influenced by the particle filter.

This situation leads to two different oracle systems (referred to
by appending -O in the method name), which represent the best
performance theoretically achievable for the corresponding
method.

The accurate information of the PAPAFIL1 training set suggests
a need for data augmentation; in contrast, the training material
used in PAPAFIL2 is already provided by a certain extent of
variability. This situation motivates the implementation of data
augmentation methods in the PAPAFIL1 training set. Specifically,
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several standard data augmentation techniques are implemented:
pitch shifting, time shifting, time stretching and white noise
addition. Furthermore, given the observed high influence of
reverberation in the system performance, a reverberant data
augmentation technique based on synthetic RIRs has been
considered. Ten different single-channel RIRs, with reverberation
times between 0.3 and 1.1 seconds, have been synthetically created
using the masp library [Pérez-López and Politis, 2020]. During
training, each event estimate is convolved with one of the RIRs,
randomly chosen. RIR augmentation has recently been shown
very effective for blind reverberation time estimation [Bryan, 2020]
but, to the best of the authors’ knowledge, this is the first
application in SELD.

Table 5.2 shows a comprehensive list of the parameters used
throughout the different steps of the proposed method. All values
are equal for both presented approaches, except for the number of
Monte-Carlo particles N . The values for Single-Source Estimation
and Particle Filtering parameters have been iteratively refined by
manual tuning and inspection, departing from standard values.
The beamforming weights αm correspond to the maximum
directivity beamformer, which minimizes the energy contributions
from directions other than the lookup direction [Rafaely, 2015]. In
the spatial audio field, such property is also known as the max-rE
decoder [Daniel, 2000]. Regarding event classification, a
cross-validation scheme has been implemented for tuning GBM
hyperparameters.

5.3.3 Evaluation metrics
The system is evaluated according to the joint metrics proposed in
the Challenge [Mesaros et al., 2019]. The metrics evaluate jointly
the localization and the classification, and are divided into two
types: location-aware classification, and classification-aware
localization. There are two classification metrics: Error Rate
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Table 5.2: (Hyper-)parameter values.

Step Parameter Value Unit

Single-Source sample rate 24 kHz
window size 2400 samples

window overlap 50 %
fmax 6 kHz
NΨ 2 frames
Ψmax 0.1

Particle v 2 ◦/frame
Filtering σν 5

sν 20
pbirth 0.25
pν 0.25
N 100 / 30

Kmin 10 bins/frame
Tmin 10 frames

Signal α0 0.775
Filter α1 3 * 0.4

Event number of estimators 1300 trees
Classification loss mlogloss

learning rate 0.05
max depth 4

min samples leaf 10 samples

(ER20) and F-Score (F20). As the name suggests, the metrics are
conditioned to a minimum localization performance, which is set
to 20◦ in this case. Localization metrics are also two-fold:
Localization Error (LECD) and Localization Recall (LRCD); as their
name suggests, the metrics are class-dependent, and thus are
conditioned to a correct classification. Finally, the SELD score is
an average of the four other metrics, used to conveniently sum up
the results.
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Table 5.3: System evaluation. Top: results on the cross-validation
development set. Bottom: results on the evaluation set.

Method ER20 F20 LECD LRCD SELD

BASELINE 0.70 39.5 % 23.2◦ 62.1% 0.45
PAPAFIL1 0.60 49.8 % 13.4◦ 54.4 % 0.41
PAPAFIL2 0.57 54.0 % 13.8◦ 59.7 % 0.38

PAPAFIL1-O 0.37 67.0 % 2.0◦ 68.6 % 0.26
PAPAFIL2-O 0.32 79.6 % 8.5◦ 82.4% 0.19

BASELINE 0.72 37.4 % 22.8◦ 60.7 % 0.47
PAPAFIL1 0.55 56 % 12.8◦ 61.1 % 0.36
PAPAFIL2 0.51 60.1 % 12.4◦ 65.1% 0.33

5.4 Results

Table 5.3 summarizes the results of the experiments for
development and evaluation datasets. Results on the
development set have been computed using the provided
cross-validation scheme: split 1 for testing, split 2 for validation,
and splits 3 to 6 for training.

Results are reported for threedifferent systems: the baseline and
the two proposed methods PAPAFIL1 and PAPAFIL2. The results
of their respective oracle results, PAPAFIL1-O and PAPAFIL2-O, are
also provided for the development set.

Regarding the development set, both proposed approaches
outperform the baseline system in three out of the four evaluation
metrics (ER20, F20 and LECD). Although the results obtained by
both of them are similar, PAPAFIL2 obtains better classification
scores (ER20 and F20), and PAPAFIL1 performs subtly better
regarding localization error (LECD). However, the localization
recall results (LRCD) are slightly worst than the baseline in both
cases. This fact does not prevent the proposed methods to have a
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SELD score better than the baseline: 0.41 (PAPAFIL1) and 0.38
(PAPAFIL2), against 0.47 (BASELINE).

The results obtained by the oracle methods are within the
expected ranges. PAPAFIL1-O performs almost perfectly
regarding LECD, but the classification errors influence the LRCD
result. In turn, PAPAFIL2-O performs better than PAPAFIL1-O
regarding all metrics, excepting LECD; this improvement is
specially noticeable in LRCD, with a performance difference of
about 15%.

Thegood results obtainedbyPAPAFIL2-Ovalidate theproposed
particle filtering approach, and leave space for improvements that
might be given by a better understanding and fine tuning of the
model.

The overall tendency is maintained in the evaluation set
results. Both proposed methods outperform again the baseline,
improving the development set SELD score in five points; since
the baseline slightly decreases the performance for the evaluation
set, the score difference with respect to the proposed methods
diverges significantly. PAPAFIL2 is the method that clearly
performs better on the evaluation set, with better results than
PAPAFIL1 in all evaluation metrics.

The performance of the proposed methods deteriorates
noticeably with overlapping sounds. A closer inspection to the
development set results reveals that, in many occasions, the TF
bins passing the single-source test mostly belong to one out of two
simultaneous sources. It is a known issue that performance of
DirAC diffuseness is reduced when two sources are
present [Epain and Jin, 2016]; similar problems have been
reported in [Adavanne et al., 2019b], where an instantaneous
source number estimator is used in combination with the particle
filter. As in that case, the results suggest the need for more
sophisticated source detection and counting methods.
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Figure 5.5: Most representative features in event classifier.

Fig. 5.7 shows the relative importance of the fifteen most
relevant acoustic features for the PAPAFIL2 classifier model. Event
duration is clearly the feature with the highest importance, and
effective duration (duration of the signal discarding silence) also
appears in the eighth position. This fact can help to explain the
better performance of PAPAFIL2 over PAPAFIL1: the temporal
activities of the events in training and prediction are much more
similar to each other in the former method, as a consequence of
the training set generation approach. In order to provide a deeper
insight on the temporal characteristics of the data under
consideration, the durations of all sound events in the PAPAFIL2
training set are summarized in Figure 5.6.
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Figure 5.6: Event durations of all elements in the PAPAFIL2 training
set.

Furthermore, it is interesting to notice the high relevance of
low-level features; specifically, several MFCC combinations (eight
of the fifteen reported features) and various extractors related to
the spectral structure. The absence of pitch, harmonic and
envelope features in the list represents also a significant finding.

The results of the DCASE 2020 Challenge for the SELD task are
shown in Table 5.4. The method entries corresponds to the best
scoring method for each team submission, respecting the naming
conventions established for the Challenge. Accordingly, PerezLopez
refers there to the PAPAFIL2 method. The final rank is computed
as the cumulative rank across all evaluation metrics, sorted by
ascending order. The data has been taken from the Task results
website [DCASE, 2020], which provides complete information
regarding the challenge.
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Table 5.4: DCASE 2020 Challenge Task 3 evaluation results

Rank Method ER20 F20 LECD LRCD SELD

1 Du 0.20 84.9 % 6.0◦ 88.5 % 0.12
2 Nguyen 0.23 82.0 % 9.3◦ 90.0 % 0.14
3 Shimada 0.25 83.2 % 7.0◦ 86.2 % 0.15
4 Cao 0.36 71.2 % 13.3◦ 81.1 % 0.22
5 Park 0.43 65.2 % 16.8◦ 81.9 % 0.26
6 Phan 0.49 61.7 % 15.2◦ 72.4 % 0.30
7 PerezLopez 0.51 60.1 % 12.4◦ 65.1 % 0.33
8 Sampathkumar 0.53 56.6 % 14.8◦ 66.5 % 0.35
9 Patel 0.55 55.5 % 14.4◦ 65.5 % 0.38
10 Ronchini 0.58 50.8 % 16.9◦ 65.5 % 0.39
11 Naranjo-Alcazar 0.61 49.1 % 19.5◦ 67.1 % 0.38
12 Song 0.57 50.4 % 20.0◦ 64.3 % 0.38
13 Tian 0.64 47.6 % 24.5◦ 67.5 % 0.40
14 Singla 0.88 18.0 % 53.4◦ 66.2 % 0.58
15 Baseline 0.69 41.3 % 23.1◦ 62.4 % 0.45

It is important to remark that, apart from our proposed
method, all other systems rely completely on deep learning
algorithms, specially making use of different configurations and
combinations of CRNNs.

The only exception to that tendency is the method presented
by Nguyen and colleagues, which is an adaptation of their
recently proposed methodology [Nguyen et al., 2020a, Nguyen
et al., 2020b]. In this method, localization is also based on the
identification of the single-source TF bins; instead of DirAC
diffuseness, they use a subspace analysis to find the TF bins
associated with nearly rank-1 spatial covariance matrices.
Furthermore, the instantaneous DOA estimates are obtained by
finding the azimuth and elevation histogram peaks, with the
steering directions obtained from the covariance matrix diagonals.
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While this method might contribute to provide a smaller
localization error compared with our approach (9.3◦ versus 14.2◦
in LECD), it is more expense computationally, since it involves
building a SCM for each TF bin, plus peak picking in two 1D
histograms (one for each spherical coordinate). However, the
LECD results are also influenced by the classification accuracy; a
deeper analysis would be required to perform a direct comparison
of both approaches.

Table 5.4 also highlights the good result obtained by our
method regarding localization error: it is the fourth best method
with respect to LECD. Moreover, the two model-based localization
methods (our system and Nguyen) rank fourth and second in the
LECD classification, respectively. This result suggests that
parametric spatial audio analysis, combined with a robust
tracking system, is able to produce state-of-the-art localization
results in the context of SELD.

To conclude the analysis, Figure 5.7 shows the relationship
between the system complexity, measured in number of
parameters of the model, against SELD score, for all submitted
systems, denoted by their ranking position. The overall tendency
is clear: the higher the number of parameters, the better (smaller)
the SELD score; the regression curve, computed from all
observations, confirms such tendency. It must be noticed that the
presented method (7 in the Figure) lies outside the 95% confidence
interval of the regression curve (shaded area). In other words, its
SELD score is significantly better than the tendency observed from
all submissions, considering the system complexity. Figure 5.7
also highlights the great difference in complexity among
submissions. Between our method (the less complex, with 20k
parameters) and the first scoring method (the most complex, with
123M parameters) there are four magnitude orders of different,
constituting a remarkable difference. The logarithmic mean of all
submitted systems’ complexities is around 2.3M parameters.
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Figure 5.7: DCASE 2020 Task 3 submissions: complexity versus
SELD score.

5.5 Conclusion
We present a novel low-complexity method for Sound Event
Localization and Detection of First Order Ambisonic signals,
based on four steps: estimation of single-source spectrogram
regions by parametric analysis; computation of event trajectories
and activations by means of a particle tracker; spatio-temporal
filtering of the input signal; and single-class monophonic event
classification by Gradient Boosting. Results show that the
proposed method outperforms the baseline method, a
state-of-the-art Convolutional Recurrent Neural Network.
Specifically, our method is able to improve the baseline SELD
score by almost ten points, while increasing the scores in three out
of the four metrics under consideration.
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Chapter 6

Data generation and storage

6.1 Introduction
This chapter gathers several proposals related with the creation,
storage and transmission of ambisonic data for research purposes.
The main objective of the contributions described here is the
support for the generation of parametrizable ambisonic datasets,
using both synthetic and recorded materials, and specifically
emphasizing the usage of Room Impulse Responses.

Most of the contributions listed here (and also most of the code
developed for this thesis) have been implemented in Python.
Indeed, Python has recently become one of the most used
programming languages worldwide [Robinson, 2017, PYPL,
2020,TIOBE, 2020]; as shown also in Figure 6.1.

One of the reasons behind this tendency shift is the popularity
of the language among machine learning and data science
communities, fields where Python holds the first place by
usage [Elliott, 2019]. Since data-driven paradigms currently
conform the state-of-the-art of many applied sciences, including
audio signal processing, the availability of convenience Python
packages and libraries is therefore of the highest interest to the
research community.
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Figure 6.1: 2018 projections of future internet traffic for major
programming languages. Adapted from [Robinson, 2017].
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It is important to remark the predominant position that Matlab
has always had regarding scientific computing. Indeed, it is still the
tool of choice for many researchers, and the availability of libraries
is accordingly very high. But the aforementioned tendency shift
towards Python causes, as a side effect, the lack of many tools
developed in Matlab by the research community.

AlthoughMatlab code can be called and executed from Python,
in practice this approach is suboptimal under several criteria. A
better solution in the long run is the effective port of the code
towards native Python code. Some of the libraries presented in this
Chapter are partially or totally motivated by this scenario.

6.2 MASP: a Python library for
multichannel acoustic signal
processing

6.2.1 Description
The Multichannel Acoustic Signal Processing (MASP) is a Python
library consisting of a collection of methods related with acoustics
and microphone array processing. The library is mostly a
transcoding from several Matlab libraries by A. Politis [Politis,
2016,Politis, 2020]. It can be conveniently installed using pip.

MASP implements a variety of methods for the simulation and
analysis of reverberant acoustic scenes, with emphasis on
microphone arrays with spherical geometries. More specifically,
MASP is structured in submodules, with the following structure :

Array Response Simulator Simulation of spherical microphones:

• Rigid/open configurations.
• Scattering simulation.
• Arbitrary capsule distances, positions and directivities.
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Shoebox RoomModel Fast implementation of the Image Source
Method [Allen and Berkley, 1979]:

• Convex 3D rooms.
• Arbitrary number of sources and receivers, with

arbitrary positions, orientations and directivities.
• ISM expansion limited by order or time.
• Frequency-dependent wall absorption.
• RIR with spherical harmonic expansion.

Spherical Array Processing Transformation and analysis of
signals measured with a spherical microphone array:

• A2B conversion with theoretical or measured filters.
• Signal-independent beamforming.
• Signal-dependent and adaptive beamforming.
• Direction of Arrival estimation.
• Diffuseness estimation.

Spherical Harmonic Transform Mathematical convenience tools.

The library implements a Unit Testing system, which
numerically assesses the validity of the methods. More
specifically, each function test calls the equivalent Matlab code
under the hood. The numeric result is then sent back to Python,
where it is evaluated against the own result.

In Figure 6.2, obtained with the Array Response Simulator
package, the frequency response of a spherical microphone array
to a plane-wave with varying incidence angle is shown. The array
consists of a 2nd order supercardioid and a 3rd order
hypercardioid, located at opposite directions of an open sphere,
both of them facing front.
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Figure 6.2: Frequency response of an arbitrary spherical array.

One of the features of the Spherical Array Processing package
is shown in Figure 6.3. The plot shows the evaluation of radial
filters Γn(kR) for an arbitrary spherical array, generated by
inverting the theoretical response of the array [Bertet et al., 2006].
The evaluation is performed following the metrics presented in
the same paper, which compare spatial correlation, level
difference and maximum amplification with respect to the ideal
case.

6.2.2 Related software
There exists another recent Python library which covers a similar
scope: pyroomacoustics [Scheibler et al., 2018]. This framework
provides an object-oriented interface with two main application
scopes: allow RIR simulation of complex rooms based on the
image source method, and provide a reference implementation of
standard microphone array processing algorithms.
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Figure 6.3: Evaluation of radial filters for an arbitrary spherical
microphone array.

Although some of the features are common to both libraries,
there is a significant difference regarding their target usage. While
MASP primarily focuses on spherical geometries, pyroomacoustics
is more concerned about arbitrary room geometries and
computational performance. Therefore, both libraries might be
considered as complementary to some extent. A comparative list
of their features is shown in Table 6.1.
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Table 6.1: Features ofMASP compared to pyroomacoustics.

Package Feature MASP PRA

Shoebox Convex 3D room X X
Room Non-convex 3D room - X
Model Arbitrary #sources X X

Arbitrary #receivers, arrays X X
ISM by max_order X X
ISM by max_time X -
Wall absorption X X

Frequency-dependent absorption X -
Plot methods - X
RIR rendering X X

Audio simulation X X
Acoustic descriptor estimation X -

Microphone orientation X -
Custom microphone directivity X -

RIR Spherical Harmonic Expansion X -

Array Rigid spherical arrays X -
Simulator Arbitrary capsule geometries X -

Recorded array IRs X -

Spherical A2B conversion X -
Processing Beamforming X X

Plane-wave decomposition X -
Nullformer X -

Adaptive Beamforming X -
Adaptive Filtering - X
DoA Estimation X X

Diffuseness Estimation X -
Diffuse-field coherence X -
Blind Source Separation - X
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6.3 SOFA

6.3.1 Problem statement

The availability of recorded room impulse responses is of great
importance to many acoustic signal processing problems. Many
different RIRs can be obtained from the same room, just by
varying the position of the source and the receiver; when the
number of source and receiver positions increases, the total
amount of measurements increases geometrically. Besides that,
the final format and organisation of the produced data (not only
the RIR themselves, but also the source/position annotations) can
be arbitrarily different when produced by different groups of
people.

In order to overcome potential interoperatibility and
reusability issues, the Spatially Oriented Format for Acoustics (SOFA)
convention [Majdak et al., 2013], also known as the AES-69
standard [Majdak and Noisternig, 2015], proposes a unified file
format for the storage of IR-related data. Despite that SOFA was
initially created with an emphasis on Head-Related Impulse
Response (HRIR) data, the framework that SOFA provides can be
potentially applied to a variety of recording procedures and
audio-related data. Such variety is associated with the concept of
conventions: a specific data structure designed to hold a concrete
type of data or measurement. Some examples of widespread
conventions might be SimpleFreeFieldHRIR (for anechoic binaural
measurements), SimpleHeadphoneIR (intended for storing
headphone impulse responses), or MultiSpeakerBRIR (for binaural
RIRs measured from loudspeaker arrays), to name a few of them.
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6.3.2 Ambisonics Directional Room Impulse
Response as a SOFA convention

Given the intrinsic spatial characterization capabilities of
ambisonics, Gerzon proposed the technique as a potentially
successful candidate format for acoustical heritage preservation,
as early as 1975 [Gerzon, 1975b].

The increase in popularity of ambisonics since the beginning of
the present century has turned this idea into reality; OpenAIRlib,
a freely accesible dataset that gathers dozens of RIRs, might be a
good example of it [Murphy and Shelley, 2010,OpenAIRlib, 2010].

In any case, the usage of recorded ambisonic RIRs is not
limited to the field of acoustic heritage. Among others, the
availability of such recordings has powered works in a variety of
works, auralization [Postma et al., 2016], room acoustics
analysis [Embrechts, 2015, Clapp et al., 2011] and
modelling [Romblom, 2017], spatial audio synthesis [Coleman
et al., 2017] or source separation [Baqué et al., 2016].

In general, all publicly available ambisonic RIR measurements
share some common approaches for describing and organizing the
recorded data. For instance, recordings from different rooms are
usually stored as separated folders. Each combination of emitter
and receiver positions is often saved as an individual file, and the
different spherical harmonicsmatch the audio channels. Moreover,
it is also usual to provide a metadata file, describing the different
emitter and receiver positions, and potentially some information
about the measurement setup, methodology, etc. Such files might
be formatted as plain text or delimiter-separated files.

Despite the common approach, it can be easily foreseen that
each database generated by a different individual or institution
might potentially have a different naming convention, folder
structure, file format, and so on. This is exactly the same situation
that motivated the development of the SOFA conventions.
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On the other hand, the SOFA specification defines some criteria
that must be fulfilled in order to propose a new convention [SOFA,
2018]. These criteria are:

1. Data must exist.

2. Data can not be described by existing SOFA conventions.

3. Relevant information about the data must be available.

Given that the described situation meets all requirements, the
Ambisonics Directional Room Impulse Response (AmbisonicsDRIR)
convention has been therefore proposed as SOFA convention.

The technical specifications of the proposed convention in its
current state (version 0.2) are available online [Pérez-López and
de Muynke, 2018].

6.3.3 Pysofaconventions

The situation described in Section , regarding the availability of
acoustic signal processing libraries in the Python programming
language, can be easily extended to the case of SOFA APIs.

The library pysofaconventions has been created with the aim to
provide an alternative to the existing Matlab/Octave and C/C++
implementations. For ease of installation, it is integrated in the
standard python package manager, pip.

The current software version is 0.1.5. The library structure is
inspired by the C++ implementation [Carpentier, 2018]. It features
all functionalities described by SOFA version 1.0, plus the
proposed AmbisonicsDRIR convention. The implementation is
based on extensive error checking, to ensure code consistency.
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6.4 Ambiscaper

6.4.1 Motivation
The availability of data is a fundamental requirement for research.
More specifically, in the scope of the B-Format data analysis in
which this thesis focuses, audio is frequently generated on an
IR-based manner, employing both acoustic simulations and
recordings. In that way, the analysis can focus on different signal
types, such as speech or music, usually employing dedicated
external datasets.

An alternative procedure for ambisonic data generation is the
actual recording of sound scenes with spherical microphone
arrays. Although this procedure might yield the most realistic
sound field representations, the high cost, lack of scene control,
and technical difficulty to obtain reliable groundtruth annotations
lead to a limited usage of the technique, often reserved for real-life
algorithm validation.

It is of interest to have an insight of the diverse methods used
in the literature for ambisonic sound generation. Table 6.2
summarizes the information gathered from works on the scope of
sound source localization and separation, which have been
published until 20181. The table displays, for each article, how the
evaluation data was generated, and which was the type of audio
content considered.

The statistics of the global usage of each generation method
show that there is not a clear tendency towards any method.
Nevertheless, it is also noticeable that the methods with

1The original research to which this section refers was conducted in 2018,
for the publication of [Pérez-López, 2018a]. Since then, the outbreak of
localization-related challenges, such as LOCATA 2018 and specially DCASE 2019
and 2020, and the consolidation of data-based methods, has largely contributed
to the homogenization of datasets [Evers et al., 2020,Adavanne et al., 2019a,Politis
et al., 2020]. Still, most assumptions and results of our analysis continue to hold
at present.
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Article Data Generation Method Audio Content

[Thiergart et al., 2009] Audio recording Speech
[Tervo, 2009] Audio recording Noise, music

[Jarrett et al., 2010] IR simulation, audio recording Noise
[Nadiri and Rafaely, 2014] IR simulation, audio recording Speech

[Moore et al., 2015] IR simulation Speech
[Pavlidi et al., 2015] IR simulation Noise, speech
[He and Chen, 2017] IR simulation, audio recording Speech

[Gunel et al., 2008] IR recording Speech, music
[Shujau et al., 2011] Audio recording Speech

[Riaz, 2015] IR recording Speech, music
[Chen et al., 2015] IR simulation, IR recording Speech

Table 6.2: Summary of audio data used across Ambisonics-based
Source Localization (above) and Source Separation (below)
methods.

evaluations performed on real recordings make use of only one
one sound scene in each case. In contrast, when using IR-based
scenes, the number of audios evaluated are usually one or two
magnitude orders greater.

In addition, it is important to notice the lack of availability of
the generated data. None of the analyzed articles provide a way to
access neither the used audio dataset, nor the groundtruth
(position annotations in the case of localization, and original
sound sources for sound separation). Only when simulated IRs
are used, it is possible to partially replicate the experimental setup
— the parameters used in the simulation software are usually
provided. Furthermore, the process of dataset creation seems to
be performed ad-hoc in each case.

Taking into account the flexibility offered by IR-based scenes, it
would be desirable to have a tool for automatic generation of
ambisonics scenes, and their associated annotations, for analysis
purposes. A tool with such characteristics would help the
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scientific community in several ways: (i) reducing the amount of
time dedicated to build custom datasets, (ii) reusing publicly
available resources and recordings, and (iii) enhancing
experiment reproducibility by making easier the exchange of
datasets. Moreover, the capacity of batch processing of large
ambisonic collections might also contribute to the development of
data-driven approaches.

6.4.2 Implementation
AmbiScaper is a tool designed to provide a flexible way of creating
complex ambisonics sound scenes and their associated
groundtruth annotations, to be used in the context of source
localization and separation algorithms. AmbiScaper offers a high
level control of the sound scene parameters, and provides a
simple interface for the creation of large datasets with custom
characteristics. AmbiScaper is based on Scaper, a framework
designed to generate annotations for training Sound Event
Detection models [Salamon et al., 2017].

One of the main features of AmbiScaper is that all parameters of
the sound scene can be specified in a non-deterministic way. In
that sense, the parameters for each event (sound source) are
actually generated through a two-step process. First, in the Event
Specification, all parameters related to an event are defined in
terms of statistical distributions. During the Event Instantiation,
the actual values for each parameter are then sampled from the
statistical distributions. This two-step process allows the user to
describe abstract templates of sound scenes, rather than manually
assigning values to parameters. Therefore, a single event
specification might produce potentially infinite different sound
scenes.
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Figure 6.4: AmbiScaper architecture.

In order to generate a sound scene, AmbiScaper requires three
different inputs: the original mono signals, which will provide the
actual audio content; an optional ambisonic RIR; and an event
specification.

The process of dataset creation starts with the event instantiation,
as described above. Once all values are sampled, three different
types of output are generated: the ambisonic scene; the instantiated
mono signals (the original mono signals after data augmentation);
and the annotations, in the form of a jams file [Humphrey et al.,
2014], containing all information about the instantiated values.

The complete architecture of AmbiScaper architecture is
depicted in Figure 6.4.
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When no reverberation is specified, AmbiScaper can generate
anechoic sound scenes, using the theoretical expression of the
ambisonic encoding as in Eq. 2.12. In this case, there is no upper
limit on the Ambisonics order of the rendered scene.
Furthermore, the anechoic case allows the modification of the
directivity of the source(s) through ambisonic order
downgrade [Carpentier, 2017].

AmbiScaper partially supports RIR-based scene creation. It
features a limited set of recorded ambisonic IRs from the S3A
database [Coleman et al., 2015]; compatibility with the
AmbisonicsDRIR (Subsection 6.3.2) could be easily included. On
the other hand, the usage of simulated IRs is provided through a
wrapper to the Matlab library SMIR Generator [Jarrett et al., 2012].
In this case, the reverberation model specifications are defined as
well in statistical terms, and the generated RIRs are also stored for
evaluation purposes.

6.4.3 Experiment reproducibility
As already mentioned, there is a generalized lack of publicly
available datasets of ambisonic reverberant sound scenes. Even
when using general purpose audio/speech datasets, the actual
evaluation data is usually not available. In that sense, the
potential compatibility of AmbiScaper with public ambisonic RIR
databases is a key aspect for reproducibility, since it would allow
the systematic reutilization of acoustical measurements in the
analysis context.

Furthermore, the output of the AmbiScaper dataset generation
process is not limited to the actual dataset. In fact, the resulting
annotation file does not only contain the instantiation (the actual
values of each parameter in the sound scene), but also the
specification (the statistical distributions from which the
instantiated values are sampled). In the scope of experiment
reproducibility, the exchange of specification files instead of actual
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audio files might greatly reduce the storage capacity and
bandwidth required to transfer large databases.

AmbiScaper is implemented in the form of a Python package,
and is publicly available through the Python Package Index
repository under the GPL license, thus easing the software
adoption and the potential engagement of the scientific
community with the development.

As an example of the potential capabilities of the software, a
sample dataset for the evaluation of source localization algorithms
has been created [Pérez-López, 2018b]. The dataset contains 300
FOA sound scenes, with a duration between 1 and 2 seconds, each
one containing a number of static sound sources between one and
three. Sound sources might have different gains, and they are
located at random positions around the sphere. The sources are
randomly chosen from a subset of the Anechoic OpenAirlib
database [OpenAIRlib, 2010], which mostly contains recordings
from baroque musical instruments. Reverberation makes use of
the AudioBooth RIR from S3A database [Coleman et al., 2015].

6.5 Conclusion
The present Chapter has presented the main contributions of the
Thesis regarding the availability of ambisonic data, specifically
targeting software packages and libraries developed for the
generation and storage of ambisonic sound scenes.

The concept of research reproducibility is directly related with
these topics. According to [Cannam et al., 2012], providing just an
article as a research outcome would not be sufficient for
reproducing the research in a feasible way. Instead,
supplementary material, such as the code implementation, the
dataset, and instructions on how to set up the environment,
should be also conveniently provided.
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In this regard, the software discussed in this Chapter try to
foster reproducible methods and procedures in several different
ways. First, all code is freely available online with open source
licenses. Second, the contributed software is completely written in
Python, which is itself an open-source project. Actually, all code
used in this follows the same path, with with the exception of the
particle tracker used in Chapter 5. And third, the motivation of
the Ambiscaper project itself is the reproducibility of
experimental conditions for signal processing methods using
ambisonic data, as explained in detail in Section 6.4.3.

Regarding the lifecycle of the libraries described in this Chapter,
their status is diverse. Although pysofaconventions has been recently
published in an academic context (AES Convention inMay 2020), it
has been available online for more than a year. In fact, during that
time it has gained amoderate amount of attraction: amongothers, it
is being used as a dependency for theReal-Time SphericalMicrophone
Renderer (ReTiSAR) for binaural reproduction, developed byChalmers
University in collaboration with Facebook Reality Labs [Helmholz
et al., 2019]. Furthermore, given the open nature of the project,
several external researchers have contributedwith bug fixes or new
feature implementations.

The masp library has been also presented in the same context.
However, in this case, the library has not been available beforehand,
so the interest generated in the community has been moderate.

For its part, Ambiscaper has not been able to attract the
community in a significant way. This might be due to a number of
reasons, including not enough dissemination among potentially
interested communities, or a lack of a paradigmatic use-case
situation. On the contrary, the library that inspired this work,
Scaper, has been used for the creation of the dataset in Task 4 of
DCASE 2019 and 2020 (sound event detection in domestic
environments). This situation generates a feedback loop for the
maintenance and improvement of the software, motivated by
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requests from the community. Given this situation, the future of
Ambiscaper is linked to the evolution of the research topics and
tools in the communities which miggt be potentially interested in
using it.
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Chapter 7

Conclusions

7.1 Summary of Contributions
In this thesis we have presented our contributions to different
components of an ambisonics analysis and generation framework,
with a focus on reproducibility and portability to real-world
scenarios. The main scientific objectives of this thesis, as they
were described in Section 1.3, are:

1. The development of methods to support and improve the
characterization of acoustic parameters.

2. The research on parametric-based methodologies for sound
event localization and detection.

3. The contribution in the generation and storage of annotated
ambisonic datasets.

In what follows, we summarize the main contributions of the
present thesis, both in the academic and software scopes.
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Blind reverberation time estimation Chapter 3 presents a novel
methodology for the blind estimation of reverberation time from
ambisonic audio. The method is based on two main steps: first,
dereverberation using a multichannel auto-recursive model
(MAR), and second, estimation of the filter from reverberant and
dereverberated signals. The actual reverberation time value is
estimated from the energy decay of the estimated filter.

The proposed system is the first attempt in the literature to
address the blind reverberation time estimation problem
specifically for ambisonic signals. Compared with a
state-of-the-art monophonic estimator, our method is able to
improve in all the evaluation metrics under consideration.

Coherence estimation In Chapter 4, we have characterised the
response of tetrahedral microphones to isotropic noise field, which
is one of the most used models for diffuse sound. Furthermore,
the capabilities of a spherical loudspeaker array with respect to the
reconstruction of diffuse sound fields using ambisonics are also
quantitatively analyzed.

Sound event localization and detection Chapter 5 describes an
algorithm for sound event localization and detection (SELD),
developed in the context of the DCASE 2020 challenge. The
method estimates the localization and temporal activity of the
sound events based on a particle filter that tracks event trajectories
obtained from the parametric analysis of the ambisonic sound
field. Each event is assigned to a sound class by a machine
learning classifier that uses low- and mid- level audio features.

Results show a significant performance increase in all
evaluation metrics under consideration, compared with a
state-of-the-art deep learning baseline. This suggests that our
approach, substantially different to the baseline and the majority
of state-of-the-art methods, represents a feasible alternative in
situations with low-complexity or small database constraints.
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Data generation and management Finally, the thesis
contributions to more practical aspects are presented in Chapter 6.
Those contributions comprise two software libraries written in
Python: one of them focused on spherical microphone array and
acoustic simulation, and another one implementing the SOFA
standard, which has also been revised and modified for allowing
the representation of ambisonic data. Finally, a novel software tool
for the procedural creation of annotated reverberant ambisonic
datasets has ben also presented.

7.2 Future Work
This thesis has tackled several research problems associated with
the analysis of ambisonic recordings, making use primarily of the
parametric sound field modelling analysis. The presented
techniques improve existing state-of-the-art methodologies, or
present novel approaches for known research problems, which in
turn bring new research questions.

A novel blind reverberation time estimation method for
first-order ambisonic recordings is introduced in Chapter 3.
Among others, the method could be straightforwardly extended
to higher order ambisonic signals, which might still improve the
reported results due to the availability of many more audio
channels. Moreover, the usage of online MAR methods would
enable the possibility of analyzing sound scenes with moving
sources; the statistical time-invariance property of late
reverberation supports this hypothesis. Finally, it is important to
mention that the proposed method is resource-intensive. An
analysis of the trade-off between computation time and evaluation
performance, mostly dependent on the estimation filter length,
remains to be done.
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Given the current interest in the field of augmented reality,
new related research topics emerge. One of them, which has been
recently baptized as acoustic matching [Su et al., 2020], deals with
the analysis of acoustic properties of real enclosures, with the aim
of later introduction of virtual elements whose reverberation
would match real conditions. The application of our method to
the acoustic matching problem is straightforward: given an
ambisonic recording with a target reverberation, estimate its
reverberation time and synthesize a reverberant tail with the
target energy decay; early reflections might be generated by
various methods, including physical models or perceptually
motivated approaches. We can foresee a growing interest on the
topic in the near future; our contribution might help to establish
the foundation of a new family of methods.

Regarding the diffuse field characterization performed in
Chapter 4, an immediate extension of the work would include the
study of different spherical microphone array geometries, from
the ones that are commercially available. The usage of different
models of diffuse fields, specially extending to the anisotropic
case [Alary et al., 2019], might also constitute an interesting
research continuation direction. Both cases could be also applied
to the experiment of diffuse sound field reconstruction using
loudspeaker arrays.

The wide scope of the SELD problem, as described in
Chapter 5, allows for a wide range of possibilities regarding a
potential follow-up of the proposed method. For instance, one of
the major problems of our algorithm is the inaccurate parametric
estimation when two events are simultaneously active. Although
it is a known problem in the literature [Epain and Jin, 2016] , a
successful solution in the given context remains still to be
explored.
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Another source of potential improvements is the refinement of
the particle filter applied to this specific task. A deeper
understanding of control theory, as well as collaborations with
experts on the field, might bring a noticeable improvement on the
overall system performance.

The performance of the event classifier might be also further
analyzed. Although in this case we opted for a classical
feature-based machine learning approach, different methods and
architectures could be compared, including more modern
deep-learning approaches.

Finally, we discuss briefly on the practical contributions
described in Chapter 6. Apart from the straightforward task of
software maintenance, the engagement of the research community
with the usage and eventual contribution of the libraries would
represent a desired situation in the near future. Moreover, the
proposed file format convention is being currently discussed by
the Standardisation Committee on AES-69 Standard, which can be
considered a great achievement of the original proposal. The
results of the discussion might lead to the addition of a modified
version of our proposal into version 2 of the AES-69 Standard.

In the medium term, the application at commercial level of
some of the methods described in this thesis would be a highly
desirable outcome of our research. Such application would
probably imply a re-implementation at the software level,
intended for compatibility with the workflows and formats used
in the VR/AR content production industry.
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7.3 List of Contributions
In the following list we show the main scientific contributions, as
main author, related to this dissertation:

• Peer-reviewed journal articles
"Analysis of spherical isotropic noise fields with an
A-Format tetrahedral microphone". A. Pérez-López and N.
Stefanakis. The Journal of the Acoustical Society of America
146.4 (2019): EL329-EL334.

• Peer-reviewed conference articles
"Blind reverberation time estimation from ambisonic
recordings". A. Pérez-López, A. Politis and E. Gómez.
Submitted to IEEE 22nd International Workshop on Multimedia
Signal Processing, 2020.

"PAPAFIL: a low complexity sound event localization and
detection method with parametric particle filtering and
gradient boosting". A. Pérez-López and R. Ibañez-Usach.
Submitted to Detection and Classification of Acoustic Scenes and
Events 2020 Workshop (DCASE2020).

"A hybrid parametric-deep learning approach for sound
event localization and detection". A. Pérez-López, E.
Fonseca and X. Serra. In Proceedings of the Detection and
Classification of Acoustic Scenes and Events 2019 Workshop
(DCASE2019).
"Ambiscaper: A tool for automatic generation and
annotation of reverberant ambisonics sound scenes".
A. Pérez-López. In Proceedings of the 16th International
Workshop on Acoustic Signal Enhancement (IWAENC). IEEE,
2018.
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• Conference engineering briefs
"Ambisonics directional room impulse response as a new
convention of the spatially oriented format for acoustics".
A. Pérez-López and J. De Muynke. In Proceedings of the 144th
Audio Engineering Society Convention. Audio Engineering
Society, 2018.

"pysofaconventions, a Python API for SOFA".
A. Pérez-López. In Proceedings of the 148th Audio Engineering
Society Convention. Audio Engineering Society, 2020.

"A Python library for multichannel acoustic signal
processing". A. Pérez-López and A. Politis. In Proceedings of
the 148th Audio Engineering Society Convention. Audio
Engineering Society, 2020.

Moreover, although not strictly aligned with the research
direction of this thesis, the author has supervised the following
publication:

"Sound event localization and detection based on CRNN
using dense rectangular filters and channel rotation data
augmentation". F. Ronchini, D. Arteaga and A. Pérez-López.
Submitted to Detection and Classification of Acoustic Scenes and
Events 2020 Workshop (DCASE2020).
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7.4 List of Software Resources
As a result of the development of this thesis, the following
open-source libraries and repositories have been produced. All of
them are freely available through the author’s GitHub
page [Pérez-López, 2020] under open-source licenses.

• Software tools:
masp: Multichannel Acoustic Signal Processing library Tools
for acoustic simulation and spherical array processing.

pysofaconventions Implementation of the SOFA convention
in Python.

AmbisonicsDRIR Ambisonic SOFA Convention proposal.

AmbiScaper Tool for automatic generation of annotated
ambisonic datasets.

• Method implementations:
ambisonic_rt_estimation Contains the code implementing
the methods described in Chapter 3.

DCASE2020 Full code implementing the SELD algorithm
from Chapter 5.

DCASE2019_task3 Implementation of the method submitted
to DCASE2019 (not included in this thesis).
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