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Abstract

Since their inception, more than one century ago, electrical grids have played the role
of a critical infrastructure. During the majority of this time, power systems have not
faced radical changes and, further, they have been mostly based on their traditional
design exclusively allowing one-way power flows (i.e., from power plants to consumers).
In contrast, over the last two decades this paradigm has rapidly changed. On the one
hand, the environmental need for de-carbonization has stimulated the introduction of (i)
green energy through renewable energy sources (RES) such as photovoltaic plants or wind
turbines often exhibiting an intermittent power generation profile; and (ii) Distributed
Energy Resources (DER) such as biomass generators, wind turbines of smaller scale,
battery storage, or electric vehicles. On the other, the de-regulation of energy market
has raised the necessity for substantial cooperation between the energy utilities towards
the exchange of electric power over large geographical areas along tie lines. The latter
entails that a totally independent operation of such areas is not viable anymore, yet
a centralized approach is not applicable either due to the privacy concerns of regional
utilities.

All the above implies that, to start with, power grids must be able to support bi-
directional power flows. And, further, that variations in power generation and con-
sumption must be timely and accurately monitored in order to keep a real-time balance
between power supply and demand. To that aim, engineers and researchers can exploit
recent innovations in measurement technology such as Phase Measurement Units (PMUs)
providing more accurate, frequent and time-synchronized measurements; advanced sig-
nal processing algorithms and optimization tools, and a widespread use of wired and
wireless communication technologies. By doing so, extended intelligence and enhanced
management capabilities can be provided to power grids. This, clearly, brings the notion
of Smart Grids (SG) into play which can be defined as a "a modernized grid that enables
bidirectional flows of energy and uses two-way communication and control capabilities
that will lead to an array of new functionalities and applications". The accomplishment
of this modern paradigm requires the re-design of a number of classical management and
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control strategies running in the operation centers of traditional grids.

Specifically, the main objective of this PhD dissertation is the re-formulation of a key
functionality for the efficient monitoring, control and optimization of electrical networks:
State Estimation (SE). SE can be defined as the determination of complex voltages at
all the buses in a power system from a reduced number of system variables measured in
selected nodes and branches. As one of the main milestones in the smart grid roadmap is
to achieve a tighter interaction between transmission and distribution system operators,
our research has been accordingly divided in two parts. In the first, the study is focused
on the (high-voltage) Transmission Grids (TG), taking into consideration their specifici-
ties. The second, is dedicated to the (medium voltage) Distribution Grid (DG). The
latter presents a number of additional challenges in terms of network topology (radial
vs. meshed), availability of measurement infrastructure (low vs. high), etc; which often
renders the SE problem ill-conditioned.

With respect to TGs, we propose a hybrid SE scheme exploiting both PMU and legacy
measurements. This is a realistic scenario due to the increasing penetration of PMUs in
TGs. The problem suffers from an inherent non-convexity and, thus, we adopt a suc-
cessive convex approximation framework (SCA-SE) to iteratively solve it. Our goal is to
attain increased accuracy and faster convergence rate when compared to other classical
solvers from the literature. To that aim, we exploit second order information from the
initial objective function. Going one step beyond and in line with the aforementioned
operational needs, we consider a multi-area scenario too. Hence, we pose the SCA-SE
problem in a decentralized setting, as opposed to SE hierarchical approaches that can
be found in the literature. Here, our aim is to attain an accuracy comparable to that
of its centralized counterpart in a reduced number of iterations. For the solution, we
resort to the so-called Alternating Direction Method of Multipliers (ADMM). The data
exchange required between the different network areas is very limited and, hence, it pre-
serves privacy between transmission system operators while reducing its computational
cost. Finally, we take into consideration the presence of bad data in the measurement
sets. In this case, we exploit sparsity-promoting techniques and reformulate the problem
in a Least Absolute Shrinkage and Selection Operator (LASSO) optimization framework.
Specifically, we provide joint state estimation and bad data detection (i.e., outlier cleans-
ing), which is in stark contrast with other sequential approaches (e.g., Largest Normalized
Residual Test, LNRT) that can be found in the literature. By doing so, the robustness
of the proposed SE method can be substantially enhanced in variety of scenarios.

In the second part of this dissertation, we address the problem of SE for the distri-
bution grid. Our aim is to propose an algorithm capable of tracking the rapid variations
over the voltage profile resulting from the introduction of renewable energy sources (which
often exhibit and intermittent/non-stationary behaviour), or other components, such as
distributed energy sources/storage or electrical vehicles. To do so, we leverage on the
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recently introduced micro-PMUs (µPMUs) for distribution grids. Specifically, we present
a regularized SE scheme operating at two different time-scales: (i) a robust state esti-
mator that operates at the main time instants when legacy measurements are collected
(e.g., every 15 minutes); and (ii) a regularized SE scheme for a number of intermedi-
ate time instants. For the former, we formulate the estimator as a regularized non-linear
least squares optimization problem, which refers to the regularized version of the Normal-
Equations based SE solution (R-NESE). As for the latter, we present a Weighted Total
Variation State Estimation (WTVSE) scheme which exploits the fact that voltage vari-
ation (drop) in adjacent buses is necessarily limited. The latter allows to overcome the
limited availability of measurements in intermediate time instants (few µPMU data and
possibly zero-power injections, vs. the adequate amount of legacy, µPMU and pseudo-
measurements available at the main time instants) which, otherwise, would render the
SE problem underdetermined. In order to solve the WTVSE problem, we resort to the
ADMM. Further, our goal is to attain high estimation accuracy in feeders of different
characteristics, considering also the presence of active control devices (In-Line Voltage
Regulator, ILVRs). To do so, first we design ad-hoc branch weights for each DG case
and, then, we decompose the WTVSE problem (D-WTVSE) in a number of smaller ar-
eas. Besides, we study the problem of µPMU placement (µPP). Here, our main objective
is to optimize the conditioning of the R-NESE scheme. The problem is posed as a mixed
integer semidefinite programming (MISDP) model and, thus, it can be efficiently solved.
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Resumen

Desde su origen, hace más de un siglo, las redes eléctricas se han erigido como una de
las principales infraestructuras criticas de nuestra sociedad. Durante la mayor parte de
este periodo, dichas redes no han experimentado cambios sustanciales en su arquitectura.
De hecho, se siguen basando principalmente en el diseño original cuyo objetivo era llevar
a cabo una transferencia unidireccional del flujo de energía desde las plantas generación
hasta los consumidores finales. Por el contrario, este paradigma ha cambiado rápidamente
en las dos últimas décadas. Por un lado, la necesidad de reducir la emisión de gases de
efecto invernadero derivados del uso de combustibles fósiles ha estimulado la introducción
de (1) fuentes de energía renovable (FER), tales como plantas fotovoltaicas o turbinas
eólicas, a menudo con un patrón intermitente de generación de energía; y (2) recursos
energéticos distribuidos (DER), tales como generadores de biomasa, turbinas eólicas de
pequeña escala, sistemas de almacenamiento en baterías o vehículos eléctricos. Por otro
lado, la desregulación del mercado energético ha planteado la necesidad de que los opera-
dores cooperen de manera más estrecha en el intercambio de energía eléctrica en grandes
áreas geogríficas mediante las denominadas líneas de enlace. A consecuencia de ello, ya no
es viable gestionar cada una de las redes eléctricas desplegadas en dicha área geográfica
de manera totalmente independiente. Sin embargo, una gestión totalmente centralizada
tampoco es posible habida cuenta de las restricciones de privacidad asociadas a la gestión
de los diferentes servicios públicos regionales.

Por todo lo anterior, es imprescindible que las redes eléctricas acometan un proceso
de modernización. En primer lugar, las redes deben ser capaces de soportar flujos bidi-
reccionales de energía. Además, para mantener el equilibrio entre la oferta y la demanda
energética es necesario también que las variaciones en la generación y el consumo de ener-
gía puedan ser monitorizadas en tiempo real y de manera precisa. A tal efecto, ingenieros
e investigadores disponen de innovaciones recientes en tecnologías de medición, como los
denominados sincrofasores (PMUs, del inglés Phase Measurement Units), que son capa-
ces de proporcionar mediciones más precisas, sincronizadas y a una mayor frecuencia;
de algoritmos avanzados de procesado de la señal y otras herramientas de optimización;
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y de una disponibilidad generalizada de tecnologías de comunicación inalámbricas y ca-
bleadas. De esta manera, es posible aumentar el nivel de inteligencia de dichas redes
eléctricas así como mejorar la gestión de las mismas. Todo ello se traduce en la llegada
de las denominadas redes eléctricas inteligentes (REI), o Smart Grids (SG) en inglés,
que pueden definirse como “una red que permite flujos de bidireccionales de energía en
base a una comunicación y control bidireccionales, lo que permite el despliegue de nuevas
funcionalidades y aplicaciones”. La realización de dicho paradigma conlleva el rediseño de
las estrategias clásicas de gestión y control que se ejecutan en los centros de operación
de las redes tradicionales.

En concreto, el objetivo de esta tesis doctoral es la reformulación de una funcionalidad
clave para la monitorización, control y optimización de las redes eléctricas: la estimación
de estados (SE, por sus siglas en inglés). SE puede definirse como la determinación de
los niveles de tensión (voltaje) complejos en todos los buses del sistema a partir de un
numero reducido de medidas obtenidas en ramas y nodos seleccionados. En la medida
que uno de los hitos principales en la hoja de ruta de la red inteligente es lograr una
interacción más estrecha entre los operadores de sistemas de transmisión y distribución,
nuestra investigación se ha dividido en dos partes. En la primera, el estudio se centra
en las Redes de Transmisión (TG, del inglés Transmission Grids) de alta tensión en
la que se han tenido en cuenta sus especifidades. La segunda parte está dedicada a la
Redes de Distribución (DG, del inglés Distribution Grids) de media tensión. Estas ultimas
presentan una serie de retos adicionales en términos de tipología de la red (radial, en vez
de mallada), y del bajo grado de disponibilidad de infraestructura de medición (que es
elevado en el caso de las TGs), etc. Todo ello hace que el problema de SE, a menudo,
esté mal condicionado en términos algebraicos.

Con respecto a las TG, en esta tesis proponemos un esquema de SE hibrido que apro-
vecha tanto las mediciones obtenidas en los modernos PMUs como en los dispositivos de
medida tradicionales. Este es un escenario realista debido a la creciente penetración de
las PMU en las TG. El problema no es convexo por lo que debemos recurrir a métodos
de aproximaciones convexas sucesivas (SCA-SE) para poder resolver el problema de la
SE de forma iterativa. Nuestro objetivo es lograr una mayor precisión y una velocidad
de convergencia más rápida en comparación con otras soluciones clásicas. Con este obje-
tivo, nos apoyamos en la información de segundo orden disponible en la función objetivo
inicial. Yendo un paso más allá y en línea con las necesidades operativas anteriormente
mencionadas, también consideramos un escenario de redes eléctricas formadas por multi-
ples áreas. Por lo tanto, planteamos el problema SCA-SE en un entorno descentralizado,
a diferencia de otros enfoques jerárquicos de SE disponibles en el estado del arte. Nuestro
objetivo es lograr una precisión comparable a la de la versión centralizada en un numero
reducido de iteraciones. Para solucionar esto, recurrimos al llamado Método de Dirección
Alterna de Multiplicadores (ADMM, por sus siglas en inglés). El intercambio de datos
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requeridos entre las diferentes áreas de la red es muy limitado, y, por lo tanto, garantiza la
privacidad entre los operadores del sistema de transmisión al tiempo que reduce su coste
computacional. Finalmente, tomamos en cuenta la posible presencia de datos incorrectos
en los conjuntos de medidas. En este caso, recurrimos a técnicas de sparsity promotion y
reformulamos el problema en un marco optimización del método LASSO (Shrinkage and
Selection Operator, por sus siglas en inglés). De este modo, somos capaces de obtener de
manera simultanea una estimación del estado y una detección de los datos incorrectos (es
decir, llevar a cabo una limpieza de datos atápicos). Esto representa una clara novedad
respecto a otros enfoques secuenciales como, por ejemplo, el denominado Largest Norma-
lized Residual test (LNRT), entre otros. De este modo, es posible mejorar sustancialmente
la robustez del método de SE propuesto en diversos escenarios.

En la segunda parte de esta tesis, abordamos el problema de SE para redes de distri-
bución. Nuestro objetivo es proponer un algoritmo capaz de monitorizar las variaciones
rápidas de tensión que resultan de la introducción de fuentes de energía renovables (que,
a menudo, presentan un patrón de comportamiento intermitente/no estacionario), y de
otros componentes como fuentes y sistemas de almacenamiento distribuidos de energía
o vehículos eléctricos. Para ello, recurrimos al uso de micro-PMUs (µPMUs) de reciente
introducción en redes de distribución. Así, presentamos un doble esquema de SE regu-
larizado que opera en dos escalas de tiempo diferentes. Por una parte, un estimador
robusto de estados para los instantes de tiempo principales, es decir, cuando se recogen
las medidas en los dispositivos tradicionales (por ejemplo, cada quince minutos). Y, por
otra, un esquema SE regularizado para los instantes de tiempo intermedios. Para el pri-
mero, formulamos el estimador como un problema de optimización no lineal de mínimos
cuadrados, que constituye la versión regularizada de solución SE basada en ecuaciones
normales (R-NESE). Para el segundo, presentamos un esquema Weighted Total Variation
State Estimation (WTVSE) que explota el hecho de que la variación (caída) de tensión
en buses adyacentes es necesariamente limitada. Esto ultimo permite superar la disponi-
bilidad limitada de mediciones en instantes de tiempo intermedios (pocos datos µPMU y
posiblemente inyecciones de potencia cero, frente a una cantidad adecuada de medidas de
dispositivos tradicionales, µPMUs, así como las pseudomedidas disponibles en los instan-
tes de tiempo principales) que, de lo contrario, generaría un problema SE indeterminado.
Para resolver el problema de WTVSE, recurrimos de nuevo al método ADMM. Además,
nuestro objetivo es lograr una alta precisión de estimación en alimentadores de diferentes
características, considerando también la presencia de dispositivos de control activos (los
denominados reguladores de voltaje en línea, ILVR). Para ello, proponemos un diseño
ad-hoc para los pesos de las diferentes ramas de una DG y, a continuación, descompone-
mos el problema WTVSE (D-WTVSE) en áreas más pequeñas. Por ultimo, estudiamos
el problema de la ubicación optimizada de PMUs (µPP, µPMU placement, por sus siglas
en inglés). Aquí, nuestro objetivo principal es optimizar el condicionamiento del sistema
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de ecuaciones del esquema R-NESE anteriormente mencionado. El problema se plantea
en base a un modelo MISDP (Mixed Integer Semidefinite Programming) y, por lo tanto,
puede resolverse de manera eficiente.
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Notation

x A scalar.

x A column vector.

X A matrix.

X A set.

R The set of real numbers.

Rn The set of real n vectors.

Rm×n The set of real m× n matrices.

Sk The set of positive semidefinite k × k matrices.

relint X Relative interior of set X .

dom f Domain of function f .

‖ · ‖ Norm.

(·)T Transpose operator.

X−1 Inverse of matrix X.

I Identity matrix.

max Maximum.

min Minimum.

inf Infimum.

log Logarithm.

arg Argument.

, Defined as.

∇xf(x) Gradient of function f with respect to x.

N (µ,Σ) Real Gaussian distributed vector with mean µ and covariance matrix Σ.

xv



xvi



Contents

Abstract iii

Resumen vii

Acknowledgements xi

List of Acronyms xiii

Notation xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Limitations of the Traditional Electrical Grid . . . . . . . . . . . . 2
1.1.2 The Advent of Smart Grid . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 State of the Art in Power System State Estimation 9
2.1 State Estimation for the Transmission System . . . . . . . . . . . . . . . . 9

2.1.1 Hierarchical State Estimation . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Decentralized State Estimation . . . . . . . . . . . . . . . . . . . . 12

2.2 State Estimation for the Distribution Grid . . . . . . . . . . . . . . . . . . 13
2.3 Phasor Measurement Unit Technology . . . . . . . . . . . . . . . . . . . . 16

2.3.1 µPMUs for the Distribution Grid . . . . . . . . . . . . . . . . . . . 17

3 Mathematical Preliminaries 21
3.1 Convex Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Convex Optimization Problems . . . . . . . . . . . . . . . . . . . . 23

xvii



3.1.3 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Non-convex Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Successive Convex Approximation . . . . . . . . . . . . . . . . . . 26
3.3 Binary Semidefinite Programming . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Convex Optimization for Estimation Problems . . . . . . . . . . . . . . . . 29

3.4.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.2 Regularized Estimation . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Alternating Direction Method of Multipliers . . . . . . . . . . . . . . . . . 31

4 SCA-based Robust and Distributed State Estimation 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Multi-area State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Successive Convex Approximation Approach . . . . . . . . . . . . . . . . . 39
4.5 Distributed Implementation via ADMM . . . . . . . . . . . . . . . . . . . 41
4.6 Robust State Estimation (RSCA-SE) . . . . . . . . . . . . . . . . . . . . . 42

4.6.1 Upper bound on residual errors . . . . . . . . . . . . . . . . . . . . 44
4.7 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.7.1 Centralized scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.7.2 Decentralized (multi-area) scenario . . . . . . . . . . . . . . . . . . 48
4.7.3 Robust approach (RSCA-SE) . . . . . . . . . . . . . . . . . . . . . 53

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.9 Appendix A: Proof for Proposition I . . . . . . . . . . . . . . . . . . . . . 58
4.10 Appendix B: SCA framework for the Robust SE . . . . . . . . . . . . . . . 60

5 A Regularized State Estimation Scheme for a Robust Monitoring
of the Distribution Grid 63
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 A Two-time scale State Estimation Scheme . . . . . . . . . . . . . . . . . 70

5.3.1 Regularized Normal Equations-based State Estimator (R-NESE) . 70
5.3.2 Constrained Weighted Total Variation State Estimator (WTVSE) . 72

5.4 Solving the D-WTVSE Problem via ADMM . . . . . . . . . . . . . . . . . 76
5.5 µPMU Placement (µPP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6.1 R-NESE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.6.2 D-WTVSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.6.3 Numerical Assessment of µPP Algorithm . . . . . . . . . . . . . . 92

xviii



5.6.4 Full scheme: R-NESE and D-WTVSE . . . . . . . . . . . . . . . . 94
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.8 Appendix C: Computational Complexity Analysis . . . . . . . . . . . . . . 98

5.8.1 R-NESE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.8.2 D-WTVSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Conclusions and Future Work 101
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xix



xx



List of Figures

1.1 Segments in a electrical grid. . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 Hierarchical scheme for SE [1]. . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Decentralized scheme for SE [1]. . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Functionalities of the distribution management system based on the esti-
mated state [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Phasor Measurement Units (PMU) block diagram [3]. . . . . . . . . . . . 17

2.5 The µicro Phasor Measurement Unit (µPMU) device [4]. . . . . . . . . . . 18

3.1 If function f is convex and differentiable, then f (y) ≥ f (x)+∇f (x)T (y − x)

for all x and y ∈ dom f [5]. . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Y-equivalent circuit for a two-bus network. . . . . . . . . . . . . . . . . . . 36

4.2 IEEE 30-bus test case [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Absolute error for the magnitude (top) and angle (bottom) estimates in
each bus, for SCA-SE, SDR-SE and NE-SE algorithms. IEEE 30-bus test
case. The parameters has been set as γ = 0.01 and ρ = 10. . . . . . . . . . 48

4.4 Normalized error vs. number of PMUs, for SCA-SE, SDR-SE and NE-SE
algorithms. Parameter set: γ = 0.01, ρ = 10, α = 0.99, β = 0.01. . . . . . 49

4.5 Normalized error vs. iteration number, with (bottom) and without (top)
the approximate Hessian. IEEE 30-bus system. Parameter set: γ = 0.01,
ρ = 10, α = 0.99, β = 0.01 and δ = 10−4. . . . . . . . . . . . . . . . . . . . 50

4.6 Normalized error vs. iteration number for the cases of EV-Hessian and
A-Hessian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.7 IEEE 57-bus test case partitioned in 4 areas [7]. . . . . . . . . . . . . . . . 51

4.8 IEEE 118-bus test case partitioned in 9 areas [8]. . . . . . . . . . . . . . . 52

4.9 Normalized error vs. iteration number for the 4 areas of the IEEE 57-bus
test case. Parameter set: ρ = 30, α = 1 and β = 0. . . . . . . . . . . . . . 52

xxi



4.10 Normalized error vs. iteration number for the 4 areas, the aggregated
decentralized solution and its centralized counterpart of the IEEE 57-bus
test case. Parameter set: γ = 0.01, ρ = 30, α = 0.99, β = 0.01 and δ = 10−4. 53

4.11 Normalized error vs. iteration number for the 9 areas of the IEEE 118-bus
test case. Parameter set: γ = 0.01, ρ = 30, α = 0.99, β = 0.01 and δ = 10−4. 53

4.12 Normalized error vs. number of PMUs with bad data for the IEEE 57-bus
test case. Parameter set: γ = 0.01, α = 0.99, β = 0.01 and δ = 10−4. . . . 54

4.13 Normalized error vs. number of legacy measurements with bad data for
the IEEE 30-bus test case. Parameter set: γ = 0.01, α = 0.99, β = 0.01

and δ = 10−4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.14 Residual error vs. measurement index: PMU - real and imaginary parts
/ IEEE 57-bus (top) and legacy / IEEE 30-bus (bottom). Parameter set:
λ1/α = 6 · 10−3, λ2/β = 3 · 10−4 . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Legacy and µPMU measurements are available at time instants {kT, (k +

1)T, . . .} and {kT, kT + t, kT + 2t, . . .}, respectively. . . . . . . . . . . . . 66

5.2 A 95-bus radial distribution grid comprising four photovoltaic (PV) gen-
eration plants (adapted from [9]). . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Voltage drop along the (m, l) branch. . . . . . . . . . . . . . . . . . . . . . 74

5.4 Decomposition of the 95-bus UK DG according to the location of the ILVRs. 75

5.5 WTVSE decomposition according to the ILVR. . . . . . . . . . . . . . . . 75

5.6 PDF of the RMSE without (left) and with (right) µPMUs. (σ1 = 0.03 for
pseudomeasurements) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7 RMSE for the 95-bus DG and σ1 = 0.03 p.u. without (left) and with
(right) µPMUs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.8 Average RMSE of R-NESE for each state variable with σ1 = 0.03 p.u.,
with and without µPMUs. The left graph illustrates the voltage phase
angles and the right graph the voltage magnitudes. . . . . . . . . . . . . . 83

5.9 RMSE for the 95-bus DG and σ2 = 0.15 p.u. without (left) and with
(right) µPMUs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.10 Average RMSE of R-NESE for each state variable with σ2 = 0.15 p.u.,
with and without µPMUs. The left graph illustrates the voltage phase
angles and the right graph the voltage magnitudes. . . . . . . . . . . . . . 84

5.11 Average RMSE of each voltage phase angle θi (left) and voltage magnitude
Vi (right) for i = 1...N , adopting an alternative approach on measurement
accuracy for R-NESE and NESE. . . . . . . . . . . . . . . . . . . . . . . . 85

5.12 Average RMSE for each voltage phase angle θi (left) and voltage magnitude
Vi (right) for i = 1...N with µPMUs and σ = 0.03 p.u. for R-NESE and
NESE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xxii



5.13 The L-curve that depicts the error of the regularization term (y-axis) versus
the error of the corresponding residual term (x-axis) for R-NESE with
τ (ν) = 10−3 − 108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.14 RMSE vs. iterations for the WTVSE (c1 = 5× 10−4, c2 = 10−5, c3 = 10−4). 87
5.15 RMSE vs. iterations for the D-WTVSE scenario (λ = 10−4, c1 = 5×10−4,

c2 = 1× 10−5, c3 = 1× 10−4). . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.16 Actual and estimate voltage (magnitude and angle) for each bus with the

D-WTVSE (λ = 10−4, c1 = 5× 10−4, c2 = 1× 10−5, c3 = 1× 10−4). . . . 89
5.17 Absolute voltage magnitude error for each bus for the D-WTVSE and the

augmented WTVSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.18 Actual vs estimated voltage magnitude (top) and absolute voltage magni-

tude error (bottom) for scenario (i) (λ = 10−4, c1 = 5×10−4, c2 = 1×10−5,
c3 = 1× 10−4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.19 Actual vs estimated voltage magnitude (top) and absolute voltage magni-
tude error (bottom) for scenario (ii) (λ = 10−4, c1 = 5×10−4, c2 = 1×10−5,
c3 = 1× 10−4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.20 Actual vs estimated voltage magnitude (top) and absolute voltage mag-
nitude error (bottom) for scenario (iii) (λ = 10−4, c1 = 5 × 10−4, c2 =

1× 10−5, c3 = 1× 10−4). . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.21 Time-sequence diagram of the proposed SE scheme based on the R-NESE

and D-WTVSE algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.22 Aggregated power generation profile for the four PV plants. The data refer

to June 27, 2018, between 08:20 and 08:50 am. . . . . . . . . . . . . . . . 95
5.23 Active power load pattern for bus-19 of the 95-bus UK DG. The data refer

to June 27, 2018, between 08:20 and 08:50 am. . . . . . . . . . . . . . . . 95
5.24 RMSE of the estimated state vector vs time (R-NESE parameters: τ (4) =

1.5× 101, D-WTVSE parameters: λ = 10−4, c1 = 5× 10−4, c2 = 1× 10−5,
c3 = 1× 10−4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xxiii



xxiv



Chapter 1
Introduction

1.1 Motivation

The established electrical grids, which have been developed over the past 80 years, are
intricate interconnected networks designed to deliver electricity from its generation to the
consumers. The generation comprises large central generating stations, commonly fossil
fueled, nuclear and hydroelectric, producing electrical power rating of up to 1000 MW,
which is fed through generator transformers to the so-called Transmission Grid (TG).
The high-voltage transmission lines carry the electric power from the distant sources
to the distribution substations, that in turn, through the distribution transformers and
lines, namely the Distribution Grid (DG), connects the final circuits to the individual
customers. That is, electrical power flows in one direction: from power generation plants
to consumers, as Figure 1.1 illustrates. The TG, as well as the central power plants, have

Figure 1.1: Segments in a electrical grid.

advanced communication infrastructure to guarantee the security and reliable operation
of the system and to enable market transactions. For the same reasons, this part of the
grid is enhanced with extended automatic control systems. In terms of topology, TGs
tend to be more complex, with redundant pathways forming a meshed network. This
network operates at higher voltages (in the order of 150, 220 and 400 kV) mainly due to

1
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their ability to keep losses over copper lines lower. On the other hand, the DG presents a
number of differences compared to the TG. Primarily, despite the fact that distribution
lines are very extensive, DG is almost passive in terms of communication and control
systems. In other words, the only interactive action is the supply of electric power to
the loads. Further, distribution systems typically use a radial configuration for their
operation, with feeders taking electricity from substations to households exhibiting a tree
structure. These lines typically operate at lower voltages (e.g., 11 or 33 kV). This means
that step-down transformers are needed in between the transmission and distribution
substations.

Typically, the power system operates in three different states: normal, emergency and
restorative. The system operates in the normal state when there is no disruption in the
power supply and no operational limits, such as upper and lower bounds on bus voltage
magnitudes, are violated. When this happens due to unexpected operational circum-
stances but the power supply is not yet disrupted, the system enters the emergency state.
In this case, a number of control actions have to be taken (e.g., topology reconfiguration,
load deferral, etc) in order to restore normal operation. During such rebalancing effort
between power supply and demand, the system operates in the so-called restorative state.
All the above lies into the situational awareness, which in turn, lies into the grid monitor-
ing. The key functionality for the electrical network monitoring, control and optimization
is State Estimation (SE). SE is defined as the determination of complex voltages at all
the buses (lines) in a power system from a reduced number of system variables measured
in selected nodes and branches. With such voltage information and by means of the
power flow equations one can compute every magnitude of interest: currents, losses on
the lines, power injections, etc.

1.1.1 Limitations of the Traditional Electrical Grid

The traditional power system had been designed decades ago. Thus, in its current form
it is not possible to support more recent concepts and paradigms, such as low-carbon
technologies, energy efficiency and the connection with modern energy markets. More
specifically, today’s electrical grid raises a number of technical limitations related with
a number of issues. Primarily, the system provides limited support for the Distributed
Energy Resources (DER). These small scale generators create two-way power flows in
contrast with the traditional one-way approach (from the power plants to the consumers).
The same applies for the introduction of the Renewable Energy Sources (RES). RES
often exhibit an intermittent power generation profile (due to day/night cycles, seasons,
wind/no wind conditions, etc.). Such an intermittent energy injection makes it more
difficult to keep the balance between power supply and demand in real-time which is
mandatory since large-scale electricity storage is not economically viable yet. Another
important issue is the system inefficiency to manage peak loads. As the electricity demand
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varies, supply must be adjusted continuously to track demand. To do so, utilities always
maintain excess power supply, which is mainly produced from fossil fuel plants and so,
results to higher costs and emissions. Last but not least, the current power system does
not count with a robust two-way communication infrastructure. This is related with a
number of crucial system functionalities. For instance, the control actions, which are
required to prevent system outages, need a reliable and rapid information flow from the
network to the energy control center. Further, the system monitoring shall be based on
a robust communication system able to support different measuring technologies and to
deal with a large volume of data.

All the above shortcomings may be addressed by key emerging technologies able to
provide extended intelligence and enhanced management capabilities that can improve
operational efficiency and performance. Primarily, existing and enhanced communication
technologies, including wide area wireless internet and cellular networks, are able to pro-
vide high-speed, standardized two-way information flows for robust system monitoring
and decision-making. Totally related, the last years a number of measurement advance-
ments are capable of producing in real-time a high volume of information. An example is
the Phasor Measurement Units (PMUs), extensively installed to the transmission system.
On the other hand, with the massive deployment of Advanced Metering Infrastructure
(AMI) households can monitor their energy demand. Finally, advanced power system
components will enhance the operation of the grid, at both transmission (e.g., power
electronics) and distribution (e.g., digital voltage regulators) level.

1.1.2 The Advent of Smart Grid

All the above brings Smart Grid into play. A smart grid can be defined as a "a modernized
grid that enables bidirectional flows of energy and uses two-way communication and
control capabilities that will lead to an array of new functionalities and applications"
(NIST, National Institute of Standards and Technology). In particular, this concept
refers to the introduction of digital and communication technologies to the electric power
sector in order to improve reliability, reduce cost, increase efficiency and enable new
components and modern applications. In contrast to the existing electrical grid, the
smart grid promises improvements in power quality, two-way information flow, and more
importantly, an improved support for DER and RES. In addition, based on the advanced
sensors and monitoring devices, smart grid technologies will form a new framework where
consumers will be able to participate actively into play.

However, in order to cope with the evolving operational environment of the smart
grid, a re-design of the classical management strategies and control functionalities, which
have been used for decades, is needed. This holds in particular for SE algorithms which
are typically run based on the SCADA (Supervision, Control and Data Acquisition)
system. SE is the main topic addressed in this PhD thesis. Specifically, we aim to design
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novel SE schemes on the basis of advanced signal processing techniques, such as convex
optimization or sparse and statistical signal processing tools. SE algorithms rely on the
measurements collected by legacy and modernized metering infrastructure (e.g., phasor
measurement technology), on statistical models and, also, an in-depth knowledge of power
system operation. Hence, this PhD thesis lies in the crossroad of a number of scientific
fields: electric power engineering, signal processing and communications.

1.2 Challenges

The target of this PhD thesis is to design novel SE algorithms for power systems, lever-
aging on advanced signal processing techniques and the recent advancements on the sens-
ing/measurement technology. This is needed in order to cope with the new operational
environment that the advent of smart grid brings, which includes (i) a bidirectional flow
of energy and data along transmission and distribution systems; and (ii) a larger degree
of variability and intermittency typically associated to renewable and distributed energy
resources.

The specific challenges that we plan to address in this PhD thesis include the following:

– To model state estimation as a convex optimization problem. As many
optimization problems in the literature, SE for power systems suffers from inherent non-
convexity. In particular, the SE problem formulation is based on the non-linear power flow
equations. This unavoidably leads to a non-convex optimization problem that in turn,
leads the traditional solvers, such as the Gauss-Newton method, to converge to local
minima. Instead, we can exploit the rich literature on convex optimization, and resorting
to convex approximation techniques, we plan to formulate SE as a convex optimization
problem. In that way, we aim to provide improved SE accuracy and convergence rate
comparing with benchmarks from the literature.

– To design hybrid state estimation schemes exploiting both legacy and
PMU measurements. The challenge here is three-fold: (i) the fact that such mea-
surements are of a different nature. Specifically, SCADA system and PMUs relate the
state variables with the power flow equations in non-linear and linear fashion, respec-
tively; (ii) their different time-scales, which is much shorter in the case of PMU data
(i.e., millisecond vs. second timescales); and (iii) the non-uniform availability of PMU
devices. In particular, in the case of TG, where has been observed a rapidly-growing
deployment of phasor meters, still their presence can not guarantee system observability.
This, inevitably leads us to hybrid SCADA/PMU-based SE schemes. Even worse, PMUs
are seldom found in the case of distribution systems.

– To derive decentralized versions of state estimation algorithms suitable
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for multiarea scenarios. The challenge here is to derive decentralized SE algorithms
which: (i) preserve the maximum privacy between different system operators; and (ii)
provide reduced computational complexity. To that aim, we will resort to optimization
algorithms able to perform efficiently in a distributed environment, such as the dual
ascent decomposition and the Alternating Direction Method of Multipliers (ADMM).
Further, we will analyze the performance of the resulting algorithms using as benchmarks
their centralized counterparts, investigating their convergence behavior and the resulting
estimation accuracy.

– To design advanced schemes for bad data analysis and detection. The most
common bad data detection method for SE, namely the Largest Normalized Residual
Test (LNRT), constitutes an a posteriori process implemented after the convergence of
the SE algorithm and consequently, leads to performance degradation. Additionally, in
specific occasions (e.g., multiple and conforming bad data) this method is subject to
fail. To circumvent that, we plan to investigate methods to conduct bad data detection
and elimination jointly with the SE procedure. More specifically, we plan to leverage on
the sparse presence of such outliers and resort to respective techniques from the signal
processing literature.

– To investigate state estimation schemes particularly suitable for distri-
bution networks. In contrast with the TG, distribution networks present a number
of peculiarities in terms of their topological uniqueness and the existing restricted mea-
surement infrastructure. These characteristics are usually translated into ill-posed SE
models. To overcome this issue, we plan to resort to regularization techniques, such as
the Tikhonof regularization and the total variation regularization algorithm. Further, we
will exploit the recent measuring technology advancements in order to built reliable and
robust SE schemes with increased temporal granularity. The main target is to customize
these strategies according to the evolving operational environment of the medium voltage
networks.

– To investigate optimal µPMU placement methods particularly suitable
for distribution networks. As mentioned, the measurement infrastructure in the case
of the DG is limited. An answer to the pressing need for the medium voltage sytem mon-
itoring can be the recent measuring technology advancements, such as the low-cost µicro
PMUs. In particular, we plan to investigate optimal placement methods with respect
to the DG specificities, taking into account the already limited existing measurements.
More precisely, beyond the fundamental criterion of system observability, we plan to pose
further objectives related with the DG SE problem robustness. The final target will be
to improve the SE algorithmic accuracy and convergence rate. To do so, we will re-
sort to linear and matrix algebra analysis, and techniques from the convex optimization
literature.
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1.3 Outline of the Thesis

As discussed above, in this PhD dissertation we propose novel SE algorithms with re-
spect to the new operational environment of the electrical grid. More specifically, our
concentration has been dedicated separately to the different voltage levels, taking into
consideration in each case the different specificities and issues under discussion. In gen-
eral, Chapters 4 and 5 refer to the SE schemes built for the transmission and distribution
system, respectively. In details, this thesis is organized as follows:

In Chapter 2, we provide insight on the state of the art of SE algorithms. Specifically,
we start with SE for the transmission system and its distributed formulations according
to the current and future needs. These models are mainly divided into hierarchical and
decentralized. Later on, we focus on the DG SE and all the recent advancements. In
addition to that, we give a brief overview of the phasor measurement technology as well as
the phasor meter placement methods, both constituting important aspects related with
the SE algorithmic behavior.

In Chapter 3, we review a number of important mathematical concepts over which
the majority of this study has been built. In details, we first provide the basic theory
behind convex optimization. Then, we focus on convex approximation schemes which
deal with the non-convexity of many optimization problems. Later on, we give a brief
description on a special class of problems, namely, the binary semidefinite programming
models. Finally, we mention some interesting applications of convex optimization with
emphasis on estimation and regularization techniques.

We begin the contributions of this dissertation in Chapter 4. The scenario under
consideration assumes a hybrid communication infrastructure at the transmission system
level, where both SCADA and PMU measurements are available. As already mentioned,
the SE optimization problem suffers from inherent non-convexity. Thus, we resort to
an iterative framework that follows the spirit of successive convex approximation algo-
rithms applied efficiently in other fields, such as communications and signal processing.
Among others features, this framework provides solution feasibility at each iteration and
leads easily to distributed implementation. Our goal is to conclude to an improved SE
algorithm, which outperforms in terms of accuracy compared to the traditional solvers.
Further, we take into consideration a multiarea scenario, commonly adopted for the SE
functionality between different system operators. Here, we aim to conclude in a decentral-
ized version of the model with negligible penalty in terms of accuracy. For this purpose,
we leverage on the ADMM. In both centralized and distributed cases, we exploit second-
order information of the original non-convex objective function in order to improve the
convergence rate of the algorithm. Finally, we examine a scenario where a number of
meters transmit corrupted data (i.e., outliers). In this case, we present the robust version
of the algorithm, capable of performing jointly SE and bad data detection. To do so,
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we reformulate the SE problem in a Least Absolute Shrinkage and Selection Operator
(LASSO) optimization framework. The underlying idea is to promote sparsity in the
vector of corrupted (PMU and legacy) measurements. The latter is accompanied from
an algorithmic analysis with respect to the outliers cleansing.

Next, in Chapter 5 we deal with the SE problem in the case of DGs. This scenario
presents a number of additional challenges, such as the restricted available information,
the peculiar radial topologies and the increasing penetration of DER. More precisely,
we plan to build a novel SE scheme which operates in a two-time scale fashion. The
ultimate goal is to track accurately the system state at a faster time scale with increased
reliability, according to the needs of the new operational environment. Thus, the SE
algorithm will be capable of tracking short-term off-limit system conditions. At first, we
plan to enhance robustness to the classical SE schemes that operate every 15 minutes. The
observations comprise SCADA measurements and pseudomeasurements. On top of these,
a limited number of precise synchrophasors is added. This low redundant measurement
set, characterized by a noise variation diversity, results to an ill-conditioned optimization
problem and affects significantly the SE accuracy. To overcome this barrier, we pose the
SE as a regularized non-linear least squares optimization problem. To do so, we resort
to the well-known Tikhonof regularization exploiting prior system information, that is,
the last computed state estimate. Later on, we construct a state estimation scheme that
operates on the intermediate time instants, i.e., between the main computed estimates.
In this case, we leverage on the positioned µPMUs at a subset of buses and on the
possible zero power injection buses. As unavoidably the number of measurements is low,
observability is not guaranteed. To circumvent that, we exploit prior information on
selected DG features. Specifically, we formulate the SE as a constrained weighted total
variation estimation problem which limits variations in voltage estimates in adjacent
buses. This stems from the fact that, in DGs, electrical lengths and current flows tend to
be lower than in TGs and so are voltage drops in adjacent buses. On that basis, we also
propose a rule to define branch-specific weights for the regularizer. Finally, we take into
consideration the presence of In-Line Voltage Regulators (ILVRs) across the feeders which
forces us to re-formulate the problem as a constrained decomposed model. Similarly to
Chapter 4, we effectively solve the problem by finding an iterative solution based on the
ADMM. Finally, we present a µPMU placement method in order to enhance robustness to
the SE scheme. The scenario assumes the existence of a number of legacy measurements.
To do so, we follow a similar rationale with already developed algorithms for sensor
scheduling purposes and we pose a mixed integer semidefinite (MISDP) optimization
problem. In particular, the objectives of the problem are to ensure system observability
and to improve the accuracy of the SE scheme.

Finally, in Chapter 6 we conclude this thesis by providing a summary and final remarks
on the main results of this work. Also, we outline and discuss some possible lines of future
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work.
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Chapter 2
State of the Art in Power System
State Estimation

In this chapter, we provide an overview of the current state of the art technologies in power
system state estimation. First, we focus on transmission system estimation algorithms
and more specifically, in distributed solutions that meet the needs of the new operational
environment. Then, we focus on distribution system monitoring which is characterized
by communication infrastructure deficiency and consequently, becomes more challeng-
ing. Finally, we present the current status on phasor measurement technology and the
evolution of optimal phasor meter placement methods.

2.1 State Estimation for the Transmission System

Transmission systems have always been an active infrastructure equipped with advanced
communication systems and actuators, such as, fault detectors, remotely operated re-
closers and breakers. The available metering infrastructure, hence, provides redundant
information that can be efficiently exploited by the SE scheme. Specifically, legacy me-
tering devices, mainly Remote Terminal Units (RTUs), provide measurements (voltage
magnitude, power injections, etc.) that are non-linearly related with the system variables
(complex voltages). These devices and the supporting communication software, responsi-
ble for collecting and transmitting the measurements to the control center, constitute the
Supervisory Control and Data Acquisition (SCADA) system. The latter, is traditionally
considered as the cornerstone for the high voltage system monitoring. On the contrary,
the so-called Phasor Measurement Units (PMUs) [15], offer faster and linear measure-
ments (voltages and currents phasors) which, in addition, are tightly synchronized with
one another. Due to cost considerations, however, only a limited number of PMUs can be
deployed. Hence, such (linear) measurements are traditionally complemented by legacy
(non-linear) ones for SE tasks.

9
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SE techniques for the TG have been intensively investigated for decades. Most of
the efforts focused on the numerical stability of the models and their computational
efficiency. The fact that the measurements collected by legacy metering devices are non-
linearly related with the complex voltages (state variables) often leads to nonconvex SE
problems, typically formulated as a Weighted Least Squares (WLS) one. Hence, popular
gradient-based iterative procedures, such as the Gauss-Newton method, are unavoidably
subject to convergence to local optima. The classical WLS estimator was first intro-
duced by Schweppe in [16]. Over the following decades, many improvements in terms
of computational efficiency and increased numerical stability were proposed [17]. One of
the recent developments in this context is the bilinear SE model introduced in [18]. By
introducing auxiliary variables in the state vector, the authors transform the non-linear
WLS SE problem in a sequence of two linear problems with a non-linear state variable
transformation in between. As a result, the algorithm attains the same accuracy as the
classic Gauss-Newton iterative method with the advantage of a decreased computational
cost.

In recent years, however, two main trends can be observed in the evolution of power
grids: (i) the increasing penetration of RES; and (ii) the de-regulation of energy markets.
The former leads to larger dynamics (due to the intermittency of such RES) that need to
be timely and accurately monitored. To that aim, the deployment of synchronized PMUs
is instrumental. Still, as discussed earlier, such measurements must be complemented
by legacy ones due to cost considerations. This entails the development of novel hybrid
schemes as in [19]. In this context, the authors in [20] study the behavior of the classic
WLS estimator incorporating PMUs and they examine the improvements in terms of
convergence speed and accuracy. Two-stage hybrid approaches are also very popular in
the literature. Specifically, in [21], the first level of the estimator exploits measurements
from PMUs and solves a linear model. Next, the estimated states from this level are
combined with legacy measurements in order to provide a classical non-linear estimator.
On the contrary, the authors in [22] obtain in the first stage a classic WLS estimator based
on measurements collected by the SCADA system. In the second stage, by using the
estimated complex voltages and currents as pseudomeasurements, they also incorporate
PMU data to solve a linear estimation problem. Results indicate that, by incorporating
the estimated currents in the second stage as additional measurements the resulting
estimation accuracy is higher.

The deregulation of energy markets makes it feasible to conduct energy trading among
Transmission System Operators (TSOs). The pressing need, in recent times, to keep op-
erational costs low has further stimulated inter-regional collaborations. In turn, this
results into an increased exchange of large amounts of power along the tie-lines between
adjacent areas possibly under the control of different utilities. A totally independent
operation of such areas is, therefore, no longer viable. However, (classical) centralized
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SE schemes are not directly applicable either. This is mainly, either due to data security
and privacy concerns of regional utilities, or due to high computational complexity con-
siderations. This, undoubtedly, substantiates the need for developing hierarchical [23,24]
and decentralized [25] SE methods, which are described next.

Figure 2.1: Hierarchical scheme for SE [1].

Figure 2.2: Decentralized scheme for SE [1].

2.1.1 Hierarchical State Estimation

In hierarchical schemes, each geographical area runs its own local state estimator. Each
local state estimator communicates the results to the inter-area coordinator which ensures
consensus between the overlapping state variables in adjacent local areas (Fig. 2.1). In
decentralized schemes, on the contrary, each local operator just communicates with its
neighboring network operators, without the presence of a coordinator (Fig. 2.2). The
aforementioned schemes also exhibit substantial differences in terms of the amount of
information that needs to be exchanged. In hierarchical approaches, each local area
must send a subset of measurements or even the whole state to the coordinator. In
contrast, in decentralized approaches, exchanging information from the border variables
only, typically suffices.

In a hierarchical SE context, a multi-level SE paradigm is presented in [23]. Here, local
state estimates are computed first at lower voltage levels. Subsequently, those estimates
are transferred to upper voltage levels up to the Independent System Operator (ISO) in
order to estimate the whole system state. In the same context, in [24] Korres proposes
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a multiarea SE scheme. In this case, each area computes its own local state estimate
and conveys information on border variables to a coordinator which, in turn, computes
the system-wide state. This scheme also incorporates bad data analysis and detection, in
order to identify and remove all the measurements which are in gross error. On a different
key, in [26], Guo et al propose a hierarchical SE where the local operators communicate to
the coordinator the sensitivity functions1 of the local objective (SE) functions. Computer
simulation results reveal that the local estimates converge faster than in the classic sce-
nario (where measurements or state variables are exchanged). Another interesting work
can be found in [27], where the authors pose a dynamic Kalman filter based estimator
within the hierarchical framework. More specifically, a number of parallel low-processors
deal with the measurement subsets producing the respective state vector for each sub-
system. Then, this information is collated to the central processor that computes the
global estimate. However, the possible case of measurement existence on the tie-lines be-
tween the adjacent subsystems raises the need for bi-directional communication between
the central and low processors. This, in turn, increases the communication burden and
computational time.

2.1.2 Decentralized State Estimation

As discussed earlier, in decentralized SE schemes, the operators running each geograph-
ical area communicate directly, with no intervention of an inter-area coordinator. Rep-
resentative works of this paradigm are [28] and [25]. In [28], Xie et al propose a fully
distributed state estimation scheme. In this work, the local control areas compute their
own estimates and, by exchanging their estimates with the corresponding neighbouring
areas, iteratively improve their own estimates. The proposed scheme attains the same
performance as its centralized counterpart for both the DC linear and the AC models.
Complementarily, in [25], Kekatos and Giannakis propose a decentralized robust state
estimator, leveraging on the ADMM. Going one step beyond, in [29] the authors develop
a hybrid SE scheme based on the so-called Semidefinite Relaxation (SDR) optimization
technique [30], which in the sequel is referred to as SDR-SE. In addition, a distributed
(approximate) version of the algorithm, suitable for multiarea scenarios, is introduced
too. Interestingly, the authors prove that the SDR-SE technique is optimal for the case
of noiseless measurements and voltage magnitude measurements at all buses. Unfortu-
nately, when these conditions are not satisfied, the performance of the SDR-SE approach
may degrade considerably. Further, in [31] the authors present a decentralized version
of the three-stage bilinear state estimation model proposed in [18]. Each step is decou-
pled over the different areas, yielding a fully distributed robust bilinear state estimation
using ADMM. For the two linear stages, each area solves its local SE problem, sends

1The term ’sensitivity function’ refers here to the Taylor’s expansion of the first order derivative (with
respect to the boundary state variables) of the local objective function.
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the latest boundary states to its neighboring areas and iterates in this way until conver-
gence. The intermediate nonlinear transformation can be processed within each area in
parallel without any need of inter-regional communication. Besides, the authors exploit
the `1− regularization in order to deal with gross error measurements, enhancing perfor-
mance to their algorithm. Additionally, in [32] a decentralized solution is proposed based
on the Gauss-Newton method. Specifically, the authors, exploiting the inherent sparse
structure of the system, leverage on matrix-splitting methods in order to provide a fully
distributed SE solution. However, the bad data implementation is not straightforward
here. The same applies for [33], where a decentralized SE algorithm based on probabilis-
tic methods is proposed. In particular, the authors, first represent the system as factor
graph and then they provide a SE solution based on the belief propagation algorithm.
This approach is also exploited in other works from the literature [34], offering decreased
computational burden compared to the classical Gauss-Newton solvers. Moreover, as
in the case of hierarchical state estimation, quasi steady-state estimators based on the
Kalman filter rationale can also be posed in a decentralized fashion. These approaches
leverage on series of measurements observed over time, leading into an improved accu-
racy compared to the case where a measurement set of a single time instant is exploited.
For instance, in [35] an algorithm is presented based on the extended Kalman filter,
where similarly with the previous works, the local estimators only require data within
their own subsystem, and information is exchanged only between adjacent subsystems.
Finally, an interesting scheme can be found in [36], where the algorithm leverages on
Lagrange relaxation for its decentralized operation. More importantly, the authors take
into consideration the case of different types of neighboring networks. Specifically, the
assumed scenario concerns the existence of AC and high voltage DC subsystems, and the
estimation problem is separated accordingly.

2.2 State Estimation for the Distribution Grid

In contrast with the TG, the availability of metering and communication infrastructure
in DGs is rather limited [37], [2]. The main reason is that, traditionally, the DG was
conceived as a passive infrastructure in charge of just carrying electricity to industrial
and residential users. Over the last decade, the increasing penetration of DERs, the
deployment of dynamic control elements and, to some limited extent, distributed energy
storage systems, have transformed the DG into an active system [23]. As a consequence,
the interest of Distribution System Operators (DSOs) in monitoring the DG has increased
significantly. The DSO maintains the system operation based on the Distribution Man-
agement System (DMS), that in turn, sets crucial decisions for real time (e.g., voltage
control, optimal power flow, fault management) or off-line (e.g., post-event analysis) ap-
plications on the estimated system state, Fig. 2.3. In particular, the management of
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active distribution networks, to a large extent, exploits the presence of DERs, capable
of providing auxiliary services through their controlled (re-)active power [38]. The latter
is possible only if specific values, such as the losses and voltage drops, are measured or
estimated. Additionally, the DSO should take into account the short time variability of
DER power generation. To this end, beyond the fundamental need for DG monitoring,
the operators are forced to rely on SE algorithms characterized by increased temporal
granularity and robustness. To that aim, the DG utilities may resort to the recently
introduced, low-cost, high-resolution µPMUs (micro Phasor Measurement Units) [39].

Figure 2.3: Functionalities of the distribution management system based on the estimated
state [2].

SE algorithms for DGs face a number of different challenges compared to those of TGs
[40]. Notably, the limited availability of measurement sets along with the specificities of
radial/tree topologies often lead to ill-posed state estimation problems [41], [2]. Further,
DG characteristics, such as the low reactance/resistance (X/R) ratio, make prohibitive
a number of assumptions commonly adopted in the case of TG. For instance, in the
high voltage system the dominant nature of inductive terms, i.e. R << X, allows to
neglect the system resistances and exploit a constant gain matrix. This, in turn, leads
to decoupled SE models which present algorithmic efficiency. In this context, in [42]
the authors propose a branch current (BC) -based SE scheme. Here, instead of complex
voltages, the state vector consists of complex branch currents in Cartesian coordinates.
This leads to a reformulation of increased simplicity in the relationship between the state
variables and the AC load flows, that, in turn, leads to a constant Jacobian matrix
which is both both line-insensitive and state-independent. Thus, the resulting scheme
turns out to be more appropriate than classical SE for the case of the radial-shaped DG,
presenting insensitivity to the aforementioned sources of numerical instability. A BC-
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based SE algorithm is also proposed in [43], where, additionally, the authors resort to the
Lagrange multipliers to cope with zero power injections. A more analytical three-phase
BC SE model is presented in [44], where the power on the branches and the squared
branch current magnitudes are estimated. Finally, more recent works have taken into
consideration the advent of active distribution networks. In [45], an efficient model is
introduced, which is capable of encompassing phasor measurements and accounts for
radial and weakly meshed topologies.

Concerning the limited measurement sets, in recent years, substantial efforts have
been devoted to strategies aimed to deal with the lack of observability arising from insuf-
ficient measurements sets. Resorting to data mining techniques on historical load data
profiles has been instrumental towards the definition of efficient strategies for the con-
struction of pseudomeasurement sets. In [46], the authors generate pseudomeasurements
from a few real measurements using artificial neural networks in combination with typical
load profiles. They decompose the associated error of the generated pseudo measurements
into several components through the Gaussian mixture model (GMM) in order to make
it suitable for the WLS-SE problem formulation. Further, in [47] the authors present a
closed loop-based robust SE. The proposed framework consists of a robust M-estimator
and a machine learning algorithm that constructs pseudomeasurements, which are im-
proved via a link that connects the SE and the machine learning function. By using
such pseudomeasurements in conjunction with actual SCADA telemetry data (slightly)
redundant measurement sets can be constructed. Reference [48], for instance, investi-
gates a two-time scale SE based on weighted least squares. Separating the current and
foreseen available information in the DG according to their availability in time, the au-
thors formulate the classical SE problem in a two time scale fashion and investigate the
efficiency of the resulting scheme under several load profile scenarios. Other works that
deal with the limited measurement infrastructure (i.e., lack of system observability) are
also presented in the literature. To name a few, in [49] a DG SE is presented which
is based only on PMUs and leverages on a model reduction method. In particular, the
method selects an arbitrary number of lines and buses and reduces them in one. The
latter results into guaranteed system observability with a lower number of meters. In
addition, in reference [50] the authors exploit the presence of stationary loads (nodes)
in the DG and present a power flow solution over consecutive time instants. From this
coupled formulation, they finally prove that the grid state can be recovered by leveraging
on fewer meters.

Beyond classical Maximum Likelihood Estimation (MLE) approaches, the authors
in [51], propose a Belief Propagation based SE scheme suitable for both TG and DG.
Under the assumption that the system state can be characterized by a set of stochastic
variables and by resorting to a set of prior distributions, the posterior distributions of the
state variables can be efficiently computed using real-time measurements from both legacy
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and high resolution smart metering data. Borrowing inspiration from [29], the authors
in [52] propose a semi-definite programming (SDP) formulation for the SE problem as
well as a convex relaxation. The authors prove that classic gradient methods present
convergence problems even with small test cases. In contrast, their proposed method
attains the globally optimum solution without suffering from numerical issues caused by
the peculiarities of the DG. In the same context, [52] presents a multi-phase SE scheme for
the distribution grid using the recently introduced low-cost micro-synchrophasors, also
referred to as µPMUs2 [53]. As their scheme is sensitive to noisy measurements, they
separate the network in several parts including the µPMUs to mitigate the noise and
solve the respective subproblems. As another approach, also beyond the MLE method,
can be considered frameworks which are based on Kalman filter [54]. These estimators
are referred in the literature as dynamic SE or forecasting-aided SE and their method
involves the exploitation of a time-sequence of measurement snapshots [55].

2.3 Phasor Measurement Unit Technology

Over the recent years, SE has been transformed from an important application into a
critical one. Inevitably, the interest in phasor measurement technology has reached its
peak [15]. Leveraging on the global positioning system (GPS), the phasor measurement
untis (PMUs) are able to provide time-synchronized and accurate phasor measurements
at a very fast rate (30-60 samples per second) [56]. A PMU, installed at a specific bus, is
capable of measuring the voltage phasor and the current phasors of a number (depending
on the available communication channels) of incident branches. Because of their nature,
these measurements are instrumental for a number of energy management system func-
tionalities. Primarily, the phasor meters can significantly enhance monitoring features,
either in a non-networked form (e.g., detection of power system disturbances) either com-
municating real time data (e.g., power system SE). Additionally, PMUs are expected to
constitute the cornerstone for wide-area systems which will support the control centers
to their corrective decisions according to the operational system conditions.

In the case of SE, these complex valued measurements, i.e. bus voltages and branch
currents, can be related with the state variables in a linear fashion, in contrast with
traditional SCADA measurements, such as power injections. This can be proved to be
beneficial for a number of related research lines, such as power system observability, SE
accuracy, algorithmic convergence and bad data detection. For now, PMUs augment the
already existing SCADAmeasurements and consequently, the energy management centers
leverage on hybrid SCADA/PMU data systems. However, their fast-growing deployment
is possible to lead in the near future to PMU-based only state estimators.

2µPMUs are particularly suited for distribution networks since, given their extension, the use of the
standard transmission-grid PMUs would be prohibitive.
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Figure 2.4: Phasor Measurement Units (PMU) block diagram [3].

With an increasing number of new PMU installations scheduled for the next years,
naturally, arises the problem of the optimal PMU placement (OPP). That means, the
optimal positioning for the phasor meters according to specific criteria, e.g., system ob-
servability, financial cost, communication constraints. The fundamental objective around
OPP is of course system observability, that means, to guarantee observability with a min-
imum number of PMUs. In order to solve the OPP problem, the majority of the earlier
works follow, either integer-programming-based methods [57], or heuristic solutions, such
as genetic algorithms [58], simulating annealing [59] and particle swarm optimization [60].
Moreover, the placement of PMUs has been examined under different scenarios (with or
without existing SCADA measurements) and several criteria (installation cost [61], chan-
nel limitation [62]). In the most recent years, interesting approaches based on convex
optimization have also been proposed for the OPP problem [63]. In [64] for instance,
the authors present an SDP formulation of the problem taking into concern the impact
of PMU channel limits. Further, in [65] they propose a binary SDP based placement
method which, beyond the classical installation purposes, can be exploited in order to
identify temporarily unobservable areas of the system and the minimum needed number
of pseudomeasurements to restore observability.

2.3.1 µPMUs for the Distribution Grid

In contrast with the dynamic high voltage systems, where the PMUs have already experi-
enced a dramatic installation deployment, in the case of DG the phasor meters have only
a limited presence in the primary distribution substations. As main reasons we can iden-
tify: (i) the high installation cost and; (ii) the fact that, as already mentioned, the DG in
the past had only the role of transferring the energy from higher to low voltages. Conse-
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quently, just the evaluation of the design conditions (e.g., fault currents) was necessary.
This situation has changed recently, as we mentioned earlier in Chapter 1, through the
advent of the so-called Smart Grid. The rapid integration of renewable and distributed
energy resources has introduced a system behavioral uncertainty but also, opportunities
for ancillary services (e.g., reactive power support). This, in turn, has raised the need for
robust and real-time monitoring of the medium voltage system.

Figure 2.5: The µicro Phasor Measurement Unit (µPMU) device [4].

In this context, the recently introduced µPMUs [39] can be proved to be a reliable
tool to address this need, Fig. 2.5. The common synchrophasor applications of interest
at the high voltage system, such as SE and stability analysis, collect measurements across
large distances. In contrast, µPMUs have been designed to address functionalities with
respect to the medium-voltage distribution systems in order to enhance local decisions.
This distribution-centric analysis is more challenging for a number of reasons. Specifically,
in the case of DGs power flows are smaller and distances shorter. Given that, voltage
phase angle differences of interest are typically two orders of magnitude smaller than
those across transmission systems, i.e., lie usually at the level of small fractions of a
degree. In addition to that, phase angle values of voltage and currents are small compared
to measurement noise. Thus, µPMUs are exclusively designed to provide ultra-precise
measurements, providing higher visibility compared to the classical PMUs. From an
application perspective, the goal for the µPMUs data is to support monitoring and control
functionalities. In both cases, the algorithms can significantly benefit from time-stamped
and precise information. A number of works based on µPMUs have been already appeared
in the literature. To mention a few, in [66] the authors propose a topology detection
model based on synchrophasors in order to confirm the current system configuration.
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Further, phasor data have also been exploited for event detection (e.g., voltage sags) and
classification [67].

The same applies for the functionality of DG state estimation. Today DG SE relies on
the few available SCADA measurements coming from the primary distribution substation
and mostly, on pseudomeasurements. As a result, the accuracy of the algorithms can be
characterized as moderate. Given that, the results from optimization functionalities (of
the DMS) which are based on the estimated steady-state conditions, such as the optimal
power flows, may diverge significantly from the optimal one. Consequently, even a small
number of precise micro-synchrophasor could be beneficial [68]. Similarly to the case of
TG, the exact location of the µPMUs is important and should be examined considering
the system observability, but also with respect to a number of other criteria related with
the DG requirements, such as the SE accuracy.
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Chapter 3
Mathematical Preliminaries

In this chapter, we provide the fundamental elements of the mathematical tools that have
been used throughout this thesis. More specifically, the basic foundations and concepts
of convex optimization, such as convexity, convex optimization problems and duality,
are given briefly. Then, the definition of non-convex problems is presented accompanied
from a successive convex approximation method, commonly leveraged to deal with non-
convex problems. Later on, we focus on specific applications, the binary semidefinite
programming models and estimation. Finally, we present the concept of the alternating
direction method of multipliers, a method which is extensively used throughout this
dissertation. This synopsis is based on classical texts, such as [5] and [69], where we refer
the reader for a more in-depth discussion.

3.1 Convex Optimization

Convex optimization is a special field of mathematical optimization dealing with a large
class of problems, that is, convex optimization problems. This class of problems provide
two fundamental features. Firstly, local optimality coincides with global optimality; and
secondly, there are available very effective solution methods. These properties imply
that, when a practical problem can be formulated as a convex optimization one, then
the original problem can be solved reliably by means of efficient algorithms (e.g. interior
point methods) in the scale of few seconds. Fortunately, many problems in different fields,
such as power system engineering, signal processing and control, can be formulated as
convex problems or can be transformed to. In the next subsections we present the basic
foundations of this active mathematical optimization field.

21
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3.1.1 Convexity

Definition 3.1. Consider a set C. The set is convex if the line segment that connects
two points x1, x2 that belong in C lies in C. That means:

θx1 + (1− θ)x2 ∈ C. (3.1)

where θ ∈ R with 0 ≤ θ ≤ 1.

Practically, that means that if a set is convex, any two points that lie in the set can
be connected with an unobstructed path.

Definition 3.2. Consider a function f : Rn → R. This function is convex if dom f is a
convex set and if for all x and y ∈ dom f applies:

f (θx + (1− θ) y) ≤ θf (x) + (1− θ) f (y) (3.2)

where θ ∈ R with 0 ≤ θ ≤ 1.

Geometrically, inequality (3.2) implies that the chord connecting (f(x),x) and (f(x),y)

lies above the graph of f . Furthermore, the function f is strictly convex if strict inequal-
ity holds in (3.2) whenever x 6= y and 0 < θ < 1. Finally, f is concave if −f is convex,
and strictly concave if −f is strictly convex.

Definition 3.3. The epigraph of a function f : Rn → R is defined as

epi f = {(x, t) | x ∈ dom f, f(x) ≤ t} . (3.3)

The epigraph allows to establish a relationship between convex sets and convex func-
tions. Namely, a function is convex if and only if its epigraph is a convex set. Now, we
establish the conditions that allow us to identify convexity.

Proposition 3.4 (First-order conditions). Consider a differentiable function f . The
function is convex if dom f is a convex set and:

f (y) ≥ f (x) +∇f (x)T (y − x) (3.4)

holds for all x and y ∈ dom f .

Here, f (x) +∇f (x)T (y − x) is the first order Taylor expansion of f near x. From
(3.4) and Fig. 3.1 we observe that the first-order Taylor expansion act as a global un-
derestimator for a convex function f . This is the most important property for convex
functions, as (3.4) essentially shows that if ∇f (x) = 0, then x is a global minimizer of f
and f (y) ≥ f (x) for all y ∈ dom f .
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Figure 3.1: If function f is convex and differentiable, then f (y) ≥ f (x)+∇f (x)T (y − x)

for all x and y ∈ dom f [5].

Proposition 3.5 (Second-order conditions). Now, consider a twice differentiable func-
tion f , that is, its second derivative (Hessian) ∇2f exists at each point in dom f , which
is open. Then, the function f is convex if and only if dom f is convex and its Hessian
is positive semidefinite:

∇2f (x) ≥ 0. (3.5)

for all x ∈ dom f .

For a function f on R this condition reduces to f ′′(x) ≥ 0, that means the derivative is
nondecreasing. The condition in (3.5) can be interpreted geometrically as the requirement
that the graph of the function f has positive curvature at x.

3.1.2 Convex Optimization Problems

The basic optimization problem is formulated as:

minimize
x

f0 (x) (3.6a)

subject to fi (x) ≤ 0, i = 1, . . . ,m (3.6b)

hi (x) = 0, i = 1, . . . , p (3.6c)

where x ∈ Rn is the optimization variable, f0 : Rn → R is the objective or cost function,
fi : Rn → R, i = 1, . . . ,m are the inequality constraint functions, and hi : Rn → R, i =

1, . . . , p are the equality constraint functions. The inequalities fi (x) ≤ 0 are called the
inequality constraints, and the equations hi (x) = 0 are called the equality constraints. If
in (3.6) there are no constraints we say that the problem in unconstrained.

The goal in (3.6) is to find the optimal x that minimizes f0 and satisfies fi (x) ≤
0, i = 1, . . . ,m and hi (x) = 0, i = 1, . . . , p. The optimal x belongs to the domain of
the optimization problem and is called feasible.
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Definition 3.6. We say that the optimization problem (3.6) composes a convex optimiza-
tion problem, if the objective function f0 (x) is convex, the inequality constraint functions
fi (x) , i = 1, . . . ,m are convex and the equality constraint functions hi (x) , i = 1, . . . , p

are affine.

Definition 3.7. The set of points for which the objective and all constraint functions
are defined,

D =
m⋂
i=0

dom fi ∩
p⋂
i=1

domhi. (3.7)

is called the domain of the optimization problem (3.6).

Definition 3.8. A point x ∈ C is called feasible if it satisfies fi (x) ≤ 0 for i = 1, . . . ,m

and hi (x) = 0 for i = 1, . . . , p.

Definition 3.9. The optimal value p? of the optimization problem is given by

p? = inf {f0 (x) | fi (x) ≤ 0, i = 1, . . . ,m, hi (x) = 0, i = 1, . . . , p} . (3.8)

Furthermore, we say x? is an optimal point, if x? is feasible and f0(x?) = p?.

Definition 3.10. The set of all optimal points is the optimal set and is denoted:

Xopt = inf {x | fi (x) ≤ 0, i = 1, . . . ,m, hi (x) = 0, i = 1, . . . , p, f0(x
?) = p?} . (3.9)

If there exists an optimal point for (3.6), we say that the optimal value is achieved and
the problem is solvable.

Definition 3.11. We say a feasible point x is locally optimal if there is an R > 0 such
that

f0 (x) = inf {f0 (z) | fi (z) ≤ 0, i = 1, . . . ,m, hi (z) = 0, i = 1, . . . , p, ‖z− x‖2 ≤ R} .
(3.10)

This is to say that a locally optimal point minimizes f0 over nearby feasible points.

3.1.3 Duality

Definition 3.12. The Lagrange duality entails into augmenting the objective function in
the optimization problem (3.6) by the weighted sum of the constraint functions fi (x) ≤
0, i = 1, . . . ,m and hi (x) = 0, i = 1, . . . , p. The Lagrangian L : Rn × Rm × Rp → R
of optimization problem (3.6) is defined as:

L (x,λ,ν) = f0 (x) +
m∑
i=1

λifi (x) +

p∑
i=1

νihi (x) , (3.11)

where λi is referred to as the Lagrange multiplier associated to constraint fi (x) ≤ 0 and
νi as the Lagrange multiplier associated to constraint hi (x) = 0. The vectors λ,ν are
called the Lagrange multiplier vectors or the dual variables of the optimization problem.
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Definition 3.13. The Lagrange dual function g : Rm × Rp → R is defined as

g (λ,ν) = inf
x∈D

L (x,λ,ν) = inf
x∈D

(
f0 (x) +

m∑
i=1

λifi (x) +

p∑
i=1

νihi (x) .

)
(3.12)

Since the dual function g (λ,ν) is given by the pointwise infimum of a family of affine
functions, it is concave, even when the original problem (3.6) is not convex.

Proposition 3.14 (Lower bound on optimal value). The dual function yields a lower
bound on the optimal value p? of the problem (3.6). For any λ ≥ 0 and ν we have

g (λ,ν) ≤ p?. (3.13)

Any pair (λ,ν) with λ ≥ 0 and (λ,ν) ∈ dom g is denoted as dual feasible.

Since for each pair (λ,ν) with λ ≥ 0 , the dual function provides a lower bound on
the optimal value p?, one might want to obtain the best lower bound possible. This is
the dual problem.

Definition 3.15. The Lagrange dual problem is given by

maximize
λ,ν

g (λ,ν) (3.14a)

subject to λ ≥ 0 (3.14b)

We denote by d? the optimal value of the Lagrange dual problem and the respective
dual variables (λ?,ν?) As previously said, the Lagrange dual problem allows us to find the
best lower bound possible. The Lagrange dual problem (3.14) is a convex optimization
problem, since the objective to be maximized is concave and the constraint is convex,
even if the problem (3.6) is not convex.

Proposition 3.16 (Duality gap). The optimal value of the Lagrange dual problem, i.e.,
d?, is the best lower bound with respect to p?. The inequality

d? ≤ p?, (3.15)

is called weak duality and the difference p? − d? is defined as the optimal duality gap.
The optimal duality gap is always nonnegative. If p? = d?, then strong duality holds.

In general, strong duality does not hold. When the primal problem is a convex
optimization problem, usually (but not always), strong duality holds. There exist several
results that establish conditions under which strong duality holds. These conditions
are called constraint qualifications. One important constraint qualification under which
strong duality holds is Slater’s condition.
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Proposition 3.17 (Slater’s condition). There exists an x ∈ relint D such that

fi (x) < 0, i = 1, . . . ,m (3.16)

and

hi (x) = 0, i = 1, . . . , p. (3.17)

Furthermore, a point satisfying these conditions is called an strictly feasible point.

Slater’s condition not only implies strong duality for convex problems. It also implies
the existence of a dual feasible pair (λ?,ν?) with g(λ?,ν?) = p? = d?.

3.2 Non-convex Optimization

In many cases, the formulation of the problem under consideration leads to a non-convex
optimization model. That means, several local optima exist and additionally, there are
no effective methods for solving the problem.

A first approach to deal with non-convex models is to leverage on global optimization
methods. However, in that case the computational cost is often an exponential function
of the number of the decision variables (e.g., sensor selection problem with binary decision
vector variable). Another approach is local optimization. In this case, a compromise is
made to find a locally optimal solution. That is, a solution that minimizes the objective
over nearby feasible points. The method entails the replacement of the original problem
with an appropriate approximation, which is able to be solved by existing fast methods.
The price one has to pay is that there is no guarantee that the solution is globally optimal.
However, these methods are widely used as in many practical problems an efficient local
optima is sufficient (e.g., power system state estimation). Further, these types of methods
are highly dependent on the initialization point, which practically determines the solution
to which the method will converge. A common way to choose the initial point is by a
simple randomization. Another approach, which can possibly lead to an improved initial
guess, is to primarily solve a convex relaxation of the original non-convex problem.

3.2.1 Successive Convex Approximation

The successive convex approximation (SCA) constitutes a framework which is leveraged
to solve non-convex optimization problems [70]. More specifically, the underlying idea is
to replace the initial non-convex problem with an approximated convex one, solved in an
iterative manner. The final goal of solving this sequence of strongly convex approxima-
tions is to efficiently compute locally optimal solutions. A number of different approaches
can be found in the literature, providing several features, such as parallel and distributed
implementations of the SCA framework [71] and solution feasibility over the iterations.
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For instance, the latter can be exploited for on-line implementations of the SCA method,
which is relevant for optimization problems, such as the power system state estimation.

Definition 3.18. Consider the following optimization problem:

minimize
x

f0 (x) (3.18a)

subject to fi (x) ≤ 0, i = 1, . . . ,m (3.18b)

x ∈X (3.18c)

where x ∈ Rn is the optimization variable, f0 : Rn → R is the smooth non-convex
objective function subject to the non-convex inequality constraints fi : Rn → R.

First, we make the following assumptions for the non-convex problem in (3.18):

A.1 X ⊆ Rn is closed and convex;

A.2 f0 and each fi are continuously differentiable on X ;

A.3 ∇xf0 is Lipschitz continuous on X ;

A.4 f0 is coercive on X ;

Under these assumptions, which are quite standard and are satisfied by a large class
of problems, the successive convex approximation framework entails into solving the
following sequence of strongly convex approximations of (3.18):

minimize
x

f̃0 (x; xν) (3.19a)

subject to f̃i (x; xν) ≤ 0, i = 1, . . . ,m (3.19b)

x ∈X (3.19c)

where f̃0 (x; xν) and f̃i (x; xν) represent the approximations of f0 (x) and fi (x) at the
current iterate xν , respectively.

Here, a number of further assumptions should be made for the approximated problem
in (3.19):

B.1 f̃0 (•; y) is convex on X for all y ∈X ;

B.2 ∇xf̃0 (y; y) = ∇xf0 (y) for all y ∈X ;

B.3 f̃i (x; xν) is convex on X for all y;

B.4 fi (x) ≤ f̃i (x; y) for all x,y ∈X ;

B.5 ∇xf̃i (y; y) = ∇xfi (y) for all y ∈X ;
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Algorithm 3.1 Successive Convex Approximation framework
1: Initialize ν = 0, γ(ν) ∈ (0, 1], {x(0) ∈X }
2: Compute {x̂(ν)}, the solution of (3.19)
3: {x(ν+1) ← x(ν) + γ(ν)(x̂(ν) − x(ν))}
4: If x(ν+1) is a stationary solution of (3.18) STOP
5: ν ← ν + 1 and go to step 2

Here, assumptions B.1 and B.3 guarantee that the approximated problem (3.19) is
strongly convex. Further, assumption B.4 guarantees iterate feasibility and, B.2 and
B.5 that the approximated objective function and constraints have the same first order
behavior with the original ones.

Algorithm 3.1 summarizes the corresponding iterative procedure.

3.3 Binary Semidefinite Programming

In this subsection, we aim to describe gradually a special class of mathematical optimiza-
tion problems, namely, the binary semidefinite programming (BSDP) models. BSDP
problems have gathered lots of interest, mostly because of their combinatorial nature,
with problems arising in systems and control, communications and signal processing.

First, consider the following problem:

minimize cTx (3.20a)

subject to x1F1 + · · ·+ xnFn + G � 0 (3.20b)

Ax = b (3.20c)

where x ∈ Rn, A ∈ Rm×n, b ∈ Rm and G,F1, . . . ,Fn ∈ Sk, with Sk standing for the
space of positive semidefinite k × k matrices.

The problem in (3.20) amounts to minimize a linear objective function under equality
and linear matrix inequality (LMI) constraints and is called a semidefinite programming
problem (SDP) [5].

Further, in plenty of cases, depending on the nature of the problem, the decision
variable is possible to be binary, i.e., x ∈ Zn2 . In that case, the problem (3.20) takes the
following form:

minimize cTx (3.21a)

subject to x1F1 + · · ·+ xnFn + G � 0 (3.21b)

Ax = b (3.21c)

x ∈ {0, 1} (3.21d)
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and constitutes a non-convex binary semidefinite programming (BSDP) problem.
The model in (3.21) may arise for example in a sensor selection problem where the goal

is to construct a binary x that selects to activate a specific number of sensors. Commonly,
this kind of problems can be implemented and solved from commercial mathematical
softwares that utilize optimization techniques, such as the branch and bound method.
Another approach, based on convex optimization, is to relax the non-convex constraint
x ∈ {0, 1} with its convex counterpart, i.e., x ∈ [0, 1]. As the latter does not produce a
binary solution, a rounding procedure and a local search should follow.

3.4 Convex Optimization for Estimation Problems

3.4.1 Estimation

Consider the following linear measurement model:

z = Ax + e (3.22)

where z ∈ Rm is a vector of noisy measurements, x ∈ Rn is a vector of problem parameters
to be estimated and A ∈ Rm×n stands for a matrix that describes the relationship between
z ∈ Rm and x ∈ Rn with m ≥ n. In addition, e ∈ Rm stands for the independent and
identically distributed measurement noise. The estimation problem entails to compute
the optimal x̂ with given z ∈ Rm:

x̂ = argmin
x

‖z−Ax‖ (3.23)

in order to minimize the residual vector:

r = Ax̂− y (3.24)

Now, if we express Ax as:

Ax = x1a1 + · · ·+ xnan (3.25)

where x1a1+, · · · + xnan are the columns of A ∈ Rm×n, the problem in (3.23) can be
interpreted as the approximation of the vector z by a linear combination of the columns
of A, with the minimum error and deviation measured in the norm ‖ ‖x. This problem
is also known as the regression problem in the field of statistics.

Commonly, the problem in (3.23) leverages on the Euclidean norm and points out to
the so-called least squares optimization problem:

argmin
x

‖z−Ax‖22 (3.26)

that constitutes a convex problem, i.e., we can find the global optimal solution; and
since m ≥ n the solution is given by:

x̂ = (ATA)−1AT z (3.27)
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3.4.2 Regularized Estimation

The regularized estimation refers to a general bi-criterion problem that constitutes a
weighted sum. The goal is to minimize the following objective function:

argmin
x

‖z−Ax‖+ τ‖x‖ (3.28)

where τ is a positive parameter that controls the trade-off between data fitting and the
regularization term. The problem in (3.28) is used in several contexts. A case of special
interest is when A is ill-conditioned or even singular and through the regularization term
is exploited prior knowledge on the unknown parameters of x. The general case of (3.28)
can take several forms depending the application. Below we present specific formulations
that have been used across this dissertation.

3.4.2.1 Tikhonof Regularization

One of the most common approaches is Tikhonof regularization which combines two
Euclidean norms:

argmin
x

‖z−Ax‖22 + τ‖x‖22 (3.29)

The solution to the above quadratic optimization problem is given by:

x̂ = (ATA + τI)−1AT z (3.30)

One can easily notice that ATA + τI � 0 for any positive τ . The latter makes problem
(3.29) solvable without any requirements on the rank of A.

3.4.2.2 `1− Regularization

In the case where someone seeks for a sparse solution, the Euclidean norm in the regu-
larization term is replaced from the `1−norm:

argmin
x

‖z−Ax‖22 + τ‖x‖1 (3.31)

Here, τ controls the trade-off between the fidelity term and the sparsity of the estimated
vector x̂.

3.4.2.3 Total Variation Regularization

Another case of regularization is the so-called total variation estimation which assigns
penalty to large deviations between the neighboring parameters of the estimated vector
x̂:

argmin
x

‖z−Ax‖22 + τ
n∑
x=1

|xn − xn−1| (3.32)

In this case, τ controls the trade-off between the fidelity term and the total variation of
the vector x̂.
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3.5 Alternating Direction Method of Multipliers

Here, we briefly discuss the alternating direction method of multipliers (ADMM), an
efficient algorithm which is well suited for distributed convex optimization problems in
applied statistics and machine learning [72]. The ADMM offers a number of benefits, as
practically it combines the benefits of its precursors. Specifically, the advantage of de-
composition when the objective function is separable, as in the dual ascent approach, and
the robustness in terms of convergence, as in the case of augmented Lagrangian methods.

First, consider the following equality-constrained convex optimization problem:

minimize
x

f (x) (3.33a)

subject to Ax = b (3.33b)

where x ∈ Rn is the optimization variable, A ∈ Rm×n, b ∈ Rm and, f : Rn → R is a
convex objective function.

Now, consider the following optimization problem:

minimize
x,z

f (x) + g (z) (3.34a)

subject to Ax + Bz = c (3.34b)

where x ∈ Rn and z ∈ Rm are the optimization variables, A ∈ Rp×n, B ∈ Rp×m and
c ∈ Rp. Let us assume that f (x) and g (z) are convex functions. Compared to the general
convex optimization problem in (3.33), the difference in (3.34) is that the optimization
variable x has been split in two parts, x and z, assuming that the objective function f (x)

in (3.33) is separable across the splitting.
The optimal value p? of the optimization problem (3.34) is denoted by:

p? = inf {f (x) + g (z) | Ax + Bz = c} . (3.35)

and the Lagrangian of (3.34) is given by:

L(x, z,y) = f (x) + g (z) + yT (Ax + Bz− c) + (ρ/2)‖Ax + Bz− c‖22 (3.36)

In a glance, ADMM consists of the following steps:

xk+1 = arg min
x

L
(
x, zk,yk

)
(3.37)

zk+1 = arg min
z

L
(
xk+1, z,yk

)
(3.38)

yk+1 = yk + ρ
(
Axk+1 + Bzk+1 − c

)
(3.39)
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where ρ > 0 is the positive control parameter for the dual variable update step size.
One can observe that ADMM consists of an x minimization step (3.37), a z minimization
step (3.38), and the dual variable y update (3.39). The main difference of ADMM with
respect to its precursors is that the optimization variables x and z are updated in a
sequential fashion, which accounts for the term alternating direction. This is exactly
what allows for problem decomposition when the objective function is separable.



Chapter 4
SCA-based Robust and Distributed
State Estimation

In this chapter, we present a hybrid SE scheme exploiting both PMU and legacy measure-
ments. To solve the resulting non-convex SE problem, we resort to a Successive Convex
Approximation (SCA) scheme where the objective function is replaced by a sequence of
strongly convex ones solved in an iterative manner. Then, we improve the convergence
rate of the algorithm by exploiting second-order information from the original objective
function. We also show that, for multi-area scenarios, the problem can be solved in a
distributed fashion reaching the accuracy of its centralized counterpart. To do so, we
propose an algorithm based on the ADMM. Finally, we present a robust version capable
of performing SE and (sparse) bad data detection by means of a LASSO formulation. The
performance of the proposed schemes is assessed via computer simulations for a number
of IEEE standard test cases. Other state-of-the art methods are used as benchmarks.

4.1 Introduction

As already mentioned in Chapter 2, in recent years, the high voltage system presents a
new operational environment due to the increasing penetration of RES and the evolution
of the energy markets [73]. The RES power production, mainly photovoltaic and wind
energy plants, is characterized from intermittency, which in turn, has introduced further
uncertainty to the system state. Nevertheless, the system stability requierements and the
energy market operation demand a timely and accurate monitoring. To that aim, the
deployment of PMUs is instrumental [74], as they can significantly improve the accuracy of
the SE via precise and time-synchronized measurements. However, for the time being such
measurements are complemented by observations collected from the SCADA system, due
to cost considerations. Thus, the operators set their decisions on hybrid PMU-SCADA
systems, which bring into the game the development of novel hybrid schemes [75], [19].

33
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In [76] for instance, the authors provide a detailed study on classic Gauss-Newton-based
SE aided by PMUs.

On the other hand, the evolution of the energy market has stimulated the energy
trading among transmission system operators. This has resulted into an increased ex-
change of power along the tie-lines between adjacent areas or countries, possibly under
the control of different utilities. A totally independent operation of such areas is, thus, no
longer viable. Accordingly, centralized SE schemes are not directly applicable either, due
to data security and privacy concerns of regional utilities, or computational complexity
considerations. This, has raised the need for hierarchical [23] and decentralized [28] SE
frameworks, offering accurate monitoring and reduced computational burden. With re-
gard to the hierarchical SE, the main drawback is the vulnerability of a centralized point
failure that could be proven vital. In contrast, the decentralized rationale can overcome
this barrier, leveraging on suitable algorithms for distributed optimization [25]. In this
context, a number of interesting works appear in the literature [29], based on optimization
methods [30] which have already been used in other fields, such as communications and
signal processing [77]. An extended discussion on the implementation of distributed SE
schemes in the framework of 5G communications systems is given in [11]. Other efficient
SE algorithms in the same context can be also found [32], [78]. Nevertheless, as plenty of
these schemes are based on the Gauss-Newton method, their distributed implementation
is not straightforward [79]. The same holds for bad data detection (BDD) schemes.

In many occasions the measurements might be corrupted with gross error beyond the
usual white Gaussian noise. Therefore, BDD schemes are leveraged in order to remove the
outliers that bias the SE. However, the commonly preferred BDD frameworks, namely, the
chi-squares test and the LNRT [80], are performed a posteriori and more importantly, are
subject to BD identification failure. This holds in particular for the presence of multiple
corrupted observations where the error is interacting between the residuals of different
measurements [81, Ch.5,6]. In addition to that, the incorporation of new type of meters
to the SE functionality, i.e. PMUs, introduces further obstacles. More specifically, the
fact that historical data and experience on phasor measurements is limited has raised a
discussion with respect to the appropriate weight introduction to these values. A number
of works have proposed ad-hoc methods to overcome this issue [82], [83]. However, the
algorithmic complexity is significantly increased.

4.1.1 Contribution

Considering all the above, in this chapter we present a robust hybrid SE scheme for the
TG. Our final goal is to present a SE model which is capable of: (i) encompassing effi-
ciently legacy and PMU measurements, (ii) being implemented in a distributed fashion
with limited accuracy degradation compared to its centralized counterpart and, (iii) of-
fering extended robustness against outliers. Specifically, the contributions of this chapter
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can be summarized as follows:

1) A hybrid SE scheme based on a successive convex approximation (SCA).
Specifically, as (already mentioned) the SE problem suffers from inherent non-convexity.
To overcome this barrier we resort to a framework that follows the spirit of SCA algo-
rithms [70], [84] applied successfully in other fields, such as communications and signal
processing [85]. Specifically, the non-convex part (preserving as much from the original
convexity) of the objective function is replaced by a sequence of strongly convex ones
and the problem is solved in an iterative manner. In addition to that, we exploit second-
order information from the non-convex objective function, keeping the computational
complexity affordable. By doing so, we improve significantly the convergence rate of
the algorithm, both in centralized and distributed settings. In contrast with other SE
schemes [29], [81], the proposed scheme is able to attain high accuracy over a diversity
of measurement set scenarios and power system test cases. This comes in a relatively
fast convergence rate due to the exploitation of second-order information from the initial
objective function.

2) A decentralized version of the SCA-SE algorithm. The adopted iterative
SCA framework [71] can be easily implemented in a distributed fashion, as opposed to
other similar schemes [32]. This makes it suitable for multi-area SE settings, which are
typically exploited for inter-regional collaborations between different system operators.
For the decentralized implementation of the SCA-SE scheme we leverage on the ADMM
and its superior properties. In contrast with other similar works [24], the proposed scheme
needs a limited information exchange, preserving privacy between transmission system
operators. More importantly, unlike other interesting approaches [29], there is a limited
SE accuracy penalty associated to such decentralized solution.

3) A robust version of the hybrid SCA-SE scheme conducting joint state
estimation and bad data detection. To that aim, we reformulate the SE problem in
a LASSO optimization framework [86]. The underlying idea is to promote sparsity in the
vector of corrupted measurements. This applies for legacy and PMU measurements. In
addition to that, we derive an upper bound of the residual error after bad data cleansing
and conclude that the proposed method can be regarded as an instantiation of Huber’s
estimator. Beyond classical BDD methods, such as the largest normalized residual test
[81, Ch.5,6], the proposed scheme performs jointly SE and BDD and so, the convergence
rate of the algorithm does not deteriorate. More importantly, opposed to other schemes
[81, Ch.5,6], [87], the robust SCA-SE is able to perform well even in scenarios where
multiple corrupted measurements are present.

The rest of the chapter is organized as follows. In the next section we provide the SE
system model. The multiarea SE is the subject of Section 4.3 and next, in Section 4.4, we
analyze the successive convex approximation framework in addition with our approach
to incorporate second order information. The distributed counterpart of the algorithm is
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Figure 4.1: Y-equivalent circuit for a two-bus network.

provided in section 4.5, while in Section 4.6 we introduce the robust counterpart of our
scheme. Finally, the proposed framework is numerically assessed in Section 4.7 and we
draw our conclusions in Section 4.8.

4.2 System Model

Consider a power network composed of N buses denoted by the set N ∈ {1, . . . , N}.
The interconnection between these buses is modeled by graph G. Accordingly, the pair
of buses m,n ∈ N are interconnected if (m,n) ∈ G. From the Kirchhoff’s law, the
complex current injections at the buses, i.e., i = [I1, . . . , IN ]T , satisfies:

i = Yv (4.1)

with v = [V1, . . . , VN ]T standing for the complex bus voltages that define the state of the
system, and Y ∈ CN×N being the nodal admittance matrix1 with entries given by:

Ym,n =


−ym,n if (m,n) ∈ G,

yn +
∑

l∈N (yn,l + yn,l) if m = n,

0 otherwise.

(4.2)

Variables ym,n, ym,n stand for the admittance and shunt admittance in the line connecting
buses m and n, respectively; and yn stands for the shunt admittance at the nth bus, Fig.
4.1.

Typically, measurements are categorized into legacy and synchronized measurements.
The former group relates the state vector v through nonlinear equations. In this category,
we have the following types:

• Power injections: The power injection at bus n reads:

Sn = Pn + jQn = VnI
∗
n (4.3)

1For simplicity, we have ignored transformer taps in the formulation.
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where Sn stands for the complex power at bus n, Pn for the active power injection,
Qn for the reactive power injection, Vn for the complex voltage and I∗n for the
conjugate of the complex current.

Let us define here the matrix Mn ∈ R2N×2N as follows:

MP,n =
N∑
j=1

(
ene

T
j

)
⊗BP (Yn,j) (4.4)

with en ∈ RN which takes 1 at its nth position and 0 elsewhere. In addition, define:

BP (Yn,j) =

[
<{Yn,j} −={Yn,j}
={Yn,j} <{Yn,j}

]
. (4.5)

Bearing this in mind, the active power injection can be expressed as:

Pn = xTMP,nx (4.6)

where x stands for the Cartesian representation of the system state, that is
x = [<{V1},={V1}, . . . ,<{VN},={VN}]T ∈ R2N .

Similarly, the reactive power injection at the nth bus reads

Qn = xTMQ,nx (4.7)

where

MQ,n =

N∑
j=1

(
ene

T
j

)
⊗BQ(Yn,j) (4.8)

with

BQ(Yn,j) =

[
−={Yn,j} −<{Yn,j}
<{Yn,j} −={Yn,j}

]
. (4.9)

• Power branch measurements: The complex power flowing from bus m to bus n is
expressed as:

Sm,n = Pm,n + jQm,n = VmI
∗
m,n

= Vm (V ∗m − V ∗n ) y∗m,n + |Vm|2y∗m (4.10)

The active and reactive power flows from bus m to bus n can be expressed as
follows:

Pm,n = xTMP,mnx

Qm,n = xTMQ,mnx (4.11)
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where

MP,mn =
(
emeTm

)
⊗ (BP (ym,n) + BP (ym))

−
(
emeTn

)
⊗BP (ym,n) (4.12)

MQ,mn =
(
emeTm

)
⊗ (BQ(ym,n) + BQ(ym))

−
(
emeTn

)
⊗BQ(ym,n) (4.13)

• Voltage measurements {|Vn|2}: In this case, we have that:

|Vn|2 = xTMV,nx (4.14)

with

MV,n = ene
T
m ⊗ I2 (4.15)

with IN standing for the N ×N identity matrix.

To summarize, exploiting the Cartesian representation of the system state, legacy mea-
surements can be conveniently written in the following unified form:

zl = xTMlx + wl l = 1, . . . , L (4.16)

with zl standing for each legacy measurement for l = 1, . . . , L, Ml ∈ R2N×2N being
defined according to corresponding type of measurement, and wl standing for the noise.

As for the synchronized measurements, which are taken by the so-called PMUs, the
following linear model results:

r = Ax + ε (4.17)

with A ∈ R2K×2N and ε ∈ R2K standing for the measurement matrix and the noise,
respectively. In both models, the noise, wl for l = 1, . . . , L and ε ∈ R2K , has been
assumed to be zero-mean and independent (also between the real and imaginary parts of
the measured values from PMUs) according to the literature [25], [76].

4.3 Multi-area State Estimation

Consider now that the power network is divided into M distinct geographical areas, and
that each area may be operated by a different utility. Define the state vector of area
i by xi = [xi,1, xi,2 . . . , xi,2Ni ]

T ∈ R2Ni with Ni denoting its number of buses. Due to
the physical interconnection between areas, bus voltages at the frontier edges, called
in the sequel border state variables, are also incorporated into the local state vector of
each neighboring area. To be precise, if the pair xi,l and xj,m are border state variables
between adjacent areas i and j, the condition xi,l = xj,m must be satisfied. To generalize



4.4 Successive Convex Approximation Approach 39

this, define Ni as set of adjacent areas to area i and Si,j as the set of border variables
between areas i and j, with cardinalities given by |Ni| and |Si,j |. Then, the system state
has to satisfy xi,l = xj,m for j ∈ Ni and (l,m) ∈ Si,j . Bearing all the above in mind, the
multi-area SE optimization problem is defined as follows:

min
{xi}

M∑
i=1

(
α

2
‖ri −Aixi‖22 +

β

2

Li∑
l=1

(
zi,l − xTi Mi,lxi

)2) (4.18a)

s. t. e
(i)T
l xi = e(j)Tm xj , j ∈ Ni, (l,m) ∈ Si,j , ∀i (4.18b)

xi ∈Xi, ∀i (4.18c)

where ri ∈ R2Ki and {zi,l}Li
l=1 correspond to the synchronized measurements and legacy

measurements at area i, and the definitions of matrices Ai ∈ R2Ki×2Ni and Mi,l ∈
R2Ni×2Ni follow from the rationale of Section 4.2. Column vector e

(i)
l equals 1 at the

lth position and zero elsewhere. With some abuse of notation, we have also used the
superscript (i) in e

(i)
l to denote that the vector size is that of xi. Besides, we have

included (4.18c) that constraints our solution to lie in the feasible sets {Xi} which are
assumed to be convex and compact. Finally, we have introduced the positive scalars
α ∈ [0, 1] and β ∈ [0, 1] where β = 1 − α to weight the contribution of the two type of
measurements.

4.4 Successive Convex Approximation Approach

Note that the optimization problem in (4.18) is non-convex (due to the fourth-order
terms) and, thus, global optimality of the solution cannot be guaranteed, in general.
Hence, with the aim of finding a local minimum, we resort to the novel iterative opti-
mization algorithm proposed in [71]. To that end, first we rewrite the cost function in
our problem as U(x) =

∑M
i=1 Ui(xi) with

Ui(xi) =
α

2
‖ri −Aixi‖22 +

β

2

Li∑
l=1

(
zi,l − xTi Mi,lxi

)2 (4.19)

According to [71], we need to approximate Ui(xi) by a strongly-convex function. To do
so, we simply linearize the (fourth-order) non-convex terms around a feasible point x̃i

and add a proximal term, that is,

Ũi(xi, x̃i) =
α

2
‖ri −Aixi‖22 +

β

2

(
gTx̃i

(xi − x̃i)

+
ρ

2
(xi − x̃i)

T H̃i(x̃i)(xi − x̃i)

)
(4.20)

where ρ > 0, and the gradient reads

gx̃i = −2

Li∑
l=1

(
zi,l − x̃Ti Mi,lx̃i

)
(Mi,l + MT

i,l)x̃i (4.21)
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with H̃i(x̃i) standing for a positive definite matrix (or semidefinite positive if AT
i Ai

is full rank2). One could simply let H̃i(x̃i) be the identity matrix, i.e., H̃i(x̃i) = I.
However, since this does not exploit any second order information of (4.19), we propose
to approximate the Hessian of the non-convex term in (4.19) by a positive definite matrix
(referred to in the sequel as the A-Hessian). First, note that the Hessian of (4.19) reads:

Hi(x̃i) = β

Li∑
l=1

[
(Mi,l + MT

i,l)x̃ix̃
T
i (Mi,l + MT

i,l) (4.22)

−(Mi,l + MT
i,l)
(
zi,l − x̃Ti Mi,lx̃i

) ]
We observe that the first part in (4.22) is the sum of rank-1 matrices. Hence, by discarding
the second term in the summation and adding a properly scaled identity matrix, we obtain
our candidate A-Hessian matrix, namely:

H̃i(x̃i) = β

Li∑
l=1

(Mi,l + MT
i,l)x̃ix̃

T
i (Mi,l + MT

i,l) + δI (4.23)

where δ is a small positive scalar and I ∈ R2N×2N stands for the identity matrix. In doing
so, we preserve some second order information of (4.19) with an affordable computational
complexity (see alternative strategy in Section 4.7).

Hence, the approximate optimization problem at iteration ν given the current iterate,
x
(ν)
i , is as follows:

min
{xi}

M∑
i=1

Ũi(xi,x
(ν)
i ) (4.24)

s. t. e
(i)T
l xi = e(j)Tm xj , j ∈ Ni, (l,m) ∈ Si,j ,∀i

xi ∈Xi, ∀i

Let {x̂(ν)
i } denote the unique optimal solution to (4.24). Bearing all the above in mind,

the successive approximation method for state estimation (SCA-SE) is summarized in
Algorithm 4.1. In short, the algorithm finds the solution of the convex approximation
problem in (4.24), {x̂(ν)

i } (given the last point x
(ν)
i ), and computes the new iterate as a

convex combination of {x̂(ν)
i } and {x

(ν)
i } until convergence.

Theorem 4.1. Algorithm 4.1 converges to a stationary solution of (4.18).

Proof. The optimization problem in (4.18) satisfies the following requirements:

1.
∑M

i=1 Ui(xi) is continuously differentiable in {Xi}: this clearly follows from the
definition of each Ui(xi).

2Which is not realistic since we should ensure full observability with PMU measurements only.



4.5 Distributed Implementation via ADMM 41

Algorithm 4.1 Successive Convex Approximation for SCA-SE

1: Initialize ν = 0, γ(ν) ∈ (0, 1], {x(0)
i ∈Xi}

2: Compute {x̂(ν)
i } by solving (4.24) in a distributed (local) fashion (see Section 4.5)

3: {x(ν+1)
i ← x

(ν)
i + γ(ν)(x̂

(ν)
i − x

(ν)
i )}

4: Compute H̃i(x
(ν+1)
i ) as in (4.23) for each area.

5: If x
(ν+1)
i is a stationary solution STOP

6: ν ← ν + 1 and go to step 2

2. ∇xiUi is Lipschitz continuous ∀xi ∈Xi. To show this, note that

∇xiUi = −αAT
i (ri −Aixi)

− β
Li∑
l=1

(
zi,l − xTi Mi,lxi

)
(Mi,l + MT

i,l)xi.

Since this is a continuously differentiable function on Xi, we have that ∇xiUi is
Lipschitz continuous.

3. Ui is coercive on the feasible set. Since, by definition, Xi is compact each Ui is
coercive and, thus, the sum of coercive functions is coercive.

Hence, from [71], convergence to a stationary solution is guaranteed. �

4.5 Distributed Implementation via ADMM

In this section, we provide a distributed implementation of Step 2 in Algorithm 4.1. Due
to its superior performance, we propose a decentralized solution based on the well-known
ADMM3 [72]. To that aim, first we decompose the optimization problem by introducing
auxiliary consensus variables, cij,(l,m), on the border state variables:

min
{xi,cij,(l,m)}

M∑
i=1

Ũi(xi, x̃i) (4.25a)

s.t. e
(i)T
l xi = cij,(l,m), j ∈ Ni, (l,m) ∈ Si,j , ∀i (4.25b)

xi ∈Xi, (4.25c)

where, with some abuse of notation, we let cij,(l,m) and cji,(m,l) denote the same variable.
Following the rationale of ADMM, we obtain the following sequence of primal updates:

x
(t+1)
i = argmin

xi∈Xi

Ũi(xi, x̃i) +
∑
j∈Ni

∑
(l,m)∈Si,j

[
λ
(t)
i,j,(l,m)

·(e(i)Tl xi − cij,(l,m)) +
θ

2
(e

(i)T
l xi − cij,(l,m))

2
]

(4.26)

3Note that other methods such as dual decomposition are also available.
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x
(t+1)
i =

αAT
i Ai + θ

∑
j∈Ni

∑
(l,m)∈Si,j

e
(i)
l e

(i)T
l + (βρ/2)H̃i

−1

·
(

(βρ/2)H̃ix̃i − βgx̃i + αAT
i ri +

∑
j∈Ni

∑
(l,m)∈Si,j

(θc
(t)
ij,(l,m) − λ

(t)
i,j,(l,m))e

(i)
l

)
(4.29)

Algorithm 4.2 ADMM for computing Step 2 in Algorithm 4.1
for t = 1, . . . , tmax do

for i = 1, . . . ,M do
Compute {x(t+1)

i } from (4.26)
Broadcast your border variables to your neighbors
Compute {c(t+1)

ij,(l,m)} from (4.27)
Update the Lagrangian multipliers (4.28)
Broadcast the Lagrangian multipliers associated to the border variables to

your neighbors
end for
t← t+ 1

end for

c
(t+1)
ij,(l,m) =

e
(i)T
l x

(t+1)
i + e

(j)T
m x

(t+1)
j

2
+
λ
(t)
i,j,(l,m) + λ

(t)
j,i,(m,l)

2θ
(4.27)

with θ > 0 standing for weight associated to the augmented constraint in the ADMM
formulation [72]. Further, we have denoted by {λj,i,(l,m)} the Lagrangian multipliers
associated to the constraints of (4.25b). These dual variables are updated as follows:

λ
(t+1)
i,j,(l,m) = λ

(t)
i,j,(l,m) + θ(e

(i)T
l x

(t+1)
i − c(t+1)

ij,(l,m)) (4.28)

∀i, j ∈ Ni and (l,m) ∈ Si,j . When the constraint in xi ∈ Xi is trivially satisfied, as
might occur when the set Xi is sufficiently large, the primal update in (4.26) accepts a
closed form solution given in (4.29). This observation can be used to reduce the compu-
tational complexity required to obtain x

(t+1)
i . This distributed method is summarized in

Algorithm 4.2.

4.6 Robust State Estimation (RSCA-SE)

Here, we consider a scenario where few measurements may be subject to gross error (bad
data) due to e.g., malfunctioning, malicious attacks, or communication failures. In order
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to perform bad data detection, we reformulate the centralized SE problem in a LASSO
framework:

min
{x,o,ξ}

(
α

2
‖r−Ax− o‖22 + λ1 ‖o‖1 (4.30)

+
β

2

L∑
l=1

(
zl − xTMlx− eTl ξ

)2
+ λ2 ‖ξ‖1

)
where vectors o ∈ RK and ξ ∈ RL account for the presence of bad data in the PMU
and legacy measurements, respectively (i.e., with nonzero entries for corrupted measure-
ments). Consequently, the quadratic and fourth-order terms in the objective function
now account for the residual errors, whereas the norm-1 (regularization) terms ‖o‖1 and
‖ξ‖1 attempt to enforce sparsity in the solution. The λ1 and λ2 weights (along with α
and β) control the model-fit vs. sparsity/robustness trade-off. And, further, they define
an upper bound on the absolute value of the residuals (see Section 4.6.1 ahead).

To circumvent the non-convexity of the composite problem (4.30), we resort to the
SCA-based non-convex optimization framework of [86]. Specifically, at iteration ν the
algorithm attempts to solve the strongly-convex problem:{

x̂(ν), ô(ν), ξ̂(ν)
}

= argmin
{x∈X }

Ũ(x, x̃(ν),o, ξ, ξ̃(ν)). (4.31)

In the above expression, the approximate objective function Ũ(x, x̃(ν),o, ξ, ξ̃(ν)) can be
obtained by linearizing the non-convex term of the objective function in (4.30) at the
solution for the current iterate, x̃(ν), ξ̃(ν), that is (see derivation in Appendix B):

Ũ(x, x̃,o, ξ, ξ̃, ) =
α

2
‖r−Ax− o‖22 + λ ‖o‖1

+
β

2

{
gTx̃ (x− x̃) + gT

ξ̃

(
ξ − ξ̃

)
+
ρ

2
‖x− x̃‖22 +

ρ

2

∥∥∥ξ − ξ̃∥∥∥2
2

}
+ λ ‖ξ‖1 (4.32)

where

gx̃ = −2

L∑
l=1

(
zl − x̃TMlx̃− eTl ξ

)
(Ml + MT

l )x̃ (4.33)

and

gξ̃ = −2
L∑
l=1

el

(
zl − x̃TMlx̃− eTl ξ̃

)
(4.34)

denote the gradients with respect to x̃ and ξ̃, respectively. The approximate problem
(4.31) admits a closed form solution which is given by (4.41). The original problem can
thus be efficiently solved in an iterative manner by letting

x̂(ν+1) = argmin
x∈X

Ũ(x, x̃,o, ξ, ξ̃), (4.35)
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followed by an update of the sparse vectors

ô(ν+1) = (r−AT x̂(ν+1))+λ/α (4.36)

and

ξ̂(ν+1) =
[
ξ̃ − (1/ρ)gξ̃

]+
2λ/ρβ

(4.37)

where (χ)+λ denotes the element-wise thresholding operator, namely,

Sλ(χ) =


χ+ λ if χ < −λ;

0 if |χ| ≤ λ;

χ− λ if χ− λ.

(4.38)

Hereinafter, the proposed scheme, which is summarized in Algorithm 4.3, will be referred
to as Robust Successive Convex Approximation for State Estimation (RSCA-SE). Con-
vergence to a stationary solution of the original problem can be guaranteed as long as
the sequence of step sizes γ(ν) is carefully chosen (see [71], [86] for details). The main
features of RSCA-SE is that, it provides jointly state estimation and outliers suppression
and its numerical behavior is mainly dominated from the weights λ1, λ2.

Algorithm 4.3 Robust SCA for State Estimation (RSCA-SE)

1: Initialize ν = 0, γ(ν) ∈ (0, 1], {x̃(ν), ξ̃(ν), õ(ν) ∈X }
2: Compute {x̂(ν), ξ̂(ν), ô(ν)} by solving (4.31).
3: {x̃(ν+1) ← x̃(ν) + γ(ν)(x̂(ν) − x̃(ν))}
4: {ξ̃(ν+1) ← ξ̃(ν) + γ(ν)(ξ̂(ν) − ξ̃(ν))}
5: {õ(ν+1) ← ô(ν)}
6: If {x̃(ν+1), õ(ν+1), ξ̃(ν+1)} is a stationary solution Stop.
7: ν ← ν + 1 and go to step 2.

4.6.1 Upper bound on residual errors

The following proposition establishes an upper bound on the residual errors associated
to linear/non-linear measurements:

Proposition 4.2. Let x̌, ǒ, ξ̌ be the stationary solution given by Algorithm 4.3. Then,
the residuals (after data cleansing) are bounded as follows:∣∣r−Ax̌− ǒ

∣∣
∞ ≤ λ1/α (4.39)

max
l

∣∣zl − x̌TMlx̌− ξ̌
∣∣ ≤ λ2/β (4.40)

with | · |∞ denoting the `∞ norm. In addition, if [ǒ]k 6= 0 the residual associated to the
k-th PMU measurement satisfies

∣∣[r−Ax̌−ǒ]k
∣∣ = λ1/α. Similarly, if [ξ̌]l 6= 0 the residual

associated to the l-th legacy measurement satisfies
∣∣zl − x̌TMlx̌− ξ̌l

∣∣ = λ2/β.
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x(t+1) =

αATA + θ
∑
j∈Ni

∑
(l,m)∈Si,j

e
(i)
l e

(i)T
l + (βρ/2)I

−1

·
(

(βρ/2)x̃− βgx̃ + αAT (r− o) +
∑
j∈Ni

∑
(l,m)∈Si,j

(θc
(t)
ij,(l,m) − λ

(t)
i,j,(l,m))e

(i)
l

)
(4.41)

Proof. Refer to Appendix A. �

In other words, the absolute value of the residual error associated to an arbitrary PMU
(legacy) measurement is upper bounded by λ1/α (λ2/β). Further, the upper bound is
attained for those measurements with bad data. Interestingly, from Proposition 4.2,
Algorithm 4.3 can be regarded as an instantiation of the Huber estimator. Vectors o and
ξ control the amount of residual error to be accounted in a `1-norm sense, whereas the
amount of squared losses is upper bounded by λ1 and λ2 (model fit vs. robustness/sparsity
trade-off).

4.7 Numerical Results

The proposed state estimation schemes have been numerically assessed by means of com-
puter simulations, for different IEEE test cases and measurements sets. As in [29], power
flow and injection measurements, voltage magnitude measurements and PMU measure-
ments have been corrupted with independent and zero-mean Gaussian noise of standard
deviation σ = {0.02, 0.02, 0.01, 0.002} p.u., respectively. We have assumed that when a
PMU is placed at a given node, it provides the voltage phasor of this bus and the related
current phasors from the incident branches. In all test cases, observability is ensured
according to [88, 89]. That means, the number of available measurements (legacy and
PMUs) suffices in order to provide a full-rank invertible matrix in (4.29), which in turn
means that the closed form solution of the SCA-SE is solvable. Where relevant, the
Semi-Definite Relaxation-based SE method (SDR-SE) proposed in [29], and the Normal
Equations-based method (NE-SE) from [81] have been used as benchmarks. In the first
case, the SE problem is posed as a semidefinite programming (SDP) optimization model.
In order to deal with the non-convexity of the SDP problem the authors exploit the
semidefinite relaxation (SDR) technique, which amounts to drop the rank-1 constraint.
However, the SDR-SE approach guarantees the near-optimality of the solution under a
number of assumptions with respect to the system topology and the available measure-
ment set. The second benchmark, NE-SE, is based on the classical WLS SE model.
The latter is expanded into its Taylor series by computing the function’s derivatives at
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a single point and, after neglecting the higher order terms, the computation of the first
order optimality condition leads into the normal equations. Again, this approach is not
able to guarantee the convergence of the algorithm to a near-optimal solution, presenting
sensitivity to the initialization point and the measurement set. Unless otherwise stated,
computer simulation results are averaged over 500 realizations where the voltage mag-
nitudes were Gaussian distributed, Vm ∼ N (1, 0.01) p.u. and; angles were uniformly
distributed over [−0.5π, 0.5π] rad [29]. In all simulations, the SE is initialized4 with flat
start, i.e., x̂0 = [1T0T]T where 1 ∈ RN is a vector with all ones and 0 ∈ RN with all
zeros. For power flow analysis we have used Matpower [90].

4.7.1 Centralized scenario

First, we present some results for a centralized scenario and the IEEE 30-bus test case,
Fig. 4.2. The measurement set consists of 41 pairs of (re-)active power flows, 30 voltage
magnitude measurements (placed according to the first test case in [29]) and no PMUs. To
mention that the A-Hessian matrix has not been considered in this computer simulation.
For the measurement noise and the number of realizations applies what it has been
described above. Fig. 4.3 depicts the absolute estimation error in the voltage magnitudes
and angles at all buses. Clearly, the proposed SCA-SE approach outperforms SDR-SE
in terms of accuracy in the case of voltage magnitudes (top graph). At the same time,
the accuracy of the SCA-SE and SDR-SE schemes is comparable for the angle estimates.
On the contrary, the estimation error of NE-SE for both magnitude and angle estimates
attains higher values.

Next, in Fig. 4.4, we analyze the impact of PMU measurements5 in the resulting
state estimation accuracy. To that aim, up to 4 PMUs are progressively introduced at a
number of pre-defined locations, specifically at buses 10, 12, 27 and 15. The set of legacy
measurements is the same as in the previous computer simulation. Results are given in
terms of normalized estimation error, that is, 1

2N ‖x − x̂‖2, with x and x̂. The figure
reveals, that, in many realizations NE-SE fails to converge (outliers in the top boxplot).
On the contrary, the SDR-SE and SCA-SE schemes perform well in all realizations and
cases. This follows from the fact that NE-SE convergence is largely affected by the
initialization point (i.e., x0). For instance, in the case without PMUs, the mean value of
the average error for NE-SE is 1.9 × 10−3. In contrast, the same value for SCA-SE and
SDR-SE is 7.8 × 10−4 and 9 × 10−4, respectively. We also observe that, unsurprisingly,
accuracy increases for the increasing number of PMUs; and, further, the accuracy of the

4To note here that the algorithm on any random time instant t2 can be initialized with the estimated
state from the previous estimation i.e., t1, as in steady state conditions, ‖xt2 − xt1‖ ≤ ‖xt2 − x0‖. This
approach (hot start) can lead the algorithm to improved convergence rate.

5Where PMU and legacy measurements coexist, for the positive scalars α and β we have used the
rule, β = 1−α with α = 0.99, in order to weight the contribution of each type of meters. However other
rules can be followed.
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Figure 4.2: IEEE 30-bus test case [6].

proposed SCA-SE algorithm is very similar to that of SDR-SE. However the performance
of SDR-SE degrades when the number of voltage magnitude measurements decreases.
This drawback may arise in the SDR-SE method if voltage magnitude measurements are
not available in all buses and the system does not have a tree topology, e.g. transmission
system (see Proposition 1 in [29]).

To show this, in Fig. 4.5 is presented a scenario where the number of voltage magni-
tude measurements has been reduced from 30 to 15. We focus on a specific realization
of the system state and then average the results over 100 realizations of the observation
noise. In contrast with the previous scenario, PMUs are placed progressively at the buses
2, 10, 18, 27, 12, 28, 25, 6, 1 and 15. SCA-SE is able to converge efficiently to a stationary
point. This, does not apply for SDR-SE, which has not converged (in all realizations).
Moreover, as it was expected, for the proposed SCA-SE we observe a decreasing error
when the number of PMU measurements increases. Important to mention that, the in-
troduction of the approximate Hessian in the SCA-SE approach (bottom graph) has a
dramatic impact in terms convergence rate: the total number of iterations needed to
find a stationary solution decreases one order of magnitude (from few hundreds to 20-
25). Hence, the exploitation of second order information information (embedded into the
A-Hessian), even if approximate, is of an utmost importance. This holds in particular
when there are few PMUs since, in this case, such ’high quality’ measurements cannot
be exploited to speed up convergence.

Complementarily, we investigate an alternative to the computation of the A-Hessian
matrix in (4.23) which is based on the eigenvalue decomposition. Rather than just drop-
ping the second terms of the Hessian (see equation (4.22)), we construct a positive-definite
matrix (the EV-Hessian) by discarding the eigenvectors associated to its negative eigen-
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Figure 4.3: Absolute error for the magnitude (top) and angle (bottom) estimates in
each bus, for SCA-SE, SDR-SE and NE-SE algorithms. IEEE 30-bus test case. The
parameters has been set as γ = 0.01 and ρ = 10.

values (and, again, add a properly scaled identity matrix). The performance exhibited
by SCA-SE with both the A- and EV-Hessian matrices is shown in Fig. 4.6. Results are
averaged over 100 realizations for the IEEE 30-bus test system, where Vm ∼ N (1, 0.0025)

p.u. and θm ∼ [−0.1π, 0.1π] form ∈ {1, . . . , N}. Further, the measurement set consists of
41 pairs of power flow measurements, 15 voltage magnitudes and no PMUs. Interestingly,
the normalized error after convergence is identical in both cases. However, the number of
iterations needed by the A-Hessian approach halves that of the EV-Hessian. This is due
to the higher complexity of the EV-Hessian. Hence, the additional computational burden
that the computation of the eigenvalue decomposition entails does not pay off, when it
comes to preserving curvature information. The low-complexity A-Hessian matrix that
we initially proposed is preferable.

4.7.2 Decentralized (multi-area) scenario

Figures 4.9 and 4.10 illustrate the convergence behavior of the decentralized version of
SCA-SE in two scenarios for a multi-area setting of the IEEE 57-bus test case (partitioned
in 4 areas, Fig. 4.7). In the first graph, Fig. 4.9, we present the convergence behavior
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Figure 4.4: Normalized error vs. number of PMUs, for SCA-SE, SDR-SE and NE-SE
algorithms. Parameter set: γ = 0.01, ρ = 10, α = 0.99, β = 0.01.

of the algorithm in a case where the system is observable via only PMUs. Specifically,
the measurement set consists of 17 PMUs according to the meter configuration presented
in [91]. The graph illustrates that all areas converge in less than 20 iterations. The
second scenario considers a case with a decreased number of PMUs aided by legacy
measurements, that is, 80 pairs of power flows, 57 voltage magnitudes and 10 PMUs.
Interestingly, Fig. 4.10 shows that the distributed SCA framework aided by the A-
Hessian approaches the convergence rate of the idealistic convex case, i.e., 4.9. Notably,
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Figure 4.5: Normalized error vs. iteration number, with (bottom) and without (top) the
approximate Hessian. IEEE 30-bus system. Parameter set: γ = 0.01, ρ = 10, α = 0.99,
β = 0.01 and δ = 10−4.

as the same graph depicts, the estimation error of decentralized SCA-SE (blue curve,
x̂ = [x̂T1 , x̂

T
2 , x̂

T
3 , x̂

T
4 ]T ), after the convergence to a stationary solution, is identical to that

of its centralized counterpart (unlike other works [29] no additional penalty from the use
of ADMM).

Next, the decentralized version of the SCA-SE algorithm is numerically assessed on
a test case which includes a higher number of buses, namely the IEEE 118-bus test
system partitioned in 9 areas, Fig. 4.8. By doing so, we aim to illustrate the efficiency of
the proposed scheme for larger networks. The measurement set here includes 186 pairs
of power flows, 118 voltage magnitudes and 32 PMUs. Again, the phasor meters are
positioned according to the configuration proposed in [91]. Fig. 4.11 shows that each
area finds a stationary solution within 25-30 iterations (Algorithm 4.1). Again, this is
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Figure 4.6: Normalized error vs. iteration number for the cases of EV-Hessian and A-
Hessian.

Figure 4.7: IEEE 57-bus test case partitioned in 4 areas [7].

thanks to the use of the A-Hessian matrix that, in such decentralized setting, needs to be
computed on a per area basis (locally). For each SCA-SE iteration, 2-3 iterations of the
ADMM scheme (Algorithm 4.2) suffice. In summary, for both scenarios, the decentralized
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Figure 4.8: IEEE 118-bus test case partitioned in 9 areas [8].

version of the SCA-SE scheme exhibits a remarkable performance.

Figure 4.9: Normalized error vs. iteration number for the 4 areas of the IEEE 57-bus
test case. Parameter set: ρ = 30, α = 1 and β = 0.
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Figure 4.10: Normalized error vs. iteration number for the 4 areas, the aggregated decen-
tralized solution and its centralized counterpart of the IEEE 57-bus test case. Parameter
set: γ = 0.01, ρ = 30, α = 0.99, β = 0.01 and δ = 10−4.

Figure 4.11: Normalized error vs. iteration number for the 9 areas of the IEEE 118-bus
test case. Parameter set: γ = 0.01, ρ = 30, α = 0.99, β = 0.01 and δ = 10−4.

4.7.3 Robust approach (RSCA-SE)

Here, we investigate the impact of bad data in the various state estimation schemes.
Results are averaged over 100 realizations of system state, where the loads have been
assumed Pm ∼ N (Pm, 0.001), Qm ∼ N (Qm, 0.001), and the additive noise. Bad data is
generated by scaling the correct measurements by a 1.2 factor, as in [25]. As benchmarks,
we have considered the robust versions of the classical NE-SE estimator (RNE-SE), on
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the one hand; and the SDR-SE scheme [29] (RSDR-SE), on the other. RNE-SE leverages
on the so-called Largest Normalized Residual Test (LNRT) to detect bad data. Such
detection is performed a posteriori, that is, based on the analysis of the normalized
residuals that the classical NE-SE yields. Measurements with too large residuals are then
removed from the entire set and NE-SE is run again. Yet fairly simple, the RNE-SE
approach is subject to detection failure. This may happen, for instance, in the presence
of multiple and conforming bad data. Conforming bad data are considered the ones which
appear in measurements with strongly correlated residuals and in turn, the residual errors
appear consistent with each other [81, Ch.5]. As for SDR-SE, its robust version can be
formulated by including an `-1 regularization term in the original cost function (see [87]
for details).

Figure 4.12: Normalized error vs. number of PMUs with bad data for the IEEE 57-bus
test case. Parameter set: γ = 0.01, α = 0.99, β = 0.01 and δ = 10−4.

Figure 4.12 refers to the scenario where bad data appear within the PMU measure-
ments for the IEEE 57-bus test case. The measurement set includes 81 pairs of power
flows, 57 voltage magnitudes and 17 PMUs. Further, bad data is progressively intro-
duced in the PMUs at buses 2, 6, 10, 12, 19, 22, 46, 49. This subset of buses has been
chosen as a worst-case scenario where the corrupted phasor measurements are spatially
extended over the system. The graph reveals that the performance degradation expe-
rienced by the proposed RSCA-SE scheme (Section 4.6) is, by far, the lowest. In fact,
with up to 2 corrupt PMU measurements the performance degradation with respect to
the baseline case (clean measurements) is barely noticeable. On the contrary, RNE-SE
is critically affected by gross errors. In fact, bad data goes undetected in all cases this
resulting into a large normalized error. This is due to the fact that, PMU measurements
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Figure 4.13: Normalized error vs. number of legacy measurements with bad data for the
IEEE 30-bus test case. Parameter set: γ = 0.01, α = 0.99, β = 0.01 and δ = 10−4.

are introduced in the traditional NE-SE with large weights as highly accurate measure-
ments. The latter may lead the LNRT residual analysis, which involves the measurement
weights, in misleading decisions [82]. Interestingly, the contrast with respect to the ac-
curacy between the RSCA-SE and SCA-SE schemes is rather broad. This evidences the
effectiveness of the followed approach introduced to render SCA-SE more robust to bad
data (see Section 4.6). Notice also that, unlike in RNE-SE, the state estimation and
bad data detection/removal in RSCA-SE is conducted in parallel. This, along with the
more sophisticated detection method, results into an enhanced performance. As for the
RSDR-SE, its gain with respect to the plain (i.e., non robust) SCA-SE scheme can be
regarded as profitable, but at the same time moderate, compared to RSCA-SE.

Similar results are depicted in Fig. 4.13 in a scenario where bad data are contained in
legacy measurements for the IEEE 30-bus test case. The measurement set consists of 41
pairs of power flows and 30 voltage magnitudes and bad data is progressively introduced
in the voltage meters of buses 15 to 22. These specific voltage magnitude measurements
has been chosen as corrupted in order to numerically assess the proposed scheme and
benchmarks in a worst case scenario, which involves multiple and conforming bad data.
Again, RSCA-SE is superior compared to the benchmarks. Interestingly, we observe
that with up to 2 corrupted legacy measurements RNE-SE succeeded in detecting and
extracting the bad data (equal estimation error with baseline case). However, as the
number of bad data increases, RNE-SE presents a significant performance degradation
due to the fact that LNRT was unable to detect the outliers.

Finally, we empirically assess the validity of Proposition 4.2, for both synchronized
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Figure 4.14: Residual error vs. measurement index: PMU - real and imaginary parts /
IEEE 57-bus (top) and legacy / IEEE 30-bus (bottom). Parameter set: λ1/α = 6 · 10−3,
λ2/β = 3 · 10−4

and legacy measurements. For the former, bad data is contained in PMU measurements
at buses 2,6, 10 and 12 for the case of IEEE 57-bus test system. For the latter, bad data is
contained in voltage magnitude measurements at the buses 15 to 18 for the IEEE 30-bus
test system. Indeed, in Fig. 4.14 we observe how, for all individual measurements, the
absolute value of the residual error is upper bounded by λ1/α (or λ2/β). And, further,
that such upper bound is reached when measurements effectively contain bad data (which
is denoted by red crosses), as anticipated by Proposition 4.2.

4.8 Conclusions

In this chapter, we have considered a SE scenario with measurements available from both
PMUs and legacy meters. The resulting SE model constitutes a non-convex optimization
problem. In order to overcome this challenge, we have leveraged on a successive convex
approximation approach (SCA-SE), where the non-convex objective function is approxi-
mated by a sequence of strongly convex ones, solving the problem in an iterative manner.
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The proposed scheme has been numerically assessed over a variety of measurement set
scenarios and different test systems, namely the IEEE 30-bus, 57-bus and 118-bus test
systems. For comparison reasons, we have chosen as benchmarks an efficient SE scheme
based on a semidefinite relaxation and the traditional normal equations based SE. The
numerical results have shown that the SCA-SE scheme outperforms in terms of accuracy.
This applies in all different scenarios of measurement redundancy and system state under
consideration. In addition, we incorporate to the SCA-SE second order information from
the original non-convex objective function via the presented A-Hessian matrix. Computer
simulations have shown that this approach has concluded in an improved convergence rate
of the proposed algorithm avoiding additional computational burden. Then, we have ex-
ploited the properties of the successive convex approximation framework and we have
presented a distributed implementation of the SCA-SE. To do so, we have leveraged on
the ADMM, an efficient framework suitable for multi-area settings. The computer sim-
ulations have revealed that, in contrast to other decentralized approaches, our scheme
exhibits slight performance degradation with respect to the centralized version. Finally,
in order to detect and clean measurements with bad data, the SCA-SE scheme has been
reformulated as a LASSO-like estimation problem by promoting sparsity in the vector
of corrupted measurements (RSCA-SE). This applies for both PMU and legacy observa-
tions. Additionally, we have derived an upper bound of the residual error and concluded
that the resulting robust state estimator resembles the Huber’s estimator. The RSCA-SE
has been numerically assessed in different scenarios where PMU and legacy measurements
have been corrupted with gross error. The numerical analysis have proved that the pro-
posed scheme detects and cleanses bad data measurements more effectively than other
methods from the literature, such as the LNRT.
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4.9 Appendix A: Proof for Proposition I

The surrogate objective function for the robust state estimation optimization problem is:

Ũ(x, x̃,o, ξ, ξ̃) =
α

2
‖r−Ax− o‖22 + λ ‖o‖1

+
β

2

{
gTx̃ (x− x̃) + gT

ξ̃

(
ξ − ξ̃

)
+
ρ

2
‖x− x̃‖22 +

ρ

2

∥∥∥ξ − ξ̃∥∥∥2
2

}
+ λ ‖ξ‖1 (4.42)

We define the auxiliary variables µ ∈ RK , π ∈ R2N , υ ∈ RL as follows:

µ = r−Ax− o (4.43)

π = x− x̃ (4.44)

υ = ξ − ξ̃ (4.45)

and accordingly, we define the Lagrangian function:

L =
α

2
‖µ‖22 + λ1 ‖o‖1

+
β

2

{
gTx̃π + gT

ξ̃
υ +

ρ

2
‖π‖22 +

ρ

2
‖υ‖22

}
+ λ2 ‖ξ‖1

+ψ(r−Ax− o− µ) + τ (x− x̃− π) + δ(ξ − ξ̃ − υ)

(4.46)

where ψ ∈ RK , τ ∈ R2N , δ ∈ RL are the dual variables. The partial derivatives with
respect the primal variables read:

∂L

∂µ
=⇒ αµ−ψT = 0 =⇒ µ = ψ/α (4.47a)

∂L

∂π
=⇒ β

2
gx̃ +

βρ

2
π − τ = 0 =⇒ π =

2

βρ
(τ − β

2
gx̃) (4.47b)

∂L

∂υ
=⇒ β

2
gξ̃ +

βρ

2
υ − δ = 0 =⇒ υ =

2

βρ
(δ − β

2
gξ̃) (4.47c)

∂L

∂x
=⇒ −ATψ + τ = 0 (4.47d)

∂L

∂o
=⇒ −ψ + λ1∂ ‖o‖1 (4.47e)

∂L

∂ξ
= δ + λ2∂ ‖ξ‖1 (4.47f)

Leveraging on the conditions (4.47) we can re-write and re-arrange (4.46) as:

L = − 1
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2
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2
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2

+ λ2 ‖ξ‖1 +ψ(r−Ax− o− µ)

+µT r− τT x̃ + δT ξ̃ + xT (−ATψ + τ )− ψTo− δT ξ

(4.48)
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Hence, the dual problem reads:

− 1

2α
‖ψ‖22 −

β

4ρ

∥∥∥∥τ − β

2
gx̃

∥∥∥∥2
2

− β

4ρ
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2
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2

+ψT r− τT x̃ + δT ξ̃

s. t. ATψ = τ

|ψ|∞ ≤ λ1
|δ|∞ ≤ λ2

(4.49)

Now, assume that the algorithm converges to a stationary solution x̃, ξ̃. That means:

x− x̃ = 0 (4.50)

ξ − ξ̃ = 0 (4.51)

Then, from (4.47a) we have:

ψ = αµ (4.52)

and by definition (4.43):

µ = r−Ax− o (4.53)

so, again from (4.47a):

|ψ|∞ = α |µ|∞ = α |r−Ax− o|∞ ≤ λ1 (4.54)

and the residual is constrained by:

|r−Ax− o|∞ ≤ λ1/α (4.55)

Accordingly, for the part that refers to the legacy measurements, as ξ − ξ̃ = 0 from
assumption (4.51), we have υ = 0 and from (4.47c):

|δ|∞ =

∣∣∣∣β2 gξ̃

∣∣∣∣
∞
≤ λ2 (4.56)

where:

gξ̃ = −2

L∑
l=1

el

(
zl − x̃TMlx̃− eTl ξ̃

)
(4.57)
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4.10 Appendix B: SCA framework for the Robust SE

Theorem 4.3. The successive convex approximation framework proposed in [86] for non-
convex optimization problems in the form:

min
{w}

V (w) = G(w) + F (w) (4.58)

where G(w) is possibly a non-convex function and F (w) is a non-smooth but convex one,
is equally valid for the case of the optimization problem in (4.30):

min
{x,ξ}

V (x, ξ) = G(x, ξ) + F (ξ) (4.59)

with

G(x, ξ) =
β

2

L∑
l=1

(
zl − xTMlx− eTl ξ

)2
and

F (ξ) = λβ ‖ξ‖1

Proof. First, we define the auxiliary vector:

w = (x, ξ)T ∈ R(2N+L)×1 (4.60)

with x ∈ R2N and ξ ∈ RL, and the auxiliary matrices:

Ω1 = [I2N ,0] ∈ R2N×(2N+L) (4.61)

where I2N ∈ R2N×2N stands for the eye matrix and 0 ∈ R2N×L is a matrix with all zeros,
and:

Ω2 = [0, IL] ∈ RL×(2N+L) (4.62)

where, accordingly, IL ∈ RL×L stands for the eye matrix and 0 ∈ RL×2N is again, a
matrix with all zeros.

Leveraging on the auxiliary vector w, the problem in (4.59) can be re-arranged as
follows :

U(w) =
β

2

{ L∑
l=1

(
zl − (Ω1w)TMl(Ω1w)− eTl (Ω2w)

)2}
+ λβ ‖Ω2w‖1 (4.63)
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Following the rationale of [86] and, simply linearizing the function around a feasible
point w̃, we can produce a strongly convex function of (4.63), that is:

Ũ(w, w̃) =
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− 2
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Now, in (4.64) we have:
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where,

(ΩT
1 MlM1 + ΩT

1 MT
l Ω1)w̃ = (ΩT

1 MlΩ1 + ΩT
1 MT

l Ω1)·

[[
x̃

0

]
+

[
0
ξ̃

]]
= (ΩT

1 MlΩ1 + ΩT
1 MT

l Ω1)

[
x̃

0

]

based on the fact that:

(ΩT
1 MlΩ1) ·

[[
x̃

0

]
+

[
0
ξ̃

]]
= (ΩT

1 MlΩ1)

[
x̃

0

]

Additionally, bearing in mind that:
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we can re-arrange accordingly (4.65) and, we have:
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Going one step further in (4.67) and dropping the auxiliary matrices Ω1 and Ω2, we have:

(Ml + MT
l )x̃(x− x̃) + (el)(ξ − ξ̃) (4.68)
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Finally, substituting (4.68) in (4.64) and again dropping Ω1 and Ω2, we have:
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2

}
+ λβ ‖ξ‖1 (4.69)

that is equal with the strongly convex function 4.32 in Section 4.6.
�



Chapter 5
A Regularized State Estimation
Scheme for a Robust Monitoring
of the Distribution Grid

In this chapter, we propose a regularized SE scheme for the DG. The ultimate goal is
to track accurately the system state at a faster time scale according to the requirements
of the new operational environment. The SE algorithm operates at two different time
scales in which the set of available measurements are different. At the main time instants
(every 15 minutes) the set of observations comprises SCADA measurements, pseudomea-
surements and µPMUs. In this case, we resort to a regularized version of the normal
equations-based SE (R-NESE). In the intermediate time instants, only a reduced num-
ber of µPMU measurements is available. To circumvent observability issues, we exploit
the fact that the voltage drop in adjacent buses is limited and, on that basis, a regu-
larized weighted total variation estimation (WTVSE) problem is formulated. Then, the
impact of in-line voltage regulators (IVLRs) is explicitly taken into consideration and
that, forces us to decompose and solve the original SE problem for a number of smaller
regions (D-WTVSE). The latter can be iteratively solved by resorting to the ADMM.
Complementarily, we also present a µPMU placement method (µPP) in order to improve
the conditioning of the R-NESE problem. This problem can be posed as a MISDP and,
thus, can be efficiently solved. The performance of the proposed scheme is numerically
assessed on (mostly) a 95-bus distribution system for a number of realistic conditions of
noise, load and photovoltaic generation profiles. A number of benchmarks are provided,
as well.

63
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of the Distribution Grid

5.1 Introduction

SE is a well-studied problem for the TG. In contrast, SE for the DG has attracted
lots of research interest over the last decade. However, DG SE turns out to be very
challenging [40], [92], as we discuss next.

To start with, the uniqueness of DG network topologies often renders the SE prob-
lem ill-conditioned [37]. Several factors, such as the radial topologies and the low re-
actance/resistance (X/R) ratio [2], degrade the efficiency of the conventional estimators
operating at the transmission level. At the same time, these peculiarities raise the need
for analytical modeling of the distribution network [93]. Several works on DG SE [43], [94]
have proposed alternative SE schemes suitable for radial-shaped DGs. The underlying
idea is to consider the branch currents as the state variables instead of bus voltage and
angles. This modification can ensure increased simplicity of the non-linear functions that
describe the relationship between the state variables and the AC load flows. From a
different point of view, a number of schemes have leveraged on the aforementioned char-
acteristics in order to built heuristic methods. A monitoring algorithm based on a new
formulation of the AC radial load flows can be found in [95]. The proposed scheme relies
on the voltage measurements of a crucial set of buses and the neighboring state variables
are adjusted iteratively to fit the measured values. In the same context, a model order re-
duction method is performed on the DG in [49]. The algorithm selects a number of nodes
and branches and reduces them to an equivalent one. Consequently, the SE is capable of
providing an estimate relying on a reduced number of PMUs. One more recent heuristic
approach is presented in [96]. The method relies on an ad-hoc regularized parameter in
order to deal with possible numerical instability introduced by the DG specificities. In-
terestingly, the scheme is implemented with slight modifications to the classical weighted
least squares (WLS) estimator.

Another challenge here is the limited availability of measurements. In this case,
utilities have leveraged on data mining techniques on historical and smart meter data,
constructing pseudomeasurement sets [46]. By using such pseudomeasurements in con-
junction with actual SCADA readings, (slightly) redundant measurement sets can be
constructed. Nonetheless, these observation sets consist of a large number of (pseudo)
power injection measurements, that in turn affects significantly the numerical condition-
ing of the normal equations [81] and deteriorate the SE accuracy [97]. In [98], it has been
shown that the correlation among these pseudomeasurements reduces substantially the
estimation performance. Consequently, an advanced processing of the high uncertainty
that such load injections exhibit becomes a necessity [99]. A prior statistical treatment
in order to overcome the nonsynchronized nature of the smart meter data is proposed
in [100]. Based on the observation that the short-time load variations follow a normal
distribution, the authors present a modified WLS-based SE.
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Further, non-technical restrictions also affect the precision of the pseudo loads and in
turn, the accuracy of SE. In [101], the authors emphasize the privacy restrictions with
respect to the data aggregation from smart meters. These restrictions affect significantly
the accuracy of the pseudomeasurements, degrading the voltage profile accuracy. In
order to overcome this barrier, two strategies are proposed. The first is based on the
consideration of the correlations between the errors of each pair of measurements. To do
so, instead of the commonly adopted diagonal covariance matrix, the authors propose a
non-diagonal one, which accounts for such correlations. The second strategy leverages on
the power loss estimation at the side of the LV system. Given that, the precision of the
considered pseudo loads at the MV/LV substations will be improved.

Furthermore, the increasing penetration of DER along with the introduction of new
components, such as electric vehicles and distributed energy storage systems, have trans-
formed the DG into an active infrastructure [102]. Besides, the power production profile
of DERs (e.g., photovoltaic plants) exhibits variability at a shorter time scale. This re-
sults into an increasing number of voltage fluctuations and reverse power flows, which in
turn may result in: i) the disconnection of the renewable resources; and ii) financial losses
for the utilities [103]. For that reason, the distribution system operators attempt to keep
an appropriate (within operational constraints) voltage profile at the medium voltage
(MV) level system leveraging on active elements, such as the on-load tap changers at the
primary distribution substations and the ILVRs across the feeders [38]. However, under
specific operational situations these control devices may fail [104]. Consequently, the
interest in monitoring (and optimizing) DG’s MV systems with an increased temporal
granularity and the maximum reliability has become a necessity.

To that aim, the distribution system operators may resort to the recently introduced,
low-cost, µPMUs [39]. These devices are exclusively designed to provide visibility for the
MV feeders, where, unlike high voltage systems, the phase angle differences between two
measured locations lie usually at the level of small fractions of a degree. Thus, on the
one hand, µPMUs typically operate at faster timescale, as opposed to legacy SCADA
and pseudomeasurements (millisecond vs. second or minute timescales). On the other,
the precision of their (linear and synchronized) measurements is higher, compared to the
classical PMUs deployed at the TG. Indeed, a low number of µPMUs is able to improve
significantly the estimated voltage profile [105], but also to enhance other applications
for the DG [106]. However, a number of challenges, mostly related with the optimal
number and position of the phasor meters, have to be also addressed. In [107], the
authors present a mathematical analysis on the impact of synchrophasor technology on
the voltage profile estimation. The main sources of uncertainty introduced from the PMUs
are analyzed and interestingly, the authors prove that the number and location of the
meters is of a high importance. As a matter of fact, several studies in the literature deal
with these issues, following different rationales. For instance, an incremental placement
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Figure 5.1: Legacy and µPMU measurements are available at time instants {kT, (k +

1)T, . . .} and {kT, kT + t, kT + 2t, . . .}, respectively.

approach can be found in [108], [109]. In the latter, the authors present an integer linear
programming model aimed to reach a predefined reliability level of system observability
using a minimum number of phasor meters.

5.1.1 Contribution

In this chapter, we propose a regularized SE scheme for the DG robust monitoring, which
operates in a two-time scale fashion. The ultimate goal is to accurately track the system
state at a faster time scale with increased reliability, according to the needs of the new
operational environment. In contrast with the previous schemes [44], [100] the presented
algorithm is able to provide monitoring with an increased temporal granularity. Given
that, it is capable of tracking short-term off-limit system conditions, which are mostly
generated by voltage fluctuations and reverse power flows. This feature could be proven
to be beneficial for the distribution system utilities in order to optimize the operation
of the DERs and minimize their financial losses. At the same time, the scheme presents
robustness against the high uncertainty of the available information. This overcomes the
barrier of the restricted and low quality measurement sets, commonly available in the
case of the DG. The main contributions of this chapter are as follows:

1) A state estimator that operates on the main time instants kT. The ob-
servations comprise SCADA measurements and pseudomeasurements, available every 15
minutes, Fig. 5.1. On top of these, a limited number of precise synchrophasors is added.
This low redundant measurement set, characterized by a noise variation diversity, leads
into an ill-conditioned optimization problem and affects significantly the SE accuracy [81].
In order to overcome this barrier and in line with [12], the SE is posed as a regularized
non-linear least squares optimization problem. Resorting to the well-known Tikhonof
regularization [5], the problem formulation refers to the regularized version of the normal
equations-based SE (R-NESE). In addition, prior system information is introduced to the
regularization term, that is, the last computed state estimate. Specifically, the proposed
R-NESE presents the following properties:

• It improves the conditioning of the initial SE problem. For this reason, the quadratic
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convergence characteristics of the normal equations are preserved, leading to a
fast convergence rate compared to the commonly used normal equations as well as
compared to other interesting approaches [110].

• It presents robustness against uncertainties raised by the specificities of the DG, e.g.,
low X/R ratio. More importantly, in contrast with other works [46], the algorithm
overcomes the barriers of the low redundant measurement sets and the high error
variance of pseudomeasurements, and it attains a high accuracy.

• The proposed scheme is practical for implementation since it just requires slight
modifications with respect to the existing normal equations-based estimators.

2) A state estimation scheme that operates on the intermediate time in-
stants kT+nt. In this case, we exclusively leverage on the positioned µPMUs at a
subset of buses, Fig. 5.1. Since unavoidably the number of measurements is low, ob-
servability cannot be guaranteed. To circumvent that, we again resort to regularization
techniques [5] leveraging on prior (expert) information on selected DG features. Specif-
ically, the SE is formulated as a weighted total variation estimation (WTVSE) problem
which limits variations in voltage estimates in adjacent buses. This stems from the fact
that, in DGs, branch impedances (electrical lengths) and current flows tend to be lower
than in TGs and so are voltage drops in adjacent buses [111]. On that basis, we propose
a rule to define branch-specific weights for the regularizer. Further, possible zero power
injection buses are exploited and introduced to the problem as constraints. Finally, the
presence of ILVRs across the feeders has been taken into consideration. This allows us
to re-formulate the problem as a constrained decomposed WTVSE (D-WTVSE). Then
the D-WTVSE problem is effectively solved by finding an iterative solution based on the
ADMM [72]. At a glance, the D-WTVSE scheme presents the following features:

• An efficient SE model that relies on a limited number of µPMUs and the zero power
injection buses. The model counts for feeder structural differences (e.g., rural or
urban), the intermittent nature of DER power production and active components
installed within the feeder.

• The SE numerical treatment leverages on the ADMM which offers advantages over
the `1-norm (WTV regularization) solution and model simplicity compared to tra-
ditional methods for ILVRs incorporation [111].

• Based on the superior properties of the ADMM, the algorithm presents satisfactory
convergence rate and a low computational time is needed for full convergence. Given
that, the implementation of D-WTVSE offers the capability for multiple consecutive
estimates within the intermediate time instants.

3) An ad-hoc µPMU placement method (µPP). The presented model has been
designed according to the demands of the proposed two-time scale SE scheme. To do
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so, following a similar rationale with already developed algorithms for sensor scheduling
purposes [112], we pose it as MISDP optimization problem. In particular, the objectives
of the µPP problem are: (i) to ensure system observability (if needed) for the R-NESE
scheme, while taking into consideration the existing measurements; (ii) to optimize the
conditioning of the R-NESE problem [97] that, in turn, will result into more accurate state
estimates and (iii) to allocate a sufficient subset of the predefined number of µPMUs in
each DG region, according to the requirements imposed by D-WTVSE.

Comparing the µPP method with other works from the literature, a similar ap-
proach can be found in [113]. However, the authors emphasize on the placement of
(non-synchronized) voltage and power flow meters. The same applies for [114], where a
mixed integer linear programming model is presented. With respect to the synchropha-
sor technology, a work of similar nature can be found in [108]. The authors present a
PMU placement method that improves the numerical stability of the SE problem. More
specifically, the target of the proposed approach is to decrease the variances of the state
estimates in order to improve the algorithmic accuracy, and to avoid the correlation
among measurements aiming to optimize the bad data analysis. Other interesting works
can be found in [115], [116], where the number of meters (to be placed) is optimized in
relevance with financial criteria. In contrast, the presented method is able to allocate a
predefined number of µPMUs according to possible budget availability and communica-
tion constraints [14]. Besides, based on the problem constraints, the operator is able to
control the number of meters located to the different feeder areas. For instance, this can
be exploited for increased monitoring in a specific subset of buses where industrial loads
or high PV penetration are located.

The rest of the chapter is organized as follows. In the next section we provide the
basic DG SE system model. In subsections 5.3.1 and 5.3.2 we present the algorithms
for the SE schemes at the main (R-NESE) and intermediate time instants (D-WTVSE),
respectively. The solution of D-WTVSE via ADMM is presented in Section 5.4, while
Section 5.5 introduces the µPMU placement method. Finally, the proposed algorithms
are numerically assessed in Section 5.6. To conclude, we present our conclusions in Section
5.7.

5.2 System Model

Consider a balanced1 radial distribution grid (see Fig. 5.2) represented by the graph
G = (V ,B), where V denotes the set of buses with cardinality |V | = N ; and B stands
for the set of edges that describes their interconnections (branches), with cardinality
|B| = N − 1. The complex current injections at the buses, i.e., i = [I1, . . . , IN ]T , satisfy

1A radial distribution grid is considered balanced when it does not include un-transposed lines which
are unbalanced because of single phase, two phase and three phase loads.
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Figure 5.2: A 95-bus radial distribution grid comprising four photovoltaic (PV) generation
plants (adapted from [9]).

i = Yv, where Y ∈ CN×N is the nodal admittance matrix [117] and v = [V1, V2, ..VN ]T ∈
CN stands for the complex voltages at all the buses that determines the state of the DG.
The ultimate goal of power system state estimator (SE) is to estimate v from a set of
measurements at selected buses and branches.

Two types of measurements are considered available, namely, legacy and µPMU mea-
surements. As depicted in Fig. 5.1, their availability is at two different time scales
and, moreover, observations are of different nature. The first category comprises read-
ings from the SCADA system as well as pseudo-measurements. Legacy measurements
are typically obtained at time intervals of T = 15 minutes [48] and include: squared
voltage magnitudes, |Vm|2 for m ∈ V ; power flows at the branches, given by Sm,l =

Pm,l+jQm,l = VmI
∗
m,l for (m, l) ∈ B ; power injections, given by Sm = Pm+jQm = VmI

∗
m

for m ∈ V and squared branch current magnitudes, |Im,l|2 for (m, l) ∈ B. In contrast,
the sampling period of µPMUs t = T/q is smaller, typically on the order of few millisec-
onds [39], and provide the DG operator with updated snapshots of complex bus voltages,
Vm = <{Vm} + j={Vm} for m ∈ V . Each of these complex bus voltages is exploited
using its polar or Cartesian coordinates. Notice that legacy measurements are non-linear
functions of the system state, whereas µPMU measurements turn out to be linear ones.

Let vector x = [<{V1},={V1}, . . . ,<{VN},={VN}]T ∈ R2N denote the Cartesian
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representation of the system state, and z =
[
rT , yT

]T ∈ RM stand for the corresponding
measurement vector, where r ∈ RL and y ∈ RK are the vectors of legacy and µPMU
measurements, respectively. It is worth noting that, typically, applies M = L+K > 2N

but K < 2N due to deployment and operational costs. Finally, we can write:

z = h (x) + e (5.1)

where h(x) denotes a non-linear function of z on x in compliance with the AC power flow
model [117]; and e ∈ RM stands for zero-mean Gaussian noise with known covariance
matrix Re.

5.3 A Two-time scale State Estimation Scheme

Bearing all the above in mind, we propose the following SE algorithm. At time instants
kT, (k + 1)T, . . . , (k + n)T for k ∈ N, where both legacy and µPMU measurements are
available, a SE algorithm based on the regularized normal equations is adopted (see
Section 5.3.1 next). On the contrary, for the intermediate time instants between kT and
(k + 1)T we adopt a state estimator formulated as a constrained decomposed weighted
total variation regularization problem (subsection 5.3.2). Note that the latter relies only
on the observations coming from a reduced number of µPMUs and, possibly, the available
zero power injections.

5.3.1 Regularized Normal Equations-based State Estimator (R-NESE)

According to (5.1), the conventional state estimator is given by the solution to the fol-
lowing non-convex optimization problem:

x̂ = arg min
{x}

1

2
‖z− h(x)‖22 (5.2)

where, in the above (and following) expression(s), the time index has been dropped for
the ease of notation. To solve (5.2), one can resort to the so-called Normal Equations [81]:

G(ν)∆x(ν) = J
(ν)T
x R−1e [z− h(x(ν))] (5.3)

where ν stands for the algorithm iteration index; matrix J
(ν)
x ∈ RM×2N denotes the

Jacobian matrix of h(x) evaluated at νth iteration (i.e., the matrix of all first order
partial derivatives of the non-linear equations vector h(x(ν))); Re ∈ RM×M is the known
covariance matrix of the measurements; G(ν) = J

(ν)T
x R−1e J

(ν)
x stands for the gain matrix

and; ∆x(ν) = x(ν+1) − x(ν) captures the variation of the state variables over consecutive
iterations.

In the DG SE, the accuracies of the various elements in the measurement vector z

can be substantially different. This results in a near-singular gain matrix G [81] which,
in turn, results into an ill-conditioned system of equations in (5.3).
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For that reason, we adopt the following regularized non-linear least-squares optimiza-
tion problem [118]:

x̂ = arg min
{x}

1

2

[
(z− h(x))TR−1e (z− h(x)) + τ ‖x− xp‖22

]
(5.4)

that refers to the Tikhonof regularization method [5], also known as ridge regression [119]
in the field of statistics. In equation (5.4), τ is the parameter that controls the amount of
regularization establishing the trade-off between the regularization term ‖x− xp‖22 and
data fidelity [120]. In addition, xp is an application dependent vector, here, the estimated
state in the previous time instant.

The Tikhonof regularization method is commonly applied to non-well posed optimiza-
tion models [121]. These problems present numerical instability, namely, small pertur-
bations to the input data results in large variances of the outputs. The regularization
method exploits prior information in order to avoid this. More precisely, based on the as-
sumption that the exact solution is a smooth function, the algorithm returns a result that
approximates efficiently the real one. From a mathematical perspective, the underlying
rationale is to extract the source of ill-conditioning from the respective system of equa-
tions. With respect to the SE problem (5.3), this entails the filtering of the contributions
to the state estimate x̂ which correspond to the lower singular values of G. The latter is
linked with the value of the control parameter τ and consequently, an appropriate choice
is needed [120].

Next, we approximate the non-linear score function f(x) in problem (5.4) by expand-
ing it into its Taylor series around x(ν) and neglecting the higher order terms, which
yields:

f̃(x) = f(x(ν)) +∇f(x(ν))(x− x(ν)) +
1

2
∇2f(x(ν))(x− x(ν))2 (5.5)

Hence, the first order optimality condition for (5.5) can be computed as:

∇f̃(x) = ∇f(x(ν)) +∇2f(x(ν))(x− x(ν)) = 0 (5.6)

This last expression, in turn, can be re-written as the iterative Gauss-Newton method:

x(ν+1) = x(ν) − [∇2f(x(ν))]−1∇f(x(ν)) (5.7)

with:

∇f(x(ν)) = −J
(ν)T
x R−1e (z− h(x(ν))) + τ(x(ν) − xp) (5.8)

and

∇2f(x(ν)) = J
(ν)T
x R−1e J

(ν)
x + τI (5.9)
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Algorithm 5.1 Regularized NESE state estimation at an arbitrary time instant kT

1: Initialize ν = 0, x(0), xp, J
(0)
x , G(0), τ .

2: repeat
3: ν = ν + 1

4: Compute τ (ν).
5: Compute ∆x̂

(ν)
kT with (5.10).

6: Update x̂νkT = ∆x̂
(ν)
kT + x̂ν−1kT .

7: until ∆x̂
(ν)
kT < ε

where the last two expressions follow from equation (5.4). From all the above, equation
(5.7) can be re-written as: (

J
(ν)T
x R−1e J

(ν)
x + τ (ν)I

)
∆x(ν) =

J
(ν)T
x R−1e [z− h(x(ν))]− τ (ν)(x(ν) − xp) (5.10)

that is, as a regularized version of the normal equations, see (5.3), where the parameter
τ (ν) has to be re-computed in each iteration ν (see Section 5.6).

Algorithm 5.1 summarizes the corresponding iterative procedure.

5.3.2 Constrained Weighted Total Variation State Estimator (WTVSE)

The following linear model relates the set of measurements provided by the µPMUs (i.e.,
y) at an arbitrary time instant kT + nt (bus voltage phasors in Cartesian coordinates)
with the system state x (again, the time index has been omitted for the ease of notation):

y = Hx + w (5.11)

where H ∈ RK×2N stands for the corresponding measurement matrix, and w denotes
zero-mean Gaussian noise with known covariance matrix Rw. In comparison with the full
measurement vector z, the number of measurements provided by the µPMUs is typically
lower than the dimension of the system state vector, i.e, K ≤ 2N . This possibly renders
the SE problem unsolvable since the system of equations (5.11) is underdetermined. This
can be alleviated by introducing a regularization term accounting for the fact that, in
DGs, the voltage difference between adjacent buses is small.

From all the above, the state estimation problem can be posed as a constrained
weighted total variation regularization problem (WTVSE) [122]:

x̂ = arg min
{x}

1

2
‖y −Hx‖22 + λ ‖WLx‖1

s.t. Ỹx = 0

(5.12)

where, in the score function above, the term 1
2 ‖y −Hx‖22 encourages fidelity in the

solution to the vector of observations y; U(x) = ‖WLx‖1 is the regularization term,
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which introduces a prior model of the state vector x; and λ denotes the regularization
parameter, which controls the tradeoff between data fidelity and prior knowledge.

Matrix L ∈ R(2N − 2)× 2N is in charge of generating the vector with the voltage
differences for each pair of adjacent buses m and l. Since real and imaginary parts are
stacked in the same vector, it can be expressed as

L = Λ� I2×2 (5.13)

where, assuming that the elements in the i-th row of matrix Λ ∈ RN − 1×N are asso-
ciated to the (m, l) branch in the DG, they read

[Λ]i,j =


1, j = m;

−1, j = l;

0, otherwise

(5.14)

and, further, the operator � denotes Kronecker product, and I2×2 stands for the 2 ×
2 identity matrix. The diagonal weighting matrix W ∈ R(2N − 2)× (2N − 2) in the
regularization term of problem (5.12) above can, in turn, be expressed as

W = Ω� I2×2 (5.15)

where (diagonal) matrix Ω ∈ R(N − 1)× (N − 1) collects the weights for each branch.
Taking into consideration that the voltage drop along the (m, l) branch is proportional
to the branch impedance Zm,l = Rm,l + jXm,l, that is, Vm − Vl = ZmlIml (see Fig. 5.3),
a sensible choice for the aforementioned weights is

ωi,i = 1−
|Z|m,l
|Z|total

(5.16)

where we have assumed again that the i-th row of matrix Λ is associated to the (m, l)

branch, and Ztotal denotes the total impedance for the feeder where the (m, l) branch
lies. By doing so, the larger the branch impedance, the smaller the weight, this allowing
for larger variations in the corresponding buses. This allows to design a regularization
term of (5.12) which properly reflects the specific characteristics (i.e., electrical lengths)
of the various sections in medium-voltage feeders2.

Finally, the equality constraint Ỹx = 0 in problem (5.12) accounts for the d zero
current (power) injection buses. For instance, for the m ∈ V zero current injection bus,
we have

YmmVm +
∑
l∈N

YmlVl = 0 (5.17)

2These may be substantially different in e.g., rural or urban areas.
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Figure 5.3: Voltage drop along the (m, l) branch.

where Ymm stands for the sum of the admittances directly connected to bus m, N is
the set of buses connected to the bus m, Yml stands for the admittance that connect
the buses m, l, and Vm is the complex-valued voltage at bus m. By (i) splitting equation
(5.17) into its real and imaginary parts; (ii) stacking the resulting two parts in consecutive
equations of the system; (iii) leveraging on the Cartesian representation of the (complex)
bus voltages in the system state vector x; and (iv) re-arranging terms, the individual
elements in matrix Ỹ follow.

5.3.2.1 Inclusion of In-Line Voltage regulators

Next, the WTVSE problem (5.12) can be re-formulated to account for active elements
installed in the DG. Specifically, we consider the presence of the so-called ILVRs, which
automatically provide voltage regulation if the respective limits have been exceeded (e.g.,
0.95 - 1.05 per-unit). However, we have to take into account that (in contrast to the
case of substation transformers), the voltage base (used for the per-unit calculations) in
both areas on each side of ILVRs are identical. Hence, the ILVRs (when active) will
break down the feeders in areas of different per-unit voltage levels, leading the total
variation regularization term in (5.12) to possible inefficiency. In order to deal with
this specificity of WTVSE, for the numerical treatment of the ILVRs we will follow a
decomposed formulation based on their location. Nevertheless, this offers the advantage
of increased model simplicity compared to the commonly implemented methods, which
are based on the augmented state vector and admittance matrix [111]. As an illustrative
example, Fig. 5.4 presents the 95-bus UK DG. The system is divided into three areas
according to the location of the ILVRs and in each case, the buses connected to the ILVR
branch, i.e., {23-24} and {54-75}, become the border nodes of the respective adjacent
regions.

Now, consider a DG feeder that includes P ILVRs. Lets assume that each regulator
divides the system in two different areas, namely r and s, of different voltage levels (Fig.
5.5) and the total number of areas is A. Accordingly, we define Ar as the set of adjacent



5.3 A Two-time scale State Estimation Scheme 75

Figure 5.4: Decomposition of the 95-bus UK DG according to the location of the ILVRs.

Figure 5.5: WTVSE decomposition according to the ILVR.
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areas to area r and Srs as the set of adjacent buses m and l between areas r and s.
Then, the constraints arsVmR = VlR and arsVmI = VlI have to be satisfied, where ars
stands for the tap position3 indicator of the corresponding ILVR, usually displayed in the
distribution management system.

Taking all the above into consideration, problem (5.12) can be re-formulated as a
decomposed WTVSE (D-WTVSE) optimization problem based on the positions of the
ILVRs (Fig. 4):

arg min
{xr}

A∑
r=1

1

2
‖yr −Hrxr‖22 + λ ‖WrLrxr‖1

s.t. Ỹrxr = 0r

[
ars 0 − 1 0

0 ars 0 − 1

]
e
(r)T
mR xr

e
(r)T
mI xr

e
(s)T
lR xs

e
(s)T
lI xs

 = 0 s ∈ Ar, (m, l) ∈ Srs, ∀r

(5.18)

where xr ∈ R2Nr , yr ∈ RKr , Hr ∈ RKr×2Nr refer to area r and follow the rationale
explained above. The same applies for Wr ∈ R(2Nr−2)×(2Nr−2), Lr ∈ R(2Nr−2)×2Nr and
Ỹr. The vector e is the singleton vector with all elements zero except one with 1 as its
entry. For instance, e

(r)
mR (e(r)mI) stands for a vector with 1 at the position 2m − 1 (2m)

that refers to the real (imaginary) part of the voltage at the bus m. In addition, the
superscript r denotes that the vector size is that of xr. Finally, as already mentioned, ars
refers to the real value ratio of the voltage at the two sides of the ILVR (buses m and l).

5.4 Solving the D-WTVSE Problem via ADMM

In order to solve the D-WTVSE problem (5.18), we resort to the ADMM [72]. Among
other candidates, ADMM presents computational advantages over the non-smooth `1-
norm treatment and adapts well to decomposed optimization problems. To that aim,
however, problem (5.18) must be re-written as:

arg min
{xr},{crs},{θr}

A∑
r=1

1

2
‖yr −Hrxr‖22 + λ ‖θr‖1

s.t.

WrLr

Ỹr

Mrs

xr −

 θr0r

crs

 = 0r

(5.19)

3The tap position refers to the number of winding turns at the primary and secondary side of the
ILVR (amount of voltage regulation provided) which determines the actual ratio (e.g. 1.05) between the
respective primary and secondary side voltage.
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where Mrs ∈ R2×2Nr for all s ∈ Ar is defined as:

[Mrs]i,j =


ars, i = 1, j = 2m− 1;

ars, i = 2, j = 2m;

0, otherwise

(5.20)

and crs = [crsml{R}; crsml{I}] for all s ∈ Ar stands for an introduced auxiliary vector per
each pair of connected areas via ILVR, in order to fully decompose the problem. Moreover,
θr plays the role of an auxiliary variable and, hence, it introduces an additional constraint.
Accordingly, the augmented Lagrangian reads:

L
(
xr, crs,θr,µr,πr,κrs

)
=

A∑
r=1

[
1

2
‖yr −Hrxr‖22 + λ ‖θr‖1

+µTr (WrLrxr − θr) +
c1
2
‖WrLrxr − θr‖22 + πTr (Ỹrxr)

+
c2
2

∥∥∥Ỹrxr

∥∥∥2
2

+
∑
s∈Ar

c3
2
‖Mrs − crs‖22 + κTrs(Mrs − crs)

] (5.21)

with µr, πr and κrs standing for the vectors of Lagrange multipliers, and c1, c2, c3 de-
noting pre-defined positive constants. The ADMM iterates for the updates of the primal
and dual variables yield:

xν+1
r = arg min

xr

L
(
xr, c

ν
rs,θ

ν
r ,µ

ν
r ,π

ν
r ,κ

ν
rs

)
(5.22)

cν+1
rs = arg min

crs
L
(
xν+1
r , crs,θ

ν
r ,µ

ν
r ,π

ν
r ,κ

ν
rs

)
(5.23)

θν+1
r = arg min

θr
L
(
xν+1
r , cν+1

rs ,θr,µ
ν
r ,π

ν
r ,κ

ν
rs

)
(5.24)

µν+1
r = µνr + c1

(
WrLrx

ν+1
r − θν+1

r

)
(5.25)

πν+1
r = πνr + c2

(
Ỹrx

ν+1
r

)
. (5.26)

κν+1
rs = κνrs + c3

(
Mrs − cν+1

rs

)
. (5.27)
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One can easily prove that the closed form of the sequential updates of the primal variables
at iteration ν can be written as

xν+1
r =

(
HT
r Hr + c1L

T
r WT

r WrLr + c2Ỹr
T
Ỹr (5.28)

+
∑
s∈Ar

MT
rsMrs

)−1
(

HT
r yr − LrW

T
r µ

ν
r + c1L

T
r WT

r θr
ν − Ỹrπ

ν
r

+
∑
s∈Ar

(
MT

rscrs − κrsMT
rs

))

c
(ν+1)
rs =

Mrsx
(ν+1)
r + Msrx

(ν+1)
s

2
+
κ
(ν)
rs + κ

(ν)
sr

2c3
(5.29)

θr
ν+1 = Sλ/c1

(
WrLrx

ν+1
r + c−11 µ

ν
r

)
(5.30)

with Sa(χ) standing for the soft thresholding operator, that is,

Sa(χ) =


χ+ a if χ < −a;

0 if |χ| ≤ a;

χ− a if χ > a.

(5.31)

5.5 µPMU Placement (µPP)

As already mentioned (Sections 5.1 and 5.3), in the case of DG SE the system observability
can be achieved using a large number of power injection measurements. These values
are either pseudomeasurements with a noise standard deviation σ on the order of 10−1

(i.e. high) [101], or virtual measurements, such as zero power injections, with σ on the
order of 10−5 (i.e. low). Unfortunately, as discussed earlier, disparity in the quality of
measurements results into an ill-conditioned gain matrix G [81] that, in turn, affects the
SE accuracy [97].

The degree to which G is ill-conditioned is given by the condition number κ, that is:

κ = ‖G‖
∥∥G−1∥∥ (5.32)

or equivalently:
κ = λmax(G)/λmin(G) (5.33)

where λmax and λmin stand for the maximum and minimum eigenvalue of G, respectively.
Bearing all the above in mind, the purpose of this section is to propose a µPMU

placement method that enhances robustness to the R-NESE estimator. Specifically, the
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target is, first to construct a full-rank G and, more importantly, to optimize on the
condition number κ.

First, let us consider a number of o µPMUs for installation and a binary decision
vector q = (q1, ..., qN )T , where each element qi for i = 1...N denotes the presence (1) or
absence (0) of a µPMU at bus i. With respect to the decision vector q, the gain matrix
G can be written as follows [65]:

G(q) =
[
G0 +

N∑
i=1

qiGi

]
(5.34)

where Gi = JTi R−1i Ji is the gain matrix resulting for the inclusion of each candidate
µPMU, for i = 1...N and G0 = JT0 R−10 J0 is the initial gain matrix generated from legacy
measurements only. Both G0 and Gi for i = 1...N are evaluated at x0, that is, the initial
value of the state vector4 in (5.3). The power system is said to be numerically observable
when G(q) � 0.

Based on all the above, the µPMU placement problem (µPP) can be posed as the
following MISDP optimization program:

min
q, ξ, ω

ξ − ω (5.35a)

s.t. ωI � G(q) � ξI (5.35b)

ω0 ≤ ω ≤ ξ ≤ ξ0 (5.35c)
|N |∑
i=1

qi = o (5.35d)

∀r ∈ A , ∀i ∈ Nr

|Nr|∑
i=1

qi = or Nr ⊆ N (5.35e)

∀i ∈ N \ {1} (qi + qi−1) ≤ 1 (5.35f)

q ∈ {0, 1}N (5.35g)

The first constraint in the µPP problem, (5.35b), can be interpreted as two separate
linear matrix inequalities. The first, reads G(q) − ωI � 0 and guarantees an invertible
positive definite G(q) where ω stands for an auxiliary (real valued) variable [5]. The
role of ω is to introduce a constraint on the minimum eigenvalue of G(q) and satisfies
ω > ω0 where ω0 >> 0 denotes an appropriately chosen constant5. The second linear
matrix inequality, ξI−G(q) � 0, follows the same rationale where the auxiliary variable
ξ introduces a constraint on the maximum eigenvalue of G(q). The ultimate goal is to

4Typically, x0 is set as a flat voltage profile, i.e., all voltage magnitudes are set to 1 and all angles to
0.

5The constants ω0 and ξ0 can be chosen based on the λmin and λmax of the matrices G0 and Gi for
i = 1...N [112].
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minimize the difference ξ − ω with respect to the binary decision vector q in equation
(5.35g), that, in turn, minimizes the condition number κ.

The rest of the constraints are related with the number and the location of the µPMUs.
Constraint (5.35d) refers to the total constant number o of µPMUs to be placed based
on different criteria, such as economic budget and communication feasibility study [14].
Constraint (5.35e) aims to set a requirement on the minimum number of meters or to be
placed at the buses of each area r (see subsection 5.3.2.1). The last constraint, (5.35f), is
in charge of preventing the placement of two meters in adjacent buses (based on the fact
that a phasor meter at a bus makes also observable its adjacent branches).

5.6 Numerical Results

The performance of the presented regularized SE scheme has been numerically assessed
on the 95-bus UK distribution grid, Fig. 5.2 [9]. This system has a nominal voltage
of 11 kV and the installed active/reactive load is 3.83 MW/0.95 MVar, respectively.
As Figure 5.2 illustrates, we have considered four PV plants as DER. Their nominal
capacity is 0.8, 0.8, 0.5 and 0.4 MW and they are connected to buses 15, 36, 68 and 91,
respectively. Concerning observations, we have considered a set of legacy measurements
with redundancy L/N ≈ 1.1. This includes: (i) 5 voltage measurements located at the
substation and the DER buses; (ii) 3 pairs of branch power flows Pi,j , Qi,j located at the
substation; (iii) 4 squared current magnitudes at the feeders |Ii,j |2; and (iv) 90 pairs of
power injections Pi,Qi, out of which 40 are pseudomeasurements, and 50 are zero power
injections (virtual measurements). Following the rationale of similar works [123], each
type of the measurement subsets is corrupted with independent and identical distributed
(i.i.d.) Gaussian noise with standard deviations (σ) 10−3, 2 · 10−3, 4 · 10−3, 3 · 10−2,
and 2 · 10−6 per-unit (p.u.) [117], respectively. In addition, 12 µPMU measurements
are incorporated, located according to the µPP method proposed in Section 5.5, with
σ = 10−4 p.u. and 2 ·10−4 rad for voltage magnitude and angle, respectively [39]. Unless
otherwise stated, computer simulation results are averaged over Nr = 5000 realizations of
the noise, load and PV generation profiles. The loads have been assumed to be Gaussian-
distributed with Pm ∼ N (Pm, 0.06), Qm ∼ N (Qm, 0.06) for m = 1, 2, ..N ∈ V . For
the power flow analysis, we have used MATPOWER 5.1 [90]. Results have been verified
through CVX [124]. For the MISDP µPP problem solution, we have used the optimization
software YALMIP6 [125] and specifically the solver SEDUMI.

6The binary decision vector q renders the µPP problem computationally intensive. However, the
applied solvers, using a branch and bound framework, provide, if not the global optimal, an efficient
local optimal solution for small and medium size applications (as in the case of DG feeders). Another
approach is to solve the convex counterpart of the µPP problem where the binary constraint q ∈ {0, 1}
is relaxed to q ∈ [0, 1]. In that case, the decision vector will consist of real-valued elements; for that
reason a rounding procedure and a local search should follow. Computer simulations reveal that both
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Figure 5.6: PDF of the RMSE without (left) and with (right) µPMUs. (σ1 = 0.03 for
pseudomeasurements)

5.6.1 R-NESE

First of all, we focus on the performance of the R-NESE scheme (5.10). To recall, it
operates at time instants kT , when both legacy and µPMU measurements are available.
The performance of the proposed scheme has been numerically assessed in a variety of
scenarios. First, we have considered two cases with different error level in the pseudomea-
surements, i.e., σ1 = 0.03 and σ2 = 0.15 p.u.. For each case, we present two scenarios,
namely, with and without µPMUs. For the scheme with µPMUs, the measurement con-
figuration with 12 meters proposed in subsection 5.6.3 has been incorporated. Further,
in order to demonstrate explicitly the advantages provided by the regularization term in
(5.4), the following benchmarks have been used: (i) the NESE scheme solving problem
(5.3) and (ii) the R-NESE scheme solving problem (5.10) with xp = 0 (i.e. without infor-
mation on the last state estimate). Finally, in all realizations xp refers to the last state
estimate obtained with the (D)-WTVSE scheme at the time instant kT + nt (see Fig.
5.1 and subsection 5.6.2) with an additional error of σ = 0.01 p.u. in order to capture
further uncertainty.

Figures 5.6 and 5.7 illustrate the probability density functions (PDFs), which have
been estimated from the histograms of the realizations, and the RMSE (p.u.) averaged
over the 5000 realizations, respectively. With respect to the PDFs, by definition the area
below the curves is equal to 1. Clearly, NESE reaches high values of error because of
the high percentage of pseudomeasurements (100/205 = 48.8%) among the low redun-
dant measurement set. With R-NESE and xp = 0, the accuracy has been drastically
increased, however, the gain is moderate compared to R-NESE with xp equal to the
last (D)-WTVSE estimate. The proposed approach attains the highest accuracy, i.e.,
5.7 × 10−3 p.u. (Table 5.1), which is one and two orders of magnitude lower compared
to the benchmarks. In contrast with other works [46], the scheme presents robustness
against the high uncertainty of the pseudo-load injections. The simulations reveal that
for all buses the absolute error for the voltage magnitude stays below 1× 10−2 p.u.. In-

approaches yield similar solutions.
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Figure 5.7: RMSE for the 95-bus DG and σ1 = 0.03 p.u. without (left) and with (right)
µPMUs.

Table 5.1: RMSE and condition number κ of G for each approach, without (top) and
with (bottom) µPMUs. (σ1 = 0.03 for pseudomeasurements)

terestingly, we also observe a significant improvement on the condition number κ of the
gain matrix G, which is related with the accuracy and convergence rate of the algorithm.
Based on this improvement and the low computational complexity of the regularized
normal equations (see Appendix C), a relatively low convergence time is needed for the
proposed scheme. Concerning the second scenario (Figs. 5.6 and 5.7, right), where
µPMUs have been included in the measurement set, the proposed approach, R-NESE,
presents again a superior numerical behavior. However, with regard to these graphs, two
further observations can be made: (i) as expected, synchrophasor measurements improve
the accuracy for all approaches (Table 5.1); and (ii) interestingly, R-NESE with xp = 0

exhibits a slight performance degradation compared to NESE. The latter can be explained
by the SVD analysis of the Tikhonof solution (5.10) [119]. More precisely, according to
the chosen value of τ , specific contributions to x̂ that correspond to the lower eigenvalues
of G will be filtered out. However, for this specific scenario, as the conditioning of G

has been improved (due to the µPMUs), the optimal value of τ (see below) dominates
further eigenvalues that compose profitable information.

Additionally, Fig. 5.8 shows the RMSE for each state variable in polar form averaged
over the realizations. As shown on the left graph, the R-NESE presents high accuracy
for the angle estimates. The maximum RMSE is below 10−2 rad. At the same time, the
RMSE of the majority of the bus phase angles lies within the interval of 3×10−3−5×10−3
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Figure 5.8: Average RMSE of R-NESE for each state variable with σ1 = 0.03 p.u., with
and without µPMUs. The left graph illustrates the voltage phase angles and the right
graph the voltage magnitudes.

Figure 5.9: RMSE for the 95-bus DG and σ2 = 0.15 p.u. without (left) and with (right)
µPMUs.

rad. In contrast, for the second scenario where µPMUs have been incorporated, the
majority of voltage angles RMSE stays below 10−3 rad and maximum error reads 6×10−3

rad. Important to note that, in the buses (and the respective neighboring ones) where the
phasor meters have been positioned (e.g. 21, 50, 73, 84) the RMSE is substantially lower.
The same behavior is observed for both scenarios in the case of voltage magnitudes.

Next, Fig. 5.9 shows the results for the case where an increased error level is consid-
ered for the pseudomeasurements, i.e., σ2 = 0.15 p.u.. First, one observes an accuracy
degradation for all approaches, Table 5.2. It is worth mentioning that, for the two bench-
marks, the RMSE reaches high values (e.g., 3.28 p.u. for NESE). As it was expected, the
high error deviation measurements lead to an ill-conditioned matrix G (κ = 5.39×1016),
that in turn, leads many of the realizations to converge to a local minimum or not to
converge at all. On the contrary, R-NESE exhibits a remarkable performance with RMSE
equal to 1.1× 10−2 p.u. without µPMUs and 8.4× 10−3 p.u. with µPMUs.

Again, Fig. 5.10 presents the RMSE for each state variable. As expected, RMSE
values are higher now. For instance, the majority of the RMSE for the bus phase angles
lies within the interval 4×10−3−8×10−3 rad. For the case with µPMUs this error interval
is 1× 10−3− 5× 10−3 rad. However, in both angles and voltage magnitudes the R-NESE
scheme, still, attains high accuracy despite the higher error of the pseudomeasurements.



84
5 A Regularized State Estimation Scheme for a Robust Monitoring

of the Distribution Grid

Table 5.2: RMSE and condition number κ of G for each approach, without (top) and
with (bottom) µPMUs, σ2 = 0.15 for pseudomeasurements, subsection 5.6.1.

Figure 5.10: Average RMSE of R-NESE for each state variable with σ2 = 0.15 p.u., with
and without µPMUs. The left graph illustrates the voltage phase angles and the right
graph the voltage magnitudes.
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Figure 5.11: Average RMSE of each voltage phase angle θi (left) and voltage magnitude
Vi (right) for i = 1...N , adopting an alternative approach on measurement accuracy for
R-NESE and NESE.

Besides, we provide a comparison between the proposed R-NESE and NESE schemes
for a scenario where different accuracies are used for each mesurement subset. Specifically,
for each type of measurement we have considered the following accuracy: (i) 1% for
voltage measurements, (ii) 3% for branch power flows and current magnitudes, (iii) 50%

and 0.02% for pseudomeasurements and zero power injections, respectively, and (iv) 1%

for the magnitude and 0.01 rad for the angles in the case of µPMUs. The standard
deviation σ has been assumed as equal to a third of the accuracy value in each case.
Figure 5.11 illustrates the RMSE for each state element x̂i averaged, as before, over
5000 realizations, considering the same measurement set. The left graph reveals that
NESE reaches a maximum RMSE value of 3× 10−3 rad, presenting also additional error
peaks in a number of buses. In contrast, the maximum RMSE for R-NESE is 2 × 10−3

rad, while the rest of the estimated angles present low error. In addition, with regard
to the voltage magnitudes, R-NESE outperforms significantly in terms of accuracy. On
the one hand, NESE reaches an RMSE at the level of 3 − 4 × 10−3 with a maximum
value of 8× 10−3 p.u. On the other, R-NESE presents a maximum RMSE of 1.5× 10−3

p.u. while the majority of the estimated voltage magnitudes error stays below 5× 10−4

p.u. To conclude, independently of the adopted rationale on the measurement noise, the
computer simulations have shown the same trend. That is, the proposed R-NESE attains
high accuracy even in scenarios with low redundant measurement sets which include a
large number of high uncertainty pseudomeasurements.

Moreover, we provide an additional comparison between the proposed R-NESE and
the NESE scheme. With respect to the NE-SE scheme, instead of the commonly used flat
start, i.e., Vi = 1 p.u. and θ = 0 rad for i = 1...N , as initial condition is exploited the last
available estimated state, i.e. x̂0 = xp. This can be considered as a hot start for NE-SE.
The computer simulation scenario considers the 95-bus DG and the measurement set
already described, including µPMUs. Figure 5.12 shows the RMSE of each state variable
x̂i for both cases. As the graph illustrates, the R-NESE outperforms in terms of accuracy.
More specifically, the left graph shows that the RMSE for all voltage phase angles stays
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Figure 5.12: Average RMSE for each voltage phase angle θi (left) and voltage magnitude
Vi (right) for i = 1...N with µPMUs and σ = 0.03 p.u. for R-NESE and NESE.

below 1 × 10−2 rad. In contrast, in the case of NESE the maximum RMSE reaches the
value of 5 × 10−2 rad and, a large number of estimated angles reach a similar level of
error. The same applies for the voltage magnitudes (right graph) where the results are
quite similar. Based on the above numerical behavior of the compared algorithms, the
following conclusion can be drawn. Although the NESE algorithm starts iterations from a
point close to the optimal one (i.e., xp), the bad conditioning of the optimization problem
leads with high probability the algorithm to a local minima.

Finally, we discuss on how to determine the control parameter τ , which establishes
the trade-off between regularization and data fidelity. Different methods exist in the
literature, such as the generalized cross validation and the L-curve method [121]. The
latter appears to provide robustness with regard to the control parameter estimation and
consequently, we have adopted this approach. In Fig. 5.13 we provide the L-curve for an
instance (specific iteration) of R-NESE (with µPMUs and σ1 = 0.03 p.u.). This method
constitutes a graphical tool depicting the error of the regularization term ‖x− xp‖22 versus
the error of the residual term (z−h(x))TR−1e (z−h(x)). In particular, in every iteration
of Algorithm 1, the two terms are computed for a number of different τν values. As Fig.
5.13 illustrates, these values correspond to different points of the graph and the common
method is to choose the one that falls within the maximum curvature, e.g., 101.

5.6.2 D-WTVSE

Here, we investigate the numerical behavior of the D-WTVSE scheme, which operates at
the intermediate time instants, that is, between kT and (k+1)T . To recall, all simulations
have been averaged over 5000 realizations of different noise and load injections. First,
the impact of the control parameter λ on the algorithmic performance of WTVSE is
illustrated. For this computer simulation the impact of ILVRs has not been taken into
consideration. Fig. 5.14 presents the convergence and the RMSE for a number of different
parameter values within the range 10−7 − 10−1. The graph shows that lower values are
related with slower convergence rate, as λ controls the amount of regularization. For
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Figure 5.13: The L-curve that depicts the error of the regularization term (y-axis) versus
the error of the corresponding residual term (x-axis) for R-NESE with τ (ν) = 10−3−108.

Figure 5.14: RMSE vs. iterations for the WTVSE (c1 = 5×10−4, c2 = 10−5, c3 = 10−4).

instance, for λ = 10−6 the algorithm attains the highest accuracy. However, more than
50 iterations are needed to converge. In contrast, for the case of λ = 10−4 the scheme
attains the same accuracy within 15-20 iterations. Exhaustive simulations with the trial-
end-error method have shown that a parameter value within the range of 10−5 − 10−4

balances the trade-off between accuracy and convergence speed.
Further, Figs. 5.15 and 5.16 depict the convergence behavior and accuracy for the

D-WTVSE optimization problem solved via ADMM. Here, just K = 24 measurements
(voltage real and imaginary parts) are available from the µPMU configuration proposed
in subsection 5.6.3 (Table 5.6). In the examined scenario, we have considered the presence
of two ILVRs, providing 5% voltage regulation and positioned at the branches {23− 24}
and {54 − 75} (Fig. 5.4). Figure 5.15 indicates that, for this scenario, the program has
converged for all areas within maximum 10-15 iterations reaching at the same time high
accuracy. Moreover, the fact that the positive constants c1, c2, c3 have been pre-defined
improves significantly the convergence time of D-WTVSE (see Appendix C). Clearly, as
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Figure 5.15: RMSE vs. iterations for the D-WTVSE scenario (λ = 10−4, c1 = 5× 10−4,
c2 = 1× 10−5, c3 = 1× 10−4).

the next figure shows (Fig. 5.16), the estimated magnitudes and angles approach with
high precision the actual values, presenting a slight variance in a small number of buses.
In both cases of ILVRs, {23 − 24} and {54 − 75}, the estimated voltages exhibit high
accuracy. However, with proper adjustment of the positive constants c1 and c3 (5.21), a
trade-off can be established between ILVR-bus variable consensus and voltage variance
limitation.

In addition, for the same scenario the proposed D-WTVSE is compared with WTVSE.
To do so, WTVSE has been modified in order to incorporate the ILVR models based
on the augmented admittance matrix approach [111]. Further, the regularization term
‖WLx‖1 had to be modified accordingly. Interestingly, the proposed D-WTVSE presents
higher accuracy, i.e. 4.8 × 10−3 p.u., compared to the WTVSE which reaches the value
of 5.6 × 10−3 p.u.. In addition to that, D-WTVSE is able to converge in 0.0303 s when
at the same time WTVSE needs 0.0395 s. The superiority of the proposed scheme is
also illustrated in Fig. 5.17, which shows the error of voltage magnitude for both cases.
Specifically, the augmented WTVSE attains slightly higher accuracy at the corresponding
ILVR buses. However, this is not the case for the rest of the nodal estimated voltages. In
general, the above analysis reveals that, by exploiting the proposed D-WTVSE scheme
instead of the augmented WTVSE, performance degradation is avoided.

5.6.2.1 D-WTVSE with DER and Load Diversity

Finally, the efficiency of the regularization term ‖WLx‖1, which renders the D-WTVSE
problem solvable, is numerically assessed for three different cases:

• Case 1: A baseline case, where we consider the nominal data of the 95-bus UK
DG [9].
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Figure 5.16: Actual and estimate voltage (magnitude and angle) for each bus with the
D-WTVSE (λ = 10−4, c1 = 5× 10−4, c2 = 1× 10−5, c3 = 1× 10−4).

Figure 5.17: Absolute voltage magnitude error for each bus for the D-WTVSE and the
augmented WTVSE.
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Table 5.3: Addtional Active (MW) and Reactive (MVar) loads.

Figure 5.18: Actual vs estimated voltage magnitude (top) and absolute voltage magnitude
error (bottom) for scenario (i) (λ = 10−4, c1 = 5× 10−4, c2 = 1× 10−5, c3 = 1× 10−4).
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Figure 5.19: Actual vs estimated voltage magnitude (top) and absolute voltage magnitude
error (bottom) for scenario (ii) (λ = 10−4, c1 = 5× 10−4, c2 = 1× 10−5, c3 = 1× 10−4).

Figure 5.20: Actual vs estimated voltage magnitude (top) and absolute voltage magnitude
error (bottom) for scenario (iii) (λ = 10−4, c1 = 5× 10−4, c2 = 1× 10−5, c3 = 1× 10−4).
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• Case 2: A scenario with PV generation (i.e., PV connected to the buses 15, 36, 68
and 91 with nominal capacity is 0.8, 0.8, 0.5 and 0.4 MW, respectively) added to
the load profile.

• Case 3: A scenario without PV generation and with a number of additional high
loads at the buses listed in Table 5.3. This last case can be regarded as a worst
case scenario where adjacent buses with low/high loads (e.g., small/large number
of households) absorb low/high currents.

Fig. 5.18 depicts the estimated and actual voltage magnitude profile (top) and the
absolute voltage magnitude error (bottom) for Case 1. Here, the estimated voltage profile
is really close to the actual one. The bottom graph shows that all absolute errors are
below the value of 5.5× 10−3 p.u.

In Case 2, Fig. 5.19, the error stays below 1 × 10−3 p.u. for the majority of voltage
estimates. As expected, the high PV penetration has resulted in a smooth voltage profile
(i.e., similar voltage magnitude in the majority of the buses) that, in turn, leads the total
variation regularization term to superior performance.

Last, Fig. 5.20 shows the results for Case 3. The diversity between loads has resulted
in a non-smooth real voltage profile. Accordingly, at the bottom graph we detect that the
highest deviations with respect to the actual voltage magnitudes are located to the buses
where the high loads have been positioned, e.g., buses 27, 46 and 59. Still, in this worst-
case scenario, D-WTVSE is capable of providing a satisfactory state estimate where the
absolute error of all the estimate voltages remain below 1×10−2 p.u.. More importantly,
computer simulation results indicate that, the exploitation of the zero power injections
and the weights introduced in the branches [12] significantly enhance the accuracy of
D-WTVSE.

5.6.3 Numerical Assessment of µPP Algorithm

In this subsection, we evaluate the µPP method presented in Section 5.5. To do so, we
consider three different MV DG systems, namely, a 33-bus, a 56-bus and the 95-bus UK
DG that has been already considered for the SE computer simulations. In addition, in
order to measure the impact of different µPMU configurations, the following metrics have
been adopted: (i) the condition number κ of the gain matrix Gsol after the convergence
of the SE problem (5.3); (ii) the log(κ) and (iii) the average RMSE of the SE algorithm
(5.3).

First, the proposed algorithm is evaluated considering the 33-bus DG. For this case,
we have assumed a singular gain matrix G0 ∈ R66×66 (i.e., non-observable system) and
a limited number of 4/6/8 µPMUs to be placed. The table depicts the results for G0,
two random µPMU placement configurations for comparison reasons (G1, G2) and the
solution Gsol according to Section 5.5. Results (Table 5.4) indicate that the proposed
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Table 5.4: Impact assessment of the µPP algorithm presented in Section 5.5 for the 33-bus
test system and different number of µPMUs.

method has managed to provide a full-rank gain matrix. More importantly, the provided
solution exhibits the best condition number (κ) and consequently, the highest SE accu-
racy. For all cases of different µPMU numbers and compared to G1 and G2, Gsol presents
a condition number κ one order of magnitude below. For instance, comparing Gsol and
G1 for the scenario of 6 µPMUs, Table 5.4 shows that the former presents an improved
κ, i.e., 1.3× 106 compared to 1.5× 107, that corresponds to a decreased estimation error,
i.e., 1.9×10−2 p.u. compared to 3.3×10−2 p.u.. A similar improvement of the numerical
accuracy can been also observed for the other cases of µPMU numbers.

Further, we investigate the µPP algorithmic performance on the 56-bus DG, which
includes a rural feeder [126]. In this case, the system includes a number of short, as well
as long branches, which deteriorates the conditioning of G [81]. Table 5.5 indicates that
the addition of a moderate number of synchrophasor meters, improves significantly the
condition number κ of G0 (1.2× 1010). In particular, in the case of random placements
G1 and G2, κ has been improved by two orders of magnitude. In contrast, the proposed
method has reduced the condition number by three orders of magnitude, i.e., 3.6 × 107

compared to 1.2×1010, something that translates into a lower estimation error, i.e., from
9.5× 10−2 p.u. to 1.6× 10−2 p.u..

Finally, for completeness, in Table 5.6 is presented the optimal solution for the 95-bus
DG, which has been considered as the µPMU configuration in subsections 5.6.2 and 5.6.4.
Again, the µPP method provides a gain matrix Gsol with an improved κ compared to
G0, G1 and G2 (three and one orders of magnitude lower, respectively). Therefore, this
results into a decreased estimation error, e.g., from 1.9× 10−1 p.u. to 9× 10−3 p.u..



94
5 A Regularized State Estimation Scheme for a Robust Monitoring

of the Distribution Grid

Table 5.5: Impact assessment of the µPP algorithm presented in Section 5.5 for the 56-bus
test system.

Table 5.6: Impact assessment of the µPP algorithm presented in Section 5.5 for the 95-bus
test system.

5.6.4 Full scheme: R-NESE and D-WTVSE

Finally, we evaluate the ability of the proposed SE scheme to track short time-scale
voltage variations introduced from the stochastic behavior of the PV plants. The time-
sequence diagram in Fig. 5.21 illustrates the operation of the two-time scale SE scheme
based on the proposed R-NESE and D-WTVSE algorithms. The adopted sample of the
aggregated power generation profile under consideration for the set of 4 PV plants is
shown in Fig. 5.22. The profile refers to the PV generation on June 27, 2018, between
08:20 and 08:50 am at a MV feeder. The active power measurements have a resolution of
6 seconds. Further, for each active/reactive load-bus of the 95-bus UK DG a load pattern
which refers to the same day and time period has been adopted, Fig. 5.23.

Figure 5.21: Time-sequence diagram of the proposed SE scheme based on the R-NESE
and D-WTVSE algorithms.
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Figure 5.22: Aggregated power generation profile for the four PV plants. The data refer
to June 27, 2018, between 08:20 and 08:50 am.

Figure 5.23: Active power load pattern for bus-19 of the 95-bus UK DG. The data refer
to June 27, 2018, between 08:20 and 08:50 am.

Figure 5.24: RMSE of the estimated state vector vs time (R-NESE parameters: τ (4) =

1.5×101, D-WTVSE parameters: λ = 10−4, c1 = 5×10−4, c2 = 1×10−5, c3 = 1×10−4).
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The performance of the proposed SE scheme (along with that of two benchmarks)
is shown in Fig. 5.24 next. Specifically, the ’R-NESE & D-WTVSE’ curve presents the
estimation error associated to a SE running (i) the R-NESE scheme with both legacy
and µPMU measurements at kT time instants (we let T = 15); and (ii) the proposed D-
WTVSE scheme at the intermediate ones (we let q = T/t = 8, for illustrative purposes).
The ’R-NESE-last’ curve provides a benchmark for the case where no SE scheme is used
at intermediate time instants. Hence, we compute the estimation error between the actual
system state at time kT + nt and the latest available R-NESE estimate computed at kT
(on the basis of both legacy and µPMU measurements). The ’R-NESE-updated PMUs’
curve depicts the achievable error at intermediate time instants with the outdated legacy
measurements collected at kT (to preserve observability) and the updated µPMU readings
gathered at kT + nt. Besides, a set of 12 µPMUs has been incorporated to the legacy
measurement set. According to the configuration proposed from the µPP algorithm, the
meters have been placed at buses 1, 8, 21, 32, 37, 50, 64, 66, 73, 75, 84 and 93.

Fig. 5.24 indicates that the estimation error for ’R-NESE-last’ is the highest. This
follows from the fact that, the last available state estimate is outdated. At the same time
the system voltage profile has been differentiated according to the PV power variations.
Indeed, the larger the deviation of the power generated by the PV plants at kT + nt

(see Fig. 5.22), the larger the estimation error (e.g., at T + 4t). Instead, by replacing
the outdated µPMU measurements by updated ones (’R-NESE-updated PMUs’ curve),
performance significantly improves. This proves the large impact that µPMUs have on
the computation of the system state. However, the proposed ’R-NESE & D-WTVSE’
scheme clearly outperforms both benchmarks. As the graph shows, the proposed scheme
reaches high accuracy in all time instants independently of the rapid variations of the
PV power generation. Besides, the graph shows that the main time instants solution,
i.e., R-NESE, presents lower estimation error compared to D-WTVSE. The latter comes
from the exploitation of the regularization term incorporating prior information. As a
general remark, computer simulations show that the proposed SE scheme can constitute
a reliable monitoring tool, capable of tracking short-time voltage variations at the MV
system.

5.7 Conclusions

In this chapter, we have proposed a regularized SE scheme for the robust monitoring of
the distribution grid. The algorithm consists of two different time-scale parts; a robust
state estimator that operates on the regular time instants (every 15 minutes) and a regu-
larized SE scheme for the intermediate time period. The final goal was to accurately track
the system state at a faster time scale with increased reliability, according to the needs of
the new operational environment. With respect to the main time instants, the estimator



5.7 Conclusions 97

has been formulated as the regularized version of the normal equations-based SE solution
(R-NESE). The computer simulations (on the 95-bus UK DG) have shown that R-NESE
presents robustness against the high uncertainty raised by the low redundancy measure-
ment sets and the pseudomeasurements. Moreover, the enhanced regularization term
led the algorithm to increased accuracy and improved convergence rate compared with
other approaches. For the intermediate time instants, we have presented a decomposed
weighted total variation state estimation (D-WTVSE) model which is solved by means of
the ADMM. The problem has been decomposed according to the ILVR locations across
the feeder, exploiting further information from the tap changer indicators. As expected,
the scheme presented a slightly worse performance compared to the main time instants
estimator. Nonetheless, the extended simulation results have proven that D-WTVSE is
able to provide an accurate state estimate under a diversity of scenarios. Further, the low
computational complexity of the algorithm provides the opportunity for multiple state
estimates within the intermediate time interval. Complementarily, we have presented a
µPMU placement (µPP) method, which has been posed as a MISDP model. We have
observed that the proposed approach is able to provide a full-rank gain matrix while
taking into consideration the existing measurements,. More importantly, the presented
solution improved significantly the conditioning of the SE problem and the estimation
accuracy. Additional constraints related with the number and location of the µPMUs
were also satisfied.
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5.8 Appendix C: Computational Complexity Analysis

5.8.1 R-NESE

Let us first consider the computational complexity of the regularized normal equations
(R-NESE) algorithm (5.10), presented in subsection 5.3.1. To do so, we will leverage on
O(n) notation, that from now on corresponds to per iteration complexity. In addition,
for the ease of notation, let us assume n state variables and k measurements. The main
computational burden in:

∆x(ν) =
(
J
(ν)T
x R−1e J

(ν)
x + τ (ν)I

)−1
J
(ν)T
x R−1e [z− h(x(ν))]− τ (ν)(x(ν) − xp) (5.36)

entails to a number of matrix multiplications and the matrix inversion. The former can
be formed at a cost of O(kn2). On the other hand, the matrix inversion usually takes
place with a Cholesky factorization at a cost of O(n3). Taking into account that in
distribution grid SE n ≈ k, the overall computational complexity of R-NESE scales at
O(n3). Nevertheless, exploiting the inherent sparsity of G(ν) this cost can be reduced to
O(n2) [127], [128].

With regard to the convergence rate of the algorithm, the normal equations-based
schemes commonly present quadratic convergence characteristics [129]. However, this is
strongly dependent on the condition number κ of the gain matrix G(ν) in each iteration.
According to the literature [130], in the case of a well-conditioned system of equations a
few number of iterations are sufficient for the full convergence of the algorithm.

5.8.2 D-WTVSE

The computational complexity analysis for the D-WTVSE algorithm follows the same
rationale. First, consider the ADMM-based solution presented in subsection 5.4. One
can observe that the update step of xν+1 (28) dominates the computational burden of
each ADMM iteration. More specifically, the computation of:
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(5.37)

consists of a number of matrix multiplications and mainly a matrix inversion. As all
matrices involved in the computations are characterized from sparsity, again the overall
computational complexity has a final cost of O(n2). Important to note here that, in
contrast with R-NESE where the gain matrix G(ν) has to be re-computed in each itera-
tion, the implementation of D-WTVSE can exploit one additional advantage. In the case
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where the control parameters c1, c2, c3 have constant values during the ADMM iterations,
the factorization of the matrix inversion can be cached in order to reduce significantly
the computational complexity [72].

Concerning the convergence rate of the algorithm, a number of previous works have
proved that ADMM presents a linear convergence behavior [131]. That means, the num-
ber of iterations needed for a full convergence grows linearly with the size of the problem.
However, in the medium voltage SE case, where the number of the state variables can
be characterized as moderate, a few decades of iterations are needed. Again, the conver-
gence behavior of this method strongly depends on the conditioning of the problem for
the update of xν+1. Given that, an improved condition number of the first part in (34)
will lead to a decreased number of iterations.
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Chapter 6
Conclusions and Future Work

6.1 Conclusions

In this dissertation, we have focused on the modernization of smart grid monitoring tech-
niques, according to the needs of the new operational environment. First, we have studied
the SE problem for the transmission grid. In this case, we have taken into consideration
the increased penetration of renewable energy sources and the energy market evolution.
These recent concepts have raised the need for robust multiarea SE, according to which,
different operation utilities will be able to interact in order to attain an optimal state
estimate for networks extended over large geographical areas. Then, we have turned our
attention to the distribution grid. In contrast with the high voltage system, here, the SE
functionality faces a number of additional challenges, such as the restricted measurement
infrastructure and the rapid variations of the system state imposed by the distributed
energy resources. Below are summarized our main results and conclusions.

In Chapter 4, we have addressed the problem of transmission grid SE. We have con-
sidered a realistic scenario, where measurements are collected from both SCADA system
and PMUs. This hybrid SE problem has been formulated as a non-convex optimiza-
tion problem. Thus, we have leveraged on a successive convex approximation (SCA)
framework. The latter, entails the approximation of the original objective function by a
sequence of strongly convex ones, leading to an iterative solution (SCA-SE). For the nu-
merical assessment of SCA-SE we have used other solutions from the literature, namely,
the classical normal equations-based estimator and an interesting approach which ex-
ploits the semidefinite relaxation technique. Computer simulations have shown that, the
proposed algorithm outperforms in terms of accuracy. This holds for a broad number of
scenarios with respect to the available measurement set and the voltage profiles under
consideration. In addition, we have improved the convergence rate of SCA-SE, exploiting
second order information from the original objective function in an affordable compu-
tational cost. Then, we have proposed the distributed implementation of our algorithm
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based on the ADMM. The numerical assessment over a number of different IEEE test
cases has shown that, it is feasible to attain a similar accuracy with the centralized ver-
sion of SCA-SE. Nevertheless, for this multiarea implementation, a restricted exchange
of data is needed. Thus, privacy between different system operators is preserved and
computational cost stays low. Finally, we have presented the robust counterpart of our
scheme (RSCA-SE). Specifically, the SCA-SE model has been re-formulated as a LASSO-
like estimation problem by promoting sparsity in the vector of corrupted measurements.
This applies for legacy and PMU measurements. In addition to that, we have derived an
upper bound of the residual error and concluded that the resulting robust state estimator
resembles the Huber’s estimator. Here, we have used as benchmarks the classical largest
normalized residual test and a suitably re-formulated semidefinite relaxation-based SE
scheme. RSCA-SE has proved to detect and cleanse corrupt (bad data) measurements
more effectively in a number of different scenarios.

In Chapter 5 we have studied the SE problem for the robust monitoring of the dis-
tribution grid. Specifically, we have proposed a regularized SE scheme which consists of
two different time-scale parts; a robust state estimator that operates on the regular time
instants and, a regularized SE scheme for the intermediate time period. Our final goal has
been to estimate accurately the system state at a faster time scale, tracking possible rapid
variations over the voltage profile. With regard to the main time instants, we have formu-
lated the estimator as a regularized non-linear least squares optimization problem, which
refers to the regularized version of the normal equations-based SE solution (R-NESE).
The computer simulations, mainly using the realistic 95-bus UK DG, have revealed that
R-NESE has overcomed all barriers posed by the restricted and low quality measure-
ment set. Regardless of the high error variation imposed by the pseudomeasurements,
the adopted regularization technique enhanced with the last state estimate xp, leads the
algorithm to an improved estimation accuracy. For the intermediate time instants, we
have presented a weighted total variation state estimation model (WTVSE), which ex-
ploits a small number of available µPMUs and zero power injections. First, we have
proposed a rule to compute the weights as a function of branch and feeder impedances.
Based on that, the model accounts for distribution systems of different characteristics.
Then, we have taken into consideration the presence of active elements across the feeders,
namely, the In-Line Volatge Regulators (ILVRs). This has forced us to decompose the
WTVSE problem (D-WTVSE) according to the ILVR locations, exploiting additional
information from the tap changer indicators. For the solution of D-WTVSE we have
leveraged on ADMM. The extended computer simulations have proven that D-WTVSE
is capable of tracking rapid voltage fluctuations with high accuracy. This holds for a
broad number of scenarios with respect to DER and load diversity. Nonetheless, the low
computational complexity of the algorithm provides the opportunity for multiple consec-
utive state estimates within the intermediate time interval. Besides, we have presented
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a µPMU placement (µPP) method in order to optimize the conditioning of the R-NESE
scheme. The problem has been posed as a MISDP model and, thus, it has been efficiently
solved. We have observed that the proposed placement method, taking into considera-
tion the existing (legacy) measurements, is able to provide a full-rank gain matrix G.
More importantly, the µPP method decreases significanlty the condition number of G,
improving the accuracy of the R-NESE scheme.

6.2 Future Work

In this section, we outline and briefly describe several open issues and possible extensions
resulting from the research work conducted in this PhD dissertation.

• Derivation of decentralized versions of the proposed robust SE schemes.
In Chapter 4, we proposed a robust version of the SCA-SE scheme capable of coping
with bad data in legacy and PMUmeasurements (i.e, RSCA-SE) by jointly conduct-
ing state estimation and bad data detection. The resulting scheme, however, was
centralized. As such, this SE scheme is not suitable for multi-area/multi-operator
scenarios which are very relevant for utilities. Hence, the derivation of decentralized
versions of the RSCA-SE would be a natural extension of the work conducted in
this PhD thesis. However, this raises a number of challenges. First, the corrupted
measurements in the tie-lines connecting the different network areas are particu-
larly detrimental and significantly degrade the performance of the (distributed) SE
scheme in neighboring areas. Consequently, particular attention should be paid to
the (re-) definition of strategies (e.g., based on sparsity principles) guaranteeing an
almost sure detection of corrupted measurements in tie lines. Besides, due to the
presence of bad data the problem formulation is expected to be highly non-convex.
An appropriate convex approximation framework should thus be adopted, allowing
to solve the problem with an affordable computational complexity and acceptable
latency.

• Analysis of the impact of communication network impairments on SE
methods. Throughout this PhD dissertation, we have assumed a seamless trans-
mission of all legacy and PMU measurements from the collection points to the
SCADA system/processing units. Nonetheless, data transmission in real-world sce-
narios must be accomplished via actual (wireless) networks which are typically
subject to impairments/constraints in terms of latency, packet losses, or available
bandwidth/throughput. This is particularly relevant in the case of PMU measure-
ments. On the one hand, such measurements must be accurately synchronized (this
encompassing the collection, transmission and processing stages). On the other, a
widespread deployment of PMUs in transmission networks results into the gener-
ation of much larger volumes of data, given their higher sampling frequency, the
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higher precision of such measurements, and the increasing number of PMU devices.
An interesting research line here would be the analysis of the impact of such com-
munication impairments and constraints on SE algorithms. This holds in particular
for decentralized SE strategies where a critical volume of data needs to be exchanged
between energy control centers. To do so, realistic traffic models for communica-
tion systems need to be introduced into the validation process. This could lead to
a re-formulation of SE algorithms exploiting appropriate delay-tolerant solutions
such as the asynchronous version of ADMM.

• Further validation of SE algorithms in real-time simulation environments
The R-NESE/D-WTVSE scheme proposed in Chapter 5 is capable of tracking rapid
variations of the voltage profile in medium-voltage feeders. The SE algorithms were
developed in MATLAB and, for their validation, we leveraged on the power flows
generated (simulated) in MATPOWER. This approach entails a number of simpli-
fying assumptions (e.g., neglected power network elements, single-phase representa-
tion) with respect to the operation of real-world power systems. However, in order
to successfully deploy such novel SE strategies in control centers, their performance
must also be validated in real-time environments. This can be accomplished with
the adoption of real-time simulation tools such as the Real Time Digital Simulator
(RTDS) software. RTDS is typically used to test hardware equipment (e.g., relays,
controllers) by exploiting hardware-in-the-loop configurations. To do that, a first
challenge would be to encode and seamlessly integrate the SE software in a closed-
loop simulation mode. The final goal, however, would be to validate such novel
SE methods under more realistic operating conditions, such as fully detailed power
networks models, rapid load and DER production changes and communications
delays with respect to the measurements.

• Optimal PMU placement strategies for realistic communication networks.
As discussed in Chapter 5, the adoption and use of PMUs pursues a two-fold goal:
(i) to reinforce/guarantee system observability; and (ii) to increase SE accuracy.
To achieve this, both the number of PMUs to be deployed and their locations must
be precisely determined. The PMU placement strategies discussed in this PhD dis-
sertation, however, completely ignore the latency and/or reliability (packet drop
rate) constraints associated to the underlying communication networks. This naïve
approach could e.g., lead to a situation where a system that, from the problem
solution, should be observable, it is not in practice because part of the measure-
ments were dropped or reached the SE functionality with excessive latency. Thus,
a promising research line for future work in this area would be the reformulation
of the PMU placement problem by taking such additional communication-related
constraints into consideration.
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• Advanced methods for the generation of pseudomeasurement datasets in
distribution grids. The robust NESE scheme operating at the main time instants
presented in Chapter 5 strongly relies on the availability of pseudomeasurements
(e.g., pseudo-load injections). In general, pseudomeasurements exhibit a large error
variance which, in turn, has a negative impact on SE accuracy. This motivates the
need to construct more accurate pseudomeasurement datasets. Most of the works
from the literature resort to data mining techniques leveraging on historical load
data. In contrast, an interesting direction would be to exploit more recent concepts,
such as dictionary learning (DL) techniques for graphs. DL strategies attempt to
find sparse signal representations that capture prominent characteristics in a given
data. And, further, they exploit the structure of the underlying topology where
the data lies. This topology can provide further information, such as smoothness
between the values of the data. In a similar context, the specificities of the distri-
bution grid (e.g., tree topologies, smooth voltage variation between adjacent buses)
could be leveraged in a DL framework to estimate the load injections in buses where
communication infrastructure is absent.
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