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Summary

Modern guidelines for design and assessment of reinforced concrete

structures under seismic and other extreme loads require nonlinear

analysis. In particular, performance-based methods rely on a real-

istic representation of the structural behavior. The complex struc-

tural response can be obtained by means of three-dimensional finite

element models, although its application is limited due to their high

computational cost. Alternatively, if the structure can be assimi-

lated by line elements, as it is the case of most structures composed

by beams and columns, the structure can be simulated by means of

frame elements. These formulations have demonstrated to be ro-

bust and efficient. The main drawback of most of the beam-column

models, is that they neglect or consider in an oversimplified way the

interaction between axial and transverse internal forces. Further-

more, they only take into account longitudinal reinforcement while

they neglect or consider in an oversimplified way the presence of

transverse reinforcements. Consequently, most frame models are

not able to trace different failure modes in reinforced concrete el-

ements such as shear or torsional failures. Besides, the simplifica-

tions made in those models affect also their ability to reproduce

even common failure modes such as flexural or axial failures.

The main goal of this thesis is to develop a robust and efficient

numerical tool capable of reproducing different failure modes of re-

inforced concrete frame elements. It is also desired that the model

is able to reproduce complex phenomena such as passive confine-

ment in an objective way for reinforced concrete elements of generic

geometry and reinforcements. The developed tool is aimed to be

used in the design or assessment of full scale structures under gen-
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eral loading conditions. In order to accomplish this objective, the

problem is dealt by means of a multilevel framework.

At the constitutive level, a new plastic-damage model for con-

crete that incorporates a variable dilatancy parameter is developed.

It is demonstrated that dilatancy affects the free expansion of con-

crete, the softening behavior under shear stresses and the response

of passively confined elements. The model is based on a well-known

plastic-damage model which is modified by means of a dilatancy

parameter that depends on the plastic-damage and stress states.

At the sectional level, a new model that introduces an efficient

numerical technique is developed. The new model is based on a

total interaction sectional model that reproduces the kinematic

behavior of the cross-section by means of a two-component dis-

placement field. One component of the displacements satisfies the

traditional hypothesis of Euler-Bernoulli while the complementary

field reproduces warping and distortion. This last field, enables

the model to obtain the triaxial stress and strain tensors on each

point of the cross-section domain. Thus, the interaction between all

the possible internal forces is reproduced. Considering distortion

enables the model to reproduce explicitly the contribution of trans-

verse reinforcement in both the confinement and shear strength

mechanisms. The complementary displacement field is obtained by

considering the inter-fiber three-dimensional equilibrium. In order

to do so, spatial discretization of the equations is required. The

displacement field is expressed by means of a set of b-spline func-

tions predefined on the cross-section domain. Thus, a significant

reduction on the degrees of freedom involved on the cross section

state determination is obtained compared against a finite element

solution. This makes the model suitable of its implementation at

the element level.

Further, at the element level a force-based formulation is used.

The model strictly satisfies the equilibrium between nodal and sec-

tional forces. On each integration point of the elements the higher

order sectional model described earlier can be used to represent the

sectional behavior. Alternatively, the sectional model can be used
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only where high interaction of the internal forces is expected while

on the remaining integration points, a classic fiber model can be

used. In this way, it is possible to optimize the computational effort

making the model suitable for large scale simulations. The models

are implemented into an open-source collaborative finite element

software focused on the nonlinear seismic analysis of structures.

The presented models are validated, both separately and jointly,

by comparison of numerical results with experimental tests avail-

able in the literature. Validation includes a wide range of concrete

strengths, reinforcing materials, section geometries and types and

arrangements of reinforcements. Several loading conditions are sim-

ulated making emphasis on the ability of the model to represent

different failure modes such as shear, torsion and coupled modes.

A study of confinement of sections with generic geometry and dif-

ferent confining materials is carried out. Last but not least, the

simulation of a real full-scale bridge is done to test the capabilities

of the proposed model.

Finally, the conclusions of the present research, as well as rec-

ommendations for future works are drawn.

Keywords

Concrete plastic-damage model; Dilatancy; Confinement; Nonlin-

ear sectional analysis; Reinforced concrete; B-splines; Shear; Tor-

sion; Force-based element; OpenSees.

M.Poliotti 5



6 M.Poliotti



Acknowledgments

Once I read that a thesis is not about a particular topic but about

the person who wrote it. I will allow myself to correct that phrase.

A thesis is not about a particular topic but about the people that

supported and encouraged the author during the process of the

doctorate. Here, I will express my gratitude to all of them.

First of all I would like to thank my supervisors Prof. Jesús
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Chapter 1

Introduction and objectives

1.1 Motivation

In the last three decades, the structural engineering field has been in

the course of modifying its design philosophy from a deem-to-satisfy

procedure to a performance-based-design (PBD) philosophy. The

first approach consists on a set of rigid prescriptions that the struc-

ture has to satisfy, for instance the strength design criterion where a

structure is designed to provide a certain strength greater than the

prescribed loads. Conversely, the PBD philosophy involves the sat-

isfaction of certain performance objectives under different scenarios

with different probabilities of occurrence. Performance objectives

may be addressed in the form of serviceability conditions, strength

criteria, damage states, economical conditions, among others.

The PBD approach can be applied to a broad range of design

processes, in the particular case of structural engineering it has been

first applied to the design of structures under extreme events like

earthquakes or tsunamis. Nowadays, this philosophy is spreading

to other types of loads and procedures. For example, in structural

wind design or in the life-cycle assessment of existing structures.

In the case of seismic PBD, the way to comply with the per-

formance objectives is through damage control. This implies that

under certain conditions the structure is on the nonlinear range.

Current guidelines and procedures for the design or assessment of
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Chapter 1. Introduction and objectives

reinforced concrete structures require different types of nonlinear

analysis of those structures. For instance, pseudo-static pushover

or complex time-history analysis has to be made for several loading

scenarios. An important aspect of the PBD philosophy is that it

relies directly on a realistic representation of the structural behav-

ior. This means that all the possible failure modes of the structure

have to be taken into account.

Reproducing the nonlinear behavior of reinforced concrete struc-

tures while considering different failures modes is a challenging

problem that can only be faced by means of complex numerical

tools. Solid three-dimensional finite elements (FE) simulate the

structural behavior obtaining the complete stress and strain ten-

sors on each point of the structure. Furthermore, they consider ex-

plicitly the presence of longitudinal and transverse reinforcements

and its interaction with concrete. In this way, solid FE models,

if used with a robust constitutive model, are able to reproduce

the coupling between all the internal forces as well as reproducing

different failure modes such as shear, flexural, torsional and axial

modes. The main disadvantage of this type of models is their high

computational cost. Therefore, three-dimensional solid FE models

are mostly used to study local effects in zones of load applications,

beam-column connections, geometric discontinuities, among others.

Most of the structural elements such as beams, columns or

bridge girders have one dimension much larger than the others.

Therefore, they can be assimilated as line elements. One-dimensional

elements such as beam-column elements are the most used among

practicing engineers due to their robustness and their ease on the

pre- and post-processing tasks. In addition, frame elements are

closely related to the engineers reasoning and most of the current

codes and provisions are oriented to the design or assessment of

one-dimensional elements. Their ability to reproduce nonlinear be-

havior relies directly on the proper cross-sectional domain repre-

sentation.

The sectional model integrates the material behavior of each

point on the cross-section obtaining the internal forces, axial load,

20 M.Poliotti



bending moments, shear loads and torsion. The sectional model

connects the material response with the element response. The

most common and widely used sectional model is the so-called fiber

model. It relies on the plane section hypothesis that obtains di-

rectly the longitudinal displacement of each fiber from the axial

elongation and bending curvatures. Each fiber is characterized by

its representative area and a uniaxial constitutive law. The fibers

can represent concrete or steel material points. The fiber cross-

sectional model is capable of capturing coupled axial and bending

failure modes and also reproduces the interaction between concrete

and longitudinal reinforcements. The main drawback of the cross-

sectional fiber model is that it neglects the coupling between shear

and axial forces. Consequently it is not capable of reproducing

shear or torsional failure modes. Also, as it only considers explic-

itly the longitudinal reinforcements, it is not capable of reproducing

confinement in an objective way. Several fiber frame elements have

been proposed to incorporate shear or torsion failure modes. To do

so, different approaches such as decoupled shear springs, or higher

order sectional models have been followed. In the following chapter

a review of these models is addressed.

The nonlinear response and the capability of reproducing dif-

ferent failure modes of both three-dimensional FE models or beam-

column elements depend directly on the constitutive model used.

In the case of shear or torsional failure modes, an important aspect

of the material behavior is the accurate reproduction of softening

under shear stresses.

The need of a robust frame model capable of reproducing differ-

ent failure modes with the same level of accuracy as well as being

able to reproduce other three-dimensional effects such as confine-

ment in an objective way, motivated this work. This thesis presents

the development of a new frame element. The problem is addressed

at three levels: the frame element, the cross-sectional level and the

concrete constitutive level.
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Chapter 1. Introduction and objectives

1.2 Objectives

1.2.1 General objective

The main objective of this thesis is to develop a numerical tool

capable of simulating the complex nonlinear response of three-

dimensional reinforced concrete frame structures under general cou-

pled loading and in both monotonic and cyclic conditions. It is

aimed to capture different failures modes, such as shear, torsion,

flexural and axial modes, without re-calibration of material param-

eters and with similar degrees of accuracy. It is desired to obtain a

robust model suitable for the analysis of full scale structures that

can be used in both the design or assessment process.

1.2.2 Specific objectives

In order to achieve the main goal of this thesis the work is carried

out at three different levels: material, section and element models.

The following set of specific objectives are stated:

� To develop a triaxial constitutive model for concrete, capa-

ble of tracing the nonlinear response of the material making

emphasis on the shear softening and passive confinement be-

haviors.

� To develop a robust sectional model that reproduces the full

coupling between the six internal forces in a general 3D case

while considering explicitly the contribution of longitudinal

and transverse reinforcement.

� To use a reduced number of degrees of freedom involved in

the sectional computation in comparison with a finite element

solution.

� To incorporate both the sectional and constitutive models into

a force-base frame element that ensures equilibrium between

nodal and sectional forces.
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� To implement the models into a finite element program for

the nonlinear dynamic or static analysis of structures.

� To evaluate the accuracy and capabilities of the proposed

models.

� To study the behavior of reinforced concrete frame elements

and structures under general loading conditions.

1.3 Research significance

The problem of capturing the complex nonlinear behavior of three-

dimensional reinforced concrete structures under general coupled

loading in monotonic or dynamic conditions has been investigated

in this thesis. The problem is tackled in a multilevel level scheme:

the element level, the sectional level, and the material level. Each

one is addressed separately, in this way the frame formulation can

include different sectional models within the same element to al-

low the optimization of the computational effort. Besides, the

sectional model is formulated considering a general material, so

the cross-sectional model may include not only concrete but also

steel, fiber-reinforced-polymers (FRP), wood, composite materials,

among other. Finally, the concrete model is a general multiaxial

constitutive law that may be used in 3D finite element models.

In particular, at the constitutive level the concrete behavior un-

der multiaxial stress states has been investigated making emphasis

on the dilatant behavior. The proper representation of dilatancy

proves to be essential as it affects the shear behavior as well as the

transverse expansion of the material when submitted to compres-

sive stresses. Hence, dilatancy also has great influence on passively

confined elements. In this thesis, a new concrete material model

that incorporates a variable dilatancy parameter is developed. At

the sectional level, a new numerical integration technique is inves-

tigated in order to reduce the computational demand of a complete

finite element solution. This approach allows a significant reduc-

tion on the degrees of freedom involved at the cross-sectional level
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making the model more suitable for the analysis of full scale struc-

tures.

The main contribution of this thesis is the development of a

new numerical tool that incorporates into a force-based frame el-

ement, complex sectional analysis and a three-dimensional consti-

tutive law for concrete. Even though elements that incorporate

different degrees of coupling between internal forces exists on the

current literature, to the author knowledge none is capable of cap-

turing different failure modes without recalibration of sectional or

material parameters. Furthermore, the constitutive and sectional

models are independently original contributions of this work.

1.4 Contents of the document

This thesis is divided into six chapters. The current introduction

is the first of them. The second chapter consists on a brief re-

view of the state of the art. Constitutive models for concrete are

reviewed making emphasis on their ability to simulate multiaxial

states. A review of fiber beam-column elements is presented high-

lighting their capabilities to reproduce coupled loading and different

failure modes. Furthermore, current cross-sectional models that in-

corporate in different ways inter-fiber equilibrium are presented.

In the third chapter a new constitutive model for concrete is

presented. The model is based on a plastic-damage formulation and

incorporates a new evolutive dilatancy parameter. This is done to

enhance the modeling of the transverse expansion of concrete under

axial load which affects the behavior of passively confined concrete.

Furthermore, dilatancy affects the softening shear behavior of the

material. The evolution of dilatancy is made dependent on the

plastic-damage and stress states. Validation of the model is carried

out performing the simulation of experimental studies involving free

expansion of concrete, passive confinement, and shear behavior of

reinforced concrete elements.

Chapter four presents a new cross-sectional model that enhances

the kinematics of the classic plane-section hypothesis by means of
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a complementary displacement field that incorporates warping and

distortion. This field is obtained by considering inter-fiber equilib-

rium which enables the model to capture the full coupling between

all possible internal forces. The model incorporates both longi-

tudinal and transverse reinforcements and their interaction with

concrete mass. The numerical integration of the sectional model

is made by means of a spatial discretization of the equations us-

ing b-spline functions defined on the cross-section domain. This

numerical technique reduces significantly the number of degrees of

freedom involved in the solution in comparison with a finite element

model. The model is validated comparing the numerical response

obtained with the proposed model against experimental results of

reinforced concrete sections under different loading conditions.

In chapter five, a multilevel scheme for the analysis of reinforced

concrete elements is presented. The sectional and constitutive mod-

els are incorporated to a force-based frame element. The joint use of

these models constitutes the numerical tool developed in the thesis.

The equilibrium at the element level is ensured by means of proper

force interpolation functions, the inter-fiber equilibrium is consid-

ered at the sectional level and the constitutive model describes the

material behavior. The proposed model is validated first at the

element level by performing the simulation of beams and columns

under monotonic and cyclic conditions. Finally to show the capa-

bilities of the proposed framework, the nonlinear seismic analysis

of a full scale bridge is made.

Finally, in chapter six a summary of the study is done and

conclusions are drawn. In addition, recommendations for future re-

searches that could lead to an improvement of the proposed models

are addressed.
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Chapter 2

State of the art

2.1 Frame elements

Frame finite elements are widely used because of their robustness,

efficiency and their ease on the pre- and post-processes. Further-

more, they are directly related to the design or assessment processes

as current guidelines and code procedures such as AASHTO (2011);

ACI Committee 318 (2014); ACI Committee 341 (2007); EN CEN

(2005); CEB-FIB (2010); CALTRANS (2019) are mostly oriented

to frame structures.

Two beam theories stand out on the kinematic representation

of line elements: the Euler-Bernoulli and Timoshenko beam theo-

ries. The first one, assumes that plain sections remain plane and

orthogonal to the deformed axis of the element, in this way no shear

deformations are considered. In the Timoshenko beam theory, the

plane sections remain plane but not necessarily orthogonal, this

leads to a simplified consideration of the shear deformations as it

only reproduces a constant distribution of shear strains. Higher or-

der theories have been also proposed, for instance in Reddy (1997);

Reddy et al. (1997) a two and third order beam theories were pro-

posed, using two and third order polynomials to approximate the

shear strain profile.

In a finite element framework, frame elements can be formu-

lated following two main approaches: displacement- or force-based
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elements. Stiffness or displacement-based elements involve the use

of predefined displacement interpolation functions that relate the

nodal displacements with the inner element displacements. Equi-

librium is verified in a weak form by means of the virtual work

principle. On the other hand, flexibility or force-based elements

consists on force interpolation functions that relate nodal forces

with internal forces on each cross-section of the element, Roca et al.

(1994, 1995). This approach ensures the equilibrium of the element

while it only considers compatibility on a weak form. Neuenhofer,

Filippou (1997); Scott et al. (2004) demonstrated that force-based

formulations required fewer elements than displacement-based el-

ements to adjust the nonlinear behavior of beams. Furthermore

mixed elements have also been proposed which interpolate both

displacement and force fields Lee (2008); Taylor et al. (2003); Sar-

itas (2006); Saritas, Filippou (2009a).

Beam models can be also classified by how the nonlinear be-

havior is considered. Two main approaches exist: lumped and dis-

tributed models. The first one considers that the nonlinear behav-

ior of the element is concentrated on discrete and predefined points,

most usually on the elements ends Fenves, Filippou (2004). Dis-

tributed models consider that nonlinear behavior can take place on

any point of the element and it can spread on the element length.

In both cases, the nonlinear behavior can be represented by means

of predefined moment-curvature relationships and envelopes. The

main drawback of this approach is the calibration of the parameters

of this type of models. Alternatively, the nonlinear response can be

represented by numerical integration of the material behavior on

the cross-section domain. Sectional models are detailed in the next

section being the so-called fiber model the most common Spacone

et al. (1996a); Taucer et al. (1991); Spacone et al. (1996b); Kang,

Scordelis (1980); Mari (1984). There the sectional domain is dis-

cretized into fibers, each one is characterized by its area, position

and its behavior is represented by means of a uniaxial constitu-

tive law. These models, are able to trace the nonlinear response

of elements that are mainly subjected to axial loads and bending
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moments.

Force-based elements with distributed nonlinearity and fiber

representation of the cross-section have shown to be robust and

efficient in the nonlinear representation of structures that fail due

to combination of axial load and bending moments Spacone et al.

(1996a); Taucer et al. (1991); Spacone et al. (1996b); Kang, Scordelis

(1980). Their main drawback is that the coupling between shear

and axial internal forces is neglected. Thus, these models cannot

reproduce other failure modes such as shear, torsion or coupled

modes. The robustness of fiber-beam elements, and the increas-

ing need of reproducing complex failure modes that involve the

coupling between normal and tangential internal forces, have mo-

tivated researchers to extend the classical fiber-beam models to

include different degrees of interaction between internal forces. Ex-

tended state of the art reviews can be found in Ceresa et al. (2007)

and Bairán, Maŕı (2007b).

Different approaches have been followed to incorporate shear

deformation to fiber-beam models. One way is to consider the

nonlinear shear behavior uncoupled from the bending and axial

responses, Marini, Spacone (2006); Ibarra et al. (2005). Alterna-

tively, formulations that consider predefined shear stress or strain

profiles Petrangeli et al. (1999); Petrangeli (1999); Papachristidis

et al. (2010); Ceresa et al. (2009); Mazars et al. (2006); Gregori

et al. (2007); Saritas (2006); Kagermanov, Ceresa (2018) have been

proposed. These models have shown to be relatively simple and

robust, their main drawback is that they neglect inter-fiber equilib-

rium during the analysis. This leads to difficulties when reproduc-

ing different failures modes in an objective way. Sectional models

that consider the inter-fiber equilibrium have been also proposed

and they are described in the following section.

2.2 Sectional models

Sectional models relate the material behavior of each point on the

cross-sectional domain with the element level by means of numeri-
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cal integration. Different sectional models have been proposed with

different levels of accuracy and complexity. The most common

method to represent the cross-section response is the so-called fiber

model Spacone et al. (1996a); Taucer et al. (1991); Spacone et al.

(1996b); Kang, Scordelis (1980); ?. As it was previously mentioned,

fiber models are able to reproduce the coupling between bending

moments and axial load. Also they consider the interaction be-

tween concrete and longitudinal reinforcements. As they neglect

the inter-fiber equilibrium, they are not able to reproduce coupling

between shear and axial forces. Furthermore, as they neglect dis-

tortion and transverse equilibrium, they are not able to incorporate

the presence of transverse reinforcements. Cross-sectional models

based on inter-fiber equilibrium showed to be able to accurately

reproduce different failure modes Bairán, Maŕı (2007b); Le Corvec

(2012); Mohr et al. (2010); Di Re (2017). In the following, sectional

models that considers inter-fiber equilibrium are addressed.

Vecchio, Collins (1988) developed a dual-section analysis for the

case of 2D frame elements. The coupling between longitudinal and

transverse stresses is obtained by explicitly considering the equi-

librium between fibers, which involves the analysis of two adjacent

cross-sections to approximate the longitudinal stress gradient. The

dual-section model is a non-local model, as it needs information

from adjacent points, so an ad-hoc element formulation is needed.

To overcome this problem, Bentz (2000) introduced the Longitu-

dinal Stiffness Method, where the longitudinal stress gradient was

calculated locally considering equilibrium equations at the beam

level. This method is a local sectional model, but only for 2D ele-

ments.

Later, Bairán, Maŕı (2006a,b, 2007a) presented a sectional model

called TINSA (Total Interaction Nonlinear Sectional Analysis). It

is based on the enhancement of the kinematic field of the Navier-

Bernoulli theory by means of a warping-distortion displacement

field which is obtained by solving the inter-fiber equilibrium in the

section domain with a 2D FE model. The warping-distortion field

considered is independent of the x -coordinate neglecting its varia-
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tion along the beam length, this leads to a sectional model that is

completely independent of the frame formulation, thus there is no

need for additional degrees of freedom at the beam level. A conse-

quence of this assumption is that the effect of non-uniform warping

and shear lag effects are neglected, but this is relevant in thin-

walled sections rather than in compact cross sections as is the case

of most reinforced concrete beams and columns. This formulation

proved to capture the interaction between the six possible internal

forces in sections of any shape and takes into account both longitu-

dinal and transverse reinforcements explicitly. Its main drawback is

the higher computational demand compared with traditional beam

models.

Mohr et al. (2010), presented a modification of the TINSA

model for the case of 2D frames. The complementary displace-

ment field is calculated as a weighted sum of Taylor’s polynomials

defined in the section height. This method avoids the FE solution,

reducing the computational cost of the original model. The sec-

tional model was implemented on a flexibility-based frame element

and tested in beams with bending moment and shear. As it was

developed for 2D frames, no torsion or bidirectional shear flows can

be analyzed with this model.

Le Corvec (2012) and Di Re (2017) presented 3D frame elements

based also on the displacement decomposition. As an additional hy-

pothesis to the original formulation, they presented a complemen-

tary displacement field, which only produces warping neglecting

the distortion of the cross-section. The out of plane displacement

is obtained by interpolation over the section domain but also on the

beam length, this allows the model to capture non-uniform warping

and shear lag effects. As interpolation function over the cross sec-

tion domain, Le Corvec (2012) used Lagrange’s polynomials, while

Di Re (2017) included Hermite’s polynomials. Both models were

implemented in 3D force-based elements based on the Hu-Washizu

variational principle. These models can capture the interaction of

the internal forces in a tri-dimensional element, but the hypothe-

sis of considering a complementary field with only warping has the
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drawback that distortion of the section is not captured, so trans-

verse reinforcement is not considered explicitly. Besides, as the

complementary field is interpolated on the beam length, a special

frame formulation is developed with more degrees of freedom at the

beam level that have to be considered or properly condensed.

2.3 Concrete constitutive models

Concrete behavior exhibits a wide range of non-linear phenomena:

different responses under tension and compression, large differences

in the peak strengths, anisotropy induced by cracking, damage due

to the development of micro-cracks, irreversible strains, stiffness re-

covery upon loading reversals, dilatancy, enhancement in strength

and ductility under the effect of confinement, rate dependency,

among others.

A large variety of constitutive models for concrete is available

on literature with different degrees of approximation and complex-

ity. Most of them are formulated using one or a combination of

approaches, such as nonlinear elasticity Elwi, Murray (1979), plas-

ticity Simo et al. (1988); Chen (2007); Vermeer, de Borst (1983),

damage or fracture mechanics Bažant, Gambarova (1984); Lemaitre

(1985a); Mazars (1986); Bazant (1983); Bažant, Oh (1983); Luc-

cioni, Oller (2003); Mazars et al. (2015); Faria et al. (2004); Červenka,

Papanikolaou (2008), and empirically based models Mander et al.

(1988b); Vecchio (1992, 1999); Vecchio, Collins (1982, 1988, 1986);

Vecchio, Selby (1991).

Models with coupled plasticity and damage have shown to be

able of reproducing the main characteristic of concrete behavior

in a robust manner Lemaitre (1985b); Lubliner et al. (1989); Lee,

Fenves (1998, 2001); Alfarah et al. (2017); Moharrami, Koutro-

manos (2016); ABAQUS (2012); Luccioni et al. (1996); Luccioni,

Rougier (2005); Wu et al. (2006). However, they require especial

calibration in those cases where dilatancy is important. For in-

stance, the estimation of the shear strength in reinforced elements,

and the simulation of passively confined elements.
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In particular, dilatancy can be described as the volume change

of a granular material when it is submitted to shear strains. This

phenomenon plays an important role in the shear behavior of con-

crete as well as in the increase of strength and ductility due to

confinement. This is why its proper representation becomes of es-

pecial interest in the evaluation of earthquake-resistant structures.

A coupled plastic-damage model for concrete was firstly intro-

duced by Lubliner et al. (1989). There, the classical hardening

variable of plasticity theory was replaced by a plastic-damage vari-

able. This was defined as a measure of the energy dissipated during

the inelastic process. In a tensile case the dissipated energy is the

fracture energy, and in a compressive case is known as the crushing

energy, see Coleman, Spacone (2001). Both energies are normal-

ized to avoid mesh-sensitivity by means of a localization length, see

Bazant (1983); Oliver (1989). The model introduced a new yield

function and a stiffness degradation variable. The elastoplastic re-

sponse and the stiffness degradation process were presented in a

coupled manner. The single plastic-damage variable enabled the

model to reproduce monotonic loading conditions.

Different variants of that model have been developed Lee, Fenves

(1998, 2001); Alfarah et al. (2017); Moharrami, Koutromanos (2016);

ABAQUS (2012); Luccioni et al. (1996); Luccioni, Rougier (2005);

Wu et al. (2006). Furthermore, it has been applied to the sim-

ulation of reinforced concrete elements Saritas, Filippou (2009b);

Genikomsou, Polak (2015); Earij et al. (2017); Nzabonimpa et al.

(2017) showing its capabilities.

In particular, Lee, Fenves (1998, 2001) presented a modified

version of the plastic-damage model in order to include cyclic load-

ing. Two plastic-damage variables, one for tension κt and other

for compression κc, were introduced. An isotropic stiffness degra-

dation variable was also proposed. In this model, the elastoplastic

and stiffness degradation responses (damage) were decoupled. In

addition, the control of the tensile and compressive strengths was

made by means of the plastic-damage variables. A non-associative

flow rule was proposed to control the dilatancy by means of a linear
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Drucker-Prager function.

This widespread model proved to be able to capture many of the

main aspects of the concrete cyclic response. It reproduces plas-

tic deformations, stiffness degradation, crack opening and closing,

and different strengths in the tensile and compressive case. It has

been implemented in commercial codes, such as ABAQUS (2012).

However, the model controls dilatancy with a single parameter αp
which is held constant. A wide range of values for this parameter

was used in literature.

In Lee, Fenves (1998), the effect of the αp parameter in the free

expansion of concrete was shown in a biaxial compressive test. It

was shown that small values of αp produced significantly smaller

values of the out-of-plane strain. This implied that this parameter

might need specific calibration for different applications.

One example where this was evidenced is in the research of

Genikomsou, Polak (2015). There, the model was applied to the

simulation of punching shear in reinforced concrete slabs. In order

to fit the experimental data, a parametric study with different val-

ues of the dilatancy parameter was carried out. A strong influence

in the shear strength and ductility was reported in that research.

Saritas, Filippou (2009b) simulated the effect of confinement in

concrete specimens using the plastic-damage model. Simulations of

reinforced concrete beams under both shear and bending were made

in the same work. They reported difficulties in the assessment of the

strength increase and the post-peak behavior of passively confined

elements. To overcome this issue, calibration of the compressive

fracture energy was made in that work.

In a different research, Earij et al. (2017) performed a paramet-

ric study of the dilatancy parameter in the simulation of reinforced

concrete beams. A significant loss of ductility for lower values of

αp was shown.

Nzabonimpa et al. (2017) presented the simulation of concrete

beam-column joints using the plastic-damage model. They reported

that low values of the dilatancy parameter were not able to fit

experimental results.
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The need to overcome the previous reported difficulties with a

consistent physical approach motivates a closer study of the dila-

tancy phenomenon.
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Chapter 3

A new concrete

plastic-damage model with

an evolutive dilatancy

parameter

Typical plastic-damage models for concrete use a constant dila-

tancy parameter. On problems sensitive to confinement and shear

softening, this parameter needs ad hoc calibration to fit experimen-

tal observations. This makes the model not objective for general

applications. To overcome this issue, in this chapter, a constitu-

tive plastic-damage model with evolutive dilatancy is proposed for

concrete. The evolution of dilatancy is made dependent on the

plastic-damage and stress states. The proposed evolution law is

validated by comparison of numerical simulations with available

experimental results. The validation includes: concrete specimens

under uniaxial compression measuring the free expansion, passively

confined concrete specimens with different confining materials, and

reinforced concrete panels under in-plane shear. It is concluded that

the model accurately reproduces concrete lateral expansion through

different nonlinear states. Proper modeling of concrete nonlinear

expansion proves essential for capturing the response in a number

of situations: softening under high shear stresses, confinement, and
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ductility assessment.

3.1 Introduction

The assessment of existing structures requires simulation methods

able to reproduce serviceability and safety conditions in a precise

manner. In the case of reinforced concrete structures in seismic

zones, material modeling of concrete is crucial for seismic perfor-

mance assessment.

Within the same earthquake-resistant structure, there are ele-

ments under axial loads with high degrees of confinement and other

elements with high shear demands. This requires of material models

capable of reproducing a wide range of stress states in an objective

manner.

Concrete behavior exhibits a wide range of non-linear phenom-

ena: different responses under tension and compression, large differ-

ences in the peak strengths, anisotropy induced by cracking, dam-

age due to the development of micro-cracks, irreversible strains,

stiffness recovery upon loading reversals, dilatancy, enhancement

in strength and ductility under the effect of confinement, rate de-

pendency, among others.

In particular, dilatancy can be described as the volume change

of a granular material when it is submitted to shear strains. This

phenomenon plays an important role in the shear behavior of con-

crete as well as in the increase of strength and ductility due to

confinement. This is why its proper representation becomes of es-

pecial interest in the evaluation of earthquake-resistant structures.

A large variety of constitutive models for concrete is available

on literature with different degrees of approximation and complex-

ity. Most of them are formulated using one or a combination of

approaches, such as elasticity, plasticity, damage, and fracture me-

chanics. Models with coupled plasticity and damage have shown to

be able of reproducing the main characteristic of concrete behavior
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in a robust manner. However, they require especial calibration in

those cases where dilatancy is important. For instance, the estima-

tion of the shear strength in reinforced elements, and the simulation

of passively confined elements.

This research focuses on the study of plastic-damage models for

concrete, especially on the treatment of the dilatancy phenomenon.

The development of a plastic-damage model with variable dilatancy

for the objective simulation of elements in shear and under confine-

ment is pursued in this chapter.

In the following, first a review of the main aspects of the classical

plastic-damage model is made. Further, simulations and compar-

ison with experimental data available in literature are carried out

with different values of the dilatancy parameter. A novel plastic-

damage model with variable dilatancy is proposed to improve the

capabilities of the model. The validation of the proposed modifi-

cations is made by means of numerical simulation of experimen-

tal tests. Three experimental campaigns available in the literature

which showed to be significantly affected by concrete dilatancy are

reproduced. Finally, conclusions are drawn.

3.2 Plastic-damage model with constant

dilatancy for concrete

3.2.1 Basic features

Plasticity theories are based in the decomposition of the strain ten-

sor ε into elastic εe and plastic parts εp, where only the elastic part

of strains produces stresses.

ε = εe + εp

εe = E−1σ

σ = E : (ε− εp)
(3.1)

where E is the elastic rank four tensor.

This formulation includes the definition of a single stiffness degra-
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dation variable (0 ≤ D ≤ 1), which allows transformation between

stresses and effective stresses σ̄ spaces. It represents the stiffness

degradation process.

σ̄ =
1

(1−D)
I : σ =

1

(1−D)
σ = E0 : (ε− εp)

E = (1−D)E0

(3.2)

being I the rank four identity tensor, and E0 the un-degraded elas-

tic rank four tensor.

Evolution of the plastic strains is made by a flow rule defined

through a plastic potential function Φ. The elastoplastic response

is decoupled from the stiffness degradation, so the plastic evolution

can be defined in the effective stress space as follows

ε̇p = λ̇
∂Φ

∂σ̄
(σ̄) (3.3)

where λ is the plastic consistency parameter.

Two additional internal variables, which are the plastic-damage

in tension and compression κ = (κt, κc) are introduced to play the

role of hardening variables. Their evolution law is given by

κ̇ = λ̇H (σ̄,κ) (3.4)

where H will be defined later in Section 3.2.2.

The plasticity model is completed by a yield function. It is

defined in the effective stress space and it depends on the plastic-

damage variables which controls the evolution of the surface. The

yield function can be written in a general form as

F (σ̄,κ) ≤ 0 (3.5)

Finally, the Kuhn-Tucker and consistency conditions are used

to represent the loading/unloading conditions as follows

λ̇ ≥ 0

λ̇F = 0

F ≤ 0

(3.6)
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3.2.2 Damage Variable

The plastic damage variable is defined as the relative measure of

energy dissipated during an inelastic process. In a uniaxial pro-

cess ℵ, which can be either tension or compression ℵ ∈ (t, c), the

strain-stress curves can be obtained. Assuming that the plastic

strain-stress diagrams can be derived, the plastic-damaged variable

is defined as follows

κℵ =
1

gℵ

∫ εp

0

σℵ (εp) dεp (3.7)

where gℵ is the normalized total energy that can be dissipated

during the inelastic process which is assumed to be finite.

gℵ =

∫ ∞
0

σℵ (εp) dεp (3.8)
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Figure 3.1: Uniaxial curve (σℵ, ε
p)

The normalized total energy gℵ is derived from the material

properties: the fracture energy Gt, in the tension case, and its

counterpart in the compression case Gc. Normalization is made by

means of a characteristic length lch which is defined as the local-

ization zone size. Extensive work has been made to overcome the

mesh dependency problem Oliver (1989); Bazant (1976, 1983). As
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a result, regularization can be made by relating the total energy,

fracture energy and characteristic length through Eq. (3.9).

gℵ =
Gℵ
lch

(3.9)

Taking into account Eq.(3.7), the evolution of the plastic-damage

variable in an uniaxial case can be written as follows

κ̇ℵ =
1

gℵ
fℵ (κℵ) ε̇p (3.10)

where fℵ is the uniaxial strength function which is determined

explicitly from κℵ.

In the former, only uniaxial tension and compression cases were

considered. To extend the model to multiaxial loading a scalar

definition of the plastic-strain rate is given as:

ε̇p = δtℵ r
(

ˆ̄σ
)

ˆ̇ε p
max + δcℵ

[
1− r

(
ˆ̄σ
)]

ˆ̇ε p
min (3.11)

where δ is the Kronecker’s delta, ˆ̇ε p
max and ˆ̇ε p

min are respectively

the maximum and minimum eigenvalues of the plastic strain tensor.

The weight factor r
(

ˆ̄σ
)

in Eq.(3.11) depends on the eigenvalues

of the effective stress tensor ˆ̄σ and its equal to zero for triaxial

compression and equals to one for triaxial tension.

r
(

ˆ̄σ
)

=



0 if ˆ̄σ = 0

3∑
i=1

〈 ˆ̄σi〉

3∑
i=1

| ˆ̄σi|
otherwise

(3.12)

In which 〈x〉 = (x+ |x|) /2 is the Macaulay bracket function.

By substitution of Eq.(3.11) into Eq.(3.10) the evolution of the

plastic-damage variables in a multiaxial load case is given by

κ̇ = h
(
ˆ̄σ, κ

)
: ˆ̇εp (3.13)

where
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h
(
ˆ̄σ, κ

)
=

[
r
(

ˆ̄σ
)
ft (κt) /gt 0 0

0 0
(
1− r

(
ˆ̄σ
))
fc (κc) /gc

]
(3.14)

Substituting the flow rule Eq.(3.3) into Eq.(3.13) the evolution

of the plastic-damage variables can be rewritten as follows

κ̇ = λ̇h
(
ˆ̄σ, κ

)
· ∂Φ

∂ ˆ̄σ

(
ˆ̄σ
)

(3.15)

Finally comparing Eq.(3.15) and Eq.(3.4), H is defined as

H = h
(
ˆ̄σ, κ

)
· ∂Φ

∂ ˆ̄σ

(
ˆ̄σ
)

(3.16)

3.2.3 Stiffness Degradation

The stiffness degradation due to micro-cracking is decoupled from

the elastoplastic response and is represented using a single variable

D. In cyclic loading cases, crack opening and closing causes the

recovery of the stiffness when the load changes from tension to

compression. However, stiffness is not recovered when the inverse

load problem takes place; i.e., when load changes from compression

to tension. To capture this phenomenon in ABAQUS (2012) the

following definition of the stiffness degradation variable is made:

D = D (σ̄,κ) = 1− [1− sc (σ̄)Dt (κt)] [1− st (σ̄)Dc (κc)]

0 ≤ (st, sc) ≤ 1

st (σ̄) = 1− wt r
(

ˆ̄σ
)

sc (σ̄) = 1− wc
(
1− r

(
ˆ̄σ
)) (3.17)

where Dt and Dc are the stiffness degradation variables in ten-

sion and compression, which are explicit functions of the corre-

sponding plastic-damage variables. The stiffness recovery factors,

wt and wc, control the crack opening and closing. In order to do so

wt = 0 and wc = 1 are taken.
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3.2.4 Yield Function

The yield function, known as the Barcelona Model, was first intro-

duced by Lubliner et al. (1989). Then, it was further modified by

Lee, Fenves (1998) to include the cyclic load case. It can be written

under the following form in the effective stress space

F (σ̄,κ) =
1

1− α

[
αĪ1 +

√
3J̄2

+β (κ) 〈ˆ̄σmax〉 − γ〈−ˆ̄σmax〉
]
− cc (κ) ≤ 0

(3.18)

where Ī1 = tr (σ̄), J̄2 = (s̄ : s̄) /2, in which s̄ is the deviatoric

effective stress, and ˆ̄σmax is the algebraically maximum effective

stress .

The dimensionless constants α and γ are defined to control the

yield surface shape. α is calculated to match the experimental

enhancement in the yield stress that concrete exhibits in biaxial

compression compared with the uniaxial case. In this work α = 0.12

is set, as recommended in Lubliner et al. (1989). γ is calculated

to give proper relation between the maximum octahedral radius

in tension and compression, in this work it was taken as γ = 3,

following the proposed value in Lubliner et al. (1989).

The β function adjusts the relation between the uniaxial strength

in tension and compression and is calculated as

β =
cc (κ)

ct (κ)
(1− α)− (1 + α) (3.19)

where cc and ct are the compressive and tensile cohesion which

are explicit functions of the internal variables κ.

3.2.5 Plastic Potential

The non associative flow of the model presented by Lee, Fenves

(1998) uses the linear version of the Drucker-Prager surface in the

effective stress space as plastic potential surface
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Φ (σ̄) =
√

2J̄2 + αpĪ1 (3.20)

As this function exhibits singularities in the triaxial isotropic

tension point, ABAQUS (2012) and Omidi, Lotfi (2010) used hy-

perbolic versions of the Drucker-Prager model to overcome this is-

sue

Φ (σ̄) =

√
(ε1αpft0)2 + 2J̄2 + αpĪ1 (3.21)

where ε1 is the eccentricity parameter, ft0 is the uniaxial tensile

strength, and αp is the dilatancy parameter which can be calculated

as tan (ψ), being ψ the dilatancy angle.

The αp parameter, is held constant during the whole analysis.

This implies, as they are related, a constant dilatancy angle.

3.2.6 Numerical Integration

The numerical integration of the model is made following Lee,

Fenves (2001) where the backward-Euler integration scheme is used.

A spectral return-mapping algorithm was introduced producing an

efficient integration of the model.

The tangent stiffness matrix is calculated numerically by the

perturbation method as presented in Martinez et al. (2008). Central

finite difference method is used instead of the forward one in order

to improve convergence in the cyclic case.

3.2.7 Dilatancy control

The dilatancy of the plastic-damage model is controlled through

the plastic potential function. A single and constant parameter αp
is used for this aim. It can be calculated as follows:

αp = tan (ψ) (3.22)

being ψ the dilatancy angle. A constant αp implies a constant

dilatancy angle.
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Different values of the dilatancy parameter have been proposed

in the literature. The tests performed by Lee, Fenves (1998) re-

quired a value of αp = 0.2. Similarly, Oller et al. (1988) recom-

mended a maximum ψ = 13◦ which is equivalent to αp = 0.23,

hence it was consistent with the value used in Lee, Fenves (1998).

Later Genikomsou, Polak (2015), in their applications to model

punching shear of reinforced concrete slabs, used a dilatancy angle

of ψ = 40◦ which is equivalent to αp = 0.84. This value is much

bigger than the recommended in Lee, Fenves (1998); Oller et al.

(1988); however, it was needed to capture the shear failure induced

by punching.

Earij et al. (2017) applied the plastic-damage model to per-

form 3D simulations of reinforced concrete beams. A sensitivity

analysis on this parameter was performed comparing results for

ψ = 20◦, 30◦, 40◦, 50◦. The conclusion reported in that research

was that low values of ψ produced a loss of ductility, so ψ = 40◦

was chosen to fit experimental results.

Nzabonimpa et al. (2017), in their simulations of beam-column

joints, used a dilatancy angle of ψ = 56◦ , equivalent to αp = 1.48,

to conform the experimental observation in their specimens.

Saritas, Filippou (2009b), in the modeling of reinforced concrete

beams and concrete specimens laterally reinforced, used a constant

value of αp = 0.2. However, in order to adequate the response to

the experimental data, these authors used different values of the

compressive fracture energy for different amounts of transverse re-

inforcement. The value of the compressive fracture energy used for

the biggest ratio of transverse reinforcement was four times big-

ger than the compressive fracture energy used in the unconfined

concrete.

It can be seen that a wide range of values have been used in

previous studies. Values between αp = 0.2 (ψ = 13◦) and αp = 1.48

(ψ = 56◦) have been used in the literature. The applications where

only plain concrete was modeled tend to use lower values of the

dilatancy parameter (αp). While, the cases where interaction with

reinforcements was simulated needed greater values to properly fit
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the experimental results. This is inconsistent with the definition of

a material parameter, which should be independent of the type of

the load configuration.

3.2.8 Parametric analysis

To investigate the influence of the dilatancy parameter, three dif-

ferent types of tests are simulated and compared against exper-

imental data available in literature. Simulations are carried out

using the original plastic-damage model introduced by Lee, Fenves

(1998, 2001), with four different values of the dilatancy parameter:

αp = 0.1, 0.2, 0.4 and 0.6.

The first test belongs to an experimental campaign carried out

by Osorio et al. (2017). There, a uniaxial monotonic compression

tests was done measuring the transverse deformation, see Fig.(3.2).

The second test is a passively confined concrete cylinder with a

GFRP jacket under uniaxial monotonic loading tested by Aire (2002),

see Fig.(3.3). The last experimental data set is obtained from a rein-

forced concrete panel subjected to in-plane shear tested by Vecchio,

Collins (1982), see Fig.(3.4).

By analyzing the numerical results, several remarks can be made.

It is noteworthy that each test is best fitted with a different value

of the dilatancy parameter. In the first test, low values of αp un-

derestimate the post-peak transverse strains, while greater values

tend to overestimate transverse strains near the peak. The dila-

tancy parameter that, on average, best fits the experimental data

is αp = 0.4. In the second test, where passive confinement is pro-

vided, a value of αp = 0.1 is needed to adjust the experimental

results. Finally, in the third test, the value that is needed to cap-

ture the shear strength is αp = 0.6. Low values of the dilatancy

parameter underestimate the shear strength.

One phenomenon that introduces disagreement between exper-

imental and simulation is the presence of confinement. A confining

pressure tends to reduce the effect of the dilatancy in concrete Os-

orio et al. (2017). Thus, the cases where passive confinement is
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Figure 3.2: Longitudinal stress σ1 vs. longitudinal ε1 and transverse
ε2 strains - Uniaxial Test. Experimental results by Osorio et al.
(2017)

Figure 3.3: Longitudinal stress σ1 vs. longitudinal ε1 and transverse
ε2 strains - Uniaxial Confined Test. Experimental results by Aire
(2002)
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Figure 3.4: Shear stress τ vs. shear strain γ - Shear Panel Test.
Experimental results by Vecchio, Collins (1982)

present are strongly dependent on the dilatancy parameter. Such

dependence can be explained because small changes in the trans-

verse expansion may cause variations on the confining pressure and

consequently on the dilatancy. Another source of difference results

from the evolution of damage. In the shear dominant cases, damage

occurs in both tensile and compressive directions. This produces a

quick evolution of the concrete expansion and, consequently, large

values of the dilatancy parameter are needed.

As commented above, in previous researches, ad hoc calibration

of this parameter was needed for different loading cases. This leads

to a loss of objectivity that needs to be reviewed. In addition, it

can be seen that a constant parameter is not consistent with the

experimental evidence.

3.3 Proposed model

The evolution of dilatancy in inelastic processes has been stud-

ied before in the field of soils and rock mechanics Alejano, Alonso
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(2005); Rahjoo, Eberhardt (2016); Detournay (1986); Zhao, Cai

(2010). Nevertheless, when it comes to concrete, studies are scant.

Some models exist focusing on the effect of variable volumetric ex-

pansion due to dilation Pantazopoulou, Mills (1995); Pantazopoulou

(1995); Moharrami, Koutromanos (2016). However, to the knowl-

edge of the author, the role in the shear strength and other struc-

tural performances has not been investigated.

Vermeer, de Borst (1983) proposed a dilatancy angle that de-

pends on plastic strains. Oller et al. (1988) introduced an ex-

plicit function of plastic-damage variables to control the evolution

of the dilatancy angle. In the case of rock mechanics, Detournay

(1986); Alejano, Alonso (2005); Zhao, Cai (2010); Rahjoo, Eber-

hardt (2016) reported that the dilatancy parameter not only de-

pends on the plastic state but also depends on the stress state,

especially on confining stresses.

Based on the previous review and on the parametric analysis

performed in section 3.2.8, it can be concluded that the dilatancy

phenomena is affected by the confining pressure and the plastic-

damage state. In consequence, the dilatancy angle is here proposed

to be an explicit function of the plastic-damage and stress states.

Taking into account Eq.(3.22), the αp parameter can be written, in

general terms, as follows, see Eq.(3.23).

αp = αp (κ, σ̄) = tanψ (κ, σ̄) (3.23)

In the following, the evolution of the dilatancy angle proposed in

this work is presented. First, the evolution of the dilatancy param-

eter with the plastic-damage state will be addressed independently

of the stress state. Later, the effect of stresses on the dilatancy

angle will be presented.

3.3.1 Evolution with the plastic-damage state

The plastic-damage state of the material is expressed through two

variables, one for tension κt and other for compression κc. Both are

defined for uniaxial processes. In order to establish the evolution
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law, first, the definition of a plastic-damage variable for multiax-

ial states needs to be defined. In order to develop this task, the

following physical aspects should to be taken into account.

The effect of dilatancy is greater and evolves quickly in those

cases where the material is subjected to shear stresses, as in Fig.(3.4).

Further, on an hypothetical case where the material is first dam-

aged in tension and then subjected to compression, dilatancy would

evolve quicker than in a pure compressive case. This is due to the

development of microcracks in tension. When compression is later

applied, the microcracks cannot be perfectly closed because the sur-

face of the cracks had suffered small displacements. This increases

the dilatancy and the volumetric expansion.

Bearing in mind the mentioned behavior, a scalar plastic-damage

variable km for multiaxial cases is proposed, see Eq.(3.24)

(1− κm) = [1− {1 + η r (σ̄)} κt] · [1− {1− r (σ̄)} κc] (3.24)

where η is a constant which value is set equal to 20 to give

more importance to the tensile plastic-damage. This factor is pro-

posed to fit experimental data. r (σ̄) is the weight factor defined in

Eq.(3.12).

In triaxial compression, the variable defined in Eq.(3.24) is equal

to κm = 1−(1−κt)(1−κc). It can be seen that it takes into account

the previous tensile plastic-damage.

The evolution of the dilatancy angle can be explained by con-

sidering concrete as a granular material. During inelastic processes,

particles slide past each other on the surface of microcracks. This

increases both the internal friction and the total volume. Thus, the

evolution of the dilatancy angle ψ is related to the evolution of the

internal friction angle φ. The following evolution for both angles is

proposed as in Oller et al. (1988), see Eqs.(3.25) and (3.26).
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ψ =


0 if φ ≤ φcv

arcsin

(
sinφ− sinφcv

1− sinφ sinφcv

)
if φ > φcv

(3.25)

sinφ =


2
√
κm

1 + κm
sinφpeak if κm ≤ 1

sinφpeak if κm > 1

(3.26)

where φpeak and ψpeak are the values of the dilatancy and friction

angles when the material is fully damaged. φcv is the internal fric-

tion angle at constant volume and is calculated as in Eq.(3.27). It

can be interpreted as the value of the friction angle when dilatancy

begins.

sinφcv =
sinφpeak − sinψpeak

1− sinφpeak sinψpeak
(3.27)

The proposed evolution of the dilatancy parameter with the

plastic-damage variable is plotted in Fig.(3.5).

Figure 3.5: Dilatancy parameter vs. damage

In soils, dilatancy at early stages has a negative value, but this

effect is not evidenced in concrete Vermeer, de Borst (1983). First,

the dilatancy parameter remains equal to zero until plastic-damage
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reaches the value of κcv. This is the value of the plastic-damage

variable at constant volume when φ = φcv. Later, αp increases up

to its maximum value αp,max = tanψpeak when the material is fully

damaged κm = 1.

Up to this point, the dilatancy parameter depends only on the

plastic-damage state. The evolution is controlled by two parameters

ψpeak and φpeak. In Oller et al. (1988), they were considered as

constant material properties. In the current research, it is proposed

to vary ψpeak and φpeak as a function of the stress state, to consider

the effect of confinement.

3.3.2 Influence of the stress state

The experimental observations indicates that the presence of con-

finement reduces significantly the effect of dilatancy, as it was shown

in section (3.2.8). Further, the maximum dilatancy is observed in

the cases dominated by high shear stresses.

Therefore, in this research, it is proposed to affect the peak

values of the internal friction and dilatancy angles by a term that

depends on the stress state, see Eqs.(3.28) and (3.29).

φpeak = φpeak (σ̄) = φmaxe−a(1+b) Ī1 (3.28.1)

ψpeak = ψpeak (σ̄) = ψmaxe−a(1+b) Ī1 (3.28.2)

a =
1

fc
; b =

Ī1√
3J̄2

(3.29)

where φmax and ψmax are material properties and are the max-

imum internal friction and dilatancy angles, respectively. fc is the

uniaxial concrete strength. A similar term was proposed by Mo-

harrami, Koutromanos (2016) to modify the evolution of plastic-

damage variables in presence of confinement. Here, it is used to

modify the dilatancy and internal friction peak angles.

It can be seen that in the isotropic compression and tension

cases, the exponent in Eq.(3.28) is not defined. However, in the
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compressive direction this is not relevant as the yield function is

open in the hydrostatic axis. In the isotropic tensile point, the

exponential term is taken equal to one to overcome this issue.

In Fig.(3.6) three curves are plotted for the evolution of the

dilatancy parameter. Each one corresponds to a theoretical process

for different degrees of constant confinement.

Figure 3.6: Dilatancy parameter vs. damage for different confining
pressures

As can be observed in Fig.(3.6), in the proposed model, the

presence of a higher confinement produces a reduction on the peak

value of the dilatancy parameter. Moreover, it produces an early

onset of dilatancy.

3.4 Validation

The proposed model is validated by the simulation of three different

sets of experimental data which are representative of very different

failure modes.

The first set consists in uniaxial compressive tests of concrete

cylinders performed by Osorio et al. (2017). Four different concrete

mixes were used from normal to high strength concrete. The trans-

verse strains were measured in order to study the free expansion of

the unconfined concrete.
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The second experimental campaign, performed by Aire (2002),

involves six uniaxial compressive tests of concrete cylinders pas-

sively confined by different types of FRP jackets. Three different

amounts of transverse reinforcements were tested using glass and

carbon fibers. As FRP do not show yielding stress, modeling the

confinement response is more sensitive to the adequate simulation

of concrete expansion than in the case of steel confinement rein-

forcement.

Finally, fifteen reinforced concrete panels, tested by Vecchio,

Collins (1982), are simulated. The panels were subjected to in-

plane shear, and each one had different amounts of reinforcement

as well as different concrete strengths.

The material parameters in the three tests are obtained from

available data. If a material parameter is not reported in the

original publication then, the corresponding value is estimated us-

ing Eqs.(3.30) as recommended in Alfarah et al. (2017); CEB-FIB

(2010).

E = 10000

(
0.8 + 0.2

fc + 8

88

)
3
√
fc + 8 [MPa] (3.30.1)

ft = 0.302fc
2/3 [MPa] (3.30.2)

Gt = 0.073fc
0.18 [N/mm] (3.30.3)

Gc =

(
fc
ft

)2

Gt [N/mm] (3.30.4)

ν = 0.2 (3.30.5)

The calibration of the stiffness degradation response is made by

means of the two following material parameters.

D̄c = 0.423

(
1− fc

ε0E

)
; D̄t = 0.5 (3.31)

where D̄c is the value of the stiffness degradation at the maxi-

mum compressive stress fc, and ε0 is the peak strain. The constant

on the first expression in Eq.(3.31) is obtained from cyclic com-
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pressive tests in Osorio et al. (2017). The tensile counterpart D̄t,

is defined as the stiffness degradation at a stress equals to the half

of the maximum tensile stress.

The values of the maximum internal friction and dilatancy an-

gles in Eq.(3.28) control the evolution of dilatancy. The following

values are used in all the simulations.

φmax = 65◦ ; ψmax = 32◦ (3.32)

3.4.1 Unconfined concrete

In this section, four concrete mixes, with different values of strength,

are numerically tested and compared against experimental data

from Osorio et al. (2017). The parameters, based on the mate-

rial properties models shown in the set of Eqs.(3.30) and (3.31)

are determined from the compressive strength of each test : fc =

35, 45, 60 and 80 MPa. The characteristic length is set as lch =

175 mm, which is obtained as the cubic root of the volume of the

test sample.

Figure (3.7) presents experimental and numerical results for

each one of the concrete mixes. Two numerical curves are traced,

one obtained with the original model of Lee, Fenves (1998, 2001)

with a constant dilatancy parameter equal to αp = 0.2, and the

other calculated with the proposed model. In Fig.(3.7), ε1 and σ1

are the strain and stress in the load direction respectively, and ε2

is the transverse strain.

It can be observed, in Fig.(3.7), that a fine agreement between

numerical and experimental results is obtained with the proposed

model. Particularly, it should be noticed that the lateral expan-

sion, represented by ε2, is well traced by the proposed model while

the constant dilatancy control model underestimates the transverse

strains. The main differences appear in the case of high strength

concrete (fc = 80 MPa), where the experimental data presents a

snap-back behavior after the peak load, which is not manifested in

the simulation. However, considering the complexity of the control
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(a) H35 (b) H45

(c) H60 (d) H80

Figure 3.7: σ1 − ε1 and σ1 − ε2 curves for different concrete mixes.
Experimental results by Osorio et al. (2017)

of the test, particularly in the case of high strength specimens as

reported in Osorio et al. (2017), this difference is considered accept-

able.

3.4.2 Confined concrete with different confining

materials

The simulation of six passively confined concrete specimens is pre-

sented in this section. The transverse reinforcement consists of

glass and carbon FRP jackets using 1, 3 or 6 plies of each material.

Jackets are simulated in this validation by means of its transverse

reinforcement ratios in the direction transverse to the load applica-
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tion, as can be seen in the equilibrium equation (3.33).

σtr + ρrσr = 0 (3.33)

where σtr is the transverse stress in concrete, ρr is the rein-

forcement ratio, which, in the case of jackets, is calculated as its

thickness divided by the radius of the concrete specimen. σr is the

stress in the reinforcement. Perfect bond is assumed between the

jacket and the concrete mass.

Material properties of the GFRP and CFRP reported in Aire

(2002) are summarized in Table 3.1.

e [mm] E [GPa] fu [GPa]
Glass 0.149 65 3.0
Carbon 0.117 240 3.9

Table 3.1: FRP properties of 1 ply

The concrete properties used in the six tests were determined

from Eqs. (3.30) and (3.31) using fc = 42 MPa and ε0 = 0.00239.

The deformation modulus of concrete is taken as E = 25 GPa, as

reported in Aire (2002). The characteristic length for the CFRP

specimens is lch = 20 mm, while in the case of GFRP lch = 10 mm

is used. Both values correspond to the base length of the strain

gauges used to measure transverse strains in the physical test.

Fig.(3.8) compares the numerical and experimental results, ob-

tained for each confinement material and for the different amounts

of confining reinforcement.

It can be seen that the enhancement in both strength and duc-

tility of the passively confined specimens is well captured. In the

case of GFRP jackets, a 5-8 % loss of strength is predicted by the

model. The main differences appear in the case of CFRP with 3

layers of reinforcement, where transverse strain is overestimated.

The confined strength is adequately captured in all the cases.
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(a) GFRP

(b) CFRP

Figure 3.8: σ1− ε1 and σ1− ε2 curves for (a) Glass and (b) Carbon
FRP jackets. Experimental results by Aire (2002)

3.4.3 Shear tests

In this section, fifteen reinforced concrete panels subjected to pure

in-plane shear load, with different amounts of reinforcement and

concrete strengths, are numerically reproduced. These panels be-

long to a larger experimental campaign Vecchio, Collins (1982) that

included specimens under combined axial and shear loads. Here,

only the pure shear tests are considered to study the effect of dila-

tancy in the predicted shear capacity of the proposed model.

The longitudinal and transverse reinforcement are included by

means of the corresponding reinforcement ratios, similarly as in

Eq.(3.33). The transverse reinforcement ratio is considered as elastic-
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perfectly plastic and perfectly bonded to the concrete mass. Ratios

and yield stress of the reinforcement steel as well as the concrete

properties are summarized in Table 3.2.

Panel fc[MPa] ε0 fyl[MPa] ρl fyt[MPa] ρt
PV3 26.6 0.0023 662 0.00483 662 0.00483
PV4 26.6 0.0025 242 0.01056 242 0.01056
PV6 29.8 0.0025 266 0.01785 266 0.01785
PV9 11.6 0.0028 455 0.01785 455 0.01785
PV10 14.5 0.0027 276 0.01785 276 0.00999
PV11 15.6 0.0026 235 0.01785 235 0.01306
PV12 16 0.0025 469 0.01785 269 0.00446
PV13 18.2 0.0027 248 0.01785 - 0
PV16 21.7 0.002 255 0.0074 255 0.0074
PV18 19.5 0.0022 431 0.01785 412 0.00315
PV19 19 0.00215 458 0.01785 299 0.00713
PV20 19.6 0.0018 460 0.01785 297 0.00885
PV21 19.5 0.0018 458 0.01785 302 0.01296
PV22 19.6 0.002 458 0.01785 420 0.01524
PV27 20.5 0.0019 442 0.01785 442 0.01785

Table 3.2: Panels reinforcement ratios and material properties

The material parameters are calculated using Eqs.(3.30) and

(3.31). In panels PV3, 4, 6, 9, 11 and 16, the tensile strength is

determined using the following expression suggested in the original

publication Vecchio, Collins (1982)

ft = 0.33
√
fc (3.34)

The characteristic length used in the tests is lch = 140 mm,

which corresponds to the cubic root of the measured volume.

Figures (3.9) to (3.23) present the results of the fifteen panels.

For each panel, three curves are shown in each figure: the shear

stress-strain τ − γ, the normalized principal compressive stress-

strain σd/fc − εd/ε0 and the normalized principal tensile stress-

strain σdt/ft−εdt. Numerical results are obtained with the proposed

model and with the original model by Lee, Fenves (1998, 2001) with

a constant dilatancy parameter equal to αp = 0.2.
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(a) Shear (b) Principal compression

(c) Principal tension

Figure 3.9: Stress-strain plots of panel PV4. Experimental results
by Vecchio, Collins (1982)

(a) Shear (b) Principal compression

(c) Principal tension

Figure 3.10: Stress-strain plots of panel PV13. Experimental re-
sults by Vecchio, Collins (1982)
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(a) Shear (b) Principal compression

(c) Principal tension

Figure 3.11: Stress-strain plots of panel PV16. Experimental re-
sults by Vecchio, Collins (1982)

(a) Shear (b) Principal compression

(c) Principal tension

Figure 3.12: Stress-strain plots of panel PV18. Experimental re-
sults by Vecchio, Collins (1982)
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(a) Shear (b) Principal compression

(c) Principal tension

Figure 3.13: Stress-strain plots of panel PV22. Experimental re-
sults by Vecchio, Collins (1982)

(a) Shear (b) Principal compression

(c) Principal tension

Figure 3.14: Stress-strain plots of panel PV3. Experimental results
by Vecchio, Collins (1982)
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(a) Shear (b) Principal compression

(c) Principal tension

Figure 3.15: Stress-strain plots of panel PV6. Experimental results
by Vecchio, Collins (1982)

(a) Shear (b) Principal compression

(c) Principal tension

Figure 3.16: Stress-strain plots of panel PV9. Experimental results
by Vecchio, Collins (1982)
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(a) Shear (b) Principal compression

(c) Principal tension

Figure 3.17: Stress-strain plots of panel PV10. Experimental re-
sults by Vecchio, Collins (1982)

(a) Shear (b) Principal compression

(c) Principal tension

Figure 3.18: Stress-strain plots of panel PV11. Experimental re-
sults by Vecchio, Collins (1982)
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(a) Shear (b) Principal compression

(c) Principal tension

Figure 3.19: Stress-strain plots of panel PV12. Experimental re-
sults by Vecchio, Collins (1982)

(a) Shear (b) Principal compression

(c) Principal tension

Figure 3.20: Stress-strain plots of panel PV19. Experimental re-
sults by Vecchio, Collins (1982)
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(a) Shear (b) Principal compression

(c) Principal tension

Figure 3.21: Stress-strain plots of panel PV20. Experimental re-
sults by Vecchio, Collins (1982)

(a) Shear (b) Principal compression

(c) Principal tension

Figure 3.22: Stress-strain plots of panel PV21. Experimental re-
sults by Vecchio, Collins (1982)
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(a) Shear (b) Principal compression

(c) Principal tension

Figure 3.23: Stress-strain plots of panel PV27. Experimental re-
sults by Vecchio, Collins (1982)

As can be seen in Figs.(3.9-3.23), the shear response of the pan-

els is well estimated by the present model. An improvement with

regard to the constant dilatancy model is appreciated as the original

constant dilatancy model tends to predict larger material softening

and less shear capacity, in general.

The studied panels exhibit different failure modes; including

specimens showing yielding of both longitudinal and transverse re-

inforcement, yielding of transverse reinforcement prior to concrete

failure and concrete failure without yielding of the reinforcements.

The model shows to be able to capture different modes of failure

adequately without a recalibration of the dilatancy or the fracture

energy parameters.

3.5 Sensitivity analysis

The evolution of the dilatancy parameter is controlled by means

of two material properties as presented in Eq. (3.28). To study

68 M.Poliotti



the influence of these two parameters in the behavior of concrete, a

sensitivity analysis is carried out in the following. Three numerical

tests are performed with different values of both ψmax and φmax.

The first test is a uniaxial cyclic compressive test. Material

properties remain the same for all specimens. Three different values

(10◦, 30◦, 40◦), of the maximum dilatancy angle are studied. Also

three different values of the maximum internal friction angle are

used (30◦,50◦, 70◦). Combinations of these values give a total of

eight tests, as the case where φmax is smaller than ψmax is discarded.

In Figs.(3.24) to (3.26) stress and both axial and transverse strains

curves are presented.

Figure 3.24: σ1 − ε1 and σ1 − ε2 for ψmax = 10◦

Figure 3.25: σ1 − ε1 and σ1 − ε2 for ψmax = 30◦

Results show that a greater dilatancy angle produces larger

transverse strains. When it comes to the internal friction angle,
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Figure 3.26: σ1 − ε1 and σ1 − ε2 for ψmax = 40◦

larger values of φmax delays the onset of the dilatancy phenomenon

producing smaller values of the transverse strain.

The second test involves the uniaxial compressive test of pas-

sively confined concrete. Steel is used as confinement material,

with a transverse reinforcement ratio of 1% and a yield stress of

400MPa, and the same combinations of ψmax and φmax are used.

Figure 3.27: σ1 − ε1 and σ1 − ε2 curves for different values of
(ψmax,φmax)

Figure (3.27) presents the results obtained with the present

model. Consequently with the first test, a greater dilatancy an-

gle produces an increase in the concrete strength. Also, as φmax
becomes greater, a slower increase in the concrete strength is ob-

tained.
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Finally, to study the influence of these two parameters in the

concrete shear strength, a reinforced concrete panel is analyzed

modifying ψmax and φmax. The shear stress-strain curve and the

principal compressive stress versus the principal tensile strains curve

are traced in Fig.(3.28).

Figure 3.28: τ − γ and σd − εdt curves for different values of
(ψmax,φmax)

It can be seen that the lowest value of the dilatancy angle,

ψmax = 10◦, predicts considerably lower values of the shear strength.

However, small differences are observed for ψmax between 30◦ and

40◦. The influence of the maximum internal friction angle is rather

small but it also demonstrates that the greater φmax is taken the

later the onset of dilatancy appears.

3.6 Closure

A constitutive plastic-damage model for concrete with evolutive

dilatancy is proposed. The model is based on the original model

of Lee, Fenves (1998, 2001) which in turns relies on the model of

Lubliner et al. (1989). The original model has a constant dilatancy

parameter. In this chapter, it is demonstrated that a constant value

of the dilatancy parameter is not adequate to accurately predict

the free expansion of concrete. Consequently, the original model

has difficulties to trace the response under passive confinement or

shear stresses.

A new constitutive plastic-damage model is here developed in-

corporating the variability of the dilatancy and friction angle pa-
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rameters as explicit functions of the plastic-damage and stress states.

This function produces the maximum dilatancy for uniaxial com-

pression and pure shear states. The resulting dilatancy is automat-

ically reduced when the confinement stresses increase.

The evolution of the dilatancy is controlled by two material

properties, the maximum dilatancy and internal friction angles.

These properties may be obtained through tests where different

confinement stresses are considered. In this research, values of 32◦

for the maximum dilatancy angle and 65◦ for the maximum inner

friction angle are proposed. These values are used in the validation

of the proposed model obtaining good agreement with experimental

results.

The validation of the proposed model is carried out by simu-

lating several experimental campaigns producing different modes

of failure and phenomenological responses of concrete. Ordinary to

high strength concrete samples were considered along the validation

tests, ranging from 11 to 80 MPa.

The model shows to be capable of accurately trace the volu-

metric expansion of concrete in uniaxial compressive tests includ-

ing softening and confinement. It is also shown to be capable of

capturing the enhancement in strength and ductility when passive

confinement is applied by means of different confining materials.

Good estimation of concrete shear strength and softening behavior

is obtained. The model response is objective on different modes of

failure with the same material parameters.

The adequate control of the dilatant behavior of concrete is

shown to be of paramount importance as it controls the volumetric

expansion and, consequently, affects the strength and ductility of

confined concrete as well as the shear strength and softening.

The proposed dilatancy model contributes to extend the capa-

bilities of the plastic-damage model in the simulation of reinforced

concrete elements and structures in a consistent manner for differ-

ent types of load and failure modes.
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Chapter 4

B-spline sectional model for

general 3D effects in

reinforced concrete

elements

In this chapter, an efficient sectional model for the nonlinear analy-

sis of reinforced concrete elements sensible to 3D stress-components

effects is presented. The classic plane-sections kinematic hypothe-

sis is enhanced with a warping-distortion displacement field, which

enables the model to reproduce the interaction between normal

and tangential forces. The complementary field is obtained explic-

itly considering the inter-fiber equilibrium. This is solved using

b-splines interpolation on the cross-section domain. The proposed

method significantly reduces the number of unknowns compared

with a finite element solution. The model is able to reproduce the

interaction of longitudinal and transverse reinforcement with the

concrete matrix. The validation shows that the presented model

reproduces accurately complex failure modes as pure shear and cou-

pling between bending and torsion. Further, as the transverse re-

inforcement is considered explicitly, confinement can be simulated

in an objective manner. The presented model is an efficient tool

for nonlinear analysis of reinforced concrete sections under general
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loading.

4.1 Introduction

Structural elements where one dimension is much larger than the

others can be assimilated as linear elements, this is the case of

most slender beams and columns. The overall element behavior

can be obtained by integration of the sectional response on each

cross section along the elements axis Carol, Murcia (1989); Mari

(1984); Spacone et al. (1996a). This type of elements allows a

simple representation of complex structural systems and lead to

efficient pre- and post-processing compared with the alternative

solid three-dimensional models. Further, 1D elements are closer

to the engineering practice, as most codes and provisions EN CEN

(2005); CEB-FIB (2010); ACI Committee 318 (2014) are orientated

to the design or assessment of one dimensional elements as beams

or columns, and its cross section domain. Guidelines on the design

of structural elements under 3D states are scant.

The accuracy of 1D elements depends on the proper represen-

tation of the behaviour of each cross section. Traditionally, the

plane-section kinematic hypothesis of Navier-Bernoulli is made in

conjunction with uniaxial fiber discretization of the cross-section

Taucer et al. (1991); Spacone et al. (1996a,b). This enables the

model to efficiently reproduce the interaction between bending mo-

ments and the axial load. Robust beam models were developed fol-

lowing this approach Kang, Scordelis (1980); Mari (1984); Taucer

et al. (1991); Spacone et al. (1996a,b), and were applied to the anal-

ysis of reinforced concrete structures where the failure was princi-

pally due to axial loads or bending moments.

The main shortcoming of this type of models is that the in-

teraction between normal (axial load and bending moments) and

tangential (shear loads and torsion) forces is neglected Ranzo, Pe-

trangeli (1998); Ceresa et al. (2007); Bairán, Maŕı (2007b). This

causes a loss of accuracy in elements with high shear forces or tor-

sional moment, especially if anisotropic materials are involved. It
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has also been shown in Balduzzi et al. (2019); Karttunen, Hertzen

von (2016) that anisotropy leads to an explicit dependency of axial

stresses on the shear force. In particular, in this chapter the appli-

cations are focused on the problem of cracked-induced anisotropy of

concrete, which controls the interaction between normal and shear

stresses, as described in Onsongo (1978); Hsu (1984); Park, Paulay

(1975); Bairán, Maŕı (2007b).

Moreover, classic fiber-beam models only consider longitudinal

fibers. In typical reinforced concrete sections they represent the

concrete mass and longitudinal reinforcements, and do not consider

transverse elements, as stirrups or jackets. These transverse ele-

ments provide different shear strength mechanisms. Further, they

constrain the concrete transverse expansion in compressive cases,

providing a confining pressure, which increases both the strength

and ductility of concrete. In classic-fiber-beam models Taucer et al.

(1991); Spacone et al. (1996a,b), the transverse reinforcements is ac-

counted for at the material level by means of reinforcement ratios

in empirically based 1D constitutive laws.

The need of reproducing different failure modes, as shear or

torsional failures, as well as capturing the role of transverse re-

inforcements, became of special interest the last years with the

assessment and reinforcement of existing structures and with the

increasing demand of nonlinear analysis by the new codes and pro-

visions Ceresa et al. (2007). This motivated several researchers to

study the coupling between normal and tangential forces and to de-

velop models that take into account different degrees of interaction,

Ceresa et al. (2007); Vecchio, Collins (1988); Bentz (2000); Bairán,

Maŕı (2006a,b, 2007a); Mohr et al. (2010); Le Corvec (2012); Di Re

(2017); Kagermanov, Ceresa (2018).

In this chapter, the sectional model proposed by Bairán, Maŕı

(2006a,b, 2007a) is modified using a novel numerical technique,

which substantially improves the computational performance and

requires less number of internal degrees of freedom for a similar

accuracy. Here, a complementary displacement field which en-

ables the model to reproduce the total interaction, is obtained as
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a weighted sum of b-splines functions defined in the cross-section

domain. In this way, the number of degrees of freedom involved

is significantly reduced in comparison with a finite element (FE )

solution. The presented model is then validated through a series of

tests cases where the capabilities to reproduce tangential forces are

shown. Further, the model is applied to study confinement in rein-

forced concrete sections where the interaction between concrete and

transverse reinforcements is essential. Finally, main conclusions are

drawn.

4.2 Multiaxial interaction in frame ele-

ments

The robustness of fiber-beam elements, and the increasing need of

reproducing complex failure modes that involve the coupling be-

tween normal and tangential internal forces, have motivated re-

searchers to extend the classical fiber-beam models to include dif-

ferent degrees of interaction between internal forces. Extended state

of the art reviews can be found in Ceresa et al. (2007) and Bairán,

Maŕı (2007b). Here, only models based on inter-fiber equilibrium

are briefly reviewed as they showed to be able to accurately repro-

duce different failure modes.

Vecchio, Collins (1988) developed a dual-section analysis for the

case of 2D frame elements. The coupling between longitudinal and

transverse stresses is obtained by explicitly considering the equi-

librium between fibers, which involves the analysis of two adjacent

cross-sections to approximate the longitudinal stress gradient. The

dual-section model is a non local model, as it needs information

from adjacent points, so an ad-hoc element formulation is needed.

To overcome this problem, Bentz (2000) introduced the Longitu-

dinal Stiffness Method, where the longitudinal stress gradient was

calculated locally considering equilibrium equations at the beam

level. This method is a local sectional model, but only for 2D ele-

ments.
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Later, Bairán, Maŕı (2006a,b, 2007a) presented a sectional model

called TINSA (Total Interaction Nonlinear Sectional Analysis). It

is based on the enhancement of the kinematic field of the Navier-

Bernoulli theory by means of a warping-distortion displacement

field which is obtained by solving the inter-fiber equilibrium in the

section domain with a 2D FE model. The warping-distortion field

considered is independent of the x -coordinate neglecting its varia-

tion along the beam length, this leads to a sectional model that is

completely independent of the frame formulation, thus there is no

need for additional degrees of freedom at the beam level. A conse-

quence of this assumption is that the effect of non-uniform warping

and shear lag effects are neglected, but this is relevant in thin-

walled sections rather than in compact cross sections as is the case

of most reinforced concrete beams and columns. This formulation

proved to capture the interaction between the six possible internal

forces in sections of any shape and takes into account both longitu-

dinal and transverse reinforcements explicitly. Its main drawback is

the higher computational demand compared with traditional beam

models.

Figure 4.1: Coordinate system

Mohr et al. (2010), presented a modification of the TINSA

model for the case of 2D frames. The complementary displace-

ment field is calculated as a weighted sum of Taylor’s polynomials

defined in the section height. This method avoids the FE solution,
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reducing the computational cost of the original model. The sec-

tional model was implemented on a flexibility-based frame element

and tested in beams with bending moment and shear. As it was

developed for 2D frames, no torsion or bidirectional shear flows can

be analysed with this model.

Le Corvec (2012) and Di Re (2017) presented 3D frame elements

based also on the displacement decomposition. As an additional hy-

pothesis to the original formulation, they presented a complemen-

tary displacement field, which only produces warping neglecting

the distortion of the cross-section. The out of plane displacement

is obtained by interpolation over the section domain but also on the

beam length, this allows the model to capture non uniform warping

and shear lag effects. As interpolation function over the cross sec-

tion domain, Le Corvec (2012) used Lagrange’s polynomials, while

Di Re (2017) included Hermite’s polynomials. Both models were

implemented in 3D force-based elements based on the Hu-Washizu

variational principle. These models can capture the interaction of

the internal forces in a tri-dimensional element, but the hypothe-

sis of considering a complementary field with only warping has the

drawback that distortion of the section is not captured, so trans-

verse reinforcement is not considered explicitly. Besides, as the

complementary field is interpolated on the beam length, a special

frame formulation is developed with more degrees of freedom at the

beam level that have to be considered or properly condensed.

Kagermanov, Ceresa (2018), presented a 3D frame element based

on the Timoshenko beam theory that accounts for warping effects

with the Saint-Venant theory of torsion. There, the warping sec-

tional function was obtained by means of solving the boundary

value problem with a FE sectional model. The model is able to

capture interaction between the internal forces, but it relies on a

fixed strain pattern so it neglects inter-fiber equilibrium.

Based on the previous analysis, the following aspects on the en-

hanced 1D elements for non-linear concrete analysis are still open;

their robustness and computational demand, their ability to trace

different failure modes, such as shear and confinement failures, in
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an objective manner for different geometries and reinforcement ar-

rangements. This motivates the development of a new sectional

model.

4.3 Proposed model formulation

4.3.1 Basic features

In the following, the sectional model proposed by Bairán, Maŕı

(2006a,b, 2007a) is modified by the introduction of a novel numer-

ical technique in order to reduce its computational demand. The

problem is focused on a frame element where the x coordinate co-

incides with the frame axis and the cross-section is defined on the

y-z plane. The proposed model neglects the boundary effects, so

the hypothesis that the domain is far enough of the discontinuity

regions is made. The main hypothesis is the decomposition of the

displacement field into two parts: a displacement field that follows

the plane-sections kinematic hypothesis of the Navier-Bernoulli the-

ory (ups), and a complementary field that captures the sections

distortion and warping (uw). Thus, the total displacement field is

obtained as follows:

u = ups + uw =


ups
vps
wps

+


uw
vw
ww

 (4.1)

This decomposition can be done straightforwardly in strains,

as small strains are assumed, see Eq.(4.2). Regarding stresses, in

the case of nonlinear materials, the same decomposition is valid

in an incremental format, and after the integration along the load

steps the decomposition can be done without losing generality as

in Eq.(4.3).

ε = εps + εw (4.2)

σ = σps + σw (4.3)
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As it was previously stated, to obtain the complementary field,

the inter-fiber equilibrium is considered explicitly. To do so, first

the 3D equilibrium equation of a beam is posed in its weak form, as

in Eq.(4.4). Then, the equilibrium residual of a differential element

R(x) can be identified, see Eq.(4.5)∫∫∫
Ω

div (σ) δu dΩ = 0 (4.4)

intended∫ L

0

(∫∫
A

div (σ) δu dA

)
dx =

∫ L

0

R (x) dx = 0 (4.5)

The projection of the residual into both displacements fields

allows the identification of two equilibrium levels: the beam level

represented by the projection of the residual in the plane-section

displacement field Rps, and the sectional level which implies the

projection of the residual in the complementary field Rw.

Rps (x) =

∫∫
A

div (σ) δups dA = 0 (4.6)

Rw (x) =

∫∫
A

div (σ) δuw dA = 0 (4.7)

In order to solve the system in Eqs.(4.6) and (4.7), first Rw = 0

is posed at each cross-section of the beam, and then the beam

equilibrium Rps = 0 is solved. Solving the equilibrium in this way,

leads to the full 3D stress tensor, taking into account explicitly the

inter-fiber equilibrium.

The main unknown of the sectional model is the warping-distortion

displacement field (uw). To assure the uniqueness of the solution,

it is established that the two types of displacement fields should

be orthogonal to each other Bairán, Maŕı (2006a). In order to

approximate the complementary field, an additional hypothesis is

made; namely, the warping-distortion field is independent of the

x -coordinate neglecting its variation along the beam length, see

Eq.(4.8).

80 M.Poliotti



uw = uw (y, z) =


uw(y, z)

vw(y, z)

ww(y, z)

 (4.8)

This enables the definition of a cross-sectional model that can

be used as a response model of any standard 1D frame formulation.

The model solves the sectional equilibrium, Eq.(4.7), and relates

the generalized beam strains with the internal forces, or generalized

stresses, see Eq.(4.9).

εs =



ε0

γy
γz
φx
φy
φz


⇔ ss =



N

Vy
Vz
Tx
My

Mz


(4.9)

Once the sectional equilibrium is achieved, the full stress tensor

is obtained on each material point of the cross-section. To obtain

the internal forces ss, the integration of stresses on the section do-

main is made considering the virtual work principle. This definition

assures that the obtained generalized stresses are energetically con-

jugated to the generalized strains, see Eq.(4.10).

ss =

∫∫
A

BT
psσdA+ ΩTΞTA∗T

∫∫
A

BT
wσdA (4.10)

Where Bps and Bw are strain interpolation matrix that relate

the generalized beam strains with the strains on each material point

of the section, see Eq.(4.11). A∗, Ξ and Ω are transformation ma-

trices that stands for internal equilibrium conditions, condensation

of redundant degrees of freedom and definition of generalized shear

strains, respectively. A detailed derivation of the matrices for the

general case of non-isotropic materials can be found in Bairán, Maŕı

(2006a, 2007a).
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εps = Bpsεs

εw = Bwεs
(4.11)

The use of the sectional model as a response model on any point

of a beam needs the definition of a sectional stiffness matrix Ks,

which is computed as in Eq.(4.12). Where D is a general material

constitutive matrix.

Ks =

∫∫
A

BT
psDBpsdA+

(∫∫
A

BT
psDBwdA

)
AΞΩ

+ ΩTΞTA∗T
(∫∫

A

BT
wDBpsdA

)
+ ΩTΞTA∗T

(∫∫
A

BT
wDBwdA

)
AΞΩ

(4.12)

4.3.2 Numerical solution

Solving the sectional problem needs a proper space discretization.

The original model proposed by Bairán, Maŕı (2006a), solved the

problem using a standard 2D FE model, where bidimensional el-

ements represented the solid matrix, linear elements represented

transverse reinforcements and point element represented longitu-

dinal reinforcements. The FE solution involves a high number of

degrees of freedom (DOF) to solve the sectional problem in most

applications, increasing the computational demand. A different ap-

proach is proposed here to reduce the DOF involved in the solution.

The warping-distortion complementary field in Eq.(4.8) is ap-

proximated by a weighted sum of predefined functions, see Eq.(4.13).

This reduces significantly the number of degrees of freedom involved

to solve the sectional problem compared with the FE solution.

uw =


uw
vw
ww

 =


∑
aiFi(y, z)∑
biFi(y, z)∑
ciFi(y, z)

 (4.13)

The weight factors (ai,bi,ci) represent the unknowns of the prob-
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lem. The most classical interpolation functions relies on Lagrange’s

functions. For a given interpolation grid, the interpolation is per-

formed first independently on each geometric coordinate, then the

surface in the section domain is obtained by the tensor product.

This method produces one function for each point of the interpola-

tion grid. However, when the number of points of the interpolation

grid increases, the order of the Lagrange polynomial increases as

well. This may lead to high order polynomials in practical cases, in-

troducing undesired oscillations augmenting the interpolation error

locally.

In order to overcome this issue, piecewise polynomials are used

which allows controlling the order of the polynomial in spite the

number of grid points. A family of these polynomials are known as

splines, they account for continuity conditions in the boundary of

the intervals defined by the interpolation grid, and has proven to

be efficient and robust Farin (1999). Thanks to that, their use in

FE element frameworks has increased in the last years Wei et al.

(2017); Hughes et al. (2014); Höllig, Hörner (2015).

B-splines (basis splines) are constructed from a knot vector

which contains their coordinates in increasing order, Z = {ζ1, ζ2, . . . , ζn+p+1},
where p is the polynomial order and n + 1 is the number of basis

functions. In Eq.(4.14) the recursive form proposed by De Boor

(2001) is formulated for the i -th basis function.

Ni,p(ζ) =
ζ − ζi
ζi+p − ζi

Ni,p−1(ζ) +
ζi+p+1 − ζ
ζi+p+1 − ζi+1

Ni+1,p−1(ζ)

Ni,0 =

{
1 if ζi ≤ ζ < ζi+1

0 otherwise

(4.14)

If the value of a function in the boundaries of the knot vector is

to be interpolated, an open knot vector with multiplicity of the first

and last value is needed. In this work, cubic polynomials are used.

Then, for an interpolation grid of n non-repeated elements n + 2

basis functions can be constructed on each coordinate. Further,

the interpolation surface is obtained by the tensor product, see
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Eq.(4.15).

Fij,pq(y, z) = PijNi,p(y)Mj,q(z) (4.15)

For a given cross-section geometry, a number of points has to

be selected in order to build the interpolation grid. The b-spline

functions are constructed using Eq.(4.14). The set of b-spline func-

tions constitutes the shape functions defined over the cross section.

Fig.(4.2) shows the grid point selected for a square section and one

of the basis functions used in the interpolation. This process is

done for each component of the complementary displacement field.

(a) (b)

Figure 4.2: Bspline Interpolation a) Interpolation grid, b) Basis
function

The midpoint integration rule is used to solve the sectional prob-

lem as in classical fiber-beam models. Each integration point rep-

resents a material point or a fiber. The solid part of the cross

section is represented by fibers with 3D constitutive laws and are

defined by their geometrical coordinates (y, z) and their projected

area on the section. The transverse and longitudinal reinforcements

are represented by fibers with uniaxial constitutive laws. Further-

more, fibers are defined by their position, their projected area in

the cross-section plane, and by their inclination with respect to the

beam axis. This allows the model to include inclined transverse or

longitudinal bars indistinctly.
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4.3.3 Sectional Algorithm

The structure of the algorithm that computes the sectional state

is shown in Fig.(4.3). The value of the force tolerance used in all

numerical cases is equal (in Newtons) to tol = 0.001Ac, where Ac
is the area of the cross-section.

Figure 4.3: Sectional model flow chart
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4.4 Validation

In order to verify the accuracy and test the capabilities of the pro-

posed model, two validation sets are presented in the following. The

first validation set involves three sections under tangential forces,

namely: a triangular elastic section in pure torsion, a reinforced

concrete section tested in pure shear and a reinforced concrete box

section under combined bending and torsion moments. These three

cases are numerically simulated with the proposed model. The FE

solution with the TINSA model Bairán, Maŕı (2006a) is also pre-

sented. In the case of the elastic triangle in torsion, the obtained

response is compared against a theoretical result. In both rein-

forced concrete sections, experimental results available in literature

are contrasted with the numerical simulations.

The second set of validation comprises four sections under axial

loading with different confining materials and transverse reinforce-

ment arrangements. First, a reinforced concrete circular section

winch is transversally reinforced by a steel spiral is tested. Then,

a rectangular section reinforced by transverse stirrups is simulated.

Further, a circular section wrapped with a CFRP jacket is simu-

lated. Finally, a rectangular concrete filled tube is analyzed. The

results obtained with the proposed model are compared against

experimental data available in literature.

In the six cases concerning reinforced concrete sections, per-

fect bond is assumed. The constitutive law for the steel fibers is

a 1D elastic-plastic model with kinematic hardening. Concerning

the constitutive modelling of concrete, it is worth mentioning that

the presented sectional model can be used with any tri-dimensional

constitutive law. If different failures modes are to be reproduced,

the constitutive model has to be able to trace a wide range of load-

ing conditions namely shear stresses and high confinement. To this

end, the plastic-damage model with evolutive dilatancy introduced

in the previous chapter is used. The evolutive dilatancy parame-

ter presented there, proved to be able to reproduce shear softening

and passive confinement with different confining materials in an
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accurate manner without recalibration of dilatancy parameters.

The material properties are obtained from the experimental re-

ported data on each case. The concrete material parameters are

estimated by means of Eqs.(3.30) to (3.32).

4.4.1 Sections under shear or torsion

Elastic triangle under pure torsion

An equilateral triangular elastic section is tested under pure torsion,

whose closed-form analytical solution was obtained in Timoshenko,

Goodier (1972). The section height is 200 mm, four points are

selected as interpolation grid to construct the b-splines leading to 83

degrees of freedom, and 219 isotropic elastic fibers with the material

properties described in Table 4.1 are used. See Fig.(4.4).

(a) (b)

Figure 4.4: Triangular section: a) Interpolation grid, b) Fiber dis-
tribution.

Table 4.1: Material properties validation case 4.4.1

E [MPa] G [MPa] ν
30000 12500 0.2

A torsional curvature of φx = 1e−6 rad/mm is applied on the

centroid of the section. It can be seen, in Fig.(4.5), that by means
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of the warping-distortion displacement field, the tangential stresses

and the bi-dimensional shear stress flow are obtained and agree

with the theoretical stress pattern.

(a) (b)

Figure 4.5: Triangle under pure torsion: a) τxz stresses [MPA], b)
Shear stress flow.

The maximum tangential stresses as well as the torsional mo-

ment are obtained with the presented model and with the model

FE TINSA Bairán, Maŕı (2006b). Besides, four additional b-spline

models are analyzed varying first the number of fibers and then the

number of degrees of freedom involved in the solution. Table 4.2

presents numerical results compared against the theoretical solu-

tion obtained by Timoshenko, Goodier (1972). The computational

time of each numerical model is addressed as well.

A good agreement with the theoretical solution is obtained re-

garding the predicted torsional moment. Concerning the maximum

stress value all the numerical solutions predict a smaller value than

the closed-form solution. This difference can be explained as the

maximum value on the theoretical solution is obtained exactly on

the edge of the section, while the numerical solutions calculate

stresses on discrete locations which are inside the cross-section.

The stress field presented by Timoshenko, Goodier (1972) varies

quadratically with the y coordinate, which explains that small dis-

tances from the edge produce significant variations on the stresses.

In Table 4.2, the error calculated against the theoretical stress value
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Table 4.2: Triangular Section in Torsion

Analyticala FE TINSA B-Splines B-Splines B-Splines B-Splines B-Splines

DOF 767 83 83 83 56 134
Fibers 219 219 1007 91 219 219

Tx [KNm] 0.770 0.764 0.759 0.767 0.731 0.758 0.764
Error [%] 0.78 1.43 0.39 5.06 1.56 0.78

τmaxxz [MPa] 1.250 1.128 1.129 1.192 1.044 1.131 1.153
Error b [%] 9.76 9.68 4.64 16.5 9.52 7.76
Error c [%] 0.18 0.27 0.04 0.32 0.05 0.49
Time [sec] 10.7 0.37 1.54 0.17 0.31 1.02

a Theoretical solution by Timoshenko, Goodier (1972)
b Error with respect to the maximum theoretical stress value.
c Error with respect to the theoretical stress value on the same location of the fiber.

on the exact same location of the fiber shows that the proposed

model captures the stress field in a good manner.

In this case, it can be seen that the most effective way to improve

the numerical solution is increasing the number of fibers. This

is due to the fact that the displacement field on the theoretical

solution Timoshenko, Goodier (1972) has a cubic shape, which can

be represented with a reduced number of b-spline functions.

A significant reduction in the number of internal degrees of free-

dom used can be seen in comparison with the FE solution using the

TINSA model. However, results remain on the same level of accu-

racy. The reduction is translated to the computational time, the

b-splines model is faster than the FE model in identical computa-

tional conditions.

Reinforced concrete section in pure shear

In the following, the response of a reinforced concrete section tested

by Kani (1977) under pure shear loading, is simulated with the pro-

posed model. The analyzed cross-section is situated on the inflec-

tion point of a beam in order to reproduce the pure shear load. The

geometry and reinforcement arrangement can be seen in Fig.(4.6a).

In addition, the reported values of the material properties are indi-

cated in Table (4.3).
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Table 4.3: Material properties validation case 4.4.1

Concrete

fc 28.2 MPa
ft 1.75 MPa
Ec 25600 MPa
ν 0.2

Longitudinal Steel
fy 442 MPa
Es 200000 MPa

Transverse Steel
fy 400 MPa
Es 200000 MPa

(a) (b) (c)

Figure 4.6: Specimen: a) Cross-section, b) Interpolation grid, c)
Fiber distribution.

The interpolation grid consist on 9 points, 180 material points

were used consisting on 140 concrete fibers, 32 fibers for the stirrups

and 8 for the longitudinal reinforcement, see Fig.(4.6b) and (4.6c).

The simulation is performed applying shear strains to the section

instead of shear loads in order to capture eventual softening. A

total of 70 steps are used to apply the shear strains.

The numerical shear force-strain curve obtained with the pre-

sented model is compared against the experimental response in

Fig.(4.7). Further, the numerical response obtained with the model

FE TINSA Bairán, Maŕı (2006a) is plotted. Good prediction of the

ultimate load was obtained with the presented model. Small dif-

ferences between both numerical responses exists even though the

number of degrees of freedom is appreciably less in the proposed

model (83 DOF) than in the FE TINSA model with the same num-
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ber of fibers (503 DOF). The computational time is reduced nearly

3 times using the B-spline model compared to the FE solution in

similar computational conditions. It is worth to mention that the

computational time depends not only on the number of DOF but

also on the number of material points or fibers.

Figure 4.7: Shear force-strain curve. Experimental results by Kani
(1977)

Fig.(4.8) shows part of the information obtained with the pre-

sented model. In particular, Fig.(4.8a) presents the stress distri-

bution on the stirrups at a load level where the vertical branches

of the stirrups begin to yield. On Fig.(4.8b) the tangential stress

τxz pattern is shown. It can be seen that it varies along the verti-

cal axis and on the horizontal one, stresses concentrate where the

theoretical compressive strut intersects the section.

Reinforced concrete section under combined torsion and

bending moments

The response of a reinforced concrete section under the combined

action of torsion and bending moments tested by Onsongo (1978)

is simulated using the proposed approach. The selected specimen,

named TBU2, was part of a larger experimental campaign where

different bending to torsion ratios were studied. The main features
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(a) σst [MPa] (b) τxz [MPa]

Figure 4.8: a) Stirrups stresses, b) Concrete tangential stresses

of the studied cross-section can be seen in Fig.(4.9a), the material

properties are summarized in Table(4.4).

(a) (b) (c)

Figure 4.9: Specimen: a) Cross-section, b) Interpolation grid, c)
Fiber distribution.

The interpolation grid can be seen in Fig.(4.9b). The fibers dis-

tribution is shown in Fig.(4.9c); it consists of 500 concrete fibers,

104 stirrup fibers and 16 fibers representing the longitudinal rein-

forcement.

The analysis of the section is performed controlling the torsional

curvature and constraining the internal force vector to represent

the bending to torsion ratio of the selected specimen which was

R = T/M = 0.261. A total of 220 increments are applied to the

section before it reaches the ultimate curvature.

Fig.(4.10) shows the response curves obtained with the proposed
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Table 4.4: Material properties validation case 4.4.1

Concrete fc 34.8 MPa

Longitudinal Steel

∅25 fy 436 MPa
∅12 fy 393 MPa
∅10 fy 552 MPa
Es 200000 MPa

Transverse Steel
∅10fy 379 MPa
Es 200000 MPa

(a) (b)

Figure 4.10: a)Torsion-curvature and b) Moment-curvature curves.
Experimental results by Onsongo (1978)

model, the experimental curves and the obtained with the TINSA

model by Bairán, Maŕı (2007a) are traced as well, with good agree-

ment with the experimental results. Good predictions of both the

ultimate load and curvature are obtained. The response predicted

by the proposed model shows numerical oscillations near the ulti-

mate load. These are due to the failure of some material points.

On the contrary, the TINSA model fails to converge once the ul-

timate load is reached. The convergence test in the TINSA model

is performed evaluating the unbalanced nodal forces of the finite

element mesh. The proposed model performs the convergence test

using energetically conjugated forces to the weight factors of the b-

splines in Eq.(4.13), which are obtained integrating over the whole

cross-section. This makes the proposed model less sensitive to the
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failure of a single material point than the TINSA model.

As in the previous cases, a significant decrease of the degrees

of freedom used by the proposed model (243 DOF) with respect

to the FE model of TINSA Bairán, Maŕı (2007a) with the same

number of fibers (1808 DOF) is made. A speedup of around 5

is obtained with the proposed model in comparison with the FE

model in similar computational conditions.

(a) τxz [MPa] (b) τxy [MPa]

(c) σxx [MPa] (d) Concrete Damage

(e) σst [MPa] (f) Shear stress flow

Figure 4.11: Section state for ultimate load: a) Shear stresses τxz, b)
Shear stresses τxy, c) Longitudinal stresses σxx, d) Concrete tensile
damage, e) Stirrups stress, f) Shear stress flow
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The section state at the ultimate load is shown in Fig.(4.11).

Figs.(4.11a) and (4.11b) shows the shear stresses, it can be seen

that the upper flange carries slightly bigger stresses than the bottom

flange, this is due to the bending moment that produces compres-

sion on the upper flange, see Fig.(4.11c), and tension in the lower

flange which is also fully damaged as it is shown in Fig.(4.11d); con-

sequently, the upper flange is less damaged than the bottom one.

Besides, the presence of shear stresses in the bottom flange is an

evidence of the aggregate interlock phenomena. This is reproduced

at the material level by means of the evolutive dilatancy parameter

introduced in Poliotti, Bairán (2019). The contribution of the stir-

rups, see Fig.(4.11e), shows that the horizontal lower branch has

fully yielded, also the vertical branches have reached the yielding

stress but plasticity is not developed in its full length.

4.4.2 Study of confinement of concrete sections

As it was previously stated, the complementary displacement field

reproduces the distortion of the section. This enables the model to

capture explicitly the contribution of transverse reinforcements. A

particular problem where this takes relevance is the case of confine-

ment in concrete sections.

Confinement is of major importance in the design and assess-

ment of new, existing, and repaired reinforced concrete structures,

as it increases both strength and ductility. Confinement effects

are consequence of the interaction between concrete and transverse

reinforcement; when compression is applied to concrete, it has a

transverse expansion, which is constrained by the transverse re-

inforcement providing the confinement pressure that increases the

strength and ductility of the material. Transverse reinforcement

is usually provided by steel stirrups or spirals in the case of new

structures, or by steel or fiber-reinforced-polymers (FRP) jackets

typically in the reinforcement of existing structures.

Classic fiber-beam models simulate confinement through 1D

constitutive models that include transverse reinforcement by means
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of reinforcements ratios at the material level. Currently, those con-

stitutive laws have to be calibrated for different confining materials

or for different arrangements of the transverse reinforcement Man-

der et al. (1988b); Bisby et al. (2005). This approach is not objec-

tive, as it masks the 3D behavior of concrete while it interacts with

the confinement material. Hence, if different confinement materials

are used, the model needs to be recalibrated.

In order to test the capabilities of the presented model to rep-

resent confinement in an objective manner, four concrete sections

with different confining materials and arrangements are simulated

under pure axial loading.

Confinement of a circular column with steel spiral

In the following, a circular section of a reinforced concrete column

tested by Mander et al. (1988a) is simulated with the presented

model. This specimen is the unit number 4 of a larger experimental

campaign, which was the basis of the well-known 1D constitutive

model for confined concrete of Mander et al. (1988b). Table (4.5)

shows the material properties.

Table 4.5: Material properties validation case circular section

Concrete fc 28 MPa

Longitudinal Steel
fy 295 MPa
Es 200000 MPa

Transverse Steel
fy 320 MPa
Es 200000 MPa

The test setup can be seen in Fig.(4.12a), the interpolation grid

consisting on 5 points is shown in Fig.(4.12b). The interpolation

grid is set to trace the higher strain gradient that it is produced on

the perimeter of the section. The fiber distribution in Fig.(4.12c)

consists of 484 concrete fibers, 60 stirrup fibers and 12 fibers rep-

resenting the longitudinal reinforcement. The test is performed

applying axial strains in 45 increments, then the model fails to

converge.
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(a) (b) (c)

Figure 4.12: Specimen: a) Cross-section, b) Interpolation grid, c)
Fiber distribution.

Three pairs of numerical and experimental curves are presented

in Fig.(4.13a). The total axial load carried by the whole section is

plotted against the axial strain, also the axial load carried by the

longitudinal reinforcements and by the concrete cover are plotted

as well. Fig.(4.13b) shows the predicted strains on the transverse

reinforcements compared against the experimental curve.

(a) (b)

Figure 4.13: (a) Axial force-strain curves. (b) Spiral strains. Ex-
perimental results by Mander et al. (1988a)

The model shows to predict in a good way the strength and

the post-peak stiffness. However, it can be seen that the model

fails to converge before the ultimate experimental strain is reached.
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Furthermore, as the numerical model fails to converge, the strain

level where hoop fracture occurs is not reached. Nevertheless, the

total axial load, the load carried by the reinforcements and the

strains in the transverse reinforcement have a good agreement with

the experimental data. In the case of the concrete cover, it can be

seen that the maximum strength is well captured but the post-peak

behavior predicted by the proposed model differs from experimental

evidence. This can be explained by the fact that the proposed

model solves the equilibrium equations at the sectional level in a

weak form as in Eq.(4.4), thus the local error in a single fiber could

be greater than the error at the sectional level, as it is evidenced in

this case.

Fig.(4.14a) shows the longitudinal stress field and Fig.(4.14d)

shows the longitudinal stress along a radius of the section. It can

be seen that longitudinal stresses are higher on the section core

than on the perimeter of the section, being minimum in the section

cover, this coincides with the observed response. In Fig.(4.14c) the

stresses on the steel spiral are presented at the ultimate state, it

can be seen that the spiral has fully yielded. Fig.(4.14b) shows the

radial strains are bigger on the cover than on the core of the section,

this is evidence of the existence of more damage in that region or

spalling of concrete.

Fig.(4.14e) shows the confining stresses in the radial (σrr) and

circumferential (σθθ) directions at different distances from the cen-

ter. Theoretically, these curves should be constant, but it can be

seen that oscillations appear as the distance from the center in-

creases. The reason of the oscillations is the fact that the interpola-

tion functions in Eq.(4.15) are constructed in a Cartesian reference

system rather than in a cylindrical one, which in this case would be

more suitable. Nevertheless, the average σrr at radius of r/R = 0.9,

which coincides with the position of the transverse reinforcement, is

equal to 0.90MPa. This almost coincides with the lateral confining

stress predicted by Mander et al. (1988b) which was 0.85MPa.

The proposed model shows to be able to predict well the over-

all behavior with a single definition of the concrete properties. In
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(a) σxx [MPa] (b) εrr (c) σst [MPa]

(d) (e)

Figure 4.14: Section state: a) Longitudinal stresses, b) Radial
strains, c) Stirrups stresses, d) Longitudinal stresses-radius curve,
e) σrr and σθθ - θ curves.

contrast, classical fiber-beam models Spacone et al. (1996b) define

different zones in the cross-section with different material parame-

ters in order to capture the confinement phenomena.

Confinement of a rectangular column with steel stirrups

A rectangular section of a reinforced concrete column tested by

Mander et al. (1988a) is simulated with the presented model. This

specimen is the unit number 13 of the experimental of Mander et al.

(1988b). Table (4.6) shows the material properties.

The test setup can be seen in Fig.(4.15a), the interpolation grid

consisting on 9 points is shown in Fig.(4.15b). The fiber distribution

in Fig.(4.15c) consists of 324 concrete fibers, 84 stirrup fibers and 12

fibers representing the longitudinal reinforcement. The axial strain
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Table 4.6: Material properties validation case rectangular section

Concrete fc 24.8 MPa

Longitudinal Steel
fy 434 MPa
Es 200000 MPa

Transverse Steel
fy 309 MPa
Es 200000 MPa

is applied in 90 increments when the simulation presents significant

loss of the carried load.

(a) (b) (c)

Figure 4.15: Specimen: a) Cross-section, b) Interpolation grid, c)
Fiber distribution.

The numerical axial force-strain curve is compared against the

experimental one in Fig.(4.16). Good prediction of the ultimate

load is obtained. The increase on the ductility is also well captured.

The analysis stopped when the internal stirrups reached its ultimate

stress and softening starts to develop, as it is evident in Fig.(4.17b).

Figs.(4.17a) and (4.17c) show the behavior of the section at the

ultimate load. The stress distribution shows that the non-uniform

confinement is well captured by the proposed model.

Confinement of a circular section with a CFRP jacket

A circular concrete section wrapped with a CFRP sheet tested by

Micelli, Modarelli (2013) is simulated with the proposed model.

The specimen, named CC1, is part of a larger experimental cam-

paign studying the behaviour of FRP confined concrete. The test

setup can be seen in Fig.(4.18a), and the material properties are
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Figure 4.16: Axial force-strain curve. Experimental results by Man-
der et al. (1988a)

(a) σxx [MPa] (b) σst [MPa] (c) κc

Figure 4.17: Section state: a) Longitudinal stresses, b) Stirrup
stresses, c) Compression damage in concrete fibers.

shown in Table (4.7). The interpolation points and the fiber distri-

bution can be seen in Figs.(4.18b) and (4.18c). The axial strain is

applied in 50 increments when the ultimate strain is reached.

The numerical axial force-strain curve is compared against the

experimental one in Fig.(4.19). Good prediction of the ultimate

load is obtained. The increase on the ductility is also well cap-

tured. The analysis stopped when the transverse jacket reached its

ultimate stress and softening starts to develop, as it is evident in

Fig.(4.20b), this coincides with the observed experimental failure.

Hence, the model allows assessing the capacity of the element with-
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Table 4.7: Material properties validation case circular CFRP sec-
tion

Concrete fc 28 MPa

CFRP
fu 3070 MPa
E 221000 MPa

(a) (b) (c)

Figure 4.18: Specimen: a) Cross-section, b) Interpolation grid, c)
Fiber distribution.

out the need of the empirical effective strain concept in the FRP

Wu, Jiang (2013).

Figure 4.19: Axial force-strain curve. Experimental results by Mi-
celli, Modarelli (2013)

Figs.(4.20a) and (4.20b) show the behavior of the section at
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the ultimate load. As the confining element is on the perimeter

of the section, giving a uniform confinement to the whole section,

the longitudinal stresses are almost constant over the cross-section.

The small variations of the stress are due to the interpolation.

(a) σxx [MPa] (b) σst [MPa]

Figure 4.20: Section state: a) Longitudinal stresses, b)Stirrup
stresses.

Confinement of a concrete filled steel tube column

In the following, a rectangular concrete filled steel tube (CFST)

is simulated and compared against the experimental results of the

specimen HSS1 tested by Uy (2001). The test setup can be seen in

Fig.(4.21a) and the material properties are addressed in Table (4.8).

The analysis is performed applying 45 axial strain increments.

Table 4.8: Material properties validation case CFST

Concrete fc 28 MPa

Steel jacket
σy 750 MPa
E 200000 MPa
ν 0.3

The numerical simulation is performed using the interpolation

grid as in Fig.(4.21b) and the fiber distribution as in Fig.(4.21c). In

the experimental test, both the steel and concrete were subjected

to the axial load. To model the steel plates, a classic Von-Mises

constitutive law with isotropic hardening is used.
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(a) (b) (c)

Figure 4.21: Specimen: a) Cross-section, b) Interpolation grid, c)
Fiber distribution.

Fig.(4.22) shows both the numerical and experimental axial

force-strain curves. Good agreement is achieved by the sectional

model. The enhancement in strength and ductility is well captured.

Figure 4.22: Axial force-strain curve. Experimental results by Uy
(2001)

The longitudinal stresses at the ultimate state in the steel jacket

and in the concrete core can be seen in Fig.(4.23a). The non-

uniform confinement given by the jacket causes regions with differ-

ent degrees of compressive damage in concrete, this can be seen in

Figs.(4.23b) and (4.23c).
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(a) σxx [MPa] (b) σyy [MPa]

(c) κc

Figure 4.23: Section state: a) Longitudinal stresses, b) Transverse
stresses, c) Compression damage in concrete fibers.

4.5 Closure

A new sectional model for the nonlinear analysis of reinforced con-

crete elements is proposed. The model is based on the original

model of Bairán, Maŕı (2006a,b, 2007a), which proposed a formu-

lation based on the decomposition of the displacement field of a

beam into a plane-section displacement field and a complementary

warping-distortion field. The complementary field is obtained by

considering explicitly the inter-fiber equilibrium which in the orig-

inal model was solved by means of a 2D FE model. In order to

make a more efficient sectional formulation, an alternative solution

is proposed in this chapter.

The displacement field is here calculated as a weighted sum of b-

splines functions defined on the cross-section domain, this method

avoids the FE solution reducing significantly the number of un-

knowns involved in the sectional problem.

The model considers a displacement field independent of the
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beam-axis coordinate, which allows the formulation of a completely

local model, which can be used as a cross-section constitutive model

on each integration point of any standard frame formulation with-

out the need of additional degrees of freedom at the frame level.

The model is validated through a series of experiments where

the capabilities of the model are tested and compared against ex-

perimental results. It is shown that the model is able to trace the

response of reinforced concrete section under complex loading un-

til failure. Pure shear loading and coupling between torsion and

bending is accurately reproduced.

A remarkable reduction in the DOFs involved in the solution

compared with the FE model is obtained. This enabled the model

to have significant speedups proving its lower computational de-

mand with respect to the FE solution.

The sectional model is used to study confinement in reinforced

concrete sections. As the formulation considers the distortion of the

section, it is able to capture the interaction of transverse reinforce-

ments and the concrete mass. Then confinement is simulated in an

objective manner for different confining materials, section shapes

and reinforcement arrangements.

The sectional model presented in this chapter constitutes an ef-

ficient framework capable of reproducing the nonlinear behavior of

concrete elements under different loading states and reproducing

complex failure modes. This, in conjunction with its reduced com-

putational demand, in comparison with other solution methods,

makes it suitable for the analysis of complete structures.
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Chapter 5

A variable order framework

for 3D nonlinear analysis of

reinforced concrete frames

under general loading

In this chapter, a frame model for the analysis of three-dimensional

reinforced concrete structures capable of reproducing general fail-

ure modes is presented. A force-based model which guarantees

the equilibrium between nodal and sectional forces is enhanced by

means of a cross-sectional model. It is capable of capturing the

complex coupling between all the internal forces. Consequently,

different failure modes can be reproduced such as shear, torsional,

flexural or axial failures. Material modeling of concrete is made us-

ing a plastic-damage model that incorporates a variable dilatancy

parameter. The sectional and constitutive models are implemented

in OpenSees. The sectional model can be used at each integration

point of the force-based element. Alternatively, it can be used only

where high coupling between the internal forces is expected, pro-

ducing a variable order structural model, allowing the optimization

of the computational effort. The validation shows that the frame

element is capable of accurately reproduce the behavior of beams

and columns under monotonic and cyclic loads. The framework pre-
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sented is a powerful numerical instrument for the analysis, design

and assessment of reinforced concrete buildings and bridges.

5.1 Introduction

Modern guidelines for seismic design or assessment of reinforced

concrete buildings and bridges CALTRANS (2019); FEMA (2018);

ACI Committee 341 (2007); AASHTO (2011) require nonlinear

static pushover or dynamic analysis of those structures. In that

sense, three dimensional finite element (FE) model is a powerful

tool. However, the high computational cost of such models makes

them prohibitive for the analysis of full scale structures in most

practical cases. Hence, practicing engineers use one dimensional el-

ements when analyzing reinforced concrete structures mainly com-

posed by beams, girders or columns. Frame elements are compu-

tationally cheaper and robust. In addition, they are easy to pre-

and post- process, and they are directly related to the engineers

reasoning.

Classic fiber-beam models Carol, Murcia (1989); Taucer et al.

(1991); Spacone et al. (1996a,b); Neuenhofer, Filippou (1997) con-

sist on mixed or force-based frame formulations where, on each

integration point the cross-section is discretized into fibers. The

fibers are represented by their area and by uniaxial nonlinear con-

stitutive laws for concrete or steel. Fiber-beam models are capable

of tracing coupling between axial load and bending moments in a

robust manner. Consequently, these models are able to capture

axial or flexural failures accurately in many practical cases.

However, most fiber-beam models neglect the coupling between

axial and tangential forces, such as shear or torsion Ranzo, Pe-

trangeli (1998); Ceresa et al. (2007); Bairán, Maŕı (2007b). As a

result, they are not able to reproduce shear or torsional failures.

Moreover, as the presence of high shear forces affects the bend-

ing response of reinforced concrete elements Bairán, Maŕı (2007b),

they loose accuracy on the prediction of flexural failure. Another

shortcoming of these models, is that they only consider transverse
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reinforcements at the material level by means of reinforcement ra-

tios that affect the uniaxial constitutive law of concrete. In or-

der to reproduce confinement, different material properties are de-

fined within the same cross-section and the constitutive laws are

re-calibrated for different confining materials and arrangements of

transverse reinforcements. Consequently, a lost of accuracy and

objectivity of fiber-beam models on the reproduction of axial load

failure is produced.

Some frame models exist that take into account the shear fail-

ure of reinforced concrete elements with different degrees of accu-

racy and robustness. Detailed state of the art reviews were made

by Ceresa et al. (2007); Bairán, Maŕı (2007b). More recent mod-

els were developed with aims to incorporate to fiber-beam mod-

els different failures modes such as shear or torsion in a coupled

way Mohr et al. (2010); Le Corvec (2012); Li et al. (2016); Kager-

manov, Ceresa (2017); Kolozvari et al. (2018); Re et al. (2018);

Kagermanov, Ceresa (2018); Rajapakse et al. (2019); Nguyen et al.

(2019). In most cases, this is made by enhancing the beam kine-

matics altogether with the use of 2D or 3D constitutive models for

concrete.

In this chapter, a 3D frame model capable of tracing the re-

sponse of reinforced concrete elements under general coupled load-

ing is presented. The model involves three different levels: the

element level, the cross-section level and the material point. At

the frame level, the beam-column formulation introduced in Spa-

cone et al. (1996a); Neuenhofer, Filippou (1997); Scott et al. (2004);

Scott, Fenves (2006); Scott et al. (2008) is used as framework. Then,

each integration point of the frame element is simulated by means

of the total interaction cross-sectional model introduced in Poliotti,

Bairán (2020). Further, each material point of the concrete cross-

section is represented by a 3D plastic-damage model with evolutive

dilatancy presented by Poliotti, Bairán (2019). The frame model is

validated against experimental data available in literature. First,

two reinforced concrete beams under combined bending and shear

are numerically reproduced. Then, a cyclically loaded reinforced
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concrete column is tested. Finally, in order to demonstrate the ca-

pability of the framework for seismic assessment in shear-sensible

structures, the performance of a bridge under seismic loads is stud-

ied.

5.2 Proposed Framework

The structural analysis of a bridge or building can be divided into

four levels, as it is shown in Fig.(5.1). The structural level involves

the determination of global forces Q, global displacements D and

the structural stiffness matrix that relates them K. These vari-

ables are obtained by a proper assembly of nodal forces q, nodal

displacements d and element stiffness Ke, respectively.

Figure 5.1: Proposed Framework

Each column, beam or girder, in most cases, can be represented

by a frame element with two nodes. In a general 3D structure, the

degrees of freedom on each node are three displacements and three

rotations. The corresponding forces of the element are three forces

and three moments on each node. At the element level, equilibrium
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between nodal forces and internal forces is verified. In order to do

so, a proper sectional constitutive relation is required.

The sectional level deals with equilibrium within the cross-section

at each integration point of the frame element. It relates the sec-

tional or internal forces ss, with the generalized sectional deforma-

tions es, see Eq.(5.1).

ss = {N Vy Vz T My Mz}T

es = {ε0 γ0y γ0z φx φy φz}T
(5.1)

where ε0 is the axial elongation; γ0y and γ0z are the generalized

shear deformations; and φx, φy and φz are the torsional and bending

curvatures, respectively. A sectional stiffness matrix Ks is needed

to perform the element state determination. Ks is a 6x6 matrix

that, in general, is full, when full coupling of the six internal forces

is accounted for.

The material level represents the description of the local re-

sponse at a differential point. The variables are stress σ and strain

ε tensors, and the material tangent matrix, C. Depending on the

constitutive model used, other internal variables are involved, such

as plastic strains or damage variables. In a general 3D case, the

concrete model needed to reproduce a general failure mode has to

be triaxial.

In this chapter, the problem of reproducing the response of a

structure under general loading with different failure modes is tack-

led in a multilevel scheme, with 3 levels. At the element level, a

force-based formulation that ensures the equilibrium between nodal

and sectional forces is used. At the sectional level, a model that

captures the coupling between the six internal forces while consider-

ing both longitudinal and transverse reinforcement is used. Finally,

at the material level a 3D constitutive law for concrete is used to

simulate the material behavior. In the following the models for the

element, sectional and material levels are presented.
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5.2.1 Beam-column formulation

The beam-column model developed in Spacone et al. (1996a); Neuen-

hofer, Filippou (1997); Scott et al. (2004); Scott, Fenves (2006);

Scott et al. (2008) and implemented in McKenna et al. (2010) is

used at the element level. Assuming that there are no loads ap-

plied on the element, the force or flexibility approach consists on

obtaining the force field as in Eq.(5.2).

ss (x) = b (x) q (5.2)

where b (x) contains the force interpolation functions that re-

lates the nodal forces q with the internal forces on each cross-section

ss (x). The proper choice of the interpolation function leads to a

strict satisfaction of equilibrium between nodal forces and section

forces. The model requires the definition of a sectional constitutive

relation that is written in an incremental way, as shown in Eq.(5.3).

∆es (x) = fs (x) ∆ss (x) = fs (x) b (x) ∆q (5.3)

where fs (x) = K−1
s (x) is the sectional flexibility matrix. A

compatibility condition between nodal displacement and sectional

deformations can be written in a weak form, as in Eq.(5.4).

d =

∫ L

0

bT (x) es (x) dx (5.4)

Following this approach, the element flexibility matrix that re-

lates the nodal displacements with the nodal forces can be obtained

as in Eq.(5.5).

Fe =

∫ L

0

bT (x)fs (x) b (x) dx (5.5)

where Fe = K−1
e .

Two different procedures for the element state determination

were proposed by Spacone et al. (1996a) and Neuenhofer, Filippou

(1997). The proposed state determination in Spacone et al. (1996a)

iteratively computes the element forces and stiffness matrix while
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enforcing the element equilibrium and compatibility. In contrast,

the algorithm proposed in Neuenhofer, Filippou (1997) avoids the

iterative procedure by introducing the residual nodal displacement

in the force determination.

It can be seen in Eqs.(5.3) to (5.5) that the ability of reproducing

any type of coupling between the internal forces relies directly on

the sectional model. The cross-section discretization into uniaxial

fibers is the most classical sectional model in the nonlinear analysis

of reinforced concrete structures. This model robustly captures

the axial-bending interaction while neglecting the coupling with

tangential internal forces.

5.2.2 Sectional model

The cross-sectional model used in this framework is based on the

displacement decomposition introduced in Bairán, Maŕı (2006a,b).

The displacement field that follows the plane section hypothesis ups
is enhanced by means of a complementary displacement field that

incorporates distortion and warping uw, see Eq.(5.6).

u = ups + uw =


ups
vps
wps

+


uw
vw
ww

 (5.6)

The complementary field is determined by means of solving the

three-dimensional equilibrium equations at the sectional level. The

3D stress and strain states are obtained on each material point of

the cross section. As a result, the model is capable of reproduc-

ing the coupling of the six sectional internal forces for a general

anisotropic material behavior as is the case of cracked concrete.

The three-component complementary field is capable of repro-

ducing the in-plane stretching of the cross section. Thus, the model

includes explicitly the transverse reinforcements as stirrups or jack-

ets. Considering the transverse reinforcements is crucial to repro-

duce shear or torsional failures. In addition, the interaction between

stirrups or jackets with the surrounding concrete is the source of
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confinement. Therefore, confinement is reproduced naturally with-

out the need of defining different constitutive law or material pa-

rameters on the same cross-section.

The numerical solution of the sectional equilibrium equations

requires discretization of the complementary field. In Bairán, Maŕı

(2006a,b) a FE model of the cross-section is used, see Eq.(5.7). In

that FE context, Nw (y, z) represents the sectional interpolation

matrix shape functions, and dw is the vector of complementary

nodal displacements.

uw = Nw (y, z)dw (5.7)

The sectional model is capable of reproducing in a consistent

manner axial, shear, torsion and bending failures as well as coupled

failures, as it was demonstrated in Bairán, Maŕı (2006a,b, 2007a).

The main shortcoming of this model is its computational demand.

The model was modified in chapter 4 and in Poliotti, Bairán (2020)

replacing the FE discretization by means of pre-defined functions on

the cross-section domain, particularly in chapter 4 b-splines func-

tions are used. There, the interpolation matrix Nw (y, z) contains

the b-splines shape functions, and the vector dw are the weights

factors of the b-spline interpolation and represent the additional

internal degrees of freedom of the section.

This numerical technique reduces significantly the number of

degrees of freedom involved in the solution of the sectional prob-

lem, while the accuracy remains on the same level as in the original

sectional model in Bairán, Maŕı (2006a,b, 2007a). Hence, the re-

duced computational demand of the b-spline sectional model makes

it more suitable for the analysis of complete structures.

The sectional model introduced in chapter 4 is used as response

model on the integration points of the frame formulation described

before. The model proved to capture the sectional behavior in

a consistent manner, with a reduced computional demand. Fur-

ther details of the model can be found in Bairán, Maŕı (2006a,b,

2007a,b); Poliotti, Bairán (2020).
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5.2.3 Concrete constitutive model

Concrete is a complex material that exhibits several nonlinear phe-

nomena. Within the same structure, there are different elements

that may be under a wide range of loading conditions. Beams un-

der high shear forces or columns with high levels of axial force and

confinement are evidence of this. The sectional model presented in

the previous section requires a 3D constitutive law. As the model

aims to capture different failure modes, the constitutive equation

has to be able to reproduce different stress conditions in a consistent

manner.

The 3D plastic-damage model for concrete introduced in Lubliner

et al. (1989); Lee, Fenves (1998) and then implemented in ABAQUS

(2012) reproduces many of the main characteristic of concrete be-

havior. The model in Lee, Fenves (1998) introduces two internal

variables, one for tension and other compression, that play the role

of hardening variables in a classic plasticity theory. Each one is

defined as a measure of the dissipated energy during an uniaxial

inelastic process. In a tensile case, the dissipated energy is the

fracture energy; in a compressive case, it is the so-called crush-

ing energy. Both are normalized by means of a localization length

to ensure mesh objectivity. Also, an isotropic stiffness degrada-

tion variable is introduced to reproduce damage. The evolution is

governed by a non-associative flow rule that controls dilatancy by

means of a single and constant parameter αp.

Dilatancy can be understood as the volume change of a granular

material under shear strains. It affects the shear behavior of the

material but also its transverse expansion. In chapter 3 and in

Poliotti, Bairán (2019), it was shown that a constant parameter

fails to provide an objective description of the dilatant behavior.

Hence, the original model needed specific calibration for different

applications. To overcome this issue, a variable dilatancy parameter

was introduced in chapter 3. In this chapter, each concrete material

point of each cross-section is simulated using the proposed model in

3. The variable dilatancy parameter depends on the plastic-damage

state κ and on the effective stress state σ̄ as in Eq.(3.23).
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The dilatancy parameter is equal to zero for low levels of dam-

age. Once dilatancy is activated it increases until it reaches its

maximum value αp,max, as it can be seen in Fig.(5.2). The pres-

ences of confinement reduces the effect of dilatancy. Thus, the

maximum value αp,max is made dependent on the confinement level

through the first invariant of the stress tensor I1, see Fig.(5.2).

Figure 5.2: Dilatancy evolution with damage and confining pressure

The evolution of dilatancy is controlled by two material pa-

rameters: the maximum dilatancy ψmax and internal friction φmax

angles. The evolutive dilatancy governs the shear softening and

the nonlinear expansion of concrete without re-calibration of the

material parameters. Thus, the constitutive model is suitable for

reproducing shear failure and passive confinement in an objective

manner. Further details on the constitutive model can be found in

chapter 3.

5.2.4 Implementation

The sectional and constitutive models are implemented on the object-

oriented software OpenSees McKenna et al. (2010). The plastic-

damage model for concrete is implemented as a NDMaterial sub-

class of order six. The sectional model is implemented as a Section-

ForceDeformation subclass of order six. Both models can be used

together with the forceBeamColumn element that corresponds to

the frame formulation described in section 5.2.1. See Fig.(5.3).
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Figure 5.3: Software structure

Thanks to the object-oriented structure of the software, differ-

ent sectional models can be used within the same element. In this

way, the sectional model presented in section 5.2.2 can be used

where shear forces have a greater influence while on the rest of

the sections a classic fiber discretization can be used. Thus, the

computational resources can be optimized concentrating the effort

on those regions where the more complex behavior occurs. In addi-

tion, several integration methods are available for the frame element

Scott, Fenves (2006); Scott, Hamutçuoğlu (2008).

It is a well-known fact that force-beam elements tend to localize

deformations when softening takes places Coleman, Spacone (2001);

Scott, Hamutçuoğlu (2008). This leads to a loss of objectivity and

both the element and sectional responses depend on the number

of integration points. To overcome this issue, in this work the en-

ergy regularization proposed by Coleman, Spacone (2001) is used.

The concrete-plastic damage model introduced in section 5.2.3 al-

ready considers a characteristic length, which is made equal to the

integration point length.

5.3 Validation

Three validation cases are presented to test the capabilities of the

proposed framework. First, two beams belonging to the same ex-

perimental campaign carried out by Vecchio, Shim (2004) are nu-
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merically reproduced. Then, a reinforced concrete column cyclically

loaded tested by Lynn et al. (1996) is simulated.

The following hypotheses are common to all cases: perfect bond

is assumed between the reinforcements and the concrete mass. The

longitudinal and transverse steel reinforcements are simulated us-

ing the Giuffré-Menegotto-Pinto uniaxial constitutive model with

isotropic strain hardening Filippou et al. (1983).

The material parameters needed to define the concrete behavior

are obtained from the reported data on the corresponding exper-

imental campaigns. Those parameters not addressed by the test

authors are estimated as proposed in Poliotti, Bairán (2019).

5.3.1 Reinforced concrete beams

The response of two simply supported reinforced concrete beams

tested by Vecchio, Shim (2004) is simulated with the proposed

model. The selected specimens, named A1 and A3, were mono-

tonically loaded by means of a single load applied in the mid-span.

The geometry and reinforcement arrangements of the test can be

seen in Fig.(5.4). Materials properties of the reinforcement and

concrete are presented in Tables (5.1) and (5.2), respectively.

Table 5.1: Reinforcement properties Vecchio, Shim (2004)

Bar
Size

Diameter
[mm]

fy
[MPa]

fu
[MPa]

Es
[MPa]

M10 11.3 315 460 200000
M25 25.2 445 680 220000
M30 29.9 436 700 200000
D4 3.7 600 651 200000
D5 6.4 600 649 200000

Taking into account the symmetry of the test, only half of the

beams is modeled using a single element. The integration of the

element response is made by means of three Gauss-Lobato inte-

gration points. The sectional model requires the definition of an

interpolation grid to construct the b-spline interpolation functions.
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(a) Geometry A1 and A3

(b) Cross-section A1 (c) Cross-section A3

Figure 5.4: Vecchio, Shim (2004) test setup. Specimens A1 and A3

Table 5.2: Concrete properties Vecchio, Shim (2004)

Beam
fc

[MPa]
ε0

A1 22.6 0.0016
A3 43.5 0.0019

In both beams, 24 points are used to define the interpolation grid

at the sectional domain, as it is shown in Fig.(5.5a). The fiber dis-

tribution of both beams can be seen in Figs.(5.5b) and (5.5c). A

total of 128 concrete material points are used on each cross-section;

32 fibers represent the transverse reinforcements; 7 and 9 fibers

represent the longitudinal reinforcement in A1 and A3 specimens,

receptively. To simulate the test loading conditions, the mid-span

vertical displacement is imposed in several steps.

The experimental response reported in Vecchio, Shim (2004)

is compared against the load-deflection curves obtained with the

proposed model for each specimen, see Figs.(5.6) and (5.8) . In ad-

dition, two numerical responses obtained with beam models devel-
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(a) Interpolation
grid

(b) Fiber distribu-
tion A1

(c) Fiber distribu-
tion A3

Figure 5.5: Modeling details at the section domain of specimens A1
and A3

oped by other authors are presented. In Saritas, Filippou (2009b),

a plastic-damage model with constant dilatancy is properly con-

densed to be used in a mixed frame element. The 2D frame ele-

ment in Mohr et al. (2010) uses a sectional model that takes into

account the inter-fiber equilibrium with a rotating smeared-crack

constitutive model.

A very good agreement with the experimental response is ob-

tained with the proposed model. Both the stiffness and ultimate

load are well estimated. The softening branch on the response of

specimen A1, is numerically captured even that a smaller ultimate

displacement is predicted. In the case of A3, the analysis lost con-

vergence after the initiation of the softening branch. It can be seen

that the combined use of the plastic-damage model presented in

Poliotti, Bairán (2019) and with the sectional model in Poliotti,

Bairán (2020) results in an improvement with respect to the other

frame elements. The model in Mohr et al. (2010) and the proposed

model are both able to accurately trace the stiffness of the element.

This is due to the fact that both models consider shear and flexural

interaction at the sectional level. In addition, using the constitutive

model in Poliotti, Bairán (2019) represents an improvement as it is

also able to capture shear softening.

Notice that the two beams have identical cross-section dimen-
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Figure 5.6: Load-displacement curve for VS-A1 specimen. Experi-
mental by Vecchio, Shim (2004)

sions while they differ on the span length and on the amount of

reinforcements. On the experimental campaign, the shorter beam

A1 exhibited a shear type failure while specimen A3 had a flexural

type. It can be seen that the proposed model is able to capture

both failure modes.

(a) σxx [MPa] (b) τxz [MPa] (c) σst [MPa]

Figure 5.7: Sectional state A1. Section located at 0.25L. Maximum
load.
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Figure 5.8: Load-displacement curve for VS-A3 specimen. Experi-
mental by Vecchio, Shim (2004)

(a) σxx [MPa] (b) τxz [MPa] (c) σst [MPa]

Figure 5.9: Sectional state A3. Section located at 0.25L. Maximum
load.

In Figs.(5.7) and (5.9) the state of a section located at 0.25L

at the maximum load is presented. The different failure modes are

reflected on the sectional state. The longitudinal stress distribu-

tion on both beams are different. In Fig.(5.7a), specimen A1 shows

a well defined region in the cracked part of the cross-section with

compressive stresses, which can be interpreted as the projection of
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a compression strut intersecting the section. The stress distribu-

tion of specimen A3 in Fig.(5.9a) is closer to a pure bending case,

showing that in this case shear forces have a smaller influence. In

addition, Figs.(5.7c) and (5.9c) show that on the vertical branches

of the stirrups in beam A1 the yielding stress is reached while in

the case of specimen A3 the stresses in the transverse reinforcement

are on the elastic range (fy = 600 MPa).

5.3.2 Reinforced concrete column

The cyclic test of a reinforced concrete column in Lynn et al. (1996)

is simulated with the proposed framework. Specimen 2CLH18 was

first submitted to an axial load of N = 503KN which remained

constant during the rest of the test. Afterwards, the horizontal

displacement at the top of the column was imposed in three cy-

cles for different increments exceeding the yielding displacement.

The geometry, reinforcement arrangements of the cross-section and

boundary conditions are shown in Fig.(5.10). Concrete and steel

material properties are presented in Table 5.3.

Figure 5.10: Test setup specimen 2CLH18 Lynn et al. (1996).

Thanks to the symmetry of the test, only one half of the col-

umn is modeled using a single element. The integration of the el-
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Table 5.3: Material properties Lynn et al. (1996)

Concrete
fc [MPa] Ec [GPa] ε0 ft [MPa]

33.1 28.77 0.002 2.2

Steel
fy long. [MPa] fy trans. [MPa] Es [GPa]

331 400 200

ement response is made by means of six Gauss-Lobato integration

points. The interpolation grid in the cross-section domain consist

of 4 points, corresponding with the corners of the cross-section, see

Fig.(5.11a). The fiber distribution that can be seen in Fig.(5.11b)

comprises 100 concrete fibers, 32 and 8 fibers for the transverse and

longitudinal reinforcements, respectively.

(a) Interpolation grid (b) Fiber distribution

Figure 5.11: Modeling details of specimen 2CLH18

Fig.(5.12) shows both the experimental and predicted load-displacement

responses of the column. The overall behavior is suitably captured.

The maximum strength of the column is well captured, as well as

the ductility at the initiation of softening. The differences between

experimental and simulated responses can be explained as follows.

The tested column exhibited a strength loss on the last cycle due

to the buckling of longitudinal bars. In addition, the experimental

behavior shows more pinching, which is attributed to bond slip of

the reinforcement. Neither the buckling of bars or the bond-slip

effect are taken into account by the proposed model.
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Figure 5.12: Load-displacement curve for 2CLH18 specimen. Ex-
perimental by Lynn et al. (1996)

Fig.(5.13) presents the simulated moment, curvature and shear

deformation distribution on the upper half of the column for three

different levels of top displacement. It can be seen that curva-

tures tend to concentrate on the upper region which matches with

the experimental observations reported in Lynn et al. (1996). The

maximum moment is almost identical on the displacements lev-

els of δ = 15.20mm and δ = 30.30mm while on the last cycle

δ = 45.25mm presents a strength loss of 11%.

The sectional state at the last level of top displacement can be

seen in Fig.(5.14). Fig.(5.14d) shows stresses on the longitudinal

reinforcement, it is noticeable that the top and bottom bars have all

reached the yielding stress. Stresses on the stirrups are presented in

Fig.(5.14c), the model does not predict yielding of the transverse

reinforcement. Experimental observations report that yielding of

the stirrups took place on the last cycle of the test. This difference

can be explained by the fact that the transverse reinforcement is

taken into account by the model in a smeared way while in the
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Figure 5.13: Moment, curvature and shear deformations distribu-
tions on the upper part of the column.

column stirrups are located at discrete positions. The measured

strains on the experiment depend on how many discrete cracks have

crossed the section, while the values obtained with the proposed

model are smeared. Figs.(5.14a-5.14b) present the longitudinal and

transverse stress distribution on the cross section which correspond

to the stresses distributions of a flexural failure. Even that the

model can be improved by including other effects such as bond slip,

the obtained response constitutes a good approximation and shows

the capabilities of the model to handle dynamic loading conditions.

5.4 Application: Seismic performance

of a road bridge

The seismic performance of a two-30m-span bridge is analyzed us-

ing the proposed framework. Each span is formed by six simply-

supported precast prestressed I girders; the bent comprises three

circular columns of 1.20 m diameter and a cap beam; each end of
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Figure 5.14: Sectional state at δ = 45.25mm

the bridge has spill-through abutments to support the deck. See

Fig.(5.15).

The bridge is simulated using only frame elements, the deck

slab is replaced by a diaphragm constraint, see Fig.(5.16). The

abutments are represented by zero-length elements that take into

account neoprene bearings stiffness, gaps, shear keys and the soil

embankment behind the abutment, following the guidelines in CAL-

TRANS (2019). The nonlinear behavior is expected to concentrate

on the bent columns. Thus, girders and the cap beam are mod-

eled using elastic elements. Furthermore, the connection between

girders and the cap beam is made with two-node links taking into

account the bearing flexibility, gaps, and shear keys. The mass of

the deck is considered as additional distributed mass on the girder

elements.

Each column is simulated by means of two force-based elements

with four Gauss-Lobato integration points. One b-spline section
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Figure 5.15: Analyzed bridge

(a) Bridge mesh

(b) Column cross-section (c) Fiber distri-
bution

(d) Interpola-
tion grid

Figure 5.16: Bridge model
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and 3 classic fiber models are used in each element. This is made in

order to reduce the computational effort. The b-spline sections are

located outside the D region of the element, where the shear failure

may occur. The column reinforcement is defined in Fig.(5.16b).

Concrete strength is fc = 30 MPa and steel yielding stress is fy =

420 MPa. The cross-section is discretized into 508 concrete fibers,

70 transverse reinforcement fibers and 23 longitudinal reinforcement

fibers, see Fig.(5.16c). Five points are used to construct the b-spline

interpolation functions as it is shown in Fig.(5.16d).

The structure is subjected to the three component earthquake

signal of the Chi-Chi 1999 event. The record is first scaled to match

the maximum effective acceleration of 0.35g, which corresponds to

the return period of 475 years at the site. Then, in order to study

the bridge performance, the nonlinear time history analysis is made

for six intensities of the same earthquake representing different re-

turn periods ranging from 43 to 2475 years. Table 5.4 presents the

different seismic intensities used in the analysis of the bridge.

Table 5.4: Seismic intensities

Return Period Annual Intensity
[years] Frequency aG [g]

43 0.02326 0.10
72 0.01389 0.14
108 0.00926 0.17
475 0.00211 0.35
1033 0.00097 0.48
2475 0.00040 0.64

Fig.(5.17) presents the maximum displacements in the longitu-

dinal and transversal directions on the top of the central column

for each one of the analyzed intensities. The analysis is also made

with a classic fiber beam model in order to compare both simula-

tions. It can be seen that both models predict a similar response

on the longitudinal direction while, on the transverse one, the pro-

posed model predicts bigger displacements. This is a consequence

of considering additional deformations induced by shear damage in
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(a) Longitudinal (b) Transversal

Figure 5.17: Incremental dynamic analysis response

the column. The influence of shear deformations is greater on the

higher intensities.

Figure 5.18: Central column deformations at maximum displace-
ment

Fig.(5.18) presents the curvatures and shear deformations dis-

tribution on the central column height for the fifth intensity at the

maximum displacement. It can be seen that curvatures tend to con-
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centrate on the bottom sections for the longitudinal direction where

the column acts as a cantilever column while on the transverse di-

rection a double curvature profile is obtained. With regards to

the shear deformations, they are only obtained on the b-spline sec-

tions while on the classic fiber models they are not calculated. The

framework shows to be able to provide more information than clas-

sic models, such as shear deformations, concentration of damage,

that improve decision taking in the design and assessment process.

5.5 Closure

A new framework for the analysis of frame structures under gen-

eral loading is proposed. The framework is based on three levels:

element, sectional and concrete constitutive levels. The combined

use of the presented models enables the numerical reproduction of

different failures modes such as flexural, shear, torsion or axial, as

well as coupled modes. Furthermore, as it explicitly considers the

transverse reinforcement, it can naturally reproduce the effect of

confinement and the steel contribution on the shear strength.

Validation shows that the model fits well the experimental data

for beams and columns under monotonic and cyclic loads. Conse-

quently, the same framework can be used in all the elements of a

complete structure. Furthermore, as the element allows the use of

different sectional models on the integration points, the framework

gives the user the flexibility to use the more refined sectional model

only where coupling between the internal forces is more important

or where local sectional information is needed.

Even that the frame model and sectional models can be used

with any 3D constitutive model, the use of a proper material model

shows to be crucial for reproducing different failures modes in a

consistent way.

The study of a bridge performance shows that the model is ro-

bust and that is able to analyze full-scale structures. The model can

be used to make performance assessments including all the possible

failures modes. This, cannot be done with classic fiber-beam mod-
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els showing the major improvement of the presented framework.
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Chapter 6

Conclusions

6.1 Summary

In this thesis the development of a novel numerical tool for the

simulation of three-dimensional line elements under general loading

has been addressed. The robustness and efficiency of the models

was the main focus of this study.

At the sectional level, emphasis was made in the enhancement

of the model presented by Bairán, Maŕı (2006a). It was demon-

strated that the proposed model is able to reproduce the complex

cross-sectional behavior of reinforced concrete elements. A new

integration technique has been used in this thesis to replace the

finite element solution at the sectional level, reducing the degrees

of freedom involved in the solution.

At the constitutive level, the capabilities of the well-known

plastic-damage model developed by Lubliner et al. (1989); Lee,

Fenves (1998), have been extended by means of a new dilatancy

control. As it was demonstrated, the proper representation of the

dilatancy phenomenon is crucial for the accurate simulation of the

material response.

The sectional and constitutive models have been incorporated to

a frame formulation that ensures the equilibrium and compatibility

at the element level. The models have been implemented into an

open-source and collaborative finite element software specialized in
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the non linear analysis of seismic structures.

The developed models have been validated by comparison with

experimental results available in literature. The models were val-

idated both individually and jointly. Validation included a wide

range of concrete types with strengths between 11 and 80 MPa.

Different cross-section geometries have been tested such as rect-

angular, circular, triangular and box sections. Several materials

and arrangements for the longitudinal and transverse reinforcement

have been reproduced with the proposed models. A wide range of

loading conditions have been simulated: elements in pure shear,

coupled torsion and bending moments, coupled axial, shear and

bending in both monotonic and cyclic conditions.

The incremental dynamic analysis of a real bridge has been

made to study the capabilities of the proposed model to simulate

the response of full scale structures.

6.2 General conclusions

The numerical model developed in this research is robust. This was

demonstrated as it is able to reproduce different complex failure

modes and other important physical phenomena such as confine-

ment, without recalibration of sectional and material parameters.

The sectional model demonstrated to be efficient, as it reduces sig-

nificantly the degrees of freedom involved in the sectional analysis

compared to a finite element solution.

The possibility to incorporate different sectional models of dif-

ferent order within the same frame element allows to optimize the

computational effort. This is of special interest on elements where

the nonlinear behavior is concentrated on zones that can be identi-

fied before the analysis such as columns or beams in seismic build-

ings and bridges.

The joint use of a sectional model, capable of capturing the

interaction between the different components of the cross-section,

with a constitutive model that reproduces variable dilatancy has

prove essential to accurately simulate complex phenomena such as
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shear and torsional failures.

Confinement has been reproduced in a rational way without

defining confined zones in a cross-section domain and without re-

calibration of material parameters. This enables an objective rep-

resentation of confinement phenomenon which is important in the

design and assessment of structures. This represents one of the

main contributions of this work.

The sectional model developed in this thesis, is general and

can be used with generic geometries and materials. Furthermore,

the constitutive plastic-damage model with variable dilatancy for

concrete can be used on any three-dimensional finite element model.

Thus, both models constitute independently original contributions

of this thesis.

The study of beams failing with different modes such as shear

and bending, as wells as the simulation for cyclic columns has

demonstrated that the developed models are suitable for the sim-

ulation of critical elements of structures thanks to their ability to

reproduce multiple failure modes.

The simulation of a full-scale real bridge under seismic loads of

different intensity showed the capabilities and potential of the de-

veloped model. It has been demonstrated that the model captures

additional information compared with traditional models, such as

shear deformations, transverse reinforcements stress and strains,

among others. This information can be used in the design of new

structures and improve decision process in the assessment and re-

pair of existing structures.

At the end of this research it is considered that both the general

and specific objectives stated in section 1.2 were achieved.

6.3 Specific conclusions

The specific conclusions obtained on each stage of this work are

described in the following.

� The constitutive model presented in this work incorporates

the variability of the dilatancy and friction angle parameters
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as explicit functions of the plastic-damage and stress states.

This function produces the maximum dilatancy for uniaxial

compression and pure shear states. The resulting dilatancy

is automatically reduced when the confinement stresses in-

crease. It is demonstrated that a constant value of the di-

latancy parameter is not adequate to accurately predict the

free expansion of concrete.

� The new concrete model shows to be capable of accurately

trace the volumetric expansion of concrete in uniaxial com-

pressive tests including softening and confinement. It is also

shown to be capable of capturing the enhancement in strength

and ductility when passive confinement is applied by means

of different confining materials. Good estimation of concrete

shear strength and softening behavior is obtained. The model

response is objective on different modes of failure with the

same material parameters.

� The adequate control of the dilatant behavior of concrete is

shown to be of paramount importance as it controls the volu-

metric expansion and, consequently, affects the strength and

ductility of confined concrete as well as the shear strength

and softening.

� The sectional model presented in this thesis is based on the

displacement decomposition. The complementary field which

is obtained by considering explicitly the inter-fiber equilib-

rium, allows the calculation of the complete stress and strain

tensors on each point of the cross-section domain. Further-

more, it is able to trace the complete coupling between all the

internal forces.

� The cross-sectional model considers a displacement field in-

dependent of the beam-axis coordinate, which allows the for-

mulation of a completely local model, which can be used as

a cross-section constitutive model on each integration point
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of any standard frame formulation without the need of addi-

tional degrees of freedom at the frame level.

� The b-spline numerical solution produces a remarkable reduc-

tion in the degrees of freedom involved in the solution com-

pared with the FE model. This enabled the model to have

significant speedups proving its lower computational demand

with respect to the FE solution.

� The sectional model is used to study confinement in reinforced

concrete sections. As the formulation considers the distortion

of the section, it is able to capture the interaction of transverse

reinforcements and the concrete mass. Then confinement is

simulated in an objective manner for different confining ma-

terials, section shape and reinforcement arrangements.

� The force-based element and the object oriented structure of

the FE software allows the use of different sectional mod-

els on the integration points, the framework gives the user

the flexibility to use the more refined sectional model only

where coupling between the internal forces is more important

or where local sectional information is needed.

� The frame element with the sectional and constitutive models

is a suitable tool for large scale simulations of structures under

general loading and can be used in the assessment of building

and bridges as well as in reliability analyses.

6.4 Recommendations for future research

The present research work has opened several possibilities for future

studies. Some of these are summarized in the following:

� To use the sectional and constitutive models developed to

train artificial neural networks (ANN) that approximate the

sectional behavior of typical cross-sectional geometries. The

ANN could be used as a replacement of the sectional model
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reducing even more the computational cost for typical cases

such as rectangular or circular sections.

� To use the developed models to study in detail the effect of

shear and torsional forces in seismic structures. Furthermore,

based on this study, new approaches and practical method-

ologies could be developed for the design and assessment of

structures.

� To incorporate in a consistent way other physical phenomena

that affects the behavior reinforced concrete elements such as

bar buckling and bond-slip. In addition, the effect of debond-

ing could be incorporated to improve the simulation of ele-

ments reinforced by composite materials.

� To incorporate on the sectional formulation surface loads on

the cross sectional domain. In this way, the model will be

able to reproduce the effect of distributed and hanging loads.

� To develop a solid element to simulate discontinuity regions,

such as joints or load concentration zones, that is compati-

ble with the developed models and that can be used on the

simulation of three-dimensional frame structures.

� To incorporate on the sectional formulation the variation of

warping and distortion on the beam axis. In this way, the

model will be able to reproduce shear-lag and non-uniform

warping phenomena.

� To study the behavior of full scale structure making emphasis

on repaired structures by means of advanced materials such

as composite materials and shape-memory alloys.

� To use the developed sectional model with composite and

orthotropic materials to study the behavior of typical aero-

nautical cross-sections

� To develop experimental test that will allow the improvement

and extension of the constitutive model, in particular on the
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dilatancy control. This could be done by means of uniaxial

tests under different confining pressures measuring the trans-

verse expansion.

� To study and extend the plastic-damage model to simulate

high and ultra-high performance concretes.

� To use the constitutive model in two and three-dimensional

finite element simulations to study different complex phenom-

ena such as aggregate interlock and shear size-effect.

� To use the developed element to perform full probabilistic

analyses of structures and reliability studies. The robustness

of the model and its reduced computational demand make the

model suitable for the large amount of simulation required in

a full probabilistic approach.
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Bažant Zdeněk P., Gambarova Pietro G. Crack Shear in Concrete:

Crack Band Microplane Model // Journal of Structural Engi-

neering. 1984. 110, 9. 2015–2035.
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elasticity). Ed. Urmo, Bilbao, 1972. 549.

Uy B. Strength of short concrete filled high strength steel box

columns // Journal of Constructional Steel Research. 2001. 57,

2. 113 – 134.

Vecchio F., Collins M.P. The response of reinforced concrete to

in-plane shear and normal stresses. Department of Civil Engi-

neering, University of Toronto, 1982.

Vecchio F. J., Shim W. Experimental and Analytical Reexamina-

tion of Classic Concrete Beam Tests // Journal of Structural

Engineering. 2004. 130, 3. 460–469.

Vecchio F.J., Collins M.P. Predicting the response of reinforced

concrete beams subjected to shear using the modified compres-

sion field theory // ACI Structural J. 1988. 85, 3. 258 – 268.

Vecchio FJ, Selby RG. Toward compression-field analysis of rein-

forced concrete solids // Journal of Structural Engineering. 1991.

117, 6. 1740–1758.

M.Poliotti 153



Bibliography

Vecchio Frank J. Finite element modeling of concrete expansion and

confinement // Journal of Structural Engineering. 1992. 118, 9.

2390–2406.

Vecchio Frank J. Towards cyclic load modeling of reinforced con-

crete // ACI Structural Journal. 1999. 96. 193–202.

Vecchio Frank J, Collins Michael P. The modified compression-

field theory for reinforced concrete elements subjected to shear.

// ACI J. 1986. 83, 2. 219–231.

Vermeer P.A., de Borst R. Non associated plasticity for soils, con-

crete and rock // Heron. 1983. 29, 3. 1–64.

Wei Xiaodong, Zhang Yongjie, Liu Lei, Hughes Thomas J.R. Trun-

cated T-splines: Fundamentals and methods // Computer Meth-

ods in Applied Mechanics and Engineering. 2017. 316. 349 – 372.

Special Issue on Isogeometric Analysis: Progress and Challenges.

Wu Jian Ying, Li Jie, Faria Rui. An energy release rate-based

plastic-damage model for concrete // International Journal of

Solids and Structures. 2006. 43, 3. 583 – 612.

Wu Yu-Fei, Jiang Jia-Fei. Effective strain of FRP for confined

circular concrete columns // Composite Structures. 2013. 95.

479 – 491.

Zhao X.G., Cai M. A mobilized dilation angle model for rocks //

International Journal of Rock Mechanics and Mining Sciences.

2010. 47, 3. 368 – 384.
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