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Abstract 

The cell membrane is the encompassing protective shield of every cell and it is 

composed of a multitude of proteins, lipids and other molecules. The organization 

of the cell membrane is inextricably intertwined with its function, and sensitive to 

perturbations from the underlying actin cytoskeleton and the extracellular 

environment at the nano- and the mesoscale. Elucidating the dynamic interplay 

between lipids and proteins diffusing on the cell membrane, forming transient 

domains and (re)organizing them according to signals from the juxtaposed inner 

and outer meshwork, is of paramount interest in fundamental cell biology. The 

overarching goal of this thesis is to gain deeper insight into how lipids and proteins 

dynamically organize in biological membranes at the nanoscale.  

Photonic nano-antennas are metallic nanostructures that localize and enhance the 

incident optical radiation into highly confined nanometric regions (< 20 nm), 

leading to greatly enhanced light-matter interactions. In this thesis, we exploit an 

innovative design of planar gold nano-antenna arrays of different gap sizes (10-45 

nm) and embedded in nanometric-size boxes. To elucidate nanoscale diffusion 

dynamics in biological membranes with high spatiotemporal resolution and single-

molecule detection sensitivity, we further combine our nanogap antenna arrays 

with fluorescence correlation spectroscopy (FCS) in a serial and multiplexed 

manner.  

In this dissertation, we first describe the fabrication process of these planar gold 

nanogap antennas and characterize their performance by means of electron 

microscopy and FCS of individual molecules in solution. We demonstrate giant 

fluorescence enhancement factors of up to 104-105 times provided by our planar 

nanogap antennas in ultra-confined detection volumes and with single molecule 

detection sensitivity in the micromolar range.  

Second, we apply these planar plasmonic nano-antennas in combination with FCS 

for assessing the dynamic organization of mimetic lipid membranes at the 

nanoscale. For a ternary composition of the model membranes that include 

unsaturated and saturated lipids together with cholesterol, we resolve transient 

nanoscopic heterogeneities as small as 10 nm in size, coexisting in both 

macroscopically phase-separated lipid phases. 

 



 

Third, we add a Hyaluronic Acid (HA) layer on top of the model lipid membranes to 

emulate the effect of the extracellular environment surrounding native biological 

membranes. We extend our nano-antenna-FCS approach with atomic force 

microscopy and spectroscopy. We reveal a distinct influence of HA on the nanoscale 

lipid organization of mimetic membranes composed of lipids constituting the more 

ordered lipid phase. Our results indicate a synergistic effect of cholesterol and HA 

re-organizing biological membranes at the nanoscale.  

Fourth, we apply our planar nano-antenna platform combined with FCS to 

elucidate the nanoscale dynamics of different lipids in living cells. With our 

nanogap antennas we were able to breach into the sub-30 nm spatial scale on living 

cell membranes for the first time. We provide compelling evidence of short-lived 

cholesterol-induced ∼10 nm nanodomain partitioning in living plasma 

membranes.  

Fifth, we demonstrate the multiplexing capabilities of our planar gold nanogap 

antenna platform combined with FCS in a widefield illumination scheme combined 

with sCMOS camera detection. Our approach allows recording of fluorescence 

signal from more than 200 antennas simultaneously. Moreover, we demonstrate 

multiplexed FCS recording on 50 nano-antennas simultaneously, both in solution 

as well as in living cells, with a temporal resolution in the millisecond range. The 

dissertation finishes with a brief discussion of the main results achieved in this 

research and proposes new avenues for future research in the field. 

 



 

Resumen 

La membrana plasmática separa el entorno intracelular del extracelular y está 

compuesta por una multitud de diferentes proteínas y lípidos. Su organización está 

fuertemente interconectada a su función, y es sensible a perturbaciones tanto de la 

actina cortical posicionada internamente en proximidad con la membrana, así 

como de una red extracelular en contacto próximo con la membrana exterior. Estas 

perturbaciones ocurren a distintas escalas temporales y espaciales, llegando a unos 

pocos nanómetros. Dada la estrecha relación entre la organización de la membrana 

y su función biológica, es tremendamente importante entender como lípidos y 

proteínas se organizan dinámicamente a la escala nanométrica y como se ven 

afectados por su entorno. El objetivo principal de esta tesis doctoral se centra en 

alcanzar este entendimiento. 

Las antenas fotónicas son nano-estructuras metálicas que incrementan la radiación 

electromagnética en regiones nanométricas (< 20 nm) del espacio. En esta tesis 

doctoral, hemos fabricado y utilizado plataformas con matrices de antenas en oro, 

y con regiones de confinamiento entre 10-45 nm. Además, hemos combinado estas 

antenas con la técnica de “fluorescence correlation spectroscopy (FCS)” a fin de 

obtener información espaciotemporal a la nano-escala en membranas biológicas, 

junto a la sensibilidad de detectar moléculas individuales a altas concentraciones. 

En esta disertación, describimos primero la fabricación de antenas fotónicas y 

caracterizamos su rendimiento utilizando técnicas de microscopía electrónica y 

FCS de moléculas individuales en solución. Nuestros resultados demuestran 

factores de incremento de la fluorescencia entre 104-105, en regiones ultra-

confinadas, y una capacidad para detectar moléculas individuales en rango de 

concentraciones de micro-molares. 

Una vez validadas nuestras herramientas, nos enfocamos en su uso para el estudio 

dinámico de la organización de membranas lipídicas miméticas a escala 

nanométrica. En el caso de composiciones ternarias de lípidos insaturados, 

saturados y colesterol, hemos descubierto la existencia de heterogeneidades 

nanoscópicas y transitorias que coexisten tanto en las regiones ordenadas como 

desordenadas de las membranas lipídicas.  

 



 

El siguiente capítulo contiene resultados enfocados a estudiar el efecto del entorno 

extracelular en la organización dinámica de este tipo de capas lipídicas. Para ello, y 

como modelo, preparamos membranas lipídicas cubiertas de ácido hialurónico 

(HA), un componente abundantemente expresado en la matriz extracelular. 

Combinando FCS con microscopia y espectroscopia de fuerzas atómicas, logramos 

resolver la influencia de HA a escala nanométrica en la organización de la fase 

ordenada de las membranas lipídicas. Nuestros resultados indican la existencia de 

un efecto sinérgico entre HA y colesterol en el reordenamiento de la membrana a 

la nano-escala. 

El siguiente tema de investigación en esta tesis doctoral se enfoca a la aplicación de 

antenas fotónicas y FCS para el estudio de dominios lipídicos enriquecidos de 

colesterol en la membrana plasmática de células vivas. La utilización de estas 

antenas nos ha permitido, por primera vez, remontar la barrera de 30 nm, y 

demostrar de manera inequívoca la existencia de dominios enriquecidos en 

colesterol en células vivas con una resolución espacial de 10 nm. 

Finalmente, hemos demostrado la capacidad de multiplexado de nuestras antenas 

fotónicas, combinando una iluminación y detección en campo amplio utilizando 

una camera sCMOS. Describimos la implementación de nuestro esquema, así como 

también medidas que demuestran la detección simultánea de fluorescencia en más 

de 200 antenas. De manera importante, demostramos la obtención de curvas de 

FCS en 50 antenas simultáneamente, tanto en solución como en células vivas. Esta 

disertación culmina con una breve discusión de los resultados más importantes de 

esta investigación doctoral y propone nuevas avenidas de investigación en el 

futuro. 
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1 Introduction1 

The cell membrane is the encompassing protective shield of every cell and is 

composed of a multitude of proteins, lipids and other molecules. The 

organization of the cell membrane is inextricably intertwined with its 

function, and sensitive to perturbations from the underlying actin 

cytoskeleton and the extracellular environment at the nano- and the 

mesoscale. Elucidating the dynamic interplay between lipids and proteins 

diffusing on the cell membrane, forming transient domains and 

(re)organizing them according to signals from the juxtaposed inner and outer 

meshwork is of paramount interest in fundamental cell biology. How lipids 

and proteins organize dynamically in biological membranes at the nanoscale 

frames the overall aim of this dissertation.  

Throughout this PhD research an innovative design of photonic nano-

antennas combined with fluorescence correlation spectroscopy (FCS) is 

exploited to elucidate nanoscale diffusion dynamics in biological membranes 

with high spatiotemporal resolution and single-molecule detection 

sensitivity.  

In this introductory chapter a general motivation for the importance of cell 

membrane spatiotemporal compartmentalization is first presented together 

with a review on the relevant research findings. Second, the optical 

techniques employed for super-resolved single-molecule detection in living 

 

1 The content of this chapter has been partially published in: 

Winkler, P.M., Regmi, R., Flauraud, V., Brugger, J., Rigneault, H., Wenger, J. and García-

Parajo, M.F., Optical Antenna-Based Fluorescence Correlation Spectroscopy to Probe the 

Nanoscale Dynamics of Biological Membranes. J. Phys. Chem. Lett., 2018, 9, 1, 110-119. 
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cells are outlined. Third, the nanophotonic approaches to address the 

complexity of the cell membrane at the nanoscale are discussed. Last, the 

outline of the chapters composing this dissertation is given.  
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1.1 General Motivation 

The plasma membrane of living cells is a complex, versatile and essential signaling 

interface that separates the cell cytoplasm from the extracellular space.1,2 Research 

in the last twenty years has provided compelling evidence that the plasma 

membrane is highly compartmentalized at multiple spatial scales, ranging from the 

nano- to the meso-scale. Importantly, this non-random spatiotemporal 

organization appears to be crucial for cell function.3,4 The basis for understanding 

cell membrane structure was proposed nearly 50 years ago by Singer and 

Nicolson.2,5 This fluid mosaic model captures the general characteristics of the cell 

membrane as a lipid bilayer dressed with embedded proteins. However, intensive 

research in the last twenty years has revealed that biological membranes are highly 

heterogeneous and of a much higher complex architecture that goes well beyond 

what it was initially proposed by the fluid mosaic model.  

Within the plane of the membrane certain types of proteins, sphingolipids and 

cholesterol arrange in transient nanoscopic domains, also denoted as lipid 

rafts.1,2,6–8 These highly dynamic and fluctuating nanoscale assemblies can be 

stabilized in the presence of lipid- or protein-mediated activation events to 

compartmentalize cellular processes.2,9 By means of physically segregating specific 

molecular components within the membrane, lipid rafts are believed to modulate 

the activity of raft-associated proteins, and to influence signaling and function of a 

broad range of membrane receptors.4,10–12 Moreover, recent research indicates that 

the biophysical properties of lipid rafts (size, composition and dynamics) can be 

modulated by the proximal actin cytoskeleton13–15 and components of the 

extracellular matrix16–20, adding an extra-layer of complexity to the sub-

compartmentalization of the plasma membrane. While the overwhelming diversity 

of membrane nanodomains makes their study particularly challenging, 

understanding the fundamental mechanisms that lead to raft formation as the first 

organizing principle of the cell membrane is of paramount importance. 

Mimetic lipid membranes have been extensively used as model systems since they 

recapitulate some of the most important features of biological membranes.21–24 On 

the microscopic scale, ternary lipid membranes composed of unsaturated 

phospholipids, saturated sphingolipids and cholesterol separate into two distinct 

liquid phases which can be resolved by diffraction-limited optics: a liquid-

disordered (Ld) phase comprised mainly of unsaturated phospholipids and a 

liquid-ordered (Lo) phase mostly composed of saturated lipids and cholesterol.2,4,25 
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This Lo phase has been considered to represent the potential physical model for 

lipid rafts in living cell membranes.2,4,21–24 Microscopic and stable liquid-liquid 

phase separation has been observed on both supported lipid bilayers (SLB) and 

giant unilamellar vesicles prepared from cell membrane lipid extracts.26,27 

However, such phase coexistence has remained so far largely unresolved on 

biological membranes.  

Interestingly, several studies have shown that the cell membrane in all its 

complexity is fully capable of phase segregating into a micrometer-sized two-phase 

fluid-fluid system. Such a two-phase system has been reported to occur upon a 

temperature decrease28 or induced through ganglioside GM1 (a raft lipid) 

tightening by its ligand cholera toxin-β (CTxB) at physiological temperatures29, 

provided that the membrane is separated from the influence of the cortical 

cytoskeleton. Based on these results, it has been proposed that an underlying 

selective connectivity mediated by cholesterol must exist among membrane rafts 

even at the resting state.2,29 This connectivity will thus be responsible for the large-

scale phase segregation induced far beyond the valency of initial GM1 tightening 

through CTxB.29,30 Yet, most of the experimental proof for such raft connectivity has 

been based on the visualization of the end stage of an activated condition and in the 

absence of the cytoskeleton and/or membrane traffic, where the transient rafts are 

amplified to coalesce into larger, stable micrometer-sized raft domains. It is only at 

this scale that standard fluorescence microscopy is able to observe this segregation.  

1.2 Optical techniques towards super-resolved single-molecule 
detection in living cells 

In the context of fully intact living cells, early investigations on membrane 

organization yielded conflicting results regarding the sizes, distribution and 

dynamics of lipid rafts, including experimental results that refuted their 

existence.2,4,9,31,32 Most of the earliest work was performed using fluorescence 

recovery after photobleaching (FRAP)33,34 and more recently, using single particle 

tracking (SPT)3,32,34,35 and fluorescence correlation spectroscopy (FCS)32,34,36. 

FCS has been widely adopted for studying structural dynamics and biomolecular 

interactions on cell membranes as it features several key advantages.36–38 The 

working principle of FCS is to monitor over time intensity fluctuations of 

fluorescently labeled molecules diffusing through a fixed illumination volume using 

diffraction-limited confocal excitation. By performing an autocorrelation of the 
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fluorescence intensity trace in time, the number of molecules and the diffusion 

coefficient, among other parameters can be extracted. This allows determination of 

the mean transit time over thousands of single-molecule diffusion events. The 

advent of single photon counting avalanche diodes has made it possible to resolve 

the local molecular mobility of single molecules at picosecond temporal resolution 

over a broad dynamic range. To guarantee single-molecule detection sensitivity in 

a confocal illumination spot the required fluorescent labeling concentration should 

be within the pM range, well below physiologically relevant concentrations (µM - 

mM). This precludes single-molecule analysis by means of standard FCS within the 

crowded environment of the cell membrane. Moreover, FCS is an averaging 

technique based on thousands of individual molecule events, hence the influence of 

local variations in the composition and/or organization of the cell membrane on 

the diffusion of the molecule of interest remains hidden. In spite of these 

limitations, FCS has been broadly employed to investigate biological systems due 

to its straightforward implementation and non-invasiveness. Every obtained FCS 

correlation function contains rich information on molecular mobility. Yet, it is hard 

to retrieve a complete description of the underlying diffusion behavior (free, 

anomalous, constrained, directed …) out of a single FCS measurement. 

Alternatively, a more powerful method consists in performing diffusion 

measurements over a range of observation areas, as first introduced by Yechiel and 

Edidin in the context of FRAP.39 

This concept has been further generalized by Lenne and coworkers to establish the 

so-called “FCS diffusion law”40,41, which is a graph (Figure 1-1) representing the 

average FCS diffusion time 𝜏(𝜔2) as a function of increasing observation area 𝜔2 

and can be linearly fitted according to: 

 𝝉(𝝎𝟐) =  𝒕𝟎 + 𝝎
𝟐 (𝟒 × 𝑫)⁄  Eq. 1-1 

where D corresponds to the effective diffusion coefficient, and 𝑡0 corresponds to 

the y-intercept. Figure 1-1 illustrates the measurement principle to obtain a FCS 

diffusion law plot by a variation of illumination areas on an exemplary biological 

membrane as well as four possibly occurring diffusion modes. 

Note that the corresponding approach of performing a series of FCS measurements 

for different observation areas has been coined “spot-variation FCS“ (svFCS).40 

Once the FCS diffusion law graph from a svFCS measurement series is obtained, its 

shape allows one to determine the nature of the diffusion process and to infer the 
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underlying membrane organization at scales smaller than the accessible 

experimental observation area.40,42 

 

Figure 1-1. Principle of FCS diffusion laws to reveal biological membrane organization at the 

nanoscale. (a) FCS diffusion laws are constructed by measuring the diffusion times of molecules 

traversing illumination areas of increasing sizes. (b) Different diffusion models depending on the 

membrane organization can be distinguished by varying the illumination areas. Molecules can freely 

diffuse on the membrane or show hindered diffusion due to their dynamic partitioning into 

nanodomains or due to the cortical actin meshwork. (c) FCS diffusion laws showing diffusion times vs. 

observation area. The type of diffusion is retrieved by extrapolation of the curves through the y-axis 

intercept t0. Free diffusion and impermeable obstacles are characterized by t0 = 0, while a positive t0 

intercept indicates the presence of nanodomains transiently trapping the molecular probe. A negative 

t0 intercept relates to a meshwork of barriers separating adjacent domains. The observation areas 

accessible with various techniques that overcome the diffraction limit are indicated as grey lines. 

Adapted from Ref. 43. 

Free diffusion is characterized by a strict linear relationship between the diffusion 

time and the illumination area, hence the curve crosses the origin. The presence of 

impermeable obstacles constrains the diffusion and increases the apparent time to 

traverse a given observation area, thus the slope of the FCS diffusion law is larger, 

but the origin (0,0) is still crossed. Notably, the presence of confinement affecting 

the lateral diffusion is revealed by a deviation of the intercept on the time axis t0 
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from the origin (Figure 1-1 c). For instance, in the case of hindered diffusion due to 

nanodomains, the extrapolation of the experimental curve to the intercept with the 

time axis results in a positive intercept on the time axis i.e. t0 > 0. In contrast, 

hindered diffusion due to an underlying meshwork results in a negative intercept 

i.e., t0 < 0.  

FCS diffusion laws were first validated on diffraction-limited confocal microscopes, 

where for the transferrin receptor TfR-GFP (known to interact with the 

cytoskeleton meshwork) the results yielded a negative t0 value, and for the 

fluorescent ganglioside GM1 a positive t0 value was found.40,44 By extrapolating to 

the origin, the FCS diffusion laws can thus predict the occurrence of membrane 

heterogeneities affecting the lateral diffusion at spatial scales well beyond the 

optical resolution. However, the size of lipid rafts is expected to be around 10-100 

nm9,36,45, so their areas are 5× to 500× smaller than the smallest diffraction-limited 

observation area on confocal microscopes. Reducing the gap between optical 

resolution and the size of lipid rafts to gain better insights on membrane 

organization at the nanoscale is currently a field of active research. 

With the advent of super-resolution optical microscopy approaches such as single-

molecule localization methods46–48, stimulated emission depletion (STED) 

microscopy49–51 and near-field scanning optical microscopy (NSOM)10,52–55, it is 

now becoming clearer that lipids and proteins can indeed organize in nanometric 

compartments on the cell membrane, albeit a consensus in terms of their sizes and 

dynamics has not yet been reached.  

The approach of NSOM relies on the scanning of a sub-wavelength aperture probe 

across the sample surface to map out its super-resolved architecture (Figure 1-2 a). 

The NSOM resolution in the axial and lateral dimensions is dictated by the physical 

size of the nano-aperture which is nanofabricated at the apex of a metallic tip, and 

the scanning tip-sample distance.56 Spatial resolutions in the order of 70 nm are 

commonly obtained using this approach. In this design the combination of NSOM 

with FCS was successfully applied for dynamic measurements in living cells. For 

instance, it was shown that the fluorescent lipid analog SM exhibited anomalous 

diffusion on living cell membranes at the nanoscale, which could not be resolved by 

confocal microscopy.57 A more sophisticated illumination scheme that increases 

the optical resolutions consists in the addition of a monopole antenna on a bowtie 

nano-aperture at the apex of a NSOM probe.58 This approach allows for dual-color 
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single-molecule detection with 20 nm lateral resolution at high photon counts per 

molecule, but its combination with FCS has not been demonstrated yet.  

Since the beginnings of STED microscopy, this powerful far-field optical technique 

has continued to push the limits far beyond the diffraction limit. Currently, a lateral 

resolution of ~40 nm is routinely achieved, and it can be pushed down to a few 

nanometers with the use of tailor-made fluorescent probes.59 In STED microscopy 

the diffraction limit is overcome by exciting the fluorophore from the ground (OFF) 

state into an excited (ON) state first. Then the fluorophore has two options to relax 

back into the ground state. It is either “forced” to be de-excited into the ground state 

via stimulated emission, without the emission of a fluorescent photon, or it relaxes 

back spontaneously into the ground state while emitting a fluorescent photon. This 

ON/OFF switching is reiterated until enough emitted photons have been collected. 

The result is a super-resolved STED image composed of all collected photons which 

are localized well beyond the diffraction limit. The most common STED 

implementation is via a coalignment of a Gaussian excitation beam with a second 

beam, the so-called STED or depletion beam. This STED beam is shifted to longer 

wavelengths to de-excite the fluorophores via stimulated emission and engineered 

in polarization and/or phase to provide a doughnut-shaped intensity distribution 

in the focus with a “zero-intensity” area in its center. Both beams are diffraction-

limited but by applying a high STED laser intensity the stimulated emission 

transition is efficiently saturated and only the fluorophore(s) around the “zero 

intensity” region remain in the excited state and their fluorescent emission is 

detected. An image is created by scanning the overlapped excitation and STED 

beams over the sample, and by collecting the emitted photons. The effective sub-

diffraction area is then given by the “zero intensity” region. Since photons outside 

this region need to be fully depleted by stimulated emission, high laser powers are 

required and thus the obtainable spatial resolution scales inversely with increasing 

STED beam intensity. In practice, the resolution also depends on the brightness and 

the photostability of the fluorophore to withstand the high intensity laser powers 

required by STED. 

With regard to biological applications of STED nanoscopy, a major advance has 

been achieved by combining STED with FCS, allowing the exploration of the 

nanoscale dynamics occurring in lipid membranes.60–65 More precisely, it led to the 

beginning of spot-variation STED-FCS due to the straightforward possibility of 

probing different effective observation volumes as a function of the laser intensity 
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of the STED depletion beam. Depending on which nanoscale diffusion behavior is 

studied, the appropriate STED-FCS modality has to be chosen.66 

 

Figure 1-2. Principles of two scanning super-resolution approaches to resolve the nanoscale 

organization of biological membranes. (a) On the left side, the principle of NSOM based nanoscopy 

on cell membranes is sketched. In the imaging mode, the NSOM probe scans the sample in close 

proximity to the surface (dashed line). The optical resolution (typically 70 nm) depends on the probe 

diameter and probe-sample axial distance separation. The optical resolution can be further increased 

by using hybrid bowtie nano-aperture (BNA) probes (right panel). This type of antennas consists of a 

monopole antenna positioned at one of the edges of the BNA gap and they are fabricated using focused 

ion beam (FIB) technology. Adapted from Ref.56,58. In (b) the principle of scanning STED-FCS (sSTED-

FCS) is outlined. In this configuration the STED illumination is circularly scanned over the membrane 

sample, resulting in a fluorescence time trace generated for each pixel along the circle. In the panels on 

the right correlation curves are presented in a color code, yielding so-called correlation carpets. 

Different correlation carpets for confocal and STED are shown at different 10 seconds subsets of the 

measurements, highlighting changes of spatial heterogeneity over time. Adapted from Ref. 63. 

The most common approach is so-called point STED-FCS (pSTED-FCS) in which the 

measurement consists of a series of single stationary observation spots. pSTED-FCS 

provides high spatial (~30 nm) and temporal (microseconds) resolution but is 

limited by low throughput and sparse sampling.  
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The advent of fast laser-beam scanners led to the recording of multiple FCS 

measurements by scanning along a line or a circle at the micron-scale with high 

frequency (1-10 kHz), so called scanning STED-FCS (sSTED–FCS)63, and shown in 

Figure 1-2 b. This modality allows one to explore with high statistical precision the 

spatial heterogeneity of lipids in the plasma membrane in short timeframes. The 

combination with line-interleaved laser scanning enables direct detection of 

diffusion behavior at multiple positions by alternating between STED and confocal 

laser illumination. The gain in statistics in the spatial domain is at the expense of 

temporal resolution, i.e. in the millisecond regime due to the kHz scanning 

frequency of the STED beam. Ergo, only accurate measurements of diffusion 

coefficients smaller than 10 µm2/s are feasible. To accurately extract diffusion 

dynamics via FCS analysis the scanning frequency has to be at least four times 

higher than the characteristic diffusion time of the probed molecule. This 

requirement determines the size of the detection spot, and thus the spatial 

resolution. In the case of live cell experiments with fluorescent lipid analogs of a 

diffusion coefficient D ~ 0.5 µm2/s, the smallest observation spot has a diameter d 

~ 60 nm at a minimal scanning frequency of 3 kHz.63 Also note that the detected 

photon counts are divided between multiple curves in sSTED-FCS, hence the signal-

to-noise ratio is reduced in comparison to pSTED-FCS. This can be compensated by 

collecting for longer time windows (< 30 s). More recently, it has been shown that 

hybrid detectors and real-time gigahertz sampling fully alleviated this issue, 

rendering possible photon count rates with an average intensity over 1 MHz.67 

Another approach to generate a FCS diffusion law from a single recording is based 

on a continuous-wave depletion laser with pulsed excitation and software 

processing by signal gating or lifetime filtering (STED-FLCS).62,68 

In terms of biological insights obtained by STED-FCS experiments on living cell 

membranes, it has been shown that unlike phosphoglycerolipids, sphingolipids and 

GPI-APs are transiently trapped in cholesterol-mediated molecular complexes of 

sub-20 nm dimensions.64 STED-FCS was also applied to study ternary lipid-

cholesterol model membranes featuring microscopic liquid-liquid phase 

separation into Ld and Lo phases, without observing any direct evidence of the 

presence of nanoscopic domains at spatial scales down to 40 nm.65 

Recently, Basu and coworkers detected dynamic heterogeneities at length scales of 

~ 100-150 nm in binary phospholipid-cholesterol bilayers of high cholesterol 

content (50 %) by applying STED-FCS with a resolution of ~ 80 nm.69 The 

occurrence of these heterogeneities in binary model membranes showing no 
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macroscopic phase separation indicates that the domain formation is driven by 

cholesterol packing and influenced by the phospholipid type. However, the high 

cholesterol content (50 %) used in the binary mixtures complicates a direct 

comparison to cellular membranes with a cholesterol content of 30-40 %. 

A recent study reported on the lateral diffusion of a fluorescent cholesterol 

analogue in both model and cellular membranes exploiting STED-FCS and 

comparing the experimental results to molecular simulations.70 It was shown that 

cholesterol diffuses faster than phospholipids in living cell membranes but only 

slightly faster in model membranes. On living cell membranes, cholesterol 

exhibited a two-component diffusion behavior indicating a heterogeneous 

diffusion behavior due to nanoscale interactions and asymmetric localization 

between the two leaflets of the membrane. These findings open up new questions 

regarding the role of cholesterol triggering cellular signaling together with proteins 

associated with a cholesterol-binding motif. 

Overall, these and many other fundamental cell membrane questions point out how 

essential it is to have techniques at hand which offer high spatial (nm) and temporal 

(sub-ms) resolution simultaneously together with live cell compatibility and high 

throughput. 

Trajectories of individual molecules diffusing on the membrane can be tracked 

using advanced SPT3,15,71 and high-speed SPT interferometric scattering 

microscopy (iSCAT).72 iSCAT microscopy has quickly evolved and now routinely 

achieves nanometer localization precision together with microsecond time 

resolution by means of using 20-40 nm gold nanoparticles as labeling probes and 

sampling rates of up to 500 kHz (Figure 1-3).73,74 Recently, it was reported that 

iSCAT together with extensive image processing is capable of following single 

unlabeled proteins with nanometer precision and microsecond time resolution in 

all three dimensions and over tens of minutes of acquisition.75  

Wu et al. exploited iSCAT to conduct experiments using 20 nm gold beads attached 

to individual lipids in multicomponent model membranes.76 In this work the traced 

lipids showed anomalous diffusion in the Lo phase consistent with the occurrence 

of nanoscale heterogeneities, while homogeneous lipid diffusion was observed in 

the Ld phase. The estimated sizes of the nanodomains in the Lo phase varied 

between 20 to 40 nm with lipid trapping times inside the domains below 1 ms. 

iSCAT thus constitutes an attractive tool to investigate dynamic biophysical 
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processes in mimetic systems at the nanoscale. Yet the major concern of this 

technique is associated to the potential artifacts related to the large size of the gold 

nanoparticle label with respect to the lipids under study. In addition, there is the 

concern that the multivalent streptavidin serving as linker potentially cross-links 

the target molecule.  

 

Figure 1-3. Principle of interferometric scattering microscopy (iSCAT). Visualization of single lipid 

diffusion in a homogeneous lipid model membrane via high-speed iSCAT tracking with 3 nm spatial 

precision at 50 kHz. The schematics on the left shows a 20 nm gold nanoparticle attached to the 

headgroup of a single lipid molecule and tracked with high-speed iSCAT. On the right, exemplary 

diffusion trajectories are shown. Adapted from Ref. 76. 

A comparative study of probing lipid membrane dynamics with iSCAT and STED-

FCS by attaching a fluorescent label to the gold particle showed that the observed 

diffusion behavior as well as relative differences in mobility yielded identical 

results for each approach separately.77 However, the diffusion coefficients reported 

by STED-FCS were by a factor of 2-3 larger than the ones obtained by iSCAT. Overall, 

the authors claimed that despite a significant slow-down in diffusion on mimetic 

membranes as measured by iSCAT, no additional bias is introduced by the large and 

potentially cross-linking gold particles, at least at the spatial (> 40 nm) and 

temporal (50 ⩽ t ⩽ 100 ms) scales probed. 

Thus, the iSCAT approach is perfectly suited and offers great value to quantitatively 

monitor the fast diffusion of lipids and proteins in mimetic membrane systems.78 

However, its extension to dynamic studies on the living cell membrane remains 

challenging. The main caveat is the high scattering (speckle-like) background of the 

living cell, which is impossible to correct and/or to compensate for. Only very 

recently the group of V. Sandoghdar was able to show first results of resolving the 
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nanoscale confinement of a transmembrane protein on a living cell based on a 

tremendous effort combining iSCAT with extensive data analysis.75 This offers a 

promising glimpse into future directions to render live-cell experiments feasible 

with iSCAT. 

1.3 Nanophotonic approaches to address the complexity of the cell 
membrane at the nanoscale 

Beside these enormous progresses in super-resolution microscopy and single-

molecule dynamics approaches, advances from the nanophotonics field have led 

to the concept of photonic nanostructures to confine light on a subwavelength scale 

and reach sub-diffraction observation areas in FCS.79–81 A conceptually simple yet 

powerful approach uses single nanometric apertures milled in a metallic film also 

known as zero-mode waveguides (ZMW), to confine the illumination spot 

directly in the sample plane (Figure 1-4).82 Typically, the apertures have radii 

between 50 and 200 nm and are milled in an opaque aluminum film covering a glass 

coverslip.83,84 Owing to their subwavelength radii, ZMWs sustain an exponentially 

decaying evanescent electromagnetic field acting as an efficient pinhole. This near-

field profile translates into effective detection volumes three orders of magnitudes 

below the diffraction-limited confocal volume. Because of this large 3D 

confinement, ZMWs allow single-molecule detection at dye concentrations of ~ 1 

µM82, three to four orders of magnitude higher than confocal excitation.  

ZMWs have been also combined with FCS to probe model lipid membranes85,86 and 

living cell membranes87–90, revealing, for instance, that fluorescent chimeric 

ganglioside proteins partition into 30 nm structures within the cell membrane.90 

While the ZMW approach is very efficient at confining light within circular hotspots 

of diameters between 100 to 200 nm, this technique faces difficulties regarding the 

signal-to-noise ratio and the attainable enhancement for spot sizes below 80 nm. 

Indeed, the FCS signal-to-noise ratio rapidly deteriorates for ZMW diameters below 

100 nm as a consequence of fluorescence quenching induced by the metallic 

aperture edges and the low throughput of fluorescent photons due to the weak 

excitation fields.91 The nanophotonic circular ZMW is the most simple and robust 

nanophotonic design to implement but provides modest fluorescent enhancement. 

As a consequence, an optimal diameter of about 120-150 nm depending on the 

employed metal was calculated in simulations and validated in experiments.80,91 

The enhancement factors obtained for ZMWs lie in the range of 5 to 25-fold in the 

best-case scenario of tuning the plasmonic properties of the nano-apertures. 
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Figure 1-4. The pioneering nanophotonic approach to address the complexity of the cell 

membrane at the nanoscale. On the left, the intensity distribution of a zero-mode waveguide (50 nm 

in diameter, 100 nm high) is plotted in log scale based on a 3D finite-element time-domain simulation. 

On the right, a cross-sectional cartoon of a cell invaginating into a ZMW (not drawn to scale) is 

displayed. In Ref. 88 the efficient excitation of the evanescent near-field was exploited to study the 

sources for membrane invaginations. The findings point towards cytoskeletal elements being 

responsible for the membrane invaginations, akin to filopodia extensions. Adapted from Refs. 82,88. 

In comparison, more sophisticated nano-antenna designs with sharp tips, edges 

and small gaps easily provide enhancement factors over 100-fold. An additional 

issue affecting the use of ZMWs for living cell membrane studies is the lack of 

control on the membrane invagination into the aperture. This problem has been 

addressed by introducing a planarization procedure in the nanofabrication process 

filling the aperture volume with fused silica.92,93 Thanks to the absence of a height 

difference between the ZMW and the surrounding metal layer, the cells can rest on 

a nearly perfectly flat surface and are exposed to a homogeneous impinging 

electromagnetic illumination and thus enhancement. This homogeneous scenario 

is required to address the majority of membrane questions at the nanoscale. The 

best results achieved so far were reported in a nanospot diameter of 60 nm and 

microsecond resolution.93 However, in the particular case of Ref. 88 the aim was to 

investigate the driving players for membrane invaginations and as sketched on the 

right in Figure 1-4. They explicitly triggered the membrane invaginations into the 

bottom of ZMWs and found that components of the cytoskeleton are the 

responsible elements similar to filopodia extrusions.  

In the last decade, resonant photonic nano-antennas have been introduced to 

further enhance and confine the excitation light down to sub-20 nm scales.94–96 

Photonic nano-antennas are metallic (plasmonic) nanostructures that localize and 
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enhance the incident optical radiation into highly confined nanometric regions 

(plasmonic hotspots), leading to greatly enhanced light-matter interactions.97,98 

Depending on the material, shape and size of the nano-antenna, its resonance 

wavelength can be tuned within the visible electromagnetic spectrum.  

With respect to biological applications, photonic nano-antennas are being 

exploited for the following two assets. First, photonic nano-antennas sustain a 

highly enhanced electromagnetic near-field leading to high fluorescent 

enhancement for fluorescent dyes with matching absorption spectra. Second, nano-

antennas provide highly localized hotspots reducing the illumination volume by 

orders of magnitude into the regime of gap sizes below 50 nm compared to confocal 

spots of ≥ 250 nm. Over thousand-fold enhancement of the single-molecule 

fluorescence signal was reported with lithographically fabricated gold nano-

antennas in the shape of bowties99 (Figure 1-5 a), with dimers of gold nanoparticles 

assembled with DNA origami100,101 and at the apex of single gold nanorods102,103.  

Recent advances in nanofabrication using colloid nanosphere lithography 

combined with plasma processing103 and nanostencil lithography104 currently 

enable large-scale production of reproducible nano-antennas with narrow gaps as 

required for the study of the plasma membrane of living cells. However, the 

applications of plasmonic antennas to living cells remain scarce. Plasmon-

enhanced fluorescence was recently observed inside living bacterial cell 

membranes105, highlighting the need to develop well-tuned substrates to maximize 

fluorescence enhancement and signal-to-noise ratio. In the highly active field of 

biosensing in the context of nanomedicine106 plasmonic antennas have enabled the 

performance of Raman spectroscopy in a microfluidic device on the single cell 

level107and the detection of single amino acid mutations in breast cancer cells108. 

A major issue limiting the use of optical nano-antennas for living cell membrane 

studies is the efficient rejection of the background fluorescence light originating 

from the molecules that are significantly distanced (tens of nanometers) from the 

antenna hotspot but still within the diffraction limited confocal volume.109 For 

antennas made of individual nanoparticles110–114 or dimers of nanoparticles115–117 

deposited on a glass substrate, the fluorescence background can be significantly 

larger than the antenna-enhanced fluorescence signal from the plasmonic hotspot, 

challenging single-molecule detection and FCS using nano-antennas. 
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Figure 1-5. Evolution of nanogap antennas for enhanced FCS in biological samples. (a)The 

pioneering gold bowtie antenna is sketched (upper panel) together with the simulated intensity 

distribution (bottom panel) showing the high field enhancement in the bowtie gap. (b) The initial 

«antenna-in-box» platform is shown (sketch and SEM scan) which allowed to perform single-molecule 

FCS at physiologically relevant dye concentrations in solution. (c) The planar gold nanogap antenna 

platform exploited in this dissertation is displayed. Adapted from Refs. 99,118,119, respectively. 

The initial approach to deal with this challenge employed low quantum yield 

emitters (quantum yield below 8 %) leading to maximizing the apparent 

fluorescence enhancement while minimizing the background.113–115,117 Another 

solution relies on time gating and lifetime filtering, taking advantage of the reduced 

lifetime of the emitters in the vicinity of the plasmonic hotspot.120 

A third approach, uses a dedicated antenna design termed “antenna-in-box”.118,121 

The “antenna-in-box” platform features a metal dimer nanogap antenna centered 

inside a nano-aperture and is specifically designed for FCS and single-molecule 

analysis at physiologically relevant (µM) concentrations (Figure 1-5 b). The central 

nanogap antenna provides the nanoscale plasmonic hotspot, while the surrounding 

metal cladding screens the fluorescence background by preventing the excitation 

of the molecules diffusing away from the nanogap.118  

A challenge associated with classical nanofabrication techniques such as focused 

ion beam milling or electron beam lithography is that the region of maximum field 

localization is buried into the nanostructure and not directly accessible for 

fluorescent emitters embedded in a membrane. We recently overcame this issue by 

combining electron beam lithography with planarization, etch back and template 

stripping.119 The planarization strategy fills the aperture volume with a transparent 

polymer, yielding a flat top surface (of a planarity better than 3 nm), compatible 

with membrane studies on living cells (Figure 1-5 c). Possible curvature induced 

effects on the cell membrane are thus avoided.92,93 The etch back approach 



Introduction 

33 

produces reproducible arrays of nano-antennas with controlled gap sizes and 

sharp edges.119 With a gap size of 10 nm, the antenna gap area can be as small as 

300 nm2, realizing a reduction of 200× as compared to the diffraction-limited 

confocal area. Lastly, the template stripping flips the plasmonic hotspot to the top 

surface and places it in the immediate vicinity of the cell membrane. Owing to these 

nanofabrication advances, planar plasmonic nano-antennas drastically improve 

optical performance leading to fluorescence enhancement factors above 10 000× 

(for Crystal Violet dyes of 2 % quantum yield) and detection volumes in the 

zeptoliter range. 

In this dissertation we exploit this innovative design of planar plasmonic nanogap 

antenna arrays embedded in nanometric-size boxes to address fundamental cell 

biological questions. Planar nanogap antenna platforms provide full surface 

accessibility of the hotspot-confined region. Hereby not only unwanted membrane 

curvature is prevented but more importantly it is possible to monitor single-

molecule events on biological membranes at physiological relevant concentrations. 

By further combining this type of antennas with FCS, the diffusion of membrane 

components can be followed in time with ultrahigh spatiotemporal resolution. In 

the following section the challenges we decided to tackle during this PhD research 

are outlined.  

1.4 Outline of the thesis 

Throughout this PhD research the innovative planar “antenna-in-box” platform 

with different gap sizes, as introduced in the previous section, was employed for 

fundamental cell membrane studies. The overarching aim has been to exploit these 

planar plasmonic nanogap antenna arrays combined with FCS to probe nanoscale 

dynamics of biological membranes in their natural environment. Thus, the goal is 

to get one step closer to achieve a comprehensive insight into the underlying 

principles governing cell membrane organization, one of the most fundamental 

topics in cell biology.  

Chapter 2 focuses on the fabrication of these planar gold nanogap antennas and 

the characterization of their performance in terms of electromagnetic field 

enhancement and confinement. The methodology of choice is FCS, which we take 

advantage of throughout this thesis. Hence, first we start with a detailed 

introduction to the principles of FCS and to our experimental implementation into 

a confocal setup. Second, we describe the different fabrication steps involved and 
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our characterization with electron microscopy and fluorescence spectroscopy. 

Finally, we demonstrate giant fluorescence enhancement factors of up to 104-105 

times provided by our planar nanogap antennas and in ultra-confined detection 

volumes and single-molecule detection in the micromolar range.119  

Subsequently in Chapter 3 we apply these planar plasmonic nano-antennas in 

combination with FCS for assessing the dynamic organization of mimetic lipid 

membranes at the nanoscale.121 First, we discuss the details of the preparation of 

mimetic membranes of different lipid compositions and the benchmarking 

experiments in confocal FCS. Next, we validate our preparation of mimetic 

membranes on our planar nanogap antenna platform to perform FCS experiments 

on three different gap sizes. For a ternary composition of the model membranes, 

we report on the emergence of transient nanoscopic heterogeneities coexisting in 

both macroscopically phase- separated lipid phases.122 

In Chapter 4 we increase in complexity regarding the biological system under 

study by adding a Hyaluronic Acid (HA) layer on top of the model lipid membranes 

to emulate the extracellular environment surrounding native biological 

membranes. Recently, there is emerging interest in studying the impact of 

constituents found on the extracellular side of the cell membrane such as the 

abundant glycosaminoglycan HA.17,123. For this study on multicomponent bilayers, 

we combined our nano-antenna-FCS approach with atomic force microscopy and 

spectroscopy. With our combined and extended approach, we reveal a distinct 

influence of HA on the nanoscale lipid organization of mimetic membranes 

composed of lipids constituting the more ordered lipid phase. We suggest a 

synergistic effect of HA and cholesterol on inducing and enhancing the formation 

of nanoscopic heterogeneities.  

In Chapter 5 we apply our planar nano-antenna platform combined with FCS to 

gain insight into the nanoscale dynamics of different lipids in living Chinese 

hamster ovary (CHO) cells.124 We investigate the diffusion dynamics of fluorescent 

lipid analogs linked to either phosphoethanolamine (PE) or to sphingomyelin (SM) 

on living CHO cell membranes. With our nanogap antennas we were able to breach 

into the sub-30 nm spatial scale on living cell membranes for the first time. 

Together with cholesterol depletion experiments, we provide compelling evidence 

of short-lived cholesterol-induced ∼ 10 nm nanodomain partitioning in plasma 

membranes and discuss the impact of these results in the context of lipid rafts.  
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In Chapter 6 we explain in detail how we implemented a widefield illumination 

configuration together with sCMOS camera detection to demonstrate the 

multiplexing capabilities of our planar gold nanogap antenna platform combined 

with FCS. The recent advent of fast and sensitive imaging cameras is paving the way 

for Imaging FCS (ImFCS), a technique that takes advantage of the parallel 

acquisition of fluorescence from addressable areas on the camera.126 By exploiting 

our nanogap antenna arrays to perform multiplexed FCS on 50 nano-antennas 

simultaneously, we show our results on benchmarking experiments with far-red 

fluorescent beads and resolve spatiotemporal heterogeneous diffusion proteins in 

living cells at the nanoscale. 

Finally, in Chapter 7 we summarize the main results of this thesis and provide an 

outlook for future research directions. In particular, we discuss potential novel 

antenna designs, new modes of excitation detection and ignite new questions to be 

addressed for pushing our knowledge of biology and beyond.  
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2 Planar gold nanogap antennas: Fabrication and 

Performance2 

Optical nano-antennas have a great potential for enhancing light-matter 

interactions at the nanometer scale, yet fabrication accuracy and lack of 

scalability currently limit ultimate antenna performance and applications. In 

most antenna designs, the region of maximum field localization and 

enhancement (i.e. hotspot) is not readily accessible to the sample because it 

is buried into the nanostructure. Moreover, current large-scale fabrication 

techniques lack reproducible geometrical control below 20 nm.  

In this chapter, we describe a new nanofabrication technique, which applies 

planarization, etch back, and template-stripping to expose the excitation 

hotspot at the surface, providing a major improvement over conventional 

electron-beam lithography approaches. We show the fabrication of large flat 

surface arrays of planar nano-antennas featuring gaps as small as 10 nm with 

sharp edges, excellent reproducibility and full surface accessibility of the 

hotspot confined regions. We further demonstrate that this novel fabrication 

approach drastically improves the optical performance of plasmonic nano-

antennas to yield giant fluorescence enhancement factors up to 104 -105 

times, outperforming previous plasmonic antenna realizations. This method 

is fully scalable and adaptable to a wide range of antenna designs.  

 

2The content of this chapter has been partially published in: 

Flauraud, V., Regmi, R., Winkler, P.M., Alexander, D.T., Rigneault, H., van Hulst, N.F., 

García-Parajo, M.F., Wenger, J. and Brugger, J., In-plane plasmonic antenna arrays with 

surface nanogaps for giant fluorescence enhancement. Nano Letters, 17(3), pp.1703-1710. 
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In the following chapters, we will show applications of this type of planar 

nanogap antenna arrays to study the spatiotemporal organization of 

biological membranes with unprecedented ultra-high spatiotemporal 

resolution. 
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2.1 Introduction 

The working principle of plasmonic nano-antennas is to take advantage of the 

plasmonic response of noble metals to strongly confine light energy into nanoscale 

dimensions and breach the classical diffraction limit.95,96,125 This confinement leads 

to a drastic enhancement of the interactions between a single quantum emitter and 

the light field,126–129 enabling large fluorescence gains above a thousand fold,99–

103,118 ultrafast picosecond emission130–132 and photobleaching reduction.133,134 With 

a view to biological applications, the two main advantages of plasmonic antennas 

are: first, the enhanced electromagnetic field leading to large fluorescent 

enhancement and second, the high field localization into confined nanometric 

hotspots allowing for impressive reductions of the illumination volume. Together, 

this ensures the detection of single molecules at physiologically relevant 

micromolar concentrations.79,80,82 

Biological applications of nano-antennas require the large-scale availability of 

narrow accessible gaps. Not only should nanogaps with sub-20 nm dimensions be 

reproducibly fabricated, but also the gap region (plasmonic hotspot) must remain 

accessible to probe fluorescently labeled molecules diffusing within a membrane 

and preventing undesired membrane curvature. Despite impressive recent 

progress using electron beam135, focused ion beam136 or stencil 

lithographies104,137,138, or alternatively with bottom-up self-assembly 

techniques100,117,128–130,139–141, the challenges of reliable narrow gap fabrication and 

hotspot accessibility remain major hurdles limiting the impact and performance of 

plasmonic nano-antennas. For instance, when aiming for the fabrication of aperture 

antennas, electron beam lithography (EBL) using a positive-tone resist requires 

metal dry etching, which produces high line-edge roughness that is not suited for 

the definition of reliable and high aspect ratio nanogaps. Alternatively, patterning 

openings in metal films relying on EBL and negative-tone resist demands a lift-off 

approach. This is an efficient approach when lifting a full metal film for fabricating 

single particles but can be arduous when removing small isolated clusters of metal 

to clear apertures. 

In this chapter we describe a novel nanofabrication technique based on EBL 

followed by planarization, etch back and template stripping. The process provides 

large arrays of planar nano-antennas featuring 10 nm gaps with sharp edges and 

full accessibility of the localized hotspot illumination provided by the antenna gap. 

We further characterize the performance of these antennas by means of 
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fluorescence correlation spectroscopy of individual molecules in solution. As such 

are these planar antenna arrays ideally suited for research on model and living cell 

membranes, as it will be shown in the subsequent chapters of this thesis. 

2.2 Methods 

In this section, the methods used for this PhD project to fabricate and benchmark 

the performance of the planar nano-antennas are outlined in detail. Note that some 

of the methods and theoretical principles have been used throughout the different 

PhD research topics. In this Methods section, the theoretical and experimental 

principles of fluorescence correlation spectroscopy are introduced at first. Next, we 

introduce the basics of single-molecule detection, highlighting those properties 

that are modified by the interaction between single molecules and nano-antennas. 

The final paragraphs of this section comprise the details of the experimental 

realizations.  

2.2.1 Principles of Fluorescence Correlation Spectroscopy (FCS)  

As introduced in Chapter 1, FCS has been broadly applied to probe the mobility and 

interaction behavior of fluorescently tagged (bio)molecules diffusing in and out of 

a confocal detection volume (Figure 2-1).142,143 By diluting the concentration of the 

target molecules down to the pM range, fluorescence fluctuations recorded over 

time reveal the characteristic diffusion properties of individual molecules. This 

condition to achieve single-molecule detection for FCS in a diffraction-limited 

confocal spot is significantly more challenging to attain in the crowded 

environment of living cells. Therefore, the common approach has been to under-

label the molecule of interest. A different approach to reach single-molecule 

sensitivity at physiologically relevant concentrations while simultaneously 

guaranteeing a reliable signal-to-background ratio, are plasmonic nano-antennas. 

The challenges as well as the insights into fundamental biological questions 

obtained by combining nano-antennas with FCS are extensively discussed in this 

dissertation.  

Nonetheless, the theoretical and experimental principles of FCS in confocal as well 

as with nano-antennas are explained first. The integral parts of a confocal FCS setup 

are an excitation laser focused on the sample through a high NA objective. Once a 

fluorescently labeled molecule diffuses through the focused illumination spot, it 

becomes excited and its fluorescent emission is separated from the excitation laser 

via a dichroic mirror and additional filters. The confocal z-sectioning is achieved 
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through a correctly placed pinhole in the detection arm. The emission is collected 

by a detector, which is most commonly implemented by splitting the emission onto 

two avalanche photon diodes (APDs). The fluorescent emission or fluctuations of 

the molecules diffusing through the illumination volume are recorded in time 

(Figure 2-1 b). 

 

Figure 2-1. Fluorescence Correlation Spectroscopy (FCS) in a confocal configuration. The scheme 

of a typical confocal FCS setup is shown in (a). Within the illumination volume in the sample plane, the 

fluorescent molecules are diffusing in and out, giving rise to fluorescent fluctuations which are 

collected back in reflection mode through the same high NA objective, separated from the excitation 

laser light by a dichroic mirror and filters, and detected through a pinhole. The fluorescent fluctuations 

are recorded over time (b) and then the corresponding autocorrelation curve is calculated (c). From 

this autocorrelation curve the number of molecules and characteristic diffusion time, i.e., the time the 

fluorescent molecules require to transit the illumination volume, can be extracted. 

Autocorrelation curves are then generated over multiple trajectories (Figure 2-1 

c). The autocorrelation curves contain relevant information about the dynamics of 

the diffusing molecules. From these curves quantitative information such as the 

diffusion time and mode, chemical reaction rates, hydrodynamic radii as well as the 

average number of molecules can be extracted. In particular, the diffusion time, i.e., 
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the time it takes for a molecule to traverse the illumination volume, can be directly 

estimated at half of the amplitude of the autocorrelation function (see Figure 2-1 

c). In addition, the apparent number of molecules within the illumination volume 

can be extracted from the inverse of the autocorrelation curve at a lag time equaling 

zero (see Figure 2-1 c). 

In the case of single-molecule experiments it is valid to assume that all occurrences 

affecting the diffusion of the molecule during the measurement time are encoded 

in the fluorescence intensity time traces. The challenge is to obtain a reliable signal-

to-noise ratio (SNR). The statistics and hence the number of molecules diffusing 

randomly in and out of a detection volume are represented by a Poisson 

distribution, with the sample variance equaling the average number 〈(𝜹𝑵)𝟐〉 =

 〈𝑵〉. The average or mean intensity of the detected fluorescence fluctuation 

intensity is directly proportional to the number of molecules 〈𝑭〉 =  𝜶〈𝑵〉, assuming 

a proportionality factor α. Consequently, 

 〈(𝜹𝑭)𝟐〉 =  𝜶𝟐〈(𝜹𝑵)𝟐〉 =  𝜶𝟐〈𝑵〉 Eq. 2-1 

and after normalization: 

 
〈(𝜹𝑭)𝟐〉

〈𝑭〉𝟐
= 

𝟏

〈𝑵〉
. Eq. 2-2 

An important remark is that the concentration is also directly proportional to the 

average number of particles and hence can be simultaneously deduced from the 

measured fluorescence intensity. 

Switching to the case of a FCS experiment under constant excitation laser power 

conditions, the fluorescence fluctuations 𝜹𝑭(𝒕) are defined as deviations from the 

temporal average of the detected signal over the time T,  

 𝜹𝑭(𝒕) = 𝑭(𝒕) − 〈𝑭(𝒕)〉 with 〈𝑭(𝒕)〉 =  
𝟏

𝑻
∫ 𝑭(𝒕)𝒅𝒕.
𝑻

𝟎
 Eq. 2-3 

For a single molecule diffusing in equilibrium conditions, the fluorescence 

fluctuations may arise from changes in its absorption cross-section (𝜹𝝈), quantum 

yield (𝜹𝝓) and or local concentration variations in the detection volume (𝜹𝑪(𝒓⃑ , 𝒕)) 

and in summary 𝜹(𝝈𝝓𝑪(𝒓⃑ , 𝒕)). Thus, the detected deviations in the fluorescence 

signal are described as: 
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 𝜹𝑭(𝒕) =  𝜿∫ 𝑰𝒆𝒙𝒄(𝒓⃑ )
𝑽

𝑺(𝒓⃑ )𝜹(𝝈𝝓𝑪(𝒓⃑ , 𝒕)) 𝒅𝑽 Eq. 2-4 

with κ being the detection efficiency, 𝑺(𝒓⃑ ) the optical transfer function and the 

excitation intensity distribution 𝑰𝒆𝒙𝒄(𝒓⃑ ), with its maximum at 𝑰𝟎 and V being the 

detection volume.  

To simplify, we introduce the convolution function 𝑾(𝒓⃑ ) =  𝑰𝒆𝒙𝒄(𝒓⃑ ) 𝑰𝟎⁄ ∗  𝑺(𝒓⃑ ), 

which is typically approximated by a three-dimensional Gaussian function.  

 
𝜹𝑾(𝒓⃑ ) =  𝒆

−𝟐
(𝒙𝟐+𝒚𝟐)

𝒓𝟎
𝟐
𝒆
−𝟐
𝒛𝟐

𝒛𝟎
𝟐
 

Eq. 2-5 

This 3-D Gaussian decays to 𝟏 𝒆𝟐⁄  at 𝒓𝟎 and 𝒛𝟎 in the lateral and axial directions, 

respectively. Further, we use the brightness or photon count rate per molecule per 

second: 

 𝑸 =  𝜿𝝓𝝈𝑰𝟎  Eq. 2-6 

leading to: 

 𝜹𝑭(𝒕) =  ∫ 𝑾(𝒓⃑ )
𝑽

𝜹(𝑸𝑪(𝒓⃑ , 𝒕)) 𝒅𝑽 Eq. 2-7 

with the definition of the normalized autocorrelation function (ACF) 𝑮(𝝉) being: 

 𝑮(𝝉) =  
〈𝜹𝑭(𝒕)𝜹𝑭(𝒕 + 𝝉)〉

〈𝑭(𝒕)〉𝟐
. Eq. 2-8 

We compute 𝑮(𝝉) from the fluorescence signal with respect to its self-similarity 

after a given lag time τ. Thus, the normalized variance of the signal of the 

fluorescence fluctuation 𝜹𝑭(𝒕) yields the ACF amplitude 𝑮(𝟎).  

Inserting Eq. 2-8 we obtain:  

 𝑮(𝝉) =  
∬𝑾(𝒓⃑ )𝑾(𝒓⃑ ′)〈𝜹(𝑸𝑪(𝒓⃑ , 𝒕))𝜹(𝑸𝑪(𝒓⃑ ′, 𝒕 + 𝝉))〉𝒅𝑽𝒅𝑽′

(∫𝑾(𝒓⃑ ) 〈𝜹(𝑸𝑪(𝒓⃑ , 𝒕))〉𝒅𝑽)
𝟐

. Eq. 2-9 
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We can separate the fluctuation term: 𝜹(𝑸𝑪(𝒓⃑ , 𝒕)) = 𝑪𝜹𝑸 + 𝑸𝜹𝑪, and assuming 

that the properties of the fluorescent molecule are constant over the duration of 

the measurement, 𝜹𝑸 = 𝟎, we further simplify to:  

 𝑮(𝝉) =
∬𝑾(𝒓⃑ )𝑾(𝒓⃑ ′)〈𝜹𝑪(𝒓⃑ , 𝟎)𝜹𝑪(𝒓⃑ ′, 𝝉)〉𝒅𝑽𝒅𝑽′

(〈𝑪〉∫𝑾(𝒓⃑ ) 𝒅𝑽)𝟐
. Eq. 2-10 

Since we are looking at a molecule diffusing freely in 3D (n = 3) with a diffusion 

coefficient D we can replace  

 

〈𝜹𝑪(𝒓⃑ , 𝟎)𝜹𝑪(𝒓⃑ ′, 𝝉)〉 = 

〈𝑪〉
𝟏

(𝟒𝝅𝑫𝝉)−𝒏 𝟐⁄
𝒆−
(𝒓⃑ −𝒓⃑ ′)

𝟐

𝟒𝑫𝝉
𝒏=𝟑
→  〈𝑪〉

𝟏

(𝟒𝝅𝑫𝝉)−𝟑 𝟐⁄
𝒆−
(𝒓⃑ −𝒓⃑ ′)

𝟐

𝟒𝑫𝝉  
Eq. 2-11 

and we establish 𝝉𝑫 as the characteristic diffusion or transit time of the molecule 

diffusing through the detection volume which is related to the diffusion coefficient 

as:  

 𝝉𝑫 = 
𝒓𝟎
𝟐

𝟒𝑫
 Eq. 2-12 

and the effective confocal detection volume is specified as:  

 𝑽𝒆𝒇𝒇 =
(∫𝑾(𝒓⃑ )𝒅𝑽)𝟐

∫𝑾𝟐(𝒓⃑ )𝒅𝑽
=  𝝅

𝟑
𝟐𝒓𝟎
𝟐𝒛𝟎. Eq. 2-13 

Hence, we obtain the ACF for one species of molecule diffusing freely in 3D: 

 

𝑮(𝝉) =
𝟏

〈𝑪〉𝑽𝒆𝒇𝒇

𝟏

𝟏 + 𝝉 𝝉𝑫⁄

𝟏

√𝟏 + (𝒓𝟎 𝒛𝟎⁄ )𝟐(𝝉 𝝉𝑫⁄ )
= 

= 
𝟏

〈𝑵〉

𝟏

𝟏 + (𝝉 𝝉𝑫⁄ )

𝟏

√𝟏 + (𝒔)𝟐(𝝉 𝝉𝑫⁄ )
 

Eq. 2-14 

with 〈𝑵〉 = 〈𝑪〉𝑽𝒆𝒇𝒇 denoting the average number of molecules and 𝒔 = 𝒓𝒐 𝒛𝟎⁄  the 

ratio of the lateral to the axial dimension of the detection volume.  

With a careful calibration of the detection volume at the beginning of the 

experiment the values of 𝒓𝑜 and 𝒛𝒐 can be determined. So, we finally recognize that 
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the amplitude of the ACF at zero lag time is inversely proportional to the average 

number of molecules in the detection volume G(𝟎) =  𝟏 〈𝑵〉⁄ . 

Over the course of this PhD research we often detect the fluorescence intensity of 

the red Alexa 647N dye, which has many advantageous properties, but it is also 

prone to transit to the dark triplet state with a probability of 0.3. Thus, the 

assumption that the count rate of the fluorophore (Eq. 2-6) is constant over the 

duration of the measurement (𝜹𝑸 = 𝟎) is not accurate anymore and is accounted 

for by a simple exponential decay for the triplet state, which improves the fitting 

satisfactorily already:  

 

𝑮(𝝉) = 

= 
𝟏

〈𝑵〉
(𝟏 −

〈𝑩〉

𝑭
)

𝟐

[𝟏 + 𝜼𝑻𝒆
−
𝝉
𝝉𝒃𝒕]

𝟏

𝟏 + (𝝉 𝝉𝑫⁄ )

𝟏

√𝟏 + (𝒔)𝟐(𝝉 𝝉𝑫⁄ )
 

Eq. 2-15 

adding the background noise 〈𝑩〉, the amplitude 𝜼𝑻 and blinking time 𝝉𝒃𝒕 of the dark 

triplet state population. Note that this fitting is used to routinely calibrate the 

confocal detection volume. 

The last addition to the toolbox of describing the diffusion behavior frequently 

observed during this research is the correlation curve of a 2D Brownian motion. 

When probing within a 2D surface we assume 𝒛𝟎 ≫ 𝒓𝒐 and in Eq. 2-11 we replace 

n = 2. Thus, in model and living cell membranes we encounter that the mobility of 

molecules is confined into two dimensions, so that: 

 𝑮(𝝉) =
𝟏

〈𝑵〉
(𝟏 −

〈𝑩〉

𝑭
)

𝟐

[𝟏 + 𝜼𝑻𝒆
−
𝝉
𝝉𝒃𝒕]

𝟏

𝟏 + (𝝉 𝝉𝑫⁄ )
 Eq. 2-16 

The last three equations describing the ACFs, i.e., Eq. 2-14, Eq. 2-15, Eq. 2-16, are 

exploited as fitting models to quantify the diffusion properties of the molecules 

studied in the FCS experiments. In our work we focus on determining the 

characteristic diffusion time and the correlation amplitude at zero lag time (which 

is inversely proportional to the average number of molecules). Depending on the 

system under study we choose the appropriate ACF to fit the experimental data. 
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As described below in detail, the nano-antennas used during this PhD research are 

based on a “antenna-in-box” geometry with a dimer nanogap antenna centered 

inside a nano-aperture, i.e., box (see also Figure 1-5 b, c). The central nanogap 

antenna provides the nanoscale plasmonic hotspot, while the nano-aperture 

reduces the fluorescence background by preventing excitation of the molecules 

outside the nanogap.118 When treating the fluorescence data obtained with nano-

antennas, we acknowledge that the description of a Gaussian profile for the light 

confined at the antenna hotspot, does not hold. However, in contrast to earlier 

works on plasmonic antennas which required a special data fitting procedure117,118 

including two species of fluorophores with different numbers of molecules and 

brightness, we apply a two-component ACF fitting of the diffusion behavior (Eq. 

2-14, Eq. 2-15, Eq. 2-16) best describing the diffusion dynamics under 

study.119,122,124 The first component of the ACF fit results from the enhanced 

fluorescent counts of molecules diffusing through the nanogap and yields a faster 

diffusion time than the second component accounting for the background 

contribution. The second fit component yielding longer diffusion times is similar to 

the confocal excitation as well as to the two control cases of measuring on the nano-

aperture without the antenna (approximately the size of a diffraction-limited spot) 

or when the excitation polarization is shifted by 90°, so that the antenna is no 

longer in resonance. We set the condition that the sum of both components equals 

the total fluorescence intensity. In our case, the signal from the hotspot of the 

planar nanogap antennas largely dominates over the background. Without any 

additional correction factor for the detection volume and keeping the Gaussian 

profile assumption, we obtain fitting results matching our expectations. Namely, 

the diffusion time across the gap linearly increases with increasing gap size. In 

contrast, we observe a decreasing correlation amplitude at zero lag time with 

increasing gap size corresponding to few molecules transiting the gap and thus a 

reduction of the detection volume.  

2.2.2 Influence of nano-antennas on the fluorescent properties of 
single emitters 

The fundamental diffraction limit of light sets the boundary for the minimal 

confinement of propagating electromagnetic fields (e.g. light) to roughly half of its 

wavelength when using conventional optics. In contrast, photonic nano-antennas 

efficiently squeeze the light to nanometric dimensions significantly defying the 

diffraction limit.95,144 The choice of the metallic composition and geometrical design 

defines the properties of a nano-antenna such as the wavelength of its plasmonic 
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resonance lying in the visible spectrum. The near-field is directly proportional to 

the surface charge density. Sharp curvatures or tips of a metal surface exhibit an 

increased surface charge density. Thus, sharp tips and edges of a nano-antenna will 

exhibit a local increase of surface charge density affording hotspots of enhanced 

near-field.  

A single emitter (e.g. fluorescent dye molecule) coupling to the near-field of 

impinging optical radiation (e.g. laser light excitation) strongly experiences the 

presence of a nano-antenna.145 Namely, the nano-antenna influences both, the 

effective excitation of the molecule via near-field enhancement and the decay rates 

of the fluorescence emission. The details of the modulations on the properties of 

the emitters due to the presence of the nano-antenna are discussed below. 

At the hotspot of the antenna, the locally enhanced near-field increases the 

absorption rate for the single emitter provided that the absorption spectrum of the 

emitter matches with the plasmonic resonance. The degree of the near-field 

enhancement further depends on the position and orientation of the emitter with 

respect to the nano-antenna.146 

Once the incident radiation is absorbed by the emitter, its electrons are excited 

from the ground state to populate a higher energy state. From this excited transient 

state, the electrons relax back into the stable ground state via radiative or non-

radiative emission.143 Further non-radiative relaxation pathways are internal 

conversion (𝜞𝒊𝒄), intersystem crossing (𝜞𝒊𝒔𝒄) and triplet state de-excitation (𝜞𝒑𝒉). 

The sum of the relaxation mechanisms from the excited down to the ground state 

via radiative (𝜞𝒓𝒂𝒅) or non-radiative emission (𝜞𝒏𝒓) is called the total de-excitation 

rate 𝜞𝒕𝒐𝒕 and is inversely proportional to the characteristic fluorescence lifetime of 

the emitter 

 𝝉 =
𝟏

𝜞𝒓𝒂𝒅 + ∑𝜞𝒏𝒓
=

𝟏

𝜞𝒕𝒐𝒕
. Eq. 2-17 

This characteristic fluorescent lifetime 𝝉 is highly sensitive to the local 

environment. Thus, the presence of a nano-antenna in close proximity to the 

emitter will significantly modify its fluorescence lifetime. For instance, it can 

potentially alter the radiative rate of the molecule 𝜞𝒓𝒂𝒅  by modifying the local 

density of states (LDOS)146, and/or opening up additional non-radiative decay 

channels 𝜞𝒏𝒓 due to metallic losses 𝜞𝒍𝒐𝒔𝒔 of the nano-antenna.147 
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Another parameter quantifying the excitation and relaxation process of an emitter 

is the fluorescent quantum yield ϕ. ϕ refers to the number of photons emitted with 

respect to the number of absorbed photons, i.e., the efficiency of radiative events. 

Relating to the previously introduced rates in Eq. 2-17, the fluorescent quantum 

yield is defined as the rate of photon emission events over the summed rate 

constants of all de-excitation channels as:  

 𝝓 = 
𝜞𝒓𝒂𝒅

𝜞𝒓𝒂𝒅 +∑𝜞𝒏𝒓
.  Eq. 2-18 

Denoting 𝜿 as the light collection efficiency and assuming steady-state excitation, 

the collected count rate per fluorescent molecule, also known as brightness per 

molecule, can be described as:  

 𝑸 = 
𝜿𝝓𝝈𝑰𝒆𝒙𝒄

𝟏 + 𝑰𝒆𝒙𝒄 𝑰𝒔𝒂𝒕⁄
  Eq. 2-19 

with 𝝈 being the excitation cross section of the emitter, 𝑰𝒆𝒙𝒄 the excitation intensity 
and the saturation intensity 𝐈𝐬𝐚𝐭 = 𝚪𝐭𝐨𝐭 𝛔(𝟏 + 𝚪𝐢𝐬𝐜 𝚪𝐩𝐡⁄ )⁄ . At low excitation 

conditions [𝑰𝒆𝒙𝒄 ≪ 𝑰𝒔𝒂𝒕], the collected count rate simplifies to 𝑸 =  𝜿𝝓𝝈𝑰𝒆𝒙𝒄 
resulting in Eq. 2-6 as introduced above. 

Once the excitation intensity equals or exceeds the saturation intensity, the count 

rates no longer scale linearly with the excitation intensity. This regime should be 

avoided by all means for fluorescence experiments in biological systems due to 

phototoxic damage of biomolecules, living cells and tissue.  

The last important parameter to be introduced is the fluorescent enhancement 

factor 𝜼𝑭, which can be expressed as:146,148 

 𝜼𝑭 = 
𝑸∗

𝑸𝒄𝒐𝒏𝒇
~ 

𝝓∗𝝈∗

𝝓𝒄𝒐𝒏𝒇𝝈𝒄𝒐𝒏𝒇
 Eq. 2-20 

with 𝑸∗ being the brightness per molecule, quantum yield 𝝓∗ and absorption cross 

section 𝝈∗ in presence of the nano-antenna and 𝑸𝒄𝒐𝒏𝒇, 𝝓𝒄𝒐𝒏𝒇 and 𝝈𝒄𝒐𝒏𝒇, the ones in 

the confocal detection volume, i.e., in the absence of the nano-antenna. As indicated 

in Eq. 2-20 the enhancement factor 𝜼𝑭 leading to a gain in the collected count rate 

or brightness per molecule in the presence of a nano-antenna obtained in 

experiments mainly arises due to  
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• enhanced local near-field excitation increasing the effective absorption of 

the emitter 

• increased fluorescent quantum yield of the emitter (avoiding emitter – 

antenna coupling that could lead to quenching). 

These contributions can be adjusted and tuned collectively or independently by a 

careful choice of the nano-antenna design and the fluorescent dye. Any increased 

contribution results in an enhanced fluorescent count rate per molecule. With 

regard to the nano-antenna design, the desirable choices include sharp tips or 

narrow gaps ensuring highly localized excitation enhancement and easy access to 

the excitation hotspot. But the tuning range for the fluorescent dye should not be 

neglected in the experiment design. Higher fluorescent enhancement factors are 

achieved with initially low quantum yield dyes (i.e., in the absence of the nano-

antenna) since in this case the competition between the radiative and non-radiative 

decay channels of the molecule can be tuned to favor increased emission.  

2.2.3 Time Correlated Single-Photon Counting (TCSPC) 

TCSPC is a sensitive method to measure the fluorescent lifetime of emitters with 

extremely high temporal resolution, typically a few ps. This technique detects 

single photons with high precision in the time domain and is broadly applied for 

fluorescence lifetime imaging149 and/or to determine the Förster resonance energy 

transfer (FRET) efficiency between close-by emitters.150 TCSPC is based on pulsed 

laser excitation at high repetition rate.151 Each pulse excites the emitter to a higher 

energy level and probes the rate of the bright and dark de-excitation pathways as 

explained in the Section 2.2.2.  

Every TCSPC measurement extends over a multitude of pulsed excitation cycles to 

build up the characteristic histogram of the photon arrival time at the detector with 

enough statistics. This histogram is actually a probability distribution and can be 

fitted with a single exponential decay (assuming a Poisson distribution of the 

photon arrival times) to extract the molecular fluorescence decay rate/lifetime. 

In relation to this PhD research we exploit the TCSPC approach to evaluate how 

nano-antennas influence the radiative and non-radiative rates of individual 

molecules via the measurement of their fluorescence lifetime. 
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2.2.4 Experimental setup for fluorescence spectroscopy  

The experiments have been performed using an inverted confocal microscope with 

a Zeiss 40×, 1.2 NA water-immersion objective and a three-axis piezoelectric stage 

allowing to select individual nano-antennas at the Institut Fresnel in Marseille in 

the group of Prof. H. Rigneault and in collaboration with Dr. J. Wenger. The 

excitation for FCS and fluorescence burst experiments was provided by a linearly 

polarized He-Ne laser at 633 nm. For fluorescence lifetime measurements, the 

excitation source was a picosecond laser diode operating at 636 nm and 80 MHz 

repetition rate (Pico-Quant LDH-P-635). The fluorescence signal was collected in 

epi-detection mode through a dichroic mirror and a stack of two long-pass 650 nm 

filters to reject the backscattered laser light and maximize fluorescence collection. 

The detection was performed by two avalanche photodiodes (PicoQuant MPD-

5CTC) after passing through a 30 μm pinhole conjugated to the focus plane. The 

fluorescence time traces for burst analysis and lifetime histograms were recorded 

on a fast time-correlated single photon counting module in time-tagged time-

resolved mode (PicoQuant PicoHarp 300). The concentration of fluorescent 

molecules was measured with extinction spectroscopy and confirmed by confocal 

FCS experiments on a series of dilutions. In the photon count histograms, we 

determine the peak fluorescence intensity by the intercept of the fitted exponential 

decay with the x-axis at 100. Events of lower probabilities within the 30 s 

experiment duration and events lying above this level (corresponding to the 

presence of two molecules within the hotspot) are discarded. The temporal 

fluctuations of the fluorescence intensity F(t) were analyzed with a hardware 

correlator (Flex02-12D/C correlator.com, Bridgewater NJ) to compute the temporal 

correlation of the fluorescence signal. 

2.2.5 Fabrication of planar nano-antenna arrays with different 
gap sizes 

The fabrication of the nano-antenna arrays used during this research was 

performed at the EPFL in the group of Prof. J. Brugger within the framework of a 

European collaboration. 

Silicon wafers (100 mm diameter, prime grade) were cleaned following the 

standard RCA-1/2 procedure prior to the low-pressure chemical vapor deposition 

of 100 nm-thick silicon nitride. Hydrogen silsesquioxane (HSQ) 4% (Dow Corning) 

was spun at 1500 rpm for 240 seconds yielding an approximately 100 nm-thick 

coating. The samples were then exposed by electron beam lithography (VISTEC 



Planar gold nanogap antennas: Fabrication and Performance 

51 

EBPG5000+, 100 kV) using a 1 nm grid and a 2 nA beam (5 nm FWHM). Short range 

dose corrections were used to increase feature accuracy and reliably pattern the 

sub-10nm features that define the narrowest gaps. After exposure, the samples 

were developed at room temperature in 25% tetramethylammonium hydroxide 

(TMAH) for two minutes, rinsed in deionized water and isopropanol prior to drying 

in order to avoid capillary force induced collapse of the narrowest features. A gold 

layer of 50 nm thickness was then evaporated by electron beam heating at a 

pressure of 8×10-7 mBar on static substrates ensuring normal incidence of the 

metal flux. The stage was cooled at -50 °C throughout the evaporation (Huber 

Unistat 705w) to ensure small grain size allowing for high feature accuracy.  

In order to planarize the sample, flowable oxide (Dow Corning FOX-16) was then 

spun at 1000 rpm for 240 seconds yielding a 1 µm-thick film with a residual 

topography above the structures of interest below 10 nm. Broad argon ion beam 

milling (Veeco Nexus IBE350) performed at -45° sample tilt was then used to etch 

back the flowable oxide until the top gold caps were fully etched. End-point 

detection was performed by monitoring the gold signal on a secondary ion mass 

spectrometer. A 30 second etch with hydrofluoric acid diluted 1:10 in deionized 

water was used to clear out the residual HSQ in the antenna apertures. The wafer 

was then cleaved into individual dies.  

For template stripping, microscope coverslips (30 mm diameter, 150 µm thickness) 

were cleaned in piranha solution and surface activated by oxygen plasma (Tepla 

Gigabtach 1000W, 500 SCCM O2). Then the coverslips were brought into contact 

with the gold substrates with a small drop of UV curable OrmoComp (Microresist 

Technology GmBH) and cross-linked under UV and light pressure (ESCO EUN-4200 

375nm, 2.5mW/cm2) for 3 minutes followed by separation of the glass from the 

silicon with a razor blade. Additional samples were fabricated to perform high 

resolution metrology and EELS characterization following a similar process 

without template stripping. The TEM membranes were fabricated at wafer-scale by 

using 30 nm LPCVD silicon nitride that was released in 100 × 500 μm2 windows 

from the backside by potassium hydroxide wet etching. 

2.2.6 Metrology and statistics of gap sizes 

Sample imaging was performed by scanning electron microscopy (Zeiss Merlin) to 

measure the features before (20 kV, 360 pA, 1mm working distance and in-lens 

detector) and after template stripping (2 kV, 80 pA, 3 mm working distance and in-
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lens detector). Topography was measured by atomic force microscopy (Bruker 

FastScan) in both ScanAsyst PeakForce tapping and tapping mode. For high 

resolution metrology statistics, imaging was performed both in TEM and STEM 

mode (FEI Talos) and processed with a custom Matlab toolbox. 

2.2.7 EELS measurements and data processing  

STEM-EELS maps were acquired using a FEI Titan Themis 60-300 equipped with a 

Wien-type monochromator and a Gatan GIF Quantum ERS spectrometer. A 300 keV 

incident electron beam was used for all experiments, monochromated to give an 

energy spread of ~110 meV FWHM in the zero-loss peak of elastically-scattered 

electrons, and with beam currents of ~240 pA. A 17 mrad convergence semi-angle 

of the probe and a 22 mrad collection semi-angle on the spectrometer were used, 

with the probe having a mean diameter of < 1 nm for full width at tenth maximum 

in incident intensity. Mapping was performed using the “ultrafast” spectrum 

imaging mode with typical dwell times of 0.20 to 0.26 ms per pixel, and with the 

probe rastered in (x, y) step sizes of 0.5–0.6 nm for a total of > 105 pixels per map. 

Each map was treated with the HQ Dark Correction plugin to reduce noise 

associated with dark current subtraction. 

The EELS data cubes were processed using Gatan Digital Micrograph and custom 

Matlab scripts for the removal of the background from the tails of the zero-loss 

peak (ZLP), extraction of point spectra and spatial EELS maps. The ZLP was first 

centered pixel by pixel using a Gaussian-Lorentzian approximation. Following 

zero-loss alignment, each data cube was spectrally cropped to the region of interest 

including ZLP (-2 to 4 eV), and artifacts from cosmic rays were removed. To account 

for the absorption and scattering inside the Au film, the data cubes were 

normalized by dividing each pixel-spectrum by the integrated zero-loss fit. Spectra 

were integrated over a 30 × 30 pixel region of interest centered around the point 

overlaid on the STEM image, whereas EELS maps were typically integrated over a 

window of 0.06 eV in energy range. All of the experiments described in Section 2.3 

for Figure 2-2, Figure 2-3 and Figure 2-4 were performed at the EPFL by our 

collaborators prior to the transfer of the antennas to us.  

2.3 Results and Discussion 

Our novel antenna design is based on the “antenna-in-box” platform featuring a 

nanogap dimer antenna inside a nanobox.118,121 This design is especially tailored for 

enhanced single-molecule analysis in solutions at high concentrations. It combines 
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a central nanogap antenna between two 80 nm gold half-spheres to create the 

hotspot used for fluorescence enhancement, and a cladding 300 × 140 nm² box, to 

screen the background by preventing direct excitation of molecules diffusing away 

from the nano-antenna gap. 

Figure 2-2 a summarizes the different steps of our fabrication process. First, we use 

EBL on a negative tone hydrogen-silsesquioxane (HSQ) resist (step I Figure 2-2 a). 

HSQ features a high patterning resolution below 10 nm, as well as a high post-

processing stability due to its inert inorganic SiOx nature. After EBL patterning, a 

50 nm-thick gold film is evaporated at low temperature (step II) to reduce the gold 

grain size by approximately a factor of two as compared to room temperature 

evaporation. Then flowable oxide (HSQ) is spun to planarize the overall structure 

(step III) and to allow for a subsequent etch back (step IV) that selectively removes 

the sacrificial top metal layer in order to clear out the aperture geometry. This 

process is uniformly carried out at a 100 mm wafer-scale and reliably results in the 

opening of all antennas at once after wet etching the HSQ (Step V). We point out 

that doing a conventional lift-off without this etch back step is ineffective to remove 

the top metal sacrificial layer due to hydrophobic interactions. 

As becomes visible in the tilted SEM view of an opened “antenna-in-a-box” in Figure 

2-2 b, the gold sidewalls yield a tapering angle due to metal diffusion during the 

evaporation. Therefore, the narrowest gap region, here ~12 nm, lies at the bottom 

of the antenna close to the substrate interface. Such a hotspot position is 

impractical for biological and fluorescence enhancement applications, where the 

narrowest gap position should be on the top surface of the antenna to maximize the 

contact with the sample (solution). We thus implemented a template stripping 

approach (step VI Figure 2-2 a),152,153 whereby the gold structures are transferred, 

and flipped over, onto a microscope coverslip to facilitate access to the narrowest 

and brightest region of the nanogap. Figure 2-2 c, d show a comparison via SEM 

imaging before and after template stripping, the gap size apparent on the top 

surface seems slightly reduced after stripping, mostly due to charging during 

imaging. Additionally, only the narrowest gap region emerges on a flat top surface 

(Figure 2-2 e, f) enabling maximum fluorescence enhancement in a minimal near-

field probe volume. 
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Figure 2-2. Fabrication and topography of planar nanogap antenna arrays. (a) The antenna 

fabrication process flow is performed on a silicon nitride on silicon thin-film. The HSQ resist is 

patterned by electron-beam lithography (I) followed by gold evaporation (II), flowable oxide is spun for 

planarization (III) followed by etch back by Ar ion beam etching (IV), wet etching of the remaining HSQ 

(V) and final template stripping by UV curable adhesive (VI). (b) Tilted SEM view of an opened 

“antenna-in-box” before template stripping. The smallest part of the gap, here ~12 nm, lies at the 

surface level. A similar structure is imaged from the top before (c) and after (d) template striping. 

Dimensions are preserved and the space surrounding the antenna is filled by the UV curable polymer as 

seen in the AFM image (e) showing less than 5 nm residual topography. Panel (f) shows two AFM 

profiles averaged over 20 line-scans before (dashed blue) and after (red) template stripping of the 50 

nm-thick gold structure. Scale bars are 100 nm.  

Our fabrication method is fully general, allowing for the design of arbitrary planar 

geometries. It is conveniently performed on conductive silicon substrates so that 

the final structures may be subsequently transferred to arbitrary substrates such 

as microscope coverslips, avoiding the need for a supplementary adhesion layer 

that can damp the plasmonic performance.154 Additionally, the last template 

stripping step may be performed just before the final measurements, so the 

antenna hotspot is protected from surface contaminants during storage. 

Transmission electron microscopy (TEM) was used to accurately quantify the 

dispersion in the antenna dimensions and to assess the reproducibility of the 

fabrication method. Figure 2-3 a shows TEM images of two representative 

“antenna-in-box“ designs of 10 and 35 nm gap size, respectively. 



Planar gold nanogap antennas: Fabrication and Performance 

55 

 

Figure 2-3. TEM metrology. (a) TEM images of two examples of the gold “antenna-in-box” design of 10 

and 35 nm gap size. (b) Measured gap width of the gold antenna dimer as a function of HSQ structure 

design width. Average gap width and associated standard deviation error bars are displayed for six sets 

of 25 antennas each.  

The same production process, excluding template stripping, was carried out on a 

30 nm-thick freestanding silicon nitride membrane for accurate TEM metrology on 

prototypical arrays of nano-antennas. From the TEM measurements we obtain 

statistics on the actual gap size distribution versus the nominally designed one. The 

resulting gap size distribution confirms that we are able to fabricate gap sizes of 

10-45 nm with narrow dispersions (Figure 2-3 b). Although HSQ is patterned at 

dimensions in the range of 5 nm for the nanogap region, the effective gap size of the 

gold dimer appears systematically larger. As already mentioned, this effect is due 

to a combination of metal diffusion and aperture clogging during evaporation, as 

well as metal wetting and diffusion onto the substrate. It should additionally be 

noted that the low feature density (antenna-to-antenna distance of 4 µm) results in 

negligible contribution from proximity effects in EBL, so that the lithographic 

resolution is equivalent on bulk and membrane substrates, as it is inherently 

limited by forward scattering in both cases.  

To characterize the electromagnetic properties of the nano-antennas we applied 

scanning transmission electron energy-loss spectroscopy (STEM-EELS). The 

advantage of the STEM-EELS technique is that all eigenmodes of the nanostructure 

can be resolved, including the optically dark ones, which are not accessible for far-
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field excitation, since there is no constraint by the selection rules for optical 

transitions. However, the EELS response of the “antenna-in-box” can be quite 

complex because of the influence of the rectangular aperture surrounding the 

dimer antenna. Therefore, we disentangle this complex response by first 

considering the simpler case of a single gold dimer without the surrounding metal 

layer, before inspecting the complete “antenna-in-box” configuration. We find the 

lowest energy mode at 1.78 eV to be the active bonding longitudinal mode which 

we exploit to optically drive the gap enhancement. The longitudinal bonding mode 

is visible at the same energy in both measured dark-field spectra (Figure 2-4 a, b). 

 

Figure 2-4. Overlap between the resonance of the nano-antenna and the fluorescence spectra. (a, 

b) Dark-field scattering spectra for 10 nm (a) and 35 nm (b) gap sizes and two orientations of the 

illumination polarization. (c, d) Spectral overlap of the 10 nm antenna’s response (red lines) with 

parallel orientation compared to the fluorescence spectra for Alexa Fluor 647 (c) and Crystal Violet (d). 

Excitation spectra are shown with dashed lines, emission spectra with solid shaded lines.  

We performed fluorescence experiments to assess the optical performance of the 

nano-antennas and to quantify the fluorescence enhancement together with the 

antenna’s near-field volume. The experiments were performed by covering the 
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sample with a solution containing Alexa Fluor 647 or Crystal Violet fluorescent 

molecules at micromolar concentrations. The absorption and emission spectra of 

both dyes feature a strong overlap with the antenna’s resonance (Figure 2-4 c, d). 

The fluorescence signal was analyzed with FCS and fluorescence burst analysis. FCS 

determines the average number of detected molecules from which we calculate the 

fluorescence brightness per emitter and the effective detection volume, as 

introduced in Section 2.2.1. In order to maximize the fluorescence enhancement 

brought by the nano-antenna, we use low quantum yield emitters: 200 mM of 

Methyl Viologen is added to the solution to quench the Alexa 647 quantum yield to 

8%, and the quantum yield of Crystal Violet (CV) is around 2%.109,114,115,118 

Figure 2-5 a, b display the raw fluorescence intensity time traces and 

corresponding correlation curves with excitation polarization parallel and 

perpendicular to the antenna dimer axis for two different gap sizes of 10 and 35 

nm. Larger fluorescence fluctuations and higher correlation amplitudes are clearly 

observed when the incident electric field is parallel to the antenna axis and when 

the gap size is reduced. This directly evidences the presence of an electromagnetic 

hotspot in the antenna gap region. All experiments are performed at 26 μM 

concentration of Alexa Fluor 647, corresponding to 7630 molecules in the 0.5 fL 

confocal detection volume. The FCS correlation amplitude scales as the inverse of 

the number of fluorescent molecules, so in the confocal reference without the nano-

antenna the FCS amplitude is very low at 1/7630 = 1.3×10−4. In contrast, correlation 

amplitudes of 3.9 are detected with the nano-antenna of 10 nm gap size and 

correspond to an average number of 0.26 molecules diffusing through the hotspot 

at a time. The antenna detection volume can thus be quantified to 17 zL (1 zL = 

10−21 L = 1000 nm3) using the known 26 μM fluorophore concentration. This 

volume corresponds to a value 30 000× times smaller than the diffraction-limited 

confocal volume. The reduction of the detection volume is confirmed by the 

shortening of the diffusion time from 64 µs in the diffraction-limited confocal 

volume to 0.9 µs through the nanogap of the antenna.  

For a molecule undergoing Brownian diffusion, the root mean square of the 

displacement scales as (2 D t )1/2, where D is the diffusion coefficient and t the 

elapsed time. Using this formula with D = 300 µm2/s for Alexa Fluor 647 at 21 °C155 

and t = 0.9 µs, we get a typical size of 23 nm, which corresponds to a 50 zL volume. 

While this number agrees well with the detection volume estimated from the FCS 

correlation amplitude, this approach cannot be used for an accurate measurement 
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of the effective detection volume due to the complex 3D form of the antenna hotspot 

volume and the presence of the interface influencing the Brownian diffusion.  

 

Figure 2-5. Nano-antennas enhance the fluorescence detection of Alexa Fluor 647 molecules in 

solution. (a) Fluorescence time traces and (b) corresponding FCS correlation functions (dots, raw 

data; lines, numerical fits) for nano-antennas with 10 and 35 nm gap sizes with the excitation 

polarization set parallel or perpendicular to the antenna’s main axis. The experimental conditions 

correspond to 26 μM of Alexa Fluor 647 with 200 mM of Methyl Viologen as chemical quencher under 

2.3 kW/cm2 excitation intensity at 633 nm wavelength. (c) Normalized time-resolved decay traces 

show Alexa Fluor 647 fluorescence lifetime reduction as the gap size is reduced. Black lines are 

numerical fits convoluted by the instrument response function (IRF). (d) Scatter plot of the fluorescence 

enhancement versus the nano-antenna’s detection volume as deduced from FCS analysis on 83 different 

nano-antennas. The black line fit follows a power law dependence with a fixed -2/3 exponent. (e) 

Distribution of fluorescence enhancement factors deduced from the data in (d) for different gap sizes. 

(f) Distribution of the nano-antenna detection volume.  

From the same data set we normalize the fluorescence intensity by the number of 

detected molecules to measure the average fluorescence brightness per emitter. 

The number of detected molecules is simply the inverse of the correlation 

amplitude at zero lag time, and the fluorescence brightness per emitter can be 

computed by normalizing the average fluorescence intensity by this number of 

detected molecules. For the antenna with 10 nm gap size, we find a brightness of 
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370 counts/ms. This value is 1 600× higher than the 0.24 counts/ms found for the 

dye in the confocal reference setup, and clearly demonstrates the occurrence of 

large fluorescence enhancement in the nanogap. Simultaneously, the fluorescence 

lifetime is significantly reduced from 380 ± 15 ps in confocal illumination to 45 ± 

10 ps in the 10 nm gap antenna (Figure 2-5 c).  

Several additional test experiments confirm the near-field origin of the FCS signal. 

First, all the relevant observables, nanoscale volume confinement, fluorescence 

enhancement and lifetime reduction, disappear when the laser polarization is 

oriented perpendicular to the main antenna axis or when the gap size is increased. 

We have also performed control experiments on an antenna sample with an extra 

8 nm thick silica layer deposited on top of the antennas to prevent the molecules 

from accessing the hotspot region. In that case, the FCS signal is lost confirming the 

crucial role of the few nanometer region surrounding the antenna gap. A study of 

the excitation power dependence validates that no saturation, photobleaching or 

triplet blinking affect our data. We also checked that the residual background 

luminescence from the gold antenna (in the absence of fluorescent molecules) 

remains negligible and shows no temporal correlation.  

To assess the statistical reproducibility of the antenna fabrication, we repeated FCS 

experiments on a set of more than 80 different antennas and measured for each 

antenna its fluorescence enhancement and near-field detection volume. The scatter 

plot in Figure 2-5 d indicates a clear correlation between the fluorescence 

enhancement and the detection volume following an empirical power law with a 

−2/3 exponent. This exponent value can be understood because the volume scales 

as the cube power of the typical near-field size, while the fluorescence 

enhancement is dominated by the gain in local excitation intensity which scales as 

the square power of the typical near-field size. For each value of the desired 

nominal gap size, the histograms of the fluorescence enhancement and detection 

volume illustrate the statistical dispersion of the data around the average (Figure 

2-5 e, f). This dispersion comes as a natural consequence of the variability of the 

gap sizes as characterized by TEM in Figure 2-3, especially for the smallest gaps 

where a nanometer variation in the gap size can have a large influence on the 

antenna’s performance and the measured enhancement factors. 

Importantly, the performance of these novel plasmonic nano-antennas significantly 

outperforms the values achieved previously using focused ion beam lithography,118 

which obtained at best a 60 zL detection volume and 1 100× fluorescence 
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enhancement for an 11 nm gap size and identical experimental configuration. This 

demonstrates the advantage of back etching combined with template stripping to 

achieve ultra-confined detection volumes of only a few zeptoliters and giant 

fluorescence enhancement factors.  

Emitters with low quantum yields access to higher fluorescence enhancement 

factors, as the nano-antenna provides a larger benefit to increase the emission 

quantum yield99,101 as explained in Section 2.2.2. To probe this effect, we perform 

experiments on Crystal Violet (CV) molecules, which have a 2% quantum yield. 
102,103 The CV solution was set to a concentration of 1 μM in a water-glycerol 1:1 

solution to slow down the diffusion of molecules crossing the antenna hotspot, 

allowing for direct analysis of the fluorescence bursts for individual molecules. 

Using the detection volume estimated previously with FCS, the 1 μM concentration 

ensures that, on average, less than 0.02 CV molecules are present in the 10 nm gap 

region. This low number rules out the possibility that the estimated count rates per 

burst originate from more than one single molecule diffusing in the nanogap. 

Intense fluorescence bursts are clearly detected on the fluorescence time traces 

(Figure 2-6 a-c), with their amplitude decreasing as the gap size is enlarged. This 

feature confirms that the fluorescence bursts stem from the antenna gap region. To 

measure the fluorescence enhancement, we fit the photon count histograms in 

Figure 2-6 d-f with exponentially decaying probability distributions and record the 

maximum peak amplitude in the fitted distribution. The reference peak 

fluorescence count per CV molecule is estimated at 0.18 counts/ms at the same 2.30 

kW/cm2 excitation power, in agreement with values reported independently in 

Refs 102,103. For the smallest 10 nm gap size, the maximum count is 2 750 

counts/ms with a background of 100 counts/ms (set by the fluorescence from the 

CV molecules diffusing away from the hotspot region and the residual 

photoluminescence from the metal). This leads to an impressive fluorescence 

enhancement of 15 000 times.  
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Figure 2-6. Fluorescence enhancement on Crystal Violet molecules measured with fluorescence 

bursts analysis. (a-c) Fluorescence time traces recorded on nano-antennas with increasing gap sizes 

using 1 μM of Crystal Violet in water-glycerol (1:1) solution with 2.3 kW/cm2 excitation intensity at 

633 nm. The binning time is 1 ms. (d-f) Photon count rate histograms deduced from the traces in (a-c). 

The dashed lines are fits by exponentially decaying probability distributions. 

The same procedure performed on Alexa Fluor 647 with 200 mM Methyl Viologen 

(8% quantum yield) indicates a fluorescence enhancement of 5 300× for a 10 nm 

gap size (Figure 2-7). The relative change in the enhancement factors results from 

the differences of the quantum yields between CV and Alexa 647 measurements, 

which is in line with our initial expectations and our measurements. Note that the 

enhancement factor for Alexa 647 estimated from the burst peak intensity is about 

3× higher than the one measured with FCS (Figure 2-5 d), as the burst analysis 

favors the best event when the emitter’s position and orientation lead to the highest 

fluorescence intensity. 
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The measured fluorescence enhancement factors come very close to the values 

predicted theoretically by merging Eq. 2-17 and Eq. 2-18, as introduced in Section 

2.2.2: 

 𝜼𝑭 = 
𝑰𝒆𝒙𝒄
∗

𝑰𝒆𝒙𝒄

𝑰𝒓𝒂𝒅
∗
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𝟏

𝟏 − 𝝓𝟎 + 
𝝓𝟎(𝜞𝒓𝒂𝒅

∗ + 𝜞𝒍𝒐𝒔𝒔
∗ )

𝜞𝒓𝒂𝒅

 
Eq. 2-21 

This equation states that the fluorescence enhancement 𝜂𝐹 is the product of the 

excitation intensity enhancement in the nanogap 𝐼𝑒𝑥𝑐
∗ 𝐼𝑒𝑥𝑐⁄  times the enhancement 

of the radiative decay rates 𝛤𝑟𝑎𝑑
∗ 𝛤𝑟𝑎𝑑⁄  and a third term which depends on the initial 

quantum yield 𝜙0 of the fluorescent molecule and an additional decay rate 𝛤𝑙𝑜𝑠𝑠
∗  

describing the non-radiative energy transfer to the antenna’s material induced by 

ohmic losses. 

 

Figure 2-7. Fluorescence bursts analysis on Alexa Fluor 647 molecules. Fluorescence bursts 

analysis to determine the enhancement factors for Alexa Fluor 647 molecules with 200 mM Methyl 

Viologen. (a-c) Fluorescence time traces recorded on nano-antennas with increasing gap sizes using 1 

µM Alexa Fluor 647 in water-glycerol (1:1) solution with 2.3 kW/cm² excitation intensity at 633 nm. 

The binning time is 10 µs. (d-f) Enlarged temporal windows showing discrete bursts that correspond to 

individual molecules crossing the antenna detection volume. (g-i) Photon count rate histograms 

deduced from the traces in (a-c). The dashed lines are fits by exponentially decaying probability 

distributions. A reference of 0.85 counts/ms for Alexa Fluor 647 (with 200 mM Methyl Viologen as 

chemical quencher) is used to compute the fluorescence enhancement factors.  
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In our case we neglect the collection efficiency improvement brought by the 

antenna (backfocal plane imaging confirms this assumption118,156). For the smallest 

10 nm gap and a dipole emitter located in the gap center, the FDTD simulations 

estimate the different contributions to be 𝐼𝑒𝑥𝑐
∗ 𝐼𝑒𝑥𝑐⁄ = 600, 𝛤𝑟𝑎𝑑

∗ 𝛤𝑟𝑎𝑑⁄ = 700 and 

𝛤𝑟𝑎𝑑
∗ + 𝛤𝑙𝑜𝑠𝑠

∗ 𝛤𝑟𝑎𝑑⁄ = 1 100. These values predict fluorescence enhancement factors 

of 18 000× for Crystal Violet and 4 700× for Alexa 647, which are in excellent 

agreement with our experimental data. 

2.4 Conclusion 

In this chapter we have described the combination of EBL followed by post-

processing and template stripping as a powerful and versatile method to fabricate 

nano-antennas with direct accessibility of the hotspot region, large-scale 

availability, and gap sizes as small as 10 nm with sharp edges. This design provides 

fluorescence enhancement factors up to 15 000×, together with nanoscale 

detection volumes in the range of 10 zL allowing for single-molecule sensitivity at 

µM concentrations over gap sizes between 10-45 nm. In the next chapters we will 

showcase the capabilities of our innovative planar plasmonic nanogap antenna 

platform to resolve the spatiotemporal organization of lipids and proteins on 

biological membranes at the nanoscale.  
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3 Planar nano-antennas to resolve transient 

nanoscopic heterogeneities in multicomponent 

mimetic membranes3 

Nanoscale membrane assemblies of sphingolipids, cholesterol and certain 

proteins, also known as lipid rafts, play a crucial role in facilitating a broad 

range of important cell functions. Whereas on living cell membranes lipid 

rafts have been postulated to have nanoscopic dimensions and be highly 

transient, the existence of a similar type of dynamic nanodomain 

organization in multicomponent lipid bilayers has been questioned. 

In this chapter, we exploit planar plasmonic antenna arrays as introduced in 

Chapter 2 to assess the dynamic nanoscale organization of mimetic lipid 

membranes. Our approach takes advantage of the highly enhanced and 

confined excitation light provided by the nano-antennas together with their 

outstanding planarity to investigate membrane regions as small as 10 nm in 

size with microsecond time resolution. By combining fluorescence 

correlation spectroscopy (FCS) with nano-antennas of different gap sizes, we 

generate FCS diffusion laws that reveal transient nanoscale heterogeneities 

on ternary lipid mixtures containing cholesterol. Our diffusion data are 

consistent with the coexistence of transient nanoscopic domains in both the 

 

3 The content of this chapter has been published in: 

Winkler, P.M., Regmi, R., Flauraud, V., Brugger, J., Rigneault, H., Wenger, J. and García-

Parajo, M.F., Transient nanoscopic phase separation in biological lipid membranes resolved 

by planar plasmonic antennas. ACS Nano, 2017 11(7), pp.7241-7250. 
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liquid-ordered and the liquid-disordered microscopic phases of 

multicomponent lipid bilayers. Thus, although microscale phase separation 

occurs on mimetic membranes, nanoscopic domains also coexist, suggesting 

that these transient assemblies might be similar to those occurring in living 

cells which in the absence of raft-stabilizing proteins are poised to be short-

lived.  
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3.1 Introduction 

The spatiotemporal lateral organization and the biological function of the 

eukaryotic plasma membrane are intricately interlaced at the nanoscale. It is well 

accepted that the landscape of the cell membrane is highly heterogeneous and 

shaped by a variety of lipids and proteins that differ in their physicochemical 

properties. In the plane of the membrane, lateral heterogeneities resulting from the 

formation of specialized regions enriched in sphingolipids, cholesterol and specific 

proteins are commonly known as lipid rafts.1,2,6,7 These lipid assemblies are thought 

to constitute a tightly packed, short-range, liquid-ordered (Lo) phase coexisting 

with a more liquid-disordered (Ld) phase within the surrounding fluid 

membrane.9,13,29,157 While the existence of phase separation in the plasma 

membrane has been debated for many years, a large amount of recent experimental 

data is convincingly demonstrating that lipid rafts in living cell membranes have 

nanoscopic dimensions and are highly dynamic.13,45,62–64,158 Importantly, lipid rafts 

play a crucial role in many cellular processes that include signal transduction, 

protein and lipid sorting and immune response amongst others.1,19,45,157,159 

Understanding the formation mechanism and properties (e.g. size, composition) of 

lipid rafts and relating their structure to their functional role is of paramount 

interest. 

Model lipid membranes represent a simple mimetic system that recapitulates some 

of the most important features of biological membranes, i.e., spatiotemporal 

compartmentalization and lipid phase separation. On the microscopic scale, 

ternary lipid membranes composed of unsaturated phospholipids, saturated 

sphingolipids and cholesterol separate into coexisting Ld and Lo phases, which can 

be resolved by diffraction-limited optics.21,22,24 The large microscopic size and the 

stable nature of Lo domains observed on mimetic membranes strongly contrasts 

with the highly transient and nanoscopic size of lipid rafts inferred on living cells. 

Interestingly, recent works suggest that the microscopically homogeneous Lo and 

Ld phases on lipid model membranes might in fact also be heterogeneously 

organized at the nanometer scale.9,76,160 

The possibility that nanoscale lipid heterogeneities also exist within the supposedly 

homogenous Lo and Ld phases of synthetic mimetic membranes is intriguing and 

of particular interest as they might be the underlying basis for lipid raft formation 

in living cells. Indeed, earlier work from Hancock and co-workers predicted that in 
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the absence of stabilizing proteins, the size of lipid nanoassemblies would be 

smaller than 10 nm in diameter and short-lived, with lifetimes below 1 ms.9,161 

Consistent with this hypothesis, deuterium-based nuclear magnetic resonance (d-

NMR) experiments revealed the presence of cholesterol and sphingolipids in the Ld 

phase as well as of unsaturated lipids in the Lo phase, suggesting that nano-sized 

clusters may exist in both phases.160 Stimulated emission depletion (STED) 

nanoscopy combined with FCS (STED-FCS) has been applied to study the nanoscale 

dynamics occurring in Lo and Ld phases of ternary lipid-cholesterol mixtures with 

a spatial resolution of 40 nm.65 The results showed fully homogenous Lo and Ld 

phases with no evidence of nanoscopic domains at the tested spatial scales (40-250 

nm). By using a similar approach, Sarangi et al. reported on the appearance of 

dynamic nanoscopic heterogeneities in two-component model lipid membranes at 

the length scale of 80-150 nm, close to their instrumental spatial resolution (~ 80 

nm).69 However, the authors suspected the existence of even smaller domains that 

might remain unresolved and suggested that higher resolution (e.g. gated STED-

FCS providing ~30 nm resolution) might uncover their existence in binary as well 

as in ternary mixtures of model lipid membranes. 

Moreover, high-speed single particle tracking (SPT) of 20 nm gold beads attached 

to individual lipids showed anomalous diffusion on the Lo phase consistent with 

the occurrence of nanoscale heterogeneities, while homogeneous lipid diffusion 

was observed on the Ld phase.76 The estimated sizes of the nanodomains on the Lo 

phase varied between 20 to 40 nm with lipid trapping times inside the domains 

below 1 ms.  

A different and potentially powerful approach to investigate dynamic nanoscale 

heterogeneities of lipid bilayers is provided by the use of plasmonic antennas. As 

introduced in Chapter 1, these metal nanostructures enhance and confine light 

down to nanoscale dimensions, sustaining localized hotspot regions of the 

excitation light.95,117,162,163 In addition, when combined with FCS, single-molecule 

detection at ultra-high sample concentrations with microsecond time resolution 

can be obtained, both in solution and living cell membranes.79,101,104,118,120 However, 

in most antenna designs the region of maximum field localization and enhancement 

(i.e., hotspot) is buried into the nanostructure, and thus difficult to access. As 

demonstrated in Chapter 2, we overcame this drawback by fabricating planar 

dimer antenna arrays where the gap region is located at the sample surface.119 This 

design provides direct accessibility to the antenna hotspot region and drastically 



Planar nano-antennas to resolve transient nanoscopic heterogeneities in 

multicomponent mimetic membranes 

69 

improves the optical performance to yield fluorescence enhancement factors of up 

to 104−105 together with nanoscale detection volumes in the zeptoliter range. 

Moreover, we showed in Chapter 2 that this type of antennas is quite flat, 

facilitating studies on biological membranes without introducing membrane 

curvature artifacts as a result of topographic differences on the antenna substrates.  

In this chapter, we describe the application of this type of planar antenna arrays to 

inquire into the nanoscale dynamics of multicomponent lipid bilayers. Our results 

show the coexistence of transient nanoscopic domains in both the Lo and Ld 

phases, in the microsecond time regime and with characteristic sizes below 10 nm. 

These nanoscale assemblies might be reminiscent to those naturally occurring in 

living cells, which in the absence of raft-stabilizing proteins are expected to be 

highly transient. 

3.2 Methods 

3.2.1 Lipids 

1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and N-stearoyl-D-erythro-

sphingosyl-phosphorylcholine 18:0 (SM) were purchased from Avanti (Avanti 

Polar Lipids, Inc.). Cholesterol (Chol) ≥99% was purchased from Sigma-Aldrich and 

the fluorescent dye DiIC18(5) solid (DiD) from Molecular Probes, Life Technologies 

Corporation. 

3.2.2 Preparation of lipid model membranes and substrate 
support 

For the preparation of glass-supported lipid bilayers, glass coverslips were 

extensively cleaned with acetone, ethanol, ultrasonic bath and in a UV/ozone 

cleaner with intermediate rinsing steps with pure MilliQ water and immediately 

used afterwards. Lipid mixtures of DOPC, DOPC:SM (1:1) and DOPC:SM:Chol 

(10/20 mol%) dissolved at 1 mg/mL in chloroform:methanol (9:1) together with 

0.01 mol% of the fluorescent dye DiD were mixed in small glass bottles on ice at 4 

°C and immediately deposited on the cleaned coverslips or antenna substrates. The 

gold antenna substrates were carefully cleaned with acetone, ethanol and MilliQ 

water followed by a short UV/ozone plasma exposure (between 2-5 min) 

immediately prior to lipid bilayer deposition. The latter treatment removes any 

residual organic layer from the gold substrate, guaranteeing a chemically inert and 

hydrophilic surface.164 All the steps were carried out under a fume hood. The 
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different lipid mixtures were allowed to dry for roughly an hour in the presence of 

a weak nitrogen flow, and then kept in vacuum for an additional hour. 

Consequently, the samples were hydrated in PBS (pH 7.4) and carefully rinsed to 

remove excess lipids. Samples were imaged and probed by FCS immediately after 

preparation. All measurements were performed at room temperature.  

3.2.3 Fabrication of planar nano-antenna arrays with different 
gap sizes 

Planar gold dimer antenna arrays with gaps of different sizes were fabricated onto 

glass-coverslips at the EPFL, in the group led by Prof. J. Brugger within a European 

collaboration following a procedure described in more detail in Chapter 2.  

In brief, the antenna fabrication process was performed on a thin silicon nitride 

layer deposited on silicon substrates that provided suitable electrical conductivity 

and chemical stability for the subsequent process steps. Hydrogen-silsesquioxane 

(HSQ) resist was first spun and then patterned using electron-beam lithography on 

top of the substrate. A thin layer of gold (50 nm thick) was deposited by electron 

beam evaporation over the patterned HSQ structures followed by a planarization 

step by flowable oxide spin coating. After etching back by Ar-based ion beam 

etching and removal of the remaining HSQ, the final antenna dimers were stripped 

from the substrates using a UV curable polymer. This step provided flipped over 

antennas with accessible gap regions onto optically transparent microscope 

coverslips. Prior to lipid bilayer deposition, the antenna substrates were carefully 

cleaned with ethanol, MilliQ water rinsing and UV light exposure for 1 minute 

followed by 3 minutes of ozone treatment. 

3.2.4 Fluorescence Microscopy and FCS 

Experiments have been performed on a commercial MicroTime 200 setup built 

around an inverted Olympus microscope and using a 60×, 1.2 NA water-immersion 

objective (Olympus UPLSAPO). The sample was positioned with a three-axis 

piezoelectric stage (Physik Instrumente, Germany) allowing us to scan the sample 

and precisely position the focus on individual nano-antennas. Excitation was 

provided by a picosecond laser diode (PicoQuant LDH-D-C-640) with a linearly 

polarized beam operating at 640 nm in continuous wave mode. A half-wave plate 

was used to control the polarization of the incoming light. The fluorescence signal 

was collected back through the same objective, separated from the laser light by a 
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dichroic mirror, split by a 50/50 beam splitter cube and sent onto two avalanche 

photodiodes (APDs) (PicoQuant MPD- 50CT) after passing through a 30 µm pinhole 

conjugated to the focus plane guaranteeing a 0.5 fL detection volume. An emission 

filter and a 650−690 nm bandpass filter just before each detector were used to 

suppress the scattered light by the excitation laser and to maximize the 

fluorescence signal collection. We used two APDs to perform cross-correlation 

between the two channels instead of the autocorrelation of one channel, since it 

reduces artifacts due to the dead time of each detector after-pulses. FCS 

measurements were performed by illuminating the sample at an excitation power 

density of ~2 kW/cm2. 

The fluorescence intensity time traces were recorded with a TCSPC module in the 

PicoQuant time-tagged time-resolved mode and were correlated by the commercial 

software package SymPhoTime 64 (PicoQuant) afterwards.  

Note that the SymPhoTime 64 software package was used for the overall handling 

of the experiment, detection of fluorescent counts, computation of the 

autocorrelation curves 𝑮(𝝉) and fitting routines for the FCS analysis.  

The setup was calibrated by measuring the known three-dimensional diffusion 

coefficient of Alexa Fluor 647 in solution. Fluorescence time traces on individual 

nano-antennas were recorded for either 30 or 60 seconds with a temporal 

resolution of 4 ps. Autocorrelation function (ACF) curves were generated over time 

windows of at least 10 s in length. 

The calculated correlation curves 𝑮(𝝉) were fitted using a two-dimensional 

Brownian diffusion model, assuming a Gaussian beam profile as introduced in 

Section 2.2.1 in Eq. 2-16 but without a triplet contribution, thus yielding Eq. 3-1: 

 𝑮(𝝉) = 𝑨𝟏
𝟏

𝟏 + (𝝉 𝝉𝑫,𝟏⁄ )
+ (𝟏 − 𝑨𝟏)

𝟏

𝟏 + (𝝉 𝝉𝑫,𝟐⁄ )
 Eq. 3-1 

where 𝑨𝟏 and 𝝉𝑫,𝟏 are the amplitude and diffusion time of the contribution of the 

first diffusing species and 𝟏 − 𝑨𝟏 and 𝝉𝑫,𝟐 are of the second one. We used a two-

component fitting since the excitation of the dimer antenna inside the nano-

aperture leads to two distinct diffusion times as explained in Section 2.2.1. The 
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shortest diffusion time corresponds to direct excitation at the antenna gap while 

the second component corresponds to the diffusion times of molecules inside the 

nano-aperture but away from the antenna hotspot region. These molecules 

contribute weakly to the overall correlation curve since they are only excited by the 

residual light inside the nano-aperture. We also attempted to fit the curves using a 

three-component fitting, but in general the amplitude weight of the third 

component was either very small (below 3%) and/or rendered a fitting error. 

3.3 Results 

3.3.1 Experimental approach and determination of the 
illumination areas of the different nano-antenna gaps 

Model lipid bilayers with different compositions were prepared on glass coverslips 

or on top of antenna substrates following a modified protocol from Ref. 165 and 

explained in the Methods Section 3.2.2. Bilayers were composed of the unsaturated 

phospholipid DOPC alone, DOPC in combination with sphingomyelin (18:0 SM, 1:1 

molar proportions) and of ternary mixtures of DOPC, SM (1:1) with addition of 10 

or 20 mol% cholesterol (Chol). The different bilayers were labeled with the 

lipophilic fluorescent dye DiD which preferentially partitions in the Ld phase.23,166 

We first characterized the quality of the glass-supported bilayers by means of FCS 

using a diffraction-limited confocal microscope. The results are shown in Figure 3-1 

for different lipid mixtures and upon addition of cholesterol. The obtained diffusion 

values are summarized in Table 3-1 and are in good quantitative agreement with 

values reported for similar lipid mixtures.23 
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Figure 3-1. Experimental quality assessment of the four different model lipid bilayers by 

confocal excitation. (a) Normalized autocorrelation functions (ACFs) on pure DOPC and DOPC:SM 

(1:1) bilayers. (b) Same as (a) but for ternary mixtures of DOPC:SM with the addition of 10 and 20 

mol% Chol. Upon addition of cholesterol microscopic phase separation into Ld and Lo phases occurs 

and hence two respective ACFs are shown in (b). 

Table 3-1. Diffusion coefficients of DiD for the different lipid model membrane mixtures as obtained 

from confocal measurements. 

Lipid 

mixture 
DOPC 

DOPC:

SM 

(1:1) 

DOPC:SM (1:1) + 

10%Chol 

DOPC:SM (1:1) + 

20%Chol 

Diffusion 

coefficient 

(µm2/s) 

5.8±0.3 
1.7± 

0.4 

2.3±0.3 

(Ld) 

0.19±0.0

6 (Lo) 

2.9±0.4 

(Ld) 

0.27±0.05 

(Lo) 

 

To investigate the existence of nanoscale heterogeneities in the different lipid 

mixtures, we then used the same preparation protocol to prepare lipid bilayers on 

top of the planar antenna platform as schematically illustrated in Figure 3-2. The 

antenna design consists of gold dimers of 80 nm in diameter separated by nanogaps 

of different sizes (from 10 nm to 45 nm) and surrounded by nano-apertures to 

further constrain the excitation area and reduce background contribution from 

fluorescent molecules diffusing outside the antenna hotspots. For more details 

please refer to the results reported in Chapter 2.  
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Figure 3-2. Biological lipid membranes probed by planar gold nano-antenna arrays. The 

schematics of our experimental approach is shown. Bilayers of different lipid compositions are 

deposited on top of the planar nano-antenna arrays. Each antenna consists of a gold dimer separated 

by a nanogap and embedded in a nano-aperture. The lipids DOPC and SM are depicted in grey with 

their respective different shape of the tails. Cholesterol is shown in green and the fluorescent dye DiD in 

red. Individual antennas are excited using a confocal setup. The confined and enhanced field at the 

antenna hotspot excites individual DiD molecules embedded in the bilayer. Fluorescence fluctuations 

arising from the passage of molecules through the hotpot of the antenna are recorded and 

autocorrelated in time to generate ACF curves.  

To estimate the illumination areas from our antenna gaps, we considered for the x-

direction the mean values of the three gap sizes as directly measured from TEM 

images (refer to Figure 2-3 in Chapter 2), while for the y-direction, we took the 

distances corresponding to the full-width-at-half-maximum (FWHM) of the 

respective antenna excitation intensity profiles, as obtained from FDTD 

simulations (Figure 3-3). The calculated gap areas are (200 ± 50) nm2, (1080 ± 80) 

nm2 and (2025 ± 110) nm2 for the nominal 10 nm, 30 nm and 45 nm gap sizes, 

respectively.  

The sizes of the illumination areas were further calibrated by measuring the 

diffusion times of the Alexa Fluor 647 dye in solution for five different antenna sizes 

(10, 25, 30, 35 and 45 nm) considering the reported diffusion coefficient of the dye 

(300 µm2/s).155 Results of the calibration are shown in the Figure 3-4. From the 

calibration curves, we experimentally determined values of (300 ± 50) nm2, (1080 

± 80) nm2 and (2025 ± 110) nm2 for the 10, 30 and 45 nm gap antennas 

respectively. The sizes of the illumination areas are between one to two orders of 
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magnitude smaller than the ones of confocal excitation, underscoring the extreme 

light confinement afforded by plasmonic antennas.  

 

Figure 3-3. FDTD simulations of planar nanogap antennas. (a-c) The normalized excitation 

intensity enhancement at 633 nm is computed using the finite-difference time-domain method (FDTD) 

for a gold nano-antenna (diameter 80 nm) in a nano-aperture for different gap sizes (15, 30 and 45) 

nm, approximately matching the three antenna gap areas used in the experiments. Computations are 

performed using the FDTD method (RSoft Fullwave software). The mesh size is 0.5 nm for (a), 1 nm for 

(b) and 1 nm for (c). We used 214 temporal steps of 8.1 10-19 s. The permittivity of gold is modeled 

according to the data in Ref. 167. The intensity is recorded at the antenna surface for the cuts in the 

plane (y-x) and along the planes crossing the antenna’s center in case of the z-x cuts. 

The FCS experiments on the model lipid membranes on top of nano-antennas were 

conducted using a commercial confocal setup, as explained in the Methods Section. 

In brief, the samples were excited by focusing the incoming laser light (λ = 640 nm, 

laser power density ~2 kW/cm2) onto individual antennas using a water-

immersion objective (NA =1.2). Under these excitation conditions, the temperature 

increase at the antenna hotspots due to optical heating was estimated to be only 

within 1-3 K.168  

The fluorescence signal was collected in reflection mode by the same objective, 

filtered from the excitation light and sent to two single photon-counting APD 

detectors. As the antennas show a polarization-dependent response, we used 

excitation polarization parallel to the antenna gaps to achieve maximum field 

enhancement and confinement.119 Fluorescence fluctuations arising from the 

diffusion of DiD in the bilayers were recorded for at least 30 seconds at each 

individual antenna and the resulting normalized ACFs were calculated. 
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Figure 3-4. FCS diffusion plot for the free dye Alexa Fluor 647 to calibrate the antenna gap areas. 

The average diffusion times vs. antenna gap areas are shown resulting from measurements on 83 

different nano-antennas to probe the free diffusion of Alexa Fluor 647 molecules in solution at a 

concentration of 26 μM and chemically quenched with 200 mM Methyl Viologen to allow the maximum 

fluorescence enhancement possible. 

3.3.2 FCS measurements in pure DOPC bilayers using nano -
antennas of different gap sizes 

Representative fluorescent intensity time traces of DiD diffusion in a pure DOPC 

membrane over three different antenna gap areas are shown in Figure 3-5 a 

together with enlarged views of representative single bursts. The burst duration 

increases with gap area, confirming that the detected signal arises from the 

excitation of the dye at the gap regions. This is further substantiated by the 

normalized ACFs obtained for different gap sizes and compared to confocal 

measurements (Figure 3-5 b). To extract the diffusion times from individual ACF 

curves, we performed two-component 2D Brownian fittings to account for both 

direct excitation from the gap region (≥ 55-90% of the weighted amplitude) and 

residual excitation of DiD diffusing through the nano-aperture consisting of the 

sum of two terms (refer to Eq. 3-1 in Methods Section 3.2.4). Results of the main 

component of the fitted curves shown in Figure 3-5 b render τDOPC values of (6 ± 1) 

µs, (25 ± 3) µs and (71 ± 25) µs for the respective gap areas of (300, 1080, and 2025) 
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nm2 compared to τDOPC=3.5 ms for confocal excitation. The complete results of the 

fittings and relative contributions of the gap and nano-aperture excitation are 

shown in Table 3-2. 

 

Figure 3-5. FCS measurements in pure DOPC bilayers using planar plasmonic antenna arrays of 

different gap sizes. (a) Representative fluorescence intensity time traces of DiD embedded in a pure 

DOPC bilayer for three different antenna gap areas together with enlarged views of representative 

bursts. (b) Normalized ACF curves as obtained from different antenna gap areas and by confocal 

excitation. (c) Diffusion times as extracted from the ACF fitting as a function of the antenna gap area. 

Each dot corresponds to an individual ACF measurement in a single antenna. Number of 

measurements: 13, 8 and 12 for antenna gap areas of 300 nm2, 1080 nm2 and 2025 nm2 respectively on 

five different samples. Fitting by orthogonal distance regression (red line) has been performed through 

the mean diffusion time values of each respective antenna gap area minimizing the error for the gap 

area and ± std in diffusion time (horizontal and vertical line of the red box, respectively). 
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Diffusion times obtained from multiple measurements on individual antennas as a 

function of the probed gap are shown Figure 3-5 c. To obtain the FCS diffusion law 

plot (as introduced in Chapter 1) extended to the nanoscale for DOPC, the mean 

values of the diffusion times versus gap area could be well-fitted to a straight line 

according to  

 𝝉(𝝎𝟐) =  𝝉𝟎 + 𝝎
𝟐 (𝟒 × 𝑫)⁄  Eq. 3-2 

The obtained y- intercept is close to the zero-origin point, indicating that τDOPC 

scales linearly with the gap area, consistent with free Brownian diffusion of the dye 

in the pure DOPC membrane. The slope of the fitting rendered a diffusion 

coefficient of (6.8 ± 0.5) µm2/s which compares well to our confocal measurements 

as shown in Table 3-1 and to values reported elsewhere.23 

To further validate that these short diffusion times arise from the strong optical 

confinement occurring at the surface of the gap regions, we performed experiments 

on similar antennas with excitation light perpendicular to the antenna gap. In these 

conditions, the antennas are not resonantly excited, and the excitation field 

essentially corresponds to that of the surrounding nano-apertures alone. 

Accordingly, the fluorescence signal is much weaker, and the ACF curves look much 

noisier as compared to parallel antenna excitation (Figure 3-6). ACF curves for 

perpendicular excitation could be fitted with a single Brownian diffusion 

component yielding much longer transient times (1.2 ms – 1.9 ms), which are close 

to the values obtained upon excitation of the nano-aperture alone (i.e., with no 

antennas inside). These values are also comparable to the t2 values of the second 

contribution obtained from the two-component fitting performed on the ACF 

curves for parallel polarization excitation of the antennas (please compare to Table 

3-2.).  

Overall, these results on pure DOPC bilayers validate the application of plasmonic 

antennas to record the diffusion of individual molecules in lipid bilayers with 

microsecond time resolution and clearly demonstrate their nanoscale excitation 

confinement. Additionally, our results show that DOPC bilayers are homogenous 

down to the nanoscale. It further confirms that the antenna substrates supporting 

the bilayers are of extreme flatness and quality as no hindering effects on the dye 

diffusion were observed, neither on the DOPC bilayers nor in solution. 
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Table 3-2. Fitting of the ACF curves on DOPC bilayers for different antenna gap areas. Extracted 

values of the diffusion times t1,2 and respective amplitudes A1,2 as obtained from the fitting of ACF 

curves shown in Figure 3-5 using a two-component Brownian diffusion model. The shorter times (t1) 

correspond to the diffusion times of DiD through the antenna hotspot regions while t2 corresponds to 

residual excitation of the dye inside the nano-aperture. The diffusion time values plotted in Figure 3-5 

c (and remaining figures in this chapter) correspond to τ1. 

 τ1 A1 (%) τ2 A2 (%) 

300 nm2 (6±1) µs 67±3 (170±15) µs 33±8 

1080 nm2 (25±3) µs 79±8 (1.4±0.2) ms 21±7 

2025 nm2 (71±25) µs 75±9 (1.6±0.3) ms 25±10 

 

 

Figure 3-6. Fluorescence intensity time traces and ACF curves for DOPC obtained upon parallel 

and perpendicularly polarized excitation of the antennas. (a) Representative time traces of DiD in 

DOPC obtained for the smallest antenna gap area (300 nm2) upon parallel (red) and perpendicular 

(orange) antenna excitation. (b) Fitting of the ACF curves for perpendicular polarization yields 

diffusion times of (1.2, 1.65, 1.9) ms for the (300, 1080, 2025) nm2 antenna gap areas respectively, and 

2.6 ms for the nano-aperture. 

It has been recently reported that molecular pinning and interleaflet membrane 

coupling effects leading to deviations from free Brownian diffusion at the nanoscale 

are influenced by the properties of the substrate, e.g. plasma-cleaned glass vs. mica 
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support.73 We believe that these effects are not present in our DOPC measurements 

for the following two reasons. First, we observed Brownian diffusion of DOPC down 

to the nanoscale, with a t0 intercept close to zero. Second, the gold antenna 

substrates have been pre-treated with UV/ozone plasma cleaning immediately 

prior to the bilayer deposition (see Methods Section of this chapter). This treatment 

leads to a chemically inert and hydrophilic gold surface.164 

3.3.3 FCS measurements at the nanoscale for binary and ternary 

lipid mixtures 

To shed light on the diffusive behavior of lipid membranes composed of binary and 

ternary mixtures, lipid membranes composed of DOPC:SM (1:1) alone and with the 

addition of 10 and 20 mol% of Chol were prepared on top of the antenna array 

substrates and probed by means of FCS. Figure 3-7 a shows characteristic 

fluorescent intensity time traces of DiD diffusing across the smallest gap antenna 

(300 nm2 hotspot area) in DOPC:SM bilayers and on a ternary mixture containing 

20 mol% of Chol. In the presence of Chol, stable macroscopic phase separation 

occurs, so that depending on the antenna location with respect to the membrane, 

different fluorescence trajectories are recorded, either probing the Ld phase 

(Figure 3-7 a, middle trajectory) or the Lo phase (Figure 3-7 a, right trajectory). The 

enlarged views of single bursts of the individual trajectories show increasing burst 

durations for the binary and ternary mixtures as compared to DOPC (Figure 3-5 a) 

consistent with slower diffusion of the dye in these lipid mixtures. ACF curves for 

DOPC:SM and the ternary mixture of DOPC:SM with 20 mol% Chol for both phases 

(Ld and Lo) are depicted in Figure 3-7 b.  

As for the DOPC measurements, we fitted all the ACF curves using a two-component 

2D Brownian diffusion model to account for two distinct diffusion times arising for 

diffusion within the dimer antenna inside the nano-aperture. We attempted to fit 

the curves using a three-component fitting but in general the amplitude weight of 

the third component was either very small (below 3%) and/or rendered a fitting 

error. We attempted to fit the two ACF curves of the ternary mixture to an 

anomalous diffusion model which introduces an anomaly parameter α ≠1 in the 

exponent. However, leaving α as a free parameter did not improve the fitting and 

rendered α values larger than 1 which, which are unrealistic since they would hint 

towards super-diffusion such as cellular transport. Hence, we opted for the use of 

the two-component 2D Brownian diffusion model. The derived diffusion times at 
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the smallest gap regions (300 nm2) for the different lipid compositions resulted in 

τDOPC:SM = (36 ± 4) µs, and τLd = (39 ± 9) µs and τLo = (229 ± 30) µs for the 20 mol% 

Chol ternary lipid mixture. The diffusion times obtained from multiple ACF curves 

on different 300 nm2 gap areas for all the different lipid mixtures are summarized 

in Figure 3-7 c.  

 

Figure 3-7. FCS measurements recorded in nanogaps of 300 nm2 area for binary and ternary 

lipid mixtures. (a) Fluorescence intensity time traces of DiD diffusion in DOPC:SM (1:1) (left, blue) and 

DOPC:SM (1:1) + Chol (20 mol%) in the Ld (middle, magenta) and Lo (right, purple) phases. Enlarged 

views of single bursts are also depicted for visual comparison. (b) Normalized ACF curves for the 

different lipid mixtures. (c) Mean diffusion times of the four probed lipid membranes ± std obtained for 

the smallest gap area (300 ± 48) nm2. Number of measurements: 20 for DOPC; 19 for DOPC:SM; 18 and 

15 for Ld and Lo, respectively with Chol 10 mol%; and 17 and 15 for Ld and Lo, respectively with Chol 

20 mol%. Between 5 and 10 different antennas of 300 nm2 area on 4 to 5 different samples were used 

for each lipid composition. 
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While DiD in DOPC shows the shortest diffusion time, addition of SM slowed down 

the dye diffusion, consistent with the confocal results. The longest diffusion times 

were observed for the Lo phase of the ternary mixtures. Interestingly, the diffusion 

times of DiD in the Ld phase are significantly longer than those obtained in the pure 

DOPC bilayer, which may already indicate the presence of transient 

nanoassemblies of Chol in the Ld phase. 

To gain more insight into these results we measured the diffusion times for all the 

lipid mixtures for different antenna gap sizes and over multiple antennas. The data 

were fitted through the mean diffusion time values to obtain diffusion laws for each 

lipid composition (Figure 3-8). Two main parameters can be directly extracted 

from the fitting, i.e., the effective diffusion coefficient which is calculated from the 

slope of the curves and the y-intercept of the fitting at zero gap areas (τ0). In the 

case of DOPC and DOPC:SM bilayers, the intercepts of the fitting cross the origin at 

nearly zero diffusion time (Figure 3-8 a) consistent with free diffusion of the dye in 

these lipid bilayers: albeit the diffusion in the DOPC:SM mixture is significantly 

slowed down as compared to the pure DOPC membrane due to the tighter packing 

of saturated SM. In strong contrast, positive τ0 values are obtained for both the Ld 

and Lo phases in the ternary mixtures containing 10 and 20 mol% Chol indicating 

that the diffusion of the dye is not Brownian (Figure 3-8 b, c).  

 

Figure 3-8. FCS diffusion laws extended to the nanoscale for different lipid mixtures. Diffusion 

times vs. antenna gap areas in (a) DOPC and DOPC:SM bilayers. (b) Ld phase for 10 and 20 mol% Chol; 

and (c) Lo phase for 10 and 20 mol% Chol. The colored dots represent diffusion times acquired from 

FCS on individual nano-antennas of different gap sizes, while the solid lines are fits through the mean 

values. Measurements were performed on at least 15 different nano-antennas for each lipid 

composition on five different samples. 
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Results of the effective diffusion coefficients together with the τ0 values for all lipid 

compositions are shown in Figure 3-9 a, b. For the ternary mixtures containing 

cholesterol, the diffusion coefficients in the Ld phase are significantly slower than 

the one of pure DOPC (mean values of 5.1 and 4.7 µm2/s for 10 and 20 mol% Chol 

respectively, compared to 6.8 µm2/s for DOPC) (Figure 3-9 a), which is consistent 

with the longer diffusion times reported in Figure 3-7 c. Moreover, the positive τ0 

values indicate a deviation from Brownian diffusion due to the presence of 

heterogeneities in the Ld phase caused by the occurrence of nanodomains (Figure 

3-9 b). These nanoscopic domains are most probably formed by the presence of SM 

and Chol in the Ld phase, which reduce the effective diffusion of the dye as 

compared to the pure DOPC bilayer. A similar and even more pronounced trend is 

also observed in the Lo phase, where the dye experiences very slow effective 

diffusion and strong deviation from Brownian motion, indicating also the presence 

of heterogeneities and nanodomains in this phase (Figure 3-9 a, b). Altogether, 

these results clearly indicate the occurrence of transient nanoscale heterogeneities 

in both phases of lipid model membranes which have remained so far beyond the 

detection limits of conventional microscopy.  

Further evidence of the heterogeneity within the Lo and Ld phases for ternary lipid 

bilayers containing Chol can be inferred from the spread of the diffusion times for 

similar antennas as a function of the gap area, which we quantified as the deviation 

from the mean diffusion time. Since the metal thin-film morphology affects the 

fabrication process of the antennas and leads to variations on the real gap areas, 

we first estimated the spread in diffusion times arising solely from the differences 

in gap areas (see Chapter 2, Figure 2-3). Assuming the effect of fabrication 

inaccuracies to be the origin for a spread in diffusion times, we expected the spread 

in diffusion times to reduce with increasing gap area as the fabrication process 

becomes more accurate. In pure DOPC bilayers, DiD shows a spread of the diffusion 

times that reduces with increasing gap size, confirming this assumption (Figure 3-9 

c). In striking contrast, the spread of the diffusion times for the binary and ternary 

compositions increases significantly with gap size (Figure 3-8 a-c and Figure 3-9 c), 

suggesting that the dye samples heterogeneous regions of faster and slower 

diffusion. 

These results directly correlate with the positive τ0 values measured, indicating the 

occurrence of heterogeneities in both the Lo and Ld phases due to nanoscopic 

domains that diffuse through the hotspot gap area during the measurements. 
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Notably, in the case of DOPC:SM, large spreads of the diffusion times are observed 

for both the (1080 and 2025) nm2 antennas, although diffusion is largely free and 

homogeneous (notice that τ0 for the DOPC:SM mixture is slightly positive, i.e., (14 ± 

4) µs).  

 

Figure 3-9. Planar plasmonic nanogap antennas reveal nanoscopic heterogeneities in the Ld and 

Lo phases of biological lipid membranes. (a) Effective diffusion coefficients D and (b) y-intercepts t0 

(with ± std for the errors) as extracted from FCS diffusion laws shown in Figure 3-8 for the different 

lipid membrane compositions. Data of the dye Alexa Fluor 647 is included for comparison and showing 

its expected Brownian free diffusion in solution, i.e., τ0 = 0 (taken from Ref. 95). (c) Normalized spread 

in diffusion times (± std/mean × 100%) as a function of the antenna gap area for three different lipid 

compositions. The gray dots and line correspond to the spread in diffusion times resulting from 

fabrication inaccuracies of the antenna gaps (variation in gap size/mean gap size) (d) Sketch 

illustrating the presence of dynamic nanoscopic domains inside microscopic Lo and Ld phases of lipid 

mixtures containing cholesterol. 
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We interpret these results as the occurrence of extremely transient local 

concentrations of SM within the otherwise homogenous DOPC layer that lead to 

differences in transient diffusion times but without the occurrence of detectable 

nanodomains.  

The characteristic residence time 𝜏𝑟𝑒𝑠 of the dye in a single nanodomain can be 

estimated from τ0 through the relation 𝜏0 = 2𝛼𝜏𝑟𝑒𝑠, since the confinement time is 

much larger than the free diffusion time inside the domain, and where α 

corresponds here in this context to the partition coefficient of the dye in the Ld and 

Lo phases.41 In the case of DiD, the values of α correspond to 0.66 for the Ld phase 

and 0.33 for the Lo phase evaluated for microscopically phase-separated 

domains23, and we assume no significant deviations at the nanoscale. Therefore, the 

residence times inside the different nanoscopic domains yield values for the Ld 

phase of 𝜏𝑟𝑒𝑠= (27 ± 3) µs and (30 ± 3) µs for 10 and 20 mol% Chol respectively, 

and for the Lo phase of (158 ± 9) µs and (132 ± 14) µs for 10 and 20 mol% Chol, 

respectively. Although from our measurements we cannot directly estimate the 

sizes of these nanoscopic domains, the large spread of the diffusion times observed 

for the two larger gap areas (1080 nm2 and 2025 nm2) indicates that these gap 

areas already probe different nanoscopic regions during our measurements. On the 

other hand, the spread on the diffusion times reduces for the smallest antennas 

(300 nm2) and are similar to the variations obtained from the fabrication procedure 

(Figure 3-9 c). Reduced variations in the diffusion times implies that the sizes of the 

nanoscopic domains become comparable to the illumination area, which for the 

smallest antennas is 10 nm in size.  

3.4 Discussion 

Overall, the results presented in this chapter provide compelling evidence for the 

existence of nanoscopic domains in both the Ld and Lo phases of multicomponent 

lipid bilayers containing cholesterol, as illustrated in Figure 3-9 d. We find 

nanodomains with sizes around 10 nm and short transient residence times around 

30 µs for the Ld, and 150 µs for the Lo phase. Nanoscopic domains in the Lo phase 

have also been recently detected by high-speed single particle tracking reporting 

on sizes and residence times that agree remarkably well with the values reported 

in this work using a completely different technique and experimental approach.76 

Interestingly, earlier stochastic models predicted that lipid rafts in living cells 

would have to be small (≤ 14nm) with an average residence time of ~ 60 µs in order 
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to facilitate intermolecular collisions between different proteins.161 These values 

come very close to our experimentally measured values. Moreover, molecular 

dynamics simulations of lipid diffusion within rafts and non-raft domains have 

predicted the existence of transient clusters with sizes around 10 nm and lifetimes 

in the microsecond range,169 once more in excellent agreement with our 

experimental values. Thus, although the plasma membrane of living cells has a 

much higher complexity than our model lipid bilayers, we propose that the 

nanoscopic and highly transient domains detected in this model system might 

exhibit similar biophysical properties as those predicted in living cells.  

Strikingly, our results also show the occurrence of nanoscopic domains in the Ld 

phase, which to our knowledge, have not been detected before the completion of 

this research. However, there is ample experimental data that supports their 

existence. Indeed, earlier Förster resonance energy transfer (FRET) measurements 

showed heterogeneities in the Ld phase that depended on the amount of 

cholesterol and persisted even at physiological temperatures, hinting towards the 

existence of nanoscale domains in the Ld phase.170,171 Furthermore, d-NMR 

experiments showed a relatively large percentage of saturated lipids (17%) and 

Chol (20%) in the Ld phase, which is supposedly composed of only DOPC.160 The 

presence of SM and Chol will lead to nanoscopic phase separation within the Ld 

phase with sizes and lifetimes that would most probably depend on the amount of 

Chol and SM.74,171 In our experiments, we find that these nanoscopic domains are 

extremely short-lived with residence times below 30 µs, being probably the reason 

why they have not been detected before. In fact, the temporal resolution of the high-

speed SPT experiments reporting the presence of nanoscopic domains on the Lo 

phase was 20 µs, which is not enough to detect transient confinements around 30 

µs.74 By combining nanoscale observation areas as provided by plasmonic antennas 

with microsecond time resolution as afforded by FCS we have been able to resolve 

transient nanoscopic domains coexisting in both Ld and Lo phases of mimetic lipid 

membranes. It is worth mentioning that recent advancements in interferometric 

scattering (iSCAT) microscopy currently allow nanometer localization precision 

together with microsecond time resolution by the use of 20-40 nm gold beads as 

labeling probes.73,74,76 This approach led to high-speed tracking resolving transient 

nanoscopic confinement in supported lipid bilayers. Provided that careful controls 

on potential labeling artifacts and background characterization and removal are 

performed, iSCAT also constitutes an attractive tool to investigate dynamic 
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biophysical processes at the nanometer scale. A recent comparative study between 

high-speed iSCAT tracking and STED-FCS revealed that both techniques report on 

the same molecular diffusion dynamics and relative mobility differences but with 

differing results in absolute values.77 Hence given a comparable sample 

preparation, it seems justified to compare results on molecular diffusion behavior 

of different techniques providing high spatiotemporal resolution with regard to 

trends and modes of the nanoscale diffusion. This conclusion appears promising to 

encourage a multitude of nanoscale diffusion studies by exploiting various 

techniques aiming at collectively elucidating membrane diffusion and organization 

at the nanoscale. 

3.5 Conclusion 

In summary, we have exploited planar plasmonic nanogap antenna arrays to 

investigate the lateral organization of lipid model membranes at the nanoscale with 

microsecond time resolution. The suitability of planar antenna arrays has been 

validated on pure DOPC bilayers obtaining free diffusion over the length scales 

investigated (down to 10 nm), consistent with a homogenous lipid distribution. 

Free diffusion was also observed on DOPC:SM binary mixtures, although a large 

spread of the diffusion times was retrieved indicating local fluctuations of SM 

within larger areas of solely DOPC, but without formation of detectable domains 

that would constrain dye diffusion. Addition of cholesterol resulted in microscopic 

phase separation and the formation of transient nanoscopic domains in both the Lo 

and Ld phases, with sizes below 10 nm and lifetimes in the microsecond time scale. 

Since the basic biochemistry operating in lipid model membranes is similar to the 

one in the plasma membrane, we propose that the nanoscopic domains detected 

here might correspond to the unstable lipid rafts predicted to exist in living cell 

membranes.  

The results shown in this chapter also underscore the ultra-high spatiotemporal 

resolution provided by planar nanogap antennas and their enormous potential to 

unravel the nanoscale complexity of biological membranes. These advantages will 

be further exploited in Chapter 4 to study the effect of extra-cellular components 

on the nanoscale partitioning of mimetic biological membranes. 
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4 Assessing the role of extra-cellular glycans on the 

nanoscale organization of mimetic membranes4 

The spatiotemporal compartmentalization of the cell membrane at different 

scales is arising as a key feature to regulate multiple cellular functions. 

Different molecular actors have been identified as potential drivers 

regulating the spatially heterogenous and dynamic organization of the cell 

membrane. Amongst those, the glycocalyx matrix, located on the 

extracellular cell membrane, is emerging as an important player to regulate 

membrane organization, and thus function. Recent intriguing studies suggest 

that the glycocalyx matrix not only modulates the organization of specific 

membrane receptors, but importantly, it might also re-pattern the lipid 

bilayer itself. However, sample preparation challenges and limited 

techniques to investigate nanoscale membrane dynamics have hampered 

further studies in this field.  

In this chapter, we take advantage of planar nanogap antenna arrays 

combined with fluorescence correlation spectroscopy to elucidate the 

influence of glycans on the nanoscale lipid organization in mimetic bilayers 

of different lipid compositions. Moreover, we complement our studies by the 

use of atomic force microscopy and force spectroscopy allowing us to 

correlate dynamic measurements with the morphology and mechanical 

 

4 The content of this chapter has been submitted to J. Phys. Chem Lett. as: 

Winkler, P.M., Campelo, F., Giannotti, M. I., García-Parajo, M.F., Nanoscale imprint of 

glycans on lipid membrane dynamics unveiled by planar plasmonic nanogap antennas and 

atomic force spectroscopy.  
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properties of bilayers at the nanoscale. Overall, we find that glycans have a 

profound effect on the dynamics, nanoscale organization and mechanical 

properties of lipid bilayers that are enriched in saturated lipids and/or 

cholesterol, such as those present in living cells.  
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4.1 Introduction 

Plasma membranes are ~ 4 nm thick fluid bilayers composed of a plethora of lipids 

and proteins. The plasma membrane separates the interior from the exterior of 

cells, thereby controlling many fundamental cellular functions. In the last two 

decades, lateral compartmentalization of the plasma membrane has emerged as a 

prominent feature present at different spatiotemporal scales and regulating key 

cellular functions.19,172 Much research has been devoted to identify the different 

molecular actors responsible for this far-from homogenous and dynamic 

organization. Within the plane of the bilayer, cholesterol together with 

sphingomyelin and saturated phospholipids have been reported to phase-separate 

in cholesterol-enriched, liquid-ordered nanodomains, also known as lipid 

rafts.1,3,6,13 By selectively recruiting certain types of receptors and/or signaling 

molecules in to these nanodomains, lipid rafts have been proposed to orchestrate 

a broad range of cell functions.2,4 In addition to this lipid-based 

compartmentalization mechanism, more recent research has extensively focused 

on the role of the cortical actin cytoskeleton to assist, either passively or actively, 

on the nanoscale partitioning of the plasma membrane.3–5 Moreover, it has been 

postulated that cortical actin might modulate the formation and/or stabilization of 

lipid rafts, suggesting that different molecular actors can function in a concerted 

way to provide spatiotemporal modularity to the plasma membrane.5,173 

A third actor that has been recently proposed as an important modulator of cell 

membrane organization and dynamics is the glycocalyx matrix, a mesh of sugars or 

glycans and proteins located on the extracellular side of the cell membrane.174 

Although the role of the glycocalyx matrix regulating multiple functions has been 

known for decades,175,176 evidence of its implication regulating the organization of 

the cell membrane is much more recent. Using super-resolution and single-

molecule microscopy-based approaches, we and others have revealed that by 

compartmentalizing the cell membrane, glycans can modulate the degree of 

clustering, mobility, and/or molecular interactions of different receptors in the cell 

membrane and ultimately regulate their function.177–180 In particular, we showed 

that the glycan meshwork provides an additional organization layer at the 

microscale regulating receptor interactions within the cell membrane as well as 

with downstream partners.178 In the context of cancer, it has been reported that 

bulky glycoproteins and glycan networks modulate receptor organization and 

activation hinting towards a broad physiological relevance.177 The transmembrane 
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receptor CD44, immobilized by the cortical actin, was shown to bind to hyaluronic 

acid (HA), an abundant glycan on the surface of many cells forming a pericellular 

coat.179 Freeman et al. further showed that the picket fence of CD44 and cortical 

actin together with the anchored pericellular coat of HA limit the lateral diffusion 

of phagocytic receptors and hence restrict the access to phagocytic targets. Along 

similar lines, Sil et al. showed that the glycocalyx matrix potentially repositions the 

mesoscale meshwork of CD44 composed of nanoclusters and generated by the 

underlying cortical actin dynamics.180  

The emerging interest in elucidating the role of the glycans on cell membranes has 

reignited studies on mimetic biological membranes. Using confocal fluorescence 

correlation spectroscopy (FCS), Sahoo and Schwille reported a noticeable effect of 

certain glycosaminoglycans (GAGs), an important class of glycocalyx constituents, 

on lipid dynamics in mimetic membranes.123 The authors concluded that the 

presence of certain GAGs may slow down lipid diffusion depending on 

concentration, chemical composition and molecular weight of the carbohydrate 

polymers. In an intriguing study, glycan networks of inhomogeneous density 

distribution were found to re-pattern the spatial organization of cholesterol-

containing multiphase lipid membranes by stabilizing large lipid domains at the 

characteristic length scale of the glycan network.17 Surprisingly, homogeneously 

distributed glycan networks led to a full suppression of microscopic phase 

separation. However, the effect of homogeneous or heterogeneous glycan layers on 

the nanoscale domain organization of cholesterol-containing membranes remains 

unknown. Overall, these results are exciting since they suggest that glycans might 

not only alter the nano-and meso-scale organization of specific receptors on the cell 

membrane, but also the lipid bilayer itself, by either synergizing with or overriding 

the effect of cholesterol to re-pattern the dynamic organization on the membrane. 

Unfortunately, the difficulty of creating mimetic bilayers that incorporate glycans 

together with the limited number of techniques able to address the dynamic 

organization of membranes at the nanoscale has prevented further studies in the 

field. 

Our combined FCS-nanogap antenna approach (as introduced in Chapter 2) has 

proven to enable single-molecule detection at the nanoscale at physiologically 

relevant concentrations. Photonic nano-antennas are metallic nanostructures that 

enable enhancement and nanometric confinement of the excitation light into 

illumination hotspots.95 Our innovative and versatile platform of planar antenna 



Assessing the role of extra-cellular glycans on the nanoscale organization of 

mimetic membranes 

93 

arrays with different nanogap sizes (10-45 nm) is based on an improved 

nanofabrication technique combining electron beam lithography, planarization, 

etch back and template stripping. In benchmarking solution experiments at 

micromolar concentration, this planar nanogap antenna platform yielded giant 

fluorescence enhancement factors of up to 104-105 times together with nanoscale 

detection volumes in the 20 zeptoliter range (Chapter 2). As described in Chapter 

3, we further exploited these planar photonic nano-antennas to resolve dynamic 

nanoscopic heterogeneities in mimetic membranes in regions as small as 10 nm in 

size with microsecond time resolution. In the work described in this chapter, we 

took advantage of this type of planar nano-antenna arrays combined with FCS to 

investigate the influence of glycans on the nanoscale lipid organization of mimetic 

bilayers of different molecular compositions. Moreover, we complemented our 

studies by the use of atomic force microscopy (AFM) and force spectroscopy 

allowing us to correlate dynamic measurements with the morphology and 

mechanical properties of bilayers at the nanoscale. Overall, we found that glycans 

have a profound effect on the dynamics, nanoscale organization and mechanical 

properties of lipid bilayers that are enriched in saturated lipids and/or cholesterol, 

such as those present in living cells.   

4.2 Methods 

4.2.1 Lipids, fluorescent dyes and hyaluronic acid  

The lipids 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and N-stearoyl-D-

erythro- Sphingosylphosphorylcholine 18:0 (SM) were purchased from Avanti 

(Avanti Polar Lipids, Inc.). Cholesterol (Chol) ≥99% was purchased from Sigma-

Aldrich and the fluorescent dye DiIC18(5) solid (DiD) from Molecular Probes, Life 

Technologies Corporation. Pure Hyaluronic Acid (HA), MW 250k, and biotinylated 

Hyaluronate Biotin, MW 250k (Purity: >95%) for the dual-color fluorescence 

imaging in confocal mode were purchased from Creative PEGWorks. The 

fluorescent dye ATTO488 was purchased from ATTO-TEC GmbH and was 

conjugated in-house to Streptavidin. 

4.2.2 Fabrication of planar gold nanogap antenna arrays  

Planar gold dimer antenna arrays with gaps of different sizes were fabricated onto 

glass-coverslips at the EPFL, in the group led by Prof. J. Brugger within a European 

collaboration following a procedure described in detail in Chapter 2. Immediately 
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prior to the lipid bilayer deposition, the antenna substrates were carefully cleaned 

with ethanol, MilliQ water rinsing and UV light exposure for 1 minute followed by 

3 minutes of ozone treatment.  

4.2.3 Fluorescence Microscopy and FCS 

The fluorescence imaging and FCS experiments in this chapter were carried out on 

the same setup as described in Chapter 3. Fluorescently labeled samples were 

illuminated with an excitation power density of ∼2−3 kW/cm2. The typical 

measurement duration was 50 s per run, and we calculated the correlation function 

G(τ) of ~20-30s time windows with the commercial software package SymPhoTime 

64.  

The calculated correlation curves 𝑮(𝝉) were fitted using a two-dimensional 

Brownian diffusion model, assuming a Gaussian beam profile as introduced in 

Section 2.2.1 in Eq. 2-16 but without a triplet contribution thus yielding Eq. 4-1: 

 𝑮(𝝉) = 𝑨𝟏
𝟏

𝟏 + (𝝉 𝝉𝑫,𝟏⁄ )
+ (𝟏 − 𝑨𝟏)

𝟏

𝟏 + (𝝉 𝝉𝑫,𝟐⁄ )
 Eq. 4-1 

where 𝑨𝟏 and 𝝉𝑫,𝟏 are the amplitude and diffusion time of the contribution of the 

first diffusing species and 𝟏 − 𝑨𝟏 and 𝝉𝑫,𝟐 are of the second one. As for the work on 

mimetic membranes explained in Chapter 3 we employed a two-component fitting 

accounting for the fast diffusion through the nanometric gap region of the dimer 

antenna and for the slower contribution of molecules diffusing through the nano-

aperture.  

For the dual-color fluorescence imaging scans of the DiD labeled lipids and the 

biotinylated HA molecules (labeled with Atto488 conjugated to Streptavidin) a 

linearly polarized 470 nm picosecond laser diode (PicoQuant LDH-D-C-470) in 

continuous wave mode was used in addition to the 640 nm laser. Both are coupled 

into the setup through the same optical fiber.  

4.2.4 Sample Preparation 

We used different substrates depending on the probing technique. The 

fluorescence imaging and confocal FCS measurements were performed on 

rigorously cleaned glass coverslips and 30 nm gold films evaporated on cleaned 

glass coverslips. Glass coverslips were cleaned with steps of ethanol, MilliQ water 
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rinsing and UV/Ozone treatment. The nanoscale FCS measurements were 

conducted on nano-antenna arrays following the same cleaning steps. For the AFM 

measurements we used freshly cleaved mica surfaces. For all substrates, the 

supported lipid bilayers were prepared following the protocol described in Ref. 

181. In short, small unilamellar vesicles (SUVs) of the desired lipid composition of 

a final concentration of 3 mM were prepared by lipid film hydration with a buffer 

solution of 150 mM NaCl, 20 mM MgCl2, 20 mM Hepes at pH 7.4 prepared in 

ultrapure MilliQ water. In the next step, we applied interchanging heat shocks and 

vortexing at 60 °C, followed by sonification and extrusion through 100 nm pore size 

filters at 60 °C. Since the same SUVs were used to prepare lipid bilayers for all the 

experiments, 0.1 mMol % of the red dye DiD was added to the SUV mixture. The 

SUVs formed into a single lipid bilayer once they were suspended onto the 

substrate of choice at 60 °C on a hotplate and left to settle for 30 minutes. The lipid 

compositions of the single SLB examined further were DOPC alone, DOPC:SM (1:1) 

and DOPC:SM + 20 mol% Cholesterol. The formed SLB on the respective substrates 

were carefully rinsed with buffer solution and left to equilibrate at room 

temperature for another 30 minutes prior to the experiments. To investigate the 

influence of HA on the lipid bilayer, half of the buffer solution was replaced by an 

HA solution (40 mg/ml) and left to incubate for 30 minutes, rinsed with buffer and 

equilibrated for another 30 minutes.  

4.2.5 AFM and AFM-based force spectroscopy (AFM-FS) 

The AFM imaging and AFM-FS experiments in this chapter were performed in a 

collaboration with Marina Giannotti, PhD at IBEC, Barcelona, Spain and described 

in some detail below.  

AFM imaging was carried out in contact or AC mode using an MFP-3D atomic force 

microscope (Asylum Research, Santa Barbara, CA). Silicon nitride SNL probes 

(Bruker AFM Probes, Camarillo, CA, USA) were used for the measurements (nominal 

spring constant k = 0.35 N·m−1, maximal forces of 65 nN) calibrated 

extemporaneously applying the equipartition theorem (thermal noise routine)182. 

The scan speed was set to 1 Hz, and 256×256 pixels were imaged regardless of the 

image size. The images were minimally processed to enhance the contrast by 

performing a planefit at order 0, flattening at order 1 and then another planefit 

again. For the AFM-FS experiments, force-distance curves were recorded over a 

2×2 μm2 area of interest previously imaged, by approaching and retracting the 
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cantilever tip to the sample at constant velocity of 1 μm·s−1. Force-separation 

curves were acquired in the force map mode, using an array of 32×32 pixels over 

the area of interest. 

4.3 Results 

The complex interplay between the plasma membrane, the glycan network and the 

actin cytoskeleton is illustrated in Figure 4-1 a. The plasma membrane consists of 

different lipids forming a fluid bilayer and phase-separating into lipid rafts to which 

specific proteins partition, e.g. transmembrane receptors. The glycan network may 

associate with the more ordered lipid rafts and/or glycosylated proteins which can 

also interact with the actin cytoskeleton via adaptor proteins. This complex multi-

layer organization results in the compartmentalization of the plasma membrane at 

different scales and in triggering signaling cascades. In here, we focus selectively 

on understanding whether the glycan network has an effect on the lipid membrane 

organization at the nanoscale or not. To this goal, we chose to work with a 

biomimetic system consisting of purely lipidic bilayers together with an HA 

network as a model glycan network. This mimicking system allows us to investigate 

the direct involvement of the glycan network on the lipid bilayer organization 

without the influence of glycosylated proteins and/or the cortical actin.  

To guarantee a consistent investigation of the influence of a glycan layer on the lipid 

organization of mimetic membranes by applying FCS in confocal and on nano-

antennas as well as by AFM, we rigorously followed the same preparation protocol, 

which is explained in detail in the Methods section 4.2. In short, the mimetic 

biological system comprises a single supported lipid bilayer (SLB) on a substrate 

and an adjacent HA layer obtained by exposing the SLB to an HA solution so it could 

interact spontaneously (without restrictions) with the SLB. This HA network 

mimics the glycocalyx, as HA is the most abundant glycosaminoglycan in cells.183 To 

assess the influence of HA on SLBs of different molecular composition, we 

investigated three different lipid mixtures. The first composition is a single 

component fluid bilayer made of unsaturated 1,2-dioleoyl-sn-glycero-3-

phosphocholine (DOPC). The second one, a binary mixture of DOPC and 18:0 

sphingomyelin (SM) in equimolar proportions (1:1). And the third one, a ternary 

mixture composed of DOPC, SM (1:1) with 20 mol % cholesterol (Chol). This latter 

mixture is known to phase-separate into microscopic liquid ordered (Lo) and liquid 

disordered (Ld) domains, that may coexist with gel-like SM-enriched domains.23,184 
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Depending on the employed technique, the mimetic lipid bilayers were prepared 

on top of different substrates: a cleaned glass coverslip for FCS experiments in 

confocal, directly on the planar gold nano-antenna platform for FCS measurements 

at the nanoscale, or on freshly cleaved mica for AFM and force spectroscopy (AFM-

FS) as sketched in Figure 4-1 b.  

 

Figure 4-1. Experimental approach to investigate the influence of HA on nanoscale lipid 

organization. (a) Simplified sketch of the plasma membrane of living cells, containing the lipid bilayer 

together with proximal intra- and extra-cellular components. (b) Illustration of how the biological 

membrane have been prepared on different substrates, and for the different experiments. On a glass 

coverslip (top), nanogap antenna platform (bottom left) and on mica (bottom right) for AFM imaging. 

For the fluorescence experiments on the glass coverslip in confocal and on the nanogap antenna 

hotspots, the biological membranes were prepared by incorporating the lipophilic fluorescent dye DiD, 

shown in red. (c) FCS setup, experiment and analysis principle. (d) AFM imaging and force spectroscopy 

approach. 

To first validate the preparation method and the quality of the SLBs we used 

standard confocal microcopy. We performed FCS in confocal mode on random 

locations of the sample to quantify the characteristic diffusion time of the 

fluorescent dye DiD embedded in the bilayers as sketched in Figure 4-1 c. Note that 

DiD partitions preferentially into the Ld regions, in our case being regions enriched 

in DOPC.166 For the three different lipid bilayer compositions, we measured the 
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diffusion times of the dye 𝜏𝐷 probed by point measurements in a diffraction-limited 

spot with a size of 𝜔. From there, we calculated the characteristic diffusion 

coefficients D by applying 

 𝑫 = 𝝎𝟐 (𝟒 × 𝝉𝑫)⁄  Eq. 4-2 

The results are shown in Table 4-1. The values for the diffusion coefficients of the 

lipid bilayers before the addition of the HA layer are in good quantitative agreement 

with the values reported previously,23 thus validating our preparation method.  

Table 4-1. Diffusion coefficients D (mean ± std) are calculated according to Eq. 4-2 for lipid bilayers of 

the three different lipid compositions (DOPC, DOPC:SM(1:1), and DOPC:SM (1:1) + 20 mol% Chol) 

before and after the addition of HA, probed in point measurements in confocal with ω=285 nm. Values 

are compared to those reported in Ref. 23 in the absence of HA. 

Lipid 

composition 

D [µm2/s]  

(without HA) 

D [µm2/s] from 

Ref. 23 

D [µm2/s]  

(with HA) 

DOPC 6.00 ± 0.3 6.3 ± 0.2 5.6 ± 0.4 

DOPC:SM (1:1) 1.8 ± 0.4 2.6 ± 0.2 1.1 ±0.6 

DOCP:SM (1:1) + 

20 mol% Chol 

4.6 ± 0.9 (Ld);  

0.4 ± 0.1 (Lo)# 

5.15 ± 0.15 (Ld);  

0.255 ± 0.058 

(Lo) 

4 ± 2 (Ld);  

0.3 ± 0.2 (Lo)# 

# The distinction between the macroscopic Lo and Ld domains is based on the fluorescence 

intensity since the DiD dye preferentially partitions into the Ld regions.167 

We then incubated SLBs with an HA solution to form an adjacent glycan layer, using 

1 mol% biotinylated HA molecules, fluorescently labeled with Atto488 linked 

through a Streptavidin bond. After the incubation with the HA solution, we 

performed confocal FCS measurements on random locations to quantify a potential 

influence of HA on the diffusion of DiD in the lipid bilayers. For the single 

component DOPC bilayer as well as the binary DOPC:SM bilayer, we did not observe 

a significant influence of the HA layer on the dye diffusion. However, we measured 

an increased spread for the diffusion coefficient on the DOPC:SM bilayer, alluding 
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to a possible effect of HA on this binary mixture (see Table 4-1). In the case of the 

DOPC:SM:Chol mixture in presence of HA, we obtained similar values of DiD 

mobility as compared to the ternary mixture alone (see Table 4-1). However, the 

obtained values of the diffusion coefficient exhibit again a larger spread as 

compared to bilayers without HA. These results suggest that HA might influence 

the organization of the ternary lipid mixtures containing Chol, but its effect is 

averaged out within the observation area provided by confocal illumination.  

We also performed dual-color confocal fluorescence images of the ternary lipid 

mixture (DOPC:SM:Chol) on a glass coverslip, containing the adjacent HA layer 

(Figure 4-2). The Lo lipid phase, enriched in SM and Chol, corresponds to areas of 

less fluorescence intensity due to the preference of the dye DiD to partition in the 

Ld phase.166 Note that the presence of coexisting gel-like domains enriched in SM is 

also possible but would remain unresolved by fluorescence since the dye cannot 

penetrate at all.166 The adjacent HA layer, shown in green, appears to anti-correlate 

with the brighter areas of the lipid labeling, as shown in red in the fluorescent 

imaging scans and line profiles plotted in Figure 4-2. These results indicate that HA 

preferentially partitions within the more ordered regions of the lipid bilayer. 

Then, to investigate the influence of the HA layer on the dynamics of the different 

lipid mixtures at the nanoscale, we performed FCS experiments using planar gold 

nanogap antennas (Figure 4-1 c). The design of the planar nano-antenna used here 

features a nanogap gold dimer (half-sphere of 80 nm diameter each) centered in a 

300×140 nm2 nano-aperture. As explained in Chapter 2, the central nanogap 

between the gold dimer creates a highly confined fluorescence hotspot, while the 

surrounding nano-aperture suppresses the fluorescent background. Large arrays 

of these nanogap antennas of different gap sizes (10-45 nm for the measurements 

reported in this chapter) were nanofabricated at a spatial separation of 4 µm 

between antennas, allowing for multiple experiments on individual nano-antennas 

on the same biological sample.  



Assessing the role of extra-cellular glycans on the nanoscale organization of 

mimetic membranes 

100 

 

Figure 4-2. Confocal FCS on a ternary lipid bilayer in presence of HA. (a) Representative 

fluorescence image of the DOPC:SM:Chol (20mol%) lipid membrane (red) in presence of HA (green). (b) 

x-z scans at the positions indicated by the white lines. (c) Merged x-y image together with the same 

merged z-projection as shown in (b). (d) Three representative fluorescence profiles taken at three 

different locations on the sample, as highlighted by the while lines in (c).  

We have previously shown that bilayers of different lipid compositions form nicely 

on top of the gold antenna substrates and we have not observed sticking effects that 

could artifactually affect the mobility of the dye within the bilayer (refer to Chapter 

3). Yet, since HA can affect the organization of the lipid bilayers, we first assessed 
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the quality of SLB-HA deposited on bare gold substrates by standard confocal 

microscopy (Figure 4-3). Although the resultant bilayer becomes somewhat more 

heterogeneous on this type of substrate, a clear anti-correlation between the DiD 

and HA signals was still observed, similar to that observed on SLB + HA deposited 

on glass. 

 

Figure 4-3. Confocal FCS of a ternary lipid bilayer in presence of HA deposited on a gold 

substrate. Representative fluorescence image of a DOPC:SM:Chol SLB (a, red) incubated with HA (b, 

green). (c) The merge of (a) and (b) is shown. 

Our experimental pipeline to conduct nano-antenna-FCS measurements comprised 

the following steps. First, the lipid bilayer was prepared on top of the nano-antenna 

platform. Second, we excited the antennas using a single-molecule sensitive 

confocal set-up with 640 nm laser illumination and polarization parallel to the gap 

to achieve maximum field enhancement and confinement, as discussed in Chapters 

2, 3. Third, the fluorescence intensity of the diffusing dye DiD was recorded on three 

different gap sizes of nominally 10, 30 and 45 nm for multiple antennas. Fourth, 

after an incubation period with HA, another series of FCS measurements on 

antennas of different gap sizes was performed. Finally, we correlated the collected 

intensity traces in time and fitted each one of them individually with a two-

component 2 D diffusion model (Eq. 4-1 in the Methods section 4.2.3) to obtain the 

characteristic diffusion time. We chose a two-component fit to account for the fast 

diffusion through the confined antenna gap area and the slower background 

diffusion together with other contributions from the box surrounding the antennas. 

We have already employed this fitting approach for the FCS analysis in solution 

(Chapter 2) and on lipid model membranes (Chapter 3). Finally, we plotted the 

obtained fast diffusion times as a function of the antenna gap size on multiple 

antennas to derive the FCS diffusion law at the nanoscale. The FCS diffusion law 

consists of a plot of the obtained diffusion times τ vs. different observation areas 
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(𝜔2) as established by Lenne and coworkers to asses characteristic diffusion 

behavior at scales smaller than accessible.40,41 We extended this plot to the 

nanoscale by including the three antenna gap areas in addition to the confocal area. 

By a linear fit to 

 𝝉(𝝎𝟐) =  𝝉𝟎 +𝝎
𝟐 (𝟒 × 𝑫)⁄  Eq. 4-3 

the y-intercept 𝜏0 and the diffusion coefficient D can be obtained. In the context of 

FCS diffusion laws, a significant y-intercept 𝜏0 is a strong indication that nanoscale 

diffusion is deviating from free Brownian behavior due to the occurrence of 

domains or a meshwork at scales smaller than those accessible by the employed 

technique. This outlined experimental pipeline was applied to each of the three 

different bilayer compositions probing the lipid dynamics before and after the 

incubation with HA.  

We first interrogated the homogeneous single component DOPC bilayer by the 

nanogap antennas. The purpose here is twofold. First, to validate the antenna 

approach and second, to investigate how HA interacts with the DOPC bilayer. In 

Figure 4-4 a representative FCS curves are depicted, recorded on the smallest 

antenna gap (nominally 10 nm in size) before and after the addition of the HA layer 

and compared to a representative confocal FCS measurement of the DOPC bilayer. 

The confinement to ultrasmall antenna hotspots is confirmed by the evident shift 

to shorter diffusion times when comparing the FCS curve from the nano-antenna 

to the confocal case, consistent with results shown in Chapters 2 and 3. Moreover, 

the presence of the HA layer did not significantly affect the diffusion times of DiD 

in the DOPC bilayer, a result that is in agreement with the confocal FCS 

measurements (see Table 4-1). To further validate these results, we generated 

diffusion law plots for multiple antennas of different gap sizes and confocal 

illumination (Figure 4-4 b, c). The resulting diffusion coefficients for the DOPC 

bilayer in the absence and in the presence of HA yield similar values (within the 

standard deviation), namely DDOPC = 6.4 ± 0.2 µm2/s and DDOPC+HA = 6.3 ± 0.1 µm2/s. 

These two values compare well to the values obtained for confocal FCS experiments 

probing a DOPC bilayer (see Table 4-1), and as previously reported in Ref. 23, and 

in Chapter 3. In addition, the τ0 values (y-intercept) were similar and close to zero 

for DOPC before and after the addition of HA (-7 ±1 µs for DOPC and -6 ±1 µs for 

DOPC + HA), confirming that the DOPC diffusion remains Brownian at the nanoscale 

in presence of the HA layer. To assess the variations in diffusion times for different 
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antennas we calculated the normalized spread in diffusion times (norm. spread) 

for each of the three gap areas for DOPC alone and DOPC + HA (Figure 4-4 d). The 

norm. spread is expressed as the percentage of the value of the interquartile range 

together with an estimation of the accuracy to fabricate each of the three gap areas 

divided by the respective median diffusion time per gap size. As expected, the 

fabrication uncertainty decreases with increasing gap area since the fabrication 

becomes more accurate (for details refer to Chapter 2). A similar trend was found 

for DOPC alone and DOPC + HA, indicating that small deviations between antenna 

measurements mostly stem from fabrication inaccuracies rather than from the 

presence of hindering nanodomains on the sample. 

 

Figure 4-4. Confocal and nanoscale FCS diffusion dynamics of a single component bilayer before 

and after HA addition. (a) DOPC correlation curves for the smallest antenna gap before and after HA 

addition in comparison to confocal (b) FCS diffusion laws extended to the nanoscale shown in (c) for 

DOPC before and after incubation with HA. (d) Normalized spread in diffusion times for DOPC before 

and after addition of HA and compared to fabrication inaccuracies. 

Besides probing nanoscale diffusion, we also examined the morphology of the SLBs 

by AFM following the experimental scheme shown in Figure 4-1 c. The addition of 

the HA layer on top of the single component DOPC bilayer did not lead to any 

obvious reorganization such as the occurrence of nanodomain formation or 

reshaping of its topography (Figure 4-5). Altogether, the lack of changes in the 

obtained diffusion coefficients, the negligible y-intercepts obtained from the FCS 

diffusion law plots down to 10 nm inspection, and an unaltered topography from 

AFM images, strongly indicate that HA does not affect the spatiotemporal 

organization of DOPC bilayers at the micron- nor the nanoscale.  
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Figure 4-5. Nanoscale topography of a single component lipid bilayer prior to and after HA 

addition. AFM topography images of a DOPC bilayer before (a) and after (b) the addition of HA. 

We then prepared bilayers composed of a mixture of SM and DOPC at equimolar 

concentrations DOPC:SM (1:1) and studied the effect of HA on these bilayers. 

Representative topography images by AFM for the binary mixture before and after 

addition of the HA layer are shown in Figure 4-6 a and b, respectively. In both cases 

we observed the presence of domains of heterogenous sizes, indicative of the 

formation of different lipid phases. However, a qualitative, visual inspection of both 

topographic images (see also the enlarged AFM images, Figure 4-6 c, d) indicate 

differences in the domain morphologies. While for DOPC:SM the domain edges 

appear quite sharp, well-defined and spiky, they become more homogeneously 

distributed and spherically shaped upon HA addition.  

To corroborate this first visual impression we performed atomic force 

spectroscopy measurements to quantitatively analyze the membrane remodeling 

taking place after HA incubation. In this type of measurements, a vertical 

compression of the membrane by the AFM tip at constant loading rate induces an 

elastic deformation and sudden breaking of the membrane.185 The maximum force 

applied by the AFM tip at which the bilayer breaks, so-called the yield or 

breakthrough force Fb, is seen as a discontinuity in the approaching force curve 

(Figure 4-1 d). The breakthrough force is directly related to the membrane lateral 

packing. Therefore, Fb is characteristic of the chemical structure of the lipid 

molecules and of the bilayer’s composition when formed by more than one lipid.186 

Fb is furthermore affected by the surrounding environment altering lateral 

interactions between the lipid molecules.187  
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Figure 4-6. AFM topography of a binary lipid bilayer before and after HA addition. Representative 

AFM topography images of the DOPC:SM (1:1) bilayer before (a) and after the HA addition (b) together 

with 2 µm ×2 µm zoom-ins (c, d, respectively). (e, g) Breakthrough force map (e) together with the 

evaluated breakthrough force histogram (g) for the same DOPC:SM region as in (c). (f, h) 

Breakthrough forcemap (f) and breakthrough force histogram (g) for DOPC:SM + HA in the region of 

(d). Note that for both breakthrough force histograms (g, h) values close or equal to zero were 

excluded since they correspond to regions where no clear discontinuity in the approach force curve 

could be distinguished.  

We acquired pixel-by-pixel force-retraction curves (pixel size of 63 nm) on the 

same zoomed-in regions as imaged in topography (Figure 4-6 c, d), calculated the 

Fb for each curve and generated 2D breakthrough force (Fb) maps of the DOPC:SM 

membrane before and after HA incubation (Figure 4-6 e, f). Besides a slight lateral 

shift due to the mechanical drift of the set-up, the Fb maps correlate well with the 

topographical features observed on the AFM images. Indeed, for the DOPC:SM 

bilayer, the thicker domains observed in the topography image (Figure 4-6 c) 

correspond to larger Fb values (Figure 4-6 e) and can therefore be most likely 

attributed to the more ordered domains enriched in SM.188,189 To better quantify 

these differences, we generated histograms of the Fb values, excluding values close 

to zero on regions where we were not able to distinguish a clear discontinuity in 

the approach force (Figure 4-6 g, h). The Fb histogram for the DOPC:SM bilayer 

(Figure 4-6 g) exhibits a clear bimodal distribution with a lower force centered 

around 8 nN and a considerably higher force with a larger spread centered at ~38 

nN. The lower force is higher than the Fb value of ~4-5 nN reported in the literature 
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for a pure DOPC bilayer.190 Hence, we assign this lower force peak at ~8 nN to Ld 

bilayer regions composed of mainly DOPC and mixed with a small fraction of SM. 

The second broader histogram with a peak at higher rupture forces of ~38 nN, lies 

within the range reported for gel-like membranes.191 Compared to literature, the 

coexistence of gel-like domains in binary DOPC:SM model membranes has been 

shown for compositions containing 23-81% of SM, and nanodomains have been 

detected to occur in the range of 10-15% SM already.192–194 Therefore, we assign 

these higher rupture forces to regions of SM of different packing densities 

containing fewer DOPC molecules. In strong contrast to the results obtained on 

DOPC:SM, addition of the HA layer resulted in a much broader and unimodal 

distribution of Fb values (Figure 4-6 h). Indeed, the Fb distribution is centered at 

around 29 nN which is between the most probable values of the bimodal 

distribution obtained for the DOPC:SM bilayer. Although the correlation between 

the topography and the Fb maps is somewhat preserved, the mechanical stability of 

the distinct phases observed for the DOCP:SM bilayers becomes similar and more 

indistinguishable upon the addition of HA.  

To further investigate the effect of HA on DOPC:SM bilayers and to rationalize the 

AFM results described above, we moved to fluorescence measurements. Confocal 

images of DOPC:SM + HA confirmed the presence of HA as well as its preferential 

partitioning to higher ordered regions of the bilayer (i.e., where the DiD signal is 

weaker) (Figure 4-7 a). FCS measurements at the nanoscale by means of antennas 

of different gap sizes showed a considerable influence of HA on the dynamics of the 

DOPC:SM bilayers. Measurements performed on the smallest antenna gap (10 nm) 

yielded a diffusion time of τDOPC:SM = 24 ± 3 µs for the correlation curve shown in 

Figure 4-7 b (dark blue). Upon HA incorporation we obtained a diffusion time of 

τDOPC:SM+HA = 36 ± 4 µs, showing a slowdown of DiD diffusion (Figure 4-7 b). The 

strong influence of HA on the packing of a DOPC:SM bilayer becomes more apparent 

if looking into the mean diffusion times of the 10 nm gap size depicted in the 

diffusion law plots in (Figure 4-7 c) yielding values of τDOPC:SM = 36 ± 9 µs and 

τDOPC:SM+HA = 92 ± 26 µs, respectively. After fitting all the correlation curves for three 

different nano-antenna gap sizes, we obtained diffusion law plots for DOPC:SM with 

or without the HA layer (Figure 4-7 c). In the absence of HA, the plots could be 

accurately fitted using Eq. 4-3, yielding values of DDOPC:SM ~4.14 ± 0.03 µm2/s and a 

small but significantly positive offset of τ0 = 18 ± 4 µs. This positive offset is 

indicative of the occurrence of nanodomains.40,41,122 Moreover, the normalized 
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spread in diffusion times for the DOPC:SM membrane follows an opposite trend to 

the one resulting from the fabrication inaccuracies (Figure 4-7 d), i.e., increased 

spread in diffusion times for the larger antenna gaps. The spread in diffusion times 

can be explained by the occurrence of nanoscale heterogeneities that alter the 

diffusion of DiD, with shorter diffusion times corresponding to more fluid-like 

nanoscale regions and longer diffusion times associated with a more compact 

nanoenvironment. Overall, these results can be directly correlated to the AFM data 

shown in Figure 4-6 a-d and indicate the existence of nanodomains with a broad 

range of sizes, the smallest detected ones having sizes comparable to our smallest 

gap (10 nm) or smaller. 

 

Figure 4-7. FCS dynamics of a DOPC:SM lipid bilayer before and after HA addition. (a) Dual color 

confocal fluorescence image of a DOPC:SM bilayer (red) and HA layer (green) deposited on a glass 

coverslip. (b) Representative correlation curves of DOPC:SM before and after HA addition, obtained 

with the nominally 10 nm gap antenna. (c) FCS diffusion laws for the two bilayer conditions (the inset 

focuses on the two smaller gaps). (d) Normalized spread in diffusion times for the DOPC:SM bilayer 

before and after HA addition and compared to fabrication inaccuracies.  

Remarkably, HA addition led to a shift to longer and much more disperse diffusion 

times for all three investigated gap sizes. The disperse data sets of the diffusion 

times for each gap size yields an inadequate linear regression fitting with a 

coefficient of determination R2 = 44% for the DOPC:SM + HA. In contrast, R2 for the 

pure DOPC:SM bilayer is 92%. Although we are not able to draw conclusions about 

the explicit nature of the HA interaction with DOPC:SM bilayers from these ill-

defined diffusion time plots, our results clearly indicate that HA has a major impact 

disturbing the full ordering of the bilayers down to scales of 10 nm in size. 

Qualitatively, these results also agree with the Fb plots, in which distinct phases 

became indistinguishable in terms of the rupture forces upon HA incorporation 

(Figure 4-6 h).  
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We finally assessed the effect of HA on ternary lipid mixtures composed of 

DOPC:SM (1:1) and 20 mol% Chol. First, we imaged the SLB with AFM (Figure 4-8 

a, left). Three clearly different phases are resolved in the AFM images, which were 

also confirmed by force-retraction measurements at arbitrary locations. 

Comparing to literature,184 the ternary mixture of DOPC:SM (1:1) + 20 mol% Chol 

is prone to phase-separate in three phases with the thickest domains being 

reminiscent of gel-like SM-enriched domains (indicated with arrows in Figure 4-8 

a, left). However, these three phases could only be detected by AFM and not in 

confocal fluorescence images since DiD cannot penetrate into gel-like regions.166 

HA addition visibly perturbed the DOPC:SM:Chol bilayers, as inspected by AFM, so 

that the three-lipid phases could not be unambiguously identified (Figure 4-8 b). In 

general, these samples were much more difficult to image and appeared 

systematically blurrier due to increased interactions between the AFM tip and the 

sample. We also performed phase-shift contrast imaging on the same regions of 

both samples (Figure 4-8 a, b, right images). In general, the phase signal changes 

when the probe encounters regions of different compositions.195 While the phase 

image of the DOPC:SM:Chol bilayer is sharp and capable of retrieving the different 

phases of the bilayer (Figure 4-8 a), a much more blurred behavior was obtained 

upon HA addition (Figure 4-8 b). Thus, although these images clearly show the 

presence of HA and visual perturbation of the bilayers, it was not possible to make 

further conclusions regarding a potential HA-dependent re-patterning in the lipid 

organization of these bilayers.  

Since AFM can potentially introduce unwanted tip-sample interactions, in 

particular in the case of sticky molecules such as HA, we moved once more to 

fluorescence measurements. As mentioned above, confocal FCS measurements 

yielded similar dye mobility in presence of HA as compared to the ternary mixture 

alone. However, we obtained a significantly larger spread for the dye mobility 

suggesting that the influence of HA is averaged out by the larger illumination area 

provided by confocal detection (see Table 4-1). To discern alterations of the 

nanoscale lipid dynamics triggered by the adjacent HA layer on a ternary mimetic 

membrane, we performed FCS experiments on the nanogap antenna platform. 

Representative FCS curves for the smallest antenna gap size of 10 nm are shown in 

Figure 4-8 c. 
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Figure 4-8. FCS dynamics and topography of a ternary lipid bilayer before and after HA addition. 

Representative AFM topography and phase shift images of the ternary lipid mixture before (a) and 

after HA incubation (b). Black arrows in the topographic image (a) pinpoint to the three different 

phases retrieved. (c) Representative correlation curves for the smallest antenna gap size of the ternary 

mixture with and without HA. In the absence of HA, correlation plots could be assigned as belonging to 

the Lo or Ld phases (magenta and purple lines). In the presence of HA this distinction could not be 

made (green line). (d) FCS diffusion laws obtained from measurements on the three different gap sizes. 

(e) Normalized spread in diffusion times. 

As previously reported, the two representative correlation curves for the ternary 

mixture in the absence of HA correspond to DiD diffusion in the Ld (i.e., shorter 

diffusion times) and Lo (i.e., longer diffusion times) phases (Chapter 3). In presence 

of the HA layer, this distinction is abrogated, and on average the dye is further 

slowed down. Figure 4-8 d shows the calculated diffusion times versus the three 

gap sizes investigated (diffusion law plots) for multiple antennas for the ternary 

mixture alone and after HA addition. In the absence of HA, we recover the two 

characteristic diffusion coefficients DLd = 6 ± 1 µm2/s, DLo = 2.1 ± 0.4 µm2/s and 

positive offsets of τLd = 32 ± 9 µs, τLo = 190 ± 10 µs corresponding to nanodomains 

inside the Ld and the Lo phases, respectively, and in full agreement with previous 

findings (Chapter 3). Remarkably, in the presence of HA, the diffusion times become 

largely spread, regardless of the antenna gap size (Figure 4-8 d). The spread is 

significantly larger than the one already obtained for the binary DOPC:SM + HA 

system, preventing also in this case further fitting of the data. The normalized 

spread in diffusion times confirms the existence of nanoscopic heterogeneities 

within both the Ld and Lo phases in the absence of HA (Figure 4-8 e), as previously 
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reported (Chapter 3). However, the spread in diffusion times after addition of HA 

becomes even larger suggesting a considerable glycan-lipid interaction already 

emerging at 10 nm or less, since the largest spread is recorded for the smallest gap 

size (Figure 4-8 e). We propose that the HA layer stabilizes and further enhances 

the nanoscopic heterogeneities which already coexist in the ternary mixture due to 

the presence of Chol. Both the results by AFM and on the nano-antennas jointly 

confirm the influence of the HA layer on the micro- and nanoscale lipid organization 

which is reported here for the first time to our knowledge. 

4.4 Discussion 

To get a hint of a possible mechanism driving the interaction between HA and SM 

we looked into the chemical molecular structures of SM and HA in comparison to 

the one of DOPC. Both SM and HA have a high H-bonding capacity facilitating bonds 

formed between the OH groups of HA and the NH groups of SM.196,197 Via these 

bonds, HA could partially penetrate in between the SM head groups, which would 

thus help in the partitioning of the membrane.196,198 One hypothesis is that HA plays 

an intercalating role in a similar way as Chol does to induce or facilitate 

nanodomain formation in lipid mixtures containing SM. In fact, we observed less 

microscopic segregation between SM and DOPC in favor of enhanced nanoscopic 

heterogeneities. However, resolving if HA is playing this intercalating role and 

inducing the formation of nanoscale heterogeneities would demand more 

chemically sensitivity methods. Indeed, the importance of the chemical structure 

and affinities for the lipid-glycan interaction has been already pointed out in the 

study of Sahoo and Schwille.123 In that work, the authors probed the influence of 

different glycosaminoglycans on the lipid dynamics of a supported DOPC bilayer 

(doped with 5 mol% 1,2-Dioleoyl-3-trimethylammonium propane (DOTAP), a 

cationic lipid surfactant) and reported a noticeable effect related to the presence of 

certain carbohydrate polymers. Their work further stated the glycan concentration 

and molecular weight as influencing parameters, which would be interesting to 

study at the nanoscale. 

Earlier investigations on the role of glycans re-patterning phase separation on 

ternary mixtures containing cholesterol showed that homogeneously distributed 

glycan networks suppress microscopic phase separation in these membranes.17 

However, that work was performed by using diffraction-limited confocal 

microscopy leaving the open question of whether suppression of phase separation 
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also occurs at the nanoscale or not. By exploiting our combined planar nanogap 

antenna arrays together with FCS and AFM we were able to resolve the influence of 

HA on lipid organization at the nanoscale. We observed that HA preferentially 

interacts with SM, inducing and enhancing the formation of nanoscopic 

heterogeneities in multicomponent lipid membranes. To reconcile our findings 

with the confocal studies, we put forward that the presence of HA enhances the 

formation of nanoscopic lipid heterogeneities in multicomponent lipid membranes 

which may appear as a microscopically “smeared out” or homogeneous when 

inspected by techniques that lack the required nanometric spatial resolution.  

The occurrence of an induced and/or enhanced formation of nanoscopic lipid 

heterogeneities in multicomponent lipid membranes by HA, as observed here, 

might have implications for our understanding of living cell membranes, which are 

abundant in glycolipids and glycoproteins. In a similar way by which the cortical 

actin cytoskeleton has been implicated in the formation and/or the regulation of 

lipid raft sizes,3,5,13 our results advocate for a role of the glycocalyx matrix 

regulating the lipid bilayer organization at the nanoscale. Such a glycan-dependent 

re-patterning might have consequences for the way receptors and lipids interact 

with each other in the plane of the bilayer, and thus potentially influence their 

function.  

4.5 Conclusion 

In summary, we have demonstrated that planar photonic nanogap antennas 

together with FCS and combined with AFM can be exploited to elucidate the impact 

of glycans on the lipid nanoscale organization of mimetic biological membranes of 

different compositions. Our data strongly suggest that HA and cholesterol 

synergistically contribute to nanodomain partitioning of multicomponent 

membranes at the nanoscale. Our combined approach provides the required 

spatiotemporal resolution, mechanical sensitivity, and delivers quantitative 

parameters at the nanoscale that might highly benefit the modeling of biological 

systems.  

In the scope of this dissertation we resolve the nanoscale lipid dynamics in living 

cells with our combined FCS-nanogap antenna platform in the subsequent Chapter 

5. In the last project in Chapter 6 we address the questions of how multiplexing FCS 

on our antenna platform in living cells at the nanoscale becomes reality.  
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5 Planar antennas to address the complexity of living 

cell membranes5 

One of the overarching goals of this thesis has been to gain insight into the 

nanoscale dynamics of the plasma membrane in living cells. The spatial 

organization and diffusion dynamics of membrane constituents (lipids and 

proteins) occurring at the nanoscale largely influence cellular processes such 

as transmembrane signaling, intracellular trafficking, and cell adhesion.2,157 

In Chapters 3 and 4 of this thesis we demonstrated the application of planar 

photonic antennas of different gap sizes to address the dynamic nanoscale 

complexity of mimetic biological membranes with unprecedented 

spatiotemporal resolution.  

In this chapter, we exploit similar nano-antenna platforms together with 

fluorescence correlation spectroscopy (FCS) to study the characteristic 

diffusion dynamics of phosphoethanolamine (PE) and sphingomyelin (SM) in 

the plasma membrane of living cells at the nanoscale. Fluorescence burst 

analysis and FCS measurements performed on nano-antennas of different 

gap sizes show that, unlike PE, SM is transiently trapped in cholesterol-

enriched nanodomains of 10 nm diameter with short characteristic trapping 

times around 100 µs. Removal of cholesterol led to the free diffusion of SM, 

consistent with the dispersion of nanodomains. Our results thus confirm the 

 

5 The content of this chapter has been published in: 

Regmi, R., Winkler, P.M., Flauraud, V., Borgman, K.J.E., Manzo, C., Brugger, J., Rigneault, H., 

Wenger, J. and García-Parajo, M.F., Planar optical nanoantennas resolve cholesterol-

dependent nanoscale heterogeneities in the plasma membrane of living cells. Nano Letters, 

2017 (10), pp.6295-6302. 
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existence of highly transient and fluctuating nanoscale assemblies enriched 

by cholesterol and sphingolipids in living cell membranes, also known as 

lipid rafts. Quantitative data on sphingolipids partitioning into lipid rafts is 

crucial to understand the spatiotemporal heterogenous organization of 

transient molecular complexes on the membrane of living cells at the 

nanoscale. In addition, the results presented in this chapter demonstrate the 

full biocompatibility of our planar nano-antenna arrays and their usefulness 

for biophysics and live-cell research to reveal details that remain hidden in 

confocal diffraction-limited measurements.  
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5.1 Introduction 

The nanoscale spatial organization and diffusion dynamics of the plasma 

membrane constituents (lipids and proteins) play key roles influencing cellular 

processes such as transmembrane signaling, intracellular trafficking and cell 

adhesion.2,157 It has been postulated that sphingolipids, cholesterol, and certain 

types of proteins can be enriched into dynamic nanoscale assemblies or 

nanodomains, also termed lipid rafts.9,13,45 Lipid rafts have been defined as highly 

dynamic and fluctuating nanoscale assemblies of cholesterol and sphingolipids that 

in the presence of lipid- or protein-mediated activation events become stabilized to 

compartmentalize cellular processes.2,4,7 However, the true nature of these 

nanodomains remains debated with many conflicting results and predicted domain 

sizes in the broad range of 10-200 nm, primarily because of their transient nature 

and nanoscopic sizes.7,9,10,36,40,54,76 

Most of the investigations on the living cell membrane dynamic organization have 

been based on fluorescence recovery after photobleaching (FRAP)199 and single 

particle tracking (SPT)3,35. Both techniques are limited either in space (with μm2 

probe area in FRAP) or in time (with millisecond temporal resolution in SPT). 

Fluorescence correlation spectroscopy (FCS) is a widely adopted alternative for 

studying dynamics and biomolecular interactions as introduced in Chapter 2. 

However, conventional FCS on confocal microscopes is unable to resolve the 

nanoscale organization of lipids due to the limited 200-350 nm spatial resolution 

set by diffraction. Various approaches have been implemented over the past decade 

to breach the diffraction limit in FCS, but dynamic membrane studies have so far 

remained above a 40-50 nm detection size. For instance, stimulated emission 

depletion (STED) microscopy constrains the excitation spot down to ∼40 nm200 and 

has been combined with FCS to explore the nanoscale dynamics occurring in lipid 

membranes of living cells.60,62–64 

An alternative strategy takes advantage of nanophotonic structures to engineer the 

light intensity distribution at the nanoscale.80 As summarized in Chapter 1, notable 

designs include zero-mode waveguides,87–90,93 bowtie structures,104,201,202 gold 

nanorods,120 and subwavelength tip based NSOM probes.57,203 These various 

approaches allow confinement of the illumination light in the range of 50-100 nm. 

Resonant optical nanogap antennas have shown great potential to further 

constrain the laser light on a sub-20 nm scale95 and greatly enhance light-matter 

interactions.99–101,118 However, so far the applications of such resonant nanogap 



Planar antennas to address the complexity of living cell membranes 

116 

antennas have been mostly employed to probe fluorescent molecules in solutions 

at micromolar concentrations.  

As outlined and benchmarked in Chapter 2 our gold nanogap antenna approach 

offers high spatiotemporal resolution at physiologically relevant concentrations 

together with excellent accessibility to the hotspot region, planarity and 

biocompatibility. Hence, after validating our methodology using model lipid 

membranes (Chapters 3, 4), we were eager to exploit its high potential to 

investigate for the first time the dynamic nanoscopic organization of lipid rafts in 

the plasma membrane of living cells at a spatial resolution of 10 nm. In this chapter 

we report on the application of this type of nano-antennas with gap sizes of 10 and 

35 nm to investigate the diffusion dynamics of phosphoethanolamine (PE) and 

sphingomyelin (SM) on the plasma membrane of living Chinese hamster ovary 

(CHO) cells. Compared to earlier works using confocal FCS,36,40,41 nano-aperture 

FCS,87–90,92,93 or STED-FCS,60,62–64 our study is the first to breach into the sub-30 nm 

spatial scale on living cell membranes. Together with cholesterol depletion 

experiments, we provide compelling evidence for the existence of short-lived 

cholesterol-induced ∼10 nm nanodomain partitioning in plasma membranes. We 

further discuss the impact of our results in the context of lipid rafts.  

5.2 Methods  

5.2.1 Fabrication of planar nano-antenna arrays 

Large-scale planar nano-antenna arrays were fabricated by our collaborators of the 

group of Prof. J. Brugger at EPFL, Lausanne as part of a European collaboration. The 

approach combines electron beam lithography (EBL) with planarization, etch back, 

and template stripping as explained in detail in Chapter 2. This fabrication 

procedure makes that the narrowest gap region, where confinement is highest, 

becomes readily accessible to the sample. Moreover, the planarization step renders 

the antenna perfectly suitable for membrane studies as it precludes the occurrence 

of curvature effects that might influence the dynamics of molecules within the 

bilayer (for more details see Chapter 2).  

5.2.2 Cell culture, Atto647N-labeling and cholesterol depletion of 
CHO cells 

CHO cells were seeded on a coverslip containing planar nano-antennas with surface 

nanogaps and were allowed to grow and spontaneously attach at 37 °C in a 

controlled atmosphere with 5 % of CO2 for nearly 48 h. Lipid conjugates were 
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separately prepared by labeling 1,2-dipalmitoyl-sn-glycero-3-

phosphoethanolamine (DPPE) and sphingomyelin (SM) with the organic dye 

Atto647N (Invitrogen) as described in Ref. 60. Just before the fluorescence 

measurements, the fluorescent lipid analogues dissolved in the Ham’s F12 nutrient 

medium were incorporated into the plasma membrane of the living CHO cells for 

an incubation period of three minutes at room temperature. Next, the stained cells 

seeded on the nano-antenna platform were carefully rinsed with medium to 

remove excess dye molecules and placed onto the piezo stage in the confocal setup. 

For cholesterol depletion experiments, the CHO cells were incubated in serum-free 

buffer with 10 mM methyl-β-cyclodextrin (MCD) for 30 min at 37 °C, and then the 

fluorescent labeling was carried out as previously described. The initial staining 

concentration for all experiments was targeted for ~ 300 nM of Atto647N. Note that 

we carried out the FCS experiments on tens of antennas per platform within ~ 30 

minutes after completing the live-cell staining to avoid artifacts due to dye 

internalization. We estimate that the density of fluorescent lipids for the antenna 

experiments is on the order of 20−80 probes per μm2 (based on the number of 

detected fluorescence bursts and the FCS amplitude of the data shown in the 

Results section). 

5.2.3 Experimental setup for fluorescence spectroscopy  

The experiments were performed on the same setup as explained in detail in 

Chapter 3. All fluorescence measurements were performed by illuminating the 

sample at an excitation power density of ∼2−3 kW/cm2. The measurements were 

acquired for a typical run time of 50 s, and the correlation amplitudes were 

computed for ∼20 s windows with the commercial software package SymPhoTime 

64. Cells were cultured on different antenna samples, each sample containing 

different gap sizes.  

5.2.4 Fluorescence burst analysis  

Single-molecule fluorescence time traces were acquired in the tagged time-

resolved (TTTR) mode (recording each event at its arrival time) with 4 ps temporal 

resolution. Fluorescence burst analysis was carried out with a likelihood-based 

algorithm to test the null hypothesis (no burst, recording compatible with 

background noise) against the hypothesis that a single molecule burst arises as a 

consequence of a molecule crossing the excitation area. Probabilities associated 

with false positive and missing event errors were both set to 10−3.204 
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5.2.5 Fluorescence Correlation Spectroscopy (FCS)  

FCS curves were generated as explained in detail in Chapter 2. For the living cell 

experiments reported in this chapter, we have taken into account that molecular 

diffusion in living cells might deviate from purely Brownian motion and thus 

consider the possibility of anomalous diffusion. In these conditions, the temporal 

correlation 𝑮(𝝉) of the fluorescence intensity 𝑭(𝒕) can be written as37  

 𝑮(𝝉) = ∑
𝑨𝒊

𝟏 + (𝝉 𝝉𝒅𝒊𝒇𝒇,𝒊⁄ )
𝜶𝒊

𝒏𝒅𝒊𝒇𝒇

𝒊

 Eq. 5-1 

where 𝝉𝒅𝒊𝒇𝒇,𝒊 is the average residence time of the ith diffusing behavior, 𝑨𝒊 denotes 

the respective amplitude contribution, and 𝜶𝒊 is the anomaly parameter of the 

same.64 Note that α = 1 corresponds to Brownian, free diffusion and α values < 1 

correspond to anomalous subdiffusion.142 

To fit the obtained autocorrelation curves obtained on this type of planar nanogap 

antennas, we take advantage of the key feature in FCS, namely that the molecules 

contribute to the correlation amplitude in proportion to the square of their 

fluorescence brightness. Hence the signal from molecules in the nanogap 

experiencing maximum enhancement will have a dominating contribution to the 

FCS curves.109 We find that the FCS curves recorded with a nanoscopic illumination 

can be fitted with a model assuming two different diffusion species (i.e., 𝒏𝒅𝒊𝒇𝒇 = 𝟐), 

accounting for the (shorter) diffusion of fluorescent probes transiting the antenna 

hotspot in the nanogap and a second, longer diffusion time resulting from the 

background contribution in the nano-aperture region. For the experiments of FCS 

in living cells of this chapter, we account for diffusion probably deviating from free 

Brownian by leaving the anomaly parameter α free for the first component fitting 

the gap distribution. 

To define the probe areas used in the FCS diffusion laws, we use the product of the 

gap size (measured by TEM) with the full-width at half-maximum of the intensity 

profile along the direction perpendicular to the antenna main axis (computed by 

FDTD), following a calibration for model lipid membranes discussed in Chapter 3, 

Therefore, 10 and 35 nm gap sizes are associated respectively with 300 and 1250 

nm2 probe areas.  
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5.3 Results 

Figure 5-1 a, b depicts the strategy chosen for the living cell experiments using 

nanogap antenna arrays as substrates for cell seeding. We focus the laser light (λ = 

640 nm) onto individual antennas using a high-NA water immersion objective. 

Throughout this study, the linear polarization of the laser beam is set parallel to the 

antenna main axis so as to excite the nanometric hotspot on the surface of the 

nanogap region which is in direct contact with the adhered plasma membranes of 

living CHO cells. Importantly, the planarization strategy avoids possible curvature 

induced effects on the cell membrane.  

CHO cells were incubated on the nano-antennas at 37 °C for nearly 48 hours prior 

to the experiments to allow them to freely grow and adhere onto the antenna 

platform. Lipid analogues (either PE- or SM complexes) were fluorescently labeled 

with the lipophilic organic dye Atto647N (see the Methods Section 5.2 of this 

chapter for more details). We choose Atto647N as fluorescent dye since it has an 

excellent overlap with the antenna’s main plasmonic resonance guaranteeing 

maximum fluorescence enhancement in the nanogap. A representative confocal 

image of the morphology of the CHO cells adhered on a glass coverslip taken after 

the incorporation of the fluorescent lipid analogs is shown in Figure 5-1 b. 

 

Figure 5-1. Planar nano-antennas for investigating membrane dynamics in living CHO cells. (a) 

Schematics of our experimental approach with living cells seeded on top of the nano-antenna array. (b) 

Confocal image of adherent living CHO cells after labeling the SM lipid analog with Atto647N.  

Figure 5-2 a, b shows representative single-molecule fluorescence time traces for 

PE and SM in the confocal and in the nano-antenna configuration. The resolution 

given by the diffraction limited spot in the confocal scheme does not allow us to 

resolve heterogeneities that may occur at the sub-200 nm spatial scale, and as a 

result, the time traces for both PE and SM appear indistinguishable. In contrast, the 
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highly confined excitation hotspot originating from the 10 nm gap antenna clearly 

reveals differences in the characteristic diffusion dynamics for PE and SM. As 

shown in Figure 5-2 b, PE displays sharp peaks in the fluorescence time trace as a 

result of the sub-diffraction excitation hotspot created by the planar nanogap 

antenna. Unlike PE, the signature of SM is discernibly different at the nanoscale: the 

short bursts (a hallmark of free diffusion in ultrasmall detection areas) are 

accompanied by high intensity bursts of significantly longer durations. This is a 

direct indication that the nanoscopic diffusion of SM on the cell membrane is 

deviating from free Brownian diffusion as compared to larger macroscopic scales.  

To provide more quantitative information about the fluorescence time traces, we 

performed a fluorescence burst analysis to represent the distributions of burst 

duration versus burst intensity. From Ref. 104,204 we adapted and implemented 

in Matlab a burst analysis based on a likelihood algorithm to find single molecule 

bursts stemming from diffusion across our excitation area against the fluorescence 

background of 20-30 counts/ms which we determined empirically (see Methods 

Section 5.2). Figure 5-2 c shows the results for both PE and SM for the 10 nm 

nanogap antenna compared to the confocal configuration. The scatter plots for PE 

and SM in the confocal configuration (black crosses) show no visible differences 

with burst durations in the range 1−100 ms and intensities around 20−30 

counts/ms. However, in stark contrast, the distributions obtained on the nano-

antennas show clear differences between PE and SM. Diffusion events in sub-

millisecond time scales are notably observed with the nano-antennas exhibiting 

burst durations as short as 10 µs. Such short events are more than two orders of 

magnitude faster than in the case of the confocal reference. Regarding the diffusion 

dynamics for PE (red dots) probed with the nanogap antennas a general trend can 

be deduced; namely, brighter events arise at shorter time scales. These can be 

understood as the detection of a “best burst event” directly resulting as a 

consequence of an individual molecule diffusing through the hotspot in the optimal 

position and orientation for maximum enhancement. The tighter the excitation 

beam confinement, the higher is the local intensity which leads to higher 

fluorescence intensity and shorter burst duration. Thus, we relate the events with 

burst durations below 1 ms to the trajectories occurring within the nanogap 

region.104 In the case of PE, the bursts with durations above 1 ms feature a lower 

intensity in the range of 20−70 counts/ms, which is only slightly increased as 

compared to the confocal level. We assign these longer burst duration events to the 

residual excitation of diffusing molecules within the larger 300 × 140 nm2 box 
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aperture region where the electromagnetic field intensity enhancement is 

negligible yielding similar intensity values and durations as the confocal reference. 

 

Figure 5-2. Single molecule time traces in living CHO cells. (a, b) Fluorescence intensity time traces 

for the lipid analogs for phospoethanolamine (PE, left) and sphingomyelin (SM, right) labeled with 

Atto647N monitored in a confocal configuration (a) and on a planar nanogap antenna of 10 nm size 

(b). The binning time is 0.1 ms for all traces. (c) Burst intensity vs. burst duration obtained from 

multiple fluorescence intensity time traces for PE (left) and SM (right). Short (sub-ms) single molecule 

events are observed when probing on the nano-antenna platform (color dots) in comparison to 

predominantly longer events obtained with confocal illumination (dark crosses). 

In contrast to PE, SM probed with the nano-antenna arrays shows a significantly 

broader distribution of burst lengths against peak burst intensities (Figure 5-2 c). 

High intensities are observed for burst durations below and above 1 ms. Since these 

events were not observed for PE, we relate their occurrence to nanoscopic 

heterogeneities such as transient molecular complexes on the cell membrane 

hindering the diffusion of SM. 
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To support this conclusion, we perturbed the cholesterol composition in the cell 

membrane with methyl-β-cyclodextrin (MCD), as cholesterol is expected to play a 

significant role in the formation and stability of the lipid nanodomains. The result 

of the burst analysis for SM after MCD treatment recovers a distribution which 

closely resembles the one for PE (Figure 5-3). In other words, the intense bursts of 

duration between 0.1 and 10 ms disappear after cholesterol depletion, consistent 

with the loss of nanodomains. Altogether, the results from the fluorescence burst 

analysis demonstrate the benefits of planar nanogap antennas to explore the 

nanoscopic organization of lipids in live cell membranes. Clear differences between 

PE and SM diffusion dynamics are unveiled that otherwise would remain hidden in 

confocal measurements. 

 

Figure 5-3. Single-molecule traces in living cells after cholesterol depletion. (a) A representative 

single-molecule intensity time trace of the fluorescent analog for SM labeled with Atto647N after 

cholesterol depletion (MCD-SM) measured on a planar nanogap antenna of 10 nm size with a binning 

time of 0.1 ms. (b) Burst intensity vs. burst duration obtained from multiple fluorescence intensity time 

traces for SM after cholesterol depletion.  

To further support these results, we performed FCS analysis. FCS records the 

fluorescence intensity fluctuations as the fluorophores transit through the 

detection spot. These fluctuations are analyzed by computing the temporal 

autocorrelation function, averaging over thousands of single molecule diffusion 

events. As anticipated, autocorrelation curves of PE and SM taken under confocal 

illumination yielded comparable diffusion times of 24 ± 4 ms (PE) and 30 ± 4 ms 

(SM), respectively (Figure 5-4). These results further justify the need of reducing 

the illumination volume by means of photonic antennas.  

We used two different gap sizes (10 and 35 nm) to quantify the lipid dynamics for 

increasing detection areas in cell membranes with single-molecule sensitivity. 

Moreover, we normalized the correlation curves of data from individual traces in 

order to compare the two different gap sizes of the nano-antennas with the confocal 
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reference. Each of these traces is taken on an individual nano-antenna consistently 

representing many antennas probed of the same size.  

 

Figure 5-4. Confocal FCS for SM and PE on living cells. The normalized FCS curves for the fluorescent 

analogs for PE and SM labeled with Atto647N recorded on the confocal setup show only minor 

differences. 

 

Figure 5-5. Nano-antenna FCS for PE and SM on living cell membranes. (a) Normalized 

fluorescence correlation curve for Atto647N labeled PE lipid analog probed with nano-antennas of 

varying gap size. The color lines are experimental data, and the black curves are numerical fits. Each 

FCS trace is a representative example taken on an individual nano-antenna. The diffraction-limited 

confocal measurements are shown in gray for direct comparison. (b) Comparison of FCS curves for PE 

and SM for a 10 nm gap antenna. Unlike the confocal reference, the nano-antenna reveals clear 

differences between the dynamics of PE and SM at the nanoscale.  
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Figure 5-6. Nano-antenna FCS for SM before and after SM depletion on living cell membranes. (a) 

Normalized correlation curves for Atto647N labeled SM lipid analogs probed with nano-antennas of 

varying gap size in comparison to the confocal illumination spot. The color lines/circles are 

experimental FCS data, and the black curves are numerical fits. The grey shaded area indicates the 

correlation curves and fits obtained on nano-antennas. Each FCS trace is a representative example on 

an individual nano-antenna. (b) FCS curves of SM before (blue) and after (orange) cholesterol 

depletion. The SM diffusion dynamics is significantly faster when probing on a representative nano-

antenna of 10 nm gap size which is not apparent in the confocal configuration. 

We use a two-component model to fit the FCS data (Eq. 5-1) in order to account for 

the fluorescence contributions stemming from the nanogap and from the 

surrounding aperture area (for details refer to the Methods Section 5.2). We have 

been successfully applying this fitting approach in solution and on model lipid 

membranes. (compare to Chapters 2,3,4). The complete results and values for the 

FCS fits are detailed in Table 5-1. The differences between PE and SM diffusion 

dynamics are highlighted in Figure 5-5 b where a direct comparison of the FCS data 

for the 10 nm gap antenna is shown for the two different fluorescent lipid analogs 

of PE and SM. Contrarily to the confocal case (Figure 5-4) where the diffusion times 

of PE and SM are comparable, the difference in diffusion times between the two 

lipids becomes more prominent at the nanoscale. For instance, for a 10 nm gap 

antenna, PE exhibits a diffusion time of 0.25 ±0.06 ms, whereas the value for SM is 

0.35 ± 0.04 ms (Figure 5-5 b). Moreover, after MCD treatment, the diffusion 

dynamics for cholesterol-depleted SM closely resembles that of PE with a diffusion 

time of 0.19 ± 0.03 ms (Figure 5-6 b). These FCS results at the nanoscale confirm 

the presence of cholesterol-enriched nanodomains hindering the diffusion of SM, 

in agreement with the results found for the fluorescence burst analysis. In addition, 

we retrieved an anomaly value α < 1, indicating a deviation from Brownian 
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diffusion, for which α = 1. Interestingly, the anomaly value α for SM depended on 

the probed area, deviating from unity as the illumination area reduced, from α ∼ 

0.85 (for the 35 nm gap antenna) to α ∼ 0.65 (for the 10 nm gap antenna), which is 

fully consistent with hindered diffusion (refer to Table 5-1).  

Table 5-1. Obtained parameters of the fitted autocorrelation curves for representative nano-antennas 

of different gap sizes (indicated in parentheses in the Table). The results are shown for fluorescence 

experiments on PE, SM and MCD-SM based on a two-component diffusion model with the anomaly 

parameter α left free for the first component. 

 PE (10 nm) PE (35 nm) 

component 1st 2nd 1st 2nd 

diffusion 

time 

(0.25±0.06) 

ms 
8 ms (0.75±0.15) ms 16 ms 

anomaly 

(α) 
0.85 1 0.8 1 

corr. 

amplitude 

(𝑮𝟎𝟎 in %) 

(53±4) (47±5) (50±3) (50±5) 

 SM (10 nm) MCD-SM (10 nm) SM (35 nm) 

component 1st 2nd 1st 2nd 1st 2nd 

diffusion 

time 

(0.35±0.04) 

ms 
38 ms 

(0.19±0.03) 

ms 
10 ms 

(1.4±0.2) 

ms 
45 ms 

anomaly 

(α) 
0.7 1 0.85 1 0.85 1 

corr. 

amplitude 

(𝑮𝟎𝟎 in %) 

(59±4) (41±5) (53±4) (47±4) (55±5) (45±6) 
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In contrast, the α values were significantly larger and closer to unity for the cases 

of PE and SM after MCD treatment (α ∼ 0.85) and did not depend on the probe area, 

as expected for Brownian, unhindered diffusion.  

To further analyze and exploit the FCS data, we take advantage of the large number 

of planar nano-antennas with controlled gaps to carry out an FCS analysis over 60 

different antennas and cells. To obtain a hint of the characteristic diffusion behavior 

of PE and SM, we follow the approach of the FCS diffusion laws. As introduced in 

Chapter 1, a FCS diffusion law plot represents the diffusion time versus the 

detection area. Extrapolation of the experimental curve to the intercept with the 

time axis provides information on the type of diffusion exhibited by the (probing) 

molecule. i.e., free diffusion is characterized by a linear curve crossing the origin 

(0,0), while hindered diffusion due to the occurrence of nanodomains leads to a 

positive intercept on the time axis.41,90 We already applied this approach for studies 

on model lipid membranes (Chapter 3) using nano-antennas of different gap sizes 

and extended the FCS diffusion law plot to the nanoscale. The nano-antenna 

detection area for the 10 and 35 nm gap antennas correspond, respectively, to 300 

nm2 and 1250 nm2 illumination areas. As the diffusion time proportionally scales 

with the detection area, the diffusion coefficient D is retrieved from the slope of the 

linear fit, matching the measured transient diffusion times obtained from the FCS 

curves versus the effective detection areas according to the relation: 

 𝝉(𝝎𝟐) =  𝝉𝟎 + 𝝎
𝟐 (𝟒 × 𝑫)⁄  Eq. 5-2 

The characteristic diffusion times versus the two gap areas are summarized for PE 

in Figure 5-7 a, and in Figure 5-7 b, c for SM and SM after cholesterol depletion 

(MCD-SM). Note that in Figure 5-7 b we also include the results obtained from 

diffraction-limited confocal measurements.  

From these graphs we derive the following three values plotted in Figure 5-7 d-f: 

the diffusion coefficient (from the slope), the time axis y-intercept (by extrapolating 

the linear fit for vanishing probe area) and the normalized spread in the data points 

(defined as the width of upper and lower quartiles divided by the median value). 

The diffusion coefficients derived from nano-antenna measurements are DPE = 0.44 

± 0.07 µm2/s, DSM = 0.38 ± 0.19 µm2/s, and DMCD-SM = 0.46 ± 0.07 µm2/s (Figure 5-7 

d), and they are consistent with the confocal measurements and values reported 

independently using STED-FCS.64 These coefficients represent the diffusion speed 
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in the lipidic region between the nanodomains, with an additional contribution 

from diffusion within the nanodomains and diffusion of the domains themselves.  

Extrapolating the fits in Figure 5-7 a-c toward diminishing probe area leads to the 

intercepts with the time axis as summarized in Figure 5-7 e. The almost zero 

intercept hitting the origin observed for PE confirms the expected free Brownian 

motion diffusion mode. In stark contrast, SM features a positive y-intercept of ~ 

110 ± 80 µs, which highlights a significant deviation from free Brownian diffusion 

and the occurrence of nanoscopic domains hindering SM diffusion. The depletion 

of cholesterol results in SM diffusion with a close-to-zero time intercept (~20 ± 15 

µs), demonstrating the crucial role of cholesterol establishing the nanodomains and 

hindering SM diffusion. Such small nanoscale heterogeneities have never been 

detected so far with confocal microscopy, although STED-FCS down to a 1000 nm2 

detection area could infer their occurrence.64 Our results are fully aligned with 

these previous findings and importantly, we further reduce the detection areas 

down to 300 nm2. 

Lastly, we take a closer look at the statistical dispersion of the diffusion times for 

each gap area and introduce the normalized data spread as the width from upper 

to lower quartiles divided by the median value (Figure 5-7 f). The spread in 

diffusion times for PE and SM after the MCD treatment remains under 25 % and can 

be partially assigned to nanometer variations of the gap size between nano-

antennas. These variations stem from inaccuracies in the nanofabrication process, 

as a consequence of the finite grain size of gold and/or scattering of electrons used 

during the electron beam lithography. In contrast to PE and MCD-SM, the data for 

SM feature a significantly higher statistical dispersion around 50 %, which cannot 

be related solely to dispersion in the nano-antenna sample, but instead it results 

from large variations in the SM diffusion behavior, as already noted for the 

fluorescence burst analysis (Figure 5-2 c). These results are fully consistent with 

the presence of cholesterol-enriched nanodomains affecting SM diffusion.  
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Figure 5-7. Characteristic diffusion dynamics of membrane lipids probed with nanometric 

antenna hotspots in comparison to the confocal configuration. The characteristic diffusion times 

obtained by fits to the FCS data (for 60 different nano-antennas) are plotted as a function of the probe 

area for PE (a), SM and SM after MCD treatment resulting in cholesterol depletion (b and magnified on 

the nano-antenna probe area in c). The solid lines are linear fits through the median values. In the case 

of free diffusion, the origin (0, 0) is aligned with the expected line, while a positive intercept at the y-

axis hints toward hindered diffusion due to emerging nanodomains. Diffusion coefficients are shown in 

(d) which were computed from the slopes of the linear fits in a-c. PE and MCD-SM exhibit a near-zero y-

intercept consistent with free diffusion, while a significant y-intercept indicates SM diffusion 

constrained by nanodomains (e). The normalized spread in diffusion times (width of upper and lower 

quartiles/median) are depicted in (f) for the three conditions on the two different nano-antenna gap 

sizes. 

5.4 Discussion 

Altogether, our results provide compelling evidence for the existence of highly 

transient and fluctuating nanoscale assemblies of sterol and sphingolipids in living 

cell membranes. Our experimental observations stand in excellent agreement with 

the notion that, without stabilizing proteins, lipid rafts can be viewed as intrinsic 

nanoscale membrane heterogeneities that are small and highly transient.2,9,13,45 To 

estimate the characteristic trapping time of SM within nanodomains, we rely on the 
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y-intercepts shown in Figure 5-7 b ,e, and also consider the free diffusion of the dye 

in solution. As shown by Ruprecht and coworkers,42 in the case of immobile 

nanodomains and an exponential distribution of trapping and diffusion times, the 

time offset t0 is the product of the trapping time τtrap with the fraction β of trapped 

fluorophores: t0 = β × τtrap.  Thus, the effective diffusion coefficient Deff measured 

from the FCS diffusion laws can be expressed Deff = (1-β) × Dfree where Dfree is the 

diffusion coefficient for the free dye. Using the experimental values measured for 

SM before and after MCD treatment (and substituting in the previous equations DSM 

= Deff and DMCD-SM = Dfree), we obtain β=0.17 and τtrap =0.6 ms. A slightly modified set 

of equations allows us to take into account also the mobility of the nanodomains.42 

Assuming that the diffusion coefficient for the nanodomains is ten times slower 

than for free diffusion Dtrap = Dfree/10, we obtain slightly modified values for the 

trapped fraction and trapping time, i.e., β =0.19 and τtrap. =0.9 ms. These results 

stand in good agreement with the 1-2 ms trapping time inferred from STED-FCS 

using an anomalous diffusion fitting.64 The typical size of the nanodomains could in 

principle also be deduced from the FCS diffusion laws which should feature a 

characteristic transition from confined to normal diffusion.41,90 As we do not 

observe this characteristic transition in our data, we conclude that the typical size 

of the nanodomains is smaller than the smallest gap size of our nano-antenna, that 

is 10 nm.  

Our results stand in good agreement with the predictions from stochastic models161 

and recent high-speed interferometric scattering (iSCAT) measurements on 

mimetic lipid bilayers containing cholesterol.76 Our nanogap antenna approach is 

straightforward to implement on any confocal microscope equipped for FCS, and 

does not require the addition of supplementary illumination schemes, as compared 

for instance to STED. As additional advantage, the excellent planarity of the surface 

rules out any artifact potentially induced by the curvature of the cell membrane.92 

We believe that these advantages and the excellent spatiotemporal resolution 

largely compensate for the need for nanofabrication and the more complex FCS 

fitting procedure.  

5.5 Conclusion 

In conclusion, we have demonstrated the promising approach of exploiting planar 

optical nano-antennas with accessible surface nanogaps to investigate the 

nanoscale architecture of living cell membranes. The key strengths of our approach 

rely on the 10 nm spatial resolution combined with a microsecond time resolution 
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on a nearly perfectly flat substrate compatible with live cell culturing. The single-

molecule data on nano-antennas reveal striking differences between PE and SM 

diffusion dynamics that remain hidden in confocal measurements. Fluorescence 

burst and correlation spectroscopy analysis for PE are consistent with a free 

Brownian diffusion model. In contrast, the diffusion dynamics of SM at the 

nanoscale show heterogeneities in both time and space which are dependent on 

cholesterol. Indeed, the removal of cholesterol leads to a recovery of free Brownian 

diffusion for SM, consistent with the loss of nanodomains.  

Our results are consistent with the existence of dynamic nanodomains on the 

plasma membranes of living cells of ∼10 nm diameter which is comparable to our 

measurement gap size. The corresponding transient trapping times are short of 

about ∼0.9 ms. We believe that the combination of photonic nano-antennas with 

fluorescence microscopy has a high potential to investigate the dynamics and 

interactions of raft-associated proteins and their recruitment into molecular 

complexes on the plasma membrane of living cells. The proposed technique is fully 

biocompatible and thus provides ample opportunities for biophysics and live cell 

research with single-molecule sensitivity at nanometric and (sub)microsecond 

spatiotemporal resolution, far beyond the diffraction limit of light. These studies 

will ultimately improve our understanding of the cell membrane organization and 

its link to the cell's function. 

The envisioned next steps in living cells will explore the native influence of the 

adjacent inner and outer environment (the cortical actin cytoskeleton and the 

glycan network, respectively) on templating the dynamic nanoscale organization of 

the plasma membrane. Reaching these goals will also require pushing the nano-

antenna technology even further, to narrow the antenna gap, sharpen the metal 

edges, improve the overall reproducibility over the full antenna arrays and 

enabling multiplexed, parallel detection from hundreds of antennas 

simultaneously. Additional challenges comprise the development of antennas with 

broadband resonance enabling multi-color fluorescence detection.  

In Chapter 6 we focus on one of these challenges and tackle the implementation of 

excitation and detection schemes for multiplexed FCS recording at the nanoscale 

by means of nano-antenna arrays.  
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6 Multiplexed FCS at the nanoscale using planar 

photonic antennas 

The spatiotemporal organization of lipids, proteins and other molecular 

players in biological membranes is highly heterogeneous at multiple spatial 

and temporal scales and is essential for the regulation of biological processes. 

Fluorescence correlation spectroscopy (FCS) is a powerful single-molecule 

sensitive tool to study dynamic molecular processes with very high temporal 

resolution. The advent of fast and sensitive imaging cameras has paved the 

way for Imaging FCS, a technique that takes advantage of the parallel 

acquisition of fluorescence from addressable areas on the camera. This 

renders it possible to generate spatial maps of mobility and interactions in 

living cells from a single measurement. 

Throughout the different chapters of this dissertation we have described 

different applications of planar plasmonic nano-antenna arrays combined 

with FCS to address the nanoscale complexity of biological membranes, both 

on mimetic systems as well as on living cells. Nevertheless, despite the 

availability of large arrays composed of thousands of nanogap antennas in a 

single substrate, so far, we have performed experiments in a serial fashion, 

i.e., addressing one antenna at a time.  

In this chapter, we report on the implementation of widefield illumination 

together with sCMOS camera detection to demonstrate the multiplexing 

capabilities of planar plasmonic nano-antenna arrays of different nanogap 

sizes (10-45 nm). First, using far-red fluorescent beads we showcase the 

performance of the nanogap antenna arrays for multiplexed FCS at the 

nanoscale. Second, we have extended this approach to demonstrate 

simultaneous parallel detection of protein diffusion in living cell membranes 



Multiplexed FCS at the nanoscale using planar photonic antennas 

132 

on over 50 antennas. Our approach constitutes a leap forward towards the 

broad application of parallelized antennas for simultaneous detection of 

hundreds of dynamic events in living cells at the nanoscale.  

  



Multiplexed FCS at the nanoscale using planar photonic antennas 

133 

6.1 Introduction 

Our understanding of the living cell membrane and its spatiotemporal organization 

has evolved from the initial proposal of a fluid mosaic model to an active composite 

model.4,205 Within the plane of the membrane bilayer, its constituents are 

heterogeneously organized in space and time. Furthermore, it appears that the cell 

membrane is dynamically remodeling and interacting with cytoplasmic and 

extracellular components on either side of the membrane bilayer from the nano- to 

the mesoscale. Much of the current knowledge generated over the last 20 years on 

the dynamic organization of the plasma membrane has resulted from the 

development and application of highly sensitive optical techniques that provide 

either increased temporal or spatial resolution. 

One of such optical techniques is Fluorescence correlation spectroscopy (FCS). FCS 

is a powerful tool to assess the dynamic diffusion behavior of molecules in vivo, as 

explained in detail in Chapter 2. In a standard FCS experiment, intensity 

fluctuations arising from the passage of labeled molecules through the illumination 

volume are recorded over time. By calculating the corresponding autocorrelation 

function, FCS provides quantitative information on the molecular concentration 

and its characteristic diffusion time. However, such experiments are typically 

performed with point detectors, thus a single (diffraction-limited) spot is probed at 

a time. Therefore, spatial variations of membrane constituents over the living cell 

surface are challenging to investigate, despite their crucial role in cell signaling and 

trafficking. 

Various technical approaches have been developed to allow for multiplexed FCS 

experiments, probing multiple locations simultaneously. Electron-multiplying 

charge-coupled device (EMCCD) and scientific complementary metal-oxide-

semiconductor (sCMOS) cameras possess millions of pixels, which could be 

implemented, in principle, as area detectors. But only recently, EMCCD and sCMOS 

cameras became fast and sensitive enough to enable time-resolved spectroscopy 

on a large number of pixels in parallel.206 An alternative implementation includes 

the use of single photon avalanche photodiode (SPAD) arrays working as imagers, 

with the advantage of increased temporal resolution and zero readout noise thanks 

to their inherently digital nature. The drawbacks are lower overall sensitivity and 

a challenging technical implementation relying on microlenses and FPGA-based 

readout.207 
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A pioneering approach was to use an EMCCD camera in conjunction with a 

stationary spinning disk confocal microscope to measure tens to hundreds of spots 

in the living cells with conventional chemical or genetic fluorophores.208,209 The 

combination of a fast and single-molecule sensitive camera with single-plane 

illumination (SPIM) or total internal inflection fluorescence (TIRF) configuration 

has paved the way for imaging FCS (imFCS). ImFCS possesses remarkable statistical 

power resulting from hundreds to thousands of FCS measurements from a single 

acquisition.206 However, these multiplexed capabilities are limited in terms of 

spatial resolution, due to their implementations based on diffraction-limited optics. 

The arrival of super-resolution techniques has revolutionized the field of 

fluorescence microscopy and made it possible to elucidate the nanoscale 

organization of different organelles and the cell membrane on intact 

cells.4,46,54,57,64,66,210,211 Nevertheless, except from stimulated emission depletion 

(STED) microscopy, most single-molecule localization-based super-resolution 

methods lack the required temporal resolution to visualize dynamic processes in 

living cells. STED is amenable to a straightforward FCS implementation since the 

FCS technique relies on a point detector, generally a SPAD. Yet, extension of 

multiplexed FCS by means of STED remains challenging. One approach to be 

highlighted is scanning STED-FCS (sSTED-FCS) which revealed spatiotemporal 

heterogeneities of lipid interactions in living cells with down to ~ 30nm 

resolution.63 

Metallic nanostructures are able to highly confine impinging light into nanometric 

volumes and to provide high fluorescent enhancement.95 By the use of electron-

beam lithography (EBL), such metallic nano-antennas can be readily fabricated at 

a large scale.203 However, since FCS commonly requires the use of fast detectors 

(such as SPADs), fluorescence detection is performed on individual antennas in a 

serial fashion. If one abandons the demand for high temporal resolution, then 

antenna arrays can be straightforwardly combined with widefield illumination and 

detection. Indeed, such an approach made it possible to resolve the interactions 

between individual nanorods and freely diffusing fluorophores in solution in a 

multiplexed fashion from ensemble measurements.212 

In this chapter we report on the implementation of multiplexed FCS at the 

nanoscale by means of nanogap antenna arrays combined with sCMOS camera 

detection. We performed benchmarking experiments with far-red fluorescent 

beads freely diffusing in 1.6 M sucrose solution. We quantified the ensemble photon 
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statistics from a single acquisition measurement on 225 nano-antennas 

simultaneously. Moreover, we retrieved single burst information from the 

multiplexed measurements and estimated the fluorescent enhancement provided 

by the nano-antennas. We then validated our approach for multiplexed FCS on 

diffusing beads in sucrose solution acquired on 50 nano-antennas in a single 

measurement. Finally, we performed experiments on living cells using our 

multiplexed approach and revealed heterogeneous diffusion of fluorescent 

proteins on living cell membranes. Importantly, our multiplexed nano-antenna 

approach allowed us to resolve ligand diffusion either freely diffusing off the cell in 

solution or transiently binding to cell membrane receptors. 

6.2 Methods  

6.2.1 Fabrication of planar nano-antenna arrays 

Large-scale planar gold nano-antenna arrays with surface nanogaps were 

fabricated by our collaborators of the group of Prof. J. Brugger at EPFL, Lausanne 

as part of a European collaboration. The multistep process to nanofabricate the 

nano-antenna arrays is based on electron beam lithography (EBL), planarization, 

etch back, and template stripping (for details please refer to Chapter 2). The design 

of the nanogap antenna arrays consists of a gold half-sphere dimer (diameter 80 

nm) of gap sizes between 10-45 nm centered in a nano-aperture of 140 × 300 µm2 

and thousands of these antennas-in-box were aligned with an antenna-to-antenna 

spacing of 4 µm on a single substrate. This nanofabrication method is fully scalable 

and shows excellent planarity. The antenna’s plasmonic resonance lies at ~ 697 nm 

driving the strong optical near-field enhancement and is efficiently excited by far-

red laser illumination at ~ 640 nm. Before each experiment we cleaned the antenna 

substrate carefully by ethanol and MilliQ water rinsing and N2 drying. Just prior to 

the experiment the cleaned antenna array substrates were treated with 3 min/5 

min UV/Ozone illumination to render the gold surface hydrophilic.  

6.2.2 Cell culturing and labeling 

Folate-receptor-expressing human gastric cell line AGS (FRAGS)5 were maintained 

in HF12 medium containing 50 mg/ml Hygromycin. Prior to the experiment cells 

were detached from the flask using TrypLE Express (ThermoFisher), collected and 

washed with M1 (150 mM NaCl, 20 mM HEPES, 5 mM KCl, 1 mM CaCl2 and 1 mM 

MgCl2, pH = 7.4) buffer. Next, the cells were allowed to attach freely to a freshly 
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cleaned antenna substrate in M1-Gl buffer (M1 buffer containing 2 mg/ml glucose) 

for 2 hours at 37 °C.  

Drosophila melanogaster flies were maintained at 22 °C in glass vials containing 

standard fly media. Collagen-GAL4 was used to drive expression of UAS-GFP-GPI 

(gift from S. Eaton) in the hemocytes of the larvae. Hemocytes from larvae were 

obtained as described previously.213 Briefly, 6 third-instar larvae were surface 

sterilized and hemolymph was collected by puncturing the integument using 

dissection forceps into 200 µL of M1-Gl at pH = 6.9 containing 1 mg/ml BSA. Next, 

the solution was gently placed on a freshly cleaned antenna substrate and the cells 

were allowed to adhere for 1 hour at 22 °C. 

The GFP-GPIs on the attached Drosophilia hemocytes were labeled at saturating 

conditions with 200 nM Abberior Star635 conjugated nt-GFP nanobodies. The 

Folate receptor GPIs on the attached FRAGS cells were labeled with 200 nM 

Abberior Star635 conjugated Fab fragments against the Folate receptor (Mov19).  

When required, FRAGS were transfected 12-16 hours prior to the experiment with 

the EYFP-adenosine A2b receptor (Addgene plasmid #37202) using the FuGENE 

transfection reagent (Promega). As before, the cells were plated on a freshly 

cleaned antenna substrate. Just prior to the experiments, the Bodipy-Neca (a 

fluorescent non-selective adenosine receptor analogue from CellAura) was 

incubated for 5 min at 37 °C at a concentration of 500 nM in M1-Gl buffer. All 

experiments on the antenna substrates were performed at room temperature.  

6.2.3 Experimental setup for fluorescence spectroscopy 
measurements 

All the experiments were carried out during a research stay in the group of Prof. S. 

Mayor at NCBS, Bangalore, India, and in collaboration with Dr. T. S. van Zanten. The 

fluorescence experiments were performed on a home-built setup built around a 

Nikon Eclipse Ti body. The laser beam from a 642 nm cw-laser (SpectraPhysics 

Excelsior-640C) was expanded and confined to provide a uniform beam waist of 

around 10 mm. After a half-waveplate for polarization control, and via a set of 

lenses, the beam was directed into the back of the Nikon body and focused on the 

backfocal plane of a CFI Apo TIRF 60×, 1.49 NA objective. The excitation was aligned 

in an epi-illumination configuration and the emission was collected via the same 

objective separated from the excitation using a quad-edge dichroic (Semrock) in 

combination with a quad-notch filter (Semrock). The emission was further filtered 
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through a 675/68 nm bandpass filter (Semrock) and finally directed onto a water-

cooled Prime 95B sCMOS camera (1200 × 1200 pixels, Photometrics), which was set 

at Sensitivity mode. For inspection of YFP or GFP fluorescence, a 488 nm laser was 

used in conjunction with a 520/35 nm bandpass filter, with all the other 

components kept identical. To allow for fast recording, the sCMOS was connected 

using the data-cable connector and the μManager software (v2.0 gamma) was used 

for image acquisition. The planar nanogap antenna arrays were illuminated at 45-

50 mW laserpower at the backfocal plane, corresponding to a power density at the 

sample plane of about 0.05 kW/cm2. The wavelength of the excitation (642 nm) 

corresponds to the resonance of the nanogap antennas and the excitation 

polarization (2500:1) was adjusted using a half-wave plate. Directing the 

polarization perpendicular to the antenna dimer axis delocalizes the near-field 

away from the nanogap and the detection volume becomes diffraction-limited. This 

allowed for a direct comparison of the nanogap antenna effect. In addition, we also 

performed control experiments by using nano-aperture arrays (i.e., without 

containing the dimer antennas) that were fabricated on the same antenna 

substrates.  

To benchmark our multiplexed nano-antenna FCS approach, we performed 

experiments on far-red fluorescent beads (F8789, ThermoFisher) in a 1.6 M sucrose 

solution in 20 mM Tris buffer at 0.2 % of its original concentration. We used a high 

sucrose concentration to slow-down the diffusion of the beads to about D ~ 1 

µm2/s. In addition, to minimize sticking of the beads onto the antennas we added a 

few drops of TWEEN-20 (Sigma) to the bead solution.  

The multiplexed traces for the burst analysis on fluorescent beads in the 1.6 M 

sucrose solution were extracted from over 2000 frames at 5 ms integration time 

(at 10 frames per second) in a field of view allowing the measurement on 225 nano-

antennas simultaneously (ROI of 570 × 570 pixels, pixel size of = 122 nm). 

The multiplexed FCS traces were recorded from 50 antennas simultaneously using 

a ROI of 950 × 50 pixels for 24000 frames at 0.9 ms integration time (typically 

resulting in a 1043 frames per second recording). 

6.2.4 Image analysis and data processing 

The analysis was performed using ImageJ and Matlab. The first objective was to 

obtain an intensity time trace for each nano-antenna from the recorded camera 

frame set. To recover the (x,y) coordinates of the antenna positions, we generated 
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an averaged intensity image of the respective frame set by a maximum intensity 

projection in ImageJ. This projected image yielded bright spots indicative of the 

lateral antenna positions as well as an (uneven) background due to gold film 

reflection and other backscatter light contributions. Applying a Gaussian Blur filter 

of 30 pixels and subtracting this image from the maximum intensity projection 

image allowed for a background-free detection of the antenna positions using the 

“Find Maximum” function in ImageJ. The (x, y) positions were saved to a txt file and 

would serve as a read-in file for the subsequent Matlab analysis.  

The image sequence was converted from ADU (arbitrary digital units) to photons 

by subtracting the dark image and dividing by the gain image: both were obtained 

from a separate camera calibration.214 Next, in the Matlab analysis routine, each 

identified antenna position was widened into a circular ROI having a radius of two 

(for FCS traces) and three (for the burst analysis) pixels. The sum number of the 

photons within each ROI was recorded and assigned into the intensity time trace of 

the corresponding antenna. The measured background for each frame, as 

mentioned above, was subtracted from the raw signal. Aside from the expected 

single frame intensity peaks, some of the intensity traces contained bursts that 

lasted for several frames. As these most likely correspond to beads that have 

remained stuck onto the antenna, they were eliminated from further analysis. A 

burst stemming from a fluorescent bead diffusing through the nano-antenna 

hotspot was classified as such if before and after the identified intensity maximum 

the detected signal was not higher than the average signal plus three times the 

standard deviation. 

In the case of FCS measurements, the sum of total number of photons in the antenna 

ROIs were not background corrected. Here the background signal and camera noise 

are not expected to contribute to the autocorrelation function (ACF) that is derived 

from the intensity trace. The autocorrelation offset however is lowered with 

increasing uncorrelated photons and the ACF was corrected during the 

postprocessing. Other potential artefacts were removed by segmenting the trace 

into 6 equally long parts, from which 6 individual autocorrelation curves were 

calculated. In an interactive reviewing step, the original intensity time trace split 

into 6 parts alongside the corresponding 6 autocorrelation curves were displayed 

and verified manually to remove parts showing sticky/abnormal (e.g. the cell 

membrane moving out of focus) diffusion behavior. The remaining parts were 

averaged into the final autocorrelation curve for each antenna and saved for the 

following FCS fitting step. On average 4 parts of the intensity time trace (~15 s 
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trace) remained after the “removing step”, from which the corresponding 

autocorrelation curve was calculated.  

6.2.5 Fluorescence Correlation Spectroscopy (FCS) 

The autocorrelation curves for each nano-antenna were obtained using a multi-tau 

approach in a Matlab routine215 and fitted in the software QuickFit3216. Given that 

the antenna’s near-field is axially and laterally confining the detection volume, we 

found that the best and simplest diffusion model fitting the correlation curves is a 

2D normal diffusion fit with a single component:  

 𝑮(𝝉) =  𝑮𝟎𝟎 (𝟏 + 𝝉 𝝉𝒅𝒊𝒇𝒇)⁄⁄   Eq. 6-1 

with 𝑮𝟎𝟎 denoting the correlation amplitude at zero lag time and 𝝉𝒅𝒊𝒇𝒇 the 

characteristic diffusion time. Those two parameters obtained from the fitting were 

used for further analysis and plotting. 

To define the gap sizes for the bursts statistics and multiplexed FCS we used the 

average gap sizes of 10, 20, 25, 30 and 35 nm as measured by TEM on 25 antennas, 

respectively (for details see Section 2.2.6).  

6.2.6 FDTD Simulations 

We calculated Finite Different Time Domain (FDTD) Simulations of planar gold 

nano-antennas (diameter 80 nm) for various gap sizes embedded in a nano-

aperture as approximately used in the experiments. Computations were made 

using the FDTD method in the RSoft Fullwave Software with a meshsize of 1 nm 

with 214 temporal steps of 8.1·10-19 seconds. The simulations were calculated at a 

laser excitation of 633 nm. For gap sizes in the range of 10-35 nm we simulated the 

antenna configuration for the lateral x-y direction at the plane of the antennas and 

for the centered z-x and z-y planes. From the generated simulation plots, we 

extracted quantitative information such as the maximum intensity and the 

corresponding lateral and axial extensions. For a series of z heights (axial direction) 

above the x-y plane of the nano-antenna (z = 0 nm) we obtained the maximum 

intensity in the z-x and z-y cuts for different gap sizes. For the same series of z-

heights for the different gap sizes, the corresponding axial extensions of the 

enhancement at half of the maximum intensities were obtained, the so-called Full 

Width Half Maximum (FWHM) in both axial cuts (z-x and z-y).  



Multiplexed FCS at the nanoscale using planar photonic antennas 

140 

6.3 Results 

Figure 6-1 a illustrates our approach to implement multiplexed fluorescence 

experiments at the nanoscale exploiting planar plasmonic nano-antenna arrays. We 

placed the antenna substrate on a sample stage which is piezo-controlled in all 

three dimensions. A 642 nm cw laser, matching the antennas’ plasmonic resonance, 

was aligned onto the antenna substrate through a set of mirrors, lenses and filters 

and focused on the backfocal plane of a 60× 1.49 NA objective to create epi-

illumination. Note that an epi-illumination is sufficient for our experiments given 

the rapid exponential decay of the electromagnetic near-field of the antennas in the 

axial direction, and the background screening effect provided by the nano-

apertures. We collected the fluorescence emission of the sample through the same 

objective, separated from the excitation light using a dichroic and a set of filters and 

sent the signal onto a sCMOS camera, on a specified region of interest (ROI). To 

quantify the burst statistics in presence or absence of the fluorescent enhancement 

afforded by the nano-antennas, we detected the fluorescence intensity of 225 nano-

antennas (570 × 570 pixels) simultaneously at a typical framerate of 10 frames per 

second. This field-of-view of 225 nano-antennas in focus is shown as a time-

averaged image on the bottom panel of Figure 6-1 a. Each antenna appears as a 

bright diffraction-limited spot. 

To assess the performance of the nano-antenna arrays employed for multiplexed 

fluorescence experiments, we used a testing solution of far-red fluorescent beads 

of 40 nm diameter and a quantum yield of about 90 %. Fluorescent beads in 

solution exhibit 3 D Brownian diffusion, which renders the analysis 

straightforward and allows us to determine the contribution due to the near-field 

enhancement of the antennas. However, the free 3D Brownian diffusion of beads in 

solution is fairly fast (D » 1 µm2/s).  
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Figure 6-1. Multiplexed nanogap antenna detection in an epi-illumination configuration and 

their ensemble photon statistics distribution. (a) Top panel: Schematics of the experimental 

configuration. 225 nanogap antennas are illuminated in the widefield using a far-red laser (642 nm) 

and fluorescence emission from fluorescent beads diffusing freely over the antennas is collected with a 

sCMOS camera. Bottom panel: A time averaged field-of-view showing the 225 nanogap antennas as 

bright spots in the image. (b) Representative fluorescent intensity traces of fluorescent beads (d ~ 40 

nm) in a 1.6 M sucrose solution (raw data: blue dots) obtained on a single antenna of 25 nm gap size, 

excited with a polarization perpendicular (left panel) or parallel to the gap (right panel). Antennas 

become resonant only under parallel excitation along the gap, enhancing and localizing the field into 

hotspot regions. The raw data are decomposed into photons arriving from the nano-antenna (black 

dots) and background photons (red dots). The plots next to the intensity traces correspond to intensity 

histograms of the antenna signal (2000 frames obtained at 10 fps with 5 ms integration time). (c) 

Normalized ensemble photon distribution of 225 nanogap antennas measured simultaneously for gap 

sizes of 10, 20, 25, 30 and 35 nm, respectively, together with the nano-apertures as a control. 

In the context of antenna arrays featuring nanogaps in the range of 10-35 nm the 

challenge consisted in collecting the signal with a sufficiently high signal-to-noise 

ratio (SNR) in the short timeframe of the transiting time (τ « 100 µs) of a fluorescent 

bead diffusing through the nanogap. Hence, the best trade-off yielding an 

acceptable SNR and allowing us to work with freely diffusing beads in solution was 

to slow them down in a 1.6 M sucrose solution affording a diffusion coefficient of D 

~ 1 µm2/s.  
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Representative fluorescent intensity traces for a single antenna of 25 nm gap size 

extracted from a measurement on 225 nano-antennas with parallel and 

perpendicular polarization are shown in Figure 6-1 b. The fluorescence 

enhancement experienced by beads diffusing through the nano-antenna hotspot 

can clearly be distinguished as an increased signal exhibiting high intensity bursts. 

In Figure 6-1 b next to the intensity plotted against the sequence of frames, 

fractions of the occurrence of bursts at the respective intensity (same y-axis scale) 

are shown. It becomes evident that high intensity bursts occur frequently 

(depending on the fluorescent concentration) when diffusing through the nano-

antenna hotspots. In contrast, such high intensity bursts remain absent for the 

control case of perpendicular polarization probing within an equivalent diffraction-

limited spot.  

A common analysis tool used in FCS is the photon counting histogram (PCH), which 

is used to quantify statistics of the sample such as the average number of molecules 

in the observation area and the photon count per sampling time and/or per 

molecule.217 We generated PCHs to gain an insight into the ensemble statistics of 

the range of probed gap sizes in comparison with the control (nano-aperture) case. 

Note that for each gap size we measured the intensity from diffusing beads on 225 

antennas simultaneously. To allow for a comparison among the gap sizes, each 

image set was normalized to its respective maximum. The resulting intensity 

distributions displayed in Figure 6-1 c exhibit an increasing exponential tail for the 

antenna nanogaps as compared to the nano-aperture control lacking the antenna 

dimer. This exponential tail observed on the antennas of different gap sizes 

indicates that bursts of increasing intensity are becoming more probable when 

probing within nanometric hotspots. Thus, the near-field enhancement provided 

by the antennas into confined hotspots is clearly evidenced, and it was obtained 

from a multiplexed measurement. 

Next, we looked into the statistics of individual antennas, extracted from one 

multiplexed data set, for which we measured on 225 antennas simultaneously. The 

snapshot presented in Figure 6-2 a corresponds to an enlarged view of 25 antennas, 

all of them having a gap size of 10 nm. Bright bursts randomly occur at different 

antenna locations that result from the passage of individual beads through the 

nanogaps. On the right panel, two sequences of 30 frames out of the 2000 frame-

long data set are displayed together with their corresponding (corrected) intensity 

traces. Both sequences show bursts of higher intensity arising at different 

instances. Figure 6-2 b shows the full distribution of the number of bursts recorded 
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during 2000 frames (10 frames/s) from an exemplary data set of 225 nano-

antennas of 10 nm gap size, measured simultaneously (parallel polarization). These 

results demonstrate the sensitivity of our widefield excitation and detection 

scheme to record fluorescent bursts from individual antennas with extremely high 

throughput. 

 

Figure 6-2. Single antenna burst information and enhancement per antenna. (a) Left panel: A 

single frame of 25 nano-antennas of 10 nm gap size. The right panel displays 30 consecutive frames of 

the diffraction-limited spot that represents an individual nanogap antenna. The black and grey dots 

with dashed lines show two sets of bursts due to the diffusion of individual fluorescent beads through 

the nanogap hotspot. (b) The distribution of burst occurrences in a 2000 frame measurement for the 

nanogap antennas. (c) Peak brightness for different antenna arrays, each containing 225 antennas of 

the same gap size. The maximum burst intensity was extracted from traces of 2000 frames (5 ms 

integration time) of fluorescent beads in a 1.6 M sucrose solution. The peak brightness is color-encoded, 

and each pixel represents a single nanogap antenna. Each set displays nanogap antennas of decreasing 

gap sizes. A set of 9 nano-aperture arrays (each containing 25 nano-apertures) is also included as a 

control for the maximum brightness in absence of antenna near-field enhancement. (d) Fluorescent 

enhancement as determined from the peak brightness measurements with respect to the nano-

aperture. The outliers of the distributions represent the highest peak intensities that were obtained 

from the best-performing antennas and follow an exponential decay as the gap sizes increase. 
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We further explored the performance of the nano-antenna arrays of different gap 

sizes in comparison to the control (nano-aperture), equivalent to a diffraction-

limited spot. For each nano-antenna we quantified the peak brightness being the 

maximum burst intensity over the set of 2000 images, using slowed-down diffusing 

fluorescent beads. Figure 6-2 c illustrates the peak performance of the nano-

antenna arrays with each nano-antenna represented as a pixel and its peak 

brightness value encoded in the color. The measurement on 225 diffraction-limited 

spots (nano-apertures) exhibits uniformly spread peak brightness values, which 

are much weaker in comparison to measurements on the excited nano-antenna 

hotspots (Figure 6-2 c). The sets of 225 nano-antennas probed simultaneously 

reveal that with decreasing nanogap size, higher peak brightness values are 

obtained. For the smallest gap size of 10 nm we observe about 40 % of antennas 

displaying maximum peak brightness values, but even for the largest gap size of 35 

nm about 3 % of the antennas may give rise to peak values of the same intensity. 

To quantify the fluorescence enhancement of the different antennas, the peak 

brightness distribution values per gap size are plotted in Figure 6-2 d, normalized 

to those of the control nano-aperture. Clearly, nano-antennas provide near-field 

enhancement with respect to the nano-aperture with the expected trend, i.e., 

smallest nanogaps provide highest enhancement. The outliers of the peak intensity 

distributions portray the best performing antennas per gap size and follow an 

exponential decay as the gap size decreases. The trend of increasing fluorescence 

enhancement with decreasing gap size has been already demonstrated in repetitive 

rounds of serially measuring one antenna after the other (see Chapter 2, Section 

2.3). Here we validate this trend by a single multiplexed measurement on 225 nano-

antennas per gap size. Indeed, with only five independent measurements 

(corresponding to five different gap sizes), we record statistics on over 1125 

antennas. 

To allow for dynamic diffusion measurements, we ramped up the framerate to 

1043 fps (~ 1 ms per frame) and collected fluorescence signal for 24 000 frames. It 

should be noted that increasing the framerate comes at the expense of downsizing 

the field-of-view (FOV) on the sCMOS camera. Therefore, given our experimental 

conditions, we recorded information from 50 nano-antennas simultaneously, 

which is still a clear advantage as compared to serial recording. Figure 6-3 a shows 

a time-averaged image of the 50 diffraction-limited bright spots representing the 

nano-antennas in the FOV (i) together with a snapshot of a single nano-antenna in 
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focus (ii), and its respective pixel-resolved intensity shown for a cut through the 

antenna center (iii).  

Moreover, we experimentally determined an optimal dilation radius (in number of 

pixels) of the camera region from which the intensity per antenna was integrated 

(Figure 6-3 a, iv). A dilation radius > 1 means that the signal is integrated for more 

than one single pixel. On the one hand, a larger area (i.e., larger number of pixels in 

which the signal is integrated) increases the extracted signal intensity and accounts 

for inaccuracies in determining the antenna position and possible lateral drift over 

the measurement period. On the other hand, the background contribution also 

increases with increasing number of pixels. Thus, a trade-off for the best achievable 

SNR had to be defined. To experimentally determine the best compromise in terms 

of pixels and SNR, we recorded intensity time traces of diffusing beads on 50 

antennas of 25 nm gap size over 24 000 frames. In addition, we generated averaged 

autocorrelation functions following the approach explained in detail in the 

Methods Section 6.2.4 and determined the G00 values. This entire approach was 

performed for different numbers of pixels, and for antennas excited perpendicular 

to the gap.  

Figure 6-3 b shows the results as a function of the number of sCMOS pixels used for 

photons collection for: G00, (top panel); overall intensity prior to background 

correction (center panel); and the effective brightness of the time trace (calculated 

as G00 × mean trace intensity, bottom panel). For the delocalized antenna hotspot 

scenario (in red), G00 stays almost zero regardless of the number of pixels being 

used for signal integration. Moreover, although the total collected intensity scales 

linearly with the number of pixels, there is a negligible increase in resulting 

brightness. In stark contrast, for the resonant antennas (i.e., excited with parallel 

laser polarization, black curves), a strong dependence of the measured parameters 

with the number of pixels was found. Indeed, the calculated amplitude G00 remains 

constantly high up to 5 camera pixels and then, it declines steadily. Moreover, the 

brightness distinctly increases at the beginning, peaks for a plateau between 12 to 

28 camera pixels and then decreases. Thus, we applied a dilation radius of 12 and 

5 camera pixels for the photon collection to perform the burst statistics and the FCS 

analysis, respectively. 
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Figure 6-3. Simultaneous multi-antenna autocorrelation and enhancement. (a) (i) A time 

averaged field-of-view showing 50 nanogap antennas as bright spots in the image. (ii) A magnified 

camera image of a single antenna depicted as a diffraction-limited bright spot. (iii) The pixel-resolved 

intensity is shown for a cut through the center of the antenna in (ii). (iv) Series of increasing number of 

sCMOS pixels from which the intensity is integrated. (b) Average over 50 nano-antennas of 25 nm gap 

size, as a function of the number of sCMOS pixels used for photon collection, for correlation amplitude 

at zero timelag, G00 (top panel), overall intensity prior to background correction (center panel) and 

mean intensity of the time trace, being G00 × mean trace intensity, (bottom panel) are shown. Results 

are shown for a laser polarization parallel to the gap (hotspot excited, black) and perpendicular to the 

gap (hotspot delocalized, red) as a control. (c) Top panel: Fluorescence time trace of diffusing beads 

recorded on a single 25 nm nanogap antenna obtained at 1043 fps (black). For the red trace signal was 

integrated on a camera region (of equal size) away from the nanogap antenna (bottom panel): 

Corresponding autocorrelation functions for the intensity traces of the top panel. 

The intensity time trace for a well-performing exemplary 25 nm gap antenna is 

depicted in black in Figure 6-3 c (top panel). In addition, an intensity time trace was 

integrated on a camera region of the same size away from the nano-antenna spot 

(red) and yields lower overall intensity signal with no bursts of high intensity. Thus, 
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this trace represents the collected background signal and validates the number of 

sCMOS pixels chosen for signal integration. In the bottom panel, the respective 

autocorrelation functions are depicted which were calculated from the intensity 

time traces shown in the top panel. The intensity time trace for parallel illumination 

exciting the antenna hotspot (black, top panel) exhibits an increased overall signal 

together with frequently occurring high intensity bursts if inspected closely as 

compared to intensity stemming from a camera ROI away from the nano-antenna. 

Moreover, the obtained ACF on the nano-antenna distinctly shows a diffusion 

behavior which can be used for further quantification such as the diffusion time. 

Thus, we hereby confirm our analysis routine performing with efficient 

background correction and artifact removal to further quantify our multiplexed 

data.  

The experiments with slowed-down fluorescent beads demonstrate the capability 

of nanogap antenna arrays for multiplexed FCS at the nanoscale. Fluorescent beads 

in solution were suited to characterize our antenna approach in a widefield 

illumination configuration due to their high quantum yield and their free diffusion, 

so that they readily explore the 3D near-field confinement of the antenna hotspot. 

However, to fully exploit the advantages of our antenna arrays for parallel readout 

in the context of living cells, the sample’s diffusion coefficient(s) should ideally lie 

well below 1 µm2/s. This condition is set by the trade-off between the camera 

framerate, the reduced diffusion area within the nanogaps and the photon budget 

of the fluorescent labels to record photon counts of the actual signal well above the 

background level. Moreover, one should also keep in mind that the extent of the 

enhanced near-field excitation decays rapidly in the axial direction, as well as 

diverging laterally. As a consequence, the sample should be maintained in very 

close proximity to the nano-antennas for maximum 3D spatial confinement. This 

might be challenging in the context of living cells.  

In order to quantify the influence of the axial position of the sample with respect to 

the antenna, we performed Finite Different Time Domain (FDTD) simulations for 

gap sizes comparable to the ones used in the experiments (see Methods section 

6.2.6). The electromagnetic near-field profile of z-cuts along the x and y plane, each 

taken at the nano-antenna center, are displayed for the gap sizes of 15 and 25 nm 

in Figure 6-4 a, b. For the 15 nm gap antenna, the extremely high lateral and axial 

confinement into the sub-10 nm regime becomes apparent. The confinement 

remains high for the 25 nm gap but of decreased intensity. Furthermore, it should 
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also be stressed that for the larger gap of 25 nm in the z-x cut (Figure 6-4 a) the 

near-field becomes strongly localized at the two edges of the dimer forming the gap.  

 

Figure 6-4. FDTD simulation of the axial near-field of planar nanogap antennas for different gap 

sizes. Near-field intensity profiles along z-x cuts (a) and z-y cuts (b) for the gap sizes of 15 and 25 nm. 

The intensity scale is used for all the plots to allow for comparison. (c) Maximum intensity of the z-x 

(filled) and z-y (empty symbols) cuts as a function of the axial direction, i.e., z heights above the x-y 

plane of the nano-antenna (z = 0 nm), and for gap sizes indicated in the legends. (d, e) Full Width Half 

Maximum (FWHM) for the z-x cut (d) and z-y cut (e) as a function of axial direction and for different 

gap sizes. 

In Figure 6-4 c-e the quantification of the near-field in terms of intensity and lateral 

extension was evaluated at different z-planes above the antenna located at z = 0, 

for the range of gap sizes between 10-35 nm. As expected, at very short distances 

(< 5 nm), the near-field intensity strongly depends on the gap size, being the highest 

for the smallest antenna gaps. However, for z > 8 nm above the antenna plane, the 

field intensity decreases dramatically with negligible dependence on the gap size, 

except from the smallest, 10 nm gap. The common approach to estimate the lateral 

extension of the near-field intensity profiles is to measure the lateral distance at 

half of the maximum intensity of a given profile, the so-called Full Width Half 

Maximum (FWHM). In Figure 6-4 d, e the FWHM values are displayed for the z-x 
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and z-y planes, respectively, for the different gap sizes evaluated for the same z-

stack as for the intensity in Figure 6-4 c. Note that also the lateral extent of the near-

field becomes less dependent on the gap sizes for axial distances z > 8 nm, in 

particular for the z-y cut (Figure 6-4 e). As mentioned above, the larger gap sizes 

exhibit a strongly localized near-field at the dimer edges which explains the larger 

differences of the FWHM for the z-x cut (Figure 6-4 d). Such a loss of the nanogap 

dependence beyond 8 nm above the antenna plane has been reported previously.93  

Having validated our multiplexed approach and analysis methodology on freely 

diffusing beads, we then moved to live cell experiments. For this, we concentrated 

on measurements of the fluorescently labeled Folate Receptor-GPI (FR-GPI) on 

FRAGS cells. FR-GPI is a stably transfected representative of 

glycosylphosphatidylinositol anchored proteins (GPI-APs).218 GPI-APs are outer 

leaflet lipid-anchored proteins that associate to lipid nanodomains enriched by 

cholesterol, also known as “lipid rafts”.4,10,14 The GPI-AP population on living cells 

diffuses freely on the plasma membrane as monomers with values between (D ~ 

0.2 - 0.5 µm2/s).5,14,218,219 A fraction of ~ 30% of GPI-APs expressed on the 

membrane have been found to form nanoclusters consisting of 2-4 molecules.5,10,218  

FRAGS cells freely attached onto our nano-antenna platform as illustrated in Figure 

6-5 a (see also in the Methods Section 6.2.2 ). For each single experiment, we 

simultaneously collected fluorescence traces of up to 50 individual antennas of 

similar gap size and generated individual ACFs for each antenna. Notice, that in 

some cases not all of the antennas excited the cell membrane as cells attached at 

random positions of the antenna chip. As the amount of information obtained over 

multiple experiments on different gap sizes is huge, we generated autocorrelation 

carpets (Figure 6-5 b), following a similar procedure as reported by others.63 This 

so-called autocorrelation carpet visualizes the temporal evolution of the ACFs with 

its amplitude encoded in color over the range of monitored observation areas. The 

autocorrelation carpet shown in Figure 6-5 b contains a total of 84 individual ACFs, 

demonstrating the unprecedented high throughput of nanoscale dynamic 

information that can be obtained by our multiplexed approach. 

In general, the autocorrelation curves exhibit higher correlation amplitudes when 

probing on nano-antennas in comparison to the diffraction-limited control (nano-

apertures), a signature of the enhancement provided by the antennas. Importantly, 

a large spread on correlation amplitudes and temporal decays were obtained for 

all the antenna gap sizes investigated (Figure 6-5 b). These temporal and amplitude 
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variations are consistent with a heterogeneous organization in space and time of 

FR-GPI at the nanoscale.  

To better quantify these results, we analyzed individual ACFs. We performed 2D 

Brownian diffusion fits (Eq. 6-1) and obtained the diffusion times and G00 values 

for all the ACFs composing the correlation carpet plot in Figure 6-5 b. As the axial 

distance between the cell membranes and the nano-antennas is most probably 

larger than 10 nm, due to extracellular components220,221, differences arising from 

different gap sizes should be small ( see also FDTD simulations in Figure 6-4). 

Therefore, to simplify our analysis, we collected all the data in single distribution 

plots without classifying the fittings according to antenna gap size. 

In Figure 6-5 c we plot the resulting G00 vs. respective diffusion time τD (yielded by 

the fittings) obtained for fluorescent FR-GPI on nano-antennas (red dots) and on 

the control nano-aperture (green dots). As a comparison, we include the results 

obtained on fluorescent beads in sucrose solution (gray dots). The first observation 

is that the distribution of G00 vs. τD originating from multiplexed measurements on 

living FRAGS cells are distinctly separated from the distribution obtained from the 

beads. Indeed, the distribution of G00 vs. τD on beads is quite narrow, with small G00 

values and short τD. As G00 is inversely proportional to the number of molecules 

observed in the observation area, the low values of G00 for the beads indicate a high 

bead concentration which was the case for our measurements. The diffusion on 

beads is also faster by about one order of magnitude as compared to the 

measurements on GPI-APs. This result is fully aligned with what is expected for 

freely diffusing emitters in solution in contrast to protein diffusion confined to the 

plane of the living cell membrane.  

The distribution of diffusing FR-GPI probed by nano-antennas (red dots) is 

unequivocally more spread than the one probed within the diffraction-limited 

nano-aperture (green dots) shown in Figure 6-5 c. The distribution of the nano-

aperture exhibits low G00 values at diffusion times which are narrowly spread 

around a mean diffusion time of 13 ± 5 ms (mean ± std). In contrast, when probing 

in nano-antenna detection areas, the resulting G00 vs. τD value pairs are widely 

spread with τD values being 15 ± 10 ms.  
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Figure 6-5. Multiplexed FCS at the nanoscale of fluorescent GPI-APs in the plasma membrane of 

living FRAGS cells. (a) A camera snapshot of FRAGS cells (outlined in white) plated onto the nano 

antenna array platform, with the nano-antennas visible as diffraction-limited bright spots. Scale bar is 

10 μm. (b) Autocorrelation carpet for three different nano-antenna gap sizes and the nano-aperture. 

Each line represents one autocorrelation trace of an individual antenna where the correlation 

amplitude G(t) is color-encoded. Data have been obtained by measuring on sets of 50 antennas of 

similar gap size simultaneously. The carpet displays a total of 84 autocorrelation functions. (c) 

Diffusion times of GPI-APs plotted against their respective autocorrelation amplitude at zero lag time 

(G00) obtained from antennas in resonance (parallel polarization excitation, red dots), or from nano-

apertures (i.e., lacking the nano-antenna, green dots). Results obtained on freely diffusing beads from 

resonant antennas are shown in grey for comparison. Each dot corresponds to an individual antenna 

measurement. (d) Normalized autocorrelation curves averaged over nano-antennas of various sizes for 

measurements of fluorescent GPI-AP on living FRAGS cells and compared to fluorescent beads in 1.6 M 

sucrose solution.  
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The broad spread of G00 vs. τD values may result from varying numbers of molecules 

observed, nanoclusters vs. single proteins, as well as probing at different heights in 

the axial direction, thus resulting in the detection of molecules having experienced 

different degrees of fluorescent enhancement (compare to Figure 6-4). In Figure 

6-5 d, normalized ACFs averaged over a multitude of nano-antennas of different 

gap sizes are displayed for freely diffusing beads in solution and for fluorescent FR-

GPI-APs in the living FRAGS cell membrane. Herewith, we endorse the distinctly 

different diffusion behavior of fluorescent beads and the membrane protein FR-GPI 

probed in its native environment of a living cell. 

We also inspected the diffusion of fluorescently labeled GPI-APs in the membrane 

of living primary hemocytes (for preparation details refer to the Methods section 

6.2.2). Figure 6-6 a depicts the correlation carpet on different nano-antenna gap 

sizes in comparison to the diffraction-limited control (nano-aperture) for GPI-AP 

on living hemocytes. Similar to the results obtained on the FR-GPI-AP in FRAGS cells 

(Figure 6-5), we also observed for this cell type a heterogeneous diffusion of GPI-

APs in time and space. When keeping the observation area constant, as shown for 

a gap size of 20 nm in Figure 6-6 b, the observed diffusion occurs over a broad range 

of temporal scales. From the 2D Brownian diffusion fittings we obtained diffusion 

times of 5.30 ms, 8.46 ms and 18.74 ms for the three exemplary ACFs on the 20 nm 

gap. Note that also the corresponding amplitudes exhibit variation.  

The full distribution of G00 vs. τD obtained from the 2D fittings of the traces shown 

in Figure 6-6 a is displayed in Figure 6-6 c. In contrast to the results obtained in 

FRAGS cells (Figure 6-5), in hemocytes, the autocorrelation curves have in general 

high amplitudes (Figure 6-6). The distribution of GPI-AP diffusion in hemocytes 

yields mean diffusion times of 25 ± 17 ms and 35 ±15 ms for measurements on 

nano-antennas and nano-apertures, respectively (mean ± std, see Figure 6-6 c).  

The distribution of G00 vs. τD obtained from measurements on different gap 

antennas shows a very large spread both on G00 and τD values. Interestingly, higher 

G00 values generally correlate with shorter τD values. We assign these occurrences 

to individual GPI-APs diffusing over the nanometric hotspot of the antennas. In 

contrast, lower G00 values tend to exhibit a large spread on τD. As for the case of FR-

GPI-APs, there are multiple reasons that could explain such a large spread in 

diffusion times, including the presence of nanoclusters of different sizes and 

therefore od different mobilities.  
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Figure 6-6. Multiplexed FCS at the nanoscale of fluorescent GPI-AP in the plasma membrane of 

living primary hemocytes. (a) Autocorrelation carpet for five different nano-antenna gap sizes and 

the nano-aperture. Each line represents one autocorrelation trace of an individual antenna where the 

correlation amplitude G(t) is color-encoded. (b) Three autocorrelation curves for an antenna gap size 

of 25 nm together with their 2D normal diffusion fittings. The corresponding diffusion times obtained 

from the fittings are indicated in the legend. (c) Diffusion times plotted against their respective G00 

values retrieved from 2D normal diffusion fittings to the traces displayed in (a). 

Finally, we performed preliminary live cell experiments of the adenosine receptor 

(AdoRe) on the plasma membrane of living FRAGS cells. AdoRe comprises a group 

of G protein-coupled receptors mediating the physiological functions of adenosine. 

Recently, it was reported that this adenosine receptor oligomerizes into homo- and 

heterodimers.222 We investigated the nanoscale diffusion behavior of the 

fluorescently labeled ligand Neca transiently binding to the adenosine receptor on 

transiently transfected FRAGS cells using our multiplexed nano-antenna approach. 

Representative ACFs of fluorescent GPI-AP in FRAGS cells and in hemocytes are 

juxtaposed to a curve for the fluorescent AdoRe ligand Neca on a nano-antenna of 

25 nm gap in Figure 6-7 a. The normalized ACF for the AdoRe ligand Neca shows 

slower diffusion dynamics as compared to GPI-APs. This may be a first hint for 

differences in the nanoscale diffusion behavior among different signaling proteins 

of the living cell membrane. 
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In Figure 6-7 b the distributions of G00 vs. τD are shown for fluorescent GPI-AP in 

primary hemocytes and for fluorescent AdoRe ligand Neca in FRAGS cells. Both 

proteins exhibit spatiotemporal heterogeneous diffusion at the nanoscale. 

Moreover, a rough comparison between the shapes for the clouds of the 

distributions of the two different fluorescent proteins corroborates the hypothesis 

that the diffusion behavior distinctly differs at the nanoscale.  

  

Figure 6-7. Multiplexed FCS to resolve nanoscale diffusion of different proteins in the living cell 

membrane. (a) Representative normalized autocorrelation curves of fluorescent GPI-AP in living 

FRAGS and hemocytes in comparison to the fluorescent adenosine receptor ligand Neca on the living 

FRAGS membrane for a nano-antenna gap size of 25 nm. (b) Diffusion times vs. the correlation 

amplitude at zero lag time (G00) obtained from 2D normal diffusion fittings to traces of fluorescent GPI-

AP on hemocytes and of the fluorescent adenosine receptor ligand Neca in living FRAGs. 

6.4 Discussion 

In this chapter, we demonstrate the multiplexing capabilities of planar gold 

nanogap antenna arrays implemented in an epi-illumination configuration and 

sCMOS camera detection for the first time to our knowledge. Furthermore, we 

report on multiplexed FCS measurements in living cells resolving spatiotemporal 

heterogeneities at the nanoscale. 

First, we validate our multiplexed approach based on planar nano-antenna arrays 

with gap sizes of 10-35 nm with freely diffusing far-red fluorescent beads in 1.6 M 

sucrose solution. We assess the ensemble photon statistics. Second, we look into 

the single burst information per antenna extracted from a simultaneous recording 

on 225 nano-antennas. This allows us to quantify the fluorescent enhancement per 

antenna yielding the overall performance of the nano-antennas in comparison to 

the diffraction-limited control. Thus, we benchmark the high fluorescent 

enhancement and nanometric detection areas afforded by nano-antennas of 



Multiplexed FCS at the nanoscale using planar photonic antennas 

155 

different gap sizes (10-35 nm). Third, we show the capability to perform 

multiplexed FCS at the nanoscale on fluorescent beads. Fourth, we apply our 

multiplexed nano-antenna approach to resolve the nanoscale diffusion of different 

proteins in the membrane of living cells. For two different cell types, FRAGS cells 

and primary hemocytes, we corroborate the spatiotemporal heterogeneous 

diffusion of fluorescent GPI-AP at the nanoscale recorded on 50 nano-antennas 

simultaneously. Moreover, we investigate the nanoscale diffusion behavior of the 

fluorescent adenosine receptor ligand Neca binding transiently to the adenosine 

receptor. Thus, our multiplexed approach exploiting planar nanogap antenna 

arrays allows us to resolve nanoscale diffusion dynamics of proteins on living cell 

membranes showing concurrent spatiotemporal heterogeneities.  

We demonstrate in this proof-of-principle work the multiplexed capabilities of 

planar gold nanogap antennas in an epi-illumination configuration and sCMOS 

camera detection, and its suitability for multiplexed FCS in living cells. In particular, 

it has to be highlighted that with our approach we can readily obtain 

spatiotemporal data at the nanoscale with high throughput. This capability of 

providing an insight into nanoscale diffusion dynamics with high throughput is a 

clear advantage over serial recording approaches. We envision this multiplexed 

nano-antenna approach to be hugely beneficial in the quest of elucidating how 

collective molecule behavior orchestrates cellular processes.  

However, we propose various ideas to further improve the performance of our 

approach. To exploit the camera detection area more efficiently, the spacing 

between the antennas could be reduced enabling more antennas to be imaged 

simultaneously at a higher framerate. The antenna design could also be more 

specifically tailored towards the cell biology question to be asked. Extremely high 

fluorescent enhancement might not always be required; hence the gap sizes could 

be larger to allow for multiplexed FCS diffusion laws extended to the nanoscale. 
93,104,223224–226227Conclusion 

This proof-of-principle work of our multiplexed nano-antenna approach using an 

epi-illumination configuration and sCMOS camera detection accomplished in this 

chapter could contribute to studies of membrane organization in living cells with 

high throughput. Indeed, our proof-of-principle experiments on different proteins 

and cell types demonstrate the highly heterogeneous organization of the cell 

membrane. Understanding how proteins and lipids diffuse and interact on the cell 

membrane is essential to decipher cell signaling. Despite the ongoing efforts over 
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the past decades, approaches providing high resolution in space and time at the 

same time in a multiplexed implementation have remained sparse. Thus, we 

envision a big boost for live-cell research by our successful demonstration of a 

multiplexed nano-antenna approach.  
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7 Conclusions and Future Perspectives 

The principal goal of this thesis has been to elucidate the nanoscale 

organization of biological membranes with ultra-high resolution in space and 

time at the same time. We introduced an innovative planar nanogap antenna 

approach combined with fluorescence correlation spectroscopy providing 

nanometric confinement in the range of 10-45 nm together with sub-ms 

temporal resolution. First, we benchmarked our nano-antenna platform 

using freely diffusing dyes and demonstrated single-molecule sensitivity in 

zeptoliter detection volumes together with fluorescent enhancement factors 

of 104-105 at micromolar concentrations. Second, we applied our approach to 

reveal transient nanoscopic domains in model lipid membranes of different 

lipid compositions. Third, we increased the complexity of our model 

membrane system to study the influence of glycans, a prominent glycoprotein 

of the extracellular matrix, on the nanoscale lipid diffusion of model 

membranes. Moreover, we complemented our approach with atomic force 

microscopy and force spectroscopy to gain insight into the morphology and 

mechanical properties of these lipid mixtures at the nanoscale. Fourth, we 

exploited our combined FCS-nanogap antenna platform to resolve nanoscale 

lipid dynamics in living cells. Last, we demonstrated the multiplexing 

capabilities of our planar nanogap antenna arrays to follow the 

spatiotemporal heterogeneities of protein diffusion in living cells.  

In this chapter, the main results of this PhD research are summarized, 

discussed and placed in perspective of promising approaches and 

improvements to pursue in future. 
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The living cell membrane is composed of a myriad of lipids and proteins forming a 

fluid bilayer, which separates the cytoplasm from the external environment of the 

cell. These lipids and proteins exhibit a range of characteristic diffusion times 

within the plane of the membrane. The characteristic diffusion behavior is directly 

related to the spatial organization of lipids and proteins into nanodomains and 

meshwork at the micron- down to the nanoscale. Importantly, it has been 

demonstrated that the spatiotemporal organization of the cell membrane is linked 

to its function, e.g. signaling and trafficking.1,2,6,7,9,64,157 Single-molecule fluorescence 

approaches, including super-resolution techniques have enormously advanced our 

understanding of the dynamic nanoscale organization of the plasma 

membrane.4,64,122,124 On the one hand, standard single-molecule detection is 

commonly performed using diffraction-limited confocal excitation implying that 

exploration of single-molecule dynamic events requires ultra-high dilution of the 

sample (i.e., working at pM range), well below the physiological concentrations at 

which relevant biological processes take place (µM-mM range). Super-resolution 

microscopy on the other hand, can explore nanoscale regions of the plasma 

membrane at the expense of extremely low temporal resolution, precluding studies 

on the transient and dynamic organization of biological membranes.  

In this dissertation we have introduced an innovative technique of planar 

plasmonic antennas combined with fluorescence correlation spectroscopy (FCS). 

Our approach provides both high spatial and temporal resolution together with 

single-molecule sensitivity to resolve nanoscale diffusion of lipids and proteins in 

the living cell membrane.  

As introduced in Chapter 2, our antenna design consists of a gold dimer pair with a 

diameter of 80 nm separated at various gap sizes in the range of 10-45 nm. In 

contrast to standard nano-antenna fabrication techniques that leave the region of 

maximum field localization buried into the substrate, we developed a new 

approach that makes this region directly accessible to fluorescent emitters. Our 

nanofabrication process combines electron beam lithography together with a 

planarization step, etch back and template stripping. The dimensions of the gold 

dimer guarantees its resonance and thus maximum near-field enhancement in the 

red region of the visible spectrum, while the gap sizes define the degree of the near-

field enhancement and localization. The last fabrication step of template stripping 

planarizes the nano-aperture and flips the plasmonic hotspot to the surface, so that 

both the antenna and the sample are in close proximity to each other. This flipping 

step enables optimal near-field excitation from the antenna on the biological 
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sample. In addition, the gold dimers are embedded within a box nano-aperture 

filled with a transparent polymer rendering the surface continuously planar (of a 

planarity better than 3 nm) and thus an ideal platform to probe biological 

membranes. Spurious background fluorescence is screened by the gold layer 

(thickness of 50 nm) surrounding each dimer pair in the box nano-aperture. Hence, 

the signal-to-background ratio is highly increased and allows for the detection of 

individual molecules within the hotspot region provided by the nanogap antenna. 

Owing to these nanofabrication advances, we demonstrated giant fluorescence 

enhancement factors of up to 104-105 times in ultra-confined detection volumes, 

together with single-molecule detection in the micromolar range. 

In Chapter 3 of this thesis we applied these planar gold nano-antennas in 

combination with FCS for the investigation of the dynamic organization of mimetic 

lipid membranes at the nanoscale with microsecond time resolution. First, we 

validated the suitability of planar nano-antenna arrays on single-component DOPC 

bilayers, obtaining free diffusion over the length scales investigated (down to 10 

nm), and consistent with a homogenous lipid distribution. Free diffusion was also 

observed on DOPC:SM binary mixtures, although a large spread of the diffusion 

times was retrieved. These variations indicated local fluctuations of SM within 

larger areas of solely DOPC, but without the formation of detectable nanodomains 

that would constrain dye diffusion. Addition of cholesterol resulted in microscopic 

phase separation and the formation of transient nanoscopic domains in both the 

liquid ordered (Lo) and liquid disordered (Ld) phases, with sizes below 10 nm and 

lifetimes in the microsecond time scale. Since the basic biochemistry operating in 

lipid model membranes is similar to that in the plasma membrane, we proposed 

that the nanoscopic domains detected might correspond to the unstable lipid rafts 

predicted to exist in living cell membranes.  

There is emerging interest in deciphering the influence of adjacent extracellular 

glycan components on the spatiotemporal organization of the cell membrane. In 

Chapter 4, we increased the complexity of our experimental system to investigate 

the influence of the glycosaminoglycan Hyaluronic Acid (HA) on the repatterning 

of mimetic lipid membranes at the nanoscale. We performed FCS measurements in 

confocal and at the nanoscale using our planar antenna arrays on different lipid 

mixtures with and without HA. Furthermore, we complemented our studies using 

atomic force microscopy and force spectroscopy. With our combined and extended 

approach, we revealed a distinct influence of HA on the nanoscale lipid organization 

of mimetic membranes composed of lipids constituting the more ordered phase. 
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We suggested a synergistic effect of HA and cholesterol on inducing and/or 

enhancing the formation of nanoscopic heterogeneities. Our results advocate for a 

role of the glycocalyx matrix regulating the lipid bilayer organization at the 

nanoscale, similar to the way it has been shown that the actin cytoskeleton 

orchestrates the occurrence of so-called lipid rafts. Our combined approach 

provides the required spatiotemporal resolution, mechanical sensitivity, and 

delivers quantitative parameters at the nanoscale that might highly benefit the 

modeling of biological systems.  

Switching from more controllable mimetic membranes to living cell membranes, 

we employed our planar nano-antenna platform combined with FCS to study the 

nanoscale dynamics of different lipids in living cells. In Chapter 5 we investigated 

the diffusion dynamics of two fluorescent lipid analogs, phosphoethanolamine (PE) 

and sphingomyelin (SM), on living cell membranes. With our nanogap antennas we 

were able to breach into the sub-30 nm spatial scale on living cell membranes for 

the first time. Together with cholesterol depletion experiments, we provided 

compelling evidence for the existence of highly transient and fluctuating nanoscale 

assemblies of sterol and sphingolipids in living cell membranes. By means of FCS 

and single burst analysis we revealed striking differences between PE and SM 

diffusion dynamics that remain hidden in confocal measurements.  

Finally, in Chapter 6, we demonstrated the multiplexing capabilities of planar 

plasmonic nano-antenna arrays of different nanogap sizes (10-35 nm) 

implemented in a widefield illumination configuration together with sCMOS 

camera detection. We first demonstrated simultaneous readout of more than 200 

antennas at the time, which constitutes a major increase in data throughput. We 

assessed the performance of the nanogap antenna arrays for multiplexed FCS and 

burst analysis at the nanoscale with millisecond temporal resolution. We 

successfully extended our approach to probing protein diffusion in living cell 

membranes at the nanoscale in a simultaneous parallel detection scheme on over 

50 antennas. We demonstrated that our approach maintains the high 

spatiotemporal resolution and biocompatibility offered by the antennas together 

with a remarkable high throughput in data acquisition. We recorded large 

variations in diffusion times and spatial organization on all proteins investigated, 

consistent with the large spatiotemporal heterogeneity of living cell membranes. 

Therefore, we envision many multiplexed studies with high spatiotemporal 

resolution at the nanoscale continuing to increase our understanding of the cell 

membrane organization and its link to the cell’s function. 
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The current design of an antenna platform consisting of thousands of planar 

nanogap antennas-in-box of different gap sizes is the result of significant efforts in 

the field of plasmonics pushing antenna developments towards biosensing and 

biological applications in general. The large-scale availability of nano-antennas 

offering ultra-high spatial confinement and fluorescence enhancement into 

hotspots directly accessible on a planar surface has been key to conducting this PhD 

research. The combination of this type of planar nanogap antenna arrays with FCS 

has been a merging of the best of two worlds. On the one hand, the planar nano-

antenna arrays provide spatial confinement to gap sizes in the range of 10-45 nm. 

The availability of arrays further allows probing of spatial heterogeneities of the 

sample under study and being ideally suited to look into the cell membrane 

organization from the nano- to the micron-scale. FCS on the other hand, is a 

powerful non-invasive optical technique with high temporal resolution down to 

microseconds but is commonly implemented within a diffraction-limited (~ 250 

nm) spot. Thus, our combined FCS-nano-antenna approach perfectly matches the 

requirements to elucidate how cell membrane organization dynamically 

(re)patterns at the nanoscale by its interaction with intra- and extracellular 

components. However, as always, there is room for improvement, in particular to 

facilitate investigations of more complex questions of cell membrane dynamics, one 

being interactions between lipids and proteins for example. 

Currently, the spatial arrangement of our nano-antennas on the planar substrate 

consists of a separation of 4 µm between antennas. In view of the multiplexing 

implementation based on camera detection, it would be beneficial to place the 

nano-antennas with a narrower spacing to allow for a more efficient use of the 

camera field of view. A closer antenna spacing would either allow for a higher 

number of multiplexed antennas or would reduce the camera detection area to 

attain microsecond time resolution. A limit of how close the antennas could be 

spaced in the array would lie below 1 µm down to ~ 500 nm. For antenna-to- 

antenna distances, or grating pitches, below 500 nm peculiar optical phenomena 

such as surface lattice resonances occur which would alter the antenna resonance 

position.228–231 These lattice resonances depend on the exact antenna size and 

design, the grating pitch and also on the material and environment. With respect to 

nanofabrication challenges, antenna arrays down to 500 nm have been attained 

routinely by electron-beam lithography as well. Hence, when designing a novel 

planar nanogap antenna with less than 4 µm spacing one would need to consider 

lattice resonances and optimization of the nanofabrication process. However, a 
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grating pitch of 0.5-1 µm would definitely be achievable and constitutes a huge 

benefit for the increased wealth in information of cell membrane organization 

studies.  

Moreover, depending on the question of interest, larger gap sizes might be 

sufficient for studying dynamics on living cells. A lateral confinement of the near-

field into hotspots of 10-45 nm also implies a rapidly decaying near-field in the axial 

direction. As shown in FDTD simulations in Chapter 6, the fluorescence 

enhancement of the smallest antenna gap of 10 nm can be exploited for a high 

increase of the signal-to-noise if the fluorophore diffuses within less than 10 nm of 

axial separation to the nano-antenna. However, when plating living cells on top of 

the nano-antenna substrates the physical separation between the fluorescently 

labeled protein or lipid of interest diffusing in the plane of the membrane may 

easily exceed 10 nm. Thus, to permit the nanoscale extension of FCS diffusion laws 

in living cells using our multiplexed nano-antenna implementation, it would be 

favorable to adapt the antenna design to provide gap sizes of nanometric lateral 

confinement but less rapid axial near-field divergence. Probably the most obvious 

initial idea would be to enlarge the gap size. However, planarized aluminum based 

nano-apertures have not shown a diffusion dwell time dependence for diameters 

between 60 to 250 nm and above 10 nm above the aperture.93 This shows the 

intricate interplay between near-field localization, thus enhancement and lateral 

and axial spatial extension. The smaller the gap, the stronger is the near-field 

enhancement but with a rapidly decaying near-field. When the gap becomes larger, 

the near-field weakens, however strong localizations remain at the sharp antenna 

edges as has been seen for the larger gap sizes in the FDTD simulations in Chapter 

6 and the planarized aluminum based nano-apertures93. Moreover, to guarantee a 

sufficiently high signal-to-noise ratio very bright dyes would need to be used for 

larger gap sizes providing weaker enhancement. Thus, a realistic approach to allow 

for the nanoscale FCS diffusion law extension in a multiplexed fashion would be to 

still use planar antenna arrays of gap sizes below 50 nm but implementing a more 

sophisticated data analysis. The contribution from the sharp antenna edges must 

be ultra-short and of constant nature. Thus, this contribution could be eliminated 

as part of the data analysis routine or even filtered out if the fluorescent lifetime of 

the dyes is simultaneously collected.  

Gold nano-antennas exhibit many advantages such as high field enhancement, 

nanometric field confinement, optimized nanofabrication protocols to ensure 

minimal surface roughness, chemical inertness and bio-combability. However, the 
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plasmonic resonances sustained by gold nano-antennas lie in the red to far-red 

wavelength range of the electromagnetic spectrum, restricting experiments to a 

single color. Hence, to extend to multi-color excitation and detection schemes of 

our planar nanogap antenna approach, the material would need to be changed. In 

the regime of plasmonic materials, aluminum is the most promising candidate 

offering moderate fluorescent enhancement over a broad range of the visible 

spectrum, perfectly matching the spectrum of fluorophores commonly used in live-

cell research.93,223 Aluminum antennas for biological applications have been 

developed and employed for membrane studies in our group already.104 However, 

the antenna design for aluminum antennas would need to be optimized to afford a 

similar performance as the planar gold nanogap antenna approach on a broadband 

wavelength range together with live-cell compatibility. Furthermore, there might 

be new antenna approaches suited for live-cell research at the nanoscale based on 

silicon, two-dimensional materials, or other novel materials.224–226  

To investigate the influence of HA, an abundant constituent of the glycocalyx 

matrix, on the nanoscale lipid organization, we complemented our FCS-nano-

antenna approach with AFM and force spectroscopy. In addition to the diffusion 

dynamics at the nanoscale, this correlative approach allowed us gaining insight into 

the topography and mechanical properties of the lipid bilayer due to HA. 

Correlative approaches are emerging as feasible, reliable and yield valuable results 

in our quest to decode the compositionally heterogeneous cell membrane 

organization, and the passive and active influence of adjacent structures on the 

intra-and extracellular side.  

To decipher the complexity of cell membrane organization and dynamics and its 

impact on membrane function it is of outmost importance to continue developing 

and improving our biophysical toolbox. As shown also in the work of this PhD 

research, it is essential to observe and quantify the interaction of lipids and 

proteins in their native environment of the living cell at a variety of spatiotemporal 

scales. To determine modes of diffusion and clustering behavior single particle 

tracking (SPT) approaches including video-rate interferometric scattering 

microscopy (iSCAT), yielded remarkable results.78 Moreover, conventional SPT 

using small emitters, can be nowadays implemented at low and high labeling 

densities. This approach has recently allowed to correlate clustering of signaling 

proteins together with their dynamics at the nano- and meso-scale.178,180 Another 

super-resolution technique capable of looking into nanoscale membrane dynamics 

is scanning stimulated emission depletion (STED)-FCS allowing the resolution of 
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spatiotemporal heterogeneities in living cells down to ~ 30 nm resolution.63 The 

onset of fast and sensitive detection cameras has permitted the generation of 

spatial maps of mobilities and interactions in living cells from a single 

experiment.206 All these approaches constitute our current biophysical toolbox and 

have tremendously increased our understanding of the living cell membrane 

dynamics. All these techniques also have their inherent technical challenges, e.g. 

regarding spatiotemporal resolution, and live-cell compatibility, which need to be 

addressed to resolve the remaining mysteries of cell membrane organization.232  

Our combined approach of planar nanogap antenna arrays with FCS enabled us to 

gain insight into the spatiotemporal membrane organization at the nanoscale. In 

the scope of this thesis we could also demonstrate the multiplexing capabilities of 

our approach as an implementation in widefield illumination and with sCMOS 

camera detection (Chapter 6). Nano-antennas make it possible to follow cell 

membrane dynamics with ultrahigh spatiotemporal resolution at the nanoscale. 

However, they become inefficient at longer temporal and larger spatial scales. The 

next push forward may consist in enabling the simultaneous multiplexed readout 

over multiple spatiotemporal scales. A possible configuration would be the use of 

two opposing objectives which illuminate the fluorescently labeled sample from 

both sides and collect the fluorescence emission from both sides. Depending on the 

cell biological question to be answered, the implementation would then vary in 

detail. The configuration could be either in epi-illumination or in the 4Pi confocal 

scheme233. On the detection side, either two cameras, even of different dynamic 

range, or two single photon avalanche diodes (SPADs) or a combination could be 

employed. In combination with a SPAD, a pulsed laser illumination and a time 

correlated single photon counting module could be implemented to simultaneously 

collect fluorescent lifetime information. Our planar nanogap antenna arrays would 

remain as a sample. Thus, one detection side would collect the fluorescent emission 

stemming from the antennas looking into the nanoscale diffusion and the other side 

would collect diffusion dynamics from a widefield or confocal detection volume. 

With two objectives it would be even possible to collect from different planes in the 

sample. With two fast and sensitive cameras it could be envisioned to perform 

(multiplexed) Imaging FCS (ImFCS) in a diffraction-limited widefield volume and 

on the nano-antennas in parallel. The combination of a camera for ImFCS in the 

diffraction-limited spot and a SPAD to collect from the nano-antennas would allow 

for sub-ms temporal resolution at the nanoscale. With such a configuration of two 

objectives and planar gold nano-antennas, it would be straightforward to detect 
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two colors, namely in the red regime on the antennas and in the blue regime, i.e., 

labeling a molecule of interest for the diffraction-limited detection side. Overall, the 

optical implementation would be more complex but the increase in potential 

insight into the cell membrane organization correlating over multiple 

spatiotemporal scales would be tremendous.  

Common to all of these approaches capturing the cell membrane organization at 

the nanoscale is the extremely intensive data acquisition and data analysis. Thus, 

modes of efficiently detecting and analyzing such amounts of data have to be 

developed further. With software advances, novel approaches of analysis based on 

Bayesian, machine and deep learning algorithms are improving in reliability. In 

particular, the endeavor goes into autonomous data analysis paradigms helping to 

remove the human-induced bias in sorting obtained data curves for further fitting 

from measurement artifacts. Such autonomous approaches may replace the 

decision-making of choosing the best fitting model for the obtained FCS data in the 

future.227  

In summary, in this thesis we introduced an innovate approach of planar gold nano-

antenna arrays of different gap sizes (10-45 nm) combined with FCS offering ultra-

high spatial and temporal resolution at the same time. We validated our approach 

by yielding unprecedented fluorescent enhancement factors for freely diffusing 

molecules. Most importantly, we applied our nano-antenna approach to biological 

membranes. On mimetic membranes we were able to resolve transient nanoscopic 

heterogeneities and decoded the influence of a constituent of the adjacent 

extracellular matrix on lipid organization at the nanoscale. On living cell 

membranes, we detected for the first time lipid heterogeneities with a resolution 

below 30 nm. In particular, the successful demonstration of the multiplexing 

capabilities of our combined FCS-nano-antenna approach will serve useful in the 

future to enlighten the spatiotemporally heterogeneous diffusion of lipids and 

proteins in living cell membranes at the nanoscale. Further improvements of the 

antenna design allowing for multi-color detection and nanoscale FCS diffusion laws 

can be developed and open the door to observe heterogeneous cell membrane 

interactions and (re)organization from the nano- to the micron-scale. 

There is a crack in everything. That's how the light gets in.  Leonard Cohen 
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