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ABSTRACT 

 

The engineering of biology strives on the creation of biological devices concerning 

society-impact applications. In this PhD thesis, we developed mathematical and 

experimental tools for the standard and rational design of living devices for biomedical 

purposes, offering robust and reliable responses. By breaking-up cellular device 

complexity into functional modules, we have analysed how extracellular information is 

detected, processed and transformed thanks to re-engineering intrinsic cellular 

components. We show how the desired range of action of a biosensor could be tuned by 

modifying the relative levels from two-component receptors’ biosensors. Regarding 

information processing, combining multicellularity and space permits to develop a 2D 

multi-branch approach inspired from printed electronics, allowing to perform logic 

computation by transferring device complexity into the geometrical arrangement. Sensing 

and processing capabilities have been applied as a proof-of-concept for the design of 

cellular devices for Diabetes Mellitus. Treating the cellular device closed-loop response 

as the fourth-functional module allowed to in silico decipher device characteristics on 

glycaemia regulation and design novel strategies based on dietary modulation, putting the 

manifest the need to combine both experimental and computational tools for living device 

application-based designs.
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RESUM 

 

L’aplicació de principis d’enginyeria en biologia permet somniar en l’ús de dispositius 

biològics per abordar problemes de la societat. Concretament, en aquesta tesi doctoral, 

s’ha abordat el disseny de dispositius biològics per aplicacions biomèdiques mitjançant 

la combinació d’eines experimentals i computacionals. La creació d’aquests dispositius 

demana d’un disseny racional que ofereixi respostes robustes i fiables. L’estudi de la 

creació de dispositius biològics s’ha fet seguint una aproximació modular, on s’ha 

analitzat com es poden re-enginyeritzar components cel·lulars per obtenir una resposta 

que s’adeqüi a l’aplicació requerida. Hem demostrat com podem modular el rang de 

detecció de la capa sensora a través de la modulació de l’element receptor de sensors 

bastats en dos components. Hem analitzat com integrar informació de diferents fonts de 

manera sistemàtica i robusta introduint com a nou element de computació l’espai i la 

divisió de tasques; tot desenvolupant un marc teòric i validant experimentalment per un 

seguit de funcions lògiques. Finalment, hem desenvolupat dispositius biològics que 

responen a molècules fisiològiques. Concretament, hem abordat el disseny de dispositius 

biològics pel tractament de la Diabetes Mellitus. Una primera validació experimental ens 

ha permès establir l’ús d’aquests dispositius in vitro. Seguidament, hem aprofundit en 

l’estudi de la seva aplicació mitjançant l’ús d’un simulador de pacient diabètic que ens ha 

permès el seu tractament virtual i l’anàlisi de les característiques del dispositiu per la 

regulació de la glicèmia. Finalment, hem explorat com la combinació dels dispositius 

cel·lulars amb la regulació del patró d’ingestes introdueix millores en els nivells de 

glucosa en sang. Posant de manifest el potencial que ofereix la creació d’una plataforma 

hibrida pel disseny de dispositius cel·lulars per una determinada aplicació. 
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PREFACE 

 

Biological organisms are systems with highly sophisticated information processing tools. 

Evolution has endowed the ability to sense, process and respond to stressor signals and 

thus, to survive into a world plenty of information. The magic behind those processes 

relies on biological reactions involving genes, proteins, chemicals… Analogously, 

technology has translated and emulated those processes in electronic circuits to create 

devices developing complex computations foreseeing making our lives easier. 

Technological advances are also relevant in healthcare and endorsed to develop novel 

strategies centred on patients’ needs and personalized medicine. Biomedical engineering 

and more specifically the development of biomedical devices allowed to bring healthcare 

outside hospitals, closer to the patients. However, limitations arouse when developing 

electronic sensors facilitating the detection of disease markers. The use of biological 

components, from an engineering point of view, has postulated to be integrated into such 

devices, giving rise to living technologies.  

 

By following a modular approach, a living device could be seen as the combination of 

four-functional layers: i) the sensing layer, ii) the signal integration and computation 

layer, iii) the physiological output and iv) the closed-loop response. In this PhD thesis, 

we have developed strategies enabling the creation of rational, robust, automated and 

scalable ways for designing living biomedical devices, by combining mathematical and 

experimental tools, following the design-build-test cycle. 

 

After an introductory chapter emphasising the brief but intense story of synthetic biology 

and how applying engineering principles to biology enables to strive on the creation of 

biological devices concerning society-impact biomedical applications, the following 

chapters are devoted to a deep exploration of the abovementioned four-functional layers 

defining a living device. In chapter 2 we have analysed how we could benefit from the 

cellular ability to detect extracellular signals and developed a theoretical framework 

allowing the rational design of sensors characteristics for desired-based applications. In 

chapter 3 we have analysed how sensorial information can be integrated to produce non-

trivial responses. More specifically we took inspiration from printed electronics to design 

devices with the ability to perform logic computations. In chapter 4 we have developed 
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a proof-of-principle, using S. cerevisiae as a model organism, of a cellular device for 

Diabetes Mellitus biomedical application. Extracellular glucose levels were sensed to 

stimulate the secretion of insulin hormone in a non-trivial dynamic, i.e. a time-pulsatile 

dynamic. 

 

Nonetheless, designing a living biomedical device for a desired application demands its 

contextualization. To do so, in the case of biomedical applications, the tools offered from 

the field of systems biology are extremely useful. In chapter 5 a validated in silico 

platform allowed to test a living biomedical device closed-loop performance for Diabetes 

Mellitus treatment. We have explored the potential of using cellular devices engineered 

with a constitutive or glucose-dependent insulin production to regulate glycaemia in a 

diabetic virtual patient. The in silico studies showed that although postulating that a 

glucose-regulated insulin secretion device should account for a better glycaemia 

regulation, a time delay in insulin secretion compromises its performance. Hence, 

stressing the requirement of closed-loop analysis when designing cellular biomedical 

devices. On that line, an in silico platform was developed to explore a feed restriction 

strategy to overcome the lag-time of insulin secretion.  

 

Our in silico analysis highlights the need of device contextualization for the translation 

of basic research towards society-need applications. Much is done in SB for the creation 

of devices with the ability to sense a wide range of signals: from pollutants to 

physiological markers or to integrate multiple signals in either analogue or digital circuits. 

However, despite the far-reaching potential of such devices, its implementation for 

specific applications is still a major challenge for the field.  

 

The present PhD thesis has tested a diversity of model organisms that together with 

mathematical approaches served as a proof-of-principle platform for designing and 

building living biomedical devices. Hereby, our results represent a step forward on the 

rational design of robust, reliable and standard devices accounting for biomedical 

applications in line with the principles of the engineering of biology. 
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Introduction 

 

 
 



Chapter 1  

 

 

2 

Technology and life sciences are fields in rapid and constant evolution with envisioned 

shared objectives: trying to make life easier. First results could be seen in the area of 

biomedical devices, which emphasizes the synergies between them. Engineering 

technologies are disciplines with application-based design. In that sense, when thinking 

of combining engineering and technology with biology could sound too ambitious. 

However, since the beginning of the 2000, a new discipline arouses merging the profiles 

of physicists, mathematicians, engineers and biologists. Adding the knowledge on the 

biomedical sciences together with an engineering based-design approach allows 

fantasizing solving today’s major challenges of modern medicine, namely, cancer or 

metabolic problems, among others, contributing a large list. The present PhD dissertation 

envisions to explore the ability of biological engineering approaches to strive on the 

creation of biological devices concerning society-impact biomedical applications. A 

modular methodology is tackled by studying intrinsic device properties and tangible 

device performance in an in silico biomedical application. As a case study, we would 

explore one society major challenge; glucose metabolism impairment. More concretely, 

we would explore the creation of biological devices following a synthetic biology 

approach. 

 

Synthetic biology stands as a novel discipline with well-established roots envisioning 

today’s biomedical challenges. During the following chapters, I would like to strengthen 

how synthetic biology and its engineering principles could be applied to design novel 

strategies upon biological devices. More specifically I would like to give insights and 

push a step forward on the design of biological devices by a combination of experimental 

knowledge and computational tools. Subsequent lines are encompassed on relating major 

aspects on synthetic biology as well as the engineering approaches governing the field. 

 



1.1 Synthetic biology brief story 
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1 INTRODUCTION 

 

1.1 Synthetic Biology brief story 

 

Synthetic Biology (SB) is a 21st century recent emerging discipline, still in its early years, 

in a constant change and evolution. As depicted in Figure 1.1, SB has reached a rapid 

increase in the number of publications from the year 2004. 

 
 

Figure 1.1 Synthetic biology number of publications per year since 1980 up to date. Data was obtained 

from Scopus Website in January 2020. 

 

Although finding a general and accepted formal definition for SB remains a challenge 

[Jefferson et al., 2014; Landrain et al., 2013; Purnick & Weiss, 2009], it is feasible to find 

some common concepts in the broad spectrum of definitions, namely DESIGN, 

CONSTRUCTION, NEW, NOVEL, DEVICES, ENGINEERING OF BIOLOGY. 

Therefore, I would like to formalize a brief definition encompassing the present PhD 

thesis work. Synthetic biology discipline aims to apply engineering principles to tackle 

biological problems by designing or re-designing organisms with novel functionalities.  

 

The emerging of the SB could not be explained without considering the technological 

advances concerning the biological science area of molecular biology. The discovery of 

the DNA sequence [Watson & Crick, 1953], the finding of natural genetic regulatory 

elements by Francois Jacob and Jacques Monod in 1961 [Monod & Jacob, 1961], together 

with the development of the first molecular cloning techniques during the 1970s-1980s, 
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could be understood as the elements enabling to establish the roots of SB. Technologies 

enable the growth of molecular biology promoting the emergence of systems biology. It 

was the first-time biologists and computer scientists began to combine experimentation 

and computation to reverse-engineer cellular networks [Ideker et al., 2001; Jeong et al., 

2000; Westerhoff & Palsson, 2004]. First results indicate that biological systems were 

organized as modules comprising several hierarchies, similar to engineering designs. 

From that moment, it was thought, that a rational manipulation of biological systems 

could help to expand the field. From that, two main philosophies arouse: the top-down 

approach of systems biology and the bottom-up approach envisioned for synthetic 

biologists.  

 

Figure 1.2 represents the hierarchies approaching both systems and synthetic biology. 

Hereby, the systems biology approach goes from the smallest elements, e.g. DNA and 

proteins, into higher levels of organisation, giving insights into how organisms work. As 

stated in [Andrianantoandro et al., 2006] “Synthetic biologists design and construct 

complex artificial biological systems using many insights discovered by systems 

biologists and share their holistic perspective”. Both approaches are applied to study the 

functional organization of natural systems and to create artificial genetic circuits with 

high potential in biotechnology and health areas [Benner, 2003].  

 

Figure 1.2 Bottom-up and top-down approaches for the disciplines of synthetic biology and systems 

biology. At the bottom of the pyramid are placed the smallest regulatory elements: DNA, RNA, proteins 
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and metabolites, circuits arouse as a combination of such biomolecules, which would configure or be 

integrated within cells, that together would configure tissues, organs up to the whole organism. 

 

It was at the end of the 1990s, when a small group of engineers, physicists, and computer 

scientists began to migrate into molecular biology giving rise to the first synthetic genetic 

circuits that crash the field in the 2000s: the negative feedback by Becksel and Serrano 

[Becskel & Serrano, 2000] the toggle switch by Gardner et al. [Gardner et al., 2000], and 

repressilator by Elowitz and Leiber et al. [Elowitz & Leibier, 2000].  

 

 Negative feedback Toggle switch Repressilator 

Scheme 

 
  

Mathematical 

formulation 

𝑑𝑅

𝑑𝑡
=

𝑛 · 𝑘𝑝 · 𝑃 · 𝑘𝑖 · 𝑎 · 𝑘𝑝
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− 𝑘𝑑 

 

𝑑𝑢
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𝑑𝑣
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𝑑𝑚𝑖

𝑑𝑡
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1 + 𝑝𝑗

𝑛 −𝑚𝑖  

𝑑𝑝𝑖
𝑑𝑡

= −𝛽(𝑝𝑖 −𝑚𝑖) 

 

Mathematical 

simulation 

 
  

Experimental 

results 

 

 

  

Figure 1.3 Negative feedback, repressilator and toggle switch analysis of main device design 

characteristics. Genetic circuits design is represented schematically by the combination of genes and 

proteins. The mathematical formalization of gene-protein interaction allowed to simulate and predict 

systems behaviour in silico. As a result, E. coli cells were engineered by the combination of characterized 

parts enabling to test systems behaviour in vivo. Extracted and adapted from [Becskel & Serrano, 2000], 

[Gardner et al., 2000] and [Elowitz & Leibier, 2000]. 

 

The first synthetic genetic circuits, as depicted in Figure 1.3, were designed following a 

very similar workflow. A mathematical formalization together with in silico simulations 



Chapter 1 

 

 

6 

allowed to define the architecture of the device followed by its translation into biological 

elements. Interestingly, designs were built from an analogous part library, i.e. protein-

gene interaction by inducible promoter systems, monitor circuit’s output with the 

expression of a fluorescent protein (e.g. Green Fluorescent Protein), and E. coli was used 

as a workhorse chassis. As a consequence of these seminal works the landmarks of SB 

were established: the philosophy behind the construction of synthetic organisms relies on 

the design-build-test workflow. As depicted in Figure 1.4 a combination of quantitative 

design, physical construction, experimental measurements, and hypothesis-driven 

debugging, remains as a characteristic feature of synthetic circuit construction [Hasty et 

al., 2001; Kærn et al., 2003]. 

 

Figure 1.4 Design-build-test cycle for synthetic biology. A forth-step iterative workflow is depicted 

comprising a i) the design in terms of modelling and experimental characteristics, i.e. from genetic parts to 

model organism choice, ii) experimental assembly of genetic parts and host circuit integration is followed 

by iii) experimental test. From the experimental test phase knowledge is gained and enable to iv) learn in 

terms of model parameter obtention and desired device performance. Hence, re-designing from previous 

knowledge through iteration is followed until design behaviour satisfies researcher needs. 

 

During the first years of birth, called the foundational years, several simple genetic 

circuits brought the light by being inspired from electronics, mimicking simple analogous 

functions based on electrical circuits [McAdams & Arkin, 2000; McAdams & Shapiro, 

1995]. Remarkably are the first logic gates implemented by [Guet et al., 2002] combining 
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small regulatory elements that together with [R. Weiss et al., 2002] established the roots 

of transcriptional-based logic gates. 

 

Noteworthy technologic milestones empowering the rapid growth within the first period 

are the development of DNA sequencing techniques [Sanger & Coulson, 1975] and the 

whole genome sequencing of model organisms S. cerevisiae and E. Coli [Blattner et al., 

1997; Goffeau et al., 1996]. Therefore, allowing to create genetic circuits based on model 

organisms properties, for instance, the development of the first cell-cell communication 

based on quorum sensing [You et al., 2004], serving as a major footprint for prospective 

designs. 

 

The mid-2000 and following years could be described as a slowing growing period, in 

which the field started to bring the engineering approaches mainly on the circuit 

engineering area. However, realizing that there were some breakthroughs needed to 

overcome, namely the time-costly ad hoc assembling of genetic parts and the lack of 

methodologies enabling to characterize genetic parts functionalities. 

 

The first international conference on SB (Synthetic Biology 1.0) and the first iGEM 

competition, both held at the Massachusetts Institute of Technology (MIT), are 

understood as the footprints of the synthetic biology community. Scientists were 

committed to bringing the concepts and ideas of engineering to biological sciences in a 

standardized and automated fashion. Thus, efforts were made on creating modular parts 

and standardized protocols, further described in section 1.2. Remarkable achieved 

milestones include the creation of RNA-based circuits, introducing RNA molecules as 

novel regulatory elements in circuitry engineering [Bayer & Smolke, 2005; Isaacs et al., 

2004]. On-going efforts on parts standardization allowed the creation of the first AND 

logic gate by the engineering of a T7 polymerase [Anderson et al., 2007]. 

 

Concerning cell-to-cell communication, the concept of multicellular circuits arouses, in 

which the coexistence of more than one engineered cellular type enables, for instance, the 

emergences of patterning [Basu et al., 2005] or light-sensible circuits [Levskaya et al., 

2005]. However, one of the biggest milestones was achieved within the field of metabolic 
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engineering, in which engineering approaches enable the heterologous production of 

artemisinin precursors, one of the most used antimalarial drug [Martin et al., 2003; Ro et 

al., 2006], opening the door on the application and further commercialization for synthetic 

biology. 

 

The advances made on engineering approaches together with time-maturation and the 

gained expertise of research groups stimulated a third period characterized by the 

scalability and rhythm of production. Hereby, it was exploited the use of permanent DNA 

modifications trough of DNA-recombinases [Friedland et al., 2009] or the expansion of 

RNA usage in synthetic circuits [Maung & Smolke, 2008]. 

 

When talking about RNA regulations, a must claim is the re-purpose of the CRISPR-Cas 

immunity system in bacteria as the “genome scissors”. CRISPR uses an RNA-directed 

DNA binding of the nuclease Cas9 to detect and cleave DNA [Brouns et al., 2008]. These 

enormous advances could be better understood thanks to a new technological advance: 

the discovery of high-throughput DNA assembly methods [Gibson et al., 2009]. Here I 

want to point out that periods of higher productivity are preceded for novel technological 

landmarks, stressing out the synergies between technology and synthetic biology.  

 

Trough the following years up until now, we are facing a period entitled new era of SB 

[Sleator, 2014], in which applications arouse. The aforementioned milestones together 

with the development of new DNA technologies enable SB to rapidly evolve towards 

driven-applications. Accordingly, I would like to point out some of the sub-areas 

synthetic biology that is evolving towards, mentioning the most remarkable works that 

would help to understand today's research and ambitions within the field. Briefly, I would 

like to point out in major lines the different moving fields as well describing the biggest 

achievements in Table 1.1. 

 

1.1.1 Engineering biological parts 

 

The engineering of biological parts enables, by modifying parts sequences, for instance 

by the expansion of the genetic code or directed evolution, to work towards the creation 
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of higher order synthetic gene circuits by means of orthogonal parts. Furthermore, protein 

engineering based on protein properties such as fluorescence or bioluminescence allowed 

gaining insights on protein behaviours inside cells.  

 

1.1.2 Cell-based applications 

 

Engineering E. coli and S. cerevisiae by way of illustration through enzymes 

overexpression, gene knock out or genetic incorporation from other species was studied 

towards optimization of metabolic pathways. On the other hand, whole cells have been 

explored as computation entities in which embedded synthetic genetic circuits allow to 

compute in Boolean logic. For explanatory purposes, implementation of logic gates by 

means of biological entities has been explored with DNA-recombinases, transcriptional 

modulators or RNA operators among others. 

 

1.1.3 Genome engineering 

 

As a result of the whole-genome sequencing, engineering tools had been developed, either 

inducing local modifications or at a whole genome-scale. Current techniques are TALEN, 

ZNF and the CRISPR-Cas9, and MAGE and CAGE, respectively. De novo DNA synthesis 

allowed to design and synthesize the Saccharomyces cerevisiae complete eukaryotic 

genome and bacterial Mycoplasma mycoides JCVI-syn1 to obtain the smallest genome of 

a self-replicating organism, JCVI-syn3.0, all together demonstrating the possibility of 

synthesizing genomes from scratch. 

 

1.1.4 Cell free 

 

Working with cells' transcription and translation machinery outside the host cell without 

encompasses cell-free systems. The first cell-free technology enables the creation of an 

Ebola virus detector. Cell-free systems are envisioned on allowing SB applications to 

move outside the lab without the associated problems of working with living 

organisms. Cell-free systems allowed the development of synthetic gene circuits, protein 

engineering or the creation of artificial cells. 
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Engineering biological parts Reference 

Tran/post transcriptional genetic circuits [Hunsicker et al., 2009]  

[C. Y. Wu et al., 2015] 

[S. Meyer et al., 2016]  

Protein engineering [Brun et al., 2011] 

[Griss et al., 2014] 

Expansion of the genetic code [Diafa & Hollenstein, 2015] 

Directed evolution [Tizei et al., 2016] 

[Jäckel & Hilvert, 2010] 

Cell-based  

Metabolic engineering [Ajikumar et al., 2010] 

[Paddon et al., 2013] 

Cellular computation [Roquet et al., 2016] 

[Rinaudo et al., 2007] 

Genome engineering  

Genome editing technologies  [Y. G. Kim & Chandrasegaran, 

1994] 

[Moscou & Bogdanove, 2009] 

[Barrangou et al., 2007] 

Genome scale engineering [Gil et al., 2004] 

[H. H. Wang et al., 2009] 

De novo DNA synthesis [Annaluru et al., 2014] 

[Kosuri & Church, 2014] 

[Hutchison et al., 2016] 

Cell free systems  

Genetic circuits [Niederholtmeyer et al., 2015] 

RNA-based gene switches [Takahashi et al., 2015] 

Ebola sensor [Pardee et al., 2014] 

Table 1.1 Synthetic biology examples. 
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1.2 The engineering of biology 

 

During the foundational years of SB discipline, several drawbacks regarding the 

essentials were faced. Efforts were made to establish the principles governing the 

engineering of biology. SB was striking the biology field but creating knowledge and 

advances was a matter of standardization. SB was envisioned to be an engineering 

discipline; however, devices were accomplished mostly by following the trial and error 

philosophy encompassing the biological sciences. 

 

Thus, applying engineering principles to biology would concern to establish a novel 

design framework. As an engineering discipline, biological elements, namely, genes, 

proteins, cells…, would be treated as standard, orthogonal and modular parts. 

Analogously, biological elements would be seen as a set of LEGO®-like pieces. As stated 

in LEGO®, each piece is well known by all the community, enabling to resemble 

different parts into different positions to obtain very broad different results. 

Comparatively, in synthetic biology, those pieces are codified by DNA sequences and are 

called genetic parts [Benner & Sismour, 2005]. As stated by D. Endy [Endy, 2005] “a 

DNA sequence is defined by the function that it encodes”. The sequential parts 

combinations permit the creation of sophisticated genetic circuits. However, the 

undesired ad hoc workflow for parts combinations until obtaining the required cellular 

function is currently a trend in SB, counteracting the idea behind LEGO®-like building 

blocks.  

 

Hence, there was a true need to establishing an engineering framework governing the 

field in order to overcome the time, money and human resources of the ad hoc strategies. 

D. Endy proposed in 2005 to adapt 3 engineering-discipline concepts into SB [Endy, 

2005], represented in Figure 1.5, namely standardization, abstraction, and modularity. 

The idea was reinforced by the community leading to major developments, which would 

be briefly described under the following sections. As the field has evolved, I would like 

to add a forth engineering concept: design and modelling. Altogether, envisioning the 

shift from ad hoc methodologies towards rational designs. 
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Figure 1.5 Synthetic biology engineering principles. Standardization: technical standards used by all 

SB community allowing to work towards the same direction, standards were settled from DNA sequences, 

plasmids, model organisms, measurements, environmental conditions, among others… Abstraction: 

consists of the breakdown of the system towards lower complexity hierarchies. De-coupling in simpler 

layers allows reducing systems complexity. Modularity: defining modules with defined functionalities 

allow to combine them in order to create novel devices. Modelling: a mathematical description of the 

aforementioned standard parts at any level of hierarchy allows the optimization of the design-cycle by 

means of mathematical predictions. 

 

1.2.1 Standardization  

 

Looking at the Cambridge dictionary definition of standardization we can define the 

concept as: “the process of making things of the same type all have the same basic 

features”. 

 

Biological sciences have indeed well-established dogmas, the most relevant to SB 

being the DNA-RNA-PROTEIN [Crick, 1970]. However, within the biological 

engineering sciences, still under development, there is a lack of such dogmas. There is a 

need for establishing standards allowing the whole community to work towards the same 

guidelines. Efforts were made on defining parts functionalities, model organism chassis, 
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experimental measurements, and environmental conditions, among several experimental 

conditions. Intended to overcome the lack of standards emerged the Registry of Standard 

Biological Parts (http://parts.igem.org/), the Biobricks® and the assembly methods 

[Røkke et al., 2014]. 

 

1.2.1.1 Part Registry 

 

The Registry of Standard Biological Parts is a public repository to store and catalogue 

collections of DNA sequences encoding for basic biological functions, the Biobricks®. 

The Registry of Standard Biological Parts has increased its Biobricks® collection to 

include over 12,000 parts, across 20 different categories (http://parts.igem.org). 

Moreover, each new Biobricks® should require the experimental metadata allowing to 

capture the biological behaviour and context in which the Biobricks® are embedded. It 

includes information on the plasmid vector, the organism strain, and any relevant media 

or equipment conditions. The primary purpose of Biobricks® characterization data is to 

provide the necessary experimental data for predictive in silico biological modelling. 

 

1.2.1.2 Biobricks® 

 

Biobricks® are DNA sequences enabling a restriction-enzyme assembly standard [Shetty 

et al., 2008]. These DNA sequences confer the building blocks for the design and 

assemble of larger synthetic biological circuits from individual parts. Efforts were made 

to establish the way parts, devices, and systems are connected so that new designs will fit 

with old designs. Moreover, Biobricks® could be easily shared and combined to obtain 

several desired functionalities. 

 

As a result, some tools for Biobricks® characterization were established: i) the use of 

RNA polymerase operations per seconds (PoPS) as the common signal carrier [Canton et 

al., 2008], ii) relative promoter unit (RPU) as a reference measurement standard [Kelly 

et al., 2009] and iii) the use of standardized restriction enzymes for cloning strategies 

[Røkke et al., 2014], as well as software tools enabling circuits’ design, e.g. cell designer, 

AutoBio-CAD, RBS calculator. 
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1.2.1.3 Assembly  

 

In 2003, Knight proposed the BioBrick® standard for the composition of biological parts 

[Speer et al., 2011]. The magic behind the assembly: two-by-to Biobrick® assembly 

results in a composite sequence being itself a new Biobrick®. Together with the Registry 

of Standard Biological Parts and the Biobricks® empowered the idea that genetic circuits 

could be assembled in an engineering perspective diminishing the problems associated 

with more traditional ad hoc molecular cloning approaches [Ellis et al., 2011]. 

 

1.2.2 Abstraction  

 

When working with biological organisms, one has to bear in mind the existence of 

different levels of complexity, defining a set of hierarchies. Within a hierarchy, every part 

is embedded in a more complex system allowing to work at any level of the hierarchy 

without worrying about others. Designing new functions occurs at the top of the hierarchy 

in mind, however, it is implemented bottom-up. 

 

As defined by E. Andrianantoandro et al. [Andrianantoandro et al., 2006], biological 

hierarchies were inspired by computer engineering, defining the layered elements as 

follows. At the bottom of the hierarchy, there is a minimal set of manipulable elements: 

DNA, RNA, proteins, and metabolites, analogous to the physical layer of transistors, 

capacitors, and resistors in computer engineering. The following layer comprises 

biochemical reactions between first layer elements, equivalent to engineered logic gates 

performing computations. A set of biochemical reactions are assembled into complex 

pathways as computer modules. The connection of the modules, together with its 

integration in a host cell, allows modifying the host cell behaviour in a programmable 

manner. Engineered cells are layered similar to computers, which can work independently 

executing complex functions or integrated into a population of communicating cells. 

Allowing to deal with the degree of complexity of biological systems. 
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1.2.3 Modularity 

 

Once defined parts standardization at any of the hierarchy levels, the modularity principle 

could be introduced. In engineering, modularity encompasses defining functional-

modules with inherent interchangeability ability. Modules could be defined at any 

hierarchy layer and ideally, should be independent on its context. Standardization of 

individual modules would allow its combination towards sophisticated devices. However, 

one has to bear in mind that biological organisms exhibit, more than expected, undesired 

interactions between layers. 

 

1.2.4 Design and modelling 

 

Design and modelling are two concepts that account together in a design-build-test 

workflow. Computational tools are used in a way to predict and optimize the behaviour 

of the desired circuits, devices or organisms prior to their construction. It could not be 

understood without the above-mentioned principles of abstraction, standardization, and 

modulation, conferring the difference towards biotechnology. Despite mathematical 

modelling and predictions are both used in the fields of synthetic biology and systems 

biology the purposes are quite different. Figure 1.6 is intended to graphically show the 

tendency of synthetic biology and systems biology towards the use of computational 

modelling. Whereas in systems biology modelling is used to a better understanding of 

biological systems, synthetic biologist uses to build novel functions of such biological 

systems. Nonetheless, sometimes the differentiation between both approaches is not as 

straightforward as stated, relying upon the pursued application. 
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Figure 1.6 Design and modelling approach for systems biology and synthetic biology disciplines. 

Synthetic biology seeks to design and engineer cellular devices through genetic circuits. Systems biology 

envisions the integration of knowledge towards understanding and predicting cellular behaviours. 

 

A mathematical model describes the components and interactions governing a system. 

Allows to describe the system behaviour and enable predictions. In essence, mathematical 

modelling is the formalization of all elements necessary for the implementation of a 

certain behaviour, while avoiding the unnecessary and complementary information. A 

trade-off between simplicity and complexity must be encountered when designing a 

model. Thus, models allow to i) describe a system behaviour, ii) explain the behaviour 

and iii) predict future behaviours. Once equations are built, either by experimental 

analysis or literature reviews parameter values are obtained, furthermore, additional 

mathematical analysis would reveal critical-behavioural parameters. Model predictions 

based on experimental data would suggest system re-design followed by a rational 

assembly of minimal parts. Hereby, following the synthetic biology approach workflow, 

mathematical models are used within the design and learn steps, as depicted in the 

workflow of Figure 1.4, minimizing the construction of devices by a trial-and-error 

methodology. 
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1.3 Synthetic Biology Applications 

 

Synthetic biology has emerged and evolved towards an engineering discipline. During 

the first pages of the thesis I have emphasised the foundations and principles of the field, 

however, the rapid achievements and hype enabled researchers to develop towards 

society-based applications. The achievements within engineering cellular organisms with 

programmed-based circuits allow envisioning towards topics of social & economic 

interests. The very first application-based examples of SB could be found in its early 

years. Illustrative are the production of the antimalarial artemisinin by re-engineered 

metabolic pathways [Ro et al., 2006] or the development of the first whole-cell biosensors 

for heavy-metals detection [Amaro et al., 2011; Bousse, 1996]. 

 

I would like to have some lines on remarkable achievements within other areas, for 

instance, environmental, agriculture or industry among others. It is worth mentioning that 

achievements within very different applications are potentially transferable to the whole 

field. 

 

1.3.1  Environmental applications 

 

Bacteria exhibit very different forms of metabolism conferring adaptation towards a 

broad spectrum of environmental conditions. Since bacterial communities are evolved 

towards living in hostile environments, applying a SB approach upon them becomes 

trivial. - Why not taking profit from the naturally evolved mechanisms enabling them to 

survive in hostile scenarios for environmental applications? - 

 

Heavy metals detections through engineered bacterial organisms had been the very first 

biosensors developed within SB principles [Bousse, 1996]. Bacteria have natural genetic 

sequences enabling to detect a broad range of heavy metals, e.g. Arg, Hg, S…, and 

allowing to adapt towards different environmental conditions [Sterritt & Lester, 1980]. 

By coupling them to reporter genes researchers were able to measure environmental 

contaminants, i.e. heavy metals [Trang et al., 2005], explosives residues’ [Shemer et al., 

2015] or pesticides [Sinha et al., 2014]. Moreover, using different pieces of metabolic 
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pathways enabling to reduce extracellular challenging conditions was exploited by 

synthetic biologists to trigger the removal of environmental pollutants [Urgun-Demirtas 

et al., 2006].  

 

The re-engineering of existing metabolic pathways allowed the efficient production of 

chemicals, already produced in nature several attempts are found in producing 

biodegradable plastics [Somleva et al., 2008; S. Zhou et al., 2005]. Remarkably is the 

production of 1,4-butanediol (BDO) [Yim et al., 2011], non-natural chemical, for the 

production of plastics, rubber or solvents, by the construction of a new pathway with no 

“blueprint” in nature.  

 

1.3.2 Energy applications  

 

By coupling different species-enzymes to re-engineer metabolic pathways enable a broad 

range of energy-driven applications. Fuel production through the natural carbon cycle of 

microorganisms [Nakamura & Whited, 2003; Yim et al., 2011] has positioned as an 

industry greenish alternative. Furthermore, the use of microalgae has envisioned as an 

industrial-scale biofuel production [Singh et al., 2011]. 

 

1.3.3 Agriculture applications 

 

Agriculture applications of synthetic biology are extremely related to metabolic 

engineering. Re-designing strategies of plant carbon metabolism allow increasing plant 

growth [A. P. M. Weber & Bar-Even, 2019]. Interestingly is the approach based on the 

CO2 fixing enzyme ribulose-1,5-bisphosphate, extensively used or for instance, in order 

to change metabolism towards the C4 carbon cycle [Schuler et al., 2016].  

 

Due to reaching crops productivity limits, adding nutritional value within engineered 

plants is stated as a current alternative in the food supply. As a matter of exemplification, 

the Golden Rice Project aims to increase Vitamin A production in plant rice [Beyer, 

2010]. Together with the above-mentioned microalgae strategy, photoautotrophic species 
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are envisioned as green cell factories due to their low cost a highly scalable biomass 

production [Fuentes et al., 2016; Reski et al., 2018]. 

 

1.3.4 Health applications 

 

Synthetic biology has positioned as a new approach working towards most leading health 

problems. Engineering, -omics and biology principles confer several strategies 

encompassing drug discoveries, vaccine development or theranostics. Omics, computer 

aided design and de novo gene synthesis [Johnson et al., 2002] were used to create viral 

genomes in order to obtain attenuated viral vaccines [Mueller et al., 2010]. Metabolic 

engineering allowed to optimize naturally occurring drugs, e.g. antimalarial [Ro et al., 

2006] or cancer drugs [Ajikumar et al., 2010] by combining host cell metabolic pathways 

with plant enzymes. 

 

More remarkably are the systems derived from synthetic genetic circuits. Some of the 

achievements in cancer research or metabolic diseases are described. Transcriptional gene 

circuits were triggered to recognize protein domains from bacterial and viral infections 

[Tavassoli et al., 2008; W. Weber et al., 2008]. RNA circuits enabled the detection of 

changes in cell behaviours, thus, exploring the ability to fight towards cancer cells [Culler 

et al., 2010; Venkataraman et al., 2010; Wimmer et al., 2009].Examples could be found 

on infectious diseases; bacteriophages were engineered to fight to biofilm infectious 

though cell-to-cell communication destabilization [T. K. Lu & Collins, 2007]. Other 

examples of simple genetic switches could be found for drug cancer screening for treating 

acute myeloid leukaemia in order to increase drug treatment effectiveness [Alloush et al., 

2010] or early detection of liver cancer through the implementation of a LacZ-AND gate 

[Danino et al., 2015].Engineering chimeric antigens to direct immune T-cells to recognise 

and destroy cancer cells following and AND gate logic, to so-called CAR-T cells therapy, 

has positioned as a novel theranostics for cancer disease. The FDA has approved, in the 

year 2007, the first CAR-T therapy based on the CD-19 targeted antigen [Kochenderfer 

& Rosenberg, 2013]. After obtaining patient T-Cells a viral vector is used to re-engineer 

the cells with a chimeric antigen receptor for its further amplification, i.e. in a bioreactor, 

and administered with lower doses of chemotherapy to the patient. Alternatively, cellular 
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encapsulation of synthetic gene circuits is stated as living implantable devices [Kemmer 

et al., 2010; Xie et al., 2016] Notably are the advances lead by Martin Fusseneger in ETH 

Zurich upon blood glucose regulation [Xie et al., 2016]. Glucose homeostasis was 

achieved in diabetic mice through the encapsulation of synthetic genetic devices 

regulating GLP-1 and insulin genes via the triggering of blue light stimulation or potential 

membrane depolarization, respectively. 

 

Both CAR-T and encapsulated devices works established the roots of synthetic biological 

devices for theranostics: simple synthetic genetic circuits embedded in patients’ cells that 

could act as prosthetics or drugs. 

 

1.4 Potential risks of Synthetic Biology 

 

Synthetic biology seeks to work towards real-world applications. As the field has recently 

advanced towards that objective, is it clear that concerns regarding safety and security as 

well as ethical questions. As a matter of awareness, I would like to point out what should 

be considered when trying to bring synthetic biology discoveries outside of the lab.  

 

Living organisms can cause disease or environmental related problems, thus, in all areas 

in which microorganisms are manipulated there is the need to regulate the practices by 

legislation. The EU regulates through laws working with animals (EU Regulation 

1069/2009), genetically modified organisms (EU Directive 2009/41), the release into the 

environment of genetically modified organisms (EU Directive 2001/18 ) or genetically 

modified food and feed (EU Regulation 1829/2003), among others. 

 

Moreover, other important biosafety concerns in synthetic biology are i) the intentional 

or unintentional release of synthetic organisms into the environment, ii) horizontal gene 

transfer or iii) the induction of antibiotic-resistant organisms due to the use of antibiotic 

selective plasmids for organism engineering. The European Union has funded several 

research efforts on the environmental impact of a deliberate release of genetically 

engineered microbes concluding that the impact was approximately the same between 

genetically and non-genetically modified microbes. 

http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1510152846354&uri=CELEX:32009R1069
http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1510152846354&uri=CELEX:32009R1069
http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1510151077154&uri=CELEX:32009L0041
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32001L0018
http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1510152070059&uri=CELEX:32003R1830
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Synthetic biology has moved towards trying to find novel strategies to fight with the 

current state of the art problems. Applications regarding reducing environmental 

contaminants, or modifying cells to fight against cancer are leading the field. However, 

the same cutting-edge technologies could be used, as exemplification, for bioterrorism 

activities. Information and tools for re-engineering organisms are world-wide open 

through internet databases and repositories, and the Do-It-Yourself (DIY) community is 

also spread worldwide. Making it much more difficult to regulate purposes and acts. 

 

1.5 Living technologies and theranostics 

  

Synthetic biology has moved forward the development of novel strategies towards 

biomedical problems. Examples are found in section 1.3.4 with engineered CAR-T cells 

[Kochenderfer & Rosenberg, 2013] or encapsulated devices [Xie et al., 2016]. Up to date, 

the field of therapeutics has been led by biomedical devices: electronics or electro-

mechanical technologies enabling the detection or monitoring of one or several 

biomarkers and treatment [Chan, 2008]. Along with the same path theranostics systems, 

which are implantable, integrated systems that can automatically diagnose a patients’ 

disease and fantasize with an appropriate treatment if necessary [Crawley et al., 2014; 

Jeelani et al., 2014; Kojima et al., 2015], have reached an enormous interest. Both 

approaches would encompass the medical field towards a quickest, efficient and patient-

centred care. However, in both, limitations awaken when developing the electronic 

sensors facilitating the detection of disease markers. 

 

Accordingly, living technologies [Bedau et al., 2010] has positioned as a new technology 

combining both synthetic biology principles and biomedical devices rational design by 

using biological components instead of electro-mechanical ones, or by a combination of 

both [Froese, 2014]. Biomedical devices, inert or alive, could be described as a device 

able to obtain information through a sensor module, integrate the received information 

from sensors by applying programmed rules in the processor module, and translate the 

response upon the integrated information in the actuator module. See Figure 1.7a for a 

functional-module scheme. 
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Living systems per se could be seen as devices performing robust, sensitive and specific 

responses upon a broad range of biomedical signals. Synthetic biology approaches are 

applied to rationally design new living biomedical devices with standardized and modular 

architectures following the design of the electro-mechanical devices [B. Wang & Buck, 

2012]. Figure 1.7b exemplifies how modules can be translated into a biological 

approximation giving rise to a living biomedical device. 

 

Figure 1.7 Living biomedical device modular approach. a) Schematically representation of the different 

modules comprising a biomedical device. b) Biological approximation of a living device. Adapted from 

[B. Wang & Buck, 2012]. 

 

Clear is the relevance of biomarkers detection for disease diagnosis [H.-J. J. Chang et al., 

2017; Courbet et al., 2015], monitoring [Rawson et al., 1989; Struss et al., 2010] or 

treatment [Alloush et al., 2010]. Using cellular components or whole-cells as sensors 

encompass for an expansive library of biological markers. Whole-cell biosensors 

[Bousse, 1996] take advantage of the biological elements capable of detecting extra or 

intracellular signals. Upon a certain signal, cells activate their cellular machinery, i.e. 

signalling or metabolic pathways, allowing to produce the desired response, i.e. the 

cellular adaptation, apoptosis, mobility, among others [Owicki & Wallace Parce, 1992]. 

Thus, by applying the principles of engineering biology, identifying the DNA sequence 
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responsible to detect a particular signal e.g. a pathogen, extracellular or intracellular 

biomarker, would allow obtaining the components of the device sensor module. 

 

Remarkably is the integration of sensorial information in a non-trivial fashion for 

biomedical disease monitoring, diagnosis and/or treatment. Elucidating the integration of 

sensorial information emerges as a critical point in the designing of living biomedical 

devices. Biological computation has postulated as the SB branch integrating multiple 

signal information and generating non-trivial responses. Most explored biological 

computation tools depict digital responses; however biomedical-application processor 

modules would also depict graded computation, i.e. analogue [Daniel et al., 2013; 

Manzoni et al., 2016; R. Sarpeshkar, 2014]. Processor module must i) to be set up with 

disease or biomedical application rules, ii) obtain sensorial information from the sensor 

module and, iii) apply the pre-defined rules to generate a response.  

 

Based on processor responses, living biomedical device should either express a readable-

output, for diagnosis purpose or act by producing a change in the physiological state, for 

treatment purposes. Further, living systems can continuously produce output molecules 

as long as they are supplied with sufficient nutrients and energy. Hence, living devices 

could be engineered by tacking profit of natural cellular responses such as changes in 

metabolic activity, gene expression profile, and pH as a response of inducer agent 

[Schultheiss et al., 2008; Tamsir et al., 2011], or by engineering de novo functionalities 

[Baeshen et al., 2014]. 
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1.6 Thesis Objectives 

 

Living technologies encompass the design of therapeutic strategies based on the 

engineering of biology approach. The use of cellular components for biomarker detection, 

the ability to design genetic circuits implementing programmed-based responses together 

with envisioned implantable cellular devices give rise to the PhD thesis main objective: 

 

 

Apply engineering biology approaches to study the standard, robust, reliable and 

rational design of living biomedical devices enabling the fine-tune management of 

closed-loop biomedical applications.  

 

 

We have envisioned to standardize the design of biomedical devices by breaking the 

device architecture in functional modules. Depicted in Figure 1.7 three main functional 

modules are defined. However, a fourth module considering the closed-loop behaviour is 

added in our approach. Our main methodological approach would be to consider both 

experimental and computational tools working together for establishing a framework that 

will help to design and construct such devices in a predictable manner rather than by 

costly trial and error approaches. 

 

More specifically we challenged our devices to balance glucose levels in diabetic patients. 

Diabetes mellitus is a metabolic disorder causing unbalanced blood glucose levels due to 

defects on secretion or sensibility of the insulin hormone. Diabetes prevalence worldwide 

is 8.3%, i.e. about 387 M people are diabetic. It is expected a significant increase, up to 

205 million new patients, in the year 2035. Diabetes is one of the fastest-growing health 

problems in the world as a consequence of lifestyle, lack of exercise, unhealthy diet, 

obesity and overweight [Association, 2010]. The relevance of the illness, the non-ideal 

treatment, and the uncertainty of the causes make diabetes an attractive problem being 

tackled from different strategies: electro-mechanical artificial pancreas [S. A. Brown et 

al., 2019], targeted drug delivery [Yu et al., 2015], artificial -cell [Z. Chen et al., 2018], 

implantable living devices [Xie et al., 2016] or ingestible drug-delivery capsules 
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[Abramson et al., 2019]. I would like to emphasize, that despite research strategies have 

been trying, but with very little success, -cell islet transplantation or stem-cells 

regeneration [Bouwens et al., 2013; Robertson, 2010; Fan Zhang & Tzanakakis, 2019] or 

the possibility of controlling on the patient’s immune system to stop the destruction of 

pancreatic islets [Actobiotics, 2020; Lichtman et al., 2012], novel strategies rely on the 

principles of biomedical devices and theranostics. 

 

Following a synthetic biology approach of design-test-and build we aim to tackle our 

main objective in a modular way. In that sense two main objectives with several specific 

sub-objectives are specified: 

 

Objective 1: Explore the ability to create a living biomedical device using intrinsic 

cellular components. 

 

Objective 1.1. Upon sensor module. 

• Explore the ability to use of cellular sensors to detect external metabolites 

and disease-related signals within a range of interest.  

• Explore the tunability of natural sensors by using a mathematical approach able 

to design and predict biosensors responses by means if minimal genetic 

engineering. 

 

Objective 1.2 Upon signal processor module. 

• Explore the ability to integrate multiple signals and produce non-trivial responses. 

• Explore multicellularity and space conformations to minimize genetic 

engineering 

 

Objective 1.3 Upon actuator module.  

• Explore the creation of multicellular devices able to produce and secrete insulin 

and glucagon hormones. 
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Objective 2: Analyse living biomedical device performance in a close-loop environment 

via an in silico approach. 

 

Objective 2.1. Upon biomedical device dynamics. 

• In silico explore the ability of different device dynamics on glucose regulation 

based on real-experimental data. 

 

Objective 2.2. Upon the patient daily-life routines. 

• In silico explore the optimization of glucose regulation through a combination of 

an implantable cellular device and feed restriction patterns. 
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1.7 Thesis outline  

 

The succeeding chapters are structured within the above-described objectives. Chapters 

2,3 and 4 are devoted to exploring objective 1, and Chapter 5 explores objective 2. 

Chapter 6 encompasses the discussion. 

 

More specifically, in chapter 2, the design of sensor modules is studied. Designing 

sensors responding to the application desired concentration range is explored within a 

combination of a mathematical framework and experimental validation in E.Coli model 

organism. 

 

In chapter 3 the processor module is deeply analysed. Multicellularity and signal 

information codification and de-codification in a chemical molecule are explored to 

integrate different input signals and produce non-trivial outputs. Research is done by 

exploiting the cell-to-cell communication of E. coli model organism. 

 

In chapter 4 we have explored by applying the sensor ability and the multicellularity 

approach to eukaryotic cells, i.e. S. cerevisiae, to detect and secrete physiological signals 

by engineering the production of secretable hormones in the actuator module. Moreover, 

we have implemented either simple input/output analogue responses or more complex 

time-pulsatile dynamics by modular reusability 

 

Once insights on living device module-design had been explored longwise chapters 2 3 

and 4; chapter 5 aims to analyse living device characteristics, based on experimental data 

from engineered HEK293T mammalian cells, upon its implementation in an in silico 

closed-loop biomedical application.  

 

Chapters 6 is dedicated to the discussion and conclusions of the main results among the 

different objectives in an individual and general perspective ending with the conclusions. 

 



 

 



 

 

 

 

 

 

 

 

CHAPTER 2  

Tools for sensor module design: 

Two-component biosensors: unveiling the mechanisms of predictable tunability 
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The design and construction of living biomedical devices demand the study of 

extracellular signal detection. Throughout this chapter, we would benefit from cellular 

ability for signal detection and gain insights on how such responses could be used and 

modulated for desired applications. We developed a theoretical framework allowing the 

rational design of sensors for desired-based applications. 

 

This work was developed in the Synthetic biology for biomedical applications lab, in 

collaboration with Dr. Javier Macia under the current project MINECO (2018-2020) 

“Printable Cellular Circuits”. Elisenda Alaball had also collaborated in the project during 

the development of her biomedical engineering bachelor thesis “Building genetic 

tuneable sensors” co-directed by Dr. Javier Macia and myself during the academic year 

2018-2019.  

 

As a result, the research main achievements described in this chapter have been published 

in [Gonzalez-Flo et al., 2020]. 
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2 TOOLS FOR SENSOR MODULE DESIGN 

 

2.1 Applying engineering principles to cellular sensors 

 

Sensing information is a matter of life. Being able to detect surrounding conditions, 

processes, or physical properties allows environmental adaptation [Dincer et al., 2019]. 

Sensors are the ones in charge of information acquisition, surround us, and many 

processes successfully running around are measured and detected by sensors. A sensor is 

defined by The American National Standards Institute as "a device which provides a 

usable output in response to a specific measurand", i.e. a physical quantity, property, or 

condition which is measured. In general, sensors are based on a two-layered architecture: 

the first layer can detect an external magnitude, i.e. input, and the second one, the 

transductor, can translate the measurand into a measurable signal, i.e. output [Ento, 2006]. 

 

Cells are systems in continuous communication with the environment, detecting and 

adapting towards different environmental conditions by possessing and expressing a 

series of molecular recognition elements, e.g. receptors, ion channels, or enzymes, 

triggering the expression of adaptive mechanisms [Bousse, 1996; Pancrazio et al., 1999]. 

These molecules are usually sensitive to their corresponding analytes because of their 

native cellular mechanism [Owicki & Wallace Parce, 1992]. Applying engineering 

principles to intrinsic cellular sensors makes possible to re-design them to perform novel 

functionalities. Cells can be envisioned as autonomous measurement devices profiting 

from biological elements for specific stimulus recognition and quantification [Rawson et 

al., 1989]. Concretely, stimuli could be detected at either molecular, cellular or tissue 

level, providing real-time information related to the cell physiology or toxicology, for 

instance. 

 

From that perspective, within the presented modular approach describing a living 

biomedical device, in Figure 1.7, in which we can distinguish the sensor, the processor 

and the actuator module [B. Wang & Buck, 2012], we zoomed into the sensor’s module 

configuration. In the sensor module, as represented in Figure 2.1, the information is 
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acquired through a two-layered system based on the receptor-transducer interaction 

[Ento, 2006]. 

 

 
 

Figure 2.1 Schematically representation of the two-layered architecture of the sensor module. Two-

layered components based biological components. The receptor layer comprises the detection of the 

external signal or stimuli through their interaction, binding or recognition and as a result, produces a change 

in the transducer by triggering the response signal, i.e. output. 

 

The very-first synthetic biosensor described in Selifonova et al. [Selifonova et al., 1993] 

relies on the ability of bacteria to grow in environments rich in heavy metals. Deciphering 

the mechanisms allowing bacteria to adapt and survive to those extreme environmental 

conditions enabled the design of biosensors for heavy metals detection. Hence, biosensor 

design trusts on the detection of the biological mechanism involved in specific signal 

detection. Originally, such biological elements were mostly identified by chance. Later, 

part mining and high-throughput screenings had been one of the most useful tools 

allowing searches based on DNA sequence similarity [Johns et al., 2018] and by part 

labels on protein databases [Xue et al., 2014]. Other tools rely on directed evolution and 

mutagenesis followed by the subsequent characteristic screening [Beggah et al., 2008].  

 

Despite sensor output signals could range from enzymes, DNA, antigens, antibodies, or 

biofilms as the reporter elements [Bousse, 1996], integrated into the processor module, 

Table 2.1 summarizes most of the used reporter systems with its main advantages and 

disadvantages. For simplicity, in the experimental setup presented in this chapter, we have 

selected a fluorescent-readable output, because of direct measurement due to non-

substrate dependency. Nowadays laboratory technologies allow obtaining easy scalable, 
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stable and robust measurements of the fluorescent sensor output and help towards a 

deeper analysis of the sensor module.  

 

Gene Detection method Advantages Disadvantages Reference 

Lux Bioluminescence 
Easy measurement 

Rapid response 

Thermal lability 

O2 requirement 

[Hakkila et 

al., 2002] 

Luc Bioluminescence 
High sensitivity 

Rapid response 

O2 and ATP 

requirement 

Lower permeability 

[Gutiérrez et 

al., 2015] 

(G)FP Fluorescence 
No substrate 

High stability 

Low sensibility 

High stability 

Lag time 

[Sagi et al., 

2003] 

LacZ 

Bioluminescence 

Fluorescence 

Colorimetry 

High stability 

Nacked eye 

Substrate dependent 

 

[Mascher et 

al., 2004] 

crtA Colorimetry Nacked eye Substrate dependent 
[Chong & 

Ching, 2016] 

Table 2.1 Output readable proteins. Genes expressing reporter proteins from different detection methods 

are related to its corresponding advantages and disadvantages.  

 

For any desired purpose, biosensor’s response must fulfil application needs. This 

response is defined by the relationship between the input and the output upon different 

input concentrations (Figure 2.2), described by the so-called transfer function [Mukherji 

& Van Oudenaarden, 2009; B. Wang et al., 2011]. Several key features characterize the 

biosensor transfer function, shown in Figure 2.2, namely, the dynamic range (γ), the 

operating range, the sensitivity (), the affinity (K0.5), the leakiness and the limit of 

detection. Leakiness stands for the output expression value without the presence of input. 

Lower limit of detection value is calculated through the first input/output variation. 

Operating range determines the signal region associating the maximal input sensitivity. 
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Sensitivity () is defined as the output variation for a given change in the input. Dynamic 

range (γ) corresponds to the different range of output produced. Affinity (K0.5) determines 

the input concentration needed to reach half the maximum output value. 

 

Figure 2.2 Biosensor Transfer Function. The transfer function of a biosensor enables the quantitative 

characterisation of the input concentration and the biosensor output. Biosensor leakiness is defined as the 

output expression in the absence of its input signal. The dynamic range is represented by γ and corresponds 

to the exhibited output range. Biosensor sensitivity () is calculated as the transfer function slope of the 

operating range region. Affinity is parametrized by K0.5 and calculated as the input signal giving the half 

maximal γ. 

 

Nonetheless, using intrinsic sensors for designing living biomedical devices account for 

signal detection within biological relevant concentration ranges [Eugenia Inda et al., 

2019]. However, occasionally, the biological concentration ranges are below real-world 

application needs [Mahr & Frunzke, 2016; Merulla & Van Der Meer, 2016; A. J. Meyer 

et al., 2019; Fuzhong Zhang et al., 2012] and exists the need for customizable biosensor 

performance [S.-Y. Chen et al., 2019; Jia et al., 2019].  

 

One of the most commonly used biological systems to detect extracellular signals of 

interest are transcriptional factor (TF) based biosensors. Mainly, consist of a repressor or 

activator protein regulating the transcriptional activity of a specific promoter. Upon 

interaction with a small molecule or environmental signal, TFs undergo a conformational 

change allowing the transcription of genes downstream the regulated promoter. In 
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prokaryotes, the most abundant protein mechanism responsible for sensing and 

responding to aforesaid signals is the two-component system (TCS) [Stock et al., 2000]. 

Two-component systems are comprised of a receptor protein and its regulated promoter. 

Signal detection relies on the interaction of the two components mediated by the external 

signal to be detected, i.e. inductor. The external signal can bind the receptor protein, i.e. 

the first TCS component, and form a complex. Throughout the DNA Binding Domain 

(DBD) region, the complex is able to recognize a structural motif that regulates a DNA 

promoter region, i.e. the second TCS component. Once the complex is bound to the DBS, 

it triggers the expression of downstream promoter genes. Figure 2.3 schematically 

represents TCS architecture. Despite transcription factors encompass for a large family 

of proteins enabling signal detection, protein engineering is envisaged for novel libraries 

permitting further inductors detection [Taylor et al., 2016]. 

 

Figure 2.3 Two-component sensor. Extracellular signal (L) crosses the cellular wall and forms a complex 

with the Receptor protein, i.e. Rc-L. The complex recognizes the DNA Binding Domain (DBD) regulating 

the promoter region of the Promoter Rc-L, i.e. a positive regulable promoter only being active in the 

presence of the external signal L. Downstream the promoter region a fluorescence protein, e.g. red 

fluorescence, is expressed as a matter of detection. 

 

Much has been done in the study of prokaryotic organisms to modulate biosensors’ 

characteristics. Following the structure presented in Figure 2.4, the main engineering 
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approaches for modulating limit of detection, dynamic range, leakiness and sensitivity 

are briefly described. 

 

2.1.1 Limit of detection 

 

Limit of Detection (LOD) is important for use in real-life applications because molecules 

of interest are often present at very low concentrations. The intracellular concentration of 

the transcription factor regulating output gene expression plays a significant role in the 

minimal input concentration that can be sensed [Cayron et al., 2017; Eugenia Inda et al., 

2019; Rössger et al., 2013; B. Wang et al., 2015]. Increasing the TF concentration allows 

modifying the LOD, as depicted in Figure 2.4a.  

 

2.1.2 Dynamic range 

 

Maximising the dynamic range is important for being able to reliably determine the result 

from a biosensor. Modifying the expression of the output protein, for instance by using 

different promoter strength [Y. Chen et al., 2018; Rössger et al., 2013] or different RBS 

sequences [Rubens et al., 2016; Wang et al., 2011], as depicted in Figure 2.4b, will alter 

the dynamic range. Moreover, positive signal amplification, for instance through genetic 

amplifiers or positive feedback loops [Nistala et al., 2010; B. Wang et al., 2014], enable 

to boost dynamic range.  

 

2.1.3 Leakiness 

 

Leakiness should be reduced to ensure biosensors performance. It could be acquired 

through the use of degradation tags on the output protein [Fernandez-Rodriguez & Voigt, 

2016], mRNA antisense blocking the output protein [Brophy & Voigt, 2016], mutations 

on operator binding sites to reduce basal expression [Lee & Maheshri, 2012]. Effect on 

transfer function leakiness could be visualized in Figure 2.4c. 
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2.1.4 Sensitivity  

 

Reliable and accurate biosensors need to be highly specific to the detected signal. 

Biosensor sensitivity could be improved by different methods such as directed evolution 

[Lönneborg et al., 2012] or involving high throughput screening of novel candidates to 

satisfy the demands of specific applications [H.-J. Chang et al., 2018; Yoo et al., 2013; 

Younger et al., 2017]. Figure 2.4d shows the effect on the transfer function. 

 

 

Figure 2.4 Biologic mechanisms to tune transfer functions features. a) Limit of Detection. The 

modulation of the intracellular concentration of the transcription factor, regulating output gene expression, 

allows to change the amount of input signal giving a detectable output response. b) Dynamic Range. Using 

appropriate DNA sequences ensuring stronger or weaker output gene expression allows modifying the 

dynamic range. c) Leakiness. Basal output expression in the absence of the inducer signal could be 

diminished by exploiting mRNA antisense molecules or protein degradation tags. Moreover, mutations on 
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the operator binding site could reduce output leakiness. d) Sensitivity. The range of input concentrations 

inducing a significant change in the output could be improved by directed evolution or high throughput 

screening. 

 

Although different methods for tuning biosensor responses have been explored, the 

simplest strategy is based on the modulation of the abundance of the first TCS component, 

i.e. the receptor protein [Ang et al., 2013; Max Carbonell-Ballestero et al., 2014; B. Wang 

et al., 2015]. The simplicity of this method, that allows specific modifications with 

minimal genetic manipulation, makes it suitable for designing synthetic bacterial sensors. 

However, despite the enormous experimental evidence, circuits are constructed following 

an ad hoc workflow: re-designing circuits until obtaining the desired behaviour. Hence, 

emphasising the fact that there is no formal theory that allows the design of customized 

biosensors in a systematic and predictable manner. 



2.2 Objectives  

 

 

39 

2.2 Objectives 

 

By combining a mathematical and experimental approach: 

 

 

We aim to develop a formal mathematical model able to predict the performance of 

synthetically designed biosensors based on two-component systems.  

 

 

The specific objectives addressed within this chapter are: 

 

• Mathematically describe the relationship between biosensor’s features and the 

receptor abundance.  

 

• Use the mathematical model to design biosensors with specific features in a 

predictable manner.  

 

• Experimental validation of model predictions.  

 

 

.
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2.3 Biosensor mathematical formalization based on two-component 

architecture  

 

The mathematical formalization allowing to describe the functional relationship between 

the abundance of the receptor protein and the main features of a two-component biosensor 

response is based on the architecture shown in Figure 2.5. As a proof-of-concept, the two-

component biosensor comprising this study was based on the architecture of the well-

known quorum sensing Lux system from Vibrio fischeri, which has been extensively used 

in synthetic biology [Ang et al., 2013; Garcia-Ojalvo et al., 2004]. In this system, the 

receptor protein, termed LuxR, is constitutively expressed and, in the presence of external 

molecules of 3-oxo-C6-homoserine lactone (3OC6HSL), the complex LuxR-3OC6HSL 

dimerizes and binds to the Lux promoter, thereby triggering the expression of a 

downstream gene, e.g. red fluorescent protein (RFP) that acts as a reporter [Fuqua et al., 

1994]. 

 

Figure 2.5 Schematic representation of two-component biosensor architecture. The first biosensor 

component, i.e. the receptor component, is responsible for the production of the receptor protein and 

consists of a terminator, a DNA promoter sequence (variable depending on the experimental setup), an 

RBS sequence (variable depending on the experimental setup), and the LuxR protein. The second biosensor 

component, i.e. the output component, can respond in an inducible way to the complex of LuxR and 

3OC6HSL due to the inducible Lux promoter. The DNA cassette consists of a terminator, the Lux promoter, 

an RBS and the output red fluorescent protein (RFP). The transfer function, defined as the relationship 

between input and output, is characterized by K0.5 and γ. 
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In this model we to take into consideration the following assumptions: 

 

• The number of genes is constant.  

• The average behaviour of a cell population can be described in a deterministic 

approach by a set of ordinary differentials equations (ODEs). 

• Transfer functions are measured at the steady state. 

• The total amount of receptor protein RT is constant because cell has reached the 

equilibrium between receptor protein synthesis and degradation. 

 

2.3.1 Transcription Process 

 

The external input L binds to the receptor protein forming an active transcription factor 

that triggers the synthesis of the output mRNA, which will be translated into the final 

output protein P. The ratio of mRNA synthesis depends on the concentration of the 

transcriptional complex QP formed by the gene p and the transcription factor R2L, which 

depends on i) the number of copies of the gene and ii) the transcription factor abundance. 

Hence:  

 

𝑑𝑚𝑅𝑁𝐴

𝑑𝑡
=  𝜇 · 𝑄𝑝 − 𝛿𝑚𝑅𝑁𝐴 · 𝑚𝑅𝑁𝐴 + 𝜇0  Eq. 2.1 

 

Where δmRNA represents the degradation rate of mRNA, μ is the transcription rate of the 

gene p regulated by the transcriptional complex QP and μ0 is the transcription rate of the 

gene p in absence of the transcription factor, i.e. basal gene expression. Applying the 

rapid-equilibrium approximation and assuming that the number of gene copies is constant 

[Schuster & Holzhütter, 1994] QP can be calculated as: 

 

𝑄𝑝 =  𝜌 ·  𝑅2𝐿 · 𝑄 Eq. 2.2 

 

Where ρ accounts for the binding and unbinding constant rates and Q is the number of 

free genes. In turn, the number of active transcription factor R2L depends on the amount 

of free receptor proteins R and the concentration of input L. It is worth mentioning, that 
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typically in prokaryotic two-component systems receptor proteins dimerizes [Max 

Carbonell-Ballestero et al., 2014]: 

 

𝑅 + 𝑅 
𝐾𝑏
↔ 𝑅2 Eq. 2.3 

𝑅2 + 𝐿 
𝐾𝐿
↔ 𝑅2𝐿 Eq. 2.4 

 

According to the rapid-equilibrium approximation, from Eq. 2.4 we can express: 

 

𝑅2𝐿 = 𝐾𝐿 · 𝑅2 · 𝐿 Eq. 2.5 

 

and  

 

𝑅2 = 𝐾𝐵 · 𝑅
2
   Eq. 2.6 

 

At steady state, we can considerer 
𝑑𝑚𝑅𝑁𝐴

𝑑𝑡
=  0. In consequence, the concentration of 

mRNA at equilibrium is described as: 

 

𝑚𝑅𝑁𝐴 =  
𝜇 · 𝜌 ·  𝐾𝐿 · 𝑄 · 𝑅2 · 𝐿

𝜕𝑚𝑅𝑁𝐴
+ 

𝜇0
𝜕𝑚𝑅𝑁𝐴

 
Eq. 2.7 

 

Assuming that the number of genes is constant, we can express: 

 

𝑄𝑇 = 𝑄 + 𝑄𝑃  Eq. 2.8 

 

Here, QT represents the total number of gene copies, which is assumed constant. Using 

Eq. 2.2: 

 

𝑄 =  
𝑄𝑇  

1 +  𝜌 · 𝑅2𝐿
=  

𝑄𝑇 

1 +  𝜌 ·  𝐾𝐿 · 𝑅2 · 𝐿
 Eq. 2.9 

 

Hence: 
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𝑚𝑅𝑁𝐴 =  
𝜇 · 𝜌 ·  𝐾𝐿 · 𝑄𝑇

𝜕𝑚𝑅𝑁𝐴
· (

𝑅2 · 𝐿

1 +  𝜌 ·  𝐾𝐿 · 𝑅2 · 𝐿
) + 

𝜇0
𝜕𝑚𝑅𝑁𝐴

 Eq. 2.10 

 

Combining Eq. 2.10 with Eq. 2.6 we can express the concentration of mRNA at the steady 

state as a function of the free receptor protein R. 

 

𝑚𝑅𝑁𝐴 =  
𝜇 · 𝜌 ·  𝐾𝐿 · 𝐾𝐵 · 𝑄𝑇

𝜕𝑚𝑅𝑁𝐴
· (

𝑅2 · 𝐿

1 +  𝜌 ·  𝐾𝐿 ·  𝐾𝐵 ·  𝑅2 · 𝐿
) + 

𝜇0
𝜕𝑚𝑅𝑁𝐴

 Eq. 2.11 

 

Considering that the receptor protein can be found in different configurations, such as 

free protein R, free dimer R2, an active transcription factor form R2L or as a part the 

transcription complex QP, we consider: 

 

𝑅𝑇 = 𝑅 + 2 · 𝑅2 + 2 · 𝑅2𝐿 +  𝑄𝑃  Eq. 2.12 

 

where RT is the total relative amount of receptor protein in the cell, assumed constant. 

However, the number of copies of the gene p is significantly lower than the number of 

receptor proteins in their different configurations. We can assume that: 𝑄𝑃  ≪ 𝑅 +

2 ·  𝑅2 + 2 · 𝑅2𝐿, hence: 

  

𝑅𝑇 ≈ 𝑅 + 2 · 𝑅2 + 2 · 𝑅2𝐿 Eq. 2.13 

 

Using Eq. 2.7 and Eq. 2.8 we get: 

 

2 · 𝐾𝐵 · (1 + 𝐾𝐿 · 𝐿) · 𝑅
2 + 𝑅 − 𝑅𝑇 = 0 Eq. 2.14 

 

The positive solution of this equations gives: 

 

𝑅 ( 𝑅𝑇) =  
−1 + √1 + 8 · 𝐾𝐵 · ( 1 + 𝐾𝐿 · 𝐿 ) · 𝑅𝑇

4 · 𝐾𝐵 ·  ( 1 +  𝐾𝐿 · 𝐿 )
 Eq. 2.15 

 

that describe the relationship between R and RT. In consequence,  
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𝑅2( 𝑅𝑇) =  
[−1 + √1 + 8 · 𝐾𝐵 · ( 1 + 𝐾𝐿 · 𝐿 ) · 𝑅𝑇]

2

16 · 𝐾𝐵
2 ·  ( 1 +  𝐾𝐿 · 𝐿 )2

 Eq. 2.16 

 

For large values of RT, the function presented in Eq. 2.16 can be approximated to its 

asymptote described by: 

 

𝑅2( 𝑅𝑇)  ≈ 𝑚 · 𝑅𝑇 + 𝑛 Eq. 2.17 

 

With 

 

𝑚 = lim
𝑅𝑇→∞

[
𝑅2(𝑅𝑇)

𝑅𝑇
] =  

1

2 · 𝐾𝐵 · ( 1 + 𝐾𝐿 · 𝐿 )
 Eq. 2.18 

 

and  

 

𝑛 = lim
𝑅𝑇→∞

(𝑅2(𝑅𝑇) −𝑚 ·  𝑅𝑇 ) =  0 Eq. 2.19 

 

Finally, 

 

𝑅2(𝑅𝑇) ≈  
𝑅𝑇

2 · 𝐾𝐵 · ( 1 + 𝐾𝐿 · 𝐿 )
 Eq. 2.20 

 

By introducing Eq. 2.20 into Eq. 2.11 we could obtain the expression of steady state 

mRNA as a function of RT: 

 

𝑚𝑅𝑁𝐴 =  
𝜇 · 𝜌 ·  𝐾𝐿 · 𝑄𝑇 ·  𝑅𝑇

𝐾𝐿 · 𝜕𝑚𝑅𝑁𝐴 · (2 + 𝜌 ·  𝑅𝑇)
· (

𝐿

2 ·  𝜕𝑚𝑅𝑁𝐴
 𝜕𝑚𝑅𝑁𝐴 ·  𝐾𝐿 ·  (2 + 𝜌 ·  𝑅𝑇)

+ 𝐿
) + 

𝜇0
𝜕𝑚𝑅𝑁𝐴

 
Eq. 2.21 
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2.3.2 Translation Process 

 

Using a similar approach than used in the transcription process, we consider that the ratio 

at which the output protein P is produced depends on the concentration of mRNA 

according to: 

 

𝑑𝑃

𝑑𝑡
= 𝜔 · 𝑚𝑅𝑁𝐴 − 𝛿𝑃 · 𝑃 Eq. 2.22 

 

Here, δP represents the degradation rate of protein P.  

 

At the steady state we can assume 
𝑑𝑃

𝑑𝑡
=  0. Combining Eq. 2.21 with Eq. 2.22 we obtain 

the final expression: 

 

𝑃 =  𝛤(𝑅𝑇) · (
𝐿

𝐾0.5(𝑅𝑇) + 𝐿
) + 𝑃0 Eq. 2.23 

 

Here 

 

𝑃0 = 
𝜇0

𝛿𝑚𝑅𝑁𝐴 · 𝛿𝑃
 Eq. 2.24 

Γ(𝑅𝑇) =  
𝑎0 ·  𝑅𝑇

𝑏0 + 𝑏1 ·  𝑅𝑇
 Eq. 2.25 

 

and 

 

𝐾0.5(𝑅𝑇) =  
𝑎1

𝑏0 + 𝑏1 ·  𝑅𝑇
 Eq. 2.26 

 

With 
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𝑎0 = 
𝜔 · 𝜇 · 𝜌 · 𝑄𝑇 ·  𝐾𝐿

𝛿𝑃
 

𝑎1 =  2 · 𝛿𝑚𝑅𝑁𝐴 

𝑏0 = 2 · 𝛿𝑚𝑅𝑁𝐴 · 𝐾𝐿 

𝑏1 = 𝜌 · 𝛿𝑚𝑅𝑁𝐴 · 𝐾𝐿 

Eq. 2.27 

 

The range of accessible values for  (RT) and K0.5 (RT) can be calculated considering the 

limit values of Eq. 2.25 and Eq. 2.26 when 𝑅𝑇 → 0 and when 𝑅𝑇 →∞. As a result, values 

of  (RT) and K0.5 (RT) are constraint to: 

 

Γ(𝑅𝑇) ∈ (0,
𝑎0 

𝑏1
) Eq. 2.28 

𝐾0.5(𝑅𝑇) ∈ (0,
𝑎1 

𝑏1
) Eq. 2.29 

 

2.3.3 Relative protein concentration Θ and relative dynamic range 

γ(RT) 

 

Values of (RT) cannot be directly measured but indirectly obtained through output 

fluorescent levels. The linear relationship between  (RT) and fluorescent levels depends 

on non-genetic factors such as emission efficiency of fluorescent proteins or the gain of 

the spectrofluorometer used. To address this issue, we can normalize Eq. 2.23 to the 

maximum value (
𝑎0 

𝑏1
). Hence, 

 

𝛩 =  𝛾(𝑅𝑇) · (
𝐿

𝐾0.5(𝑅𝑇) + 𝐿
 ) + 𝛩0 

Eq. 2.30 

 

Where  

 

𝛩 =  
𝑃
𝑎0 
𝑏1

 Eq. 2.31 
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𝛩0 = 
𝑃0
𝑎0 
𝑏1

 Eq. 2.32 

 

and 

 

𝛾(𝑅𝑇) =
Γ(𝑅𝑇)
𝑎0 
𝑏1

 Eq. 2.33 

 

Here (RT) represents the relative dynamic range of the biosensor. Using Eq. 2.25, Eq. 

2.33 can be expressed as: 

 

𝛾(𝑅𝑇) =
𝑏1 · 𝑅𝑇

𝑏0 + 𝑏1 · 𝑅𝑇
 Eq. 2.34 

 

It is worth mentioning that the relative dynamic range γ(RT) is independent of the non-

genetic factors previously mentioned. 

 

As a result of our mathematical formalization, the relative expression of the reporter 

protein Θ produced upon an external input concentration L is described by: 

 

𝛩 =  𝛾(𝑅𝑇) · (
𝐿

𝐾0.5(𝑅𝑇) + 𝐿
 ) + 𝛩0 Eq. 2.35 

 

Here, Θ0 represents the basal expression of the reporter protein in the absence of inducer, 

i.e. L=0, γ (RT) corresponds to the relative dynamic range, and K0.5 (RT) is the biosensor 

activation threshold, which is defined as the concentration of external input L that gives 

the half-maximal response. Both terms depend on RT, according to: 

 

𝛾(𝑅𝑇) =
𝑏1 · 𝑅𝑇

𝑏0 + 𝑏1 · 𝑅𝑇
 Eq. 2.36 

 

and 
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𝐾0.5(𝑅𝑇) =  
𝑎1

𝑏0 + 𝑏1 ·  𝑅𝑇
 Eq. 2.37 

 

where a and b are model parameters. 

 

2.4 Model parameters determination  

 

To experimentally validate the mathematical model and its predictions, a library of 

genetic devices that act as biosensors were constructed and used as a proof-of-concept. 

Table 2.4 summarizes the set of genetic constructs analysed (constructs C1-C4). Each 

biosensor was designed to work at different LuxR concentrations by the exploitation of 

constitutive promoters with variable strengths. 

 

To experimentally determine model parameters a1, b0 and b1 the transfer function of each 

device, i.e. the relationship between input L (3OC6HSL) and output Θ (RFP) at the steady 

state, was measured (Figure 2.6) and γ and K0.5 were experimentally determined. Values 

of γ were calculated by dividing RFP levels by the maximum RFP value, which 

corresponds to that obtained with construct C1 (Table 2.4) at the maximum induction 

level, i.e. L=10 µM.  
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Figure 2.6 Experimental transfer functions of biosensors with different abundances of LuxR. The 

relationship between input 3OC6HSL concentration and output RFP level was measured for constructs C1-

C4 from Table 2.4. Relative RFP values were obtained by dividing RFP levels by the maximum RFP value, 

which corresponds to the maximum induction level, i.e. L=10 µM of construct C1. a-d) Dots correspond 

to experimental values and the dashed lines to the experimental fitting. The error bars shown in the figures 

are the standard deviation of four independent experiments. Fitting parameters are shown in Table 2.6. 

Pearson test was applied to the experimental values and experimental fitting obtaining the correlation 

coefficients R2. 

 

To determine the dependence of γ and K0.5 on the relative concentration of LuxR, first it 

was necessary the determine the relative LuxR abundances. The relative receptor levels 

were calculated by measuring the strengths of the different constitutive promoters 

upstream of LuxR in constructs C1-C4 (Table 2.4). To that end, a new set of genetic 

constructs (C8-C11 in Table 2.5), in which each constitutive promoter was individually 

located upstream of the reporter protein RFP, was built. Experimental measures of RFP 

allows determining the relative activity of each promoter [Kelly et al., 2009]. We used 
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the strongest characterized promoter, i.e. promoter J23100 in construct C8 (Table 2.5), as 

a reference to calculate the relative activity of each different promoter.  

 

Figure 2.7a shows the relative RFP expression level. Finally, we assumed that the relative 

abundance of LuxR can be directly estimated from the relative promoter activity located 

upstream LuxR [B. Wang et al., 2015]. Figure 2.7b-c show the dependence of K0.5 and γ, 

respectively, on the relative abundance of LuxR. Lastly, Eq. 2.36 and Eq. 2.37 were fitted 

to experimental values and the model parameters a1, b0, and b1 were determined. Matlab 

R2016a least-squares analysis software was used for fitting the parameters. Parameter 

values obtained were: a1 = 35 μM, b0 = 20, and b1 = 2.6 · 103. It is worth mentioning that, 

according to the model equations, model parameters define all set of biosensors based on 

the combination of receptor protein and its corresponding promoter regulating the output 

expression.  

 

Figure 2.7 Model parameters a and b fitting. a) Experimental characterisation of relative RFP expression 

from the constitutive promoters expressing different levels of LuxR (constructs C8-C11 in table Table 2.5). 
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RFP levels are indicated relative to those expressed from the J23100 promoter, which was assigned an 

arbitrary value of 1. Data are shown as means ± SD from four independent experiments. b) 3OC6HSL 

biosensor affinity (K0.5) with respect to relative variations in LuxR expression levels. K0.5 corresponds to 

the concentration of external input L that gives the half-maximal response. Dots correspond to the 

experimental values obtained from the relative transfer functions from Figure 2.6. The solid line 

corresponds to the fitted mathematical Eq. 2.37. Relative receptor abundance is obtained from the relative 

activity of the promoters’ characterization located upstream LuxR. c) Relative dynamic range γ with respect 

to relative variations in LuxR expression levels. Dots correspond to the experimental values obtained from 

the relative transfer functions from Figure 2.6. The solid line corresponds to the fitted mathematical Eq. 

2.36. Relative receptor abundance is obtained from the relative activity of the promoters’ characterization 

located upstream LuxR. 

 

2.5 Predictive design of two-component biosensors 

 

The above-defined model describes the dependence of K0.5 on the relative abundance of 

the receptor protein RT, which enables the design of two-component biosensors with 

predefined K0.5 values. K0.5 defines both the activation threshold and the operating range 

of the sensor. Thus, two-component biosensors with predefined K0.5 values can be 

designed straightforwardly by calculating the relative RT levels necessary to implement a 

given value of K0.5 using the following equation: 

 

 
Eq. 2.38 

 

To test the model predictability, we built a set of genetic constructs with different 

affinities K0.5 expressing the receptor protein upon different promoters, either constitutive 

(promoter CPJ23112 and PTET: C5-C6 in Table 2.4) or inducible (construct C7 Table 2.4). It 

should be mentioned that the inducible system was implemented using the L-arabinose 

dependent promoter PBad [Khlebnikov et al., 2000]. 

 

First, we characterized the relative activity of the different promoters involved in 

biosensors C5-C7. For this goal, we built a set of genetic constructs expressing an RFP 

under each promoter (constructs C12-C14 in Table 2.5). The experimental 

characterization of these promoters is shown in Figure 2.8.  

RT (K0.5) =
a1

b1·K0.5

-
b0

b1
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Figure 2.8 Relative promoters’ strength characterization. Experimental characterization of the relative 

RFP expression from the constitutive promoters expressing different levels of LuxR (constructs C12-C14 

in Table 2.5). RFP levels are indicated relative to those expressed from the J23100 promoter, which was 

assigned an arbitrary value of 1. Data are shown as means ± SD from four independent experiments. 

 

 

From these results, it was possible to estimate RT values directly from the relative 

promoters’ activity. Finally, using Eq. 2.35, Eq. 2.36 and Eq. 2.37 it was possible to 

calculate the theoretical transfer function for each biosensor C5-C7 using the estimated 

RT values. In the case of the C7, based on the arabinose dependent promoter, theoretical 

calculations of transfer functions were performed considering three different arabinose 

concentrations, i.e. 0.1mM, 0.01mM and 0.001mM. The biosensor transfer functions 

theoretically calculated were compared with experimental measures. 

 

Table 2.2 summarizes and compares the theoretical RT values required to implement 

different K0.5 values with those obtained experimentally from the relative promoter 

activity of constructs C12-C14. 
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Genetic Construct K0.5 
Theoretical  

RT levels 

Experimental  

RT Levels 

CP112 LuxR 4·10−1 μM 0.02 0.05 ± 0.02 

Ptet LuxR 1.5·10−1 μM 0.088 0.07 ± 0.02 

PBad LuxR 

+ 0.001mM arabinose 
6· 10−2μM 0.26 0.21 ± 0.09 

PBad LuxR 

+ 0.01mM arabinose 
10−2 μM 0.89 0.75 ± 0.26 

PBad LuxR 

+ 0.1mM arabinose 
5·10−3μM 2.7 2.17 ± 0.35 

Table 2.2 Theoretical and experimentally obtained RT values associated with K0.5 values. By fixing 

several K0.5 values the theoretical relative RT levels haven been calculated using Eq. 2.37. The theoretical 

RT levels are compared with the experimental characterization of the relative promoter strength for 

constructs C5-C7 from Table 2.4. Coefficient R2 = 0.99 correspond to correlation between experimental 

and theoretical values of RT levels. 

 

Figure 2.9a-e show the good agreement between the theoretically calculated and the 

experimentally measured transfer functions. Moreover, Figure 2.9f shows the 

experimental values of K0.5 for the whole set of genetic constructs analysed in this work 

(C1-C7) superimposed on the theoretical curve described by Eq. 2.37. It should be 

mentioned that theoretical predictions accurately describe the experimental behaviour 

independent of the particular genetic system used to express LuxR at the required relative 

level. This fact indicates that abundance of the receptor protein RT is the key regulatory 

factor, independently of the specific genetic system used to produce RT.  
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Figure 2.9 Model predictions of LuxR-dependent transfer functions. a-e) The relationship between 

input 3OC6HSL concentration and output RFP level was measured for constructs C5-C7 from Table 2.4. 

The relative RFP values were obtained by dividing RFP levels by the maximum RFP value, which 

corresponds to the maximum induction level, i.e. L=10 µM of construct C1. Dots correspond to 

experimental values and the error bars are the standard deviation of four independent experiments. The 

dashed lines correspond to the experimental fitting with parameters in Table 2.6. The solid lines represent 

the predicted transfer functions. Pearson test was applied to the experimental and model predicted transfer 
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functions obtaining the correlation coefficients R2. f) Crosses are the experimental values of K0.5 

corresponding to genetic constructs C1-C4 used to determine model parameters. The solid line represents 

theoretical predictions of K0.5 according to Eq. 2.34 with fitted parameters. Circles are experimental values 

of K0.5 corresponding to: C12, C13, C14 (0.001mM) C14 (0.01mM) and C14 (0.1mM) ordered from lower 

to higher RT/R0 values. 

 

2.6 Dependence of sensitivity and operating range on receptor 

abundance  

 

One of the most important features of a biosensor is the so-called sensitivity, σ. Biosensor 

sensitivity can be defined as the output variation for a given change in the input [Banica, 

2012]. It should be mentioned that, for biosensors that display a nonlinear response, the 

value of σ is different for each input concentration L.  

 

Figure 2.10 Mathematical determination of the biosensor operating range. Schematic representation 

of the three different determined sensor regions and the geometrical method proposed to define the optimal 

operating range. The dashed blue-lines represent depict the maximum and minimum output response values 

and the tangent to Θ at 𝐶∗ = 𝑙𝑜𝑔(𝐾0.5). The points of intersection of the blue dashed lines determine the 

upper and lower bounds, 𝑖. 𝑒. 𝐶+ and 𝐶−, of the optimal operating range. 
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Our theoretical analysis and experimental data show that two-component biosensor 

transfer functions have three well-defined regions, with different sensitivities, as 

represented in Figure 2.10. At low and high L concentrations (Regions I and III) the output 

Θ shows no significant dependence on the input, i.e. σ ≈ 0. However, there is a significant 

increase in biosensor sensitivity within Region II that corresponds to the optimal 

biosensor operating range, i.e. the range of input concentrations that induce a significant 

change in the output [Hicks, M., Bachmann, T.T., Wang, 2019]. For further mathematical 

analysis of this phenomenon, we defined parameter C as:  

 

𝐶 = 𝑙𝑜𝑔(𝐿) Eq. 2.39 

 

Hence, Eq. 2.35 can be rewritten as: 

 

𝛩 =  𝛾(𝑅𝑇) · (
10𝑐

𝐾0.5(𝑅𝑇) + 10𝑐
 ) + 𝛩0 Eq. 2.40 

 

With this reformulation, changes in L are parameterized by changes in C and the 

behaviour of Eq. 2.40 presents a quasi-linear dependence with respect to C in Region II. 

As a consequence, sensitivity in this region can be approximated to:  

 

𝜎 =
𝑑𝛩

𝑑𝐶
 Eq. 2.41 

 

i.e. 

 

𝜎 =
𝛾 · 𝐾0.5(𝑅𝑇) · 10

𝑐 + 𝑙𝑛(10) 

(𝐾0.5(𝑅𝑇) + 10
𝑐)2

 Eq. 2.42 

 

With K0.5(RT) defined by Eq. 2.38. According to Eq. 2.40, a biosensor response has 

maximum sensitivity, i.e.
𝑑𝜎

𝑑𝐶
= 0, at 𝐶∗ = 𝑙𝑜𝑔(𝐾0.5), which corresponds to L=K0.5.  

 

Here, we propose a mathematical determination of the Region II, i.e. the range of 

concentrations in which biosensor response exhibits higher sensitivity. This range can be 
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determined by the upper and lower bounds, 𝐶+ and 𝐶−, which are defined by the 

intersection of the tangent to Θ at 𝐶∗ = 𝑙𝑜𝑔(𝐾0.5), with the maximum and minimum 

values of the transfer function, respectively. Figure 2.10 shows a representation of this 

geometrical definition. The tangent line can be described by:  

 

𝑓 =  
𝑑𝛩

𝑑𝐶
|
𝐶∗
· 𝐶 + 𝑓0 Eq. 2.43 

 

Using Eq. 2.40 and considering that at 𝐶∗ the tangent line intersects the response curve at 

half maximum amplitude, i.e. 𝑓 =  
𝛾

2
 , we can write: 

 

𝑓 =  
𝛾 · 𝑙𝑛(10)

4
· 𝐶 +

𝛾

2
 [ 2 − 𝑙𝑛(10) · 𝑙𝑜𝑔(𝐾0.5(𝑅𝑇))] Eq. 2.44 

 

Finally, the range of input concentrations in which the biosensor has higher sensitivity 

can be defined by 𝑓(𝐶−) = 0 and 𝑓(𝐶−) = 𝛾 . By imposing these conditions, 𝐶+ and 𝐶− 

can be defined as: 

 

 

Hence, the optimal operating range of the biosensor corresponds to the interval of input 

concentrations 𝐿 ∈ (10𝐶
−
, 10𝐶

+
) , in which the transfer function of the biosensor exhibits 

higher sensitivity. In this interval, the transfer function can be approximated to a linear 

dependence of Θ on log(L) described by:  

 

𝛩 ≈ 
𝛾 · 𝑙𝑛(10)

4
· 𝐶 +

𝛾

2
 [ 2 − 𝑙𝑛(10) · 𝑙𝑜𝑔(𝐾0.5(𝑅𝑇))] +  𝛩0 Eq. 2.46 

 

 

 

 

𝐶±  =
𝑙𝑜𝑔(𝐾0.5(𝑅𝑇)) + 𝑙𝑛(10) ± 2 

𝑙𝑛(10)
 Eq. 2.45 
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2.7 Experimental validation of the operating range  

 

The whole set of biosensors from the presented study, described in Table 2.4, were 

submitted to the theoretical calculation of the operating range from the beforehand 

described mathematical framework in section 2.6. Hence, aiming to obtain an 

experimental validation.  

 

Results containing experimental transfer function values along with the theoretical 

calculation of the operating range, i.e. Region II delimitation by 𝐶+ and 𝐶− thresholds, 

from Eq. 2.45, are shown in Figure 2.11. Furthermore, we have calculated the percentage 

of the experimental exhibited operating range captured from the mathematical 

formalization. Results reveal that our mathematical definition of the operating range 

captured at least 71.2% of the dynamic range of the biosensors within the region defined 

by Eq. 2.45 (see Figure 2.11). It is worth mentioning that these results indicate that the 

operating range of two-component biosensors can be determined from K0.5 value, which 

in turn depends on the RT levels. In consequence, modifying the RT levels it is possible to 

tune the operating range of a given two-component biosensor. 
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Figure 2.11 Mathematical determination of the biosensor operating range. a-i) The relationship 

between input 3OC6HSL concentration and output RFP level was measured for constructs C1-C7 from 

Table 2.4. Relative RFP values were obtained by dividing RFP levels by the maximum RFP value, which 

corresponds to that obtained with construct C1 (at the maximum induction level, i.e. L=10 µM. Dots 

correspond to experimental values and the solid lines represent the predicted transfer functions. The error 

bars shown in the figures are the standard deviation of four independent experiments. The red dashed lines 

correspond to the 𝐶+ and 𝐶− obtained from Eq. 2.45. The optimal operation range was calculated 

according to Eq. 2.46. Percentage values indicate the dynamic range captured by the mathematically 

defined optimal operating range.
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2.8 Discussion 

 

The design of genetic devices according to the fundamental principles of engineering is 

a big challenge in synthetic biology. It is necessary to develop tools and mathematical 

frameworks that help to design and construct such devices in a predictable manner rather 

than by costly trial and error approaches [Kwok, 2010; Lucks et al., 2008]. Focusing on 

biosensor designs, many studies have been devoted to engineering new cellular devices 

by exploiting natural sensors present in cells [Carpenter et al., 2018]. However, 

biosensors have to work within an adequate operating range for the development of a 

specific application. It is therefore sometimes necessary to tune natural systems in terms 

of activation threshold, sensitivity, operating range and dynamic range. In this study, we 

performed our analyses using one of the most abundant sensor systems in prokaryotes, 

the two-component sensor systems. We explored the possibility of adapting the two-

component biosensor response by modulating the abundance of the main component, i.e. 

the receptor protein. To address this issue, we developed a mathematical model that 

determines the relationship between biosensor features and the abundance of receptor 

proteins. We further built a library of two-component biosensors based on the well-known 

Lux system [Williams et al., 2008]. As a first step, we analysed only the effect of receptor 

abundance on K0.5 and γ by introducing different constitutive promoters, with different 

strengths, upstream of the receptor protein. The experimental results, which were 

consistent with previously published data [Ang et al., 2013; B. Wang et al., 2015], showed 

a clear correlation between threshold activation, parameterized by K0.5, the relative 

dynamic range γ, and the sensitivity σ with LuxR relative concentrations. Experimental 

results were used to fit the model and determine its parameters. Interestingly, once the 

parameters were determined, the mathematical model allowed predicting the biosensor 

transfer function for a given abundance of the receptor protein. To validate these 

predictions, we built several genetic systems in which LuxR relative levels could be 

modulated by changes in the promoter or the RBS, or by the addition of an extracellular 

effector. The relationship observed between K0.5, representing the activation threshold of 

the biosensor, and the relative abundance of LuxR protein is remarkable. Notably, K0.5 

could be increased by up to two orders of magnitude by regulation of LuxR levels, 

independently of the method used to regulate receptor concentration. However, the 
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dynamic range γ did not exhibit a strong dependence on LuxR abundance, meaning that 

transfer functions could be shifted towards greater or lower values of 3OC6HSL without 

a major impact on the dynamic range. It is worth mentioning that the model derivation 

assumes that the abundance of receptor protein is large enough to consider a linear 

relationship between the concentrations of monomeric and dimeric forms of the receptor 

protein. This assumption can limit the applicability of the model to those situations in 

which receptor protein concentrations are very low. However, experimental results 

demonstrated that even for promoters with very low activities (construct C11 in Figure 

2.7a) the theoretical calculations properly describe the experimental data, suggesting that 

the model is of general applicability for a broad range of genetic architectures. 

 

Particularly notable were the results of the analysis of biosensor sensitivity. Due to the 

nonlinear response of the genetic systems, it is not possible to determine a single 

numerical value for their sensitivity. Despite showing a different sensitivity at each input 

concentration it was possible to distinguish two regions of low sensitivity, i.e. one at low 

and one at high-input concentrations, and a high sensitivity region at intermediate-input 

concentrations. Interestingly, the intermediate-input concentration region determines the 

input ranges that induce the maximal output variation, which corresponds to the optimal 

operating range of the biosensor. We have proposed a new method that allows the 

theoretical calculation of such a range of input concentrations. Furthermore, our model 

contemplates calculating the abundance of receptor protein necessary to adjust this 

optimal operating range to a given input range. Experimental results show good 

agreement with our theoretical predictions, thus validating our model.  

 

Future work should be devoted to exploring the feasibility of using the currently 

developed model for predictable biosensor designs in other systems based on similar two-

component architecture. Recent studies have demonstrated the application of synthetic 

biology biosensors in environmental monitoring [H.-J. J. Chang et al., 2017; Rinken & 

Kivirand, 2019], bioproduction [Pandi et al., 2019; Rogers & Church, 2016], biomedical 

applications in diagnostics [W. Zhou et al., 2014] and health monitoring [Mimee et al., 

2018]. However, an ability to detect relevant inputs is not sufficient for the construction 

of commercial cell-based biosensors. Relevant input detection should be coupled with 
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output detection within the appropriate range of input concentrations for each specific 

application. We aimed to overcome the above limitations by developing a theoretical and 

experimental framework that explains the relationships between the main features of 

biosensor components. 

 

2.9 Methodology 

 

2.9.1 Strains, media and growth conditions 

 

Top10 E. coli strain was used for cloning and expression experiments (F- mcrA Δ(mrr-

hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 nupG recA1 araD139 Δ(ara-leu)7697 galE15 

galK16 rpsL(StrR) endA1 λ-).  

 

E. coli were grown in Lysogeny Broth (LB) at 37 ºC and selected with the appropriate 

antibiotics corresponding to the transformed plasmid. Antibiotics were purchased from 

Sigma and used at the following concentration: chloramphenicol: 35 𝜇g/ml, kanamycin: 

35 𝜇g/ml and ampicillin: 50𝜇g/ml.  

 

Bacterial strains were preserved in LB glycerol 20% (v/v) at −80 ºC. Single colonies 

obtained from streaked glycerol stocks were inoculated and the cells were grown 

overnight at 37 ºC with shaking (200 revolutions per minute (rpm)). Overnight cultures 

were diluted into fresh LB (1/100 dilution) and grown for 5 hours until the exponential 

phase, OD660 ≈ 0.4.  

 

Induction media consisted of LB kanamycin and the appropriate inducer or inducer 

combination: 3OC6HSL (N-[-ketocaproyl]-L-homoserine lactone; Cayman Chemical 

Company, USA) and arabinose (L-(+)-Arabinose 98%, Sigma Aldrich, USA). Different 

3OC6HSL concentrations were prepared from an initial stock of 4·10−2M. Serial 

dilutions in LB kanamycin, providing final concentrations ranging from 10 µM to 0.001 

µM, were prepared the day of the experiment. Different arabinose concentrations were 

prepared from an initial stock of 0,74 M. Serial dilutions in LB kanamycin, providing 
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final concentrations ranging from 0.1 mM to 0.001 mM were prepared the day of the 

experiment. 

 

2l of diluted cultures were loaded into a 96-well microplate (Nunc, ThermoFisher 

Scientific, USA) and induced in a final volume of 200 l. Growth curves are shown in 

Figure A. 1. 

 

2.9.2 Molecular cloning and parts 

 

Construction of the genetic sensors by cloning was carried out using the Biobrick 

assembly method and parts from the Spring 2018 iGEM distribution 

(http://parts.igem.org). DNA sequences are in Table A. 1. 

 

Name Part Registry Code Plasmid 

Terminator BBa_B0014 pSB1C3 

Weak RBS BBa_B0033 pSB1C3 

Medium RBS BBa_B0030 pSB1C3 

Strong RBS BBa_B0034 pSB1C3 

Constitutive promoter 1 BBa_J23100 pSB1C3 

Constitutive promoter 2 BBa_J23105 pSB1C3 

Constitutive promoter 3 BBa_J231114 pSB1C3 

Constitutive promoter 4 BBa_J23103 pSB1C3 

Constitutive promoter 5 BBa_J23112 pSB1C3 

Ptet promoter BBa_R0040 pSB1C3 

Arabinose-inducible promoter BBa_I0050 pSB1C3 

LuxR receptor protein BBa_C0061 pSB1C3 

Red Fluorescent Protein BBa_E1010 pSB1C3 

Lux inducible promoter BBa_R0061 pSB1C3 

Table 2.3 Biobricks used in this study.  

  

http://parts.igem.org)/
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2.9.3 Biosensor genetic architectures 

 

All the constructs analysed in this chapter were built by combining Table 2.3 parts using 

3A assembly. Table 2.4 and Table 2.5 show the genetic structures of the different 

constructs. Biobrick cloning was performed using an assembly kit (Ginkgo Bioworks, 

USA). All constructs were included in the Biobricks high copy number plasmid 

(pSB1AK3) and were transformed using a chemical method. Sanger sequencing 

confirmed all genetic constructs. Plasmid maps are available in Table A. 2. 

 

2.9.3.1 Biosensors 

 

-LuxR-Terminator-Plux-RBS-RFP architecture was cloned downstream different 

DNA sequences, i.e. Promoter+RBS, with different expression levels. 

 

Cell Reference Genetic Structure 

 

C1 
B0014 + J23100 + B0030 + C0061 

+ B0014 + R0061 + B0034 + E1010+ B0014 

 

C2 
B0014 + J23105 + B0030 + C0061 

+ B0014 + R0061 + B0034 + E1010 + B0014 

 

C3 
B0014 + J23114 + B0030 + C0061 

+ B0014 + R0061 + B0034 + E1010 + B0014 

 

 

C4 

 

B0014 + J23103 + B0030 + C0061 

+ B0014 + R0061 + B0034 + E1010 + B0014 

RBS30
RBS34

LuxR

Promoter Luxpromoter

RFP

CP100 

LuxR 

CP105
 

LuxR 

CP114 

LuxR 

CP103
 

LuxR 
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C5 
B0014 + J23112 + B0030 + C0061 

+ B0014 + R0061 + B0034 + E1010 + B0014 

 

C6 
B0014 + R0040 + B0033 + C0061 

+ B0014 + R0061 + B0034 + E1010 + B0014 

 

C7 
B0014 + I0500 + B0030 + C0061 

+ B0014 + R0061 + B0034 + E1010 + B0014 

Table 2.4. Biosensors’ genetic constructs. 

 

2.9.3.2 Controls 

 

Genetic architecture comprising Terminator-Promoter-RBS was designed to obtain 

different RFP output expressions. Anderson promoters (i.e. J23 constitutive promoters) 

upstream a medium RBS and inducible PBad were used as a mechanism for different 

protein expression levels.  

 

Cell Reference Genetic Structure 

 

C8 B0014 + J23100 + B0030 + E1010 + B0014 

 

C9 B0014 + J23105 + B0030 + E1010 + B0014 

 

C10 B0014 + J23114 + B0030 + E1010 + B0014 

Promoter

RFP

RBS30

CP112 

LuxR 

P
TET 

LuxR 

P
Bad 

LuxR 

CP100 

CP105 

CP114 
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C11 B0014 + J23103 + B0030 + E1010 + B0014 

 

C12 B0014 + J23112 + B0030 + E1010 + B0014 

 

C13 B0014 + R0040 + B0033 + E1010 + B0014 

 

C14 I0500 + B0030 + E1010 + B0014 

Table 2.5 Controls’ genetic constructs  

 

2.9.4 Fluorescence assays for gene expression determination 

 

Incubation for in vivo measurements was carried out by transferring 2 l of the overnight 

diluted cultures to 200 l of LB kanamycin induction media into a flat bottomed 96-well 

microplate. LB without cells was also incubated as a background control for both 

fluorescence and absorbance. 

 

Gene expression induced by a wide range of 3OC6HSL and arabinose concentrations over 

time was monitored by quantification of the RFP. The bacterial cultures were incubated 

and induced on a Synergy MX microplate reader (BioTek Instruments, USA) and 

measurements were taken every 30 min for 20 h. Conditions for fluorescence 

measurements of the red fluorescent protein (RFP) were: excitation: 578∓9 nm, emission: 

616∓9 nm, with a gain of 50.  

 

Sample (S) absorbance and fluorescence (f) readings (OD660 (S) and f (S), respectively) 

were corrected using respective signal background (B) controls (OD660 (B), f (B)). 

Averaged data were obtained from three independent experiments. As previously 

CP103 

CP112 

P
TET

 

P
Bad
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described [Chappell et al., 2013], reporter protein Θ was calculated according to the 

expression: 

 

𝛩 =  
𝑓(𝑆) − 𝑓(𝐵)

𝑂𝐷660(𝑆) − 𝑂𝐷660(𝐵)
 Eq. 2.47 

 

The value Θ corresponds, with a factor of proportionality, to the concentration of the RFP 

protein per cell. 

 

2.9.5 Experimental fitting model parameters  

 

Matlab R2016a least-squares analysis software was used for fitting the parameters to 

experimental results according to the Hill equation 𝛩 =  𝜑 · (
𝐿𝑛

𝜔 +𝐿𝑛
 ) + 𝜑0. Table 2.6 

shows fitted parameters for each construct, i.e. C1-C7, and the computed correlated 

coefficient R2. 

 

Cell Construct φ φ0 ω (μM) n 𝐑𝟐 

 

C1 1 0.06 1.5·10−2 0.99 0.99 

 

C2 1.04 0.09 9.5·10−2 0.98 0.99 

 

C3 0.8 0.01 1.6·10−1 0.99 0.99 

 

C4 0.76 0 6·10−1 1 0.99 

CP100 

LuxR 

CP105
 

LuxR 

CP114 

LuxR 

CP103
 

LuxR 
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C5 0.81 0.03 3.7·10−1 1.01 0.99 

 

C6 0.86 0.05 1.4·10−1 0.99 0.99 

 

C7 (ara=0.1mM) 0.86 0.06 5·10−3 1 0.99 

C7 (ara=0.01mM) 0.84 0.05 1.5·10−2 0.98 0.98 

C7 (ara=0.001mM) 0.82 0.06 10−1 0.97 0.99 

Table 2.6 Parameters used to fit the experimental biosensor transfer functions. 
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Working on the design and construction of living biomedical devices claims on the study 

and analysis of extracellular signal detection, followed by signal integration to perform 

desired responses. This chapter focuses on how sensed signals can be integrated to 

produce non-trivial responses. More specifically, a multi-branch approach implementing 

digital computations, inspired by printable electronic circuits, was designed by exploiting 

multicellularity and space. E. coli mimicking the core-elements of transistors were built 

to validate our design. This work was developed in the Synthetic biology for biomedical 

applications lab, in collaboration with Dr. Javier Macia and Sira Mogas, under the current 

project MINECO (2018-2020) “Printable Cellular Circuits”. 
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3 TOOLS FOR SIGNAL PROCESSOR MODULE DESIGN 

 

3.1 Principles of cellular computation 

 

Cutting-edge technologies foreseeing unprecedented progress in our society are based on 

the development of devices performing complex computations. Internet and cell phones 

are the more evident examples; however, technology has revolutionized the way we learn, 

communicate or even though we treat diseases. In light of this, generating non-trivial 

responses affording programmed rules permit to integrate information gathered from 

sensor modules. Computation is an information processing approach, where multiple 

inputs signals, either analogue or digital, are integrated into an output [Harder, 1959]. 

 

Palpable is the role of computation in electronics, where multiple signals are integrated, 

assembled or otherwise processed. Nonetheless, computation is also an intrinsic property 

of living systems. Natural systems rely on integrating multiple external signals for 

environmental adaptation [Nurse, 2008]. Understanding how biological systems compute 

[Hopfield, 1994] has sped the development of a novel SB discipline: cellular computation. 

Engineering living organisms using rational design, from the abovementioned 

engineering approaches, has envisaged the performance of complex computations with 

molecules and cells as a substrate. Enormous potential encompasses the development of 

cellular computers due to its autonomous performance relying on the intrinsic sensorial 

machinery. Hence, applications ranging from environmental approaches up to complex 

diseases are envisioned [Y. Y. Chen et al., 2012]. Nevertheless, fostering society-need 

applications requires for living machines to depict reliable, scalable, robust and 

predictable behaviours [Kwok, 2010]. 

 

The design and implementation of biological devices with computation capability have 

been inspired by electronics. Electronic circuits are physical devices encoding 

information in electrons flow. Individual components altering such flow are connected 

by physically separated wires, and due to an appropriate assembly, are capable to perform 
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complex operations. In that sense, either digital or analogue operations could be 

implemented.  

 

Living organisms operate analogously per se [Rahul Sarpeshkar, 1998] and analogue 

computation is further envisioned to tackle the demands of complex society-applications 

due to the need for fine-tuning graded responses [Daniel et al., 2013; Purcell & Lu, 2014], 

Yet, circuits performing analogue computation are not as standardized as digital ones due 

to the lack of precision [T. Song et al., 2016] and output response variability [R. 

Sarpeshkar, 2014]. For that reason, up to now, although being a challenge for circuit 

design [Vaidyanathan et al., 2015], computation has been afforded by transforming the 

analogue behaviours of the biological elements into a digital response (Figure 3.1a). 

Therefore, signals are treated as binary: logic state “1” is defined when the signal is 

present or it’s above a certain threshold, and logic state “0” is defined when the signal is 

not present or it’s below a certain threshold, computing in a discrete set. Digital operations 

rely on the logical combination of the signals to be integrated. All possible input 

combinations with their corresponding output are represented in the so-called truth table. 

(Some examples of one-input and two-input truth tables are shown in Figure 3.1b). 

 

Figure 3.1. Digital and analogue computation. a) An analogue signal is digitalized by defining two 

different thresholds. Responses above the threshold are considered as a digital 1 and responses below as a 

digital 0. b) One-input and two-inputs logic gates representation. For each logic gate the truth table, Venn 

diagram and Boolean algebra formulation are depicted. 

 

Several efforts on finding the biological substrate to perform logic computation are 

related in the subsequent sections 3.1.1 to 3.1.5. Throughout, exploring different 
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biological strategies that had allowed to assemble the roots of standard and robust cellular 

computation devices.  

 

3.1.1 Devices based on transcriptional regulations 

 

From the first Lac operon regulation mechanism [Monod & Jacob, 1961], insights were 

gained on protein mechanisms to modulate DNA sequences. Natural transcription 

regulators such as LacI, TetR, cI, cAMP, and AraC [Terpe, 2006] had been broadly used 

to implement logic gates. Moreover, these well-known systems have been used, for 

instance, for generating AND gates based on protein splitting [Moon et al., 2012; Shis & 

Bennett, 2013; B. Wang et al., 2011] as depicted in Figure 3.2a, or accounting for more 

sophisticated DNA architectures using CRISPR or TALEN [Lienert et al., 2013; Nielsen 

& Voigt, 2014] allowing the creation of AND logic circuits operating in eukaryotes. 

Despite, computations at the DNA level is widely used, such approach requires for large 

time periods to produce the expected output. 

 

3.1.2 Devices based on DNA recombination 

 

Computation based on DNA recombination uses recombinases as a tool to modify DNA. 

Recombinases recognize distinct DNA sequences that are placed flanking a sequence of 

interest. Recombinases can excise or flip the DNA of interest depending on the relative 

orientation of a short, directional DNA sequence [Groth & Calos, 2004]. Recombinases 

(Figure 3.2b) have been broadly used to build synthetic logic circuits for DNA-encoded 

memory storage [Farzadfard & Lu, 2014; Siuti et al., 2014]. 
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Figure 3.2 Processor computation based on different biological-elements. a) Transcriptional regulation. 

Schematic representation of an AND logic circuit from split protein transcription factor. Two different input 

signals trigger the expression of the two units that bind to trigger output production. Adapted from [B. 

Wang et al., 2011]. b) DNA recombination. Schematic representation of an XNOR logic circuit 

implemented with serine recombinases. Recombinases were induced by two different input signals: signal 

1 triggers the expression of the green recombinase whereas signal 2 triggers the expression of the blue one. 

Recombinases attach to the triangular coloured motifs triggering the inversion of the output production 

either by one or both elements. Adapted from [Siuti et al., 2014]. 

 

3.1.3 Devices based on post-transcriptional regulations 

 

Multiple computational devices have been built based on RNA regulators. For instance, 

in prokaryotic organisms, mRNA translation can be prevented by introducing a stem-loop 

structure that hides the ribosome binding sequence (RBS) from the translational 

machinery. The expression of a small RNA sequence allows unfolding the stem-loop 

structure in the mRNA, exposing the RBS for ribosome access [Green et al., 2017; Isaacs 

et al., 2004], as is exemplified in Figure 3.3. Other alternatives, such as targeting mRNAs 

for degradation introducing miRNAs [B. D. Brown et al., 2007; Xu et al., 2017] have 

been explored. RNA regulation gives a fast and tight control of output production, 

however, some problems with the secondary RNA structure may arise. 
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Figure 3.3 Processor computation based on different biological-elements. a) Post-transcriptional 

regulation. Schematic representation of RNA-inducible riboswitches, forming an RNA stem-loop blocking 

the ribosome to attach the RNA sequence, when an external molecule is present it generates a 

conformational change enabling the binding of ribosomes and its translation. b) Identity logic circuit. One 

input RNA molecule is necessary to produce a conformational change in the stem loop and enable the 

translation of the output mRNA. c) AND logic circuit. The presence of two input RNA molecules at the 

same time are necessary to produce a conformational change in the stem loop and enable the translation of 

the output mRNA. Adapted from [Green et al., 2017]. 

 

3.1.4 Devices based on signalling pathways regulations 

 

Signalling pathways are natural systems that translate external signals to control 

intracellular cellular functions. Computational devices can be built modulating some key 

elements of a signalling pathway, for instance, regulating the expression of some MAP 

kinase proteins in response to external inputs [Furukawa & Hohmann, 2015] or using a 

the receptor-antigen recognition system, as depicted in Figure 3.4 [Kochenderfer & 

Rosenberg, 2013; C. Y. Wu et al., 2015]. Signalling pathways modulations are optimal 

to control information flow and modifying them to produce fast responses, being useful 

for applications regarding temporal resolution. 
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Figure 3.4 Processor computation based on different biological-elements. Signalling pathways. 

Schematic representation of the strategy for an AND logic circuit developed by Wu et al. through splitting 

the chimeric antigen receptors (CARs) elements into two different peptides that could be assembled in an 

inducible manner. Adapted from [C. Y. Wu et al., 2015].  

 

3.1.5 Devices based on multicellular computation 

 

Up until now, we have presented different biological embodiments implementing lower-

order logic gates. In electronics, is described that any complex computation could be 

implemented by the combination of several logic gates, defining a functionally complete 

set [Savant et al., 1991]. Unfortunately, this approach fails when applying synthetic 

biology principles. Embedding large and sophisticated synthetic gene circuits into cellular 

organisms demands for a large set of orthogonal parts properly connected [Morey et al., 

2012; F. Wu et al., 2014], drowning cellular metabolism [M Carbonell-Ballestero et al., 

2016] and inducing inappropriate host genetic interactions [Tan et al., 2009] and most 

remarkable, once circuits are engineered, its reusability to create higher-order circuits, as 

stated in electronics, remains a challenge [Regot et al., 2011]. To overcome these 

limitations, a new approach based on the multicellular implementation of computational 

devices has been explored (Figure 3.5).  

 

Implementing computational devices in multicellular consortia, i.e. using different 

engineered strains, allows simplifying the synthetic genetic circuits (Figure 3.5a). As a 

result, the number of required orthogonal parts is diminished, the associated metabolic 
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cost is reduced and the host genetic interactions are minimized [Regot et al., 2011]. 

Nevertheless, allocating different tasks in different cells demands for cellular connection, 

as wires do in electronics and the growth in the same environment of the different cell 

types. When performing complex computational devices both the number of different cell 

types and the number of wires scales up, limiting the scalability of the device [Kwok, 

2010]. Physical separation of the different cell types, i.e. spatial distribution in a 2D 

surface, offers the possibility to combine multiple engineered cells without suffering the 

negative growth competition effects (Figure 3.5b). Still, the connection of multiple 

functional modules with wires limit their scalability [Tamsir et al., 2011], denoting that 

for higher-order logic gates chemical wires without cross-talk are needed [Canton et al., 

2008; Macía et al., 2012].  

 

Alternatively, combining multicellular distributed computation [Regot et al., 2011], 

spatial segregation [Tamsir et al., 2011] and the breakdown of complex logics by the 

combination of a functionally complete set of logic gates has been demonstrated 

extremely useful for implementing high complex devices [Macia et al., 2016]. In the 

general design (Figure 3.5c), a particular logic circuit is composed of M different 

multicellular consortia allocated in physically isolated chambers, i.e. {ψ1, ψ2... ψM}. Each 

consortium contains two different cell layers: The Input Layer (IL) and the Output Layer 

(OL) encoding the output “1s” codified in the truth table of the logic computation. The IL 

senses external inputs and secretes a wiring molecule according to a particular internal 

logic, Identity or NOT. Next, the secreted wiring molecule is mixed in the medium 

implementing the OR function implicitly. Then, the OL, consisting on a single cell type 

that responds to the wiring molecule, produces the device output according to a NOT 

logic, i.e. the output molecule is produced only in the absence of the wiring molecule. 

Therefore, the final output could be easily implemented by the physical connection of the 

different chambers when the output is a secreted molecule, e.g. hormone. Noteworthy, 

only one wire is needed and scalability is afforded by the ability to detect extracellular 

signals with Identity and NOT logics. However, stability is compromised due to the 

consortia negative competition growth effects [Amoyel & Bach, 2014; Kwok, 2010]. 
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Figure 3.5 Processor computation based on different biological-elements. a) Schematic representation 

of distributed computation in different engineered cell types. Adapted from [Regot et al., 2011]. b) 

Schematic representation of an XNOR gate by communicating differently engineered E. coli cells 

performing NOR and Identity gates. Adapted from [Tamsir et al., 2011]. c) Schematic approach in which 

engineered cells are divided into sequential chambers. Adapted from [Macia et al., 2016]. 
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3.2 Objectives 

 

Efforts in the development of standardized architectures enabling devices to integrate 

multiple signals and responding to programmed rules have extensively been afforded. 

However, despite the advantages presented by multicellular computation and spatial 

segregation, the experimental evidence for complex computational devices are far from 

being easy to implement in a standard and reliable way, thus, compromising the real 

development of end-user applications. 

 

 

We aim to design and systematically built simple, robust and scalable multicellular 

computational devices by using a new multicellular embodiment in which cells are 

located in a 2D surface in a very specific geometrical arrangement. 

 

 

The specific objectives addressed within this section are: 

 

• Computation can be implemented by the modulation of a Carrier Signal, that 

flows through a 2D surface, in response to external inputs, emulating transistor-

modules. 

 

• Any arbitrary device performing complex computations can be implemented into 

a multi-branch topology, in which each branch behaves as a multi-base transistor. 

 

• Experimentally validate the multi-branch architecture by building a library of 

engineered E. coli strains. 
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3.3 Design of a transistor-like modules  

 

Considering that computation is, on its essence, a matter of information processing 

[Harder, 1959], our approach encodes information in the concentration of a unique 

biological signal, the carrying signal (CS) [Basu et al., 2005; Waters & Bassler, 2005]. 

We envisioned the creation of our devices in a 2-dimensional surface where CS is 

produced in a specific location, diffused along the surface, and could interact with 

different modulatory elements properly distributed alongside the surface. The main role 

of these modulatory elements relies on performing CS modulations: by allowing or 

blocking its diffusion. The specific spatial arrangement of modulatory elements codifies 

the device computational complexity. 

 

Gaining insights from electronics, devices were designed based on transistors-like 

modules, the basic elements of analogue and digital computation. Electronic transistors 

use electric fields to control the flow of current between the emitter and the collector 

terminals [Savant et al., 1991]. The electron flow is influenced by the base element, 

modulating it, depending on its ability to conduct electric signals (Figure 3.6a). 

Furthermore, our approach takes inspiration from printed electronics [Khan et al., 2015; 

Tong et al., 2018], exploring the ability to draw 2D cellular devices behaving as transistor 

elements. As represented in Figure 3.6b-c, we have implemented the transistor-like 

architecture by the combination of different engineered cell types. Namely, the Emitter 

Cell (EC) secretes CS, which diffuses along the 2D surface and is modulated by Base 

Cells (BC), to be finally detected by Collector Cells (CC). It is worth mentioning that in 

this approach, part of the computational complexity is encoded in the spatial arrangement 

of the modulatory elements instead of in the genetic circuitry of each cell type. 
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Figure 3.6 Schematically representation of a transistor-like architecture. a) Electronic transistor 

architecture. The emitter supplies the electron flow, which is collected in the collector. In between, the base 

is able to regulate the electron flow. b) Transistor-like architecture mapped into cellular elements. CS signal 

is produced and secreted in the EC cells, diffuse through and meets the modulatory element BC. CC cells 

detect CS signal producing the final output. c) Transistor-like architecture representation on top of a 2D 

surface. CS signal is produced on the top by the EC and diffuses through the 2D surface meeting the 

modulatory element in between and the CC cells at the bottom. 

 

To experimentally validate our approach, a library of E. coli engineered cells were built. 

More specifically, we took profit from the natural cell-to-cell communication system 

involved in bacterial quorum sensing [Nealson & Hastings, 1979]. CS is encoded in the 

bacterial 3OC6HSL acyl-homoserine lactone. Hence, Emitter Cells express constitutively 

the LuxI autoinducer synthase, producing the autoinducer 3OC6-homoserine lactone, 

which can diffuse across cell membranes [Eberhard et al., 1981; Engebrecht & Silverman, 

1984]. Therefore, Collector Cells are based on the LuxR-3OC6HSL transcription 

activation complex: when 3OC6HSL signal reaches a critical activation threshold it is 

bound the LuxR receptor protein triggering the operon transcription [Stevens et al., 1994]. 

As a proof-of-principle, we have characterized our devices by expressing a fluorescent 

protein, e.g. green fluorescent protein (GFP), as an output. 

 

Modulatory elements were implemented in a library of Base Cells responding to device 

inputs. BC were engineered with the ability to modulate, either positively or negatively, 

3OC6HSL concentrations by expressing the aiiA degradation enzyme, an enzyme that 
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degrades 3OC6HSL [Dong, 2000]. Negative Base Cells, i.e. 𝐵𝐶−, block the flow of 

3OC6HSL in the presence of the external input as a result of the induction of aiiA. 

Whereas in positive Base Cells, i.e. 𝐵𝐶+, 3OC6HSL flow is allowed in the presence of 

the external input since the expression of aiiA is repressed by them. It is worth mentioning 

that 𝐵𝐶+ genetic architecture involves a genetic NOT logic thanks to the LacI/PLac 

repressor gene [Elowitz & Leibier, 2000]. In our approach, anhydrotetracycline (aTc) and 

arabinose (ara) were used as the external inputs. Detailed cellular genetic architecture is 

described in Table 3.2.  

 

3.4 Design and characterization of a 2D surface 

 

The 2D surface envisioned as the cellular computation support platform must ensure the 

reproducibility and serial production of cellular circuits. Surface characteristics must 

guarantee: i) bacterial cell growth, ii) signal diffusion, and iii) fluorescence 

measurements. Despite there are multiple substrates that can be used, a combination of 

an LB-agar solid surface together with a paper strip [Struss et al., 2010] was chosen 

because satisfices the previous requirements. Additionally, we have developed a set of 

cellular inks for each cell type from Table 3.2 to draw the different elements into the 2D 

surface. Cellular inks contain the i) cell type, ii) nutrients and iii) agar as a thickener for 

ensuring cellular deposition on top of the surface. The combination of the 2D surface 

together with cellular inks enables to design and draw cellular devices. Further details on 

the 2D surface composition and cellular inks’ recipe are described in the Methodology 

section.  

 

To validate our methodology, firstly, we characterized the 2D surface in terms of cellular 

growth and signal diffusion. 

 

3.4.1 Cellular growth 

 

Cellular growth could not be monitored via Optical Density [Carbonell et al., 2002; Koch, 

1970] due to the paper surface characteristics’. To quantify cellular growth, cells were 

engineered with the constitutive expression of a red fluorescent protein (RFP). RFP is 
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expressed downstream a weak promoter to prevent cells for an additional metabolic 

burden. Detailed genetic constructs are summarized in Table 3.2. 

 

The first set of experiments were devoted to analyse and monitor cellular growth by 

means of RFP expression. Figure 3.7 shows the temporal evolution of RFP levels 

depicting that the monitoring of the RFP fluorescent protein could serve as an indicator 

of cellular growth. 

 

 

Figure 3.7 Cellular growth monitoring from RFP expression levels in the 2D surface. 0.5 µL of cellular 

inks from Table 3.2 were deposited in the 2D paper surface and incubated at 37ºC for 40h. Fluorescent 

measurement levels were taken every 30 minutes. The error bars shown in the figures are the standard 

deviation of three independent experiments. a) Emitter Cell. b) Collector Cell. c) 𝑎𝑇𝑐− Base Cell. d) 𝑎𝑇𝑐+ 

Base Cell. e) 𝑎𝑟𝑎− Base Cell. f) 𝑎𝑟𝑎+ Base Cell.  
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3.4.2 Carrying Signal diffusion  

 

To assess CS diffusion through the 2D surface, a circuit composed by the EC and CC was 

built. An EC cellular ink dot was deposited in one end of the paper strip separated 5mm 

away for an array of CC dots (Figure 3.8 Bottom). CS diffusion was determined by 

measuring GFP levels in the array of CC. Experimental results shown in Figure 3.8 

indicate that EC can secrete CS, which efficiently diffuses through the 2D surface and 

can be detected by CC at a large distance, i.e. 25 mm. CS signal depicts a characteristic 

diffusion profile where it decays with distance. 

 

Figure 3.8 CS diffusion profile trough the 2D surface. Bottom. Schematic representation of the 

experimental setup. The blue circle represents EC whereas the green circles correspond to CC. The image 

shows the paper strip with the GFP fluorescence from CC along to x-axis (mm). Top. 0.5µL of EC and CC 

cellular inks were deposited on the 2D surface and incubated at 37ºC for 24 hours. GFP/RFP measurements 

were obtained according to section 3.9.6 and plotted along the x-axis. The error bars shown in the figures 

are the standard deviation of three independent experiments. 
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Departing from CC GFP expression levels it was possible to quantify the concentration 

of CS implemented by 3OC6HSL molecules. Firstly, it was necessary to experimentally 

determine the relationship between GFP expression levels and 3OC6HSL concentration 

(Figure 3.9a). Afterwards, the experimental values were fitted to a Hill equation (Eq. 3.1) 

and the concentration of 3OC6HSL along the surface, i.e. along the x-axis, was obtained.  

 

𝐺𝐹𝑃/𝑅𝐹𝑃 =  𝛼3𝑂𝐶6𝐻𝑆𝐿 + 
𝑘0 · [3𝑂𝐶6𝐻𝑆𝐿]

𝑛

𝑘1 + [3𝑂𝐶6𝐻𝑆𝐿 ]𝑛
 Eq. 3.1 

 

The gradient of the concentration profile of 3OC6HSL associated with a diffusion process 

through the 2D surface is observed in Figure 3.9b. 

 

Figure 3.9. 3OC6HSL diffusion profile characterization a) CC response to 3OC6HSL concentrations 

ranging from 100 M to 0.001 M. 1µL of CC cellular ink was incubated at 37ºC for 24h with fluorescent 

measurements every 30 minutes. GFP measurement levels were normalized by RFP according to the 

methodology described in section 3.9.6. Dots correspond to experimental values and the dashed line to the 

mathematical fitting according to Eq. 3.1. The error bars are the standard deviation of three independent 

experiments. Matlab R2016a least-squares analysis software was used for fitting the parameters to 

experimental results. Parameter values obtained were: are 𝛼𝐴𝐻𝐿 = 1, k0 = 33 1/M, k1 = 4·107 M and n=1. 

b) Bottom. Schematically representation of the experimental setup for EC and CC circuit. The blue circle 

represents EC whereas the green circles correspond to CC. 0.5µL of EC and CC cellular inks were deposited 

on the 2D surface and incubated at 37ºC for 24 hours. GFP/RFP measurements were obtained according to 

section 3.9.6 and plotted along the x-axis. 3OC6HSL concentration diffusion profile along 2D surface up 

to a 10 mm distance for an incubation time of 24h at 37ºC.  
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3.5 Transistor-like device for CS modulation 

 

Base Cells were designed to modulate CS in response to external inputs. To analyse the 

modulatory capacity of BC several circuits were built by placing the BC elements, 

forming a horizontal band, between EC and CC. The experimental setup is depicted in 

Figure 3.10.  

 

Figure 3.10 Experimental setup of a transistor-like circuit. Top. Schematic representation of the paper 

drawn transistor-like architecture. An EC cellular ink dot (blue circle) separated 5 mm above BC (white 

band) followed by several CC dots (green circles) separated 5 mm each. Bottom. Schematic representation 

of a CS diffusion profile along the 2D surface by the modulatory BC. 

 

We analysed four different modulatory BC responding to inputs aTc and ara. 

Experimental results in Figure 3.11 displays the ratio of GFP/RFP relative to its maximum 

value, which corresponds to the CC response in the absence of modulatory elements 

between EC and CC cells. Negative modulatory BC, i.e. 𝑎𝑟𝑎− and 𝑎𝑇𝑐−, reduce the 

3OC6HSL flow when external signals decrease (Figure 3.11a and Figure 3.11b 

respectively). Whereas positive modularity BC correspond to 𝑎𝑟𝑎+ and 𝑎𝑇𝑐+ (Figure 

3.11c and Figure 3.11d respectively) increase the 3OC6HSL flow across the circuit when 

external arabinose or aTc input signals are present. Experimental results demonstrate a 

continuous modulation on the CS flow in response to different input concentrations.  
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Figure 3.11 Transistor-like device for 3OC6HSL modulation. Input signals were streaked into the 2D 

surface. 0.5µL of cellular inks were deposited as depicted in Figure 3.10 for each modulatory BC. Circuits 

were incubated for 24h at 37ºC and fluorescence levels were obtained from the surface scan. Average 

fluorescent measurements of the first two CC cellular inks dots were obtained using Matlab image analysis. 

Normalized GFP values were obtained according to section 3.9.6. Data are shown as means ± SD from 

three independent experiments. a) 𝑎𝑟𝑎− modulatory BC b) 𝑎𝑇𝑐− modulatory BC c) 𝑎𝑟𝑎+ modulatory BC 

d) 𝑎𝑇𝑐+ modulatory BC. 

 

3.6 Logic computation based on a multi-branch topology  

 

Concerning the scale-up of our transistor-like circuits, we have explored a general 

methodology allowing to map any arbitrary logic computation in a specific geometrical 

topology. A logic function involving N inputs and one output can be described by the so-

called truth table and mathematically designated with the Boolean expression (f). 

Systematically applying Boolean algebra rules, f can be expressed as a minimal 
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combination of ID, NOT, OR, and AND binary operators in the canonical form. Thus, any 

arbitrary Boolean function with N inputs has the following general expression:  

 

𝑓 = [𝜑11(𝑥1) 𝐴𝑁𝐷 𝜑12(𝑥2) ··· 𝐴𝑁𝐷 𝜑1𝑁(𝑥𝑁)]  

𝑂𝑅 [𝜑21(𝑥1) 𝐴𝑁𝐷 𝜑22(𝑥2) ··· 𝐴𝑁𝐷 𝜑2𝑁(𝑥𝑁)]  

··· 𝑂𝑅[𝜑𝑀1(𝑥1) 𝐴𝑁𝐷 𝜑𝑀2(𝑥2) ··· 𝐴𝑁𝐷 𝜑𝑀𝑁(𝑥𝑁)] 

Eq. 3.2 

 

or in a compact form:  

 

𝑓 =  ∑[∏𝜑𝑖𝑗(𝑥𝑗)

𝑁

𝑗=1

]

𝑀

𝑖=1

 Eq. 3.3 

 

In which Σ represents the OR operator and Π the AND operator. The function 𝜑 ij is either 

an Identity function, i.e. 𝜑 ij =1 if xj=1, or a NOT function, i.e. 𝜑 ij =1 if xj=0. N represents 

the number of different inputs and M is the maximum number of terms present in the 

Boolean function, always satisfying M ≤ 2·N-1 [Bender & Williamson, 2005]. Moreover, 

the expression of a Boolean function f can be minimized by the systematic application of 

standard rules of simplification, such as the so-called Karnaugh maps [Karnaugh, 2013] 

or the Quine-McCluskey algorithm [McCluskey, 1965]. 

 

Figure 3.12a-b illustrates one of the possible methods for Boolean function minimization, 

the Karnaugh maps. In Figure 3.12a a truth table is represented and, departing from that, 

the Karnaugh graphic map is built (Figure 3.12b). It consists of a lattice formed by 2𝑁 

squares corresponding to all possible input combinations in the truth table. From that, 

squares are filled with the output accordingly to each input combination. Since we are 

focused on mindterms [Hill & Peterson, 1981], subsequently groups of adjacent squares 

with a 1 inside are formed, i.e. ψi. These groups must contain 1, 2, 4 or 8 squares. Within 

a group, the logic product of the inputs that do not change is considered. Then the 

minimized Boolean function (Figure 3.12b) is obtained by adding all groups 𝑓 = ∑ 𝜓𝑖𝑀
𝑖=1 . 

This formalism can be easily translated into the multi-branch topology (Figure 3.12c). In 

this topology, each input combination associated with output 1, i.e. ψi, is codified by a 
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multi-base transistor module, implementing the Π operator. Concretely, at one end of the 

branch, the EC is placed whereas the CC is placed at the other end. In between, different 

bands containing modulatory BC are present. Logic inputs “1”, i.e. Identity, in the truth 

table are encoded with 𝐵𝐶+, allowing CS diffusion only if the input is present. On the 

contrary, logic inputs “0”, i.e. Not, are encoded in 𝐵𝐶−, allowing CS diffusion only when 

the input is absent. The output of the device is obtained by the combination of the CS 

flow from the different branches, i.e. Σ operator, encoded by placing a single CC dot 

within the branch intersection. 

 

Figure 3.12 Multi-branch approximation for logic computation. a) Three-input one-output logic 

computation represented in a truth table. All input combinations with a 1 as an output, i.e. mindterms, are 

highlighted in different colours. b) Karnaugh map of the three-input one-output logic function. Within a 

group, firstly, for each square, the combination of inputs is obtained. Then, only the non-changing inputs 

are considered to the final minimized Boolean function. c) General multi-branch topology for implementing 

complex logic computations based on a transistor-like topology. In each branch, a multi-base transistor 
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module is placed and the CS signal is collected in the middle of the branches. The blue circle represents EC 

whereas the green circle corresponds to CC. The white-bands correspond to the modulatory BC. 

 

The multi-branch approach allows scaling-up computational complexity without 

incrementing device complexity. The number of accessible functions has been analysed 

with respect to the elements of the multi-branch approach, i.e. branches and modulatory 

BC. For circuits responding to N inputs the maximum size of the modulatory BC library 

is 2·N, i.e. two types of modulatory elements: 𝐵𝐶+ and 𝐵𝐶− for each input, and the 

maximum number of branches is 2𝑁−1, i.e. using the Karnaugh map minimization from 

Figure 3.12b, corresponds to the number of groups in the case of no adjacent squares 

containing a “1”.  

 

Figure 3.13 shows the analysis of the number of accessible functions for 2-,3- and 4-input 

logic gates. The number of accessible functions is significantly larger than the topological 

complexity determined in terms of the number of branches. The maximum number of 

functions for a given number of inputs N corresponds to 22
𝑁

. For instance, the multi-

branch topology limits the maximum number of BC per branch to the number of 

detectable inputs, i.e. 2 BC for 2-input logic gates, 3 BC for 3-inputs logic gates or 4 BC 

for 4-inputs logic gates. Besides, in the worst scenario, up to 22
4
 functions can be 

implemented with 8 branches and 4 modulatory BC per branch.  

 

Figure 3.13 Relationship between the number of logic functions and topological complexity. a) 

Number of branches for two-input logic functions. b) Number of branches for three-input logic functions. 

c) Number of branches for four-input logic functions.
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3.7 Experimental validation of two-inputs multi-branch topology 

 

To experimentally validate the multi-branch topology approach, we have implemented a 

set of logic gates using the characterized transistor-like modules from section 3.5. For 

instance, some examples for two-inputs one-output logic gates have been experimentally 

implemented. Experimental results, in Figure 3.14, display the ratio of GFP/RFP relative 

to its maximum value, which corresponds to the CC response in the absence of 

modulatory elements between EC and CC cells. 

 

The Identity gate is accomplished by the positive modulatory BC, i.e. 𝐵𝐶+, and the NOT 

gate with the negative modulatory BC, i.e. 𝐵𝐶−. Therefore, a single branch with the BC 

placed in a band manner codifies both logic gates. Figure 3.14a-b show the experimental 

results of the Identity gates for two different inputs. Figure 3.14c-d show the experimental 

results for the NOT gates.  

 

For two-input logic gates the coexistence of two or more modulatory BC is required. The 

minimized Boolean function of the AND gate denotes the logic product of the Identity 

inputs (f= ara · aTc). Hence, it is implemented in a single branch with the two positive 

modulatory elements, each one responding to the two different external inputs, in 

consecutive bands after the EC (Figure 3.14e). The minimized Boolean function of the OR 

gate accounts for the Identity combination of both input signals (f= ara + aTc). Therefore, 

it is implemented in two branches, in one branch is placed the positive modulatory 

element for ara input, and in the other branch the positive modulatory element for aTc 

input (Figure 3.14f). 
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Figure 3.14 Experimental implementation of logic gates based on the multi-branch approach. For 

each logic gate the experimental setup containing the relative geometrical position and the experimental 

results are shown. Input signals were streaked into the 2D surface according to [ara+] = 0.1 mM, [ara-] =0 
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M, [aTc +] = 1.2 M and [aTc-] =0 M. 0.5µL of cellular inks were deposited as depicted in each specific 

geometric topology. The blue circle represents EC whereas the green circle corresponds to CC. The 

coloured-bands correspond to the modulatory BC. Circuits were incubated for 24h at 37ºC and fluorescence 

levels were obtained from the surface scan. Average fluorescent measurements of the CC cellular ink dot 

were obtained using Matlab image analysis. Normalized GFP values were obtained according to section 

3.9.6. Data are shown as means ± SD from three independent experiments. a) aTc ID gate with 𝑎𝑇𝑐+. b) 

aTc NOT gate with 𝑎𝑇𝑐−. c) ara ID gate with 𝑎𝑟𝑎+. d) ara NOT gate with 𝑎𝑟𝑎−  . e) ara and aTc AND gate 

with 𝑎𝑇𝑐+and 𝑎𝑟𝑎+. f) ara and aTc OR logic with 𝑎𝑇𝑐+and 𝑎𝑟𝑎+. 

 

3.8 Discussion  

 

Implementing transistor-like elements allows to encode computation in a unique and 

diffusible signal, i.e. Carrier Signal, avoiding the so-called wiring problem accounting 

for the inherent cross-talk when using several chemical wires [Canton et al., 2008; Macía 

et al., 2012]. Depositing different cell types in separated spatial locations avoids negative 

growth competition effects which have revealed to challenge device stability and 

reproducibility [Tamsir et al., 2011]. Thanks to the use of 2D surface the Carrier Signal 

encoded into 3OC6HSL molecules can diffuse, be modified and collected. Moreover, 

3OC6HSL flow modulations by the presence of external inputs allowed to perform logic 

computations. The translation of computational complexity from genetic complexity to 

geometric complexity, much easier to implement, is undoubtedly one of the highlights of 

this new methodology. Although the present work has been dedicated towards digital 

computation, the ability of external signals to tune 3OC6HSL in a continuous manner 

opens the door towards analogic computation. Furthermore, inspiration gained from 

printed electronics permits the design and implementation of an automated cellular ink 

deposition hypothesising, for instance, the use of 3D printers [Balasubramanian et al., 

2019; Pan et al., 2019; Schaffner et al., 2017]. 

 

The multi-branch topology based on transistor-like modules permits to systematically 

implement devices performing logic computations. In detail, we have validated our 

approach by designing and building some two-input logic gates. Therefore, we have 

experimentally demonstrated that modifying the transistor-module geometry functions 
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involving one or two branches with either one or two modulatory BC per branch could be 

built. 

 

Although the present approach encompasses a novel design framework of digital circuits 

and further hypothesized analogue, some concerns regarding scalability must be 

mentioned. CS flow modulation by external inputs has been accurately chosen for 

optimizing output response. However, envisioning the use of application-driven inputs 

must demand a prior characterization of modulatory elements in order to properly select 

geometrical distances. For instance, a mathematical formalization of 3OC6HSL 

degradation by aiiA together with its relative levels characterization exploiting relative 

promoter strength [Kelly et al., 2009] would enable to fine-tune geometrical setup, i.e. 

distances and volumes. Further work should be devoted within that line for the 

improvement of the experimental setup of the multi-branch approach. 

 

Furthermore, besides our system has been implemented for four modulatory elements, 

using two input signals, future work should be devoted to scaling towards more inputs 

and its experimental validation. It is evident, that device output must be selected 

according to the intended function. Engineered fluorescent proteins with fast-maturation 

[Pédelacq et al., 2006; Shcherbakova et al., 2012] or degradation tags [Andersen et al., 

1998] would be explored for optimizing time-scale resolution. Despite there are so many 

questions to address our results suggest that the potential of this new methodology for 

creating cellular devices is enormous. 

 

 

  



3.9  Methodology 

 

 

95 

3.9 Methodology 

 

3.9.1  Strains, media and growth conditions 

 

Top10 E. coli strain was used for cloning and expression experiments (F- mcrA Δ(mrr-

hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 nupG recA1 araD139 Δ(ara-leu)7697 galE15 

galK16 rpsL(StrR) endA1 λ-). Construct containing TetR promoter were expressed in 

ZN1 strain (LacIq PN25-tetR SpR F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 (NacR) 

deoR nupG Φ80dlacZΔM15 Δ(lacZYA-argF) U169, hsdR17(rK- mK+), λ-), containing 

the constitutively expression of TetR negative regulator. 

 

E. coli were grown in Lysogeny Broth (LB) at 37 ºC and selected with the appropriate 

antibiotics corresponding to the transformed plasmid. Antibiotics were purchased from 

Sigma and used at the following concentration: chloramphenicol: 35 𝜇g/ml, ampicillin: 

50µg/ml.  

 

Bacterial strains were preserved in LB glycerol 20% (v/v) at −80 ºC. Single colonies 

obtained from streaked glycerol stocks were inoculated and the cells were grown 

overnight at 37 ºC with shaking (200 revolutions per minute (rpm)). Overnight cultures 

were diluted into fresh LB (1/100 dilution) and grown for 5 hours until reaching an 

exponential OD of 0.3.  

 

3.9.2  Cellular inks 

 

Thickener solution containing Lysogeny Broth (Sigma Aldrich, USA) with 3% agar 

(Sigma Aldrich, USA) was boiled for solution dissolving. After cooling ~50 ºC, properly 

antibiotic selection and cell cultures were added to obtain each cellular ink according to 

the cell library in Table 3.2. 

 

• Modulatory Base cells cellular ink was obtained from mixing 2 parts of cell 

culture with 1 part of the thickener solution. 
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• Emitter cells cellular ink was obtained from mixing 1 part of cell culture with 1 

part of the thickener solution. 

• Collector cells cellular ink was obtained from mixing 1 part of cell culture with 1 

part of the thickener solution. 

 

0,5 µL of each cell-type cellular ink was deposited in the 2D surface according to the 

different topologies allowing computation. 

 

3.9.3  2D Surface 

 

Experiments were performed in petri dishes (Nunc, ThermoFisher Scientific, USA) 

pouring 20 ml of LB broth with 1,5 % agar (Sigma Aldrich, USA) supplemented with the 

antibiotic and the appropriate inducers before depositing the paper strips to print the 

circuit. The support-based paper was Discovery A4 white paper with 75g/m2 rigidity and 

80 g/m2 opacity. 

 

For inducers arabinose (L-(+)-Arabinose 98%, Sigma Aldrich, USA) and aTc (N 

Anhydrotetracycline 98%; Cayman Chemical Company, USA) were used.  

 

For Collector Cell synthetic 3OC6HSL (N-[-ketocaproyl]-L-homoserine lactone; 

Cayman Chemical Company, USA). 

 

3.9.4  Molecular cloning and parts 

 

Construction of the genetic sensors by cloning was carried out using the Biobrick 

assembly method and parts from the Spring 2018 iGEM distribution 

(http://parts.igem.org). DNA sequences are detailed in Table A. 3. 

  

http://parts.igem.org)/
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Name Part Registry Code Plasmid 

Terminator BBa_B0014 pSB1C3 

Medium RBS BBa_B0032 pSB1C3 

Constitutive promoter 1 BBa_J23100 pSB1C3 

Constitutive promoter 2 BBa_J23105 pSB1C3 

aTC- inducible promoter BBa_R0040 pSB1C3 

Arabinose-inducible promoter BBa_I0050 pSB1C3 

pLac-inducible promoter BBa_R0011 pSB1C3 

LacI protein BBa_C0012 pSB1C3 

aiiA synthetase BBa_C0060 pSB1C3 

LuxI BBa_C0061 pSB1C3 

LuxR receptor protein BBa_R0060 pSB1C3 

Lux inducible promoter BBa_R0061 pSB1C3 

Red Fluorescent Protein BBa_E1010 pSB1C3 

Green Fluorescent Protein BBa_E0040 pSB1C3 

Table 3.1 Biobricks used in this study. 

 

3.9.5  Cell library  

 

In this case study, a transistor-like architecture is designed so three main elements 

mimicking transistor’s emitter, base and collector have to be implemented, each of them 

being embedded in a different biological engineered construct. All the constructs 

analysed in this chapter were built by combining the genetic parts described in Table 3.1 

using 3A assembly. Table 3.2 shows the genetic structures of the different constructs. 

Biobrick cloning was performed using an assembly kit (Ginkgo Bioworks, USA). All 

constructs were included in the Biobricks high copy number plasmid (pSB1AC3) and 

were transformed using a chemical method. Sanger sequencing confirmed all genetic 

constructs. Plasmid maps are detailed in Table A. 4. 
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Construct Genetic Structure Strain 

 Emitter Cell  

 

 

 

 

B0014 + PTET + B0032 + C0061 

B0014 + J23105 + B0032 + E1010 + B0014 
Top10 

 Base Cells  

 

 

 

 

B0014 + R0040 + B0032 + C0060 

B0014 + J23105 + B0032 + E1010 + B0014 
Zn1 

 

B0014 + I0050 + B0032 + C0060 

B0014 + J23105 + B0032 + E1010 + B0014 
Top10 

 

 

 

 

B0014 + R0040 + B0032 + C0012 

+ B0014+ R0011 + B0032 + C0060 

B0014 + J23105 + B0032 + E1010 + B0014 

Zn1 

 

B0014 + I0050 + B0032+ C0012 

+ B0014+ R0011 + B0032 + C0060 

B0014 + J23105 + B0032 + E1010 + B0014 

Top10 

 Collector Cell  

Promoter

LuxI

RBS32

Promoter

Aiia

RBS32

RBS32
RBS32

LacI

Promoter Lacpromoter

Aiia

EC 

ATC 

- 

ARA 

- 

ATC

+ 

ARA 

+ 
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B0014 + J23100 + B0034 + C0061 

+ B0014 + R0061 + B0033 + E0040 

B0014 + J23105 + B0032 + E1010 + B0014 

Top10 

Table 3.2 Tranasistor-like modules genetic constructs. 

 

3.9.6  Fluorescence assays for gene expression determination 

 

Cellular growth was monitored by means of a constitutively RFP expression whereas 

circuit output gene expression was monitored by quantification of GFP expression levels. 

The bacterial cultures were incubated and induced on a Synergy MX microplate reader 

(BioTek Instruments, USA). RFP and GFP surface scan measurements were obtained 

after the incubation of the different circuits at 37 ºC. Conditions for fluorescence 

measurements of the red fluorescent protein (RFP) were: excitation: 578∓9 nm, emission: 

616∓9 nm, with a gain of 50.  

 

GFP and RFP measurement data were analysed by a self-customized Matlab analysis 

toolbox. A 21x21 grid was obtained from Synergy MX microplate reader surface scan. 

Normalized GFP measurements were obtained from the region comprising the first and 

second CC cellular inks, i.e. 7x3 pixels. Blank correction, i.e. CC cellular ink without EC 

nor BC cellular inks, was performed after cellular growth correction. GFP was computed 

accordingly to Eq. 3.4. 

 

Φ =  
< 𝐺𝐹𝑃 (𝑆) >  − < 𝐺𝐹𝑃(𝐵) >

< 𝑅𝐹𝑃 (𝑆) >  − < 𝑅𝐹𝑃(𝐵) >
 Eq. 3.4 

 

<GFP(S)> and <RFP(S)> represent the surface mean of the grid containing the CC 

cellular inks, whereas <GFP(B)> and <RFP(B)> stands for the mean of the blank region. 

 

RBS30
RBS34

LuxR

Promoter Luxpromoter

GFP

CC 
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Figure 3.15 summarizes the procedure for obtaining 𝛷 measurements. Figure 3.15a is the 

sketched pattern representing an experimental setup from the abovementioned 

experiments. Figure 3.15b-c are the result of the Synergy MX microplate reader surface 

scan for RFP and GFP, respectively. Figure 3.15d-e represent horizontal average data 

along the y-axis of three individual experiments after blank correction, as well as the 

mean and the std. Figure 3.15 shows the RFP normalized measurement along y-axis. Red-

dashed lines depict positional information of the first two CC cellular inks dots. Within 

this region, final GFP measurement was obtained from GFP average data. For modulatory 

elements characterization, GFP/RFP relative levels are calculated. The geometrical 

topology described in Figure 3.10, where no modulatory bands are placed between CS and 

CC, is described as the experimental positive control. In this scenario, CC receives the 

maximum CS signal. Subsequent analysis on CS modulations, by means of either positive 

or negative modulatory BC cells, is described as relative GFP/RFP. 

 

Figure 3.15 Graphical representation of the 𝜱 measurements obtained from the fluorescence surface 

scan. a) Paper strip experimental setup of transistor-like computation. b) RFP scan measurement of the 

whole paper strip, represented with Matlab software. c) GFP scan measurement of the whole paper strip, 

represented with Matlab software. d) RFP measurement representation along the y-axis (mm). e) GFP 

measurement representation along y-axis (mm). f) 𝛷 from Eq. 3.4 representation along the y-axis (mm).
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Living devices with time-dependent responses: 

Plug-and-play multicellular circuits with time-dependent dynamic responses 
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Working on the design and construction of living biomedical devices claims on the study 

and analysis of extracellular signal detection followed by signal integration to perform 

desired responses. Therefore, this chapter focuses on how sensed signals can be integrated 

to produce non-trivial responses for a desired biomedical application, i.e. Diabetes 

Mellitus. S. cerevisiae was used as proof-of-concept to analyse how a proper 

configuration of multicellular circuits allow to tune its response along with the 

introduction of analogue complex responses.  

 

Dr. Javier Macia and I have done this work in collaboration with the Cell Signalling 

Research Group (Arturo Urrios, David Canadell, Francesc Posas and Eulalia de Nadal) 

as a part of the research project “Distributed computation applications in biological 

systems for the study and application in Diabetes Mellitus” funded by Centre per a la 

Innovació de la Diabetis Infantil (CIDI) - Fundació Sant Joan de Déu (2012-2017) and 

MINECO (2015-2017) “Aproximaciones desde la biología de sistemas y sistémica en el 

diseño de circuitos celulares para la homeostasis de la glucemia en diabéticos”. 

 

Particularly, the theoretical framework design, mathematical modelling and theoretical 

analysis of device tunable response were developed by Dr. Javier Macia and myself. 

Cellular engineering, the experimental implementation and data analysis was developed 

in the Cell Signalling Research Group. As a result, the research main achievements 

described in this chapter have been published in [Urrios & Gonzalez-Flo et al., 2018]. 
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4 LIVING BIOMEDICAL DEVICE WITH TIME-DEPENDENT 

RESPONSES 

 

4.1 Analogue responses for biomedical applications 

 

Synthetic biology studies have the potential to create biologically engineered devices 

for a wide range of applications. In general, biological devices rely on a synthetic genetic 

circuit composed of basic heterologous control components that fine-tune transgene 

expression in response to particular exogenous or endogenous signals [Nandagopal & 

Elowitz, 2011]. Up until now, we have explored the ability of engineered living devices 

to use the intrinsic cellular machinery to sense extracellular signals, and how we can apply 

genetic engineering to tune its activation threshold and dynamic range. Particularly, 

modifying the activation threshold of a specific cellular sensor opens the door on the 

design of application-driven biosensors with pre-defined operating ranges. Therefore, 

allowing to hypothesize the development of new and more efficient alternative treatments 

for health problems [Folcher & Fussenegger, 2012; Warren C. Ruder, Ting Lu, 2011; W. 

Weber & Fussenegger, 2012] and to re-design the field of biomedical devices and 

theranostics. The emergence of living technologies combining both cells and 

electromechanical devices are projected to overcome the current detection limitations. 

Relevant is the use of cellular sensors to detect pathological biomarkers putting the 

manifest the design of novel biomedical devices able to detect biological substrates. In 

that line, integrating sensorial information from one or diverse biomarkers could help on 

the diagnose and treatment of complex diseases. Putting efforts on designing cellular 

devices with the ability to integrate extracellular information in a logical fashion ease to 

speculate its use for diagnosis. Relevant is the need to identify the cellular machinery 

responsible for extracellular signal detection and couple biosensor design together with 

engineered cellular computation capabilities. Consequently, devices intended for disease 

diagnosis or follow-up should be engineered to depict a readable, standard, and 

quantifiable output. On the other hand, if a device application has been envisaged to treat 

a particular disease, the accurate selection of the output molecule, e.g. hormone, drug, or 

enzyme, should be addressed.  
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However, medical applications require complex responses that occur with high precision 

and specific analogue dynamics and that have a predictable logic in response to external 

or internal signals. As a consequence, the building of high-order networks, including 

sequential [Kramer et al., 2005] or feedback control systems [Tigges et al., 2010; 

Tsimring et al., 2010], is still a major challenge in synthetic biology due to the emergence 

of additional constraints associated with the complexity of genetic circuits that 

compromise their viability [Kwok, 2010]. Concerning society-driven applications claims 

for the need for fine-tuning graded responses and puts in manifest the lack of developed 

tools for the rational design of circuits implementing analogue computations [Daniel et 

al., 2013; Purcell & Lu, 2014].  

 

An alternative to the use of single cell circuits for biological computation is the use of 

multicellular consortia. Computation based on multicellular devices has revealed to be 

extremely useful for implementing complex logic circuits [Macía et al., 2012; Regot et 

al., 2011; Tamsir et al., 2011]. However, this approach has not been systematically 

applied either in analogue nor time-dependent circuits. The development of cellular 

devices envisioned for biomedical applications is still in the early development phase. 

Besides the selection of the physiological signals encoding both input and output, efforts 

should be done in identifying the proper device dynamics for a particular application. 

Hence, limiting the scalability of such devices. As a particular case of study, we would 

highlight the dynamics of insulin secretion for glycaemia regulation in healthy subjects. 

Physiological blood glucose levels are maintained within a normoglycaemia range by the 

secretion of insulin, at high glucose levels, or glucagon, at low ones [Association, 2010]. 

Indeed, the secretion of the insulin hormone is governed by a pulsatile temporal dynamics 

[Nan-Kuang Yau & Liang-Wey Chang, 1995; Polonsky et al., 1988; S. H. Song et al., 

2002]. Thus, a device able to detect extracellular glucose levels and secrete insulin 

hormones could potentially be applied for glucose homeostasis maintenance in diabetic 

patients [Callejas et al., 2013; Xie et al., 2017; Ye et al., 2011]. However, since glucose 

homeostasis demands a fine-tune control of blood glucose levels, i.e. blood glucose levels 

should be maintained between a narrow range to avoid severe health problems [Kalra et 

al., 2013], device dynamics should offer tight control of insulin secretion in terms of 

device operating range and sensitivity.



4.2 Objectives 

 

 

105 

4.2 Objectives 

 

 

We aim to design and build multicellular devices performing complex dynamic 

responses using physiologic-based signals, e.g. glucose. 

 

 

The specific objectives addressed within this section are: 

 

• Design a sensor layer able to discriminate between low and high glucose 

concentrations and an effector layer expressing and secreting hormones enabling 

the restoration of glycaemia, i.e. insulin and glucagon. 

 

• Design a modulator layer enabling the modulation of the output to perform 

analogue response.
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4.3 The use of hexose transporter promoters serves to create cells able 

to detect and respond to different extracellular glucose levels.  

 

Glycaemia regulation in healthy mammalian organisms relies on the balance between 

insulin and glucagon secretion in response to different glucose levels. To mimic this 

natural behaviour in a multicellular synthetic device, we considered two minimal circuits, 

one responsible for insulin secretion and the other for glucagon secretion. Therefore, each 

multicellular device, represented in Figure 4.1, has i) a sensor layer comprising the sensor 

cells detecting different glucose ranges and secreting a wiring molecule, ii) effector cells 

that produce a glucose-balancer output, i.e. insulin or glucagon, in response to the wiring 

molecule and iii) modulator cell that in response to an external signal modify the 

communication between sensor and effector cells by altering the levels of the wiring 

molecule.  

 

Figure 4.1 Schematically representation of the multicellular device comprising three layers. Cells in 

the Sensor Layer (SL) detect extracellular glucose levels and respond by secreting a wiring molecule. The 

Modulatory Layer (ML) is comprised by a cell type that secrets a protease that degrades the wiring 

molecule, which is finally collected in the Effector Layer (EL), that in response to the wiring molecule 

secretes glucagon or insulin accordingly. 
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For the experimental implementation of our devices, we have used Saccharomyces 

cerevisiae as a model organism, because yeast is an excellent workbench to explore 

different theoretical designs. Particularly, the S. cerevisiae pheromone pathway was 

manipulated to establish the connection between layers [Macia et al., 2016; Regot et al., 

2011]. Yeast can reproduce sexually through a signalling pathway. Following this 

process, two haploid cells combine to form a diploid cell. Yeast secretes to the 

extracellular environment signal molecules, i.e. pheromones a and , attracting them to 

their mates, which in turn are able to detect the mating signals and activate a signalling 

pathway cascade, which ends in the activation of mating genes and cell cycle arrest 

[Bardwell, 2005]. Figure 4.2 represents schematically the different signalling cascade 

proteins involved in the activation of the FUS1 promoter (PFUS1) under the presence of -

factor. In detail, downstream PFUS1 genes would be expressed in the presence of mating 

-factor pheromone [Macia et al., 2016; Regot et al., 2011]. 

 

Figure 4.2 α-factor pheromone pathway. Mating pheromone-induced cell cycle arrest in budding yeast 

is mediated by the FUS3 MAP kinase pathway. Pheromone binding to its cognate seven transmembrane 

receptor promotes the activation of the mating response MAP kinase cascade via the STE2 protein kinase. 
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Subsequently, nuclear translocation of the MAP kinase FUS3 facilitates the expression of the FUS1 

promoter. 

 

To build a set of sensor cells that respond to a range of glucose levels, the natural 

capabilities of yeast to sense environmental glucose levels and to adjust the expression of 

genes encoding hexose transporters (HXT) to maximize glucose uptake was exploited [J. 

H. Kim et al., 2013; Özcan & Johnston, 1999]. Several genetic constructs were built in 

which the expression of the pheromone α-factor from S. cerevisiae (αSc) was under the 

control of different HXT promoters, i.e. HXT1, HXT2, HXT3, HXT4 and HXT7. This αSc is 

the wiring molecule that permits communication between different cells in the consortia 

(Figure 4.3a). Different strains containing the HXT promoters upstream the αSc sequence 

were engineered, therefore αSc could be secreted in response to different glucose 

concentrations. Detailed cellular genotypes are related in Table 4.3. The αSc level was 

indirectly quantified using a reporter cell that sensed αSc and subsequently expressed a 

green fluorescent protein (GFP) under the control of the pheromone inducible FUS1 

promoter, the αSc-reporter cell, i.e. cell αSc:GFP from Table 4.3. Figure 4.3a shows the 

αSc-reporter cell relationship between synthetic αSc and GFP signal for an incubation 

time of 4 hours. 

 

Cells containing the engineered HXT promoters fused to αSc synthetic constructs were 

incubated together with αSc-reporter cells in the presence of several extracellular glucose 

levels for 4 hours to ensure a robust GFP signal. GFP fluorescence was then analysed 

using flow cytometry. Experimental results shown in Figure 4.3b indicate that cells 

containing the HXT1 construct increase the production of αSc in response to an increase 

in glucose levels, behaving as a high glucose sensor, which would be designated as an 

Identity logic. On the other hand, cells containing HXT3 display αSc production that was 

independent of the extracellular glucose levels. In contrast, cells containing either HXT2, 

HXT4 or HXT7 act as glucose repressible systems, since αSc production is repressed in 

response to an increase in the concentration of glucose following a NOT logic. Therefore, 

engineered cells with HXT1 and HXT7 were designated as the in vivo glucose sensors able 

to discriminate between high and low glucose levels.  
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To improve the efficiency of the glucose sensors two copies of the construct containing 

the HXT promoter with the αSc sequence were introduced into each cell. Therefore, 

obtaining two Sensor Layer cells corresponding to the HIGH-glucose sensor cell i.e. cell 

HXT1::αSc from Table 4.3, and the LOW-glucose sensor cell, i.e. cell HXT7::αSc from 

Table 4.3. Then, secretion of the wiring molecule by the new HIGH and LOW -glucose 

sensor cells was assessed by incubating them in the presence of different glucose levels 

together with the αSc-reporter cells for 4 hours. Figure 4.3c shows the transfer function 

relating the levels of the output GFP fluorescent with glucose levels. 

 

Figure 4.3 Design and characterization of glucose sensor cells. a) αSc-reporter cells were incubated 

with different concentrations of αSc, i.e. 0.01, 0.1, 0.5, 1, 2, 5, 10, or 20 nM, for 4 h. GFP fluorescence 

(a.u.) was then analysed using flow cytometry. Dots correspond to experimental values. The error bars 
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shown in the figures are the standard deviation of three independent experiments. b) MATα W303 cells 

were modified to express αSc under the control of different HXT promoters: HXT1, HXT2, HXT3, HXT4 and 

HXT7. Cells were incubated together with αSc-reporter cells with a cellular proportion of 2:1 for 4 h in 

three different glucose concentrations i.e. 0.5, 2 or 5 g/dL. GFP fluorescence (a.u.) of αSc-reporter cells was 

analysed using flow cytometry. Data are shown as means ± SD from three independent experiments. c) 

HIGH and LOW -glucose sensor cells were incubated together with αSc-reporter cells with a cellular 

proportion of 2:1 for 4 h in the presence of different concentrations of glucose, i.e. 0.1, 0.5, 1, 2, 3 or 5 

g/dL. Black dots correspond to experimental values of the HIGH-glucose sensor cells and white dots 

correspond to experimental values of the LOW-glucose sensor cells. The error bars shown in the figures 

are the standard deviation of three independent experiments.  

 

Additionally, it was tested whether the sensor cells retained memory of previous glucose 

states or not. HIGH and LOW -glucose sensor cells were grown in the presence of 

different glucose concentrations for 2 hours. The cell supernatants were then collected, 

and the cells were washed and incubated with the above different glucose levels again for 

an additional 2 hours. Therefore, αSc-reporter cells were incubated with the cell 

supernatants and GFP-fluorescence was then assessed using flow cytometry. 

Experimental results shown in Figure 4.4 depict that neither of the glucose sensors 

displayed a strong dependence on the previous glucose states although some minor 

differences were observed specially between extreme conditions. Experimental results 

pointed out that αSc production by sensors cells mainly depends on the extracellular 

glucose concentration and not so much on their previous glucose state. Thus, permitting 

the re-engineer use of HXT promoters to create sensor cells responding to different 

glucose levels. 

 



4.3 Results 

 

 

111 

 

Figure 4.4 Design and characterization of glucose sensor cells. a-b) HIGH and LOW -glucose sensor 

cells were incubated in different concentrations of glucose i.e. 0.1, 0.5, 1, 2, 3 or 5 g/dL for 2 h. The cell 

supernatants were collected and cells were washed, re-diluted in fresh media containing the above different 

glucose concentrations and incubated for a further 2 h. After 2 h the cell supernatants were again collected. 

All supernatants were analysed by incubation with αSc-reporter cells for 4 h and subsequent measurement 

of GFP using flow cytometry. Data are shown as mean from three independent experiments. 

 

4.4 Implementation of different minimal circuits to produce hormones 

in a glucose-dependent manner. 

 

To create a circuit able to produce different hormones in response to the presence of the 

wiring molecule from the sensor cells, the Insulin and Glucagon -effector cells were 

engineered by placing under the control of the FUS1 promoter the insulin and glucagon 

genes. To obtain the extracellular secretion of insulin a modified version of an insulin 
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analogue precursor (IAP) with a short C-chain (EWK) fused to the pre-pro-leader 

sequence of α-factor for efficient secretion in yeast [Kjeldsen et al., 2002] was expressed 

under the FUS1 promoter. Analogously, for glucagon expression, glucagon was fused to 

the pre-pro-leader sequence of α-factor. Therefore, obtaining the Insulin-effector cell, i.e. 

αSc:GCG from Table 4.3, and Glucagon-effector cell, i.e. αSc:GCG from Table 4.3. 

 

For their characterization, Insulin and Glucagon -effector cells were incubated with 

different levels of synthetic αSc for 1hour and insulin and glucagon levels in the 

supernatant were then quantified using specific ELISA kits (see Methodology for further 

details). Output levels of insulin and glucagon with respect to synthetic αSc levels are 

shown in Figure 4.5a-b respectively. In the absence of αSc, neither insulin nor glucagon 

was detected, whereas, upon addition of αSc, cells produced and secreted insulin or 

glucagon that accumulated in the media. 

 

Figure 4.5 Characterization of output cells. a) Insulin-effector cells and b) Glucagon-effector cells were 

incubated with different levels of αSc, i.e. 0, 1, 2, 5, or 10 nM for 1 h. Cell supernatants were then collected 

and insulin or glucagon levels were analysed using ELISA. Dots correspond to experimental values. The 

error bars shown in the figures are the standard deviation of three independent experiments. 

 

Moreover, Insulin and Glucagon-effector dynamic response to αSc was analysed 

following a kinetic experiment. Insulin and glucagon accumulation was quantified when 

effector cells were shifted from a media containing the wiring molecule into new media 

without αSc (Figure 4.6). In this setup, glucagon and insulin levels were detectable after 

30 minutes of induction. Furthermore, when shifting from a media without αSc, effector 

cells ceased to secrete insulin or glucagon unless αSc was readed to the medium. Hormone 
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secretion by these cells therefore did not depend on previous exposure to extracellular 

αSc, but depended solely on the presence of currently available extracellular αSc. 

Altogether suggesting that the αSc signal can be transformed into different biological 

outputs depending on the presence of different effector cells in the cell culture.  

 

Figure 4.6 Response of the effector cells in the alternate presence or absence of αSc wiring molecule. 

a) Insulin-effector cells and b) Glucagon-effector cells were exposed to 10 nM of αSc and cell supernatants 

were collected every 30 min over 120 min. Cells were washed, re-diluted and re-incubated for a further 120 

minutes in media without αSc (black bars) or with 10 nM of αSc (white bars). Insulin and glucagon were 

detected in the supernatants using ELISA. Data are shown as means ±SD from three independent 

experiments. 

 

To build a circuit that produces insulin in response to high glucose levels, HIGH-glucose 

sensor cells and Insulin-effector cells were cultured together. Analogously, for glucagon 
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production at low glucose levels, LOW-glucose sensor cells and Glucagon-effector cells 

were combined in a second multicellular consortium (Figure 4.7a). Both consortia were 

independently incubated with different glucose levels for 1 hour, and insulin and 

glucagon production were then measured. Experimental results in Figure 4.7b show the 

relationship between glucose and insulin and glucagon outputs. Interestingly, the HIGH-

glucose-consortium secrets insulin at high glucose levels (>2 g/dL), while glucagon was 

produced at low glucose concentrations (<2 g/dL) with the consortia involving the LOW-

glucose sensor cells. These results indicate that the sensor cell mainly drives the input-

to-output relationship in multicellular consortia whereas the biological output is produced 

by the effector cell. 

 

Figure 4.7 Design and implementation of multicellular consortia for glucose-responsive devices. a) 

Multicellular consortia for glucose-mediated insulin and glucagon production. HIGH-glucose-consortium 

consisted of HIGH-glucose sensor cells incubated together with Insulin-effector cells, using αSc as a wiring 

molecule. Similarly, the LOW-glucose-consortium the LOW-glucose sensor cells with Glucagon-effector 

cells using αSc as a wiring molecule. Simultaneous use of both circuits required physical segregation to 

prevent crosstalk. b) HIGH and LOW-glucose-consortium in a cellular ratio of sensor:effector cells of 2:1 

were exposed to different glucose levels, i.e. 0.1, 0.5, 1, 2, 3 or 5 g/dL, for 1 h. Cell supernatants were 

collected, and secreted hormones were detected using ELISA. Black dots correspond to experimental values 

of the HIGH-glucose consortium and white dots correspond to experimental values of the LOW-glucose 

consortium. The error bars shown in the figures are the standard deviation of three independent 

experiments.  

 

 



4.4 Results 

 

 

115 

While both cellular consortia could produce insulin or glucagon in response to the 

extracellular levels of glucose, the potential application of the cellular devices requires 

their adaptability to constant changes in glucose levels. To assess their dynamic response 

to glucose the consortia were shifted from high to low glucose scenarios several times 

and accumulated insulin and glucagon were measured from the supernatant. Experimental 

results shown in Figure 4.8 depict that both consortia produced insulin or glucagon as 

expected according to the external glucose level, from as early as 30 minutes during a 2 

hours incubation. For each 2 hours incubation, insulin or glucagon production was 

independent of the glucose level of the previous incubation. A small leakiness in the 

HIGH-glucose-consortium during the initial 30 minutes of incubation with low glucose 

was observed. Thus, suggesting the feasibility to implement minimal synthetic circuits 

able to produce hormones in response to fluctuating glucose levels. 

 

Figure 4.8 Design and implementation of multicellular consortia for glucose-responsive devices. Both 

HIGH and LOW- glucose-consortium were initially exposed to 5 g/dL glucose and cell supernatants were 

taken every 30 min for 120 min. The cells were then diluted, shifted to media containing 0.5 g/dL glucose, 

and supernatants were taken every 30 min over a further 120 min incubation. The cells were then diluted 

again, shifted back to medium containing 5 g/dL glucose for another 120 min incubation, and subsequently 

shifted to medium containing 0.5 g/dL glucose for a further 120 min incubation. Supernatant samples were 

taken as above. Hormones in the supernatants were assessed using the corresponding ELISA kit. Data are 

shown as means ± SD from three independent experiments.
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4.5 The affinity and sensitivity of circuits can be tuned by modulating 

extracellular wiring molecule levels 

 

The possibility of tuning device sensitivity and affinity could be extremely useful for 

biomedical applications. In general, fine-tuning involves modification of the properties 

of gene promoters through genetic manipulations [Alper et al., 2005; Bakke et al., 2009; 

Brewster et al., 2012; Nevoigt et al., 2006]. By contrast, in a multicellular approach, 

tuning could be achieved by modulating the total amount of a wiring molecule such as 

αSc in the medium. In the present case, this modulation can be achieved in two ways: i) 

by adjusting the population of sensor cells or ii) by the addition of Bar1Sc, a specific 

protease that degrades αSc [MacKay et al., 1988]. In both cases, additional genetic 

engineering is not required.  

 

To explore these scenarios, we developed a mathematical model that, based on the 

experimental response of each individual cell type, the affinity and sensitivity of the 

device were analysed depending on the cell population and the Bar1Sc concentration. The 

response of our device was analysed with a minimal mathematical model in which the 

internal details of the underlying network of biological responses were not included. 

Since the signalling time scale for external cues is very short compared with that for 

protein production, we applied the rapid equilibrium approach in the mathematical model 

[Ingalls, 2012]. This approach considers a separation of time scales in such a way that the 

fastest process reaches the steady state almost instantaneously compared with the slowest 

process. Based on these assumptions, the production of αSc in response to glucose can be 

described by: 

 

𝑑𝛼𝑆𝑐

𝑑𝑡
=  𝑁𝐻𝑋𝑇 · 𝑓(𝐺) − 𝐾𝐵𝑎𝑟1𝑆𝑐 · 𝐵𝑎𝑟1

𝑆𝑐 · 𝛼𝑆𝑐 − 𝛼𝑆𝑐𝛼𝑆𝑐  Eq. 4.1 

 

where 𝑁𝐻𝑋𝑇 is the population of sensor cells over time and δαSc is the degradation rate of 

αSc, which can be neglected in a 1 hour simulation [Hoffman-Sommer, 2012]. Here, f(G) 

describes the relationship between the rate of αSc production and the glucose 

concentration G, which depends on the specific HXT promoter. Finally, Bar1Sc is the 



4.5 Results 

 

 

117 

concentration of the protease added into the medium that degrades αSc with a kinetic 

constant KBar1Sc= 0.5 𝑠−1 (data from [Jin et al., 2011]). In this model, the general 

expression for f (G) is described by the Hill-like function: 

 

𝑓(𝐺) =  𝛾𝐻𝑋𝑇 · [
1 + (𝛽𝐻𝑋𝑇 · 𝐺)

𝑛𝐻𝑋𝑇

1 + (𝜔𝐻𝑋𝑇 · 𝐺)𝑛𝐻𝑋𝑇
] Eq. 4.2 

 

The parameters 𝛾𝐻𝑋𝑇, 𝛽𝐻𝑋𝑇, 𝜔𝐻𝑋𝑇 and 𝑛𝐻𝑋𝑇 are specific for each promoter type, i.e. 

HXT1 or HXT7. A standard logistic model describes the growth of the cell population. 

However, for short periods, below two doubling times, the logistic growth model can be 

approximated to an exponential model:  

 

𝑑𝑁𝐻𝑋𝑇
𝑑𝑡

=  𝑟𝐻𝑋𝑇 · 𝑁𝐻𝑋𝑇 · (1 −
𝑁𝐻𝑋𝑇
𝐾

) ≈ 𝑟𝐻𝑋𝑇 · 𝑁𝐻𝑋𝑇 Eq. 4.3 

 

with a duplication rate 𝑟𝐻𝑋𝑇. Here 𝑁𝐻𝑋𝑇 is the number of cells and K is the carrying 

capacity.  

 

Introducing Eq. 4.1 and Eq. 4.2 into Eq. 4.3 we obtain the relationship between Glucose 

(G) and αSc defining the HIGH-glucose sensor cell and LOW-glucose sensor cell: 

 

𝑑𝛼𝑆𝑐

𝑑𝑡
=  𝑟𝐻𝑋𝑇 · 𝑁𝐻𝑋𝑇 · 𝛾𝐻𝑋𝑇 · [

1 + (𝛽𝐻𝑋𝑇 · 𝐺)
𝑛𝐻𝑋𝑇

1 + (𝜔𝐻𝑋𝑇 · 𝐺)𝑛𝐻𝑋𝑇
] − 𝐾𝐵𝑎𝑟1𝑆𝑐 · 𝐵𝑎𝑟1

𝑆𝑐 · 𝛼𝑆𝑐 − 𝛼𝑆𝑐𝛼𝑆𝑐 Eq. 4.4 

 

Finally, the production of the output, i.e. insulin or glucagon, is described by:  

 

𝑑𝑋

𝑑𝑡
=  𝑔𝑥(𝛼𝑆𝑐 ) · 𝑁𝑋 Eq. 4.5 

 

where 𝑁𝑋is the population of effector cells producing X (i.e. insulin or glucagon), 

depending on the specific circuit. Similar to sensor cells, effector cells grow according 

to: 
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𝑑𝑁𝑥
𝑑𝑡

 ≈ 𝑟𝑥 · 𝑁𝑥 Eq. 4.6 

 

The g(αSc) function defines the dependence between the ratio of synthesis of the output 

X with respect to the concentration of the wiring molecule (αSc). This function is 

described according to a Hill-like dependence:  

 

𝑔𝑋(𝛼𝑆𝑐) =  𝛾𝑋 · [
1 + (𝜅𝐻𝑋𝑇 · 𝛼𝑆𝑐)

𝑛𝑋

1 + (𝜑𝐻𝑋𝑇 · 𝛼𝑆𝑐)𝑛𝑋
] Eq. 4.7 

 

Introducing Eq. 4.6 and Eq. 4.7 into Eq. 4.5 we obtain the relationship between αSc and 

the output, i.e. insulin or glucagon, defining the Insulin-effector cell and Glucagon-

effector cell: 

 

𝑑𝑋

𝑑𝑡
=  𝑟𝑥 · 𝑁𝑥 · 𝛾𝑋 · [

1 + (𝜅𝐻𝑋𝑇 · 𝛼𝑆𝑐)
𝑛𝑋

1 + (𝜑𝐻𝑋𝑇 · 𝛼𝑆𝑐)𝑛𝑋
] Eq. 4.8 

 

The model parameters were fitted to reproduce the experimental relationship between 

glucose and insulin for the HIGH-glucose-consortium and the relationship between 

glucose and glucagon for the LOW-glucose-consortium. Matlab R2016a least-squares 

analysis software was used for fitting the parameters. Model parameters are depicted in 

Table 4.1 for sensor cells and in Table 4.2 for effector cells. We used the highest output 

expression, i.e. 5 g/dL glucose for the HIGH-glucose-consortium and 0.5 g/dL for the 

LOW-glucose-consortium, as a reference value to calculate the relative output change. 

Relative output expression for both experimental and model fitting are depicted in Figure 

4.9a for both consortia. Furthermore, the fitted mathematical model could predict the 

accumulated insulin and glucagon levels from the abovementioned glucose dynamic 

response from Figure 4.8. Of note, as shown in Figure 4.9b, the model properly predicted 

the accumulation of insulin and glucagon at high and low glucose concentrations, 

respectively. Relative output change was assessed by normalizing by the highest output 

expression. However, these predictions were less accurate for insulin accumulation at 

very low glucose levels possibly due to the threshold of experimental sensitivity.  
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Figure 4.9 Mathematical model fitting. a) The model parameters were fitted to reproduce the 

experimental relationship between glucose concentrations and insulin or glucagon from Figure 4.7. Black 

dots correspond to experimental values of the HIGH-glucose consortium and white dots correspond to 

experimental values of the LOW-glucose consortium. The error bars shown in the figures are the standard 

deviation of three independent experiments. The solid lines are the theoretical results for both circuits. 

Relative output change was calculated by considering the maximum expression of insulin (5 g/dL) and the 

maximum of glucagon (0.5 g/dL) as the reference value for each cellular consortium. Correlation 

coefficients are R2 = 0.98 for insulin and R2 = 0.98 for glucagon fittings. b) Time-course of insulin and 

glucagon accumulation when the circuits were exposed to a high glucose level (5 g/dL) for 120 minutes 

and then shifted to lower glucose (0.5 g/dL) for a further 120 minutes. Black dots correspond to 

experimental values of the HIGH-glucose consortium and white dots correspond to experimental values of 

the LOW-glucose consortium. The error bars shown in the figures are the standard deviation of three 

independent experiments. The solid lines are the mathematical model predictions. Relative output change 

was calculated by considering the maximum expression of insulin and the maximum of glucagon as the 

reference value. 

 

Parameter γ β ω n r KBar1Sc 𝜶𝑺𝒄 

Units (nM/s) (1/nM) (1/nM)  (1/nM) (1/s·nM) (1/s·nM) 

 

5·10−4 1.113 5.4·10−2 1.7 log(2)/90 30 3.3· 10−1 

 

0.1 0 2.78 1.7 log(2)/90 30 3.3· 10−1 

Table 4.1 Model parameters for Sensor Cells. Parameters used to fit the experimental results to Eq. 4.4. 

HIGH 

LOW 
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Parameter γ κ ρ n r 

Units (nM/s) (1/nM) (1/nM)  (1/nM) 

 

0.41 64.03 0.83 0.9 log(2)/90 

 

0.9 10.38 0.93 1.6 log(2)/90 

Table 4.2 Model parameters for Effector Cells. Parameters used to fit the experimental results to Eq. 

4.8.  

 

In order to explore the tunability offered by the cellular consortia and to test the reliability 

of the mathematical model, different circuits containing different ratios of the HIGH-

glucose sensor cells and the Insulin-effector cells (1:1, 2:1 and 4:1, respectively) were 

assessed. Therefore, the parameter N for both sensor and effector cells was adjusted to 

each cellular proportion. Simulations were done in the absence of Bar1Sc. Remarkably, 

the ratio of sensor:effector cells 2:1 was considered as the reference ratio, and percental 

changes in insulin levels relative to this ratio were obtained. Experimental and model 

predictions are shown in Figure 4.10a. The model predictions (solid lines) showed good 

agreement with the experimental data (dots) properly capturing the dynamics. Moreover, 

it was assessed whether insulin production could be altered in the presence of different 

concentrations of Bar1sc protease. In these experimental setup, HIGH-glucose sensor 

cells and Insulin-effector cells were mixed with a ratio of 2:1 and Bar1sc protease was 

added. Both experimental results and model predictions are shown in Figure 4.10b. The 

model predicted the observed reduction in insulin production in the presence of increasing 

amounts of Bar1sc. 

INS 

CGC 
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Figure 4.10 Fine-tune of HIGH-glucose-consortium. a) HIGH-glucose sensor cells were mixed with 

Insulin-effector cells using different proportions of sensor:effector cells 1:1 (black dots), 2:1 (grey dots) or 

4:1 (white dots) and were incubated with different amounts of glucose, i.e. 0.1, 0.5, 1, 2, 3 or 5 g/dL, for 1 

h. Insulin in supernatants was assessed using an ELISA kit. Dots correspond to experimental values. The 

error bars shown in the figures are the standard deviation of three independent experiments. The solid lines 

are the model predictions with correlation coefficients R2= 0.91 for 1:1 circuit, R2= 0.92 for 2:1 circuit and 

R2= 0.92 for 4:1 circuit. Cell proportion of sensor:effector cells 2:1 was considered as the reference value. 

Relative insulin change was obtained by dividing insulin levels by the maximum insulin level in the 2:1 

ratio. b) HIGH-glucose sensor cells were mixed with Insulin-effector cells with a 2:1 ratio in the presence 

of different dilutions of Bar1Sc: 0 (white dots), 1/500 (grey dots) or 1/100 (white dots) and were incubated 

in different glucose concentrations, i.e. 0.1, 0.5, 1, 2, 3 or 5 g/dL, for 1 h. Supernatants were analysed using 

an ELISA kit. Dots correspond to experimental values. The error bars shown in the figures are the standard 

deviation of three independent experiments. The solid lines are the model predictions with correlation 

coefficients R2 = 0.96 for 0 circuit, R2 = 0.83 for 1/500 circuit and R2= 0.81 for 1/100 circuit, respectively. 

Relative insulin change was obtained by dividing insulin levels by the maximum insulin level without 

Bar1Sc. 

 

Modulations in cellular proportion or Bar1Sc protease allow to modify the levels of the 

αSc wiring molecule and therefore would allow to tune the main features of the glucose 

sensor, i.e. sensitivity () and affinity (K0.5). In order to explore how the main features 

can be tuned by the modulation of αSc we simulated multiple consortia configurations 

involving either different cellular proportion ratios or the addition of Bar1Sc protease. To 

control population growth the in silico experiments were performed within a semi-

continuous embodiment [Ed. Malek, 1964]. Every 90 minutes, which approximately 



Chapter 4 

 

 

122 

corresponds to the average cellular doubling time, from experimental results, a volume v 

=Vo /μ was removed from the culture and replaced by the same amount of fresh medium 

with glucose, to maintain the volume (Vo), the extracellular glucose concentration and 

the optical density constants. In the following equation, μ is the dilution fraction:  

 

𝜇 =
𝑂𝐷𝐻𝑋𝑇:𝛼𝑆𝑐 + 𝑂𝐷𝛼𝑆𝑐:𝐼𝑁𝑆
𝑂𝐷𝐻𝑋𝑇:𝛼𝑆𝑐

0 + 𝑂𝐷𝛼𝑆𝑐:𝐼𝑁𝑆
0  Eq. 4.9 

 

where 𝑂𝐷𝐻𝑋𝑇:𝛼𝑆𝑐 and 𝑂𝐷𝛼𝑆𝑐:𝐼𝑁𝑆  are the optical density values measured every 90 

minutes, and 𝑂𝐷𝐻𝑋𝑇:𝛼𝑆𝑐
0  and 𝑂𝐷𝛼𝑆𝑐:𝐼𝑁𝑆

0  are the initial optical densities of each cell type in 

the initial state of the multicellular consortia. The accumulated output was measured after 

each dilution. We then considered multiple combinations of sensor cells and the presence 

of different concentration of Bar1Sc. For each combination, affinity and sensitivity were 

calculated. Circuit’s affinity was determined by calculating the K0.5, the concentration of 

glucose that results in 50% of the maximal insulin accumulation. Circuit’s sensitivity was 

defined as the relationship between the increase in insulin (Ins) and the increase in glucose 

levels (G), i.e. 
𝑑𝐼𝑛𝑠

𝑑𝐺
.  

 

To evaluate the dependence between the sensitivity and the specific multicellular 

configuration of the circuit, a large number of combinations of cellular proportion and 

Bar1Sc were computationally analysed. Simulations were performed over 600 minutes. 

Every 90 min, a volume v of the cellular culture was replaced with the same amount of 

fresh medium containing a similar glucose concentration and different concentrations of 

Bar1Sc. For illustrative purposes, Figure 4.11a shows the evolution of the insulin 

accumulation measured after medium replacement versus time for a given circuit. A 

maximum in insulin accumulation was reached after 600 minutes. Actually, after 600 

minutes, all circuits analysed reached its maximum level of insulin. Interestingly, when 

plotting the maximum accumulated insulin for each specific glucose value a linear 

dependence between glucose and the maximal insulin is observed. As an example, Figure 

4.11b shows this linear dependence for three different consortia configurations. Therefore, 

allowing to characterize the sensitivity of each circuit with a single value, i.e. 
𝑑𝐼𝑛𝑠

𝑑𝐺
. Figure 

4.11c shows the sensitivity with respect to each particular circuit configuration for a large 
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number of cellular proportion and Bar1Sc dilution. Whereas sensitivity increased when 

the circuits contained more sensor cells, the reduction in αSc levels brought about by the 

addition of Bar1Sc generated a dramatic decrease in the sensitivity.  

 

Figure 4.11 Fine-tune of a circuit’s sensitivity. a) Dependence between accumulated insulin and glucose. 

Temporal evolution in a semi-continuous embodiment of accumulated insulin in a circuit 1:1. Insulin values 

were recorded after each dilution. b) Insulin values calculated after 600 minutes at different glucose 

concentrations for three different configurations. Dots correspond to the predicted accumulated insulin and 

the solid line to the linear correlation with a correlation coefficient of R2 (1:1) = 0.997, R2 (2:1) = 0.999 

and R2 (4:1) = 0.995. c) Mathematical prediction of the relationship between the sensitivity of the circuits 

containing different amounts of HIGH-glucose sensor cells and different amounts of Bar1Sc.  
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To determine the affinity of each circuit, we performed the same computational 

simulations in a semi-continuous device during 600 minutes for a larger range of glucose 

concentrations, until reaching the maximal insulin expression levels (Figure 4.12a). The 

affinity of a given circuit can be determined by calculating the K0.5 values, the higher 

affinity, the lower K0.5. For each specific circuit configuration, once the maximum insulin 

levels were reached, the glucose concentration K0.5 was determined. Figure 4.12b shows 

the relationship between K0.5 and the circuit’s configuration. Likewise to the previous 

results, in the absence of Bar1Sc, the affinity increased with an increase in the number of 

sensor cells. However, upon addition of Bar1Sc a smooth transition toward lower 

affinities, i.e. a higher K0.5, was observed.  

 

Figure 4.12 Fine-tune of a circuit’s affinity. a) Transfer function of accumulated insulin. Computational 

determination of the transfer function of accumulated insulin versus a large range of glucose with the 

consortia configurations. b) Mathematical prediction of the relationship between the K0.5 values of the 

circuits containing different amounts of HIGH-glucose sensor cells and different amounts of Bar1Sc. 

4.6 Implementation of a time-dependent single pulse behaviour by 

multicellular consortia.  

 

A multicellular approach allows the adjustment of different sensor main features without 

additional genetic manipulation. However, our simple design using only two cell types, 

i.e. sensor and effector cells, cannot generate time-dependent responses that are of interest 

to many potential applications. We, therefore, explored the ability of multicellular devices 
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to perform time-dependent responses, and more specifically, to display single pulse 

dynamics. In general, this behaviour plays a fundamental role at the core of many natural 

systems, resulting in time-regulated responses in the cell [Levine et al., 2013]. For 

example, pancreatic hormone secretion, i.e. secretion of insulin and glucagon, exhibits a 

single pulse dynamic [Nan-Kuang Yau & Liang-Wey Chang, 1995; Polonsky et al., 1988; 

S. H. Song et al., 2002]. In order to elucidate whether multicellular devices can mimic 

these natural dynamic responses, we designed a more complex device including a feed-

forward loop. Feed-forward loops (FFL) are recurring topological motifs present in 

biological networks [Balázsi et al., 2005; Milo et al., 2002]. There are different 

configurations of these abundant motifs, which are plastic structures able to implement 

multiple dynamics [Macía et al., 2009; Milo et al., 2002; Widder et al., 2012]. 

Specifically, we implemented a particular type of one of these configurations, the 

canonical three-node Type I Incoherent Feed-forward Loop (I1-FFL) [Mangan et al., 

2006]. This topology involves three nodes; an input, a modulator, and an output node 

(Figure 4.13a) where the input and the modulator nodes directly control the output 

production. In turn, the modulator node is controlled by the input, which introduces an 

additional indirect control of the output. The input directly activates both the output and 

the modulator nodes, while the modulator represses the output.  

 

To implement this feedforward circuit (Figure 4.13b), the input node was composed of 

two different cell types, HIGH-glucose sensor cells and a new cell type that produces the 

α-factor from Candida albicans (αCa) under the HXT1 promoter, HIGH-αCa, i.e. 

HXT1:αCa cell from Table 4.3. The input node composed of HIGH-glucose sensor cells 

and HIGH-αCa cells secretes αSc and αCa simultaneously in response to an increase in 

the presence of extracellular glucose. On one hand, αSc directly induces the synthesis of 

insulin in the output node, activating the Insulin-effector cells, whereas αCa stimulates a 

new cell type that secretes the Bar1Sc protease, the Modulator cell, i.e. αCa:Bar1Sc cell 

from Table 4.3, and thereby inhibits insulin production in the output node.  
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Figure 4.13 Single pulse dynamics in multicellular circuits. a) Schematic diagram of a Type I incoherent 

feed-forward loop motif. The sensor node activates the output node and the modulator node, which in turn 

represses the output node. b) Experimental implementation of a feed-forward circuit. The sensor node was 

implemented by a consortium involving HIGH-glucose sensor cell and HIGH-αCa cells. The output node 

was implemented by the Insulin-effector cell. The modulator node was implemented by the Modulator cell 

type. 

 

Therefore, it was necessary to test and characterize the new cell types: the HIGH-αCa 

and the Modulator cell. The αCa-reporter cell, i.e. cell αCa:GFP from Table 4.3, is a 

reporter cell that when sensing αCa expresses a green fluorescent protein (GFP). Figure 

4.14a shows the αCa-reporter cell relationship between synthetic αCa and GFP signal for 

an incubation time of 4 hours. Moreover, crosstalk between αCa and αSc wiring 

molecules was analysed together with the ability of Bar1Sc degradation upon αCa. Each 

α-factor reporter cell was exposed either to a high concentration of synthetic αSc, αCa, 

or Bar1Sc (Figure 4.14b-c). 

 

Experimental results shown in Figure 4.14b for the αCa-reporter cell depicts that αCa was 

not degraded by Bar1Sc and did not show crosstalk with the αSc-receptor cell whereas, 

in Figure 4.14c, the αSc-reporter cell gets activated with αSc but no with either αCa and 
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αSc + Bar1Sc. Therefore, HIGH-αCa induced the production of αCa in response to an 

increase in extracellular glucose, analysed by HIGH-αCa and αCa-reporter cell. In Figure 

4.14d the relationship between glucose levels and GFP levels by αCa-reporter is shown. 

The modulatory effect on αSc by the Modulator cell, expressing the Bar1Sc protease in 

response to αCa was assessed by culturing the Modulator cell with the αSc-reporter cell 

with a fixed concentration of synthetic αSc and increasing levels of αCa. Figure 4.14e 

shows the modulatory effect of αSc levels via the reduction of the GFP from the αSc-

reporter cell with increasing levels of αCa. 

 

Figure 4.14 Characterization of HIGH-αCa cell type and the Modulator cell. a) αCa-reporter cells were 

incubated with different levels of αCa, i.e. 0.01, 0.1, 0.5, 1, 2, 5, 10 or 20 nM, for 4 h. Mean GFP 

fluorescence (a.u.) of αCa-reporter cells was then analysed using flow cytometry. Dots correspond to 

experimental values. The error bars shown in the figures are the standard deviation of three independent 

experiments. b) αCa-reporter cells were incubated for 4 h with 10 nM of αSc, 10 nM of αCa or a 

combination of 10 nM αCa and an excess concentration of purified Bar1Sc. GFP fluorescence (a.u.) of 

αCa-reporter cells was then analysed using flow cytometry. Data are shown as means ±SD from three 
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independent experiments. c) αSc-reporter cells were incubated for 4 hours with 10 nM of αSc, 10 nM of 

αCa or 10 nM of αSc together with an excess concentration of purified ScBar1Sc. GFP fluorescence (a.u.) 

of αSc-reporter cells was analysed using flow cytometry. Data are shown as means ±SD from three 

independent experiments. d) Transfer function of HIGH-αCa. HIGH-αCa cells were mixed with αCa-

reporter cells and incubated for 4 hours with different glucose concentrations, i.e. 0.1, 0.5, 1, 2, 3 or 5 g/dL, 

GFP fluorescence (a.u.) of αCa-reporter cells was analysed using flow cytometry. Dots correspond to 

experimental values. The error bars shown in the figures are the standard deviation of three independent 

experiments. e) Modulatory cells were mixed with αSc-reporter cells and incubated for 4 h with 10 nM of 

αSc and different levels of αCa, i.e. 0, 1, 2, 5 or 10 nM. GFP fluorescence (a.u.) of αSc-reporter cells was 

analysed using flow cytometry. Dots correspond to experimental values. The error bars shown in the figures 

are the standard deviation of three independent experiments.  

 

Initially, the response of the IFFL device in the absence of the Modulatory cell was tested 

by assaying the production of insulin by the HIGH-glucose sensor cells and Insulin-

effector cells over 9 hours incubation in high glucose in a semi-continuous setup, in which 

the culture was diluted by half every doubling time (Figure 4.15a). The addition of purified 

Bar1Sc, after the first 90 min of incubation, caused a clear decrease in insulin production 

and suggested that a decrease in the extracellular wiring molecule levels generated a 

single pulse response in insulin production. 

 

A remaining question was whether the same effect could be achieved by the production 

of Bar1Sc by an engineered cell within the device. HIGH-glucose sensor cells and 

Insulin-effector cells were mixed with different amounts of Modulatory cells and insulin 

levels were assessed as before. In the absence of extracellular αCa, the circuit responded 

similarly to its response in the absence of Modulatory cells. In contrast, when αCa was 

added after 90 minutes, the insulin levels decreased depending on the number of 

Modulatory cells, indicating that Bar1Sc production by these cells could alter the 

communication between sensor and effector cells, inducing a single pulse response 

(Figure 4.15b).  

 

Finally, the response of the fully assembled synthetic device was evaluated (Figure 4.15c). 

To implement a single pulse behaviour without adding an external modulator (αCa), the 

HIGH-αCa cells, a cell type that produces αCa in response to increased glucose levels, 

was combined with the above-described consortium. To modulate the amplitude of the 
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output response different amounts of HIGH-αCa cells were added. Cells were cultured 

together in high glucose for 9 hours and insulin was quantified. In the presence of lower 

amounts of HIGH-αCa cells, there was a progressive accumulation of insulin over time. 

By contrast, higher concentrations of HIGH-αCa cells led to a single pulse response. 

Therefore, the specific circuit’s configuration determines the total amount, i.e. the dose, 

of insulin produced in response to a physiological signal such as glucose. Of note, an 

excessive induction of the modulator node prevented insulin production possibly caused 

by an excess of the Bar1Sc that degraded αSc. These results showed that multicellular 

consortia can generate complex time-dependent analogue responses. Addition of a 

modulation module that generated delayed production of a repressor completely changed 

the preconfigured response of the circuit from that of a simple behaviour into that of a 

time-dependent circuit with a single pulse behaviour. 
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Figure 4.15 Characterization of different elements in a circuit with a feed forward loop to generate a 

single pulse response. a) HIGH-glucose sensor cells and Insulin-effector cells (in the proportion 2:1) were 

cultured together in 5 g/dL glucose for 9 h. The culture was diluted every doubling time in fresh media 

containing 5 g/dL glucose and cell supernatants were collected. Bar1Sc was added (white dots) or not (black 

dots) after the first 90 min of incubation. The insulin level was assessed using ELISA. Dots correspond to 

experimental values and the error bars shown in the figures are the standard deviation of three independent 

experiments. b) HIGH-glucose sensor cells and Insulin-effector cells were grown with different amounts 

of Modulatory cells (1x to 4x) for 9 h in 5 g/dL glucose. Synthetic αCa (1 μM) was added after 90 min. 

Insulin levels were assessed using ELISA. All these experiments were conducted in a semi-continuous 

setup. Dots correspond to experimental values. The error bars shown in the figures are the standard 

deviation of three independent experiments. c) Single pulse dynamics in multicellular circuits. HIGH-αCa 

cells were mixed in different proportions with HIGH-glucose sensor cells, Insulin-effector cells and 

Modulatory cells in the presence of 5 g/dL of glucose for 9 h. When cells duplicated, the culture was diluted 

with fresh media containing 5 g/dL glucose to maintain a constant optical density. All these experiments 

were conducted in a semi-continuous setup. Insulin in the supernatant was measured using an ELISA kit. 

Dots correspond to experimental values and the error bars shown in the figures are the standard deviation 

of three independent experiments.

 

4.7 Discussion 

 

In this chapter, we addressed how extracellular sensed signals could be integrated to 

produce non-trivial responses for a particular biomedical application. We have designed 

a multicellular embodiment in which each particular layer, represented by different 

engineered cell types, could detect biological signals, discriminate between different 

physiological conditions, and respond according to a non-trivial logic. The experimental 
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implementation carried in Cell Signalling Research Group by engineering S. 

cerevisiae model organism achieved the extracellular glucose discrimination between 

high and low glucose levels, coupled with the production of insulin or glucagon 

accordingly. Moreover, output response was modulated by implementing a device with 

single pulse behaviour. These results reinforce the idea that synthetic biology can offer a 

new framework for the development of in vivo biomedical devices that can complement 

or even substitute devices based on electronic or electro-mechanical technology. Second, 

our results demonstrate that devices based on multicellular consortia are flexible and 

tuneable. Device characteristics, i.e. sensitivity () and affinity (K0.5), can be adjusted 

with the proper modulation of the molecule responsible for the connection between 

layers, without the need for additional cell engineering. Experimental results and the 

development of a mathematical model describing the cellular consortium allow for the in 

silico exploration of the circuit’s main features; demonstrating the tunability of the 

sensitivity and affinity in two different ways: by adjusting the initial concentration of the 

cells involved in the layers, or by the addition of an external biochemical compound that 

degrades the wiring molecule, e.g. Bar1Sc. Thus, the inclusion of an additional cell type 

makes possible to modulate the levels of the wiring molecule and accordingly, the 

behaviour of a circuit. The modularity of our device allowed to re-design it and emulate 

an IFFL motif, that together with the introduction of a temporal-delay in the production 

of Bar1Sc, generates a complex time-dependent analogue response. The implementation 

of single pulse circuits based on FFL architectures allows for the synthesis and release of 

hormones or other molecules of interest in response to physiological signals in a 

predetermined dose. The total dosage released, i.e. the pulse area, is an analogue 

magnitude and can be tuned by properly defining the circuit’s configuration. In our case 

of study, the physiological input was glucose and the hormone released was insulin, but 

this approach can be easily applied to other signal and molecules. Noteworthy is that 

depending on the configuration of the multicellular elements’ device response suffers a 

radical-transformation: from a simple behaviour into that of a time-dependent circuit with 

a single pulse behaviour.  

 

However, when hypothesizing the use of our device for an in vivo application some 

important drawbacks arouse. Remarkably are the activation thresholds of the HXT 
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glucose-promoters defining the thresholds of hyper and hypoglycaemia for yeast model 

organism. Although explored the ability of the multicellular consortia to modify the 

device affinity, i.e. K0.5 parameter, by increasing or diminishing the levels of αSc, 

experimental results are much more above the levels of humans’ hyperglycaemia and 

hypoglycaemia. Another important drawback arouses concerning device stability. 

Although demonstrating the flexibility in the device response occasioned by the different 

cellular proportions of the multicellular consortium components, changes in cellular 

proportion along time, for instance due to negative competition growth effects [Amoyel 

& Bach, 2014; Kwok, 2010], would have a direct effect on device affinity and sensibility. 

Besides the ability of yeast model organism to sense physiological signals, perform non-

trivial responses and secrete, via the pheromone pathway, insulin and glucagon, both 

physiological hormones must be further processed to be fully functional. Future work 

should be devoted to analyse and design the device dynamics considering the 

physiological scenario ensuring the proper detection of the regulable analyte and its 

corresponding output to decipher device characteristics for its optimal response. 

 

4.8 Methodology 

 

4.8.1 Experimental methodology 

 

4.8.1.1 Engineered yeast cell library and cell growth conditions 

 

Yeast W303 cells (ade2−1 his3−11,15 leu2− 3,112 trp1−1 ura3−1 can1−100), complete 

genotype and information of each yeast strain is related in Table 4.3. Cells were grown 

overnight in rich media containing 2 g/dL glucose at 30 °C, and were then spun down and 

resuspended in rich media containing the specific glucose concentration required for each 

experiment. 

 

Sensor layer cells are designed to produce αSc in the presence of different glucose 

concentrations. These cells are MATα yeast cells in which MFα1 and MFα2 α-factor 

mating pheromone genes were deleted to avoid endogenous α-factor expression. The 
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STE3 receptor was also deleted to prevent mating with MATa cells within the circuit. 

The MFα1 gene is expressed the different HTX promoters (pRS406-PHXTX-MFa1). 

 

Modulator layer cells are designed to express the protease Bar1Sc in the presence of 

αSc. These cells are MATa yeast cells in which BAR1 gene was deleted. These cells 

express the S. cerevisiae protease Bar1 under the control of the PFIG1 inducible promoter 

(pRS406-PFIG1-Bar1). Upon addition of αSC these cells secrete the protease Bar1 in the 

media. 

 

Effector layer and Reporter cells are designed to express GFP, insulin or glucagon in 

the presence of αSc or αCa. These cells are MATa yeast cells in which BAR1 and STE2 

genes were deleted. These cells contain GFP, α-insulin or α-glucagon in the FUS1 gene 

locus under its promoter (fus1::GFP-KanMX) for the C. albicans reporter cell pheromone 

receptor (CaSTE2). mCHERRY inserted in the ENO1 locus. Constitutive mCherry 

intensity allows distinguishing these cells from mCherry-negative cells once mixed 

together. 

 

Cell Name Genotype* 

 

Sensor layer 

 

HXT2-Sc 
MATα ste3::HIS3 mfα1::LEU2 mfα2::KanMX  

pRS406-PHXT2-MFα1 

 

HXT3-Sc 
MATα ste3::HIS3 mfα1::LEU2 mfα2::KanMX  

pRS406-PHXT3-MFα1 

 

HXT4-Sc 
MATα ste3::HIS3 mfα1::LEU2 mfα2::KanMX  

pRS406-PHXT4-MFα1 

SL2 

SL3 

SL4 
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HXT1-αSc 

MATα ste3::HIS3 mfα1::LEU2 mfα2::KanMX  

pRS406-PHXT1-MFα1 pRS404-PHXT1-MFα1 ENO1-YFP-

HphNT 

 

HXT7-αSc 
MATα ste3::HIS3 mfα1::LEU2 mfα2::KanMX  

pRS406-PHXT7-MFα1 pRS404-PHXT7-MFα1 

 

HXT1-αCa 
MATα ste3::HIS3 mfα1::LEU2 mfα2::KanMX  

pRS424-PHXT1-CaMFα1 

Modulator layer 

 

Bar1Sc 

MATa bar1::NatNT ste2:: caste2-HphNT far1::LEU2 

pRS406-PFIG1-ScBar1 ENO1-iRFP-KanMX 

Effector layer 

 

αSc-INS 

MATa bar1::NatNT far1::URA3  

pRS404-PFUS1-αINS ENO1-mCHERRY-KanMX 

 

αSc -GCG 
MATa bar1::NatNT far1::URA3  

pRS404-PFUS1-αGCG ENO1-mCHERRY-KanMX 

Reporter cells 

 

αSc-GFP 
MATa bar1::HIS3  

PFUS1 -GFP-KanMX ENO1-mCHERRY-HphNT 

 

αCa-GFP 

MATa bar1::HIS3 ste2::URA3 yIP  

PTDH3-CaSTE2-TRP PFUS1-GFP-KanMX ENO1-mCHERRY-

HphNT 

Table 4.3 Yeast strains used in this study. * Strain background W303 (ade2-1 his3-11,15 leu2-3,112 trp1-

1 ura3-1 can1-100). “:” represent genotype deletions. pRS406 is the URA3 integrative vector and pRS404 

the TRP1 integrative vector. 

HIGH 

LOW 

HIGH 

 Ca 

M 

INS 

CGC 

αSc 

repor

terrer 

αCa 

repor

rer 
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4.8.1.2 Experimental characterization of the engineered cells 

 

Reporter cells were grown to mid-exponential phase, diluted to OD660 = 0.2, and then 

treated with different inputs (synthetic S. cerevisiae α-factor, synthetic C. albicans α-

factor). Samples were incubated for 4 h at 30 °C and analysed using flow cytometry. For 

consortium involving sensor and effector cells both cells were mixed in a media 

containing different glucose concentrations, ranging from 0.5 g/dL to 5 g/dL. Effector 

cells were grown to mid-exponential phase and diluted to an OD660 = 0.1, whereas sensor 

cells were grown at different initial OD660 depending on the specific cellular ratio 

(sensor:effector) of OD660 = 0.1, 0.2 or 0.4.  

 

4.8.1.3 Experimental characterization of IFFL consortia 

 

For the consortia involving sensor and effector cells were grown to mid-exponential 

phase, diluted to OD660 = 0.2 for the HIGH-glucose sensor cell and to OD660 = 0.1 for the 

Insulin-effector cell. Modulatory cell was added in different proportions by diluting its 

OD660 to 0.1, 0.2, 0.3 or 0.4. The final IFFL configuration comprises the HIGH-glucose 

sensor cell diluted to OD660 = 0.2, the Modulatory cell to OD660 = 0.2 and the Insulin 

effector cell to OD660 = 0.1. The HIGH-αCa cell was grown to mid-exponential phase and 

then diluted to OD660 = 1, 0.4, 0.2 or 0.1 for each specific cell ratio. Mixed cells were 

grown for 9h at 30ºC in a media containing high glucose (5 g/dL). Every time cells 

doubled the culture was diluted with fresh media with 5 g/dL of glucose to keep optical 

density constant. 

 

4.8.1.4 Fluorescence measurements using flow cytometry 

 

All of the experiments requiring flow cytometry were analysed as follows: samples were 

diluted in phosphate-buffered saline (PBS) with 1X cyclohexamide and analysed using 

flow cytometry (BD LSRFortessa). A total of 10000 cells were collected from each 

sample. Constitutive mCherry fluorescence (ENO1::mCherry) of αSc-reporter and αCa-

reporter cells was used to differentiate them from other cells in the consortia when mixed. 
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Specific emission in the fluorescence channel was measured versus autofluorescence 

(PerCP-Cy5-5-A channel for GFP and PerCP-Cy7 channel for mCherry). Mean GFP 

fluorescence was calculated using FlowJo software. Data are expressed as mean 

fluorescence (in arbitrary units).  

 

4.8.1.5 Insulin and glucagon production and measurements 

 

Yeast W303 MATa cells were transformed with pRS406-PFUS1-αINS or pRS406-

PFUS1-αGCG. PFUS1-αINS expressed a modified version of an insulin analogue 

precursor (IAP) with a short C-chain (EWK) fused to the pre-pro-leader sequence of α-

factor for efficient secretion in yeast [Bakke et al., 2009; Kjeldsen et al., 2002] under a 

pheromone inducible promoter. PFUS1-αGCG expressed a modified version of glucagon 

fused to the pre-pro-leader sequence of α-factor for efficient secretion in yeast under a 

pheromone inducible promoter. Insulin and glucagon presence in the supernatant of cells 

were quantified using specific ELISA kits. Insulin was measured using the Mercodia Iso-

Insulin ELISA kit according to the manufacturer’s protocol. Glucagon was measured 

using the Mercodia Glucagon ELISA kit) according to the manufacturer’s protocol. 

 

4.8.1.6 Protease purification 

 

Yeast W303 cells were modified to express the S. cerevisiae Bar1 protease gene (Bar1Sc 

in this study) under the control of the GAL1 promoter (pRS406- PGAL1-Bar1Sc). Cells 

were grown overnight in synthetic media containing 2% raffinose and were then diluted 

to OD660 = 0.8 in synthetic media containing 2% galactose to induce protease expression. 

After 4 h incubation, the supernatant was collected and concentrated using 10 kDa 

Centrifugal Filter Units (Amicon Ultra). Filtered products were stored at −20 °C. 

Synthetic Pheromones. The synthetic pheromones C. albicans α-factor mating 

pheromone (GFRLTNFGYFEPG) (αCa) and S. cerevisiae α-factor mating pheromone 

(WHWLQLKPGQPMY) (αSc) were synthesized by the peptide synthesis facility (UPF) 

in free dithiol form. The peptides were diluted in H2O to a final concentration of 3 mM 

and stored at −20 °C. 
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4.8.2 Mathematical modelling methodology 

 

Ordinary Differential Equations (ODEs) describing the HIGH-glucose sensor cell (Eq. 

4.4) and the Insulin-effector cell (Eq. 4.8) with experimental fitted model parameters from 

Table 4.1 and Table 4.2 have been integrating with the Runge–Kutta method order 4 in 

Matlab R2016a software. For sensitivity and affinity analysis predictions have been 

carried in a semi-continous embodiment consisting of a total time of 600 min with media 

replacement according to Eq. 4.9 to maintain the volume (Vo), the extracellular glucose 

concentration and the optical density constants. Cell proportion was modelled considering 

the different Optical Densities of sensor cell in Eq. 4.3 and Bar1Sc dilutions in Eq. 4.1. 
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The aim of this chapter is to in silico explore the potential applicability of cellular devices 

for diseases treatment. In particular, we focused on the effects of implanting engineered 

cellular devices for glycaemia regulation in Type I Diabetic Mellitus patients.  

 

The work presented along this chapter is enclosed in a project from Fundació La Marató 

de TV3 (2017-2020) entitled “Encapsulated Synthetic Cellular Circuits to Restore 

Glycemic Control in Type 1 Diabetes” in which we aim to in vivo treat diabetic mouse 

model with encapsulated cells to restore glycaemia. The project was done in collaboration 

with our group from Universitat Pompeu Fabra in charge of designing and modelling the 

synthetic gene circuits producing insulin hormone, the group of Cell Signalling from 

Institut de Recerca Biomedica de Barcelona in charge of engineering the eukaryotic cells 

and performing the in vitro experiments, the group NanoBioCel from Universidad del 

País Vasco developed the cellular encapsulation and viability analysis of the reconstituted 

cellular implants to be finally implanted in diabetic mouse models in Hospital Sant Joan 

de Déu de Barcelona.  
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5 DECIPHERING LIVING DEVICE CLOSED-LOOP 

PERFORMANCE 

 

5.1 Cellular devices for Diabetes Mellitus treatment 

 

Living biomedical devices can be designed to act as a read-out of a pathophysiologic state 

[Courbet et al., 2015] or as a control device when the output regulates the system input. 

When accounting for physiological regulatory devices, in addition to the internal 

architecture of the living device, i.e. sensor, transducer and, actuator modules, its close-

loop execution must be considered as the fourth module. In chapter 4, we have explored 

the ability of multicellular devices to respond to different glucose levels in an analogue-

mode by secreting insulin or glucagon, mimicking the physiology of glucose regulation 

and the use of these cellular devices has been hypothesized for treating Diabetes Mellitus. 

Physiological glucose levels in healthy subjects are comprised between 140 mg/dL and 

60 mg/dL [Association, 2010], which correspond to the normoglycaemia state. 

Unbalanced glucose levels are defined either being above or below normoglycaemia, i.e. 

hyperglycaemia or hypoglycaemia. Although there are numerous glucose disruptors, in 

particular, food intake, physical exercise or other factors such as stress, sleep or 

hormones, pancreatic cells act as a sensor detecting abnormal blood glucose states and 

secreting the glucose-balancers hormones insulin and glucagon. Insulin acts diminishing 

blood glucose levels by promoting glucose cellular uptake, contrarily glucagon acts 

stimulating glucose release [Nussey S, 2001]. Diabetes mellitus is a disorder caused by 

unbalanced blood glucose levels due to defects in insulin secretion or loss of insulin 

sensibility [Association, 2010]. Diabetes mellitus therapies rely on the external 

administration of insulin hormone and the proper control of food ingestion for balancing 

blood glucose levels. Besides, being insulin therapy the major treatment it has a major 

impact on diabetes mellitus patients’ quality of life. Research lines endeavours -cell islet 

transplantation or stem-cells regeneration [Bouwens et al., 2013; Robertson, 2010; Fan 

Zhang & Tzanakakis, 2019] or the possibility of controlling the patient’s immune system 

to stop the destruction of pancreatic islets [Actobiotics, 2020; Lichtman et al., 2012], but 

accomplishing very little success.  
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Noticeable is the impact of technologies on palliative treatments. Figure 5.1 summarizes 

the advances done in the field of diabetes management. From the very first insulin 

syringes and insulin pump (1960s) to the actual technologies seeking an electro-mechanic 

artificial pancreas.  

 

 Figure 5.1 Historical evolution of diabetes management milestones. Adapted from [Shah et al., 2014]. 

 

The very first discovery of insulin hormone at the beginnings of 1990s together with the 

first blood glucose detectors launched important advances. Despite numerous 

technological advances, diabetic patients’ daily life is still based on monitoring glucose 

levels and having a fine-tune control of insulin injection. The insulin pump has clear 

advantages by the accurate delivery of insulin without the need for injections and had also 

revealed benefits on glucose physiology. However, episodes of severe low 

blood glucose levels [Kalra et al., 2013] are still a major drawback [Karges et al., 2017]. 

Efforts are devoted to the creation of autonomous regulation of blood glucose levels. As 

a result, different strategies seek the development of an artificial device accounting for 

automated insulin secretion. Among all, the electromechanical Artificial Pancreas (AP) 

is leading the research area. An AP is composed of a continuous glucose monitor device, 

a computer algorithm predicting the amount of insulin needed to restore normoglycaemia 

and a pump to inject insulin into the bloodstream. Up to now the FDA has approved the 

very first electromechanical device fully envisioned to act as an artificial pancreas 

[MiniMed 670G System], however, it still relies upon user assessment on insulin delivery. 
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Nevertheless, a very recent clinical trial incorporating a fully closed-loop algorithm [S. 

A. Brown et al., 2019] achieved a 6-month glucose regulation in 112 type 1 diabetes 

mellitus patients with no serious hypoglycaemic events. Despite the numerous advantages 

arising from the AP, the invasiveness of the device (Figure 5.1) accounts for a negative 

impact on patients' life. Patients are concerned about the associated problems of wearing 

and carrying the device components as well as the patient-device interaction through 

catheters. To tackle this need, strategies based on drug delivery or non-invasiveness 

artificial pancreas have been broadly explored based on the use of nanoparticles or using 

synthetic biology approaches. In general, any glucose-stimulated insulin delivery system, 

mimicking β-cells behaviour, should be addressed to ensure an automated closed-loop 

regulation, i.e. without patient supervision, based on i) constant glucose monitoring and 

ii) drug administration, altogether acting in an intelligent closed-loop fashion.  

 

In this context, interesting strategies within the field of nanoparticles, i.e. solid particles 

in the size of nanometres, are based on glucose-responsive materials such as glucose 

oxidase nanoparticles [Duan et al., 2018; Zhao et al., 2016], Concanavalin A protein 

[Bauri et al., 2018; Yin et al., 2011] or Phenylboronic acid (PBA) allowing to obtain 

glucose-sensitive particles due to their versatile chemical structures [Zhao et al., 2013]. 

Specifically, insulin was quickly released from nanoparticles as the glucose concentration 

increased due to conformational changes in the nanoparticle structure. Furthermore, it is 

worth mentioning an intelligent delivery system based on a micron needles patch was 

designed to release insulin in response to the hypoxic microenvironment in a 

hyperglycaemic state [Yu et al., 2015]. Despite showing very promising results, hypoxia 

is a secondary effect from hyperglycaemic state and may occur in non-hyperglycaemic 

scenarios. More sophisticated glucose-regulated insulin device was accomplished by 

synthesized artificial pancreatic β-cells (AβCs) [Z. Chen et al., 2018] by a combination 

of inner small liposomal vesicles (ISVs) and outer large vesicle (OLV). Insulin was 

incorporated in ISVs mimicking the storage granules inside β-cells and under 

hypoglycaemic conditions ISVs fuses OLV triggering insulin exocytosis. All in all, 

nanoparticles strategies account for a rapid release of insulin when high blood glucose 

scenarios are faced, but with a limited insulin cargo. 
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Synthetic biology and more specifically the field of biosensors envisioned glucose 

homeostasis restoration by engineering eukaryotic cells, with the ability to in situ produce 

and secrete glucose-regulator factors. The field has envisioned either the use of 

engineered patients’ cells [Jaén et al., 2017] or laboratory workhorse eukaryotic cells 

[Shao et al., 2017; Xie et al., 2016; Ye et al., 2011]. The very first attempt of genetic 

engineering applied to diabetic dogs accomplished a long-term efficacy, i.e. up to 8 years, 

glycaemia regulation. In this case, a glucokinase protein was constitutively expressed in 

skeletal muscle cells [Jaén et al., 2017]. Else ways, allotransplantation of genetically 

engineered eukaryotic cells, encapsulated in alginate beads and implanted in mice either 

intraperitoneal or subcutaneously, allowed glycaemia regulation. Effectiveness of 

alginate beads microencapsulation has been demonstrated upon a variety of different 

input-signals triggering drug response [Bojar et al., 2018; Shao et al., 2017; Ye et al., 

2011] or by inducing different glucose-modulators, such as glucagon-like peptide-1 

[Bojar et al., 2018; Shao et al., 2017; Ye et al., 2011].  

 

Despite the enormous achievements in glycaemia restoration, in general, most existing 

synthetic biology approaches rely on the genetic transcriptional control of insulin delivery 

and accordingly demand for larger periods for glycaemia regulation. Most of the 

generated cellular devices operated in isolation without any interference with the desired 

application or are programmed responding to external input signals, therefore not 

properly responding to the demanded signals, i.e. glucose concentrations, putting in 

evidence the difficulty of the strategy. Hence, we claim that developing a platform 

enabling the design and test of glucose-regulated insulin production devices in a closed-

loop environment would allow adapting living device performance upon physiological 

needs. The medical application demands for an analogue protein expression dynamic with 

high precision and predictable logic in response to external glucose signals. Therefore, 

devices should offer a fast temporal dynamic emulating the physiological glucose 

homeostasis. These types of devices could potentially be applied for glucose homeostasis 

maintenance in diabetic patients. Indeed, the secretion of these pancreatic hormones is 

governed by pulsatile dynamics [Nan-Kuang Yau & Liang-Wey Chang, 1995; Polonsky 

et al., 1988; S. H. Song et al., 2002] and the development of synthetic devices able to 

mimic this natural behaviour is still a challenge. 
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5.2 Objectives 

 

 

We aim to explore in silico strategies for glycaemia regulation in Type 1 diabetic 

patients using a glucose-insulin simulator. 

 

 

 

The specific objectives addressed in this chapter are: 

 

• Characterize the ability of implanting engineered cellular devices to regulate 

glycaemia in diabetic organisms. 

 

• Design in silico new strategies for glycaemia regulation based of feed-restriction 

patterns. 

 

• Combine implanted cellular devices with feed-restriction patterns. 
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5.3 The virtual organism: Glucose insulin meal simulator 

 

An in silico description of glucose and insulin metabolism would serve as the platform to 

test novel strategies for glycaemia regulation: the virtual organism. In this context, the 

mathematical model developed by Dalla Man et al. [Dalla Man et al., 2007], based on the 

acquisition of data from experiments involving NMR or PET technologies concerning 

glucose and insulin metabolism, describes the dynamics of glucose and insulin fluxes 

upon meal ingestion. As a result, the in silico description of glucose plasma concentration 

of healthy subjects was obtained (Figure 5.2). The description of the glucose and insulin 

fluxes for a Type 1 diabetic patients is described in the UVA/PADOVA Type 1 Diabetes 

Simulator S2008 [Kovatchev et al., 2009], where -cell insulin secretion from Dalla Man 

et al. has been removed and replaced by an external insulin supply (the red module in 

Figure 5.2). To describe this process, a subcutaneous insulin infusion module should be 

considered. It is worth mentioning that in S2013 [Dalla Man et al., 2014] glucagon 

kinetics secretion and action models have been incorporated into the simulator. 

 

Figure 5.2 Schematically representation of the Glucose-insulin meal simulator. The mathematical 

model developed in [Dalla Man et al., 2007] contemplates the measured glucose and insulin plasma 

concentrations, i.e. Glucose G and Insulin I, and the glucose fluxes, i.e. Glucose rate of appearance, Glucose 

production, Glucose utilization, Glucose renal excretion and Insulin secretion and degradation. The red-

dashed box replaces the -cell compartment accounting for insulin secretion in T1DM patients. Adapted 

from [Dalla Man et al., 2007] and [Kovatchev et al., 2009]. 
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The model described in Dalla Man et al. [Dalla Man et al., 2007] considers the glucose 

and insulin plasma concentrations as well as the different fluxes of glucose. More 

specifically, the glucose subsystem is composed by a two-compartment model, 

concerning the glucose uptake, i.e. diminish of glucose concentration, and the glucose 

creation, i.e. increase of glucose concentration, by the main organs involved in glucose 

and insulin metabolism tissues and organs. On the other hand, the insulin subsystem also 

consists of a two-compartment model, the first representing the liver and the second the 

plasma.  

 

From the above-mentioned glucose subsystem, the most important parameters are the 

endogenous glucose production, glucose rate of appearance and glucose utilization. 

Endogenous glucose production in the liver represents the breakdown of glycogen when 

the blood glucose levels are low and is assumed to be linearly dependent on glucose 

concentration, portal insulin concentration and a delayed insulin signal. Glucose rate of 

appearance accounts for the glucose absorbed in the intestinal tract after meal ingestion. 

Intestinal absorption describes the transit through the stomach, represented as a two-

compartment model accounting for solid and triturated phases [Hellström et al., 2006]. In 

this system, glucose is moved to the gut and distributed in plasma as the flux of rate of 

appearance. Plasma glucose can decrease due to renal excretion or glucose utilization. 

Insulin-independent utilization occurs in the brain and erythrocytes and is assumed 

constant, whereas insulin-dependent utilization follows a Michaelis-Menten kinetics in 

muscles and adipose tissues [Yki-Jarvinen et al., 1987]. In the in silico health subject, ß-

cell insulin secretion is described by static and dynamic components. The dynamic 

component likely represents the release of promptly releasable insulin and is proportional 

to the rate of increase of glucose concentration through a parameter called dynamic ß-cell 

responsivity.  

 

5.4 Experimental construction and characterization of cellular devices 

for insulin production 

 

Within the context of the project “Encapsulated Synthetic Cellular Circuits to Restore 

Glycaemic Control in Type 1 Diabetes” from Fundació La Marató de TV3, cellular 
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implants able to produce insulin were experimentally built and characterized in vitro 

[Canadell. D et al, unpublished data] by the Cell Signalling Group headed by Dr. 

Francesc Posas (IRB). Experimental results allowed for a realistic mathematical 

description of insulin production devices. This section describes the experimental 

construction, characterization and mathematical modelling of engineered eukaryotic cells 

with the ability to produce insulin in the presence of extracellular glucose to be further in 

silico analysed in the T1DM patient. Figure 5.3 summarizes the procedure enclosed in this 

chapter.  

 

Figure 5.3 Schematically representation of a cellular device implanted in the organism simulator. 

Cellular device parts are represented in a coloured legend. A physiological input, e.g. glucose, is sensed by 

the sensor module (green). After some internal processes done by the processor module (blue) a 

physiological output is secreted by the actuator module (yellow). Particularly in the presented approach the 

secreted output molecule, i.e. insulin, directly regulates the concentration of the device input, i.e. glucose, 

behaving as a closed-loop system. 

 

Cellular devices were engineered in HEK293T cell type with the ability to produce insulin 

following two different approaches for insulin gene regulation. The first strategy consists 

of a constitutive expression of the insulin gene downstream the CMV promoter, a widely 

used constitutive promoter for mammalian cells [Foecking & Hofstetter, 1986]. The 

second strategy comprises the glucose-dependent expression of insulin regulated by the 

Thioredoxin interacting protein promoter (TXNIP) [Kanari et al., 2013]. 
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To produce a fully functional insulin hormone, a modified version of insulin, rINS6 [Hay 

& Docherty, 2003], was used due to the inability of HEK293T cells to process human 

insulin because the endopeptidases PC2 and PC3/1 responsible of C-peptide cleavage are 

only present in endocrine cells [M. Weiss et al., 2000]. rINS6 is a Rat1-furin insulin 

version in which endopeptidases sites flanking C-peptide in proinsulin DNA sequence 

were engineered to be further recognized by furin protease. Furin protease is ubiquitously 

expressed in HEK293T cells. In order to test insulin functionality, an insulin action test 

was performed. An Akt phosphorylation assay [M. Lu et al., 2012] demonstrated that 

insulin was fully functional. To characterize the dynamics of the different analysed 

promoters a multicistronic vector was build containing the desired promoter upstream of 

the secreted embryonic alkaline phosphatase (SEAP), acting as a reporter, together with 

the modified furin-insulin. SEAP is a widely used reporter in the study of promoter 

activity or gene. HEK293T were transfected and obtained stable cell lines trough Sleeping 

beauty transposon system [Mátés et al., 2009].  

 

As a result, two engineered HEK293T cell lines were obtained able to produce insulin 

either constitutively or in a glucose-dependent manner. Figure 5.4 shows a schematic 

representation of the two genetically engineered cell lines.  
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Figure 5.4 Schematically representation of insulin expression living devices. a) Engineered cell 

constitutively expressing insulin. The expression of the insulin gene (rIns6) is triggered by the constitutive 

CMV promoter. The rIns6 mRNA is transcribed with a rate variable Ktrad and degraded at a rate 𝜕𝑚𝑅𝑁𝐴 . 

The mRNA is translated into the pre-pro-insulin protein with a rate Ktrans, which is finally processed by the 

C-peptide cleavage to be finally secreted. b) Engineered cell production insulin in a glucose-dependent 

manner. The expression of the insulin gene (rIns6) is triggered by the glucose-regulated TXNIP promoter. 

The rIns6 mRNA is transcribed with a rate variable Ktrad and degraded at a rate 𝜕𝑚𝑅𝑁𝐴. The mRNA is 

translated into the pre-pro-insulin protein with a rate Ktrans, which is finally processed by the C-peptide 

cleavage to be finally secreted. 

 

A mathematical model describing the secretion of insulin was developed representing the 

processes described Figure 5.4a for the constitutive expression of insulin and in Figure 

5.4b for the glucose-regulated insulin expression. Our models have been formulated as a 

set of Ordinary Differential Equations (ODEs).  

 

Secretion dynamics can be described by the following equations: 

 

The insulin mRNA production is described as: 

 

𝑑𝑚𝑅𝑁𝐴

𝑑𝑡
=  𝐾𝑡𝑟𝑎𝑑 − 𝜕𝑚𝑅𝑁𝐴 · 𝑚𝑅𝑁𝐴(𝑡) 

Eq. 5.1 

 

Where Ktrad is the transcription rate and δmRNA represents the degradation rate of mRNA. 

For constitutive cells, the ratio of mRNA synthesis is described by the parameter trad 



5.4 Results 

 

 

151 

which is assumed constant. On the opposite, the activity of glucose-dependent promoter 

TXNIP, trad(G), is described according to:  

 

𝐾𝑡𝑟𝑎𝑑(𝐺) = 𝛾 · 
𝐺𝑙𝑢𝑐𝑜𝑠𝑒𝑛

𝐾0.5 + 𝐺𝑙𝑢𝑐𝑜𝑠𝑒
𝑛
 

Eq. 5.2 

 

The insulin secretion rate 
𝑑𝐼𝑛𝑠𝑢𝑙𝑖𝑛

𝑑𝑡
= 𝑢(𝑡) is described according: 

 

𝑢(𝑡) =  𝐾𝑡𝑟𝑎𝑛𝑠 · 𝑚𝑅𝑁𝐴(𝑡 −  𝑖𝑛𝑠  ) · 𝑁  Eq. 5.3 

 

Where trans is the insulin translation rate, ins is the insulin processing time N the number 

of cells. 

 

5.4.1 Glucose-promoter regulation  

 

In order to characterize the response of the TXNIP promoter SEAP gene was placed under 

the TXNIP regulatory promoter, in tandem with rINS6. SEAP acts as a secretable reporter 

[Yang et al., 1997] and allows for a rapid and cheap quantification using a 

chemiluminescence SEAP Reporter Gene Assay Kit.  

 

Glucose-dependent cells were grown during 16 h at 36 mg/dL of glucose. Then, cell 

cultures were shifted to media with different glucose concentrations, i.e. 36 mg/dL, 90 

mg/dL, 200 mg/dL and 450 mg/dL. SEAP activity was measured at several time points 

for 9 hours, and experimental data is shown in Figure 5.5a. Figure 5.5b shows the 

relationship between SEAP levels and the different glucose concentrations corresponding 

to the kinetic time point = 8 hours. The dependence between SEAP levels and glucose 

concentrations was fitted to the Hill equation Eq. 5.4. 

 

𝑆𝐸𝐴𝑃 (𝐺) =  𝛾 ·
𝐺𝑙𝑢𝑐𝑜𝑠𝑒𝑛

𝐾0.5 + 𝐺𝑙𝑢𝑐𝑜𝑠𝑒
𝑛
 

Eq. 5.4 
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Here 𝛾 corresponds to the relative dynamic range, n the Hill coefficient and K0.5 is the 

concentration of external glucose that gives the half-maximal response. From that, Matlab 

R2016a least-squares analysis software was used for fitting the parameters to the Hill 

expression. Fitted parameters are  = 1.95·10−6 1/hours, K0.5 = 104 mg/dL and n = 2. 

 

Figure 5.5 Glucose-dependent SEAP expression of TXNIP-rINS6-SEAP cells. a) Glucose-dependent 

kinetics at different glucose concentrations. Cell cultures were shifted from 36 mg/dL glucose to media 

containing 36 mg/dL, 90 mg/dL, 200 mg/dL and 450 mg/dL glucose. SEAP activity was measured at 

several time points for 9 h. SEAP activity was measured using a reporter gene assay kit. Squares: 450 

mg/dL, triangles: 200 mg/dL, rhombus 90 mg/dL and circles 36 mg/dL. The error bars correspond to the 

standard deviation of three independent experiments. b) Relationship between SEAP and glucose 

concentrations after 8 h of induction. SEAP activity at time point t = 8 h was plotted according to each 

specific glucose media. White dots represent experimental values and the error bars correspond to the 

standard deviation of three independent experiments. The solid line corresponds to the fitted Eq. 5.4 using 

Matlab R2016a least-squares analysis software with a correlation coefficient R2= 0.98. 

 

5.4.2 mRNA degradation rate 

 

To experimentally measure the insulin mRNA degradation rate, Real Time RT-PCR was 

performed in glucose-dependent insulin producer cells and ΔCt method [Kozera & 

Rapacz, 2013] allowed to calculate mRNA fold-change. Therefore, two different 

experimental setups were performed. Firstly, cells were grown during 16 h at 36 mg/dL 

glucose and then shifted to 450 mg/dL glucose (Figure 5.6a). In the second experiment, 

cells grow for 16 hours at 450 mg/dL glucose and then shifted to 36 mg/dL glucose 

(Figure 5.6b). From both experiments, cellular extracts were taken every 3 hours and 
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mRNA fold change was calculated. A degradation rate of δmRNA= 0.4 1/hours was 

determined from experimental data.  

 

Figure 5.6 rINS6 mRNA dynamics measured with Real Time RT-PCR. Glucose-dependent insulin 

producer cells were shifted from a low glucose media of 36 mg/dL to a high glucose media of 450 mg/dL 

for 9 h. The red dashed line indicates the time point glucose was shifted from 450 mg/dL to of 36 mg/dL 

back again. Cellular extracts were taken every 3 hours to extract RNA and analyse the fold change of 

mRNA using Real Time RT-PCR. White dots represent experimental values and the error bars correspond 

to the standard deviation of three independent experiments. Solid line corresponds to the fitted Eq. 5.1 

using Matlab R2016a least-squares analysis software with a correlation coefficient R2= 0.92. 

 

5.4.3 Insulin translation rate and Insulin processing delay 

 

Insulin translation rate was obtained from [Tang & Sambanis, 2003]. To determine the 

insulin secretion rate, i.e. ins, in the glucose-dependent insulin producer cell, cellular 

culture was grown at 36 mg/dL glucose for 12 hours, afterwards the media was changed 

to high glucose concentration, i.e. 450 mg/dL, and maintained during 12h more. Insulin 

levels were measured every 4h using a mouse insulin ELISA KIT [Mercodia Insulin 

ELISA]. Figure 5.7a shows the experimental levels of insulin. The same experiment was 

carried with the constitutive insulin secretion cells. (Figure 5.7b). It is worth mentioning 

that glucose-dependent insulin producer cells exhibit a significant delay before insulin 

accumulation that is not observed in constitutive cells. We hypothesized that this delay is 

due to the processing time required for insulin transcription, translation, processing and 

secretion once the glucose-dependent promoter has been activated at high glucose levels. 
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From this data it was possible to estimate the insulin processing delay, which is ins = 4.5 

hours. 

 

Figure 5.7 Insulin expression profiles for CMVp-rINS6 and TXNIPp-rINS6 cells. a) Accumulated 

insulin for the glucose-dependent insulin producer cells. Cells were grown in low glucose media, i.e. 36 

mg/dL, during 12 h and shifted to a high glucose scenario, i.e. 450 mg/dL, during 12 h more. Accumulated 

insulin levels were measured by taking the supernatant every 4 h using a mouse insulin ELISA KIT. White 

dots represent experimental values and the error bars correspond to the standard deviation of three 

independent experiments. The solid line corresponds to fitted Eq. 5.3 using Matlab R2016a least-squares 

analysis software with a correlation coefficient R2 = 0.97. b) Accumulated insulin for the constitutive 

producer cells. Cells were grown during 24 h and accumulated insulin levels were measured by taking the 

supernatant every 4 h using a mouse insulin ELISA KIT. White dots represent experimental values and the 

error bars correspond to the standard deviation of three independent experiments. The solid line corresponds 

to fitted Eq. 5.3 using Matlab R2016a least-squares analysis software with a correlation coefficient R2 = 

0.99. 

 

Table 5.1 summarizes model parameters for both constitutive and glucose-dependent 

insulin producer cells. Using these parameters and Eq. 5.1 and Eq. 5.3 it is possible to 

theoretical describe the experimental results and predict insulin dynamics in the in silico 

virtual patient. 
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Process Parameter CMV TXNIP Units 

Transcription rate trad 4.608·10−5 

 = 1.95·10−6 1/hours 

K0.5 = 104 

n=2 

mg/dL 

mRNA degradation ∂mRNA 0.4 1/hours 

Translation rate trans 0.9 1/hours 

Insulin processing delay ins 4.5 hours 

Insulin production rate ins 1.74·10−4 3.13·10−5 
pmol/ 

L·cell·hour 

Table 5.1 Model parameters. Equations Eq. 5.1, Eq. 5.2 and were fitted to experimental values to obtain 

the parameters describing insulin secretion dynamics for both the constitutive and glucose-dependent 

cellular devices. 

 

5.5 3D space definition for Diabetes Mellitus diagnosis criteria 

 

To measure implant efficiency for glycaemia regulation in the in silico T1DM patients it 

is necessary to define a diagnostic criterion. The World Health Organisation (WHO) has 

established different key indicators for Diabetes Mellitus diagnosis [Association, 2010; 

Kalra et al., 2013] summarized in Table 5.2. 

 

 Diabetic Criteria (WHO) 

Fasting glycaemia test (FT): Hyperglycaemia ≥ 126 (mg/dL) 

Oral glucose tolerance test (OGTT): Hyperglycaemia After 2 hours ≥ 200 (mg/dL) 

Random glucose test (RT): Hyperglycaemia >140 (mg/dL) 

Random glucose test (RT): Hypoglycaemia < 60 (mg/dL) 

Table 5.2 Glucose test for T1DM diagnosis. Extracted from World Health Organisation. 

 

Fasting Glycaemia Tests consists on measuring plasma glucose levels after 8 hours of 

food and drink starvation, whereas the Oral Glucose Tolerance Test consists on the 

administration of a high glucose dose (75g) and measure plasma glucose levels after 2 

hours. Furthermore, highest and lowest plasma glucose values were measured after the 
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Oral Glucose Tolerance Test to assess for the hyper and hypoglycaemic scenarios., i.e. 

Random Glucose Test. 

 

In order to assess the effects of different cellular implants in the in silico T1DM patient, 

we have established a novel measurement integrating the criteria summarized in Table 

5.2. A 3-dimensional space is settled considering the Fasting Glycaemia Test (FT), the 

Oral Glucose Tolerance Test (OGTT) and Random Glucose Test (RT).  

 

𝑃(𝐹𝑇, 𝑂𝐺𝐺𝑇, 𝑅𝑇) ∈ ℝ3 Eq. 5.5 

 

Within this 3D space, we have defined a sub-region that simultaneously fulfil the criteria 

of Table 5.2. The sub-region defines the normoglycaemia scenario, which is entitled 

Health Glucose Behaviour Region. Its Cartesian Coordinates defining the xyz-volume are 

defined by Eq. 5.6. 

 

𝐻𝑒𝑎𝑙𝑡ℎ 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 𝑅𝑒𝑔𝑖𝑜𝑛 (𝑥, 𝑦, 𝑧) = {
𝑂𝐺𝑇𝑇 60 ≤  𝑥 ≤ 200

𝐹𝑇 60 ≤ 𝑦 ≤ 126
𝑅𝑇 60 ≤ 𝑧 ≤ 140

 Eq. 5.6 

 

The analysis of the implanted cellular devices’ is accomplished by calculating plasma 

glucose levels for FT, OGGT and RT. The ability to regulate glycaemia by the implanted 

cells is quantified by the Glycaemia Restoration Index, considering the distance between 

the values of OGTT, FT and RT and the Health Glucose Behaviour Region. As a matter 

of exemplification, Figure 5.8 shows three different T1DM virtual patients with three 

different implants. Virtual patient1 and virtual patient3 coordinates lie outside the Health 

Glucose Behaviour Region whether coordinates for the virtual patient2 are within the 

defined region, meaning that the implant for the virtual patient2 restores normoglycaemia. 

Notice that virtual patient3 is above the hypoglycaemia limits for the Random Glucose 

Test. Hypoglycaemia scenarios must be prevented because of the severe death risk 

associated with hypoglycaemic episodes [Kalra et al., 2013]. Therefore, the Glycaemia 

Restoration Index must contain how far is the virtual patient from the Health Glucose 

Behaviour Region and if any of the coordinates is below any defined hypoglycaemia 

threshold from Table 5.2.  
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Figure 5.8 3D space for Fasting Glycaemia Test, Oral glucose Tolerance Test and Random Glucose 

Test. Coloured cuboid, from Eq. 5.6, represents the Health glucose behaviour region. The blue, red and 

black dot coordinates are defined by the values of FT and OGTT and RT resulting from the computational 

simulation of different implants in a virtual diabetic patient. The arrows represent the distance between the 

patient glycaemia and the Health Glucose Behaviour Region.  

 

The Glycaemia Restoration Index (GRI) is a novel metric defining the ability of cellular 

implants to restore normoglycaemia in the in silico T1DM patients considering: i) the 

distance between the T1DM to the Health Glucose Behaviour Region and ii) the relative 

positional information with respect the Health Glucose Behaviour Region. Therefore, 

allowing to discriminate between the different devices’ performances seen in Figure 5.8. 

To do so, we must compute the minimal Euclidean distance between the 3D point and all 

the faces of the Health Glucose Behaviour Region. The 3D cuboid is defined by 3 planes: 

xy-plane is shown in Figure 5.9a, the yz-plane in Figure 5.9b and the zx-plane in Figure 

5.9c. Each plane consists of two faces, one for the upper limit values, i.e. positive, and the 

other for the lower limit values, i.e. negative.  
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Figure 5.9 3D space for Fasting Glycaemia Test, Oral glucose Tolerance Test and Random glucose 

Test. a) xy-plane with positive face corresponding to the upper limit of Fasting Glycaemia and Oral Glucose 

Tolerance Test from Eq. 5.6. and negative face corresponding to the lower limit of Fasting Glycaemia Test 

and Oral Glucose Tolerance Test from Eq. 5.6. b) yz-plane with positive face corresponding to the upper 

limit of Random Glucose Test and Oral Glucose Tolerance Test from Eq. 5.6. and negative face 

corresponding to the lower limit of Random Glucose Test and Oral Glucose Tolerance Test from Eq. 5.6. 

c) xz-plane with positive face corresponding to the upper limit of Random Glucose Test and Fasting 

Glycaemia from Eq. 5.6. and negative face corresponding to the lower limit of Random Glucose Test 

Fasting Glycaemia from Eq. 5.6. 

 

For all three planes we must compute the distance between the virtual patient 3D point 

and the positive and negative faces according to: 

 

𝐷𝑖𝑗
± =  𝑛𝑖𝑗

±  ⨂ (𝑝0
± − 𝑝) 

for ij= xy, yz and zx-plane 
Eq. 5.7 

 

 

Where 𝑛𝑖𝑗
±  is the normal vector of the plane ij, 𝑝0

± is a plane point and p stand for the 3D 

coordinates of each T1DM. However, for each plane, three different scenarios are found 

when analysing the relative position of the virtual patient. Particularly, Figure 5.10, 
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graphically shows the three possible scenarios for the xy-plane. In Figure 5.10a the virtual 

patient (p) is above xy+ and xy- because the Euclidean distance to the positive plane is the 

smallest whereas in Figure 5.10b the point p is below xy+ and xy- faces because the 

Euclidean distance to the negative plane is, in this case, the smallest. Remarkably in 

Figure 5.10c the point p is between xy+ and xy- faces because both Euclidean distances are 

smaller than the distance between the two faces.  

 

Thus, computing the distances to the positive and negative faces for each plane allow us 

to obtain the positional information and define the minimum distance between the 3D 

coordinate point and the faces of the cuboid according to: 

 

𝐷𝑖𝑗 =  𝐷𝑖𝑗
+ if 𝐷𝑖𝑗

+ <  𝐷𝑖𝑗
−  

Eq. 5.8 𝐷𝑖𝑗 = 𝐷𝑖𝑗
− if 𝐷𝑖𝑗

+ > 𝐷𝑖𝑗
−  

𝐷𝑖𝑗 = 0 if 𝐷𝑖𝑗
+ < 𝑑<+,−> <  𝐷𝑖𝑗

−  

for ij= xy, yz and zx-plane 

 

The informational position for each plane allows to compute the GRI as the minimum 

average distance of the three different planes according to:  

 

 𝐺𝑅𝐼 =

{
 
 

 
 + 

1

3
 · (𝐷𝑥𝑦 + 𝐷𝑦𝑧 + 𝐷𝑥𝑧)  𝑖𝑓 𝐷𝑖𝑗

−  >  𝐷𝑖𝑗
+

      

−
1

3
 · (𝐷𝑥𝑦 + 𝐷𝑦𝑧 + 𝐷𝑥𝑧)   𝑖𝑓 𝐷𝑖𝑗

− <  𝐷𝑖𝑗
+

 

for ij= xy, yz and zx-plane 

Eq. 5.9 

 

Where Dxy, Dyz and Dxz are computed according to Eq. 5.7 and Eq. 5.8. The negative term 

accounts for glycaemia values below the defined hypoglycaemia threshold and 

corresponds to the scenario where 𝐷𝑖𝑗
− < 𝐷𝑖𝑗

+. Remarkably, for the virtual patient1 in 

Figure 5.10d the GRI > 0, for virtual patient2 the GRI < 0 and for virtual patient3 = 0. 
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Figure 5.10 3D space for xy-plane and virtual patient p. xy-plane with positive face corresponding to 

the upper limit of Fasting Glycaemia and Oral Glucose Tolerance Test from Eq. 5.6. and negative face 

corresponding to the lower limit of Fasting glycaemia test and Oral Glucose Tolerance Test from Eq. 5.6. 

The blue dot corresponds to the 3D for the virtual patient. 𝐷𝑥𝑦
+  corresponds to the Euclidean distance 

between the point p and the positive face computed with Eq. 5.7 and 𝐷𝑥𝑦
−  corresponds to the Euclidean 

distance between the point p and the negative face computed with Eq. 5.7. 𝑑<+,−> corresponds to the 

Euclidian distance between the two faces, i.e. positive and negative. a) Scenario where the point p is below 

the positive face with 𝐷𝑥𝑦
+ < 𝐷𝑥𝑦

−  b) Scenario where the point p is above the positive face with 𝐷𝑥𝑦
+  > 𝐷𝑥𝑦

−  c) 

Scenario where the point p is between the two faces. d) 3D space for Fasting Glycaemia Test, Oral glucose 
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Tolerance Test and Random Glucose Test. Coloured cuboid, from Eq. 5.6, represents the Health glucose 

behaviour region. The blue, red and black dot coordinates are defined by the values of FT and OGTT and 

RT resulting from the computational simulation of a given implant in a virtual diabetic patient. The arrows 

represent the distance between the patient glycaemia and the Health glucose behaviour region. The red 

arrow indicates that the virtual patient2 is below the negative face in the xy-plane. 

 

5.6 In silico analysis of cellular implants in T1DM patients 

 

In this section, we focus on the feasibility of implanting the engineered insulin producer 

cells in the in silico T1DM patient. Enclosed in the project “Encapsulated Synthetic 

Cellular Circuits to Restore Glycemic Control in Type 1 Diabetes” engineered insulin 

producer cells follow an encapsulation process to be further subcutaneously implanted in 

diabetic mice models. Cellular encapsulation is done by means of alginate microcapsules 

[Ye et al., 2011;Ausländer et al., 2014; Xie et al., 2016]. Cell viability analysis was 

performed in order to determine the biomaterials, capsule design, size and cell density. 

Encapsulation procedure and analysis was carried by the group of Biomaterials and 

Nanomedicine in UPV-EHU [unpublished data]. Experiments reveal that the optimal 

conditions enabling a 40 days’ performance of the engineered cells upon extracellular 

glucose detection and insulin secretion is a bead embodiment made of Alginate-poly-(l-

lysine)-alginate with <400-500> µm radius and a cellular density of a  =5·106cell/mL. 

 

To that end, we have modified the model of Dalla Man et al. [Dalla Man et al., 2007] by 

introducing a new set of equations describing the insulin production of the engineered 

cells from Canadell et al. [Canadell. D et al, unpublished data]. Engineered cells were 

considered to be subcutaneously implanted. Eq. 5.10 and Eq. 5.11 from Magni et al. 

[Magni et al., 2007] account for the perfusion of subcutaneous insulin:  

 

𝑑𝑆1
𝑑𝑡

= −(𝐾𝑎1 +𝐾𝑑  ) · 𝑆1(𝑡) +  𝑢(𝑡) 
Eq. 5.10 

𝑑𝑆2
𝑑𝑡

=  −𝐾𝑑 · 𝑆1(𝑡) + 𝐾𝑎2 · 𝑆2(𝑡) 
Eq. 5.11 
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Eq. 5.10 represents the amount of nonmonomeric insulin in the subcutaneous space and 

Eq. 5.11 the monomeric insulin. u(t) represents the ratio of exogenous insulin 

administration. Nonmonomeric insulin is partly transformed into monomeric insulin with 

absorption rate constants ka1 and kd respectively; therefore, monomeric insulin is finally 

absorbed with rate constant ka2.  

 

Departing from these equations, the term u(t) in Eq. 5.10 has been replaced by the insulin 

supply from engineered cells  Eq. 5.3). Furthermore, in equation (3) from Dalla Man et 

al. [Dalla Man et al., 2007], an additional term must be placed to account for the infusion 

rate of monomeric insulin to plasmatic insulin. The implant insulin supply can be 

modulated with the total number of encapsulated engineered cells conferring the device 

implant, i.e. term N in  Eq. 5.3. Prior to the in vivo treatment with the encapsulated cellular 

implants, we have performed an in silico analysis for each cellular device to decipher its 

ability to restore glycaemia. For each specific cellular implant, i.e. constitutive and 

glucose-regulated insulin production, the Glycaemia Restoration Index (GRI) has been 

computed considering different implant sizes, i.e. implants that contain different amounts 

of engineered cells. 

 

5.6.1 Cellular implants based on constitutive insulin production for 

glycaemia regulation in T1DM patients 

 

To assess the effect of the engineered cells with constitutive insulin secretion for 

glycaemia regulation several implants containing different quantities of cells were 

simulated in the in silico T1DM patient. Equations describing the T1DM virtual patient 

Dalla Man et al. [Dalla Man et al., 2007] together with the Ordinary Differential 

Equations describing the dynamics of the constitutive insulin production (Eq. 5.1 and Eq. 

5.2) with model parameters from Table 5.1 have been integrated with the Fourth Order-

Runge Kutta Method in Visual Basic software. 

 

Computational results from the previously defined tests are shown in Figure 5.11. Values 

for Fasting Glycaemia Test are shown in Figure 5.11a and Oral Glucose Tolerance Test is 

shown in Figure 5.11b. Random Glucose Test was analysed within a time window of 24 
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hours after the OGTT. Maximum and minimum plasma glucose concentrations are shown 

in Figure 5.11c-d respectively. For each plot, red dashed lines depict the plasma glucose 

concentrations defining normoglycaemia. As figures show, there is a strong dependence 

between glycaemia levels and implant size. An optimal implant size has to lead glycaemia 

levels as close as possible or within the normoglycaemia region in all the different tests. 

Figure 5.11e shows the locations of OGTT, FT and RT tests in the 3D representation with 

respect to the Health glucose Behaviour Region. The blue dot corresponds to the in silico 

T1DM patient without an implant, and subsequent white dots correspond to different 

T1DM patients with increasing implant sizes. The red dot corresponds to the implant size 

fulfilling the criteria of Table 5.2. 
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Figure 5.11 Plasma glucose levels for T1DM patients with different implants sizes constitutively 

producing insulin. Plasma glucose calculation for several T1DM patients with different implant sizes. a) 

Fasting Glycaemia Test was assessed by computing plasma glucose levels after an 8 h time period. Fasting 

glycaemia levels are plotted for each specific implant size. b) Oral Glucose Tolerance Test was computed 

considering an intake of 75 g and measuring plasma glucose levels in the following 2 h for each different 

implant size configuration. c-d) Higher glycaemia and Lower glycaemia for Random Glucose Test are 

calculated within a time window of 24 h after the OGTT. e) 3D representation of Fasting glycaemia test, 

OGTT and Random Glucose test for different implant sizes. Each dot corresponds to a T1DM patient with 

a different implant size of the constitutive insulin production implant. The blue dot corresponds to the 

T1DM virtual patient without an implant, the red dot corresponds to the T1DM virtual patient with an 

implant lying inside the Health Glucose Behaviour Region. 

 

To obtain the relationship between implant size and its ability for plasma glucose levels 

regulation, the Glycaemia Restoration Index was computed according to Eq. 5.9 and 

normalized by the GRI corresponding to the T1DM patient without an implant. 

Consequently, higher GRI, i.e. close to 1 or -1, correspond to bad glycaemia regulation, 

whereas GRI close to 0 indicate good glycaemia regulation. Notably, GRI < 0 indicate 

the presence of episodes of hypoglycaemia. These situations must be prevented because 

of a severe death risk associated with hypoglycaemic episodes [Kalra et al., 2013]. 

 

Figure 5.12 shows the normalized distance allowing describing the implant impact in 

glycaemia regulation. Worst implant performance, i.e. near GRI  1, is associated with 
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low implant size. As implant size increases associated GRI decreases up to 0 for implant 

size = 4·106 cells.  

 

Figure 5.12 Evolution of glycaemic regulation based on constitutive insulin producer implants versus 

implant size. Glycaemia restoration index is computed as the minimal Euclidean distance between each 

3D coordinate corresponding to a T1DM patient with different sizes of the constitutive insulin production 

implant and the faces of the Health glucose behaviour region according to Eq. 5.9. Computed values are 

normalized by the GRI corresponding to the T1DM patient without an implant. 

 

In order to show the ability of the different implant sizes for plasma glucose regulation 

several simulations considering cellular implants with diverse GRI were considered. The 

computational procedure was: i) simulations compute a first starvation period of 8 hours 

corresponding to fasting glycaemia test, represented between time=-8 h to 0 h. At time 0 

h, a glucose ingestion of 75 grams is simulated to perform the oral glucose tolerance test. 

Figure 5.13a represents the glycaemic response curves after glucose intake for the 

different implant sizes associated to positive, zero or negative GRIs. As figure shows, 

there is a strong dependence between glycaemia regulation and implant size, which 

correlates with the different plasma insulin levels depicted in Figure 5.13b. Computational 

results indicate that despite it is possible to define an implant size for optimal glycaemia 

regulation, the time required to recover the pre-prandial glucose levels is larger than 

health patients.  



Chapter 5 

 

 

166 

 

Figure 5.13 Dependence between plasma glucose and insulin with implant size. Plasma levels for the 

Fasting glycaemia test have been calculated for the time interval between -8 h and 0 h. At time t = 0 h the 

Oral glucose tolerance test consisting on the ingestion of 75 g of glucose is simulated up to a total time 

window of 24 h. The green line corresponds to the Health subject, the red to the T1DM without implant, 

the blue to T1DM with an implant size of 1·106cells (GRI= -0.4), the yellow to T1DM with an implant 

size of 4·106 cells (GRI=0) and the orange to T1DM with an implant size of 7·106 cells (GRI=-0.8). a) 

Plasma glucose values. The dashed lines represent the hyperglycaemic and hypoglycaemic thresholds. b) 

Plasma insulin values.  

 

5.6.2 Cellular implants based on glucose-dependent insulin production 

for glycaemia regulating in T1DM patients 

 

Subcutaneous implants with engineered cells able to produce insulin in a glucose-

dependent manner require the detection of subcutaneous glucose levels. Eq. 5.12 

extracted from Magni et al. [Magni et al., 2007] measures subcutaneous glucose 

concentration with a time delay, i.e. TS, between plasma and subcutaneous space. 

 

𝑑𝐺𝑠
𝑑𝑡

=  −
1

𝑇𝑠
𝐺𝑠(𝑡) + 

1

𝑇𝑠
· 𝐺(𝑡) 

Eq. 5.12 

 

Where Gs(t) is the input glucose concentration in Eq. 5.2. To assess the effects of implant 

size in plasma glucose regulation several simulations with different implant sizes for 

Fasting glycaemia Test, Oral Glucose Tolerance Test and Random Glucose test were 



5.6 Results 

 

 

167 

performed. Equations describing the T1DM virtual patient Dalla Man et al. [Dalla Man 

et al., 2007] together with the Ordinary Differential Equations describing the dynamics 

of the constitutive insulin production (Eq. 5.1, Eq. 5.2 and Eq. 5.3 ) with model 

parameters from Table 5.1 have been integrated with the Fourth Order-Runge Kutta 

Method in Visual Basic software. 

 

Computational results are shown in Figure 5.14a-d. In each plot, red dashed lines account 

for the plasma glucose concentrations defining the normoglycaemia region. Figure 5.14e 

shows the 3D space. Noticing that despite several implant sizes values are close to the 

Health Glucose Behaviour Region, none of them satisfies the three defined criteria.  
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Figure 5.14 Dependence between plasma glucose levels with different implant sizes of glucose-

dependent producer cells. Plasma glucose calculation for several T1DM patients with different implant 

sizes. a) Fasting Glycaemia Test was assessed by computing plasma glucose levels after an 8 h time period. 

Fasting glycaemia levels are plotted for each specific implant size. b) Oral Glucose Tolerance Test was 

computed considering an intake of 75 g and measuring plasma glucose levels in the following 2 h for each 

different implant size configuration. c-d) Higher glycaemia and Lower glycaemia for Random Glucose 

Test are calculated within a time window of 24 h after the OGTT. e) 3D representation of Fasting glycaemia 

test, OGTT and Random Glucose test for different implant sizes. Each dot corresponds to a T1DM patient 

with different sizes of the glucose-dependent insulin production implant. The blue dot corresponds to the 

T1DM virtual patient without an implant. 

 

Figure 5.15 depicts the computed GRI with respect to the implant size. As the figure 

shows, increasing implant size provides better glucose regulation but beyond a critical 

size, i.e. 2.8·106 cells, glycaemia regulation presents hypoglycaemic episodes, i.e. GRI< 

0, that must be prevented. 
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Figure 5.15 Evolution of glycaemic regulation based on glucose-dependent insulin producer implants 

versus implant size. Glycaemia restoration index is computed as the minimal Euclidean distance between 

each 3D coordinate corresponding to a T1DM patient with different sizes of the glucose-dependent insulin 

production implant and faces of the Health glucose behaviour region according to Eq. 5.9. Computed 

values are normalized by the distance corresponding to the T1DM patient without an implant. 

 

Figure 5.16 represents the glycaemic response curves after an initial time period of fasting 

glycaemia, i.e. time = - 8 h to 0 h, and a glucose intake of 75g at time 0 h, i.e. Oral glucose 

tolerance test, for the different implant sizes associated to different GRI. Interestingly, 

the glycaemic response curves from Figure 5.16a shows a proper fasting glycaemia 

regulation for all of the simulated implant sizes. However, when analysing the dynamics 

in the OGTT the different implants display either the regulation of the higher or the lower 

glycaemia levels. Notice a delay in insulin accumulation (Figure 5.16b), compared with 

the health patient, which can be a limiting factor in the use of this type of approach for 

optimal glucose regulation in diabetic patients. 
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Figure 5.16 Dependence between plasma glucose and insulin with implant size. Plasma levels for the 

Fasting glycaemia test have been calculated for the time interval between -8 h and 0 h. At time t = 0 h the 

Oral glucose tolerance test consisting on the ingestion of 75 g of glucose is simulated up to a total time 

window of 24 h. The green line corresponds to the Health subject, the red to the T1DM without an implant, 

the blue to T1DM with an implant size of 1·106 cells (GRI= -0.2), the yellow to T1DM with an implant 

size of 2.8·106 cells (GRI0) and the orange to T1DM with an implant size of 3.5·106 cells (GRI=-0.3). 

a) Plasma glucose values. The dashed lines represent the hyperglycaemic and hypoglycaemic thresholds. 

b) Plasma insulin values.  

 

5.7 In silico daily life meal ingestion simulations 

 

Moreover, the efficiency of cellular devices to regulate glycaemia in T1DM patients was 

implemented in a daily life meal routine. A 24 hours simulation accounting for breakfast 

at 9 a.m. (45 g), lunch at 2 p.m. (75 g) and dinner at 8 p.m. (75 g) was considered. 

Different implant sizes were implemented for both cellular devices. Figure 5.17a-b show 

the plasma glucose and insulin levels for the constitutive insulin production cellular 

implant and in Figure 5.17c-d for the glucose-dependent insulin production cellular 

implant. For both implant types’ cellular sizes with positive, negative and 0 GRI have 

been considered. 
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Figure 5.17 Three meal ingestion plasma glucose and insulin levels with respect to implant size. Three 

meal ingestion consisting on 45 g at 9 a.m., 70 g at 2 p.m. and 70 g at 8 p.m. a-b) Constitutive insulin 

production cellular implants. The green line corresponds to the Health subject, the red to the T1DM without 

an implant, the blue to T1DM with an implant size of 1·106cells (GRI= -0.4), the yellow to T1DM with an 

implant size of 4·106 cells (GRI=0) and the orange to T1DM with an implant size of 7·106 cells (GRI=-

0.8). a) Plasma glucose values. The dashed lines represent the hyperglycaemic and hypoglycaemic 

thresholds. b) Plasma insulin values. c-d) Glucose-dependent insulin production cellular implant. The green 

line corresponds to the Health subject, the red to the T1DM without an implant, the blue to T1DM with an 

implant size of 1·106cells (GRI= -0.2), the yellow to T1DM with an implant size of 2.8· 106cells (GRI0) 

and the orange to T1DM with an implant size of 3.5·106 cells (GRI=-0.3). c) Plasma glucose values. The 

dashed lines represent the hyperglycaemic and hypoglycaemic thresholds. d) Plasma insulin values. 

 

Despite constitutive insulin producer cells showed a glycaemia restoration, i.e. GRI=0, 

with an implant size of 4·106 cells, notice the effect of plasma glucose accumulation after 
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several meal ingestions (Figure 5.17a). The cumulative glucose effect is observed in all 

three simulated implant sizes for the constitutive insulin producer implant correlating 

with the different plasma insulin levels shown in Figure 5.17b. Moreover, plasma glucose 

levels depict a longer postprandial recovery time when comparing with the health subject. 

 

Computational glycaemia levels for the T1DM with the glucose-dependent insulin 

production cellular implants showed a reduction on both glucose cumulative effect and 

the time required to recover pre-prandial glucose levels (Figure 5.17c). However, a 

delayed insulin secretion is shown in the cumulative plasma insulin levels (Figure 5.17d). 

We have observed that delayed insulin compromises the optimization of the maximum 

and minimum glucose levels for the OGTT in Figure 5.16, however, for a daily meal 

routine the delayed secretion helps on the reduction of the cumulative glucose levels due 

consecutive ingestions, nonetheless implants with a GRI < 0 depict severe postprandial 

hypoglycaemia scenario.  

 

5.8 Time Restriction Feed for glycaemia optimization 

 

Computational simulations revealed that the delays in insulin secretion from the glucose-

dependent implants are critical and can compromise its use for optimal glucose regulation 

due to the risk to induce hypoglycaemic episodes. In order to improve glucose regulation 

by preventing hypoglycaemia scenarios we have explored a novel approach, alternative 

to genetic engineering, based on the combination of cellular implants and time restriction 

feed patterns. 

 

We have hypothesized if a proper feed modulation could benefit from the delayed 

subcutaneous insulin secretion. T1DM subjects should regulate very tightly the 

combination of food ingestion together with external insulin injection and exercise to 

regulate plasma glucose levels. For that reason, we have envisioned if a proper 

distribution of both, time and food ingestion, during an entire day could improve 

glycaemia regulation. To that end, we have developed and Evolutionary Algorithm (EA) 

enabling to optimize a meal pattern, i.e. time and food consumption, minimizing the 

episodes of hyper and hypoglycaemia.  
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An Evolutionary Algorithm (AE) [Eiben & Smith, 2003; Sloss & Gustafson, 2019] uses 

evolution and Darwin’s natural selection of survival of the fittest to explore the solutions 

for complex problems. Applying the concepts of natural evolution, AE, works as an 

optimization algorithm by applying the concept of fitness evaluation, fittest selection, 

replication and, mutation. Figure 5.18 represents the different steps of an AE.  

 

Figure 5.18 Schematically representation of the Evolutionary Algorithm procedure for time 

restriction feed optimization. 

 

First, we created a virtual population of Z in silico T1DM patients following random 

feeding patterns, i.e. the total amount of glucose intake has been organized in several 

meals randomly distributed during the day. In detail, feeding patterns are defined by the 

meal food consumption 𝜎𝑖 (in grams) and mealtime 𝜔𝑖 (in hours).  

 

We considered up to 6 different meals per day, with a total ingestion of θ =185 grams of 

glucose [Dalla Man et al., 2007]. The intake of each meal is randomly distributed 

according to a uniformly random distribution, but the total amount of food consumption 

𝜃 during the day is constant and identical for each patient. Hence: 

 

𝜃 =  ∑ 𝜎𝑖
6

𝑖=1
 Eq. 5.13 
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Time-periods of meal ingestion, i.e. 𝜔𝑖, are selected according to a uniformly random 

distribution restricted to daylight hours considering starvation periods during the night 

according to: 

 

𝜔𝑖 𝜖 [ 𝜇𝑚𝑜𝑟𝑛𝑖𝑛𝑔, 𝜇𝑛𝑖𝑔ℎ𝑡 ] Eq. 5.14 

 

where 𝜇𝑚𝑜𝑟𝑛𝑖𝑛𝑔 and 𝜇𝑛𝑖𝑔ℎ𝑡  are settled to 7 a.m. and 11 p.m. hours respectively. 

 

Once this first generation of patients has been defined an iterative loop begins. In each 

generation, T1DM patients with its corresponding meal pattern are evaluated for an entire 

day (24 hours) and plasma glucose concentrations are calculated, from that maximum, 

i.e. GH, and minimum plasma glucose levels, i.e. GL, are obtained.  

 

Second, we defined a fitness function that accounts for the quality of glucose regulation. 

This fitness function has been defined to penalize episodes of hyper and hypoglycaemia.  

 

Fitness function Fn of a patient n is defined as: 

 

𝐹 𝑛(𝜎𝑖 , 𝜔𝑖 ) =  𝐻(𝐺𝐿 − 𝐺𝑡𝑎𝑟𝑔𝑒𝑡) · 𝑚𝑖𝑛 |𝐺𝐿 − 𝐺𝑡𝑎𝑟𝑔𝑒𝑡  |  ·  𝑚𝑖𝑛 (𝐺𝐻) Eq. 5.15 

 

Where Gtarget is the minimal glucose concentration accessible by the patient. H(GL-Gtarget) 

is the Heaviside function: 

 

𝐻(𝐺𝐿 − 𝐺𝑡𝑎𝑟𝑔𝑒𝑡) = {
1 𝑖𝑓 𝐺𝐿 ≤ 𝐺𝑡𝑎𝑟𝑔𝑒𝑡
0 𝑖𝑓 𝐺𝐿 > 𝐺𝑡𝑎𝑟𝑔𝑒𝑡

 Eq. 5.16 

 

This definition penalizes hyperglycaemia and prevents hypoglycaemia, i.e. GL<Gtarget.  

 

Patients are labelled according to its fitness function 𝐹 𝑛(𝜎𝑖 , 𝜔𝑖 ). Afterwards, the 

population is sorted according to its fitness evaluation, from the best to the worst fitness 

function. Next step considers that only individuals with better fitness, i.e. m fittest patients 

consisting of the 25% of the Z individuals, would be replicated for the next generation. 
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The new Z-m individuals are created by replicating the existing m patients according to 

the roulette wheel method, i.e. we generate a uniformly random number 𝑟 ∈ [0,1] and 

patient m will be replicated if 𝑟 ≤ 𝑝(𝑚, 𝑡).  

 

𝑝(𝑚, 𝑡) =  
𝐹𝑛

∑ 𝐹𝑛
𝑚
𝑛=1

 for 𝑡 ϵ [1,∞] Eq. 5.17 

 

After replication, some variability is introduced in the Z-m individuals by random 

mutations in the feed pattern. Mutations are defined as small changes in the optimization 

parameters 𝜎𝑖 or 𝜔𝑖.  

 

Mutations in 𝜎𝑖 are done in terms of a food exchanged () between two different meal in 

the same day. First, two different meals, a and b are randomly selected according to a 

uniformly random distribution. Second,  is determined as a 25% of 𝜎𝑎. The amount  is 

subtracted from 𝜎𝑎 and added to 𝜎𝑏. 

 

𝜃 (𝑔𝑟𝑎𝑚𝑠) =  (𝜎𝑎 −· 𝜎𝑖 , 𝜎𝑏 + ·𝜎𝑖) Eq. 5.18 

 

On the other hand, mutations in 𝜔𝑖 are implemented randomly selecting a meal i and 

selecting a new time-period according uniformly random distribution satisfying the 

criteria from Eq. 5.14. 

 

Once replicated and mutated the meal patterns for the next generation, i.e. t + 1, the 

algorithm simulates the in silico T1DM patients with its associated feeding patterns and 

again patient’s glycaemia is calculated and fitness function is evaluated. Iterations will 

finish when finding a meal pattern with minimum plasma glucose levels satisfying -10% ·

𝐺𝑡𝑎𝑟𝑔𝑒𝑡 < 𝐺𝐿 <  + 10% · 𝐺𝑡𝑎𝑟𝑔𝑒𝑡  and the minimal GH below the hyperglycaemia 

threshold, i.e. 200 mg/dL. Figure 5.19a-b show the show GH and GL evolution during 

algorithm iterations, respectively. Random mutations together with fittest survival 

enables to explore the landscape of optimal solutions.  
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Figure 5.19 Maximum and minimum plasma glucose levels evolution during algorithm iterations. A 

population of Z=100 T1DM patients have been optimized with Gtarget = 85 mg/dL. a) Minimum plasma 

glucose levels. b) Maximum plasma glucose levels.  

 

5.8.1 Time Restriction Feed Algorithm for T1DM patients 

 

TRF algorithm was applied to the in silico T1DM patient. A population of 100 T1DM 

patients was used to optimize the meal pattern with minimum glucose levels Gtarget = 85 

mg/dL and minimizing the maximum glucose levels. Plasma glucose for a random 

feeding pattern, i.e. corresponding to the generation 0 in the AE, was calculated for both 

health and T1DM subjects (Figure 5.20a). The random feeding pattern shows 6 different 

meals with very diverse plasma glucose peaks corresponding to each meal ingestion. 

Surprisingly, the TRF-optimized feeding pattern converges into 4 different meals (Figure 

5.20b). Interestingly, very different amount of glucose is observed in the different meal 

ingestions, and so is depicted in the plasma glucose simulation for the health patient 

(green line in Figure 5.20b), however, for the T1DM patient glucose levels for each 

ingestion depict similar plasma glucose levels after food ingestion, i.e. around 350 mg/dL. 

The TRF-optimized feeding pattern suggests that a proper distribution of the total amount 

of food per day in amount and time plays a relevant role in glycaemia restoration without 

the addition of exogenous insulin. However, tying patients’ life into a very strict feeding 

routine. 
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Figure 5.20 Plasma glucose levels for random and optimized feeding patterns. The green line 

corresponds to the Health subject and the red to the T1DM without an implant. a) Random feed pattern. 

Meal1 {7 a.m., 8.14 g}, Meal2 {9 a.m., 52 g}, Meal3 {12 p.m., 27 g}, Meal4 {4 p.m., 29 g}, Meal5 {5 p.m., 

26 g}, Meal4 {11 p.m., 42 g}. b) T1DM TRF-optimized feed pattern Meal1 {7 a.m., 87 g}, Meal2 {12 p.m., 

20 g}, Meal3 {4 p.m., 30 g}, Meal4 {11 p.m., 22 g}, 

 

5.8.2 Time Restriction Feed Algorithm for T1DM patients with cellular 

implants 

 

Previous results demonstrated that the use of optimized TRF patterns has a significant 

impact on glycaemia regulation, even in the absence of cellular implants. In this section, 

we explored the combination of the TRF algorithm in T1DM patients with the glucose-

dependent cellular implants. More specifically the TRF algorithm has been applied to a 

population of 100 T1DM patients with the glucose-dependent insulin producer cellular 

implant with a GRI  0 (Figure 5.15) to optimize the meal pattern with minimum glucose 

levels Gtarget = 85 mg/dL and minimizing the maximum glucose levels.  

 

Once the algorithm has optimized the TRF pattern for the glucose-dependent insulin 

producer cellular implants, the optimized TRF pattern has also been applied to the health 

subject, the T1DM and the T1DM with a constitutive implant, and plasma glucose levels 

have been obtained (Figure 5.21).  
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Figure 5.21 Glycaemia evolution applying the optimized TRF pattern for the glucose-dependent 

implant. TRF pattern corresponding to iteration = 1300. The green line corresponds to the Health subject, 

the red to the T1DM without an implant, the blue to T1DM with constitutive implant and the yellow to 

T1DM with glucose-dependent implant. Meal1 {7 a.m., 67 g}, Meal2 {12 p.m., 80 g}, Meal3 {5 p.m., 17 

g}, Meal4 {11 p.m., 27 g}. 

 

The TRF-optimized pattern showed the convergence to 4 different meals with higher food 

intake in the first and second meals and lower glucose intake in the third and fourth meals. 

When comparing the T1DM patient without an implant (red line) with T1DM with an 

implant (blue and yellow lines) a significant reduction of maximum plasma glucose levels 

is achieved as well as the time spended above the hyperglycaemia threshold when 

combined both the TRF and implants. Delayed insulin secretion effect allows decreasing 

the plasma glucose accumulation due to consecutive meals as well as the postprandial 

glucose when comparing the glucose-dependent implant with the constitutive implant. 

Neither the constitutive nor the glucose-dependent implants face a hypoglycaemic 

scenario. 

 

Moreover, TRF-optimized pattern was applied for three entire days in order to explore 

possible accumulation of plasma glucose (Figure 5.22a). Additionally, some perturbations 
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were introduced to assess cellular implant robustness. More specifically perturbations 

shown in Figure 5.22b-c consist of the elimination of either the second or third meal, 

respectively, for the simulated second day. In Figure 5.22d the last meal of the last 

simulated day, i.e. the third day, was eliminated.  

 

 

Figure 5.22 Glycaemia evolution applying the glucose-dependent implant TRF-optimized pattern for 

three days. The green line corresponds to the Health subject, the red to the T1DM without an implant, the 

blue to T1DM with constitutive implant and the yellow to T1DM with glucose-dependent implant. 

Optimized feed pattern Meal1 {7 a.m., 67 g}, Meal2 {12 p.m., 80 g}, Meal3 {5 p.m., 17 g}, Meal4 {11 p.m., 

27 g}. a) Three days of simulation following the same optimized feed pattern b) First- and third-days 

simulation following the optimized feed pattern, for the second day Meal2 = 0 g. c) First- and third-days 

simulation following the optimized feed pattern, for the second day Meal3 = 0 g. d) First- and second-days 

simulation following the optimized feed pattern, Meal4 of the third day =0 g. 
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Figure 5.22a shows a cumulative effect of plasma glucose levels for the T1DM with 

constitutive implant, however, the T1DM with glucose-dependent implant shows a 

slightly better glucose regulation for both second and third simulation days. In Figure 

5.22b-c show no significant impact on plasma glucose levels when skipping neither a large 

nor a small meal during the second simulation day. Furthermore, nocturnal 

hypoglycaemia is not faced when skipped the last meal of the day in the third simulated 

day for the glucose-dependent (Figure 5.22d).  

 

5.9 Discussion 

 

Enclosed in the project “Encapsulated Synthetic Cellular Circuits to Restore Glycaemic 

Control in Type 1 Diabetes” the potential use of cellular implants able to produce insulin, 

in a constitutive or glucose-dependent manner, has been explored. Cellular implants 

performance relies on the combination of i) engineered synthetic gene circuit, ii) cellular 

encapsulation and iii) implantation. The design of cellular implants for biomedical 

applications should follow the design-build-test-learn cycle together with a combination 

of experimental and computational tools. Computational tools allowed to simulate a 

closed-loop scenario enabling to decipher device characteristics for response 

optimization. 

 

Our analysis departs from the experimental results of Canadell et al. [Canadell. D et al, 

unpublished data], in which two different engineered eukaryotic cells able to produce and 

secrete insulin from either a constitutive or glucose-dependent manner were constructed 

and characterized. We formalized a mathematical model describing both cellular 

dynamics. Afterwards, we implemented a computational model describing the glucose 

dynamics in T1DM patients, according to the model developed by Cobelli and co-workers 

[Dalla Man et al., 2007]. The combination of the mathematical model describing the 

glucose-insulin dynamics in diabetic patients together with the models describing the 

dynamics of the engineered eukaryotic cells allowed to in silico explore the potential use 

of cellular implants to regulate glycaemia in diabetic patients. To quantitative evaluate 

the effect of cellular implants in glycaemia regulation, we defined a novel metric based 

on the diabetes mellitus diagnosis criteria from the World Health Organization (WHO).  
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Our computational results exhibited that glycaemia regulation is strongly dependent on 

the implant size, i.e. the number of engineered implanted cells, with comparable implant 

size, i.e. cells or mL of implanted alginate beads, with previous research studies [Xie et 

al., 2016]. Surprisingly, cellular implants based on a constitute insulin production showed 

a better glucose restoration when compared to glucose-dependent cellular devices. 

Nonetheless, the ability of constitutive insulin secretion to regulate glycaemia has 

achieved very promising results. In Jaen et al. [Jaén et al., 2017] the engineering of 

skeletal muscles with a constant insulin production allowed to restore glycaemia for an 

8-years follow up in diabetic dogs. However, glycaemia restoration by a constant insulin 

supply would face some drawbacks due to glucose-disruptors such as feeding, exercise 

or unbalanced hormones. Therefore, the ability to modulate insulin secretion according 

to plasma glucose levels had been further hypothesized. However, neither previous 

research studies [Xie et al., 2016] nor our engineered glucose-dependent cellular devices 

exhibit a proper glycaemia restoration, putting the manifest the difficulty of engineering 

cellular devices with the ability to mimic -pancreatic cells. 

 

Our computational results suggest that, for the glucose-dependent implants, the temporal 

delay required for insulin production in response to changes in glucose levels, combined 

with implant size, has a major impact in glycaemia regulation. As a consequence of these 

delays, when optimizing hyperglycaemia device faces severe hypoglycaemia scenarios 

which should be avoided due to higher death risk factors. Despite constitutive insulin 

expression revealed to be easily optimized for plasma glucose regulation, when facing 

several consecutive glucose ingestions, glucose-dependent implants enable an accurate 

adjustment of insulin secretion lowering both postprandial glucose levels and the time to 

recover normoglycaemia.  

 

To counterbalance delays in insulin secretion we demonstrated that glycaemia regulation 

by glucose-dependent implants could be improved when combined with time restriction 

feed patterns (TFR). To define the optimal TFR we developed an evolutionary algorithm, 

based on Darwinian evolution rules, that determines the amount of food per meal and the 

ingestion time, minimizing hyperglycaemia and preventing hypoglycaemic scenarios.  
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Altogether, we have created an in silico closed-loop platform comprising a glucose-

insulin meal simulator and the computational description of cellular devices based on the 

in vitro characterization of engineered eukaryotic cells. Nonetheless, although 

hypothesizing the need of balancing implant insulin production according to current 

glucose plasma needs, the model describing the glucose-insulin dynamics does not 

include the effect of non-insulin mediated glucose consumption due to physical exercise 

[Sylow et al., 2017], liming the platform potential. Overall, we have demonstrated that a 

combination of experimental evidence together with in silico computational simulations 

in a closed-loop scenario allows for a powerful framework concerning the design of living 

biomedical devices.
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6 DISCUSSION AND CONCLUSIONS 

 

6.1 Living biomedical devices from intrinsic cellular components 

 

Synthetic biology has moved forward developing novel strategies to address biomedical 

problems applying engineering principles to biology. A rational assembling of pre-

characterized modules composed of biological substrates has been envisioned as a 

powerful tool to build complex living devices. Within that line, the field of theranostics 

envisaged the development of personalized biomedical devices allowing to diagnose, 

monitor or treat complex medical problems from a technological point of view [Crawley 

et al., 2014; Jeelani et al., 2014; Kojima et al., 2015]. On the other hand, living 

technologies had revealed that the use of biological substrates, by its own or in 

combination with electro-mechanical components, allowed to overcome the limitations 

when developing electronic sensors [Bedau et al., 2010; Froese, 2014]. Clear is the 

relevance of biological organisms detecting, processing and responding to intra- and 

extracellular information and allowing its survival in challenging environmental 

conditions [Owicki & Wallace Parce, 1992]. Hence, the use of cellular components for 

sensing would help on the detection of disease markers. 

 

The engineering of cellular organisms, and more specifically bacteria, for detection of 

biological signals [Khalil & Collins, 2010; Pan et al., 2019; Wan et al., 2019] is based on 

the engineering biology modularity principle. New biosensors can be assembled by 

combining different biological parts from different species in a host cell. In this way, 

intrinsic cellular machinery able to detect extracellular environments [Selifonova et al., 

1993] is exploited and rewired to create novel devices. Despite the enormous potential to 

detect a broad range of extracellular or intracellular signals, the major drawback to be 

faced is the adaptation of the biosensor performance to satisfy the specific application 

detection requirements [Van Der Meer et al., 2004]. More specifically, requirements rely 

on the operating range (), sensitivity (), dynamical range and affinity (K0.5). Although 

different methods for tuning biosensor responses have been explored [Ang et al., 2013; 

Max Carbonell-Ballestero et al., 2014; Y. Chen et al., 2018; M. S. Lu et al., 2012; Shopera 
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et al., 2015; B. Wang et al., 2015] there is a need for the development of methodologies 

to modify biosensor features so that they can satisfy the demands of specific applications 

in a predictable way. To address this issue, in chapter 2, we have developed a general 

mathematical model for Two-Component-Biosensors based on the 3OC6HSL-LuxR-pLux 

system [Fuqua et al., 1994], relating the abundance of the receptor protein (RT) with the 

main biosensor features, i.e.  and K0.5. Moreover, our model also captures the biosensor 

region exhibiting the maximal input/output relative change, i.e. sensitivity (), which 

defines the optimal region of the biosensor to work with. The relation with the operating 

range and receptor abundance had also been defined. 

 

Our approach aims to help on the design of biosensors working on the desired operating 

range with specific affinity requirements. Thus, a library of biosensors working with 

different receptor abundances is required to determine model parameters a1, b0 and b1. 

Once these parameters are fixed with the specific complex [signal-receptor-operator], 

the mathematical model allows predicting biosensor transfer function and its main 

features based on the relative receptor protein abundance. To be more precise, a library 

of varying-strength expressions systems, e.g. constitutive promoters with different 

strengths, RBS with different efficiencies or inducible promoters, have been 

characterized in terms of their relative receptor protein abundance [Kelly et al., 2009]. 

Using model equations  and K0.5 are calculated and the relationship between input and 

output is predicted. Experimental results show that variations in the relative amount of 

receptor protein impacts on K0.5 parameter independently of the specific genetic system 

used to produce the receptor protein, but no significant variation is found in , thus 

allowing to shift the operating range towards greater or lower input signals, and hence 

adapting the biosensor response towards the required needs. More specifically, in the 

particular case of study, the relationship observed between the activation threshold, i.e. 

K0.5, and the receptor protein, i.e. LuxR, permits to modify the activation threshold of the 

3OC6HSL-pLux biosensor up to two orders of magnitude. Our mathematical model 

allows to design biosensors to perform specific features without its prior construction 

only by the promoter characterization using readable fluorescent outputs and hence, 

minimizing experimental workload.  
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Although this study is focused on the experimental validation of the 3OC6HSL-LuxR-

pLux system [Fuqua et al., 1994], the developed mathematical model pursue the 

description of all inducible TCB. With our approach, we aim to overcome the limitations 

faced when applying TCB for real-need problems [Mahr & Frunzke, 2016; Merulla & 

Van Der Meer, 2016; A. J. Meyer et al., 2019; Fuzhong Zhang et al., 2012] and serve as 

a design tool for further biosensors’ applications based on novel metabolic transducers 

[Voyvodic et al., 2019].  

 

Once sensorial information is gained from the sensor module, further analysis or 

integration is required to generate non-trivial responses either in the analogue or digital 

context. On that line, the use of a multicellular implementation for computational devices 

has revealed as extremely useful for complex circuits [Regot et al., 2011; Tamsir et al., 

2011] because each component is implemented in a different cellular type. This 

embodiment is appealing because simplifies the genetic engineering required [Morey et 

al., 2012; F. Wu et al., 2014], minimizes the emergence of unexpected interactions with 

the host cell [M Carbonell-Ballestero et al., 2016], diminishes inappropriate host genetic 

interactions [Tan et al., 2009] and reduces significantly the metabolic burden associated 

to foreign genes [M Carbonell-Ballestero et al., 2016]. Furthermore, depositing the 

different cell types in different spatial locations avoid negative growth competition effects 

which have revealed to challenge device stability and reproducibility [Kwok, 2010] 

[Amoyel & Bach, 2014]. 

 

In chapter 3 we have codified computation into a unique information signal, namely 

3OC6HSL from E. coli, and implemented devices performing digital computation. The 

approach relies on the construction of different engineered cell types with the ability to i) 

secrete, ii) modify and iii) detect the information signal. After an initial characterization 

of the different engineered cellular modules, we have experimented with the far-reaching 

scalability introduced with the 2D geometrical topology. Introducing cellular modules 

and space enables to translate higher-order complex functions within the particular space 

configuration rather than in genetic engineering. Therefore, the ability to implement 

different device responses rely on re-arranging the device modules and opens the door of 

a new vision of cellular computation.  
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We have implemented some examples of two-inputs one-output logic computations, for 

instances devices involving one or two modulatory BC in one or two different branches. 

Scaling-up the number of functions does not necessarily imply scaling up the complexity 

of our design, therefore, for 4-input logic functions, in the worst scenario, the geometrical 

multi-branch approach enables to perform up to 22
4
 functions with 8 branches and 4 

modulatory BC per branch. 

 

In our approach signal detection is mediated by its promoter transcriptional activation 

expressing the aiiA degradation enzyme with and Identity or NOT logic. It is worth 

mentioning that the NOT logic is easily implemented thanks to the LacI/PLac repressor 

gene. Therefore, identification of input-detection transcriptional promoters would allow 

our multi-branch approach to recognize complex scenarios resulting as the combination 

of several signals. Despite our approach has been experimentally tested for 2 well-studied 

input signals, an appropriate input detection and coupled with the operating range 

selection for a specific application would enable, for instance, to detect toxic 

environmental conditions [Joshi et al., 2009; Paitan et al., 2004; Saeidi et al., 2011] or 

disease-related signals [Anderson et al., 2006]. 

 

Moreover, efforts were done into the development of an experimental setup foreseeing 

the automation and reproducible production of printable computation circuits. Therefore, 

serving as a fingerprint in the field of cellular computation. Hence, future work should be 

devoted scaling towards application-based inputs that together with a printing approach 

reinforces the scalability, standardization and automatization of the proposed multi-

branch design. Moreover, hypothesising the exploration of the printable ability on 

different substrates, as suggested in an artistic fashion, for instance, the Vienna Textile 

Lab or Ginko Bioworks to use bacteria dyes to textile materials, for a futurable broad field 

of applications. 

 

On the other hand, in chapter 4, we have demonstrated that multicellular devices could 

be applied for biomedical applications offering flexible and tuneable analogue responses. 

Fundamental characteristics of sensor devices such as sensitivity and affinity can be 

adjusted with proper modulation of the carrying information signal flow, either by 
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incrementing the number of producer cells or modulator cells, without the need for 

additional cell engineering. By the proper re-formulation of the different multicellular 

modules, both simple input-output responses and complex dynamics, i.e. a pulsatile 

response, can be implemented. 

 

Overall, the codification of sensorial information in a unique signal molecule, 

independent on the cellular type, allowed translating the computation in the modulation 

of the signal flow rather than in the different modules made of higher complex synthetic 

circuits. Following the engineering of biology approach, we have reformulated the use of 

communication molecules, for instance, bacterial quorum sensing and yeast mating 

pheromones, to encode both digital or analogue computation.  

 

As a proof-of-principle, S. cerevisiae was engineered to detect a physiological signal, i.e. 

glucose, and produce a therapeutic molecule as an output, e.g. insulin and glucagon 

hormones. Thus, we have transferred the ability of pancreatic cells to a eukaryotic 

organism. Even though we have engineered a modular device with the ability to perform 

either simple or complex responses in response to high or low glucose concentrations, 

these devices have some limitations. Mainly, the operating range of the yeast glucose-

responsive promoters differ three orders of magnitude from the human physiological 

ones, the multicellular circuits were sensitive to changes in cellular proportion and the 

insulin and glucagon produced need further postprocessing to be fully functional. 

Although reinforcing the idea that synthetic biology can offer a new framework for the 

development of in vivo biomedical devices complementing or even substituting devices 

based on electronic or electro-mechanical technology, a deeper analysis on device 

performance considering the specific application should be done. More specifically, in 

diabetes mellitus pathophysiology, device would constantly monitor plasma glucose 

levels and respond producing an output when detecting abnormal glucose concentrations. 

When glucose is above normoglycaemia the device should produce insulin to lower 

glucose values, on the other hand when glucose is below normoglycaemia the device 

should produce glucagon to increase glucose levels. In general, a living device operating 

in disease conditions should constantly monitor circulating disease-relevant metabolites, 
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process abnormal concentrations and coordinate the production and release of the specific 

output acting in a closed-loop process. 

 

6.2 In silico closed-loop living biomedical device performance 

 

We have considered the closed-loop implementation of cellular devices as the fourth-

functional module of a living biomedical device to be analysed. In chapter 5, we have 

studied the regulation of plasma glucose by the ability of different cellular devices to 

secrete insulin. In this scenario, the device output, i.e. insulin hormone, has a direct 

regulation on the device input, i.e. glucose. In diabetes mellitus, closed-loop device 

dynamics must guarantee the regulation of plasma glucose between normoglycaemia 

levels. Engineered cells with the ability to produce insulin when glucose levels are above 

normoglycaemia would allow restoring plasma glucose levels, as insights gained through 

chapter 4, and previous research studies demonstrated that further cell encapsulation and 

implantation into diabetic organisms effectively control glycaemic levels for several days 

[Shao et al., 2017; Xie et al., 2016]. However, some limitations of these studies rely on 

how engineered cells produce insulin secretion by indirect measurement of glucose 

levels, for instance via cell membrane depolarization [Xie et al., 2016] or external 

activation with red-light [Shao et al., 2017]. Overall, claiming the need to establish a 

framework enabling the study of glucose-regulating living devices. 

 

We have based our analysis in the in silico glucose-insulin simulator [Dalla Man et al., 

2007] to serve as the platform for the design-build-test of cellular devices regulating 

glucose homeostasis. First, it was necessary to establish a new metric allowing to classify 

the cellular device performance and categorize the different device characteristics with 

its ability to regulate glycaemia. In that sense, our study was based on the well-established 

WHO criteria for diabetes mellitus.  

 

Therefore, we have mathematically modelled two in vitro engineered and characterized 

cellular devices with the ability to i) secrete insulin in a constitutive manner or ii) glucose-

regulated insulin secretion. The experimental approach was based on the ability of 

HEK293T cells to detect extracellular glucose [Kanari et al., 2013] and secrete an active 
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insulin hormone [Hay & Docherty, 2003] followed by cellular encapsulation and 

subcutaneous implantation. 

 

Despite glucose-regulated insulin secretion is postulated as an autonomous mechanism 

for glucose homeostasis, constitutive insulin expression showed a better glucose 

restoration when compared to the glucose-dependent device. Within this particular 

dynamic, we have found that an insulin secretion time delay, an intrinsic characteristic 

exhibited by the chosen cellular type, accounts for a negative impact on glucose 

restoration, driving to hypoglycaemia scenarios. Therefore, we have explored the 

possibility of applying feed pattern modulations to benefit from implant delayed insulin 

secretion. Diet is a well-known disruptor for diabetes pathophysiology [Hajiaghaalipour 

et al., 2015; Russell et al., 2016] but also its had been explored in other high-society 

impact illness [Stower, 2019].  

 

We have based our analysis in the optimization of dietary habits for plasma glucose 

regulation based on the recommended ingestion of carbohydrates rather than on the 

particular food. An evolutionary algorithm based on Darwinian Evolution allowed to 

optimize time and food consumption to find a time-restriction feed (TRF) diet. Hence, a 

combination of approaches based on implantable cellular insulin delivery together with 

TRF pattern results on a greater plasma glucose regulation therapy. Additionally, TRF 

therapy should also further be explored with already existing techniques such as insulin 

therapy, i.e. insulin injection or insulin pump. Overall, we have demonstrated that a 

combination of experimental evidence together with in silico computational simulations 

in a closed-loop scenario allows for a powerful platform to design application-based 

living biomedical devices.  

 

6.3 Final considerations 

 

The present PhD thesis hypothesized the use of biological elements to rationally design 

standard, robust and reliable biomedical living devices enabling the fine-tune 

management of closed-loop applications. By using a modular approach, we have analysed 

the four main functional-modules of a living biomedical device: i) the sensor module, 
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where the signal detection is done, ii) the processor module, where the external 

information is processed according to a pre-defined rule, iii) the actuator module, where 

the processed information is transformed into an output of interest and the iv) closed-loop 

performance, the embodiment of the living biomedical device into the real-application 

scenario. We have identified some of the limitations arousing when applying synthetic 

biological approaches into living technologies and established some blueprints for 

adapting engineering approaches to biomedical applications. In that line, we have studied 

how to sense, integrate and respond to signals of interest re-engineering the cellular 

machinery from different experimental model organisms, i.e. E. coli, S. cerevisiae, 

mammalian HEK293, and applying mathematical tools. We have shown that device 

operating ranges can be tuned by re-engineering bacteria’s two-component-sensors or 

with a multicellular approach, where information is codified in a unique signal. Moreover, 

this codification has exploited to accomplish either analogue or digital responses. 

However, the multicellular approach demands the physical separation in 2D of the 

engineered cellular types. To do so, one explored scenario is the development of a 2D 

surface or cellular encapsulation. Despite, the novelty of both approaches, further 

exploration should be addressed or even combined, for instance, cellular encapsulation 

would offer the possibility to isolate the different modules of a multicellular device. It is 

clear that the manufactured 2D surface would be considered as a diagnosis or monitoring 

platform, however, should be re-designed for treatment purposes. In that line, efforts 

should be done in the characterization of the suitable cellular embodiment, as the use of 

patients’ cells [Jaén et al., 2017; Kochenderfer & Rosenberg, 2013], sophisticated 3D 

biocompatible devices [Bhattacharjee et al., 2016; Derakhshanfar et al., 2018] or the 

encapsulation of engineered cells [Xie et al., 2016]. And more important, evidencing the 

need to design cellular devices for closed-loop applications combining both experimental 

and computational approaches. 
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6.4 Main research findings 

 

Objective 1: Explore the ability to create a living biomedical device using intrinsic 

cellular components. 

 

Objective 1.1. Upon sensor module. 

• We have designed a mathematical tool allowing to design biosensors architecture 

based on natural two-component systems to act in a pre-defined operating range. 

• Our mathematical model describes the relationship between relative receptor 

abundance and biosensor key parameters: affinity, operating range, sensitivity. 

• Our mathematical model allows defining the biosensors operating range in terms 

of relative receptor abundance. 

• Our experimental results based the E. coli 3OSCHL-LuxR two component 

systems validate the proposed mathematical modelling. 

 

Objective 1.2. Upon transducer module. 

• We have developed a multicellular approximation encoding information in the 

modulation of a diffusible signal which contains three-main modules.  

• Biological computation, either digital or analogue, was achieved by integrating 

multiple input signals in both E. coli and S. cerevisiae model organisms. 

• Digital computation is accomplished by introducing a 2D surface and the 

geometrical arrangement of the engineered cell types as new computational 

elements. 

• Digital computation is encoded in a multi-branch approximation enabling to map 

systematically any arbitrary digital computation. 

• Digital computation was experimentally validated using E coli model organism 

and using ara and aTc as signal inputs. 

• Analogue computation was developed in a liquid environment with the co-

existence of three engineered S. cerevisiae cell types. 

• Analogue computation response is modulated, i.e. affinity and sensitivity, by the 

relative proportions of multicellular modules. 
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• Analogue computation allows to switch towards non-trivial dynamics, i.e. 

pulsatile-time response, modifying the modules composition. 

 

Objective 1.3. Upon actuator module. 

• We have developed a multicellular approximation able to detect and produce 

physiological signals in S. cerevisiae. 

• A sensor layer detects different glucose concentrations. 

• An effector layer produces and secretes insulin and glucagon hormones according 

to the detected inputs. 

 

Objective 2: Explore the performance of the biomedical device in a close-loop scenario. 

 

Objective 2.1. Upon biomedical device dynamics. 

• We have developed an in silico platform enabling to test device performance in 

terms of plasma glucose regulation in diabetic organisms. 

• Constitutive implant dynamics enable plasma glucose regulation. 

• Time delay exhibited by the glucose-dependent cellular limits the glycaemia 

regulation either optimizing maximum or minimum plasma glucose levels. 

 

Objective 2.2. Upon the patient daily-life routines. 

• We have developed an in silico feed pattern optimizing plasma glucose regulation 

in diabetic organisms. 
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ANNEX 

 

A. Two-component biosensors: unveiling the mechanisms of 

predictable tunability 

 

Part DNA Sequence 

J23100 ttgacggctagctcagtcctaggtacagtgctagc 

J23105 tttacggctagctcagtcctaggtactatgctagc 

J23114 tttatggctagctcagtcctaggtacaatgctagc 

J23103 ctgatagctagctcagtcctagggattatgctagc 

J23112 ctgatagctagctcagtcctagggattatgctagc 

R0040 tccctatcagtgatagagattgacatccctatcagtgatagagatactgagcac 

I0050 

tatgacaacttgacggctacatcattcactttttcttcacaaccggcacggaactcgctcgggctggccccggtgcatttttta

aatacccgcgagaaatagagttgatcgtcaaaaccaacattgcgaccgacggtggcgataggcatccgggtggtgctca

aaagcagcttcgcctggctgatacgttggtcctcgcgccagcttaagacgctaatccctaactgctggcggaaaagatgt

gacagacgcgacggcgacaagcaaacatgctgtgcgacgctggcgatatcaaaattgctgtctgccaggtgatcgctga

tgtactgacaagcctcgcgtacccgattatccatcggtggatggagcgactcgttaatcgcttccatgcgccgcagtaaca

attgctcaagcagatttatcgccagcagctccgaatagcgcccttccccttgcccggcgttaatgatttgcccaaacaggtc

gctgaaatgcggctggtgcgcttcatccgggcgaaagaaccccgtattggcaaatattgacggccagttaagccattcat

gccagtaggcgcgcggacgaaagtaaacccactggtgataccattcgcgagcctccggatgacgaccgtagtgatgaa

tctctcctggcgggaacagcaaaatatcacccggtcggcaaacaaattctcgtccctgatttttcaccaccccctgaccgc

gaatggtgagattgagaatataacctttcattcccagcggtcggtcgataaaaaaatcgagataaccgttggcctcaatcg

gcgttaaacccgccaccagatgggcattaaacgagtatcccggcagcaggggatcattttgcgcttcagccatacttttcat

actcccgccattcagagaagaaaccaattgtccatattgcatcagacattgccgtcactgcgtcttttactggctcttctcgct

aaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagccatgacaaaaacgcgtaacaaa

agtgtctataatcacggcagaaaagtccacattgattatttgcacggcgtcacactttgctatgccatagcatttttatccataa

gattagcggatcctacctgacgctttttatcgcaactctctactgtttctccatacccgtttttttgggctagc 

R0061 ttgacacctgtaggatcgtacaggtataat 
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C0062 

atgaaaaacataaatgccgacgacacatacagaataattaataaaattaaagcttgtagaagcaataatgatattaatcaatg

cttatctgatatgactaaaatggtacattgtgaatattatttactcgcgatcatttatcctcattctatggttaaatctgatatttcaa

tcctagataattaccctaaaaaatggaggcaatattatgatgacgctaatttaataaaatatgatcctatagtagattattctaac

tccaatcattcaccaattaattggaatatatttgaaaacaatgctgtaaataaaaaatctccaaatgtaattaaagaagcgaaa

acatcaggtcttatcactgggtttagtttccctattcatacggctaacaatggcttcggaatgcttagttttgcacattcagaaa

aagacaactatatagatagtttatttttacatgcgtgtatgaacataccattaattgttccttctctagttgataattatcgaaaaat

aaatatagcaaataataaatcaaacaacgatttaaccaaaagagaaaaagaatgtttagcgtgggcatgcgaaggaaaaa

gctcttgggatatttcaaaaatattaggttgcagtgagcgtactgtcactttccatttaaccaatgcgcaaatgaaactcaata

caacaaaccgctgccaaagtatttctaaagcaattttaacaggagcaattgattgcccatactttaaaaat 

E1010 

atggcttcctccgaagacgttatcaaagagttcatgcgtttcaaagttcgtatggaaggttccgttaacggtcacgagttcga

aatcgaaggtgaaggtgaaggtcgtccgtacgaaggtacccagaccgctaaactgaaagttaccaaaggtggtccgctg

ccgttcgcttgggacatcctgtccccgcagttccagtacggttccaaagcttacgttaaacacccggctgacatcccggac

tacctgaaactgtccttcccggaaggtttcaaatgggaacgtgttatgaacttcgaagacggtggtgttgttaccgttaccca

ggactcctccctgcaagacggtgagttcatctacaaagttaaactgcgtggtaccaacttcccgtccgacggtccggttat

gcagaaaaaaaccatgggttgggaagcttccaccgaacgtatgtacccggaagacggtgctctgaaaggtgaaatcaaa

atgcgtctgaaactgaaagacggtggtcactacgacgctgaagttaaaaccacctacatggctaaaaaaccggttcagct

gccgggtgcttacaaaaccgacatcaaactggacatcacctcccacaacgaagactacaccatcgttgaacagtacgaa

cgtgctgaaggtcgtcactccaccggtgcttaataacgctgatagtgctagtgtagatcgc 

B0030 attaaagaggagaaa 

B0034 aaagaggagaaa 

B0033 tcacacaggac 

B0014 
tcacactggctcaccttcgggtgggcctttctgcgtttatatactagagagagaatataaaaagccagattattaatccggctt

ttttattattt 

PSB1AK3 

tactagtagcggccgctgcagtccggcaaaaaaacgggcaaggtgtcaccaccctgccctttttctttaaaaccgaaaag

attacttcgcgttatgcaggcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcac

tcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaag

gccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaatcgac

gctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctc

tcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgct

gtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgc

gccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacag
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gattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaaggaca

gtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccg

ctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttcta

cggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctagat

ccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagctcgagtcccgtcaagtca

gcgtaatgctctgccagtgttacaaccaattaaccaattctgattagaaaaactcatcgagcatcaaatgaaactgcaatttat

tcatatcaggattatcaataccatatttttgaaaaagccgtttctgtaatgaaggagaaaactcaccgaggcagttccatagg

atggcaagatcctggtatcggtctgcgattccgactcgtccaacatcaatacaacctattaatttcccctcgtcaaaaataag

gttatcaagtgagaaatcaccatgagtgacgactgaatccggtgagaatggcaaaagcttatgcatttctttccagacttgtt

caacaggccagccattacgctcgtcatcaaaatcactcgcatcaaccaaaccgttattcattcgtgattgcgcctgagcga

gacgaaatacgcgatcgctgttaaaaggacaattacaaacaggaatcgaatgcaaccggcgcaggaacactgccagcg

catcaacaatattttcacctgaatcaggatattcttctaatacctggaatgctgttttcccggggatcgcagtggtgagtaacc

atgcatcatcaggagtacggataaaatgcttgatggtcggaagaggcataaattccgtcagccagtttagtctgaccatctc

atctgtaacatcattggcaacgctacctttgccatgtttcagaaacaactctggcgcatcgggcttcccatacaatcgataga

ttgtcgcacctgattgcccgacattatcgcgagcccatttatacccatataaatcagcatccatgttggaatttaatcgcggcc

tggagcaagacgtttcccgttgaatatggctcataacaccccttgtattactgtttatgtaagcagacagttttattgttcatgat

gatatatttttatcttgtgcaatgtaacatcagagattttgagacacaacgtggctttgttgaataaatcgaacttttgctgagttg

aaggatcagctcgagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctg

actccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccac

gctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatc

cgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccat

tgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacat

gatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatc

actcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaacc

aagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatag

cagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagtt

cgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaag

gcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaatattattgaagc

atttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttc

cccgaaaagtgccacctgacgtctaagaaaccattattatcatgacattaacctataaaaataggcgtatcacgaggcaga

atttcagataaaaaaaatccttagctttcgctaaggatgatttctggaattcgcggccgcttctagag 

Table A. 1 Genetic parts DNA sequence. 
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Plasmid map Plasmid map 
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Table A. 2 Plasmid maps.  
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Figure A. 1 Temporal evolution of the optical density OD. 
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B. 2D BioPrintable Computational Circuits: modular topology for 

digital computation. 

 

Part DNA Sequence 

BBa_B0014 
tcacactggctcaccttcgggtgggcctttctgcgtttatatactagagagagaatataaaaagcca

gattattaatccggcttttttattattt 

BBa_R0032 tcacacaggaaag 

BBa_R0033 tcacacaggac 

BBa_R0034 aaagaggagaaa 

BBa_I0500 

ttatgacaacttgacggctacatcattcactttttcttcacaaccggcacggaactcgctcgggctg

gccccggtgcattttttaaatacccgcgagaaatagagttgatcgtcaaaaccaacattgcgaccg

acggtggcgataggcatccgggtggtgctcaaaagcagcttcgcctggctgatacgttggtcctc

gcgccagcttaagacgctaatccctaactgctggcggaaaagatgtgacagacgcgacggcga

caagcaaacatgctgtgcgacgctggcgatatcaaaattgctgtctgccaggtgatcgctgatgta

ctgacaagcctcgcgtacccgattatccatcggtggatggagcgactcgttaatcgcttccatgcg

ccgcagtaacaattgctcaagcagatttatcgccagcagctccgaatagcgcccttccccttgccc

ggcgttaatgatttgcccaaacaggtcgctgaaatgcggctggtgcgcttcatccgggcgaaaga

accccgtattggcaaatattgacggccagttaagccattcatgccagtaggcgcgcggacgaaa

gtaaacccactggtgataccattcgcgagcctccggatgacgaccgtagtgatgaatctctcctg

gcgggaacagcaaaatatcacccggtcggcaaacaaattctcgtccctgatttttcaccaccccct

gaccgcgaatggtgagattgagaatataacctttcattcccagcggtcggtcgataaaaaaatcga

gataaccgttggcctcaatcggcgttaaacccgccaccagatgggcattaaacgagtatcccgg

cagcaggggatcattttgcgcttcagccatacttttcatactcccgccattcagagaagaaaccaat

tgtccatattgcatcagacattgccgtcactgcgtcttttactggctcttctcgctaaccaaaccggta

accccgcttattaaaagcattctgtaacaaagcgggaccaaagccatgacaaaaacgcgtaaca

aaagtgtctataatcacggcagaaaagtccacattgattatttgcacggcgtcacactttgctatgc

catagcatttttatccataagattagcggatcctacctgacgctttttatcgcaactctctactgtttctc

catacccgtttttttgggctagc 

BBa_J23100 ttgacggctagctcagtcctaggtacagtgctagc 

BBa_J23105 tttacggctagctcagtcctaggtactatgctagc 

BBa_R0011 aattgtgagcggataacaattgacattgtgagcggataacaagatactgagcaca 
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BBa_R0062 acctgtaggatcgtacaggtttacgcaagaaaatggtttgttatagtcgaataaa 

BBa_R0040 tccctatcagtgatagagattgacatccctatcagtgatagagatactgagcac 

BBa_C0060 

atgacagtaaagaagctttatttcgtcccagcaggtcgttgtatgttggatcattcgtctgttaatagt

acattaacaccaggagaattattagacttaccggtttggtgttatcttttggagactgaagaaggac

ctattttagtagatacaggtatgccagaaagtgcagttaataatgaaggtctttttaacggtacatttg

tcgaagggcaggttttaccgaaaatgactgaagaagatagaatcgtgaatattttaaaacgggttg

gttatgagccggaagaccttctttatattattagttctcacttgcattttgatcatgcaggaggaaatg

gcgcttttataaatacaccaatcattgtacagcgtgctgaatatgaggcggcgcagcatagcgaa

gaatatttgaaagaatgtatattgccgaatttaaactacaaaatcattgaaggtgattatgaagtcgta

ccaggagttcaattattgcatacaccaggccatactccagggcatcaatcgctattaattgagaca

gaaaaatccggtcctgtattattaacgattgatgcatcgtatacgaaagagaattttgaaaatgaagt

gccatttgcgggatttgattcagaattagctttatcttcaattaaacgtttaaaagaagtggtgatgaa

agagaagccgattgttttctttggacatgatatagagcaggaaaggggatgtaaagtgttccctga

atatatagctgcaaacgacgaaaactacgctttagtagcttaataacgctgatagtgctagtgtaga

tcgc 

BBa_C0061 

atgactataatgataaaaaaatcggattttttggcaattccatcggaggagtataaaggtattctaag

tcttcgttatcaagtgtttaagcaaagacttgagtgggacttagttgtagaaaataaccttgaatcag

atgagtatgataactcaaatgcagaatatatttatgcttgtgatgatactgaaaatgtaagtggatgct

ggcgtttattacctacaacaggtgattatatgctgaaaagtgtttttcctgaattgcttggtcaacaga

gtgctcccaaagatcctaatatagtcgaattaagtcgttttgctgtaggtaaaaatagctcaaagata

aataactctgctagtgaaattacaatgaaactatttgaagctatatataaacacgctgttagtcaagg

tattacagaatatgtaacagtaacatcaacagcaatagagcgatttttaaagcgtattaaagttcctt

gtcatcgtattggagacaaagaaattcatgtattaggtgatactaaatcggttgtattgtctatgccta

ttaatgaacagtttaaaaaagcagtcttaaatgctgcaaacgacgaaaactacgctttagtagctta

ataactctgatagtgctagtgtagatctc 

BBa_C0062 

atgaaaaacataaatgccgacgacacatacagaataattaataaaattaaagcttgtagaagcaat

aatgatattaatcaatgcttatctgatatgactaaaatggtacattgtgaatattatttactcgcgatcat

ttatcctcattctatggttaaatctgatatttcaatcctagataattaccctaaaaaatggaggcaatatt

atgatgacgctaatttaataaaatatgatcctatagtagattattctaactccaatcattcaccaattaat

tggaatatatttgaaaacaatgctgtaaataaaaaatctccaaatgtaattaaagaagcgaaaacat

caggtcttatcactgggtttagtttccctattcatacggctaacaatggcttcggaatgcttagttttgc

acattcagaaaaagacaactatatagatagtttatttttacatgcgtgtatgaacataccattaattgtt
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ccttctctagttgataattatcgaaaaataaatatagcaaataataaatcaaacaacgatttaaccaa

aagagaaaaagaatgtttagcgtgggcatgcgaaggaaaaagctcttgggatatttcaaaaatatt

aggttgcagtgagcgtactgtcactttccatttaaccaatgcgcaaatgaaactcaatacaacaaac

cgctgccaaagtatttctaaagcaattttaacaggagcaattgattgcccatactttaaaaattaataa

cactgatagtgctagtgtagatcac 

BBa_C0012 

atggtgaatgtgaaaccagtaacgttatacgatgtcgcagagtatgccggtgtctcttatcagacc

gtttcccgcgtggtgaaccaggccagccacgtttctgcgaaaacgcgggaaaaagtggaagcg

gcgatggcggagctgaattacattcccaaccgcgtggcacaacaactggcgggcaaacagtcg

ttgctgattggcgttgccacctccagtctggccctgcacgcgccgtcgcaaattgtcgcggcgatt

aaatctcgcgccgatcaactgggtgccagcgtggtggtgtcgatggtagaacgaagcggcgtc

gaagcctgtaaagcggcggtgcacaatcttctcgcgcaacgcgtcagtgggctgatcattaacta

tccgctggatgaccaggatgccattgctgtggaagctgcctgcactaatgttccggcgttatttctt

gatgtctctgaccagacacccatcaacagtattattttctcccatgaagacggtacgcgactgggc

gtggagcatctggtcgcattgggtcaccagcaaatcgcgctgttagcgggcccattaagttctgtc

tcggcgcgtctgcgtctggctggctggcataaatatctcactcgcaatcaaattcagccgatagcg

gaacgggaaggcgactggagtgccatgtccggttttcaacaaaccatgcaaatgctgaatgagg

gcatcgttcccactgcgatgctggttgccaacgatcagatggcgctgggcgcaatgcgcgccatt

accgagtccgggctgcgcgttggtgcggatatctcggtagtgggatacgacgataccgaagaca

gctcatgttatatcccgccgttaaccaccatcaaacaggattttcgcctgctggggcaaaccagcg

tggaccgcttgctgcaactctctcagggccaggcggtgaagggcaatcagctgttgcccgtctca

ctggtgaaaagaaaaaccaccctggcgcccaatacgcaaaccgcctctccccgcgcgttggcc

gattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcaggctgcaaacgacg

aaaactacgctttagtagcttaataactctgatagtgctagtgtagatctc 

BBa_E0040 

atgcgtaaaggagaagaacttttcactggagttgtcccaattcttgttgaattagatggtgatgttaat

gggcacaaattttctgtcagtggagagggtgaaggtgatgcaacatacggaaaacttacccttaa

atttatttgcactactggaaaactacctgttccatggccaacacttgtcactactttcggttatggtgtt

caatgctttgcgagatacccagatcatatgaaacagcatgactttttcaagagtgccatgcccgaa

ggttatgtacaggaaagaactatatttttcaaagatgacgggaactacaagacacgtgctgaagtc

aagtttgaaggtgatacccttgttaatagaatcgagttaaaaggtattgattttaaagaagatggaaa

cattcttggacacaaattggaatacaactataactcacacaatgtatacatcatggcagacaaacaa

aagaatggaatcaaagttaacttcaaaattagacacaacattgaagatggaagcgttcaactagca

gaccattatcaacaaaatactccaattggcgatggccctgtccttttaccagacaaccattacctgtc
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cacacaatctgccctttcgaaagatcccaacgaaaagagagaccacatggtccttcttgagtttgt

aacagctgctgggattacacatggcatggatgaactatacaaataataa 

BBa_E1010 

atggcttcctccgaagacgttatcaaagagttcatgcgtttcaaagttcgtatggaaggttccgttaa

cggtcacgagttcgaaatcgaaggtgaaggtgaaggtcgtccgtacgaaggtacccagaccgc

taaactgaaagttaccaaaggtggtccgctgccgttcgcttgggacatcctgtccccgcagttcca

gtacggttccaaagcttacgttaaacacccggctgacatcccggactacctgaaactgtccttccc

ggaaggtttcaaatgggaacgtgttatgaacttcgaagacggtggtgttgttaccgttacccagga

ctcctccctgcaagacggtgagttcatctacaaagttaaactgcgtggtaccaacttcccgtccga

cggtccggttatgcagaaaaaaaccatgggttgggaagcttccaccgaacgtatgtacccggaa

gacggtgctctgaaaggtgaaatcaaaatgcgtctgaaactgaaagacggtggtcactacgacg

ctgaagttaaaaccacctacatggctaaaaaaccggttcagctgccgggtgcttacaaaaccgac

atcaaactggacatcacctcccacaacgaagactacaccatcgttgaacagtacgaacgtgctga

aggtcgtcactccaccggtgcttaataacgctgatagtgctagtgtagatcgc 

Table A. 3 Genetic parts DNA sequence. 
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Plasmid map Plasmid map 

  

  

  

Table A. 4 Plasmid maps. 
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