RUNTIME-ASSISTED OPTIMIZATIONS IN THE

ON-CHiP MEMORY HIERARCHY

Vladimir Dimi¢é

Barcelona, 2020

Advisors: Miquel Moreté Planas,

Marc Casas Guix

A thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

in the Departament d’Arquitectura de Computadors

Universitat Politecnica de Catalunya

to my family

Abstract

Following Moore’s Law, the number of transistors on chip has been increasing exponentially,
which has led to the increasing complexity of modern processors. As a result, the efficient
programming of such systems has become more difficult. Many programming models have
been developed to answer this issue. Of particular interest are task-based programming models
that employ simple annotations to define parallel work in an application. The information
available at the level of the runtime systems associated with these programming models offers
great potential for improving hardware design. Moreover, due to technological limitations,
Moore’s Law is predicted to eventually come to an end, so novel paradigms are necessary to
maintain the current performance improvement trends.

The main goal of this thesis is to exploit the knowledge about a parallel application available
at the runtime system level to improve the design of the on-chip memory hierarchy. The
coupling of the runtime system and the microprocessor enables a better hardware design without
hurting the programmability.

The first contribution is a set of insertion policies for shared last-level caches that exploit
information about tasks and task data dependencies. The intuition behind this proposal revolves
around the observation that parallel threads exhibit different memory access patterns. Even
within the same thread, accesses to different variables often follow distinct patterns. The
proposed policies insert cache lines into different logical positions depending on the dependency
type and task type to which the corresponding memory request belongs.

The second proposal optimizes the execution of reductions, defined as a programming
pattern that combines input data to form the resulting reduction variable. This is achieved with
a runtime-assisted technique for performing reductions in the processor’s cache hierarchy. The
proposal’s goal is to be a universally applicable solution regardless of the reduction variable
type, size and access pattern. On the software level, the programming model is extended to let a
programmer specify the reduction variables for tasks, as well as the desired cache level where a
certain reduction will be performed. The source-to-source compiler and the runtime system are

extended to translate and forward this information to the underlying hardware. On the hardware

Abstract

level, private and shared caches are equipped with functional units and the accompanying logic
to perform reductions at the cache level. This design avoids unnecessary data movements to the
core and back as the data is operated at the place where it resides.

The third contribution is a runtime-assisted prioritization scheme for memory requests
inside the on-chip memory hierarchy. The proposal is based on the notion of a critical path
in the context of parallel codes and a known fact that accelerating critical tasks reduces the
execution time of the whole application. In the context of this work, task criticality is observed
at a level of a task type as it enables simple annotation by the programmer. The acceleration
of critical tasks is achieved by the prioritization of corresponding memory requests in the

microproces SOr.

ii

Resumen

Siguiendo la ley de Moore, el nimero de transistores en los chips ha crecido exponencialmente,
lo que ha comportado una mayor complejidad en los procesadores modernos y, como resultado,
de la dificultad de la programacion eficiente de estos sistemas. Se han desarrollado muchos
modelos de programacion para resolver este problema; un ejemplo particular son los modelos
de programacion basados en tareas, que emplean anotaciones sencillas para definir los trabajos
paralelos de una aplicacion. La informacién de que disponen los sistemas en tiempo de
ejecucion (runtime systems) asociada con estos modelos de programacién ofrece un enorme
potencial para la mejora del diseio del hardware. Por otro lado, las limitaciones tecnolégicas
hacen que la ley de Moore pueda dejar de cumplirse préximamente, por lo que se necesitan
paradigmas nuevos para mantener las tendencias actuales de mejora de rendimiento.

El objetivo principal de esta tesis es aprovechar el conocimiento de las aplicaciones paralelas
de que dispone el runtime system para mejorar el disefio de la jerarquia de memoria del chip.
El acoplamiento del runtime system junto con el microprocesador permite realizar mejores
disefios hardware sin afectar negativamente en la programabilidad de dichos sistemas.

La primera contribucién de esta tesis consiste en un conjunto de politicas de insercion para
las memorias caché compartidas de ultimo nivel que aprovecha la informacién de las tareas y
las dependencias de datos entre estas. La intuicion tras esta propuesta se basa en la observacion
de que los hilos de ejecucion paralelos muestran distintos patrones de acceso a memoria e,
incluso dentro del mismo hilo, los accesos a diferentes variables a menudo siguen patrones
distintos. Las politicas que se proponen insertan lineas de caché en posiciones 16gicas diferentes
en funcién de los tipos de dependencia y tarea a los que corresponde la peticion de memoria.

La segunda propuesta optimiza la ejecucion de las reducciones, que se definen como un
patrén de programacion que combina datos de entrada para conseguir la variable de reducciéon
como resultado. Esto se consigue mediante una técnica asistida por el runtime system para la
realizacion de reducciones en la jerarquia de la caché del procesador, con el objetivo de ser una
solucion aplicable de forma universal sin depender del tipo de la variable de la reduccion, su

tamafio o el patrén de acceso. A nivel de software, el modelo de programacién se extiende para

iii

Resumen

que el programador especifique las variables de reduccion de las tareas, asi como el nivel de
caché escogido para que se realice una determinada reduccién. El compilador fuente a fuente
(compilador source-to-source) y el runtime ssytem se modifican para que traduzcan y pasen
esta informacion al hardware subyacente, evitando asi movimientos de datos innecesarios hacia
y desde el niicleo del procesador, al realizarse la operacion donde se encuentran los datos de la
misma.

La tercera contribucion proporciona un esquema de priorizacion asistido por el runtime
system para peticiones de memoria dentro de la jerarquia de memoria del chip. La propuesta
se basa en la nocién de camino critico en el contexto de los cédigos paralelos y en el hecho
conocido de que acelerar tareas criticas reduce el tiempo de ejecucion de la aplicacion completa.
En el contexto de este trabajo, la criticidad de las tareas se considera a nivel del tipo de tarea ya
que permite que el programador las indique mediante anotaciones sencillas. La aceleracion de
las tareas criticas se consigue priorizando las correspondientes peticiones de memoria en el

microprocesador.

iv

Resum

Seguint la llei de Moore, el nombre de transistors que contenen els xips ha patit un creixement
exponencial, fet que ha provocat un augment de la complexitat dels processadors moderns i, per
tant, de la dificultat de la programacio eficient d’aquests sistemes. Per intentar solucionar-ho,
s’han desenvolupat diversos models de programacié; un exemple particular en sén els models
basats en tasques, que fan servir anotacions senzilles per definir treballs paral-lels dins d’una
aplicaci6. La informaci6 que hi ha al nivell dels sistemes en temps d’execucié (runtime systems)
associada amb aquests models de programacié ofereix un gran potencial a I’hora de millorar el
disseny del maquinari. D’altra banda, les limitacions tecnologiques fan que la llei de Moore
pugui deixar de complir-se properament, per la qual cosa calen nous paradigmes per mantenir
les tendencies actuals en la millora de rendiment.

L’objectiu principal d’aquesta tesi és aprofitar els coneixements que el runtime system
té d’una aplicaci6 paral-lela per millorar el disseny de la jerarquia de memoria dins el xip.
L’acoblament del runtime system i el microprocessador permet millorar el disseny del maquinari
sense malmetre la programabilitat d’aquests sistemes.

La primera contribucié d’aquesta tesi consisteix en un conjunt de politiques d’inserci6 a
les memories cau (cache memories) compartides d’dltim nivell que aprofita informaci6 sobre
tasques i les dependencies de dades entre aquestes. La intuicié que hi ha al darrere d’aquesta
proposta es basa en el fet que els fils d’execucid paral-lels mostren diferents patrons d’accés a la
memoria; fins i tot dins el mateix fil, els accessos a variables diferents sovint segueixen patrons
diferents. Les politiques que s’hi proposen insereixen linies de la memoria cau a diferents
ubicacions logiques en funci6 dels tipus de dependencia i de tasca als quals correspon la peticié
de memoria.

La segona proposta optimitza 1’execuci6 de les reduccions, que es defineixen com un patrd
de programacié que combina dades d’entrada per aconseguir la variable de reduccié com a
resultat. Aix0 s’aconsegueix mitjancant una tecnica assistida pel runtime system per dur a
terme reduccions en la jerarquia de la memoria cau del processador, amb 1’objectiu que la

proposta sigui aplicable de manera universal, sense dependre del tipus de la variable a la qual

Resum

es realitza la reduccid, la seva mida o el patr6é d’accés. A nivell de programari, es realitza una
extensio del model de programacio per facilitar que el programador especifiqui les variables de
les reduccions que usaran les tasques, aixi com el nivell de memoria cau desitjat on s’hauria
de realitzar una certa reducci6. El compilador font a font (compilador source-to-source) i el
runtime system s’amplien per traduir i passar aquesta informacié al maquinari subjacent. A
nivell de maquinari, les memories cau privades i compartides s’equipen amb unitats funcionals
i la logica corresponent per poder dur a terme les reduccions a la propia memoria cau, evitant
aixi moviments de dades innecessaris entre el nucli del processador i la jerarquia de memoria.

La tercera contribucié proporciona un esquema de prioritzacié assistit pel runtime system
per peticions de memoria dins de la jerarquia de memoria del xip. La proposta es basa en la
noci6 de cami critic en el context dels codis paral-lels i en el fet conegut que I’acceleracio de
les tasques que formen part del cami critic redueix el temps d’execucié de 1’aplicacié sencera.
En el context d’aquest treball, la criticitat de les tasques s’observa al nivell del seu tipus ja
que permet que el programador les indiqui mitjan¢ant anotacions senzilles. L’acceleracio de
les tasques critiques s’aconsegueix prioritzant les corresponents peticions de memoria dins el

microprocessador.

vi

Acknowledgments

The road to PhD is not easy and would not be possible without help and support of many people.

First of all, I would like to thank to my advisors Miquel Moret6 and Marc Casas for their
patience and guidance. They were always there to help and encourage me. I learned a lot from
them about many aspects of academic research.

I would also like to thank my colleagues from the RoMol team. The special mention goes
to Adrian, Calvin, Cesar, Constan, Dimitrios, Helena, Isaac, Luc and Xubin, who were not only
great teammates, but also good friends.

I am grateful to the pre-defense committee members, Viceng Beltran, Petar Radojkovi¢ and
Sara Royela, and external reviewers, Nikos Nikoleris and Miquel Pericas, for providing valuable
comments and suggestions, which helped me improve this thesis.

I would like to thank Francesc Martinez for the support with the TaskSim infrastructure,
Viceng Beltran and Sergi Mateo for sharing their valuable experience with reductions in the
context of programming models, Lluc Alvarez for numerous discussions about computer
architecture, and Isaac Sdnchez Barrera for his help on translating the abstract into Catalan and
Spanish.

BaxBaJsbyjem ce cBojuM pojauresbuma, Vsany u Asun, u cecrpu Haraim na nerrpectanoj
ITOJIPIIIY TOKOM CBHUX OBHX I'OJIMHA, 0€3 KOje OCTBapeme OBOI' Iu/ba He Ou 6110 Moryhe.
[Tocebny 3axBasiHocT jyryjeM u Bpankuim mro je Ouja y3 MeHe y HajTeKeM HePHOILY
JIOKTOpaTa M IITO T'a je UCIYHUJA JIETUM 3ajeTHUYKIM TPEHYIIIMA.

This thesis has been supported by the Agency for Management of University and Research
Grants (AGAUR) of the Government of Catalonia under Ajuts per a la contractacié de personal
investigador novell fellowship number 2017 FI_B 00855, the RoMoLL ERC Advanced Grant
GA 321253, by the European HiPEAC Network of Excellence, by the Spanish Ministry of
Economy and Competitiveness (contract TIN2015-65316-P), and by Generalitat de Catalunya
(contracts 2017-SGR-1414 and 2017-SGR-1328).

vii

Contents

Abstract i
Resumen iii
Resum \
Acknowledgments vii
Contents xii
1 Introduction 1
1.1 Thesis Objectives and Contributions 5
1.1.1 Runtime-Assisted Insertion Policies for Last-Level Caches 5

1.1.2 Implementing Reductions in the Cache Hierarchy 6

1.1.3 Criticality-Driven Prioritization in the Memory Hierarchy 7

1.2 ThesisOutline 7

2 Background 9
2.1 Cache Memories in Microprocessors v v v v v v .. 9
2.1.1 Cache Microarchitecture 10

2.1.2 Cache Management 12

2.1.3 Cache Replacement Policies 13

2.2 Memory Controller Design and Optimizations 16
2.2.1 Memory Controller Design 16

2.2.2 DRAM organization 17

2.2.3 Memory Request Prioritization 19

2.3 Reductions and Near-Memory Computing 20

2.3.1 Reductions: A Brief Overview 20

CONTENTS

2.3.2 Software Support for Reductions 21

2.3.3 In-Memory and Near-Memory Computation 22

2.3.4 Computation in On-Chip Memory Hierarchy 24

2.4 Parallel Programming for Shared-Memory Systems 25
2.4.1 Parallel Processors 25

2.4.2 Parallel Programming Models 26

24.3 Task-Based Parallel Programming 27

244 OmpSs Programming Model 28

2.5 Runtime-Aware Architectures L Lo 29
3 Experimental Methodology 33
3.1 Simulation Infrastructure oo 33
3.1.1 Simulators 33

3.1.2 Baseline Architecture Lo 35

3.1.3 Environment Lo Lo 36

32 Benchmarks 36
33 MEetrics oo e e 42
4 Last-Level Cache Insertion Policies 45
4.1 Challenges in the Design of Replacement Policies for Shared Caches 46
4.2 Runtime-Assisted LLC placement policies 48
4.2.1 Task Type Aware Probabilistic Insertion 48

4.2.2 Dependency Type Aware Insertion 51

4.3 Design Space Exploration. 54
4.3.1 TTIP Parameters Space Exploration 54

4.3.2 DTIP Design Space Exploration 55

4.4 Evaluation 57
4.4.1 PerformanceResults 58

442 DesignCostso 59

45 Summary e e 60
5 Reductions in the Cache Hierarchy 61
5.1 Limitations of Current Reduction Techniques 62
5.1.1 Overcoming Limitations Using Hardware-Assisted Reductions 63
5.1.2 Ongoing Challenges 64

CONTENTS

5.2 Implementing Reductions in the Cache Hierarchy
5.2.1 Microarchitectural Support for Reductions
5.2.2 Programming Model and Compiler Support
5.23 Discussion
5.3 RICH Design Decisions
5.3.1 Design Space Exploration
5.3.2 Hardware Cost of Implementing RICH
5.4 Evaluation L
5.4.1 Evaluating RICH with Vector-Reductions
5.4.2 Impact of RICH on Cache Performance for Vector-Reductions
5.4.3 Evaluating RICH with Scalar-Reductions
5.4.4 Comparison with Other Proposals

5.5 Summary e e

Criticality-Driven Prioritization inside the Memory Hierarchy
6.1 Challenges in Prioritization Techniques
6.1.1 Accelerating Critical Path by Memory Request Prioritization:
A ProofofConcept
6.2 PrioRAT: Criticality-Driven Prioritization inside Memory Hierarchy
6.2.1 Programming Model and Runtime System Support
6.2.2 Hardware Extensions for Request Prioritization
6.2.3 Discussion
6.2.4 Combining priority and criticality annotations
6.3 Evaluation L
6.3.1 Performance Evaluation
6.3.2 Performance Impact of Memory Traffic Intensity
6.3.3 Performance Impact of the LLC Size and Memory Latency

6.4 Summary e e e e e

Conclusions

7.1 Thesis Goals and Contributions
7.1.1 Runtime-Aware Shared Last-Level Cache Insertion Policies
7.1.2 Reductions in the Cache Hierarchy
7.1.3 Ciriticality-Driven Prioritization inside the Memory Hierarchy

7.2 Future Work

Xi

85
86

86

CONTENTS

7.3 Publications 109
Bibliography 111
List of Figures 131
List of Tables 133
Glossary 135

Xii

Chapter 1

Introduction

Memories have been an integral part of computers ever since the appearance of the first concept
for a programmable computing machine in 1837 [16]. Since they store both instructions and

data, fast memory accesses are a must in order to achieve the good performance of applications.

Alas, due to differences in technologies used to manufacture processors and memories, the
gap between speeds of these two resources has been increasing exponentially. This phenomenon
is illustrated in Figure 1.1 by comparing processor and memory performance expressed through
SPECint performance and access latency, respectively. The consequence of this behavior is
that the relative cost of accessing memory has been increasing exponentially. To bridge this
performance gap, the concept of caching the data in the processor has come to light. On-chip
cache memories offer shorter access latency and higher bandwidth compared to the main
memory. On the other hand, they are more costly in terms of area and power per byte of storage

and require a careful design of algorithms that manage their contents. However, it is predicted

+++
. ++++
g 10* 4 + Microprocessor ++++++++
g +
g Memory +F
= 103_' +++
< +F
3 o +F
a. 10°
! +*
2 ++
g 10" 7 ++
3 +
[27
100 4 +
: ———

L e L I R IR DL L IS "
1980 1985 1990 1995 2000 2005 2010 2015 2020
Date of introduction

Figure 1.1: Evolution of relative processor and memory performance.

Data collected and plotted by Hennessy and Patterson [74]. Each dot corresponds to a microprocessor or a memory
design. Performance metrics are based on the SPECint performance for microprocessors and access latency for
memories and are normalized to the oldest shown product of the respective group.

3 °
10’ 3 ® Transistors «® ®
] %0 ¥
106 4 A Frequency - :...(..
3 P »“((‘..
3 ower . .s.(»:o
5] =
107 3 Number of Cores e ¢:.(. ¢
] e 58°
10* 3 .,.‘.@ .’;.
] co ¢¢°0 NN
] WYY Y Y Y % Y W W
10% 1 oo &° A,‘:ﬁ.“A ~ A 4
3 AD HA
, e ° A 4Aah =
102 ® & A Ta
10" 4 “
3 o A A
] .. A
10° 3
RN
L I L L L L L L L L L L L L
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
Year

Figure 1.2: Historical trends of important metrics in computing systems.

Transistor count is presented in thousands, frequency in Hz and power in W. Original data up to 2010 collected
and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten. Data from 2010
to 2017 collected by Rupp [151].

that current technological trends will eventually lead to the Memory Wall [177] regardless of
the efforts put into optimizing the cache design. Nevertheless, improving the design of on-chip
memory hierarchies remains an open challenge as one of the ways to delay the arrival to the

wall.

Cache design has been influenced by several factors, such as the number of transistors
and limitations in power and frequency. The historical trends of these processor properties
are shown in Figure 1.2. Following Moore’s Law, the number of transistors on chip has been
increasing exponentially, which has enabled architects to spend more transistors on improving
cache performance. As a direct consequence, caches have become larger, more complex (e.g.,
set-associative and multi-banked) and split into multiple levels to further offset the trade-off
between cost and performance. Further advances were slowed down by the end of Dennard
scaling [52] and reaching the Power Wall around 2005, which is observed in Figure 1.2 as the

stagnation of the previously increasing trends for processor frequency and power.

The stagnation of performance achieved through increasing the size and complexity of caches
has led researchers and architects to better utilize already available cache resources. To that end,

significant advances have been made in the design of cache management techniques, improving

2

Introduction

the performance in both execution speed and consumed energy. Cache replacement policies are
developed to improve cache hit ratios and, thus, reduce unnecessary data movement between
the processor and main memory. However, not all cache misses can be avoided', even with
infinite cache resources and oracle algorithms. To reduce the latency of data access, prefetchers
are used to pre-load the lines that are predicted to be accessed in the future. Nevertheless, the
memory access patterns are often unpredictable. Moreover, prefetchers do not reduce memory
traffic between the processor and the main memory and may pollute the cache by prefetching

unnecessary lines, further decreasing the performance.

Data movement is predicted to be the main contributor to power consumption in future
systems [23, 47, 101]. In order to further reduce the data movement through the memory
hierarchy, the concept of processing in memory has been born [141]. The idea relies on placing
computing resources near the place where data resides. In general, this enables performing
simple operations on data without the need for transferring it to the core. In-memory computation
has several positive effects on performance. First, it saves the energy necessary to transport
data to the core and back. Second, data do not take space in the cache and therefore, it allows
better cache performance both in terms of execution speed and energy. However, in-memory
computation has seen limited use in High-Performance Computing (HPC) systems due to long
latency and increased pressure on already congested memory buses. Recent proposals [125,
181] avoid the limitations while keeping the benefits of this approach by implementing it in the

on-chip memory hierarchy, which is referred to as near-memory computation.

Another point of optimization within the memory hierarchy is the interface between
microprocessor cores and main memory. The memory controller is a component that manages
this interface and, therefore, it plays an important role in the optimal utilization of the limited
memory bus. Formerly a part of the north bridge, the memory controller has been an integral
part of the processor since the appearance of AMD K8 [172]. In current systems, memory
controllers manage the contents of volatile memories, sort the memory requests coming from
the cores and issue appropriate DRAM commands following the restrictions defined by DRAM
standards [93]. The impact of the memory controller on the performance lies in the optimal
scheduling of DRAM commands in order to exploit parallelism inside DRAM chips. In addition,
since the beginning of the multi-core era, memory controllers ensure a fair allocation of the
memory bandwidth to the co-running threads. Memory controller designs focus on prioritizing

critical work at the instruction [73], thread [128, 129, 132] and application level [163].

IDifferent types of cache misses are explained in Section 2.1.2

The growing complexity of the modern parallel processors has increased the difficulty of
writing codes that optimally utilize the existing hardware resources. This is especially the case
in the HPC domain, where complex applications need to run efficiently on a large number of
processors. Parallel programming models are a set of paradigms designed to ease the writing of
such codes. Early implementations, such as pthreads [80] for shared memory and Message-
Passing Interface (MPI) [64] for distributed memory systems, require manual specification of
parallel work, handling of synchronization and ensuring the correct execution of programs.
Further advances resulted in more programmer-friendly paradigms, such as the annotation-based
approach offered by OpenMP [135]. A programmer employs simple annotations to specify
units of parallel work and the appropriate synchronization between threads. The annotations
are translated by a compiler to function calls provided by the programming model library. More
recent proposals [136] introduce task-based parallelism. Contrary to parallel work units in the
fork-join models, tasks can run asynchronously, enabling better load balancing and, therefore,

better utilization of hardware resources.

Traditionally, microprocessors are designed to be agnostic to the code running on them.
Besides, programmers do not need knowledge of the underlying hardware to write correct
applications. This approach enables a high level of code portability, and thanks to this, it
is widely adopted in general-purpose computing. However, the codes in the HPC domain
are less restricted in that context as they are often optimized for specified machines where
they are executed. This implies applying knowledge of micro-architectural details of the
underlying hardware to improve the performance of applications. Many modern microprocessor
designs [1, 78, 81, 122, 168] offer mechanisms to provide application-level information to the
hardware, such as data prefetches, cache block invalidations and flushes, as well as hints to
cache replacement policies. While this offers an opportunity to achieve better performance, a

great effort is required from a programmer to fulfill that goal.

To exploit performance benefits offered by the hardware-software collaboration while
maintaining the ease of programming, Casas et al. [35] propose a new paradigm based on
runtime-aware architectures. At the heart of this approach is the runtime system that serves
as a link between the parallel application and the underlying hardware. While its purpose
is to ensure the correct execution of a task-based parallel code, its main potential lies in the
knowledge of both the hardware and application-level details that can be exploited to improve
the overall performance. From the software standpoint, knowledge about underlying hardware
offers better scheduling decisions to optimally utilize modern heterogeneous systems. From

the hardware perspective, the runtime system knowledge offers a view into the future that is

4

Introduction

not available with traditional methods. The great potential of this paradigm is proven by many
successful applications of the runtime system information on improving the performance of the
whole system [9, 32, 36, 41, 44, 118, 119, 138].

1.1 Thesis Objectives and Contributions

The main goal of this thesis is to exploit the knowledge about a parallel application available at
the runtime system level to improve the design of the on-chip memory hierarchy. The coupling
of the runtime system and the microprocessor enables a better hardware design without hurting
the programmability of the parallel systems.

The proposals presented in this thesis rely on modern directive-based parallel programming
models, a powerful, programmer-friendly tool for producing well-performing and portable
applications. The programming model is extended to allow the user to provide additional
information about the parallel code that is not already present in the existing standards. The
source-to-source compiler translates these annotations into the calls to the runtime system
library. The runtime system exploits existing mechanisms to forward the information to the
hardware, which then uses it to optimize the design of various components within the on-chip

memory hierarchy.

1.1.1 Runtime-Assisted Insertion Policies for Last-Level Caches

The first contribution of this thesis is a set of insertion policies for shared last-level caches
that exploit information about tasks and task data dependencies. The design of these policies
is based on re-reference intervals. The intuition behind this proposal revolves around the
observation that parallel threads exhibit different memory access patterns. Even within the
same thread, accesses to different variables often follow distinct patterns. The goal of these
insertion policies is to assign the appropriate re-reference interval to each cache line on its
insertion in the last-level cache, taking into account the access pattern and its impact on cache
performance of other cache lines.

The first policy considers the data dependencies between tasks defined by a programmer
using programming model annotations. Data dependencies are classified into three groups
depending if they are read-only (in), write-only (out), or both (inout). The dependency type

statically determines whether the corresponding cache lines are treated by the replacement

5

1.1 Thesis Objectives and Contributions

policy as cache-friendly or trashing access patterns. Depending on their cache friendliness, the
cache lines are assigned different re-reference intervals.

The second insertion policy utilizes the notion of task types to dynamically drive the
assignment of re-reference intervals to new cache lines. On the software level, the runtime
system is extended with a sampling mechanism that tracks the cache performance for each
policy configuration. The execution is split into training and stable phases. During the training
phase, the runtime system drives the cache configuration and evaluates each configuration’s
cache performance. The best performing setting is used during the stable phase. To allow for
the changes in application behavior during the time, the runtime system periodically switches
between the training and the stable phase. On the hardware level, the last-level cache is extended

to take into account runtime-provided settings for the re-reference interval assignment.

1.1.2 Implementing Reductions in the Cache Hierarchy

The second contribution of this thesis is a runtime-assisted technique for performing reductions
in the processor’s cache hierarchy. The notion of near-memory computation [160] is applied to
reductions, which are defined as operations where input data is accumulated by applying an
operator to generate output data [76]. The goal of this proposal is to be a universally applicable
solution regardless of the reduction variable type, size and access pattern.

On the software level, the programming model is extended to let the programmer specify
the reduction variables for tasks, as well as the desired cache level where each reduction will be
performed. The source-to-source compiler and the runtime system are extended to translate and
forward this information to the underlying hardware. On the hardware level, private and shared
caches are extended with functional units and accompanying logic to perform reductions at the
cache level. This approach avoids the unnecessary data movements to the core and back as the
data is operated at the level where it resides. Since this design does not modify the processor’s
instruction set architecture (ISA), the core is extended to facilitate proper instructions to the
caches. Specifically, the load-modify-store chain is converted to a single store instruction that
carries all information necessary to perform a reduction correctly. This store instruction is
forwarded through the cache hierarchy until it arrives to the cache level that computes the
reduction. If the reduction is performed in private caches, a final reduction takes place in
the last-level cache once the reduction tasks are completed. The existing synchronization
mechanisms in the runtime system manage correct execution and prohibit premature access to

partially reduced data.

Introduction

1.1.3 Criticality-Driven Prioritization in the Memory Hierarchy

The third contribution of this thesis is a runtime-assisted prioritization scheme for memory
requests inside the on-chip memory hierarchy. The proposal is based on the notion of a critical
path in parallel codes and the well-known impact of accelerating critical tasks on reducing the
execution time of the whole application. In the context of this work, task criticality is observed
at the level of task types as it enables simple annotation by the programmer. The acceleration
of critical tasks is achieved by the prioritization of their corresponding memory requests in the
microprocessor.

On the software level, the programming model is extended to allow the programmer to
specify critical task types in a parallel code. The source-to-source compiler and the runtime
system are responsible for translating and providing this information to the processor. Within
the processor, memory requests issued by the core are assigned priorities depending on the
corresponding task’s criticality. Shared resources belonging to the on-chip memory hierarchy,
such as the interconnection network, the last-level cache and the memory controller, consider
the priority of memory requests when deciding their ordering. The design is viable for different
organizations of caches and memory controllers and various implementations of interconnection

networks.

1.2 Thesis Outline

The contents of this thesis are organized as follows:

Chapter 2 reviews the prior work on the topics related to this dissertation, beginning with
the background on cache design and following with the algorithms for cache management.
Further, it explores the designs of memory controllers and their policies. Next, the concept of
near-memory computation is introduced with detailed insights into previous works on this topic.
Advancing to the software level, it provides a background on parallel programming models and
their runtime systems. Finally, the prior work on the holistic design of runtime systems and
microprocessors is briefly explained.

Chapter 3 introduces the simulation infrastructure used for experiments described in the
thesis, together with the description of the benchmarks used for the evaluation of the proposed
designs.

Chapter 4 proposes two runtime-assisted insertion policies for shared last-level caches which

use application-level knowledge to guide the placement of cache lines.

7

1.2 Thesis Outline

Chapter 5 presents an application of near-memory computation paradigm inside the on-chip
memory hierarchy, specifically for performing reduction operations within the caches. The
chapter introduces the challenges present in the context of in-memory reductions and proposes
the solution that aims to minimize data movements while maintaining programmability.

Chapter 6 introduces the prioritization scheme for memory requests based on task criticality
in a parallel application. After describing the context and problems in the previous designs, this
chapter introduces the proposed solution’s hardware and programming model extensions.

Chapter 7 summarizes the contributions presented in this dissertation and provides the

possible directions for future work.

Chapter 2

Background

This chapter presents the background of the relevant hardware and software components in the
context of the work developed for this thesis. The design of the on-chip memory hierarchy,
i.e., caches and memory controllers, is presented in detail, including the previous work on
improving the design of these components. Further, the chapter introduces the state-of-the-art
work on optimizing the execution of reductions, which constitute an important algorithmic
pattern in the HPC codes. The fourth section of this chapter is dedicated to the programming of
parallel systems, specifically the programming models for shared-memory processors and the
associated runtime systems. Finally, the fifth section introduces the concept of runtime-aware
architectures that are a backbone of the work presented in this thesis, with a brief overview of

related work.

2.1 Cache Memories in Microprocessors

In computing, a cache generally refers to a small and fast storage that keeps frequently accessed
data. In the context of computer architecture, caches were introduced as a solution to the
ever-increasing performance gap between processor and main memory (see Figure 1.1). They
offer a lower latency and higher bandwidth compared to the main memory. On the negative
side, they require more area and consume more power per unit of storage.

The first commercially available system that uses a data cache is IBM System/360
Model 85 [77] announced in 1968. Since then, the design of cache memories has become more
complex as a response to the increasing processor-memory performance gap and enabled by
the exponential increase of the number of on-chip transistors following the Moore’s Law [123,
124]. Figure 2.1 illustrates the most common memory hierarchy designs encountered in the
modern processors. One direction the development of caches has taken is the introduction of a

multi-layered cache hierarchy, which employs several caches of increasing sizes and latencies.

9

2.1 Cache Memories in Microprocessors

D 0B 08 BE

|
P
D A
I I I I I I I I C
L2 L2 L2 L2 L2 L2 E K
| | | | A
L3 L3 | G
[- E
L4 eDRAM {
|
M Memory Memory Memory

(i) (i) (iii) (iv)

Figure 2.1: Typical memory hierarchy architectures

While most current processors implement a three-level cache hierarchy, designs marketed
towards low-power applications use two-level caches (i). More recent chips introduce the
fourth cache level, implemented in the DRAM process on a separate die. Another direction
of cache design follows the introduction of multi-core processors. In general, the L1 cache is
private to the core, while the lower-level cache can be either private or shared. Single-core
and low-performance multi-cores usually employ two-level cache hierarchy where the second
level is shared (i), (ii). More advanced multi-core designs employ three-level hierarchies (iii),
while some of the recent processors add a L4 cache (iv). A cache that lies just before the main
memory in the memory hierarchy is often referred to as the last-level cache (LLC).

The remaining of Section 2.1 presents the organization of the most-relevant cache designs
and introduces the prior work on the policies for management of the cache contents with a

special focus on the cache replacement policies.

2.1.1 Cache Microarchitecture

This section describes the organization of the on-chip caches. Modern microprocessors
employ caching techniques for instructions, data, memory page-table, among others. Since the
contributions of this thesis target data caches, this section focuses only on that cache type.

A building block of on-chip caches is a SRAM cell which consists of 4 or 6 transistors,
depending on the implementation, contrary to a DRAM cell which is typically built of one

transistor and one capacitor. As it does not rely on a capacitor to store a charge, a SRAM cell

10

Background

Way 1 Way 2 Way 3 Way 4
V Tag Data V Tag Data V. Tag Data IV Tag Data

:Ij'l_'l_'l_

| tag | set | offset | M:\ MUX /

Address requested by a core U

Hit?

Figure 2.2: Logical organization of a 4-way set-associative cache with a data look-up circuit
The actual cache implementations use separate SRAM arrays for tags and data. Comparators are part of the tag
storage which is implemented as content-addressable memory. Some designs split data arrays into banks.

does not require refreshing in order to maintain information. Moreover, it allows a faster access

but is larger and consumes more energy that a DRAM cell.

The unit of storage for most common cache designs is a cache line, or often referred to as a
cache block. It contains the data and the metadata necessary for the proper management of the
data. The metadata consists of (i) the tag portion of the address, which is compared with the
requested address during a cache look up, and (ii) flags, which represent status of the line, such

as validity bit, dirty bit and bits related to the coherence protocol.

With regards to the organization of a cache, the simplest implementation is a so-called
direct-mapped cache. In this design, each memory address is always mapped to the same
physical cache block. Such design allows a fast access with a low energy cost. However, it
can suffer from frequent conflicts when two distinct addresses are mapped to the same block.
As a consequence, some access patterns can produce series of evictions and data fetches
which slows down the execution and wastes energy. On the other end of the spectrum lies a
fully-associative cache, where memory addresses can be mapped to any physical cache block.
While they exhibit the best performance in terms of number of successful cache lookups, such
cache designs are expensive in area and consume significantly more energy than direct-mapped
caches. Set-associative caches combine these two designs to offer a trade-off between the
cache performance in terms of cache hits, while keeping low area, access latency and energy

consumption. A set-associative cache is split into cache sets. Memory addresses are directly

11

2.1 Cache Memories in Microprocessors

mapped to cache sets, while within a set, an associative lookup is used. Figure 2.2 shows an
organization of a set-associative cache.

Most modern microprocessors employ set-associative caches with varying associativity.
Caches with larger degree of associativity within the set observe better hit ratios at the cost of

higher implementation complexity, latency and energy consumption.

2.1.2 Cache Management

Processor caches are accompanied with a set of algorithms that define their behavior and ensure
an eflicient and correct use of cache resources. These algorithms are implemented in silicon and
usually are a part of the cache controller. An important goal in the design of these algorithms is
improving cache hit ratios, or, in other words, reducing the number of cache misses. Cache
misses can be categorized in three categories, usually referred to as three Cs: (i) compulsory
misses occur on a first reference to a given address; (ii) capacity misses are a result of eviction
of cache contents due to the limited space; (iii) conflict misses happen in direct-mapped and
set-associative caches due to the same set-mapping of different addresses. There are cache
management algorithms dedicated to reduce the number of misses corresponding to each of the
mentioned groups.

Cache write policies define how data modifications are handled. Write back policy maintains
a modified line (also called dirty line) in the cache and writes to the next cache when the
line is evicted. Write through policy forwards the modifications to the lower-level cache on
write. Allocation policies specify whether on a write miss a line is first brought to cache (write
allocate), or the data is directly forwarded to the lower-level cache (no write allocate).

In some cases, a programmer may know that accessed datum does not have temporal locality.
To prevent the data from unnecessarily occupying the cache, a hint can be given to the processor.
Modern ISAs, like ARMvS [14] and Intel x86 [81], offer such a mechanism via non-temporal
memory operations.

Cache coherence algorithms ensure that changes to the shared data is propagated through
the memory hierarchy which guarantees that cores always access the correct value. Coherence
protocols are transparent to the programmer, contrary to memory hierarchy organizations like
scratch-pad memories that have to be managed manually.

Prefetching schemes are able to significantly improve cache performance by fetching the
cache lines that are predicted to be accessed in the near future, and, therefore, avoid some

compulsory misses. However, making optimal predictions is not an easy task. Moreover,

12

Background

wrong prefetching decisions may result in eviction of the useful data from the cache, aside from
increasing the pressure on the memory bus.

Cache partitioning is a technique where caches are divided into portions according to certain
criteria. This mechanism can be used to ensure fair share of cache resources among co-running
threads.

Cache compression is a method to improve cache performance by compressing cache
lines and thus increasing the effective capacity of the cache [7, 11, 133]. Future processors
are predicted to have a reduced amount of memory per core due to power limitations. This
makes compression a viable approach for improving cache performance for the next-generation
systems. A drawback of cache compression is an increased hit latency. In programs that do not
benefit from compression, this results in a worse performance compared to the systems without
compression. Dynamic compression schemes overcome this issue by selectively applying

compression taking into account the performance benefits and penalties of compression.

2.1.3 Cache Replacement Policies

Cache replacement policies are a set of algorithms whose main objective is to select a line to
be evicted to make space for a newly fetched line. The complexity of the problem has led to
its decoupling into multiple algorithms, i.e., insertion (also called placement), promotion and
eviction policies. Simple replacement schemes, like First-In, First-Out (FIFO), do not take into
account data reuse and, therefore, is not an attractive choice for a cache replacement policy.
The optimal replacement policy in terms of miss ratio is the Belady’s MIN algorithm [22],
which evicts the line that is going to be referenced furthest in the future. However, it requires
knowledge about the future, which renders it unusable in real systems.

Many techniques approximate MIN algorithm, the most well-known being the Least-Recently
Used (LRU) policy. It uses a recency stack to logically order the cache blocks according
to the last time they were accessed. While its implementation for software caches is trivial
and eflicient, the hardware implementation requires updating several entries of the stack on
each access. Pseudo-LRU schemes are proposed to avoid the added energy cost that comes
with updating the recency stack, such as Not-Recently Used (NRU) [164], binary tree-based
policies [42], etc.

These simple replacement policies are not suitable for all scenarios. For example, LRU
policy inserts new lines into the most-recently used position in the recency stack. Therefore,
data that is never reused (e.g., streaming access patterns) can push other cache-friendly data

to the bottom of the recency stack and cause their premature eviction. Many techniques are

13

2.1 Cache Memories in Microprocessors

built on top of these simple policies in order to further optimize cache performance for complex

memory access pattern, especially in the domain of shared caches.

Qureshi et al. [145] propose several insertion policies that try to reduce trashing of cache
lines. LRU Insertion Policy (LIP) inserts new lines in the LRU position, which is an optimal
insertion decision for data with zero reuse. Bimodal Insertion Policy (BIP) combines LIP
with the standard Most-Recently Used (MRU) insertion policy, so that a tunable percentage of
lines is inserted in the LRU, and the other in the MRU positions. The objective of BIP is to
prevent cache trashing by inserting randomly-selected lines at the bottom of the recency stack.
If such lines are accessed before the next eviction, they are promoted to the MRU position. On
the other hand, if the line belongs to streaming accesses, it will not pollute the recency stack.
Dynamic Insertion Policy (DIP) chooses between BIP and LRU during the run-time and is able
adapt to different workloads and the change of the workload behavior during the execution
time. The switching between these two algorithms is achieved via Sampling Based Adaptive
Replacement [146]. The cache performance of the two policies is tracked and the cache is set
to follow the currently best-performing strategy. The main drawback of this policy is that it

randomly assumes the access patterns of incoming lines without using high-level knowledge.

Jaleel et al. [88] propose a cache replacement policy that uses Re-Reference Interval
Prediction (RRIP) in order to prevent lines, which are not going to be referenced for a long time,
polluting the cache. The algorithm predicts whether a cache line is going to be accessed in a
near or distant future, and accordingly assigns an immediate or distant re-reference interval. On
eviction, lines with distant prediction are evicted. The predictor learning is performed during
the program execution, on a hit to a cache line. The policy is composed of two algorithms that
try to solve two different problems in caches. The first, Static RRIP (SRRIP) protects cache
lines from being evicted by streaming access patterns. The second, Bimodal RRIP (BRRIP),
solves the problem of trashing that appears in some workloads when using SRRIP policy and is
analogous to the previously-described BIP. The selection of a better-performing policy during
the run-time is done via Set Dueling [144]. Similarly to DIP, DRRIP does not consider the

high-level information about memory accesses.

Wu et al. [176] propose Signature-based Hit Predictor (SHiP) to improve the RRIP-based
policies by taking into account the signature of the cache reference during the prediction
of re-reference interval. SHiP assigns a signature to each cache reference and records the
reuse of lines corresponding to each signature. On insertion, lines are assigned a re-reference
interval depending on the previous behavior. Cache lines exhibiting no reuse are assigned a

distant re-reference interval, while the lines recorded to have reuse are assigned an immediate

14

Background

re-reference interval. This policy is adaptable to recency-based policies, such as LRU, and
supports different signature schemes that can be based on the program counter of the issuing

instruction, the memory region the referenced address belongs to, etc.

Jiménez [96] proposes using arbitrary insertion, promotion and eviction schemes, controlled
by an Insertion/Promotion Vector (IPV). The IPV defines how the order of lines in the LRU-MRU
stack is changed on promotion. It also defines the position where a new line is inserted and the
position from which a victim line is chosen. The main idea is to employ out-of-order promotion
of cache lines, based on their position in LRU-MRU stack. The IPV is calculated by the use
of a genetic algorithm that tries to maximize overall performance of an application. Dynamic
mechanism, based on Set Dueling [144], is applied to choose between multiple predefined

vectors, depending on the current workload.

Jain and Lin [87] propose Hawkeye, which applies Belady’s algorithm on previous cache
references in order to predict the future behavior of cache blocks. Hawkeye observes a set of
previous cache accesses to determine whether a certain access would hit or miss following the
Belady’s algorithm. These observations drive the training of a PC-based predictor that classifies
cache lines as cache-friendly or cache-averse. Cache-friendliness is taken into account by the
replacement policy to favor evicting cache-averse blocks. Hawkeye does not consider the reuse

of cache-averse lines and always associates them with a distant re-reference interval.

Multiple proposals are based on the idea of marking lines that will not be referenced again
(dead blocks) as victims. Since identifying dead blocks requires knowledge of future, all
techniques use dead block predictors in order to do so. Kharbutli and Solihin [104] and Khan,
Tian, and Jimenez [103] propose hardware techniques for dead block prediction. The first one
uses a counter-based approach, which marks lines as dead when number of certain cache events
(e.g. number of accesses to a cache line) reaches a preset threshold. The other proposal uses
learning based on events from a subset of all cache sets, via sampling of partial tags. Some
compiler assisted techniques [154, 173] predict dead blocks during compilation and provide

this information to the processor.

Previously described replacement policies take into consideration only information and
metrics available at the hardware level. This information is used for the prediction of certain
behaviors that drive the replacement policies. Therefore, the achieved cache performance
depends on the quality of these predictions. Moreover, obtaining good predictions often requires
additional hardware structures that further complicate the cache design. In recent years, there
have been proposals that utilize the knowledge about the application at the software level

to assist the decisions made in hardware. These approaches exploit high-level information

15

2.2 Memory Controller Design and Optimizations

. Memory Controller . Memory
Read . Command o
s | Queue ‘é% ~| Generator E =
g | == I 5 2
=} ' oo et ! =
s | o= = T -
S| > ER Command =
S| ueue Queue o0 '
g1 g I
Rl Y f E :
Rl Command = :
S Buffer Scheduler g |
2k 1 < bl S
o | Rl I
i | Clock & Power Refresh =l I
: | Management Controller = |

Figure 2.3: The schematics of the memory controller for DRAM memories

unavailable at the hardware level. Manivannan et al. [1 18] propose RADAR, a runtime-assisted
scheme for dead-block management for task-based parallel applications. The proposal consists
of two algorithms which are combined to give a better prediction of dead blocks. The first
algorithm, Look-ahead scheme uses information about task dependencies and current state of
the task dependency graph to determine whether certain blocks of data will be accessed again.
The second, Look-back scheme uses previous outcomes of cache accesses to train branch a
predictor-like structure whether certain cache lines will be dead or not. Same authors [119]

expand the idea globally to all caches, which further improves the cache performance.

2.2 Memory Controller Design and Optimizations

This section introduces the background on main memories and the associated controllers and

presents the state-of-the-art designs of request scheduling policies inside memory controllers.

2.2.1 Memory Controller Design

A memory controller is a component that lies between the processor and the main memory
and has the role of transferring data between these two resources. Until early 2010s, memory
controller was a part of the North-Bridge. Since Intel Nehalem and AMD Sledgehammer
architectures, enabled by the increasing number of transistors on chip, the memory controllers
have become a part of the processor die. A DRAM controller has several responsibilities and

its internal structure is presented in Figure 2.3. The subcomponents of a memory controller can

16

Background

be classified into queues and interfaces, scheduling logic, DRAM command generators and
control logic. The following paragraphs describe the functionality of the relevant components.

As the memory bus is not bi-directional, read and write requests cannot be interleaved. In
addition, the switching between read and write modes takes time, so the controllers generally
issue larger bursts of read and write requests. Consequently, memory controllers are equipped
with separate queues for read and write requests. The request scheduler has an objective to
order memory requests coming from the processor in a way that maximizes the bandwidth and
minimizes the access latency. Section 2.2.3 provides a detailed background on this topic and
reviews the relevant state-of-the-art proposals.

Once the ordering of requests is determined, the controller translates each request into a
set of DRAM commands necessary to fulfill that request. A DRAM command is a high-level
abstraction of the signals to the DRAM chip that need to be set in order to perform a desired action.
For example, a read request is translated into Activate and Read with Auto-Precharge
commands, according to the JEDEC DDR4 [93] specification. The commands are then
scheduled and issued to the DRAM chips through the respective interfaces, while following the

DDR4 memory. DRAM is a volatile memory and therefore needs to be refreshed periodically
in order to preserve the stored data. This is another task done by a memory controller. The
Refresh Controller maintains the status of each memory block and periodically issues Refresh
commands. Recent designs of memory controllers introduce power management schemes that

reduce energy consumption. Some architectures provide mechanisms for improving security.

2.2.2 DRAM organization

A full understanding of various design choices inside a memory controller is not possible
without a basic knowledge of the modern DRAM architectures. This section provides a brief
background of the DDR4 design. A common organization of the main memory in the modern
systems is shown in Figure 2.4. Processors offer multiple memory interfaces (channels). Each
channel can hold one or two DIMM modules, each of which can have up to two ranks. Within a
rank, the memory is further divided into banks, and banks into sub-arrays. Sub-arrays within
the bank can operate simultaneously. However, since all components on the same channel share
physical command, address and data buses, the accesses need to be serialized. Devices residing
on different channels can function independently from each other.

Due to the technological properties of a DRAM cell, the content of a row first needs to be

loaded into a buffer before it can be accessed. Every memory request is decomposed into three

17

2.2 Memory Controller Design and Optimizations

DIMM DIMM (] H§| Subarray 72
) __ . . S Local Row Buffer ~
' —cmd—> | Rank J Rank J o .
—addr> — — - o
i._\edatae/} Bank] Bank'"]| c:g | Subarray }%
Processor | O Local Row Buffer ~

HERERRERRRENARNREEN
Global Row Buffer

Column Multiplexer

MemCitrl

Channel

Figure 2.4: The layers of parallelism in modern DRAM designs. Left: The organization of the
DRAM. Right: The logical architecture of a DRAM bank. The illustrations adapted from the
work by Kim et al. [107]

RL =11 cycles

DATA)
// \ <Dou1> <Doul> <Dou1 <Dou> Dout <Dout (Dom) Dout /
. DON'T CARE o G G &) G &) & 9

Figure 2.5: A timing diagram for a read command [93]

commands: (i) Activate reads a row from a sub-array into the row buffer; (ii) Read/Write
accesses the selected column inside the row buffer, and (iii) Precharge writes the contents of
the row buffer back into the corresponding row of the sub-array. Since Activate command
destroys the original data in the row, the row buffer always needs to be written back before a
new row is activated. Depending on the row buffer status, the latency of a memory access can
vary significantly. For example, if a requested row buffer already holds the necessary data,
only Read command needs to be issued. On the other hand, if the row-buffer holds the content
of another row, the executed command sequence is Precharge - Activate - Read. Ina
Micron DDR4 SDRAM model MT40A [121] operating on 2400 MHz, each of these commands
take 17 DRAM cycles.

A memory block corresponding to a cache line is distributed across banks in arank. Therefore,
to serve a LLC miss, memory controller simultaneously issues appropriate commands to the
banks within the selected channel, device and rank. Figure 2.5 illustrates a timing diagram of
signals on the command, address and data buses corresponding to a Read command. At time
TO, the memory controller puts the address on the address bus and issues the command Read.

After a certain number of cycles, the data can be sent via the bus to the memory controller

18

Background

(cycle Ta2). Since the cache line size is 64B-long and data bus is 8B-wide, the data is sent in
8B chunks. DDR4 memories send the data on the rising and falling edge of the clock (dual
rate) and, thus, the transfer takes 4 cycles.

This section has shown the great level of parallelism offered by the modern DRAM designs.
However, to achieve high bandwidths, it is necessary to exploit the offered parallelism while
respecting the timing restrictions. A careful design of memory controller schedulers is of
utmost importance in order to achieve this task. Many techniques are developed with this goal
in mind [140, 149, 169].

2.2.3 Memory Request Prioritization

The importance of proper scheduling of DRAM commands in order to exploit the parallelism
offered within DRAM modules is demonstrated in Section 2.2.2. This section turns the focus
onto the scheduling of memory requests that takes place before they are converted into DRAM
commands. The proper request scheduling aims to exploit row buffer locality, guarantee fair
share of the memory bandwidth across co-running threads, prioritize time-sensitive requests,
etc. The following paragraphs provide a brief description of the previous work on this topic.

First-Come, First-Served (FCFS) is the most basic scheduling algorithm used in many fields
such as computing and telecommunications. Requests are processed in the order they arrive at
the resource. FR-FCFS (First-Ready FCFS) [149] extends the FCES algorithm by taking into
account the locality of the row buffers inside DRAM chips and, thus, it reduces the number of
expensive Activate and Precharge commands.

Mechanisms that work well for single-thread systems may not be suitable for multi-core
processors due to various issues such as a lack of fairness and starvation. FQM [132] is a
scheduling algorithm for chip multi-processors that tries to achieve fairness among the threads
by applying QoS mechanisms from the networking domain. Each thread is assigned a percentage
of the total memory bandwidth. Excess bandwidth from one thread can be distributed to
other threads depending on the previous traffic intensity of each thread. STFM [129] tries to
achieve a fair use of memory resources by threads by taking into account the performance losses
of each thread when executed in parallel with other threads compared to the solo execution.
PAR-BS [128] prevents thread starvation by creating temporal batches of memory requests and
prioritizing requests belonging to the oldest batch. The common drawback of these proposals is
the unawareness of the thread’s access pattern and its variability during the execution.

ATLAS [106] defines a new metric of accumulated memory service time by each thread.

Similarly to PAR-BS, time is split into periods and, in each time period, the threads with lower

19

2.3 Reductions and Near-Memory Computing

value of the metric in the previous time blocks are given a higher priority. In addition, the
design is sensitive to the changes of the memory behavior of each thread by tracking the history

of the accumulated service time per thread.

Since static schemes do not always achieve the best performance for a wide range of
applications, researchers have proposed many adaptive scheduling algorithms. Hashemi
et al. [73] identify that, so called, dependent cache misses are an important contributor to
performance degradation when on-chip contention is present. This scenario occurs when an
instruction causing a cache miss also depends on another instruction that results in a miss. They
propose a scheme where some operations resulting in misses are off-loaded to the Enhanced
Memory Controller. As a result, serialized dependent misses are issued earlier which reduces
the waiting time for the second miss. BLISS [163] splits co-running applications into two
groups depending on their sensitivity to memory interference. The sensitive group is given
more priority in order to reduce the performance degradation caused by interference. Ipek et

al. [85] propose a memory controller scheduling scheme based on reinforced learning.

However, the mentioned proposals focus only on the information visible to the core, which
is generally observed on relatively short time intervals of several thousands of CPU cycles.
Such fine-grained observations cannot capture the macro trends in the whole application as

well as the impact of prioritization on the overall performance.

2.3 Reductions and Near-Memory Computing

2.3.1 Reductions: A Brief Overview

In the context of parallel programming, reductions are operations where input data is accumulated
by applying an operator to generate output data [76]. In the context of this thesis, a reduction
variable is defined as a data structure that holds the output of the reduction. Addition and
multiplication are commonly used as reduction operators in scientific computing. Reductions
can be parallelized because these operations are associative and commutative [142]. Based on
the reduction variable’s size, reductions can be classified into two categories:

(i) Reductions over scalar-types. This type of reductions occurs in a wide range of application
domains including combinatorics (e.g. satisfiability problems such as n-Queens), scientific
computing (e.g., normalized residuals to verify convergence or code correctness), to implement

hardware performance counters, etc. On current mainstream architectures, updates to shared

20

Background

data should be avoided, since they may result in high cache coherence traffic that significantly
impacts execution performance.

(i) Reductions over vector-types. Such reductions are usually present in more complex
scientific codes that accumulate results on arrays or higher-dimensional matrices. Depending on
how the reduction variable is accessed during the reduction, two sub-categories are identified:
near-linear access patterns and irregular access patterns. Near-linear reductions typically take
place in scientific codes where operations access just the neighboring grid elements, such as in
LULESH [99] and SPECFEMD [109]. Irregular array-type reductions are frequently found
in n-body codes, histogram computations, as well as in applications where a data structure
representing a physical domain is accessed in an irregular manner. Concurrent execution of
vector-reductions requires solutions that avoid unnecessary data privatization, prevent data
races due to concurrent updates to overlapping memory regions and effectively reduce memory
bandwidth and latency requirements.

The following sections present a detailed view into current solutions for an efficient reduction
computation. It starts with software-based approaches and continues to hardware-accelerated
solutions. Since the reductions are a special case of operations performed in modern computing
systems, this chapter also introduces the paradigm of near-memory computing, which is applied

by some of hardware-based solutions to optimize reductions.

2.3.2 Software Support for Reductions

There are two intuitive software-based techniques to parallelize reductions. The first approach,
called privatization [26, 174], consists in having each of the threads involved in the parallel
execution performing a partial reduction over its portion of input data. The partial reduced data
is stored in private per-thread copies of the reduction variable. Partial results are combined in
the final result after the parallel reduction tasks are completed. Privatization works well for
reductions over scalars and small arrays. For larger reduction variables, however, privatized
data increases cache pollution as the multiple copies of the same data occupy scarce cache
resources.

As an alternative, private threads directly update the shared reduction variable. To ensure
correctness, the update operation is guarded using atomic instructions that are commonly imple-
mented in modern processors [1, 14, 78, 81]. This method performs worse than privatization
for small reduction variables due to frequent cache misses caused by the invalidations of cache

lines in the private caches as well as the increased coherence traffic.

21

2.3 Reductions and Near-Memory Computing

More advanced schemes combine privatization and direct accesses to preserve benefits and
minimize the drawbacks of these solutions. LocalWrite [71] avoids data races by reordering
iterations among different threads. A compile-time analysis determines data segments accessed
by each iteration of a parallel loop. During the execution, the reduction variable is split among
threads. Iterations are assigned to threads in a way that each thread updates only the data it
owns. This technique suffers from load-balancing issues when a single memory location is
updated by many iterations. PAE [70] reduces the overhead of privatization by using it only for
conflicting updates, while non-conflicting accesses are performed to the global space protected
by a lock. Yu and Rauchwerger [179] applies different reduction techniques depending on
the properties of the access pattern to the reduction variable. Depending on the compile-time
characterization of the parallel code, one of the existing reduction parallelization approaches,
such as privatization, selective privatization or iteration reordering, is used. These solutions
require the knowledge of the iteration space, making them applicable only to algorithms with a
static iteration space [72]. PIBOR [45] combines privatization and redirection to achieve linear
updates to private copies of reduction variable. OmpSs-RM [46] formalizes support of the
software techniques for declarative parallel programming models.

Transactional Memory (TM) [75] offers mechanisms that can be used for implementing
reductions [68]. Software TM implementations utilize existing lock and atomic operations and,
thus, have similar drawbacks as other previously discussed solutions that use these operations.
Massively parallel processors (GPUs) offer primitives used by algorithmic proposals for efficient
execution of reductions [51, 61]. While these approaches are effective on GPUs owing to
efficient synchronization and lock-step execution inside a warp, they are not applicable to

general purpose processors, where these mechanisms are not present.

2.3.3 In-Memory and Near-Memory Computation

In the context of the current HPC systems, in-memory computing corresponds to performing
calculations directly in the memory silicon. The benefit of this approach is the direct access to
high concurrency offered by the DIMMs (Dual Inline Memory Modules) via bank-, subarray-
and rank-level parallelism. However, the incompatibility between the fabrication processes
of DRAM and logic circuits [108] makes it unfeasible to efficiently incorporate a complex
computing logic inside DRAM chips. As a consequence, in-memory operations often rely on
exploiting the properties of the DRAM design, which limits the range of supported operations.

RowClone [156] performs data initialization and bulk-copy directly within the DRAM

without the need to transfer the data outside of the memory chip. Intra-subarray copying is

22

Background

achieved by reading the source data into the row-buffer and, then, writing it in the destination
row of a DRAM array. To copy the data between different subarrays, RowClone exploits the
shared internal bus inside the DRAM chip. Ambit [157], DRISA [116] and NAND-Net [105]
implement the support for performing simple logic operations, such as AND, OR, NOT and
NAND, directly in the DRAM. These simple operators can be used to construct more complex
logic bitwise operations. ComputeDRAM [65] improves the previous work by supporting copy

and Boolean AND and OR operators with commodity DRAM chips.

Near-memory computing represents a middle-ground between the traditional Von-Neumann
architecture and the architectures employing processing in memory (PIM). Computing logic is
placed near memory to exploit low latency and high bandwidth of near-memory data accesses.
Moreover, implementing the computing hardware on a dedicated logic layer enables a support
for complex operations. Consequently, a wide range of applications can be directly supported
without the need to translate complex operations to basic operators supported by the PIM

designs.

The concept of processing near memory appears in the literature as early as 1960s [100,
162]. V-IRAM [110] is an example of an architecture for near-memory processing that places a
dual-core processor and a vector functional unit next to a DRAM silicon. One of the challenges
encountered in these early designs is a limited amount of memory on a single chip, which
restricted the applicability of such solutions to only less memory-intensive applications. The
technological advances of chip fabrication helped to overcome this challenge by introducing
3D-stacked memory designs that can pack significantly more DRAM cells on a single chip.
HBM [94, 114] and HMC [139] are commercial implementations of a 3D-stacked memory
connected to a logic layer via through-silicon vias (TSV) [86]. Many proposals exploit the
near-memory computation capabilities offered by these designs. Active Memory Cube [131]
uses HMC as the base of its design. The logic layer incorporates the controller with functional
units able to perform a wide set of atomic operations such as floating-point addition and logic
operations. Graph-PIM [130] and Tesseract [5] are other examples based on HMC that apply
the near-memory computing paradigm in the context of graph applications. Singh et al. [160]
evaluate previous works on the topic of processing near-memory and identify that certain
challenges currently prevent a wide adoption of these designs. While they provide notable
performance improvements over the traditional paradigms, a lack of programming model
support and the resulting increase in application complexity are still open issues in the current

state of the art.

23

2.3 Reductions and Near-Memory Computing

2.3.4 Computation in On-Chip Memory Hierarchy

Computing in the cache hierarchy is a natural evolution of the PIM paradigm applied to
the CPU’s on-chip memory hierarchy. Early designs modify SRAM cells to support simple
operations directly in the cache [95, 98]. One of such approaches is Compute Caches [3] that
implements operations such as copy, search, compare and logical operators in the caches. To be
able to benefit from these hardware capabilities, applications need to be rewritten. Specifically,

complex operations have to be decomposed into the supported simple operands.

Many previous designs offer out-of-core computation capabilities for efficient execution
of atomic operations. Scatter-Add in data parallel architectures [6] targets reductions in
SIMD/vector/stream memory systems [48]. ARM Cortex A75 [13] adds support for far
atomics in the last-level cache. Power9 [63, 79, 182], Cray T3D [102], Cray T3E [155]
and SGI Origin [112] implement atomic operations inside the memory controllers. NYU
supercomputer [69] goes beyond the computing node by supporting atomics inside network
switches. The operations are restricted to integer additions and logic operations. This mechanism
allows an efficient implementation of synchronization primitives, such as barriers and locks.
However, the performance is limited for more complex reduction operations encountered in

codes from the HPC domain.

Some proposals address this issue by offering efficient in-cache computation targeted to a
wider set of applications. Often-encountered programming patterns in HPC applications are
reductions. Reductions apply an operator on input data to produce output data. Challenges
in efficient implementation of reductions come from the need to concurrently update a single
memory location by different co-running threads. PCLR [67] offers a solution for this problem by
implementing a hardware privatization inside caches. The concurrently updated data is allocated
to private cache lines not covered by the coherence protocol. This avoids conflicts caused by the
coherence protocol due to simultaneous stores to the same location. The partially reduced data
is combined in the last-level cache on eviction or by an explicit flush. PCLR requires inserting
appropriate configuration and synchronization calls in the application. COUP [181] is a more
general approach that targets any concurrent type of operation and requires less modifications
in the application. As a result, it does not require synchronization within the application as
the coherence protocol takes care of the correct execution. ComMmTT [180] improves COUP
by supporting wider range of commutative operations in a speculative context of hardware
transactional memories. PHI [125] is another hardware-based approach for coalescing and

buffering of scattered updates in private caches targeted to graph applications. It relies on

24

Background

functional units inside cache controllers to perform the computation and does not require
coherence protocol modifications, contrary to COUP.

Current hardware support for reductions is constantly improving. However, current
designs offer solutions targeting specific application domains. In addition, they lack a proper
programming model support and adaptability to difterent scenarios. RICH [56] is a proposal

that addresses these issues and is presented in detail in Chapter 5.

2.4 Parallel Programming for Shared-Memory Systems

This section provides a brief overview of parallel programming targeted to the shared-memory
computer systems. First, it introduces challenges that come with programming modern parallel
processors. Then, it presents background on parallel programming models with a special
attention to task-based programming models. Finally, it describes OmpSs, a data-flow task-based

programming model used as a basis for the work developed in this thesis.

2.4.1 Parallel Processors

As a result of the end of Dennard’s scaling around 2005, the improvements of the single-thread
performance have hit a plateau (see Figure 1.2). As a consequence, and enabled by the Moore’s
Law, the first multi-core processors were introduced not long afterwards. Further following of
technological advances in microprocessor manufacturing has led to the current situation where
parallel processors contain tens of cores, such as 58-core Intel Xeon Platinum [83] and 64-core
AMD EPYC [2]. Some recent designs employ heterogeneous architectures, which combine
low-power, slower cores with high-performance cores. ARM big.LITTLE [12] architecture is
an example of heterogeneous processor designs.

Most multiprocessors employ a shared memory on chip, and even between multiprocessors
on the same multi-socket node. Using a shared memory enables a direct access to the data by any
core. This also means that any core can modify the data, so proper synchronization techniques
are necessary in order to avoid race conditions. Even though all data in a shared memory system
is accessible by all cores, the accesses to a distant memory (e.g., another socket) take more than
local accesses, which is known as Non-Uniform Memory Access (NUMA). There is a great
number of factors that need to be accounted for when designing parallel applications. As a
consequence, producing a well-performing parallel code that efficiently uses available hardware

resources is not a trivial task.

25

2.4 Parallel Programming for Shared-Memory Systems

2.4.2 Parallel Programming Models

Early approaches to programming shared-memory parallel machines were based on the concept
of threads. Some implementations were provided as a part of the operating system, such as
POSIX threads [80] in Linux and Win32 threads [24] in Windows OS. In addition, industry-
standard programming languages like C++ [84] and Java [134] have a built-in support for
threading. Thread-based parallelization requires a programmer to create threads and manage
their lives, to ensure correct synchronization via locks, semaphores and monitors. This is
achieved by inserting in the code appropriate function calls defined in the API of a threading
library. Another approach to parallel programming has come from a distinct effort as a
directive-based programming. OpenMP [135] is a de facto standard programming model from
the directive-based family. The programmer uses pragmas to define the units of parallel work
which are translated to the functions implemented in the supporting library. Such an approach
makes the directive-based programming model easier to use compared to the library-based

solutions.

The first implementations of the OpenMP standard (until version 2.5) were focused on the
fork-join paradigm, where threads are spawned and destroyed at the same time, effectively
dividing the application in sequential and parallel regions. This is achieved by manually
defining parallel sections using pragma omp parallel. Inside the threads, the work can be
distributed by means of work-sharing constructs, such as the for construct. In the case of for
loops, this is achieved using #pragma omp parallel for annotation before a for loop. The
supporting library automatically creates threads and distributes the loop iterations among them.
At the exit of the for loop, the execution is synchronized by an implicitly added barrier. This
guarantees that the main thread does not continue with the execution until all threads have
completed. To control the visibility of the local variables to other threads executing the same
loop, the programming model offers shared and private annotations. To support mutual
exclusion between threads, programmers can use atomic constructs to guard the access to a
shared variable. The OpenMP specification offers customizing the scheduling policy to achieve
the best load balancing among threads using a directive schedule. The behavior of OpenMP
programs can be modified without re-compilation and before the execution using environment
variables. The most used such mechanism is manual selection of the number of threads used
for executing the parallel work. This can be achieved using OMP_NUM_THREADS environment

variable, num_threads clause or omp_set_num_threads runtime routine.

26

Background

2.4.3 Task-Based Parallel Programming

As an alternative to fork-join parallelism, some programming models use a notion of task
as a unit of parallel work. Tasks are viewed as portions of the serial code that can execute
asynchronously with other tasks while respecting the synchronization points between them. The
programmer splits the sequential code into tasks and defines the dependencies between them.
In the case of directive-based programming models, a source-to-source compiler translates the

annotations to the function calls implemented in the supporting library.

The initial task is an implicit task that starts at the beginning of the application. During the
execution, the initial task creates user-defined tasks until it arrives to a explicit synchronization
primitive, such as taskwait in OpenMP, which pauses the initial task until all the tasks that
were created by the initial task (children tasks) complete. Upon its creation, a task is added
into a task dependency graph (TDG) as pending task. A TDG is an acyclic directed graph
whose nodes represent tasks and edges correspond to dependencies between tasks. When all
dependencies of a task are fulfilled, meaning that all the predecessor tasks completed their
execution, the task is considered as a ready task. Parallel threads are assigned a task from the
ready queue according to scheduling criteria, such as data locality, user-defined task priorities,
scheduling policy, etc. Upon finishing the execution of each task, the runtime system updates the
TDG and the pending tasks that have all dependencies satisfied are promoted to the ready-task
queue. This process continues as long as the TDG has pending tasks or until the initial task

comes to an end.

Examples of task-based programming models are OpenMP 3.0 [135] and Cilk [27] for
shared-memory systems and Charm++ [97] for distributed-memory systems. Contrary to
these implementations that are based on the extensions to the existing programming languages,
Chapel [38] is a novel language designed specifically for the development of task-based parallel

applications.

Data-flow task-based programming models, a subset of previously described programming
models, employ the idea of defining the dependencies between tasks by specifying the data they
produce and consume. A task is observed as a code that consumes certain input data to produce
the output data. This mechanism is another step in the evolution of programming languages
and further separates the application code from the task management primitives. Instead of
specifying direct dependencies between tasks, a programmer defines the input and the output
data for each task by specifying memory regions corresponding to this data. The runtime

system constructs the TDG of an application by respecting the input and output dependencies

27

2.4 Parallel Programming for Shared-Memory Systems

of tasks. From this point, the tracking and scheduling of tasks function in the same manner as
previously described for the general case of task-based programming models. OpenMP extends

the tasking constructs with the support for data dependencies in the standard 4.0 [136].

2.4.4 OmpSs Programming Model

OmpSs [20, 60, 167] is an example of a data-flow task-based parallel programming language. It
is developed as a research-oriented programming model and several of its important features
have been introduced in the OpenMP standard, such as the notion of tasks and data dependencies.
A programmer makes use of simple annotations offered by OmpSs to define tasks in a sequential
code. The annotations are translated with Mercurium [18], a source-to-source compiler, to
function calls implemented in the runtime system library, Nanos [19]. Some of the capabilities
implemented by these functions are task creation, calculation and tracking of their dependencies

using a task dependency graph, scheduling of ready tasks, synchronization, etc.

Figure 2.6 (i) shows a source code of Cholesky factorization of a 2D matrix implemented
in OmpSs. Algebraic functions potrf, trsm, gemm and syrk are defined as tasks using the
#pragma omp task annotations. For a given task, the data it consumes is denoted with in
directive, while the results of the computation are denoted using out directive. The data that is
both consumed and produced in a given task is annotated as inout. For example, in case of
gemm task, which performs a matrix-matrix multiplication, its input matrices Ah[k][i] and
Ah[k][j] are denoted with in, while the resulting matrix, Ah[j] [1], is annotated with inout.
A part of the dependency specification is the size of dependency, which in the case of matrices
accessed by gemm task (painted in red) is tsxts. As explained in Section 2.4.3, the information
about task data dependencies is used by the runtime system library during the execution to
dynamically determine the dependencies between tasks using a TDG. For example, potrf
(painted in orange) from the iteration corresponding to k = 1 depends on syrk (painted in light
blue) from the previous iteration as it consumes the matrix A[1] [1] produced by the task syrk.
Figure 2.6 (ii) shows the mapping of the tasks to the blocks of matrix for each iteration (left)
and the TDG containing all the tasks (right). This example clearly illustrates an asynchronous
execution of tasks. The tasks belonging to different iterations can execute concurrently if they
do not depend on each other, which is not possible in a fork-join programming model without a
significant code reorganization. For example, potrf (orange) does not depend on gemm (red)

from the previous iteration and, therefore, they can execute simultaneously.

28

Background

for (int k = 0; k < nt; k++) {
// Diagonal Block factorization
O#pragma omp task
< inout([ts][ts](Ah[k][k]))
potrf(Ah[k][k], ts, ts);

Blocks updated by tasks, Task Dependency Graph
per outer loop iteration

W

// Triangular systems
for (int i = k + 1; i < nt; i++)
@ #pragma omp task
< inout([ts][ts](Ah[k]I[i]))
— in([ts][ts](Ah[k]I[k]1))

NS

9 trsm(Ah[k][k], Ah[k][i], ts, ts);

10

11 // Update trailing matrix

12 for (int i = k + 1; i < nt; i++) {] k=2
13 for (int j =k + 1; j < i; j++)

14|| @ #pragma omp task

— inout([ts][ts]I(Ah[jI[i]))
— in([ts][ts](Ah[k][i]),
— [ts][ts]1(Ah[kI[j1))

15 gemm(Ah[k][i], Ah[k]I[]j],
< Ah[j][i], ts, ts);

17| #pragma omp task
— inout([ts][ts](Ah[i][i]))

— in([ts][ts](Ah[k]I[i]1)) | k=4
18 syrk (Ah[k][i], Ah[i][i], ts, ts);
19 }
20| }

#pragma omp taskwait

]

||

(i) Source code with annotated OmpSs (if) Mapping of tasks on blocks of a 5-by-3
datafl K p blocked matrix (left). An example TDG
ata-flow tasks. with color-coded tasks (right).

Figure 2.6: Cholesky factorization parallelized with OmpSs. Source: Jaulmes [89]

2.5 Runtime-Aware Architectures

Historically, the design of hardware and software has been decoupled in order to ease the
programmability and provide code portability. However, in applications where achieving a
good performance is crucial, it is important to fully exploit hardware resources. To that end,
the hardware implementation details need to be known at the software level. In addition
to this requirement, the hardware designs is becoming more complex which makes efficient

programming of such systems more difficult.

Contrary to software, current hardware designs, in general, do not require high-level
information about the software. Most hardware optimizations take into account only the
information already available as a direct consequence of the software execution, such as
sequence of executed instructions in case of instruction caches [150], the execution flow in case

of branch predictors [161] or data access patterns in case of hardware prefetchers.

29

2.5 Runtime-Aware Architectures

The limiting factor for further performance improvements at the hardware level is the
availability of high-level information. The information about software execution currently used
in the processors is of limited time range and cannot provide a precise view into the future. In
addition, such approach complicates the hardware design. In order to use high-level information
about the application, an appropriate mechanism for transferring that information from software
to hardware level needs to exist. Processor manufacturers have been reluctant to bridge the gap

between hardware and software due to portability issues, among others.

Valero et al. [170] propose a concept of Runtime-Aware Architectures where the hardware
and software are designed in a holistic manner. The bridge between these two layers is a runtime
system, which takes over the responsibility of managing the hardware and software components,
without directly exposing them to each other. This can enable the implementation of a broader

set of optimization techniques that are not feasible in the current computer designs.

Casas et al. [35] further develop the idea and explore the potential use of runtime system-level
information in the hardware and software design. From the software side, this approach allows
better programmability, which in the current era of multi- and many-core heterogeneous systems
with different ISAs [171] is surely an issue. It enables quicker development cycles and a better
performance of parallel codes. From the hardware point of view, this approach opens new
horizons in the context of processor design. The information about a parallel application can be
used to improve decisions at the hardware level. This may ultimately lead to a better overall

performance, lower energy consumption and reduced complexity of future computers.

A large amount of work has been done on the hardware-software co-design. At the
software layer, Chronaki et al. [43, 44] propose task scheduling algorithms for heterogeneous
systems. Chasapis et al. [39] develop a runtime-guided approach to model manufacturing power
differences and propose a job scheduling algorithm for power-restricted NUMA systems [41].
Castillo et al. [37] design a runtime-assisted management of the cores’ frequency depending
on the criticality of running tasks. Brumar et al. [30] introduce memoization of task data
dependencies to predict the outputs of a task without loosing accuracy. Sdnchez Barrera et al.
[152, 153] perform partitioning of the task-dependency graph in order to reduce the data

movement in NUMA systems.

The runtime system-level knowledge has seen a great utility in the optimization of cache
memories. Garcia et al. [66] and Papaefstathiou et al. [138] propose prefetcher schemes for
task-based parallel programming models. The runtime system instructs a hardware prefetcher
to fetch the data necessary for the execution of the next task. RADAR [118] is a dead-block

prediction scheme that exploits the information about task lives to evict the data that will

30

Background

not be accessed in future. Manivannan et al. [119] expand this idea and apply it to all cache
levels. Caheny et al. [31, 33] propose to reduce cache coherence traffic in NUMA systems
and to deactivate coherence for data that does not need it, which is determined by a runtime
system [32]. A runtime-guided management of scratchpad memories is introduced by Alvarez
et al. [9, 10]. Runtime systems can also aid in handling of the modern memory designs, such
as stacked DRAM [8] and hybrid DRAM/NVM memory architectures [117]. Jaulmes et al.
[90-92] explore a usefulness of runtime systems for reliability. Caminal et al. [34] study the
effectiveness of manual and automatic vectorization in task-parallel programs. Castillo et al.
[36], Etsion et al. [62], Kumar, Hughes, and Nguyen [111], and Tan et al. [165, 166] develop
hardware accelerators for selected components of the runtime systems for task-based parallel
programming models.

The enormous potential of the runtime aware architectures is proven by a wide body
of previous work on this topic. The attractiveness of this approach lies in the fact that it
enables improving the performance of current and future systems using simple designs while
maintaining the ease of programming of such systems. The goal of this thesis is to exploit the

runtime system-level information to optimize the design of on-chip memory hierarchies.

31

Chapter 3

Experimental Methodology

This chapter presents the methodology followed in this thesis. The first section describes
the simulation infrastructure, including the environment used for tracing applications, the
simulators used for the evaluation and the details of simulated architectures. The second section
introduces the benchmarks used for the evaluation. It further provides the changes made to the
benchmarks and the input parameters used for tracing. Finally, the third section briefly presents

the metrics used to evaluate proposals developed in this thesis.

3.1 Simulation Infrastructure

3.1.1 Simulators

Figure 3.1 shows the tool-chain used in the evaluation of this thesis’ proposals. The left-hand
side of the figure illustrates the trace generation of a parallel application, while the right-hand
side shows the process of obtaining performance metrics using the generated trace and hardware
description. The remaining of this section describes these tools in detail.

A shared-memory multiprocessor system used as a baseline system and the architecture
implementing designs proposed in this thesis are simulated using TaskSim, a trace-driven
cycle-accurate architecture simulator [147, 148]. TaskSim simulates in detail the execution of
parallel applications with OpenMP and OmpSs pragma primitives [60] on parallel multi-core
environments. An input to a simulation is a trace of an execution of a parallel code and a
specification of the simulated system’s microarchitecture. A trace is obtained in a two-step
process using a serial execution of a parallel code. The first step captures the structure of
the parallel code, such as tasks, their dependencies and synchronization events, by recording
instrumented calls to the runtime system library. The second step records the sequence of the

executed instructions for each parallel task using a DynamoRIO-based tool [28, 29] as the

33

3.1 Simulation Infrastructure

application source code hardware
. trace description (HW)
l lmstrument l l
Mercurium Mercurium
TaskSim simulator
GCC GCC L
binary instrumented performance counters & statistics
binary
‘ HW l HW
DynamoRIO |—| Nanos++ L I
TaskSim tracing tool Cacti McPAT
trace power & energy consumption

Figure 3.1: Overview of tools used in the evaluation. Text in bold represents the metrics used
to evaluate the proposals. Tools colored in blue are modified to support the proposed designs.

back-end. During simulation, TaskSim interfaces Nanos++, a runtime system library of OmpSs,
and exposes the simulated architecture as a pool of processing elements. The runtime system
performs the task creation, dependence tracking and scheduling, while TaskSim replays the
trace of a given task on the core assigned by the runtime system. To enable the development of
the work presented in this thesis, the following improvements to the TaskSim simulator have

been implemented:

* The possibility to forward information from the runtime system level to the simulated
hardware. This feature introduces a special instruction that carries the runtime-provided
payload to any simulated component. It enables simulating the overhead introduced
by the hardware setup performed by the runtime system. As an alternative, existing

instructions are extended to carry special flags, such as the issuing task’s name.

* A complete refactoring of the cache replacement policies implementation to allow
dynamic switching of the policies during the execution. In addition, the support for set
dueling is added by allowing each cache set to follow a distinct replacement policy and

by implementing the mechanism for performance tracking and policy switching.

 Support for execution of atomic instructions in the simulated hardware. The unmodified
code relies on the runtime system events to guard the atomic access using a lock, which

introduces a significant overhead.

34

Experimental Methodology

The energy consumption and microprocessor area are evaluated using the McPAT mod-
els [115]. McPAT is an integrated power, area and timing simulator for multi-core architectures
build on top of CACTI [17, 126, 127]. It models various processor components, such as cores,
including the functional units, caches, on-chip interconnections and memory controllers. The
accuracy of the built-in models is improved by incorporating the changes suggested by Xi et al.
[178]. The processor simulated in this thesis uses a 22 nm transistor technology with the voltage
of 1.2 V and the default clock gating scheme. The hardware structures proposed in this thesis
are modeled with CACTI 7 [17] using the same process technology. TaskSim is extended with

appropriate counters to record the necessary statistics corresponding to these components.

3.1.2 Baseline Architecture

The baseline architecture used for the evaluation in this thesis is based on a multi-core processor
connected to the main memory. The cores follow a simple model of a superscalar out-of-order
processor with a detailed three-level cache hierarchy. Each core has private L1 and L2 cache,
while the L3 cache is shared among all cores. The L2 and the L3 caches are connected via a
simple interconnection network. Main memory is simulated using a constant-latency model.
The first proposal, which introduces cache insertion policies, is targeted to small processors
with slow memories. The second proposal, which performs reductions in the cache hierarchy,
targets HPC machines based on Intel Xeon processor having a high bandwidth interface to the
main memory. The third proposal, which introduces criticality-driven prioritization of memory

requests, is evaluated on a multi-core processor with smaller caches. In addition, the memory

Table 3.1: Parameters of the simulated systems for each proposal.

Replacement Reductions Prioritization
CPU out-of-order superscalar cores, 128-entry ROB, frequency 2.4 GHz, issue width 4
Cores 4 16 16
Caches 64 B line, non-inclusive, write-back, write-allocate, split I/D, LRU replacement
L1 32 KB, 4-way, 4 cycles 32 KB, 8-way, 4 cycles 16 KB, 8-way, 4 cycles
L2 256 KB, 8-way, 10 cycles 256 KB, 8-way, 12 cycles 64 KB, 16-way, 13 cycles
L3 8 MB, 16-way, 24 cycles 32 MB, 16-way, 36 cycles 16 MB, 16-way, 68 cycles
200 ns latency 126 ns latency 120 ns latency
Memory 9.6 GB/s bandwidth 85 GB/s bandwidth 17.2 GB/s bandwidth

35

3.2 Benchmarks

bandwidth is tuned to a value that results in a realistic number of in-flight memory requests. A

summary of the relevant configuration parameters is presented in Table 3.1.

3.1.3 Environment

The tracing of benchmarks is performed on different systems. Traces used in the evaluation
of the first and the third proposal are generated on an IBM dx360 M4 node equipped with
two 8-core E5-2670 SandyBridge-EP processors running at 2.6GHz with a 20MB LLC and
32GB main memory. The node runs SUSE Linux Enterprise Server 11 SP3. Tracing for
the evaluation of the second proposal is performed on a machine with a dual-core Intel Core
i7-5600U running at 2.60GHz with a 4MB LLC and 16GB main memory. The operating
system running on this machine is openSUSE Leap 42.3. Benchmarks are compiled using
Mercurium [18] source-to-source compiler, which translates the OmpSs annotations to the
function calls defined in Nanos++ [19] runtime system library. GCC is used as a back-end
compiler for generating the final code. All codes are compiled using the -O3 optimization
flag. To enable proper capturing of function boundaries, the benchmarks are compiled with
-fno-optimize-sibling-calls flag. The versions of the compilers and the runtime system
used in the evaluation of the first proposal are as follows: Mercurium 1.99.0, Nanos++ 0.7a
and GCC 4.9.1. The last two proposals use the following versions: Mercurium 2.1.0, Nanos++
0.15a and GCC 7.2.0.

3.2 Benchmarks

The benchmarks used for the evaluation of the proposals in this thesis are selected among HPC
applications and kernels to cover a wide range of algorithms used in scientific codes. All the
codes are written using the OmpSs programming model using tasks-based parallelization. Most
of the benchmarks are chosen from larger collections, such as PARSECSs [40], an OmpSs
port of PARSEC Benchmark suite [25], and BSC Application Repository [21]. Kernels dot
product [54], stencil histogram [54] and array scan [53] are developed by the author of this
thesis. The remaining of this section describe the benchmarks corresponding to each proposal,
including the proposal-specific changes introduced in each code, the input parameters used for

tracing and the selected code properties relevant to each contribution.

36

Experimental Methodology

Table 3.2: Benchmarks used to evaluate the proposal about cache replacement policies.

Benchmark Description Input Parameters

Conjugate Gradient An iterative method for solving large systems of matrix qa8fm [50],
(CQG) [90, 159] linear equations that have form Ax = b. 16 blocks, 97 iterations

Intel RMS workload which takes a model of a hu-

man face and a time sequence of muscle activation simlarge: 80,598 particles,
and computes a visually realistic animation of the 372,126 tetrahedra, 1 frame
modeled face.

Facesim [40]

A content-based similarity search of feature-rich simlarge: 34,973-image database,
data such as audio, images, video and 3D shapes. 256 queries, find top 10 images.

147,645 global points,
Simulates global and regional (continental-scale) 2160-element mesh,

Ferret [40]

Specfem3D seismic wave propagation. 125 Gauss-Lobatto-Legendre inte-
gration points per element
Stap [113] Space-time adaptive processing applied on moving 136,808 stimuli

target indication by an airborne radar.

The benchmarks used for the evaluation of the first proposal are shown in Table 3.2, including
a description of each code and the input parameters used for tracing. These benchmarks do not
require any source-code modifications.

For the evaluation of the second proposal, the eligible codes are those that have reduction-like
computation, such as histograms, matrix multiplications, etc. Table 3.3 presents the description
of a set of benchmarks having these properties. The benchmarks are split into two groups
defined in Section 2.3.1 depending on the size of the reduction variable. The source-code
of the benchmarks is modified by annotating the reduction variable and the corresponding
reduction operator in each reduction task. In addition, updates to the reduction variable are
made to be direct (i.e. not using privatization) and atomic guards are removed, as the atomicity
is provided by the hardware support for reductions. The benchmark versions used to evaluate
the baseline solutions (i.e. privatization and atomics) are identical to the original. Table 3.4
specifies the input parameters used for tracing and selected properties of reduction tasks and
reduction operations for each code. The workload size of reduction task corresponds to the

reduction variable size (out) and size of the data that is being reduced (in).

37

3.2 Benchmarks

Table 3.3: Description of the benchmarks used to evaluate the proposal about reductions.

Benchmark Short Description
Name
Dot Product DotP Calc.ulates the sum of the products of the corresponding
entries of the two sequences of numbers.
Calculates a number of sequences of moves of a knight
" KnightsTour KT on a chessboard such that the knight visits every square
5 exactly once.
8 .
= NBinaryWords NB Recursively calculates I_IOW many arrays of length N can
g be constructed from a dictionary of 2 letters.
;:3 Determines in how many ways one could place N queens
& NQueens NQ on a N X N chessboard so that none of the queens attack
each other.
Calculates the size of the power set of a set with N elements.
PowerSet PS . .
Power set is defined as a set of all subsets of a given set.
Vector Reduction VectR Calculates a sum of elements in a vector.
7D Convolution >DC Calcu%ates a.convolutlc?n of two functions represented with
two-dimensional matrices.
Conjugate Gradient [90, 159] G An 1t§rat1ve method for solving large systems of linear
equations that have form Ax = b.
Dense Matrix Matrix Multiply DGEMM Multiplies two dense square matrices.
Dense Matrix Vector Multiply DGEMV Multiplies a dense square matrix with a vector.
2D Explicit Hydrodynamics EHF A kernel from a 2D explicit hydrodynamics code.
Fragment [120]
§ Calculates a histogram of weighted averages using a 3D
§ Stencil Histogram Hist 27-point stencil over a N X N X N cube represented by a
3 dense 3D matrix of floating point numbers.
~’
= Livermore Unstructured
S Lagrangian Explicit Shock LULESH Solves the single-material Sedov blast wave problem.
> Hydrodynamics [99]
A simulation using a Lennard-Jones potential. The forces
Molecular Dynamics MD between particles in a 3D space are iteratively calculated
and their positions integrated over time.
N-body Simulation NBody Slmulates the pOSlthI.IS o.f N bodies trough the time taking
into account the gravitational forces among them.
1D Particle in Cell [120] PIC A.n kergel fr(.)m alD partlclle-m-cell code use.:d for kinetic
simulations in plasma physics and astrophysics.
Sparse Matrix Vector Multiply =~ SpMV Multiplies a sparse matrix with a vector.

38

Experimental Methodology

Table 3.4: Input parameters and the properties of the benchmarks used for the evaluation of

reductions.
The Data/Op column shows the type of the reduction variable and the reduction operator. The last two columns
show the dynamic ratio of reduction instructions compared to the total number of executed instructions and the
time spent on reduction instructions compared to the overall execution time, respectively

Reduction task Data Reduction instruction ratio

workload size ~ Op

Benchmark Input Parameters

Count Time
DoP {0 s o8 App B9k 795
KT 5x5 chessboard L‘ﬁfg‘g clem. E\II)TD 0.74 % 1.88%
-5 in: 224 elem. INT
g NB word length: 24 out: 4B ADD 14.09 % 9.50 %
S
R L S
g
7 ps set size: 24 elements iﬂ;t?z;elem‘ E)TD 14.37 % 11.05 %
VectR ggfir‘iﬁs ;‘Lt 211\343 illj)D 22.91% 43.24%
cG %agfgciz? g;l i[tf:?e]liions g:;tzsg?glgf ZED 5.82% 1.82%
DGEMY o s o lokB ADD 1421% 164sc
§ EHF array 16x64K elem, L‘:;t?lgﬁB EI;)D 0.89 % 11.14 %
ol
Soma GRENEITT W App 1% 77
MD aroth phe change - owc 163kB ADD 2M% 091
e
PIC S hsogram, 1000 e oue aakh ADD TETR 9994
SPMV matrix besstk32 [50] in: 129MB — FP 10.63 % 15.88 %

out: 357KB ADD

39

3.2 Benchmarks

The evaluation of the third proposal requires benchmarks with more than one task type and
that instances of different task types execute simultaneously. The benchmarks that fulfill these
conditions are listed in Table 3.5 together with their descriptions. Table 3.6 provides the input
parameters used for tracing and certain measures regarding the amount of critical tasks and
memory requests. The source-code of each benchmark is modified by annotating critical task
types, which are determined by a static analysis of the critical path. This analysis is performed
using TaskSim set up to run in a burst-mode which replays only recorded task duration instead
of simulating the instructions. For a given task type, we evaluate how reducing the task duration
by a certain amount impacts the overall execution time. This process is repeated for all task
types. Tasks with largest impact on the overall performance are defined as critical tasks. In
some benchmarks, several task types are selected as critical. In the case of fluidanimate, the
four critical task types represent the calls to the same function from different locations in the
code. The critical tasks in SMI are gemm tasks, which perform matrix-matrix multiplications.
In the case of LU decomposition, the critical tasks are fwd and bmod. The second to last column
in the table represents the number of critical task instances compared to the total number of

tasks. The last column shows the percentage of all memory request that are flagged as critical.

40

Experimental Methodology

Table 3.5: Benchmarks used to evaluate the proposal about memory request prioritization.

Short o
Benchmark Description
Name
Array scan scan A kernel that performs a scanning access to an input array.
An application from the computer vision domain that tracks a pose of a
Bodytrack body PP . . . P . P
human body in 3 dimensions from a sequence of images.
Decomposes of a Hermitian, positive-definite matrix into the product of
Cholesky chol POt A, p : P
a lower triangular matrix and its conjugate transpose.
Compresses of a data stream with a combination of global compression
Dedup dedup
and local compression to achieve high compression ratios.
A content-based similarity search of feature-rich data such as audio,
Ferret ferret

images, video and 3D shapes.

An Intel RMS application that uses an extension of the smoothed particle
Fluidanimate fluid hydrodynamics method to simulate an incompressible fluid for interactive
animation purposes.

QR

Decomposes of a matrix into a product of an orthogonal matrix Q and

L R) .
Decomposition Q an upper triangular matrix R.
Symmetric Matrix . . .
Y SMI Calculates of an inverse of a symmetric matrix.
Inverse
Sparse LU LU Factorizes a sparse matrix as the product of a lower triangular matrix and
Decomposition an upper triangular matrix.

Table 3.6: Input parameters and properties of the benchmarks used for the evaluation of the
proposal about memory request prioritization.

Critical (% of total)

Benchmark Input Parameters Critical /Total
Task Types
tasks requests
scan 174 arrays of 256 KB; in total 68.5 MB. 1/2 13.8 13.8
body s1m1arge': 4 cameras, 4 frames, 4000 particles, 1/6 470 66.0
5 annealing layers.
chol 16x16 blocks of 256x256 elements; total ma- 1/6 39 76

trix size 4096x4096 elements.
dedup native: 672 MB data. 1/5 49.7 77.8

simlarge: database of 34,973 images, 256
queries, find top 10 images.

fluid native: 5 frames, 500,000 particles 4/23 21.8 45.5
16x16 blocks of 512x512 elements; total ma-

ferret 1/7 16.6 6.1

QR trix size 8192x8192 elements. 17 42.0 90.2
88 blocks of 1024x1024 elements; total ma-

SMI trix size 8192x8192 elements. 3/20 18.9 78.6

LU 12 blocks of 512x512 elements 2/5 15.6 93.2

41

3.3 Metrics

3.3 Metrics

The evaluation of the proposals in this thesis is performed by analyzing several performance
metrics. The execution time is obtained from TaskSim simulations in terms of cycles and is
converted to seconds by taking into account the frequency of the simulated processor. TaskSim
also provides metrics that measure cache behavior, such as cache misses. Cache misses are
combined with the instruction count to form a compound metric of misses per kilo instructions

(MPKI) using the following formula:

MPKI = Cache misses 3.1)

Total executed instructions
1000

The performance in terms of power is obtained from McPAT, and is used to compute the

energy-delay product (EDP) using the following formula:
EDP = Power x Execution time* = Energy X Execution time 3.2)

The comparison of the performance relative to the baseline architectures is done by calculating
speedups in case of execution time or improvement as a percentage of the reference value in
case of other metrics using formulas 3.3 and 3.4, respectively. In some cases, the metrics are

normalized to the baseline values using Formula 3.5.

Execution timepaseline
Speedup = 3.3
P P Execution timey,oposal G

Performancey,g,jine — Performance,,,q,osq1

Performance improvement = 100% X 3.4)
Performancey, g,
Metric I
. proposa
Metrlcnormalized =0 .- (3.5)
Metricpaseline

To compare the proposals in the general case, the metric values corresponding to different
benchmark are aggregated to provide a single measure of performance. For the metrics defined
as ratios, such as speedup, geometric mean is used (Formula 3.6). Metrics that represent

absolute values are averaged using arithmetic mean (Formula 3.7).

Geometric mean = \"/valuel X valuey X - - - X value,, 3.6)
) . value| +values + - - - + value
Arithmetic mean = ~ 3.7
n

42

Experimental Methodology

43

Chapter 4

Last-Level Cache Insertion Policies

This chapter explores the utility of the runtime system level information in the design of
cache replacement policies. Of a special interest is a shared cache as it comes with additional
challenges compared to private caches, such as mixed access patterns coming from different
cores. We propose two insertion policies based on re-reference intervals. Each policy targets a
different challenge arising in the shared last-level caches. The first policy, Task-Type-aware
Insertion Policy (TTIP), is a dynamic insertion policy that assigns re-reference interval to a
cache line on insertion depending on the task type that issued the corresponding request. The
second, data-type aware insertion policy (DTIP), is based on the observation that the access
pattern of accesses to task data dependencies often depend on the dependency type. In the
context of the used programming model, the dependency types correspond to whether the data
is consumed (in), produced (out) or updated (inout). DTIP is similar to TTIP in the fact that it
discriminates the cache lines when assigning a re-reference interval. Specifically, DTIP uses
the dependency type of the variable the memory request refers to. Both DTIP and TTIP are
guided by the runtime system library by accessing simple hardware structures inside the LLC

that define the insertion policy behavior.

This chapter makes the following contributions:

* A dynamic insertion policy based on task types that is able to automatically identify the

best configuration during the execution time.

* A static insertion policy based on the data dependency types.

* Hardware components that control the behavior of the insertion policy and are exposed

to the runtime system library via memory-mapped registers.

45

4.1 Challenges in the Design of Replacement Policies for Shared Caches

* Runtime system extensions that dynamically determine the best-performing configuration
for each task type and control the insertion policy in the hardware using the previously-

described interface.

4.1 Challenges in the Design of Replacement Policies for
Shared Caches

Memory access pattern is the most important factor that drives the design of cache replacement
policies. Unfortunately, the access patterns observed at the last-level cache are rather complex.
The complexity is caused by several factors. The locality of accesses is hidden by the private
caches which makes it harder to predict the access pattern only by an analysis of the application
code. In addition, accesses coming from the different cores are interleaved at the LLC, which
further complicates their analysis. However, by discriminating the memory access by the
issuing core, it is possible to separately observe the access patterns corresponding to each core.
Furthermore, differentiating the accesses from a single core by the variable they belong to can
make it easier to predict the access pattern at the LLC.

Simple cache replacement policies such as LRU, NRU, DRRIP do not discriminate the
memory accesses. As a result, this can lead to sub-optimal cache performance due to workload
trashing. More recent designs consider the access patterns and are able to achieve better hit
ratios. For example, SHiP relies on the access signature to estimate to which code segment it
belongs to. However, such heuristic-based method is not precise at identifying the variable
accessed with a given memory request. The semantics of the task-based parallel programming
models, such as OpenMP and OmpSs, can provide an accurate identification of the relevant
variables (i.e., task data dependencies) and code segments (i.e., tasks).

To illustrate the design opportunities provided by the accurate knowledge of the access
patterns at the LLC level, we use the example in Figure 4.1. It shows a simple case of a
combined memory access pattern consisting of one trashing and one cache-friendly access
pattern denoted with letters (A, B, C and D) and numbers (1 and 2), respectively. The two
access patterns can correspond to different threads or different memory regions within the
same thread. The top of the figure shows the order of accesses throughout the time for two
address ranges that map to the same four-entry cache set. Accesses to the cache friendly and
trashing region are colored in green and blue respectively. The bottom of the figure shows

(i) the outcome of the above accesses to the cache set following two replacement policies as

46

Last-Level Cache Insertion Policies

D
> a * * . Thrashin
g.g % * * * Access Patt%rn
LI * * Cache-Friendl
e 2 4 4 ache-Frien
=3 1-¢ * : } Access PatterI};
time
. access outcome
= £ 1 ABCD2ABCDI1ABGCD 2 :
Sz TIREREANGRALRGE omaehe
= -
S 1ABCD2ABCDTASB after access
=)
E v v access outcome
SE & 11 111 2 2 2 2 2 11111 2 :
g2 ARERIIELBRZEZZL oA
0
g T ABCDABCCDAGBTCGCC after access
< 13

Figure 4.1: Comparison of LRU and access-pattern aware insertion.
LRU inserts new line at the top of the recency stack, while the lines are evicted from the bottom of the stack. The

access-aware policy inserts cache friendly lines at the top of the recency stack, while trashing lines are inserted in
the middle.

ticks for hits and crosses for misses, and (ii) the state of the cache set after each access. In the
case of LRU, the thrashing access pattern pushes to the bottom of the recency stack the lines
belonging to the cache-friendly region, which results in their eviction. Therefore, all of the
accesses result in a cache miss. The second policy inserts the trashing lines in the middle of the
recency stack and uses the same promotion mechanism as LRU. This approach preserves the
position of the lines corresponding to the cache-friendly region. Consequently, the third and

the fourth accesses to that region result in cache hits.

The conclusion of this analysis is that it is possible to achieve a better cache performance by
applying different replacement strategies to accesses belonging to distinct memory regions. In
the context of this work, the differentiation can be done on a task level as well as on a task data
dependency level. The previous example shows a deterministic insertion policy. To perform
finer adjustments, it is possible to employ a probabilistic insertion policy similar to BRRIP.
Probabilistic insertion uses a probability parameter that controls how often the lines are inserted
into the bottom or middle of the recency stack. In addition, by assigning a different probability
to tasks, it is possible to indirectly control the cache space allocated to each task. In summary,
the use of the application-level knowledge can help with the design of a better-performing cache

replacement policy.

47

4.2 Runtime-Assisted LL.C placement policies

4.2 Runtime-Assisted LLC placement policies

An important factor that affects the LLC performance is memory access pattern. Runtime
systems that support task-based data-flow programming models have information about task
types and task data-dependencies of the application. We aim to utilize this information at the

hardware level to improve the LLC performance by optimizing its insertion policy.

4.2.1 Task Type Aware Probabilistic Insertion

TTIP is a runtime-guided task type-aware last-level cache insertion policy. It uses a notion
of re-reference intervals to maintain the logical order of cache lines, which is used to select
the eviction candidates. TTIP targets parallel applications written in task-based programming
models, such as OpenMP and OmpSs. TTIP is a dynamic policy that automatically selects
the best-performing policy for each task type. A runtime system library is responsible for the
training process and configuring the hardware to use the selected policy. The last-level cache is
extended to support the manual selection of an insertion policy for each task type, which is
performed by the runtime system using memory-mapped registers.

TTIP relies on the following extensions:

* Runtime system extensions to allow performance tracking of different insertion policy

configurations.

* A training algorithm implemented in the runtime system that monitors the cache

performance and selects the optimal configuration for a given time interval.

* Microarchitectural extensions in the LLC that allow the runtime system to control the

insertion policy.

TTIP is a policy based on re-reference intervals (RRI) and uses a two-bit representation of
the RRI. RRIP policies usually observe three special RRI values: (i) immediate, (ii) long and
(iii) distant, which correspond to the RRI values of 80, 10 and 11, respectively. In the context
of the work presented in this section, the insertion policy determines the assigned re-reference
interval (RRI) to each fetched line. Specifically, the insertion policy is defined by a probability
to assign a long RRI to a cache line. For example, the probability of 0.2 means that one in five
lines is assigned a long RRI value, while the other four are assigned a distant RRI value.

TTIP uses an independent probability for each task type. During the run-time, the

probabilities are assigned according currently running task type. That is, write-backs of

48

Last-Level Cache Insertion Policies

£ phase Training Training
n
>
cﬁ ¢ l:1500(|IM:1500 -| (IM:2000| (IM:2000| (MM:2000
E Isarcker .: - .: 500 - .: - .1500 .]‘500
= i oo A o] 100]Best
£ [[] best(MmI) W [] best(HMI)
B TP Neviiiiaann Noeiiiiienns Voot Moo M Noveiiiiren N i
set 1 [N I [SSEEN e NN N e
set 2 I I I [. .
S set 3 NI O [N R .
= set 4 [N I I N . .

HW counter [1500 500 1000 2000 1500 1100

... time

Figure 4.2: TTIP probability training process for a certain task type.
Colors represent different policy configurations (probabilities). Each rectangle in the LLC sets represent a task
instance and is colored according to the configuration used for that instance. Hardware counter records the number
of misses.

previous task’s cache lines are handled as if they belong to the currently running task. To
determine the best probability per task type, TTIP employs a sampling-based training mechanism,
as displayed in Figure 4.2. The figure shows a snapshot of an execution of a parallel code on a
system with a 4-set LLC implementing TTIP. During the training phase, the runtime system
configures the LLC’s insertion policy to use probabilities from a predefined pool . The
policy is switched at a task boundary and each policy configuration is used for K task instances.
Probabilities are selected sequentially from the pool until all probabilities are evaluated. Upon
switching to a new policy, the runtime system samples the values of selected hardware counters
to get an estimation of the cache performance during the previous period, such as the number of
cache misses. When all configurations are exhausted, the best-performing policy is calculated
by comparing the recorded cache performance metrics. In total, K X |#| task instances are used
for training during one training phase for one task type. Once the training phase is complete,
the stable phase begins. The LLC is configured to run the best-performing insertion policy
during a period that corresponds to N task instances. In Figure 4.2, the values that correspond
to K and N are 2 and 3, respectively. Once the N task instances are executed in the stable phase,
the training process continues from the beginning, switching again to the training phase. As a
consequence, TTIP is able to adapt to the changes in application behavior in terms of memory

access patterns. The described training process is performed independently for all the task

types.

49

4.2 Runtime-Assisted LL.C placement policies

Runtime System Last Level Cache

: f , >
scords : request from L2 MSHR Address bus &
r task | perf. tracker : %

; prﬁ:i);f;)rmancc addr |~ | RRI |- Data bus i
: S
: 500 &
11000 :
state machine V]| [|RRI| Tag | Data
: N'E

Figure 4.3: Runtime and microarchitectrual extensions for TTIP.

4.2.1.1 Hardware Extensions

This section describes hardware components necessary to implement TTIP, which are shown
in Figure 4.3. To be able to use a different insertion probability for each task type, TTIP
employs a small and fast hardware structure in the LLC that maps the task type ID to the
assigned probability. It is designed as an SRAM memory containing the probabilities and is
addressed by the task type ID. The mapping table is accessed on a cache miss and the returned
probability is fed to a random number generator, which returns one of the two RRI values, long
or distant. The selected RRI value is written into the Miss Status Handling Register (MSHR)
entry corresponding to the request. When a memory request resulting from a miss is served,
the cache line is inserted into the cache tag and data arrays. The RRI value to be assigned to the
newly inserted line is fetched from the MSHR. The mapping table is modified by the runtime
system library using memory-mapped registers, which allows to maintain the original ISA. To
track the performance of each insertion probability, TTIP uses one hardware counter per task
type that records the number of requests from each task type that result in a cache miss. The

counters are exposed to the runtime as a set of memory-mapped registers.

4.2.1.2 Runtime System Extensions

This section describes the required extensions to the runtime system library, as shown on the
left-hand side in Figure 4.3. The runtime system extensions can be classified into the two
components that control the dynamic insertion policy: (i) a module for performance tracking
and (ii) a module that selects which policy is used for each task type at a given moment in
time. The performance tracker holds the cache performance statistics per probability, for each
task type. This structure is updated every time the probability for a certain task is switched.
The policy selector consists of a set of state machines that hold the current phase (i.e., training

or stable), currently selected policy and a set of policies not yet evaluated during the training

50

Last-Level Cache Insertion Policies

phase. A simple algorithm selects the next policy depending on the phase. During the training
phase, policy selector traverses policy configurations from the predefined set of probabilities #,
while at the beginning of the stable phase, the best-performing policy is selected.

These actions are performed on the task boundaries, inside the runtime system functions.
Once a task is scheduled to execute and before its user code starts executing, the policy selector
decides which probability to use for that task instance and writes it in the probability table at the
position corresponding to the task type ID of the said task. At the end of the execution of a task,
the number of misses produced by that task in the LLC is read and stored in the performance

tracker module of the runtime system.

4.2.2 Dependency Type Aware Insertion

This section describes a dependency type-aware insertion policy (DTIP) for a shared last-level
cache. As the previously described policy, DTIP also targets parallel codes written in data-flow
task-based programming models. Its design is based on two observations. (i) Input dependencies
are read-only data accessed by the currently-running task instance. (ii) Output dependencies
are generated by a task in order to be consumed by its successor tasks. Therefore, it may be
beneficial to insert cache lines belonging to outputs in higher positions of the recency stack,
thus giving them more chances to stay in the cache until the moment they are required by the
consumer task. A similar reasoning applies to dependencies denoted as inouts, as they are also
inputs of future tasks. Non-dependencies are the local variables of the current task and the
global variables that are not specified as task dependencies. In certain evaluated benchmarks,
like CG, they are predominantly accesses to large global variables that have streaming-like
access patterns. In other benchmarks, where this is not true, decisions that we make for
non-dependencies do not harm the performance.

DTIP assigns a RRI value to the new cache line depending on the dependency type of the
variable that the cache line corresponds to. The policy configuration can be formally defined
as a 4-tuple (RRI;;pur, RRIouipurs RRIinours RRInon—dependency)> Where RRI; is a RRI assigned
to lines corresponding to the dependency type d and RRI € {immediate,long,distant}. For

simplicity, the following naming conventions are adopted:

* Dependency types and RRIs are annotated in the short form, i.e., in, out, inout and

non-dep for dependency types and I, L and D for RRIs.

* Configurations are designated with a four-letter acronym, where each letter corresponds to

the RRI assigned to in, out, inout and non-dep, in that order. For example, a configuration

51

4.2 Runtime-Assisted LL.C placement policies

Runtime System Last Level Cache MSHR T g
: request from L2 ress bus g
records : t g
per taskdtask 2 r;cg;d [[[addr] addr || RRI |- Data bus j
t : : =)
N YIf)é.I . | v RegDepT DepRRI £
‘ OS;:L . [start@ : end@:dep.type in ;q
B | - 5 5 5 t:L
: H:jOLW% : : : I ingﬁt:L V[-|RRI| Tag | Data
L= : : : no-dep.:D

Figure 4.4: Runtime and microarchitectrual extensions for DTIP.

that assigns long RRI to in and out, distant RRI to inout and immediate RRI to non-dep,
formally defined as (L,L,D,I), is designated as LLDI.

* Configurations where one or more mappings do not matter mark the corresponding

positions with x, e.g., LxxI.

4.2.2.1 Hardware Extensions

To identify a re-reference interval (RRI) for a cache line on a cache fill, DTIP uses two simple
hardware structures, as shown on Figure 4.4. RegDepT is a table that maps a memory region to
the dependency type associated with that region. A memory region is defined by its starting
and ending physical address, while a dependency type is encoded with two bits. RegDepT is
designed similarly to a content-addressable memory (CAM). The address of a cache reference
that resulted in a miss is fed to the structure where it is simultaneously compared with all
the start and end addresses. The output of this action is an entry i that fulfills the following
condition: startAddr; >= sourceAddr >= endAddr;. In the case of a no-match, the returned
value encode a non-dependency. The second component is a DepRRI, a simple array that maps
a dependency type to the associated RRI. It is designed as an array of four entries addressed by
the two-bit representation of a dependency type.

The RegDepT and DepRRI are accessed on every occurrence of a cache miss in the LLC
to determine the RRI for the missing line. First, the address of the missing line is fed to the
RegDepT which returns its dependency type. Then, the obtained dependency type is used to
address DepRRI and the resulting RRI is stored in the corresponding entry in the MSHR. This
process done in parallel with issuing the request to the main memory and does not introduce any
additional latency. When a request for the missing line is served by the memory, the RRI is read
from the MSHR and the cache line is updated accordingly. Figure 4.4 illustrates the described

actions on a cache miss and cache fill using dark red and light green arrows, respectively.

52

Last-Level Cache Insertion Policies

The described hardware structures are updated by the runtime system on every task switch.
If the mapping information corresponding to the previous and current task are the same, the
runtime system does not perform the redundant update action. As RegDepT is physically
addressed, the translation of new entries is automatically performed by the hardware. In case
of a non-continuous mapping to physical address space, multiple entries are created for a
single variable. There may be several tasks using the same region at the same time. However,
this cannot result in a conflicting mapping of one region to two dependency types, as the
runtime system inherently guarantees that a region accessed by more than one task is always
accessed in the same manner (i.e., as in, out or inout dependency). The runtime system does
not prevent a region that is a non-dependency for a certain task to be accessed as other type of
dependency by another co-running task. However, this scenario is not covered by this proposal
as it is considered an invalid programming pattern in the context of a data-flow task-based

programming model.

The RegDepT and DepRRI are implemented in the LLC and are exposed to the software layer
as a set of memory-mapped registers. This interface is supported in most modern architectures

and does not require changes to the processor’s ISA.

4.2.2.2 Runtime System Extensions.

DTIP relies on several runtime system extension, as shown on the left-hand side of Figure 4.4.
The extensions consist of: (i) a data structure that holds the mapping of the dependency type
to the associated re-reference interval (RRI) for each task type (ii) a function that updates the
hardware structures described in Section 4.2.2.1, taking into account the data dependencies of
the current task already present in the task-dependency graph and the dependency type-to-RRI
mapping described above. When a task is scheduled to execute on a core, the runtime system
updates the RegDepT and DepRRI with the information corresponding to the new task by
issuing store instructions to the memory-mapped registers. If there are several consecutive
dependency regions of the same type, the runtime may perform two optimizations to reduce
the storage requirements in the mapping table. The first optimization merges the consecutive
dependency regions of the same dependency type into one. The second does not insert the
region if it already exists in the table, which happens if two or more tasks are sharing the same
region. Since the mapping table is not readable by the runtime to simplify the hardware design,

the runtime keeps a software copy of the mapping information.

53

4.3 Design Space Exploration

cg * facesim % ferret V specfem3D A stap ® gmean
1.2F e
a Mg gk Areogeokehod
~o1af +
2
2 0.9} TN i, A
£ 7 ¥
S
=t 0.8}
% 0.7t
=
K12 4 816 1 2 4 816 1 2 4 816 1 2 4 816 1 2 4 816 1 2 4 816
N 10 50 100 500 1000 00

Figure 4.5: TTIP sensitivity to N € {10,50, 100,500, 1000, 0} and K € {1,2,4,8,16}

4.3 Design Space Exploration

This section explores the behavior of TTIP and DTIP depending on their configuration
parameters. The result of these analyses are two configurations used in the evaluation of both

policies.

4.3.1 TTIP Parameters Space Exploration

TTIP’s performance depends on two parameters, K and N, which are described in Section 4.2.1.
These parameters determine how many task instances per probability are used in training, and how
many instances for running with the best probability in the stable phase, respectively. We explore
the set of configurations (&, K) where N € {10,50, 100,500, 1000, 0} and K € {1,2,4,8,16}.
Configurations where N = oo have only one training phase which is followed by one stable
phase that lasts until the end of execution. Intuitively, choosing a larger K offers better precision
by having more time to evaluate one probability. However, too large K can hurt the overall
performance if certain probabilities perform badly. Configurations with larger N use the
best probability for a longer period of time, but are less able to adapt to potential changes in
application behavior. Using a smaller N can be bad for the final performance because a larger
percentage of the execution is spent in the training phase.

Figure 4.5 shows the performance of TTIP in terms of MPKI depending on the choice of
parameters K and N. The MPKI shown in this figure is normalized to the configuration using
LRU replacement policy, which achieves MPKI 3.50, 3.40, 1.23, 1.45 and 1.44, respectively

54

Last-Level Cache Insertion Policies

for cg, facesim, ferret, specfem3D and stap. For most benchmarks except specfem3D we can
observe a performance improvement as NN increases. This is due to the fact that, in the majority
of benchmarks, instances of the same task type have similar behavior. For cg, we can notice
the trend of performance degradation when increasing K for a constant N. Similar behavior
can be noticed for stap. Stap highly benefits from configurations where N = co due to having a
large number of task instances. Having many training phases in case of stap means repeatedly
evaluating sub-optimal probabilities, thus hurting the overall performance. Ferret does not
show significant sensitivity to K and N. Facesim obtains better performance with larger K due
to having a lot of small task instances and, therefore, needing more instances per probability to
properly evaluate the performance of each probability. The configuration that performs the best
on average for all our benchmarks is (N, K) = (o0, 8), which we will use for further evaluation

of TTIP in the remaining of the chapter.

4.3.2 DTIP Design Space Exploration

The behavior of DTIP depends on the four parameters that control the RRI assigned to each
dependency type as defined in Section 4.2.2. To determine the impact of mapping different
RRIs to dependency types, we perform an exhaustive design space exploration where we
simulate all possible configurations. Number of different policy configurations per benchmark
is |7 |'Pl = 3% = 81, where 7 and D are sets defined in Section 4.2.2. For all five benchmarks,
we run 81 x5 =405 simulations.

Figure 4.6 shows the results of the design space exploration. The results are grouped per
benchmark and are shown in form of a heat map. The colors in a heat map correspond to the
MPKI achieved by DTIP normalized to the MPKI obtained with LRU policy. The results show
a significant sensitivity of cache performance on the selected policy for all benchmarks with
the exception of ferret. CG and facesim obtain the best performance improvements when the
non-dep cache lines are assigned a distant RRI. These benchmarks do not exhibit sensitivity
to other DTIP parameters. Specfem3D, on the contrary, achieves the best performance for
DIxx and DLxx configurations. In other words, it is important that in lines are assigned distant
RRI, the out lines are assigned long or immediate RRI, while the configuration for other
dependency types does not notably impact the performance. Similarly, stap performs best for
DIxx configurations.

On average, the best performing policy is the one that assigns the distant RRI to inputs
and non-dependencies and long or immediate to outputs and inouts. This is consistent with

reasoning explained at the beginning of this section.

55

4.3 Design Space Exploration

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
MPKI normalized to LRU per benchmark

cg facesim ferret specfem3D stap
] | | DD DD DD
I I DI DI DI
DL DL DL DL DL
] | | ID ID ID
11 11 11 11 11
IL IL IL IL IL
LD EEEEEEEE 1D LD LD LD
LI LI LI LI LI B
LL LL LL LL LL B
axlaragnA AHaQHAQHA AHaAQHaQHAa =il e lels AHIAQHaAQHAa
AQAHRHH3IA ApARHHAAAa AQRHHHAA A fAaAHHH3A AA/RHHHAA A

=
Figure 4.6: MPKI of DTIP normalized to LRU per benchmark.
Y-axis shows the insertion policy for in and non-dep. X-axis shows the insertion policy for out and inout. For
example, a configuration ABCD is shown at the intersection of x=BC and y=AD. Lower, blue values correspond to
better performance compared to LRU.

To further evaluate the performance of different insertion policies, we analyze the per-task
behavior in terms of cache misses. For each DTIP configuration, we record a number of misses
in the LLC produced by each task type. Figure 4.7 shows the results of this analysis for stap
and specfem3D. The results are displayed only for a selected set of tasks, which are chosen
among the largest tasks in terms of number of misses. Results show that tasks in stap observe
the same performance trends for configurations Ixxx and Lxxx. In both of these configuration
groups, the configurations with RR1,,, = I and RRI,,, = L observe similar number of misses,
while the configurations with RR1,,; = D achieve notably worse performance. This trend is not
present for task Calc.Filter in the third set of configurations, Dxxx, as its performance does
not suffer when RRI,,; = D. In fact, this task achieves the best performance in the said set of

configurations, and specifically for DDxD.

Contrary to stap, in the case of specfem3D, RRI;,,,; has a notable impact on performance,
especially for task update.disp.vel. This task achieves best performance when RRI;,
takes values I or L. Task scatter observes the opposite behavior for configurations Dxxx,
which clearly illustrates the fact that the optimal configuration for one task type may not be
the optimal for another task type. Both process.element and scatter achieve a notably
better performance for Dxxx compared to other configurations. This is also the case for

update.disp.vel, but the performance improvements are minimal.

The conclusions of this analysis is that different task types achieve the best performance for
different DTIP configurations, depending on their memory access patterns and dependency

sizes. However, using the same, on average best-performing, configuration for all tasks achieves

56

Last-Level Cache Insertion Policies

stap Task name v ApplyFiltertask e Calc.Filter * Int.Dop
2M VVVVVVVVV
8 vvaVvVVv
A VYV Vyvyy YTV VVVV00g00q00qyyyyyyvYyYYYYVYVYY YYYYVyYYyYYYYYVYVYVVyVyyVyy
.4 00e00000,
E 1M-{eccccccccse00cccce s 000000000000000000 ooooooooo’"“"".........
33 9¢ 36 K 9¢ X K ¢
Eﬁ 3633 3¢ 33 3¢ 33 3 3 X 2 X X K X XaaFauxkxn 2 HHRKXKR
| 2 3 3 3 3 3 3 3 33 3 3 3 % X X X X 3 3 36 3 36 36 3¢ 3 3(3¢ 3¢ 3¢ 3 3¢ 3¢ 3 % X
nondep ILDPLDPLDIL%IL%ILDIL%IL%ILDIL%IL%ILDIL%IL%ILDIL%IL%ILDIL%IL%ILDIL%IL%ILDIL%IL%ILD
inout rlvip|rleip|frlelp|rlceip|rlelip|frlelp|1rlorip|rlolinp|1ilcolp
out I L D 1 L D 1 L D
in I L D
specfem3D Task name v process.element e scatter » update.disp.vel
15M YYVYYYYYYY VYT Y YV Y Yy Y Y Y Y v vy Y Yy vy Y YYYYYYYy YT YYYYYY
5 \AAAAA ST A A A4 4 S vvy
2]
'é 10M
ecccc000e
&i Shd'oooooogggooooooggg xxx 00000035y
3 eccccoiilccccociil s L YT YT LT
0 RAXKRKK X% XXX %% % %X 2 % % % % % XK KX KK %% %% X% N8R %0002 0000000, L xxx
nondep | TLD|TILD|ILD|ILD/ILD|ILD/ILD|ILD|ILD|ILD|ILD/ILD|ILD|ILD|ILDILDILD|ILDILDILD|ILDILDLD/ILD|ILD|ILDILD
inout tlvip|1tlelip|rlelip|rlcelp|rlelnp|rlelip|rlolip|rlolip|1rlclipD
out I L D i L D i L D
in I L D

Figure 4.7: Cache performance per task type for different DTIP configurations.
Figure shows only selected tasks chosen as representatives of group of tasks observing the same behavior. Total
number of task types for stap and specfem3D are 16 and 9, respectively. Tasks that have the same behavior as the

shown tasks and tasks with small relative number of misses are omitted.

performance within 6.9% from the optimal performance for evaluated task types. Taking these

findings into account, the evaluation of DTIP is performed using a single configuration. The

exploration of per-task configurations might bring further performance improvements and is

left for future work.

4.4 Evaluation

This section presents an evaluation of TTIP and DTIP. The experimental infrastructure is

explained in Chapter 3. The benchmarks used for the evaluation and the input parameters are

shown in Table 3.2. The LRU policy is selected as the baseline for

performance. In addition, this section considers DRRIP as a state-

the comparison of the relative

of-the-art replacement policy,

as well as the policies that DRRIP is combined of, SRRIP and BRRIP. BRRIP is configured to
use the probability for assigning a long RRI of € = 1/32. DRRIP uses a SDM with 32 sets.

57

4.4 Evaluation

I LRU SRRIP W BRRIP M DRRIP DTIP EETTIP

Normalized MPKI

cg facesim ferret specfem3D stap gmean
Figure 4.8: MPKI of TTIP and DTIP normalized to LRU

B LRU SRRIP M BRRIP HDRRIP DTIP METTIP
1.2
1.0
£0.8
0.6
20.4
0.2
0.0

eedu

S

cg facesim ferret specfem3D stap gmean
Figure 4.9: Speedup of TTIP and DTIP compared to LRU

4.4.1 Performance Results

Figure 4.9 compares TTIP and DTIP with LRU and state-of-the-art SRRIP, BRRIP and DRRIP
in terms of MPKI and speedup normalized to LRU.

TTIP upgrades BRRIP by supporting multiple probability values and being able to optimize
the probability per task type. It achieves up to 32.1% and on average 11.2% reduction in MPKI
compared to LRU. The speedup over LRU is up to 12.3% and on average 5.1%. TTIP performs
similarly as DRRIP, having 3.3% higher MPKI and being 0.8% faster than DRRIP. However, it
does not need the hardware for Set Dueling, but instead uses a small mapping table described in
Section 4.2.1.1 and whose cost is discussed in Section 4.4.2.

DTIP improves MPKI over LRU for up to 33.3% and on average 16.8%. The largest
contribution of improvement in MPKI comes from specfem3D, where misses to output
dependencies of the largest task are reduced by assigning immediate RRI to outputs. This
decision does not significantly impact the number of misses to inputs and non-dependencies.
DTIP is faster than LRU for up to 12.1% and on average 4.8%. Compared to SRRIP, which is
another static RRIP policy, DTIP achieves up to 29.1% (12.8% on average) lower MPKI and
performs up to 10.5% (3.7% on average) faster. The improvement over SRRIP comes from the
fact that DTIP differentiates the cache lines by their data-dependency types. DTIP is able to

58

Last-Level Cache Insertion Policies

benefit from this information by assigning a more optimal RRI to cache lines so that different
access patterns that collide in LLC have least possible negative effects on each other. DTIP
reduces MPKI by 3.1% on average and is faster 0.3% than DRRIP.

Even though it shows higher MPKI than DTIP on average, TTIP achieves better execution
time. The contributor to this effect is cg, where DTIP fails to achieve a speedup comparable
to TTIP and DRRIP. The largest task type, which performs a matrix-vector multiplication, is
the main source of MPKI improvement of DTIP over TTIP. However, three smaller, but still
important tasks, show higher execution time with DTIP due to increased number of misses to
inputs and non-dependencies. The improvement in execution time achieved in the largest task
is not enough to compensate losses in three smaller tasks, because hits in the largest task are

hidden by the unavoidable misses to the matrix.

4.4.2 Design Costs

To store the RRI information associated with each cache line, both TTIP and DTIP need 2 bits
per cache set, the same as DRRIP, whereas LRU requires nlogn bits per set, where n is the
cache associativity. In the system evaluated in this work (n = 16), RRIP policies consume 2x
less space than LRU.

The mapping table required by TTIP has 4 entries, one for each core. Probabilities are
stored with resolution of 6 bits, making the size of the structure 4 X 6 bit = 3 B. In addition,
TTIP requires 4 hardware counter registers, each one being 32 bit long. The total additional
hardware cost required by TTIP is 3 B + 4 x 32 bit = 19 B. After each task instance, the runtime
reads the corresponding hardware counter and potentially sets the new probability for the new
task instance, which incurs overhead of few instructions. Calculating the best probability after
the training period takes less than hundred instructions.

The mapping table for DTIP, RegDepT, contains 32 pairs of 48-bit physical addresses, thus
providing each core with 8 entries, which is more than enough to cover the most demanding
tasks in regards to number of data-dependencies. In the case of larger demand for mapping
table entries, smaller, less important dependencies can be omitted or merged with another
dependency of the same type without degrading the performance. Since the table contains
physical addresses, it is possible that one variable requires more than one entry when mapping
of virtual to physical addresses is not continuous. To overcome this issue, large memory pages
can be used. The total size of the evaluated mapping table is 32 X2 x 48 bit = 348 B. When a new
task instance is scheduled for execution, the mapping table is updated with data-dependencies

of the task. Upon completion of a task, the runtime clears the entries from the mapping table

59

4.5 Summary

that belong only to that task. Both actions require several tens of instructions. The total runtime
overhead in terms of number of instructions is negligible when compared with the total number

of instructions of any benchmark used for the evaluation.

4.5 Summary

Improving LLC performance is of great importance in modern and future systems. In multi-core
processors, threads generating various access patterns are competing for LLC resources. To
achieve best performance, it is necessary to protect certain access patterns from being thrashed
by accesses coming from another thread. In this thesis we exploit semantic information about
applications written in data-flow task-based programming models to better manage the LLC.
The runtime system provides the information about task types and task data-dependencies to
the LLC in order to improve the insertion policy. We propose two techniques:

TTIP - Task Type-aware Insertion Policy tries to determine the best probability for inserting
lines in the recency stack by using runtime-guided dynamic approach that evaluates the
performance of several preset probabilities and chooses the best performing one.

DTIP - Dependency Type-aware Insertion Policy is a static policy that assigns to cache
lines re-reference intervals based on the type of data-dependency they correspond to. Data that
will be used by the next tasks is given more chance to stay in cache by assigning it a more
immediate RRI, while read-only data is given less priority.

These two policies use the runtime system for providing the hardware with the necessary
information for determining appropriate insertion configurations, which simplifies hardware
design. The overheads of the runtime extensions are negligible. The performance benefits
compared to LRU are significant for both policies. TTIP performs slightly worse than DRRIP,
but uses simpler hardware. DTIP performs better than DRRIP on average, which proves the
benefits of using runtime information about the application in designing LLC replacement
policies. In comparison with DRRIP, our policies do not use set dueling monitors and do not
require a decoder for determining dedicated follower sets.

Possible improvements for TTIP include discarding probabilities that perform badly from
the training process. DTIP can be extended to distinguish between dependencies, since different
dependencies of the same type may have slightly different access patterns that benefit from
different insertion positions. Further benefits could be obtained by taking into account task

types as well.

60

Chapter 5

Implementing Reduction in the Cache Hierarchy

This chapter proposes a runtime-assisted technique for performing reductions in the processor’s
cache hierarchy (RICH). The goal of RICH is to be a universally applicable solution regardless
of the reduction variable type, size and access pattern. RICH introduces a hardware component
equipped with functional units to perform reductions at any level of the cache hierarchy. Existing
constructs in a shared-memory parallel programming model are extended to let the programmer
specify at which location in the cache hierarchy a certain reduction should be computed. The
runtime system couples the application with the operating system, with the goal to provide
the underlying hardware with the information about the reduction variable. This interface
is designed without modifying the processor’s ISA. As a result, RICH supports the use of
algorithms with reductions implemented in third-party libraries.

The main contributions of this chapter are:

* RICH enables the programmer to offload the reduction operation from the core to a
desired level of the cache hierarchy. This functionality is facilitated by extending existing

OpenMP-like annotations in the parallel code.

* RICH introduces a new hardware component, the Reduction Module, able to perform

reductions at all levels of the cache hierarchy.

* Our design couples the parallel application and the underlying hardware with a runtime-
assisted interface that does not modify the processors ISA. As a result, RICH is applicable
to common scenarios where complex codes use reduction algorithms implemented in
third-party pre-compiled libraries, which is not supported in the state-of-the-art hardware
techniques for reductions, such as COUP [181] and PCLR [67].

* Experimental results for vector-reductions show that RICH achieves performance im-

provements of 1.8X on average, compared to the current approaches implemented in

61

5.1 Limitations of Current Reduction Techniques

—&— Privatization Atomics

"—‘—A‘—"—ﬁ—ﬁ—"—*ﬁ\‘\ |

—

o
[
o

[
o
©

Bandwidth [B/s]
—
o
0]

L1 .2 L3
107
108 — T T T T T T T T T 1
@@g@@g@@mmmmmmmmmm%
S EEE¥%E83232322233222°9
- N © AN 0 - MNm © N 10 -
— O 10 — AN 10

Figure 5.1: Achieved memory bandwidth for RandomAccess benchmark for different reduction
array sizes on an IBM POWERS processor with 192 threads. Vertical lines show the sizes of
the data caches per core.

parallel programming models. With scalar-reductions, RICH outperforms software

privatization 1.09x on average. RICH performs on average 1.11x faster than COUP.

5.1 Limitations of Current Reduction Techniques

Section 2.3.1 introduces the notion of reductions in the context of HPC applications. There
are two intuitive software-based techniques to parallelize reductions, based on privatization
and atomic instructions, which are explained in detail in Section 2.3.2. The main conclusion
is that these two approaches are suitable for distinct scenarios. Privatization works well for
reductions over scalars and small arrays. For larger reduction variables, however, privatized
data increases cache pollution. Solutions that use atomics perform worse than privatization for
small reduction variables due to frequent cache misses caused by the invalidations of cache lines
in the private caches as well as the increased coherence traffic. Figure 5.1 shows an example of
such behavior by comparing the achieved memory bandwidth of the two previously-mentioned
techniques considering different reduction variable sizes. The analysis is performed using
RandomAccess [4], a kernel that accesses the reduction variable following a uniform probability
distribution function.

Results show that for small array sizes, privatization is the approach delivering higher
performance as it avoids the shared updates. In contrast, atomics achieve significantly lower
performance for small problem sizes due to the coherence effects. The performance of atomics

improves when the array size increases as conflicts between different threads are less likely to

62

Reductions in the Cache Hierarchy

occur. As the array size approaches the size of the core’s portion of the L3 cache, privatization
suffers from a performance drop of 1000x due to the overhead of handling the private copies of
the reduction variable. Although atomics also show a notable drop in performance, they perform
significantly better than privatization. With the further increase of the reduction variable’s size
beyond 8 MB, the performance of privatization stagnates, while the performance of atomics
slowly degrades.

This analysis clearly shows how different reduction methods deliver different performance
depending on the size of the reduction variable. Specifically, the size of the reduction variable
dictates which reduction technique should be used to achieve better performance. Solutions
allowing a manual or automatic selection of the reduction technique are required in order
to achieve the best possible performance across all possible scenarios without exposing the
programmer to the complexity of implementing application-specific ad hoc reduction techniques.

To further reduce the overheads of software techniques, hardware solutions are necessary.

5.1.1 Overcoming Limitations Using Hardware-Assisted Reductions

There are several state-of-the-art hardware techniques addressing issues related to coherence
invalidations or data privatization costs. They either implement atomic remote memory
accesses [60] or use private cache lines [67, 181]. Remote atomic updates implement atomicity
by performing the final reduction, involving all the partial results, at a specific hardware
component. These components can be the last-level cache or the memory controller equipped
with additional functional units. The use of private cache lines is based on the same concepts
as its software privatization counterpart. In this case, processor caches are used as temporal
buffers to accumulate intermediate results. Private cache lines are initialized to the neutral
element on the first access and are reduced at cache line eviction or at the end of a software
routine by generating the final value in the last-level cache. Described designs avoid the high
coherence traffic triggered by shared updates to the reduction variable.

However, previous proposals do not perform optimally in all scenarios. Solutions based on
remote memory accesses are suitable only for infrequent reduction instructions due to the high
overhead of offloading instructions to a shared resource far from the core. Applications with
irregular memory accesses do not efficiently use cache memories. The usage of private cache
lines in such codes results in a sequence of initialization, cache placement and eviction events.
Moreover, in the case of large reduction arrays, privatizing the reduction variable significantly
pollutes the content of cache memories. Consequently, further architectural innovations are

needed to avoid these issues while keeping the benefits of low coherence traffic.

63

5.2 Implementing Reductions in the Cache Hierarchy

5.1.2 Ongoing Challenges

Reductions on scalar variables or small output arrays are well supported in current designs.
However, reductions considering large arrays or displaying irregular access patterns require
novel techniques to avoid performance degradation due to cache pollution and increased
coherence traffic. Proposed hardware and software solutions are just suitable for a subset of
scenarios, depending on the size of the reduction variable and its memory access pattern. To the
best of our knowledge, a technique effective for all reduction scenarios has not been proposed.
Moreover, previously proposed hardware techniques require ISA extensions to handle reduction
operations, which makes them incompatible with applications that use pre-compiled libraries
containing reduction operations.

The design described in the remaining of this chapter aims to achieve the following goals:
(i) To achieve better performance than the state of the art considering a wide range of reduction
variable sizes and different memory access patterns. (ii) To avoid modifications to the processor’s
ISA and thus maintain the compatibility with pre-compiled and dynamically linked libraries.
(iii) To let the programmer expose application-specific knowledge to the hardware without the

need for ad hoc implementations of reductions.

5.2 Implementing Reductions in the Cache Hierarchy

RICH is a runtime-assisted technique for performing reductions in the cache hierarchy. The
programmer makes use of simple source code annotations to identify reduction variables and
specify both the reduction operator and the hardware components where reductions should take
place. Such annotations are expressed using the extended reduction pragma directive [137].
The runtime system is responsible for providing the hardware with the information specified by
the programmer. Finally, the additional hardware components in the processor’s caches are
responsible for handling and executing the reduction operations. RICH relies on the following

extensions:

* Programming model support to define the reduction technique and the runtime system

extensions to set up the relevant hardware components.

* A novel hardware component, called Reduction Module (RM), located at the cache

hierarchy. The RM performs the reduction instructions issued by the cores.

64

Reductions in the Cache Hierarchy

lellell el e llemll 1] 2]l = Y
2 S S = 3|5 3 i -
° 3 = % Z S|z S = g start @ | end @ | op | type
Al < || = i = || O : T
i N
TLB RM h RM

= 5
O = e
Q
= L1 Cul L2 Cul = | [A . 2
g pereeeesitreprnensiinee] feveeaiin ... S : : S |
o= : H -~ E :
[a®) : : : — o HE-
[a i a7 H e i 8 >
oo g oo g 2 gﬁg ‘g
P P 15}
= A E T Z | 5

;

Figure 5.2: Top left: The pipeline schematic with the added RVT component; Top right:
Microarchitecture of the RVT; Bottom: Microarchitecture of the memory hierarchy with the
added Reduction Modules. New components are colored in solid gray and modified components
in striped gray.

* Microarchitectural extensions in the processor and its memory hierarchy to handle
reduction requests in the core and their propagation to the RM through the cache hierarchy.
A part of these extensions is the Reduction Variable Table (RVT) used to recognize the

instructions participating in a reduction based on the referenced memory address.

This section describes these extensions in detail. Finally, it discusses different design decisions

and the implications of the proposed processor functionalities.

5.2.1 Microarchitectural Support for Reductions

The following paragraphs describe the hardware modifications proposed to execute reduction
operations in the cache hierarchy. Figure 5.2 shows the relevant details of a multi-core processor
microarchitecture with the added (solid gray) and modified (striped gray) components. The
proposal is described in a context where each core is equipped with two levels of private caches
while the Last-Level Cache (LLC) is shared among all cores. Our architectural innovations
can be also deployed, with minor adaptations, in other contexts with different cache memory
hierarchies. A Reduction Module (RM) is added to the private caches of each core as well

as to the LLC. The private caches share a single RM. The cache controllers are modified

65

5.2 Implementing Reductions in the Cache Hierarchy

to communicate with the RM and to handle reduction store instructions. A small hardware
component that holds the range of reduction variables for the current thread is placed in each
core. All added and modified hardware structures are described in detail in the following

paragraphs.

Recognizing reduction instructions is partially facilitated by a special hardware structure
called Reduction Variable Table (RVT). For a given address, the RVT determines if the address
belongs to a reduction variable in the current thread. For load and store instructions, the
RVT is accessed in the execute stage, once the destination address of the memory operation
is calculated. The RVT holds the ranges of virtual addresses corresponding to the reduction
variables (start @ and end @), as well as the data type (type) and the operator (op) used for
accumulating values into each reduction variable. The content of the RVT is managed by the

runtime system, as explained in Section 5.2.2.

The reduction operation is composed of: a load from the reduction variable into a register,
an arithmetic or logic operation that updates this register and a store of the modified register
to the original memory location. Depending on the target architecture, the atomicity of the
load-modify-store chain is achieved in different ways: (i) Load-Link and Store-Conditional
instructions [14, 78, 168] and (ii) Compare-And-Swap construct [81]. RICH is implemented
to support both synchronization mechanisms. Since RICH uses only the address accessed by
the loads and stores to determine if they participate in reduction operation, it is not important

which mechanism is used to ensure the atomicity of the reduction operation.

RICH supports reduction operations that update the reduction variable with a sequence of
load-modify-store instructions. All reduction operators defined in the OpenMP standard 5.0
have this property. This covers arithmetic instructions ADD, SUB, MUL, logical operations
AND and OR, bitwise operations AND, OR and XOR and MIN/MAX. In addition, RICH

supports the DIV operation. Operations on both integer and floating point data are allowed.

When a core recognizes a reduction operation, the arithmetic or logic instructions involved
in it plus the load instructions to the reduction variable are converted into NOP instructions
in the core’s pipeline. After effectively eliminating these instructions, the CPU converts the
reduction store instruction into a special store instruction that holds information from these
removed instructions: the reduction operator, the data to be reduced and the reduction variable’s
address. The special store instruction is propagated through the cache hierarchy until it arrives
to the cache level configured to perform the reduction. To ensure the correctness of this design,

an instruction consuming the reduction variable is not permitted to execute before the reduction

66

Reductions in the Cache Hierarchy

to the Cache Controller

[T T T T p———————————— — i
| 1) — |
| 1 1 1 1 : 1 : % ! 1 |
| S m R SHEE — |
: rdy |ex,op! addr | sz |data] val |dep 5 addr ; sz data :
i Coa P " " E' b :
| ; ———
I RM Instruction Queue RM Execution Unit RM Store Queue]I

Figure 5.3: Microarchitecture of the Reduction Module.

operation has finished. This is enforced by using existing OpenMP synchronization primitives
such as barriers or dependencies between different user functions [137].

Reduction Module. Figure 5.3 shows the microarchitecture of a Reduction Module (RM)
which consists of the following three hardware structures:

The RM Instruction Queue (RMIQ) contains instructions that are to be executed or are
being executed by the RM. The RMIQ is designed as a circular queue to maintain the order of
the inserted instructions. Each entry in the RMIQ contains information specified by a reduction
instruction, i.e the reduction operation to be performed (op), the address of the reduction
variable (addr), its size (sz) and the value that is to be reduced into the reduction variable (val).
The data field holds the current value of the accessed location within the reduction variable,
which may not be available in cache at the time of inserting an instruction into the RMIQ. In
that case, the entry is marked as "not ready" (field rdy). Only ready instructions can be executed.
The ex field indicates whether the instruction is being executed. The dep field points to an entry
in the RMIQ that depends on the result of this instruction.

The RM Execution Unit (RMEX) contains the logic that performs arithmetic and logic
operations on all standard data types. It consists of an Arithmetic-Logic Unit (ALU) and a
Floating-Point Unit (FPU).

The RM Store Queue (RMSQ) is a circular buffer for storing the results of the reductions
until they can be written back to the cache’s data storage. Entries of the RMSQ contain an
address, the corresponding data and its size. Whenever a cache’s write port is not in use, the
controller writes the oldest entry from the RMSQ into the cache and removes it from the RMSQ.

RICH configurations. In our proposed architecture, the system can be configured to
perform reductions at different levels of the cache hierarchy, i.e. at any of the private caches or

the shared last-level cache. Although the inner behavior of the RM is the same, the handling of

67

5.2 Implementing Reductions in the Cache Hierarchy

the reduction instructions in the cache controller depends on the RICH configuration. Depending
on the cache level where the reduction is performed, the following three configurations are
defined: RICH |, RICH], and RICHc. Configurations RICH; and RICH|, imply that
partial reduction is performed in the corresponding private caches. After the reduction task is
finished, the reduction lines from caches are written back and the final reduction is carried out
at the LLC level. In the RICHy ¢ configuration, only the RM in the LLC is active. Inactive
RMs do not consume energy as they are turned off by the power gating mechanism [143].

The responsibility for choosing the RICH configuration for each task lies on a programmer,
who can use knowledge about application’s cache performance accompanied with the processor’s
architectural specifications (e.g., cache size and organization). Cache performance of a parallel
code can be obtained by profiling or estimated using expert knowledge of the code and its memory
access patterns. Alternate designs consider automatic selection of the best configuration based
on various run-time performance metrics such as IPC and cache performance. The experimental
results in Section 5.4 show that RICH; and RICH|, are best-performing configurations and
that they both achieve similar performance. A real RICH-enabled processor could implement
only one of these configurations. Alternatively, the processor could implement all proposed
RICH configurations, with the default configuration being RICH . Other configurations can
be selected by a programmer to support future applications that would benefit from reductions
in shared caches.

Processing a reduction instruction in caches. When a special store instruction involved
in a reduction reaches the cache level where it will run, it is inserted in the RMIQ and marked as
"not ready". Before the instruction can start executing, the current value of the reduction variable
needs to be fetched into the RM. Depending on the state of the RM and the corresponding

cache, different actions are performed:

* If the RMIQ contains an entry reducing to the same address as the new instruction, the
new instruction needs to wait for the data from the preceding instruction, whose dep field

is updated to point to the newly inserted instruction.

* Otherwise, the reduction data has to be read from the RMSQ or the data cache. If the
RMSQ contains an entry matching the address of the new reduction instruction, data is
read from the RMSQ into the data field in the RMIQ and the new instruction is marked

as ready.

e If the reduction is performed in a private cache (RICH | and RICH), data is fetched

from the cache in the case of a cache hit. In case of a cache miss, a cache line is allocated

68

Reductions in the Cache Hierarchy

and filled with neutral elements corresponding to the reduction operator. When a cache
line holding the reduction variable is evicted from a private cache, it is reduced by the
RM inside the LLC.

e If the reduction is performed in the shared cache (RICHyc), the data is fetched from
the cache’s data storage. In case of a cache miss, a standard request is sent to the memory
controller and the pointer to the RMIQ entry requesting the data is inserted into the
MSHR. Once the data arrives to the cache, it is written into the appropriate entry in the

RMIQ, simultaneously marking the entry as ready.

When scheduling an instruction for execution, the controller takes the first ready instruction
from the head of the RMIQ, sets its ex bit and forwards the entry to the RMEX for execution.
Once the execution finishes, the result, together with the destination address, is stored in the
RMSQ, while the corresponding entry in the RMIQ is freed. In case an instruction is waiting in
the RMIQ for the output of the finished reduction operation, this output is written in the data
field of the corresponding entry, marking it as ready. Entries from the RMSQ are written back
to the cache’s data store when the cache’s write port is available and removed from the RMSQ.

When a request is sent to the RM, the corresponding cache line is locked, which prevents it
from being evicted. The lock guarantees that the line is present for the write-back operation
from the RM, which releases the lock upon completion.

Accessing a reduction variable outside of the reduction scope. Once the reduction
finishes, the application often accesses the reduction variable for further processing. It is
necessary to differentiate between accesses generated inside the reduction scope and those
accesses that happen outside of reduction context. RICH uses the RVT to recognize reduction
instructions. The runtime system populates the RVT before the reduction context begins and
clears it after the reduction is finished. This mechanism is described in Section 5.2.2. If the
variable is accessed outside of the reduction context, the request is processed as a normal
memory instruction. Also, instructions accessing the reduction variable that do not belong to
the reduction operation are not allowed to run before the whole reduction has finished. This is
enforced by using OpenMP synchronization primitives [137].

Memory consistency. Memory consistency of non-reduction data is not affected. All loads
and stores are issued by the core in a way that maintains Total Store Order (TSO) memory
consistency model [158]. On the other hand, the loads and stores issued by the RM and
non-dependent, non-reduction loads and stores issued by the core can be seen in different

order by the memory subsystem. To guarantee that an access to a reduction variable never

69

5.2 Implementing Reductions in the Cache Hierarchy

returns a wrong value, (i) the programmer ensures that, within the reduction task, the reduction
variable is only accessed with read-modify-write pattern, i.e. reduction operation, and (ii) the
source-to-source compiler inserts a memory fence after a reduction task to guarantee that a

successive consumer task accesses the correct data.

Cache coherence. RICH does not modify the cache coherence protocol. Depending on
the RICH configuration, specific explicit synchronization actions are performed to guarantee
coherence of reduction data in the caches. In all configurations, the reduction variable can
either be present in the cache’s data store or in the RMSQ of the same cache. The cache
controller considers both locations when searching for a cache line of an in-flight reduction
variable. RICH | and RICH}, require a final reduction of the partially reduced data, which is
performed at the end of the reduction task. A memory fence, inserted by the source-to-source

compiler, guarantees that these data is not consumed before the final reduction takes place.

It is possible that partial copies of the reduction variable are present in caches above the
cache that performs the reduction. To guarantee the correctness of execution, these copies are
sent to the cache level where the reduction takes place. This action can be done in parallel with
the reduction task and, thus, does not incurr additional overhead.

Support for precise exceptions and speculation. RICH implementation maintains support
for precise exceptions by guaranteeing in-order retiring of instructions. Events caused by
exceptions and misspeculations are bidirectionally communicated between the core and the
RM. In case of an exception or misspeculation, the appropriate in-flight instructions in the RM
are flushed, new values stored in the RMSQ are discarded and old values stored in the RMIQ

are restored.

5.2.2 Programming Model and Compiler Support

The programming model support for the proposed hardware design relies on the existing imple-
mentations of the most popular shared memory parallel programming model, OpenMP [137].
OpenMP supports both loop-level and task-based parallelism. In task-based codes, the program-
ming model offers explicit synchronization with taskwait constructs. In addition, if programmers
define data dependencies between tasks, OpenMP automatically ensures correct execution in a
data-flow manner by respecting the user-specified task data dependencies. Specifically, tasks
that depend on data produced by other tasks are scheduled to execute only when these data
dependencies are satisfied. When loop-based parallelism is employed, implicit barriers are

added to enforce synchronization.

70

Reductions in the Cache Hierarchy

We design RICH to be agnostic to the applied parallelization technique. The proposed
programming model extensions are built on top of the existing implementation of reductions in
OpenMP.

This is beneficial as any extension to a programming model requires careful design
for consistency with minimal implications on unrelated constructs, user understanding and

compatibility with previous versions and existing codes.

We extend the reduction directive as follows, with the added parameter shown in bold.

reduction(reduction-ident. : [reduction-technique] : list)

As defined in Section 2.19.5.4 of the OpenMP 5.0 standard [137], reduction-identifier
specifies the reduction operator while /ist specifies the list of reduction variables. The added
optional field reduction-technique specifies which reduction technique to use (CPU, RICH|,
RICH|, or RICH). The default configuration, CPU, executes the reduction operations in
the core and does not use the hardware acceleration in the RM. Using the information specified in
this annotation simplifies our design as it does not require adding special reduction instructions

to the processor’s ISA, and, therefore, maintains the compatibility with pre-compiled libraries.

The information specified in the programming model directives is forwarded to the RVT
by a function call implemented in the runtime library using instructions on memory-mapped
registers. This call is inserted by a source-to-source compiler in the code location where the
executing thread encounters the beginning of the parallel region or a task that participates in a
reduction. This source code location is considered as the start of the reduction scope, which is

terminated once all tasks or iterations from that parallel region finish.

Figure 5.4 illustrates how a programmer uses the programming model extensions. The
starting point in this example is a parallelized vector reduction code that uses the OmpSs
reduction construct for tasks. The example is applicable to both task-based and loop-based
parallel codes in both OmpSs and OpenMP programming models. The programmer selects
the cache level where the reduction will take place by taking into account properties of the
application like the workload size, reduction variable size, and its memory access pattern. This
example considers a case when reduction is executed in the L1 cache, which is specified in
the reduction clause (1, as defined earlier in this section. The right-hand side of the figure
shows the transformations done by the Mercurium compiler. Functions using prefix nanos
encapsulate the task creation and synchronization. The source-to-source compiler inserts calls

to functions implemented in the runtime system library used to populate the RVT with the

71

5.2 Implementing Reductions in the Cache Hierarchy

for (s=0; s<N; s+=BSIZE){ for (s=0; s<N; s+=BSIZE){
#pragma omp task \ nanos_create wd(...);
reduction(+:L1I:sum) set redu(ADD,L1,sum); (2
1
for (i=s; i<s+BSIZE; ++i){ for (i=0; i<N; ++i) {
LD %(vect,i)= %edx
sum += vect[i]; LD %(sum) > %eax (3
ADD %eax, %edx-> %eax 3
) } ST %eax = %(sum) 4
}
. unset redu(sum); (2
#pragma omp taskwait nanos_wait completion();

\/_\ }_/—\
compile

Source code Intermediate code

Figure 5.4: Left: The OmpSs-based source code of a reduction using RICH features. Right:
Code transformations done by Mercurium compiler.

information about reduction variables and the chosen reduction location 2. During program’s
execution, the load and arithmetic operations belonging to reductions 3 are discarded. The
store instruction 4 is enriched with the reduction operation type (ADD, from RVT) and the
register holding the value to be reduced (%edx, from the preceding ALU instruction). The
enriched store instruction is then forwarded to the core’s RM. The further handling of reduction

instructions by the hardware is explained in detail in Section 5.2.1.

5.2.3 Discussion

This section discusses three different techniques for recognizing reduction instructions in the

processor core:

(i) Section 5.2.1 describes a design that utilizes a structure called Reduction Variable Table

(RVT) to identify instructions involved in reductions.

(ii) An alternative implementation does not use the RVT, but requires changes in the
memory management subsystem. This technique extends the OS page table and the translation
look-ahead buffer (TLB) with the fields that specify whether a memory page corresponds to a
reduction variable and which operator is used to accumulate on that reduction variable. Such
an implementation requires that reduction variables are stored in separate memory pages from
the rest of the application data. The operating system adds a functionality to mark reduction
memory pages in the page table, which is exposed to the runtime system. At the beginning

and the end of each reduction parallel region, the page table and the TLB need to be updated.

72

Reductions in the Cache Hierarchy

Contrary to the RVT-based design, the identification of reduction instructions is postponed until
the instruction arrives to the data cache.

(iii) Extending the ISA with reduction store instructions with the format STORE (reduc-
tion_variable, operation, value) maintains most of the hardware unmodified. On the other
hand, it requires back-end compiler support and recompiling third-party libraries. Since RICH
modifies the programming model’s directives, changes are required to the source-to-source
compiler that translates the directives into the appropriate runtime library. Additionally,
extending the ISA with reduction instructions requires adding support to the backend compilers.
This request is more difficult to satisfy due to the existence of numerous vendors that implement
source-to-machine code compilers.

Each described solution has a set of strengths and weaknesses and choosing the appropriate
approach depends on the goals of the designer. In the context of this work, the aim is to preserve
compatibility with pre-compiled libraries without increasing the complexity of the system. Both
RVT-based and TLB-based solutions satisfy the compatibility requirements. These solutions
use functions implemented in the runtime system library to set-up the hardware components
for tracking reduction variables. Running code compiled for RICH-enabled CPU on a CPU
without the support for RICH is achieved by disabling the set-up functions in the runtime library.
This compatibility is not possible in a solution that modifies the ISA. The main drawbacks of
TLB-based approach are high memory fragmentation for small reduction variables, complex
modifications to the memory management system as well as necessity for pipeline stalling due
to late detection of the reduction instructions. Taking these factors into account, RVT-based

design is selected as a way of recognizing reductions.

5.3 RICH Design Decisions

The experiments used for the exploration in this section are performed on the simulation
infrastructure described in Section 3.1 using the benchmarks presented in Section 3.2. The

input sizes for each benchmark are shown in Table 3.4.

5.3.1 Design Space Exploration

There are three design parameters that influence the performance of the proposed Reduction
Module: (i) number of RMIQ entries; (ii) number of the functional units in the RMEX; and

(iii) design of the functional units in the RMEX. This section is dedicated to the evaluation

73

5.3 RICH Design Decisions

Table 5.1: RICH design space exploration.

The values in bold are the ones selected for the final design as the result of the design space exploration.

RMEX: 1,2,4 FUs
RM FU design: pipelined, non-pipelined
RMIQ entries: 1,2, 4, 8,16, 32, 64

RVT 1,2,4,8, 16, 32, 64, 128, 256, 512, 1024, 2048 entries

of the impact of the aforementioned parameters on the processor’s performance. In addition,
different latencies of arithmetic operations are explored in order to evaluate the performance of
the Reduction Module with all supported arithmetic and logic operations on both fixed and
floating-point numbers. Operations are modeled to have the same latency as the corresponding
instructions in current Intel processors. The list of parameters and explored values is presented
in Table 5.1. The final purpose of this analysis is to determine the optimal parameters of the
RM in the context of the simulated processor and evaluated benchmarks.

Figure 5.5 shows the speedup of RICH versus the ideal implementation of reductions, where
each reduction instruction takes 1 cycle and does not interact with the cache subsystem. The
speedup of 1 represents the upper theoretical limit for the achievable performance. X-axis
corresponds to different configurations for some of the RM’s components. The exploration
analyzes the effects of different counts of functional units and their design (non-pipelined vs.
pipelined). The number of RMIQ entries per functional unit is denoted with RMIQ.

Each data point shows the mean speedup among all benchmarks for a specific group of
reduction operations and the cache level at which the reduction is performed. Operations of
similar latencies and behaviors are grouped together. Each group is designated with one of
three symbols shown in the left-hand side of the legend. Data corresponding to configurations
RICH and RICH |, are plotted together as these configurations exhibit similar trends and
sensitivity to the RM’s parameters. Points belonging to RICH; and RICH[; are painted in
light blue color, while points associated with RIC Hy ;¢ are presented in dark blue, as shown in
the right-hand side of the legend.

The results show that reductions using addition or multiplication exhibit little sensitivity to
the RM’s configurations due to relatively low operation latency. Division, however, benefits
from having more functional units and a larger RMIQ. Using two FUs in the RMEX improves
performance of RICH | and RICH[; by 2.7% on average compared to the single FU-design,
but comes with 94.2% higher area overhead. Pipelined functional units benefit from more

RMIQ entries as they are able to execute multiple independent operations simultaneously,

74

Reductions in the Cache Hierarchy

INT ADD INT MUL INT DIV Reduction Location

X FP ADD >
AND/OR/XOR FP MUL FP DIV Ll or L2 [MLLC

’““““‘/H W»—»—»—»—»i

N
B Ot N 0 OO
|

Speedup vs.
ideal reductions

> >

e
w
I

T (T T T T T[T T T T T[T T T T T[T T T T T[T T T T 1
8 16/1 2 4 816/1 2 4 816/1 2 4 816/1 2 4 8161 2 4 8 16

I I
RMIQ|1 2

T

4
FU design | non-pipel.| pipelined |[non-pipel.| pipelined non-pipel.|l pipelined
1 FU 2 FUs 4 FUs

Figure 5.5: RICH speedup vs. ideal reductions for different configurations of functional units
and RMIQ in the RM, depending on operation type and reduction location.

contrary to the non-pipelined designs. Considering these results, it is decided to use a single
pipelined ALU and a single pipelined FPU. RMIQ with 16 entries is chosen to get best possible
division performance. This configuration will be used for the further evaluation of RICH
presented in the remaining of this document.

Reduction Variable Table (RVT) is used by the core to recognize the instructions involved
in the reduction and is described in detail in Section 5.2.1. The RVT contains multiple entries
to support tasks with more than one reduction variable. To evaluate the impact of the RVT
size on the processor’s performance, the RVT is modeled using CACTI 7 based on the chip
frequency of 2.4 GHz. The model shows that small RVT designs with up to 256 entries can be
accessed within 1 cycle, while medium (up to 1024 entries) and larger designs require 2 and 3
cycles respectively. RVT configurations with latencies of 2 and 3 cycles degrade the overall
performance by negligible 0.8% and 1.8% on average, respectively, compared to the RVT with
1-cycle latency. Applications having more in-flight reduction variables that cannot fit in the
RVT are still executed correctly. In that case, reduction operations on variables that do not fit
into the RVT are not accelerated by the RM. To optimally run all benchmarks from Table 3.3, a
4-entry RVT is needed. A design with a 32-entry RVT is selected as it covers potentially more

complex codes while keeping 1-cycle access latency.

5.3.2 Hardware Cost of Implementing RICH

This section presents the discussion on the area and storage required to implement RICH. As
explained in Section 5.2.1, the Reduction Module (RM) consists of two queues, RMIQ and

75

5.3 RICH Design Decisions

Table 5.2: Hardware cost of implementing RICH in 22nm.

| RVT | RMIQ RMEXay RMEXpy RMSQ

Area [mm?] 0.0002 | 0.013 0.038 0.223 0.003
Storage [KB] 0.055 3.22 - - 2.09
Baseline processor’s area 192.48 mm?
Reduction Module area (IQ + EX + SQ) 0.277 mm?
Total area overhead (17 RMs + 16 RVTs) 471 mm?
Total area overhead relative to the baseline 245 Y%

RMSQ, and an Execution Unit (RMEX) that contains two functional units, i.e. one ALU and
one FPU. Private caches L1 and L2 share a single Reduction Module and the LL.C has its own
RM. Additionally, the design has a single Reduction Variable Table (RVT) per core. Thus, the

simulated 16-core processor contains 17 Reduction Modules and 16 RVTs.

Table 5.2 shows the sizes of particular RM components as well as overall area of a processor
occupied by the added hardware. According to the McPAT model, the FPU used in the RM is
60 % smaller than the FPU in the core due to the removal of support for SIMD instructions.
The modeled ALU supports 32bit and 64bit arithmetic and logic operations on integers.

The total area consumed by the RMs is 4.71 mm? or 2.4 % of the whole die area of the
baseline processor. Alternatively, a processor design that uses a larger LLC can be considered.
The simulations show that a processor with a 40 MB, 16-way set-associative LLC obtains on
average 1.5% better performance than the reference processor. RICH performs 1.51X better
than the baseline processor while requiring 30% less additional chip area than a 40 MB LLC.
Thus, it is concluded that RICH utilizes additional hardware more efficiently than just extending
already existing hardware components like the LLC.

To further reduce the hardware overhead of RICH, a design where RMEX uses the core’s
functional units (FUs) is also considered. A design where all RMs use the functional units from
the cores has the lowest area overhead of 0.28 mm? or negligible 0.14% of the processor area.
However, such implementation requires long data paths from the LLC to the core, which can
significantly impact the latency of reduction operations in the LLC. In an improved design,
the RM in the LLC has its own functional units, while the RMs in private caches share the
FUs with their cores. Since private caches are close to cores, timing requirements are easier to
satisfy. However, the core’s components such as reservation stations have to be modified to
support sharing of the FUs. The explored configurations offer a clear trade-off between the

performance, the design complexity and the area overheads.

76

Reductions in the Cache Hierarchy

?ZJ1deal MMRICH;, WARICH;, WARICHi;c WRARICHp.y

o 2 S22 9
e S8

1.802

2.0 r;w Wﬂ'/ S w7 S —
18 A M B
o 1 % 7 % %
=5 1.6 % 7 ¢ %
o) 3 % 7 7 7
o L4 v 7 7 v
% % % %
O 12p % % % 7
o % % % %
v 1.0E % ? 7 g
0.8 78 "M 7L 7
MD LULESH EHF HIST CG DGEMM SpMV PIC NBody 2DC DGEMV g. mean
ol oy T o= %
§ 50 gg gg <r<r \oo g
>
©
=
=
ol
a ;]
- MD LULESH EHF HIST CG DGEMM SpMV PIC NBody 2DC DGEMV a.mean

Figure 5.6: Speedup and Energy-Delay Product improvement of RICH over the baseline with
atomics for benchmarks with reductions on arrays.

5.4 Evaluation

This section presents the evaluation of RICH, comparing it against widely-accepted software-
based reduction techniques based on privatization and atomic operations, and a state-of-the art
hardware solution. The evaluation is performed using the benchmarks described in Section 3.2

with input parameters shown in Table 3.4.

5.4.1 Evaluating RICH with Vector-Reductions

The analysis in Section 5.1 shows that, in case of larger arrays, reductions implemented with
atomics achieve better performance than software privatization. Taking this into consideration,
atomics are chosen as the baseline for evaluating RICH on benchmarks that perform reductions
on vector variables. All reported results in the following sections correspond to the overall
performance including both reduction and non-reduction tasks.

The upper part of Figure 5.6 shows performance speedups of the three RICH configurations
normalized to the reduction approach based on atomic operations. The figure also includes
performance of ideal reductions, where each reduction operation takes 1 cycle and does not
issue requests to the cache hierarchy. The ideal configuration indicates the maximal achievable

speedup per benchmark.

77

5.4 Evaluation

On average, RICH |, RICH, and RICH ¢ perform 79.4%, 76.6% and 2.9% faster than
the baseline, respectively. In general, RICH outperforms the implementation with atomics due
to a combination of several factors. First RICH performs the load-modify-store sequence as one
instruction, and therefore reduces the number of requests to the cache hierarchy and does not
use ALUs and FPUs in the core. Second, RICH does not suffer from coherence effects caused
by conflicts between different threads, contrary to the reductions with atomics. Coherence
effects manifest themselves in increased miss ratio to reduction variable due to invalidations by
other threads and retrying the update operation or waiting for a lock release, depending on the
implementation of atomics in the target architecture. Finally, when the reduction variable is
updated at lower-level caches, it is not present in the higher-level caches, reducing the pollution
of these caches. This effect results in better cache performance for input data. Additionally, due
to larger sizes of lower-level caches, accesses to the reduction variable result in less misses,
which is explained in the following section. These three factors contribute to, on average, lower

execution time of RICH compared to atomics.

The highest performance gains are observed in PIC, NBody 2DC and DGEMYV, where
RICH|, performs from 2.8X to 6.0x faster than atomics-based approach. The main contributor
for faster execution in case of PIC, NBody and DGEMYV is the reduced number of misses, as
shown in Figure 5.7. On the other hand, in the case of 2DC, only a small reduction in cache
misses is observed. Even though collisions still occur, RICH reduces amount of cycles spent on

waiting due to lock contention.

The lower part of Figure 5.6 shows the improvements in energy-delay product (EDP) of
RICH compared to the baseline with atomics. On average, the best RICH configuration per
benchmark improves EDP by 44.4% compared to the baseline. The highest EDP improvements
are observed for the benchmarks where RICH achieves highest speedups, i.e., PIC, NBody,
2DC and DGEMYV with 87.2% to 96.8% improvement. EDP is mainly improved due to lower
execution time and reduced energy consumption by the caches due to reduced amount of misses
in RICH configurations, which is demonstrated in Section 5.4.2.

RICH| ¢ consumes less power than RICH[| and RICHj; since it uses just one RM in the
LLC. This effect is clearly observed for EHF, Hist and SpMV. Even though these benchmarks
achieve similar performance across all RICH configurations, there are notable differences in the
EDP among three RICH configurations. The additional reason for such behavior is the reduced
number of misses in RICH|, and RICH| ¢ configurations, as described in Section 5.4.2.

RICHj,; is defined as the optimal RICH configuration per benchmark. In benchmarks

reducing on vector variables, RIC Hp, achieves performance speedup of 1.8x and 44.4% better

78

Reductions in the Cache Hierarchy

B Limiss [L2.miss [] L3.miss [_] Redu.miss

. F F - ECECEeEer

MD LULESH EHF HIST CG DGEMM SpMV PIC NBody 2DC DGEMYV Average

Figure 5.7: Breakdown of misses across all cache levels. Redu.miss denotes misses generated
by the Reduction Module in the cache level where the reduction is performed. Configurations
Atomics, RICH 1, RICH, and RICH| ¢ are denoted as ATM, Ry, Ry, and Ry ¢,
respectively.

A
R

EDP than atomics. RICH allows the programmer to specify the optimal reduction location via
pragma constructs supported by the programming model, as described in Section 5.2. In this
context, RIC Hp, represents the performance improvement that can be obtained by choosing

the best location to carry out the reductions.

5.4.2 Impact of RICH on Cache Performance for Vector-Reductions

Figure 5.7 shows the breakdown of misses for all three cache levels regarding benchmarks
that perform reductions on vectors. Misses are normalized to the total misses occurring when
reductions rely on atomic operations (configuration ATM). Label Redu.miss corresponds to
the misses triggered by accesses to the reduction variable generated by the Reduction Module.
These misses occur in the cache level where the reduction is performed.

In eight benchmarks there is a negligible difference in total misses between ATM and
RICH|;,. In these cases, the reduction variable is accessed in a more structured manner which
does not cause data invalidations invoked by the coherence protocol. Nonetheless, RICH
still achieves speedup over atomics due to time penalties when using atomic instructions, in
addition to the fact that RICH internally compacts the load-modify-store instructions into one
instruction. For other benchmarks, one can observe the effects of coherence invalidations that
manifest themselves as increased total number of misses in ATM compared to RICH . This is
most notable in benchmarks where RICH achieves highest performance speedups, i.e., DGEMYV,
NBody and PIC.

79

5.4 Evaluation

Another interesting effect to analyze is the significant average reduction of total number of
misses when performing reductions in lower-level caches, i.e., the L2 and the LLC. The cause
for this behavior is the reduced pollution of the L1 cache by the reduction variable and higher
hit ratio to the reduction variable in L2/LLC due to larger size of those caches. This effect is
observable in almost all benchmarks and is most prominent in MD, DGEMM, Hist, NBody
and PIC. The reduction in misses is not translated into performance improvements of RICH|,
over RICHp because the added miss penalties are hidden by an out-of-order core. However,
as having less misses results in reduced cache traffic, the energy consumed by the memory

hierarchy is reduced, which is demonstrated through EDP improvements in Section 5.4.1.

5.4.3 Evaluating RICH with Scalar-Reductions

As shown in Section 5.1, privatization is the best performing technique for handling reductions
in applications with reductions on scalar variables. Therefore, software privatization is selected
as the baseline for parallel codes that perform reductions on scalars.

The top part of Figure 5.8 shows the performance speedup of three RICH configurations
normalized to software privatization. On average, RICH| and RICH|, perform 9.5% faster
than the baseline. RICH achieves the highest performance benefits for applications that have
highest ratio of reduction instructions with respect to the overall number of instructions, such
as DotP, NB, PS and VctR. The performance benefits come from the reduced number of
instructions executed in the core. Specifically, since reduction operations are offloaded to the
Reduction Module (RM), the core can execute instructions in advance while the RM computes
the reduction in the cache. NQ and KT exhibit marginal improvements since the amount of
instructions involved in reduction operations of these benchmarks represents a small percentage
of the whole execution.

The figure also shows the performance of an idealistic implementation of reductions, where
each reduction operation is performed instantaneously and does not issue requests to the cache
hierarchy, as described in Section 5.4.1. Results show that RICH achieves close-to-ideal
performance in all benchmarks on scalars except VctR, a benchmark that calculates a sum
of double-precision floating point values on a scalar variable of the same type. Since this
operation is modeled to take 3 cycles, the serialization of reductions in the RM combined with
the high frequency of reduction instructions in this benchmark limits the performance achieved
by RICH.

In RICH|, configuration, fetching data from the L2 cache to the RM takes more cycles than

the equivalent operation in RICH configuration due to the higher access latency of the L2

80

Reductions in the Cache Hierarchy

Z 1deal RICH;, WRRICH;; WARICH ;c EARICHp.

147 L5
g 18t é ° 4
g o12r é = g
& 1.15— /
n 1.0;—z- % | Zlm %J: S é o 2

0.9 ¢ =] 7 =) Z =) 7 S % =]

NQ KT DotP NB PS VctR g.mean

§
T 40F 5
g 30¢ S
g 20 = v < = SO
E) — - ' ; : ;]
82 NQ KT DotP NB PS VctR a.mean

Figure 5.8: Speedup and Energy-Delay Product of RICH compared to the baseline with
software privatization for benchmarks that perform reductions on scalars.

cache. Nonetheless, it can be observed that these configurations achieve the same performance.
The explanation for this behavior is the fact that the execution of reduction instructions in
RICH| and RICH , configurations is overlapped with other instructions executed at the CPU

level in a way that the reduction latencies are hidden.

RICH| ¢ suffers from performance slowdowns compared to the baseline. With reductions
on scalar variables at the LLC, all reduction instructions are serialized as they depend on each
other. This explains the performance slowdown suffered by DotP, NB, PS and VctR. Contrarily,
this effect is not visible in NQ and KT. Due to the low ratio of reduction instructions in these
benchmarks, serialized instructions from one iteration in the LLC’s RM have time to finish
before the arrival of instructions from the next iteration. Moreover, the benefits of offloading
instructions to the RM outweigh the small performance degradation due to serialization in the
LLC.

The bottom part of Figure 5.8 shows the improvements in energy-delay product (EDP) of
RICH compared to the baseline with software privatization. On average, RIC Hj.5; improves
EDP by 13.3% compared to the baseline. The main factor contributing to EDP improvements
is faster execution time, particularly for the four benchmarks where RICH achieves notable
speedups. In the case of NQ and KT, RICH ;¢ achieves the best EDP due to less power
overhead of having just one RM in the LLC compared to having one RM per core in RICH|
and RICH|, configurations.

81

5.4 Evaluation

1.4
13F
120
L1E
I'O:OF%MWMQOU-IUH%§>>U§
FPEEELESEEEEETEE 2 RS
=) Z o 2 0 =
Scalar — Vector A A
Figure 5.9: Speedup of RIC Hp,.s; compared to COUP [181].

5.4.4 Comparison with Other Proposals

In this section, RICHp,s is compared with the state-of-the-art technique for reductions in
hardware, COUP [181]. RICHp,y, is defined as the best RICH configuration per benchmark
in terms of performance. COUP implements privatization of the reduction variable in the
private caches by modifying the cache coherence protocol. This design allows multiple cores
to acquire a line with update-only permission. The partial results are accumulated in private
caches using in-core functional units, while the final result is calculated on demand in the LLC
or memory controller, which are equipped with dedicated functional units. To simulate COUP,
its functionality is implemented in the context of the simulation infrastructure used for this
evaluation. The model assumes that coherence operations performed by COUP have zero cost.
The handling of update-only lines is implemented in detail.

Figure 5.9 shows the speedup of RIC Hj.s5; compared to COUP. RIC Hy,, achieves 1.11x
better performance on average and up to 1.38x improvement in case of 2DC. Significant
improvements are also obtained for Hist, NBody, DGEMM, SpMV and DGEMV. RICH
outperforms COUP due to reducing the traffic between the core and the L1 cache as the
reduction variable is updated directly in the cache. Moreover, the ability to execute reductions
at lower-level caches benefits benchmarks like LULESH, 2DC and VctR.

According to the McPAT and CACTI models, RICH requires 2.45% more area than the
baseline processor and introduces 3.8 % of power overhead. However, the performance
improvement of 1.11x over COUP compensates for the increased power consumption of
the RICH design. Consequently, RICH achieves better energy consumption than COUP.
Another important improvement of RICH over COUP is the support for external pre-compiled
libraries. Many scientific applications use mathematical libraries that implement algorithms
with reductions, e.g. matrix multiplications. COUP requires modifying the ISA to mark the

loads and stores belonging to the reduction operation, which requires access to the complete

82

Reductions in the Cache Hierarchy

source code to be compiled. RICH uses information about the reduction variable provided by
the runtime system and does not require ISA modifications, thus supporting linking against

pre-compiled algorithmic libraries.

5.5 Summary

This chapter introduces RICH, a proposal to accelerate the execution of reductions on modern
processors. RICH improves the performance of vector-reductions while keeping well-performing
support for reductions on scalars. RICH enables the programmer to select the optimal cache level
where reductions take place. It relies on hardware, runtime system and OpenMP-compatible
programming model extensions.

Extensive evaluation with reductions on vector variables show that RICH outperforms the
atomics-based software technique in terms of execution speed on average by 1.8x and up to
6.0x. The energy-delay product is improved up to 96.8% (44.4% on average). Moreover, the
total number of misses in the cache hierarchy is reduced by up to 96.6% (34.0% on average).
RICH implementation requires only 2.4% additional silicon area and introduces a 3.8% power
overhead.

RICH outperforms COUP, a state-of-the art hardware-based technique for reductions, by
up to 1.38%x (1.11x on average). Furthermore, thanks to its runtime-hardware interaction,
RICH does not modify the ISA. Thus, it is compatible with applications that use routines with

reductions present in pre-compiled mathematical and algorithmic libraries.

83

Chapter 6

Criticality-Driven Prioritization inside the

Memory Hierarchy

This chapter describes PrioRAT, a memory request prioritization scheme that exploits runtime-
level criticality information. It follows a holistic approach where the runtime system knowledge
is used in hardware to drive the prioritization algorithm in shared on-chip memory hierarchy.
Specifically, it exploits the notion of task criticality, considering that the faster execution of
critical tasks leads to a better overall performance of a parallel code. The programmer uses the
simple annotations in the programming model to specify the critical tasks. A source-to-source
compiler translates these annotations into the function calls defined in the runtime system library.
During the execution, the runtime system provides the underlying hardware with the information
about the criticality of the currently running tasks. Then, on-chip hardware resources make use
of this knowledge to prioritize the memory requests coming from the critical tasks. As a result,
the critical tasks have their memory requests served faster, which reduces their duration and
therefore, improves the performance of the whole parallel application by reducing the length of

the critical path.

This proposal makes the following contributions:

* PrioRAT offers the programmer a simple mechanism to annotate criticality of tasks
in task-based parallel codes. This feature is provided by extending the annotations in

existing parallel programming models, such as OpenMP and OmpSs.

* Itextends the shared on-chip components to take into account the criticality of the memory
requests when making scheduling decisions. The task criticality knowledge is forwarded
to the hardware by the runtime system library using the well-supported memory mapped

registers, which preserves the processor’s ISA.

85

6.1 Challenges in Prioritization Techniques

* It extensively evaluates the performance of PrioRAT on a cycle-accurate architectural
simulator using a set of characteristic workloads from the High Performance Computing
(HPC) domain. PrioRAT outperforms the baseline system without prioritization by up to
30.3% in terms of execution speed (4.2% on average). The evaluation further analyzes in

detail the impact of prioritization on the performance of tasks and the whole application.

6.1 Challenges in Prioritization Techniques

In order to overcome the issues caused by the increasing gap between processor and memory
speeds, it is necessary to employ advanced techniques that fully exploit available memory
resources. A higher memory throughput can be achieved by reordering DRAM commands [140,
149, 169]. Simple solutions, however, do not consider the fact that memory requests can be
issued from different processor cores, which can lead to fairness issues. Solutions designed
for multi-threaded processors aim to ensure a fair share of memory resources among all
the threads [128, 129, 132]. Nevertheless, codes with an unbalanced workload distribution
among threads often do not benefit from fair scheduling schemes. In such scenarios, a better
performance can be achieved with schedulers that take into account request criticality [73].
However, such designs do not have the high-level notion of the critical path at the level
of the whole application. Specifically, in certain parallel codes, it is possible to sacrifice the
performance of non-critical tasks by giving priority to critical tasks in order to reduce the
critical path and, thus, the overall execution time. Previous works on accelerating critical
tasks have specific hardware requirements, such as heterogeneous cores [43] and support for
dynamic voltage and frequency scaling [37]. Therefore, it is necessary to design a solution
that is applicable to a wide range of modern processor architectures. This section explores the

impact of memory request prioritization on accelerating the critical path in a parallel code.

6.1.1 Accelerating Critical Path by Memory Request Prioritization:
A Proof of Concept

To illustrate the effects of prioritization of critical tasks, we develop a synthetic application
that performs a strided access to an array. The stride is a configurable parameter that is used
to indirectly tune the pressure on the caches and main memory by modifying the reuse of the
accessed cache lines. The application is split into tasks and each task is designed to access its

portion of the input array with the same stride. Tasks are split in two groups: (i) The first group

86

Criticality-Driven Prioritization inside the Memory Hierarchy

=== critical task non-critical task
<«——parallel region ————><— serial region —

T T T T T T ——

Prioritization = OFF

1 o

[hread
[SETERVERTERTER
VIR WO\ INUTHR LN O

0.2 0.4 0.6 0.8 1.0

(e}
(e}

Prioritization = ON

Thread
— e
VIR WD OO INUTHRLIDNI= O
) N I T A A A |

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6.1: The effects of the prioritization on the execution of a parallel code.
Execution traces of the synthetic benchmark in the baseline configuration without prioritization (above) and the
configuration with prioritization (below).

of tasks is artificially serialized in order to simulate a critical path. (ii) Tasks belonging to the

second group can run in parallel with all tasks from the first and the second group.

The benchmark is configured to run with 26 critical and 150 non-critical tasks, each
accessing an array of 256 KB with a stride of 16. This is equivalent to one access per cache line
and achieves the highest memory contention for this benchmark in our simulated environment.
Two executions of such configuration are simulated on a cycle-accurate simulator configured
to simulate a 16-core CMP with a three-level cache hierarchy and main memory (Chapter 3
describes the experimental setup in detail). The first run is performed on a baseline system
without prioritization, while the second configuration prioritizes the requests issued by the
critical tasks. Figure 6.1 shows the parallel traces of these two executions. Each trace displays
the tasks and their duration during the execution. For each task we show the time interval when
it executes on the x-axis and the thread where it executes on the y-axis. Time is normalized to
the execution on the baseline configuration and both traces have the same time scale. Critical

and non-critical tasks are highlighted with different colors.

Without prioritization (see Figure 6.1, top), the serialization of critical tasks and its negative

impact on the total execution time are clearly observed. During the first 62% of the execution,

87

6.2 PrioRAT: Criticality-Driven Prioritization inside Memory Hierarchy

the critical tasks execute slower compared to the critical tasks in the last third of execution. This
is a result of the high memory contention caused by the concurrent execution of many tasks in
the parallel region.

The bottom part of Figure 6.1 shows the trace when memory requests issued by critical
tasks are given a higher priority in the shared on-chip resources. The effects of the prioritization
are clearly manifested through the reduced duration of the critical tasks. The non-critical tasks
execute slower, but the whole application finishes faster as the serialized tasks are no longer
in the critical path. This example clearly demonstrates the importance of having a high-level
notion of the application within the hardware as it enables better decisions at the hardware level.
Taking these conclusions into consideration, we propose a solution that exploits the runtime
system information about a task-based parallel code to guide prioritization of memory requests

inside the on-chip memory hierarchy.

6.2 PrioRAT: Criticality-Driven Prioritization inside

Memory Hierarchy

PrioRAT is a holistic approach for prioritization of memory requests in the on-chip memory
hierarchy driven by the application-specific information available in the runtime system library.
The programmer uses simple pragma directives added to a parallel task-based programming
model to annotate task types belonging to the critical path of an application. The runtime
system provides the underlying hardware with the information about task criticality specified
by the programmer. Then, each core in the processor makes use of this knowledge about
the task criticality to define the priority level of issued memory requests. Finally, minimal
micro-architectural extensions in the shared components of the on-chip memory hierarchy are
required to prioritize memory requests depending on the priority level of each request.

Thus, PrioRAT relies on the following extensions:
e The programming model extensions to enable a programmer to annotate critical tasks,
* The runtime system support to forward the user-specified information to the hardware,

* Micro-architectural extensions to prioritize memory requests inside the processor, specif-
ically in the on-chip interconnection network, the last-level cache and the memory

controller.

The remaining of this section provides a detailed description of the mentioned extensions.

88

Criticality-Driven Prioritization inside the Memory Hierarchy

6.2.1 Programming Model and Runtime System Support

PrioRAT is built on top of the existing parallel task-based programming model, OpenMP [137].
OpenMP is a directive-based programming model, where a programmer defines units of
parallelism, such as tasks and loop iterations, and annotates all the properties that are necessary
for the correct synchronization. Then, the runtime system library handles the scheduling of the
defined tasks and loops on a multi-threaded machine by respecting the dependencies between

tasks and both implicit and explicit synchronization primitives.

Internally, the runtime system manages tasks using a task dependency graph. This data
structure is constructed by following the dependencies between tasks based on the directives
annotated by the programmer. In the graph, each task has a set of predecessors, i.e., tasks and
synchronization events, that need to complete before the task can be scheduled for execution.
The runtime system can analyze this graph to identify potential critical paths in the execution of

a parallel code.

To express task criticality, the existing OpenMP parallel task pragma is extended as follows:

pragma omp task [critical]

The OpenMP standard already includes priority annotation in the parallel task clause which
is used as a hint to the task scheduler. The extensions proposed in PrioRAT, critical, affects the
prioritization inside on-chip resources once the task is scheduled for the execution. In a real
system, these two annotations can be merged. In this thesis, the domains of task scheduling by

the runtime system and the prioritization of requests in hardware are separated.

In an existing task-based parallel code, the programmer needs to add criticality annotations
to identify critical task types. Then, a source-to-source compiler translates these directives
to function calls to the runtime system library that implements the routines defined in the
programming model. During the execution of a parallel application, the runtime system library
forwards the criticality information to the underlying hardware. This action is performed via
memory-mapped registers before the user code of each task starts executing. The hardware
mechanisms that exploit the notion of task criticality to prioritize memory requests are explained

in detail in the following sections.

&9

6.2 PrioRAT: Criticality-Driven Prioritization inside Memory Hierarchy

Legend: @O tasks 8 requests omoom request queue F, criticality register
Memory — RAM |
Ll M} L2 M = LLC Controller
ooooon ooooon § —Bank O mn] —| RAM |
= o
o
(J s LLC
= [—1Bank 1 Memory —| RAM |
CPU 1 Ll — L2 —} ~— ae o] Controller
oo oo oo = man] ™" au™} RAM
Runtime Private Resources Shared Resources
System Processor Memory

Figure 6.2: Overview of a dual-core system implementing PrioRAT.
Core 0 executes a critical task, while core 1 executes a non-critical task. The dark red color corresponds to the
critical tasks and the requests they issue. Non-critical tasks and their memory requests are colored in light blue.

6.2.2 Hardware Extensions for Request Prioritization

This section is dedicated to the description of the micro-architectural extensions necessary
to implement PrioRAT. Figure 6.2 shows a runtime system and a dual-core processor that
implements PrioRAT, connected to the main memory. Within the processor, we identify the
private resources, i.e., the core, the L1 and L2 private caches, and shared resources, i.e., the
on-chip interconnection network connecting private caches to the shared last-level cache (LLC),
the LLC itself, and the memory controllers. For the sake of simplicity, it is assumed that each
core executes a single task at any given moment. Section 6.2.3.1 discusses the implications of
designs that implement simultaneous multi-threading (SMT), which are able to have mixed

criticality workloads on the single physical core.

6.2.2.1 Awareness of Task Criticality in the Core

As explained in Section 6.2.1, the runtime system library provides the hardware with the
criticality of each task before its execution. Each core exposes a memory-mapped register
to the software, which is referred to as criticality register. When issuing a request to the L1
cache, a core flags the request with criticality information stored in the criticality register. This
information is carried with the request along its way through the memory hierarchy. Since the
private on-chip components process requests only from a single task instance, they do not need
to consider the request’s priority. However, once the request arrives to shared components, the
first one being the interconnect, its priority is taken into account when the components decide

the ordering of the requests for processing.

90

Criticality-Driven Prioritization inside the Memory Hierarchy

on-chip interconnection network

... INput ports

output ports.....

routing

to LLC or
Memory
Controller

1
1
1
1
1
|
I
1
i
1
1
L

v

from L2, LLC
to routing

low-priority queue

Figure 6.3: Request prioritization inside the on-chip interconnection network.
The top image shows the micro-architecture of a generic on-chip interconnect. The section annotated with the
dashed rectangle is presented in detail in the bottom image.

To implement request prioritization inside the shared on-chip resources, the queues that hold
incoming requests before they get processed are extended. PrioRAT implements a double-queue
design, where each queue holds either high or low priority requests, as shown in Figures 6.3
and 6.4. When selecting the next request for processing, the requests in the high-priority queue
are preferred over the requests from the low-priority queue. The following sections provide the

specific design considerations for each relevant shared on-chip component.

6.2.2.2 Prioritization inside the Interconnect Bus

Figure 6.3 shows the micro-architecture of the interconnect network on chip whose purpose is
to route the requests among the L2 and the L3 caches and the memory controllers. Memory
requests come into the input ports (@) and get sorted (b) into the appropriate priority queue
depending on their criticality (¢). The ordering of the requests with the same criticality follows
first in-first out algorithm. When sending requests to the destination component (e), the logic

gives priority to critical requests (d).

6.2.2.3 Prioritization inside the Shared Last-Level Cache

The LLC cache stores the requests coming from the L2 caches in a queue before they get to
access the tag and data arrays. To implement PrioRAT, the queues are extended as shown in

Figure 6.4. This figure shows a group of requests with mixed criticality as they travel through

91

6.2 PrioRAT: Criticality-Driven Prioritization inside Memory Hierarchy

LLC bank Memory Controller

S R - S ==
E i E channel 0 % %
1:"[}’ v Al = E—>|::|—> -

' ' ' =1 (>
: i=IController : channel 1 >{Z || =
L ' L - | 2|2
! "
| =0
E new order =S
- OooomEm — = |
: - __ ~ 3o
| ® ¢
: Q!

Figure 6.4: Priority queue inside the last-level cache and the memory controller.
The top images show the micro-architecture of the last-level cache bank and the memory controller. The sections
annotated with the dashed rectangle are presented in detail in the bottom image. Both the LLC and the memory
controller have the same queue implementation.

the queues. The requests are processed in order of arrival at the input port of the cache (1)
and they get sorted into the two queues depending on their criticality (2). Requests from the
high-priority queue are served before other requests (3).

Multiple modern processors implement sliced or banked LLC caches, where each slice
contains a subset of all cache lines. Such designs offer a higher throughput as accesses to
different banks can be parallelized. Moreover, they exhibit a better scalability in many-core
chips. PrioRAT is agnostic to the internal design of a cache. In processor designs where each
cache slice handles requests independently, PrioRAT introduces the prioritized double-queue

for each slice.

6.2.2.4 Prioritization inside the Memory Controller

In order to take into account the requests’ criticality in the memory controller, the existing
request scheduling policy needs to be extended. PrioRAT is independent of the baseline
scheduling policy as it only adds another sorting criterion. However, in order to achieve a better
performance, an architect needs to also take into consideration the design details of DRAM
chips, such as bank-level parallelism, row buffer locality, etc.

To illustrate this fact, one can analyze an existing memory controller scheduling policy such
as First-Ready, First-Come, First-Served (FR-FCFS). This policy schedules first the request
that hit in the already open rows in the DRAM chip. If no such request exists, the ordering is

92

Criticality-Driven Prioritization inside the Memory Hierarchy

done in a First-Come, First-Served (FCFS) manner. PrioRAT augments this policy with the
task criticality information. To preserve the performance benefits of exploiting row hits, the
criticality is considered only after there is no request satisfying the row hit condition. For the
requests of the same criticality, FCFS ordering is used.

In order to offer higher memory bandwidth to the cores, many modern processors are
equipped with multiple memory controllers. The PrioRAT design does not require any
synchronization between memory controllers as the prioritization is done independently in each

controller. Thus, PrioRAT can be directly applied to such designs without any modification.

6.2.3 Discussion

This section discusses the interaction of the proposed design with various features in the modern

computers and the associated parallel programming models.

6.2.3.1 Support for Simultaneous Multi-Threading (SMT)

Modern processors implement support for simultaneous multi-threading in order to better utilize
the resources of a superscalar out-of-order core. In such systems, in general, one physical
core can execute two different threads. In the context of this work this means that two tasks
of different criticality can share the same core. To ensure the correct prioritization of critical
requests, the input queue of the L1 cache is extended in the same way as described for the LLC

in Section 6.2.2.3. The core is also equipped with a criticality register per hardware thread.

6.2.3.2 On-Chip Interconnect Design Implications

Processors employ different designs of on-chip networks depending on design factors such
as number of cores, desired bandwidth, hardware and power overheads, etc. Section 6.2.2,
describes the micro-architectural implementation of prioritization on an abstract model of the
interconnect that consists of an input queue and routing logic. This section further explores the
design implications of various specific network designs.

A point-to-point interconnect is the simplest network in terms of routing complexity, as
each node is directly connected to every other node. Since such networks do not have active
components (i.e., routers), prioritization is done at the receiving component (i.e., the LLC or
the memory controller). Networks with ring topology [49] can implement prioritization either

before the output port of the transmitting component or at the receiving component. More

93

6.2 PrioRAT: Criticality-Driven Prioritization inside Memory Hierarchy

complex ring topologies, such as H-Ring [15, 183], perform the prioritization at the nodes
connected to multiple rings.

More complex topologies, such as two-dimensional (2D) mesh, 2D torus and their higher-
dimensional counterparts [49] use on-chip routers to direct a message to the correct node. In
these network implementations, the prioritization of requests is performed inside the routers, as

explained in Section 6.2.2.

6.2.3.3 Hybrid Memory Systems

In recent years, computing systems with hybrid memory designs have appeared on the market.
They generally combine DRAM chips with the high-speed alternatives, such as HBM [94], or
non-volatile memories, such as PCM [175]. PrioRAT does not depend on memory technologies
used in the system as it extends only the queuing logic inside the memory controller. In order to
implement prioritization at the memory controller level, the only requirement is to extend the

interface to the processor by a criticality bit that carries the request’s criticality.

6.2.3.4 Multi-Socket and Multi-Node Support

Section 6.2.2 explains the design of PrioRAT on a single-socket architecture. PrioRAT can also
be supported on multi-socked systems with a shared address space. To enable prioritization of
requests coming from another socket, these requests need to carry the criticality information.
Therefore, the interconnection interface between two sockets needs to be extended by a single
bit that carries the criticality of requests.

Modern high-performance machines are, in general, designed as clusters that consist of
multiple nodes which communicate with each other using a message-passing interface. In such
systems, PrioRAT can be deployed to the individual nodes without modifications. In addition,
PrioRAT can be extended to support prioritization of the messages between nodes by (i) adding
support to annotate the criticality of a message to the calls to the message-passing library, and

(ii) extending the switching hardware to take into account the criticality information.

6.2.3.5 Programming Model Support

PrioRAT is built on top of OpenMP, the most widely used shared-memory parallel programming
model. Other task-based programming models, such as Chapel [38], Charm++ [97] and
Cilk [82], can be extended to support PrioRAT. Specifically, task-spawning constructs in these

languages can be extended to allow the annotation of critical tasks in a similar way as presented

94

Criticality-Driven Prioritization inside the Memory Hierarchy

in Section 6.2.1. The corresponding compilers translate the annotations to the instructions that
forward the criticality data to the processor. This interface is implemented via memory-mapped
registers and can be accessed either directly or through a system call in the operating systems

that implement such a wrapper for the bare interface.

6.2.4 Combining priority and criticality annotations

OpenMP and OmpSs allow a programmer to specify the priority for a task using priority
(priority-value) annotation, where priority-value is a non-negative integer. The priority-value
is used to drive the task scheduling policy of the associated runtime system. The following
paragraphs analyze the utility of the priority annotations in prioritization of memory requests in
the on-chip memory hierarchy.

PrioRAT uses the criticality of the tasks to prioritize their memory requests. The criticality
values are binary, i.e., critical or non-critical. This is reflected in the design of the hardware
queues, which consist of low- and high-priority queues. PrioRAT can be adapted to consider the
information provided in the priority annotations. The existing design of the interface between
the runtime system and the hardware is applicable to this case as well. That is, the priority value
can be passed to the hardware in the same way as the task criticality value. On the hardware side,
such design would require a different priority queue implementation, since the priority-value
can take any non-negative integer value. A possible implementation consists of a single queue
with a modified insertion algorithm that follows the ordering defined by the requests’ priority.
A simpler variation to this design groups the priority values into several bins. For example, a
three-level grouping would result in low-, medium- and high-priority requests. In this case, the

cut-off value may be dynamic and defined by the programmer or the runtime system.

6.3 Evaluation

For the evaluation of the performance of PrioRAT, a system without request prioritization is
selected as the baseline architecture. The evaluation is performed on the simulating infrastructure
described in Section 3.1 using the benchmarks presented in Section 3.2. The input sizes for
every benchmark is shown in Table 3.6. The evaluation starts with a high-level analysis of
performance gains achieved by PrioRAT compared to the baseline configuration. In addition, the
effects of the prioritization on the duration of tasks are explored. The analysis of the service time

of memory requests provides further insights into the performance of PrioRAT. Section 6.3.2

95

6.3 Evaluation

1.30F E
1.25E memChannels E
1.20 F !
q5f .2 -

I 5
1.10 E
1.05F .
1.00 = I I I I B E— *

body LU chol ferret dedup SMI fluid QR scan gmean

Figure 6.5: Speedup of PrioRAT compared to the baseline, for different number of memory
channels.

examines the impact of the memory traffic intensity on the performance. Finally, Section 6.3.3
shows how parameters such as the LLC size and memory latency impact performance of
PrioRAT.

6.3.1 Performance Evaluation

Figure 6.5 shows the speedups achieved by PrioRAT compared to the baseline configuration
without prioritization. The performance benefits are shown for all evaluated benchmarks and
for different number of memory channels. The codes achieving highest speedups are scan and
QR, which perform up to 1.3x and 1.23x faster, respectively. An interesting observation is
that these two codes obtain the best performance for different memory configurations, i.e., scan
performs the best with more memory channels. On the contrary, QR achieves best performance
benefits for lower number of memory channels. The performance depends on the traffic rate at
the memory level coming both from critical and non-critical tasks. These effects are evaluated

in detail in Section 6.3.2.

To evaluate the impact of request prioritization on the internal execution of each application,
we record the duration of each task instance when running on the baseline system, as well as on
the system that implements PrioRAT. The tasks are grouped in two groups depending on their
criticality. The average duration of the tasks from each of the groups is compared between the
baseline and PrioRAT configurations. These data are displayed in Figure 6.6, for all evaluated
benchmarks and systems with 1, 2 and 4 memory channels. In all the benchmarks, PrioRAT
reduces the duration of the critical tasks. This reduction in duration comes from reduced

latency of the memory requests, as they are given the priority over the requests coming from

96

Criticality-Driven Prioritization inside the Memory Hierarchy

Task criticality: B critical non-critical
100 ¢

B N 0
OO
AR RARE RARE
[

|
)
oo
e

e

r T+ 1 17— T 71T 11T 17— 11 11T 11T 17T 1T T T T ""T T T T T

124 124 124 124 124 124 124 124 124 124

body LU chol ferret dedup SMI fluid QR scan amean

Figure 6.6: Change in the average duration of tasks per task criticality compared to the baseline
configuration. Data is shown for configurations with 1, 2 and 4 memory channels.

[
D B
oS O
A
ool

Difference in duration [%]
DN
S
T
|

|
©
=

the non-critical tasks. On the other hand, this causes the increase of duration of non-critical

tasks compared to the baseline configuration.

The highest impact of prioritization on the task duration is observed for scan and QR.
The average duration of critical tasks in scan is reduced up to 66.7%. On the other hand, the
performance of the non-critical tasks is decreased up to 10.7%. Prioritization does not have
a significant negative effect on the duration of non-critical tasks because only 13.8% of all

memory traffic comes from critical tasks.

In case of QR, the performance loss suffered by the non-critical tasks is considerably greater
than the speedup of critical tasks. This is due to the fact that critical requests represent the
majority of all requests. Therefore, effectively increasing the latency of non-critical requests by
their de-prioritization has a significant effect on the duration of non-critical tasks. However,
the critical path is still accelerated which results in performance improvements of PrioRAT

compared to the baseline, as seen in Figure 6.5.

In order to further analyze the internal behavior of the tasks, we focus on the memory requests
issued by processor cores. To evaluate the impact on the prioritization on the latency of these
requests, the request round-trip times is analyzed. For each memory reference, we measure the
time that passes between issuing the request to the L1 cache until the acknowledgment is received
by the core. Finally, we compare the measurements obtained with PrioRAT configuration with
the baseline execution. Figure 6.7 shows the results of these measurements, only for requests
that get serviced by the main memory, i.e., the requests that miss in the last-level cache. The
requests hitting in one of the caches are omitted from this analysis in order to remove the

influence of different access patterns that the tasks may have.

97

6.3 Evaluation

Request criticality: I critical non-critical

— 150

X r

v 100 |
v & :]
Q= ¥ 1
§a 90f 1
ol i]
& Orag =" —u e I = I
- 1 L LS [[RS | [N L

2 :]

s =0 :]

g i]

_100 T

T 1 T
124 124 124 124 124 124 124 124 124

body LU chol dedup SMI fluid QR scan amean

Figure 6.7: Difference in the memory request round-trip time in PrioRAT compared to the
baseline. For each benchmark, x-axis shows configurations with different number of memory
channels.

The results clearly show the effects of prioritization on the request round-trip time. The
critical requests take on average 48.4%, 34.5% and 17.4% less cycles to get served for
configurations with 1, 2 and 4 memory channels, respectively, compared to the baseline
configuration. We also observe that with an increasing the number of memory channels, the
impact of prioritization on the request service time is reduced. This is further elaborated in
Section 6.3.2. The largest round-trip time improvements are observed for fluidanimate and scan.
The service time of non-critical requests in QR suffers the most among all applications, which
manifests itself through significant performance degradation of non-critical tasks as explained

earlier in this section and shown in Figure 6.6.

Most applications exhibit a notable sensitivity of the critical requests’ latency improvement
to available memory bandwidth. These codes also observe a significant contention in shared
resources in the memory hierarchy. Therefore, increasing the memory bandwidth reduces
saturation, which reduces the baseline round-trip time. This effect is further explained in
Section 6.3.2. For example, in the case of SMI, one of the critical tasks performs a matrix-matrix
multiplication, which is the most memory intensive kernel in that application. On the other
hand, body, LU and QR have the opposite behavior. In these codes, the memory load caused
just by critical tasks is not big enough to saturate the memory links. Similarly to the critical
tasks, the latency of the non-critical tasks is also sensitive to the number of channels in all the

cases.

98

Criticality-Driven Prioritization inside the Memory Hierarchy

Array access stride 1 A2 MEH4 *x3
L 135
(o] - -A- 4
3 1-305 A‘/* E
@ 1.25F E
" 1.20F]
> o 1
% 1.15 F Hk _E
"§ 1.105— A E
S 1.05F /. _;
1.00 b3 m— x x - =
1 2 4 8 16 32

Number of memory channels

Figure 6.8: Impact of access strides on the performance of PrioRAT running scan benchmark
for different number of memory channels.

6.3.2 Performance Impact of Memory Traffic Intensity

This section evaluates the effect of memory traffic intensity on the speedup achieved by PrioRAT.
Scan is selected for the analysis due to its simplicity and the support for a precise control of the
memory traffic intensity. To model different traffic intensities at the memory level, we adjust
the stride of the array accesses. A stride of 1 means that every element in the input array is
accessed. Since each element of the array has the size of 4B, a configuration with a stride of 16
produces one access per 64B cache line. Therefore, using larger strides results in less reuse
of the cache lines and increased memory traffic. We perform this study for different number
of memory channels ranging from 1 to 32, which is equivalent to the effective bandwidths of
4.3 GB/s to 137.6 GB/s.

Figure 6.8 shows the results of this analysis for strides ranging from 1 to 8. We do not
show the results for a stride of 16 elements as this configuration has the same behavior as the
executions with stride values 4 and 8. The results demonstrate that the curves corresponding to
different stride values have a similar bell-like shape. For each stride setting, there is an optimal
memory bandwidth where PrioRAT achieves the highest speedup. For example, for a stride
values of 1 and 2, the highest performance improvements are achieved when using 4 and 8
memory channels, respectively. Once the bandwidth values move farther from the optimal, the
speedup gradually drops to 1. In order to explain the reason behind the shape of the curve and
its horizontal offset depending on the stride, we analyze two factors that limit the speedup that
PrioRAT can achieve: (i) the theoretical speedup limit and (ii) impact of the memory request

prioritization on the speedup.

99

6.3 Evaluation

Max. ideal speedup

Impact of prioritization

Memory bandwidth

Figure 6.9: Impact of memory bandwidth on factors that control the overall achieved speedup:
speedup achievable by request prioritization impact (left y-axis) and speedup achievable by

critical path acceleration (right y-axis), for scan benchmark using stride of 8 elements.
The impact of prioritization is measured as a ratio of the durations of non-critical and critical requests. The
maximal ideal speedup is calculated as a speedup achieved by setting the duration of critical tasks to zero. These
metrics are displayed in arbitrary units. Memory bandwidth represents the total available bandwidth and linearly
depends on the number of memory channels.

The relation between these two factors and the memory bandwidth is shown in Figure 6.9.
On the right y-axis we show the maximal achievable speedup for the benchmark depending on
the memory bandwidth, which is shown on the x-axis. To aid the explanation of this figure, we
refer to the top trace in Figure 6.1, which represents the execution of scan on a baseline processor.
In particular, we note that the execution consists of a parallel region, where both non-critical
and critical tasks execute simultaneously, and a serial region, where only the remaining critical

tasks execute.

The maximal ideal speedup can be calculated as follows:

t(seq)

__ t(whole.app) __ t(par)+i(seq) _ 1
- - t(par)’

Spdmax = ~tpan i(par)

—+

where 7(x) represents a duration of the region x, and whole.app, par and seq correspond to
the whole application, its parallel region and serial region, respectively. A larger speedup is

achieved when the ratio of the durations of sequential and parallel regions is larger.

For a low memory bandwidth, the memory contention in the parallel region is high, which
slows down the tasks in this region. As a consequence, the duration of the parallel region is
significantly larger compared to the duration of the serial region, which results in low speedup
values. On the other hand, when the bandwidth increases, the memory contention decreases,

which reduces the length of the parallel region compared to the duration of the whole application.

100

Criticality-Driven Prioritization inside the Memory Hierarchy

When bandwidth increases over a certain threshold, the achieved speedup stagnates as the
contention is reduced to the zero.

Another factor that affects the achievable performance improvements is the impact of the
memory request prioritization on the performance of a task. When memory contention is
high, scheduling critical requests before the others can improve the performance of a critical
task by reducing the service time of the critical requests. This effect diminishes as the
memory contention is reduced because the prioritization cannot reduce the request latency in
non-saturated systems.

The conclusion of this analysis, in the case of scan, is that when the impact of the
prioritization is the highest, the effects of reduced execution time of critical tasks has low
impact on overall speedup. Similarly, when accelerating critical tasks can bring the most overall
performance benefits, this cannot be done by prioritization of memory requests. Between those
extreme scenarios, there is an optimal point where PrioRAT achieves the highest speedups,
ranging from 25.8% to 31.0%, as shown in Figure 6.8.

From the results presented in Figure 6.8, it can observed that the optimal memory bandwidth
increases as the stride values change from 1 to 4. This is an expected behavior due to the fact
that speedup depends on the memory contention, which is proportional to the stride. However,
configurations with strides 4 and 8 behave similarly as they exhibit equal contention. The CPU

resources become a bottleneck when request issue rate increases over some threshold.

6.3.3 Performance Impact of the LLC Size and Memory Latency

In this section we analyze how different parameters of the simulated system impact the

performance of PrioRAT.

6.3.3.1 The Last-level Cache Size

Figure 6.10 shows the speedup of PrioRAT compared to the baseline for three selected
benchmarks: cholesky, SMI and scan. For cholesky and SMI, PrioRAT achieves higher
speedups with smaller LLC sizes. In addition, the achieved performance benefits are, in general,
higher for configurations with smaller number of memory channels. Both effects are caused by
the increased memory contention due to larger miss rate of smaller caches and lower available
memory bandwidth. In such scenarios, the impact of request prioritization is higher.

In contrast, the performance of scan is not sensitive to the cache size because this benchmark

does not reuse the arrays and therefore does not benefit from caching. Similarly to two other

101

6.3 Evaluation

Memory Channels 1 %2 @4
1.06 3 1.06 f 1.3 l.' .'.'.l
- — X— =3 — -

1.04 1.04 - 1.2

“

*"0
1.02 |- 1.02 1 ™% 1.1F

e T

1.00 @ gy 1.00 ‘a8 1.0

M 8M 16M 32M M 8M 16M 32M
cholesky SMI
Figure 6.10: Impact of the LLC size on the speedup achieved by PrioRAT compared to the

baseline. For each benchmark, x-axis shows the size of the LL.C and the y-axis denotes
achieved speedup.

M 8M 16M 32M

scan

benchmarks, scan also exhibits sensitivity to the available memory bandwidth. However, in
case of this code, PrioRAT achieves higher speedups for configurations with more memory
channels. This behavior is explained in Section 6.3.2. The data points for the LLC size of

16 MB in Figure 6.10 correspond to the points for the stride value of 1 in Figure 6.8.

6.3.3.2 Memory Latency

Figure 6.11 shows the speedup PrioRAT achieves against the baseline configuration for different
memory latencies and number of memory channels. The results for cholesky and SMI show
that, in general, the performance improvements are higher for larger memory latencies. This is
the case because the configurations with higher memory latencies take more time to process
each request, which increases memory contention and, therefore, the impact of prioritization on
the performance of critical tasks. When using one and two memory channels, scan exhibits
different behavior than cholesky and SMI, i.e., the speedup is higher for lower memory latencies.
Scan benchmark has a higher memory contention than other evaluated benchmarks. The region
for the optimal speedups is achieved when the memory contention decreases, as explained in
Section 6.3.2. Both the memory latency and the number of memory channels directly impact

memory contention, and therefore affect the achieved performance improvements.

102

Criticality-Driven Prioritization inside the Memory Hierarchy

Memory Latency 60ns ¥ 120ns @ 180 ns
1.04 1.04 1.4 .I
g
Q* <
. /
1.02 1.02 ™% 1.2 %
% 4
‘... Q‘ 6,'
9%~ :’~, . %'.,’ ‘
1.00——4-'“»-1 1.00 “»,m 1.0

T 1 T T

1ch 2 ch 4 ch 1ch 2 ch 4 ch 1ch 2 ch 4 ch

cholesky SMI scan

Figure 6.11: Impact of the memory latency on the speedup of PrioRAT versus the baseline.
X-axis shows the number of memory channels.

6.4 Summary

This chapter presents PrioRAT, a runtime-assisted approach for prioritization of memory
requests in the processor. PrioRAT provides a programmer with a simple interface to define the
criticality of tasks in a task-based parallel code. The runtime system library is responsible for
forwarding this information to the underlying hardware. The processor uses the knowledge of
the task criticality to guide the prioritization of the memory requests inside the shared on-chip
memory hierarchy.

The evaluation of PrioRAT is performed on a set of representative codes from the domain
of high-performance computing. The extensive evaluation shows that PrioRAT outperforms the
baseline system by up to 30.3% in terms of the execution time. Further analysis demonstrates
high impact of the prioritization on the request service time and duration of the tasks. Finally,
we revisit the main factors that impact the performance of an application in the context of this
work, such as memory contention.

PrioRAT exploits the high-level information about the application that is not available in
the state-of-the-art proposals. It is demonstrated that the availability of such knowledge inside

the on-chip components can lead to notable performance improvements.

103

Chapter 7

Conclusions

The work presented in this thesis has demonstrated the utility of the runtime system in the
design of on-chip memory hierarchy. This chapter outlines the main goals and the contributions

of this thesis. The list of publications is shown at the end of the chapter.

7.1 Thesis Goals and Contributions

The current trends in the design of computer systems are followed by many challenges. This
thesis focuses specifically on two well-established issues in the field of high-performance
computing, the Memory Wall and the Programmability Wall. The Memory Wall is a result of the
ever-increasing gap between the processor and memory speeds. What makes this fact important
is the negative performance impact of slow memory accesses. In order to solve this and many
other issues, and enabled by the increasing number of transistors on chip, the design of recent
processors is getting more complex with each generation. This inherently makes programming

such systems more difficult, which is a phenomenon known as the Programmability Wall.

The work presented in this thesis consists of three independent contributions that tackle
the described challenges in the context of on-chip memory hierarchies and task-based parallel
programming models. Each contribution introduces an optimization implemented in the
memory hierarchy. Common to all proposals is the interaction with the runtime system library.
This holistic design brings two benefits: (i) hardware design can exploit the high-level knowledge
of an application available at the runtime system; (ii) it provides complete solutions covering
both hardware and software stack, which makes such systems easier to program and more
attractive to adopt. The following sections provide the brief conclusions of each contribution

presented in this thesis.

105

7.1 Thesis Goals and Contributions

7.1.1 Runtime-Aware Shared Last-Level Cache Insertion Policies

Processor caches represent an important component of the microprocessor and their careful
design is of paramount importance for achieving a good overall performance. Shared caches
introduce additional challenges. The memory access patterns at the shared cache level are
complex as they are a combination of patterns coming from different processor cores. It is
necessary to apply sophisticated techniques in order to improve the performance of shared
caches. The first proposal of this thesis targets a shared last-level cache and introduces cache
insertion policies aware of access patterns on both task and memory region level. The proposal
consists of two insertion policies. The first, TTIP, uses a parameter per task type that controls
a probabilistic insertion, by which it effectively achieves a fine allocation of cache space to
the co-running tasks. TTIP is a dynamic policy that automatically selects the best performing
parameter per task during the execution and is, therefore, able to adapt to the changes of
application’s behavior. The second policy, DTIP, takes into account the task-data dependency
type when performing the insertion of a cache line. Its design is based on the observation
that different dependency types observe distinct long-term access patterns. These policies
outperform both the industry standard, LRU policy, and the state-of-the-art replacement policy,
DRRIP. The conclusion of the work on the first proposal is that the runtime-system-level
information about a parallel code can be of a great utility in the design of a replacement policy

for a shared last-level cache.

7.1.2 Reductions in the Cache Hierarchy

Reductions constitute a frequent algorithmic pattern in high-performance and scientific com-
puting. Sophisticated techniques are needed to ensure their correct and scalable concurrent
execution on modern processors. Reductions on large arrays represent the most demanding
case where traditional approaches are not always applicable due to low performance scalability.
The second proposal of this thesis addresses these challenges by proposing a runtime-assisted
solution for reductions in the cache hierarchy, RICH, that relies on architectural and parallel
programming model extensions. RICH updates the reduction variable directly in the cache
hierarchy with the help of added in-cache functional units. It relies on programming model
extensions that allow a programmer to easily annotate the reduction variables in an existing
parallel code. The runtime system library serves as an interface between the parallel application

and the hardware. Experiments show that RICH achieves the performance improvements

106

Conclusions

of 1.11x on average, compared to the state-of-the-art hardware-based approaches, while it

introduces 2.4% area and 3.8% power overhead.

7.1.3 Ciriticality-Driven Prioritization inside the Memory Hierarchy

Producing a perfectly-balanced parallel code is not achievable in practice. There are many
factors that cause suboptimal load balancing. Some limitations are imposed by an algorithm
itself, where the work cannot be equally distributed among all parallel threads. Even with
perfect work separation, various factors during the execution can introduce issues with load
balancing. In order to efficiently use the computing resources of the parallel systems, it is
necessary to minimize these issues. Many solutions aim to improve load balancing, ranging
from compiler and runtime system optimizations to hardware-based approaches. The third
contribution of this thesis accelerates the critical parts of an application by prioritization of the
corresponding memory requests inside the on-chip memory hierarchy, which can improve the
load-balancing. The proposal relies on the user annotations of task criticality, which is enabled
by simple extensions of the parallel programming model. The runtime system is responsible to
pass the criticality information to the underlying hardware. The extensive evaluation has shown
that the prioritization of memory requests can notably reduce the duration of critical tasks and,
therefore, reduce the critical path of a parallel code. This technique can achieve up to 30.3%
faster execution time compared to the baseline system without any acceleration of critical tasks.
The conclusion of this work is that utilization of the criticality information at the application

level can notably improve the performance with minimal hardware modifications.

7.2 Future Work

The work presented in this thesis opens new opportunities for the further research on the explored

topics. This section provides a brief overview of potential future directions for investigation.

Dynamic Task type aware insertion policy. TTIP allows for several further improvements.
The policy trainer can be optimized to blacklist poorly performing configurations from the future
training phases to reduce the performance penalty of using such configurations. Furthermore, in
order to maintain the adaptability to the changes in the behavior of application, the blacklisting
can be reset after a certain number of training cycles. Moreover, short tasks or tasks that do not

run many times during the execution can be excluded from the training process.

107

7.2 Future Work

Dynamic dependency-type aware insertion policy. DTIP is a static policy that always uses
the same configuration for a given dependency type. The policy can be improved by introducing
a dynamic mechanism to adapt to the behavior of each application. Moreover, it is possible to
exploit already present information about task-data dependencies to implement a precise access
pattern estimator per memory region. Such knowledge about access patterns can provide better
replacement policies.

Computation offloading to the memory hierarchy. The second proposal explores the
benefits of executing reduction-like operations in the cache hierarchy. Offloading more complex
operations increases pressure on the buses in the on-chip memory hierarchy. A possible solution
for this problem is an implementation of more complex cores in the caches, memory controller
and the main memory, which is already explored in previous works. However, the already
present mechanisms for device-specific implementation of tasks inside the OmpSs programming
model can be applied for offloading the eligible code segments to execute near memory.

Applying dynamic criticality knowledge on the prioritization of memory requests. The third
proposal of this thesis introduces a mechanism to exploit user-provided criticality annotations to
prioritize the critical requests in the memory hierarchy. The next improvement to this scheme is
to exploit the already existing mechanisms for critical path detection during the execution. This
approach would overcome an issue of the change of critical path when the original critical path
is accelerated. In addition, it may be beneficial to discriminate the memory requests according
to the issuing task type and the corresponding dependency type to which the requested address
belongs. As shown in Chapter 4, this discrimination can be successfully applied to cache design.
Further exploration of the opportunities given by the runtime system knowledge might lead to
additional performance improvements.

Exploiting task criticality in the cache replacement policies. The first proposal exploits
the knowledge about parallel tasks to optimize the design of the cache replacement policy. To
extend this idea, we consider a cache replacement policy driven by task criticality. Cache lines
corresponding to critical tasks may be given more priority in cache compared to other lines.
This can be achieved by assigning higher re-reference interval values to such cache lines. A
potential result of such design is a better cache performance of critical tasks and consequently,

improved performance of critical tasks and the whole application.

108

Conclusions

7.3 Publications

This section lists the publications resulting from the work presented in this thesis, the related
posters and the publicly available code.

Publications of the Thesis:

e Dimié, V., Moret, M., Casas, M., and Valero, M. “Runtime-Assisted Shared Cache
Insertion Policies Based on Re-reference Intervals™. In: Euro-Par 2017: Parallel
Processing - 23rd International Conference on Parallel and Distributed Computing,
Santiago de Compostela, Spain, August 28 - September 1, 2017, Proceedings. Ed. by
F. F. Rivera, T. F. Pena, and J. C. Cabaleiro. Vol. 10417. Lecture Notes in Computer
Science. Springer, 2017, pp. 247-259. por: 10.1007/978-3-319-64203-1_18

* Dimié, V., Moret6, M., Casas, M., Ciesko, J., and Valero, M. “RICH: Implementing Re-
ductions in the Cache Hierarchy”. In: 2020 International Conference on Supercomputing.
ICS ’20. New York, NY, USA: ACM, 2020, 13 pages. por: 10.1145/3392717.3392736

* Dimié, V., Moret6, M., Casas, M., and Valero, M. PrioRAT: Criticality-Driven Prioriti-

zation Inside the On-Chip Memory Hierarchy. (under submission)
Other Publications:

* Dimi¢, V. and Dziegielewska, O. “Metaheuristics Based Approach for Parallelizing
Applications in On-Chip Multiprocessor”. In: ACACES’14: Advanced Computer
Architecture and Compilation for Embedded Systems 2014 Poster Abstracts. Poster
abstract. 2014

e Dimi¢, V., Moret6, M., Casas, M., and Valero, M. “Runtime-Assisted Shared Cache
Insertion Policies Based on Re-reference Intervals”. In: RoMoL Final Workshop. Poster

without proceedings. Mar. 2018
Publicly Available Code:

e Dimié, V. Reduction Benchmarks. https://github.com/vdimic/reduction-benchmarks.
2020

* Dimié, V. Array Scan Benchmark. https://github.com/vdimic/scan-benchmark. 2020

109

http://dx.doi.org/10.1007/978-3-319-64203-1_18
http://dx.doi.org/10.1145/3392717.3392736
https://github.com/vdimic/reduction-benchmarks
https://github.com/vdimic/scan-benchmark

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Advanced Micro Devices (AMD), Inc. AMDG64 Architecture Programmer’s Manual,
Volume 3: General-Purpose and System Instructions. Tech. rep. 24594. Advanced
Micro Devices, May 2018.

Advanced Micro Devices (AMD), Inc. AMD EPYC ™ 7002 Series Processors: A New
Standard for the Modern DataCenter. Data Sheet. Apr. 2020.

Aga, S., Jeloka, S., Subramaniyan, A., Narayanasamy, S., Blaauw, D., and Das, R.
“Compute Caches”. In: 2017 IEEE International Symposium on High Performance
Computer Architecture. HPCA ’17. IEEE, 2017, pp. 481-492. por: 10.1109/HPCA.
2017.21.

Aggarwal, V., Sabharwal, Y., Garg, R., and Heidelberger, P. “HPCC RandomAccess
benchmark for next generation supercomputers”. In: IEEE International Symposium on
Parallel Distributed Processing. IPDPS *09. May 2009, pp. 1-11. por: 10.1109/IPDPS.
2009.5161019.

Ahn, J., Hong, S., Yoo, S., Mutlu, O., and Choi, K. “A scalable processing-in-memory
accelerator for parallel graph processing”. In: ACM/IEEE 42nd Annual International
Symposium on Computer Architecture. ISCA ’15. June 2015, pp. 105-117. por:
10.1145/2749469.2750386.

Ahn, J. H., Erez, M., and Dally, W. J. “Scatter-Add in Data Parallel Architectures”.
In: Proceedings of the 11th Annual Symposium on High Performance Computer
Architecture. HPCA °05. 2005, pp. 132-142.

Alameldeen, A. R. and Wood, D. A. “Adaptive cache compression for high-performance

processors”. In: Proceedings of the 31st Annual International Symposium on Computer
Architecture. ISCA *04. June 2004, pp. 212-223. por: 10.1109/ISCA.2004.1310776.

111

http://dx.doi.org/10.1109/HPCA.2017.21
http://dx.doi.org/10.1109/HPCA.2017.21
http://dx.doi.org/10.1109/IPDPS.2009.5161019
http://dx.doi.org/10.1109/IPDPS.2009.5161019
http://dx.doi.org/10.1145/2749469.2750386
http://dx.doi.org/10.1109/ISCA.2004.1310776

BIBLIOGRAPHY

[8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

Alvarez, L., Casas, M., Labarta, J., Ayguadé, E., Valero, M., and Moreto, M. “Runtime-
Guided Management of Stacked DRAM Memories in Task Parallel Programs”. In:

Proceedings of the 32nd International Conference on Supercomputing. ICS *18. ACM,
2018, pp. 218-228. 1sBN: 978-1-4503-5783-8. por: 10.1145/3205289.3205312.

Alvarez, L., Moretd, M., Casas, M., Castillo, E., Martorell, X., Labarta, J., Ayguadé, E.,
and Valero, M. “Runtime-Guided Management of Scratchpad Memories in Multicore
Architectures”. In: Proceedings of the 24th International Conference on Parallel
Architectures and Compilation Techniques. PACT *15. 2015, pp. 379-391. 1sBN: 978-1-
4673-9524-3. por: 10.1109/PACT.2015.26.

Alvarez, L., Vilanova, L., Moreto, M., Casas, M., Gonzalez, M., Martorell, X., Navarro,
N., Ayguadé, E., and Valero, M. “Coherence Protocol for Transparent Management of
Scratchpad Memories in Shared Memory Manycore Architectures”. In: Proceedings of
the 42nd Annual International Symposium on Computer Architecture. ISCA °15. ACM,
2015, pp. 720-732. 1sBN: 978-1-4503-3402-0. por: 10.1145/2749469.2750411.

Arelakis, A., Dahlgren, F., and Stenstrom, P. “HyComp: A Hybrid Cache Compression
Method for Selection of Data-type-specific Compression Methods”. In: Proceedings of
the 48th International Symposium on Microarchitecture. MICRO-48. Waikiki, Hawaii:
ACM, 2015, pp. 38-49. 1sBN: 978-1-4503-4034-2. por: 10.1145/2830772.2830823.

ARM. big. LITTLE Technology: The Future of Mobile. White Paper. 2013.

ARM® Cortex®-A75 Core. Technical Reference Manual. 100403_0200_00_en. ARM.
2016.

ARM®Architecture Reference Manual Supplement. ARMVS, for the ARMvS-R AArch32
architecture profile. ID033117. ARM. 2016.

Ausavarungnirun, R., Fallin, C., Yu, X., Chang, K. K., Nazario, G., Das, R., Loh, G. H.,
and Mutlu, O. “Design and Evaluation of Hierarchical Rings with Deflection Routing”.
In: Proceedings of the 26th International Symposium on Computer Architecture
and High Performance Computing. SBAC-PAD’14. IEEE, 2014, pp. 230-237. por:
10.1109/SBAC-PAD.2014.31.

Babbage, C. “On the Mathematical Powers of the Calculating Engine”. In: The Origins
of Digital Computers: Selected Papers. Ed. by B. Randell. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1982, pp. 19-54. 1sBN: 978-3-642-61812-3. por: 10.1007/978-3-
642-61812-3_2.

112

http://dx.doi.org/10.1145/3205289.3205312
http://dx.doi.org/10.1109/PACT.2015.26
http://dx.doi.org/10.1145/2749469.2750411
http://dx.doi.org/10.1145/2830772.2830823
http://dx.doi.org/10.1109/SBAC-PAD.2014.31
http://dx.doi.org/10.1007/978-3-642-61812-3_2
http://dx.doi.org/10.1007/978-3-642-61812-3_2

BIBLIOGRAPHY

[17]

[18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

Balasubramonian, R., Kahng, A. B., Muralimanohar, N., Shafiee, A., and Srinivas, V.
“CACTI 7: New Tools for Interconnect Exploration in Innovative Off-Chip Memories”.
In: ACM Transactions on Architecture and Code Optimization (TACO) 14.2 (June 2017),
14:1-14:25. 1ssN: 1544-3566. por: 10.1145/3085572.

Barcelona Supercomputing Center. Mercurium C/C++ source-to-source compiler. May
2014.

Barcelona Supercomputing Center. Nanos++ Runtime Library. May 2014.
Barcelona Supercomputing Center. OmpSs Specification. Apr. 2014.

Barcelona Supercomputing Center. BSC Application Repository. 2020. URL: https:
/[pm.bsc.es/projects/bar (visited on 05/11/2020).

Belady, L. A. “A study of replacement algorithms for a virtual-storage computer”. In:
IBM Systems journal 5.2 (1966), pp. 78-101.

Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M., Franzon, P.,
Harrod, W., Hiller, J., Karp, S., Keckler, S., Klein, D., Lucas, R., Richards, M., Scarpelli,
A., Scott, S., Snavely, A., Sterling, T., Williams, R. S., and Yelick, K. “ExaScale
Computing Study: Technology Challenges in Achieving Exascale Systems”. In: Defense
Advanced Research Projects Agency Information Processing Techniques Office (DARPA
IPTO), Techinal Representative 15 (Jan. 2008).

Beveridge, J. and Wiener, B. Multithreading Applications in Win32: The Complete
Guide to Threads. Addison-Wesley Longman Publishing Co., Inc., 1997. 1sBN: 978-0-
201-44234-2.

Bienia, C. “Benchmarking Modern Multiprocessors”. PhD thesis. Princeton University,
Jan. 2011.

Blume, B., Eigenmann, R., Faigin, K., Grout, J., Hoeflinger, J., Padua, D., Petersen, P.,
Pottenger, B., Rauchwerger, L., Tu, P., and Weatherford, S. “Polaris: The Next Genera-
tion in Parallelizing Compilers”. In: Proceedings of the 7th International Workshop
on Languages and Compilers for Parallel Computing. LCPC’94. Berlin/Heidelberg:
Springer-Verlag, 1994, pp. 141-154.

Blumofe, R., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E., Randall, K. H., and Zhou,
Y. “Cilk: An Efficient Multithreaded Runtime System”. In: Journal of Parallel and
Distributed Computing. Vol. 37. Aug. 1996, pp. 55-69. por: 10.1006/jpdc.1996.0107.

113

http://dx.doi.org/10.1145/3085572
https://pm.bsc.es/projects/bar
https://pm.bsc.es/projects/bar
http://dx.doi.org/10.1006/jpdc.1996.0107

BIBLIOGRAPHY

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Bruening, D. L. and Amarasinghe, S. “Efficient, Transparent, and Comprehensive
Runtime Code Manipulation”. AAI0807735. PhD thesis. USA: Massachusetts Institute
of Technology, 2004.

Bruening, D., Garnett, T., and Amarasinghe, S. “An Infrastructure for Adaptive Dynamic
Optimization”. In: Proceedings of the International Symposium on Code Generation and
Optimization: Feedback-Directed and Runtime Optimization. CGO ’03. San Francisco,
California, USA: IEEE Computer Society, 2003, pp. 265-275. 1sBN: 076951913X. por:
10.1109/CG0O.2003.1191551.

Brumar, I., Casas, M., Moretd, M., Valero, M., and Sohi, G. S. “ATM: Approximate Task
Memoization in the Runtime System”. In: Proceedings of the 31st International Parallel
and Distributed Processing Symposium. IPDPS 17. IEEE, 2017, pp. 1140-1150. por:
10.1109/TPDPS.2017.49.

Caheny, P., Alvarez, L., Derradji, S., Valero, M., Moret6, M., and Casas, M. “Reducing
Cache Coherence Traffic with a NUMA-Aware Runtime Approach”. In: Transactions on
Farallel and Distributed Systems (TPDS) 29.5 (2018), pp. 1174-1187. 1ssn: 1045-9219.
por: 10.1109/TPDS.2017.2787123.

Caheny, P., Alvarez, L., Valero, M., Moretd, M., and Casas, M. “Runtime-assisted
Cache Coherence Deactivation in Task Parallel Programs”. In: Proceedings of the

International Conference for High Performance Computing, Networking, Storage, and
Analysis. SC *18. IEEE Press, 2018, 35:1-35:12.

Caheny, P., Casas, M., Moretd, M., Gloaguen, H., Saintes, M., Ayguadé, E., Labarta, J.,
and Valero, M. “Reducing cache coherence traffic with hierarchical directory cache
and NUMA-aware runtime scheduling”. In: Proceedings of the 25th International
Conference on Parallel Architecture and Compilation Techniques. PACT *16. ACM,
2016, pp. 275-286. por: 10.1145/2967938.2967962.

Caminal, H., Caballero, D., Cebrian, J. M., Ferrer, R., Casas, M., Moretd, M., Martorell,
X., and Valero, M. “Performance and energy effects on task-based parallelized applica-
tions - User-directed versus manual vectorization”. In: The Journal of Supercomputing
74.6 (2018), pp. 2627-2637. por: 10.1007/s11227-018-2294-9.

Casas, M., Moretd, M., Alvarez, L., Castillo, E., Chasapis, D., Hayes, T., Jaulmes,
L., Palomar, O., Unsal, O. S., Cristal, A., Ayguadé, E., Labarta, J., and Valero, M.
“Runtime-Aware Architectures”. In: Proceedings of the 21st International Conference

on Parallel and Distributed Computing. Euro-Par *15. Springer, 2015, pp. 16-27.

114

http://dx.doi.org/10.1109/CGO.2003.1191551
http://dx.doi.org/10.1109/IPDPS.2017.49
http://dx.doi.org/10.1109/TPDS.2017.2787123
http://dx.doi.org/10.1145/2967938.2967962
http://dx.doi.org/10.1007/s11227-018-2294-9

BIBLIOGRAPHY

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Castillo, E., Alvarez, L., Moret6, M., Casas, M., Vallejo, E., Bosque, J. L., Beivide,
R., and Valero, M. “Architectural Support for Task Dependence Management with
Flexible Software Scheduling”. In: Proceedings of the 24th International Symposium
on High Performance Computer Architecture. HPCA ’18. IEEE, 2018, pp. 283-295.
por: 10.1109/HPCA.2018.00033.

Castillo, E., Moreto, M., Casas, M., Alvarez, L., Vallejo, E., Chronaki, K., Badia,
R., Bosque, J. L., Beivide, R., Ayguadé, E., Labarta, J., and Valero, M. “CATA:
Criticality Aware Task Acceleration for Multicore Processors”. In: Proceedings of the
30th International Parallel and Distributed Processing Symposium. IPDPS *16. IEEE,
2016, pp. 413—422. por: 10.1109/IPDPS.2016.49,

Chamberlain, B., Callahan, D., and Zima, H. “Parallel Programmability and the
Chapel Language”. In: The International Journal of High Performance Computing
Applications 21.3 (Aug. 2007), pp. 291-312. 1ssN: 1094-3420, 1741-2846. por: 10.
1177/1094342007078442.

Chasapis, D., Casas, M., Moret6, M., Schulz, M., Ayguadé, E., Labarta, J., and Valero,
M. “Runtime-Guided Mitigation of Manufacturing Variability in Power-Constrained
Multi-Socket NUMA Nodes”. In: Proceedings of the 2016 International Conference on
Supercomputing. 1CS *16. Istanbul, Turkey: ACM, 2016. 1sBN: 9781450343619. por:
10.1145/2925426.2926279.

Chasapis, D., Casas, M., Moret6, M., Vidal, R., Ayguadé, E., Labarta, J., and Valero, M.
“PARSECSs: Evaluating the Impact of Task Parallelism in the PARSEC Benchmark

Suite”. In: Transactions on Architecture and Code Optimization 12.4 (Dec. 2015),
41:1-41:22.

Chasapis, D., Moret6, M., Schulz, M., Rountree, B., Valero, M., and Casas, M.
“Power Efficient Job Scheduling by Predicting the Impact of Processor Manufacturing
Variability”. In: Proceedings of the International Conference on Supercomputing.
ICS ’19. Phoenix, Arizona: ACM, 2019, pp. 296-307. 1sBn: 9781450360791. por:
10.1145/3330345.3330372.

Chen, W., Liu, P., and Stelzer, K. Implementation of a pseudo-LRU algorithm in a
partitioned cache. US Patent 7,069,390. June 2006.

Chronaki, K., Rico, A., Badia, R. M., Ayguadé, E., Labarta, J., and Valero, M.

“Criticality-Aware Dynamic Task Scheduling for Heterogeneous Architectures”. In:

115

http://dx.doi.org/10.1109/HPCA.2018.00033
http://dx.doi.org/10.1109/IPDPS.2016.49
http://dx.doi.org/10.1177/1094342007078442
http://dx.doi.org/10.1177/1094342007078442
http://dx.doi.org/10.1145/2925426.2926279
http://dx.doi.org/10.1145/3330345.3330372

BIBLIOGRAPHY

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Proceedings of the 29th International Conference on Supercomputing. ICS *15. ACM,
2015, pp. 329-338. 1sBN: 978-1-4503-3559-1. por: 10.1145/2751205.2751235.

Chronaki, K., Rico, A., Casas, M., Moretd, M., Badia, R. M., Ayguadé, E., Labarta, J.,
and Valero, M. “Task Scheduling Techniques for Asymmetric Multi-Core Systems”. In:
IEEE Transactions on Parallel and Distributed Systems 28.7 (July 2017), pp. 2074-2087.
1ssN: 1045-9219. por: 10.1109/TPDS.2016.2633347.

Ciesko, J., Mateo, S., Teruel, X., Beltran, V., Martorell, X., and Labarta, J. “Boosting
irregular array Reductions through In-lined Block-ordering on fast processors”. In: 2015
IEEE High Performance Extreme Computing Conference (HPEC). Sept. 2015, pp. 1-6.
por: 10.1109/HPEC.2015.7322443.

Ciesko, J., Mateo, S., Teruel, X., Martorell, X., Ayguadé, E., and Labarta, J. “Supporting
Adaptive Privatization Techniques for Irregular Array Reductions in Task-Parallel
Programming Models”. In: OpenMP: Memory, Devices, and Tasks: 12th International
Workshop on OpenMP, IWOMP 2016, Nara, Japan, October 5-7, 2016, Proceedings.
2016, pp. 336-349. por: 10.1007/978-3-319-45550-1_24.

Dally, B. “The future of GPU computing”. In: Proceedings of the 22nd Annual
Supercomputing Conference. SC’09. Nov. 2009.

Dally, W. J., Labonte, F., Das, A., Hanrahan, P., Ahn, J.-H., Gummaraju, J., Erez, M.,
Jayasena, N., Buck, I., Knight, T. J., and Kapasi, U. J. “Merrimac: Supercomputing with
Streams”. In: Supercomputing, 2003 ACM/IEEE Conference. Nov. 2003, pp. 35-35.
por: 10.1145/1048935.1050187.

Dally, W. J. and Towles, B. P. Principles and Practices of Interconnection Networks. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2004. 1sBn: 9780080497808.

Davis, T. and Hu, Y. “The University of Florida Sparse Matrix Collection”. In: ACM
Transactions on Mathematical Software 38.1 (2011), pp. 1-25. 1ssn: 0098-3500. por:
10.1145/2049662.2049663.

De Gonzalo, S. G., Huang, S., Gémez-Luna, J., Hammond, S., Mutlu, O., and Hwu,
W.-m. “Automatic Generation of Warp-level Primitives and Atomic Instructions for Fast
and Portable Parallel Reduction on GPUs”. In: Proceedings of the 2019 International
Symposium on Code Generation and Optimization. CGO ’19. Washington, DC, USA,
2019, pp. 73-84. 1sBN: 978-1-7281-1436-1.

116

http://dx.doi.org/10.1145/2751205.2751235
http://dx.doi.org/10.1109/TPDS.2016.2633347
http://dx.doi.org/10.1109/HPEC.2015.7322443
http://dx.doi.org/10.1007/978-3-319-45550-1_24
http://dx.doi.org/10.1145/1048935.1050187
http://dx.doi.org/10.1145/2049662.2049663

BIBLIOGRAPHY

[52]

[53]
[54]

[55]

[56]

[57]

[58]

[59]

[60]

Dennard, R. H., Gaensslen, F. H., Yu, H.-n., Rideout, V. L., Bassous, E., Andre,
and Leblanc, R. “Design of Ion-implanted MOSFETs with Very Small Physical
Dimensions”. In: IEEE Journal of Solid-State Circuits 9.5 (Oct. 1974), pp. 256-268.
por: 10.1109/JSSC.1974.1050511.

Dimi¢, V. Array Scan Benchmark. https://github.com/vdimic/scan-benchmark. 2020.

Dimi¢, V. Reduction Benchmarks. https://github.com/vdimic/reduction-benchmarks.
2020.

Dimi¢, V. and Dziegielewska, O. “Metaheuristics Based Approach for Parallelizing
Applications in On-Chip Multiprocessor”. In: ACACES’ 14: Advanced Computer Archi-
tecture and Compilation for Embedded Systems 2014 Poster Abstracts. Poster abstract.
2014.

Dimi¢, V., Moretd, M., Casas, M., Ciesko, J., and Valero, M. “RICH: Implementing Re-
ductions in the Cache Hierarchy”. In: 2020 International Conference on Supercomputing.
ICS ’20. New York, NY, USA: ACM, 2020, 13 pages. por: 10.1145/3392717.3392736.

Dimié, V., Moret6, M., Casas, M., and Valero, M. PrioRAT: Criticality-Driven Prioriti-

zation Inside the On-Chip Memory Hierarchy. (under submission).

Dimié, V., Moret6, M., Casas, M., and Valero, M. “Runtime-Assisted Shared Cache
Insertion Policies Based on Re-reference Intervals”. In: Euro-Par 2017: Parallel
Processing - 23rd International Conference on Parallel and Distributed Computing,
Santiago de Compostela, Spain, August 28 - September 1, 2017, Proceedings. Ed. by
F. F. Rivera, T. F. Pena, and J. C. Cabaleiro. Vol. 10417. Lecture Notes in Computer
Science. Springer, 2017, pp. 247-259. por: 10.1007/978-3-319-64203-1_18.

Dimié, V., Moretd, M., Casas, M., and Valero, M. “Runtime-Assisted Shared Cache
Insertion Policies Based on Re-reference Intervals”. In: RoMoL Final Workshop. Poster

without proceedings. Mar. 2018.
Duran, A., Ayguadé, E., Badia, R. M., Labarta, J., Martinell, L., Martorell, X., and Planas,

J. “OmpSs: a Proposal for Programming Heterogeneous Multi-Core Architectures.”
In: Parallel Processing Letters 21.2 (2011), pp. 173—-193. 1ssn: 0129-6264. por:
10.1142/S0129626411000151.

117

http://dx.doi.org/10.1109/JSSC.1974.1050511
https://github.com/vdimic/scan-benchmark
https://github.com/vdimic/reduction-benchmarks
http://dx.doi.org/10.1145/3392717.3392736
http://dx.doi.org/10.1007/978-3-319-64203-1_18
http://dx.doi.org/10.1142/S0129626411000151

BIBLIOGRAPHY

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Egielski, I. J., Huang, J., and Zhang, E. Z. “Massive Atomics for Massive Parallelism on
GPUs”. In: Proceedings of the 2014 International Symposium on Memory Management.
ISMM ’14. Edinburgh, United Kingdom, 2014, pp. 93—103. 1sBn: 978-1-4503-2921-7.
por: 10.1145/2602988.2602993.

Etsion, Y., Cabarcas, F., Rico, A., Ramirez, A., Badia, R. M., Ayguadé, E., Labarta, J.,
and Valero, M. “Task Superscalar: An Out-of-Order Task Pipeline”. In: Proceedings
of the 43rd Annual International Symposium on Microarchitecture. MICRO 43. 2010,
pp- 89-100. por: 10.1109/MICRO.2010.13.

Fang, Z., Zhang, L., Carter, J. B., McKee, S. A., Ibrahim, A., Parker, M. A., and Jiang,
X. “Active memory controller”. In: The Journal of Supercomputing 62.1 (Oct. 2012),
pp. 510-549. 1ssN: 1573-0484. por: 10.1007/s11227-011-0735-9.

Forum, M. P. I. MPI: A Message-Passing Interface Standard Version 3.1. Standard.
June 2015.

Gao, F., Tziantzioulis, G., and Wentzlaff, D. “ComputeDRAM: In-Memory Compute
Using Off-the-Shelf DRAMS”. In: Proceedings of the 52Nd Annual International
Symposium on Microarchitecture. MICRO °52. Columbus, OH, USA: ACM, 2019,
pp. 100-113. 1sBN: 978-1-4503-6938-1. por: 10.1145/3352460.3358260.

Garcia, V., Rico, A., Villavieja, C., Carpenter, P., Navarro, N., and Ramirez, A.
“Adaptive Runtime-Assisted Block Prefetching on Chip-Multiprocessors”. In: Inter-
national Journal of Parallel Programming (2016), pp. 1-21. 1ssn: 1573-7640. por:
10.1007/s10766-016-0431-8.

Garzaran, M. J., Prvulovic, M., Zhang, Y., Torrellas, J., Jula, A., Yu, H., and Rauchw-
erger, L. “Architectural Support for Parallel Reductions in Scalable Shared-Memory
Multiprocessors”. In: PACT "01. 2001, pp. 243-254. por: 10.1109/PACT.2001.953304.

Gonzalez-Mesa, M. A., Quislant, R., Gutierrez, E., and Plata, O. “Exploring Irregular
Reduction Support in Transactional Memory”. In: Algorithms and Architectures for
Farallel Processing. Ed. by J. Kotodziej, B. Di Martino, D. Talia, and K. Xiong. 2013,
pp. 257-266. por: 10.1007/978-3-319-03859-9 22,

Gottlieb, A., Grishman, R., Kruskal, C. P., McAulifte, K. P., Rudolph, L., and Snir, M.
“The NYU Ultracomputer-Designing an MIMD Shared Memory Parallel Computer”.
In: IEEE Transactions on Computers C-32.2 (Feb. 1983), pp. 175-189. por: 10.1109/
TC.1983.1676201.

118

http://dx.doi.org/10.1145/2602988.2602993
http://dx.doi.org/10.1109/MICRO.2010.13
http://dx.doi.org/10.1007/s11227-011-0735-9
http://dx.doi.org/10.1145/3352460.3358260
http://dx.doi.org/10.1007/s10766-016-0431-8
http://dx.doi.org/10.1109/PACT.2001.953304
http://dx.doi.org/10.1007/978-3-319-03859-9_22
http://dx.doi.org/10.1109/TC.1983.1676201
http://dx.doi.org/10.1109/TC.1983.1676201

BIBLIOGRAPHY

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]
[78]
[79]
[80]

[81]

[82]

Gutierrez, E., Plata, O., and Zapata, E. L. “Improving Parallel Irregular Reductions
Using Partial Array Expansion”. In: Supercomputing, ACM/IEEE 2001 Conference.
Nov. 2001, pp. 56-56. por: 10.1145/582034.582072.

Han, H. and Tseng, C.-W. “Improving Compiler and Run-Time Support for Irregular
Reductions Using Local Writes”. In: Proceedings of the 11th International Workshop
on Languages and Compilers for Parallel Computing. LCPC *98. 1999, pp. 181-196.
1SBN: 3-540-66426-2. por: 10.1007/3-540-48319-5_12.

Han, H. and Tseng, C.-W. “A comparison of parallelization techniques for irregular re-
ductions”. In: Proceedings of the 15th International Parallel and Distributed Processing
Symposium. IPDPS "01. 2001, p. 27. por: 10.1109/IPDPS.2001.924963.

Accelerating Dependent Cache Misses with an Enhanced Memory Controller. ISCA
"16. Seoul, Republic of Korea: IEEE Press, 2016, pp. 444—455. 1sBN: 9781467389471.
por: 10.1109/ISCA.2016.46.

Hennessy, J. L. and Patterson, D. A. Computer Architecture, Fifth Edition: A Quantitative
Approach. 5th. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2011.
1sBN: 012383872X.

Herlihy, M. and Moss, J. E. B. “Transactional Memory: Architectural Support for Lock-
free Data Structures”. In: Proceedings of the 20th Annual International Symposium
on Computer Architecture. ISCA *93. San Diego, CA, USA, 1993, pp. 289-300. por:
10.1145/165123.165164.

Hutton, G. “A tutorial on the universality and expressiveness of fold”. In: Journal of
Functional Programming 9.4 (1999), pp. 355-372.

IBM Corporation. IBM System/360 Model 85 Functional Characteristics. 1968.
IBM Corporation. Power ISA Version 3.0 B. Mar. 2017.
IBM Corporation. Power9 Processor User’s Manual. version 2.0. Apr. 2018.

IEEE Standards Association. Standard for Information Technology—Portable Operating
System Interface (POSIX®) - System Application Program Interface (API) Amendment
2: Threads Extension (C Language). Standard. 1003.1¢c-1995. June 1995.

Intel 64 and IA-32 Architectures Optimization Reference Manual. Intel Corporation.
2016.

Intel Corporation. Intel® Cilk ™ Plus Language Extension Specification. Sept. 2013.

119

http://dx.doi.org/10.1145/582034.582072
http://dx.doi.org/10.1007/3-540-48319-5_12
http://dx.doi.org/10.1109/IPDPS.2001.924963
http://dx.doi.org/10.1109/ISCA.2016.46
http://dx.doi.org/10.1145/165123.165164

BIBLIOGRAPHY

[83]
[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

Intel Corporation. Intel ® Xeon ® Scalable Processors. Product Overview. 2020.

International Organization for Standardization (ISO), Technical Committee SO/IEC JTC
1/SC 22. Standard for Programming Language C++. International Standard ISO/IEC
14882:2011. 2011.

Ipek, E., Mutlu, O., Martinez, J. F., and Caruana, R. “Self-Optimizing Memory
Controllers: A Reinforcement Learning Approach”. en. In: Proceedings of the 35th
International Symposium on Computer Architecture. ISCA *08. Beijing, China: IEEE,
June 2008, pp. 39-50. 1sBN: 978-0-7695-3174-8. por: 10.1109/ISCA.2008.21.

ITRS Working Group. The International Technology Roadmap For Semiconductors:
Interconnect. Tech. rep. 2009.

Jain, A. and Lin, C. “Back to the Future: Leveraging Belady’s Algorithm for Improved
Cache Replacement”. In: Proceedings of the 43rd International Symposium on Computer
Architecture. ISCA *16. Seoul, Republic of Korea: IEEE Press, 2016, pp. 78-89. 1sBN:
9781467389471. por: 10.1109/ISCA.2016.17.

Jaleel, A., Theobald, K. B., Steely Jr., S. C., and Emer, J. “High Performance Cache
Replacement Using Re-reference Interval Prediction (RRIP)”. In: SIGARCH Computer
Architecture News 38.3 (June 2010), pp. 60-71.

Jaulmes, L. “Exploiting Task-Based Programming Models for Resilience”. PhD thesis.

Universitat Politecnica de Catalunya, 2019.

Jaulmes, L., Casas, M., Moret6, M., Ayguadé, E., Labarta, J., and Valero, M. “Exploiting
Asynchrony from Exact Forward Recovery for DUE in Iterative Solvers”. In: Proceedings
of the International Conference for High Performance Computing, Networking, Storage
and Analysis. SC °15. Austin, Texas: ACM, 2015. 1sBN: 9781450337236. por: 10.1145/
2807591.2807599.

Jaulmes, L., Moret6, M., Ayguadé, E., Labarta, J., Valero, M., and Casas, M. “Asyn-
chronous and Exact Forward Recovery for Detected Errors in Iterative Solvers”. In:
IEEE Transactions on Parallel and Distributed Systems 29.9 (2018), pp. 1961-1974.
por: 10.1109/TPDS.2018.2817524.

Jaulmes, L., Moreto, M., Valero, M., and Casas, M. “A Vulnerability Factor for ECC-
protected Memory”. In: Proceedings of the 25th International Symposium on On-Line
Testing and Robust System Design. IOLTS *19. IEEE, July 2019, pp. 176-181. por:
10.1109/10LTS.2019.8854397.

120

http://dx.doi.org/10.1109/ISCA.2008.21
http://dx.doi.org/10.1109/ISCA.2016.17
http://dx.doi.org/10.1145/2807591.2807599
http://dx.doi.org/10.1145/2807591.2807599
http://dx.doi.org/10.1109/TPDS.2018.2817524
http://dx.doi.org/10.1109/IOLTS.2019.8854397

BIBLIOGRAPHY

[93]
[94]
[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

JEDEC. DDR4 SDRAM Standard. Specification. JESD79-4C. Jan. 2020.
JEDEC. High Bandwidth Memory (HBM) DRAM. Specification. JESD235C. Jan. 2020.

Jeloka, S., Akesh, N., Sylvester, D., and Blaauw, D. “A 28 nm Configurable Memory
(TCAM/BCAM/SRAM) Using Push-Rule 6T Bit Cell Enabling Logic-in-Memory”. In:
IEEE Journal of Solid-State Circuits 51 (Apr. 2016), pp. 1-1. por: 10.1109/JSSC.2016.
2515510.

Jiménez, D. A. “Insertion and Promotion for Tree-based PseudoLLRU Last-level Caches”.

In: Proceedings of the 46th Annual International Symposium on Microarchitecture.
MICRO-46. Davis, California: ACM, 2013, pp. 284-296.

Kale, L. V. and Krishnan, S. “CHARM++: A Portable Concurrent Object Oriented
System Based on C++”. In: Proceedings of the Eighth Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications. OOPSLA *93. Washing-
ton, D.C., USA: ACM, 1993, pp. 91-108. 1sBN: 0897915879. por: 10.1145/165854.
165874.

Kang, M., Kim, E., Keel, M.-S., and Shanbhag, N. “Energy-efficient and high throughput
sparse distributed memory architecture”. In: ISCAS *15 2015 (July 2015), pp. 2505—
2508. por: 10.1109/ISCAS.2015.7169194.

Karlin, 1., Keasler, J., and Neely, R. LULESH 2.0 Updates and Changes. Tech. rep.
LLNL-TR-641973. Livermore, CA, Aug. 2013, pp. 1-9.

Kautz, W. H. “Cellular Logic-in-Memory Arrays”. In: IEEE Transactions on Computers
C-18.8 (Aug. 1969), pp. 719-727. 1ssn: 0018-9340. por: 10.1109/T-C.1969.222754.

Keckler, S. W., Dally, W. J., Khailany, B., Garland, M., and Glasco, D. “GPUs and
the Future of Parallel Computing”. In: IEEE Micro 31.5 (Sept. 2011), pp. 7-17. 1ssN:
0272-1732. por: 10.1109/MM.2011.89.

Kessler, R. E. and Schwarzmeier, J. L. “Cray T3D: a new dimension for Cray Research”.
In: Digest of Papers. Compcon Spring. IEEE, Feb. 1993, pp. 176—182. por: 10.1109/
CMPCON.1993.289660.

Khan, S., Tian, Y., and Jimenez, D. “Sampling Dead Block Prediction for Last-
Level Caches”. In: Proceedings of the 43rd Annual International Symposium on
Microarchitecture. MICRO-43. 1IEEE, Dec. 2010, pp. 175-186. por: 10.1109/MICRO.
2010.24.

121

http://dx.doi.org/10.1109/JSSC.2016.2515510
http://dx.doi.org/10.1109/JSSC.2016.2515510
http://dx.doi.org/10.1145/165854.165874
http://dx.doi.org/10.1145/165854.165874
http://dx.doi.org/10.1109/ISCAS.2015.7169194
http://dx.doi.org/10.1109/T-C.1969.222754
http://dx.doi.org/10.1109/MM.2011.89
http://dx.doi.org/10.1109/CMPCON.1993.289660
http://dx.doi.org/10.1109/CMPCON.1993.289660
http://dx.doi.org/10.1109/MICRO.2010.24
http://dx.doi.org/10.1109/MICRO.2010.24

BIBLIOGRAPHY

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

Kharbutli, M. and Solihin, D. “Counter-Based Cache Replacement and Bypassing
Algorithms”. In: IEEE Transactions on Computers 57.4 (Apr. 2008), pp. 433—-447. por:
10.1109/TC.2007.70816.

Kim, H., Sim, J., Choi, Y., and Kim, L. “NAND-Net: Minimizing Computational
Complexity of In-Memory Processing for Binary Neural Networks”. In: Proceedings of
the 25th International Symposium on High Performance Computer Architecture. HPCA
"19. Feb. 2019, pp. 661-673. por: 10.1109/HPCA.2019.00017.

Kim, Y., Han, D., Mutlu, O., and Harchol-Balter, M. “ATLAS: A scalable and high-
performance scheduling algorithm for multiple memory controllers”. In: Proceedings

of The 16th International Symposium on High-Performance Computer Architecture.
HPCA ’10. Jan. 2010, pp. 1-12. por: 10.1109/HPCA.2010.5416658.

Kim, Y., Seshadri, V., Lee, D., Liu, J., and Mutlu, O. “A Case for Exploiting Subarray-
Level Parallelism (SALP) in DRAM”. In: Proceedings of the 39th Annual International
Symposium on Computer Architecture. ISCA ’12. Portland, Oregon: IEEE Computer
Society, 2012, pp. 368-379. 1sBN: 9781450316422.

Kim, Y.-B. and Chen, T. W. “Assessing merged DRAM/Logic technology”. In: Integra-
tion 27.2 (1999), pp. 179-194. 1ssn: 0167-9260. por: 10.1016/S0167-9260(99)00006-1.

Komatitsch, D. and Tromp, J. “Introduction to the spectral-element method for 3-

D seismic wave propagation”. In: Geophysical Journal International 139.3 (1999),
pp- 806-822.

Kozyrakis, C. E., Perissakis, S., Patterson, D., Anderson, T., Asanovic, K., Cardwell,
N., Fromm, R., Golbus, J., Gribstad, B., Keeton, K., Thomas, R., Treuhaft, N., and
Yelick, K. “Scalable Processors in the Billion-Transistor Era: IRAM”. In: Computer
30.9 (Sept. 1997), pp. 75-78. 1ssn: 0018-9162. por: 10.1109/2.612252.

Kumar, S., Hughes, C. J., and Nguyen, A. “Carbon: Architectural Support for Fine-
grained Parallelism on Chip Multiprocessors”. In: Proceedings of the 34th Annual
International Symposium on Computer Architecture. ISCA °07. ACM, 2007, pp. 162—
173. 1sBN: 978-1-59593-706-3. por: 10.1145/1250662.1250683.

Laudon, J. and Lenoski, D. “The SGI Origin: A ccNUMA Highly Scalable Server”. In:
SIGARCH Computer Architecture News 25.2 (May 1997), pp. 241-251. 1ssn: 0163-5964.
por: 10.1145/384286.264206.

122

http://dx.doi.org/10.1109/TC.2007.70816
http://dx.doi.org/10.1109/HPCA.2019.00017
http://dx.doi.org/10.1109/HPCA.2010.5416658
http://dx.doi.org/10.1016/S0167-9260(99)00006-1
http://dx.doi.org/10.1109/2.612252
http://dx.doi.org/10.1145/1250662.1250683
http://dx.doi.org/10.1145/384286.264206

BIBLIOGRAPHY

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

Le Chevalier, F., Montecot, M., Doisy, Y., Letestu, F., and Chevalier, P. “STAP
developments in Thales”. In: 2009 European Radar Conference. EURAD °09. IEEE,
Jan. 2009, pp. 53-56. 1sBN: 978-1-4244-4747-3.

Lee, D. U, Kim, K. W., Kim, K. W., Kim, H., Kim, J. Y., Park, Y. J., Kim, J. H.,
Kim, D. S., Park, H. B., Shin, J. W., Cho, J. H., Kwon, K. H., Kim, M. J., Lee, J., Park,
K. W., Chung, B., and Hong, S. “25.2 A 1.2V 8Gb 8-channel 128GB/s high-bandwidth
memory (HBM) stacked DRAM with effective microbump I/O test methods using 29nm
process and TSV”. In: Digest of Technical Papers of International Solid-State Circuits
Conference. ISSCC *14. 2014, pp. 432-433. por: 10.1109/ISSCC.2014.6757501.

Li, S., Ahn, J. H., Strong, R., Brockman, J., Tullsen, D., and Jouppi, N. “McPAT:
An Integrated Power, Area, and Timing Modeling Framework for Multicore and
Manycore Architectures”. In: Proceedings of the 42nd Annual International Symposium
on Microarchitecture. MICRO-42. New York, New York, 2009, pp. 469—480. 1sBN:
978-1-60558-798-1. por: 10.1145/1669112.1669172.

Li, S., Niu, D., Malladi, K. T., Zheng, H., Brennan, B., and Xie, Y. “DRISA: A
DRAM-Based Reconfigurable In-Situ Accelerator”. In: Proceedings of the 50th Annual

International Symposium on Microarchitecture. MICRO-50. Cambridge, Massachusetts:
ACM, 2017, pp. 288-301. 1sBN: 9781450349529. por: 10.1145/3123939.3123977.

Liu, H., Chen, Y., Liao, X., Jin, H., He, B., Zheng, L., and Guo, R. “Hardware/Software
Cooperative Caching for Hybrid DRAM/NVM Memory Architectures”. In: Proceedings
of the International Conference on Supercomputing. ICS °17. 2017, 26:1-26:10. por:
10.1145/3079079.3079089.

Manivannan, M., Papaefstathiou, V., Pericas, M., and Stenstrom, P. “RADAR: Runtime-
assisted dead region management for last-level caches”. In: Proceedings of the 22nd

International Symposium on High Performance Computer Architecture. HPCA ’16.
Mar. 2016, pp. 644—656. por: 10.1109/HPCA.2016.7446101.

Manivannan, M., Pericds, M., Papaefstathiou, V., and Stenstrom, P. “Global Dead-Block

Management for Task-Parallel Programs”. In: ACM Transactions on Architecture and
Code Optimization 15.3 (Sept. 2018), pp. 1-25. 1ssN: 15443566. por: 10.1145/3234337.

McMahon, F. H. The Livermore Fortran Kernels: A Computer Test of the Numerical
Performance Range. Tech. rep. UCRL-53745. Lawrence Livermore National Laboratory,
Dec. 1986.

123

http://dx.doi.org/10.1109/ISSCC.2014.6757501
http://dx.doi.org/10.1145/1669112.1669172
http://dx.doi.org/10.1145/3123939.3123977
http://dx.doi.org/10.1145/3079079.3079089
http://dx.doi.org/10.1109/HPCA.2016.7446101
http://dx.doi.org/10.1145/3234337

BIBLIOGRAPHY

[121]

[122]
[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

Micron. MT40A 8Gb: x4, x8, x16 DDR4 SDRAM Features. Specification. CCMTD-
1725822587-9875. Apr. 2020.

MIPS 1V Instruction Set, Revision 3.2. MIPS Technologies, Inc. 1995.

Moore, G. E. “Cramming More Components onto Integrated Circuits”. In: Electronics
38.8 (Apr. 1965), pp. 114-117.

Moore, G. E. “Progress in digital integrated electronics”. In: Electron Devices Meeting,
1975 International. Vol. 21. 1975, pp. 11-13.

Mukkara, A., Beckmann, N., and Sanchez, D. “PHI: Architectural Support for
Synchronization- and Bandwidth-Efficient Commutative Scatter Updates”. In: Proceed-
ings of the 52nd Annual International Symposium on Microarchitecture. MICRO-52.
Columbus, OH, USA, 2019, pp. 1009-1022. 1sBn: 9781450369381. por: 10.1145/
3352460.3358254.

Muralimanohar, N., Balasubramonian, R., and Jouppi, N. “Optimizing NUCA Organi-
zations and Wiring Alternatives for Large Caches with CACTI 6.0”. In: Proceedings
of the 40th Annual International Symposium on Microarchitecture. MICRO-40. IEEE
Computer Society, 2007, pp. 3—14. 1sBN: 0-7695-3047-8. por: 10.1109/MICRO.2007.30.

Muralimanohar, N., Balasubramonian, R., and Jouppi, N. CACTI 6.0: A Tool to
Understand Large Caches. Tech. rep. 2009.

Mutlu, O. and Moscibroda, T. “Parallelism-Aware Batch Scheduling: Enabling High-
Performance and Fair Shared Memory Controllers”. In: IEEE Micro 29.1 (Jan. 2009),
pp- 22-32. 1ssN: 0272-1732. por: 10.1109/MM.2009.12.

Mutlu, O. and Moscibroda, T. “Stall-Time Fair Memory Access Scheduling for Chip
Multiprocessors”. In: Proceedings of the 40th Annual International Symposium on
Microarchitecture. MICRO 40. USA: IEEE Computer Society, 2007, pp. 146—160.
1sBN: 0769530478. por: 10.1109/MICRO.2007.40.

Nai, L., Hadidi, R., Sim, J., Kim, H., Kumar, P., and Kim, H. “GraphPIM: Enabling
Instruction-Level PIM Offloading in Graph Computing Frameworks”. In: Proceedings

of the 23rd International Symposium on High Performance Computer Architecture.
HPCA ’17. Feb. 2017, pp. 457—468. por: 10.1109/HPCA.2017.54.

124

http://dx.doi.org/10.1145/3352460.3358254
http://dx.doi.org/10.1145/3352460.3358254
http://dx.doi.org/10.1109/MICRO.2007.30
http://dx.doi.org/10.1109/MM.2009.12
http://dx.doi.org/10.1109/MICRO.2007.40
http://dx.doi.org/10.1109/HPCA.2017.54

BIBLIOGRAPHY

[131]

[132]

[133]

[134]
[135]

[136]

[137]

[138]

[139]
[140]

Nair, R., Antao, S. F., Bertolli, C., Bose, P., Brunheroto, J. R., Chen, T., Cher, C., Costa,
C. H. A, Doi, J., Evangelinos, C., Fleischer, B. M., Fox, T. W., Gallo, D. S., Grinberg,
L., Gunnels, J. A., Jacob, A. C., Jacob, P., Jacobson, H. M., Karkhanis, T., Kim, C.,
Moreno, J. H., O?Brien, J. K., Ohmacht, M., Park, Y., Prener, D. A., Rosenburg, B. S.,
Ryu, K. D., Sallenave, O., Serrano, M. J., Siegl, P. D. M., Sugavanam, K., and Sura, Z.
“Active Memory Cube: A Processing-In-Memory Architecture for Exascale Systems”.
In: IBM Journal of Research and Development. Mar. 2015.

Nesbit, K. J., Aggarwal, N., Laudon, J., and Smith, J. E. “Fair Queuing Memory Systems”.
In: Proceedings of the 39th Annual International Symposium on Microarchitecture.
MICRO-39. 2006, pp. 208-222. por: 10.1109/MICRO.2006.24.

Nguyen, T. M. and Wentzlaff, D. “MORC: A Manycore-oriented Compressed Cache”.
In: Proceedings of the 48th International Symposium on Microarchitecture. MICRO-48.
Waikiki, Hawaii: ACM, 2015, pp. 76-88. 1sBN: 978-1-4503-4034-2. por: 10.1145/
2830772.2830828.

Oaks, S. and Wong, H. Java Threads. 3rd. 2009. 1sBN: 978-0-596-00782-9.

OpenMP Architecture Review Board. OpenMP Application Program Interface, v3.0.
2008.

OpenMP Architecture Review Board. OpenMP Application Program Interface, v4.0.
2013.

OpenMP Architecture Review Board. OpenMP Technical Report 4 Version 5.0 Preview
1. Nov. 2016.

Papaefstathiou, V., Katevenis, M. G., Nikolopoulos, D. S., and Pnevmatikatos, D.
“Prefetching and Cache Management Using Task Lifetimes”. In: Proceedings of the
27th International Conference on International Conference on Supercomputing. ICS
"13. Eugene, Oregon, USA: ACM, 2013, pp. 325-334. 1sBN: 978-1-4503-2130-3. por:
10.1145/2464996.2465443.

Pawlowski, J. T. “Hybrid Memory Cube (HMC)”. In: HOT CHIPS 23 (Aug. 2011).

Peiron, M., Valero, M., Ayguadé, E., and Lang, T. “Vector Multiprocessors with Arbi-
trated Memory Access”. In: Proceedings of the 22nd Annual International Symposium
on Computer Architecture. ISCA °95. S. Margherita Ligure, Italy: ACM, 1995, pp. 243—
252. 1sBN: 0897916980. por: 10.1145/223982.224435.

125

http://dx.doi.org/10.1109/MICRO.2006.24
http://dx.doi.org/10.1145/2830772.2830828
http://dx.doi.org/10.1145/2830772.2830828
http://dx.doi.org/10.1145/2464996.2465443
http://dx.doi.org/10.1145/223982.224435

BIBLIOGRAPHY

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

Plattner, H. and Zeier, A. In-Memory Data Management: Technology and Applications.
Springer Berlin Heidelberg, 2012. 1sBN: 9783642295744,

Pottenger, W. M. “The Role of Associativity and Commutativity in the Detection and
Transformation of Loop-level Parallelism”. In: Proceedings of the 12th International
Conference on Supercomputing. ICS 98. Melbourne, Australia, 1998, pp. 188-195.
1sBN: 0-89791-998-X. por: 10.1145/277830.277870.

Powell, M., Yang, S.-H., Falsafi, B., Roy, K., and Vijaykumar, T. N. “Gated-Vdd:
A Circuit Technique to Reduce Leakage in Deep-submicron Cache Memories”. In:
Proceedings of the 2000 International Symposium on Low Power Electronics and
Design. ISLPED ’00. Rapallo, Italy, 2000, pp. 90-95. 1sBN: 1-58113-190-9. por:
10.1145/344166.344526.

Qureshi, M., Jaleel, A., Patt, Y., Steely, S., and Emer, J. “Set-Dueling-Controlled
Adaptive Insertion for High-Performance Caching”. In: IEEE Micro 28.1 (Jan. 2008),
pp- 91-98.

Qureshi, M. K., Jaleel, A., Patt, Y. N., Steely, S. C., and Emer, J. “Adaptive Insertion Poli-
cies for High Performance Caching”. In: Proceedings of the 34th Annual International

Symposium on Computer Architecture. ISCA *07. 2007, pp. 381-391.

Qureshi, M. K., Lynch, D. N., Mutlu, O., and Patt, Y. N. “A Case for MLP-Aware
Cache Replacement”. In: Proceedings of the 33rd Annual International Symposium on
Computer Architecture. ISCA 06. 2006, pp. 167-178.

Rico, A., Cabarcas, F., Villavieja, C., Pavlovic, M., Vega, A., Etsion, Y., Ramirez,
A., and Valero, M. “On the Simulation of Large-scale Architectures Using Multiple
Application Abstraction Levels”. In: ACM Transactions on Architecture and Code
Optimization 8.4 (Jan. 2012), 36:1-36:20. por: 10.1145/2086696.2086715.

Rico, A., Duran, A., Cabarcas, F., Etsion, Y., Ramirez, A., and Valero, M. “Trace-
driven simulation of multithreaded applications”. In: Proceedings of the International
Symposium on Performance Analysis of Systems and Software. ISPASS *11. Apr. 2011,
pp. 87-96. por: 10.1109/ISPASS.2011.5762718.

Rixner, S., Dally, W. J., Kapasi, U. J., Mattson, P., and Owens, J. D. “Memory Access
Scheduling”. In: Proceedings of the 27th Annual International Symposium on Computer
Architecture. ISCA ’00. Vancouver, British Columbia, Canada: ACM, 2000, pp. 128—
138. 1sBN: 1581132328. por: 10.1145/339647.339668.

126

http://dx.doi.org/10.1145/277830.277870
http://dx.doi.org/10.1145/344166.344526
http://dx.doi.org/10.1145/2086696.2086715
http://dx.doi.org/10.1109/ISPASS.2011.5762718
http://dx.doi.org/10.1145/339647.339668

BIBLIOGRAPHY

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

Rotenberg, E., Bennett, S., and Smith, J. E. “Trace Cache: a Low Latency Approach to
High Bandwidth Instruction Fetching”. In: Proceedings of the 29th Annual International
Symposium on Microarchitecture. MICRO-29. Paris, France: IEEE Computer Society,
1996, pp. 24-35. 1sBN: 0818676418.

Rupp, K. Microprocessor Trend Data. https://github.com/karlrupp/microprocessor-
trend-data. 2018.

Sénchez Barrera, 1., Casas, M., Moret6, M., Ayguadé, E., Labarta, J., and Valero,
M. “Graph Partitioning Applied to DAG Scheduling to Reduce NUMA Effects”. In:
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. PPoPP *18. ACM, 2018, pp. 419-420. 1sBN: 978-1-4503-4982-6.
por: 10.1145/3178487.3178535.

Sénchez Barrera, 1., Moret6, M., Ayguadé, E., Labarta, J., Valero, M., and Casas,
M. “Reducing Data Movement on Large Shared Memory Systems by Exploiting
Computation Dependencies”. In: Proceedings of the 2018 International Conference on
Supercomputing. ICS *18. ACM, 2018, pp. 207-217. 1sBN: 978-1-4503-5783-8. por:
10.1145/3205289.3205310.

Sartor, J., Venkiteswaran, S., McKinley, K., and Wang, Z. “Cooperative caching with
keep-me and evict-me”. In: Proceedings of the 9th Annual Workshop on Interaction
between Compilers and Computer Architectures. INTERACT-9. Feb. 2005, pp. 46-57.

Scott, S. L. “Synchronization and Communication in the T3E Multiprocessor”. In:
SIGPLAN Notices 31.9 (Sept. 1996), pp. 26-36. 1ssn: 0362-1340. por: 10.1145/248209.
237144.

Seshadri, V., Kim, Y., Fallin, C., Lee, D., Ausavarungnirun, R., Pekhimenko, G., Luo, Y.,
Mutlu, O., Gibbons, P. B., Kozuch, M. A., and Mowry, T. C. “RowClone: Fast and Energy-
Efficient in-DRAM Bulk Data Copy and Initialization”. In: Proceedings of the 46th
Annual International Symposium on Microarchitecture. MICRO-46. Davis, California:
ACM, 2013, pp. 185-197. 1sBN: 9781450326384. por: 10.1145/2540708.2540725.

Seshadri, V., Lee, D., Mullins, T., Hassan, H., Boroumand, A., Kim, J., Kozuch, M. A.,
Mutlu, O., Gibbons, P. B., and Mowry, T. C. “Ambit: In-memory Accelerator for Bulk
Bitwise Operations Using Commodity DRAM Technology”. In: Proceedings of the 50th
Annual International Symposium on Microarchitecture. MICRO-50 ’17. Cambridge,
Massachusetts, 2017, pp. 273-287. por: 10.1145/3123939.3124544.

127

https://github.com/karlrupp/microprocessor-trend-data
https://github.com/karlrupp/microprocessor-trend-data
http://dx.doi.org/10.1145/3178487.3178535
http://dx.doi.org/10.1145/3205289.3205310
http://dx.doi.org/10.1145/248209.237144
http://dx.doi.org/10.1145/248209.237144
http://dx.doi.org/10.1145/2540708.2540725
http://dx.doi.org/10.1145/3123939.3124544

BIBLIOGRAPHY

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

Sewell, P., Sarkar, S., Owens, S., Nardelli, F. Z., and Myreen, M. O. “X86-TSO: A Rigor-
ous and Usable Programmer’s Model for X86 Multiprocessors”. In: Communications of
the ACM 53.7 (July 2010), pp. 89-97. 1ssn: 0001-0782. por: 10.1145/1785414.1785443.

Shewchuk, J. R. An Introduction to the Conjugate Gradient Method Without the
Agonizing Pain. Tech. rep. 1994.

Singh, G., Chelini, L., Corda, S., Awan, A. J., Stuijk, S., Jordans, R., Corporaal,
H., and Boonstra, A. “Near-Memory Computing: Past, Present, and Future”. In:
Microprocessors and Microsystems 71 (Aug. 2019), p. 102868. 1ssn: 0141-9331. por:
10.1016/j.micpro.2019.102868.

Smith, J. E. “A Study of Branch Prediction Strategies”. In: Proceedings of the Sth
Annual Symposium on Computer Architecture. ISCA *81. Minneapolis, Minnesota,
USA: IEEE Computer Society Press, 1981, pp. 135-148.

Stone, H. S. “A Logic-in-Memory Computer”. In: IEEE Transactions on Computers
19.1 (Jan. 1970), pp. 73-78. 1ssn: 0018-9340. por: 10.1109/TC.1970.5008902.

Subramanian, L., Lee, D., Seshadri, V., Rastogi, H., and Mutlu, O. “The Blacklisting
Memory Scheduler: Achieving high performance and fairness at low cost”. In: 2014
IEEE 32nd International Conference on Computer Design (ICCD). Oct. 2014, pp. 8-15.
por: 10.1109/ICCD.2014.6974655.

Sun Microsystems. “UltraSPARC T2 supplement to the UltraSPARC architecture 2007”.
In: (2007). Draft D1.4.3.

Tan, X., Bosch, J., Jiménez-Gonzilez, D., Alvarez-Martinez, C., Ayguadé, E., and
Valero, M. “Performance analysis of a hardware accelerator of dependence management
for task-based dataflow programming models”. In: Proceedings of the International
Symposium on Performance Analysis of Systems and Software. ISPASS °16. 2016,
pp- 225-234. por: 10.1109/ISPASS.2016.7482097.

Tan, X., Bosch, J., Vidal, M., Alvarez, C., Jiménez-Gonzilez, D., Ayguadé, E., and
Valero, M. “General Purpose Task-Dependence Management Hardware for Task-
Based Dataflow Programming Models”. In: Proceedings of the 31st International
Parallel and Distributed Processing Symposium. IPDPS *17. 2017, pp. 244-253. por:
10.1109/IPDPS.2017.48.

Teruel, X. OmpSs Quick Overview, A Practical Approach. 2013.

128

http://dx.doi.org/10.1145/1785414.1785443
http://dx.doi.org/10.1016/j.micpro.2019.102868
http://dx.doi.org/10.1109/TC.1970.5008902
http://dx.doi.org/10.1109/ICCD.2014.6974655
http://dx.doi.org/10.1109/ISPASS.2016.7482097
http://dx.doi.org/10.1109/IPDPS.2017.48

BIBLIOGRAPHY

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Version 2.2.
Editors Andrew Waterman and Krste Asanovi¢. RISC-V Foundation. May 2017.

Valero, M., Lang, T., Llaberiéa, J. M., Peiron, M., Ayguadé, E., and Navarra, J. J.
“Increasing the Number of Strides for Conflict-Free Vector Access”. In: Proceedings
of the 19th Annual International Symposium on Computer Architecture. ISCA ’92.
Queensland, Australia: ACM, 1992, pp. 372-381. 1sBN: 0897915097. por: 10.1145/
139669.140400.

Valero, M., Moret6, M., Casas, M., Ayguade, E., and Labarta, J. “Runtime-Aware
Architectures: A First Approach”. In: Supercomputing frontiers and innovations 1.1
(2014).

Venkat, A. and Tullsen, D. M. “Harnessing ISA Diversity: Design of a heterogeneous-
ISA Chip Multiprocessor”. In: SIGARCH Computer Architecture News 42.3 (June 2014),
pp- 121-132.

Vries, H. de. AMD’s Hammer micro architecture preview. 2001. urL: http://www.chip-
architect.com/news/2001 _10_02_Hammer_ microarchitecture . html (visited on

05/20/2020).
Wang, Z., McKinley, K. S., Rosenberg, A. L., and Weems, C. C. “Using the Compiler

to Improve Cache Replacement Decisions”. In: Proceedings of the 2002 International
Conference on Parallel Architectures and Compilation Techniques. PACT *02. USA:
IEEE Computer Society, 2002, p. 199. 1sBN: 0769516203.

Wilson, R. P, French, R. S., Wilson, C. S., Amarasinghe, S. P., Anderson, J. M., Tjiang,
S. W. K., Liao, S.-W,, Tseng, C.-W., Hall, M. W., Lam, M. S., and Hennessy, J. L.
“SUIF: An Infrastructure for Research on Parallelizing and Optimizing Compilers”.
In: SIGPLAN Notices 29.12 (Dec. 1994), pp. 31-37. 1ssn: 0362-1340. por: 10.1145/
193209.193217.

Wong, H.-S. P, Raoux, S., Kim, S., Liang, J., Reifenberg, J. P., Rajendran, B., Asheghi,
M., and Goodson, K. E. “Phase Change Memory”. In: Proceedings of the IEEE 98.12
(2010), pp. 2201-2227. por: 10.1109/JPROC.2010.2070050.

Wu, C.-]., Jaleel, A., Hasenplaugh, W., Martonosi, M., Steely Jr., S. C., and Emer, J.
“SHiP: Signature-based Hit Predictor for High Performance Caching”. In: Proceedings
of the 44th Annual International Symposium on Microarchitecture. MICRO-44. Porto

129

http://dx.doi.org/10.1145/139669.140400
http://dx.doi.org/10.1145/139669.140400
http://www.chip-architect.com/news/2001_10_02_Hammer_microarchitecture.html
http://www.chip-architect.com/news/2001_10_02_Hammer_microarchitecture.html
http://dx.doi.org/10.1145/193209.193217
http://dx.doi.org/10.1145/193209.193217
http://dx.doi.org/10.1109/JPROC.2010.2070050

BIBLIOGRAPHY

[177]

[178]

[179]

[180]

[181]

[182]

[183]

Alegre, Brazil, 2011, pp. 430—441. 1sBN: 978-1-4503-1053-6. por: 10.1145/2155620.
2155671.

Wulf, W. A. and McKee, S. A. “Hitting the memory wall: implications of the obvious”. In:
SIGARCH Computer Architecture News 23.1 (Mar. 1995), pp. 20-24. 1ssn: 0163-5964.
por: 10.1145/216585.216588.

Xi, S., Jacobson, H., Bose, P., Wei, G.-Y., and Brooks, D. “Quantifying sources of error
in McPAT and potential impacts on architectural studies”. In: Proceedings of the 21st
International Symposium on High Performance Computer Architecture. HPCA ’15.
2015, pp. 577-589. por: 10.1109/HPCA.2015.7056064.

Yu, H. and Rauchwerger, L. “Adaptive reduction parallelization techniques”. In:
Proceedings of the 14th international conference on Supercomputing. 2000, pp. 66-77.
por: 10.1145/2591635.2667180.

Zhang, G., Chiu, V., and Sanchez, D. “Exploiting semantic commutativity in hardware
speculation”. In: 2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture. MICRO-49. IEEE, Oct. 2016, pp. 1-12. por: 10.1109/MICRO.2016.7783737.

Zhang, G., Horn, W., and Sanchez, D. “Exploiting Commutativity to Reduce the Cost
of Updates to Shared Data in Cache-coherent Systems”. In: Proceedings of the 48th
International Symposium on Microarchitecture. MICRO-48. Waikiki, Hawaii, 2015,
pp- 13-25. 1sBN: 978-1-4503-4034-2. por: 10.1145/2830772.2830774.

Zhang, L., Fang, Z., and Carter, J. B. “Highly Efficient Synchronization based on
Active Memory Operations”. In: Proceedings of the 18th International Parallel and
Distributed Processing Symposium. IPDPS *04. USA: IEEE, 2004, pp. 58—67. por:
10.1109/IPDPS.2004.1302981.

Zhang, X. and Yan, Y. “Comparative Modeling and Evaluation of CC-NUMA and
COMA on Hierarchical Ring Architectures”. In: IEEE Transactions on Parallel and
Distributed Systems 6.12 (Dec. 1995), pp. 1316-1331. 1ssn: 1045-9219. por: 10.1109/
71.476171.

130

http://dx.doi.org/10.1145/2155620.2155671
http://dx.doi.org/10.1145/2155620.2155671
http://dx.doi.org/10.1145/216585.216588
http://dx.doi.org/10.1109/HPCA.2015.7056064
http://dx.doi.org/10.1145/2591635.2667180
http://dx.doi.org/10.1109/MICRO.2016.7783737
http://dx.doi.org/10.1145/2830772.2830774
http://dx.doi.org/10.1109/IPDPS.2004.1302981
http://dx.doi.org/10.1109/71.476171
http://dx.doi.org/10.1109/71.476171

List of Figures

1.1
1.2

2.1
22
2.3
24
2.5
2.6

3.1

4.1
4.2
43
4.4
45
4.6
4.7
4.8
4.9

5.1

5.2

5.3
54

Evolution of relative processor and memory performance. 1
Historical trends of important metrics in computing systems. 2
Typical memory hierarchy architectures 10
Organization of a 4-way set-associativecache 11
The schematics of the memory controller for DRAM memories 16
The layers of parallelism in modern DRAM designs 18
A timing diagram for aread command [93] 18
Cholesky factorization parallelized withOmpSs 29
Overview of tools used in the evaluation. 34
Comparison of LRU and access-pattern aware insertion. 47
TTIP probability training process for a certain task type. 49
Runtime and microarchitectrual extensions for TTIP. 50
Runtime and microarchitectrual extensions for DTIP. 52
TTIP sensitivityto Nand K 54
MPKI of DTIP normalized to LRU per benchmark 56
Cache performance per task type for different DTIP configurations 57
MPKI of TTIP and DTIP normalizedto LRU 58
Speedup of TTIP and DTIP comparedtoLRU 58

Achieved memory bandwidth for RandomAccess benchmark for different

reduction array sizes Lo 62
Microarchitecture of a processor with hardware support for reductions. 65
Microarchitecture of the Reduction Module. 67

The source code of a reduction using RICH features and code transformations

done by Mercurium compiler. oL oL 72

LIST OF FIGURES

5.5 RICH speedup vs. ideal reductions for different configurations of functional

units and RMIQ in the RM, depending on operation type and reduction location. 75
5.6 Speedup and Energy-Delay Product improvement of RICH over the baseline

with atomics for benchmarks with reductions on arrays. 77
5.7 Breakdown of misses achieved by atomics and RICH across all cache levels . 79

5.8 Speedup and Energy-Delay Product of RICH compared to the baseline with

software privatization for benchmarks that perform reductions on scalars. . . 8]
5.9 Speedup of RICHps; compared to COUP [181]. 82
6.1 The effects of the prioritization on the execution. 87
6.2 Overview of a dual-core system implementing PrioRAT. 90
6.3 Request prioritization inside the on-chip interconnection network. 91
6.4 Priority queue inside the last-level cache and the memory controller. 92

6.5 Speedup of PrioRAT compared to the baseline, for different number of memory
channels. 96
6.6 Change in the average duration of tasks per task criticality compared to the
baseline configuration. 97
6.7 Difference in the memory request round-trip time in PrioRAT compared to the
baseline. L 98
6.8 Impact of access strides on the performance of PrioRAT running scan benchmark
for different number of memory channels. 99
6.9 Impact of memory bandwidth on factors that control achieved speedup for scan
benchmark 100
6.10 Impact of the LLC size on the speedup achieved by PrioRAT compared to the
baseline. 102

6.11 Impact of the memory latency on the speedup of PrioRAT versus the baseline. 103

132

List of Tables

3.1
3.2
33
34

3.5
3.6

5.1
5.2

Parameters of the simulated systems for each proposal. 35
Benchmarks used to evaluate the proposal about cache replacement policies. . 37
Description of the benchmarks used to evaluate the proposal about reductions. 38

Input parameters and the properties of the benchmarks used for the evaluation
ofreductions. L 39
Benchmarks used to evaluate the proposal about memory request prioritization. 41

Input parameters and properties of the benchmarks used for the evaluation of

the proposal about memory request prioritization. 41
RICH design space exploration. 74
Hardware cost of implementing RICH in 22nm. 76

133

Glossary

ALU Arithmetic-Logic Unit

AMC Active Memory Cube

BIP Bimodal Insertion Policy [145]
BRRIP Bimodal RRIP [88]

BSC Barcelona Supercomputing Center
CAM Content-Addressable Memory
CMP Chip Multi-Processor

DDR Double Data Rate

DepRRI Dependency type to RRI mapping
DIMM Dual In-line Memory Module
DIMM Dual Inline Memory Module

DIP Dynamic Insertion Policy [145]
DRAM Dynamic Random-Access Memory
DTIP Data-Type-aware Insertion Policy
EDP Energy-Delay Product

FCFS First-Come, First-Served

FIFO First-In First-Out

FPU Floating-Point Unit

FR-FCES First-Ready FCFS

FU Functional Unit

GPU Graphics Processing Unit

HBM High Bandwidth Memory

HMC Hybrid Memory Cube

HPC High-Performance Computing
IPV, Insertion/Promotion Vector [96]
ISA Instruction Set Architecture

LIP LRU Insertion Policy

135

Glossary

LLC Last-Level Cache

LRU Least-Recently Used

MPI Message-Passing Interface

MPKI Misses Per Kilo Instruction

MRU Most-Recently Used

MSHR Miss Status Handling Register

NRU Not-Recently Used

NUMA Non-Uniform Memory Access

NVM Non-Volatile Memory

OS Operating System

PCM Phase-Change Memory

PIM Processing In Memory

QoS Quality of Service

RegDepT Region to Dependency Type mapping
RICH Reductions In Cache Hierarchy

RM Reduction Module

RMEX Reduction Module Execution unit
RMIQ Reduction Module Instruction Queue
RMS Recognition, Mining, and Synthesis
RMSQ Reduction Module Store Queue

RRI Re-Reference Interval

RRIP Re-Reference Interval Prediction [88]
RVT Reduction Variable Table

SDRAM Synchronous Dynamic Random-Access Memory
SHiP Signature-based Hit Predictor [176]
SIMD Single Instruction, Multiple Data
SMT Simultaneous Multi-Threading
SRAM Static Random-Access Memory
SRRIP Static RRIP [88]

DG Task Dependency Graph

TLB Translation Look-ahead Bufter

™ Transactional Memory

TSO Total Store Ordering

TSV ..ol Through-Silicon Vias

TTIP Task-Type-aware Insertion Policy

136

Glossary

137

	Abstract
	Resumen
	Resum
	Acknowledgments
	Contents
	Contents
	1 Introduction
	1.1 Thesis Objectives and Contributions
	1.1.1 Runtime-Assisted Insertion Policies for Last-Level Caches
	1.1.2 Implementing Reductions in the Cache Hierarchy
	1.1.3 Criticality-Driven Prioritization in the Memory Hierarchy

	1.2 Thesis Outline

	2 Background
	2.1 Cache Memories in Microprocessors
	2.1.1 Cache Microarchitecture
	2.1.2 Cache Management
	2.1.3 Cache Replacement Policies

	2.2 Memory Controller Design and Optimizations
	2.2.1 Memory Controller Design
	2.2.2 DRAM organization
	2.2.3 Memory Request Prioritization

	2.3 Reductions and Near-Memory Computing
	2.3.1 Reductions: A Brief Overview
	2.3.2 Software Support for Reductions
	2.3.3 In-Memory and Near-Memory Computation
	2.3.4 Computation in On-Chip Memory Hierarchy

	2.4 Parallel Programming for Shared-Memory Systems
	2.4.1 Parallel Processors
	2.4.2 Parallel Programming Models
	2.4.3 Task-Based Parallel Programming
	2.4.4 OmpSs Programming Model

	2.5 Runtime-Aware Architectures

	3 Experimental Methodology
	3.1 Simulation Infrastructure
	3.1.1 Simulators
	3.1.2 Baseline Architecture
	3.1.3 Environment

	3.2 Benchmarks
	3.3 Metrics

	4 Last-Level Cache Insertion Policies
	4.1 Challenges in the Design of Replacement Policies for Shared Caches
	4.2 Runtime-Assisted LLC placement policies
	4.2.1 Task Type Aware Probabilistic Insertion
	4.2.2 Dependency Type Aware Insertion

	4.3 Design Space Exploration
	4.3.1 TTIP Parameters Space Exploration
	4.3.2 DTIP Design Space Exploration

	4.4 Evaluation
	4.4.1 Performance Results
	4.4.2 Design Costs

	4.5 Summary

	5 Reductions in the Cache Hierarchy
	5.1 Limitations of Current Reduction Techniques
	5.1.1 Overcoming Limitations Using Hardware-Assisted Reductions
	5.1.2 Ongoing Challenges

	5.2 Implementing Reductions in the Cache Hierarchy
	5.2.1 Microarchitectural Support for Reductions
	5.2.2 Programming Model and Compiler Support
	5.2.3 Discussion

	5.3 RICH Design Decisions
	5.3.1 Design Space Exploration
	5.3.2 Hardware Cost of Implementing RICH

	5.4 Evaluation
	5.4.1 Evaluating RICH with Vector-Reductions
	5.4.2 Impact of RICH on Cache Performance for Vector-Reductions
	5.4.3 Evaluating RICH with Scalar-Reductions
	5.4.4 Comparison with Other Proposals

	5.5 Summary

	6 Criticality-Driven Prioritization inside the Memory Hierarchy
	6.1 Challenges in Prioritization Techniques
	6.1.1 Accelerating Critical Path by Memory Request Prioritization:A Proof of Concept

	6.2 PrioRAT: Criticality-Driven Prioritization inside Memory Hierarchy
	6.2.1 Programming Model and Runtime System Support
	6.2.2 Hardware Extensions for Request Prioritization
	6.2.3 Discussion
	6.2.4 Combining priority and criticality annotations

	6.3 Evaluation
	6.3.1 Performance Evaluation
	6.3.2 Performance Impact of Memory Traffic Intensity
	6.3.3 Performance Impact of the LLC Size and Memory Latency

	6.4 Summary

	7 Conclusions
	7.1 Thesis Goals and Contributions
	7.1.1 Runtime-Aware Shared Last-Level Cache Insertion Policies
	7.1.2 Reductions in the Cache Hierarchy
	7.1.3 Criticality-Driven Prioritization inside the Memory Hierarchy

	7.2 Future Work
	7.3 Publications

	Bibliography
	List of Figures
	List of Tables
	Glossary

