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Abstract 

Germline variants in BRCA1 and BRCA2 can disrupt the DNA protective role 

of these proteins resulting in an increased risk of developing hereditary 

breast and ovarian cancer (HBOC). Identification of those individuals carrying 

pathogenic variants will allow channeling them into specific programs of 

prevention and surveillance, incrementing their survival rates. For this 

purpose, first, it is necessary to identify which of the variants are pathogenic. 

Unfortunately, there is not always enough information to reach a conclusion. 

In this situation, pathogenicity predictors designed to computationally 

estimate the damage caused by variants, can provide valuable information.  

Here, we present a novel family of pathogenicity predictors for BRCA1 and 

BRCA2. These predictors differ in their objective: one is trained to estimate 

the molecular impact of variants on the HDR function of BRCA1 and BRCA2, 

and the other is trained to estimate the clinical significance of a variant, that 

is, whether it should be classified as pathogenic or neutral. Their 

performances have been tested and are comparable to those of widely used 

predictors in the field. Additionally, we presented them to the ENIGMA 

challenge from the 5th Critical Assessment of Genome Interpretation (CAGI), 

finding that our predictors, especially those estimating the functional impact 

of variants, ranked in the top positions compared to other tools. 

In order to disseminate this family of predictors to the scientific community, 

we have built the BRASS website (https://www.biotoclin.org/BRASS), where 

users can analyze their missense BRCA1 and BRCA2 variants. More advanced 

users can also interpret the predictions using a reliability metric and several 

plots contextualizing the score to that of a set of manually curated variants. 

https://www.biotoclin.org/BRASS
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Independently, we applied our knowledge about pathogenicity predictors in 

a large international effort to characterize a novel pediatric neurologic 

disorder caused by pathogenic variants in histone H3.3. We combined the use 

of standard pathogenic predictors with evidence from structural analyses and 

biophysical computations to provide a mechanistic view of the impact of the 

causative variants. 
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Resum 

Variants germinals a les proteïnes BRCA1 i BRCA2 poden alterar la funció 

protectora d’aquestes a l'ADN, incrementant el risc de desenvolupar càncer 

de mama i ovari hereditari (HBOC). Identificació d’aquells individus portadors 

de variants patogèniques permet canalitzar-los en programes específics de 

prevenció i vigilància, augmentant les seves taxes de supervivència. Per això, 

en primer lloc, cal identificar quines de les variants són patogèniques. 

Malauradament, no sempre hi ha prou informació per arribar a una conclusió. 

En aquesta situació, els predictors de patogenicitat dissenyats per estimar 

computacionalment el dany causat per les variants poden proporcionar una 

valuosa informació. 

En aquest treball presentem una nova família de predictors de patogenicitat 

per BRCA1 i BRCA2. Aquests predictors difereixen en el seu objectiu: un està 

entrenat per estimar l'impacte molecular de les variants sobre la funció HDR 

de BRCA1 i BRCA2, i l'altre està entrenat per estimar la significació clínica 

d'una variant, és a dir, si la seva classificació és patogènica o neutra. Els seus 

rendiments han estat provats i són comparables als d’altres mètodes 

àmpliament utilitzats en el camp. Addicionalment, vam presentar els 

predictors al repte ENIGMA de la 5a Avaluació Crítica de la Interpretació del 

Genoma (CAGI), trobant que els nostres mètodes, especialment aquells que 

estimen l’impacte funcional de les variants, es classifiquen en les primeres 

posicions en comparació amb les altres eines. 

Per tal de difondre aquesta família de predictors a la comunitat científica, 

hem construït el lloc web BRASS (https://www.biotoclin.org/BRASS), on els 

usuaris poden analitzar les seves variants de BRCA1 i BRCA2 amb canvi de 

sentit. Els usuaris més avançats també poden interpretar les prediccions 
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mitjançant una mètrica de fiabilitat i diversos gràfics contextualitzant la seva 

puntuació amb la d’un conjunt de variants curades manualment. 

Independentment, hem aplicat els nostres coneixements sobre predictors de 

patogenicitat en un gran projecte internacional per caracteritzar un nou 

trastorn neurològic pediàtric causat per variants patogèniques a la histona 

H3.3. Vam combinar l'ús de predictors de patogenicitat estàndard amb 

evidències d'anàlisis estructurals i càlculs biofísics per proporcionar una visió 

mecanicista de l'impacte de les variants causals.  
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1.1. Hereditary breast and ovarian cancer 

Breast cancer is the second most commonly diagnosed cancer in the world 

and the first among women, with an estimated of 2.1 million new cases each 

year (Bray et al., 2018). It ranks as the fifth cause of death from cancer 

worldwide, and the first cause of cancer death among women. In Europe, the 

estimated numbers of new cancer cases indicate that breast cancer is the 

most commonly diagnosed and the main cause of cancer death among 

women, with the highest incidence observed in Western Europe, notably in 

Belgium, Luxembourg and The Netherlands; and in Northern Europe, 

particularly in United Kingdom, Sweden and Finland (Figure 1.1) (Bray et al., 

2018; Ferlay et al., 2018).  

Breast cancer incidence 

 

Breast cancer mortality 

 

Figure 1.1 Breast cancer incidence and mortality among women in Europe. 

Age-standardized rate (ASR) estimates in females ages 0-74 from the Global 

Cancer Observatory http://gco.iarc.fr. 
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Ovarian cancer is a less frequent cancer that causes 295,400 new cases every 

year, ranking as the eighth most diagnosed cancer among women worldwide 

(Bray et al., 2018). It also represents the eighth cause of female cancer death 

in the world. In Europe, it is the sixth most diagnosed cancer and the fifth 

cause of cancer death among women, with the highest incidence in Eastern 

Europe (Figure 1.2) (Bray et al., 2018; Ferlay et al., 2018). 

Ovarian cancer incidence 

 

Ovarian cancer mortality 

 

Figure 1.2 Ovarian cancer incidence and mortality among women in Europe. 

Age-standardized rate (ASR) estimates in females ages 0-74 from the Global 

Cancer Observatory http://gco.iarc.fr. 

Approximately, 5-10% of breast and 20% of ovarian cancer patients have a 

genetic component segregating in their family and are classified as familial or 

hereditary cancer (Newman, Austin, Lee, & King, 1988; Russo et al., 2009). 

Familial breast cancer is characterized by an early-onset of the disease, 

younger age of diagnosis, frequent bilateral cancer and high incidence in men 

(J. M. Hall et al., 1990). In contrast, the remaining 90% of breast and ovarian 

cancer cases occur without a family history and are referred as sporadic. 

http://gco.iarc.fr/
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In the 1990s, an important step in the molecular understanding of breast and 

ovarian cancer took place. Numerous families affected by these cancers were 

studied by linkage analysis to identify high-risk susceptibility genes. 

Cosegregation of markers led to the identification of linkage to chromosomes 

17q and 13q; and subsequent positional cloning led to the identification of 

BRCA1 gene on 17q11 in 1994 and BRCA2 gene on 13q12–q13 in the next year 

(J. M. Hall et al., 1990; Miki et al., 1994; Wooster et al., 1995).  

BRCA1 and BRCA2 are two tumour suppressor genes involved in DNA repair 

mechanisms. Germline pathogenic variants in one of these two genes result 

in hereditary breast and ovarian cancer (HBOC) syndrome (Roy, Chun, & 

Powell, 2012). HBOC is a disorder inherited in an autosomal dominant 

manner and with an incomplete penetrance. HBOC is characterized by an 

increased risk of breast and ovarian cancer (Ford et al., 1998; King, Marks, & 

Mandell, 2003). Women with HBOC have a lifetime risk of 46% - 87% of 

developing breast cancer and of 11% - 63% for ovarian cancer. HBOC also 

confers an slightly increased risk of male breast, prostate, pancreatic and 

melanoma cancer (Table 1.1) (Chen et al., 2006; Easton et al., 1995; Mavaddat 

et al., 2013; Moran et al., 2012; Deborah Thompson & Easton, 2003). 

 Risk of developing cancer 

Cancer Type 
BRCA1 variant 

carrier 
BRCA2 variant 

carrier 
General 

population 

Breast 46% - 87% 38% - 84% 12% 

Second primary breast 21% in 10 years 11% in 10 years 2% in 5 years 

Ovarian 39% - 63% 11% - 27% 1% - 2% 

Male breast 1.2% 6.8% 0.1% 

Prostate 9% by age 65 15% by age 65 6% by age 69 

Pancreatic 1% - 3% 2% - 7% 0.5% 

Melanoma  3% 1.6% 

Table 1.1 Risk of malignancy in BRCA1 and BRCA2 carriers. Adapted from 

GeneReviews at https://www.ncbi.nlm.nih.gov/sites/books/NBK1247/. 

https://www.ncbi.nlm.nih.gov/sites/books/NBK1247/
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Interindividual variability in the risk of breast and ovarian cancer is attributed 

to both environmental and genetic factors, including the location and type of 

variants in BRCA1 and BRCA2 (Fackenthal & Olopade, 2007). In early reports, 

it was suggested that the location of nonsense and frameshift variants in the 

central regions of BRCA1/2, termed ovarian cancer cluster regions (OCCR), 

were associated with a greater risk of ovarian cancer than similar variants in 

the proximal and distal regions of each gene (D. Thompson & Easton, 2001). 

Understanding the genetic component of HBOC plays an important role in the 

medical management of patients. We know that in order to improve the 

patient outcome and survival, early detection is critical. In fact, most 

countries recommend an annual screening for breast cancer in women at 

50 - 74 years old for an early diagnosis (Shah & Guraya, 2017). The advent of 

Next Generation Sequencing (NGS), a highly scalable technology of massive 

sequencing, has represented an important advance, making genetic testing 

widely available. Genetic testing of BRCA1/2 and other breast and ovarian 

cancer susceptibility genes enable an accurate risk assessment of variants 

and, importantly, the identification of those individuals carrying high risk-

variants who can then benefit from enhanced screenings and prevention 

strategies (Castéra et al., 2014).  

Thus, identification of pathogenic variants predisposing to cancer represent 

a breakthrough in the management of HBOC patients. However, to apply it 

massively, we need to understand the clinical significance of each variant. 

Unfortunately, this is still an unsolved problem, and the clinical interpretation 

of variants remains an open challenge, especially for those variants of 

uncertain significance (VUS). VUS are variants that have been identified but 

lack sufficient evidence to be classified as pathogenic or benign. As a 

consequence, patients carrying VUS may experience delays accessing 

preventive and therapeutic target measures.  
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1.1.1. Genetic landscape of HBOC 

As we have seen before, BRCA1 and BRCA2 are the most important high-

penetrant genes predisposing to HBOC. However, only 25% of families with 

HBOC have variants in BRCA1 or BRCA2 (Kast et al., 2016).  

Studies of families testing negative for BRCA1/2, early-onset of the disease, 

and a high number of individuals affected, have led to the identification of 

other susceptibility genes such as the highly penetrant genes TP53, PTEN, 

CDH1 and STX11; and the moderately penetrant genes ATM, CHEK2, and 

PALB2 (Figure 1.3), which are related to the genome maintenance pathways 

of BRCA1 and BRCA2.  

Moreover, genome-wide association studies (GWAS) in a large number of 

breast cancer patients resulted in the identification of common genetic 

variants in 76 loci associated with small increases in the risk of breast cancer 

(Couch, Nathanson, & Offit, 2014). But all these predisposing genes and SNPs 

can only explain 50% of all familial cases affected by HBOC. The other half of 

inheritance still remains unknown (Couch et al., 2014).  

 

Figure 1.3 Estimated contributions of pathogenic variants in familial cases of 

HBOC. Adapted from Couch et al. (Couch et al., 2014). 

BRCA1/2

15% Highly penetrant genes 

TP53, PTEN, CDH1, STK11
3%

Moderately penetrant genes 

ATM, CHEK2, PALB2 
4%

Known SNPs MAP3K1, 

FGFR2, LSP1, TNRC19
14%

Predicted SNPs

14%

Unexplained

50%
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1.1.2. BRCA1/2 genes: domain structure and function 

In this work, we will focus on the study of BRCA1 and BRCA2 genes, since they 

are the most highly penetrant and well-studied genes. These genes code for 

two large nuclear proteins, BRCA1 and BRCA2, that act as tumour suppressors 

and show no homology to each other or to previously described proteins. In 

addition to having similar disease phenotypes, they both play a key role in 

maintaining genome integrity through several mechanisms such as repairing 

DNA double-strand breaks (DSBs) by homologous recombination (HR), 

protecting stalling DNA replication forks and controlling DNA damage in cell 

cycle checkpoints (Figure 1.4).  

Homologous recombination (HR) Replication fork stability 

 

 

DNA damage checkpoint control 
 

Figure 1.4 Genomic stability pathways and genes in HBOC. Adapted from 

Nielsen et al. (Nielsen, Van Overeem Hansen, & Sørensen, 2016). 

In this thesis, we will focus in HR, a vital DNA repair process underlying the 

oncogenic impact of variants in BRCA1/2. HR appears to be the major 

mechanism protecting the integrity of the genome in proliferating cells, using 

the undamaged sister chromatid to carry out high-fidelity repair of double-

strand breaks (DSBs) (Roy et al., 2012).  
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DSBs are considered to be the most threatening form of DNA damage, as the 

integrity of both strands of the DNA chromosome are compromised 

simultaneously. DSBs occur mainly during DNA replication, but also following 

exposition to ionizing radiation and genotoxic compounds. In mammalian 

cells, DSBs are repaired by HR (which is mostly error-free), or by non-

homologous end-joining (NHEJ; which is error-prone). The genome is 

particularly susceptible to DNA damage during replication because damage 

on a single strand can be converted to double-strand damage and lead to 

replication fork collapse. In the absence of an intact HR pathway, these 

replication associated DSBs can result in chromosome rearrangements and 

hence, genomic instability (Roy et al., 2012). 

HR repairs DSBs during the S and G2 phases of the cell cycle, when an intact 

sister chromatid can serve as a template for repair. The protection of the 

genome by HR involves damage recognition by the kinases ATM and ATR, 

signal mediation by CHEK2 and BRCA1, and initiation of repair by the effectors 

BRCA2 and RAD51. There are also several facilitators of the HR pathway, such 

as PALB2 and BRIP1. Each of these are predisposing genes for HBOC. 

In the following, I describe the main molecular features of BRCA1 and BRCA2 

proteins associated to their function, focusing on their domain structure and 

their ability to interact with multiple molecular partners that lead to their 

participation in different biological processes. 

BRCA1 

BRCA1 (Figure 1.5) is a gene located on chromosome 17q21.3, encompassing 

genomic positions 43,044,295 to 43,125,483 on GRCh38.p12. It is structured 

in 23 exons and encodes for a multi-domain protein of 1863 amino acids.  

BRCA1 is a versatile protein that through its various functional domains, 

interacts with numerous proteins including DNA damage sensors, DNA repair 
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proteins and cell cycle regulators, carrying out diverse roles in DNA repair 

pathways (particularly, in HR and NHEJ) and checkpoint regulation (Nielsen et 

al., 2016; Yarden, Pardo-Reoyo, Sgagias, Cowan, & Brody, 2002). It has also 

been reported to function in transcriptional regulation and control 

centrosomal microtubule nucleation (Mullan, Quinn, & Harkin, 2006; 

Sankaran, Crone, Palazzo, & Parvin, 2007). 

The domain structure of BRCA1 is very rich (Roy et al., 2012). In the 

N-terminal region, it has a zinc finger domain of type RING finger with an E3 

ubiquitin ligase activity which catalyses protein ubiquitylation. In the 

C-terminal region, BRCA1 has a coiled-coil motif and then, a BRCT domain 

composed by 100 amino acids in tandem repeat, that acts as a phospho-

protein binding domain (Figure 1.5). These domains underly different protein 

interactions that enable the multiple functions of BRCA1, as explained below. 

Chromosomic 
location  

Gene   
 structure 

 

Protein 
domains 

 

Figure 1.5 BRCA1 chromosomic location, gene structure and protein domains. 

Adapted from Fackenthal et al. (Fackenthal & Olopade, 2007; Roy et al., 2012). 

The interaction of BRCA1 with BARD1 through their RING domains, enhances 

the E3 ubiquitin ligase activity of BRCA1. The BRCA1-BARD1 complex 

generates polyubiquitin chains at unconventional K6 that do not signal for 

protein degradation but rather mediate downstream signalling. BRCA1 
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ubiquitinates CtIP protein which is involved in the end resection of DSBs along 

with the MRN complex (Figure 1.6) (Roy et al., 2012).  

Additionally, BRCA1–BARD1 complex is involved in the activation of G1/S, 

S-phase and G2/M checkpoints; BRCA1–BRIP1–TOPBP1 in the activation of 

S-phase checkpoint in response to stalled replication forks; and BRCA1–

abraxas–RAP80 in the G2/M checkpoint in response to DNA damaged by 

ionizing radiation (Figure 1.4) (Roy et al., 2012).  

In the C-terminal, the BRCT domain associates with proteins phosphorylated 

by ATM such as abraxas, BRIP1 and CtIP. These complexes carry out several 

functions in the DNA damage response: recruitment to DNA damage sites, 

DNA end resection and DNA repair during replication (Figure 1.6). Finally, the 

coiled-coil domain associates with PALB2 protein for the repair of DSB by HR 

(Figure 1.6) (Roy et al., 2012). 

 

Figure 1.6 Repair of DSBs by HR pathway. In response to DSBs, sensors detect 

DNA damage and signalling mediators recruit and activate effectors that repair 

the damage. Adapted from Roy et al. (Roy et al., 2012). 
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The interacting ability of BRCA1 is key to its contribution to the HR pathway. 

BRCA1 is recruited to DSBs through its association with the complex abraxas–

RAP80, which associates with ubiquitinated histones at DSBs. Next, BRCA1 is 

involved in processing DSBs through its interaction with CtIP (also known as 

RBBP8) and the MRN complex composed by MRE11, RAD50 and NBS1 

proteins. The BRCA1–CtIP complex promotes CtIP-mediated 5′-end resection 

of DSBs. Afterwards, BRCA1 is also required for RAD51 recruitment to the 

sites of DNA damage through its interactions with PALB2 and BRCA2, which 

appears to be mediated by CHK2 phosphorylation on BRCA1 (Figure 1.6). 

BRCA2 

BRCA2 (Figure 1.7) is a gene located on chromosome 13q13, encompassing 

genomic positions 32,315,480 to 32,399,672 on GRCh38.p12. It is structured 

in 27 exons that encode for a protein of 3418 amino acids. This protein is 

composed of eight BRC repeats that recruit RAD51 at sites of DNA damage 

sites and a DNA-binding domain (DBD) that binds single-stranded (ssDNA) 

and double-stranded DNA (dsDNA). The DBD contains an α-helical domain, 

three oligonucleotide binding (OB) folds that are ssDNA-binding modules, and 

a tower domain (T) that protrudes from OB2 and binds dsDNA. Finally, there 

is a nuclear localization sequence (NLS).  

Chromosomic 
location  

Gene   
structure  

Protein 
domains 

 

Figure 1.7 BRCA2 chromosome location, gene structure and protein domains. 

Adapted from Fackental et al. (Fackenthal & Olopade, 2007; Roy et al., 2012). 
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BRCA2 main function is to repair double-strand DNA breaks by HR. BRCA2 

mediates the recruitment of the recombinase RAD51 to DSBs through its BRC 

repeats. Afterwards, BRCA2 mediates RAD51 filament formation at the 

appropriate sites of ssDNA and prevents it from binding to dsDNA. In 

addition, BRC repeats accelerate the displacement of protein RPA from 

ssDNA by RAD51, block RAD51 nucleation at dsDNA and facilitate RAD51 

filament formation on ssDNA by maintaining the active ATP-bound form of 

RAD51 on ssDNA (Figure 1.6) (Roy et al., 2012). 

1.1.3. Variant landscape of BRCA1 and BRCA2 

Many variants have been described in BRCA1 and BRCA2, due to their large 

size and their relationship to HBOC. In fact, it is estimated that in the general 

population, the prevalence of BRCA1/2 pathogenic variants is between 

0.1-0.3% for BRCA1 (1:200), and 0.1-0.7% for BRCA2 (1:400) (Ponder et al., 

2000), but varies across ethnic groups and geographical areas, with much 

higher frequencies in certain founder populations, such as the Ashkenazi 

Jewish with a prevalence of 1:40 (King et al., 2003).  

In a worldwide study carried out by the CIMBA consortium (Rebbeck et al., 

2018) involving 18435 BRCA1 and 11351 BRCA2 families, it was found that 

the most common pathogenic variants are c.68_69del and c.5266dup for 

BRCA1, and c.5294del for BRCA2, accounting for 33% and 19% of all BRCA1 

and BRCA2 variants respectively. In the same study, authors reported that the 

majority of pathogenic variants were frameshift followed by nonsense 

(Rebbeck et al., 2018).  

Founder variants have been described in almost every population studied. 

The best known are in the Ashkenazi Jewish population, with 3% of 

individuals carrying one of the three founder variants: BRCA1 c.68_69del 

(1%), BRCA1 c.5266dup (0.13%), or BRCA2 c.5946del (1.52%) (Oddoux et al., 
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1996). Other examples are BRCA2 c.771_775del in Iceland; BRCA1 c.4327C>T 

and BRCA2 c.8537_8538del in French Canada; and BRCA1 c.181T>G and 

c.4034del in Central-Eastern Europe (Rebbeck et al., 2018).  

In the Spanish population, recurrent pathogenic variants include BRCA1 

c.187_188del, c.330A>G, c.5236G>A, c.5242C>A and c.589_590del; and 

BRCA2 c.3036_3039del, c.6857_6858del, c.9254_9258del, and 

c.9538_9539del. BRCA1 c.330A4G has a Galician origin and BRCA2 

c.6857_6858del and c.9254_9258del probably originated in Catalonia (Díez 

et al., 2003). 
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Figure 1.8 Distribution of BRCA1 and BRCA2 variants reported in ClinVar 

according to variant type and molecular consequence. Data obtained from 

ClinVar https://www.ncbi.nlm.nih.gov/clinvar/ ascertain by May 2020. 
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A general overview of BRCA1/2 variants can be obtained from the data stored 

in ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/), a large database relating 

human variation and phenotype that has >11000 and ~12000 variants for 

BRCA1 and BRCA2, respectively (Figure 1.8). Most of them are single 

nucleotide variants, followed by deletion and insertion variants, and, in a 

smaller proportion, duplications and indels. Regarding their molecular 

consequence, the majority are missense variants, followed by frameshift, 

nonsense, UTR and splice site variants (Figure 1.8).  

Frameshift and nonsense variants mainly lead to premature truncation and 

loss of function, consistent with the tumour suppressor model. UTR variants 

may affect gene expression, reducing protein levels and causing loss of 

function. Splicing site variants commonly result in aberrant proteins unable 

to carry out their function properly. Large genomic rearrangements, which 

are more prevalent in BRCA1 than in BRCA2 due to its large number of Alu 

repeats, usually have devastating consequences (Judkins et al., 2012). 

Missense variants, which are the focus of this thesis, tend to happen at some 

specific locations in the domain structure of the protein. For example, 

missense high-risk variants of BRCA1 are located primarily in the RING finger 

and BRCT domains, which are critical for the DNA repair activity of BRCA1. In 

BRCA2, highly penetrant pathogenic missense variants are located 

predominantly in the DNA binding domain (Castilla et al., 1994; Guidugli et 

al., 2014). It seems as if, a priori, we could use structural location of the 

variants to identify high-risk variants. However, this is not quite the case. In 

fact, we also find a substantial number of neutral variants in BRCA1/2, that is, 

variants that have no detectable impact on molecular function. These 

variants localize along the protein and can be found in the catalytic domains 

of BRCA1/2, making very difficult distinguishing pathogenic from neutral 

variants on the basis of structural location uniquely (Figure 1.9). 
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Figure 1.9 Distribution of pathogenic and neutral missense variants along the 

protein sequence of BRCA1 and in the three-dimensional structure of the 

BRCA1-BARD1 heterodimer complex. Variants were obtained from Padilla et 

al. (Padilla et al., 2019) and coloured in red (pathogenic) and green (neutral). 

The three-dimensional structure of the BRCA1-BARD1 heterodimer complex 

was obtained from Brzovic et al. (Brzovic, Rajagopal, Hoyt, King, & Klevit, 2001). 

The RING domain of BRCA1 is coloured in yellow and the BARD1’s RING domain 

in grey.  

To discriminate between both variant types, we can use segregation analysis 

of variants between the cancer affected members of a family. However, this 

is not feasible for many missense variants (Toland & Andreassen, 2017). 

Frequently, missense variants lack sufficient familial data to determine their 

pathogenicity and thereby, end up classified as VUS, delaying the access of 

their carriers to preventive and target therapies. When this happens, two 

additional approaches can provide more information: functional assays and 

in silico pathogenicity predictors. 
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1.1.4. Functional assays for BRCA1 and BRCA2 

Functional assays experimentally measure the impact of missense variants on 

a function of the protein (Starita et al., 2015). They provide valuable 

information for the risk assessment of VUS, especially when other sources of 

information are not available. 

For BRCA1, several functional assays are a priori available to healthcare 

professionals. For example, variants within the RING and BRCT domains have 

been characterized through assays based on rescue proliferative defects, 

transcription activation, ubiquitin ligase activity, measure of HR activity, 

resistance to DNA damage, protein-protein interaction or sensitivity to PARP 

inhibition or platinum drugs (Bouwman et al., 2013; Ransburgh, Chiba, 

Ishioka, Toland, & Parvin, 2011).  

For BRCA2, variants within the N-terminal PALB2-binding domain and the C-

terminal DBD domain have been characterized by functional assays 

measuring the HR activity, resistance to DNA damage or BRCA2-dependent 

assembly of RAD51 foci, protein-protein interaction or centrosome 

amplification (Biswas et al., 2012; Guidugli et al., 2013; K. Wu et al., 2005). 

Up to date, the assay that best correlates with the tumour suppression 

function of BRCA1 and BRCA2 is the Homology-Directed Repair (HDR) assay. 

The HDR assay measures the capacity of a mutated BRCA1/2 to repair an 

induced DSB by means of the HDR mechanism. The most common form of 

HDR is the HR pathway (Roy et al., 2012), which involves the RING domain in 

BRCA1 and the DBD domain in BRCA2 (section 1.1.2). The HDR assay is a 

rescue assay performed on BRCA1/2 deficient cells with a green fluorescent 

protein (GFP) where the DSB is induced. Complementation of the deficient 

cells by the mutated BRCA1/2 cDNA expression repairs the DSB and 

reconstitutes the GFP, resulting in the recovery of the fluorescence. 
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Quantification of the proportion of GFP positive cells by flow cytometry, gives 

a measure of the HR rescue activity of the variant under study (Guidugli et al., 

2013; Starita et al., 2015; K. Wu et al., 2005). 

Although all these assays provide valuable information about the impact of 

variants, they are technically demanding, labour-intensive and time-

consuming (Starita et al., 2017), making their current use limited to research.  

Moreover, functional assays have some limitations when used to assess the 

pathogenicity of a variant. The first caveat is that they focus on one aspect of 

the protein’s function, usually associated with a single domain. Therefore, for 

some variants, a functional assay may not cover them. Moreover, the 

multifunctional nature of BRCA1/2 makes necessary a combination of assays 

to fully characterize the impact of a variant in the different functions of the 

protein (Toland & Andreassen, 2017).  

From these considerations, we see that to approach the variant 

interpretation problem from other directions may be beneficial. In this 

context, a promising option corresponds to the use of in silico pathogenicity 

predictors, which we present in the following section and to which an 

important part of this thesis is devoted. 
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1.2. An in silico approach for the variant 

interpretation problem 

Massive application of NGS in routine clinical diagnosis has unveiled an 

important problem: our inability to establish the clinical significance of the 

variants identified by this technique. This is what we know as the variant 

interpretation problem. As we can see in the ClinVar database, the number 

of VUS is very high, representing more than 30% and 38% of the variants 

deposited for BRCA1 and BRCA2 (Figure 1.10), respectively. 

BRCA1 

 

BRCA2 

 

Figure 1.10 Clinical significance of BRCA1 and BRCA2 variants. Data obtained 

from ClinVar https://www.ncbi.nlm.nih.gov/clinvar/ ascertain by May 2020. 
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A promising approach for the variant interpretation problem is the use of in 

silico tools to estimate the variants’ impact, using what we known as 

pathogenicity predictors (Shendure, Findlay, & Snyder, 2019). However, this 

approach is far from easy.  

Why is this so? Why is it so difficult to establish the relationship between a 

genetic variant and its clinical phenotype? The answer is simple: because it is 

a deep problem whose solution requires to address several scientifically hard 

questions related with the functional impact of variants. Furthermore, the 

issues addressed by these questions vary depending on the type of variant 

we are considering, e.g., single-nucleotide variants in the coding region, small 

insertions, large deletions in the non-coding regions of the genome, 

inversions, translocations, etc.  

In this thesis, we will focus on missense variants, since single amino acid 

replacements ranks as one of the first causes of HBOC (Figure 1.7) (Dines et 

al., 2020) and the scientific knowledge behind them has reached an 

important level of maturity. In the next section, I describe the main aspects 

of the in silico approach to the pathogenicity prediction of missense variants. 

1.2.1. Prediction of variant pathogenicity 

Pathogenicity predictors are in silico tools that aim to predict the functional 

impact of variants using supervised algorithms. Supervised algorithms 

constitute a family of machine learning techniques designed to address both 

regression and classification problems, by learning from a set of examples. 

They are typically trained to discriminate between two classes of objects, for 

example, in the case of missense variants, they are trained to distinguish 

pathogenic from neutral ones, using a set of features derived from molecular 

biology, biophysics and biochemistry. 
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The development of a pathogenicity predictor follows four standard steps 

(Figure 1.11) (Riera, Lois, & De la Cruz, 2014). First, the collection of a group 

of pathogenic and neutral variants to train the predictor. Second, the 

selection of a set of features discriminant between these types of variants. 

Third, the training of a supervised algorithm with the variants and their 

discriminant features. Fourth, the estimation of the performance of the 

model, based on an independent set of variants. In the next section (1.2.2), 

we will focus on the selection of the discriminant features, which respond to 

our scientific view of the problem; and in the following section (1.2.3), I 

describe the remaining steps, which are of a more technical nature and are 

related to the actual construction of the predictor. 

 

Figure 1.11 Development of a pathogenicity predictor. It follows four steps: (1) 

collection of a group of pathogenic and neutral variants, (2) selection of a set 

of discriminant features, (3) training of the predictor, and (4) estimation of the 

performance of the model. 
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1.2.2. Characterizing the functional impact of missense 

variants 

The working hypothesis behind these predictors is that an important part of 

the variant’s pathogenicity depends on the molecular impact they have on 

protein function, structure and/or stability.  

For this reason, the approach to predict the pathogenicity of these variants is 

based on features that reflect this molecular impact. They are divided into 

four groups (Riera et al., 2014): (i) features related to the functional residues 

of the protein, (ii) features strictly depending on the amino acid replacement, 

(iii) features related to the change in protein stability upon mutation, and (iv) 

features measuring the disruption in the conservation pattern of the multiple 

sequence alignment (MSA) of the protein family (S. R. Sunyaev, 2012).  

Features reflecting the impact of the variants in functional residues 

These features take into account the functional residues, which are generally 

located in the surface of the protein and carry out several functions such as 

substrate binding sites; catalytic sites where chemical reactions occur; post-

translational modification sites that undergo phosphorylation, glycosylation 

and other covalent modifications; and protein-protein and protein-DNA 

interactions that allow a variety of functions like signal transduction, 

membrane transport or transcription regulation (Fernández-Recio, 2011).  

Features reflecting the differences between the native and mutant amino acids 

These are descriptors of the changes in hydrophobicity, volume, charge, etc., 

resulting from the amino acid replacement. Usually, large values indicate an 

important molecular impact, whereas small changes are better tolerated by 

the protein. Interestingly, these properties are summarized by substitution 
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matrices like Blosum62 (Henikoff & Henikoff, 1992), whose values correspond 

to disruptive changes when negative and to conservative when positive. 

Features measuring the impact of variants on protein stability 

Protein stability (∆∆G) is a thermodynamic property that measures the 

separation between the native state of the protein and other non-native 

competing states. Several studies show how this fundamental property 

depends on the nature of the variant, and how pathogenic variants behave 

differently from neutral variants (Carles Ferrer-Costa, Orozco, & de la Cruz, 

2002; Guerois, Nielsen, & Serrano, 2002; Riera et al., 2014). The impact on 

protein stability is intimately related to the 3D structure of the protein, e.g. 

the loss of native atomic interactions (e.g. hydrogen bonds, salt bridges, etc.), 

the secondary structure where the native residue is located, etc.  

Features characterizing the impact of the variant on the conservation pattern 

of the protein family as represented in the MSA 

A MSA is an alignment of several proteins sequences that usually share a 

common ancestor (J. D. Thompson, Higgins, & Gibson, 1994). Different 

conservation measures are currently used in pathogenicity prediction. Here 

we will comment on two of them that have been broadly utilized by our 

group: Shannon’s entropy and Position-Specific Scoring Matrix (PSSM) (Riera, 

Padilla, & de la Cruz, 2016). Shannon’s entropy (Cover & Thomas, 2006) is 

used to estimate the compositional diversity at the location of the variant in 

the MSA of the protein family. It is equal to -Σipi.log2(pi), where the index i 

runs over all the amino acids at the variant's MSA column. Low values of 

entropy are characteristic of highly conserved amino acid among species and 

suggest a low tolerance for change. On the contrary, high values of entropy 

indicate point to better tolerance for a change. PSSM measures the frequency 



Introduction 

 

40 

of the native amino acid at the variant location, normalized by the frequency 

of the amino acid in the whole MSA. It is equal to log2(fnat,i/fnat,MSA), where fnat,i 

is the frequency of the native amino acid at the locus i of the variant and 

fnat,MSA is the frequency of the same amino acid in the whole MSA. High values 

of PSSM indicate disruptive changes, whereas low values indicate more 

tolerable changes. A virtue of sequence conservation-based features is that 

they rely only on sequence information and can be applied to proteins for 

which we lack structural information. 

1.2.3. Building a pathogenicity predictor 

In this section, I will describe the three technical steps followed to build a 

predictor: the construction of a dataset of variants’, the training of a predictor 

and the estimation of the performance of the predictor.  

Construction of the variant dataset 

This dataset must reflect the types of variants we aim to predict: neutral and 

pathogenic; and the problem we want to solve: e.g. if we want to classify 

BRCA1 variants, we will collect variants from this protein; if we want to obtain 

a general predictor, we will gather variants from different proteins, etc.  

Pathogenic variants are obtained from databases such as UniProt/SwissProt 

(Bateman et al., 2017a), HGMD (Stenson et al., 2012), or ClinVar (Landrum et 

al., 2016), which are periodically updated and manually curated. It has to be 

noted however, that care must be exercised when using these sources, since 

they utilize different variant annotation and curation protocols, and in some 

cases the pathogenicity annotations may be incorrect (MacArthur et al., 

2014), leading to contradictions between databases.  
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Neutral variants can be retrieved from projects that aim to sequence natural 

variation, such as the 1000 Genomes Project (Altshuler et al., 2010), ExAC or 

gnomAD (Lek et al., 2016). However, for some genes, the number of variants 

obtained this way may not be enough to train a predictor. In these cases, 

neutral variants can also be retrieved from protein sequence divergence data, 

that is, sequence differences between human proteins and close homologs 

(C. Ferrer-Costa, Orozco, & De La Cruz, 2004; S. Sunyaev et al., 2001). A 

comparative study carried by Wei et al. (Wei & Dunbrack, 2013) shows that 

both models give comparable results in the training of pathogenicity 

predictors. 

Training the predictor 

First, we need to select one of the available supervised machine learning 

algorithms, such as Neural Networks, Support Vector Machine, Random 

Forest, etc. Beforehand, there is not a better algorithm than another. So, for 

each problem, it has to be studied which is the most suitable. However, when 

several algorithms fit to the problem, the most interpretable and simplest 

should be favoured to prevent overfitting problems (Rudin, 2019). Overfitting 

problems occur in many cases when the size of the training dataset is too 

small or when the composition of pathogenic and neutral variants is very 

imbalanced (P. Baldi & Brunak, 2001). Then, the algorithm memorizes so well 

the data that it learns its noise and hence, fails to predict new data.  

Once the algorithm and parameters are chosen, we can train the predictor 

with the collection of variants and their discriminant features. Afterwards, 

the predictor is ready to predict new variants. Usually, it provides a 

continuous numerical score (typically comprised between 0 and 1) and using 

a decision threshold, discretizes it between pathogenic and neutral variant 

classes (Figure 1.12a). 
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Estimating the performance of the predictor 

Before the predictor is delivered to the biomedical/clinical community, we 

must estimate its predictive performance. This is relevant to determine the 

suitability of the tool for specific applications, which may have very concrete 

quality requirements. There are different metrics to measure the 

performance of a pathogenicity predictor, which reflect the predictor’s 

success in solving different aspects of the binary classification problem. 

b)        Confusion matrix 
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Figure 1.12 Outcome and performance of pathogenicity predictors. a) 

Distribution of training pathogenic and neutral variants according to the 

predicted score. Most of the pathogenicity predictors present their score as a 

continuous value between 0 and 1, which is discretized by means of a decision 

threshold. b) The result of comparing observed and predicted values can be 

summarized in a confusion matrix which its values are at the basis of most 

performance descriptors.  
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Most of the performance measures of a predictor are generally obtained 

from a confusion matrix (Figure 1.12b), where the successes and failures of 

the method are summarized. Successes correspond to True Positive (TP) and 

True Negative (TN) amounts, which are the numbers of pathogenic and 

neutral variants correctly predicted, respectively. Misclassification errors are 

represented by False Positive (FP) and False Negative (FN) amounts, which 

are the numbers of neutral variants predicted as pathogenic and vice versa, 

respectively. As mentioned before, these four numbers (TP, TN, FP, FN) are 

the basis of most performance metrics for binary classifiers (Vihinen, 2012). 

In this thesis we will use the sensitivity, specificity, positive predictive value, 

negative predictive value, accuracy and Matthews correlation coefficient 

metrics. Since they are broadly used, I will only briefly describe them. 

Sensitivity (also known as True Positive Rate (TPR) or recall) and specificity 

(also known as True Negative Rate (TNR)) focus on complementary aspects 

of the predictive performance. Sensitivity measures the proportion of 

observed positive cases which are correctly predicted as positive, whereas 

specificity measures the proportion of observed negative cases correctly 

predicted as negative. They are expressed as: 

Sensitivity =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Positive predictive (PPV) and negative predictive (NPV) values. PPV measures 

the proportion of predicted positive cases which are actually positive cases, 

and NPV measures the proportion of predicted negative cases which are 

actually negative cases. They are expressed as: 

PPV =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

NPV =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
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Although these metrics are very valuable, they are also sensitive to the 

dataset composition, making difficult their use for comparing the work of 

authors working with different datasets.  

Finally, we have a couple of performance metrics that describe the success 

rate of a predictor for both classes simultaneously: Accuracy and Mathews 

Correlation Coefficient. 

Accuracy corresponds to the overall fraction of successful predictions. It gives 

a general view of the performance, however, when there is a class imbalance 

in the mutation dataset, that is, when one class is more frequent than the 

other, accuracy can be misleading (P. Baldi, Brunak, Chauvin, Andersen, & 

Nielsen, 2000). It is expressed as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Mathews Correlation Coefficient (MCC) is another performance measure that 

is highly cited in the literature (Vihinen, 2012). It is a correlation coefficient, 

with values comprised between -1 and 1. These two extremes reflect a 

complete disagreement and agreement in the predictions, respectively; and 

0 corresponds to a random predictor (P. Baldi et al., 2000). MCC is considered 

more informative than the previous measures since it takes into account the 

four primary quantities in a balanced way (Chicco, 2017):  

𝑀𝐶𝐶 =  
𝑇𝑃 · 𝑇𝑁 − 𝐹𝑃 · 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) · (𝑇𝑃 + 𝐹𝑁) · (𝑇𝑁 + 𝐹𝑃) · (𝑇𝑁 + 𝐹𝑁)
 

As we have seen, each of these descriptors has its virtues and defects and, 

when presenting a new predictor, it is recommended to use several of them 

to describe completely its success rate (P. Baldi et al., 2000; Vihinen, 2012). 
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Once a predictor has been developed and calibrated it is ready for its use by 

the scientific community. Many predictors are available nowadays (Ghosh, 

Oak, & Plon, 2017; Niroula & Vihinen, 2016) and their continued use has 

unveiled some problems with the in silico approach that is worth mentioning. 

For example, in some cases predictors have imbalanced sensitivities and 

specificities (Ernst et al., 2018) and their performances vary between genes 

(Riera et al., 2016). These issues impede the stand-alone use of pathogenicity 

predictors. However, their potential has been recognized and are currently 

employed in the clinical setting, although always in combination with other 

sources of biomedical evidence (Richards et al., 2015). 

1.2.4. State-of-the-art trends in pathogenicity 

prediction 

In spite of the huge amount of simplifications involved, pathogenicity 

predictors work surprisingly well. Indeed, present day predictors have an 

average predictive power over 85% (Riera et al., 2014), indicating that 

structure- and conservation-based parameters, capture some essential 

aspects of the molecular impact of mutations.  

Since the first predictors were developed in the early 2000s, the strategies to 

develop pathogenicity predictors have gradually changed. Initially, general 

predictors aiming to predict all variants from any protein were developed. 

More recently, after noticing that predictors had a different performance 

depending on the gene (Figure 1.13) (Riera et al., 2016), a part of the 

development efforts have shifted towards the obtention of protein specific 

tools. 
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Figure 1.13 Performance of general predictors among several proteins. 

Adapted from Riera et al. (Riera et al., 2016). 

Protein specific predictors are produced in different ways, from de novo 

development (Riera et al., 2016) to adapting pre-existing predictors, by 

generating specific decision cutoffs for the protein of interest (Itan et al., 

2016). Comparative studies support the idea that these protein specific tools 

can compete in performance with general predictors (Riera et al., 2016). 

Interestingly, and in parallel with the development of specific predictors, 

these recent years have witnessed the birth of a new generation of methods. 

These new predictors, referred to as metapredictors or ensemble predictors 

(Vihinen, 2014), are conceptually different from fundamental predictors. 

Rather than using pre-existing scientific knowledge on the molecular impact 

of variants, they combine the scores of pre-existing methods to generate 
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their predictions. Metapredictors have good performances, but they may also 

have some unwanted biases towards the predictions of certain tools 

frequently used to build them, such as SIFT or PolyPhen2 (Vihinen, 2014). 

Finally, one of the most promising trends in the development of pathogenicity 

predictors has been the proposal of Masica et al. (David L. Masica & Karchin, 

2016). These authors suggest to focus on intermediate phenotypes, known 

as endophenotypes, rather than on the final, clinical phenotype. 

Endophenotypes are quantitative measures of clinical relevance, like catalytic 

activities or others. They are closer to the genotype than clinical phenotypes 

and, thereby, less influenced by the genetic background and environment, 

which may result in predictors with higher success. 

The main goal of this thesis is to combine two of these strategies, the 

development of protein-specific tools and the close genotype-

endophenotype relationship, to build a protein specific prediction tool for 

BRCA1 and another for BRCA2, aimed at predicting the values of the HDR 

assay for these proteins. 
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Objectives 

The aim of this thesis is to advance the field of pathogenicity predictors, by 

means of understanding the impact of missense variants on the function of 

BRCA1 and BRCA2 proteins, and how we can predict it. 

To accomplish this goal, the thesis addresses the following objectives: 

1. Model the impact of missense variants in the HDR function of BRCA1 

and BRCA2 proteins and construction of a pathogenicity predictor 

using molecular properties related to sequence conservation and 

amino acid replacement. 

2. Disseminate the knowledge and methodology of the protein-specific 

pathogenic predictors for BRCA1 and BRCA2 among the scientific and 

clinical community by building a user-friendly website. 

3. Understanding the computational information of pathogenicity 

predictors in a practical case of clinical research: characterization of a 

novel pediatric neurologic disorder caused by variants in histone H3.3.  

 

 



 

 



 

 

 

 

 

3. Building a protein specific 
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The results presented in this chapter have been published in Padilla et al. 

(Padilla et al., 2019)
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3.1. Introduction 

Germline variants disrupting the DNA protective role of BRCA1 and BRCA2 

(BRCA1/2) result in an increased risk of developing hereditary breast and 

ovarian cancer (HBOC) (Roy et al., 2012; Venkitaraman, 2014). Identification 

of the individuals carrying these pathogenic variants is clinically relevant since 

it allows channeling them to surveillance, prevention programs and targeted 

therapies (Paluch-Shimon et al., 2016). As a result, the survival rates of these 

patients may be increased.  

However, not all of them benefit equally, because we lack the exact 

knowledge of the functional impact of the majority of BRCA1/2 variants. In 

these cases, a straightforward decision can only be taken when the variant is 

overtly deleterious (insertions, deletions, and substitutions codifying 

truncated proteins). When the variant has an uncertain effect on protein 

function (e.g., missense, synonymous, intronic, and 5’UTR or 3’UTR variants) 

the best course of action becomes unclear.  

Solving this problem is not easy since familial data is usually scarce and 

functional assays are technically challenging for a systematic application 

(Starita et al., 2015). The most widely used experiment is the homology-

directed DNA repair (HDR) assay of BRCA1/2, a cell-base experiment that 

requires a complex rescue assay (Guidugli et al., 2013; Millot et al., 2012) to 

measure the impact of variants in the HR activity of BRCA1/2. 

In these circumstances, in silico pathogenicity predictors like Align-GVGD 

(Tavtigian et al., 2006), PolyPhen-2 (I. Adzhubei et al., 2010), SIFT (Kumar, 

Henikoff, & Ng, 2009), PON-P2 (Niroula, Urolagin, & Vihinen, 2015), etc; are 

employed as an inexpensive, easy-to-use alternative. The predictions 

obtained are applied to prioritize the variants for experimental evaluation 
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and as a contribution to decision models that integrate different sources of 

evidence (Karbassi et al., 2016; Lindor et al., 2012; Moghadasi, Eccles, 

Devilee, Vreeswijk, & van Asperen, 2016; Vallée et al., 2016).  

However, the moderate success rate of these tools is an obstacle for their 

extended use in the clinical environment (Riera et al., 2014). Ernst et al. (Ernst 

et al., 2018) after testing the performance of Align-GVGD, SIFT, PolyPhen-2, 

MutationTaster2 on a set of 236 BRCA1/2 variants of known effect, suggested 

that in silico results cannot be used as stand-alone evidence for diagnosis. In 

terms of molecular effect, two independent massive functional assays of 

BRCA1 variants (Findlay et al., 2018; Starita et al., 2015) show that in silico 

predictors provide only a limited view of the functional impact of these 

variants. In summary, there is an urge to improve the predictive power of 

these tools, if we want to increase their usage in the clinical setting and 

augment their value for healthcare stakeholders.  

The slow progression in performance displayed by pathogenicity predictors 

along time shows that improving them is a difficult task (Riera et al., 2014). In 

this scenario, the use of rigorous performance estimates becomes an 

important factor, since improvements are expected to be small and hard to 

establish. Generally, these estimates are obtained using a standard N-fold 

cross-validation procedure (Pierre Baldi, Brunak, Chauvin, Andersen, & 

Nielsen, 2000; Riera et al., 2014; Vihinen, 2012).  

However, given the increasing availability of variant data, independent 

testing of predictors is emerging as a valuable option to complement cross-

validated performance estimates. Sometimes this testing is done in specific 

systems for which new variants with impact annotations become available, 

either at specific/general databases or through experimental testing of their 

function. For example, Riera et al. (Riera et al., 2015) cross-validate their 

Fabry-specific predictor with a set of 332 pathogenic and 48 neutral variants, 
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and provide an independent validation, using a set of 65 pathogenic variants 

obtained from an update of the Fabry-specific database. Wei et al. (Wei & 

Dunbrack, 2013) test five in silico predictors using an independent set of 204 

variants (79 deleterious, 125 neutral) of the human cystathionine beta-

synthase whose impact they establish with an in vitro assay. Large variant 

sets, including data from different genes, are also frequently used to assess 

and compare the performance of several predictors simultaneously (Niroula 

& Vihinen, 2016).  

While relevant, the value of these approaches to validation is limited by 

different factors, such as the fact that the performance evaluation between 

works may vary, their dataset of variants may differ, etc. In this situation, 

CAGI (Critical Assessment of Genome Interpretation) (Hoskins et al., 2017), a 

community meeting where developers can assess the performance of their 

methods in specific challenges, offers an excellent opportunity to obtain an 

independent view on their work. For users, it allows having an idea on the 

state of the art of the predictors for the protein or disease of their interest.  

In this chapter, I present a novel family of pathogenicity predictors for scoring 

BRCA1 and BRCA2 missense variants and their performance in the recently 

held ENIGMA challenge in CAGI 5.  

The four tools described here, two for BRCA1 and two for BRCA2, are protein-

specific (Crockett et al., 2012; C. Ferrer-Costa et al., 2004; Pons et al., 2016; 

Riera et al., 2016), that is, only variants for the given protein are used to train 

the predictors. These two protein specific predictors differ on their objective: 

one is trained to estimate the molecular impact of variants on the HR function 

of BRCA1/2 as measured in the HDR assay and the other is trained to estimate 

the clinical significance of variants, that is, whether it is pathogenic or neutral. 

Technically, due to our small training dataset, we employed simple 
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algorithms. For the first predictor, we used a standard multiple linear 

regression and for the second, a neural network model with no hidden layers. 

Once these predictors were obtained, they were applied to the BRCA1/2 

variants of the ENIGMA consortium (Spurdle et al., 2012) in the CAGI 5 

experiment. This was done following a protocol that combined the 

pathogenicity predictions of both splicing and protein function impact of 

missense variants (Figure 3.1). Given a variant, it was first tested for its effect 

on the splicing pattern, using a recently developed approach by Moles-

Fernández et al. (Moles-Fernández et al., 2018). If the variant had no 

detectable effect, it was subsequently tested for its impact on protein 

function, using the predictors here presented.  

Our results show that all our protein-specific predictors can discriminate 

(with different degrees of success) between pathogenic and neutral variants, 

for both BRCA1 and BRCA2 proteins. For this binary discrimination problem, 

their performances are comparable to, or better than, those of general 

predictors (CADD, PolyPhen-2, PON-P2, PMut, SIFT). When applied to the 

variants of the CAGI challenge, where the goal is to classify them in one of the 

IARC 5-tier classes, we see the same trend, although with a decrease in 

performance, like the rest of predictors. Nonetheless, our methods are able 

to predict the biased composition of the CAGI dataset, which is enriched 

towards neutral variants; especially, our predictors that estimate the 

molecular impact of variants on the HR function. For the correct identification 

of the pathogenic variants, it is particularly important the prediction of the 

splicing impact, which enhances the final success rate.  
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3.2. Materials and methods 

First, I describe the overall prediction protocol (Figure 3.1), which integrates 

predictions of splicing and protein impact; then, the development of the 

pathogenicity predictors for BRCA1/2 missense variants; and finally, the 

application of these tools in the ENIGMA challenge of the CAGI 5. 

 

Figure 3.1 Protocol to assess the impact of BRCA1/2 variants on splicing and 

protein function used in the ENIGMA challenge of the CAGI 5 experiment. MLR 

and NN refer to our two protein‐specific predictors, based on a multiple linear 

regression (MLR) and a neural network (NN), respectively. AS refers to the 

procedure to predict variants affecting splicing (Moles‐Fernández et al., 2018). 
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3.2.1. Overall prediction protocol 

In Figure 3.1, I describe the protocol followed in our contribution to CAGI 5, 

an experiment that presents several challenges revolving around a central 

theme (Hoskins et al., 2017): the prediction of pathogenicity of variants and 

its applications.  

We focused our efforts on the ENIGMA challenge to predict the increased risk 

of breast cancer of a collection of BRCA1 and BRCA2 missense variants 

provided by the ENIGMA consortium (Spurdle et al., 2012). We submitted 

four sets of predictions per protein (Annex 8.1). These sets correspond to the 

different combinations of our tools to predict the effect of a variant, including 

the impact on splicing and protein function/structure.  

To predict the variant’s impact on splicing, we used the method of Moles-

Fernández et al. (Moles-Fernández et al., 2018) labelled here as AS. For the 

prediction of the variant’s impact on protein function/structure, we used our 

two developed methods: a multiple linear regression (MLR) model that 

predicts the variant’s impact on the HR function of BRCA1/2, and a neural 

network (NN) model that predicts the clinical significance of a variant. The 

protocol of these four sets of predictions are the following: 

1. MLR + AS: predicts AS impact followed by protein impact with MLR. 

2. NN + AS: predicts AS impact followed by protein impact with NN. 

3. MLR + nAS: predicts only protein impact with MLR, no AS is used. 

4. NN + nAS: predicts only protein impact with NN, no AS is used. 

The submission format was the same for each set of predictions and was 

provided by the organizers. It comprised the following information per 

variant: three fields for the identification of the variant: gene, DNA variant, 

protein variant; three fields for the prediction of pathogenicity of the variant: 

predicted IARC 5-tier class, probability of the variant being pathogenic (p), 



Materials and methods 

 

61 

confidence of each prediction probability (sd); and one field for comments. 

The predict class of pathogenicity corresponds to the IARC 5-tier classification 

system (Goldgar et al., 2008; Plon et al., 2008) which includes the classes 

1=Not pathogenic, 2=Likely not pathogenic, 3=Uncertain, 4=Likely pathogenic 

and 5=Pathogenic. 

For the sets MLR+AS and NN+AS, any missense variant predicted as 

pathogenic by the AS predictor was arbitrarily assigned values of p=1 and 

sd=0, and class 5. Otherwise, the variant was annotated using our protein 

impact predictors, which were obtained as explained below. That is, the 

protein impact was estimated only if the variant had no predicted effect on 

AS. One can distinguish these situations by the text in the comments column: 

splicing, which means that the variant is annotated with the AS predictor; 

protein, which means that the variant is annotated with the protein-based 

predictors (MLR or NN); and arbitrary, used for variants for which we do not 

have a predictor, since they are not missense (annotation is arbitrarily set to 

the following: class=5, p=0.5, sd=0.5).  

For the sets MLR+nAS and NN+nAS we did not use the AS predictor. All the 

missense variants are annotated using our protein impact predictors 

(obtained as explained below). As before, these situations are distinguished 

in the comments field with the label protein. 

3.2.2. Prediction of the variants’ impact on splicing  

To score the effect of variants on splicing, we used the recent method of 

Moles-Fernández et al. (Moles-Fernández et al., 2018). They identified the 

best combination of predictors available in the package Alamut Visual v2.10, 

for predicting splice site alterations. More precisely, they showed that the 

HSF+SSF-like combination (with Δ-2% and Δ-5% as thresholds, respectively) 

for donor sites and the SSF-like (Δ-5%) for acceptor sites, exhibited an optimal 
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performance in a benchmark combining RNA in vitro testing and a dataset of 

variants retrieved from public databases and reported in the literature.  

For the CAGI challenge, a variant predicted to produce splice site alterations 

was arbitrarily assigned class 5, p=1 and sd=0; and identified as splicing in the 

comments column. Variants giving no signal for splice site alterations were 

directly channelled to the protein predictors. 

3.2.3. Prediction of the variants’ impact on protein 

function 

We developed two methods for predicting the impact of missense variants in 

BRCA1 and BRCA2. One is trained on a neural network (NN) and produces a 

binary output reflecting the clinical significance of variant, that is, the 

high/low risk of cancer. The other method is based on a multiple linear 

regression (MLR) and is trained to predict the value of the HDR assay of a 

variant, that can be further discretized between high/low risk variants. Both 

methods are protein-specific: there is a version of MLR for BRCA1 and 

another for BRCA2, and the same for NN.  

3.2.4. The NN predictor 

We followed our approach to produce protein-specific predictors (Riera et al., 

2016), which comprises the following steps: (i) collection of the variant set, 

(ii) selection of the discriminant features, and (iii) training of the predictor.  

Collection of BRCA1/2 variants with known clinical significance 

Missense variants with a known clinical significance were selected manually 

by reviewing several gene-specific databases that collect BRCA1 and BRCA2 

variants along with published literature: Leiden Open Variation Database 



Materials and methods 

 

63 

(LOVD) describing functional studies of specific BRCA1 and BRCA2 variants 

(http://databases.lovd.nl), LOVD-IARC dedicated to variants that have been 

clinically reclassified using an integrated evaluation 

(http://hci-exlovd.hci.utah.edu), BRCA ShareTM (formerly Universal Mutation 

Database UMD-BRCA mutations database http://www.umd.be/), ClinVar 

that provides clinical relevance of genetic variants 

(https://www.ncbi.nlm.nih.gov/clinvar/) and BRCA1 CIRCOS which compiles 

and displays functional data on all documented BRCA1 variants 

(https://research.nhgri.nih.gov/bic/circos/). Finally, each variant was 

validated by combining these different sources of evidence.  

Variants for which the pathogenic role was attributable to splice site 

alterations (assessed using Alamut Visual biosoftware 2.6, from Interactive 

Biosoftware) were eliminated. This was done to ensure, as far as possible, 

that our model was trained using variants whose pathogenic/neutral nature 

was a consequence of their impact in protein function/structure only. 

The final dataset of missense variants with annotated clinical significance was 

constituted by 77 pathogenic and 149 neutral variants in BRCA1; and 36 

pathogenic and 105 neutral variants in BRCA2 (see Table 3.1).  

Selection of discriminant features 

We used a total of 6 discriminant features that we previously employed for 

the development of protein-specific predictors (Riera et al., 2016).  

Two of these features are extracted from multiple sequence alignments 

(MSAs): Shannon’s entropy and position-specific scoring matrix (PSSM). 

Shannon's entropy is equal to -Σipi.log2(pi), where the index i runs over all the 

amino acids at the variant's MSA column. PSSM is equal to log2(fnat,i/fnat,MSA), 

where fnat,i is the frequency of the native amino acid at the locus i of the 

variant and fnat,MSA is the frequency of the same amino acid in the whole MSA.  

http://databases.lovd.nl/
http://hciexlovd.hci.utah.edu/
http://www.umd.be/
https://www.ncbi.nlm.nih.gov/clinvar/
https://research.nhgri.nih.gov/bic/circos/
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We used two different MSAs: psMSA and oMSA, which resulted in two 

different versions of the NN predictor. psMSA was obtained using the same 

protocol utilized for the protein-specific predictors (Riera et al., 2015, 2016) 

which, briefly, consists of three steps: (i) recovery of BRCA1/2 homologs using 

a query search of UniRef100; (ii) elimination of remote homologs (<40% 

sequence identity); (iii) alignment of the remaining sequences with Muscle 

(Edgar, 2004). The oMSA was obtained from the group of Sean Tavtigian 

(Tavtigian, Greenblatt, Lesueur, & Byrnes, 2008) at their website of Huntsman 

Cancer Institute (http://agvgd.hci.utah.edu/alignments.php), and comprise 

only orthologs of BRCA1 and BRCA2. The NN predictions submitted to CAGI 

were those obtained with the method developed using the psMSA, although 

results for the second predictor are mentioned below. 

Three other features measure the change of a physicochemical property of 

the amino acid replacement, the difference between the native and the 

mutant amino acid of the Van der Waals volume (Bondi, 1964), the 

hydrophobicity value (estimated from water/octanol transfer free energy 

measurements) (Fauchere & Pliska, 1983) and Blosum62 value (Henikoff & 

Henikoff, 1992). 

Finally, a sixth feature is a boolean (True/False) that summarizes the 

functional/structural role of the native residue at the protein from the 

UniProt database. It is set to True when the native residue has an annotated 

function on the database, and False otherwise.  

Training the neural network predictor 

The neural network model was trained using WEKA (v3.6.8) (M. Hall et al., 

2009). Following our experience in the development of protein-specific 

predictors with small datasets (Riera et al., 2016), we employed the simplest 

neural network model: a single-layer perceptron. Sample imbalances in the 
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training set were corrected with SMOTE (Chawla, Bowyer, Hall, & 

Kegelmeyer, 2002).  

The NN predictor provides two outputs: (i) a binary prediction of the class of 

the variant: pathogenic or neutral; and (ii) a continuous numerical score, 

comprised between 0 and 1, that reflects the probability of pathogenicity.  

Finally, a Leave-one-out cross-validation (LOOCV) was carry out to assess the 

performance of the model also using WEKA (v3.6.8) (M. Hall et al., 2009). 

Obtention of the CAGI output 

As mentioned above, the CAGI submission requires three pieces of 

information for each variant prediction: the predicted IARC 5-tier class, the 

probability of pathogenicity (p) and the reliability (sd). We took as p the 

numerical score from the NN, which varies between 0 (minimal probability of 

pathogenicity) and 1 (maximal probability of pathogenicity). For the sd value, 

we used the following formula (C. Ferrer-Costa et al., 2004): sd= 0.5-|0.5-p|. 

It goes from 0 (maximal reliability) to 0.5 (minimal reliability). Finally, the 

predicted IARC 5-tier class was obtained from p, using the ENIGMA 

conversion table at the CAGI site (class 5: p>0.99; class 4: 0.95<p<0.99; class 

3: 0.05<p<0.95; class 2: 0.001<p<0.49; class 1: p<0.001). 

3.2.5. The MLR predictor 

This method aims to predict the impact of variants on the molecular function 

of BRCA1/2 in the HR pathway as measured in the HDR (homology-directed 

DNA repair) assay. Since the output of the HDR assay is a continuous value, 

we opted for using a multiple linear regression as a modeling tool, as 

implemented in the python package Scikit-learn (Pedregosa et al., 2011), that 

we also used to perform the LOOCV.  
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For a given variant, the output of the MLR predictor is HDRpred, the predicted 

value of the HDR assay. In the few cases that the result was a slightly negative 

number, the predicted value was set to 0, since the output of the HDR 

experiment is always a positive number. 

To train our model, we used the experimental HDR values available on the 

literature: 44 variants for BRCA1 (Starita et al., 2015) and 185 variants for 

BRCA2 (Guidugli et al., 2013, 2018). However, to reinforce the strength of the 

signal relative to experimental noise, we did not employ the full data sets. 

The training dataset was constituted by those variants used to build the NN 

predictor (see the previous section) for which HDR values were available. The 

final number of training HDR values was 28 for BRCA1 and 92 for BRCA2. The 

HDR values for BRCA2 corresponded to 56 unique variants since some 

variants had been tested twice (Guidugli et al., 2013, 2018).  

Given the small size of the variant datasets and to try to minimize potential 

overfitting problems, we used the three most discriminative features of the 

previous ones: Shannon’s entropy, PSSM, and Blosum62, as independent 

variables in the regression model (Figure 3.2). Like for the NN methods, the 

MSA-based features were computed with both the psMSA and the oMSA, 

thus, leading to two versions of the MLR. Only the predictions for the oMSA-

based MLR where submitted to CAGI; however, the results for the second 

predictor are also provided here. 

 

      BRCA1 

      BRCA2 

Figure 3.2 Feature importance of BRCA1 (violet) and BRCA2 (pink) variants. 

Calculated with the Extremely Randomized Trees Classifier from scikit-learn. 
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Obtention of the CAGI output 

To adapt the HDR predicted value to the CAGI numerical score from 0 to 1, 

we us used the following steps: 

1. Obtention of the HDR predicted values for the variants in the BRCA1 

and BRCA2 training datasets with the protein specific MLR. 

2. For each protein, compute the mean (m) and standard deviations (sd) 

of the predicted HDR values of the training pathogenic and neutral 

variants separately, obtaining four metrics per protein: mP, sdP, mN, sdN. 

3. Compute CAGI’s p as follows:  

𝑁(𝑥; 𝑚𝑃 , 𝑠𝑑𝑃)

𝑁(𝑥; 𝑚𝑃 , 𝑠𝑑𝑃) +  𝑁(𝑥; 𝑚𝑁 , 𝑠𝑑𝑁)
 

where N(x; m, sd) represents a normal probability distribution of mean 

m and standard deviation sd. The resulting value is comprised between 

0 (neutral) and 1 (pathogenic), and reflects the probability of a variant 

being pathogenic according to our model. 

4. Obtain the sd value as for the NN methods, using the following formula 

(C. Ferrer-Costa et al., 2004): sd= 0.5-|0.5-p|. 

3.2.6. Performance assessment 

The performance was estimated using a standard LOOCV procedure (Riera et 

al., 2016) for both MLR and NN predictors and both BRCA1 and BRCA2 

proteins. The metrics used to measure the success rate of the predictors 

depended on the number of classes predicted.  

For instance, during the development of the predictors, the NN and MLR 

methods predicted only two classes: pathogenic and neutral variants; 

whereas in subsequent validations, including the CAGI submissions, three and 

five classes of variants were considered. Below, we describe the performance 

parameters employed in each case. 
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Binary performance estimation 

Binary performance was measured with four commonly employed metrics for 

binary classifications (Pierre Baldi et al., 2000; Vihinen, 2013): sensitivity, 

specificity, accuracy and Matthews correlation coefficient. They are 

computed as follows: 

- Sensitivity (SN): 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

- Specificity (SP): 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

- Accuracy (ACC):  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

- Matthews Correlation Coefficient (MCC):  

𝑇𝑃 · 𝑇𝑁 − 𝐹𝑃 · 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑁) · (𝑇𝑁 + 𝐹𝑃) · (𝑇𝑃 + 𝐹𝑃) · (𝑇𝑁 + 𝐹𝑁)
 

where TP (True Positive) and FN (False Negative) are the numbers of correctly 

and incorrectly predicted pathological variants; TN (True Negative) and FP 

(False Positive) are the numbers of correctly and incorrectly predicted neutral 

variants, respectively. 

Multiclass performance estimation 

Multiclass performance was used when the predicted numerical score was 

discretized into five and three classes. This happened when assessing the 

CAGI submission, where we predicted five classes; and during the application 

of the MLR predictor to the recently published functional assay of BRCA1 

variants (Findlay et al., 2018), where we predicted three classes.  
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For multiclass performance estimation, the number of metrics available is 

smaller than for binary (Pierre Baldi et al., 2000; Vihinen, 2013). Here, we 

utilized the confusion matrix, accuracy per class, overall accuracy, and 

multiclass MCC (Gorodkin, 2004; Jurman, Riccadonna, & Furlanello, 2012).  

For a multiclass problem with M classes, the confusion matrix C=(cij) is an 

(MxM) matrix where cij is the number of times that a class i input is predicted 

as class j. The sum of the cij corresponds to the sample size N, which in our 

case is the total number of variants predicted. This matrix provides the 

simplest description of the performance of a predictor, its diagonal and off-

diagonal elements correspond to the predictor's successes and failures, 

respectively. If we normalize each diagonal element by its row total (cii/ Σjcij, 

where j=1,M) we obtain the accuracy of the predictor for class i. If we add all 

the diagonal elements and divide the result by N (Σicii/N, where i=1,M), we 

obtain the overall accuracy. 

The multiclass MCC (Gorodkin, 2004; Jurman et al., 2012) was obtained using 

the implementation in the python package Scikit-learn (Pedregosa et al., 

2011). 
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3.3. Results 

Here, I describe the obtention of a novel family of pathogenicity predictors 

specific for BRCA1/2 proteins (MLR and NN) and their application to the 

unknown variants of the CAGI challenge, within a protocol that also includes 

AS predictions (Figure 3.1).  

As shown in the section 3.2 of Materials and Methods, we considered the use 

of two different MSAs (psMSA and oMSA) to develop our predictors. 

However, I center our descriptions on the versions employed for the CAGI 

challenge: MLR based on oMSA and NN based on psMSA. For completeness, 

the performance of our methods when developed using psMSA (for MLR) and 

oMSA (for NN) is also provide in Table 3.3 and Figure 3.6.  

3.3.1. Variant datasets 

The size of the datasets of variants employed in this work is shown in Table 

3.1a and the overlap between the CAGI and the remaining datasets is 

reported in Table 3.1b. Note that the CAGI class information on each variant 

was made public only after the challenge was closed. 

 NN MLR CAGI SGE 

BRCA1 226 (P=77/N=149) 28 144 1837 

BRCA2 141 (P=36/N=105) 56 174 - 

Table 3.1a Size of the datasets of variants used in this work. 

 NN-CAGI MLR-CAGI MLR-SGE 

BRCA1 18 (P=7/N=11) 2 28 

BRCA2 5 (P=2/N=3) 4 - 

Table 3.1b Overlap between variant datasets. 
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Training datasets for the NN and MLR predictors 

The number of variants in the NN training sets (BCA1: 226; BRCA2: 141) is 

comparable to that used for developing protein-specific predictors with the 

same neural network model and variant features in Riera et al. (Riera et al., 

2016). The situation is quite different for the MLR training sets, which are 

small (BRCA1: 28; BRCA2: 56), consequently, imposing a severe limitation in 

the number of features that can be used in the model (see section 3.2 

Material and Methods). 

SGE, a validation dataset for the BRCA1 MLR predictor 

This set is obtained from the results of a recently published experiment for 

BRCA1 (Findlay et al., 2018). The authors functionally score a large number of 

single nucleotide variants (SNVs), from which we retrieved the 1837 cases 

corresponding to missense variants. We refer to this dataset as SGE (from 

Saturation Genome Editing). We used SGE to further test the performance of 

our BRCA1 MLR because Findlay et al. find that there is a correspondence 

between their functional score and the score of the HDR assay (Findlay et al., 

2018).  

CAGI dataset 

Their size (BRCA1: 144; BRCA2: 174) is of the same magnitude as that of the 

NN training datasets. In Table 3.2, I provide two partitions of these datasets, 

corresponding to: (i) the original, 5-class ENIGMA partition; and (ii) a reduced, 

3-class partition. For the latter, the Pathogenic and Likely pathogenic classes 

have been unified into a single Pathogenic class, and the Likely not 

pathogenic and Not pathogenic classes have been unified into a single 

Neutral class. The Uncertain class (or Unknown) has been left untouched. It 

must be noted the high compositional imbalance of the CAGI dataset, with 
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the total of classes 1 and 2 being 10 and 25 times higher than that of the 

remaining classes, for BRCA1 and BRCA2, respectively. In particular, the 

absolute numbers of variants for classes 3, 4 and 5 are so low that they can 

hardly lead to reliable estimates for class-dependent parameters. For 

example, there are only two variants of class 3 for both BRCA1 and BRCA2; 

two and three variants for classes 4 and 5, respectively, in BRCA2; and four 

and seven variants for classes 4 and 5, respectively, in BRCA1. 

BRCA1       

IARC 5 class 1 2 3 4 5 

CAGI 31 100 2 4 7 

3 class Neutral Unknown Pathogenic 

CAGI 131 2 11 
 

BRCA2       

IARC 5 class 1 2 3 4 5 

CAGI 31 136 2 2 3 

3 class Neutral Unknown Pathogenic 

CAGI 167 2 5 

Table 3.2 Composition of the variant dataset of ENIGMA challenge in CAGI 5 

3.3.2. Predicting the functional impact of variants: the 

MLR predictor 

We developed two MLR methods, one per each BRCA1/2 protein. The goal of 

these methods is to predict the impact of a given variant on the molecular 

function of the protein, as measured by the HDR experiment. To this end, we 

trained them with a set of variants with known experimental values for the 

HDR assay and the discriminant features chosen related to the variant’s effect 

on protein structure, protein-protein interactions, sequence conservation, 

etc. (Carles Ferrer-Costa et al., 2002; Riera et al., 2014).  
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In Figure 3.3, we see the correlation between observed vs. predicted (LOOCV) 

HDR values which is statistically significant (BRCA1: 0.72, p-value=1.5x10-5; 

BRCA2: 0.73, p-value=3.3x10-17). Visual inspection reveals that the variants 

tend to group into two clusters, showing that MLR predictions approximately 

reproduce the bimodal pattern of HDR assays (Guidugli et al., 2013; Starita et 

al., 2015). We also show in grey color, the variants which were left outside of 

the training set (see Materials and Methods). These are more scattered than 

those forming the training set, illustrating how the filtering worked. 

 

Figure 3.3 Observed versus predicted HDR values for BRCA1 and BRCA2. In 

blue, we show the variants used for the training of our MLR method. The HDR 

predicted values are cross‐validated (LOOCV). For completeness, we show in 

grey the points from the original HDR experiments that were excluded from the 

training process after applying our filtering procedure (see section 3.2).  

We explored how good is this level of accuracy for a standard two-class 

(pathogenic/neutral) prediction of the variant’s pathogenicity. To this end, 

we discretized the predictions applying a decision boundary: a variant was 

called pathogenic or neutral when its predicted HDR score was below or 

above a given threshold, respectively. These thresholds that were taken from 

the experimental papers, are 0.53 for BRCA1 (Starita et al., 2015) and 2.25 for 

BRCA2 (Guidugli et al., 2013).  
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In Table 3.3 we give the parameters measuring the success rate of the 

discretized MLR methods. Their accuracies, 0.75 for BRCA1 and 0.86 for 

BRCA2, fall within the 0.79-0.99 accuracy range for protein-specific predictors 

(Riera et al., 2016); the same happens for the MCC, 0.50 for BRCA1 and 0.71 

for BRCA2. We detect that specificity (0.85) and sensitivity (0.86) are closer 

for BRCA2 than for BRCA1 (SP: 0.87, SN: 0.62). Actually, for BRCA1 sensitivity 

tends to be small when compared to that of protein-specific predictors (Riera 

et al., 2016). Overall, these results indicate that the continuous HDR 

predictions of our MLR model can be transformed into binary predictions 

preserving a non-random prediction power, comparable to that of predictors 

trained with binary encodings (pathogenic/neutral) of the variant impact. 

Protein Method SN SP ACC MCC 

BRCA1 

MLR (psMSA) 0.692 0.933 0.821 0.651 

MLR-CAGI (oMSA) 0.615 0.867 0.75 0.502 

NN (oMSA) 0.922 0.852 0.876 0.746 

NN-CAGI (psMSA) 0.857 0.718 0.765 0.546 

BRCA2 

MLR (psMSA) 0.828 0.741 0.786 0.571 

MLR-CAGI  (oMSA) 0.862 0.852 0.857 0.714 

NN (oMSA) 0.75 0.867 0.837 0.592 

NN-CAGI (psMSA) 0.75 0.771 0.766 0.473 

Table 3.3 Two class (binary) performance of our MLR and NN predictors  

3.3.3. Validation of the BRCA1 MLR predictor with 

functional data 

The recent publication (Findlay et al., 2018) of a massive functional assay of 

BRCA1 variants has given us the opportunity to check the performance of our 

MLR model on a set of 1837 variants. The output of this experiment is a 

continuous value measuring the impact of sequence variants on BRCA1 

function. When we represent these values against our HDR predictions 
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(Figure 3.4a), we observe two clusters of points (below and above SGE=-1) 

that reflect the bimodal behavior of both assays, with a statistically significant 

rank correlation (Spearman’s =0.47, p-value~0).  

 

Figure 3.4 Prediction of the “saturation genome editing” (SGE) experiment in 

BRCA1. a) Scatterplot representing SGE values versus HDR predictions for the 

1,837 missense variants from (Findlay et al., 2018). b) Violin plot showing the 

distribution of variants for the different combinations of SGE and HDR 

functional categories. c) Principal component analysis of three variant 

populations (HDR‐SGE classes): FUNC‐FUNC (dark blue), NOF‐NOF (red) and the 

outliers NOF‐FUNC plus INT‐FUNC (light blue). d) Principal component analysis 

of three variant populations (HDR‐ SGE classes): FUNC‐FUNC (dark blue), NOF‐

NOF (red) and the outliers INT‐NOF plus FUNC‐NOF (yellow). 
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This overall coincidence is limited by a substantial scatter. Part of it may be 

due to technical/biological (inter-exon normalization procedures, impact of 

RNA levels, etc.) differences between the SGE and HDR experiments that 

introduce some dispersion in the comparison between both experiments (see 

Figure 9m from Extended Data Section in (Findlay et al., 2018)). Another part 

of the scatter is due to limitations of our model.  

To better understand these, we divided the SGE-HDR plane into 9 regions 

(Figure 3.4b), corresponding to the 3x3 combinations of SGE (functional, 

intermediate and non-functional) (Findlay et al., 2018) and HDR (High, Int, 

Low) (Starita et al., 2015) equivalent functional classes. The main blocks of 

outliers correspond to the two top-left and the two bottom-right regions.  

We separately used the variants inside each block for a principal component 

analysis (PCA) (Figures 3.4c and 3.4d), using as variables the three features in 

our model. As a reference, for each PCA we also included the variants from 

the upper (functional) and lower (non-functional) diagonal regions. In the 

plane of the first two principal components (PC1 and PC2) the chosen variants 

adopt a three-layered disposition, where we successively find the functional, 

the outliers and the non-functional ones. This disposition reflects the contrast 

between the bimodal nature of the SGE experiment and the smoother nature 

of our model. 

In fact, in Figure 3.5 we can see that those outlier variants indeed tend to 

have intermediate values (comprised between those of the functional and 

non-functional populations) for the features in our model. This suggests that 

for these variants we need to improve our representation of protein impact 

with new properties, to reproduce more accurately the results of the SGE 

experiment. However, it may also indicate the need to consider the effect of 

variants on other aspects of gene function, like RNA levels (Findlay et al., 

2018).  
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Figure 3.5 Feature distribution for the outlier populations. The three figures 

represent value distributions for a) Blosum62, b) Entropy, and c) PSSM. In each 

figure, we display four variant populations from the following regions in Figure 

3.4: FUNC-FUNC (dark blue), NOF-NOF (red), the outliers from the quadrants 

NOF-FUNC plus INT-FUNC (light blue), and the outliers from the quadrants INT-

NOF plus FUNC-NOF (orange). 



Building a protein specific pathogenicity predictor for BRCA1 and BRCA2 

 

78 

3.3.4. Predicting the clinical impact of variants: the NN 

predictor 

We developed two NN predictors, one per protein. These methods were 

trained with the idea of predicting the clinical significance of a given variant. 

To this end, during the training process, each variant was labeled with a 

binary version of this clinical impact: pathogenic/neutral. Here, the larger 

amount of training data compared to our previous MLR methods (Table 3.1a), 

allowed us to work with three additional features, fully adhering to our 

protocol for the obtention of protein-specific predictors (Riera et al., 2016).  

As for the MLR predictors, the performance obtained with the NN predictors 

(Table 3.3) are comparable to those of other protein-specific predictors. Their 

accuracies, 0.77 for both BRCA1 and BRCA2, are almost within the 0.79-0.99 

accuracy range for protein-specific predictors; the same happens for the 

MCC, 0.55 for BRCA1 and 0.47 for BRCA2. The sensitivities and specificities 

are more balanced for both BRCA1 (SP: 0.72, SN: 0.86) and BRCA2 (SP: 0.77, 

SN: 0.75) when compared with what happened for the MLR predictors.  

Overall, as in the case of MLR, the results indicate that the more clinically 

flavored NN predictors have a prediction power comparable to that of other 

protein-specific predictors (Riera et al., 2016).  

3.3.5. Comparison with general pathogenicity predictors 

To contextualize the performance of our protein-specific predictors, we give 

the results of our cross-validate predictions along with the outcomes of a 

representative set of general predictors: CADD (Kircher et al., 2014), 

PolyPhen-2 (I. Adzhubei et al., 2010), SIFT (Kumar et al., 2009), PON-P2 

(Niroula et al., 2015) and PMut (López-Ferrando, Gazzo, De La Cruz, Orozco, 

& Gelpí, 2017) (Figure 3.6).  
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Figure 3.6 Binary cross‐validated performance of our MLR and NN predictors 

along with that of the general predictors CADD, PolyPhen‐2, PMut, PON‐P2 

and SIFT. Predictor’s accuracy and MCC are calculated based on the training 

variant dataset of a) BRCA1 MLR b) BRCA2 MLR c) BRCA1 NN d) BRCA2 NN and 

shown in a radar plot. Predictor’s sensitivity and specificity are calculated based 

on the training variant dataset of NN (orange) and MLR (blue) of e) BRCA1 and 

f) BRCA2 and shown in a scatterplot. 



Building a protein specific pathogenicity predictor for BRCA1 and BRCA2 

 

80 

Care must be exercised when considering the results of this comparison, since 

the variants in our datasets can be found in databases like UniProt (Bateman 

et al., 2017b), commonly used to develop pathogenicity predictors (Riera et 

al., 2014). Therefore, it is likely that some of these variants have been used in 

the training of the general methods, thus leading to optimistic estimates of 

their performance. An additional limitation of the comparison is the small 

sample size involved in the case of MLR (Figures 3.6a, 3.6b).  

In general, we observe that our specific methods have success rates 

comparable to those of general methods. For MCC, our methods are only 

surpassed by PMut. For BRCA2, our NN is slightly surpassed by PON-P2 (MCC 

of 0.47 vs. 0.49), but our MLR surpasses PON-P2 (MCC of 0.71 vs. 0). The 

sensitivities and specificities of our methods are generally smaller and larger, 

respectively, than those of other methods. However, our methods have an 

equilibrated performance for pathogenic and neutral variants (Figures 3.6e, 

3.6f), since they display the smallest differences between sensitivity and 

specificity, 0.14 (BRCA1) and 0.021 (BRCA2) for NN, respectively, and 0.25 

(BRCA1) and 0.01 (BRCA2) for MLR. Only PMut has closer values for the MLR 

training set of BRCA1, 0.06. 

3.3.6. Results of the predictors in the CAGI experiment 

Here, I present the results of our prediction protocol (Figure 3.1) at the CAGI 

experiment. For each protein, we submitted four predictions: MLR+AS, 

NN+AS, MLR, and NN. For simplicity, I will restrict our analysis to the complete 

protocols (MLR+AS, NN+AS), mentioning protein predictions (MLR, NN) only 

for discussing the contribution of the AS predictors. Performance was 

assessed using the class assignments provided by the CAGI organizers after 

the challenge was closed. More precisely, we computed the ability of our 

protocols to correctly assign a variant to its class in two different classification 
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schemes. One is the IARC 5-tier classification system (Goldgar et al., 2008; 

Plon et al., 2008), which was the one requested by the organizers; the other 

is a 3-class version of this system (see section 3.2 Materials and Methods).  

The fact that we must consider the performance for more than two classes 

makes the evaluation problem more difficult: in multiclass problems 

confusion matrices retain their explanatory power, but summary measures 

are not easy to generalize, nor to interpret (Pierre Baldi et al., 2000; Vihinen, 

2012). In our case, the severity of this problem is augmented by the 

compositional imbalance in the CAGI dataset (Table 3.2). For these reasons, 

we focus our analysis mainly on the confusion matrices (Figure 3.7) because 

they provide the basal information in any prediction process and allow a 

direct interpretation. More concretely, we consider: (i) the diagonal elements 

to see how good our predictions are; and (ii) the off-diagonal elements to see 

how incorrect predictions distribute among classes. We treat separately 

BRCA1 and BRCA2 cases since the performance of both specific and general 

pathogenicity predictors is protein-dependent (Riera et al., 2016). 
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Figure 3.7 Confusion matrices of IARC 5-tier predictions on the CAGI dataset. 

We provide six heatmaps per protein, two for our predictors MLR+AS and 

NN+AS, and four for the general predictors PolyPhen‐2, PON‐P2, PMut, and 

SIFT. The vertical and horizontal axes correspond to the observed variant class 

(provided by CAGI) and the predicted IARC 5‐tier class, respectively. Diagonal 

and off‐diagonal elements correspond to successful and failed predictions. 

Given the range differences in predictions, each plot has its own colour scale. 

BRCA1 variants 

Looking at the diagonals of the confusion matrices (Figure 3.7), we observe 

that MLR+AS and NN+AS can recognize, with varying accuracies, members 

from three (1,2,5) and two classes (2,5), respectively. This overall trend is 

reflected in the class accuracies, which are higher for MLR-based protocols 

than for NN-based ones (Table 3.4). If AS predictions are not included, the 

two methods also fail to recognize class 5 variants (Table 3.4). In fact, for 

MLR+AS and NN+AS protocols AS predictions are responsible for the accuracy 

of class 5, which is 0.43 (3 out of 7 correctly predicted variants) in both cases; 

AS predictions lead to a single failure, for a class 2 variant.  

To understand the distribution of incorrect predictions among classes, we 

consider the off-diagonal elements (Figure 3.7). For MLR+AS, incorrect 

predictions mostly group at positions adjacent to the diagonal, with only 9 

out of 144 variants breaking this trend. For NN+AS this number grows to 31 

and predictions (both correct and incorrect) seem to cluster around class 3.  

Now, if we analyze the predictions within the unified 3-class framework, we 

find that class accuracies increase for MLR+AS to 0.82 and 0.56 for Neutral 

and Pathogenic classes, respectively. For NN+AS, this is not the case due to 

the previously mentioned clustering of predictions around class 3. Accuracy 

for the Unknown class is the same as that for IARC 5-tier class 3, since the 

classes are the same. 
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BRCA1 

IARC           
5 class 

1 
(<0.001) 

2 
(0.001-0.049) 

3 
(0.05-0.949) 

4 
(0.95-0.99) 

5 
(>0.99) 

MLR 0.323 0.37 0 0 0 

MLR + AS 0.323 0.37 0 0 0.429 

NN 0 0.29 0 0 0 

NN + AS 0 0.29 0 0 0.429 

3 class Neutral Unknown Pathogenic 

MLR 0.817 0 0.273 

MLR + AS 0.817 0 0.545 

NN 0.275 0 0 

NN + AS 0.275 0 0.273 
 

BRCA2 

IARC           
5 class 

1 
(<0.001) 

2 
(0.001-0.049) 

3 
(0.05-0.949) 

4 
(0.95-0.99) 

5 
(>0.99) 

MLR 0.871 0.007 0 0 0 

MLR + AS 0.871 0.007 0 0 0.333 

NN 0.194 0.382 0.5 0.5 0 

NN + AS 0.194 0.382 0.5 0.5 0.333 

3 class Neutral Unknown Pathogenic 

MLR 0.97 0 0 

MLR + AS 0.964 0 0.2 

NN 0.701 0.5 0.4 

NN + AS 0.701 0.5 0.6 

Table 3.4 Class accuracies of our predictors for the CAGI variants. The colour 

shading reflects the correspondence between both class systems. 
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Finally, we compare the performance of our predictors with that for the 

general predictors for which the output directly corresponded to a probability 

of pathogenicity (we only excluded CADD, because the score has another 

scale) (Figure 3.7).  

For the chosen predictors (PMut, PolyPhen-2, PON-P2, and SIFT) their score 

is a probability of pathogenicity that can be transformed into an equivalent 

of the IARC 5-tier classes, using the ENIGMA conversion table (see Materials 

and Methods). Focusing on the most frequent CAGI variants (31 from class 1; 

100 from class 2), we see that MLR+AS performs better than general 

methods; for class 5, all general methods, except SIFT, identify fewer correct 

variants. The case of SIFT is of interest since some of the class 5 variants 

appear to be splicing variants according to our AS predictions: at this point, 

and without further evidence, it is unclear which is the correct view, the 

amino acid view provided by SIFT or the nucleotide view provided by AS 

predictions.  

For classes 3 and 4, the size of the sample, two and four variants, respectively, 

limits the value of the results, which are: for the two variants of class 3, 

MLR+AS performs worse than general methods; for the four variants of class 

4, only PolyPhen-2 correctly identifies two of them. A remarkable feature of 

MLR+AS, relative to general methods, is that its predictions form a band 

around the diagonal, while general methods either scatter their predictions 

(PolyPhen-2, SIFT) or cluster them around class 3 (PON-P2 and PMut).  

Comparison of NN+AS with general methods (Figure 3.7) shows similarities 

with PON-P2 and PMut, and a failure to identify members of class 1 that is 

shared with all general methods, except PolyPhen-2; again, AS predictions 

favor our method for class 5, except in the case of SIFT. 
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The comparison within the three-class framework (Figure 3.8) confirms the 

previous trends, with MLR+AS having the largest class accuracy for Neutral, 

0.82, well over that of general methods (0.33 for PolyPhen-2; 0.04 for SIFT, 

0.02 for PMut and 0 for PON-P2). MLR+AS displays the second best accuracy 

for Pathogenic, together with PolyPhen-2 and behind SIFT. NN+AS again 

shows a performance below that of these two general methods, but above 

that of PON-P2 and PMut. 

 

Figure 3.8 Confusion matrices of 3-tier predictions on the CAGI dataset. We 

provide six heatmaps per protein, two for our predictors MLR+AS and NN+AS, 

and four for the general predictors PolyPhen-2, PON-P2, PMut, and SIFT. In all 

plots, the vertical and horizontal axis respectively correspond to the observed 

variant class (provided by CAGI organizers) and the predicted classes in the 3-

class reduced version of the IARC 5-tier classification. Diagonal and off-diagonal 

elements correspond to successful and failed predictions, respectively. Given 

the range differences in the predictions, each plot has its own colour scale. 
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BRCA2 variants 

For BRCA2, the situation is somewhat different. The diagonal elements of the 

confusion matrix (Figure 3.7) show that NN+AS can recognize variants from 

the five classes, with varying accuracies (Table 3.4), while MLR+AS recognizes 

only variants from classes 1, 2 and 5. Additionally, for the most frequent 

classes (1, 2) NN+AS is more balanced than MLR+AS (Figure 3.7, Table 3.4): 

0.19 (1) and 0.38 (2) vs. 0.87 (1) and 0.01 (2), respectively.  

Inspection of the off-diagonal elements shows that wrong predictions are 

more spread for NN+AS than for MLR+AR. For example, for MLR+AS, 

essentially all (97%) the incorrect predictions of class 2 go to class 1, while 

this figure drops to 55% for NN+AS. As before, the tiny number of variants in 

the remaining classes reveals no clear trends. The AS predictions result in one 

correctly identified member of class 5 for the two versions of our protocol; 

AS predictions lead to a single failure, for a class 2 variant. 

As for BRCA1, reduction of the five IARC 5-tier classes to a 3-class system 

reveals a reversion in the previous trend, with a high class accuracy for 

Neutral, higher for MLR+AS (0.96) than for NN+AS (0.70). Accuracy for the 

Unknown class is the same as that for IARC 5-tier class 3, because the classes 

are the same. For the Pathogenic class, NN+AS still performs better than 

MLR+AS (Figure 3.7, Table 3.4). 

Finally, we compare the performance of our predictors with that for the 

general predictors for which the output directly corresponded to a probability 

of pathogenicity (we only excluded CADD, because the score has another 

scale) (Figure 3.7).  

Focusing on the most frequent CAGI variants (31 from class 1; 136 from class 

2), we see that NN+AS performs better than general methods; MLR+AS is only 

better for class 1; for class 2 its accuracy is low, the same as SIFT, and below 
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that of PolyPhen-2 and PMut. For classes 3, 4 and 5, the sample size is smaller 

than that of BRCA1 (2, 4, 7 vs. 2, 2, 3 variants for BRCA1 and BRCA2, 

respectively); for this reason, we believe that for these variants it is preferable 

to wait for next rounds of the CAGI challenge to assess the performance the 

different in silico tools, including ours.  

The comparison within the three-class framework (Figure 3.8) confirms the 

previous trends, showing that for the Neutral class (167 out of 174 CAGI 

variants) both MLR+AS and NN+AS surpass general methods (Figure 3.8). For 

the Pathogenic class (5 variants), PolyPhen-2 and SIFT have the best 

performances, while our methods rank third (MLR+AS) and fourth (MLR+AS). 
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3.4. Discussion 

Obtaining good estimates of the functional impact and cancer risk of BRCA1 

and BRCA2 sequence variants plays a vital role in the diagnosis and 

management of inherited breast and ovarian cancers (Eccles et al., 2015; 

Findlay et al., 2018; Guidugli et al., 2018; Moreno et al., 2016; Paluch-Shimon 

et al., 2016). A priori, in silico tools can be used to obtain these estimates; 

however, their moderate success rate restricts their applicability (Ernst et al., 

2018). In this work, we have addressed this issue focusing on the problem of 

predicting the pathogenicity of BRCA1/2 missense variants, applying the 

protein-specific approach (Riera et al., 2014). We validated the performance 

of the resulting BRCA1- and BRCA2-specific tools in two different ways: (i) in 

isolation, using manually curated sets of functionally and clinically annotated 

variants; and (ii) in combination with predictors of splicing impact (Figure 

3.1), to interpret the variants from the ENIGMA challenge of the CAGI 5 

experiment. 

3.4.1. Performance of the predictors in isolation 

When tested in isolation, we find that our two methods (MLR and NN) are 

competitive when compared with general methods (section 3.3.5, Table 3.3 

and Figure 3.6), for both BRCA1 and BRCA2. In particular, their specificities 

are among the best, a property desirable from the point of view of HBOC 

diagnosis requirements (Ernst et al., 2018); they also have the best balances 

between specificity and sensitivity, with the only exception of PMut in BRCA1, 

which has slightly better figures for the MLR training set.  

General methods also show good success rates in our training sets (Figure 

3.6), in contrast with the usually lower performance estimates cited in the 

literature. For example, the last version of PMut displays an MCC of 0.31 for 
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both BRCA1 (63 variants) and BRCA2 (104 variants) (López-Ferrando et al., 

2017). In the same work, we find MCC values for other tools, computed on 

the same dataset: for BRCA1 they vary between 0.17 (PROVEAN) and 0.38 

(LRT); for BRCA2 they vary between 0.01 (PROVEAN) and 0.19 (Mutation 

Assessor). In a previous study, using a small dataset of BRCA2 variants, 

Karchin et al. (Karchin, Agarwal, Sali, Couch, & Beattie, 2008) find that general 

tools display good sensitivities but low specificities. A similar trend has been 

recently reported by Ernst et al. (Ernst et al., 2018), after testing PolyPhen-2, 

SIFT, AlignGVGD and MutationTaster2 in a set of 236 BRCA1/2 variants.  

These authors express concern about the moderate performance observed, 

particularly about the low specificities observed relative to HBOC diagnosis 

requirements (e.g., PolyPhen-2: 0.56 and 0.72 for BRCA1 and BRCA2, 

respectively). We believe that our higher estimates for general predictors 

(Table 3.3 and Figure 3.6), relative to those in the literature, may partly result 

from the overlap between their training sets and our dataset.  

Presently, stand-alone use of in silico methods for HBOC diagnosis is 

discouraged (Ernst et al., 2018). Nonetheless, it is considered that these 

methods can be fruitfully combined with the results of functional assays, to 

provide an alternative to multifactorial models in the absence of family 

information (Guidugli et al., 2018).  

The tools presented in this work are easily amenable to this type of approach 

because of their extreme simplicity and interpretability. This is a consequence 

of the small number of features utilized (3 and 6 for MLR and NN, 

respectively) and of the low complexity of our models (Riera et al., 2014). 

Additionally, our MLR models allow a direct interpretation of a variant’s 

impact at the molecular level, because they produce estimates of the HDR 

assay for the target variant. In this sense, the MLR approach resembles that 

of Starita et al. (Starita et al., 2015) who estimate HDR values using the results 
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of other functional assays (E3 ligase scores and BARD1-binding scores). In our 

case, we use instead a few sequence-based features, with two conservation 

measures (Shannon’s entropy and PSSM) standing among them given their 

recognized predictive power (C. Ferrer-Costa et al., 2004).  

Conceptually, MLR methods implement the idea of addressing pathogenicity 

prediction problems focusing on endophenotypes, rather than on clinical 

phenotypes. Endophenotypes are quantitative measures of intermediate 

phenotypes with clinical relevance (D.L. Masica & Karchin, 2016); they are 

closer to the genotype and, for this reason, may result in predictors with 

higher success rates, given the small contribution of genetic background and 

environmental effects to the outcome of the variant.  

In general, this is the case when looking at clinical performance (Table 3.3, 

Figure 3.6). However, BRCA1 sensitivity (0.62) is low compared to specificity 

(0.87); while this may be a consequence of the discretization of the HDR 

prediction, it may also be a consequence of the simplicity of our model.  

When testing the MLR model with SGE data we observe a significant 

correlation (Spearman's =0.47, p-value~0), comparable to that of Align-

GVGD (=0.46) and better than that of CADD (=0.40), PhyloP (=0.36), SIFT 

(=0.36) and PolyPhen-2 (=0.28) (values obtained from (Findlay et al., 2018), 

Extended Data Figure 9). However, visual inspection shows the presence of 

substantial deviations from a monotonic relationship (Figures 3.4a and 3.4b).  

If we analyze the population of outliers using PCA and value distributions of 

the features in our model (Figure 3.5) we see that, generally, they have an 

intermediate behavior between functional and non-functional variants for all 

features. This points to an aspect of the variant's impact that is poorly 

represented by our present set of features, like the effect of the mutation in 

RNA levels. 
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Finally, it is worth mentioning that our MLR predictors have been trained with 

small sets of variants that are concentrated in a reduced region of BRCA1 and 

BRCA2, the domains responsible to carry out the homology direct repair 

function (Figure 3.9). This is in contrast with the broader range of positions 

covered by the NN and the CAGI datasets. The fact that, in spite of this 

situation, the MLR tools are competitive suggests that the discriminative 

features allow them to capture some general effect of variants on protein 

function/structure, like impact on stability (Yue, Li, & Moult, 2005). 

 

 

 

Figure 3.9 Distribution of the variants along the BRCA1 and BRCA2 sequences. 

Each variant used in this work is represented with a pin indicating its location, 

and a coloured surface that provides a general, smoothed view of the 

distribution. The different functional domains in each protein are represented 

with boxes. For representation purposes, BRCA1 (1863 amino acids) and BRCA2 

(3418 amino acids) are displayed with the same length. 
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3.4.2. Performance of the predictors in the CAGI 5 

experiment 

The ENIGMA challenge within the CAGI experiment provides a good 

opportunity to independently validate the performance of pathogenicity 

predictors for BRCA1/2. Two aspects are specific of the ENIGMA challenge. 

First, if some of the target variants are pathogenic, the participants do not 

know what molecular effect originates their pathogenicity: it can be the 

impact on protein function, but it can also be the impact on splicing (Eccles 

et al., 2015). For this reason, we decided to combine predictions for these 

two effects in our protocol (Figure 3.1).  

A second, distinctive aspect of the challenge is that the submissions had to 

provide the predicted IARC 5-tier class for each variant (see section 3.2.1). 

This is relevant since this classification is strongly related to the clinical 

actions associated to each class (Goldgar et al., 2008; Moghadasi et al., 2016; 

Plon et al., 2008) which are in turn related to factors such as impact on the 

counselee or cost to the healthcare system. Collective consideration of these 

factors crystallizes into five decision regions (Plon et al., 2008) that are 

applied to the posterior probability of pathogenicity, a probability obtained 

after integrating different sources of clinical/biomedical evidence.  

In our case, this probability was estimated using only molecular information; 

nonetheless, to adapt our output to the CAGI requirements we directly 

applied the ENIGMA boundaries (section 3.2.4 and 3.2.5). We computed our 

performances on the basis of this assignment; however, we also obtained the 

performances for a simplified version of the ENIGMA classification, 

separately collapsing its neutral and pathogenic classes (Table 3.2). 

Assessment of the results obtained (Figure 3.7, Figure 3.8, Table 3.4 and Table 

3.5) shows some clear trends. For the 5-class problem, all the methods (both 
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ours and the general methods) have poor per class performances; however, 

our methods are more successful at reproducing the compositional bias of 

the sample and outperform general methods for the most abundant classes 

(1 and 2) in BRCA1/2, with only one exception, for class 2 in BRCA2, both 

PolyPhen-2 and PMut surpass MLR+AS; our methods also have a better 

distribution of wrong predictions among classes, because they tend to cluster 

nearby the correct class. These trends are reinforced when reducing the 

number of classes from five to three.  

BRCA1 
 IARC    
 5 class 

MLR MLR+AS NN NN+AS PMut PolyPhen-2 PON-P2 SIFT 

 ACC 0.326 0.347 0.201 0.222 0.028 0.208 0.014 0.049 

 MCC -0.041 0.006 0.015 0.056 -0.002 0.031 0 0.021 

3 class MLR MLR+AS NN NN+AS PMut PolyPhen-2 PON-P2 SIFT 

ACC 0.764 0.785 0.25 0.271 0.035 0.354 0.014 0.118 

MCC -0.237 0.354 -0.012 0.055 0.026 0.136 0 0.123 
 

BRCA2 
 IARC    
 5 class 

MLR MLR+AS NN NN+AS PMut PolyPhen-2 PON-P2 SIFT 

 ACC 0.161 0.167 0.345 0.351 0.144 0.305 0.011 0.034 

 MCC -0.109 -0.068 -0.017 -0.006 -0.029 0.078 0 0.017 

3 class MLR MLR+AS NN NN+AS PMut PolyPhen-2 PON-P2 SIFT 

ACC 0.931 0.931 0.69 0.695 0.184 0.431 0.011 0.086 

MCC 0.18 0.277 0.185 0.213 -0.013 0.125 0 0.022 

Table 3.5 Overall accuracies (ACC) and MCC in the CAGI dataset for our two 

methods with and without splicing; and four general methods. 

Overall, the results for the CAGI challenge show that our methods can identify 

low-risk variants with an accuracy higher than that of general methods, a 

desirable property for HBOC diagnosis (Ernst et al., 2018). Part of this 

improved performance could be attributed to an unequal effect of applying 

the ENIGMA decision boundaries to the posterior probability generated by 

general methods. We believe that this mapping procedure may play a role, 
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but not a determining one since comparison of the original, binary predictions 

of the general methods with those of the binary versions of our tools (MLR 

scores binarized as explained in section 3.2.5) gives a similar result (Table 3.7) 

again. MLR+AS has the top specificities for BRCA1/2 and high sensitivities; 

NN+AS has the same sensitivities but lower specificities, nonetheless these 

are only surpassed by PMut.  

BRCA1 

 2 class MLR+AS NN+AS CADD PMut PolyPhen-2 PON-P2 SIFT 

 ACC 0.347 0.201 0.222 0.028 0.208 0.014 0.049 

 MCC -0.041 0.015 0.056 -0.002 0.031 0 0.021 
 

BRCA2 

 2 class MLR+AS NN+AS CADD PMut PolyPhen-2 PON-P2 SIFT 

 ACC 0.167 0.345 0.351 0.144 0.305 0.011 0.034 

 MCC -0.068 -0.017 -0.006 -0.029 0.078 0 0.017 

Table 3.7 Binary performances for our predictors and general predictors. 

In summary, we have applied the protein-specific approach to building a 

pathogenicity predictor for BRCA1/2 variants, using either clinical phenotypes 

or endophenotypes. The results obtained from our methods indicate that this 

approach can contribute to improve our ability to discriminate between high- 

and low-risk variants for BRCA1/2. Of particular interest is the MLR+AS tool, 

because it gives an estimate of the molecular impact of a sequence 

replacement that is easy to interpret since it corresponds to an in silico 

version of the HDR assay. Participation in the CAGI experiment has allowed 

us to obtain independent estimates of the performance of our predictors, to 

compare them with other predictors and to help us clarify the classification 

level at which in silico tools could be useful for HBOC diagnosis. This 

participation has also underlined the role that splicing predictions can play in 

the correct annotation of BRCA1/2 variants, particularly when integrated in 

protocols that combine different views of a variant’s impact.  
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3.5. Conclusions 

Germline variants in BRCA1 and BRCA2 may disrupt the DNA repair function 

of these proteins increasing the risk of hereditary breast and ovarian cancers. 

Correct assessment of these variants thereby, becomes clinically relevant as 

it may increase the survival rates of its carriers. Unfortunately, we are still 

unable to systematically predict the impact of BRCA1/2 variants.  

Here, we presented a family of in silico predictors that address this problem, 

using a protein-specific approach. For each BRCA protein, we developed two 

predictors that estimate at two different levels the impact of a variant: the 

molecular function and the clinical significance. The performance of these 

predictors with different datasets was good, in spite of the small number of 

predictive features and the limited size of the variant sets used for training.  

Additionally, these tools were applied to the BRCA1/2 variants of the ENIGMA 

challenge in CAGI 5 experiment. We found that these predictors, particularly 

those estimating the functional impact of variants, have a good performance, 

being able to predict the large compositional bias towards neutral variants in 

the CAGI sample. The performance is further improved when incorporating 

to the prediction protocol, the estimates of the variant’s impact on splicing. 
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4.1. Introduction 

A germline variant in the high susceptibility genes BRCA1 or BRCA2 is the 

greatest risk factor for HBOC (Roy et al., 2012), which produces a higher than 

normal levels of breast, ovarian and additional cancers.  

Genetic testing of these genes often reveals a set of variants that are not 

easily classified. Identification of those that are pathogenic is the key to 

channel its carriers to the proper programs of prevention, surveillance and 

target therapies (Paluch-Shimon et al., 2016). But this becomes a hard 

problem when variants do not have a clearly damaging effect on the protein 

function like missense variants.  

In this case, segregation analysis in cancer affected families can be used to 

decipher the effect of these variants. But frequently, this is not a feasible 

approach (Toland & Andreassen, 2017). Then, functional studies can be 

carried out to measure the impact of variants in a specific protein function, 

although these assays can be technically challenging and also time and cost 

demanding (Starita et al., 2015). In this scenario, in silico methods constitute 

an inexpensive alternative to provide new information to facilitate the variant 

interpretation process. However, these methods are not always easy to use 

or, many times, lack the context that would allow clinical users a fruitful 

interpretation. 

Here, we address this problem and present an open access website which can 

be found at https://www.biotoclin.org/BRASS, with the purpose of 

facilitating the usage of our methodology to the community. It includes our 

recently developed predictors of the impact of missense variants in BRCA1 

and BRCA2 genes (Padilla et al., 2019) (see Chapter 3). No software 

https://www.biotoclin.org/BRASS
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installation is needed, and the results can be accessed from both a computer 

and a smartphone with Internet access. 

Once in our website, there are different options to address the prediction 

problem: the researcher can query either a single variant or a set of them at 

once, and the pathogenicity predictions appear promptly, since the 

predictions of the more than 100,000 possible missense variants of BRCA1 

and BRCA2 have all been pre-computed.  

Moreover, in order to facilitate the interpretation of the predictions, the user 

will find a measure of the reliability of the prediction, many links to different 

sources of biomedically related information, and a description of the 

explanatory features used by the predictor. Thus, the user can have a more 

complete view of the variant’s impact that may help him/her interpret the 

pathogenic/neutral prediction.  
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4.2. Materials and Methods 

I developed the website https://www.biotoclin.org/BRASS in Python, using 

the Django framework (djangoproject.com) (Figure 4.1). Django is based on 

the Model-View-Controller pattern where the Controller (URL configuration, 

form data processing...) is separated from the View components. The View 

components implement the business logic and retrieve the information from 

the Models, which map to the PostgreSQL relational database storing the 

predictions of the missense variants. Subsequently, the View components 

pass the information to the Templates which constitute the webpages made 

of HTML, CSS, Bootstrap, JavaScript and D3.js. The website runs on a Heroku 

server and uses Nginx to serve static assets. 

 

Figure 4.1 Website architecture based on the Django framework. In a nutshell, 

Django receives an HTTP request instance with an URL. The URL is parsed by 

the URL configuration that redirect it to the proper View function. The View 

function retrieves the data from the correspondent model, which gets it from 

the PostgreSQL database. Then, the View passes the information to the 

Template where it is merged with the HTML and it is sent to the user’s browser.

https://www.biotoclin.org/BRASS
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4.3. Results and Discussion 

4.3.1. Obtention of the pathogenicity prediction 

BRcA Specific Software (BRASS) at https://www.biotoclin.org/BRASS is a 

comprehensive website where the user can access a novel family of protein 

specific pathogenicity predictors to assess the impact of missense variants in 

BRCA1 and BRCA2 genes (Padilla et al., 2019). This family of pathogenicity 

predictors score the molecular impact of variants on protein function as 

measured in the HDR assay and the clinical significance of a variant as 

collected in the literature (see Chapter 3). 

 

Figure 4.2 Main landing page at https://www.biotoclin.org/BRASS. 

https://www.biotoclin.org/BRASS
https://www.biotoclin.org/BRASS
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In the main landing page (https://www.biotoclin.org/BRASS ) (Figure 4.2), the 

user can find the first step in the prediction process: the selection of the 

protein to predict: BRCA1 or BRCA2. Additionally, there is an overview of 

BRASS predictors (NN/MLR), binary predictions and the numerical score 

behind them, prediction reliability and predictor performance. 

After choosing a protein, a new form appears in which the user selects the 

predictor he/she wants to utilize (NN or MLR) and introduces the variant or 

list of variants to predict.  

After our software validates the variants introduced, the predictions are 

shown to the user. In the case of a list of variants, a summary table is 

provided, displaying in each case, the prediction (pathogenic/neutral), the 

score of the prediction (0-1), and a link to a more complete webpage with 

rich information on the variant and its protein context (Figures 4.3 - 4.8). This 

page is shown directly if the user submitted a single variant only. 

The variant’s prediction webpage (Figures 4.3 - 4.8) is structured into three 

parts: (i) the prediction of the variant, (ii) the understanding of the prediction 

and (iii) additional information for interpreting the variant. 

The prediction of the variant (Figure 4.3) includes the predicted class, which 

is binary and can be pathogenic or neutral; the numerical score, which ranges 

from 0 to 1, being 1 the most pathogenic value; and reliability, which ranges 

from 0 to 5 being 5 the highest reliability. 

 

Figure 4.3 Prediction of the variant BRCA1 p.Cys61Gly with the NN method. 

Adapted from https://www.biotoclin.org/predictor/BRCA1/NN-P38398-C61G. 

https://www.biotoclin.org/BRASS
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Next to it, there is a table summarizing the prediction of other frequently 

used predictors such as Align-GVGD (Tavtigian et al., 2006), PolyPhen-2 (I. 

Adzhubei et al., 2010), SIFT (Kumar et al., 2009), PON-P2 (Niroula et al., 2015) 

or CADD (Kircher et al., 2014). Additionally, in the FAQs section 

(https://www.biotoclin.org/predictor/BRCA1/help/), we can find the 

performance of these predictors (Figure 4.4), obtained as described in 

Chapter 3. 

                     BRCA1 Predictor BRCA2 

 

 

 

Figure 4.4 Performance metrics (MCC, Accuracy, Sensitivity, Specificity and 

Coverage) of in-house predictors BRASS NN and BRASS MLR and external 

predictors PON-P2, Align-GVGD, PolyPhen-2, CADD and SIFT. 

4.3.2. Interpreting the pathogenicity prediction 

To provide a better understanding of our predictions, we add a section 

contextualizing the predicted score and the explanatory features used by the 

predictor, relative to the values of a curated dataset of pathogenic and 

neutral variants (Padilla et al., 2019).  

In this section of the web, the user can compare graphically, the score for 

his/her variant relative to those of the variants in the reference dataset 

(Figure 4.5).  
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Figure 4.5 Horizontal boxplot of NN predicted scores of pathogenic (red 

boxplot) and neutral (green boxplot) variants in the curated dataset. The 

score of the predicted variant BRCA1 p.Cys61Gly is shown with a vertical line.  

Underneath, the user can find a set of boxplots showing a break down of the 

prediction score into its components. This allows to identify which feature 

has the largest contribution to the prediction (Figure 4.6). 

 

Figure 4.6 Boxplots of the values of the explanatory features used by the NN 

predictor of the curated pathogenic (red) and neutral (green) variants along 

with the variant of interest BRCA1 p.Cys61Gly. 
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These plots allow the user to get a fair idea of whether the pathogenicity 

signal was or was not strong, and whether it was the result of a clear signal 

for one/several features or just the sum of small trends. This may help 

him/her to reach an informed decision on whether the prediction can be 

trusted and how much.  

4.3.3. Additional information of the variant’s impact 

We provide a table (Figure 4.7) summarizing additional information on the 

impact of the variant retrieved from several databases: the clinical 

significance of the variant from ClinVar (Landrum et al., 2016) and UniProt 

(Bateman et al., 2017a) databases; the functional relevance of the mutated 

residue i.e. active site, DNA binding domain, etc. from UniProt (Bateman et 

al., 2017a); the population allele frequency from ExAC (Lek et al., 2016) and 

gnomAD (Karczewski et al., 2020) database; and variant information from 

dbSNP (Sherry et al., 2001) and Ensembl (Hunt et al., 2018) databases. 

 

Figure 4.7 Table summarizing additional information on the impact of the 

variant of interest BRCA1 p.Cys61Gly from several databases. Adapted from 

https://www.biotoclin.org/predictor/BRCA1/NN-P38398-C61G. 
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This information is also valuable to assess the reliability of the prediction. For 

example, if we collect the ClinVar’s clinical significance of the BRCA1 and 

BRCA2 variants in the reference dataset and compare them with the results 

of the NN or MLR predictors, we see that the majority of variants have a 

prediction concordant with their clinical significance. The situation is less 

clear for BRCA2 ClinVar’s pathogenic variants, which have pathogenic as well 

as neutral predictions (Figure 4.8). 

a) BRCA1   

 

ClinVar 

Pathogenic 

Likely pathogenic 

Conflicting inter. 

Uncertain significance 

Likely benign 

Benign 
 

b) BRCA2   

 

ClinVar 

Pathogenic 

Likely pathogenic 

Conflicting inter. 

Uncertain significance 

Likely benign 

Benign 
 

Figure 4.8 Concordance between pathogenicity predictions of NN method in 

BRCA1 (a) and BRCA2 (b) with ClinVar’s clinical significance of variants. 

Moreover, to understand completely the context of the variant within the 

protein, we add a plot of the protein sequence in which additional 

information is displayed. This plot can be navigated using a zoom tool (Figure 

4.9) and can be utilized to see the distribution of the exons of BRCA1/2, its 

protein domains, the functional residues, and reference neutral and 

pathogenic variants along the protein. 

0%20%40%60%80%100%

Pathogenic predictions

0% 20% 40% 60% 80% 100%

Neutral predictions

0%20%40%60%80%100%

Pathogenic predictions

0% 20% 40% 60% 80% 100%
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Figure 4.9 Plot of the variant C61G localized within BRCA1 protein with 

curated pathogenic (red) and neutral (green) variants, functional residues 

(orange), protein domains (lilac) and exons (blue). In the website, the user can 

use a zoom tool to enlarge the region surrounding the variant and visualize it 

with more detail. Moreover, when the user hovers over one of these elements, 

information regarding the name, function or localization of the element 

appears.  

4.3.4. Downloading the pathogenicity predictions 

If the user is interested in a more frequent use of the NN and MLR predictions, 

other approaches more user-friendly are available for him/her. For instance, 

the user can download a file with the predictions of all the missense variants 

of BRCA1/2, or can download programmatically a batch or a single variant 

throughout the RESTful API (Figure 4.10). 

 

Figure 4.10 Detail of the RESTful API to download the pathogenicity 

prediction of a variant. Adapted from 

https://www.biotoclin.org/predictor/BRCA1/download/. 

https://www.biotoclin.org/predictor/BRCA1/download/
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4.4. Conclusions 

BRASS (https://www.biotoclin.org/BRASS) is a user-friendly website, 

available to the scientific community for the use of a novel family of protein 

specific pathogenicity predictors of BRCA1 and BRCA2 missense variants 

(Padilla et al., 2019). This family of in silico tools score the molecular impact 

of variants on protein function estimating the value of the HDR assay (MLR 

predictor) and predicting the clinical significance of a variant (NN predictor). 

In addition to provide predictions and their reliability, the website gives 

supplementary information on the impact of the variant from several 

databases (ClinVar, UniProt, gnomAD, etc.), as well as, a chart of the variant 

localized within the protein. This last feature includes additional data 

regarding the localization of reference pathogenic and neutral variants or the 

functional domains of the protein. Thereby, we aim to give the user a 

thorough view of the pathogenicity prediction of the variant and additional 

resources for a better interpretation. 
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The results presented here are part of a manuscript (Bhoj et al., 2020) that is 

presently under review in Science Advances. 
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5.1. Introduction 

Our group has recently participated in a large international effort (135 

researchers involved) led by the Children’s Hospital of Philadelphia (CHOP), 

USA, for the characterization of a novel pediatric neurologic disorder caused 

by variants in the H3-3A and H3-3B genes, which encode for an identical 

protein: histone H3.3, a type of histone 3 (H3). In this chapter, after going 

through the main characteristics of this project, I will focus on the structural 

bioinformatics analyses that I carried out and constitute the contribution of 

our group to this project. 

5.1.1. Histone H3.3 

Histones are nuclear proteins of eukaryotic cells that pack and order the DNA 

into structural units called nucleosomes. Nucleosomes are composed of two 

H2A-H2B dimers and a H3-H4 tetramer, wrapped 1.7 times by 146 bp of DNA 

around the histone octamer (Luger, Mäder, Richmond, Sargent, & Richmond, 

1997). Histones are relatively similar in structure and are highly conserved 

through evolution, all featuring a helix-turn-helix motif binding DNA and a 

long tail on one end of the protein sequence where post-translational 

modifications (PTMs) occur dynamically. PTMs regulate several processes 

such as DNA repair, gene expression, mitosis, and meiosis. Of the four core 

histones, histone H3 is the most heavily modified, totaling at least 26 

potentially modified amino acids (Young, DiMaggio, & Garcia, 2010). 

Behind the H3 denomination there is a family of very similar proteins. The 

most prevalent members of this family are H3.1 and H3.2, canonical histones 

that are replication-dependent and, thereby, added to chromatin during DNA 

replication in S phase (Frank, Doenecke, & Albig, 2003). H3.3 however, is a 

histone variant assembled along with H4 into the nucleosome in a replication-
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independent manner, with the aid of histone chaperones such as HIRA, DAXX 

and DEK (Burgess & Zhang, 2013). At the protein sequence level, H3.3 which 

has 135 amino acids after the cleavage of the first methionine, differs from 

the canonical H3.1 and H3.2 by five and four amino acids respectively; its 

three-dimensional structure is composed of a histone tail, four -helices and 

two loop domains (Ederveen, Mandemaker, & Logie, 2011).  

H3.3 is expressed ubiquitously during development and throughout life, with 

different expression patterns and levels of H3-3A and H3-3B (Ederveen et al., 

2011). H3.3 has been associated to the maintenance of epigenetic memory, 

heterochromatin and telomeric integrity (Ng. & Gurdon, 2008; Udugama et 

al., 2015). Somatic variants in H3-3A and H3-3B have been strongly associated 

with pediatric glia and other tumors (G. Wu et al., 2012), but no germline 

variants in humans have been reported.  

5.1.2. Identification of the causative variants 

Within the project led by the CHOP, the collaborative consortium has 

characterized a cohort of 42 patients with core phenotypes of progressive 

neurologic dysfunction and congenital anomalies, but no malignancies. 

Notably, nine of the 42 patients (21%) have demonstrated clinical neurologic 

degeneration, which suggests that this may be a progressive disorder. 

Multiple patients (26% of the cohort) have cortical atrophy on brain MRI, 

even without intractable epilepsy. 

Patients were sequenced through exome or genome sequencing and 36 de 

novo germline variants were identified on H3-3A or H3-3B genes. Five of 

these variants were detected in two or more unrelated patients. At the 

protein level, the variants identified corresponded to 33 amino acid 

replacements in the H3.3 protein sequence. 
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From these variants, only one (H3-3A c.362T>A p.M121K, 1 incidence) was 

found in the large database of controls: gnomAD (Karczewski et al., 2020), 

which contains the genetic variants of more than 140,000 exomes and 

genomes. As expected, in the general population both genes have a very low 

rate of missense variants. The gnomAD missense Z score for H3-3A is 3.16 and 

for H3-3B is 2.88 (>2 is significant) (Karczewski et al., 2020). 

5.1.3. Understanding the effect of causative variants 

The pathogenicity of these variants is likely to result from different 

mechanisms, as they are found throughout the entire H3.3 coding sequence.  

Of particular interest, two of the variants in the patient cohort (S32F and 

G91R) are located in the residues that differentiate H3.3 from the canonical 

H3. Both S32 and G91 residues are essential for proper recognition of H3.3 by 

other proteins. Mutagenic analysis in yeast shows that mutations at G91 

prevents H3.3 specific chaperones DAXX and UBN1 from binding (Elsässer et 

al., 2012; C. P. Liu et al., 2012; Ricketts et al., 2015). Interestingly, S32 is 

required for recognition of H3.3 by ZMYND11 (R. Guo et al., 2014; Wen et al., 

2014). Mutations in ZMYND11 cause an autosomal dominant 

neurodevelopmental phenotype similar to that seen in our patient cohort 

(Coe et al., 2014; Moskowitz et al., 2016), and in fact, variant G35V of our 

dataset, has been shown to disrupt ZMYND11 binding (Wen et al., 2014). 

Other variants may disrupt histone octamer formation, nucleosome sliding, 

chaperone binding based on mutagenic analysis of both H3 and H3.3 in model 

organisms (Johnson et al., 2015; Matsubara, Sano, Umehara, & Horikoshi, 

2007; Norris, Bianchet, & Boeke, 2008). 
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Even though these are the first germline variants associated with H3, 

germline variants in H1 and H4 with similar features have been reported. The 

overgrowth and neurodevelopmental delay associated with Rahman 

syndrome are caused by truncating variants in H1.4 encoded by HIST1H1E 

(Tatton-Brown et al., 2017). Recently two specific germline variants in H4, 

which caused delayed growth and neurodevelopment have been described 

in two families (Tessadori et al., 2017). In addition, there are many 

neurodevelopmental disorders associated with the histone lysine methylases 

and demethylases (Faundes et al., 2018). 

The impact of variants on histone PTMs 

It was hypothesized that other missense variants in the cohort could induce 

epigenetic dysregulation of histone PTMs. To quantify this dysregulation, cells 

from patients were obtained along with matched controls to extract their 

histones and analyze them by nanoLC-MS/MS as previously described (Sidoli 

& Garcia, 2015). This experiment showed significantly altered histone PTMs 

in patients (Figure 5.1).  

Altered PTMs may affect one or more of the multiple functions they carry out 

in the nucleosome, including: chromatin state, mitotic initiation, protein-

chromatin interactions and gene expression; or may impact on the 

recognition of H3.3 by histone chaperones and its incorporation into the 

nucleosome (Burgess & Zhang, 2013; Chang et al., 2015; Crosio et al., 2002; 

Hake & Allis, 2006; Hake et al., 2005; Lau & Cheung, 2011; Sawicka & Seiser, 

2012; Schulmeister, Schmid, & Thompson, 2007; Van Hooser, Goodrich, 

David Allis, Brinkley, & Mancini, 1998). 
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Figure 5.1 Volcano plot showing the significantly altered histone PTMs in 

patients versus controls. Adapted from Bhoj et al., 2020. 

Impact of variants on early development 

Although all patients share a common phenotype of developmental delay, 

only some of them developed major congenital malformations, like cardiac 

and cranial anomalies. It was decided that further study of the specific local 

dysregulation of development may lead to insights into the transcriptional 

control in the developmental processes underlying these anomalies. 

This possibility was explored using a previously reported dominant zebrafish 

model with the equivalent variant of the human D124N and patent 

craniofacial abnormalities (Cox et al., 2012). Interestingly, this heterozygous 

variant replicates the dominant inheritance observed in humans and is only 
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two amino acids away from a variant identified in an affected patient 

(Q126R). Further investigation of this zebrafish model also revealed a defect 

in foxd3-positive neural crest-derived glia, as well as melanocytes and 

xanthophores. The loss of these cell types may relate to the hypomyelination 

phenotype that is noted on the brain MRIs of over one-third of the cohort. 

Impact of variants on the H3.3 turnover rate 

Another way that histone mutations might disrupt normal cell physiology is 

via altered histone turnover rates. Quantification of overall histone H3.3 

protein levels did not reveal significant differences in patient versus control 

cells, just a slight increase in the ratio of H3.3 to H3 in patient cells compared 

to controls was found by Western blot. This observation may suggest that the 

mutant histones favor a dominant negative effect of the mutations rather 

than a loss-of-function effect.  

Although the exact mechanism of the cellular pathology in these patients is 

unclear, H3.3 is vital for normal neurologic functioning. A recent study (Maze 

et al., 2015), showed that H3.3 begins to replace H3.1 and H3.2 in post-natal 

mouse and human brain in a time-dependent manner and displaces these 

canonical H3 almost completely in adulthood. The important role of H3.3 over 

time may explain the unique neurodegenerative phenotype. Mice with 

decreased H3.3 expression in the hippocampus have impaired long-term 

memory. Humans with major depressive disorder have increased 

percentages of H3.3 in the nucleus accumbens, which is modulated by 

antidepressant therapy (Lepack et al., 2016). 

Impact of variants on gene expression 

Together, these data suggest that mutant histones can be incorporated into 

the nucleosome, cause important local deregulation of chromatin state and 
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modestly alters the global control of PTMs. Thus, local chromatin changes 

may be induced by mutant histone deposition. H3.3 is known to have roles in 

diverse functions, including gene expression and repression, chromatin 

stability, DNA damage repair, and differentiation. These mutant proteins and 

their aberrant PTM states could significantly disrupt any of these processes 

to lead to the observed phenotype. 

To evaluate which biological pathways were differentially perturbed in the 

patients, a RNA-Seq experiment was carried out on fibroblast cells derived 

from patients and matched controls. It was found a total of 323 genes to be 

differentially expressed with at least 2-fold change. Of these genes, 166 were 

upregulated and 157 were downregulated in cases. Differentially expressed 

genes were analyzed and it was found a significant enrichment for 

upregulated genes in mitotic cell cycle process, mitotic nuclear division, cell 

division and many other mitosis-related processes.  

Impact of variants on cell proliferation 

To assess if upregulation of mitosis-related genes alters cells proliferation, 

the cellular proliferation capacity of five patient fibroblast lines was 

quantified and compared to six matched control fibroblast lines. Patient lines 

had increased cell proliferation, notably at 72 and 96 hours. Furthermore, all 

five patient lines shared similar viability to the six control lines. Cell cycle 

analyses showed that H3-3A G91R and T46I had a similar cell cycle profile to 

the control lines, while H3-3A R18G showed a decrease in cells in G1 phase 

and an increase in cells in S phase compared to all three control lines. It is 

possible that this increased proliferation is tied to the oncogenic mechanism 

of the somatic mutations, which has not been fully elucidated (Bjerke et al., 

2013). 
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Elucidating the impact of variants with in silico tools 

In this project, our group was charged with the computational 

characterization of the novel missense H3.3 variants, in terms of both in silico 

predictions and structural/mechanistic analyses. These results constitute the 

bulk of this chapter and are divided into two blocks. First, the obtention of 

the in silico predictions for the H3.3 variants, followed by a description of the 

inconsistencies found between the bioinformatic and the clinical evidence, 

and our explanation of these disagreements. Second, the analysis of the 

mutational impact using the three-dimensional structures of H3.3 in different 

contexts (nucleosome, interaction with epigenetic regulators and histone 

chaperones) and biophysics computations.  
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5.2. Materials and Methods 

5.2.1. Patient cohort and identified variants 

The patient cohort is composed of 42 unrelated patients from the Children’s 

Hospital of Philadelphia (USA) with core phenotypes of progressive 

neurologic dysfunction and congenital anomalies, but no malignancies yet.  

Patients were characterized by exome or genome sequencing and de novo 

germline missense variants were identified in H3-3A and H3-3B genes. These 

two genes encode for the same protein H3.3. A set of 33 unique missense 

variants were identified in this protein: R9C, R9G, R9S, S11P, G14R, A16G, 

R18G, T23I, A30P, A30T, S32F, G35V, K37E, H40R, H40Y, T46I, L49R, L62R, 

D78N, D82H, R84C, G91R, N109S, I113L, I113V, V118L, M121I, M121K, 

M121V, P122L, P122R, Q126R and R129C. 

5.2.2. Pathogenicity prediction of variants 

We estimate the pathogenicity of these missense variants with 12 widely 

used predictors (Table 5.1). I obtained the predictions using either their 

respective webservers or dbNSFP (X. Liu, Wu, Li, & Boerwinkle, 2016), a 

database developed for functional prediction and annotation of all potential 

non-synonymous single-nucleotide variants in the human genome. 

Afterwards, we unified the predicted variant class of the different tools into 

two main types: pathogenic and neutral, as described in Table 5.1. 
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Pathogenicity 
predictor 

Pathogenic  
classes 

Neutral 
classes 

Reference 

CADD deleterious neutral (Kircher et al., 2014) 

FATHMM damaging tolerated (Shihab et al., 2012) 

MutationTaster2 disease polymorphism 
(Schwarz, Cooper, 
Schuelke, & Seelow, 
2014) 

MutPred2 pathogenic benign (B. Li et al., 2009) 

PANTHER 
probably damaging, 
possibly damaging 

probably 
benign 

(Thomas et al., 2006) 

PolyPhen-2 
(HumDiv) 

probably damaging, 
possibly damaging 

benign 
(I. A. Adzhubei et al., 
2010) 

PON-P2 pathogenic neutral (Niroula et al., 2015) 

PROVEAN deleterious neutral 
(Choi, Sims, Murphy, 
Miller, & Chan, 
2012) 

REVEL disease neutral 
(Ioannidis et al., 
2016) 

SIFT deleterious tolerated (Kumar et al., 2009) 

SNAP effect neutral 
(Bromberg & Rost, 
2007) 

VEST3 pathogenic neutral 
(Carter, Douville, 
Stenson, Cooper, & 
Karchin, 2013) 

Table 5.1 List of pathogenic predictors used for the estimation of the 

functional impact of variants. The original predicted variant classes are 

categorized into two classes: pathogenic or neutral. 
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5.2.3. Three-dimensional structures of H3.3 

We retrieved the H3.3 structures used in this work from its UniProt record 

P84243. In all cases, the H3.3 protein appears incomplete. Depending on the 

interaction partners, the structures retrieved can be divided into three 

groups (Table 5.2): H3.3 in the nucleosome, H3.3 tails interacting with 

epigenetic regulators and H3.3 interacting with histone chaperones.  

PDB 
H3.3   

sequence 
Structure context 

(interaction partners) 
Reference 

3ASL 2-10 
Epigenetic regulator 

UHRF1 
(Arita et al., 2012) 

3AV2 39-135 
Nucleosome 

Histones, DNA 
(Tachiwana et al., 2011) 

3JVK 13-16 
Epigenetic regulator 

BRD4 
(Vollmuth, Blankenfeldt, & 
Geyer, 2009) 

3MUK 22-28 
Epigenetic regulator 

BRD4 
(Vollmuth & Geyer, 2010) 

4GNF 2-10 
Epigenetic regulator 

NSD3 
(He, Li, Zhang, Wu, & Shi, 
2013) 

4GUS 2-21 
Epigenetic regulator 

KDM1B 
(Fang et al., 2013) 

4H9N 38-135 
Chaperone 

DAXX 
(Elsässer et al., 2012) 

4N4I 30-40 
Epigenetic regulator 

ZMYND11 
(Wen et al., 2014) 

4QQ4 2-10 
Epigenetic regulator 

MORC3 
(Y. Liu et al., 2016) 

4TMP 4-12 
Epigenetic regulator 

MLLT3 
(Y. Li et al., 2014) 

4U7T 2-11 
Epigenetic regulator 

DNMT3A 
(X. Guo et al., 2015) 

5BNV 59-135 
Chaperone 

MCM2 
(Huang et al., 2015) 

5BNX 59-135 
Chaperone 

MCM2 
(Huang et al., 2015) 

5DWQ 13-22 
Epigenetic regulator 

CARM1 
(Boriack-Sjodin et al., 2016) 
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5JA4 58-135 
Chaperone 

MCM2 
(Saredi et al., 2016) 

5JJY 30-43 
Epigenetic regulator 

SETD2 
(Yang et al., 2016) 

5JLB 30-43 
Epigenetic regulator 

SETD2 
(Yang et al., 2016) 

Table 5.2 H3.3 structures used in this work. The numbering of the H3.3 

sequence follows the human genetics standards and includes the first residue 

methionine. 

The retrieved H3.3 structures were used for two analyses. First (section 

5.2.4), to study the pattern of interatomic contacts of the native amino acid 

either within the same H3.3 monomer or with other partners. These partners 

are diverse and include DNA, histones (H2A.1, H4), epigenetic regulators and 

chaperones. In parallel, (section 5.2.5), we computed the changes in 

monomer stability upon mutation and in binding affinity of the complexes of 

H3.3 with the DNA or other proteins. 

5.2.4. Interatomic contacts at the native locus 

For each residue, I computed the network of interatomic contacts of the 

native amino acid. These networks were obtained using the RING software 

(Piovesan, Minervini, & Tosatto, 2016). This software computes all the atom-

atom interactions between the atoms in a protein molecule or between 

molecules. The program is executed online (http://protein.bio.unipd.it/ring/) 

and provides a complete result that can be downloaded, for local processing.  

In our case, we applied the following protocol:  

i. Retrieve the PDB(s) where the native amino acid appears. 

ii. Execute RING with default parameters, except for the option 

Interaction type which was set to All. 

iii. Extract the interactions of the native residue from RING’s output. 
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iv. Organize these interactions into three groups: intra-monomer 

(within the same H3.3 monomer and separated by > 2 residues in 

sequence), inter-monomer (between H3.3 and other proteins), and 

H3.3-DNA (at a distance below 5.5 Å). 

5.2.5. Protein stability and binding affinity change upon 

mutation 

For each variant, I computed its impact on the H3.3 monomer stability and 

on the binding affinity of H3.3-protein (PPI) and H3.3-DNA (PDI) interactions 

using the package mCSM (Pires, Ascher, & Blundell, 2014).  

These protein stability changes and binding affinity changes of PPI and PDI 

were obtained as follows:  

i. Localization of the variant’s residue in the PDB structures. 

ii. Variant’s impact on H3.3 monomer stability: extraction of the H3.3 

monomer of the nucleosome structure and computation of the 

protein stability change upon mutation for each variant with mCSM. 

iii. Variant’s impact on H3.3 protein-protein interactions: for each PDB 

separately, extraction of the H3.3 monomer and all of the interacting 

proteins (histones, epigenetic regulators and chaperones), and 

computation of the binding affinity change of the PPI upon mutation.  

iv. Variant’s impact on H3.3-DNA interactions: extraction of the H3.3 

monomer and DNA fragment of the nucleosome structure and 

computation of the binding affinity change of PDI upon mutation. 
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5.3. Results and Discussion 

5.3.1. A sequence-based view of the variants  

In this section, I analyse the distribution of the patients’ variants along the 

protein sequence.  

 a) Variants  b) H3.3  c) Biological info  d) Structure, partners 

 

      a) Variants 

     single patient 

     >1 patient 

b) H3.3 domains 

     NLS          𝛼2 

     𝛼N           𝛼3 

     𝛼1 

c) Biological   
    information 

     PTMs 

     H3.3 specific  
     amino acids 

d) Structure, partners 

     H3.3 in nucleosome     
     and chaperones 

     H3.3 with epigenetic  
     regulators 
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Figure 5.2 Dataset of H3.3 variants. a) Variants used in this work colour coded 

according to the number of patients carrying each variant, pink: single patient, 

brown: multiple patients. b) H3.3 sequence showing its main structural 

domains: nuclear localization sequence (NLS), 𝛼-helix N, 𝛼-helix 1, 𝛼-helix 2, 𝛼-

helix 3. c) Residues susceptible of PTMs are annotated in yellow along with their 

potential PTMs extracted from UniProt. Specific amino acids of H3.3 compared 

to the canonical H3 are displayed in blue. d) Native residues mapping to PDB 

structures are annotated in blue if the structure is a nucleosome or involves 

chaperones (DAXX, MCM2), in green if H3.3 interacts with an epigenetic 

regulator (SETD2, ZYMD11, BRD4, KDM1B, CARM1, MLLT3, MORC3, NSD3).  

The 33 identified variants mapped to a total of 25 residues distributed 

through the protein sequence (Figure 5.2a), affecting both the histone tail 

and core region of H3.3.  

Analysis of the variants in the histone tail points to a possible effect on the 

addition of PTMs by epigenetic regulators. In fact, many of these variants may 

destroy or create targets for epigenetic regulators because either the native 

or mutated amino acids are classical targets of epigenetic modifications in 

histones. Histone PTMs are covalent attachments of methyl or acetyl groups 

to lysine and arginine amino acids, or phosphorylations of serine or threonine 

amino acids. Of the variants located in the histone tail (amino acids 1 to 89), 

71% of them have one of these amino acids (lysine, arginine, serine or 

threonine) as the native or mutated amino acid. Furthermore, seven of these 

variants, R9C/G/S, S11P, R18G, S32F, K37E, occur in residues known to 

undergo PTMs (Figure 5.2c) which may induce epigenetic dysregulation of 

histone PTMs. 

From looking at the sequence, we also learn that the impact of some variants 

may have a deep effect, because they affect the residues defining the identity 

of H3.3. This is the case of G91R and S32F, which affect amino acids 

differentiating H3.3 from the canonical H3 (Frank et al., 2003), and are 



Characterization of a novel disorder caused by variants in H3.3 

 

128 

essential for the proper recognition of H3.3 by other proteins. For example, 

mutagenic analysis in yeast shows that mutations at G91 prevent the binding 

of H3.3 specific chaperones DAXX and UBN1 (Elsässer et al., 2012; C. P. Liu et 

al., 2012; Ricketts et al., 2015). Analogously, mutations in S32 are required 

for recognition of H3.3 by the chromatin reader ZMYND11 (R. Guo et al., 

2014; Wen et al., 2014).  

5.3.2. Beyond sequence-based features: an estimation of 

variant pathogenicity by bioinformatic predictors 

We used 12 widely employed bioinformatics pathogenicity predictors (see 

Material and Methods section 5.2.2) to generate in silico evidence of the 

nature of H3.3 variants. Because these tools approach the prediction problem 

from slightly different ways, their terminology may differ. For our analyses, 

we unified the predicted classes into two categories: pathogenic and neutral 

(see Material and Methods section 5.2.2). 

In Figure 5.3, I represent the whole set of predictions as a heatmap, with 

variants predicted as pathogenic and neutral shown in red and green, 

respectively. Variants are sorted vertically by the number of pathogenic 

predictions they received, and predictors are sorted horizontally by the 

number of pathogenic predictions, both in decreasing order. As we can see, 

the predictors can be divided into 3 groups: (i) those methods predicting all 

or almost all the variants as pathogenic (from PANTHER to MutPred2), (ii) 

those predicting from half to all of the variants as neutral (from PolyPhen2 to 

FATHMM), and (iii) those not giving predictions (PON-P2). The evidence 

provided by the first group of predictors is consistent with the experimental 

information. However, for the second group of predictors, the evidence 

provided is counter-intuitive: they estimate most or all of the variants as 

neutral. I address this contradiction in the next section 5.3.3. 
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Figure 5.3 Pathogenicity predictions of variants. From left to right and top to 

bottom, predictors and variants are ordered by decreasing number of 

pathogenic predictions. 
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5.3.3. Understanding the contradictory results of some 

relevant bioinformatic predictors 

As we have seen, 4 out of the 12 pathogenicity predictors used (PolyPhen-2, 

SIFT, FATHMM, and REVEL) annotate the majority of the variants as neutral, 

in contrast with the experimental results. Here, I analyse these predictions, 

to see if we can understand this apparent contradiction.  

PolyPhen-2 

PolyPhen-2 (I. A. Adzhubei et al., 2010) combines sequence conservation, 

structural information and annotation of residues to predict the class of 

protein sequence variants. Although with an accuracy generally above 75% 

(de la Campa, Padilla, & de la Cruz, 2017), in our case it erroneously predicted 

58% of the variants as neutral. Previous work from our group (Colobran et al., 

2016), shows that the score of this predictor may be sometimes biased by 

one of the input features. On this basis, we decided to check whether this 

was the case for the H3.3 variants in this study. 

No clear trend was found for the sequence-based predictive features; 

however, for structure-based features the situation was different. Our 

attention was immediately attracted by the fact that one of these key 

features, the normalized accessible surface area (acc_normed), was obtained 

from the DSSP database (Touw et al., 2015). Acc_normed has a significant 

discriminant power between pathogenic and neutral variants (Figure 5.4a) 

(Ancien, Pucci, Godfroid, & Rooman, 2018); in fact, it is one of the 11, out of 

32, features selected to build PolyPhen-2. For this reason, biases affecting 

acc_normed may result in systematic predictions errors. The fact that 

PolyPhen-2 uses acc_normed values retrieved from DSSP points to the 

possibility of this type of error, because DSSP does not always take into 

account the full 3D environment of a protein as presented in its PDB.  
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We tested this possibility for variants affecting H40. Visual inspection of the 

nucleosome structure (Figure 5.4b) showed that residue H40 is buried in the 

H3.3-DNA interface, with almost no access to the solvent. In our dataset, two 

variants are located in this position: H40R and H40Y, both of them predicted 

as neutral by PolyPhen-2. The acc_normed value used for these predictions 

is 0.84 (indicating high accessibility to the solvent), which is more frequent 

for neutral than for pathogenic variants (Figure 5.4a), and is coherent with 

the neutral predictions of PolyPhen-2. However, the large value of 

acc_normed is in contradiction with the visual analysis.  

a)  
 

 
 
 
 
 
 
 

b) 
 

Figure 5.4 a) Distribution of normalized accessibility areas (acc_normed) of 

neutral (red) and pathogenic (blue) variants used in PolyPhen-2 training. 

Adapted from (I. A. Adzhubei et al., 2010). b) Localization of H40 (magenta) in 

H3 (pink), along with other histones (cyan) and DNA (coloured double helix) 

in the nucleosome. 

To clarify this problem, we computed acc_normed using the program dr_sasa 

(Ribeiro, Ríos-Vera, Melo, Schüller, & Valencia, 2019), obtaining a value of 

0.21, more coherent with the visual analysis and more frequently observed 

for pathogenic than for neutral variants (Figure 5.4a). This result suggests that 

the PolyPhen-2 neutral predictions for H40 may be a systematic error 

resulting from the use of DSSP acc_normed values which do not take into 

account the DNA molecule for the calculations of accessibility. Therefore, this 

will affect any H3.3 variant in contact with the DNA. 
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SIFT 

SIFT (Kumar et al., 2009) is a pathogenicity predictor based on the use of 

MSAs of homologous proteins to obtain position-specific scoring matrices to 

estimate the class of a variant. In our case it predicts 36% of the variants as 

neutral. To clarify this paradox, we centered our analysis on the MSA utilized 

by the SIFT server for its predictions, finding that SIFT discards proteins with 

a sequence identity above 90% by default. This filter, conceived to eliminate 

database noise, ignores a crucial feature of histones: they are highly 

conserved. We postulated that this misrepresentation of sequence 

conservation was partly responsible of the incorrect SIFT predictions. To test 

this idea, we forced the SIFT predictor to include in the MSA 121 sequences 

from H3, H3.1, H3.2 and H3.3 proteins with sequence identities above the 

90% threshold. As a result, the SIFT scores of the variants shifted towards 

more pathogenic values and 6 variants previously predicted as neutral 

became pathogenic, increasing the total number of correct predictions from 

36% to 54% (Figure 5.5). 

 

Figure 5.5 Boxplot of SIFT scores calculated with default parameters (blue) 

and after allowing the addition of proteins with a sequence identity >90% in 

the MSA (orange). The cutoff of SIFT is marked as a dotted grey line. 
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FATHMM 

FATHMM predicts 100% of the H3.3 variants as neutral (Figure 5.3). This type 

of error strongly indicates the possibility of a bias in FATHMM predictions. In 

fact, FATHMM results have been very controversial, as explained in a recent 

article (Grimm et al., 2015), because of its tendency to learn the 

compositional population of pathogenic and neutral variants of the training 

dataset rather than the features discriminating them. Given the absence of 

H3.3 germline pathogenic variants in current databases, we suspect that this 

may be the reason why FATHMM predicts all the variants as neutral. In fact, 

if we predict these variants with an unweighted version of FATHMM that 

lacks this compositional weight, 11 variants are predicted as pathogenic.  

REVEL 

REVEL (Ioannidis et al., 2016) is a metapredictor that among other features, 

uses PolyPhen-2, SIFT and FATHMM scores as part of its input. Since these 

predictors are biased towards neutral predictions, we hypothesize that this 

may be the cause behind REVEL’s neutral predictions. 

5.3.4. Back to basics: in silico biophysics estimation of 

the functional impact of variants 

As we have seen in previous sections, bioinformatics pathogenicity predictors 

display mixed success rates. This is worrisome in the case of PolyPhen-2, SIFT 

and REVEL, because they are amongst the most broadly utilized tools in the 

annotation of variants. In this situation, we decided to go beyond the use of 

pathogenicity predictors and utilize a more fundamental approach, 

comprising (i) structure analysis and (ii) biophysics-based models of the 

impact of sequence variants on protein stability and disruption of protein-

protein and protein-DNA interactions.  
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Structure analysis of the effect of variants 

Here, I present a characterization of the 3D environment of the native 

residues mutated in our patient cohort. This study provides a direct view of 

the amount of atomic interactions affected by the mutation, introducing a 

mechanistic component in the interpretation of the variants' impact.  

The 3D structures used (section 5.2.3) are: (i) the nucleosome for the intra-

monomer, H3.3-DNA and H3.3-histone interactions, (ii) chaperones for the 

H3.3-chaperone interactions and (iii) epigenetic regulators for the H3.3-

epigenetic regulator interactions. 

For each native residue, we collected its pattern of contacts (section 5.2.4) 

and classified them into the following groups: (i) intra-monomer contacts, (ii) 

contacts with DNA, (iii) contacts with other histones, (iv) contacts with 

chaperones and (v) contacts with epigenetic regulators.  

As we can see in Table 5.3, the number of interatomic contacts varies 

substantially, but we can establish two main groups (Figure 5.2d). One is 

formed by those variants with native residues between 40 and 129, which are 

located in the centre and C-terminal end of H3.3. They mostly contact with 

DNA and other histones in the nucleosome, or histone chaperones. The 

second is formed by residues 9-40, which are located in the histone N-tail and 

mostly contact with epigenetic regulators.  
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9         11 4 5 10   

11         4 1     

14        30 2      

16       1 3       

18               

23       1        

30              1 

32             3 9 

35             3 1 

37             37  

40  96   2        6 4 

46 3 26   2          

49 3 1 5  1          

62 4   7           

78 1              

82  5             

84  105  3 2 7         

91 3   2           

109 5  1 4 7          

113 4    9          

118  24 2 1           

121 6 15  2 2          

122 5   4 2          

126 8   1 4          

129 8   2           

Table 5.3 Summary of interatomic contacts between H3.3 variants’ residues 

and intra-monomer, DNA, histones, chaperones and epigenetic regulators. 
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For the first group, the pattern of interatomic contacts is summarized in 

Figure 5.6, focusing on the nucleosome structure. This suggests two possible 

scenarios for the impact of the variants. One is the disruption of the H3.3-

DNA interaction, because the native residue is involved in a large number of 

contacts with the DNA. For instance, this would be the case for variant R84C, 

where the arginine residue penetrates the DNA minor groove. In the second 

scenario, variants are more likely to disrupt the histone octamer, either 

because they affect the intra-monomer contacts of H3.3 (e.g. Q126R) or 

because they alter the interaction with other histones (e.g. L49R). 
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Figure 5.6 Bar plot of interatomic contacts between variant’s residues and 

nucleosome atoms. On top, I show the nucleosome structure with only one 

monomer of H3.3 colored (pink) for clarity, with the variants' native residues 

mapped and shown with spheres. Residues are colored according to the highest 

number of type of contacts they have. At the bottom, a bar plot with the 

number of contacts between variant’s residues and DNA (yellow), histones 

(cyan) and intra-monomer H3.3 (magenta).  

In summary, the variants in this group are likely to affect through different 

mechanisms, either the formation or the stability of the nucleosomes 

containing H3.3. 
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The second group of variant locations (residues 9-40) belong to small H3.3 

fragments (pink) that are found in complex with epigenetic regulators (green) 

(Figure 5.7, left). The number of inter-protein contacts at the variant locus 

are summarized in a Sankey diagram (Figure 5.7, right). They vary 

substantially even for the same residue. For example, residue 40 has 33 

contacts with SETD2 and only 4 contacts with ZMYND11 epigenetic regulator. 

 

Figure 5.7 Sankey plot of interatomic contacts between variant’s residues and 

epigenetic regulators. To the left, structural detail of three native residues A16, 

S32 and H40 (magenta) within the H3.3 N-tail (pink) and the epigenetic 

regulator BRD4, ZMYND11 and SETD2 (green), respectively. The thickness of the 

grey bands represents the amount of contacts between native residues and 

epigenetic regulators. 

We find that residues R9, G14, S32, K37 and H40 are involved in more than 

10 contacts across epigenetic regulators, suggesting that their mutation may 

disrupt one or more biologically relevant interactions. For the remaining 

residues, the number of inter-protein contacts decreases rapidly, limiting our 
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ability to interpret the mutation impact. For example, visual analysis of the 

H3.3-BRD4 complex shows that A16 barely participates in the complex 

between both proteins. In fact, the contact analysis of A16 shows that it has 

only one interatomic contact with BRD4. Consequently, destabilization of the 

H3.3-BRD4 complex is a less likely explanation for the impact of variants in 

residue A16.  

Apart from disrupting H3.3-epigenetic interactions, there is another 

mechanism for the impact of variants in the histone tail. These variant may 

affect the inter-nucleosome packing, an important interaction in which H3.3 

tails are involved (Pepenella, Murphy, & Hayes, 2014). 

In summary, most of the variants in the second group are likely to affect the 

interaction between H3.3 and epigenetic regulators with consequences that 

will depend on the biological role of each complex. Or, they may loosen 

chromatin structure by disrupting inter-nucleosome packing. 

Protein stability change of H3.3 monomer upon mutation and disruption of PPI 

and PDI interactions upon mutation 

Our previous analysis uses interatomic contact networks to provide an 

intuitive, mechanistic view of the disruptive effect of the variants in our 

dataset. However, this view is limited in the sense that it does not provide a 

biophysical quantification of this effect, which gives the ultimate explanation 

of the molecular impact of mutations. 

In this section, we follow a biophysically based approach to quantify this 

molecular impact, computing the change in protein stability upon mutation, 

as well as, the change in binding affinity between protein-protein and 

protein-DNA interactions (section 5.2.5). We follow the convention of the 

mCSM package in which values under zero indicate a reduction in protein 

stability or binding affinity. 
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a) 
 
 

 

b) 

 

Figure 5.8 a) Box plot of changes in binding affinity upon mutation in the 

interactions between H3.3 and epigenetic regulators, other histones, 

chaperones and DNA; changes in protein stability upon mutation in the H3.3 

monomer are also included (magenta boxplot to the right). b) Radar plot of 

these changes at the variant level. Note: negative values correspond to 

disruptive effects of the variants. 
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In Figure 5.8, I show the results for the following situations: (i) change in 

stability for the H3.3 monomer; change in binding affinity for the (ii) H3.3-

DNA, (iii) H3.3-chaperones, (iv) H3.3-H4/H2 histones, and (iv) H3.3-epigenetic 

regulators interactions.  

In Figure 5.8a, we can see that regardless of the situation considered 

(monomer stability, H3.3-DNA interaction, etc.), the H3.3 variants populate 

negative energy changes, indicating a general disruptive trend, in accordance 

with their pathogenic nature. In Figure 5.8b, we confirm this result, with a 

variant-level view of the results.  

Moreover, we distinguish a set of variants highly disruptive (< -2) of different 

complexes: M121I, M121K and M121V disrupt H3.3–DNA interactions; L62R, 

G91R and P122R disrupt H3.3-histone interactions; R84C, G91R, P122L and 

P122R disrupt H3.3-chaperones interactions; and R9G, R9S, K37E and H40R 

disrupt H3.3-epigenetic regulators interactions. 
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5.4. Conclusions 

In this chapter, I address the in silico characterization of H3.3 variants 

associated to a novel neuropediatric disorder using both bioinformatics and 

biophysics computations.  

Our results show that, for this case, bioinformatic pathogenicity predictors 

may have an incorrect behavior due to the uncommon characteristics of 

histones. In particular, their large conservation degree which reflects their 

important functional role, is ignored by a renowned predictor such as SIFT. 

Moreover, PolyPhen-2, which bases its predictions on the use of structural 

information, can be misled by solvent accessibility values that ignore the 

presence of DNA. We find that once these technical problems are addressed, 

the results of bioinformatic predictors agree better with the results of the 

functional experiments. 

In this context, the use of biophysics methods becomes very useful. Apart 

from providing independent evidence, structure-based biophysic tools 

illustrate the functional impact of variants in a more concrete way, pointing 

to possible mechanisms of action. In our case, they show how variants can 

affect different biological processes by disrupting different molecular 

complexes involving H3.3. 
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The conclusions of the present thesis are the following: 

• Three sequence-based properties, Entropy, PSSM and Blosum62, can 

be combined to estimate the molecular impact of missense variants 

on the HDR function of BRCA1 and BRCA2, as measured in the 

homonym assay. 

• The BRCA1- and BRCA2-protein specific predictors developed can be 

used, with moderate success, to identify variants with increased risk 

of HBOC, by predicting the variants' molecular impact on the HDR 

function of these proteins. 

• The BRCA1- and BRCA2-protein specific predictors have a balanced 

sensitivity and specificity around 0.8, and an accuracy of 0.75 and 

0.857 respectively, competitive with that of widely used predictors in 

the field.  

• In relation with the ENIGMA challenge that took place in the 5th CAGI 

experiment, our predictors have an accuracy comparable or better 

than that of the standard predictors in the field, being able to predict 

the biased composition of the CAGI dataset, which is enriched in 

neutral variants. 

• The BRASS website makes available to the scientific community a 

user-friendly site to access a novel family of pathogenicity predictors 

for missense BRCA1 and BRCA2 variants. 

• Regarding the novel pediatric neurologic disorder caused by 

pathogenic variants in histone H3.3, it was found that some methods 

predict them as neutral. The study of this inconsistency revealed that 

this is mostly due to technical issues related to the automatization of 

these tools. 
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• Structural analysis of the nucleosome suggests that variants falling in 

this region have a molecular impact on the H3.3’s function 

throughout various mechanisms including the disruption of (i) the 

H3.3 intra-monomer contacts, (ii) the contacts with other histones 

shaping the nucleosome, and (iii) the contacts with the DNA 

wrapping the histone octamer. 

• Structural analysis of the N-tail of H3.3 in complex with epigenetic 

regulators suggests that some of the variants falling there may 

disrupt this interaction, thus affecting the associated biological 

process.  

• Analysis of (i) the change upon mutation in protein stability of the 

H3.3 monomer, (ii) the change in binding affinity of the H3.3-DNA 

interactions, and the change in binding affinity of the H3.3-protein 

interactions, shows that the majority of variants have a negative 

impact in one or more of these properties.  
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Appendix 1 

Table 7.1 Predictions submitted in the ENIGMA challenge of the CAGI 

experiment. Here, we provide a list of the four predictions we submitted for 

the BRCA1 and BRCA2 variants. For each variants, the following information 

is provided: gene, DNA variant, protein variant, current IARC 5-tier class 

according to the ENIGMA consortium, predicted IARC 5 class by MLR protocol, 

predicted IARC 5 class by MLR + AS protocol, predicted IARC 5 class by NN 

protocol and predicted IARC 5 class by NN + AS protocol. In the last column, 

the effect of the variant (protein or splicing) is stated, as well as, the no 

missense variants, such as deletions, are marked with the arbitrary label. 

Gene DNA Protein ENIGMA MLR MLR+AS NN NN+AS Comments 

BRCA1 c.1036C>T p.Pro346Ser 2 1 1 3 3 protein 

BRCA1 c.1075C>T p.Pro359Ser 2 1 1 3 3 protein 

BRCA1 c.1081T>C p.Ser361Pro 2 1 1 3 3 protein 

BRCA1 c.1310A>T p.His437Leu 2 3 3 3 3 protein 

BRCA1 c.131G>T p.Cys44Phe 5 4 4 3 3 protein 

BRCA1 c.1342C>T p.His448Tyr 2 2 2 2 2 protein 

BRCA1 c.134A>C p.Lys45Thr 2 2 2 3 3 protein 

BRCA1 c.1361G>A p.Ser454Asn 2 1 1 2 2 protein 

BRCA1 c.1383T>A p.Phe461Leu 1 3 3 4 4 protein 

BRCA1 c.1396C>T p.Arg466Trp 2 2 2 3 3 protein 

BRCA1 c.140G>A p.Cys47Tyr 5 4 4 3 3 protein 

BRCA1 c.1418A>T p.Asn473Ile 1 2 2 3 3 protein 

BRCA1 c.1423A>T p.Ser475Cys 2 1 1 3 3 protein 

BRCA1 c.1508A>G p.Lys503Arg 2 1 1 3 3 protein 

BRCA1 c.1514A>T p.Lys505Ile 2 3 3 4 4 protein 

BRCA1 c.1534C>T p.Leu512Phe 1 3 3 4 4 protein 

BRCA1 c.154C>A p.Leu52Ile 2 3 3 3 3 protein 

BRCA1 c.1601A>G p.Gln534Arg 2 1 1 3 3 protein 

BRCA1 c.1703C>G p.Pro568Arg 2 2 2 3 3 protein 

BRCA1 c.172C>G p.Pro58Ala 2 2 2 3 3 protein 
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Table 7.1 continuation 

Gene DNA Protein ENIGMA MLR MLR+AS NN NN+AS Comments 

BRCA1 c.1756C>T p.Pro586Ser 2 2 2 3 3 protein 

BRCA1 c.1772T>C p.Ile591Thr 2 2 2 3 3 protein 

BRCA1 c.1834A>G p.Arg612Gly 1 2 2 4 4 protein 

BRCA1 c.1846_1848del p.Ser616del 1 3 3 3 3 arbitary 

BRCA1 c.1879G>A p.Val627Ile 2 1 1 3 3 protein 

BRCA1 c.1903A>G p.Asn635Asp 2 1 1 2 2 protein 

BRCA1 c.1927A>G p.Ser643Gly 1 2 2 3 3 protein 

BRCA1 c.2006T>C p.Met669Thr 2 3 3 2 2 protein 

BRCA1 c.2042G>T p.Ser681Ile 2 1 1 3 3 protein 

BRCA1 c.2050C>T p.Pro684Ser 2 2 2 3 3 protein 

BRCA1 c.2060A>C p.Gln687Pro 2 2 2 3 3 protein 

BRCA1 c.2083G>T p.Asp695Tyr 1 2 2 3 3 protein 

BRCA1 c.211A>G p.Arg71Gly 5 3 5 3 5 splicing 

BRCA1 c.2180C>T p.Pro727Leu 1 1 1 3 3 protein 

BRCA1 c.2183G>A p.Arg728Lys 2 2 2 3 3 protein 

BRCA1 c.2245G>T p.Asp749Tyr 2 2 2 3 3 protein 

BRCA1 c.2338C>A p.Gln780Lys 2 2 2 3 3 protein 

BRCA1 c.2346T>A p.Ser782Arg 2 1 1 5 5 protein 

BRCA1 c.2351C>T p.Ser784Leu 1 2 2 5 5 protein 

BRCA1 c.2447A>G p.His816Arg 2 2 2 2 2 protein 

BRCA1 c.2452T>G p.Cys818Gly 2 3 3 3 3 protein 

BRCA1 c.2482G>A p.Gly828Ser 2 2 2 3 3 protein 

BRCA1 c.2503C>T p.His835Tyr 2 2 2 2 2 protein 

BRCA1 c.2518A>T p.Ser840Cys 3 1 1 2 2 protein 

BRCA1 c.2522G>A p.Arg841Gln 2 1 1 3 3 protein 

BRCA1 c.2597G>A p.Arg866His 1 3 3 4 4 protein 

BRCA1 c.2650A>G p.Thr884Ala 2 1 1 2 2 protein 

BRCA1 c.2662C>T p.His888Tyr 3 2 2 2 2 protein 

BRCA1 c.2668G>C p.Gly890Arg 2 1 1 2 2 protein 

BRCA1 c.2692A>G p.Lys898Glu 2 1 1 2 2 protein 

BRCA1 c.2728C>G p.Gln910Glu 2 1 1 2 2 protein 

BRCA1 c.2758G>A p.Val920Ile 1 1 1 2 2 protein 
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Table 7.1 continuation 

Gene DNA Protein ENIGMA MLR MLR+AS NN NN+AS Comments 

BRCA1 c.2765C>G p.Thr922Arg 2 1 1 3 3 protein 

BRCA1 c.2783G>A p.Gly928Asp 2 2 2 3 3 protein 

BRCA1 c.2798G>C p.Gly933Ala 1 1 1 2 2 protein 

BRCA1 c.2857T>C p.Cys953Arg 2 3 3 3 3 protein 

BRCA1 c.2884G>A p.Glu962Lys 1 1 1 3 3 protein 

BRCA1 c.2912A>G p.His971Arg 1 2 2 2 2 protein 

BRCA1 c.2917C>G p.Leu973Val 2 1 1 3 3 protein 

BRCA1 c.2935C>T p.Arg979Cys 2 1 1 2 2 protein 

BRCA1 c.2963C>T p.Ser988Leu 2 2 2 3 3 protein 

BRCA1 
c.2998_ 
3003del 

p.Glu1000_  
Glu1001del 

2 3 3 3 3 arbitary 

BRCA1 c.2998G>A p.Glu1000Lys 2 1 1 3 3 protein 

BRCA1 c.3040A>T p.Met1014Leu 2 2 2 2 2 protein 

BRCA1 c.305C>G p.Ala102Gly 1 2 2 3 3 protein 

BRCA1 c.3082C>T p.Arg1028Cys 1 2 2 2 2 protein 

BRCA1 c.3143G>A p.Gly1048Asp 2 1 1 3 3 protein 

BRCA1 c.3143G>T p.Gly1048Val 1 2 2 3 3 protein 

BRCA1 c.3211G>A p.Glu1071Lys 2 1 1 3 3 protein 

BRCA1 c.3220A>G p.Arg1074Gly 2 3 3 3 3 protein 

BRCA1 c.3267G>T p.Leu1089Phe 2 1 1 3 3 protein 

BRCA1 c.3280T>G p.Tyr1094Asp 2 3 3 3 3 protein 

BRCA1 c.3305A>G p.Asn1102Ser 2 2 2 3 3 protein 

BRCA1 c.3416G>T p.Ser1139Ile 1 1 1 3 3 protein 

BRCA1 c.3424G>C p.Ala1142Pro 2 1 1 3 3 protein 

BRCA1 c.3425C>T p.Ala1142Val 2 1 1 3 3 protein 

BRCA1 c.3454G>A p.Asp1152Asn 2 1 1 3 3 protein 

BRCA1 c.3541G>A p.Val1181Ile 1 1 1 3 3 protein 

BRCA1 c.3581C>T p.Thr1194Ile 2 1 1 2 2 protein 

BRCA1 c.3596C>T p.Ala1199Val 2 2 2 3 3 protein 

BRCA1 c.3622A>G p.Lys1208Glu 2 2 2 3 3 protein 

BRCA1 c.3655G>A p.Glu1219Lys 2 2 2 3 3 protein 

BRCA1 c.3657G>C p.Glu1219Asp 1 1 1 3 3 protein 

BRCA1 c.3667C>T p.Leu1223Phe 2 2 2 3 3 protein 
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Table 7.1 continuation 

Gene DNA Protein ENIGMA MLR MLR+AS NN NN+AS Comments 

BRCA1 c.3708T>G p.Asn1236Lys 1 2 2 2 2 protein 

BRCA1 c.3724A>G p.Thr1242Ala 2 3 3 3 3 protein 

BRCA1 c.3848A>G p.His1283Arg 2 3 3 3 3 protein 

BRCA1 c.3902G>A p.Ser1301Asn 2 1 1 3 3 protein 

BRCA1 c.397C>T p.Arg133Cys 2 3 3 3 3 protein 

BRCA1 c.3988A>T p.Ser1330Cys 2 1 1 2 2 protein 

BRCA1 c.398G>A p.Arg133His 2 3 3 3 3 protein 

BRCA1 c.4006A>T p.Ser1336Cys 2 1 1 3 3 protein 

BRCA1 c.4031A>G p.Asp1344Gly 2 2 2 3 3 protein 

BRCA1 c.4036G>A p.Glu1346Lys 1 1 1 3 3 protein 

BRCA1 c.4046C>G p.Thr1349Arg 2 2 2 2 2 protein 

BRCA1 c.4081A>T p.Met1361Leu 1 2 2 2 2 protein 

BRCA1 c.4103C>T p.Ala1368Val 2 2 2 3 3 protein 

BRCA1 c.4184A>G p.Gln1395Arg 2 3 5 3 5 splicing 

BRCA1 c.4213A>G p.Ile1405Val 2 1 1 2 2 protein 

BRCA1 c.4262A>G p.His1421Arg 2 3 3 3 3 protein 

BRCA1 c.4288C>T p.Pro1430Ser 2 2 2 2 2 protein 

BRCA1 c.4342A>G p.Ser1448Gly 2 1 1 2 2 protein 

BRCA1 c.43A>C p.Ile15Leu 2 2 2 2 2 protein 

BRCA1 c.4484G>C p.Arg1495Thr 5 2 5 3 5 splicing 

BRCA1 c.4520G>C p.Arg1507Thr 1 2 2 3 3 protein 

BRCA1 c.455T>C p.Leu152Pro 2 2 2 3 3 protein 

BRCA1 c.4585A>G p.Ile1529Val 2 1 1 2 2 protein 

BRCA1 c.4657T>A p.Leu1553Met 2 1 1 3 3 protein 

BRCA1 c.4675G>A p.Glu1559Lys 5 1 5 3 5 splicing 

BRCA1 c.469T>C p.Asn1236Lys 2 1 1 3 3 protein 

BRCA1 c.4726G>C p.Thr1242Ala 2 1 1 2 2 protein 

BRCA1 c.4733A>G p.His1283Arg 2 2 2 3 3 protein 

BRCA1 c.4766G>A p.Ser1301Asn 2 1 1 2 2 protein 

BRCA1 c.4776C>A p.Arg133Cys 2 1 1 2 2 protein 

BRCA1 c.478G>C p.Ser1330Cys 2 3 3 3 3 protein 

BRCA1 c.4814T>C p.Arg133His 2 1 1 2 2 protein 
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Table 7.1 continuation 

Gene DNA Protein ENIGMA MLR MLR+AS NN NN+AS Comments 

BRCA1 c.4816A>G p.Lys1606Glu 1 1 1 2 2 protein 

BRCA1 c.5068A>C p.Lys1690Gln 2 3 3 3 3 protein 

BRCA1 
c.5078_ 
5080del 

p.Ala1693del 3 3 3 3 3 arbitary 

BRCA1 c.508C>T p.Arg170Trp 1 2 2 3 3 protein 

BRCA1 c.5144G>A p.Ser1715Asn 5 3 3 3 3 protein 

BRCA1 c.5189A>G p.Asn1730Ser 2 2 2 2 2 protein 

BRCA1 c.5189A>T p.Asn1730Ile 2 2 2 3 3 protein 

BRCA1 c.5198A>G p.Asp1733Gly 1 3 3 3 3 protein 

BRCA1 c.5207T>G p.Val1736Gly 4 3 3 3 3 protein 

BRCA1 c.5213G>A p.Gly1738Glu 4 3 3 3 3 protein 

BRCA1 c.5216A>T p.Asp1739Val 4 3 3 3 3 protein 

BRCA1 c.5243G>A p.Gly1748Asp 4 3 3 3 3 protein 

BRCA1 c.5312C>G p.Pro1771Arg 2 3 3 3 3 protein 

BRCA1 c.53T>C p.Met18Thr 5 4 4 3 3 protein 

BRCA1 c.5456A>G p.Asn1819Ser 2 1 1 2 2 protein 

BRCA1 c.5504G>A p.Arg1835Gln 2 3 3 3 3 protein 

BRCA1 c.5531T>G p.Leu1844Arg 1 2 2 3 3 protein 

BRCA1 c.5553C>G p.Asp1851Glu 2 2 2 2 2 protein 

BRCA1 c.716A>G p.His239Arg 1 3 3 3 3 protein 

BRCA1 c.722C>T p.Pro241Leu 2 1 1 2 2 protein 

BRCA1 c.792T>A p.Ser264Arg 2 1 1 2 2 protein 

BRCA1 c.823G>A p.Gly275Ser 2 2 2 3 3 protein 

BRCA1 c.824G>A p.Gly275Asp 2 2 2 3 3 protein 

BRCA1 c.827C>G p.Thr276Arg 1 2 2 3 3 protein 

BRCA1 c.891G>T p.Met297Ile 1 3 3 3 3 protein 

BRCA1 c.932C>T p.Pro311Leu 2 2 2 3 3 protein 

BRCA1 c.964G>A p.Ala322Thr 2 1 1 3 3 protein 

BRCA1 c.964G>C p.Ala322Pro 2 2 2 3 3 protein 

BRCA1 c.994C>T p.Arg332Trp 2 1 1 3 3 protein 

BRCA1 c.997A>G p.Thr333Ala 1 1 1 3 3 protein 

BRCA2 c.10070C>T p.Thr3357Ile 2 1 1 2 2 protein 

BRCA2 c.10120A>G p.Thr3374Ala 2 1 1 2 2 protein 
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Table 7.1 continuation 

Gene DNA Protein ENIGMA MLR MLR+AS NN NN+AS Comments 

BRCA2 c.10121C>T p.Thr3374Ile 2 1 1 2 2 protein 

BRCA2 c.10204G>A p.Glu3402Lys 2 1 1 2 2 protein 

BRCA2 c.1040A>G p.Gln347Arg 2 1 1 2 2 protein 

BRCA2 c.1124C>T p.Pro375Leu 2 1 1 3 3 protein 

BRCA2 c.1127T>G p.Phe376Cys 2 1 1 2 2 protein 

BRCA2 c.1166C>A p.Pro389Gln 1 1 1 2 2 protein 

BRCA2 c.116C>T p.Ala39Val 2 1 1 1 1 protein 

BRCA2 c.1181A>C p.Glu394Ala 1 1 1 2 2 protein 

BRCA2 c.1225G>A p.Glu409Lys 2 1 1 2 2 protein 

BRCA2 c.1247T>G p.Ile416Ser 2 1 1 3 3 protein 

BRCA2 c.1447G>A p.Ala483Thr 2 1 1 1 1 protein 

BRCA2 c.1466C>G p.Ser489Cys 1 1 1 2 2 protein 

BRCA2 c.1514T>C p.Ile505Thr 1 1 1 2 2 protein 

BRCA2 c.1786G>C p.Asp596His 1 1 1 3 3 protein 

BRCA2 c.1792A>G p.Thr598Ala 1 1 1 2 2 protein 

BRCA2 c.1796C>T p.Ser599Phe 1 1 1 3 3 protein 

BRCA2 c.1798T>C p.Tyr600His 2 1 1 2 2 protein 

BRCA2 c.1810A>G p.Lys604Glu 1 1 1 2 2 protein 

BRCA2 c.1814T>C p.Ile605Thr 2 1 1 2 2 protein 

BRCA2 c.1865C>T p.Ala622Val 1 1 1 2 2 protein 

BRCA2 c.1875T>A p.Phe625Leu 2 1 1 2 2 protein 

BRCA2 c.1885C>T p.Leu629Phe 2 1 1 1 1 protein 

BRCA2 c.1897A>G p.Asn633Asp 2 1 1 2 2 protein 

BRCA2 c.1938C>A p.Ser646Arg 2 1 1 1 1 protein 

BRCA2 c.2125C>G p.Leu709Val 2 1 1 1 1 protein 

BRCA2 c.2135T>C p.Leu712Pro 2 1 1 1 1 protein 

BRCA2 c.2213G>T p.Cys738Phe 2 1 1 1 1 protein 

BRCA2 c.2303C>T p.Thr768Ile 2 1 1 1 1 protein 

BRCA2 c.2330A>G p.Asp777Gly 2 1 1 1 1 protein 

BRCA2 c.2348T>G p.Val783Gly 2 1 1 1 1 protein 

BRCA2 c.241T>G p.Phe81Val 2 3 3 3 3 protein 

BRCA2 c.2429C>T p.Thr810Ile 2 1 1 1 1 protein 
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Table 7.1 continuation 

Gene DNA Protein ENIGMA MLR MLR+AS NN NN+AS Comments 

BRCA2 c.2515T>C p.Tyr839His 2 1 1 1 1 protein 

BRCA2 c.2589T>A p.Asn863Lys 2 1 1 1 1 protein 

BRCA2 c.2632G>C p.Asp878His 2 1 1 1 1 protein 

BRCA2 c.2698A>G p.Asn900Asp 1 1 1 1 1 protein 

BRCA2 c.2803G>C p.Asp935His 1 1 1 1 1 protein 

BRCA2 c.2872A>G p.Ser958Gly 2 1 1 1 1 protein 

BRCA2 c.2920G>A p.Asp974Asn 2 1 1 1 1 protein 

BRCA2 c.2963A>C p.Asp988Ala 2 1 1 1 1 protein 

BRCA2 c.2987T>G p.Leu996Arg 1 1 1 1 1 protein 

BRCA2 
c.3071_ 
3073del 

p.Ile1024del 2 3 3 3 3 arbitary 

BRCA2 c.3088T>G p.Phe1030Val 2 1 1 3 3 protein 

BRCA2 c.3172A>C p.Lys1058Gln 2 1 1 3 3 protein 

BRCA2 c.3197A>G p.Asn1066Ser 2 1 1 2 2 protein 

BRCA2 c.322A>C p.Asn108His 2 1 1 2 2 protein 

BRCA2 c.3260C>T p.Thr1087Ile 2 1 1 2 2 protein 

BRCA2 c.3326C>T p.Ala1109Val 2 1 1 4 4 protein 

BRCA2 c.343A>G p.Lys115Glu 2 1 1 2 2 protein 

BRCA2 c.3445A>G p.Met1149Val 2 1 1 1 1 protein 

BRCA2 c.3503T>C p.Met1168Thr 2 1 1 1 1 protein 

BRCA2 c.3569G>A p.Arg1190Gln 2 1 1 3 3 protein 

BRCA2 c.3575T>G p.Phe1192Cys 2 1 1 2 2 protein 

BRCA2 c.3598T>A p.Cys1200Ser 2 1 1 2 2 protein 

BRCA2 c.3622T>A p.Leu1208Ile 2 1 1 2 2 protein 

BRCA2 c.3731T>C p.Ile1244Thr 2 1 1 3 3 protein 

BRCA2 c.3749A>G p.Glu1250Gly 2 1 1 3 3 protein 

BRCA2 c.3865A>G p.Lys1289Glu 2 1 1 3 3 protein 

BRCA2 c.3962A>G p.Asp1321Gly 2 1 1 2 2 protein 

BRCA2 c.3966C>G p.Asn1322Lys 2 1 1 3 3 protein 

BRCA2 
c.4141_ 
4143del 

p.Lys1381del 2 3 3 3 3 arbitary 

BRCA2 
c.4146_ 
4148del 

p.Glu1382del 1 3 3 3 3 arbitary 

BRCA2 c.4159T>A p.Leu1387Ile 2 1 1 1 1 protein 
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Table 7.1 continuation 

Gene DNA Protein ENIGMA MLR MLR+AS NN NN+AS Comments 

BRCA2 c.4271C>G p.Ser1424Cys 1 1 1 1 1 protein 

BRCA2 c.4334A>T p.Lys1445Ile 2 1 1 2 2 protein 

BRCA2 c.4376A>G p.Asn1459Ser 2 1 1 1 1 protein 

BRCA2 c.437T>C p.Leu146Pro 2 1 1 3 3 protein 

BRCA2 c.440A>G p.Gln147Arg 1 1 1 3 3 protein 

BRCA2 c.4483G>A p.Val1495Ile 2 1 1 1 1 protein 

BRCA2 c.4558A>G p.Thr1520Ala 2 1 1 1 1 protein 

BRCA2 c.4718G>A p.Cys1573Tyr 2 1 1 1 1 protein 

BRCA2 c.4779A>C p.Glu1593Asp 2 1 1 1 1 protein 

BRCA2 c.4828G>A p.Val1610Met 2 1 1 1 1 protein 

BRCA2 c.4849A>C p.Ser1617Arg 2 1 1 1 1 protein 

BRCA2 c.4856A>G p.Asn1619Ser 2 1 1 1 1 protein 

BRCA2 c.4861T>G p.Cys1621Gly 2 1 1 1 1 protein 

BRCA2 c.4874A>G p.Glu1625Gly 2 1 1 1 1 protein 

BRCA2 c.4901T>C p.Phe1634Ser 2 1 1 1 1 protein 

BRCA2 c.4915G>A p.Val1639Ile 2 1 1 1 1 protein 

BRCA2 c.4987G>C p.Val1663Leu 2 1 1 1 1 protein 

BRCA2 c.5020A>G p.Ser1674Gly 2 1 1 1 1 protein 

BRCA2 c.506A>G p.Lys169Arg 2 1 1 3 3 protein 

BRCA2 c.5117A>C p.Asn1706Thr 2 1 1 1 1 protein 

BRCA2 c.5171T>C p.Ile1724Thr 2 1 1 1 1 protein 

BRCA2 c.5186A>G p.Lys1729Arg 2 1 1 1 1 protein 

BRCA2 c.5383A>G p.Lys1795Glu 2 1 1 2 2 protein 

BRCA2 c.5474C>T p.Ala1825Val 2 1 1 2 2 protein 

BRCA2 c.5507A>C p.Asn1836Thr 2 1 1 2 2 protein 

BRCA2 c.5552T>G p.Ile1851Ser 2 1 1 2 2 protein 

BRCA2 c.5554G>A p.Val1852Ile 2 1 1 2 2 protein 

BRCA2 c.5602G>T p.Asp1868Tyr 2 1 1 3 3 protein 

BRCA2 c.5634C>G p.Asn1878Lys 1 1 1 3 3 protein 

BRCA2 c.5635G>A p.Glu1879Lys 2 1 1 3 3 protein 

BRCA2 c.5640T>G p.Asn1880Lys 2 1 1 2 2 protein 

BRCA2 c.5649A>C p.Lys1883Asn 2 1 1 2 2 protein 
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Table 7.1 continuation 

Gene DNA Protein ENIGMA MLR MLR+AS NN NN+AS Comments 

BRCA2 c.5651T>C p.Ile1884Thr 2 1 1 2 2 protein 

BRCA2 c.5702A>T p.Glu1901Val 3 1 1 3 3 protein 

BRCA2 c.5723T>C p.Leu1908Pro 2 1 1 2 2 protein 

BRCA2 c.5753A>G p.His1918Arg 1 1 1 2 2 protein 

BRCA2 c.5768A>C p.Asp1923Ala 2 1 1 2 2 protein 

BRCA2 c.5821A>C p.Lys1941Gln 2 1 1 2 2 protein 

BRCA2 c.5969A>G p.Asp1990Gly 2 1 1 3 3 protein 

BRCA2 c.6131G>C p.Gly2044Ala 2 1 1 1 1 protein 

BRCA2 c.6131G>T p.Gly2044Val 2 1 1 2 2 protein 

BRCA2 c.6188G>A p.Gly2063Glu 2 3 3 4 4 protein 

BRCA2 c.6196G>A p.Val2066Ile 2 2 2 3 3 protein 

BRCA2 c.6258C>G p.Ile2086Met 2 1 1 2 2 protein 

BRCA2 c.6441C>G p.His2147Gln 2 1 1 1 1 protein 

BRCA2 c.6443C>A p.Ser2148Tyr 2 1 1 2 2 protein 

BRCA2 c.6455C>A p.Ser2152Tyr 1 1 1 3 3 protein 

BRCA2 c.6532C>T p.His2178Tyr 2 1 1 2 2 protein 

BRCA2 c.6683T>C p.Val2228Ala 2 1 1 3 3 protein 

BRCA2 c.6698C>A p.Ala2233Asp 2 3 3 3 3 protein 

BRCA2 c.6737C>G p.Pro2246Arg 2 1 1 3 3 protein 

BRCA2 c.6746C>A p.Ala2249Asp 2 1 1 2 2 protein 

BRCA2 c.679G>A p.Ala227Thr 2 1 1 2 2 protein 

BRCA2 c.6871A>G p.Asn2291Asp 2 1 1 2 2 protein 

BRCA2 c.6953G>A p.Arg2318Gln 1 2 2 3 3 protein 

BRCA2 c.6991A>G p.Thr2331Ala 2 1 1 3 3 protein 

BRCA2 c.6995G>A p.Cys2332Tyr 2 1 1 3 3 protein 

BRCA2 c.7025A>C p.Gln2342Pro 2 1 1 3 3 protein 

BRCA2 c.7118G>C p.Ser2373Thr 2 1 1 1 1 protein 

BRCA2 c.7457A>G p.Asn2486Ser 2 1 1 1 1 protein 

BRCA2 c.7499G>C p.Arg2500Thr 2 1 1 1 1 protein 

BRCA2 c.7505G>A p.Arg2502His 1 1 1 1 1 protein 

BRCA2 c.7512T>G p.Phe2504Leu 2 1 1 1 1 protein 

BRCA2 c.7534C>T p.Leu2512Phe 1 1 1 1 1 protein 
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Table 7.1 continuation 

Gene DNA Protein ENIGMA MLR MLR+AS NN NN+AS Comments 

BRCA2 c.7601C>T 
p.Ala2534Val 

2 1 1 1 1 protein 

BRCA2 c.7633G>A 
p.Val2545Ile 

2 1 1 1 1 protein 

BRCA2 c.7783G>T 
p.Ala2595Ser 

2 1 1 3 3 protein 

BRCA2 c.7819A>C 
p.Thr2607Pro 

4 3 3 3 3 protein 

BRCA2 c.7975A>G 
p.Arg2659Gly 

5 3 3 4 4 protein 

BRCA2 c.7994A>G 
p.Asp2665Gly 

1 3 3 3 3 protein 

BRCA2 c.8009C>T 
p.Ser2670Leu 

4 2 2 4 4 protein 

BRCA2 c.800G>A 
p.Gly267Glu 

3 1 1 2 2 protein 

BRCA2 c.8182G>A 
p.Val2728Ile 

1 1 1 2 2 protein 

BRCA2 c.8254A>T 
p.Ile2752Phe 

2 1 1 2 2 protein 

BRCA2 c.8308G>A 
p.Ala2770Thr 

1 1 1 3 3 protein 

BRCA2 c.831T>G 
p.Asn277Lys 

1 1 1 3 3 protein 

BRCA2 c.8324T>C 
p.Met2775Thr 

2 1 1 2 2 protein 

BRCA2 c.8386C>T 
p.Pro2796Ser 

2 1 1 2 2 protein 

BRCA2 c.841G>A 
p.Asp281Asn 

2 1 1 3 3 protein 

BRCA2 c.8428A>G 
p.Ser2810Gly 

2 1 1 3 3 protein 

BRCA2 c.8432A>G 
p.Asp2811Gly 

2 1 1 3 3 protein 

BRCA2 c.8486A>G 
p.Gln2829Arg 

5 1 5 3 5 splicing 

BRCA2 c.8503T>C 
p.Ser2835Pro 

2 1 1 2 2 protein 

BRCA2 c.8572C>A 
p.Gln2858Lys 

2 1 1 3 3 protein 

BRCA2 c.8599A>C 
p.Thr2867Pro 

2 1 1 2 2 protein 

BRCA2 c.8651A>G 
p.Tyr2884Cys 

2 1 1 2 2 protein 

BRCA2 c.8734G>A 
p.Ala2912Thr 

1 1 1 2 2 protein 

BRCA2 c.8764A>G 
p.Ser2922Gly 

1 2 2 3 3 protein 

BRCA2 c.8789A>C 
p.Asn2930Thr 

2 1 1 2 2 protein 

BRCA2 c.8918G>A 
p.Arg2973His 

2 1 1 3 3 protein 

BRCA2 
c.8975_ 
9100del 

p.Pro2992_ 
Thr3033del 4 3 3 3 3 arbitary 

BRCA2 c.9011A>G 
p.Lys3004Arg 

2 1 1 2 2 protein 

BRCA2 c.9038C>T 
p.Thr3013Ile 

1 1 1 2 2 protein 

BRCA2 c.9043A>G 
p.Lys3015Glu 

1 1 1 2 2 protein 

BRCA2 c.9104A>C 
p.Tyr3035Ser 

1 1 1 3 3 protein 

BRCA2 c.9175A>G 
p.Lys3059Glu 

1 1 1 2 2 protein 



Appendix 

 

159 

Table 7.1 continuation 

Gene DNA Protein ENIGMA MLR MLR+AS NN NN+AS Comments 

BRCA2 c.9199C>T p.Pro3067Ser 2 1 1 3 3 protein 

BRCA2 c.9242T>C p.Val3081Ala 2 1 1 3 3 protein 

BRCA2 c.9263C>T p.Ala3088Val 2 1 1 3 3 protein 

BRCA2 c.9286G>A p.Glu3096Lys 2 1 1 3 3 protein 

BRCA2 c.9350A>C p.His3117Pro 2 1 1 2 2 protein 

BRCA2 c.9371A>T p.Asn3124Ile 5 3 3 3 3 protein 

BRCA2 c.9434T>C p.Val3145Ala 2 1 1 2 2 protein 

BRCA2 c.9458G>C p.Gly3153Ala 2 1 1 1 1 protein 

BRCA2 c.9500A>C p.Glu3167Ala 2 1 5 3 5 splicing 

BRCA2 
c.9513_ 
9515del 

p.Leu3172del 2 3 3 3 3 arbitary 

BRCA2 c.955A>G p.Asn319Asp 2 1 1 2 2 protein 

BRCA2 c.956A>G p.Asn319Ser 2 1 1 2 2 protein 

BRCA2 c.9581C>A p.Pro3194Gln 2 1 1 2 2 protein 

BRCA2 c.964A>C p.Lys322Gln 2 1 1 3 3 protein 

BRCA2 c.9875C>T p.Pro3292Leu 1 3 3 3 3 protein 

BRCA2 c.9905G>A p.Arg3302Lys 2 1 1 3 3 protein 

BRCA2 c.9925G>A p.Glu3309Lys 2 1 1 2 2 protein 
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