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Abstract 
 
Selective attention determines the sensory signals that are processed 

at higher levels at the expense of others and is biased by higher-

order brain regions which anticipate task-relevant stimuli and 

increase neural sensitivity to them in the sensory cortex. Often, this 

is thought to occur through excitation of selected neurons, but some 

studies have suggested that it is not the full description of the 

process. Increasingly, evidence has pointed to an alternative, top-

down inhibitory biasing mechanism. Here, we investigated such an 

inhibitory model of attention. We first showed how sensitivity to 

stimulus features known to be task-irrelevant are reduced through 

top-down suppression. Secondly, we demonstrated a biologically 

grounded spiking model’s ability to modulate information 

processing and benchmarked it to physiology. Lastly, we explored 

the interaction between the excitatory and inhibitory models of top-

down attention in a foraging agent. Our results support the 

inhibitory model of top-down attention as a biological attentional 

mechanism and show how it fits into the current zeitgeist of top-

down attentional mechanisms. 
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Abstract in Catalan 

 
L’atenció selectiva determina els senyals sensorials que es 

processen a nivells superiors a costa dels altres. Està esbiaixada per 

regions cerebrals d’ordre superior que anticipen estímuls rellevants 

per a la tasca i augmenten la sensibilitat neuronal a l’escorça 

sensorial. Sovint, es creu que això es produeix mitjançant l'excitació 

de neurones seleccionades, però alguns estudis han suggerit que no 

és la descripció completa del procés. Cada vegada més, l’evidència 

apunta cap a un mecanisme alternatiu de polarització inhibitiva de 

dalt a baix. Aquí hem investigat, aleshores, un model d’atenció 

inhibitori. Primer, vam demostrar com es redueix la sensibilitat a les 

funcions d’estímul irrellevants per tasques mitjançant la supressió 

de dalt a baix. En segon lloc, vam demostrar la capacitat d’un model 

d’espiga basat en la biologia per modular el processament de la 

informació i l’hem comparat amb la fisiologia. Per últim, hem 

explorat la interacció entre els models excitadors i inhibidors 

d’atenció de dalt a baix en un agent de cerca d’aliments. Els nostres 

resultats donen suport al model inhibitori de l’atenció de dalt a baix 

com a mecanisme d’atenció biològica i mostren com s’adapta al 

‘zeitgeist’ actual dels mecanismes d’atenció de dalt a baix.
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1. INTRODUCTION 

 

Top-down and bottom-up interactions in selective attention 

Sensory processing in humans, and many other non-human animals, 

is selective. This happens largely because we receive a wide array of 

sensory information about stimuli in our environment, but our 

capacity to process this information is limited (Broadbent, 1958; 

Duncan, 1984; Kahneman, 1973; Schneider and Shiffrin, 1977). The 

mechanism through which certain stimuli are selected for processing 

instead of others, allowing for differential processing of simultaneous 

sources of information (Johnston and Dark, 1986), is referred to as 

selective attention. While selective attention is not modality-specific, 

and many experiments do exploit cross-modality paradigms, most 

studies focus on the visual domain followed by the auditory 

(Hutmacher, 2019). For this reason, examples and descriptions in this 

thesis will heavily refer to visual attention but the concepts can be 

extrapolated to other sensory domains as well. 

 

Selective attention is considered to be a result of the integration of 

two processing streams—top-down and bottom-up—with the 

winning stimulus having “further access to memory systems for 

mnemonic encoding and retrieval and to motor systems for guiding 

action and behaviour” (Kastner and Ungerleider, 2000). The concept 

of predictive models of the environment has a long history 

(Helmholtz, 1962) and has been developed into what is known as the 

Bayesian brain (Clark, 2013; Friston, 2012, 2005). In the context of 

selective attention, this implies that top-down processes bias bottom-

up sensory signals towards those that are anticipated to be, 

information-wise, more valuable. Bottom-up information depends on 

the physical features of stimuli relative to the background, like their 

orientation and colour, while top-down information, stemming from 

higher-order brain regions, is based on prior knowledge and goals. In 

psychophysiology, these two processes have been reliably shown by 

tasks that dissociate them, like the oddball task, with one such study 

showing that evoked response potentials related to novel stimuli are 

subject to habituation within an experimental session while those 

related to typical stimuli are not (Debener et al., 2002). The 

processing of visual information is hierarchical; visual information 
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flows from the retina to the occipital lobe where it then moves across 

the neocortex to the frontal lobe (Figure 1-left). Each brain area 

represents stimuli and their features at its own level of abstraction, 

and top-down attentional influence on neural representation of 

stimuli can be observed at various stages of the visual hierarchy. For 

example, there is substantial evidence that attention modulates the 

rate of neuronal spiking, such as when firing rates of neurons 

encoding the attended stimulus are increased (Moran and Desimone, 

1985), and neuronal oscillatory coherence, which has been shown to 

increase in the gamma frequency range in populations representing 

the attended stimulus at mid- to high-level stages of the visual 

hierarchy (Gregoriou et al., 2009; Saalmann et al., 2007; Taylor et 

al., 2005) while decreasing that in the V1 (Chalk et al., 2010). 

 

 
Figure 1. Primate visual hierarchy. (Left) Simplified anatomical hierarchy of the 

macaque visual sensory processing system, with lines between regions indicating reciprocal 

connections. The colours show the lobe that the area belongs to. Full matrix of connections 

and more can be found in Felleman and Van Essen (1991) as well as Hagmann et al. (2008). 

MT: medial temporal; PIT: posterior inferiotemporal; FST: floor of superior temporal; VIP: 

ventral intraparietal; AIT: anterior inferiotemporal; MST: medial superior temporal; FEF: 

frontal eye field (Right) Anatomical description from Itti and Koch (2001) of the proposed 

brain regions that participate in the deployment of visual attention, with the arrow from the 

visual cortex to the prefrontal cortex through the inferiotemporal cortex representing the 

ventral stream and that through the posterior parietal cortex representing the dorsal stream. 

 

The visual cortex’s (V4) ability to segregate stimuli, which is 

indicative of top-down attention (McAdams and Maunsell, 1999), is 

also improved by stimulation of higher-order regions that have been 

implicated with top-down attention, such as the frontal eye field 

(Armstrong and Moore, 2007). Furthermore, priming attention by 

providing evidence for a target’s upcoming presentation leads to 

increased pre-stimulus activity in the visual cortex when measured 
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with magnetoencephalography or functional magnetic resonance 

imaging. For example, this has been found for representations of 

spatial locations (Simpson et al., 2011), stimulus colour (Giesbrecht 

et al., 2006), and object category such as when differentiating 

between faces and houses (Esterman and Yantis, 2010). These 

findings were operationalised in the biased-competition model of 

selective attention (Desimone and Duncan, 1995), which describes 

how multiple, concurrently presented stimuli activate sensory 

neuronal populations that compete through inhibition in the sensory 

cortex (Reynolds and Heeger, 2009). Top-down processes from 

higher-order brain regions can bias this competition to favour 

neurons responding to the relevant stimuli (Kastner and Ungerleider, 

2001), often selected through its task-relevance (Hopfinger et al., 

2000). Hence, neural signals are strongly dependent on predictions 

from previous trials than only from the current stimulus itself (Clark, 

2013; Marcos et al., 2013) and modality-specific predictions are 

integrated into selective attention according to their reliability 

(Mengotti et al., 2018). 

 

As a result of such top-down biasing, selected stimuli have the most 

active neuronal populations which dominate the biased competition 

and thus are attended to. Indeed, it has been shown that attending to 

a stimulus leads to a higher quality of its representations in the 

inferior temporal lobe (Zhang et al., 2011). Brain regions in both the 

dorsal and ventral streams have shown attentional feedback 

modulation, and while the feedforward flow of visual information is 

relatively well-established, it is less certain whether the feedback 

pathways for attentional modulation is corticocortical (Saalmann et 

al., 2007) or corticothalamocortical (Saalmann et al., 2012; Van 

Essen, 2005). 

 

Framed by such a winner-takes-all approach to the selection of 

stimuli for processing (Koch and Ullman, 1985), it is often thought 

that top-down signals are excitatory, boosting the activity of selected 

neurons to ensure that their activity surpasses that of the others and 

effectively increasing sensitivity to the preferred stimuli (Itti and 

Koch, 2001; Martinez-Trujillo and Treue, 2004; Moore and Zirnsak, 

2017). In such models, inhibition acts mostly as a tool to sharpen the 
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contrast between selected stimuli and their close competitors (e.g. 

Kidd et al., 2005; Reynolds and Desimone, 2003; Schwartz and 

David, 2018). In this sense, even when through inhibitory means, the 

attentional system biases sensory processing based on what is task-

relevant (e.g. Otazu et al., 2009; Serences et al., 2004). 

 

The study of selective attention in humans is driven in large part by 

a desire to understand it so as to better treat attentional disorders or 

ameliorate their negative impact on people’s quality of life. 

Developing a comprehensive model of selective attention would also 

offer insight into many aspects of daily life with far-reaching 

consequences, such as lapses in professional judgement, for example 

when radiologists miss superimposed gorillas in computed 

tomography scans (Drew et al., 2013), and the problem of habitual 

multi-tasking, which has been shown to have grave consequences 

such as when a driver is distracted by a mobile phone (Sanbonmatsu 

and Strayer, 2013) and is less aware of how safely they drive 

(Sanbonmatsu et al., 2016). It is therefore important to note that the 

standard and well accepted excitatory models of attention face 

several challenges, which undermines those objectives. 

 

For example, at the psychophysical level, perceptual neglect in the 

form of inattentional and change blindness has been observed despite 

strong bottom-up saliency of the anomalous stimuli (e.g. Simons and 

Levin, 1997). In addition, the error rate of the detection of appearance 

(Chabris et al., 2011) and displacement (Mathews et al., 2015) of 

salient stimuli has been shown to be modulated by working memory 

load, implicating the top-down attentional system in these lapses. 

Similarly, increased working memory load led to reduced signatures 

of distraction in event-related brain potentials in a multi-modal 

experiment (SanMiguel et al., 2008). These phenomena suggest that 

top-down processes can also bias attention through an inhibitory-

focused mechanism; it selectively decreases, instead of increases, 

sensitivity to regions, objects or features. As a mechanism of signal 

processing, inhibition has the functional advantage of increasing 

signal-to-noise ratio and reducing the volume of information to an 

amount that processing capacity can handle. In addition, inhibition 

necessarily has a lower limit, or a maximum effect, which is simply 
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the silencing of neural representations, whereas excitation has no 

theoretical upper limit which could lead to unsustainable levels of 

activity. 

 

The excitatory model of attention also faces a neurophysiological 

challenge as it predicts that attentional signals should propagate 

through the hierarchy of cortical structures serving perception. This 

would imply that top-down signals should appear first in frontal 

cortical areas and from there proceed towards the primary sensory 

cortices. However, there is evidence that the attentional hierarchy is 

not that clear-cut. For instance, lesions in the frontal cortex affect 

attentional processing but do not abolish the effect of top-down 

signals in earlier visual areas (Paneri and Gregoriou, 2017): for 

instance, healthy monkeys had representations of salient stimuli in 

the frontal cortex and the parietal cortex with no temporal latency 

even though the frontal cortex is considered downstream from the 

parietal cortex (Katsuki and Constantinidis, 2012). These results 

suggest that attention might rely on a variety of mechanisms beyond 

the specific enhancement of task-relevant features. 

 

At their core, these findings address the fact that a stimulus’ bottom-

up saliency and its features’ predictability is independent of its task-

relevance. In many visual search tasks, the number of task-relevant 

stimulus features is limited. For example, if the task is to find red 

objects out of various coloured objects, the task-relevant feature is 

limited to a single colour, which is red. However, this is not always 

the case in natural environments. Sometimes, the task-relevant 

stimulus feature is unspecific and therefore less predictable than task-

irrelevant features. In this case, if the task is to find non-red objects, 

the task-relevant feature has now expanded to all colours other than 

red, while the task-irrelevant feature is what is limited to a single 

colour. As a result, the task-relevant features are now more 

unpredictable than the task-irrelevant feature. It would be more 

efficient for attentional processes to target smaller feature-spaces. 

Thus, in traditional search tasks (i.e. find the red object) where the 

task-relevant feature is in the smaller feature-space, top-down 

attention can target task-relevant features for enhancing. In contrast, 

in the inverse scenario (i.e. find the non-red object) where the task-
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irrelevant features are now in the smaller feature-space, top-down 

attention can instead target task-irrelevant features for inhibition. 

 

The concept of selectively inhibiting potential distractors is not new, 

with an early proposal describing how analysis of distractors can lead 

to their inhibition as a supplement to the more popular mechanism of 

amplifying representation of target stimuli (Houghton and Tipper, 

1994). Subsequent neurophysiological findings on the connections 

between the frontal cortex, the thalamus, and the thalamic reticular 

nucleus have led to the proposal that such an inhibitory mechanism 

could be grounded in thalamocortical substrates (e.g. Saalmann et al., 

2012; Sherman, 2016; Zikopoulos and Barbas, 2006). In support of 

this, it has been shown that mental fatigue decreases the ability to 

suppress irrelevant information (Faber et al., 2012), that monkeys’ 

inhibitory thalamocortical pathways are activated for sensory 

modalities that they know to be task-irrelevant in a visual-auditory 

task (McAlonan et al., 2006), and that genetically modified mice 

expressing reduced activity in the proposed inhibitory pathways 

exhibited symptoms similar to attention-deficit/hyperactivity 

disorder (Wells et al., 2016). 

 

In this inhibitory-focused approach, top-down attention functions 

more as a gate on feedforward processing rather than as a specific 

enhancer. This thesis addresses the functional and biological 

plausibility of such a mechanism for top-down attention, specifically 

building on the Validation Gate hypothesis that proposes that there is 

a threshold of acceptable errors in top-down prediction of feature 

spaces for inhibition, called anticipatory fields (Mathews et al., 

2015). Revisiting the bottleneck of sensory processing, it is known 

that loading working memory leads to a reduction in sensory 

processing capacity (e.g. Mathews et al., 2015). In such situations, 

the Validation Gate hypothesis describes how top-down processes 

dynamically increase the inhibitory threshold of the anticipatory 

fields to filter out larger feature spaces. This reduces sensory 

perception to a level that is manageable for the available processing 

resources. In this thesis, we take a closer look at the described 

inhibitory mechanism of attention and how it interacts with working 

memory through the lens of the Validation Gate hypothesis. 
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The Validation Gate hypothesis 

A similar processing and integration bottleneck can be found in 

information theory, which formulates the problem as finding the 

optimal trade-off between accuracy and complexity when describing 

a variable given its joint probability distribution with another, 

observed variable (Tishby et al., 2000). This was addressed in an 

autonomous and interactive system tracking multiple users in real 

time (Mathews et al., 2012), where multi-sensory input is associated 

to stimuli, or ‘concepts’, and subsequent input due to these stimuli is 

anticipated spatio-temporally. The anticipatory fields were projected 

as regions within the dimensions that describe the stimuli, thus 

providing a threshold for prediction errors that are within a range 

determined to be acceptable by the system. Each stimulus, in this case 

each user, had their own anticipatory field, also called a validation 

gate. The saliency of stimuli within the validation gates are inhibited, 

creating a selection bias towards unexpected input and away from 

noise. In this way, the validation gates defined regions in the input 

space that had lower potential for information gain, thus directing 

available processing resources to the spaces outside of them (Figure 

2). When the available processing resources were further reduced, for 

example when different levels of the cognitive hierarchy, mainly 

between perception and task sets, compete for them, the threshold of 

the validation gates were dynamically increased in response. 

 

The functional success of this probabilistic model led to the 

hypothesis that it could be a component of an inhibitory mechanism 

of selective attention, which was then directly tested, again in the 

spatial domain, in a psychophysiological study on humans using a 

displacement detection task combined with a secondary task to load 

participants’ working memory (Mathews et al., 2015). This task 

ensures that task-relevant features are unpredictable while task-

irrelevant ones are predictable. The authors demonstrated that low-

latency saccadic responses and key presses could be used as proxies 

for bottom-up attention and volitional attention respectively, as 

increasing working memory load, also referred to as cognitive load, 

led to a decrease in performance of key presses but not low-latency 

saccades. Critically, it was found that the decrease in performance of 

key presses was due to a decrease in sensitivity of spatial 
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displacements, which is the task-relevant feature in this task, 

supporting the prediction made by the Validation Gate hypothesis. 

 

 
Figure 2. Validation Gate hypothesis, visualised. Reproduced with permission from 

(Verschure, 2016). If we follow dots moving along linear trajectories, data (orange dots) is 

classified relative to areas in input space where it is expected to occur given the properties 

of stimuli, or their validation gate (light blue area). Resources are only allocated to data 

which falls outside of the validation gates or when validation gates overlap, i.e. resolving 

novelty and ambiguity respectively. 

 

Using the same task, another study replicated this effect of working 

memory load and additionally isolated brain regions that contribute 

to the process with functional magnetic resonance imaging 

(Malekshahi et al., 2016). These were the parietal and prefrontal 

regions, along with the precuneus, the caudate nucleus and the 

thalamus. Based on activity within these regions, the authors showed 

that prediction errors leading to key presses were processed mainly 

in late processing stages and that the activity of higher-order regions 

in the brain modulates the detection of these errors. The findings 

bolster the earlier proposal of a thalamocortical substrate of top-down 

driven inhibition of predictable distractors. 
 

Considering the discussed findings, this thesis, therefore, investigates 

the hypothesis that there is a top-down driven inhibitory mechanism 

of selective attention. In chapters 2 and 3, we test the 

generalisability of the Validation Gate hypothesis to people with 

cognitive impairment and to a stimulus feature other than spatial 

location respectively. Using psychophysical tasks, we show that 

working memory load modulates task-specific error sensitivity in 
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both healthy participants as well as participants with cognitive 

impairment, confirming the proposal that it is an outcome of the 

integration of top-down and bottom-up attentional processes. Using 

the same task, we also demonstrate the functional importance of 

saccadic eye movements in the retrieval of items in working memory 

distinct from their more intuitive role in active sampling. 

 

Against the backdrop of these results, in chapter 4 we analyse a 

computational model of top-down inhibition for selective attention. 

The model is grounded in biophysically plausible interactions 

between specific brain regions that would allow for an inhibitory 

modulation of stimuli representation in the sensory cortex, as 

suggested by the Validation Gate hypothesis. It consists of 

populations of spiking neurons, allowing us to compare changes in 

spiking behaviour with what was found in mouse models of the brain, 

in addition to demonstrating the model’s functional capabilities 

through the execution of two typical attentional tasks. 

 

Attention models should lead to advantageous behaviours for the 

agent hosting it, implying that the proposed top-down inhibitory 

mechanism of selective attention should improve an agent’s ability 

to behaviourally select target objects over distractors. Therefore, 

chapter 5 describes how both top-down inhibitory and excitatory 

attentional biasing can be implemented in an artificial agent through 

the operationalisation of cognitive functions in the Distributed 

Adaptive Control cognitive architecture. The agent’s behaviour 

selection is dependent on sensory processing that can be biased by 

top-down processes, and its performance in a simple foraging task 

when using different top-down attentional mechanisms is measured. 

We found that any mechanism of top-down attention improves 

behaviour selection compared to when behaviour is driven by purely 

bottom-up, competitive interactions. The described excitatory and 

inhibitory mechanisms of top-down attention also indicate a possible 

trade-off in terms of reaction time and accuracy, and the most robust 

form of top-down attention is the combination of both of excitatory 

and inhibitory biasing. 

 

Together, this thesis demonstrates how, in certain situations, top-

down attentional processes in humans select stimuli for inhibition to 
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bias the competition between stimuli in the sensory cortices. This 

selection is made using predictable features that are task-specific, and 

the threshold of inhibited features is modulated by sensory processing 

capacity. The neural substrate of this mechanism is shown to be 

possibly thalamocortical, and evidence is provided for its behavioural 

relevance and complementary role with the excitatory model of top-

down attention. 

 

The concluding chapter places the results in the broader context of 

our understanding of attention. It describes how a lot of research 

centre on search paradigms, even though, in most animals, that 

accounts for only a portion of the functional usefulness of selective 

attention. For example, task-relevant stimuli are not always more 

predictable than task-irrelevant ones, and attention is also closely 

coupled with other cognitive processes that have long-term 

implications, such as learning and memory. A more comprehensive 

model of attention would also lead to more effective therapies and 

interventions for people who suffer from attentional deficits. 
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2. TOP-DOWN ATTENTION IS MODULATED BY 
DEMANDS ON COGNITIVE RESOURCES 
 

Selective attention plays such a pivotal role in our lives that 

dysfunctions in some part of its network of brain regions is associated 

with a multitude of disorders—for example, autism (Belmonte and 

Yurgelun-Todd, 2003), attention-deficit/hyperactivity, and 

depression (Kertzman et al., 2010)—as well as syndromes like 

neglect (Corbetta and Shulman, 2011). It closely interacts with 

working memory, and an individual’s working memory capacity is 

predictive of higher-order cognition (e.g. Daneman and Carpenter, 

1980) that closely relates to real-world activities (Engle, 2002). 

Selective attention enlists multiple brain regions, summarised as a) 

the dorsal frontal-parietal network that controls attention and eye 

movements and encodes stimulus saliency, and b) the ventral frontal-

parietal network that underlies reorienting and detection of novel 

behaviourally relevant events (Corbetta and Shulman, 2011). As a 

result, stroke-induced lesions often disrupt the attentional network 

and post-stroke cognitive impairments, which are frequent (Leśniak 

et al., 2008) and can severely impact survivors’ ability to live 

independently (Paolucci et al., 1996), include attentional deficits. 

 

As predicted by the Validation Gate hypothesis, top-down attentional 

processes and working memory draw from overlapping pools of 

cognitive resources, if not the same pool. This leads to a need for top-

down attention to inhibit larger feature spaces in sensory processing 

when working memory takes up more of these resources. As these 

inhibited regions indicate states of features predicted to be task-

irrelevant, they are called anticipatory fields. While there is ample 

evidence that top-down attention is modulated by working memory 

load (Gazzaley and Nobre, 2012), how cognitive impairment, which 

implies a restriction on cognitive resources, affects top-down 

attention is less clear. However, clinical scales are notoriously poor 

at giving insight to the mechanistic deficiencies causing the 

impairments that they measure. Indeed, there are many clinical pen-

and-paper scales used to diagnose cognitive impairment, and their 

diagnoses do not always converge. Correlating the clinical measures 

to performance in a task known to dissociate top-down and bottom-
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up attentional processes would clarify the specificity of these clinical 

measures. 

 

In this work, we use the attentional, displacement detection task to 

test the effect of cognitive impairment on both explicit and implicit 

responses. We hypothesise that cognitive impairment should affect 

the same top-down processes that are hindered by working memory 

load while leaving the bottom-up processes intact. This is measured 

by changes in proportion of explicit displacements detected and the 

latency of detections, which has been shown to depend on cognitive 

load, while both proportion and latency of implicit detections are 

unaffected. In addition, we expect that explicit detections would be 

modulated by cognitive impairment through changes in sensitivity in 

task-specific domains due to the top-down processes’ anticipatory 

contribution, which, in this case, is spatial. Hence, cognitive 

impairment, possibly induced, for example, by a stroke, can be 

expected to have a similar effect on explicit responses as working 

memory load does in healthy participants. It is particularly pertinent 

to understand cognitive impairments caused by a stroke as not only 

does it happen frequently (Leśniak et al., 2008), but it is also known 

to lower quality of life (Park et al., 2013). 

 

We fit the data to a generalised linear mixed-effects model to 

ascertain the contribution of stimuli attributes, working memory 

loads and cognitive deficits on explicit responses as well as their 

interaction effects. Also, we expect to find that working memory load 

modulates explicit responses in stroke patients similar to healthy 

participants. At the same time, their implicit saccadic responses 

should not change between the working memory load conditions, 

indicating the successful dissociation between top-down and bottom-

up processes. 
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2.1 Methods 
 
The data was obtained from patients participating in a previous 

randomised controlled pilot trial that investigated the use of a VR-

based stroke rehabilitation system (Rehabilitation Gaming System, 

Eodyne Systems S.L., Barcelona) to improve cognitive abilities 

(Maier et al., 2020). Twenty-nine patients (14 female, 

age=64.69±6.78 years) were recruited from Hospital de l'Esperança, 

Barcelona, and the inclusion criteria were: a) cognitive impairment 

(Montreal Cognitive Assessment (MoCA) < 26) due to a first-ever 

stroke over six months ago, and b) aged between 45 and 75 years old. 

Patients with hemianopia, spasticity, severe cognitive, physical, or 

perceptual impairments that could interfere with the execution of the 

experiment were excluded. The study was approved by the local 

Ethical Committee and registered at ClinicalTrials.gov 

(NCT02816008). The scales and tests carried out that are related to 

cognitive impairment are described in greater detail in Participants 

were seated in a chair at approximately 75 cm in front of a 24" 

touchscreen All-in-One PC (Sony Vaio) with a refresh rate of 60 Hz 

(Figure 3-A). The experiment was implemented using Unity software 

(Unity Technologies, U.S.) and the in-game resolution was 150 × 266 

pixels. A keyboard was placed in front of the participant to log their 

button presses and a Tobii T120 eye tracker (Tobii Technology AB, 

Sweden) was placed directly below the screen and recorded the 

participants’ eye movements at 120 Hz. The participants listened to 

auditory cues through the PC’s built-in speakers. Before the 

experiment started, participants were able to freely adjust the volume 

of the speakers. 

 

Participants could also adjust the chair’s height and back-tilting 

configuration for comfort and they were instructed to remain as still 

as possible throughout the experiment. They were oriented to face 

blank walls behind the screen, and the experiment was conducted in 

an empty room at the hospital. The experimenter remained in the 

room throughout the session. 

Table 1 and the patients' characteristics and the clinical scales 

collected can be found in Table 2. The Hamilton Depression Rating 

Scale was only available for a subgroup of patients (HAM-D, n=19). 
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Participants were seated in a chair at approximately 75 cm in front of 

a 24" touchscreen All-in-One PC (Sony Vaio) with a refresh rate of 

60 Hz (Figure 3-A). The experiment was implemented using Unity 

software (Unity Technologies, U.S.) and the in-game resolution was 

150 × 266 pixels. A keyboard was placed in front of the participant 

to log their button presses and a Tobii T120 eye tracker (Tobii 

Technology AB, Sweden) was placed directly below the screen and 

recorded the participants’ eye movements at 120 Hz. The participants 

listened to auditory cues through the PC’s built-in speakers. Before 

the experiment started, participants were able to freely adjust the 

volume of the speakers. 

 

Participants could also adjust the chair’s height and back-tilting 

configuration for comfort and they were instructed to remain as still 

as possible throughout the experiment. They were oriented to face 

blank walls behind the screen, and the experiment was conducted in 

an empty room at the hospital. The experimenter remained in the 

room throughout the session. 
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Table 1. Description of clinical scales and test batteries used to diagnose and measure cognitive impairment. 

Name Abbreviation Protocol summary 

Montreal Cognitive Assessment 

(Nasreddine et al., 2005) 
MoCA 

Test battery assessing short-term/working memory, visuospatial abilities, sustained 

attention, language, abstract reasoning, and orientation to time and place. 

Mini-Mental State Examination 

(Folstein et al., 1975) 
MMSE 

Test battery assessing short-term/working memory, attention, language, and 

orientation to time and place. 

Corsi block-tapping test (Corsi, 

1973) 
Corsi F Repeat an observed sequence of blocks “tapped” in the original order. 

Backward Corsi (Isaacs and 

Vargha-Khadem, 1989) 
Corsi B Like the Corsi F, but the order of the observed sequence must be reversed. 

Frontal Assessment Battery 

(Dubois et al., 2000) 
FAB 

Bedside test battery assessing conceptualization, mental flexibility, motor 

programming, sensitivity to interference, and inhibitory control. 

Rey Auditory Verbal Learning 

Test (Hall et al., 2010) 
RAVLT 

Five presentations of a 15-word list are given, each followed by attempted recall. This 

is followed by a second 15-word interference list (list B), followed by recall of list A. 

RAVLT, immediate RAVLT I The score of the RAVLT for only immediate recall. 

RAVLT, delayed recall RAVLT D The score of the RAVLT for only delayed recall. 

Star cancellation test (Wilson et 

al., 1987) 
Star 

The subject is shown a sheet of paper covered with two sizes of stars, alphabets and 

words and asked to mark out only one of those four objects e.g. only small stars. 

Trail Making test (Tombaugh, 

2004) 

TMT A 
The subject has to connect 25 numbers distributed on a sheet of paper in ascending 

order and as quickly as possible. 

TMT B 
The subject has to connect numbers and letters in ascending order, alternating between 

the numbers and letters (i.e. 1-A-2-B-3-C…) as quickly as possible. 

Wechsler Adult Intelligence 

Scale IV (Kaufman and 

Lichtenberger, 2002) 

WAIS 
An IQ test assessing verbal comprehension, working memory, perceptual organisation, 

and processing speed through 13 separate tests. 

WAIS F The score from the WAIS forward digit span test. 

WAIS B The score from the WAIS backward digit span test. 

WAIS C The score from the WAIS digit symbol coding test. 
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a) Experimental protocol 
 

Before the experiment began, participants were briefed on the two 

tasks they were required to perform concurrently—a displacement 

detection task (Figure 3-B) and an auditory span task—and gave their 

written informed consent. They were familiarised with the hardware 

and the screen's brightness was adjusted to each participant’s 

preference. They could adjust the keyboard and chair to a 

comfortable position before the eye tracker was calibrated using both 

the Tobii Pro Eye Tracker Manager (Tobii Technology AB, Sweden) 

as well as a 5-point routine built into the experiment. Previous work 

studying eye movements has used similar screen-based eye trackers 

with comparable accuracy and precision (e.g. Faber et al., 2018; 

Lloyd et al., 2017; Manning et al., 2014). The experiment was carried 

out in Spanish, as that was the preferred language of all the 

participants. 

 

The participants carried out the displacement detection task in all 

blocks. Three levels of working memory load, or cognitive load (CL), 

were implemented using the auditory span task—without the 

auditory span task (low CL), with the auditory span task using short 

sentences (medium CL), and with the auditory span task using long 

sentences (high CL). In addition, there was an experimental block 

with no auditory span task and only one circle in the displacement 

detection task (no CL) which acted as control for subsequent 

analyses. The experiment consisted of 10 blocks, the first two of 

which were practice blocks. The order of the remaining eight blocks, 

the experimental blocks, was randomised in groups of four, each 

group consisting of one block per load condition (Figure 3-C). The 

duration of the blocks was dependent on the number of trials in the 

displacement detection task. There were five displacements in the 

practice blocks and each experimental block summed 30 

displacements. The experiment lasted approximately 30 minutes and 

subjects received neither financial nor material remuneration. 
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Table 2. Patients' characteristics. BI, Barthel Index; Corsi B, Corsi Block Tapping Test 

Backward; Corsi F, Corsi Block Tapping Test Forward; FAB, Frontal Assessment Battery; 

FM-UE, Fugl-Meyer Upper Extremity Assessment; HAM-D, Hamilton Depression Rating 

Scale; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; 

MRC, Medical Research Council Scale for stroke assessment; RAVLT, Rey Auditory 

Verbal Learning Test; RAVLT I, RAVLT Immediate; RAVLT D, RAVLT Delayed Recall; 

Star, Star Cancellation Test; TMT A, Trail Making Test A; TMT B, Trail Making Test B; 

WAIS, Wechsler Adult Intelligence Scale IV; WAIS F, WAIS Digit Span Forward; WAIS 

B, WAIS Backward; WAIS C, WAIS Digit Symbol Coding, SD, standard deviation.

 Characteristics (n = 29) 

 n (%) 

Gender, female 14 (48.28%) 

Impaired limb, right 13 (44.83%) 

Aetiology 

Ischemic 

Hemorrhagic 

 Capsulo lenticular 

 

17 (58.62%) 

11 (37.93%) 

1 (3.45%) 

 

 

Age, years 

Mean (SD) – Median [2.5th and 97.5th 

percentile] 

64.69 (6.78) – 63.00 [53.68 – 76.00] 

Days after stroke 1200.31 (1249.34) – 911.00 [190.45 – 

5287.05] 

 

Clinical Scales 

MoCA 21.00 (3.41) – 21.00 [12.45 – 25.00] 

MMSE 27.24 (1.94) – 28.00 [23.23 – 30.00] 

MRC 3.69 (0.66) – 4.00 [2.23 – 5.00] 

FM-UE 52.69 (16.67) – 60.00 [7.25 – 66.00] 

BI 94.31 (8.32) – 100.00 [76.13 – 100.00] 

HAM-D (n = 19) 5.58 (5.14) – 4.00 [0.00 – 15.00] 

 

Neuropsychological test battery 

Corsi F 5.59 (1.59) – 6.00 [3.00 – 9.00] 

Corsi B 4.52 (1.88) – 5.00 [1.23 – 8.55] 

FAB 16.31 (1.87) – 17.00 [11.23 – 18.00] 

RAVLT I 33.10 (9.60) – 34 [11.13 – 46.55] 

RAVLT D 5.07 (2.75) – 5.00 [0.00 – 10.00] 

Star 51.38 (5.70) – 53.00 [29.05 – 54.00] 

TMT A 71.79 (40.80) – 66.00 [29.00 – 171.05] 

TMT B 214.86 (130.82) – 173.00 [48.50 – 402.00] 

WAIS F 5.14 (1.19) – 5.00 [ 3.00 – 7.00] 

WAIS B 3.45 (0.95) – 3.00 [2.00 – 5.00] 

WAIS C 28.66 (13.58) – 27.00 [10.23 – 58.55] 
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Figure 3. The set-up, the schema of task presentation and experimental protocol. 
A) The clinical set-up consisted of a table, an All-in-One PC and an eye tracker. B) The 

displacement detection task consisted of white circles that move in a linear trajectory over a 

black background (RGB: 43, 46, 49). At the edge of the screen, the circles ‘bounced’ off and 

continued moving in the direction of the original vector reflected about the axis parallel to 

the screen’s edge. Occasionally one of the circles (indicated here in blue) displaced to a 

randomly sampled location within a radius of 3–40 pixels and continued moving (red arrow) 

in its original velocity (green arrow). C) The experimental protocol consisted of a training 

phase and an evaluation phase. The evaluation phase consisted of four different levels of 

cognitive load which were repeated twice, leading to eight experimental blocks of 30 trials 

each. CL, cognitive load; LS, long AST sentences; SS, short AST sentences; Med, medium. 
 

Participants read the on-screen instructions for the experiment at the 

start, reiterating the verbal instructions, and further written reminders 

and block-specific instructions were shown on-screen between 

blocks. Before each block, interaction with the experiment was 

suspended for 1.5 s after which a button press would start the block. 

 

 

b) Displacement detection task 
 

The patients observed off-white circles (external diameter 3.2 cm (2.4 

°), white border thickness 0.8 mm (0.61 °)) moving linearly on a dark 

background (Figure 3-B). Each circle had its own trajectory, 

randomly initialised at the start of every block, and when it reached 

the side of the screen its trajectory was reflected. Every 2.5–4 s, one 

of the circles displaced to a random position within a radius of 3–40 

pixels from the previous location. After the displacement, it resumed 

its original trajectory. The patients were instructed to report every 
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displacement that they detected by pressing the spacebar on the 

keyboard. 

 

Displacements did not occur if the participant’s gaze could not be 

tracked at that instant, if it was too close to the screen’s sides such 

that the displacement would move it out of the screen’s dimensions, 

or if the circle was located too far from the gaze’s position (>22 °). 

The circles moved at a speed of 0.19 °/s. 

 

 

c) Auditory span task 
 

The Auditory Span Task (AST) (Conway et al., 2005) was used to 

induce load on participants’ working memory with two levels of 

difficulty based on the length of the sentence, long or short. The task 

required participants to listen to a sentence and respond if it was 

semantically correct immediately after. In the sentence database 

(Loboda, 2012), all the sentences consisted of an actor performing an 

action in a context. For semantically incorrect sentences, one of those 

three parts leads to a violation of expectations based on the other two 

parts (e.g. Mr Jones asked his son to water the cats and mow the lawn. 

Actor: Mr Jones’ son; action: to water; context: the cats). However, 

the sentences often had additional information that did not interfere 

with this violation (mowing the lawn, in the previous example). The 

long sentences were thus the full ones, while the short sentences 

stayed the same but with the additional information removed. 

 

Including the variables from the displacement detection task, there 

were the following experimental conditions: 1) presented one circle 

only (no CL), 2) presented six circles (low CL), 3) presented six 

circles while listening to short sentences (medium CL), and 4) 

presented six circles while listening to long sentences (high CL). 

Each condition was repeated twice during the experiment pseudo-

randomly, totalling eight experimental blocks (Figure 3-C). The two 

practice blocks presented participants with four circles in the 

displacement detection task at the start; one included the auditory 

span task (short sentences, medium CL) while the other did not. 
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d) Outcome measures 
 

Before the experiment, all patients included in this study were 

evaluated by a neuropsychologist with a neuropsychological test 

battery as well as secondary clinical scales that cover various 

cognitive abilities, motor functioning, and depression (Table 2). 

 

For each cognitive load condition, we extracted displacements that 

are reported by either key presses (i.e. explicit detections) or saccadic 

responses (i.e. implicit detections), as well as the latencies of these 

reporting methods. An explicit detection was a key press that 

occurred 200 ms—3 s after a displacement. To identify implicit, 

saccadic detection of displacements, we followed the procedures and 

applied the scripts proposed by Wass et al. (2014, 2013) as they have 

been demonstrated to be robust to noisy eye tracking data. The raw 

eye-tracking data was first cleaned and missing values for both eyes 

were interpolated where possible. Specifically, we identified missing 

values at every timestep, marked outliers using the inbuilt MATLAB-

function ‘isoutlier’ and merged the valid left and right eye data by 

taking their average position. The resulting data was smoothed using 

a simple down-sampling procedure: the data points were chunked 

into consecutive window-sized segments using a 100 ms window 

size, and a single median average was calculated per window. For 

windows in which fewer than 50% of samples were available, the 

entire window was returned as empty and excluded from further 

analysis (Wass et al., 2014). In addition, when data outside of the 

valid screen range was detected, we corrected for the shift by 

subtracting the maximum from all data points, before converting the 

dataset into pixels. 

 

Next, a preliminary classification of eye movement into saccades and 

fixations was performed based on angular velocity: valid eye data 

was flagged as a saccade when their angular velocity exceeded 30 °/s 

at each time step. Then, small gaps of missing positional data (up to 

75 ms or 9 samples long) were linearly interpolated. These small gaps 

were also labelled as saccades if their angular velocity exceeded the 

threshold. Lastly, we excluded saccades that were flagged right 

before or right after the remaining gaps of data, as they were most 

likely data fragments (interrupted saccades). We also cleaned out 

saccades that were either shorter than 75 ms in total duration or 
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covered less than 0.5 ° in angular distance. All thresholds used in the 

pre-processing and labelling pipeline were based on reported values 

from the original equipment manufacturer (Olsen, 2012). 

 

 
Figure 4. Schemata of a circle displacement and corresponding eye movement. The 

dotted line represents the eye movement before and right after a displacement. Red indicates 

positions labelled as fixations, and blue dots were labelled as saccades. To define whether a 

saccadic movement was towards a displacement position (filled grey circle), the angle 

between the ideal vector and the saccade vector, c, was calculated and needed to be less than 

25 degrees. For each displacement, we also extracted the distance, b, and the angle, a, 

relative to the circle’s movement direction before the displacement took place. 
 

After cleaning and labelling the data, we proceeded to identify 

saccades that occurred 100–800 ms after a displacement. We 

extracted its magnitude (rho) and the angle it made relative to the 

ideal vector from the last fixation point to the displaced circle’s 

current position (theta). The final criteria for an implicit detection 

was a theta within ±25 °. An example of the described analysis can 

be seen in Figure 4, which illustrates the eye movements of a random 

participant during a randomly selected displacement. 

 

 

e) Behavioural analysis 
 

The proportion of displacements that were detected by explicit and 

implicit responses were averaged across all participants per load 

condition. The resulting mean performance for explicit and implicit 

detections were first compared across loads using the non-parametric 

Friedman's ANOVA test (statistic χ2
F). In case of significance, a post 

hoc analysis was performed using estimation statistics based on 

Monte Carlo permutation (Ho et al., 2019), with the paired mean 
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difference figures including a bootstrap 95% confidence interval to 

illustrate the effect size. The confidence interval accounts for 

skewness in the distributions with a bias-corrected and accelerated 

bootstrap (Efron, 1987). Each test was based on 5000 resamples; we 

report the results in terms of confidence intervals, mean difference 

values and the p-value of the permutation test. The explicit and 

implicit responses were correlated with the neuropsychological test 

battery and the secondary clinical scales using the Spearman's 

correlation (coefficient rs). In the case of significant zero-order 

correlations, a partial-correlation was performed. Also, we relied on 

non-parametric tests because most data were non-parametric. All 

data processing and analysis were carried out using MATLAB 2017b 

(The MathWorks Inc, Natick, Massachusetts). 

 

 

f) Visualisation of the anticipatory field 
 

To determine how cognitive load affects sensitivity to displacement 

magnitudes, we divided the radial location of all displacements into 

a 12 by 5 grid and binned the displacement data of all participants in 

each dimension (angle and distance) per load condition. We did so 

using percentiles to account for a higher concentration of smaller 

displacements, which was an artefact of experimental limitations. We 

then interpolated each bin’s detection rate to obtain a radial 

distribution of probabilities per load condition. 

 

 

g) Generalised linear mixed-effects model 

 
We estimate the contribution of the displacement dimensions on 

detection rate using a regression model, following recommendations 

proposed for psychophysical tasks (Moscatelli et al., 2012). Based on 

previous work, we expect to find that cognitive load has a greater 

modulatory effect on smaller displacements (rho) than larger ones, 

giving rise to the previously described anticipatory fields. A 

regression model also allows us to explore whether the clinical 

outcomes can serve as additional predictors of detection rate across 

the different cognitive load conditions. To be considered as 

predictors in the regressor, the clinical scale had to have shown a 

strong correlation with the detection ability beforehand. As the data 
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was repeatedly sampled across subjects, the observations of the 

response probability were dependent and may vary consistently 

between patients. To deal with this pseudoreplication and to fit the 

response outcome (i.e., number of detections) per displacement 

magnitude bin (rho) adequately, we applied a generalised linear 

mixed-effects model for binomial distributions, using the ‘probit 

link’ function, Φ, the Laplace approximation and the subjects as 

random effects on intercept and the displacement magnitudes. The 

model is defined by Eq. 1 as follows: 

 
 𝐷𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑖𝑗~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(∏𝑖𝑗 , 𝑛𝑖𝑗) 

𝛷−1[𝑃(𝐷𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑖𝑗 = 1)] = 𝜂𝑖𝑗 

𝜂𝑖𝑗 = 𝛽0 + 𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑖
0 + 𝑅ℎ𝑜𝑖𝑗(𝛽1 + 𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑖

1)

+ 𝑆𝑐𝑎𝑙𝑒𝑖𝑗𝛽2 + 𝐿𝑜𝑤𝐶𝐿𝑖𝑗𝛽3 + 𝐻𝑖𝑔ℎ𝐶𝐿𝑖𝑗𝛽4 

𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑖~𝛮(0, 𝜎
2) 

Eq. 1 

 

Where DDetectedij is the response variable, described by its mean Π 

and size n, and includes the number of detected displacements for 

subject i (where i = 1, 2, …, 29), and displacement magnitude index 

j (where j = 1, 2, …, 10). As the response type is binary, the 

probability of it being 1 is equivalent to the response variable that is 

to be modelled. The probit link function therefore links individual 

participants, ηij, to the probability of a detection. Rhoij contains the 

displacement magnitude values (binned in percentiles and centred, 

with upper limits = -0.35, -0.31, …, 0.65), Scaleij represents the 

subject's score in the respective clinical scale included, LowCLij and 

HighCLij are the dummy variables for the cognitive load condition 

(using the no cognitive load condition as the reference group), β0, …, 

β4 are the fixed-effects coefficients, and Participanti
0, Participanti

1 

are the random-effect coefficients accounting for participant-specific 

variation in ability to respond. 

 

We used the Akaike Information Criterion (AIC) (Hastie et al., 2009) 

to determine whether the inclusion of a random-effect parameter is 

justified and compared the different models using the Likelihood-

Ratio test to determine if the addition of a fixed effect is statistically 

relevant (nested models). 
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2.2 Results 
 

a) Behavioural analysis 

 
First, we analysed the explicit (key presses) and implicit (saccades) 

detections across all patients. Although there was a significant main 

effect across all load conditions, we found no difference between 

medium CL and high CL. We therefore combined the data of these 

two load conditions (henceforth referred to as high CL), since both 

required the patient to listen to the AST as a secondary task. 

 

 
Figure 5. Proportions of displacements detected. A) The proportion of all 

displacements that were reported by key presses and thus are considered explicit detections. 

B) The latency of explicit detections. C) The proportion of all displacements that were 

detected by saccades towards the displacement position. D) The latency of the implicit 

detections. Mean differences with respect to the no load condition are shown in the contrast 

plots below the swarm plots, with the confidence intervals indicating the distributions of the 

means of the resamples. Individual dots within the swarms indicate individual participants. 

CL: cognitive load.  
 

Consequently, cognitive load significantly modulated the explicit 

detection probability (Friedman; χ2
F(2)=23.82, p<0.001, Figure 5-A). 

Their reaction time also increased with cognitive load (Friedman; 

χ2
F(2)=35.38, p<0.001, Figure 5-B). The proportion of implicit 
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detections was, in general, higher when there was a cognitive load 

(Friedman; χ2
F(2)=24.73, p<0.001, Figure 5-C), but there was no 

significant difference between low and high load conditions 

(p=0.37). There were also no significant differences in implicit 

detection latencies across all load conditions (Friedman; χ2
F(2)=5.25, 

p = 0.07, Figure 5-D). More details on the statistical test results are in 

Table 3. The no cognitive load condition had one circle moving on 

screen, which led to mostly smooth pursuit eye movements instead 

of saccades. Also, there were low proportions of implicit detections 

in the low and high cognitive load conditions as there were not many 

saccades made in general, which is a finding consistent with 

literature. This meant that explicit and implicit measures-were-not 

suitable-for direct comparison (e.g. explicit detection in no CL vs 

implicit detection in no CL). 

 
Table 3. Results of post hoc Monte Carlo permutation. N: sample size; CI (95%): 

95% confidence interval; CL: cognitive load.

 Comparison N Mean difference CI (95%) p-value 

Proportion of explicit responses 

no CL vs low CL 29 -0.19 -0.23 and -0.14 <0.001 

no CL vs high CL 29  -0.44 -0.51 and -0.35 <0.001 

low CL vs high CL 29 -0.25 -0.30 and -0.20 <0.001 

Latency of explicit responses 

no CL vs low CL 29 0.047 0.022 and 0.073 0.0012 

no CL vs high CL 29  0.12 0.061 and 0.15 <0.001 

low CL vs high CL 29 0.070 0.030 and 0.096 <0.001 

Proportion of implicit responses 

no CL vs low CL 29 0.063 0.042 and 0.085 <0.001 

no CL vs high CL 29  0.072 0.051 and 0.095 <0.001 

low CL vs high CL 29 0.0099 -0.010 and 0.033 0.37 

Latency of implicit responses 

no CL vs low CL 8 0.065 -0.030 and 0.19 0.33 

no CL vs high CL 10 0.081 -0.034 and 0.16 0.15 

low CL vs high CL 25 0.010 -0.046 and 0.062 0.71 
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b) Clinical measures are correlated with explicit but not 

implicit responses 
 

There were significant correlations between explicit detections and 

neuropsychological test battery outcomes, as well as the HAM-D. 

However, no such correlations were found with implicit detections 

and no other secondary outcomes were consistently correlated with 

explicit detections. The tests within the neuropsychological test 

battery that correlated significantly with explicit detection proportion 

across all load conditions were Corsi F, Corsi B, TMT A, TMT B and 

WAIS C (Figure 6-A). Corsi F and WAIS C also showed a consistent 

positive correlation with the latency in detecting displacements 

(Figure 6-B). Besides Corsi F (Spearman’s; rs=-0.61, p<0.001), only 

TMT A and TMT B correlated positively with HAM-D (Spearman’s; 

TMT A: rs=0.46, p<0.05, TMT B: rs=0.47, p<0.05). HAM-D was 

inversely correlated with the ability to report stimuli for low and high 

CL (Spearman’s; low CL: rs=-0.47, p<0.05, high CL: rs=-0.47, 

p<0.05). 

 

 
Figure 6. Correlations between explicit detection proportion, latency and 

neuropsychological test battery. A) Correlations with proportion of explicit detections 

(key presses). B) Correlations with the latency of explicit detections. Significant p-values 

are indicated * p<0.05, ** p<0.01, *** p<0.001 and the number and colour represent the 

correlation coefficient (Spearman’s r). Corsi B: Corsi Block Tapping Test Backward; Corsi 

F: Corsi Block Tapping Test Forward; FAB: Frontal Assessment Battery; RAVLT: Rey 

Auditory Verbal Learning Test; RAVLT I: RAVLT Immediate; RAVLT D: RAVLT 

Delayed Recall; Star: Star Cancellation Test; TMT A: Trail Making Test A; TMT B: Trail 

Making Test B; WAIS: Wechsler Adult Intelligence Scale IV; WAIS F: WAIS Digit Span 

Forward; WAIS B: WAIS Backward; WAIS C: WAIS Digit Symbol Coding. 
 

To further evaluate the relationships between the TMT tests, HAM-

D, and explicit detection proportion in low and high load conditions, 

we performed a partial correlation while controlling for the effect of 

either TMT A, TMT B or HAM-D as independent variables. For this 
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analysis, we used the subgroup for which the HAM-D is available 

(n=19). However, as this subgroup did not exhibit a significant 

correlation between detection rate and Corsi-F, the partial correlation 

was carried out only for TMT A and TMT B but not for Corsi-F. 

Also, we only considered low and high load detection rate as HAM-

D did not correlate with the no CL detection rate; we found HAM-D 

was no longer significantly correlated with explicit detection 

proportion after controlling for the effect of TMT A and TMT B 

(Figure 7). On the other hand, explicit detection proportions remained 

significantly correlated to TMT A and TMT B even after controlling 

for the effect of HAM-D for both low and high cognitive load 

conditions. 

 

 
Figure 7. Partial correlation across cognitive loads for explicit detection 

proportion. The controlled variable is given in brackets. Significant p-values are indicated 

as * p<0.05, ** p<0.01, *** p<0.001 and the number and colour represent the coefficient 

(Spearman’s r). CL: cognitive load; HAM-D: Hamilton Depression Rating Scale; TMT A: 

Trail Making Test A; TMT B: Trail Making Test B.  
 

 

c) Generalised linear mixed-effects model 
 

To investigate if the patients had a spatial bias when responding to 

displacement events, we visualised their explicit response probability 

in the Cartesian space of the displacement events across the different 

cognitive load conditions (Figure 8, more details available in section 

2.1-f), with white representing jumps that are always explicitly 

reported and black those that are never explicitly reported. We split 

the participants according to whether they demonstrated cognitive 

impairment as measured by TMT A and/or TMT B. The impairment 

cut-off was based on normative data obtained from a healthy group, 

which corresponds to a response time less than 64 seconds in TMT 

A and less than 157 seconds in TMT B (Peña-Casanova et al., 2009). 

Participants labelled as ‘no impairments’ had response times below 

the normative cut-offs for both TMT A and TMT B. 
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Preliminary visual inspection of the anticipatory fields warranted 

closer, quantitative inspection of the data. We thus modelled the data 

using a generalised linear mixed-effects model to quantify the effects 

of each factor. The models tested can be found in Table 4 and the 

comparisons performed can be found in Table 5. The most basic 

model, GLME 0, described the relationships previously shown to be 

significant (Mathews et al., 2015), with cognitive load and 

displacement magnitude as the main effects (represented by the 

intercept and slope of Eq. 1 respectively). 

 

 
Figure 8. Probability of explicit detection in each cognitive load condition for the 

three groups of cognitive impairment. The probability was calculated for the binned data 

on the displacement's relative angle and magnitude. 
 

We first verified that the inclusion of a random parameter would 

improve performance. The likelihood ratio test (comparison 1 and 2, 

Table 5), as well as an observed reduction in AIC, confirmed that the 

random effect parameter accounting for individual variability 

significantly improved the model’s performance. Next, we tested if 

the inclusion of TMT A or TMT B as fixed effects would further 

improve the model, again quantified by their AIC. When tested 
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separately, both TMT A and TMT B reduced AIC (AIC of GLME 3a 

and GLME 3b respectively, Table 5), showing that their isolated 

addition was beneficial to the model with TMT B having a slightly 

greater effect. As a consequence, adding both TMT A and TMT B to 

the model did not further improve its performance, compared to 

including TMT B alone (comparison 3 and 4, Table 5). This 

demonstrates how explicit response probability was directly 

modulated by displacement magnitude, TMT B, and cognitive load, 

while taking into account individual differences. 
 

Table 4. Overview of generalised mixed-effects models (GLME) used in 

comparisons. The parameters are described in Eq. 1. 

Model Formula 

GLME 0 P(response) ~ 1 + Rhos + Loads 

GLME 1 P(response) ~ 1 + Rhos + Loads + (1 | Participants) 

GLME 2 P(response) ~ 1 + Rhos + Loads + (1 + Rhos | Participants) 

GLME 3a P(response) ~ 1 + Rhos + TMTA + Loads + (1 + Rhos | 

Participants) 

GLME 3b P(response) ~ 1 + Rhos + TMTB + Loads + (1 + Rhos | 

Participants) 

GLME 3c P(response) ~ 1 + Rhos + TMTA + TMTB + Loads + (1 + Rhos | 

Participants) 

GLME 4a P(response) ~ 1 + Rhos * Loads + (1 + Rhos | Participants) 

GLME 4b P(response) ~ 1 + Rhos + TMTB * Loads + (1 + Rhos | 

Participants) 

GLME 5 P(response) ~ 1 + Rhos + TMTB * Loads + (1 + Rhos | 

Depression) 

 

Lastly, we tested whether some of the fixed effects interacted with 

each other. Based on how they modulated AIC and/or likelihood, we 

found that displacement magnitude did not interact with cognitive 

load (comparison 5, Table 5), but TMT B did (comparison 6, Table 

5). This showed that the impairment level in TMT B reduced 

individual explicit response probability more in the high load than in 

the low load condition. The final model estimates are shown in Table 

6.  

 

The model was evaluated using its residuals and the generated fitted 

values, as a better fit would lead to the distribution of the residuals 

being closer to uniform. The Pearson's residuals of the fit are slightly 

shifted, possibly pointing to heteroscedasticity; comparing them to 

the fitted values of the model confirms that there were signs of 

nonconstant variance amongst residuals, with most of the bias being 
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at extreme performance values. This implies that the model’s ability 

to predict performance follows an inverse U-shaped curve depending 

on the participant’s actual performance. 

 
Table 5. Generalised mixed-effects model (GLME) comparisons executed. DF: 

degrees-of-freedom; AIC: Akaike Information Criterion; BIC: Bayesian Information 

riterion; LogLik: log-likelihood; LRstat: likelihood-ratio test statistic.

 DF AIC BIC LogLik LRstat p 

Comparison 1       

GLME 0 vs  4 3283.03 3302.07 -1637.51 
  

GLME 1 5 2169.95 2193.77 -1079.98 1115.08 <0.001 

Comparison 2 
      

GLME 1 vs 5 2169.95 2193.77 -1079.98 
  

GLME 2 7 2165.88 2199.22 -1075.94 8.07 <0.05 

Comparison 3 
      

GLME 3a vs 8 2153.30 2191.41 -1068.65 
  

GLME 3c 9 2153.21 2196.08 -1067.61 2.09 >0.05 

Comparison 4 
      

GLME 3b vs 8 2152.53 2190.63 -1068.27 
  

GLME 3c 9 2153.21 2196.08 -1067.61 1.32 >0.05 

Comparison 5 
      

GLME 2 vs 7 2165.88 2199.22 -1075.94 
  

GLME 4a 9 2166.30 2209.16 -1074.15 3.58 >0.05 

Comparison 6 
      

GLME 3b vs 8 2152.53 2190.63 -1068.27 
  

GLME 4b 10 2141.81 2189.44 -1060.91 14.72 <0.001 

 
Table 6. Final estimates of the model.

 Name Estimate SE 
t-

Statistic 
DF p Lower Upper 

Intercept 1.21 0.11 10.73 858 <0.001 0.99 1.43 

Rhos 0.21 0.11 2.02 858 <0.05 0.01 0.42 

TMT B -0.003 0.001 -3.60 858 <0.001 -0.005 -0.001 

Low CL -0.80 0.06 -14.18 858 <0.001 -0.91 -0.96 

High CL -1.66 0.06 -28.48 858 <0.001 -1.78 -1.55 

TMT B : 

low CL 
-0.001 0.00 -1.21 858 >0.05 -0.001 0.000 

TMT B : 

high CL 
-0.002 0.00 -3.65 858 <0.001 -0.003 -0.001 

  

To find the source of the unexplained variance that might aid to 

improve the model, we checked the contribution of Corsi F, Corsi B 

and WAIS C. The contribution of WAIS C appeared to be 

comparable to TMT B, but it did not reduce the heteroscedasticity. 

Similarly, adding the angle of the displacement (theta) to the model 
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did not improve its predictive power. Analysing the model only for 

the patients with HAM-D data and adding the depression scale as a 

random effect (i.e. treating it as a systematic trait, model GLME 5 in 

Table 4), rendered the residuals for poorer performance more 

constant, possibly explaining part of the variance observed in low 

performers and reiterating the nuanced relationship between 

depression, cognitive impairment, and performance in the 

displacement detection task. 

 

 

2.3 Conclusions 
 
We found that participants’ bottom-up sensory processing (measured 

by implicit detections) in an attentional task was unaffected by 

cognitive load or levels of depression, while their top-down sensory 

processing (measured by explicit detections) was. The effect on 

explicit detections was negative for increasing levels of depression 

and poorer performance in TMT A and TMT B. Both TMT tests are 

timed and require online visual tracking ability; TMT A is considered 

to measure visuo-perceptual speed whereas TMT B is considered to 

be a measure for attentional switching and working memory 

(Sánchez-Cubillo et al., 2009). They both require psychomotor 

coordination and higher-order functions that have been shown to be 

affected by depression, which correlates not only with poor 

psychomotor speed but nonverbal problem solving, verbal and visual 

memory, and attention as well (Kauhanen et al., 1999). Our analyses 

revealed a correlation between performance in the TMT tests and 

depression, confirming these links between depression and cognitive 

performance. 

 

The partial-correlation analyses aid in understanding the relationship 

between explicit responses (key presses), the participant’s level of 

depression (HAM-D) and specific cognitive disability (TMT A and 

TMT B). Although all three variables correlated significantly, it 

appears that the relationship between depression and explicit 

responses can be explained mainly by a deficit in visuo-perceptual 

speed and working memory ability. Also, even though correlations 

do not explain directionality, it is unlikely that a deficit in visuo-

perceptual speed and working memory would cause depression. 

Rather, if there is a direct causation effect between the two, the 
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opposite is more likely where impairments in visuo-perceptual speed 

and working memory result from depression. The correlation 

between depression and poorer perceptual speed is known 

(Blackburn, 1975; Fitzgerald, 2013), but disentangling their 

relationship has proven challenging. For instance, another study has 

also found that performance in the Stroop task, although affected by 

depression, is predicted by psychomotor speed rather than 

impairment of selective attention per se (Kertzman et al., 2010). 

Exploring the directionality of this relationship is a potential avenue 

for subsequent research. 

 

The generalised linear mixed-effects model further sheds light on the 

exact contribution of the factors that modulate explicit response 

probability. Confirming previous work with healthy participants, a 

model that includes the displacement magnitude while accounting for 

inter-subject variability was shown to reasonably describe the 

explicit response probability, which decreases with increased 

cognitive load. In addition, we demonstrate here that a deficit in 

attentional switching and working memory (as measured by the TMT 

B) not only further exacerbates poorer performance but also interacts 

with cognitive load. The model shows that a specific cognitive 

impairment can have a direct additional effect on performance. These 

findings give predictive power to individuals’ performance in the 

task, allowing it to be used as a potential diagnostic tool that is 

objective and independent of factors unrelated to cognitive ability, 

such as educational background. 

 

However, the model appears to poorly predict performance at the 

extreme ends (extremely good or extremely poor) in the task. While 

we were able to improve the model’s predictive performance of poor 

performers by including a measure for depression, more work needs 

to be done to find the source for the unexplained variance in high 

performing individuals. 

 

Through the displacement detection task, we distinguished between 

the responses that are primarily driven by bottom-up input and those 

that result from integration of top-down processes. That the 

participants’ implicit responses, proxies for bottom-up attention, are 

unaffected by cognitive load and further do not correlate with any 

psychoneurological tests suggests that their bottom-up attentional 

mechanism remained intact. Nonetheless, it was found that 
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impairment severity of a specific cognitive ability, in this case 

measured by TMT B, led to a decrease in explicit responses, 

especially when there was a cognitive load (Figure 8 and Table 3). In 

contrast, a more general measure of cognitive deficit like MoCA was 

uncorrelated with explicit responses, despite all participants included 

in this study being considered to be cognitively impaired according 

to their MoCA score. This suggests that the TMT B specifically 

measures cognitive functioning that overlaps with top-down 

attentional processes while MoCA does not. Standard clinical tests 

typically are unable to give insight as to the precise neural 

underpinnings of the impairments that they aim to measure. By using 

psychomotor tasks such as the displacement detection task, we can 

infer that poor performance in TMT B could be caused by a lesion 

that specifically disrupts frontoparietal networks known to contribute 

to top-down attentional processes. This notion resonates well with 

the view that impairments from stroke are symptoms of disruptions 

in distributed neuronal networks, which otherwise sustain 

sensorimotor and cognitive functioning in healthy individuals 

(Guggisberg et al., 2019). 
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3. SACCADIC DYNAMICS ARE MODULATED BY 
WORKING MEMORY LOAD  
 

As elaborated in the earlier chapters and sections, findings from 

psychophysical studies have supported both the proposal that top-

down attentional modulation can be inhibitive in certain situations 

and that top-down attentional processes dynamically modulate 

sensitivity to task-specific stimulus features depending on working 

memory load. However, the studies directly addressing the 

Validation Gate hypothesis have kept to a spatial domain. If the 

hypothesis is generalisable to the mechanism of selective attention, 

this effect should extend to other domains and modalities as well. 

 

Within the visual modality, information is processed hierarchically 

(Liu et al., 2020; Maunsell and Newsome, 1987; Treisman, 1986) and 

splits into the dorsal and ventral streams (Schneider, 1969; 

Ungerleider and Mishkin, 1982). Also called the ‘where’ and ‘what’ 

streams respectively, the dorsal stream involves sensory processing 

more related with localisation of stimuli while the ventral stream is 

more associated with the identification of stimuli features. Although 

the two streams are unlikely to be functionally independent and their 

specialisation is relative rather than absolute (Schenk and McIntosh, 

2010), the task-features of interest in the displacement detection task 

used to test the Validation Gate hypothesis are not particularly 

complex and should therefore have not involved significant 

collaboration between the two visual streams. 

 

Adapting the displacement detection task paradigm from the spatial 

domain in the dorsal stream to one considered to be part of the ventral 

stream would allow for a comparison to determine the Validation 

Gate hypothesis’ generalisability while remaining in the visual 

modality. For this reason, we designed a task that retained the key 

characteristics of the displacement detection task while translating it 

to the colour domain. Our first hypothesis in this study is that in this 

task, top-down attentional processes will again be modulated by 

working memory load except in this case the decrease in sensitivity 

will be towards colour instead of space. 

 

In addition, saccadic eye movements have been demonstrated to 

modulate the phase and amplitude of theta oscillations which are 
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elicited during working memory tasks. For example, during visual 

exploration, theta’s phase was predictive of the following fixation-

location’s novelty (Kragel et al., 2020). Reiterating earlier visual 

exploration studies (e.g. Ito et al., 2011), the phase reset was marked 

by saccade onset rather than fixation. Furthermore, the relationship 

between eye movements and neural oscillations for memory was also 

quantified in primates during visual exploration, where the reliability 

of the elicited phase reset was predictive of subsequent accuracy 

(Jutras et al., 2013). Likewise, the observed phase resets were shown 

to be distinct from evoked response potentials due to stimuli onset 

(Katz et al., 2020), supporting the hypothesis that oscillatory phases 

contribute to mnemonic processing. 

 

At the same time, it has been proposed that multiple-item 

representation in working memory is expressed by gamma cycles 

within theta oscillations, called the theta-gamma code (Jensen and 

Lisman, 1998). The theoretical and computational implications of 

such a cross-frequency code favour a framework in which the brain 

optimises the number of items held in memory (Lisman, 2010; 

Lisman and Jensen, 2013). 

 

Indeed, recent experimental work has shown that increases in the 

number of working memory items are accompanied by decreases in 

peak hippocampal theta frequency, and that the robustness of this 

shift predicts individuals’ recall accuracy (Axmacher et al., 2010). 

Additionally, the theta’s phase was shown to be modulated during 

working memory recall periods (Rizzuto et al., 2003). Specifically, 

neocortical theta displayed phase alignment to the task’s probe event, 

suggesting that coupled oscillations not only store information about 

items held in memory but also that accessing this information 

requires a phase-tuned carrying frequency. 

 

Consequently, these studies show that eye movements modulate the 

phase and amplitude of theta oscillations, and that theta oscillations 

enable the encoding and maintenance of items during working 

memory. Together, they raise the question of whether eye-

movements are functionally relevant for working memory.  

  

The second hypothesis of this study is thus that increases in working 

memory load (i.e. more items in memory) lead to increases in eye-

movements. Mechanistically, this behavioural-neuronal interplay 
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would serve the purpose of strengthening both the spectral amplitude 

and the phasic profile of theta oscillations to cope with the demands 

of recalling internal representations in the absence of external stimuli. 

To test the hypothesis, we recorded the eye movements of human 

participants in a dual-task paradigm. One of the tasks was perceptual 

and made saccadic eye movements counter-productive while the 

other, a variation of the Sternberg task (Sternberg, 1969), 

manipulated the participants’ working memory. Potential changes in 

saccadic activity would most likely be manifested as 

microsaccades—involuntary eye movements produced specifically 

during attempted fixation—rather than saccades, more common 

during visual exploration, as the experimental design requires 

constant fixation (Martinez-Conde et al., 2009; Rolfs, 2009). We thus 

show how increases in working memory load lead to memory recall-

specific changes in saccadic eye movements, particularly 

microsaccades. 

 

 

3.1 Methods  
 

Participants were seated in a chair at approximately 65 cm in front of 

a 15" LED screen with a refresh rate of 60 Hz (Figure 9-A). The 

experiment was implemented using Unity software (Unity 

Technologies, San Francisco, California, U.S.) and the in-game 

resolution was 150 × 266 pixels. A keyboard was placed in front of 

the participant to log their button presses and a Tobii Pro X3-120 eye 

tracker (Tobii Technology AB, Sweden) with an external processing 

unit was placed directly below the screen. The sampling rate of the 

eye tracker was 120 Hz and an example of the collected eye position 

data can be found in Figure 9. The participants listened to auditory 

cues through over-ear headphones. Before the experiment started, 

participants were able to freely adjust the volume of the speakers.  

  

Participants could also adjust the chair’s height and back-tilting 

configuration for comfort and head movements during experimental 

blocks were limited. They were oriented to face blank, white walls 

behind the screen. The experiment was conducted in a dedicated 

empty room at the institute's facilities and the experimenter remained 

in the same room throughout the session.  
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Figure 9. Experimental equipment and protocol. A) Illustration of the physical set-up. 

B) Example of what a participant would see on-screen over time. The only visible change is 

the colour in the circle for the catch detection task, which happens at 60 Hz except during a 

hue-jump. C) (left) An illustration of the colour transitions in the catch detection task, with 

the t's representing timesteps before and after the current timestep, tn. (right) The squares in 

each row show the colour for consecutive timesteps from left to right, with a jump occurring 

at the vertical line. The rows show different sizes of jumps. D) Example of the Sternberg 

task protocol. The rows are chronological, starting from a block's beginning. The orange and 

green columns show how the same probe with the same sequence history needs to be 

compared to different sequences, as indicated by the arrows, depending on the n-back 

condition. E) Normalised raw gaze positions during the entire experiment from two 

randomly selected participants. The red lines represent 0.5 on each axis. F) Experimental 

design: there is one practice block per condition at the start of the experiment, after which 

there are two experimental blocks per condition that are pseudorandomised. G) The timeline 

for a Sternberg task trial with examples of what a participant would hear in the top row, the 

nomenclature describing the trial's stages in the middle row, and the corresponding duration 

of each stage in the last row. 
 

 

a) Experimental protocol 
 

Twenty naïve participants (9 females; aged 29.5±4.84 years) with 

normal or corrected-to-normal vision were recruited from the 

university campus. Before the experiment began, participants were 

briefed on the two tasks they were required to perform 

concurrently—a catch detection task (Figure 9-B and Figure 9-C) and 

a Sternberg auditory task (Figure 9-D and Figure 9-G)—and gave 
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their written informed consent. Their dominant eye was ascertained 

using the Porta test (Roth et al., 2002). The research protocol was 

approved by the ethical committee (CEIC) of Hospital San Joan de 

Deu (Barcelona, Spain).  

  

The screen's brightness was adjusted to each participant’s preference, 

and a version of the Farnsworth-Munsell 100 hue test was completed 

to determine the participants’ colour perception acuity (Farnsworth, 

1943). The best possible score in the Farnsworth-Munsell hue test is 

0, while every error made contributes to the final score the sum of the 

differences between the erroneous hue and that of its two adjacent 

hues. The eye tracker was calibrated (mean error<0.5 °) using both 

the Tobii Pro Eye Tracker Manager (Tobii Technology AB, Sweden) 

as well as a 5-point routine across both x- and y-axes built into the 

experiment. Previous work studying eye movements have used 

similar screen-based eye trackers with comparable accuracy and 

precision (e.g. Faber et al., 2018; Lloyd et al., 2017; Manning et al., 

2014). 

 

The experiment was carried out in English or Spanish, depending on 

the language the participant was more comfortable with. Participants 

read on-screen written instructions at the start of the experiment as 

well as block-specific instructions before each block, reiterating the 

earlier verbal instructions. Before each block, interaction with the 

experiment was suspended for 1.5 s after which a button press would 

start the block. The participants carried out the catch detection task 

in all the blocks, and each block’s working memory load condition 

corresponded to one of three levels as modulated by the n-back 

Sternberg task (Sternberg, 1969). The three load conditions were: 

without the Sternberg task (no load, N), 2-back Sternberg task (low 

load, L), and 3-back Sternberg task (high load, H). 

  

The experiment consisted of nine blocks, the first three of which were 

practice blocks, one per load condition and in incremental order. The 

order of the remaining six blocks, the experimental blocks, was 

pseudorandomised in groups of three, each group consisting of one 

block per load condition (Figure 9-F). As the common task in all 

blocks, the duration of the blocks was dependent on the number of 

trials in the catch detection task, also referred to as hue-jumps. There 

were 60 hue-jumps in the first practice block and 15 hue-jumps in the 

remaining practice blocks. Each experimental block summed 40 hue-
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jumps. The experiment lasted approximately 30 minutes and subjects 

received neither financial nor material remuneration. 

 

 

b) Catch detection task 
 

An off-white circle (external diameter 2 cm (1.8 °), white border 

thickness 0.5 mm (0.044 °)) was shown in the centre of the screen on 

a grey background (HSV: 210, 12.2, 19.2). It was filled with a solid 

colour (Figure 9-B) that moved progressively across the 360 degrees 

in the hue space while retaining its colour saturation and value levels 

(70 and 77, respectively). The saturation and value parameters were 

chosen to maintain the screen’s luminosity at 50% for reduced eye 

strain. The hue changed at a rate of 60 Hz (in steps of 1 °, 6 s per 

revolution), and the direction of the change and starting hue were 

randomised at the start of each block.  

  

Each trial consisted of a sudden shift in the hue progression, i.e. a 

hue-jump, occurring within an inter-trial interval of 2.5–4 s to prevent 

habituation. The direction of the hue-jump was chosen randomly 

(uniformly distributed), clockwise or anti-clockwise, and the hue was 

changed randomly (uniformly distributed) to 3–30 ° away from the 

current hue. The distance of the change in hue is referred to as the 

jump size (Figure 9-D, right), and hue-jumps only occurred when the 

participant's eyes were being tracked and the eye's gaze position was 

over the circle. The participants were instructed to press the spacebar 

on the keyboard when they were at least 75% certain that they had 

seen a hue-jump.  

  

Prior to the actual experiment, we piloted the experimental setup (6 

participants, 2 females, aged 29.6±4.22 years) and observed mean 

detection rates below 0.5, suggesting that the task was sufficiently 

challenging. The detection rate of yellow-green jumps was 

significantly lower than jumps in other hue ranges (0.39±0.19 (red-

yellow), 0.12±0.15 (yellow-green), 0.46±0.20 (green-blue), 

0.33±0.23 (blue-red), N=6; Friedman, p=0.0067, χ2(3)=12). Hence, 

to optimise data collection, jumps did not occur within the yellow-

green hues (90–180°) in the presented experiment. Although this 

limited the range of sampled hues, there was still sufficient variability 

to prevent participants from expecting the occurrence of jumps 
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simply from the current hue. During the experiment, as all the 

conditions had to be met before a jump occurred, some trials overshot 

the 4 s inter-trial interval upper limit. Nonetheless, the overall mean 

inter-trial interval was 3.4±0.82 s. The catch detection task was 

carried out for all the blocks. 

 

 

c) Sternberg auditory n-back task 

 

The basic Sternberg task requires participants to remember a 

sequence of items, and then, when presented with a probe of a single 

item, report if the probe was part of the remembered sequence. In this 

experiment, the items were letters from the Latin alphabet, each 

sequence consisted of six letters, and a probe was a single letter. The 

letters were randomly selected and there were no repetitions of letters 

within a sequence. All stimuli for the Sternberg task were auditory, 

and participants delivered their responses through keyboard button 

presses. For example, if the remembered sequence was F-B-Y-E-P-

H and the probe was G, the correct answer would be “no”. 

  

There was also an n-back component. Instead of comparing the probe 

with the most recent sequence, participants were asked to compare 

probes with the nth-last sequence (i.e. the 2nd-last sequence in the 2-

back condition and the 3rd-last sequence in the 3-back condition). 

Sequences and probes were presented alternately, and there was a 

50% probability of a probe being correct (i.e. the probe was part of 

the nth-last sequence) (Figure 9-C). Participants were not required to 

remember sequences between blocks. 

  

The sequences and probes were read to the participants through 

headphones (Microsoft Speech API 5.3, U.S.; voice rate=-2). There 

was a 2 s interval between a sequence and a probe, and a 2.5 s interval 

after a probe before the next sequence (Figure 9-G). Responses were 

not accepted while a sequence was being delivered. No sequences or 

probes would be delivered if the catch detection task was in its final 

trial. 
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d) Data analysis 
 

The labelling of eye movements was carried out using a velocity-

based algorithm for microsaccade detection (Engbert and Kliegl, 

2003) implemented as a package (von der Malsburg, 2015) in R 

(Team, 2019), and has been used in previous eye movement studies 

(e.g. Badde et al., 2020; Duchowski, 2007; Yuval-Greenberg et al., 

2008). The algorithm eliminates random movements associated with 

drifts during fixation by using a moving average of velocity vectors 

over 5 data samples. Surviving vectors are then compared with a 

threshold for the labelling of saccade and fixation events. The 

detection thresholds for horizontal and vertical components are 

calculated independently as a multiple of the velocity time series’ 

standard deviation (λ=6 as recommended by Engbert and Kliegl 

(2003)). In addition, as the sampling rate was not high (120 Hz), we 

followed the package developer’s recommendations for low-

frequency data (<100 Hz), setting the parameters ‘smooth.saccades’ 

was to False and ‘smooth.coordinates’ to True. This applied a linear 

recursive filter on the gaze positions along each axis, using a kernel 

[0.333, 0.333, 0.333], smoothing the coordinates of the positions with 

a moving average of size 3 prior to saccade detection 

(‘smooth.coordinates’). It also prevented consecutive saccades 

separated by only a few samples from being merged together 

(‘smooth.saccades’). At higher sampling rates, this avoids swing-

backs from larger saccades being incorrectly classified as a separate 

saccade, which is not an effect often found in lower-frequency data. 

 

After the package labelled the onset and offset of saccades as well as 

their velocity in the x- and y-axis, we calculated their peak velocity 

and amplitudes. The saccades’ peak velocity was the Euclidean norm 

of its velocity vector. Following the implementation from Engbert et 

al. (2015), the saccades’ amplitude was calculated as the Euclidean 

norm of the largest positional differences in the two axes. The 

labelled saccades showed a clear relationship between their 

amplitude and velocity with considerable saturation of peak 

velocities at larger amplitudes, satisfying the main sequence criterion 

(Zuber et al., 1965). The observed velocities were similar to what was 

found by Martinez-Conde et al. (2009) for saccades during fixations. 

Although we obtained saccade amplitudes that were larger than 

expected for microsaccades produced during fixation, it is unlikely to 
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be due to hardware errors or inaccuracies in the collected data as there 

is no drift in the data of each participant over time. This stationarity 

was shown by each subject’s rolled-mean gaze position over time 

(0.5s window, 0.167s minimum period in the event of invalid data or 

at the edges) in both axes being tested with the augmented Dickey-

Fuller unit root test (lag determined with AIC, regression model is 

constant with no trend), which has a null hypothesis that there is a 

unit root leading to non-stationarity. All participants had p-values < 

.05 in both axes, disproving the null hypothesis. 

 

In the analysis for Sternberg stage-dependent saccade rates, two 

participants were excluded as one had not responded to the catch 

detection task in some conditions and another had barely responded 

to the Sternberg task (response rate<25% (L) and <5.6% (H)), which 

we assumed to mean that they had entirely given up on the Sternberg 

task. 

 

Before testing for differences between conditions for the various 

measures, all data was tested for normality using D’Agostino and 

Pearson’s omnibus normality test that combines skew and kurtosis 

(D’Agostino, 1971). For multiple comparisons between non-

parametric data, the Friedman test (Friedman, 1937) was used to 

determine if there were any significant differences between 

conditions. For data that was parametric, the default implementation 

of a repeated measures one-way ANOVA in a Python library 

(Seabold and Perktold, 2010) was used.  

  

Post-hoc testing or comparisons consisting of only two conditions 

were carried out using estimation statistics based on Monte Carlo 

permutation (Ho et al., 2019), with the paired mean difference figures 

including a bootstrap 95% confidence interval to illustrate the effect 

size. The confidence interval accounts for skewness in the 

distributions with a bias-corrected and accelerated bootstrap (Efron, 

1987). Each test was based on 5000 resamples. The distribution of all 

data is reported either as ‘condition (mean±std)’ when inline or as 

‘mean±std (condition)’ when nested among other statistical 

information.  

  

The circular-linear correlation (Berens, 2009) is carried out by first 

defining the correlation coefficients rsx = c(sin α, x), rcx = c(cos α, x) 
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and rcs = c(sin α, cos α), where c(x, y) is the Pearson correlation 

coefficient. The correlation ρcl is then calculated using Eq. 2. 

 
 

𝜌𝑐𝑙 = √
𝑟𝑐𝑥
2 + 𝑟𝑠𝑥

2 − 2𝑟𝑐𝑥𝑟𝑠𝑥𝑟𝑐𝑠
1 − 𝑟𝑐𝑠

2
 Eq. 2 

A p-value for ρcl is computed by considering the test statistic Nρ2 , 

which follows a χ2-distribution with two degrees of freedom. The 

linear correlation was a standard Pearson correlation (Pearson, 1895) 

and the linear regressions were ordinary least squares regressions in 

the Scikit-learn toolbox (Pedregosa et al., 2011).  

  

  

3.2 Results 
 
A total of twenty people (9 females; aged 29.5±4.84 years; 15 right-

eye dominant) were recruited from the university campus. The 

participants scored an average of 20±25.4 in the Farnsworth-Munsell 

test. Their colour acuity did not affect their performance in the catch 

detection task (Figure 10-A; N=20; Spearman's correlation: p=0.276, 

r=-0.255). All participants spent at least 80% of the experimental 

duration fixating on the centre of the screen (examples in Figure 9-

E). The distribution characteristics of all data used in analyses can be 

found in Table 8 and Table 9, including their sample sizes. 

 

 

a) Catch detection is affected by size more than by hue 

 

Hue-jump events in the catch detection task were characterised by 

the location in the colour wheel where the jump occurred (hue) and 

their jump-size magnitude (degrees). We first analysed detection 

rates, i.e. the probability of a participant reporting a hue-jump, 

across all experimental blocks depending on either of these jump 

characteristics (Figure 10-B and Figure 10-C). The hue-dependent 

detection rate was not uniformly distributed as its Kullback-Leibler 

divergence score significantly differed from that of randomly 

generated uniform distributions with the same means and standard 

deviations (Figure 10-D and Figure 10-E; Monte Carlo permutation, 

p<0.001, We then performed a circular-linear regression on the hue-dependent 
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detection rates and a linear regression on the jump size-dependent detection rates per 

participant. We found that correlation p-values for jump size was significantly lower than 

that of hue (Figure 10-F; Monte Carlo permutation, p<0.001, Table 7, comparison 

2). To better understand the profile of jump size-dependent detection rates, we split 

detection rates into three size bins: short (3–10°), medium (11–20°) and long (21–30°) 

(Figure 10-G). Detection rates were significantly different between all bins (Figure 

10-H and Figure 10-I; one-way repeated measures ANOVA, p<0.001, F(2, 38)=65; 

Monte Carlo permutation, p<0.001, Table 7, comparisons 3, 4, and 5), showing a 

modulation of task difficulty. 

 

 

Table 7, comparison 1). 

 

 
Figure 10. Catch detection performance is modulated by task variables and not 

Sternberg task stage. A) Correlation of individual participants' performance in the catch 

detection task and their colour acuity. B) The mean hue-dependent detection rate across all 

blocks (± std). C) The mean jump size-dependent detection rate across all blocks (± std). D) 

The mean hue-dependent detection probability in blue (± std), and random uniform 

distributions in grey. E) A paired comparison between the Kullback-Leibler divergence 

score for each participant’s hue-dependent detection rate and that of random uniform 

distributions. F) Paired mean difference between the p-values of the regressions for each 

participant's hue-dependent and jump size-dependent detection rates. The red, dotted line 

indicates p=0.05. G) The dots indicate participants’ individual mean detection rate for jumps 

within that bin, while the bar plots show the population's mean and standard deviation. H & 

I) The paired mean differences in detection rates of medium and long jumps compared to 

short jumps. J) An example of how a participant’s percentile score per Sternberg stage is 

calculated. The histogram and violin plot are from the permutations’ mean reaction times. 

The white dots show their means, while the shaded bars indicate their standard deviations. 

The participant's actual mean reaction time is represented by the black error bar to their left, 
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and the label is its resulting percentile. K) Boxplots of the participants’ percentiles relative 

to shuffled permutation in different Sternberg stages, as described in Figure 9-G, and when 

there is no Sternberg task (‘no WM’). The red, dotted line indicates p=0.05.  
 

We then performed a circular-linear regression on the hue-dependent 

detection rates and a linear regression on the jump size-dependent 

detection rates per participant. We found that correlation p-values for 

jump size was significantly lower than that of hue (Figure 10-F; 

Monte Carlo permutation, p<0.001, Table 7, comparison 2). To better 

understand the profile of jump size-dependent detection rates, we 

split detection rates into three size bins: short (3–10°), medium (11–

20°) and long (21–30°) (Figure 10-G). Detection rates were 

significantly different between all bins (Figure 10-H and Figure 10-

I; one-way repeated measures ANOVA, p<0.001, F(2, 38)=65; 

Monte Carlo permutation, p<0.001, Table 7, comparisons 3, 4, and 

5), showing a modulation of task difficulty. 
 

 
Table 7. Post-hoc Monte Carlo permutation statistics. ID: comparison index; KL: 

Kullbeck-Liebler divergence score; Unif: Random sample from a uniform distribution; Corr-

p: correlation p-value; Size: jump size; DR: detection rate; Med: medium jump sizes 

(binned); RT: reaction time Shuff: shuffled; N: no cognitive load; L: low cognitive load; H: 

high cognitive load; BR: blink rate; FR: fixation rate; MSR: microsaccade rate; MSR-R: 

microsaccade rate during recall for Sternberg task. 

ID Measure Control Test Difference 
CI (95%) p-

value lower upper 

1 KL Hue Unif −0.0092 −0.011 −0.0075 <0.001 

2 Corr-p Hue Size −0.47 −0.54 −0.41 <0.001 

3 DR Short Med 0.18 0.12 0.24 <0.001 

4 DR Short Long 0.38 0.31 0.45 <0.001 

5 DR Med Long 0.19 0.14 0.25 <0.001 

6 RT Actual Shuff 0.90 0.82 0.99 <0.001 

7 Accuracy L H −0.081 −0.15 −0.013 0.039 

8 DR N L −0.14 −0.18 −0.098 <0.001 

9 DR N H −0.13 −0.17 −0.091 <0.001 

10 DR L H 0.01 −0.022 0.041 0.56 

11 RT N L 0.13 0.076 0.18 0.0012 

12 RT N H 0.092 0.035 0.12 0.0016 

13 RT L H −0.042 −0.078 0.0069 0.0634 

14 Gradient N L −0.0056 −0.011 −0.0018 0.025 

15 Gradient N H −0.0084 −0.013 −0.0044 0.0016 

16 Gradient L H −0.0028 −0.0067 −0.0013 0.19 

17 BR N L 0.025 0.0039 0.050 0.072 

18 BR N H 0.018 0.0030 0.036 0.076 

19 BR L H −0.0069 −0.035 0.0081 0.63 

20 FR N L 0.17 0.078 0.29 0.0026 

21 FR N H 0.093 0.033 0.20 0.014 



   

 

47 

 

22 FR L H −0.074 −0.14 −0.23 0.023 

23 MSR N L 0.17 0.078 0.29 0.0026 

24 MSR N H 0.093 0.033 0.20 0.014 

25 MSR L H −0.074 −0.14 0.023 0.023 

26 MSR-R L H 0.040 0.010 0.071 0.020 

 

 

 

 
Table 8. Distribution characteristics for behavioural data. n: sample size; SD: 

standard deviation; K2: D'Agostino-Pearson omnibus normality test statistic; p-value: 

normality test p-value; KL: Kullbeck-Leibler divergence score; Corr-p: correlation p-value; 

DR: detection rate; RT: reaction time; Gradient: response gradient; BR: blink rate; FR: 

fixation rate; MSR: microsaccade rate; MSR-R: microsaccade rate during recall for 

Sternberg task; Unif: Random sample from a uniform distribution; Size: jump size; Med: 

medium jump sizes (binned); Shuff: shuffled; R(Stern): proportion of all trials responded to 

in the Sternberg task; C(Stern): proportion of all trials correctly responded to in the Sternberg 

task; N; no cognitive load; L: low cognitive load; H: high cognitive load; Gradient: response 

gradient. 

Measure Unit Condition n Mean SD K2 
p-

value 

KL - Hue 20 0.013 0.0058 - - 

KL - Unif 20 0.0041 0.0026 - - 

Corr-p - Size 20 0.011 0.18 - - 

Corr-p - Hue 20 0.48 0.15 - - 

DR - Short 20 0.11 0.080 4.3 0.12 

DR - Med 20 0.30 0.16 0.50 0.78 

DR - Long 20 0.50 0.18 1.5 0.47 

RT s Actual 20 0.84 0.104 - - 

RT s Shuff 20 1.7 0.16 - - 

R(Stern) - L 20 0.88 0.19 20. <0.001 

R(Stern) - H 20 0.83 0.24 17. <0.001 

C(Stern) - L 20 0.55 0.15 3.2 0.21 

C(Stern) - H 20 0.44 0.17 2.3 0.32 

Accuracy - L 20 0.63 0.11 - - 

Accuracy - H 20 0.55 0.16 - - 

DR - N 20 0.43 0.12 6.7 0.035 

DR - L 20 0.29 0.15 0.90 0.64 

DR - H 20 0.30 0.15 0.84 0.66 

RT s N 19 0.70 0.11 10. 0.0055 

RT s L 19 0.83 0.11 3.3 0.19 

RT s H 19 0.79 0.087 0.79 0.67 

Gradient /° N 20 0.023 0.007 2.8 0.24 

Gradient /° L 20 0.018 0.008 1.5 0.48 

Gradient /° H 20 0.015 0.009 1.3 0.52 

 

 

b) Participants remained engaged in both tasks 
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As it is crucial that participants executed both auditory and visual 

tasks concurrently to load their working memory while they 

maintained fixation, we compared their individual reaction times in 

the catch detection task to the same responses shuffled in time. We 

permutated each participant's responses for the no-load practice block 

and experimental blocks over time (1000 permutations per subject 

per block), and used the block's actual jump events to estimate the 

quartile ranges. The mean reaction time per block of each subject was 

significantly lower than the shuffled mean reaction time (Monte 

Carlo permutation, p<0.001, Table 7, comparison 6), confirming that 

the responses were not random at a block level.  

 

The participant's mean reaction time per block for each Sternberg 

stage was calculated as a percentile in the distribution of shuffled 

reaction times in the same stage (Figure 10-J). We found that in all 

stages, the actual mean reaction times were within the 10th percentile 

of the shuffled distribution while in the no load condition most 

participants were in the 0th percentile (Figure 10-K), suggesting that 

they actively carried out the catch detection task in all working 

memory load conditions.  

 

Next, we checked the proportion of Sternberg trials that were 

responded to as opposed to skipped (Figure 11-A). In both and high 

load conditions, participants responded to an average of about 80% 

of trials. As expected, participants responded to significantly fewer 

trials in the high load than in the low load condition (Wilcoxon 

signed-rank, p=0.036, W=23.0, r=0.11), demonstrating their 

engagement in the Sternberg task throughout the experiment. The 

number of correct responses, as a proportion of all trials, was 

significantly lower in the high load than the low load condition 

(paired Student’s t-test, p=0.0022, t(19)=3.5). Taken as a proportion 

of only responded trials, participants were significantly less accurate 

in the high than in the low load condition (Figure 11-B; Monte Carlo 

permutation, p=0.039, Table 7, comparison 7), confirming that the 

decrease in correct responses was not simply due to a decrease in the 

number of responses.  

 

c)  Performing both tasks concurrently led to task 

interference  
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Loading the working memory was significantly detrimental to both 

detection rate (Figure 11-C; Friedman, p<0.001, χ2(2)=24.9; Monte 

Carlo permutation, p<0.001, Table 7, comparisons 8 and 9) and 

reaction time (Figure 11-D; Friedman, p<0.001, χ2(2)=16.5; Monte 

Carlo permutation, p<0.05, Table 7, comparisons 11 and 12) in the 

catch detection task, although there were no differences between 

conditions with working memory load (Table 7, comparisons 10 and 

13). One participant’s reaction time was excluded from analyses due 

to a lack of response in the catch detection task.  

 

 
Figure 11. Behavioural markers of task interference. A) Number of Sternberg trials 

that were responded to or correct, normalised to the total number of trials. B) Paired mean 

difference in the proportion of responded trials that were correct between the low and high 

load conditions. The red, dotted line indicates chance performance. C) The detection rate in 

the catch detection task, and D) The mean reaction time in the catch detection task. E) The 

mean detection rate in the catch detection task per load condition relative to jump size (± 

std), from which F) the mean response gradients are obtained. G and H) The paired mean 

differences in response gradients with the no load condition as baseline.  
  

Jump discretisation (9 bins) revealed that detectability of a jump 

evolves as a function of both its size and the working memory load 

condition. The averaged trend of larger jumps being detected more 

frequently is again seen for all load conditions (Figure 11-E). 

Individual participants’ detection rate per cognitive load condition 

across jump sizes were fitted to linear regressions, with the gradient 

of the fit representing their response gradient. We found that response 

gradients were significantly larger in the no load condition than in 

both the low and high load conditions (Figure 11-F and Figure 11-G 

and Figure 11-H; one-way repeated measures ANOVA, p=0.0016, 

F(2, 38)=7.7; Monte Carlo permutation, p<0.05, Table 7, 

comparisons 14, 15, and 16), implying that working memory load 

leads to a task-specific modulation of performance instead of a 

generic impairment across all jump sizes.  
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d) Eye movements increase when working memory is 

loaded  

 

We then analysed the participants' eye movements and identified 

periods of saccades and fixations from the continuous gaze 

recordings (Figure 12-A and Figure 12-B). We did not observe 

significant changes in gaze fixation areas across the load conditions 

(Figure 12-C; Friedman, p=0.91, χ2(2)=0.18), thus suggesting that 

subjects maintained the position of their gaze regardless of the load 

condition. Blink rates differed between the no load condition and the 

low and high load conditions, although this did not survive 

permutation testing (Friedman, p=0.037, χ2(2)=6.6; Monte Carlo 

permutation, p>0.05, Table 7, comparisons 17, 18, and 19).  

 
Table 9. Distribution characteristics for eye-tracking data. n: sample size; SD: 

standard deviation; K2: D'Agostino-Pearson omnibus normality test statistic; p-value: 

normality test p-value; Fix. area: fixation area; BR: blink rate; FR: fixation rate; MSR: 

microsaccade rate; MSR-R: microsaccade rate during recall for Sternberg task; N; no 

cognitive load; L: low cognitive load; H: high cognitive load. 

Measure Unit Condition n Mean SD K2 
p-

value 

Fix. area px2 N 11 15. 8.1 2.3 0.32 

Fix. area px2 L 11 13. 5.5 2.2 0.33 

Fix. area px2 H 11 15. 9.4 14. <0.001 

BR Hz N 17 0.024 0.025 1.8 0.39 

BR Hz L 17 0.049 0.046 6.5 0.039 

BR Hz H 17 0.042 0.032 4.7 0.096 

FR Hz N 20 0.59 0.40 1.5 0.47 

FR Hz L 20 0.51 0.33 1.2 0.55 

FR Hz H 20 0.42 0.22 2.1 0.34 

MSR Hz N 20 0.42 0.21 2.9 0.24 

MSR Hz L 20 0.59 0.39 0.052 0.97 

MSR Hz H 20 0.51 0.32 0.24 0.89 

MSR-R Hz L 18 0.12 0.14 - - 

MSR-R Hz H 18 0.081 0.095 - - 

 

 We next measured the fixation rate (fixations per second, Hz) across 

conditions and found significantly higher fixation rates in both the 

low and high load conditions compared to the no load condition 

(Figure 12-D and Figure 12-E and Figure 12-F; one-way repeated 

measures ANOVA, p=0.0019, F(2, 38)=7.4; Monte Carlo 

permutation, p<0.05, Table 7, comparison 20 and 21). Moreover, the 

statistical trend, found in reaction times and response gradients, 
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reached significance, with fixation rates being significantly lower in 

the high load than the low load condition (Monte Carlo permutation, 

p=0.023, Table 7, comparison 22). Saccade rate is closely related to 

fixation rate, and there were also significant differences in saccade 

rates between all load conditions (Figure 12-G and Figure 12-H and 

Figure 12-I; one-way repeated measures ANOVA, p<0.001, F(2, 

38)=14; Monte Carlo permutation, p<0.05, Table 7, comparisons 23, 

24, and 25), suggesting that working memory load leads to increases 

in eye movement specific to saccades as gaze drift during fixation, 

measured by fixation area, was unaffected.  

 

 
Figure 12. Eye movements increase in conjunction with demand for working 

memory. A) Examples of labelled gaze trajectories. Both examples show data from a time 

window of 800 ms. B) A 5 s extract from a sample participant's raw gaze positions (x & y) 

in pixels illustrating how it is relatively stable. The highlighted regions indicate movements 

that were labelled as saccades. C) The fixation area in square pixels, with the mean 

normalised shape of all participants' fixations above each working memory condition’s 

column. D) The fixation rates per condition in Hz and E & F) their paired mean differences 

with the no load condition as baseline. G) The saccade rates per condition and H & I) their 

paired mean differences with the no load condition as baseline. J) The paired mean 

difference in saccade rate between the high and low load conditions during the Sternberg 

task's pre-response stage. 
 

 

e) Eye movements increase specifically during memory 

recall  
 

We further analysed the saccade rate depending on the stage of the 

working memory task, as that could provide insight into how 

saccades are modulated in conjunction with working memory 

functions. Specifically, we were interested in how the saccade rate 

changed during the pre-response stage (i.e. when subjects would 

access sequences stored in their working memory). We found that 

despite a decrease in overall saccade rates as reported earlier, during 
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this stage saccade rates were significantly higher in the high load than 

in the low load condition (Figure 12-J; Monte Carlo permutation, 

p=0.02, Table 7, comparison 26). Thus, although subjects fixated 

more consistently in high load compared to low load conditions, the 

increased demand on their working memory induced a greater 

occurrence of saccades when they accessed their working memory. 

  

  

3.3 Conclusions 
 
We hypothesised that saccades contribute to the retrieval of 

remembered information, implying that increased working memory 

load would require more saccadic eye movements. This is of 

particular interest given that oscillations in the theta-band (4–8 Hz) 

have been shown to carry information about working memory items 

through their frequency and phase (Axmacher et al., 2010; O’Keefe 

and Recce, 1993). Moreover, it is known that eye movements, 

especially saccades, aid in inducing phase-resets of theta oscillations 

for working memory both during encoding and recall (Hoffman et 

al., 2013; Jutras et al., 2013). We therefore quantified eye movements 

and behavioural responses of human participants performing a 

working memory task with distinct memory load conditions. 

Simultaneously, they also carried out a perceptual, catch detection 

task where maintaining fixation was useful for sampling visual 

stimuli.  

  

Consistent with previous studies, we found task interference effects 

when participants carried out both tasks concurrently even though the 

stimuli for the tasks were from different sensory modalities 

(Woodman and Luck, 2004). We also showed an uptick in saccade 

rate which is associated with increased working memory load. 

Specifically, we found that participants broke fixation significantly 

more often when their working memory was loaded than when they 

were performing the catch detection task alone. Other eye movement 

measures were unaffected by the working memory load. An increase 

in saccade rate was found between memory load conditions precisely 

during the Sternberg task stage when participants would be accessing 

their working memory—the pre-response stage—suggesting that 

saccades are involved in memory recall.  
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There was behavioural evidence of task interference even though the 

catch detection task did not explicitly require working memory. This 

suggests that the catch detection task had a top-down element that 

competed with the Sternberg task for processing resources, as passive 

maintenance of working memory items was shown to be insufficient 

for task interference (Han and Kim, 2004). This is supported by 

response gradients in loaded working memory conditions being 

significantly smaller than in the no load condition. The difference 

indicates that working memory load affected larger jumps more than 

smaller jumps, as a uniform decrease in performance across all jump 

sizes would lead to negligible changes in response gradients. It 

suggests that top-down signals identify task features that are relevant 

and modulate sensitivity to them when competition for cognitive 

resources reduces what is available for sensory processing (Mathews 

et al., 2015). 

  

While the mean reaction times of participants in the catch detection 

task was significantly quicker than the permuted reaction times, this 

difference was less clear when comparing reaction times of jumps 

occurring within each Sternberg task stage (Figure 10-H). However, 

this is in large part due to the durations of certain stages being very 

short and, therefore, consisting of small sample sizes. With that in 

mind, the low percentiles in all Sternberg task stages combined with 

most participants being consistently in the 0th percentile in the no 

load condition confirm that the participants were not randomly 

reporting jumps even when their working memory was loaded.  

  

It has been shown that top-down inhibitory processes can be impaired 

by working memory load, resulting in less control over reflexive eye 

movements (Mitchell et al., 2002; Walker et al., 1998). It remains 

ambiguous, however, if higher working memory loads reduce the 

effectiveness of saccade suppression from top-down regions or if 

they lead to a greater need for saccadic eye movements to phase-lock 

theta for memory recall. Should top-down suppression apply to all 

eye movements, it would also affect blink rates which are known to 

be proportionally modulated by working memory load (Chen and 

Epps, 2013; Veltman and Gaillard, 1998). While fatigue has been 

shown to affect blink rates (Stern et al., 1994), it is an unlikely 

confounding factor as the load condition presentation was 

randomised in the present study. Indeed, participants did not exhibit 

any clear differences in blink rates between working memory 
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conditions when evidence from literature points to it increasing with 

load, suggesting that top-down inhibitive suppression of eye 

movements did not change significantly across conditions. If that is 

the case, it supports the hypothesis that the pre-response stage’s 

elevated saccade rate in the high load compared to the low load 

condition (Figure 12-J) is due to a greater elicitation of saccades 

rather than a reduced ability to suppress them.  

  

The results support the hypothesis that the Validation Gate inhibitory 

mechanism is generalisable to visual features other than spatial 

location. It also suggests that saccadic eye movement is an integral 

part of working memory. Mechanistically, the reported results here 

highlight a potential solution to a crucial aspect of oscillatory 

representation in working memory—that it must be sustained even in 

the absence of the external stimuli it represents. Eye-movements aid 

in eliciting oscillatory phase-locking to overcome the lack of 

externally-driven stimulation to maintain and recall the embedded 

items’ information. In most related experiments, eye movements are 

necessary to the task, which confounds the purpose of the saccadic 

activity that they observed. Here, we have demonstrated that saccades 

do also contribute to functions separate from active sensing and that 

they are provoked by these functions even when eye movements are 

suppressed in general.  
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4. THE NEURAL SUBSTRATE OF SELECTIVE 
ATTENTION 
 

Early research in selective attention used a spotlight metaphor to 

describe the top-down biasing of sensory processing, with sensory 

information within the moveable beam being processed while 

everything outside of it is not. It implies that spatial attention is 

limited in size and can be shifted within the visual field. This 

spotlight model of attention (Eriksen and Hoffman, 1972; Posner et 

al., 1980), along with its successor the zoom-lens model (Eriksen and 

James, 1986), opened experimental paradigms which have led to the 

understanding that top-down processes can bias sensory processing 

by predicting regions or objects of interest and increasing sensitivity 

to them (Itti and Koch, 2001; Reynolds and Heeger, 2009). Exactly 

how the two processes interact, however, remains a point of 

discussion that is relevant to multiple fields, including robotics and 

neuroscience. 

 

A number of models of attention have been proposed with varying 

degrees of biological detail (e.g. Borji and Itti, 2013; Moore and 

Zirnsak, 2017). A mainstay of bottom-up attention modelling is the 

saliency map, which defines locations of interest in perceptual space 

in terms of the presence of sensory features, such as orientation, 

colour and brightness (Itti et al., 1998). The saliency map as a 

representation of bottom-up attention remains influential till today 

(e.g. Murray et al., 2011), and is also the main interface for top-down 

and bottom-up attention in most models. Models of top-down 

attention need to contend with the challenge of guiding perceptual 

processing irrespective of the dominance of the various bottom-up 

features. In visual search, this often takes on some form of the biased 

competition model, which describes how neuronal response to 

simultaneously-presented stimuli is a weighted average of the 

individual response and explains selective attention as the biasing of 

these weights towards attended or task-relevant stimuli (e.g. Usher 

and Niebur, 1996). One prominent example is the attention 

normalisation model where a feedforward stimulus drive is 

modulated by an inhibitory suppressive drive comprising the 

presence of non-preferred stimuli, which normalises the population 

response to the stimuli (Reynolds and Heeger, 2009). To counter this 
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averaging effect, a top-down attention field enhances activity of 

neurons that represent task-relevant stimuli. Although the model was 

proposed to account for attentional effects at the single-neuron level, 

it has also been extended through experiments to the neuronal-

population level (Reddy et al., 2009). 

  

Biased saliency maps have also been used to locate targets by 

dynamically adjusting the tuning of multi-scale salience maps by 

exploiting the known features of preferred stimuli (Navalpakkam and 

Itti, 2006). The classic Adaptive Resonance Theory describes how 

the brain attends and learns from stimuli, where attentional focus is a 

manifestation of a resonant state that emerges from the matching of 

expected and encountered stimuli (Grossberg, 2013, 1987). The more 

recent rise in accessibility and popularity of machine learning has 

seen its adoption in the implementation of attention models as well, 

especially in the field of computer vision. In one such 

implementation, the targets of selective attention could be learned in 

a so-called visual dictionary by a layered neural model through 

supervised training (Yang and Yang, 2017). 

 

The guiding principle behind most models is to identify task-relevant 

stimulus features and to amplify activity representing them such that 

it overshadows activity for other features, which are assumed to be 

task-irrelevant. This functions well in situations where task-relevant 

features are known, which is the case for the typical visual search 

task paradigm that has been one of the most long-standing 

benchmarks for the performance of attention models (e.g. Mirza et 

al., 2019). On the flip side, there are situations where task-relevant 

stimuli or features are not clearly defined or predictable. In these 

cases, top-down inhibition of more predictable task-irrelevant stimuli 

or features would be more practical, as demonstrated in previously 

mentioned psychophysical studies (e.g. Chabris et al., 2011). Indeed, 

it was shown that when searching for an object based only on its 

identity, saccadic reaction time was significantly faster when the 

target object was both identity- and colour-matched than when it was 

only identity-matched (Foerster and Schneider, 2018), suggesting 

that task-irrelevant information biases top-down attention even in 

typical search tasks. 
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Neurophysiological studies have elucidated a potential model of such 

an inhibitory mechanism in the brain, based on the connections 

between the frontal cortices and the thalamic reticular nucleus 

(Barbas, 2000; Behrens et al., 2003; Zikopoulos and Barbas, 2012). 

There is also experimental evidence for a thalamocortical pathway 

for such a mechanism as opposed to a corticocortical one, notably 

through thalamocortical manipulation in mice during a cross-modal 

attentional task (Wimmer et al., 2015). The authors showed that 

activity in the mice’s visual thalamic reticular nucleus was predicted 

by the task-relevant modality and was dependent on prefrontal cortex 

activity. It supports the idea that top-down attentional modulation can 

be inhibitory and the physiological model described by Zikopoulos 

and Barbas (2006) is again supported by another study that 

demonstrated the modulation of thalamic reticular neurons by shifts 

in attention (McAlonan et al., 2006). Furthermore, the prefrontal 

cortex's mediation of sensory processing has been found as early in 

the processing stream as the lateral geniculate nucleus (O’Connor et 

al., 2002) and top-down attention has been argued to anticipatorily 

modulate sensory processing, also known as signal-suppression 

(Gaspelin et al., 2015), as distractors elicited similar response 

latencies and behavioural performance in a visual attention task, 

regardless of their bottom-up saliency (Cosman et al., 2018). Another 

study also found that the chemogenetic silencing of corticostriatal 

neurons in rats’ prefrontal cortex did not affect attentional parameters 

even when it reduced proactive inhibitory control (Terra et al., 2020), 

suggesting that while corticocortical pathways do play a role in 

inhibitory behavioural control it may be for a specific subset of 

behaviours rather than for attentional functions. 

 

The aim of this study was thus twofold: firstly, to examine how the 

model performed attentional tasks which can later be extended to 

real-world applications and, secondly, to provide insight on the 

neural substrate that underlie the model as one of the mechanisms of 

selective attention in the brain. To do so, we analysed a model of the 

thalamocortical system comprising spiking neurons. We showed that 

the prefrontal cortex can flexibly inhibit the activity of neurons in a 

task-dependent manner. Through the active, anticipatory top-down 
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manipulation of inhibitory receptive fields (RFs) in the sensory 

cortices, our model selected task-relevant stimuli even in the 

presence of more salient distractors. In addition, the observed 

changes in the firing pattern of the simulated thalamic neurons reflect 

pertinent responses observed in the mammalian brain by Mease et al. 

(2014). Our results showed how the strength of the corticothalamic 

connection modulates the neural responses of the thalamic relay 

nucleus, with implications from the proposal that neuronal firing 

patterns are behaviourally functional (e.g. Bezdudnaya et al., 2006; 

Grossberg and Versace, 2008; Yu et al., 2009). 

 

 

4.1 Methods 
 

The model was implemented following the general blueprint of the 

thalamocortical visual processing hierarchy, with neuronal 

populations roughly corresponding to brain regions, but its principles 

can be applied to any of the sensory modalities. Information from the 

retina projects to the lateral geniculate nucleus followed by the 

primary visual cortex (van Essen and Maunsell, 1983), the lateral 

geniculate nucleus being the visual sensory stream's specific thalamic 

nucleus. The primary visual cortex has reciprocal connections to the 

pulvinar, which is the visual non-specific thalamic nucleus. In this 

study, we used a simplified version of the feed-forward connections 

found between the higher-order visual cortices and the pulvinar 

(Sherman and Guillery, 2002). 

 

Sensory information eventually reaches the frontal cortex, which 

provides the top-down signal given its established part in executive 

functions, including selective attention (e.g. Dedoncker et al., 2016; 

Ridderinkhof et al., 2004; Zanto et al., 2011), and retinotopic 

organisation similar to the thalamic nuclei, albeit in lower resolutions 

(Kastner et al., 2007; Mikami et al., 1982). It has projections back 

into the thalamus and the thalamic reticular nucleus (Barbas, 2000; 

Behrens et al., 2003). The thalamic reticular nucleus has extensive 

inhibitory connections to the thalamus (Deleuze and Huguenard, 

2006; Guillery and Harting, 2003), including the pulvinar for visual 

information, thus closing the loop and providing a means for top-

down-driven inhibitory modulation of sensory processing. 
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a) Network-level description 
 

The model was implemented in Python (Rossum, 1995) using a 

spiking neural network adapted from van Wijngaarden et al. (2016) 

and visualised in Figure 13-A. It had a population loosely 

representing the primary visual cortex, from which we derived the 

saliencies of represented features from local firing rates within the 

population. Other populations represented the thalamic reticular 

nucleus (TRN), the specific (SP) and the non-specific thalamic nuclei 

(NSP), with connections based on Guillery (1995) and Jones (2002). 

The thalamic populations corresponding with the thalamic relay 

nuclei consisted of 100 excitatory neurons each, and the thalamic 

reticular nucleus’ population had 100 inhibitory neurons. The 

sensory cortical population had 800 excitatory (SE) and 200 

inhibitory (SI) neurons, modelled as quadratic integrate-and-fire cells 

(Izhikevich, 2003). Spiking neurons were used as it allowed us to 

gain insight into the changes in spiking patterns caused by the 

interacting regions. 

 

The modelled prefrontal cortex (PFC) was a mean-field 

approximation (Figure 13-B) from an established biophysically-

based binary decision-making model (Wilson and Cowan, 1972). 

This reduced unnecessary complexity in the model while effectively 

implementing a decision-making mechanism, as the current study is 

interested in the thalamocortical interaction leading to selective 

attention rather than the decision-making mechanism of top-down 

attention. The two strategies for PFC→TRN excitation were chosen 

to be either goal-oriented or not, relative to the tasks found in 

Experimental Configuration. In one task (target detection), the 

prefrontal cortex received input from the non-specific nucleus. The 

projection had a probability of 0.8 per spike to introduce stochasticity 

to the model. In the other task (oddball detection), the prefrontal 

cortex received input from the sensory cortex as that allowed for 

orientation representation. Each projected spike to the prefrontal 

cortex contributed to the activity of a decision pool in the mean-field 

model, given by the linear equation Eq. 3, depending on its task-

related characteristic.  
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Figure 13. Model architecture. A) The different populations of spiking neurons used in 

the model, with blue representing inhibitory connections and red representing excitatory 

ones. SP: specific nucleus; NSP: non-specific nucleus; TRN: thalamic reticular nucleus; 

Exc: sensory cortex excitatory neurons; Inh: sensory cortex inhibitory neurons; PFC (exc): 

mean-field model of the prefrontal cortex. The numbers beside the arrows indicate the 

connectivity pattern of that connection. Further clarification is available in Tables 1 and 2. 

B) Visualisation of the connection PFC→TRN, with associated strategies based on the target 

detection task. The green rectangles are example NSP neurons that were active in the 

previous time step, contributing to the input, λ, of the pools depending on their position. The 

mean-field model is thus biased by the NSP’s activity to select either (1) a goal-oriented 

pattern or (2) a pattern typical of PFC→TRN connections. C) An example of how the SP 

and NSP is stimulated by a peripheral current, with the red regions indicating the neurons 

stimulated. Here, the input is of two stimuli of widths 20 and 40 neurons each.  
 

The decision pools represented the competing strategies for top-down 

excitation of the thalamic reticular nucleus. 

 
 
𝜆𝑗   =  

𝜙𝑢𝑝𝑝𝑒𝑟   −  𝜙𝑙𝑜𝑤𝑒𝑟

Φ
  ×  𝑁𝑗   +  5 

Eq. 3 
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Where λj is the activity of decision pool j in spikes/s, ϕupper and ϕlower 

are the upper and lower limits for the pool's activity for competition 

(Marcos et al., 2013), Φ is the experimentally determined highest 

spiking rate of the population (=75 spikes/s) and Nj is the sum of 

spikes from neurons associated with the decision pool. 

 
Table 10. Connection parameters for the target detection task. The connection type 

was either excitatory (+) or inhibitory (−), with values based on van Wijngaarden et al. 

(2016) and Proske et al. (2011). Values in brackets in the ‘connectivity’ column represent 

the probability of connections. Input: peripheral input; SP: thalamic specific nucleus; NSP: 

thalamic non-specific nucleus; TRN: thalamic reticular nucleus; SE: excitatory neurons in 

sensory cortex; SI: inhibitory neurons in sensory cortex; PFC: mean-field model of 

prefrontal cortex.

 From To Type gs (mS) Connectivity τs Delay (ms) 

Input SP + 0.005 1:1 10 0 

Input NSP + 0.005 1:1 10 0 

SP TRN + 0.018 1:1 10 3 

TRN SP − 0.35 1:1 75 3 

TRN NSP − 0.18 1:1 75 3 

NSP TRN + 0.015 1:many (0.15) 10 3 

SE TRN + 0.002 8:1 7 7 

SE SP + 0.007 8:1 7 7 

SE NSP + 0.002 8:1 7 7 

SP SE + 0.002 1:8 7 7 

SP SI + 0.002 1:2 7 7 

NSP SE + 0.8 1:8 7 7 

NSP SI + 0.8 1:2 7 7 

SE SE/SI + 0.3 random 0 0 

SI SE/SI − 1.0 random 0 0 

PFC NSP + 0.005 1:1 (0.8) 7 7 

PFC TRN + 0.03 varied 7 7 

NSP  PFC + N/A 1:1 (0.8) N/A 3 

 

The winning decision pool engaged its associated connectivity matrix 

to the thalamic reticular nucleus semi-deterministically by exciting 

selected thalamic reticular nucleus neurons with a probability of 0.8. 

The prefrontal cortex also reciprocally excited the non-specific 

nucleus but did not connect to the specific nucleus at all (Zikopoulos 

and Barbas, 2006). The connectivity matrices were organised to 

reflect the nature of the tasks—spatially-ordered or orientation-

preferring—rather than with a fixed random probability, and are 

further elaborated on in later sections. 
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Table 11. Connection parameters for the oddball detection task. The connection type 

was either excitatory (+) or inhibitory (−), with values based on van Wijngaarden et al. 

(2016) and Proske et al. (2011). Values in brackets in the ‘connectivity’ column represent 

the probability of connections. The weights of the connections are significantly lower than 

in the 1D task because of the increase in number of connections in the 2D task. Input: 

peripheral input; SP: thalamic specific nucleus; NSP: thalamic non-specific nucleus; TRN: 

thalamic reticular nucleus; SE: excitatory neurons in sensory cortex; SI: inhibitory neurons 

in sensory cortex; Mock PFC: model of prefrontal cortex.

 From To Type gs (mS) Connectivity τs Delay (ms) 

Input SP + 0.005 1:1 10 0 

Input NSP + 0.005 1:1 10 0 

SP TRN + 0.018 1:1 10 3 

TRN SP − 0.35 1:1 75 3 

TRN NSP − 0.18 1:1 75 3 

NSP TRN + 0.015 1:many (0.15) 10 3 

SE TRN + 0.0067 19:1 7 7 

SE SP + 0.0023 19:1 7 7 

SE NSP + 0.0067 19:1 7 7 

SP SE + 0.00011 1:24 7 7 

SP SI + 0.00011 1:6 7 7 

NSP SE + 0.039 1:24 7 7 

NSP SI + 0.039 1:6 7 7 

SE SE/SI + 0.3 random 0 0 

SI SE/SI − 1.0 random 0 0 

PFC NSP + 0.005 1:1 (0.8) 7 7 

PFC TRN + 0.07 varied 7 7 

NSP  PFC + N/A 1:1 (0.8) N/A 3 

 

When spatially organised, the excitatory connection of the NSP → 

SE and SP → SE was changed from a 1:many connection to a 1:24 

connection. The ratio was chosen to approximate the number of 

connections in van Wijngaarden et al. (2016). This implies that 

neurons do project to overlapping areas, but maintains the average 

level of excitation that would have occurred in the original 

connection. For the same reasons, the connection of TRN → NSP 

was changed from 1:many to 1:1. 

 

When the cortical receptive fields were organised such that the 

neurons were orientation-selective, it led to significantly more 

connections than in the case of van Wijngaarden et al. (2016) or the 

spatially organised population. Hence, the weights of the connections 

between the SP, NSP and SE were reduced to elicit approximately 

the same volume of spiking response to a stimulus in the spatially 

organised case. 
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The input to the network was held constant over the exposure 

duration, which could differ from the experimental duration 

depending on the experimental protocol, and is defined by a 

peripheral current which can influence specific neurons. For 

example, Figure 13-C illustrates the effect of a two-part stimulus 

exciting neurons 10–30 and 50–80. The magnitude of the current is 

5.0 µ F/cm2. 

 

 

b) Neuron-level description 
 

The thalamic neurons had characteristic membrane properties which 

included polarisation-dependent inactivation of T-type Ca2+-

channels, allowing the production of low-threshold calcium spikes 

under hyperpolarised conditions (burst). The neurons were single-

compartment cells which changed their membrane potentials 

depending on an input current, Iin, a calcium current, IT, and a 

constant conductance leak current, IL, as described by Eq. 4. 

 

 𝐶
𝑑𝑉

𝑑𝑇
= 𝐼𝑖𝑛 − 𝐼𝑇 − 𝐼𝐿 Eq. 4 

The slow variable, h, modelled the release of the inactivation of these 

calcium currents in a variation of the classical conductance-based 

leaky integrate-and-fire dynamics (Smith et al., 2000). It became zero 

at depolarised levels when V > Vh and approached unity in 

hyperpolarised conditions, given the time constants 𝜏-
h and 𝜏+

h (Eq. 

5 and Eq. 6).  

 
 𝐼𝑇 = 𝑔𝑇𝑚∞ℎ(𝑉 − 𝑉𝑇) 

Eq. 5 

 

𝑑ℎ
𝑑𝑡⁄ =  

{
 
 

 
 −ℎ

𝜏ℎ
−   (𝑉 >  𝑉_ℎ)

1 − ℎ

𝜏ℎ
+   (𝑉 <  𝑉_ℎ)

 
Eq. 6 

 

Meanwhile, the input current, Iin, was dependent on the excitatory 

current, gE, which was additive, and the inhibitory current, gI, which 

was subtractive (Eq. 7). The summation over the multiplication of the 

connectivity matrix, Wij, with a dichotomous spiking vector, sj, 

simulated spiking neurons (Eq. 8). The connectivity matrix, Wij, 
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describes both the binary state of connectivity between a neuron and 

another, either within a population or in another population, and the 

weight of that connection (Table 10 and Table 11). For example, if 

neuron i is a neuron in the TRN population that connected to neuron 

j, a neuron in the SP population, the weight of its connection is 0.35. 

 

 𝐼𝑖𝑛 = 𝑔𝐸(𝑉 − 𝑉𝐸) − 𝑔𝐼(𝑉 − 𝑉𝐼) 
Eq. 7 

 
𝑑𝑔𝐸/𝐼

𝑑𝑡
=
−𝑔𝐸/𝐼

τ𝐸/𝐼
+ 𝐾𝐸/𝐼∑𝑊𝑖𝑗

𝑁

𝑗=1

𝑠𝑗 
Eq. 8 

 

𝑑𝑣

𝑑𝑡
= 0.04𝑣2 + 5𝑣 + 140 − 𝑢 + 𝐼 Eq. 9 

 
𝑑𝑢

𝑑𝑡
= 𝑎(𝑏𝑣 − 𝑢) 

Eq. 10 

 

Once a thalamic neuron reached the threshold Vo, it was considered 

to have spiked and its membrane potential was immediately reset to 

Vreset. All thalamic neuron parameters can be found in Table 12. 

Concurrently, the membrane potential, v, and state variables, u, of the 

sensory cortex's integrate-and-fire neurons are updated according to 

Eq. 9 and Eq. 10. 

 

They were considered to spike when the individual cell's membrane 

potential, v, reached a threshold of 30 mV. After a spike is emitted, v 

was reset to c and u was set to (u + d), thus capturing post-spike 

repolarisation. The parameters a, b, c, and d were chosen to produce 

behaviour similar to regular spiking neurons and were described in 

Table 13. The parameters for thalamic neurons were tuned to elicit 

spiking behaviour that agreed with electroencephalography data from 

healthy subjects, such as the dominant α-peaks, and to ensure that the 

thalamic nuclei at resting-state fired within physiological ranges 

while the SP still received predominantly from peripheral input. 

Without any influence from other, higher-cognitive, regions, purely 

bottom-up driven cortical spiking reflected the input stimuli. 
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Table 12. Thalamic neuron parameters. These parameters were used in all simulations 

and are based on Smith et al. (2000) and Proske et al. (2011).

 Parameter SP NSP TRN 

Size 100 100 100 

kE 1 1 1 

kI 0.1 0.1 0.1 

Vo (mV) -35 -35 -35 

Vreset (mV) -50 -50 -50 

VL (mV) -65 -65 -65 

VE (mV) 0 0 0 

VI (mV) -85 -85 -85 

VT (mV) -66 -66 -64 

C (µF/cm2) 2 2 2 

gL (mS/cm2) 0.035 0.035 0.035 

gT (mS/cm2) 0.07 0.07 0.07 

τh
− (ms) 20 20 40 

τh
+ (ms) 100 100 100 

 
Table 13. Cortical neuron parameters. These parameters were used in all simulations 

and model regular spiking neurons as recommended by Izhikevich (2003).

 Parameter Excitatory Inhibitory 

Size 800 200 

a (ms) 0.02 0.02 + 0.08r 

b (ms) 0.2 0.25–0.05r 

c (mV) –65+15r2 –65 

d (mV/ms) 8–6r2 2 

r=random variable, uniformly distributed between 0–1 for each neuron 

 

 

c) Mean-field model 
 

Two decision pools based on the standard mean-field approximation 

of integrate-and-fire neurons were used in both tasks (Wilson and 

Cowan, 1972). Their activity is governed by Eq. 11. 

 
 
𝜏
𝑑𝑈𝑗(𝑡)

𝑑𝑡
= −𝑈𝑗(𝑡) + 𝑓(𝜔𝑗+𝜆 + 𝜆𝑗 + 𝜆𝐶𝐿 + 𝜔+𝑈𝑗 − 𝜔−𝑈𝑖)

+ 𝜎𝜉(𝑡) 
Eq. 11 

Where Uj is the average firing rate of the pool j, ω are the weights of 

the connections, all λ are the external inputs to the network, except 

for λCL which is the additional activation due to cognitive load, and 

the sigmoidal function f(.) is described by Eq. 12. 
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𝑓(𝑥) =

𝐹𝑚𝑎𝑥

1 + 𝑒
−(𝑥−𝜃)

𝑘

 Eq. 12 

Where Fmax is the saturation point of the network, regardless of 

external input. In the simulations, apart from λj, which is given by Eq. 

3, the constants are as follows: Fmax=1.5 spikes/s, 𝜏 =20 ms, ω-= 

ω+=1, ωj+=0, λ =0, σ=0.1 spikes/s, k=0.4, θ=4.44 spikes/s, dt=0.1 s. 

 

 

d) Experimental configuration 
 

To test the model, we first employed a classical target detection task 

where participants were asked to report stimuli appearing within a 

defined region of interest (ROI), and ignore those appearing outside 

of it (distractors). In terms of performance, we considered detection 

successful when the activity of the target-specific neurons exceeded 

that of neurons driven by distractors. As the neuron populations in 

this task were spatially organised, injecting a constant peripheral 

current to subgroups of neurons was equivalent to a stimulus 

appearing in their receptive fields. Both the target and the distractors 

could take on various sizes in terms of the number of neurons' 

receptive fields that it spanned (e.g. Figure 13-C) and specifics for 

each simulation can be found in Table 14 as well as in the description 

of the analyses carried out. A single timestep in the simulation was 1 

ms and the ROI corresponded to the first 25% of the input space. 

  

In this task, a goal-oriented strategy would be to excite all the 

thalamic reticular neurons outside of the ROI such that distractors 

would be suppressed. The non-goal-oriented strategy was a reverse 

ricker wavelet around stimuli for surround-suppression (Figure 13-

B), where neurons with receptive fields neighbouring the stimulus 

were excited as a non-linear function of their distance to the stimulus. 

 

The second task used was an oddball detection task. The model was 

presented with a black line rotating at a constant rate (4 different 

orientations to complete a full cycle) on a white background (Figure 

15-A, top row). The changes occurred at 1.3 Hz, with the presentation 

of each orientation lasting 750 ms. An oddball stimulus was one that 

was inconsistent with the established rate of change; this is referred 

to as a jump. For example, if rotation was clockwise at a rate of one 

orientation per frame and the last orientation was 90 °, a jump would 
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be a change to either 0 ° or 135 °. Each trial lasted 23 cycles of the 4 

orientations and had 10 jumps, leading to an experimental duration 

of 69 s. Oddball trials were pseudorandomised to ensure that they do 

not occur in the first two changes of the trial and had at least two 

regular transitions between them to re-establish the rate of change. 

 
Table 14. Simulation parameters. If the parameter is a range of values, it is summarised 

as R(start, stop, step size). Both start and stop values are inclusive. RN: Reinitialised neurons 

after each trial; Size: distractor size in terms of the number of cortical neurons’ receptive 

field that it spans; PFC: prefrontal cortex; TRN: thalamic reticular nucleus.

Task RN Time 

(ms) 

Size (cortical 

neurons) 

Noise Cognitive 

load 

PFC →TRN Figure 

1D Yes 500 R(0, 400,80) 0 0 0.05 Figure 

14-B 

1D Yes 500 320 R(0, .9, .1) 0 R(0, .024, .004) Figure 

14-C 

1D Yes 1000 R(80, 400, 80) 0 R(0, 1, .2) 0.03 Figure 

14-D 

1D Yes 500 320 R(0, .9, .1) R(0, 1, .2) 0.05 Figure 

14-E 

1D No 500 320 0 0 R(0, .018, .003) Figure 

16-B, 

Figure 

16-C 

2D Yes 750 N/A 0 R(0, 1, .1) 0.005 Figure 

15-C, 

Figure 

15-D 

 

One timestep in the simulation was 1 ms. As with the target detection 

task, the cortical population peak, after filtering, was indicative of the 

model's selection, but in this case, it was an orientation rather than a 

spatial location. The task required the detection of orientations that 

did not follow the rate of change. A goal-oriented method of 

inhibiting thalamic input would thus be to inhibit the neurons 

sensitive to orientations that were consistent with the rate of change. 

Conversely, a non-goal-oriented method would be to suppress 

neighbouring orientations for stable representation of the current 

orientation. 

 

 

4.2 Results 
 

a) Performance in attentional tasks 
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1-Dimensional target detection 

In our analyses, we used the spikes of each neuron summed over time 

to determine the local population response to stimuli. A stimulus 

would accumulate spikes in the local population that encodes for its 

position, leading to a local peak value approximating the stimulus' 

location. The data was passed through a forward-backward low-pass 

filter with a sampling frequency of 800 Hz and a cut-off frequency of 

6 Hz to obtain a population signal. The population peak is considered 

the stimulus that the model ‘attends’ to, reflecting the principle that 

an attended stimulus is indicated by more neural activity than 

unattended stimuli. Figure 14-A illustrates the excitatory cortical 

response to two presented stimuli over time for a representative trial. 

The highlighted areas in the raster plot are the receptive fields where 

stimuli were presented to the model, the number of covered neurons 

being the size, or width, of the stimulus. The areas span the entire 

duration of the trial as the stimuli positions were held constant over 

time. The number of peaks in the local population response (Figure 

14-A, right) echoes the number of stimuli in the input and shows that 

the stimulus centred at neuron position 600 occupied a larger 

receptive field than the other stimulus at neuron position 180. 

Generally, the difference in peak magnitudes between two stimuli 

increased with their size difference. 

 

As the prefrontal cortex excited both the non-specific nucleus and the 

thalamic reticular nucleus, it not only increased the spiking frequency 

for stimuli within an ROI but also indirectly inhibited task-irrelevant 

regions. The activity in the sensory cortex was thus modulated by 

interference from the prefrontal cortex such that sensitivity was 

reduced outside of this ROI but increased within it. This allowed top-

down influence to modulate cortical response to favour target stimuli 

even in the presence of distractors that have more bottom-up saliency. 
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Figure 14. Performance and neuronal responses in a target detection task. A) An 

example of the sensory cortical neurons' response to external stimulation. On the left is a 

raster plot of each neuron spiking. The highlighted regions indicate when the peripheral 

stimulation is active and the sensory cortical neurons which are indirectly excited by the 

stimulation. On the right, the total number of spikes over the stimulation duration per neuron 

(blue), and its smoothed signal (orange). B) The solid lines are the mean Euclidean distance 

from the ideal sensory cortical response, when no distractor is present, with the shaded area 

being their standard deviation. The points are the corresponding false negative rates (FNR), 

with a slight, random offset along the x-axis so they do not overlap. C) The ROC curve 

obtained by varying environmental noise and PFC→TRN connection weight. Increase in 

noise does not modulate much the TPR, but does increase the FPR such that it approaches 

chance-level. The greater the weight of the PFC→TRN connection, the better the model is 

able to perform the task as shown by an improvement in TPR. D) The mean FNRs, each of 

$30$ models, are shown as solid lines while their standard errors are the shaded regions. 

There is a trend of a higher FNR with greater CL, but there is no clear separation until the 

distractor size is at least double the target. E) The more opaque the point, the greater the 

environmental noise presented during simulations. Again, noise affects the FPR but not 

particularly the TPR. There is a slight trend of decreasing TPR with increased CL. 
 

To quantify this effect, the network was exposed to two static stimuli 

for 50 trials. The distractor stimulus could be one of five different 

widths, from 80 to 400 cortical neurons, while the target stimulus, 

situated in the ROI, was always 160-neurons wide. The distractor 
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sizes simulated were restricted by the available input space, after 

including gaps, each equivalent to the receptive field of at least 80 

sensory cortical neurons, at the edges and between both stimuli. A 

synaptic weight of 0.05 was chosen for the PFC→TRN connection 

as it was found to consistently perform the task. The mean sensory 

cortical filtered output to a target in the absence of distracting stimuli 

was used as the ‘ideal’ response of the network. The network's error 

was measured as the Euclidean distance of each trial's cortical filtered 

output to this ideal response. The resultant means are plotted as solid 

lines in Figure 14-B, while the shaded regions are their standard 

deviations. Distractor size is measured by the number of sensory 

cortical neurons it stimulated indirectly. 

 

At the same time, the corresponding false negative rate (FNR), the 

probability of the sensory cortical signal producing a population peak 

at the distractor's position when there is a target, for each condition 

was calculated. The false negative rate was a direct measurement of 

the model's ability to perform the task, while the Euclidean distance 

measured how aggressively the model suppresses the distractors. We 

observed that the model managed to maintain a low false negative 

rate for all tested distractor sizes, always performing better than 

chance although the performance depended on the size of the 

distractor. 

 

That the Euclidean distance to the ideal output increased with 

distractor size even with prefrontal cortex’s influence reflects how 

the activity representing the distractor is reduced sufficiently to allow 

the target to win in the competition between stimuli, but is not 

completely silenced. Nonetheless, the prefrontal cortex’s inhibitive 

influence is weakened by increasing bottom-up saliency of the 

distractor as the false negative rate approached chance level for the 

largest distractor sizes. 

 

To better understand how the weight of the PFC→TRN connection 

affected performance and robustness to environmental noise, 

simulations were run on a range of values for noise and weight (Table 

14) when there were both a target and a distractor present as well as 

when there was only a distractor. Each condition was run 50 times, 

with the model reinitialised each time. Noise was the probability that 

a neuron was excited by an externally generated input regardless of 

the actual peripheral input, within a range of 0 to 1. When the 
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probability was 0, the network received input that is purely due to the 

peripheral input; at a probability of 0.9, each neuron almost certainly 

was excited by a signal indistinguishable from the peripheral input. 

To be consistent with how the peripheral input was presented to the 

network, the noise pattern was static over time, although it was 

randomly re-generated at the start of each trial. For each trial, there 

were two ways to make an accurate classification: 

• Attending to a stimulus in the ROI when there was indeed a 

target stimulus, a true positive 

• Attending to a stimulus outside of the ROI when there was no 

target stimulus, a true negative 

The resultant classification over multiple trials by the model on the 

presence of a stimulus in the ROI was recorded and the false (FPR) 

and true positive rates (TPR) were calculated using the standard 

equations Eq. 13 and Eq. 14. 

 

 𝑇𝑃𝑅 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 Eq. 13 

 𝐹𝑃𝑅 =
𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 Eq. 14 

 

These are plotted as the receiver operating characteristic (ROC) curve 

in Figure 14-C. Each line represents the performance of the model 

with a specific PFC→TRN synaptic weight, and a greater opacity of 

the dot represents a larger noise probability. As the probability of 

noise increased (0 to 1 with 0.1 increments), performance dropped 

almost to chance level (closer to the dotted identity line). At lower 

connection weights, the network barely performed the task, reaching 

true positive rates of chance-level or below. This was because the 

lower the weight of the connection, the more it relied on bottom-up 

representations and performed with less ‘awareness’ of its task. 

  

One of the functions of selective attention was to optimally direct 

cognitive resources to relevant stimuli due to a mismatch in number 

of possibly attended stimuli and available resources to process them. 

Cognitive load (CL) was thus introduced as additional activity in the 

decision-making mean-field model (λCL in Eq. 11), affecting both 

decision pools equally and could range from 0 to 1. 30 models were 

initialised per condition (distractor size vs cognitive load) and 

presented with the same target and distractor combination 20 times. 

A weight of 0.03 was chosen for the PFC→TRN connection to 
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remain in the region of consistent behaviour relative to the task as 

shown earlier in Figure 14-C. 

 

The distractor size was described as the number of sensory cortical 

neurons whose receptive fields are indirectly stimulated by the 

distractor. Each presentation lasted 1s and there was a 100ms interval 

between presentations, allowing for a false negative rate per model 

per condition. This provided mean false negative rates for all the 

models across conditions, which are shown as solid lines in Figure 

14-D while their standard errors are the respective shaded areas. The 

dashed red line shows the size of the target used in all the simulations. 

Without any cognitive load, the model barely missed the presence of 

the target regardless of distractor size, maintaining a false negative 

rate of close to 0. The false negative rate increased with cognitive 

load, although the separation in false negative rate between 

conditions with some level of cognitive load and when there is 

absolutely no cognitive load only becomes distinct when the 

distractor was at least double the size of the target (distractor ≥ 320 

neurons). 

  

To test the model's response to cognitive load in the presence of 

environmental noise, we used a protocol similar to Figure 14-C, this 

time across a range of noise and cognitive loads instead of noise and 

connection weights. Again, the opacity of the point is indicative of 

the noise probability, which can be found in Table 14. The weight of 

the PFC→TRN connection was maintained at 0.05 as it was capable 

of consistently carrying out the task. As with connection weight, an 

increase in noise probability increased the false positive rate without 

affecting the true positive rate much, which remained relatively high 

regardless of cognitive load level Figure 14-E. 

 

The results therefore suggest that noise made overall discrimination 

of the stimuli less reliable—either in identifying their positions or in 

recognising spaces between the stimuli—which was reflected by a 

marked increase in false positive rate. Cognitive load, on the other 

hand, reduced the model's ability to actively inhibit the distractor 

leading to an increase in false negative rate. This was further 

emphasised by increasing noise levels leading to a decrease in trough 

magnitude, as a percentage of the global peak magnitude (linear 

regression: p<<0.05, r=-.75). In other words, the dip in spikes 
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between the stimuli beame less distinct with more noise. This effect 

is not found for increasing CL (linear regression: p=0.96, r=-0.0031). 

 

 

2-Dimensional oddball detection 

The model was extended to a dynamic, 2D stimulus to demonstrate 

its functionality in a more complex scenario. The same concept of 

global peaks to determine stimulus selection was now used to select 

one of four orientations instead of a spatial location (Figure 15-A). 

The stimulus elicits spikes in the thalamic nuclei as well as the 

sensory cortical population at every time step. To obtain a 

classification of the stimulus' orientation at a time point, the sensory 

cortical activity was summed over a window of the most recent 

activity and the filtered signal provided a global peak from which an 

orientation could be decoded. As a buffer to noise within the system, 

which was separate from environmental noise and cognitive load, the 

‘reported’ orientation from the network was the mode of the decoded 

orientations across a time window that ended at the current timestep. 

  

To determine the appropriate range of window lengths, thirty 

simulations were run where the stimulus' orientation is fixed, each 

750 ms long. A sliding window of varying lengths (Table 14) was 

applied across each simulation and the success rate of decoding the 

orientation was recorded per window per simulation. The success 

rates were shown in Figure 15-B, where a longer window usually 

allowed for more stable reporting of stimulus orientation. There were 

a handful of simulations where decoding success did not improve 

much regardless of the time window used, which may be the outcome 

of both a sensitivity to initialised parameters as well as the relatively 

small size of the simulated populations. The window length selected 

for subsequent simulations is 300 ms, as it was well beyond the 

asymptote obtained and was within the range of reaction times to 

changes of orientations in humans (Gilinsky and Cohen, 1972). 

  

The network was exposed to the dynamic stimulus and was able to 

anticipate the orientation of the next change based on the current and 

previous orientations. A jump occurred when the change was 

inconsistent with the established rate of change (i.e. was not 

anticipated). A change was detected when there was a difference 

between the stimulus of the previous and the current timestep. To 

determine if a jump had occurred, the model compared the 
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anticipated orientation and the mode orientation, from the moment of 

a change to 350 ms later. Cognitive load was included in the model 

via additional activity in the decision pools of the prefrontal cortex, 

similar to the implementation in the target detection task. 

 

 
Figure 15. Performance in a 2D oddball task. A) The upper row shows the retinal input 

to the SP and NSP, while the lower row shows examples of the corresponding output of the 

cortical layer (excitatory). The red arrows show the positions of the population peaks, 

demonstrating the orientation selectivity of each quarter of the cortical population. B) 30 

simulations were run with a static input orientation. A sliding window of varying lengths is 

applied to the simulation duration (750 ms) and tested for accuracy of representing the 

veridical stimulus orientation. This provides a rate of decoding failure for each window 

length per simulation, which is shown as translucent lines. Their mean is plotted as a solid 

line and the shaded region is their standard deviation. C) The performance of the model is 

impaired by increasing CL, reporting fewer jumps in the dynamic stimulus as it is subjected 

to greater CL. D) Each point, coloured to match its type (congruent/incongruent), is the 

detection rate of each trial while the solid lines are their means and the shaded regions their 

standard deviation. The decrease in number of jumps detected with increasing CL is due to 

a decrease in detection of jumps in a direction congruent to the stimulus' rotation (blue) and 

not the incongruent ones (pink). As there are many overlapping values, individual trials' 

detection ratios are plotted with a slight, random jitter (±0.125 in both x- and y-axes). 
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As cognitive load increased, the probability of anticipating two 

orientations instead of just one also increased as a coping mechanism 

for reduced cognitive resources to monitor state spaces. The 

anticipated orientations were always in the same direction as the 

established rotation. 

 

The model detected almost all jumps when it had no cognitive load, 

performing the task well above chance level Figure 15-C. However, 

the rate of jump detection dropped to chance-level at the highest-

tested level of cognitive load. This decrease in performance was 

further analysed by splitting the missed jumps into two types: when 

the jump direction was congruent with the rotation of the stimulus 

and when it was incongruent. The model could detect incongruent 

jumps regardless of the cognitive load condition Figure 15-D (pink), 

but it failed to detect congruent jumps more in high cognitive load 

conditions than low Figure 15-D (blue). 

 

This demonstrated how, when the load on cognitive resources was 

increased, sensitivity to errors was lowered in a manner that is 

specific to the task-related anticipatory inhibition. The model's 

change in performance followed the same trend as behavioural 

outcomes from psychophysical studies with human participants (e.g. 

Malekshahi et al., 2016). It is important to note that the ratio is greatly 

affected by the sheer increase in number of missed jumps with 

increasing cognitive load, as there were almost no missed jumps in 

lower cognitive load conditions while up to 50% of jumps were 

missed at the upper limits of cognitive load. 

 

 

b) Physiological benchmark 
 

We next benchmarked the effect of the prefrontal cortex’s influence 

on the thalamic neurons' spiking pattern, which is directly addressed 

by Mease et al. (2014). The authors observed the thalamic response 

to optical stimulation of Layer 6 neurons in the barrel cortex (L6BC) 

of optogenetically stimulated mice while their whiskers were 

physically stimulated. To compare their findings with data from the 

model, the optically stimulated neurons in the mouse barrel cortex 

was loosely likened to neurons in the model's prefrontal cortex. 

Additionally, the associated thalamic projections are in the mouse 

ventromedial nucleus, which in this case was contrasted with the 
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model's non-specific thalamic nucleus. The physical stimulation to 

the mouse whiskers was analogous to the peripheral input into the 

model's thalamus. 

  

A pertinent finding was how thalamic sensory responses changed 

with optogenetic stimulation of the L6BC. Multiple trials were run 

with a range of PFC→TRN weights without reinitialising the neurons 

so that the spiking mode of individual neurons could be compared 

across different connection weights Figure 16-A. To mimic the on/off 

nature of the optogenetic protocol from Mease et al. (2014), the 

simpler of the two previously described tasks (target detection) was 

used. Only the activity from the neurons representing the distractor 

stimulus was considered as they are the neurons targeted for 

inhibition by the prefrontal cortex. The sizes of the target and 

distractor stimuli were always 160- and 320-cortical neurons wide 

respectively. The same peripheral input was injected into the network 

repeatedly for seven PFC→TRN weight values, each trial lasting 500 

ms, matching the stimulation duration of Mease et al. (2014), with 

100 ms breaks between them. 

 

The simulated output of the non-specific thalamic nucleus showed a 

decrease in spike counts in the non-specific thalamic nucleus when 

the prefrontal cortex was activated (Figure 16-B), reflecting what was 

found by Mease et al. (2014) (Figure 2C and Figure 2D in their 

paper). Furthermore, as the weight was increased incrementally, we 

found that the effect was gradual. Although the authors detected 

much fewer spikes than was generated in the model, the number of 

spikes we obtained was within the expected range for human regular-

spiking neurons with the defined cell membrane potentials, which 

can reach bursts of up to 300–400Hz (Destexhe et al., 1998). 

 

In addition to changes in spiking frequency, the mouse thalamic 

neurons also shifted to an overall tonic mode when the barrel cortex 

was stimulated than when it was not. The extent of this change in 

individual neurons was dependent on its initial firing mode, with 

burstier neurons at baseline having more pronounced shifts. The tonic 

and burst firing modes were distinguished using an inter-spike 

interval criterion, where any spike preceded by an inter-spike interval 

of less than 10 ms was considered part of a burst response. The burst 

probability of a neuron was the proportion of trials in which there 

was a response to the stimulation where a burst response was elicited. 
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Figure 16. Thalamic response to increasing PFC weight. A) Protocol used to obtain 

spikes from the non-specific thalamic nucleus responding to the distractor. A single 

PFC→TRN weight is used for each trial (e.g. w1, w2) and all the spikes during stimulation 

are recorded for analysis. B and C) The spiking pattern of non-specific thalamic neurons 

receptive to the distractor's position is modulated by increased weight of the PFC→TRN 

connection. The grey lines show the changes for single neurons while the coloured error bars 

offset to their left represent their means and standard deviations. 
 

Mease et al. (2014) had used a threshold of 10 ms, much longer than 

the commonly used 4 ms, as they had not observed many neurons 

that met that requirement. However, the membrane potentials used in 

the neuron model were tuned to be slightly hyperpolarised for 

observation of alpha oscillations, encouraging bursty behaviour. The 

model therefore produced more spikes than were found in mice, and 

4 ms was used as the threshold for classification of neurons in the 

simulated data. Even with the stricter requirements, we found that the 

model experienced a shift in the same direction as was found in the 

mouse (Figure 16-C). 

 

As in the case of the spike count, the change of the burst probability 

with increasing weight was not abrupt although it converged to 0 at 

a lower weight than for spike count. When a threshold of 10 ms was 

used, the convergence occurred closer to 0.015. The effect of 
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prefrontal cortical influence was greatest in neurons that were 

burstier to start with, which was also found by Mease et al. (2014). 

  

The results showed that when the prefrontal cortex is inhibiting the 

non-specific thalamic nucleus through the thalamic reticular nucleus, 

the inhibited thalamic neurons fire more tonically and spike less often 

than when the network is without prefrontal cortical influence. Such 

behaviour was consistent with that found in mice, giving support to 

the plausibility of this mechanism as a part of the attentional system 

in mammals in general, and possibly in humans specifically. 
 

 

4.3 Conclusions 
 

We proposed a model of attention that hinged on the inhibition of 

task-irrelevant features rather than the excitation of task-relevant 

ones. It was anatomically grounded and consisted of spiking neuron 

populations for most of the modelled brain regions, except the 

prefrontal cortex which was a mean-field approximation model. 

Using the summed output of the model's sensory cortical population 

as the model's response to stimuli, we tested its performance and 

resistance to interference from environmental noise as well as 

cognitive load. The model could carry out both tasks, and performed 

best when there was neither environmental noise nor cognitive load. 

 

By affecting the decision-making mechanism rather than the 

perceptual stream, we showed that cognitive load led to changes in 

performance that were similar to those observed in psychophysical 

studies. The network's spiking patterns and output also concurred 

with physiological experiments conducted on mice as well as 

behavioural measures from humans, further demonstrating the 

biological plausibility of such a mechanism. It is important to note 

that the model's weight of the PFC→TRN not only controlled the 

amount of influence of the prefrontal cortex on the TRN, but also 

what would be considered how committed a person is in performing 

the task. This is because the model performed as a purely bottom-up, 

reactive system when there is no top-down influence. In this sense, 

the performance at low PFC→TRN weights (Figure 14-C) does not 

purely reflect poor performance in the task but also a disregard of the 

task. 
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The results demonstrated how the proposed model is a possible 

mechanism of selective attention in humans in situations where it is 

unpredictable stimulus features that are task-relevant. This contrasts 

with most existing models, which mostly focus on when predictable 

features are task-relevant, and thus offers a complementary 

mechanism for allocating sensory processing resources. In addition, 

the typical stimuli used in modelled experimental paradigms tend to 

be static, such as still images. The catch detection task in this study 

showed how the model is applicable even when changes over time 

are inherent to the task. The model also used the modulation of the 

prefrontal cortex's state to achieve its function, rather than more 

permanent, and potentially costlier, mechanisms like changes in 

weights (synaptic changes) or neuron parameters (neuronal 

characteristics). 

  

The interactions modelled here are limited compared to more general 

models of brain functions and attention like (Grossberg, 2013; 

Nyamsuren and Taatgen, 2013). For one, while the model was 

biologically-grounded, we cannot definitively claim to show that 

cortical influence on the thalamus would cause a switch to a tonic 

firing mode, which was observed in the mouse thalamus. This is 

because the inter-spike interval is not the only way to quantify a 

neuron's burstiness. It was, however, the clearest measure available 

to us as the modelled neurons, once initialised, have fixed parameters 

that, in a real neuron, would change over time, such as the reset 

membrane potential of a neuron post-spike determining if it was 

hyper- or depolarised. Another shortcoming that arose from this same 

limitation was the inability to show thalamic adaptation, which 

Mease et al. (2014) found to decrease thalamic responsiveness over 

the duration of each stimulation. Nonetheless, adaptation and 

learning were beyond the scope of this model and avoiding the re-

initialisation of neurons between conditions was sufficient to 

examine how a single neuron modified its behaviour according to its 

interactions with the other modules. 

  

In addition, there was evidence that driving the TRN would lead to 

an increase in thalamocortical bursts instead of a decrease (Halassa 

et al., 2011), which could be due to protocol differences. In the case 

of both this study and Mease et al. (2014), a critical element was 

stimulation of the sensory network and the specific response to it; as 

for Halassa et al. (2011), the sensory stimulation was non-specific 



   

 

80 

 

and relatively uncontrolled. The current model focused on the 

mechanism with which top-down processes can bias selective 

attention towards task-relevant stimuli, and did not venture into how 

they determine what comprises task-relevance. Although there have 

been attempts to do so, like applying information theoretic 

formalisations of maximising information to visual search (Bruce and 

Tsotsos, 2010), it remains a relevant topic of research. 

  

Future experiments can look into how different kinds of non-task-

related noise affect the attention network. The only type of noise that 

was simulated was one that is externally generated. However, there 

is noise that is also internally generated, in addition to the interaction 

of attention on other cognitive functions, such as working memory. 

How these perturbations to the network affect its performance, and 

how the network buffers against them, is still unclear. In addition, the 

rules with which the prefrontal cortex modulates activity in the 

thalamus was hard-coded. These predictive codes could instead be 

learned over time, for example with reinforcement learning 

algorithms. The resultant ‘solution(s)’ for the connection pattern 

from the prefrontal cortex to the TRN which balances false positives 

and false negatives would be of great interest. The interactions 

between the prefrontal cortex and other subcortical regions with 

significant impact on selective attention, such as the amygdala (John 

et al., 2016) or the superior colliculus (Herman et al., 2018), can also 

be further detailed.  
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5. COMPLEMENTARY INTERACTIONS BETWEEN 
CLASSICAL AND TOP-DOWN DRIVEN 
INHIBITORY MECHANISMS OF ATTENTION 
 

This thesis has discussed how selective attention can be implemented 

to prioritise task-relevant stimuli over others, as the alternative, that 

is to process all sensory input, is not feasible in most animals due to 

limited processing capabilities. Such a necessity also applies to 

artificial agents operating in all but the most simplistic environments, 

for the most simplistic purposes. The ability to prioritise stimuli is, 

however, not the end goal itself, but rather a means to several ends 

(Allport, 2016). For an agent interacting with its environment, it is 

ultimately behaviour that leads to survival or success in its goals. 

Behaviours are often associated with specific states in the sensory 

input or states of the agent. In the case of stimuli-driven responses, 

biasing sensory processing to task-relevant stimuli therefore also 

biases their elicited behaviours to those that advance the agent’s goals 

and objectives. Therefore, selective attention serves several 

behavioural purposes; one of these is to rapidly detect and/or orient 

the agent towards stimuli of interest (Braun and Julesz, 1998), 

presumably so that action related to the object can be taken. For this 

reason, modelling eye movements, which measures literally the 

orienting of eyes, is a popular benchmark for attentional models (e.g. 

Adeli and Zelinsky, 2018; Marat et al., 2009; Mirza et al., 2019). 

Another common method to test the performance of attention models 

is implementing it in artificial agents, following the principle that 

‘one truly understands only what one can create’, as eloquently 

summarised by Giambattista Vico. 

 

There are two advantages to implementing models of attention in 

artificial agents. Firstly, and many a times this alone justifies the 

effort, an agent equipped with some form of selective attention often 

interacts better with its environment than one without, with this 

advantage increasing in value with environment complexity and 

sensor resolution. Secondly, taking a more ontological perspective, it 

considers the model not simply as an algorithm solving an abstract 

problem but something that enables a body to function, which is a 

key claim of embodied cognition (Anderson, 2003; Engel et al., 2013; 
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Wilson, 2002) and something many machine learning studies ignore 

(Moulin-Frier et al., 2017; Puigbò et al., 2018). Thus, there is a 

considerable number of implementations of selective attention in 

artificial agents or robots. Itti et al.'s (1998) saliency-based model of 

bottom-up attention has inspired many other models, from a 

pyramidal feature-based selection of spatial location in the visual 

input that most closely matches a target (Driscoll et al., 1998) to a 

model that uses a similar bottom-up strategy to identify landmarks as 

it navigates so that it is able to self-localise (Ouerhani and Hügli, 

2005). Frintrop et al. (2003) added depth to the range of sensors, 

allowing a robot to identify more points of interest for navigation and 

object detection. 

 

While deriving saliency maps from early-stage, bottom-up processes 

remains relevant (e.g. Dollar et al., 2014), there have also been 

attempts to include top-down elements to facilitate more 

sophisticated behaviours. One such early study that brought the two 

processes together oriented the gaze of a robotic agent to objects in 

the environment depending on its active internal drive, the dynamics 

of which was driven by a combination of perceptual input and 

internal motivational systems (Breazeal and Scassellati, 1999). 

Another model used interaction cues with a human partner to select 

salient objects in its environment, with the goal of learning and using 

labels for them (Haasch et al., 2005). Colombini et al. (2016) stored 

individual sensor information so that bottom-up attention also 

considers historical information and is able to engage inhibition of 

return, in addition to top-down enhancement of regions in the 

attentional map. Another study applied biologically sound principles 

to a functional model of attention in a robot for learning, 

demonstrating the effects of certain biological limitations in visual 

sampling such as foveation, where only the region of visual input 

covered by the fovea is focused and sharp. It also addressed the 

related indirectness problem, which refers to the fact that foveation 

might not always occur where effectors are causing learning feedback 

(Ognibene and Baldassare, 2015). 

 

As exemplified by these studies, while varied in terms of architecture 

and hardware, the typical role that is given to top-down attention is 
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excitatory. The success of robotic implementations of selective 

attention, such as those cited above, supports not only its functional 

importance but also the physiological experimental work that has 

grown alongside this field (e.g. Cutrone et al., 2014; Desimone et al., 

1998; Sani et al., 2017). Nonetheless, the previously described 

tendency of task paradigms in computational and experimental 

neuroscience, where they revolve around task-relevant stimuli being 

more predictable than task-irrelevant ones, persists in robotics and 

computer vision as well. This has led to the development of robotic 

attention models that, again, favour top-down excitation. For 

example, using Tsotsos' (2011) taxonomy of three classes of 

attentional mechanisms, suppression, selection and restriction, out of 

the 52 reviewed cognitive architectures, only 5 included the 

suppression of task-irrelevant stimuli, space or features while all of 

them exhibited at least one element of selection and restriction 

(Kotseruba and Tsotsos, 2020). 

 

As mentioned in earlier chapters, neglecting the inhibitory top-down 

pathways of attention is to deny that there may be situations where 

the excitatory mechanism is not the most efficient. Two intuitive 

scenarios for this would be 1) when bottom-up activity due to 

distractors reach much higher levels than that from task-relevant 

stimuli and 2) when what is task-relevant is not precisely known and 

is instead defined by what is task-irrelevant (e.g. find the non-red 

object). There is strong support for both mechanisms in the 

mammalian brain, which has already been discussed in detail earlier 

in this thesis, and they appear to have strengths and weaknesses that 

are complementary rather than competitive. We therefore 

investigated how these two mechanisms, both separately and 

combined, drove the behaviour of a simulated, artificial, autonomous 

agent performing a controlled, foraging task. It was placed in an 

environment populated with two types of objects—rewards and 

distractors—distinguishable by their colours. By approaching and 

touching an object, the agent effectively demonstrated that its control 

dynamics had selected that object over other objects in the vicinity. 

In this study, the agent's control architecture was based on the 

biologically grounded Distributed Adaptive Control (DAC; Figure 

17-right; Pfeifer and Verschure, 1992; Verschure, 2016), which has 
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been shown to robustly learn sequences of state-action couplets that 

eventually lead to a goal state (Marcos et al., 2014). 

 

We first proved the utility of top-down attentional biasing on bottom-

up sensory competition, either through excitatory or inhibitory 

mechanisms, in the simplest possible setting: two objects, one a 

reward and the other a distractor, at equal distances from the agent. 

We found that regardless of the exact mechanism, any top-down 

biasing led to a distinct increase in probability of selecting the reward 

when compared to conditions where there were only bottom-up 

processes. Nonetheless, in natural settings there are usually more than 

two stimuli competing for attention. In a second experiment, to assess 

the performance of the top-down mechanisms in a more ecological 

situation, we tested the agent’s performance with more objects in its 

visual field and with different proportions of rewards and distractors 

among them. To determine the effect of the top-down biasing 

mechanisms on behaviour, the agent was tested with only bottom-up 

sensory competition, with either of the two top-down mechanisms in 

isolation, and with the two top-down mechanisms in combination. In 

total, this led to four conditions. We showed that although there 

remained certain limitations, the best performance across the widest 

range of target-distractor configurations is achieved when both 

excitatory and inhibitory mechanisms are in place. 

 
 

5.1 Methods 
 

To demonstrate the effects of top-down biasing, and their different 

mechanisms, on behaviour, we created an embodied agent (Figure 

17) in a virtual arena performing a foraging task. The environment, 

physics engine and visualisation of the simulated arena were created 

using Python (Rossum, 1995) and the open-source libraries PyGame 

(Shinners et al., 2011) and Box2D (Catto, 2011). The simulated agent 

was a mobile, two-wheeled robot with seven sensors for proximity 

and vision each. Both types of sensors functioned by emitting a single 

projection at a fixed angle depending on its position on the agent and 

returning the distance and the colour of the first obstacle that it hits 

respectively (Figure 18-A). The objects used as rewards and 
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distractors are solid-coloured circles, with rewards bearing a value of 

1 and distractors 0. The distractors were intentionally valued to be 

neutral instead of punishments (values<0) as it is important to make 

a distinction between a distraction and a punishment. Critically, a 

punishment is task-relevant, as it necessitates aversive behaviour, 

while a distraction itself has no benefit or loss and is therefore task-

irrelevant. In natural environments, especially when they are 

cluttered, this classification is not always static as distractors can 

become punishments or rewards, for example due to movement from 

the agent or the objects. Nonetheless, this interpretation of distractors 

and rewards is sufficient for the purposes of the current study. 

 

The top-down attentional mechanisms tested here were the excitatory 

model, conceptually congruent with most enhancement-based 

models of attention, and the inhibitory model, where activity 

representing task-irrelevant stimuli is suppressed. In both cases, the 

visual sensor that was targeted, and by extension the stimulus its 

activity represents, was dependent on the motor decision from the 

contextual layer (further elaborated in Control architecture below) 

in the previous time step. The key difference between the two top-

down biasing mechanisms was that if the action was towards a 

reward, an excitatory signal was used whereas an action towards a 

distractor led to inhibition of the activity from the selected sensor for 

the next time step(s). This led to a biasing of subsequent sensory 

competition and, by extension, perceptual information that is next fed 

into the contextual layer. The strength of the top-down excitatory and 

top-down inhibitory connections were defined by their gains, GTDexc 

and GTDinh respectively (Figure 17). Thus, the top-down attentional 

biasing mechanism could be modulated though changing the values 

of these two gains. 

 

 

a) Control architecture 
 

As a cognitive architecture, DAC posits that cognition arises from the 

interaction between interconnected control loops operating at four 

increasing levels of abstraction for hierarchical control: soma, 

reactive, adaptive, and contextual. At the lowest level of abstraction, 
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the soma layer defines the body of the agent in its environment. The 

layer above it is the reactive control of behaviour, which associates 

certain sensory input with hard-wired behaviours. While an agent 

with only reactive behaviours is limited in its handling of sensory 

stimuli, it is still a necessary and important part of the control 

architecture (Nolfi, 2002). The reactive layer of DAC further extends 

other behaviour-based control architectures (e.g. Brooks, 1986) by 

using an allostatic process to mitigate drives that are modulated by 

the sensory input. 

 

Behaviour generated by the reactive layer bootstraps learning of the 

agent’s environment and the sensory outcomes of its actions on the 

environment, which takes place in the adaptive layer. This helps the 

agent learn behavioural responses to perceptual signals that are more 

noise resistant. In the adaptive layer, these pairs of perceived state, or 

prototype, and motor action are associated together into state-action 

couplets, which then are sent to the contextual layer that uses them 

for higher-level cognitive functions like goal selection and planning. 

Through Bayesian decision-making (Bayes, 1763; Beck et al., 2008), 

DAC’s contextual layer captures a knowledge level description of 

intelligence and the principle of rationality by exploiting perceptual 

and behavioural learning through interaction with the environment 

(Verschure et al., 2003). This is supported by the contextual layer’s 

short-term memory, which stores the received state-action couplets 

in a sequence until a goal state is reached, at which point the sequence 

is transferred to the contextual layer’s long-term memory.  

 

This implementation of long-term memory is modelled after how 

long-term memory is formed in animals, which was proposed to be 

through the accumulation of knowledge and abilities which is then 

optimised for subsequent planning and behaviour (Newell, 1990). 

The psychological theories of cumulative learning and scaffolding 

(Berk and Winsler, 1995; Boblett, 2012; Gagne, 1968) built on that 

proposal, suggesting that learning starts from skills with low 

complexity which are transformed hierarchically into increasingly 

complex ones for improved performance. In this study, the usage of 

such accumulated knowledge was manifested by the agent comparing 

its current state with those in its long-term memory to select valuable 
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states to be reached, anticipate the state-actions couplets that would 

bring it there, and trigger goal-oriented behaviours based on the 

couplets. 

 

        
Figure 17. Control architecture of the agent. (Left) Lines terminating with arrowheads 

show excitatory connections while lines terminating with circles show inhibitory 

connections. The contextual layer decided on actions and change the gains of the top-down 

attentional biasing based on its long-term memory (LTM), which is shown here as a 

collection of sequences of state-action couplets. The visual channels are indicated by the 

nodes R, G, and B, and the connections which were modulated in the experiments are 

labelled GTDexc and GTDinh. The gain of the inhibition, representing bottom-up processes, is 

shown by Wintra and applied to all the inhibitory connections between the visual channels. 

(Right) The Distributed Adaptive Control architecture which the current control architecture 

is modelled after, reproduced with permission from (Verschure, 2016). 

 

As the objective in this study was to demonstrate the effects of 

different attentional models on behavioural outcome, the agent’s 

control architecture was designed to minimise extraneous 

complexity. The agent’s behaviour was a combination of motor 

commands from the reactive and the contextual layer (Figure 17). 

The adaptive layer did not provide any direct motor control as we 

were interested in behavioural control through the contextual layer 

and creating that additional pathway for motor commands would 

create a confounding variable. The agent’s reactive layer was hard-

coded with a reflex to avoid colliding with walls, using the activation 

of proximity sensors at one side of the agent to generate a 

proportional motion in the wheel on the same side, effectively turning 

the agent away from the obstacle a la Braitenberg vehicles 

(Braitenberg, 1986). In addition, if none of the agent’s sensors detect 
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sensory stimuli, the agent had a reflexive drive to randomly explore 

the environment. This ensured that the agent was always proactively 

interacting with the environment even when it was not perceiving 

objects. 

 

Although the adaptive layer did not directly issue motor commands, 

it contributed to the architecture by integrating bottom-up and top-

down attentional signals to produce the perceptual state that was used 

by the contextual layer. The perceptual information was driven by 

sensory input, which consisted of three colour channels per visual 

sensor. The intralayer competition observed in neuronal population 

by Reynolds et al. (1999) and others was simulated here with the 

sensors’ activity contributing to the activity of each channel’s own 

node. They then exhibited competition by inhibiting the other 

channels’ nodes after their activity was weighted by Wintra (more 

details are available in the sections Model formalisation and 

Bottom-up sensory competition). After this interaction, the nodes 

were then decomposed into the different sensors that had contributed 

to them (saliency vector P in Model formalisation), and the 

modulated activity of the most active sensor was selected through a 

winner-takes-all mechanism as the perceptual input to the contextual 

layer. If there were no signals from the contextual layer, or if the 

gains of the top-down biasing connections were all zero, this would 

be equivalent to the winning stimulus from a purely bottom-up 

sensory competition. 

 

However, in conditions with top-down biasing, the top-down gains 

(GTDexc and GTDinh) were not zero and the contextual layer’s previous 

motor decision modulated activity of individual sensors prior to the 

calculation of the intralayer inhibition. The contextual layer matched 

the perceptual input to the states in the stored sequences of state-

action couplets in the long-term memory. This way, it predicted the 

potential reward of following a sequence of motor actions and made 

decisions that maximised the rewards gained in the future (more 

details can be found in the sections Model formalisation and Top-

down biasing components). In the same way, the contextual layer 

used the selected state-action couplet to modulate sensory 

competition in a goal-directed fashion, sending an inhibitory signal 
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if the selected state belonged to a distractor and sending an excitatory 

signal if it was a reward. This top-down biasing signal is applied with 

a specified gain to the sensory input to the adaptive layer in the next 

time step. As the learning process in the contextual layer has already 

been demonstrated (Duff et al., 2011; Marcos et al., 2014) and the 

scope of this study is to examine how the contextual layer can be used 

instead of how it develops, in this study we pre-trained the contextual 

layer and did not update it during experiments to control for 

experience between the attention models tested. 

 

To train the contextual layer, an additional appetitive behaviour 

towards both red and green objects was included in the agent’s 

reactive layer. There was no top-down biasing of sensory input 

during training, leading to output from the adaptive layer reflecting 

purely bottom-up processes. The agent was placed at a random 

position and with a random orientation in the arena along with a red 

or a green object. It explored the arena using its reactive exploration 

behaviour until it detected the object, and then its reactive appetitive 

behaviour took over to lead the agent to the chosen object. A trial 

ended when the agent touched the object. A total of 450 trials were 

used to populate the long-term memory, half of which were with a 

red object and the other half with a green object. 

 

 

b) Task description 
 

Foraging is an everyday, basic task for most animals and is an 

accepted paradigm to test the efficacy and hypotheses of control 

architectures in closely related fields such as evolutionary robotics 

(Heinerman et al., 2016; Sugawara et al., 2004; Winfield, 2009). We 

were primarily interested in the effectiveness of top-down attention 

in biasing bottom-up competition between rewards and distractors 

towards rewards, leading to elicited behavioural outcomes preferring 

rewards. Hence, to control for the presentation of both types of 

objects, the agent started every trial with a number of objects 

equidistant to it and within its field of vision, so that it could 

theoretically detect them all without needing to rotate. The arena that 

it foraged in is a square of length ten metres. In the experiments, the 
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agent always had intralayer inhibition (Wintra) for sensory competition 

as a form of bottom-up attentional processing. However, the value of 

the top-down biasing gains (GTDexc and GTDinh) was changed between 

conditions. When they were zero, the generated behaviour was a 

result of only bottom-up attentional processes. 

 

 
Figure 18. Experimental setup. A) Example of how the agent senses objects in its 

environment. The agent has seven visual sensors, represented by the blue circles spread 

across its front. The white lines show the linear projections of three visual sensors, and the 

individual sensor is filled with the colour of the object that it detects. A sensor filled with 

black indicates that is has not detected any object. B) The first experiment consisted of two 

stimuli presented to the agent, and the order of the reward (green) and distractor (red) was 

randomised. The positions of the objects were symmetric about the agent’s midline, but their 

distance to the midline, indicated by d, was not fixed (0.23 m − 0.78 m). C) The second 

experiment consisted of seven objects presented to the agent, and the proportion of rewards 

was varied as an experimental condition (reward-distractor ratio). The positions at which the 

objects were placed were fixed to be evenly distributed, but the order was randomised. 

 

There were two versions of the task; the first was designed to observe 

the effects of only the excitatory or only the inhibitory top-down 

attentional mechanism in the most basic problem of two objects 

competing for attention in the visual field. Hence, the agent was 

presented with two objects, one a reward and the other a distractor, 

located equidistant to it but with varying distances to each other 

(Figure 18-B). The objects were always 2.8 m away from the agent 

in the axis parallel to its orientation, but their position in the 

perpendicular axis varied 0.23 m−0.78 m from the centre (Figure 18-

B, parameter d). As there were only two objects, one would be on the 

left while the other would be on the right of the agent’s midline. Their 

values were indicated by their colour: green for a reward and red for 

a distractor. The exact colour of the objects was randomly drawn 

from a range of intensities (200–255) in the object’s RGB channel to 

introduce some sensory noise and the order of the objects was 
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randomised. To prevent either mechanism from confounding the 

results, one of the top-down gains was kept constant at 0, eliminating 

top-down biasing with its associated mechanism, while the other gain 

was tested in the range [0–0.7] with step sizes of 0.1. 50 trials were 

run per gain condition. A trial ended when the agent reached one of 

the objects, indicating that the object had ‘won’ the competition for 

attention by manifesting appetitive behaviour towards it. The agent’s 

performance was thus defined as the proportion of trials in which it 

reached a reward instead of a distractor. 

 

In the second experiment, the agent was again presented with objects 

located equidistant to it. However, this time there were seven objects 

and the ratio between rewards and distractors was varied across 

experimental conditions (Figure 18-C). The number of objects 

chosen matched the number of visual sensors in the agent to 

maximise the number of objects that the agent could potentially 

detect. Within each reward-distractor ratio condition, the order of the 

objects was randomised. The number of rewards was varied, such 

that there is a modulation of the reward-distractor ratio. When there 

was only one green object, most of the objects around the agent were 

red and therefore distractors. The opposite occurred when there were 

6 green objects. The objects were evenly distributed in a semicircle 

in front of the agent spanning 140 °. All of them were 2.8 m away 

from the agent. Just as in the first experiment, a trial ended when the 

agent reached an object and one of the measures of the agent’s 

performance was the proportion of trials in which it reached a reward. 

Based on results from the first experiment, when active, the top-down 

biasing gains for both excitatory and inhibitory mechanisms were set 

to 0.5 in this experiment as it had yielded approximately the mean 

performance for top-down gains greater than 0. There were four 

attentional conditions: with no top-down biasing (i.e. 

gG,TDexc=gR,TDinh=0), with only inhibitory top-down biasing (i.e. 

gG,TDexc=0, gR,TDinh=0.5), with only excitatory top-down biasing (i.e. 

gG,TDexc=0.5, gR,TDinh=0), and with both excitatory and inhibitory 

biasing (i.e. gG,TDexc=gR,TDinh=0.5). In addition, there were four 

reward-distractor ratios: with one reward, three rewards, four rewards 

and six rewards. Hence, there were 16 combinations of attentional 
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condition and reward-distractor ratio, and for each combination 50 

trials were run leading to a total of 800 trials. 

 

 

c) Model formalisation 
 

The proposed attentional and control architecture is shown in Figure 

17-A, and the model is formalised as follows: 

 

1) A set of nvs visual sensors {s1, s2,…, snvs} ∈ S, where nvs=7 

2) A set of nvs observations for each sensor {c1,t, c2,t,…, cnvs,t} ∈ 

Sc at time t, with each ci ∈ Sc associated to sensor si ∈ S, each 

consisting of three colour channels {cR, i, cG, i, cB, i} ∈ ci and 

initialised to 0 

3) A 2-dimensional intra-layer weight vector {wR,intra, wG,intra, 

wB,intra} ∈ Wintra, where {wj,intra,1, wj,intra,2, …, wj,intra,nvs} ∈ 

wj,intra denotes the weights for each sensor si ∈ S along the 

channels j ∈ {R, G, B} 

4) A 2-dimensional vector of top-down excitatory gains 

{gR,TDexc, gG,TDexc, gB,TDexc} ∈ GTDexc, where {gj,TDexc,1, gj,TDexc,2, 

…, gj,TDexc,nvs} ∈ gj,TDexc denotes the weights for each sensor si 

∈ S along the channels j ∈ {R, G, B} = J 

5) A 2-dimensional vector of top-down inhibitory gains 

{gR,TDinh, gG,TDinh, gB,TDinh} ∈ GTDinh, where {gj,TDinh,1, gj,TDinh,2, 

…, gj,TDinh,nvs} ∈ gj,TDinh denotes the gain for each sensor si ∈ 

S along the channels j ∈ {R, G, B} 

6) A 2-dimensional saliency vector {p1, p2, …, pnvs} ∈ P 

7) Computing top-down attention biasing 

a. In the current time step t, the observation of the 

selected sensor, ss ∈ S, from the previous time step t-

1, cs,t -1 ∈ Sc,t -1 is used to determine if the previously 

observed object is green or red. 

b. If it is green, the sensor’s current observation cs,t is 

enhanced by summing cs,t -1 × gG,TDexc,s to it 

c. If it is red, the sensor’s current observation cs,t is 

suppressed by subtracting cs,t-1 × gR,TDinh,s from it 
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8) Computing bottom-up sensory competition 

a. The incoming observations, Sc, are compressed into 

the three channels {cR, cG, cB} ∈ C 

b. The intra-layer weights are calculated Wintra = C * 

wintra 

c. All observations for a channel per sensor, {cj,1, cj,2, …, 

cj,nvs} ∈ cj with j ∈ J = {R, G, B}, is then subjected to 

subtractions of WJ-j,intra, where WJ-j,intra ∈ Wintra 

 

 

d) Bottom-up sensory competition 
 

The bottom-up process transforms raw, sensory input into perceptual 

input for the contextual layer to use for decision-making. Each visual 

sensor returns the intensity of the object it detects in each colour 

channel (red, green, and blue). If it does not detect any object, it 

returns zeros. The combined activity in each colour channel is first 

multiplied by a weight (wj,intra) and then subtracted from the activity 

in each sensor for the other channels. A winner-takes-all algorithm 

then selects the sensor with the highest activity and uses its signal as 

the adaptive layer’s output, represented by P in Model formalisation 

above. The sensory inhibitory weight was fixed in all conditions and 

experiments at wj,intra=0.3 based on selectivity indices of single-cell 

recordings in a monkey’s V4 (Reynolds et al., 1999). Of the possible 

selectivity indices reported, we had focused on the region where the 

neurons responded selectively to only one stimulus in a tested pair as 

that was the condition in the current experimental paradigm. 

 

 

e) Top-down biasing components 
 

The two main functions of the contextual layer are memorisation and 

recall, which are enabled through the structures of short-term 

memory and long-term memory. The short-term memory stores 

sensorimotor couplets which are chained together temporally and 

stored in the long-term memory when a goal state is reached. The 

long-term memory is thus able to compare current sensory 
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information with its contents to determine the optimal action to take 

to reach the goal state. 

 

In this study, the long-term memory was populated beforehand with 

sensorimotor couplets of appetitive behaviour towards both red and 

green objects. During the experiment, to ensure that experience and 

memory did not confound the results, the initialised long-term 

memory for all trials was the same and was not updated during the 

experiment. Sensory information in couplets in the long-term 

memory were compared with the current perceived information, and 

matches led to probability distributions for the possible actions to 

take. The quality of the match between the actual prototype, x, and 

the predicted state in the long-term memory sequences, e, in a long-

term memory with N sequences is defined by the discrepancy 

measure D which is obtained through Eq. 15. 

 

 𝐷(𝑡 + 1) =∝𝐷 𝐷(𝑡) + (1 −∝𝐷)𝑑(𝑥, 𝑒) Eq. 15 

 

Where αD is the integration time constant and the distance d(x, e) 

between the states is calculated as in Eq. 16. 

 

 

𝑑(𝑥, 𝑒)  =  
1

𝑁
∑|

𝑥𝑖

𝑚𝑎𝑥(𝑥𝑗)
−

𝑒𝑗

𝑚𝑎𝑥(𝑒 𝑗)
|

𝑁

𝑗=1

 
Eq. 16 

 

 

During recall, all the prototypes in memory, e, is compared with the 

generated prototype, e. The degree of matching of segment l in a 

sequence q determines its input to its collector, c (Eq. 17). 

 

 𝑐 =  (1 − 𝑑(𝑒, 𝑒𝑙𝑞))𝑡𝑙𝑞 Eq. 17 

 𝑡𝑙𝑞(𝑡 + 1) =∝𝑡+ (1 −∝𝑡)𝑡𝑙𝑞(𝑡) Eq. 18 

 

The collector determines the segment’s contribution to action 

selection depending on the distance d(.) and a trigger value, tlq. This 

trigger value biases the matching process and allows chaining 

through the sequence. The default value of triggers is 1, which does 

not bias the collector value, and subsequently its value is determined 
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by Eq. 18, where αt∈[0; 1]. The trigger value of a selected sequence 

is reset to 1. This trigger value implements a decision inertia, 

which biases the sequence that was previously selected (Figure 

19-A). 
 

 
Figure 19. Selected concepts in the contextual layer. The current state, e, was 

compared with the states in the contextual memory’s long-term memory (e11, e12, …, eMN), 

shown by the lines extending from the current state. The remembered states were given 

probability values and the action associated to the state with the highest probability was 

selected. The assignment of probabilities was calculated based on several state 

characteristics, two of which were A) decision inertia, where the state belonging to the 

previously selected sequence was preferred, and B) distance to goal, where the state that is 

closest to the goal in its sequence was preferred. 

 

Furthermore, action selection in the contextual layer also took into 

consideration, distance to goal, relative reward and discounted 

reward per couplet. There was also a forward bias which gave priority 

to couplets according to how close they were to the end of their goal 

state (Figure 19-B). The selected action, ac, is forward biased by 

distance to goal based on Eq. 19, where δlq is the distance measured 

in couplets from the selected couplet to the last couplet in the 

sequence. The sign of the fraction depends on the sequence’s 

associated reward; positive for appetitive and negative for aversive. 

Discounted rewards, where the reward at the end of a sequence is 

propagated backwards to earlier couplets in the sequence, and 

relative rewards, where reward values are normalised to the available 

range of values in the long-term memory, were also calculated when 

transferring sequences from the short-term memory to the long-term 

memory, but played a smaller role in this task due to the consistent 

value of rewards and the relatively limited field of vision and physical 

exploration of the agent. The implementation of the contextual layer 

was adopted from Marcos et al. (2014). 
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𝑎𝑐  =  ∑ ±

𝑐𝑙𝑞𝐻(𝑐𝑙𝑞 − 𝜃
𝐶)

𝛿𝑙𝑞
𝑎𝑙𝑞

𝑙,𝑞∈𝐿𝑇𝑀

 Eq. 19 

 

Once the sensorimotor couplet is selected, the contextual layer 

triggered the associated motor action. At the same time, it determined 

if the selected action was due to a reward or a distractor. If it was due 

to a reward, the contextual layer sent to the sensor that had provided 

the perceptual input an excitatory signal for the next timestep. If it 

was due to a distractor, the contextual layer sent an inhibitory signal 

instead. These excitatory and inhibitory signals were calculated with 

fixed gains gG,TDexc and gR,TDinh respectively. A gain of 0 would 

eliminate the corresponding top-down biasing signal while a gain of 

1 would close to eliminate the sensory signal for inhibited sensors 

and double the sensory signal from excited sensors. 

 

 

f) Data analysis 
 

All grouped data was first tested for normality using D’Agostino and 

Pearson’s omnibus normality test that combines skew and kurtosis 

(D’Agostino, 1971). For multiple comparisons between non-

parametric data, the Friedman test (Friedman, 1937) was used to 

determine if there were any significant differences between groups. 

  

Post-hoc testing or comparisons consisting were carried out using 

estimation statistics based on Monte Carlo permutation (Ho et al., 

2019), with the paired mean difference figures including a bootstrap 

95% confidence interval from 5000 resamples to illustrate the effect 

size. This avoids any assumption as to the data’s normality, focuses 

on effect sizes and avoids the pitfalls of traditional significance 

testing (Halsey et al., 2015). The confidence interval accounts for 

skewness in the distributions with a bias-corrected and accelerated 

bootstrap (Efron, 1987). Each test was based on 5000 resamples. The 

distribution of all data is reported either as ‘condition (mean±std)’ 

when inline or as ‘mean±std (condition)’ when nested among other 

statistical information. Conditions where the gains of top-down 

biasing signals are set to 0 are referred to as ‘no TD’; conditions 
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where only excitatory top-down biasing gains are nonzero are ‘exc’ 

while when only inhibitory top-down biasing gains are nonzero the 

label ‘inh’ is used. When both excitatory and inhibitory gains are 

nonzero, it is labelled as ‘both’. 

 

 

5.2 Results 
 

a) Top-down attentional biasing increased probability of 

choosing a reward over a distractor 
 

In the first experiment, to determine the viability of excitatory and 

inhibitory mechanisms to bias selective attention, we ran simulations 

of an agent choosing between two objects, one reward and one 

distractor, with varying gains gG,TDexc and gR,TDinh. Chance level 

performance was 0.5, and it was found that both mechanisms 

improved performance to a mean of at least 0.7 as long as the top-

down excitatory or inhibitory gain was at least 0.1 (Figure 20-A). 

 

Figure 20. Performance of the agent in the two experiments. A) In the first 

experiment, the probability of a successful trial, determined by the agent approaching and 

touching a reward (green), across a range of top-down (TD) gains when the top-down biasing 

mechanism was either only inhibitory or only excitatory. The red line indicates chance level. 

B) The mean durations per trial in each condition in the second experiment. Within each 

column, the top-down biasing groups are ordered, from left to right, as follows: no top-down 

biasing (no TD), only inhibitory top-down biasing (inh), only excitatory top-down biasing 

(exc), and both inhibitory and excitatory top-down biasing (both). Stand-alone horizontal 

lines indicate significance between the distributions located below their ends. Horizontal 

lines connected to another horizontal line below indicate significance between the 

distribution below the single free end and all the distributions covered by the lower line. A 

horizontal line with a single vertical line over it indicates significance between all the 

distributions under the horizontal line. C) The probability of the agent touching a green 

reward in the second experiment. The order and labelling are the same as in the previous 

plot. The red dotted lines indicate chance level for that reward proportion.  



   

 

98 

 

 

The trials were then separated into three groups and their durations, 

in time steps, were analysed: without top-down biasing (68±32 

steps), with nonzero inhibitory gains (80±38 steps), and with nonzero 

excitatory gains (65±33 steps). Trials with nonzero excitatory 

weights were significantly faster than those without top-down biasing 

and with nonzero inhibitory gains (Table 15). 

 

 

b) Attentional mechanisms led to quicker trials when there 

were more rewards than distractors 
 

We next analysed the latencies of trials in the second experiment. In 

general, the differences in mean latency between attentional 

conditions increased with the number of rewards, with the clearest 

differences found when a large majority of the objects were rewards. 

When there was one reward, the top-down attentional mechanism did 

not significantly affect trial duration (Figure 20-B; 42.±6.0 steps (no 

TD), 41.±7.8 steps (inh), 40.±8.2 (exc), 46.±9.3 steps (both); 

Friedman, p=0.077, χ2(3)=6.9). However, when there were three 

rewards, we found that the duration of trials with only excitatory top-

down biasing was significantly quicker than the other conditions 

(Friedman, p=0.0021, χ2(3)=14.; Table 15). 

 

With four rewards, all the conditions with some form of attentional 

biasing had similar durations and were all significantly faster than 

when there was no attentional biasing (49.±2.1 steps (no TD), 47.±1.8 

steps (inh), 46.±2.3 steps (exc), 46.±2.9 steps (both); Friedman, 

p=0.0039, χ2(3)=13.). When there were six rewards, there were 

significant differences between all the attentional conditions (59.±2.0 

steps (no TD), 57. ±1.9 steps (inh), 54.±2.4 (exc), 50.±2.2 steps 

(both); Friedman, p<0.001, χ2(3)=47.). 
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Table 15. Post-hoc Monte Carlo permutation testing statistics for mean 

differences in latencies of trials. Exp: experiment; N(G): number of green objects, 

which serve as rewards; CI (95%): the 95% confidence interval. 

Exp N(G) Control Test Difference 
CI (95%) 

p-value 
lower upper 

1 

1 No TD Exc -3.1 –6.0 –0.25 0.043 

1 No TD Inh 13. 9.8 16. <0.001 

1 Exc Inh 16. 14. 18. <0.001 

2 

3 No TD Inh 1.2 –0.44 2.9 0.15 

3 No TD Exc -2.2 –3.6 –0.57 0.0096 

3 No TD Both 0.55 –0.93 2.2 0.50 

3 Exc Both 2.7 1.3 4.1 0.0012 

3 Inh Exc –3.4 –4.8 –1.8 <0.001 

4 No TD Inh –2.0 –3.2 –0.88 0.0024 

4 No TD Exc –2.4 –3.8 –1.1 0.0018 

4 No TD Both –3.0 –4.5 –1.5 <0.001 

4 Inh Exc –0.42 –1.7 0.81 0.53 

6 No TD Inh –1.8 –3.0 –0.71 0.006 

6 No TD Exc –4.9 –6.3 –3.6 <0.001 

6 No TD Both –8.2 –9.4 –6.9 <0.001 

6 Exc Both –3.3 –4.6 –1.8 <0.001 

6 Inh Exc –3.1 –4.4 –1.8 <0.001 

 

 

c) Combining excitatory and inhibitory attentional 

mechanisms improved performance regardless of reward 

proportion 
 

The agent’s performance is calculated similarly to the first 

experiment. A trial is considered a success if the agent reaches any 

reward, and a failure when it reaches a distractor. This gives a 

probability of reaching a green object for each condition (Figure 20-

C). When there was one reward, the excitation model did not perform 

significantly different from the model without top-down biasing 

(Table 16). The models with only inhibitory biasing and both 

excitatory and inhibitory biasing performed similarly, and at a level 

significantly better than without top-down biasing and with only 

excitatory biasing (0.33±0.054 (inh), 0.32 ±0.049 (both); Friedman, 

p=0.001, χ2(3)=16.; Table 16) 

 

The models with some form of top-down attention all performed 

better than the one without any top-down biasing once the reward-

distractor ratio increased. Performance was significantly better with 
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only inhibitory than with only excitatory top-down biasing, and 

performance was best when both inhibitory and excitatory 

mechanisms were used. With three rewards, this effect was 

significant (0.52±0.078 (no TD), 0.70 ±0.061 (inh), 0.62±0.084 

(exc), 0.77 ±0.076 (both); Friedman, p<0.001, χ2(3)=43.) and with 

four rewards as well (0.65±0.073 (no TD), 0.84 ±0.051 (inh), 

0.76±0.056 (exc), 0.88 ±0.040 (both); Friedman, p<0.001, 

χ2(3)=43.). The statistics from the individual post-hoc Monte Carlo 

permutation testing can all be found in Table 16. 

 

When there was a large majority of rewards, six out of seven, the 

performance of the models with top-down attention reached a ceiling 

but the model without top-down biasing remained significantly 

poorer in performance (0.87±0.042 (no TD), 0.99 ±0.012 (inh), 

0.99±0.018 (exc), 0.99 ±0.0098 (both); Friedman, p<0.001, 

χ2(3)=45.; Table 16). 

 
Table 16. Post-hoc Monte Carlo permutation testing statistics for mean 

differences in probability of success. Exp: experiment; N(G): number of green 

objects, which serve as rewards; CI (95%): the 95% confidence interval. 

Exp N(G) Control Test Difference 
CI (95%) 

p-value 
lower upper 

2 

1 No TD Inh 0.076 0.040 0.11 <0.001 

1 No TD Exc 0.033 –0.0030 0.066 0.071 

1 no TD Both 0.073 0.040 0.10 <0.001 

1 Inh Exc –0.043 –0.074 –0.008 0.015 

1 Inh Both –0.003 –0.033 0.028 0.85 

3 No TD Inh 0.19 0.14 0.23 <0.001 

3 No TD Exc 0.10 0.053 0.15 <0.001 

3 no TD Both 0.25 0.20 0.29 <0.001 

3 Inh Exc –0.082 –0.13 –0.039 0.001 

3 Inh Both 0.064 0.020 0.10 0.006 

4 No TD Inh 0.19 0.15 0.23 <0.001 

4 No TD Exc 0.11 0.062 0.14 <0.001 

4 no TD Both 0.23 0.19 0.27 <0.001 

4 Inh Exc –0.088 –0.12 –0.053 <0.001 

4 Inh Both 0.039 0.013 0.068 0.013 

6 No TD Inh 0.12 0.097 0.13 <0.001 

6 No TD Exc 0.11 0.094 0.13 <0.001 

6 no TD Both 0.12 0.10 0.14 <0.001 

6 Inh Exc –0.002 –0.013 0.006 0.63 

6 Inh Both 0.004 –0.003 0.010 0.18 
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5.3 Conclusions 
 

For agents acting in dynamic environments, it is important to attend 

to stimuli that would better inform the selection of behaviour to 

achieve a goal or maintain survival. Selective attention facilitates this 

in humans, and typically it is thought to do so via interlayer excitation 

of neurons representing selected stimuli or features while intralayer 

inhibition of close competitors sharpens the contrast in neural activity 

between what is selected and what is not (Itti and Koch, 2001). 

However, there is increasing interest in an attentional mechanism that 

instead selects stimuli and features to inhibit. We investigated the 

effectiveness of the two mechanisms of attention in simulation, 

where an artificial agent performed a simple foraging task. In this 

task, the environment consisted of rewards and distractors and the 

goal of the agent was to reach a reward. The evaluation of the 

different attentional models was based on the agent’s performance 

(proportion of successful trials) and the time needed to reach an 

object. Furthermore, the models were evaluated with a variety of 

reward-to-distractor ratios. 

 

The agent was controlled using a hierarchical control architecture, 

namely the Distributed Adaptive Control (DAC) architecture, and its 

reflexive behaviour was directly controlled with a reactive layer that 

prevented collisions with the walls of the arena and produced 

explorative behaviour when the agent did not perceive any objects. 

When it did perceive objects, the adaptive layer would process the 

representations of the objects and, through a winner-takes-all 

mechanism, send a perceptual state to the contextual layer. The 

contextual layer would compare this state with those in its long-term 

memory, which was pre-trained to exhibit appetitive behaviour 

towards red and green objects, to decide on an action to take. In 

addition, it also biased the activity of the agent’s sensors in the next 

time step through excitatory or inhibitory mechanisms. By changing 

the values of the top-down connection gains gG,TDexc and gR,TDinh, the 

agent was tested with four types of top-down attentional models: 

without top-down biasing, with only excitatory biasing, with only 

inhibitory biasing, and with both excitatory and inhibitory biasing. 
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We found that all combinations of attentional biasing led to faster 

trials with increasing proportions of rewards to distractors. This is 

reminiscent of the fable of Buridan’s ass, which finds itself both 

starving and dehydrating because it is unable to choose between a 

pile of hay on one side and a trough of water on the other. At first 

glance, it seems that when there are more rewards the agent might 

have had difficulty choosing one reward and carrying out actions to 

reach it without getting distracted by other rewards. Top down 

attentional mechanisms would then help the agent choose an object 

to approach and maintain that decision till the end of the trial. 

However, the contextual layer was the main driver of behaviour even 

in conditions without top-down attention, as all motor actions that 

were decided through perception take place via the contextual layer. 

As the contextual layer was implemented with decision inertia, where 

previously-selected sequences were prioritised over others, decisions 

made through purely bottom-up interactions would still exhibit 

decision inertia. Decision inertia alone is thus insufficient to explain 

the reduced trial durations in conditions with top-down biasing, 

suggesting that top-down attentional mechanisms do more than 

simply ensuring that a decision is carried out till its goal is met. 

 

It was also found that top-down excitation-based biasing consistently 

performs faster than top-down inhibition-based biasing, with this 

effect being clearer with greater proportions of rewards. This might 

be because although all the objects were located equidistant to the 

agent, the low-resolution of the visual sensors meant that it did not 

detect all of them at the same time. In this task, the excitatory 

mechanism biased sensory input to the contextual layer to select 

directions that the agent should go towards, while the inhibitory 

mechanism did the same to select directions that the agent should not 

go towards. When there were fewer ‘correct’ directions, the 

inhibitory mechanism would allow for faster convergence than when 

there are fewer ‘incorrect’ directions. The differences in trial 

durations between the inhibitory and excitatory mechanisms would 

therefore be indicators that they do approach a search task from 

distinct perspectives. This was further supported by the shorter trial 

durations when both mechanisms were in effect and the reward 

proportion is high. 
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The agent performed better with top-down attentional biasing than 

without in all the reward proportion conditions, demonstrating the 

usefulness of top-down attention even in a task as simple as this. In 

addition, it was found that inhibitive biasing consistently led to better 

performance in terms of probability of a successful trial than 

excitatory biasing. This was somewhat unexpected, but, as with trial 

durations, it could be a sign that the two mechanisms do occupy 

separate niches in a search paradigm. Most notably, the attentional 

model that consistently performed the best was one that combined 

both excitatory and inhibitory mechanisms. This supports the 

hypothesis that the two mechanisms are complementary. 

 

The current study used a simple foraging task to illustrate the effects 

of the two mechanisms of top-down attentional biasing on behaviour. 

While it was sufficient for that purpose, it still revolved around a 

classic visual search task. Future work could test the models in a 

paradigm that is closer to an oddball task, where what is predictable 

is not task-relevant. Also, the visual sensors used in the agent had 

very low resolution. While they approximate vision in humans, it is 

nowhere close to the complexity of visual input from human eyes. Its 

simplicity, and that of the environment and objects, allowed the 

sensory competition to be simulated cleanly through representations 

of three colour channels. 

 

As future work, it would be interesting to test the models’ 

performance in more ecological environments, such as when the 

perceptual states it deals with is of higher resolution or is noisier, for 

example from an autoencoder’s compressed representation of a two-

dimensional camera in an environment with more variation of 

objects. A wider range of stimulus features can also be used as 

perceptual states in future experiments, such as shape, orientation, or, 

at a higher level of abstraction, object type. Additionally, the 

calculation for bottom-up saliency can be more detailed in terms of 

biological-grounding, for example including a parameter for contrast. 

Also, learning and attention are closely coupled (e.g. Eldar et al., 

2013; Grossberg, 1999), and a potentially interesting field of research 

would be on how the excitatory and inhibitory models of attention 
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could lead to differences in the learning process either through 

changes in neuronal synapses or through higher-level learning 

strategies. 
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6. CONCLUSIONS 
 

Except for the most basic scenarios and behaviours, the interaction 

between higher-order top-down processes and sensory-driven 

bottom-up processes is critical for selective attention, which is the 

selection of stimuli for further sensory processing. This selection is 

evidenced by the fact that < 1% of visual information from the retina 

reaches conscious perception (Anderson et al., 2005). Over the years, 

most research has focused on how top-down processes influence 

selective attention by exciting representations of the selected stimuli. 

In this excitatory mechanism, inhibition most often takes the form of 

surround suppression or overlay suppression (Petrov et al., 2005). 

Hence, using the spatial domain as an example, top-down attentional 

processes shift the spatial centre and surround of the classical 

receptive field of sensory neurons to the attended location (Anton-

Erxleben et al., 2009). Experimental findings have, however, 

suggested that this is not a complete mechanistic description of 

selective attention in the human brain. In response, an alternative, 

inhibitory mechanism of selective attention was proposed (e.g. 

Houghton and Tipper, 1994), where top-down processes target 

representations of task-irrelevant features for inhibition. This thesis 

focused on exploring the biological and computational plausibility of 

such an inhibitory mechanism. It formalised the mechanism using the 

Validation Gate hypothesis, which extended the initial proposal to 

include the known interplay between working memory capacity and 

sensory processing (e.g. Sörqvist et al., 2012). This allowed the thesis 

to systematically analyse the proposed mechanism, with each study 

validating a hypothesis from a previous one and using the emerging 

new insights to continue the chain of investigation. 

 

The first chapter used psychophysiological methods to dissociate the 

contributions of top-down and bottom-up processes on selective 

attention, allowing us to further examine the impact of both cognitive 

impairment and working memory load on top-down attentional 

biasing. We found that, as predicted by the Validation Gate 

hypothesis, an increase in working memory load led to a decrease in 

sensitivity to task-relevant stimulus features, both in the spatial 

domain and in the colour domain. This supports the theory that top-

down attentional processes form inhibitory anticipatory fields that are 

task-specific, and that they dynamically increase their threshold 
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when working memory capacity is taxed by other cognitive 

processes, thereby reducing the amount of sensory input to the system 

to a volume that is manageable at the given time. 

 

In addition, the first study used a generalised linear mixed-effects 

model to show that cognitive impairment interacts with explicit 

detections rather than implicit detections in the displacement 

detection task, implying that the behavioural measures of standard 

clinical scales is an outcome of impairment in top-down processes 

rather than bottom-up ones. This raises the issue of a lack of 

specificity present in many standard clinical scales for cognitive 

impairment. The scales may diagnose patients based on impairments 

in different aspects of cognitive function, leading to cognitive 

impairment being an ineffective diagnosis for rehabilitation. The 

second study of the same chapter also found an increase in 

microsaccadic activity during retrieval of working memory items 

with higher working memory load. This comes on the heels of earlier 

findings that saccadic onset lead to phase reset of neocortical and 

hippocampal theta oscillations (Jutras et al., 2013), and that the phase 

that the oscillations are reset to is indicative of the working memory 

function used at the moment of the triggering saccade (Kragel et al., 

2020). Together, they imply that saccadic eye movements have a role 

beyond that of active sampling and, as increased movement was 

elicited even when participants tried to maintain fixation, it is a 

necessary part of the working memory system. 

 

Having established the functional validity of the inhibitory 

mechanism of selective attention, this thesis elucidated and tested a 

computational spiking model of the described mechanism in the 

second chapter. Specific cortico-thalamocortical pathways that map 

to the functional inhibitory model of attention have been 

experimentally shown in animal models to modulate performance in 

attentional tasks (e.g. Wimmer et al., 2015). However, the human 

counterpart of this network has yet to be directly tested. The brain 

regions modelled were chosen based on brain physiology and aimed 

to produce responses that were indicative of selective attention while 

minimising the complexity of the model. The model successfully 

carried out two attentional tasks and showed reasonable robustness 

against external noise. It also illustrated the differential effects of 

cognitive load and external noise on performance. As it was 

implemented using spiking neurons, the neural dynamics could be 
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analysed and benchmarked against. Top-down signals in the 

computational model was shown to produce changes in neural 

spiking patterns in the thalamic nucleus that mirrored what was found 

in mice, lending further support to the plausibility of the model’s 

thalamocortical substrate. 

 

For agents that interact with their environment, the purpose of most 

cognitive processes is to guide behavioural choices that help the 

agent achieve a goal, even if that goal is as general as surviving for 

as long as possible. Selective attention is no exception; indeed, it is 

arguable that one key purpose of selective attention is to maintain 

performance in the face of conflicting signals through the biased 

selection of information (Posner, 1988). In chapter 3, this thesis 

therefore put several mechanisms of selective attention to the test by 

measuring an artificial agent’s ability to select rewards among 

distractors through action. Using a simple foraging task to prevent 

confounding elements, such as visual occlusion, this thesis 

demonstrated that any kind of top-down biasing mechanism is, 

unsurprisingly, useful for improving performance. Avoiding a false 

dichotomy between the top-down excitatory mechanism and the top-

down inhibitory mechanism, the simulation also included an 

attentional model where both top-down excitatory and inhibitory 

mechanisms contributed to the biasing of sensory processing. The 

artificial agent’s performance showed that while the excitatory 

mechanism consistently led to quicker physical selection of an object, 

in many reward-distractor ratios the inhibitory mechanism was better 

at maximising rewards. Nonetheless, especially at low reward-

distractor ratios, it was the combination of both top-down excitation 

and inhibition that yielded the best results in terms of accuracy 

reward selection. This reiterates the importance of both mechanisms 

in selective attention, each complementing the shortcomings of the 

other.  

 
Currently, most experimental tasks are biased towards paradigms 

where task-relevant stimuli are predictable, leading to an inherent 

bias towards evidence for the excitatory mechanism of selective 

attention. On top of this, it was found that inhibition, unlike 

excitation, evoked no measurable blood oxygenation changes, 

implying that brain activity as measured by imaging methods using 

blood oxygenation is implicitly biased towards detection of changes 
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due to excitatory connections (Waldvogel et al., 2000). These 

methodological biases may explain the overshadowing of the 

inhibitory mechanism by the more popular, excitatory one; 

increasing physiological evidence for the inhibitory model is, 

however, changing this. The presented results point to the inhibitory 

mechanism being, in certain circumstances, not only computationally 

more efficient but also behaviourally preferred over excitatory 

mechanisms. The utility of the approach as a diagnostic for deficits 

in executive function, the generalization to non-spatial perceptual 

processing, the coupling between eye movements and mnemonic 

processing, the distinct signature in bursting rate of thalamic neurons, 

and the balancing of the inhibitory top-down channel and an 

excitatory one in a speed-accuracy trade-off are all novel outcomes 

that push the boundaries of the field. They also indicate a pathway 

that is separate from the established excitatory top-down biasing 

mechanisms, specifically through the thalamic reticular nucleus, 

which offers an experimental method to test the existence of both 

mechanisms in the brain. Indeed, animal models have shown the 

existence of the inhibitory (Wimmer et al., 2015) and excitatory 

(Saalmann et al., 2007) pathways, although there remains discussion 

as to whether the excitatory mechanism is thalamocortical, 

corticocortical, or both (Anderson et al., 2011; Van Essen, 2005). The 

next step would be to bring the methods together to test the 

importance of either pathways in tasks that vary the predictability of 

either task-relevant or task-irrelevant stimuli.  

 

While opening new research questions through the validation of a 

new pathway of attentional processing, the results presented here also 

implicate other cognitive functions that often work hand-in-hand 

with selective attention, perhaps most notably memory and learning. 

This thesis has focused entirely on the use of selective attention to 

elicit an immediate, or close to immediate, goal-oriented behaviour, 

and investigating the longer-term effects of the different mechanisms 

of attention on learning would be interesting. In addition, there are 

several psychological disorders and developmental disabilities that 

have been associated with impaired or dysfunctional attentional 

control, such as schizophrenia, depression and autism. Research into 

these topics would benefit from examining their attentional 

dysfunctions through the integration of both top-down excitatory and 

inhibitory mechanisms. 



   

 

109 

 

Bibliography 
 

Adeli, H., Zelinsky, G., 2018. Deep-BCN: Deep networks meet 

biased competition to create a brain-inspired model of attention 

control, in: IEEE Computer Society Conference on Computer 

Vision and Pattern Recognition Workshops. 

https://doi.org/10.1109/CVPRW.2018.00259 

Allport, A., 2016. Selection for action: Some behaviorial and 

neurophysiological considerations of attention and action, in: 

Perspectives on Perception and Action. pp. 395–419. 

https://doi.org/10.4324/978131562799 

Anderson, C.H., Van Essen, D.C., Olshausen, B.A., 2005. Directed 

visual attention and the dynamic control of information flow, 

in: Neurobiology of Attention. https://doi.org/10.1016/B978-

012375731-9/50007-0 

Anderson, J.C., Kennedy, H., Martin, K.A.C., 2011. Pathways of 

attention: Synaptic relationships of frontal eye field to V4, 

lateral intraparietal cortex, and area 46 in macaque monkey. J. 

Neurosci. https://doi.org/10.1523/JNEUROSCI.0622-11.2011 

Anderson, M.L., 2003. Embodied Cognition: A field guide. Artif. 

Intell. 149, 91–130. https://doi.org/10.1016/S0004-

3702(03)00054-7 

Anton-Erxleben, K., Stephan, V.M., Treue, S., 2009. Attention 

reshapes center-surround receptive field structure in macaque 

cortical area MT. Cereb. Cortex. 

https://doi.org/10.1093/cercor/bhp002 

Armstrong, K.M., Moore, T., 2007. Rapid enhancement of visual 

cortical response discriminability by microstimulation of the 

frontal eye field. Proc. Natl. Acad. Sci. U. S. A. 

https://doi.org/10.1073/pnas.0701104104 

Axmacher, N., Henseler, M.M., Jensen, O., Weinreich, I., Elger, 

C.E., Fell, J., 2010. Cross-frequency coupling supports multi-

item working memory in the human hippocampus. Proc. Natl. 

Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.0911531107 

Badde, S., Myers, C.F., Yuval-Greenberg, S., Carrasco, M., 2020. 

Oculomotor freezing reflects tactile temporal expectation and 

aids tactile perception. bioRxiv. 

https://doi.org/10.1101/2020.04.27.064899 

Barbas, H., 2000. Connections underlying the synthesis of 

cognition, memory, and emotion in primate prefrontal cortices. 

Brain Res. Bull. 52, 319–330. https://doi.org/10.1016/S0361-



   

 

110 

 

9230(99)00245-2 

Bayes, T., 1763. LII. An essay towards solving a problem in the 

doctrine of chances. By the late Rev. Mr. Bayes, FRS 

communicated by Mr. Price, in a letter to John Canton, AMFR 

S. Philos. Trans. R. Soc. London 370–418. 

Beck, J.M., Ma, W.J., Kiani, R., Hanks, T., Churchland, A.K., 

Roitman, J., Shadlen, M.N., Latham, P.E., Pouget, A., 2008. 

Probabilistic Population Codes for Bayesian Decision Making. 

Neuron. https://doi.org/10.1016/j.neuron.2008.09.021 

Behrens, T.E.J., Johansen-Berg, H., Woolrich, M.W., Smith, S.M., 

Wheeler-Kingshott, C. a M., Boulby, P. a, Barker, G.J., Sillery, 

E.L., Sheehan, K., Ciccarelli, O., Thompson,  a J., Brady, J.M., 

Matthews, P.M., 2003. Non-invasive mapping of connections 

between human thalamus and cortex using diffusion imaging. 

Nat. Neurosci. 6, 750–7. https://doi.org/10.1038/nn1075 

Belmonte, M.K., Yurgelun-Todd, D.A., 2003. Functional anatomy 

of impaired selective attention and compensatory processing in 

autism. Cogn. Brain Res. https://doi.org/10.1016/S0926-

6410(03)00189-7 

Berens, P., 2009. CircStat : A MATLAB Toolbox for Circular 

Statistics . J. Stat. Softw. https://doi.org/10.18637/jss.v031.i10 

Berk, L.E., Winsler, A., 1995. Scaffolding Children’s Learning: 

Vygotsky and Early Childhood Education. NAEYC Research 

into Practice Series. Volume 7. ERIC. 

Bezdudnaya, T., Cano, M., Bereshpolova, Y., Stoelzel, C.R., 

Alonso, J.M., Swadlow, H.A., 2006. Thalamic burst mode and 

inattention in the awake LGNd. Neuron. 

https://doi.org/10.1016/j.neuron.2006.01.010 

Blackburn, I.M., 1975. Mental and psychomotor speed in 

depression and mania. Br. J. Psychiatry. 

https://doi.org/10.1192/bjp.126.4.329 

Boblett, N., 2012. Scaffolding: Defining the metaphor. TESOL 

Appl. Linguist. 

Borji, A., Itti, L., 2013. State-of-the-art in visual attention modeling. 

IEEE Trans. Pattern Anal. Mach. Intell. 35, 185–207. 

https://doi.org/10.1109/TPAMI.2012.89 

Braitenberg, V., 1986. Vehicles: Experiments in Synthetic 

Psychology. Philos. Rev. https://doi.org/10.2307/2185146 

Braun, J., Julesz, B., 1998. Withdrawing attention at little or no 

cost: Detection and discrimination tasks. Percept. Psychophys. 

https://doi.org/10.3758/BF03211915 



   

 

111 

 

Breazeal, C., Scassellati, B., 1999. A context-dependent attention 

system for a social robot, in: IJCAI International Joint 

Conference on Artificial Intelligence. 

Broadbent, D.E., 1958. Perception and communication. 

Brooks, R.A., 1986. A Robust Layered Control System For A 

Mobile Robot. IEEE J. Robot. Autom. 

https://doi.org/10.1109/JRA.1986.1087032 

Bruce, N., Tsotsos, J., 2010. Attention based on information 

maximization. J. Vis. https://doi.org/10.1167/7.9.950 

Catto, E., 2011. Box2d: A 2d physics engine for games. 

Chabris, C.F., Weinberger, A., Fontaine, M., Simons, D.J., 2011. 

You do not talk about fight club if you do not notice fight club: 

Inattentional blindness for a simulated real-world assault. 

Iperception. https://doi.org/10.1068/i0436 

Chalk, M., Herrero, J.L., Gieselmann, M.A., Delicato, L.S., 

Gotthardt, S., Thiele, A., 2010. Attention Reduces Stimulus-

Driven Gamma Frequency Oscillations and Spike Field 

Coherence in V1. Neuron. 

https://doi.org/10.1016/j.neuron.2010.03.013 

Chen, S., Epps, J., 2013. Automatic classification of eye activity for 

cognitive load measurement with emotion interference. 

Comput. Methods Programs Biomed. 

https://doi.org/10.1016/j.cmpb.2012.10.021 

Clark, A., 2013. Whatever next? Predictive brains, situated agents, 

and the future of cognitive science. Behav. Brain Sci. 

https://doi.org/10.1017/S0140525X12000477 

Colombini, E.L., da Silva Simões, A., Ribeiro, C.H.C., 2016. An 

attentional model for autonomous mobile robots. IEEE Syst. J. 

11, 1308–1319. 

Conway, A.R.A., Kane, M.J., Bunting, M.F., Hambrick, D.Z., 

Wilhelm, O., Engle, R.W., 2005. Working memory span tasks: 

A methodological review and user’s guide. Psychon. Bull. 

Rev. 12, 769–786. https://doi.org/10.3758/BF03196772 

Corbetta, M., Shulman, G.L., 2011. Spatial neglect and attention 

networks. Annu. Rev. Neurosci. 

https://doi.org/10.1146/annurev-neuro-061010-113731 

Corsi, P.M., 1973. Human memory and the medial temporal region 

of the brain. Diss. Abstr. Int. 

Cosman, J.D., Lowe, K.A., Woodman, G.F., Schall, J.D., 2018. 

Prefrontal Control of Visual Distraction. Curr. Biol. 28, 414-

420.e3. https://doi.org/10.1016/j.cub.2017.12.023 



   

 

112 

 

Cutrone, E.K., Heeger, D.J., Carrasco, M., 2014. Attention 

enhances contrast appearance via increased input baseline of 

neural responses. J. Vis. 14, 16–16. 

https://doi.org/10.1167/14.14.16 

D’Agostino, R.B., 1971. An omnibus test of normality for moderate 

and large size samples. Biometrika. 

https://doi.org/10.1093/biomet/58.2.341 

Daneman, M., Carpenter, P. a., 1980. Individual differences in 

working memory and reading. J. Verbal Learning Verbal 

Behav. 19, 450–466. https://doi.org/10.1016/S0022-

5371(80)90312-6 

Debener, S., Kranczioch, C., Herrmann, C.S., Engel, A.K., 2002. 

Auditory novelty oddball allows reliable distinction of top-

down and bottom-up processes of attention. Int. J. 

Psychophysiol. https://doi.org/10.1016/S0167-8760(02)00072-

7 

Dedoncker, J., Brunoni, A.R., Baeken, C., Vanderhasselt, M.A., 

2016. The effect of the interval-between-sessions on prefrontal 

transcranial direct current stimulation (tDCS) on cognitive 

outcomes: a systematic review and meta-analysis. J. Neural 

Transm. https://doi.org/10.1007/s00702-016-1558-x 

Deleuze, C., Huguenard, J.R., 2006. Distinct electrical and chemical 

connectivity maps in the thalamic reticular nucleus: Potential 

roles in synchronization and sensation. J. Neurosci. 

https://doi.org/10.1523/JNEUROSCI.2333-06.2006 

Desimone, R., 1998. Visual attention mediated by biased 

competition in extrastriate visual cortex Visual attention 

mediated by biased competition in extrastriate visual cortex. 

Philos. Trans. R. Soc. London 1245–1255. 

https://doi.org/10.1098/rstb.1998.0280 

Desimone, R., Duncan, J., 1995. Neural mechanisms of selective 

visual attention. Annu. Rev. Neurosci. 

https://doi.org/10.1146/annurev.ne.18.030195.001205 

Destexhe, A., Contreras, D., Steriade, M., 1998. Mechanisms 

underlying the synchronizing action of corticothalamic 

feedback through inhibition of thalamic relay cells. J. 

Neurophysiol. https://doi.org/10.1152/jn.1998.79.2.999 

Dollar, P., Appel, R., Belongie, S., Perona, P., 2014. Fast feature 

pyramids for object detection. IEEE Trans. Pattern Anal. 

Mach. Intell. https://doi.org/10.1109/TPAMI.2014.2300479 

Drew, T., Võ, M.L.H., Wolfe, J.M., 2013. The Invisible Gorilla 



   

 

113 

 

Strikes Again: Sustained Inattentional Blindness in Expert 

Observers. Psychol. Sci. 

https://doi.org/10.1177/0956797613479386 

Driscoll, J.A., Peters, R.A., Cave, K.R., 1998. Visual attention 

network for a humanoid robot, in: IEEE International 

Conference on Intelligent Robots and Systems. pp. 1968–1974. 

https://doi.org/10.1109/iros.1998.724894 

Dubois, B., Slachevsky, A., Litvan, I., Pillon, B., 2000. The FAB: A 

frontal assessment battery at bedside. Neurology. 

https://doi.org/10.1212/WNL.55.11.1621 

Duchowski, A., 2007. Eye tracking methodology: Theory and 

practice, Eye Tracking Methodology: Theory and Practice. 

https://doi.org/10.1007/978-1-84628-609-4 

Duff, A., Sanchez Fibla, M., Verschure, P.F.M.J., 2011. A 

biologically based model for the integration of sensory-motor 

contingencies in rules and plans: A prefrontal cortex based 

extension of the Distributed Adaptive Control architecture. 

Brain Res. Bull. 

https://doi.org/10.1016/j.brainresbull.2010.11.008 

Duncan, J., 1984. Selective attention and the organization of visual 

information. J. Exp. Psychol. Gen. 

https://doi.org/10.1037/0096-3445.113.4.501 

Efron, B., 1987. Better bootstrap confidence intervals. J. Am. Stat. 

Assoc. https://doi.org/10.1080/01621459.1987.10478410 

Eldar, E., Cohen, J.D., Niv, Y., 2013. The effects of neural gain on 

attention and learning. Nat. Neurosci. 

https://doi.org/10.1038/nn.3428 

Engbert, R., Kliegl, R., 2003. Microsaccades uncover the 

orientation of covert attention. Vision Res. 

https://doi.org/10.1016/S0042-6989(03)00084-1 

Engbert, R., Sinn, P., Mergenthaler, K., Trukenbrod, H., 2015. 

Microsaccade Toolbox for R. URL http//read. psych. uni-

potsdam. de/attachments/article/140/MS_Toolbox_R. zip. 

Engel, A.K., Maye, A., Kurthen, M., König, P., 2013. Where’s the 

action? The pragmatic turn in cognitive science. Trends Cogn. 

Sci. https://doi.org/10.1016/j.tics.2013.03.006 

Engle, R.W., 2002. Working memory capacity as executive 

attention. Curr. Dir. Psychol. Sci. https://doi.org/10.1111/1467-

8721.00160 

Eriksen, C.W., Hoffman, J.E., 1972. Temporal and spatial 

characteristics of selective encoding from visual displays. 



   

 

114 

 

Percept. Psychophys. 12, 201–204. 

Eriksen, C.W., James, J.D.S., 1986. Visual attention within and 

around the field of focal attention: A zoom lens model. 

Percept. Psychophys. 40, 225–240. 

Esterman, M., Yantis, S., 2010. Perceptual expectation evokes 

category-selective cortical activity. Cereb. Cortex. 

https://doi.org/10.1093/cercor/bhp188 

Faber, L.G., Maurits, N.M., Lorist, M.M., 2012. Mental Fatigue 

Affects Visual Selective Attention. PLoS One. 

https://doi.org/10.1371/journal.pone.0048073 

Faber, M., Bixler, R., D’Mello, S.K., 2018. An automated 

behavioral measure of mind wandering during computerized 

reading. Behav. Res. Methods. https://doi.org/10.3758/s13428-

017-0857-y 

Felleman, D.J., Van Essen, D.C., 1991. Distributed hierarchical 

processing in the primate cerebral cortex. Cereb. Cortex. 

https://doi.org/10.1093/cercor/1.1.1 

Fitzgerald, P.J., 2013. Gray colored glasses: Is major depression 

partially a sensory perceptual disorder? J. Affect. Disord. 

https://doi.org/10.1016/j.jad.2013.06.045 

Foerster, R.M., Schneider, W.X., 2018. Involuntary top-down 

control by search-irrelevant features: Visual working memory 

biases attention in an object-based manner. Cognition. 

https://doi.org/10.1016/j.cognition.2017.12.002 

Folstein, M.F., Folstein, S.E., McHugh, P.R., 1975. “Mini-mental 

state”. A practical method for grading the cognitive state of 

patients for the clinician. J. Psychiatr. Res. 

https://doi.org/10.1016/0022-3956(75)90026-6 

Friedman, M., 1937. The Use of Ranks to Avoid the Assumption of 

Normality Implicit in the Analysis of Variance. J. Am. Stat. 

Assoc. https://doi.org/10.1080/01621459.1937.10503522 

Frintrop, S., Rome, E., Nüchter, A., Surmann, H., 2003. An 

attentive, multi-modal laser “eye,” in: Lecture Notes in 

Computer Science (Including Subseries Lecture Notes in 

Artificial Intelligence and Lecture Notes in Bioinformatics). 

https://doi.org/10.1007/3-540-36592-3_20 

Friston, K., 2012. The history of the future of the Bayesian brain. 

Neuroimage. https://doi.org/10.1016/j.neuroimage.2011.10.004 

Friston, K., 2005. A theory of cortical responses. Philos. Trans. R. 

Soc. B Biol. Sci. https://doi.org/10.1098/rstb.2005.1622 

Gagne, R.M., 1968. Learning hierarchies. Educ. Psychol. 



   

 

115 

 

https://doi.org/10.1080/0022027750070205 

Gaspelin, N., Leonard, C.J., Luck, S.J., 2015. Direct Evidence for 

Active Suppression of Salient-but-Irrelevant Sensory Inputs. 

Psychol. Sci. https://doi.org/10.1177/0956797615597913 

Gazzaley, A., Nobre, A.C., 2012. Top-down modulation: Bridging 

selective attention and working memory. Trends Cogn. Sci. 

https://doi.org/10.1016/j.tics.2011.11.014 

Giesbrecht, B., Weissman, D.H., Woldorff, M.G., Mangun, G.R., 

2006. Pre-target activity in visual cortex predicts behavioral 

performance on spatial and feature attention tasks, in: Brain 

Research. https://doi.org/10.1016/j.brainres.2005.09.068 

Gilinsky, A.S., Cohen, H.H., 1972. Reaction time to change in 

visual orientation. Percept. Psychophys. 

https://doi.org/10.3758/BF03210358 

Gregoriou, G.G., Gotts, S.J., Zhou, H., Desimone, R., 2009. High-

Frequency, long-range coupling between prefrontal and visual 

cortex during attention. Science (80-. ). 

https://doi.org/10.1126/science.1171402 

Grossberg, S., 2013. Adaptive Resonance Theory: How a brain 

learns to consciously attend, learn, and recognize a changing 

world. Neural Networks. 

https://doi.org/10.1016/j.neunet.2012.09.017 

Grossberg, S., 1999. The Link between Brain Learning, Attention, 

and Consciousness. Conscious. Cogn. 

https://doi.org/10.1006/ccog.1998.0372 

Grossberg, S., 1987. Processing of expected and unexpected events 

during conditioning and attention: A psychophysiological 

theory. Adv. Psychol. https://doi.org/10.1016/S0166-

4115(08)60909-7 

Grossberg, S., Versace, M., 2008. Spikes, synchrony, and attentive 

learning by laminar thalamocortical circuits. Brain Res. 

https://doi.org/10.1016/j.brainres.2008.04.024 

Guggisberg, A.G., Koch, P.J., Hummel, F.C., Buetefisch, C.M., 

2019. Brain networks and their relevance for stroke 

rehabilitation. Clin. Neurophysiol. 

https://doi.org/10.1016/j.clinph.2019.04.004 

Guillery, R.W., 1995. Anatomical evidence concerning the role of 

the thalamus in corticocortical communication: a brief review. 

J. Anat. 

Guillery, R.W., Harting, J.K., 2003. Structure and connections of 

the thalamic reticular nucleus: Advancing views over half a 



   

 

116 

 

century. J. Comp. Neurol. https://doi.org/10.1002/cne.10738 

Haasch, A., Hofemann, N., Fritsch, J., Sagerer, G., 2005. A multi-

modal object attention system for a mobile robot, in: 2005 

IEEE/RSJ International Conference on Intelligent Robots and 

Systems, IROS. https://doi.org/10.1109/IROS.2005.1545191 

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., 

Van Wedeen, J., Sporns, O., 2008. Mapping the structural core 

of human cerebral cortex. PLoS Biol. 

https://doi.org/10.1371/journal.pbio.0060159 

Halassa, M.M., Siegle, J.H., Ritt, J.T., Ting, J.T., Feng, G., Moore, 

C.I., 2011. Selective optical drive of thalamic reticular nucleus 

generates thalamic bursts and cortical spindles. Nat. Neurosci. 

https://doi.org/10.1038/nn.2880 

Hall, J., O’Carroll, R.E., Frith, C.D., 2010. 7 - Neuropsychology, in: 

Johnstone, E.C., Owens, D.C., Lawrie, S.M., McIntosh, A.M., 

Sharpe, M.B.T.-C. to P.S. (Eighth E. (Eds.), . Churchill 

Livingstone, St. Louis, pp. 121–140. 

https://doi.org/https://doi.org/10.1016/B978-0-7020-3137-

3.00007-3 

Halsey, L.G., Curran-Everett, D., Vowler, S.L., Drummond, G.B., 

2015. The fickle P value generates irreproducible results. Nat. 

Methods. https://doi.org/10.1038/nmeth.3288 

Han, S.H., Kim, M.S., 2004. Visual search does not remain efficient 

when executive working memory is working. Psychol. Sci. 

https://doi.org/10.1111/j.0956-7976.2004.00730.x 

Hastie, T., Tibshirani, R., Friedman, J., 2009. Elements of 

Statistical Learning 2nd ed., Elements. 

https://doi.org/10.1007/978-0-387-84858-7 

Heinerman, J., Zonta, A., Haasdijk, E., Eiben, A.E., 2016. On-line 

evolution of foraging behaviour in a population of real robots, 

in: Lecture Notes in Computer Science (Including Subseries 

Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics). https://doi.org/10.1007/978-3-319-31153-

1_14 

Helmholtz, H. von, 1962. Helmholtz’s treatise on physiological 

optics (JPC Southall, Trans.). Handb. der Physiol. Opt. 

Herman, J.P., Katz, L.N., Krauzlis, R.J., 2018. Midbrain activity 

can explain perceptual decisions during an attention task. Nat. 

Neurosci. https://doi.org/10.1038/s41593-018-0271-5 

Ho, J., Tumkaya, T., Aryal, S., Choi, H., Claridge-Chang, A., 2019. 

Moving beyond P values: data analysis with estimation 



   

 

117 

 

graphics. Nat. Methods 16, 565–566. 

https://doi.org/10.1038/s41592-019-0470-3 

Hoffman, K.L., Dragan, M.C., Leonard, T.K., Micheli, C., 

Montefusco-Siegmund, R., Valiante, T.A., 2013. Saccades 

during visual exploration align hippocampal 3–8 Hz rhythms 

in human and non-human primates. Front. Syst. Neurosci. 

https://doi.org/10.3389/fnsys.2013.00043 

Hopfinger, J.B., Buonocore, M.H., Mangun, G.R., 2000. The neural 

mechanisms of top-down attentional control. Nat. Neurosci. 

https://doi.org/10.1038/72999 

Houghton, G., Tipper, S.P., 1994. A model of inhibitory 

mechanisms in selective attention., in: Inhibitory Processes in 

Attention. 

Hutmacher, F., 2019. Why Is There So Much More Research on 

Vision Than on Any Other Sensory Modality? Front. Psychol. 

https://doi.org/10.3389/fpsyg.2019.02246 

Isaacs, E.B., Vargha-Khadem, F., 1989. Differential course of 

development of spatial and verbal memory span: A normative 

study. Br. J. Dev. Psychol. https://doi.org/10.1111/j.2044-

835x.1989.tb00814.x 

Ito, J., Maldonado, P., Singer, W., Grün, S., 2011. Saccade-related 

modulations of neuronal excitability support synchrony of 

visually elicited spikes. Cereb. Cortex. 

https://doi.org/10.1093/cercor/bhr020 

Itti, L., Koch, C., 2001. Computational modelling of visual 

attention. Nat. Rev. Neurosci. 

https://doi.org/10.1038/35058500 

Itti, L., Koch, C., Niebur, E., 1998. A model of saliency-based 

visual attention for rapid scene analysis. IEEE Trans. Pattern 

Anal. Mach. Intell. 20, 1254–1259. 

https://doi.org/10.1109/34.730558 

Izhikevich, E.M., 2003. Simple model of spiking neurons. IEEE 

Trans. Neural Networks 14, 1569–1572. 

https://doi.org/10.1109/TNN.2003.820440 

Jensen, O., Lisman, J.E., 1998. An oscillatory short-term memory 

buffer model can account for data on the Sternberg task. J. 

Neurosci. https://doi.org/10.1523/JNEUROSCI.18-24-

10688.1998 

John, Y.J., Zikopoulos, B., Bullock, D., Barbas, H., 2016. The 

Emotional Gatekeeper: A Computational Model of Attentional 

Selection and Suppression through the Pathway from the 



   

 

118 

 

Amygdala to the Inhibitory Thalamic Reticular Nucleus. PLOS 

Comput. Biol. 12, 1–36. 

https://doi.org/10.1371/journal.pcbi.1004722 

Johnston, W.A., Dark, V.J., 1986. Selective Attention. Annu. Rev. 

Psychol. https://doi.org/10.1146/annurev.ps.37.020186.000355 

Jones, E.G., 2002. Thalamic circuitry and thalamocortical 

synchrony, in: Philosophical Transactions of the Royal Society 

B: Biological Sciences. https://doi.org/10.1098/rstb.2002.1168 

Jutras, M.J., Fries, P., Buffalo, E.A., 2013. Oscillatory activity in 

the monkey hippocampus during visual exploration and 

memory formation. Proc. Natl. Acad. Sci. U. S. A. 

https://doi.org/10.1073/pnas.1302351110 

Kahneman, D., 1973. Attention and effort. Citeseer. 

Kastner, S., DeSimone, K., Konen, C.S., Szczepanski, S.M., 

Weiner, K.S., Schneider, K.A., 2007. Topographic maps in 

human frontal cortex revealed in memory-guided saccade and 

spatial working-memory tasks. J. Neurophysiol. 

https://doi.org/10.1152/jn.00010.2007 

Kastner, S., Ungerleider, L.G., 2001. The neural basis of biased 

competition in human visual cortex. Neuropsychologia 39, 

1263–1276. https://doi.org/10.1016/S0028-3932(01)00116-6 

Kastner, S., Ungerleider, L.G., 2000. Mechanisms of Visual 

Attention in the Human Cortex. Annu. Rev. Neurosci. 23, 315–

341. 

Katsuki, F., Constantinidis, C., 2012. Early involvement of 

prefrontal cortex in visual bottom-up attention. Nat. Neurosci. 

https://doi.org/10.1038/nn.3164 

Katz, C.N., Patel, K., Talakoub, O., Groppe, D., Hoffman, K., 

Valiante, T.A., 2020. Differential Generation of Saccade, 

Fixation, and Image-Onset Event-Related Potentials in the 

Human Mesial Temporal Lobe. Cereb. Cortex. 

https://doi.org/10.1093/cercor/bhaa132 

Kaufman, A.S., Lichtenberger, E.O., 2002. Assessing adolescent 

and adult intelligence, Wiley. 

Kauhanen, M.L., Korpelainen, J.T., Hiltunen, P., Brusin, E., 

Mononen, H., Määttä, R., Nieminen, P., Sotaniemi, K.A., 

Myllylä, V. V., 1999. Poststroke depression correlates with 

cognitive impairment and neurological deficits. Stroke. 

https://doi.org/10.1161/01.STR.30.9.1875 

Kertzman, S., Reznik, I., Hornik-Lurie, T., Weizman, A., Kotler, 

M., Amital, D., 2010. Stroop performance in major depression: 



   

 

119 

 

Selective attention impairment or psychomotor slowness? J. 

Affect. Disord. https://doi.org/10.1016/j.jad.2009.08.009 

Kidd, G., Arbogast, T.L., Mason, C.R., Gallun, F.J., 2005. The 

advantage of knowing where to listen. J. Acoust. Soc. Am. 

https://doi.org/10.1121/1.2109187 

Koch, C., Ullman, S., 1985. Shifts in selective visual attention: 

Towards the underlying neural circuitry. Hum. Neurobiol. 

https://doi.org/10.1007/978-94-009-3833-5_5 

Kotseruba, I., Tsotsos, J.K., 2020. 40 years of cognitive 

architectures: core cognitive abilities and practical 

applications. Artif. Intell. Rev. https://doi.org/10.1007/s10462-

018-9646-y 

Kragel, J.E., Vanhaerents, S., Templer, J.W., Schuele, S., Rosenow, 

J.M., Nilakantan, A.S., Bridge, D.J., 2020. Hippocampal theta 

coordinates memory processing during visual exploration. 

Elife. https://doi.org/10.7554/eLife.52108 

Leśniak, M., Bak, T., Czepiel, W., Seniów, J., Członkowska, A., 

2008. Frequency and prognostic value of cognitive disorders in 

stroke patients. Dement. Geriatr. Cogn. Disord. 

https://doi.org/10.1159/000162262 

Lisman, J., 2010. Working memory: The importance of theta and 

gamma oscillations. Curr. Biol. 

https://doi.org/10.1016/j.cub.2010.04.011 

Lisman, J.E., Jensen, O., 2013. The Theta-Gamma Neural Code. 

Neuron. https://doi.org/10.1016/j.neuron.2013.03.007 

Liu, Y., Li, M., Zhang, X., Lu, Y., Gong, H., Yin, J., Chen, Z., 

Qian, L., Yang, Y., Andolina, I.M., Shipp, S., Mcloughlin, N., 

Tang, S., Wang, W., 2020. Hierarchical Representation for 

Chromatic Processing across Macaque V1, V2, and V4. 

Neuron. https://doi.org/10.1016/j.neuron.2020.07.037 

Lloyd, E.P., Hugenberg, K., McConnell, A.R., Kunstman, J.W., 

Deska, J.C., 2017. Black and White Lies: Race-Based Biases 

in Deception Judgments. Psychol. Sci. 

https://doi.org/10.1177/0956797617705399 

Loboda, T.D., 2012. Reading Span (RSPAN) Task [WWW 

Document]. URL https://ubiq-x.github.io/rspan (accessed 

2.5.16). 

Maier, M., Ballester, B.R., Leiva Bañuelos, N., Duarte Oller, E., 

Verschure, P.F.M.J., 2020. Adaptive conjunctive cognitive 

training (ACCT) in virtual reality for chronic stroke patients: A 

randomized controlled pilot trial. J. Neuroeng. Rehabil. 



   

 

120 

 

https://doi.org/10.1186/s12984-020-0652-3 

Malekshahi, R., Seth, A., Papanikolaou, A., Mathews, Z., 

Birbaumer, N., Verschure, P.F.M.J., Caria, A., 2016. 

Differential neural mechanisms for early and late prediction 

error detection. Sci. Rep. https://doi.org/10.1038/srep24350 

Manning, C., Dakin, S.C., Tibber, M.S., Pellicano, E., 2014. 

Averaging, not internal noise, limits the development of 

coherent motion processing. Dev. Cogn. Neurosci. 

https://doi.org/10.1016/j.dcn.2014.07.004 

Marat, S., Ho Phuoc, T., Granjon, L., Guyader, N., Pellerin, D., 

Guérin-Dugué, A., 2009. Modelling spatio-temporal saliency 

to predict gaze direction for short videos. Int. J. Comput. Vis. 

https://doi.org/10.1007/s11263-009-0215-3 

Marcos, E., Pani, P., Brunamonti, E., Deco, G., Ferraina, S., 

Verschure, P., 2013. Neural variability in premotor cortex is 

modulated by trial history and predicts behavioral 

performance. Neuron 78, 249–255. 

https://doi.org/10.1016/j.neuron.2013.02.006 

Marcos, E., Ringwald, M., Duff, A., Sánchez-Fibla, M., Verschure, 

P.F.M.J., 2014. The hierarchical accumulation of knowledge in 

the distributed adaptive control architecture, in: Computational 

and Robotic Models of the Hierarchical Organization of 

Behavior. https://doi.org/10.1007/978-3-642-39875-9_10 

Martinez-Conde, S., Macknik, S.L., Troncoso, X.G., Hubel, D.H., 

2009. Microsaccades: a neurophysiological analysis. Trends 

Neurosci. https://doi.org/10.1016/j.tins.2009.05.006 

Martinez-Trujillo, J.C., Treue, S., 2004. Feature-based attention 

increases the selectivity of population responses in primate 

visual cortex. Curr. Biol. 

https://doi.org/10.1016/j.cub.2004.04.028 

Mathews, Z., Cetnarski, R., Verschure, P.F.M.J., 2015. Visual 

anticipation biases conscious decision making but not bottom-

up visual processing. Front. Psychol. 6. 

https://doi.org/10.3389/fpsyg.2015.00443 

Mathews, Z., i Badia, S.B., Verschure, P.F.M.J., 2012. PASAR: An 

integrated model of prediction, anticipation, sensation, 

attention and response for artificial sensorimotor systems. Inf. 

Sci. (Ny). 186, 1–19. https://doi.org/10.1016/j.ins.2011.09.042 

Maunsell, J.H.R., Newsome, W.T., 1987. Visual processing in 

monkey extrastriate cortex. Annu. Rev. Neurosci. 

https://doi.org/10.1146/annurev.ne.10.030187.002051 



   

 

121 

 

McAdams, C.J., Maunsell, J.H.R., 1999. Effects of attention on the 

reliability of individual neurons in monkey visual cortex. 

Neuron. https://doi.org/10.1016/S0896-6273(01)80034-9 

McAlonan, K., Cavanaugh, J., Wurtz, R.H., 2006. Attentional 

modulation of thalamic reticular neurons. J. Neurosci. 

https://doi.org/10.1523/JNEUROSCI.5602-05.2006 

Mease, R. a, Krieger, P., Groh, A., 2014. Cortical control of 

adaptation and sensory relay mode in the thalamus. Proc. Natl. 

Acad. Sci. U. S. A. 111, 6798–803. 

https://doi.org/10.1073/pnas.1318665111 

Mengotti, P., Boers, F., Dombert, P.L., Fink, G.R., Vossel, S., 2018. 

Integrating modality-specific expectancies for the deployment 

of spatial attention. Sci. Rep. https://doi.org/10.1038/s41598-

018-19593-7 

Mikami, A., Ito, S., Kubota, K., 1982. Visual response properties of 

dorsolateral prefrontal neurons during visual fixation task. J. 

Neurophysiol. https://doi.org/10.1152/jn.1982.47.4.593 

Mirza, M.B., Adams, R.A., Friston, K., Parr, T., 2019. Introducing a 

Bayesian model of selective attention based on active 

inference. Sci. Rep. https://doi.org/10.1038/s41598-019-

50138-8 

Mitchell, J.P., Neil MacRae, C., Gilchrist, I.D., 2002. Working 

memory and the suppression of reflexive saccades. J. Cogn. 

Neurosci. https://doi.org/10.1162/089892902317205357 

Moore, T., Zirnsak, M., 2017. Neural Mechanisms of Selective 

Visual Attention. Annu. Rev. Psychol. 

https://doi.org/10.1146/annurev-psych-122414-033400 

Moran, J., Desimone, R., 1985. Selective attention gates visual 

processing in the extrastriate cortex. Science 229, 782–784. 

https://doi.org/10.1126/science.4023713 

Moscatelli, A., Mezzetti, M., Lacquaniti, F., 2012. Modeling 

psychophysical data at the population-level: The generalized 

linear mixed model. J. Vis. https://doi.org/10.1167/12.11.26 

Moulin-Frier, C., Puigbò, J.Y., Arsiwalla, X.D., Sanchez-Fibla, M., 

Verschure, P.F., 2017. Embodied artificial intelligence through 

distributed adaptive control: An integrated framework, in: 

2017 Joint IEEE International Conference on Development 

and Learning and Epigenetic Robotics (ICDL-EpiRob). 

https://doi.org/10.1109/DEVLRN.2017.8329825 

Murray, N., Vanrell, M., Otazu, X., Parraga, C.A., 2011. Saliency 

estimation using a non-parametric low-level vision model, in: 



   

 

122 

 

Proceedings of the IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition. 

https://doi.org/10.1109/CVPR.2011.5995506 

Nasreddine, Z.S., Phillips, N.A., Bédirian, V., Charbonneau, S., 

Whitehead, V., Collin, I., Cummings, J.L., Chertkow, H., 

2005. The Montreal Cognitive Assessment, MoCA: A brief 

screening tool for mild cognitive impairment. J. Am. Geriatr. 

Soc. https://doi.org/10.1111/j.1532-5415.2005.53221.x 

Nassi, J.J., Lomber, S.G., Born, R.T., 2013. Corticocortical 

feedback contributes to surround suppression in V1 of the alert 

primate. J. Neurosci. 

https://doi.org/10.1523/JNEUROSCI.5124-12.2013 

Navalpakkam, V., Itti, L., 2006. An integrated model of top-down 

and bottom-up attention for optimizing detection speed, in: 

Proceedings of the IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition. 

https://doi.org/10.1109/CVPR.2006.54 

Newell, A., 1990. Unified theories of cognition. Harvard University 

Press. 

Nolfi, S., 2002. Power and limits of reactive agents. 

Neurocomputing. https://doi.org/10.1016/S0925-

2312(01)00598-7 

Nyamsuren, E., Taatgen, N.A., 2013. Pre-attentive and attentive 

vision module. Cogn. Syst. Res. 

https://doi.org/10.1016/j.cogsys.2012.12.010 

O’Connor, D.H., Fukui, M.M., Pinsk, M.A., Kastner, S., 2002. 

Attention modulates responses in the human lateral geniculate 

nucleus. Nat. Neurosci. https://doi.org/10.1038/nn957 

O’Keefe, J., Recce, M.L., 1993. Phase relationship between 

hippocampal place units and the EEG theta rhythm. 

Hippocampus. https://doi.org/10.1002/hipo.450030307 

Ognibene, D., Baldassare, G., 2015. Ecological active vision: Four 

bioinspired principles to integrate bottom-up and adaptive top-

down attention tested with a simple camera-arm robot. IEEE 

Trans. Auton. Ment. Dev. 

https://doi.org/10.1109/TAMD.2014.2341351 

Olsen, A., 2012. The Tobii IVT Fixation Filter Algorithm 

description. 

Otazu, G.H., Tai, L.H., Yang, Y., Zador, A.M., 2009. Engaging in 

an auditory task suppresses responses in auditory cortex. Nat. 

Neurosci. https://doi.org/10.1038/nn.2306 



   

 

123 

 

Ouerhani, N., Hügli, H., 2005. Robot self-localization using visual 

attention, in: Proceedings of IEEE International Symposium on 

Computational Intelligence in Robotics and Automation, 

CIRA. https://doi.org/10.1109/cira.2005.1554295 

Paneri, S., Gregoriou, G.G., 2017. Top-down control of visual 

attention by the prefrontal cortex. Functional specialization and 

long-range interactions. Front. Neurosci. 

https://doi.org/10.3389/fnins.2017.00545 

Paolucci, S., Antonucci, G., Gialloreti, L.E., Traballesi, M., Lubich, 

S., Pratesi, L., Palombi, L., 1996. Predicting stroke inpatient 

rehabilitation outcome: The prominent role of 

neuropsychological disorders. Eur. Neurol. 

https://doi.org/10.1159/000117298 

Park, J.H., Kim, B.J., Bae, H., Lee, Jisung, Lee, Juneyoung, Han, 

M., O, K.Y., Park, S.H., Kang, Y., Yu, K., Lee, B., 2013. 

Impact of Post-Stroke Cognitive Impairment with No 

Dementia on Health-Related Quality of Life. J. Stroke 15, 49–

56. https://doi.org/10.5853/jos.2013.15.1.49 

Pearson, K., 1895. VII. Note on regression and inheritance in the 

case of two parents. Proc. R. Soc. London. 

https://doi.org/10.1098/rspl.1895.0041 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, 

B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., 

Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., 

Brucher, M., Perrot, M., Duchesnay, É., 2011. Scikit-learn: 

Machine learning in Python. J. Mach. Learn. Res. 

Peña-Casanova, J., Blesa, R., Aguilar, M., Gramunt-Fombuena, N., 

Gómez-Ansón, B., Oliva, R., Molinuevo, J.L., Robles, A., 

Barquero, M.S., Antúnez, C., 2009. Spanish multicenter 

normative studies (NEURONORMA project): Methods and 

sample characteristics. Arch. Clin. Neuropsychol. 24, 307–319. 

Petrov, Y., Carandini, M., McKee, S., 2005. Two distinct 

mechanisms of suppression in human vision. J. Neurosci. 

https://doi.org/10.1523/JNEUROSCI.2871-05.2005 

Pfeifer, R., Verschure, P., 1992. Distributed adaptive control: A 

paradigm for designing autonomous agents, in: Toward a 

Practice of Autonomous Systems: Proceedings of the First 

European Conference on Artificial Lifee; MIT Press: 

Cambridgee, MA, USA. pp. 21–30. 

Posner, M.I., 1988. Structures and function of selective attention. 

American Psychological Association. 



   

 

124 

 

Posner, M.I., Snyder, C.R.R., Davidson, B.J., 1980. Attention and 

the detection of signals. J. Exp. Psychol. Gen. 109, 160–174. 

https://doi.org/10.1037/0096-3445.109.2.160 

Proske, J.H., Jeanmonod, D., Verschure, P.F.M.J., 2011. A 

computational model of thalamocortical dysrhythmia. Eur. J. 

Neurosci. 33, 1281–1290. https://doi.org/10.1111/j.1460-

9568.2010.07588.x 

Puigbò, J.Y., Arsiwalla, X.D., Verschure, P.F.M.J., 2018. 

Challenges of machine learning for living machines, in: 

Lecture Notes in Computer Science (Including Subseries 

Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics). https://doi.org/10.1007/978-3-319-95972-

6_41 

Reddy, L., Kanwisher, N.G., VanRullen, R., 2009. Attention and 

biased competition in multi-voxel object representations. Proc. 

Natl. Acad. Sci. U. S. A. 

https://doi.org/10.1073/pnas.0907330106 

Reynolds, J.H., Chelazzi, L., Desimone, R., 1999. Competitive 

mechanisms subserve attention in macaque areas V2 and V4. J. 

Neurosci. 19, 1736–1753. https://doi.org/10.1523/jneurosci.19-

05-01736.1999 

Reynolds, J.H., Desimone, R., 2003. Interacting roles of attention 

and visual salience in V4. Neuron. 

https://doi.org/10.1016/S0896-6273(03)00097-7 

Reynolds, J.H., Heeger, D.J., 2009. The Normalization Model of 

Attention. Neuron. 

https://doi.org/10.1016/j.neuron.2009.01.002 

Ridderinkhof, K.R., Van Den Wildenberg, W.P.M., Segalowitz, 

S.J., Carter, C.S., 2004. Neurocognitive mechanisms of 

cognitive control: The role of prefrontal cortex in action 

selection, response inhibition, performance monitoring, and 

reward-based learning. Brain Cogn. 

https://doi.org/10.1016/j.bandc.2004.09.016 

Rizzuto, D.S., Madsen, J.R., Bromfield, E.B., Schulze-Bonhage, A., 

Seelig, D., Aschenbrenner-Scheibe, R., Kahana, M.J., 2003. 

Reset of human neocortical oscillations during a working 

memory task. Proc. Natl. Acad. Sci. U. S. A. 

https://doi.org/10.1073/pnas.0732061100 

Rolfs, M., 2009. Microsaccades: Small steps on a long way. Vision 

Res. https://doi.org/10.1016/j.visres.2009.08.010 

Rossum, G., 1995. Python reference manual. 



   

 

125 

 

Roth, H.L., Lora, A.N., Heilman, K.M., 2002. Effects of monocular 

viewing and eye dominance on spatial attention. Brain. 

https://doi.org/10.1093/brain/awf210 

Saalmann, Y.B., Pigarev, I.N., Vidyasagar, T.R., 2007. Neural 

mechanisms of visual attention: How top-down feedback 

highlights relevant locations. Science (80-. ). 

https://doi.org/10.1126/science.1139140 

Saalmann, Y.B., Pinsk, M.A., Wang, L., Li, X., Kastner, S., 2012. 

The pulvinar regulates information transmission between 

cortical areas based on attention demands. Science 337, 753–6. 

https://doi.org/10.1126/science.1223082 

Sanbonmatsu, D., Strayer, D., 2013. Who multi-tasks and why? 

Multi-tasking ability, perceived multi-tasking ability, 

impulsivity, and sensation seeking. PLoS One 8, e54402. 

https://doi.org/10.1371/journal.pone.0054402 

Sanbonmatsu, D.M., Strayer, D.L., Biondi, F., Behrends, A.A., 

Moore, S.M., 2016. Cell-phone use diminishes self-awareness 

of impaired driving. Psychon. Bull. Rev. 

https://doi.org/10.3758/s13423-015-0922-4 

Sánchez-Cubillo, I., Periáñez, J.A., Adrover-Roig, D., Rodríguez-

Sánchez, J.M., Ríos-Lago, M., Tirapu, J., Barceló, F., 2009. 

Construct validity of the Trail Making Test: Role of task-

switching, working memory, inhibition/interference control, 

and visuomotor abilities. J. Int. Neuropsychol. Soc. 

https://doi.org/10.1017/S1355617709090626 

Sani, I., Santandrea, E., Morrone, M.C., Chelazzi, L., 2017. 

Temporally evolving gain mechanisms of attention in macaque 

area V4. J. Neurophysiol. 118, 964–985. 

https://doi.org/10.1152/jn.00522.2016 

SanMiguel, I., Corral, M.J., Escera, C., 2008. When loading 

working memory reduces distraction: Behavioral and 

electrophysiological evidence from an auditory-visual 

distraction paradigm. J. Cogn. Neurosci. 

https://doi.org/10.1162/jocn.2008.20078 

Schenk, T., McIntosh, R.D., 2010. Do we have independent visual 

streams for perception and action? Cogn. Neurosci. 

https://doi.org/10.1080/17588920903388950 

Schneider, G.E., 1969. Two visual systems. Science (80-. ). 

https://doi.org/10.1126/science.163.3870.895 

Schneider, W., Shiffrin, R.M., 1977. Controlled and automatic 

human information processing: I. Detection, search, and 



   

 

126 

 

attention. Psychol. Rev. 84, 1. 

Schwartz, Z.P., David, S. V., 2018. Focal suppression of distractor 

sounds by selective attention in auditory cortex. Cereb. Cortex. 

https://doi.org/10.1093/cercor/bhx288 

Seabold, S., Perktold, J., 2010. Statsmodels: Econometric and 

Statistical Modeling with Python. Proc. 9th Python Sci. Conf. 

Serences, J.T., Schwarzbach, J., Courtney, S.M., Golay, X., Yantis, 

S., 2004. Control of object-based attention in human cortex. 

Cereb. Cortex. https://doi.org/10.1093/cercor/bhh095 

Sherman, S.M., 2016. Thalamus plays a central role in ongoing 

cortical functioning. Nat. Neurosci. 16, 533–41. 

https://doi.org/10.1038/nn.4269 

Sherman, S.M., Guillery, R.W., 2002. The role of the thalamus in 

the flow of information to the cortex. Philos. Trans. R. Soc. 

Lond. B. Biol. Sci. 357, 1695–708. 

https://doi.org/10.1098/rstb.2002.1161 

Shinners, P., 2011. PyGame. 

Simons, D.J., Levin, D.T., 1997. Change blindness. Trends Cogn. 

Sci. https://doi.org/10.1016/S1364-6613(97)01080-2 

Simpson, G. V., Weber, D.L., Dale, C.L., Pantazis, D., Bressler, 

S.L., Leahy, R.M., Luks, T.L., 2011. Dynamic activation of 

frontal, parietal, and sensory regions underlying anticipatory 

visual spatial attention. J. Neurosci. 

https://doi.org/10.1523/JNEUROSCI.1519-10.2011 

Smith, G.D., Cox, C.L., Sherman, S.M., Rinzel, J., 2000. Fourier 

analysis of sinusoidally driven thalamocortical relay neurons 

and a minimal integrate-and-fire-or-burst model. J. 

Neurophysiol. 83, 588–610. 

Sörqvist, P., Stenfelt, S., Rönnberg, J., 2012. Working memory 

capacity and visual-verbal cognitive load modulate auditory-

sensory gating in the brainstem: toward a unified view of 

attention. J. Cogn. Neurosci. 

https://doi.org/10.1162/jocn_a_00275 

Stern, J.A., Boyer, D., Schroeder, D., 1994. Blink rate: A possible 

measure of fatigue. Hum. Factors. 

https://doi.org/10.1177/001872089403600209 

Sternberg, S., 1969. Memory-scanning: mental processes revealed 

by reaction-time experiments. Am. Sci. 

Sugawara, K., Kazama, T., Watanabe, T., 2004. Foraging behavior 

of interacting robots with virtual pheromone, in: 2004 

IEEE/RSJ International Conference on Intelligent Robots and 



   

 

127 

 

Systems (IROS). https://doi.org/10.1109/iros.2004.1389878 

Taylor, K., Mandon, S., Freiwald, W.A., Kreiter, A.K., 2005. 

Coherent oscillatory activity in monkey area V4 predicts 

successful allocation of attention. Cereb. Cortex. 

https://doi.org/10.1093/cercor/bhi023 

Team, R.C., 2019. R: A Language and Environment for Statistical 

Computing. Vienna, Austria. 

Terra, H., Bruinsma, B., de Kloet, S.F., van der Roest, M., Pattij, T., 

Mansvelder, H.D., 2020. Prefrontal Cortical Projection 

Neurons Targeting Dorsomedial Striatum Control Behavioral 

Inhibition. Curr. Biol. 

Tishby, N., Pereira, F.C., Bialek, W., 2000. The information 

bottleneck method. arXiv Prepr. physics/0004057. 

Tombaugh, T.N., 2004. Trail Making Test A and B: Normative data 

stratified by age and education. Arch. Clin. Neuropsychol. 

https://doi.org/10.1016/S0887-6177(03)00039-8 

Treisman, A., 1986. Features and Objects in Visual Processing. Sci. 

Am. https://doi.org/10.1038/scientificamerican1186-114b 

Tsotsos, J.K., 2011. A computational perspective on visual 

attention. MIT Press. 

Ungerleider, L.G., Mishkin, M., 1982. Two cortical visual systems. 

Anal. Vis. Behav. https://doi.org/10.2139/ssrn.1353746 

Usher, M., Niebur, E., 1996. Modeling the temporal dynamics of IT 

neurons in visual search: A mechanism for top-down selective 

attention. J. Cogn. Neurosci. 

https://doi.org/10.1162/jocn.1996.8.4.311 

Van Essen, D.C., 2005. Corticocortical and thalamocortical 

information flow in the primate visual system, in: Progress in 

Brain Research. https://doi.org/10.1016/S0079-

6123(05)49013-5 

van Essen, D.C., Maunsell, J.H.R., 1983. Hierarchical organization 

and functional streams in the visual cortex. Trends Neurosci. 6, 

370–375. https://doi.org/10.1016/0166-2236(83)90167-4 

van Wijngaarden, J.B.G., Zucca, R., Finnigan, S., Verschure, 

P.F.M.J., 2016. The Impact of Cortical Lesions on Thalamo-

Cortical Network Dynamics after Acute Ischaemic Stroke: A 

Combined Experimental and Theoretical Study. PLOS 

Comput. Biol. 12, e1005048. 

https://doi.org/10.1371/journal.pcbi.1005048 

Veltman, J.A., Gaillard, A.W.K., 1998. Physiological workload 

reactions to increasing levels of task difficulty. Ergonomics. 



   

 

128 

 

https://doi.org/10.1080/001401398186829 

Verschure, P.F.M.J., 2016. Synthetic consciousness: The distributed 

adaptive control perspective. Philos. Trans. R. Soc. B Biol. Sci. 

https://doi.org/10.1098/rstb.2015.0448 

Verschure, P.F.M.J., Voegtlin, T., Douglas, R.J., 2003. 

Environmentally mediated synergy between perception and 

behaviour in mobile robots. Nature 425. 

https://doi.org/10.1038/nature02024 

von der Malsburg, T., 2015. saccades: Detection of Fixations in 

Eye-Tracking Data. 

Waldvogel, D., Van Gelderen, P., Muellbacher, W., Ziemann, U., 

Immisch, I., Hallett, M., 2000. The relative metabolic demand 

of inhibition and excitation. Nature. 

https://doi.org/10.1038/35023171 

Walker, R., Husain, M., Hodgson, T.L., Harrison, J., Kennard, C., 

1998. Saccadic eye movement and working memory deficits 

following damage to human prefrontal cortex. 

Neuropsychologia. https://doi.org/10.1016/S0028-

3932(98)00004-9 

Wass, S. V., Forssman, L., Leppänen, J., 2014. Robustness and 

precision: How data quality may influence key dependent 

variables in infant eye-tracker analyses. Infancy. 

https://doi.org/10.1111/infa.12055 

Wass, S. V., Smith, T.J., Johnson, M.H., 2013. Parsing eye-tracking 

data of variable quality to provide accurate fixation duration 

estimates in infants and adults. Behav. Res. Methods. 

https://doi.org/10.3758/s13428-012-0245-6 

Wells, M.F., Wimmer, R.D., Schmitt, L.I., Feng, G., Halassa, M.M., 

2016. Thalamic reticular impairment underlies attention deficit 

in Ptchd1 Y’mice. Nature 532, 58–63. 

https://doi.org/10.1038/nature17427 

Wilson, B., Cockburn, J., Halligan, P., 1987. Development of a 

behavioral test of visuospatial neglect. Arch. Phys. Med. 

Rehabil. 

Wilson, H.R., Cowan, J.D., 1972. Excitatory and Inhibitory 

Interactions in Localized Populations of Model Neurons. 

Biophys. J. https://doi.org/10.1016/S0006-3495(72)86068-5 

Wilson, M., 2002. Six views of embodied cognition. Psychon. Bull. 

Rev. 9, 625–636. https://doi.org/10.3758/BF03196322 

Wimmer, R.D., Schmitt, L.I., Davidson, T.J., Nakajima, M., 

Deisseroth, K., Halassa, M.M., 2015. Thalamic control of 



   

 

129 

 

sensory selection in divided attention. Nature 526, 705–709. 

https://doi.org/10.1038/nature15398 

Winfield, A.F., 2009. Foraging Robots, in: Encyclopedia of 

Complexity and Systems Science. https://doi.org/10.1007/978-

0-387-30440-3_217 

Woodman, G.F., Luck, S.J., 2004. Visual search is slowed when 

visuospatial working memory is occupied. Psychon. Bull. Rev. 

https://doi.org/10.3758/BF03196569 

Yang, J., Yang, M.H., 2017. Top-down visual saliency via joint 

CRF and dictionary learning. IEEE Trans. Pattern Anal. Mach. 

Intell. https://doi.org/10.1109/TPAMI.2016.2547384 

Yu, X.J., Xu, X.X., Chen, X., He, S., He, J., 2009. Slow recovery 

from excitation of thalamic reticular nucleus neurons. J. 

Neurophysiol. https://doi.org/10.1152/jn.91130.2008 

Yuval-Greenberg, S., Tomer, O., Keren, A.S., Nelken, I., Deouell, 

L.Y., 2008. Transient Induced Gamma-Band Response in EEG 

as a Manifestation of Miniature Saccades. Neuron. 

https://doi.org/10.1016/j.neuron.2008.03.027 

Zanto, T.P., Rubens, M.T., Thangavel, A., Gazzaley, A., 2011. 

Causal role of the prefrontal cortex in top-down modulation of 

visual processing and working memory. Nat. Neurosci. 

https://doi.org/10.1038/nn.2773 

Zhang, Y., Meyers, E.M., Bichot, N.P., Serre, T., Poggio, T.A., 

Desimone, R., 2011. Object decoding with attention in inferior 

temporal cortex. Proc. Natl. Acad. Sci. U. S. A. 

https://doi.org/10.1073/pnas.1100999108 

Zikopoulos, B., Barbas, H., 2012. Pathways for Emotions and 

Attention Converge on the Thalamic Reticular Nucleus in 

Primates. J. Neurosci. 32, 5338–5350. 

https://doi.org/10.1523/JNEUROSCI.4793-11.2012 

Zikopoulos, B., Barbas, H., 2006. Prefrontal Projections to the 

Thalamic Reticular Nucleus form a Unique Circuit for 

Attentional Mechanisms. J. Neurosci. 26, 7348–7361. 

https://doi.org/10.1523/JNEUROSCI.5511-05.2006 

Zuber, B.L., Stark, L., Cook, G., 1965. Microsaccades and the 

velocity-amplitude relationship for saccadic eye movements. 

Science (80-. ). https://doi.org/10.1126/science.150.3702.1459 

 
 


