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quan més ho necessites. D’aquells que et foten canya i et fan emprendre nous reptes.
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Abstract
The use of hybrid RANS-LES methods has become widespread during the last

decade, as an interesting approach for covering the gap between RANS and LES tur-
bulence models in terms of both computational resources and degree of modelling. In
particular, for those situations where the flow unsteadiness needs to be well-captured
or those flow configurations where RANS has demonstrated to be unreliable, such as
massive flow separation. Within the family of hybrid models, Delayed - Detached
Eddy Simulation (DDES) outstands due to its user-friendly non-zonal approach and
its proved success in several applications. Despite their benefits, these models usually
suffer from a slow RANS to LES transition (named Grey Area), resulting in unphysical
delays of critical flow instabilities in sensitive regions, such as Kelvin-Helmholtz
structures in free shear layers. This delay in the triggering process could significantly
affect the flow dynamics downstream of the flow, as well as those kind of physics that
require high quality unsteady turbulent motion, such as fluid structure interaction
and computational aeroacoustics. In this regard, the present thesis aims to perform
a consistent study of different techniques for mitigating such delay, as well as pre-
senting a promising easy-to-apply new strategy. Due to the lack of publicly available
highly reliable data set, a Direct Numerical Simulation (DNS) of a Backward-Facing
Step (BFS) at Reτ = 395 and expansion ratio (ER) 2 has been carried out during the
first part of this thesis for comparison purposes. In contrast to the rest of reference
cases, it provides a detailed view of the triggering and feeding processes of the flow
instabilities through the free shear layer. As a result, the thesis provides a highly
reliable data set publicly available on internet, as well as a competitive new technique
for mitigating the Grey Area shortcoming.

The thesis content is arranged as follows. In the first chapter, a general overview
of the different approaches for modelling turbulence is presented, emphasising the
importance of the Hybrid RANS-LES strategies for industrial applications. In second
chapter, the DNS of the BFS at Reτ = 395 and ER = 2 is explained in detail. Special
attention is paid on the triggering of the flow instabilities in the free shear layer down-
stream the step-edge. The third chapter describes the new techniques proposed in this
thesis, based on the LES literature, for mitigating the Grey Area shortcoming. These
are tested in the fourth chapter, which presents a consistent study of the different
methodologies for addressing the unphysical delay of the shear layer instabilities.
Finally, the last chapter gathers the main conclusions of the overall thesis and defines
possible further work lines.
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1

Introduction

Abstract. In this introductory chapter, the chaotic motion defined by a fluid under
certain conditions, commonly known as turbulence, is firstly described from both
physical and mathematical perspective. This explanation naturally comes up with the
need of turbulence models, setting the basis for introducing them and defining their
pros and cons. The diverse family of turbulence models is discussed and justified
depending on the application in terms of computational cost and degree of modelling.
All this information is summarized by means of a simple flow configuration, observ-
ing the effects entailed by each modelization strategy. Finally, the main conclusions
from this chapter are presented, justifying the need of doing research on Hybrid
RANS-LES models for industrial applications, presenting a significant improvement
in the quality of the data with a reasonable price increment.

1.1 Description of Turbulence

Turbulence is a branch of fluid mechanics, which explains the chaotic motion mani-
fested by any fluid subjected under certain conditions. This motion is mathematically
governed by the Navier-Stokes (NS) equations,

∂iui︸︷︷︸
Continuity

= 0; ∂tui︸︷︷︸
Transient

+ uj∂jui︸ ︷︷ ︸
Convection

= −∂i p︸ ︷︷ ︸
Pressure Gradient

+ ν∂2
j ui︸ ︷︷ ︸

Di f ussion

+ ∑ fi︸︷︷︸
Internal Forces

(1.1)

which are a system of non-linear Partial Differential Equations (PDEs) discovered
by Claude-Louis Navier and George Gabriel Stokes during the 19th century. These two
transport equations define how both mass and momentum are conserved along space
and time in any Newtonian fluid. In this case the fluid is considered incompresi-
ble (constant density, ρ = ct), so the continuity equation can be expressed such as
∂iui = 0. Where ui referes to the velocity components, p is the kinematic pressure, ν
represents the kinematic viscosity and ∑ fi can be used for any internal force, such as

1
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gravity, buoyancy effects, electromagnetic forces etc. Hereafter, internal forces will
not be longer mantained as they are out of the scope from this thesis and gravity
effects can be directly absorved by the Pressure Gradient term.

In the end, the flow chaotic motion is naturally defined by the way how a fluid
handles those superficial and internal forces applied on it. It obviously depends on
the physical properties of each fluid (such as ν), but also on the inherent condition
of being a Newtonian fluid. By inherent, I mean having the Convection and Diffusion
transport mechanisms, as well as ensuring the Continuity of an incompresible flow by
means of the Pressure Gradient.

It is worth noting here that, while Navier-Stokes equations have been solved for
lots of particular cases, a general analytical solution is not known yet (if any). This
fact, together with the broad influence of turbulence in a vast range of industrial
applications, justifies the necessity of applying numerical techniques for providing
particular solutions to such complex equations.

1.1.1 Physical perspective

From a physical point of view, there is not an exact or accepted definition of turbulence,
but there is a list of items that a flow state needs to satisfy in order to be considered as
turbulent. These are:

• Apparent disorganization, nonrepeatability, chaotic. . .

• Three dimensionality, unsteady and rotational.

• Multiscale phenomenon.

• Substantial increasement of diffusion, mixing and dissipation.

Indeed, Navier-Stokes equations are able to provide solutions satisfying the above-
mentioned requirements under certain conditions. Actually, expressing NS equations
in its dimensionless form through the following conversions,

ûi = ui/Ure f ; p̂ = p/ρU2
re f ; x̂ = x/xre f ; t̂ = tUre f /xre f ; (1.2)

can help to understand when turbulence occurs,

∂iûi = 0; ∂t̂ûi + ûj∂jûi = −∂i p̂ +
1

Re
∂2

j ûi. (1.3)

Where Ure f and xre f are a reference velocity and dimension respectively, for a given
domain and flow configurations. Reynolds value, Re = Ure f xre f /ν is directly derived
from the dimensionless procedure as a non-dimensional balancing term between
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the Convection and Diffusion transport mechanisms. Analysing Eq. 1.3 we can see
how high Re values entails that the diffusion need to be higher in order to balance
the convection term. The only way to increase the dimensionless diffusion term
is by increasing the deformation of the velocity field. The natural mechanism in
nature for creating such flow deformations in a divergence free system, is by means
of creating and destroying eddies (unsteady system). The process where these ed-
dies are produced/destroyed and how the kinetic energy from the bigger eddies is
transfered to the smaller eddies is known as turbulence. This is the general state
of almost any engineering application, as the reference conditions are usually quite
challenging (high Ure f and/or xre f values). In those situations where the Re values
are not high enough, nature has no need to trigger the above mentioned eddies. In
other words, the required amount of diffusion for balancing the convective term is
accomplished with a steady deformation of the velocity field. It is usually the case of
highly viscouse fluids (such as oils) at low or moderate operation conditions (low Ure f
and/or xre f values). It is worth to point out that any fluid can behave in a laminar or
turbulent manner, depending on its Re value.

This section provides some interesting insights of the NS equations from a physical
perspective, focusing on 3 different well-known flow configurations. These are:
homogeneous iostropic turbulence, boundary layers and free-shear layers.

Homogeneous isotropic turbulence

The dimensionless NS equations (Eq. 1.3) has shown how high Re values contribute
to a rising of the non-linear effects into the conservation of momentum. This predom-
inance is rapidly observed from a physical point of view, as the flow motion it is no
longer laminar, becoming a complex movement represented by different scales of
motion in space and time (multiscale). Citing a quote from Richardson [1]:

Big whorls have little whorls,
which feed on their velocity;
And little whorls have lesser whorls,
And so on to viscosity.

In fact, this is a short but good approach about what turbulence is and how
it behaves. Some years later, the inspiring ideas behind this famous quote were
mathematically expressed by Kolmogorov’s theory of 1941 (K41), defining the kinetic
energy transfer cascade process (Fig. 1.1). Or, in other words, the mechanism how big
whorls create little whorls and so on to viscosity :

• Large scales: based on the domain geometry (anisotropic).

• Integral scales: the most energetic scales (anisotropic).
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Figure 1.1: Turbulence energy wavenumber spectrum (McDonough [2]).

• Inertial subrange: set of isotropic scales where the kinetic energy is transfered
from little scales to lesser scales.

• Dissipation scales: the smallest scales (isotropic), also known as Kolmogorov scales,
are located at the cascade region where the main dissipation take place. Where
the kinetic energy is converted in thermal energy by means of viscouse efforts.

Kolmogorov postulated that at high enough Re values, the anisotropy of the Large
scales (induced by geometry) was lost through the cascade isotropization process,
defending the universal isotropic character of the smallest scales, where the main
dissipation takes place (Kolmogorov scales). The spatial, temporal and velocity scales
of such particular structures can be estimated through dimensional analysis,

η = (ν3/ε)1/4; τη = (ν/ε)1/2; uη = (νε)1/4. (1.4)

It can be observed how they depend only on ν and the dissipation rate ε, so no
matter their origin. Interesting research supporting this universal theory of the
Kolmogorov scales can be found in Schummaher et al. [3], who studied the universal
behaviour of the Kolmogorov scales originated by different sources (forced convection,
buoyancy forces produced by natural convection, magnetohydrodynamic effects. . . ).
Apart from these interesting universality behaviour, K41 also described the cascade
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mechanism (Eq. 1.5) from the integral scales to the dissipation scales known as inertial
subrange.

In contrast to the integral scales, this isotropic subrange was featured by having a
net nonlinear transfer of energy from the large to the small scales, exhibiting then a
constant dissipation rate between scales. In other words, a global dissipation rate close
to 0. The dimensional analysis carried out by Kolmogorov deduced the following
relation between scales in the inertial subrange

E(k) = Cε2/3k−5/3, (1.5)

where k referes to the wavenumber and C is a constant ∼ 1.5 according to numerical
observations. From an engineering point of view, knowing the existence of this
iostropic well-defined behaviour is extremely important and useful, as it is the range
of scales where turbulence can be easily predicted (so easily modeled).

Boundary layer

Near the wall vicinity, the maximum eddies’ size is conditioned by the normal-wall
distance. The zone where the wall dependence take place is known as boundary layer,
which has its own particularities depending on Re value and the case geometry, but
its general behaviour is quite similar. The instabilities triggered in such region are
fed and propagated through the boundary layer, growing and sustaining turbulence
in the whole domain. We can observe in figure 1.2 how a set of boundary layers
obtained with different Reynolds values, can be defined with the same line using the
proper scaling (except for the area away from the wall). This scaling is based on the
friction velocity, which is defined as

uτ =

√
τw

ρ
. (1.6)

Where τw represents the tangential efforts and ρ is the fluid density. Those dimension-
less values obtained with uτ are commonly marked by +, such as u+ = u/uτ and
y+ = yν/uτ . A detailed explanation of the different flow regions [4] present in the
boundary layer are described in table 1.1.
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Figure 1.2: The law of the wall obtained through DNS of three different canonic flows:
Channel flow at Reτ ∼ 2000 [5] (orange line), a Flat plate turbulent boundary layer
at Reθ ∼ 6500 [6] (blue), and a Pipe flow at Reτ ∼ 2000 [7] (red). The expressions of
Prandtl and Von Karman are also shown. This figure was obtained from Calafell’s
PhD thesis [8].

Table 1.1: Classification of the different regions found within a boundary layer
according to their physical behavior and properties. Their location is delimited by
the distance to the wall, in wall units or as a fraction of δ depending on their physical
properties. [4]

Region Location Properties
Viscous sublayer y+ < 5 The mean streamwise velocity is linear with

respect to the wall distance, both in wall
units u+ = y+. Viscous forces prevail over
inertial ones.

Buffer layer 5 < y+ < 30 Region between the viscous sublayer and the
log-law region. Turbulent instabilities are
triggered

Log-law region y+ > 30 The mean streamwise velocity has a loga-
y/δ < 0.3 rithmic behavior with respect to the wall

distance, u+ = (1/κ) ln y+ + B. The flow
regime is predominantly turbulent.

Inner layer y/δ < 0.1 The mean streamwise velocity scales with uτ

and is not affected by the far field velocity
characteristic.

Outer layer y+ > 50 The effects of the viscosity on the streamwise
velocity are negligible.

Overlap region y+ > 50 Inner and outer layers are overlapped in this
y/δ < 0.1 region (at high Reynolds numbers)
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Figure 1.3: Pressure gradient magnitude in a free shear layer risen from a suddenly
separated boundary layer in a Backward-Facing Step configuration [10].

Two subtables are shown in table 1.1. First, the different flow behaviours, depend-
ing on their scaling are shown. In the other hand, the second subtable shows a more
general classification. The first group in the second subtable, the inner layer, includes
all the layers influenced by the wall vicinity coefficients (uτ and log-law), while in the
outer layer, second group, the flow parameters are almost unaffected by the viscosity
effects, and they scale with outer parameters (bulk velocity and δ).

From an engineering point of view, the need of capturing the multiscale phe-
nomenon present in any wall-bounded flow remains a critical point, as it dramatically
increases the simulation computational cost in terms of both spatial and temporal
resolution. In this context, several modelling strategies exist in the literature in order
to address this shortcoming.

Free shear layer

Free shear layers are present in many different flow cofigurations, but its origin is
often linked with separated boundary layers (Fig. 1.3). The instabilities triggered
at free shear layer (Kelvin-Helmholtz instabilities) have some similarities with the
wall-bounded flows, as both involve a shear layer in the feeding process. However, its
origin is completely different, as the free shear layer instabilities size is not governed
by the wall distance, but the velocity gradient and the average streamwise velocity.
The information contained in this chapter, including pictures, has been mainly ob-
tained from Jimenez [9]. The free shear layer behaviour scales following the similarity
law,

u(x2)

∆U
,

u′(x2)

∆U
, · · · = f (x2/x1, β), (1.7)

where ∆U = Ua −Ub is the velocity difference between streams in a plane shear
layer (Fig. 1.4), β = ∆U/2Uc and Uc is the average mean velocity, (Ua + Ub)/2.
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Figure 1.4: Schematic view of a plane shear layer [9].

The root-mean-square (rms) has been represented as u′. A probe of this similarity
is figure 1.5, where the theory is compared with different experimental results.
The growing behaviour of the Kelvin-Helmholtz instabilities can be explained using
the pairing approach, as once the vorticity waves stop being linearly amplified,
nonlinearity takes over. The final result of the Kelvin–Helmholtz instability is that
the vorticity tends to concentrate and, in the nonlinear regime, collapses into discrete
vortex blobs in a process named pairing. This is a process of mutual deformation
between vortices, resulting in a new row of vorticity clouds, each of which has twice
the circulation of the original ones. The time between mergings also doubles, and
the result is a system that grows linearly in the average, but whose growth happens
in discrete steps instead of smoothly. This process resembles an inverse cascade
of growing vortex cores [9]. Even though this theory is defined in 2D, interesting
similarities can be observed in 3D (such as the Backward-Facing Step in figure 1.3),
due to the strong 2D behaviour of free shear layers in 3D domains.

All free shear layers share some common properties obtained from linear stabil-
ity theory or following the vortex pairing picture, such as being thin and slowly-
spreading, as well as having large-scale structures of the order of the width of the
flow and perturbation velocities of the order of the velocity difference across the shear.
Understanding free shear layers is important as they act as noise sources and also
increase dissipation (increasing drag forces). Moreover, it is also an excellent mixing
mechanism when two species are considered, being of special interest for chemical
industry or combustion applications.

1.1.2 Mathematical perspective

From a mathematical point of view, turbulence could be defined as any solution of
the Navier-Stokes equations at high enough Re value [12]. Even though it can seem a
quite rough description, it is another manner to explain a phenomenon which has no
clear definition. So, definitely, it can be easily added to the long list of items that a
flow state needs to satisfy in order to be considered turbulent (defined in section 1.1.1).
This section pretends to provide some interesting insights of the NS equations from
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Figure 1.5: Mean streamwise velocity [11] in a plane shear layer at different conditions,
βx1/θo, where θo is the initial momentum thickness [9]. , 40; 60; , 90;

, 135. The numerical theory is represented in ◦.

a Mathematical perspective. In particular, the following topics are commented: NS
equations expressed in the Fourier space; relation between the vortex-streching term
with the multi-scale turbulence behaviour and a short introduction showing the
importance of numerical conservative schemes in the convective term.

Fourier descomposition of the NS equations

The content of this section has been obtained from the document entitled “Introductory
Lectures on Turbulence” written by McDonough [2]. The monograph by Canuto et
al. [13] is recommended for those who are interested on this matter.

The representation of a simplified 1D form of the dimensionless Eqs. 1.3 in the
Fourier space can help to deduce the mechanism how momentum is transported in
NS flows. First, the dependent variables are converted in the Fourier space:

û(x̂, t̂) =
∞

∑
k

akφk(x̂) (1.8)

Where k is a wavevector in 1D space, so it could be expressed as k ≡ (k1)
T . For

convenience we assume periodic boundary conditions naturally leading to a complex
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exponential basis of functions, so

φk(x̂) = eik·x̂ = eik1 x̂ (1.9)

This conversion can be easily applied in the different terms defined in Eq. 1.3 (1D),
leading to an expression which define the interaction between different wavenumbers.
The influence of Diffusion term is firstly studied,

∂t̂ak︸︷︷︸
Transient

= − |k|
2

Re
ak︸ ︷︷ ︸

Di f f usion

, (1.10)

obtaining its analytical solution in 1D

a(t̂) = a(0)e−
|k|2
Re t̂. (1.11)

Due to the linearity of the Laplacian operator (∂2
j ) in the Diffusion term, Eq. 1.11 shows

how there is no interaction between different wavenumbers. Even though k is an
infinite series, from a numerical point of view the maximum wavenumber is defined
by the given mesh. Apart from that, Eq. 1.11 also shows how this solution always
decays in time approaching to 0 (t→ ∞) and the rate how it occurs (|k|2/Re). This
ratio shows how high wavenumbers are dissipated quicker than those which are
lower. Moreover, it also shows how the higher the Reynolds value, the lower are
the dissipation effects of a given wavenumber. This feature directly impacts on the
energy cascade (section 1.1.1), explaining why kinetic energy is mainly dissipated
at higher scales (higher wavenumbers) and why higher Reynolds values involves
longer cascades.

In contrast to the Diffusion term, Convection behaves in a completely different
manner, as can be observed once the Fourier conversion is applied,

û∂x̂û =
1
2

∂x̂ûû =
∂

∂x̂

N

∑
l,m

alamφl(x̂)φm(x̂) (1.12)

where
φl(x̂)φm(x̂) = eilx̂eimx̂ = ei(l+m)x̂. (1.13)

The non-linearity of this term is defined by k+m, indicating the ability for generating
new modes. These new wavenumbers will create even higher wavenumbers, so
creating smaller vortices and contributing to the extension of the cascade phenomenon.
Finally, the highest wavenumbers will be dissipated by the diffusion term, according
to the behaviour observed in Eq. 1.11.



1.1. DESCRIPTION OF TURBULENCE 11

Vortex stretching phenomenon

A set of tranport equations can be directly derived from the NS equations, providing
useful insights about how those other properties directly related to the velocity field
behave in the space-time continuum. A probe of that is the flow vorticity (ωi),

ωi = εijk∂juk (1.14)

which is ruled by the following tranport equation

∂tωi + uj∂jωi︸ ︷︷ ︸
Convection

= ωj∂jui︸ ︷︷ ︸
V. Stretching

+ ν∂2
j ωi︸ ︷︷ ︸

Di f f usion

. (1.15)

This is naturally obtained applying the rotational operator into Eq. 1.1 (without con-
sidering internal forces). Apart from the classical Convection and Diffusion transport
mechanisms, a particular extra term named Vortex Stretching is emerged. This term
causes the vortex rupture in smaller vortices, increasing vorticity values and spread-
ing it in all directions. In order to better understand how this term behaves, a simple
example is provided decomposing Vortex Stretching and analysing its impact into the
transient term

∂tω1 ∝ ω1∂1u1︸ ︷︷ ︸
Stretching

+ω2∂2u1 + ω3∂3u1︸ ︷︷ ︸
Tilting

(1.16)

The Stretching term shows how ω1 increases when ω1 and ∂1u1 are aligned, resulting
in a vortex stretching as mass and angular momentum (r2ω1) must be conserved.
Apart from that, Tilting terms are also important as they switch vorticity from one
direction to another, through a tilting vortex process. The same explanation can be
applied into the other 2 directions, exhibiting its clearly 3D tendency and obviously
contributing to the turbulence cascade process. It is worth noting here that Vortex
Stretching does no exist in a 2D approach, supporting the idea that turbulence is
clearly a 3D phenomenon.

Kinetic Energy Conservation

Kinetic energy transport conservation equation can be derived from the NS equations,
similarly to the vorticity transport equation (Eq. 1.15). Instead of applying the rota-
tional operator, NS equations (Eq. 1.1) are multiplied by the velocity field,ui (inner
product). As a result, the following transport equation is obtained

∂tk + uj∂jk︸ ︷︷ ︸
Convection

= ν∂2
j k︸︷︷︸

Di f ussion

−ν∂jk∂jk︸ ︷︷ ︸
Disspation

. (1.17)
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Again, apart from obtaining the classical Convection and Diffusion transport mecha-
nisms, a new term naturally derived from Diffusion (Eq. 1.1)

νui∂
2
j ui = ν∂2

j k− ν∂jk∂jk (1.18)

comes in (Dissipation). This definite negative term clearly contributes to a decrease-
ment of the flow kinetic energy, k = ujuj/2. The most interesting result in this
derivation is the fact that there are no dissipation physical effects derived from Convec-
tion (Eq. 1.1). This is a feature in the continuum space-time, which should be preserved
for any numerical scheme applied in the Convection term. In the literature, those con-
vective schemes which preserve this property are known as symmetry-preserving
schemes. Otherwise, any kind of extra dissipation introduced by the discretiza-
tion will have a numerical non-physical origin, harming all mechanism involved in
turbulence, such as the turbulent cascade, free-shear layers and boundary layers.

1.2 Turbulence Modelling

Few analytical solutions of the NS equations are currently available in the literature,
due to the inherent complex non-linearity of such equations. Even though they treat
rather simple flow configurations, these studies set the basis for understanding more
complex flow behaviours. However, it is not enough for dealing with the problems
faced by industry nowadays. For this reason, and because the breathtaking growth
rate of the computational resources during the last decades, the only feasible approach
seems to be solving the NS equations by means of numerical simulations. Unfortu-
nately, at high Reynolds values, the numerical resolution of the NS equations can
become an extremelly expensive action, usually impossible to achieve. Mainly, this
is because of the NS non-linearity term (commented in section 1.1.2), as it generates
new modes which will interact with the existing ones, generating higher frequency
modes (smaller scales) and contributing to the kinetic energy cascade process (com-
mented in section 1.1.1). The first idea for significantly decreasing the required
amount of computational resources is based on not simulating the entire cascade.
However, it can lead to multiple numerical issues as the behaviour of the simulated
part clearly depends on the one that is not being simulated. Ideally, the effect of the
non-simulated part of the cascade would be modelled in the part that is being simu-
lated. This is where the turbulence modellization strategies take place (figure 1.6).
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Industrial Application

Computational Cost    

Degree of Modelling

Figure 1.6: Scheme showing the different turbulence modelling strategies, including
the use of computational resources, degree of modelling and how used they are for
industrial applications.

Apart from their pros and cons, each strategy is compromised with a balance
between computational cost and degree of modelling. It is definitely a big challenge
considering that the way the eddies interact to each other is governed by a non-linear
system of equations. In this section, the main methodologies are briefly described,
showing only those details which are considered necessary for ensuring the good
thesis comprehension.

1.2.1 Reynolds-Averaged Navier-Stokes (RANS)

RANS models are based on applying a temporal averaging into the NS equations,
completely modelling the cascade process, or in other words, entirely removing
any evidence of scale and modelling their effect into the mean flow. The Reynolds
decomposition

ui = ūi + u′i; p = p̄ + p′, (1.19)

where

ui = ūi + u′i → ui = ūi + �
��
0

u′i → ūi = ūi, (1.20)

is applied to the NS, where ūi and p̄ are the time average variables that only depends
on space, but not time. Therefore, continuity equation leads to

∂i(ūi + u′i) = 0

∂iūi +�
��

0
∂iu′i = 0

∂iūi = 0 (1.21)

the conservation of the average flow ∂iūi, directly ensuring the conservation of the
flow oscillations, ∂iu′i. Regarding the momentum equation, the Reynolds decomposi-
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tion is also applied

∂t(ūi + u′i) + (ūj + u′j)∂j(ūi + u′i) =

−∂i( p̄ + p′) + ν∂2
j (ūi + u′i)

∂tūi + ∂tu′i + ūj∂jūi + u′j∂jūi + ūj∂ju′i + u′j∂ju′i =

−∂i p̄− ∂i p′ + ν∂2
j ūi + ν∂2

j u′i

∂tūi +��
�*0

∂tū′ i + ūj∂jūi +��
��*

0
ū′ j∂jūi +

��
��*

0
ūj∂jū′ i + u′j∂ju′i =

−∂i p̄ +��
�*0

−∂i p̄′ + ν∂2
j ūi +��

��*0
ν∂2

j ū′ i
(1.22)

resulting in

∂tūi + ūj∂jūi = −∂i p̄ + ν∂2
j ūi − ∂j(u′iu

′
j︸︷︷︸

RS

). (1.23)

Due to the non-linearity of the NS equations, an extra term named Reynolds
stresses (RS) emerges from the convective term, representing the global effect of
turbulence into the mean flow. As can be observed, it is an unclosured problem, as
there are more unknowns than equations. Any approach with the aim of closing the
system of equations is known as a RANS turbulence model. In the literature, several
different RANS models can be found, but the most widely used are based on the
Boussinesq turbulence approximation,

−
(

u′iu
′
j − 2/3kδij

)
= 2νtŜij

−u′iu
′
j = νt

(
∂jūi + ∂iūj − 2/3∂kūkδij

)
− 2/3kδij, (1.24)

where
k = 1/2u′ku′k. (1.25)

Boussinesq stated a proportional relation between the trace-less Reynolds stresses
and the trace-less mean strain rate tensor (Ŝij). This proportionality was defined
by νt, a scalar property called kinetic eddy viscosity due to the strong analogy with
the kinetic molecular viscosity (ν). Following this approach, the closure problem is
significantly simplified as there is only one variable to model νt, instead of the six
variables from the Reynolds stresses symmetric tensor, u′iu

′
j︸︷︷︸

RS

. RANS models based on
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the Boussinesq approximation can be classified in the zero-, one- or two- equation
models depending on the number of extra equations needed for the νt definition.
There are more complex RANS models, such as Reynolds Stress Models (RSM), which
define six tranport equations for the six independent Reynolds Stresses. Even though
these models are more accurate, they are also significantly more expensive as six extra
transport equations must be solved, and also can lead to stability issues.

Probably, RANS is the most widely used turbulence modelling technique as
it is the most economic modellization option and provides an acceptable level of
accuracy in a wide range of cases. Their tunning capabilities are also appreciated, as
case specific strategies can be applied for optimization purposes. However, RANS
models have also some important shortcoming entailed to their nature, such as their
incapability for providing accurate unsteady solutions in most cases.

1.2.2 Large Eddy Simulation (LES)

LES is based on a spatial averaging (2̃), filtering those scales higher than a certain
frequency in the inertial subrange region (Fig. 1.1). It means that all large and integral
scales are completely resolved (ũi), as well as part of the inertial subrange scales.
For resolving such scales, time step needs to be in conjunction with the level of
mesh refinement. Otherwise the inertial subrange will not be properly resolved,
leading to a wrong LES simulation. Any LES simulation is based on applying a LES
decomposition to the dependent variables,

ui = ũi + u′′i ; p = p̃ + p′′, (1.26)

where

ũi = ˜̃ui + u′′i (1.27)

ũi = ˜̃ui + ũ′′ i (1.28)

˜̃ui 6=ũi; ũ′′ i 6= 0 (1.29)

In contrast to the RANS decomposition, ũi includes resolved scales, so it depends
on space and time, whereas u′′i represents those scales which are too small (high
frequencies) for being resolved. This decomposition is applied into the filtered NS
equations, leading to

∂tui + uj∂jui
:

= −∂i p + ν∂2
j ui

:

∂tũi + ũj∂jui = −∂i p̃ + ν∂2
j ũi

∂tũi + ∂jũjui = −∂i p̃ + ν∂2
j ũi (1.30)
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where,

ũjui = ũjũi + (ũjui − ũjũi) =ũjũi + ((ũj + u′′j )(ũi + u′′i
:

)− ũjũi) =

ũjũi + (˜̃ujũi + ũ′′j ũi + ˜̃uju′′i + ũ′′j u′′i − ũjũi.)︸ ︷︷ ︸
τSGS

ij

(1.31)

The subgrid stress tensor, τSGS
ij , represents the effect of the filtered scales into the re-

solved scales. As can be observed, τSGS
ij is based on the interaction of different filtered

scales (Eq. 1.31), such as ˜̃ujũi − ũjũi or ũ′′j u′′i . During the early days of LES, these
coefficients were treated separatelly. However, it was demonstrated by Sagaut [14]
that these terms are not Galilean invariant when they are individually treated, recom-
mending then a modellization of the τSGS

ij as a single entity.

∂tũi + ũj∂jũi = −∂i p̃ + ν∂2
j ũi − ∂jτ

SGS
ij (1.32)

In this context, several LES models are available in the literature, from those
which consider simple turbulence flow configurations (Smagorinksy) to those which
are sensitive to complex effects such as wall-bounded flows or 2D-like flow be-
haviours (σ− LES, S3PQR). These models are not explained in detail in this section,
as we consider that they are not needed for introduction purposes. Therefore, it
is clear that in a LES simulation only the effect of the highest frequencies (part of
the subrange scales and dissipation scales) is modeled. These scales are intensively
affected by the vortex-stretching 3D mechanism (section 1.1.2), so completely losing
any kind of trend inherited from the case geometry. Hence, LES models are usu-
ally benefited for considering these high frequency scales isotropic. Problems arise
when complex flow configurations appear, such as wall-bounded flows (section 1.1.1),
where the above-mentioned resolved scales are already extremely small, requiring
finer meshes and smaller time-steps. In contrast to RANS, where a time average filter
is applied, LES simulations are always unsteady and a correct cascade process needs
to be ensured. In particular, the main requirement recommended for guaranteeing a
proper LES simulations are:

• Simulating a 3D domain is needed as turbulence multiscale process is a 3D
phenomenon.

• Ensuring a good level of refinement in all directions, able to partially resolv-
ing those scales located at the inertial subrange. The time-step need to be in
conjunction with the spatial refinement.
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• The statistically stationary state needs to be reached before starting the averag-
ing process.

• Once the statistically stationary state is achieved, data needs to be averaged
during a certain period of time (case specific property) in order to obtain the
mean properties (first and second order statistics are the most common).

All these requirements makes LES simulations extremely expensive in comparison
with RANS, supporting the scheme shown in figure 1.6. The high quality average and
unsteady data provided by proper LES simulations is indeed consistent with their ex-
tra computational cost. Even though LES is also an option for industrial applications,
its use is rather limited to specific products developed by high-tech industries such as
nuclear energy and aeronautical sectors. The rest of current applications are purely
academic.

1.2.3 Wall Modeled Large Eddy Simulation (WMLES)

The main content of this subsection has been extracted from the recent PhD thesis
presented by Calafell [8], which is fully dedicated to WMLES subject. Wall modeled
Large Eddy Simulation is an active research field given the promising benefits of this
approach respect to the classical LES, also named Wall Resolved LES (WRLES). The
strategy is based on taking advantage of the temporal and spatial accuracy of the LES
methodology while avoiding the unaffordable requirements imposed by the presence
of a solid wall.

Some works in the literature intended to quantify tha gains using WMLES instead
of WRLES, such as Chapman [15] or Choi and Moin [16]. Both of them carried out
their studies based on a turbulent boundary layer over a flat plate case, denoted
as Lx. Chapman proposed a mesh resolution proportional to Re9/5

Lx
and Re2/5

Lx
for

WRLES and WMLES, respectively. Three decades later, Choi and Moin [16] updated
the Chapman’s work, leading to a mesh resolution proportional to Re13/7

Lx
and ReLx .

However, those works did not consider the significant restrictions of the time step
into the overall computational cost. Calafell [17] proposed an estimation considering
the well-known time step CFL (Courant-Friedrichs-Levy) restriction, leading to a
computational cost proportional to Re65/21

Lx
and Re4/3

Lx
for WRLES and WMLES, re-

spectively. While the total computational cost scaling of a WMLES suffers a slight
change when considering the time-integration contribution compared to the Choi and
Moin estimates (from ReLx to Re1.33

Lx
), in a WRLES the scaling increases dramatically

from approximately Re1.85
Lx

to Re3.09
Lx

. These new expressions highlight even more the
extreme difficulty of performing WRLES computations for industrial applications at
relevant Reynolds numbers.
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After reviewing the difficulties that arise when dealing with WRLES, it is clear
that WMLES is a very promising strategy to make wall-bounded flow computations
at high Reynolds number affordable. Several approaches have been developed to
deal with the boundary layer complexity. All of them are based on modeling the inner
layer (Tab. 1.1) in one way or the other instead of fully resolving it from a temporal
and spatial point of view.

1.2.4 Hybrid RANS-LES

Hybrid RANS-LES methods were developed in response of the strong gap between
RANS and LES turbulence models techniques in terms of both computational re-
sources and numerical accuracy (Fig. 1.6). In this regard, hybrid RANS-LES models
can be presented as a set of techniques, bridging from RANS-DNS, according to the
industrial needs in conjuction with the available computational amenities. Quoting
Chaouat [18],

“It is opinion to the author to consider that the most appropriate method for a particular
application will depend on the expectations of the engineer and the computational resources
the user is prepared to expend on the problem”.

Despite the strong improvements presented by the computational resources during
the last decades, pure LES simulations remain still unfeasible for general industrial
applications (section 1.2.2). Considering that this prospect will not change signif-
icantly in the near future [4, 16], hybrid methodologies are presentend as a good
alternative able to take advantadge from the current computational global scenario.
Apart from providing significant quality improvements in comparison to RANS, this
kind of methodologies are able to adapt their accuracy in response to the available
computational amenities.

Hybrid RANS-LES strategies can be divided in two main categories, zonal and
non-zonal. Zonal methods are based on applying two different models, RANS and
LES, in different domains previously defined by the user. This division leads to a set of
sharp interfaces boundaring the different domains and requiring special treatments,
which not always ensure mass continuity. Instead, non-zonal methods naturally
switch from RANS to LES (and viceversa) depending on the mesh capabilities and the
flow topology. The latter approach, is of growing interest in hybrid RANS-LES mod-
eling due to its user-friendly approach, as there is no need of defining neither RANS
and LES zones by the user nor special interface treatments. A good and recent review
which presents, assesses and also discusses the principal hybrid methods that are cur-
rently used for industrial applications can be found in Chaouat [18]. These are: Very
Large Eddy Simulation (VLES) [19], Detached Eddy Simulation (DDES) [20], Partially Inte-
grated Transport Modeling (PITM) [21, 22], Partially Averaged Navier-Stokes (PANS) [23]
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and the Scale Adaptive Simulation (SAS) [24]. According to Friess et al. [25], some
of these thechniques present a common background, such as PITM-PANS or PITM-
DDES. It is worth noting that even though the theoretical foundation of PITM/PANS
is considerably better than DDES, the latter approach has resulted in a very successful
modification of a RANS model [26]. Actually, DDES is currently one of the most
popular hybrid strategies for modelling strongly turbulent flows with the presence of
bluff-bodies and/or massive flow separations. Despite their benefits, these models
usually suffer from a slow RANS to LES transition (named Grey Area), resulting in
unphysical delays of critical flow instabilities in sensitive regions, such as Kelvin-
Helmholtz structures in free shear layers.

In this regard, the present thesis aims to perform a consistent study of different
techniques for mitigating such delay in DDES models. A promising easy-to-apply
new strategy for addressing this unphysical behaviour is also presented, discussed
and tested with a set of well-known cases in the literature. The theoretical description
of DDES, as well as their shortcomings and the proposed remedies are described in
chapter 3. Accordingly, the assessment of such remedies can be found in chapter 4.

1.2.5 Direct Numerical Simulation (DNS)

As the name implies, DNS is a direct simulation of the NS equations, without any kind
of modelization or experimental results (except for fluid physical properties). This
concept could be applied for resolving any kind of PDE, but the degree of complexity
of the NS equations is much higher, due to its multiscale behaviour. Strictly speaking,
in a DNS the cascade process needs to be fully resolved, from the largest scales
strongly conditioned by the geometry, to the dissipation scales featured by having
a universal isotropic behaviour (section 1.1). For this purpose, care should be taken
during the discretization of the NS equation, as the numerical schemes cannot act
as an extra source of numerical difussion. This artificial diffusion contributes to
the dissipation of the turbulent kinetic energy, seriously harming the kinetic energy
transport between scales in the cascade process. Depending on the physics, such as
compresible flows at high Mach values (M ≥ 1), the use of numerical difussion is
allowed for stability reasons due to the strong gradients in shock wave areas.

Apart from the importance of the numerical schemes, the resolution of the mul-
tiscale process is extremally expensive from a computational point of view. Its cost
basically depends on the geometry size, the Reynolds value and also the presence
of complex flow behaviour such in wall-bounded flows (almost any engineering
application includes walls). Considering that the ratio between integral scales vs the
dissipation scales (section 1.1.1) is around

`/η ∼ Re3/4
` , (1.33)
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the space scaling in a 3D geometry is around Re9/4
` . Where Re` referes to the Reynolds

value of the integral scales. Rergarding the time scale scaling, it can be estimated using
the Courant condition leading to ∼ Re3/4

` [27]. Hence, an optimist estimation of a
DNS cost considering both space and time resolution is Re3

` . Despite the breathtaking
improvements presented by the computational resources during the last decades, this
scaling factor remains a huge restriction for applying DNS in industrial applications,
as usual operation conditions entails high Reynolds values.

1.3 Selection’s Consequences

Obviously, if Computational Cost (CC) is filtered out from Fig. 1.6, those models with
lower Degree of Modelling (DoM) will be preferable in any sector, including industry.
In fact, the dream of any CFD application engineer would be to perform DNS in any
situation, without worrying about the required DoM in each application (forgetting
about RANS, Hybrid RANS-LES, WMLES and LES). It could actually happen if
computational resources were not only free and unlimited but also able to provide
results almost instantaneously. In a far future, this scenario cannot be discarded due
to the strong rythm of growth of the computational resources (well-predicted by the
Moore’s law), as well as the emergence of new techonolgies such as cloud-based
quantum computing [28]. In this regard, the present thesis is underspinned by the
fact that quantum computing will not be broadly available during the next decades.

To come back to current realities, in industry a balance between CC and DoM
needs to be found for each application (Fig. 1.6). In this section, a table containing the
DoM and the associated CC of all techniques described in section 1.2 is shown. In
addition, a canonical geometry with forced convection has been resolved using three
different turbulence modelling strategies (RANS, Hybrid RANS-LES and DNS) in
order to palpably show their implications (pros and cons).

1.3.1 Degree of Modelling (DoM)

A summarizing table 1.3.1 comprising all the methodologies discussed above is pre-
sented. It includes the range of applicability for each methodology as well as their
CC and the strength of their physical assumptions, represented by the DoM [8]. In
general, the stronger the assumptions, the lower the model generality and its ease
of use. Increasing the DoM, usually entails that model coefficients and boundary
conditions for some specific quantities must be provided and tuned to obtain correct
flow prediction. Some of these specific quantities may range from turbulent kinetic
energy to energy dissipation, and they may not be easily determined. On the other
hand, although some models might be applicable for complex non-equilibrium con-
ditions, a strong a priori flow knowledge is needed to adjust the model properly
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and obtaining acceptable results. Additionally, the DoM is usually detrimental to
the temporal and spatial resolutions, and therefore, much fewer details of the flow
behavior can be obtained, especially for quantities related to the temporal behavior
such as high frequency velocity fluctuations.

Table 1.2: Numerical strategies for Computational Fluid Dynamics classified accord-
ing their Degree of Modeling (DoM) and Computational Cost (CC). Symbols legend:
(Maximum) ⇑ ↑ ↗ → ↘ ↓ ⇓ (Minimum). The table is split into methodologies
suitable for free and wall-bounded flows [8].

Free flows
Methodology Applicabilty range DOM CC
DNS Any flow condition ⇓ ⇑
LES Any flow condition ↓ ↑
RANS/Unsteady-RANS Limited-to-non-equilibrium flows ↗ →

Wall-bounded flows
Methodology Wall treatment Wall model Applicability range DOM CC
DNS N/A N/A Any flow condition ⇓ ⇑
WRLES N/A N/A Any flow condition ↓ ↑
WMLES Wall shear stress Unsteady-RANS-based TLM Non-equilibrium flows ↘ ↗Detached boundary layer

wall functions Equilibrium flows ↗ ↓Attached boundary layer
Hybrid-RANS/LES N/A N/A Non-equilibrium flows → →Detached boundary layer
RANS/Unsteady-RANS N/A N/A Limited non-equilibrium flows ↗ ↘Attached boundary layer

Wall shear stress wall functions Limited non-equilibrium flows ↑ ↓Attached boundary layer

1.3.2 Example

This section aims to alert what selecting a turbulence model entails. For this purpose,
an incompressible flow through a Backward-Facing Step (BFS) configuration is sim-
ulated using different modelling strategies. In this part of the thesis, we are more
interested in showing the turbulence model implications, rather than the interesting
physical insights of the BFS case. Chapter 2 is completely dedicated to this end. Hence,
the simulation set-up and the case geometry (Fig. 2.1) can be found in section 2.2.
Three different turbulence modelling strategies have been considered. These are:
Spalart-Allmaras (RANS-SA), one of the most widely used RANS techniques; DDES-
SA, an hybrid RANS-LES approach broadly used in industry; DNS, extremly costly
and accuracte simulation.
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Table 1.3: CC comparison of different turbulence modelling approaches in a
Backward-Facing Step (BFS) geometry. A cost of core per hour equal to 0.02 e
has been considered.

Turbulence
Model

Computational Cost (CC)

Mesh
[cells]

Integration
Time [tu]

CPUs
[core]

Simulation
Time [hours]

Cost
[e]

RANS-SA 12 · 103 - 1 0.5 0.01
DDES-SA 700103 40 6 58 7
DNS 173 · 106 200 1536 336 10000

In terms of cost, the impact of choosing a particular turbulence models can be
easily seen in Table 1.3. Even though it is not a rigorous study, as those simulations
were carried out using different machines, it helps realize how pronounced the
differences between turbulence strategies are. For instance, performing the RANS
simulation is around 700 times cheaper than a DDES-SA and 106 times respect to the
DNS. In the case of DNS, these differences are caused by the fact that this strategy
needs to recreate all turbulence scales in space and time, entailing extremelly fine
meshes and small time steps. In contrast, RANS simulations model the entire effect
of the kinetic energy cascade into the mean flow. For this reason, 3D meshes are
no longer needed for resolving such phenomenon in the BFS case. This fact has
significant implications in terms of both space and time resolution, as coarser meshes
and higher time steps are allowed. Moreover RANS simulations usually achieve
a steady state, so the Integration Time (Tab. 1.3) is also saved. Hence, in those
cases where RANS is a reliable option, the cost of creating the mesh and engineers’
salary (among others) are significantly higher than running the CFD simulation. In
contrast, this is not necessarily true for DNS as the CC required by this strategy is
around 106 times higher than RANS. Finally, even though the DDES-SA model is
considerably more expensive than RANS, it is currently a feasible option for those
cases where RANS becomes unreliable. It is also recommendable for obtaining high
quality transient data (if it is required), in contrast to the Unsteady-RANS. The DDES-
SA cost increasement respect to RANS is because of the need of having 3D meshes
in the LES region in order to partially resolve the kinetic energy cascade. It directly
leads to a time step reduction for capturing the smallest scales allowed by the mesh.
Moreover, the inherent transient behaviour of the Hybrid RANS-LES simulation
makes necessary the use of an Integration Time (Tab. 1.3) for assessing the average
statistics.

The huge CC discrepancies among modelling strategies have a direct impact in the
quality of the final solution, as the DoM of each technique is also significantlly differ-
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ent. It can be conceptually appreciated in Fig. 1.7, where the instantaneous pressure
gradient magnitude of the selected models is shown. Pressure gradient magnitude
is a well-known scalar for detecting the flow instabilities in a shear layer [10, 29].
RANS simulation (top) only shows an important pressure gradient magnitude at the
step-edge (just downstream of the sudden expansion), but there is no evidence of
instabilities in this area. It makes sense, as the diffusion (high DoM) inserted by the
model kills any transient effect, such as the instability triggering at the free shear
layer (sec. 1.1.1). Moreover, the mesh used for carrying out this simulation was
2D, erasing any possibility of having a 3D flow behaviour (good practice in RANS
modelling). All this leads to achieving a steady-state instead of a transient signal, so in
the pressure gradient magnitude in Fig. 1.7 (top) there is not trace of flow instabilities.
In contrast to the steady state behaviour observed in a RANS simulation, the Hybrid
RANS-LES model (DDES− SA, middle) switches from RANS to LES at the step-edge,
triggering the flow instabilities downstream of the sudden expansion. It is worth
noting, that this figure has not been obtained using the standard DDES− SA, but
including the modifications proposed in the present thesis. Otherwise, the triggering
would not be so pronounced. The RANS behaviour of the Hybrid RANS-LES model
can also be observed upstream of the step-edge and downstream at the upperwall.
Finally, an image of the DNS (without DoM) is presented in Fig. 1.7 (bottom), where a
fully-turbulent flow is observed, recreating all the physical phenomena mentioned
in section 1.1.1. These are: the entire cascade energy process from the integral to the
Kolmogorov scales, the turbulence triggered in the wall bounded flows and also the
Kelvin-Helmholtz instabilities at the free shear layer.

1.4 Conclusions

This chapter provides a general overview of turbulence, from a physical and mathe-
matical point of views. The different numerical approaches for modelling turbulence
are also introduced. The implications of the turbulence model selection is discussed
using a practical example, showing up its huge impact in both computational re-
sources and degree of modelling. In fact, the previous section concludes that, even
though DNS is the most accurate technique (lowest DoM), is also the most expensive
one (check CC in Tab. 1.3). It makes DNS a technique only feasible for scientific
applications. The same can be applied to LES when there are walls involved in the
simulated domain. If we add that RANS becomes unreliable for certain applications,
and the good rate of growth of the computational resources during the last years, it
seems that Hybrid RANS-LES models will be the next main technique to be adopted
by the industrial sector (shifting the RANS predominance).

Within the family of hybrid models, Delayed-Detached Eddy Simulation (DDES)
outstands due to its user-friendly non-zonal approach and its proved success in



24 CHAPTER 1. INTRODUCTION

Figure 1.7: Instantaneous pressure gradient magnitude of a BFS at Reτ = 395 and
ER = 2, using the following modelization strategies: (top) RANS − SA, (mid-
dle) DDES − SA and (top) DNS. Black denotes strong values, but all figure use
different scalings for visualization purposes. CC is shown in Table 1.3.
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several applications. Despite their benefits, these models usually suffer from a slow
RANS to LES transition (named Grey Area), resulting in unphysical delays of critical
flow instabilities in sensitive regions, such as Kelvin-Helmholtz structures in free
shear layers. In this regard, the present thesis aims to perform a consistent study of
different techniques for mitigating such a delay, as well as presenting a promising
easy-to-apply new strategy (third chapter). However, due to the lack of publicly
available highly reliable data set, a Direct Numerical Simulation (DNS) of a Backward-
Facing Step (BFS) at Reτ = 395 and expansion ratio (ER) 2 has been carried out during
the first part of this thesis for comparison purposes. This work is presented in chapter
two. In contrast to the rest of experimental reference cases, it provides a detailed view
of the triggering and feeding processes of the flow instabilities through the free shear
layer.
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2

Direct Numerical

Simulation of

Backward-Facing Step

flow

Main contents of this chapter have been published in:

A. Pont-Vı́lchez, F.X. Trias, A. Gorobets, and A. Oliva. Direct Numerical Simulation of
Backward-Facing Step flow at Reτ = 395 and expansion ratio 2. Journal of Fluid Mechanics,
863:341–363, 2019.

Abstract. Backward-Facing Step (BFS) constitutes a canonical configuration to
study wall-bounded flows subject to massive expansions produced by abrupt changes
in geometry. Recirculation flow regions are common in this type of flows, driving
the separated flow to its downstream reattachment. Consequently, strong adverse
pressure gradients rise through this process which feeds flow instabilities. Therefore,
both phenomena are strongly correlated as the recirculation bubble shape defines how
the flow is expanded, and how the pressure rises. In an incompressible flow, this shape
depends on the Reynolds value and the expansion ratio. The influence of these two
variables on the bubble length is widely studied, presenting an asymptotic behaviour
when both parameters are beyond a certain threshold. This is the usual operating
point of many practical applications, such as in aeronautical and environmental
engineering. Several numerical and experimental studies have been carried out
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regarding this topic. The existing simulations considering cases beyond the above-
mentioned threshold have only been achieved through turbulence modelling, whereas
Direct Numerical Simulations (DNS) have been performed only at low Reynolds
numbers. Hence, despite the great importance of this phenomenon, there is a lack of
reliable numerical data to assess the accuracy of turbulence models. In this context, a
DNS of an incompressible flow over a BFS is presented in this chapter, considering
a Reτ = 395 at the inflow and an expansion ratio 2. Finally, the elongation of the
Kelvin-Helmholtz instabilities along the shear layer is also studied.

2.1 Introduction

Sudden massive expansions are common in many engineering applications: from
internal flows in heat exchangers and combustors to external flows, such as vehicle
aerodynamics. Usually, the separation and reattachment process yield to dramatic
drag rises, as well as reductions of the pressure growth and heat transfer rate. Even
so, the shear layer can also be beneficial in some industrial applications, triggering
turbulence transition and enhancing the mixing rate of chemical species.

In this regard, the Backward-Facing Step (BFS) represents a canonical configura-
tion to study this kind of wall-bounded fluids (see figure 2.1). This case consists of
two channel flows connected by a sharp step of height h. Both channels share the
same aspect ratio (AR = Lz/h), whereas the difference between the channel heights
is defined by the expansion ratio, ER = H/(H − h). Where Lz and H represent the
BFS span-wise length and the outlet channel height, respectively. The flow in a BFS
is massively separated due to the sudden expansion, but reattached downstream of
the channel. The abrupt separation leads to a shear layer which feeds a recirculation
bubble attached to the step. This bubble governs the flow progressive expansion
downstream of the step-edge, as well as the way the pressure grows along the channel
(reattachment process). At low Reynolds numbers, the shear layer and the recircu-
lation bubble represents a stable system, as the kinetic energy transferred by the
shear layer into the recirculation zone is well dissipated because of the friction forces.
However, when the Reynolds is high enough, the viscous forces cannot dissipate all
the kinetic energy provided by the shear layer. Thus, the system becomes unstable.
Therefore, the inertial forces tend to flap the shear layer, becoming a source of the
well-known Kelvin-Helmholtz instabilities (KH). Finally, these instabilities are fed,
paired and elongated along the shear layer, until they impinge at the lower wall,
contributing to the recirculation bubble detachment. Needless to say, the inflow and
wall effects also play an important role in all this process.

In addition to its engineering interest, the simplicity of the BFS geometry makes
it a suitable case to study the above explained complex phenomena by means of
both, experimental and numerical analysis. The vast majority of the experimental
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studies such as Eaton & Johnston [1], Armaly et al. [2], Driver & Seegmiller [3], Kasagi
& Matsunaga [4] and Jovic & Driver [5] were focused on the measurement of the
reattachment length (Xr) depending on a single configuration of Reynolds number
and ER. By contrast, there were only a few researchers such as Kuehn [6], Durst &
Tropea [7] and Ötügen [8] who studied the ER effects on Xr, using late transitional or
turbulent boundary layers at separation. Recently, Nadge & Govardhan [9] carried out
a complete set of parametric studies analyzing the influence of the Reynolds number
and the ER on the Xr. Besides reducing the huge data scattering observed in previous
studies, the authors also provided results showing the aysmptotic behaviour of the Xr
beyond a certain threshold. It should be noticed here that almost all the experimental
works mentioned above followed the Brederode & Bradshaw [10] recommendation
to avoid the sidewall effects (AR > 10).

Apart from the large amount of experimental research dedicated during the last
decades, numerical simulations are also quite numerous. First studies, i.e. Speziale
& Ngo [11], Thangam & Speziale [12] and Lasher & Taulbee [13], were focused on
on RANS in order to test and improve the existing models. Once the computational
resources became more available to the scientific community, less case-dependent
methodologies such as LES and other hybrid RANS-LES models were studied. In
particular, the Detached Eddy Simulation (DES) family models presented by Spalart
et al. [14] in the late 90s were designed to simulate massively separated flows such
as BFS, airfoils at stall and jets. Since then, several authors such as Spalart et al. [15],
Shur et al. [16] and Gritskevich et al. [17] focused their efforts on addressing the main
two DES shortcomings, which are: the shielding of the RANS boundary layers against
any unwanted incursion of the LES formulation and the delay of the KH instabilities
produced during the RANS to LES transition (Mockett et al. [18]). In this context,
the selected BFS configuration (ER = 2) presents a challenging configuration where
both problematic areas coexist in the same case (DES simulation). In particular, the
flow structures (KH instabilities) created at the shear layer (LES area) incur into the
upper wall, damaging the flow behaviour at the boundary layer (RANS area). It is
worthwile pointing out that this phenomenon is negligible if the distance between
the LES and RANS area is large enough (low ER value).

In spite of the numerous numerical studies using turbulence models, there has
been very little research in the BFS area using DNS so far. This fact is mainly due to
the computational resources that this sort of simulations require. First DNS of a fully
turbulent BFS was not carried out until late 90s, when Le et al. [19] simulated a BFS at
Reb ∼ 4250 and ER = 1.2. Where Reb is defined using the step height, h, and the inlet
bulk velocity, Ub. The authors performed a complete analysis and demonstrated that
the log-profile downstream of the channel flow was not fully recovered even 19h after
the reattachment. Their results presented a good agreement with the experiments
carried out by Jovic & Driver [5]. Afterwards, other researchers such as Biswas et
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al. [20] and Schäfer et al. [21] performed DNS to study the BFS flow transition from
laminar to turbulent. Both authors used low Reynolds values and laminar velocity
profiles at the inflow. The first author studied a range of small Reynolds numbers,
Reb ∈ [5 · 10−5, 400], and expansion ratios, ER ∈ [1.9423, 3], to detect the transition
value in which the turbulence emerges. Otherwise, the second one was focused on
the structures created at the step-edge of a BFS in a single flow configuration at a
higher Reynolds number (Reb = 3000) and ER = 1.9423. This author also studied
how those structures were related to the Xr oscillations. However, few authors
carried out research at higher Reynolds numbers and using turbulent inflows, such
as Meri & Wengle [22] and Barri et al. [23]. The former studied the effect of 2nd

and 4th order spatial discretization schemes at Reb = 3300 and a ER = 1.5, while
the latter used a Reb = 5600 and ER = 2 by testing its turbulent inflow boundary
condition in a configuration with a non-homogeneous stream-wise direction. This
turbulent inflow was previously tested in a channel flow by Barri et al. [24] showing
a good performance. Although these authors considered different parameters in
their simulations, both used the same channel flow configuration at the entrance,
Reτ = 180 (based on the wall skin friction velocity, uτ , and the half height of the
plane). This is a well-known and widely studied turbulent channel flow, but the
low-Reynolds effects are still present. Currently, there is still a lack of numerical data
reporting BFS flow behaviour at higher Reynolds numbers, where the low-Reynolds
effects are diminished. Moreover, all DNSs carried out so far are significantly away
from reaching the Xr asymptotic behaviour.

In this chapter, a DNS of an incompressible fluid flow over a BFS with an ER = 2
has been performed using a turbulent channel flow at Reτ = 395 as an inlet condition.
Besides being close to reaching an Xr asymptotic behaviour, the studied case is also
interesting for understanding how a classical turbulent channel flow is expanded
under certain conditions. Regarding the inflow boundary condition, there are two
main approaches in order to address this issue. Inflow data can either be generated by
previously running a channel flow simulation ( as Meri & Wengle [22] investigated),
and saving the velocity field in a stream-wise plane or using turbulent synthetic
algorithms. The former is used in this chapter as it is suitable for performing a
DNS. Finally, it is worth noting here that besides giving insights into the physics of
turbulent flows after massive separations, the aim of this work consists of providing
reference data (Pont-Vı́lchez et al. [25]) for this canonical configuration, and not to
reproduce any particular experimental set-up.

The rest of the chapter is arranged as follows. In the next section, the governing
equations and the problem definition are described together with an overview of
the numerical methods. The methodology to verify the simulation is presented
in Section 2.3. The core of the results is in Section 4.4. Firstly, the main features
of the time-averaged flow are discussed on a basis of a direct comparison with
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Figure 2.1: Schematic figure of the Backward Facing Step problem, ER = H/(H −
h) = 2, and details about its geometry and grid spacing (size of zones and concentra-
tion factors; arrows indicate the grid refinement direction). Not to scale.

previous experimental results. Reynolds stress transport terms are also presented and
commented in this section. The discussion focuses on the flow dynamics, observing
the KH instabilities and presenting the kinetic energy spectrum cascade at different
flow locations: in the shear layer, recirculation bubble, reattachment and recovery
regions. The rate of growth of the KH instabilities along the shear layer and their
elongation due to the vortex pairing phenomenon are also studied and compared
with experimental observations [26, 27]. Finally, the most significant results are
summarized and conclusions are given in the last section.

2.2 Governing equations and numerical methods

The incompressible Navier-Stokes (NS) equations in primitive variables are consid-
ered

∂tui + uj∂jui = −∂i p + ν∂2
j ui; ∂iui = 0, (2.1)

where ui is the velocity field, p represents the kinematic pressure, and ν is the kine-
matic viscosity. A schema of the problem under consideration is shown in figure 2.1.

The dimensions of the computational domain are 38h× 2h× 2πh in the stream-
wise, normal and span-wise direction, respectively. The sudden expansion is located
at Lu = 6h from the inflow, whereas the domain length downstream of the step is
divided into two parts (Ld1 = 1h, Ld2 = 31h) because of refinement reasons. The
origin of coordinates is placed at the expansion sharp edge. A detailed discussion
about the determination of the domain size and grid spacing is given in the next
section.
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Regarding the boundary conditions, a turbulent channel flow is imposed at the
inflow following the same strategy used by Meri & Wengle [22], whereas a convec-
tive boundary condition is used at the outflow, ∂tui + 0.5Ub∂1ui = 0. Global mass
conservation may be not exactly preserved after imposing such boundary conditions.
It is forced by means of a minor correction (a constant many orders of magnitude
lower than Ub) at the outflow conditions. Finally, periodic boundary conditions are
imposed in the span-wise direction, and no-slip boundary conditions are imposed at
the walls.

The incompressible NS equations (2.1) are discretized on a non-uniform structured
staggered mesh, and a 4th order symmetry-preserving discretization [28] scheme is
used. Shortly, the temporal evolution of the spatially discrete staggered velocity
vector, us, is governed by the following operator-based finite-volume discretization
of Eqs.(2.1),

Ω
dus

dt
+ C (us) us + Dus −MTpc = 0s, (2.2)

where the subscript s, c refers to discrete staggered and collocated vectors, respectively.
The discrete incompressibility constraint is given by Mus = 0h, where M indicates the
divergence matrix. The diffusive matrix, D, is symmetric and positive semi-definite,
representing the integral of the diffusive flux, −ν∂juinj, through the faces (where nj
refers to a normal surface direction). The diagonal matrix, Ω, describes the sizes of the
control volumes and the approximate, convective flux is discretized as in Verstappen
& Veldman [28]. The resulting convective matrix, C (us), is skew-symmetric, i.e.

C (us) = −CT (us) . (2.3)

In a discrete setting, the skew-symmetry of C (us) implies that

C (us) vs ·ws = vs · CT (us)ws = −vs · C (us)ws, (2.4)

for any discrete velocity vector us (if Mus = 0s), vs and ws. The evolution of the
discrete energy, ‖us‖2 = us ·Ωus, is governed by

d
dt
‖us‖2 = −2us ·Dus < 0, (2.5)

where the convective and pressure gradient contributions cancel because of Eq.(2.3)
and the incompressibility constraint, Mus = 0c, respectively. Therefore, even for
coarse grids, the energy of the resolved scales of motion is convected in a stable
manner, i.e. the discrete convective operator transports energy from a resolved scale
of motion to other resolved scales without dissipating any energy, as it should be
from a physical point-of-view. For a detailed explanation, the reader is referred to
Verstappen & Veldman [28].
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The governing equations are integrated in time using a classical fractional step
projection method [29]. Namely, the solution of the unsteady Navier-Stokes equations
is obtained by first time-advancing the velocity field, un

s , without regard for its
solenoidality constraint, then recovering the proper solenoidal velocity field, un+1

s
(Mus = 0c). For the temporal discretization, a 2nd order fully explicit one-leg scheme
is used for both the convective and diffusive terms [30]. Thus, the resulting fully-
discretized problem reads

(κ + 1/2) up
s − 2κun

s + (κ − 1/2) un−1
s

∆t
= R

(
(1 + κ) un

s − κun−1
s

)
, (2.6)

where R (us) = −C (us) us −Dus and up
s is a predictor velocity that can be directly

evaluated from the previous expression. The time-integration parameter, κ, is com-
puted to adapt the linear stability domain of the time-integration scheme to the
instantaneous flow conditions in order to use the maximum time-step possible. For
further details about the time-integration method the reader is referred to Trias &
Lehmkuhl [30]. Finally, up

s must be projected onto a divergence-free space,

un+1
s = up

s + Ω−1MTp̃n+1
c , (2.7)

by adding the gradient of the pseudo-pressure, p̃c = ∆t/(κ + 1/2)pc, satisfying the
following Poisson equation

Lp̃n+1
c = Mup

s with L = −MΩ−1MT , (2.8)

where the discrete Laplacian operator, L, is represented by a symmetric negative
semi-definite matrix. For details about the numerical algorithms and the parallel
Poisson solver, the reader is referred to Gorobets et al. [31]. Notice that the pressure
is not considered in the prediction step (2.6). On staggered grids with prescribed
velocity boundary conditions, as in this case, the incompressibility condition occurs
naturally and no specific boundary condition for the discrete pressure field, pc, needs
to be specified, as pointed out in Kim & Moin [32]. Nevertheless, Neumann boundary
conditions are prescribed for pc. Regarding the verification of the code, the reader
is referred, for example, to Trias et al. [33]. The verification process of the DNS
simulation carried out in this work is addressed in the next section.

2.3 Verification of the simulation

Averages over the two statistically invariant transformations (time and x3-direction)
are carried out for all the fields. The standard notation 〈·〉 is used to denote this
averaging procedure.
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Figure 2.2: Log-Law (left) and Root-Mean-Square (right) profiles at −5h over the
step (1h downstream of the inflow). Moser et al. [34] results are used as benchmark
data.

During this section, the DNS results are verified using well-known tests in the
literature. They are mainly focused on BFS, but the inflow quality is firstly discussed.
As was mentioned before, the inflow data is obtained from a previous channel flow
simulation at Reτ = 395. The signal is preprocessed before being used by the BFS. A
linear spatial interpolation is applied as a slightly coarser mesh is used in the BFS
case because of computational cost reasons. The quality of the preprocessed inflow is
assessed in figure 2.2, where the log-velocity (left) and the root mean square (right)
profiles (rms) at a certain cross-section (−5h) over the step are presented. They show
a good agreement with the benchmark case [34]. A short distance from the inflow is
selected (6h− 5h = h) to demonstrate that there is no need of recovery region when
this method is applied.

Once the behaviour of turbulence at the entrance is assessed, the minimum time
integration period is determined. It has been achieved evaluating the normalized
infinite norm of the 1st, 2nd and 3rd order tensors turbulent statistic values at each
time step (Eq. 2.9).

||A||o,∞ (ts) =
N

max
n

∣∣∣∣1− 1
〈ao,n〉

∫ ts

0
ao,ndt

∣∣∣∣ (2.9)

Where [ao] denotes a list of N elements, which depends on the order (o), and n refers
to a specific list element, ao,n. The symbology [·] converts whatever tensor in a list
of elements. Elements presenting average values, 〈ao,n〉, close to zero are excluded
in order to avoid 0/0 indeterminate forms. The maximum absolute value in a list
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of N elements is selected at each ts and denoted as ||A||o,∞ (ts). For instance, 1st

order list (N = 3) is filled by all velocity components ([a1] = [ui]), whereas the 2nd

order list (N = 9) includes all 2nd order tensor elements ([a2] =
[
uiuj

]
). The same

explanation is valid for the 3rd order list. A set of probes has been distributed along
the domain, but only the most important ones are shown in figures 2.1 and 2.3. The
largest integration period is required at P04, where large structures dragged from
the recirculation region are present. Similar behaviour is observed in the shear layer
region, P01, where high velocity fluctuations also appear. The rest of probes are
located between the two recirculation bubbles, P02, and in the reattachment region,
P03. A schematic view of the probes location can be observed in figure 2.1. In
contrast to the 280 average integration time units (h/uτ) suggested by Barri et al. [23],
figure 2.3 shows that 180h/uτ provides satisfactory results. This simulation time
reduction can be attributed to the fact that different time integration techniques are
applied. A set of individual quasi-independent flow fields separated by 0.25h/uτ

were taken into account by Barri et al. [23], whereas a continuous integration along
time is used in the present chapter. Apart from that, other factors such as the Reτ

could also affect the integration time period. From here on, all time-average results
presented in this chapter have been obtained using 180h/uτ , around 55 flow units
(t f =(Lu + LdER)/Ub).

The BFS geometry in the span and stream-wise directions is also studied because
of its influence in the fluid behaviour. The capability of the span-wise length to
reproduce the larger scales is assessed through two-point correlations, Bnorm

i (x3 =
0, x̂3) = Bnorm

i (x̂3), in the locations shown in figure 2.1.

Bnorm
i (xj, x̂j) =

〈
u′i(xj)u′i(xj + x̂j)

〉〈
u′i(xj)

〉 〈
u′i(xj + x̂j)

〉 (2.10)

All velocity components present correlations no longer than the periodic half-length
(see figure 2.4). Thus, the periodic direction requirement is satisfied. The largest
structures appear in the recirculation bubble (P02), where fluid becomes quasi-laminar,
and the recovery region (P04). Furthermore, the stream-wise length is also examined
as some experimental works, such as Nadge & Govardhan [9], reported a systematic
increase of the Xr and the recovery region under the step when the Re was increased.
In particular, Nadge demonstrated that this trend exists up to Reb ≈ 16300. Beyond
this threshold, the Xr only depends on the ER. In the present chapter, and despite the
recirculation length increasement with respect to the case studied by Barri et al. [23],
the recirculation zone remains far enough to be affected by the outflow effects. More
information regarding the stream-wise length can be obtained in Section 4.4.

Once the physical parameters are controlled, the grid resolution and the time
step need to be determined. A Cartesian staggered mesh with 1510 × 302 × 360
grid points has been used to cover the computational domain. The grid spacing in
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Figure 2.3: Normalized infinite norm (||A||o,∞) (defined in Eq.2.9) of the 1st, 2nd and
3rd order of the non-zero velocity turbulent statistic at P01(top-left), P02 (top-right),
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the periodic x3-direction is uniform, whereas the rest of directions use piece-wise
hyperbolic-tangent functions. For example, the points distribution in the x2-direction
corresponding to the step region, i.e. −h ≤ x2 ≤ 0 , is given by

x2,k = xa
2,0 +

h
2

(
1 +

tanh
{

γa
2 (2 (k− 1) /N2 − 1)

}
tanhγa

2

)
, k = 1, . . . , N2 + 1. (2.11)

where the starting point, the grid points number and the refinement factor are xa
2,0 =

−h, N2 = 302/2 and γa
2 = 1.16855. The same is true above the step region, but using

xa
2,0 = 0. In these regions, the mesh is refined in both directions. The grid refinement

formula needs to be properly adapted for those areas where the mesh is refined only
in one direction (see figure 2.1 for details). For example, the grid points in the region
upstream of the step, i.e. −Lu ≤ x1 ≤ 0, are distributed as follows

x1,k = xl
1,0 +

Ll
1

2

1 +
tanh

{
γl

1

(
(k− 1) /Nl

1 − 1
)}

tanhγl
1

 , k = 1, . . . , Nl
1 + 1. (2.12)

where l refers to the zone which is being studied (a,b,c). In this case l = a, while the
starting point, the region length and the refinement factor are xa

1,0 = −Lu, La
1 = Lu

and γa
1 = 1.1, respectively. The same technique is applied in the outflow region

(l = c), where xc
1,0 = Ld1 and γc

1 = 1.5. There are no arrows in region l = b, as a
uniform distribution is imposed in order to increase the mesh resolution in this area
and capture the shear layer phenomena. Finally, the number of grid points follows
straightforwardly by imposing that Na

1 + Nb
1 + Nc

1 = N1 = 1510, and that the sizes of
two consecutive control volumes corresponding to different areas are equal. The grid
points in the x2-direction are distributed following the same restrictions.

Mesh quality has been assessed using the present DNS results, analyzing the
control volume size next to the wall and at the core. The former is evaluated using
wall units, whereas a comparison with the estimated Kolmogorov length scales is
performed with the latter. Figure 2.5 presents the mesh dimensions in wall units
at the upper and lower walls along the stream-wise direction. It can be noticed as
the mesh refinement at the lower wall upstream of the step (x1 ≤ 0) has not been
provided, due to it exhibits a similar behaviour to the upper wall (difference lower
than 1.5%). Hence, Figure 2.5 shows how the selected mesh is fine enough in all
directions to perform a channel flow DNS upstream and downstream of the step
edge. In particular, the mesh dimension in the normal direction is ∆x+2 . 1.3. A mesh
decreasement in wall units is observed in all directions just under the step (lower
wall) due to the recirculation bubbles smooth the velocity gradients close to the wall.
Although this decreasement also affects ∆x+1 , its reduction is mainly caused by the
mesh refinement in order to capture the well-known massive expansion phenomenon.
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Figure 2.5: Mesh dimensions next to the upper (UW) and lower (LW) walls expressed
in wall units (δ+ = ν/uτ).

It is worth noting here that both walls lead to the same channel flow behaviour far
away from the step-edge (recovery region).

Regarding the mesh quality at the core of the BFS, the ratio of different spatial
length scales versus the estimated Kolmogorov length scales, η = (ν3/ 〈ε〉)1/4, have
been evaluated in the sudden-expansion zone. Where 〈ε〉 refers to the turbulent
kinetic energy dissipation term. The spatial length scale would define the smallest
scales that can be created in a given mesh, which not only depends on the mesh
itself but also on the flow behaviour. In this context, two common approaches for
assessing the spatial length scales are considered : the ratio of the maximum local
control volume dimension, ∆max = max(∆x1, ∆x2, ∆x3), and the cube root of the cell
volume, ∆∀ = (∆x1∆x2∆x3)

1/3. The former is prefereable in zones with isotropic-like
turbulence, while the latter performs better in zones where important anisotropies are
present [35]. The consequences of the spatial length election in the sudden-expansion
zone can be observed in Figure 2.6, where the ratio values using both scales are
displayed. First, the highest values in both figures (left,right) are located downstream
of the step-edge and at the reattachment zone. The former is caused by the shear
layer effects, while the latter is attributed to the mesh coarsening in the stream-wise
direction. In addition, the ratio ∆max/η (left) generally presents higher values than
∆∀/η (right).

It is worth noting here that, even though ∆max/η (left) is considerably larger at
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Figure 2.6: Mesh quality assessment, comparing different local spatial scales with
the Kolmogorov length scales, η. Those are: the maximum local control volume
dimension (left), ∆max, and the cell volume cube root (right), ∆∀.

the shear layer, it is not a suitable criterion due to the high flow anisotropies (2D-like).
Therefore, in this case the ∆∀ (right) ratio would be more representative. The contrary
is true downstream of the shear layer, at the core of the channel, where the flow starts
the recovery process. In any case, values higher than 10 are not observed, which is
similar to the resolution requirements discussed by Trias et al. [36]. In this regard,
a recent work carried out by Vreman & Kuerten [37] has shown that most of the
dissipation in a turbulent channel flow occurs at scales greater than 30η. Finally, a
good agreement with the results provided by Meri & Wengle [22] have also been
observed, though these authors provided only shorthand information regarding this
verification part.

2.4 Results and discussions

The average flow fields and the time dependent signals collected during the simula-
tion are discussed in this section. For the sake of clarity, this work only contains the
most signficant results according to the authors’ criterion. All data obtained in this
research is publicly available on internet [25].

2.4.1 Time-averaged flow

The pressure coefficient distribution,
〈
Cp
〉
= (〈p〉 − po)/ 1

2 U2
c , the velocity compo-

nents and the streamlines of the average flow in the recirculation region are shown
in figure 2.7. Here po refers to the kinematic pressure at the step-edge. The sudden
expansion leads to a massive flow separation (bottom), and its respective adverse
pressure gradient (top). The velocity field distribution (centre) is consistent with the
pressure rise and the streamlines. Velocity components are depicted in a different
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Figure 2.7: Pressure coefficient distribution (top),
〈
Cp
〉
, the average velocity field

(centre), 〈ui〉, and flow streamlines in the recirculation region (bottom). For the sake
of clarity, the stream-wise velocity, 〈u1〉, is referred using solid lines, wheras the
normal velocity component, 〈u2〉, is depicted using isolines (where dashed lines
denote positive values and dot-dashed lines denote negative ones). The 〈u1〉 values
have been normalized using the maximum velocity at each profile, following the
Ötügen [8] criterion.

manner in order to improve its visualization and provide a dynamic perception. The〈
Cp
〉

rise at the lower wall across the stream-wise direction is detailed in figure 2.8
(bottom). DNS data shows a good agreement in comparison with the experimental
work carried out by Ötügen [8], though higher adverse pressure gradient were de-
tected by this author. The skin friction,

〈
C f

〉
= 〈τw〉 / 1

2 ρU2
c , is also presented in the

same figure at the upper and lower walls (top), which are compared to the numerical
DNS results obtained by Barri et al. [23] (Reτ = 180, ER = 2). Regarding the Jovic
& Driver [5] study, a significant reduction of the

〈
C f

〉
negative peak located at the

lower wall (LW) is perceived when the Reb increases. It points out a depletion of
the diffused momentum in the recirculation region with respect to the amount of
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Figure 2.8: Comparison of the skin friction (top),
〈

C f

〉
, at Reτ = 395 (present DNS)

with the results obtained by Barri et al. [23] at Reτ = 180 using an ER = 2. The
〈

C f

〉
is assessed in the lower (LW) and upper (UW) walls. Pressure coefficient (bottom),〈

Cp
〉
, at the LW obtained in the present DNS compared to the results provided by

Barri et al. [23], Reτ = 180, and Ötügen [8], Reτ = 395.
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Figure 2.9: Recirculation length (Xr) using different Reynolds (Reb) and expan-
sion ratios (ER). Experimental results depicted by lines were obtained by Nadge &
Govardhan [9].

momentum that is entering through the inflow. According to the literature, the Xr
elongation phenomenon is also observed, exhibiting an Xr equal to 8.8h at Reτ = 395
and 7.1h at Reτ = 180. This trend is detailed in figure 2.9, where the DNS results of
different authors are compared with the experimental results obtained by Nadge &
Govardhan [9]. The present DNS is not only located in the asymptotic region, but also
exhibits a good agreement with the experimental data (relative difference ≤ 3.5%).
It is worth noting that the Xr value reported by Ötügen [8] work is not presented in
this figure as the author evaluated this coefficient considering other methodologies.
Even so, not all results provided by Ötügen [8] have been disregarded, such as the
stream-wise velocity and rms profiles, which have been compared with the present
DNS at different locations in figure 2.10. Although some differences can be observed,
an acceptable agreement is present in both variables. The discrepancies observed
between the experimental and numerical data could be related to the important scat-
tering registered by Nadge & Govardhan [9]. The author reflected his concerns about
this topic, concluding that other elements in addition to the Reynolds number and
the ER could affect the massive expansion behaviour. In particular, the flow perfor-
mance just before the sudden expansion is considered an influential factor, though
it has not been commonly reported in the literature. In this chapter a Reτ = 400.5
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Figure 2.10: Stream-wise velocity (top) and rms (bottom) profiles of the present DNS
(−) compared to the experimental results (�) obtained by Ötügen [8]. Velocity (u1)
and rm are normalized using the maximum value at each profile, Uc.

and a turbulence intensity in the stream-wise direction equal to urms/Uc ≈ 3.8% are
observed. Hence, the lack of agreement observed in figure 2.10 could be attributed to
the fluid behaviour misalignments at the step-edge.

The strong turbulence behaviour presented in this BFS configuration is quantified
through the Reynolds stresses, as well as the production and dissipation terms derived
from their respective transport equations.

∂t

〈
u′iu
′
j

〉
︸ ︷︷ ︸
' 0

+ 〈uk〉 ∂k

〈
u′iu
′
j

〉
︸ ︷︷ ︸

Convection

=
〈

Pij
〉︸︷︷︸

Production

+
〈
Πij
〉︸ ︷︷ ︸

Pressure-Strain

+
〈

Dij
〉︸ ︷︷ ︸

Diffusion Terms

−
〈
εij
〉︸︷︷︸

Dissipation

,

(2.13)
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where:〈
Pij
〉
= −

〈
u′iu
′
k
〉

∂k
〈
uj
〉
−
〈

u′ju
′
k

〉
∂k 〈ui〉 , (2.14a)〈

Πij
〉
=
〈

p′(∂ju′i + ∂iu′j)
〉

, (2.14b)〈
Dij
〉
= −∂k[

〈
u′iu
′
ju
′
k

〉
+ (
〈

p′u′j
〉

δik +
〈

p′u′i
〉

δjk)− ν∂k

〈
u′iu
′
j

〉
], (2.14c)〈

εij
〉
= 2ν

〈
∂ku′i∂ku′j

〉
. (2.14d)

In order to simplify the analysis process, only the non-zero components are
depicted and nearly the same layout as used by Barri et al. [23] is considered. A
general increasement of the Reynolds stresses is well observed in all directions in
comparison to Barri et al. [23] results. A downstream shifting of the Reynolds stress
zero-gradient area can also be appreciated.

The highest momentum oscillations are in the stream-wise direction,
〈
u′1u′1

〉
, as

can be noticed in figure 2.11 (top). This turbulence, which is triggered by the huge
emanation term (middle-left), is balanced by the isotropization behaviour of the
pressure-strain (middle-right). In fact, the energy from the most energetic compo-
nents (stream-wise) is distributed to weakest ones (normal and span-wise directions)
because of the pressure-strain phenomenon. In contrast to the channel flow behaviour,
some positive values appear in the impinging regions. They are located at the end
of the recirculation length and at the lower part of the shear layer. In both cases,
the velocity in the stream-wise direction is accelerated ∂1u1, whereas some pressure
positive peak rises from the impinging interactions. As was expected, the dissipation
term, 〈ε11〉, is positive and achieves its maximum values in the shear layer and close
to the walls. At the lower wall, the opposite is true due to the oscillations and gradient
reduction at the recirculation bubble zone.

Fluctuations in the normal direction, 〈u′2u′2〉, are shown in figure 2.12 (top). Al-
though in this case they are less energetic in comparison to

〈
u′1u′1

〉
, they remain

significant. The production term (middle-left) is non-zero, in contrast to a channel
flow, and significantly lower than the pressure-strain (middle-right). Dissipation term
(bottom) is also positive and, as was expected, stronger in the shear layer and close to
the walls.

The periodic nature of the span-wise direction,
〈
u′3u′3

〉
, leads to an absence of

the production term. However, the oscillations in this direction (see top figure 2.13)
are nearly as vivid as the stream-wise ones. This phenomenon occurs because of
the isotropization effect of the pressure-strain tensor, which converts the

〈
u′1u′1

〉
fluctuations into

〈
u′3u′3

〉
ones. The dissipation (right-bottom) term presents the same

trend the above-mentioned Reynolds stresses.
In order to complete the Reynolds stress assessment, the Reynolds stress non-zero

cross-term (−
〈
u′1u′2

〉
) is depicted in figure 2.14 (top). The classic axisymmetry pre-
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Figure 2.11: Reynolds stress
〈
u′1u′1

〉
/u2

τ (top) and their associated transport source-
sink terms scaled using u3

τ/h: production 〈P11〉 (middle-left), pressure-strain 〈Π11〉
(middle-right) and dissipation 〈ε11〉 (bottom). Dashed lines depict negative values.
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Figure 2.12: Reynolds stress
〈
u′2u′2

〉
/u2

τ (top) and their associated transport source-
sink terms scaled using u3

τ/h: production 〈P22〉 (middle-left), pressure-strain 〈Π22〉
(middle-right) and dissipation 〈ε22〉 (bottom). Dashed lines depict negative values.
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Figure 2.13: Reynolds stress
〈
u′3u′3

〉
/u2

τ (top) and their associated transport source-
sink terms scaled using u3

τ/h: pressure-strain 〈Π33〉 (left-bottom) and dissipation
〈ε33〉 (right-bottom). Dashed lines depict negative values.

sented in a channel flow is lost downstream of the step, but slowly recovered after the
reattachment. Although this term does exhibit rather weak values (top) in comparison
to the other stresses, their production (middle-left) and pressure-strain (middle-right)
terms are quite energetic. Both terms almost present a complementary behaviour in
the shear layer, explaining why the dissipation term in this zone is nearly zero.

2.4.2 Flow dynamics

Once the average time properties have been analyzed, the time dependent variables
are assessed. An idea of the flow dynamics is given in figure 2.15, where the pressure
gradient magnitude in the recirculation zone is shown. First, KH structures are
visualized just after the sharp edge (bottom), leading to the highest Reynolds stress
values in the BFS domain (see figure 2.11-2.14). In contrast, a particular lack of
pressure gradient is observed in the secondary recirculation bubble region due to
its non-turbulent behaviour. Additional information is provided in the film [25], i.e.
the slow motion of the recirculation bubble flow and the progressive expansion of
the mainstream flow downstream of the step. The sudden expansion effects into the
flow topology can also be noticed in the normal view at x+2 = 1 in figure 2.16. For
instance, the turbulence triggering produced by the step-edge are visualized with



2.4. RESULTS AND DISCUSSIONS 51

Figure 2.14: Reynolds stress−
〈
u′1u′2

〉
/u2

τ (top) and their associated transport source-
sink terms scaled using u3

τ/h: production 〈P12〉 (middle-left), pressure-strain 〈Π12〉
(middle-right) and dissipation 〈ε12〉 (bottom). Dashed lines depict negative values.
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Figure 2.15: Instantaneous magnitude of the dimensionless pressure gradient in a
large part of the BFS domain (top), and a detailed view (A) of the sudden expansion
(bottom). The gray scale represents the following expression, h

u2
τ

√
∂i p∂i p. See the film

attached in the paper data base [25].

the Q-invariant (top), showing how the highest intensity is located just downstream
of the expansion. Furthermore, the channel flow streaks are also well-observed in
figure 2.16 (bottom) until the sudden expansion. Downstream of the step-edge, nearly
“2D” coherent structures are shown from 0 up to ∼ 0.5h in the u′2 figure (bottom-left).
Beyond this threshold, the “2D” coherence is lost, but the structures still grow. A
similar behaviour can be observed in u′1 (bottom-right).

Besides the turbulence triggered at the step-edge and its respective spreading,
figures 2.15 and 2.16 also display a significant flow heterogeneity. In order to assess
such diversity of flow regimes, the turbulent kinetic energy cascade at different
locations has been considered (see figure 2.17). A schematic view of the probes
location can be observed in figure 2.1. Unfortunately, KH instabilities are not well
captured in figure 2.17 (top), as their low energy structure effects can be easily hidden
by turbulent scales coming from the channel flow boundary layer. Even so, a good
trend is observed in the inertial zone ( f̄−5/3). It is worth noting here that the P02
frequency cascade has not been included in this figure, as the probe is located in a
quasi-laminar region. Regarding the rest of f̄ kmg shown in figure 2.17, they diminish
along the downstream direction because of the sudden expansion (P03,P04). Due to
the spatial scale is ER times higher at the outflow, the flow moves ER times slower in
order to ensure the mass conservation law. Consequently, time scale is decreased by
a factor of ER2, bringing out the f̄ kmg observed trend (these relations can be easily
demonstrated through dimensional analysis).

Even though the ejection frequency of the KH instabilities has not been well-
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Figure 2.16: A normal slice at x+2 = 1 showing instantaneous views of the Q-
invariant (top), u′2 (bottom-left) and u′1 (bottom-right). Black zones denote the highest
values of the Q-invariant at the top figure and positive values at the bottom ones.
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Figure 2.17: Normalized turbulent kinetic energy (E1) vs normalized temporal
frequency ( f̄ = f h/Ub) at P01 (top), P03 (centre) and P04 (bottom). The dashed lines
represent the expected turbulence decayment behaviour at the inertial region ( f̄−5/3),
whereas f̄ kmg

P0N denotes the local Kolmogorov temporal frequency in probe N.
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Δδ2

<u >1

Δδ1

Figure 2.18: Schematic view of the Kelvin-Helmholtz in a shear layer, where ∆δ1 and
∆δ2 represent a estimation of the vortex size in the stream-wise and normal direction,
respectively.

captured in P01, other interesting shear layer properties have been discerned, such
as the KH rates of growth along the stream-wise direction. A schematic view of
a shear layer is presented in figure 4.9, showing different structures’ size in the
stream-wise (∆δ1) and normal (∆δ2) direction.

This vortex elongation was mainly attributed to the advection velocity and the
vortex pairing phenomenon, which was studied by Winant & Browand [26]. In
particular, an elliptic-like shape was experimentaly detected, observing a major-to-
minor axis ratio of ∆δ1/∆δ2 ∼ 2. This behaviour has been analysed with the present
DNS data through the two-point correlation technique in the stream-wise and normal
directions. In the ∆δ1 case, the distance from peak to peak (upstream) has been used
for representing the distance between vortices (figure 2.19, top) and also an estimation
of the average vortex size in a given position, Bnorm

2 (x1, x̂1). In contrast, ∆δ2 has been
measured as the distance between zero values of the two-point correlation values,
Bnorm

1 (x2 = 0, x̂2). In addition, ∆δ2 has also been assessed following the equation
given in Winant & Browand [26],

∆δ2 = ∆U1/(∂ 〈u1〉 /∂x2)max (2.15)

where ∆U1 referes to the flow velocity difference in the shear layer.
Two linear distributions for ∆δ1 and ∆δ2 have been obtained through the two-

point correlation technique, showing circular structures (∆δ1 ∼ ∆δ2) just downstream
of the step-edge (∼ 0.4h). This is in good agreement with the “2D” coherent structures
observed in figure 2.16. Above this threshold, the circular structures are distorted ac-
quiring an elliptic shape (∆δ1 > ∆δ2), which can be attributed to the abovementioned
phenomena. This elliptical shape trend seems to be mantained along the studied do-
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along the stream-wise direction (bottom), which is schematically depicted in figure 4.9.
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main, showing a major-to-minor axis ratio limit close to 2 (∆δ1/∆δ2), strenghening the
experimental visualitzations carried out by Winant & Browand [26] and supporting
its theory regarding the vortex pairing [25]. It is worth noting that Kostas et al. [27]
observed a similar phenomenon in its BFS experimental study. Finally, the offset
observed between both ∆δ2 approaches does not seem to be critical, as both linear
distributions present a similar slope. It indicates that in both cases the elongation
ratio, ∆δ1/∆δ2, share a similar growing trend (∼ 2). However, this correlation is lost
downstream of the studied region (x1 > 2), where the free shear layer is no longer
present.

2.5 Conclusions

A DNS of a BFS with a ER = 2 has been carried out at Reτ = 395, defining a case
close to the Xr asymptotic behaviour. A turbulent channel flow has been used as an
inflow, which has been obtained from a previous simulation. The flow performance
1h downstream of the inflow has shown a good agreement with the well-known
benchmark results provided by [34], indicating no need of recovery region. During
the verification part other parameters have also been discussed: the time integration
period, domain dimensions and mesh resolution. All tests have provided reasonable
results concluding that the parameter values satisfy the challenging DNS require-
ments. Once verified, the DNS results have been compared with the experimental
and numerical studies present in the literature. Besides presenting good agreement
with the experimental results, the nearness in the Xr asymptotic behaviour zone has
also been observed. In addition, numerical benchmark results have also been con-
sidered, i.e. Barri et al. [23]. The author provided DNS results of a BFS with ER = 2,
considering a turbulent inflow at Reτ = 180. In particular, the present DNS exhibited
a significant reduction of the

〈
C f

〉
peak in the recirculation region. This phenomenon

was previously reported by Jovic & Driver [38] experimental work. Regarding the
complexity of the flow dynamics, instantaneous views in the span-wise and normal
direction have shown the evolution of the flow structures in the stream-wise direction.
The Kelvin-Helmholtz instabilities can be distinguished in those planes, but they
have not been detected in the kinetic energy spectra. However, their rate of growth
have been identified through two-point correlations in the stream-wise and normal
directions. A switching from circular to elliptical structures has been detected close
to the step-edge (up to ∼ 0.4h) produced by the advection velocity and the vortex
pairing phenomenon. Finally, the elliptical shape trend agrees with the experimental
observations carried out by Winant & Browand [26], showing a major-to-minor axis
ratio close to 2.
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3

Theory of the new

techniques for mitigating

the Grey Area in DES

models

Abstract. This section introduces a new approach for mitigating the unphysical
delay in the RANS to LES transition, named Grey Area, which is a classical issue
for hybrid RANS-LES turbulence models such as Delayed-Detached Eddy Simula-
tion (DDES). We have adapted and tested an existing approach designed for improv-
ing the LES performance in complex flow areas. In particular, LES and DDES suffer
from an excessive diffusion in critical areas where the flow does not strictly behave in
a fully turbulent manner, such as free shear layers. In these situations, dissipation
needs to be reduced in order to enable more physically accurate development of
turbulence, and thus, the overall meanflow field. In this context, the following sec-
tion assesses a recent 2D sensitive turbulent model and a new subgrid length scales,
initially developed for LES applications, as a new solution for mitigating the Grey
Area. The standard methodologies for dealing with such a numerical issue are also
presented.
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3.1 Grey Area Numerical Issue

In this thesis, there are only the concepts which are necessary for understanding its content
without the need of consulting an excessive amount of bibiliography. However, the author
refers the reader to following work, Mockett [1], where a comprehensive study of the DDES
methodology is provided.

3.1.1 Delayed-Detached Eddy Simulation (DDES)

Accurate numerical simulations are essential for understanding the complex flow
physics present in many aeronautical applications. RANS models are commonly used
in the industry, as they are cost-effective, but their limitations for predicting complex
flow behaviours and providing unsteady data are also well-known. Moreover, the
routine use of accurate numerical methodologies such as Large Eddy Simulation
(LES) requires heavy computational cost, so their applications are not yet feasible.
In this regard, Detached Eddy Simulation (DES [2]) intended to circumvent the
massive costs of pure LES simulations, modelling the boundary layer using RANS and
simulating the unsteady flow behaviour with LES at the core. Instead of definining
the RANS and LES applicability area, Spalart decided to slightly modify the Spalart-
Allmaras model [2] in order to behave like an LES-like model far from the wall, using
the following approach

∂t(ρν̃) + ∂j(ρujν̃) =
1
σ

(
∂j
(
ρ (ν̃ + ν) ∂jν̃

)
+ Cb2ρ∂i ν̃∂i ν̃

)
+

Cb1ρS̃ν̃ (1− ft2)︸ ︷︷ ︸
Production Term

−
(

Cw1ρ fw −
Cb1

κ2 ft2

)(
ν̃

d̃

)2

︸ ︷︷ ︸
Destruction Term

. (3.1)

Where the classical wall distance in the destruction term, d, is replaced by

d̃ = min (LRANS, LLES) = min (d, CDES∆) , (3.2)

in order to switch from RANS to LES like turbulence model without the need of
defining zones. All coefficients and functions which are not defined in this section
can be obtained in the original papers [2, 3].

Unfortunately, DES suffered from important shortcomings, such as the Grey Area
and the reduction of the eddy-viscosity (νe) from RANS to LES without a correspond-
ing balance by resolved turbulent content, named Model Stress Depletion (MSD).
These issues made the model unfeasible for complex applications. Later on, Spalart et
al. [3] presented a set of techniques for addressing some of the main issues noticed in
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the initial DES version [2], in particular the MSD. In this context, a shielding function,

fd = 1− tanh
[
(Cd1rd)

Cd2
]

, rd = min

(
νe f f

∂jũiκ2x2
2

, 10

)
(3.3)

and a model-specific low Reynolds number correction function,

Ψ2 = min

102,
1− 1−Cb1

Cw1κ2 f ∗w
[ ft2 + (1− ft2) fv2]

fv1 max (10−10, 1− ft2)

 (3.4)

were introduced in Eq. 3.2, leading to

d̃ = LRANS − fd max(LRANS − LLES, 0), (3.5)

where,

LRAS = d,
LLES = ΨCDES∆. (3.6)

The new hybrid turbulence model was named Delayed-DES (DDES [3]), as it was
able to delay the unintended transitions from RANS to LES in certain regions with
an excessive refinement, where the RANS area was not well-defined by the LRANS.
Due to its user-friendly non-zonal approach and its proved success in several applica-
tions, DDES became in a widely used hybrid turbulence model. Especially in those
situations where RANS models is unreliable, such as in the obtention of high quality
transient data.

3.1.2 Grey Area (GA)

Even though DDES provided a set of improvements respect to its precedessor, some
of the initial DES weaknesses are still present. In particular, the slow transition from
RANS to LES, which leads to unphysical results, harming the triggering of the flow
instabilities in the zone known as GA. This delay in the triggering process could
significantly affect the flow dynamics downstream of the flow, as well as those kind of
physics that require high quality unsteady turbulent motion, such as fluid structure
interaction and computational aeroacoustics.

The unphysical delay is caused by the slow ν̃ transition process between both
areas, GA, where the values in the RANS zone are significantly higher than in the
LES one. Depending on the flow conditions, ν̃ could be even 0 in the LES area. In
order to ensure a proper GA mitigation, the ν̃ distribution in such area needs to be
sharpened. Taking into account that DDES is not zonal (based on a unique transport
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equation, Eq. 3.1), the only way to reduce the ν̃ expression is identifying and acting
on the parameters that control the ν̃ behaviour in the LES area. These can be easily
identified, considering that DDES is based on the assumption that a balance between
the production and destruction terms is achieved far from the wall (LES region where
ft2 ∼ 0),

Cb1ρS̃ν̃ = Cω1 fωρ

(
ν̃

d̃

)2
. (3.7)

where, ν̃ = νe/ fv1, so

νe =
Cb1 fv1

Cω1 fω
d̃2S̃. (3.8)

Where νe is the kinematic eddy viscosity. Considering that it occurs in the LES region,
d̃ can be replaced by ΨCDES∆ according to Eq. 3.2, so

νe =

ASA︷ ︸︸ ︷
Cb1 fv1S̃

Cω1 fωDsgs (ũi)
Ψ2 (CDES∆)2 Dsgs (ũi) (3.9)

Dsgs (ũi) is introduced in order to force an LES-like turbulence model, which is usually
represented by the following expression,

νe = (CS∆)2 Dsgs (ũi) . (3.10)

Hence, there are strong similarity between Eq. 3.9 and Eq. 3.10, provided of course
that the ASA expression behaves like a constant. This constant behaviour can be
forced with the introduction of the counterbalancing term, Ψ. With this idea in
mind, the necessity of introducing the Ψ function comes naturaly. Considering that√

ASAC2
DES should mimic the well-known LES constant (CS ∼ 0.15 for Smagorinsky

model, Eq. 3.45), the only parameters able to affect the νe transition for mitigating the
GA are, ∆ and Dsgs (ũi). Therefore, most of the efforts of the scientific community
for mitigating the GA, by means of reducing νe, have been focused on these two
parameters. An explanation of the standard and new techniques for mitigating GA is
presented in section 3.2 and section 3.3.

A visual exemple of how the GA can affect the flow instabilities is presented in
figure 3.1 (right), where the blue line shows a strong GA effect when it is compared
with the DNS data. From a schematic point of view, it means that the oscillations at
the beginning of the shear layer are not as energetic as they should naturaly be (left).
Regarding the other coloured lines, they represent other DDES simulations which
have been obtained by means of special mitigation strategies (these are analyzed in
section 4).
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Figure 3.1: Schematic view of the proper triggering of the Kelvin-Helmholtz in the
shear layer (left), and urms

1 (right) downstream of the flow in a BFS (comparison of a
DNS, solid line, with various DDES simulations, coloured lines).

3.2 Standard Grey Area Mitigation Techniques

In the literature, there are two main strategies for leading the Grey Area [4]. One of
them consists on using artificial oscillations in specific areas (zonal approach), whereas
the other is based on reducing the subgrid-scale viscosity (Eq. 3.10) in particular areas,
such as LES 2D flow regions. The second approach is preferable as it is aligned with
the initial non-zonal philosophy. This reduction could be forced by any of the terms
present in Eq. 4.1, as it has been commented in the previous section. Regarding ∆, the
idea of attributing kinematic sensitivity to this SLS coefficient was initially explored
by Chauvet et al. [5]. Later on, Mockett et al. [4] developed

∆̃ω =
1√
3

max
n,m=1,...,8

|ln − lm|, (3.11)

defending the importance of using the maximum meaningful scale at each LES control
volume. Where ω refers to the flow vorticity and l = ω/‖ω‖ × rn, rn (n=1,. . . ,8 for
hexahedral cell) are the locations of the cell vertices. Comparing to ∆max, which was
the SLS proposed in the initial DES [2] and DDES, ∆̃ω was an important improvement
in terms of mesh resiliency. Unfortunately, the νe at the Grey Area was still too high
for triggering the flow instabilities in critical areas. Later on, Shur et al. [6] proposed
∆SLA (Shear Layer Adapted),

∆SLA = ∆̃ω FKH(〈VTM〉) (3.12)

VTM =
| (S ·ω)×ω|

ω2
√−QS̃

(3.13)
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FKH(〈VTM〉) = max

(
Fmin

KH , min

(
Fmax

KH , Fmin
KH +

Fmax
KH − Fmin

KH
a2 − a1

(〈VTM〉 − a1)

))
(3.14)

which was another SLS with the ability of switching off in 2D flow regions. It
significantly contributed to the mitigation of the Grey Area. Where S̃ is the traceless
part of the rate-of-strain tensor, S = 1/2

(
∂jũi + ∂iũj

)
, i.e. S̃ = S− 1/3tr(S)I. Note

that for incompressible flows tr(S) = ∂iũi = 0, therefore, S̃ = S. Finally, QA refers
to the second invariant of a second-order tensor A. Regarding Fmax

KH , Fmin
KH , a1 and a2,

they were set to 1, 0.1, 0.15 and 0.3, respectively [6].
The influence of the differential operator, Dsgs (ũi), into the GA mitigation was also

reported in the literature. Some authors such as Fuchs et al. [7] and Probst et al. [8]
investigated the impact of using the σ− LES model 3.3.2, instead of Smagorinksy, due
to its ability for switching off in 2D flow regions. Taking into account that unsteady
2D flows can not be considered as turbulent, the idea of deactivating the model in
such regions looks reasonable. In fact, the ∆SLA presented by Shur et al. [6] was also
based on the same approach (Eq. 3.15), as the ∆ turned to zero in 2D flow regions.
Therefore, both strategies strenghten the importance of deactivating the turbulence
model in 2D flow areas.

νe = (Cm∆SLA)
2 Dsgs (ũi)

=
(
Cm∆̃ω

)2
(FKH(〈VTM〉)2Dsgs (ũi))

=
(
Cm∆̃ω

)2 D2D
sgs (ū) . (3.15)

3.3 New Grey Area Mitigation Techniques

3.3.1 Subgrid Length Scale - Least Square, ∆lsq

This subsection is a summary of the work published by Trias et al. [9].

Introduction

A new definition of the subgrid characteristic length is presented in this section. This flow-
dependent length scale is based on the turbulent, or subgrid stress, tensor and its representa-
tions on different grids. The simplicity and mathematical properties suggest that it can be a
robust definition that minimizes the effects of mesh anisotropies on simulation results. The
performance of the proposed subgrid characteristic length was successfully tested for decaying
isotropic turbulence and a turbulent channel flow using artificially refined grids [9]. Finally, a
simple extension of the method for unstructured meshes is proposed. This last is tested in the
simulations carried in chapter 4. Comparisons with existing subgrid characteristic length scales
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show that the proposed definition is much more robust with respect to mesh anisotropies and
has a great potential to be used in complex geometries where highly skewed (unstructured)
meshes are present.

Building a new subgrid length scale

Several approaches to compute the subgrid characteristic length, ∆, can be found in the litera-
ture [9]. Despite these existing length scales, no consensus has been reached on how to define
the subgrid characteristic length scale, particularly for (highly) anisotropic or unstructured
grids. In this subsection, we therefore propose a new flow-dependent subgrid characteristic
length scale that is based on the subgrid stress tensor, τ, and its representations on different
grids.

The subgrid characteristic length, ∆, appears in a natural way when we consider the lowest-
order approximation of the subgrid stress tensor, τ = ũiuj − ũiũj, i.e. the unclosed term in the
filtered Navier-Stokes equations, Eq. (1.31). The approximation of the subgrid stress is obtained
by approximating the residual velocity u′′i = ui − ũi.
To start, we restrict ourselves to one spatial direction and consider a box filter. The residue of
the box filter can be related to the error of the midpoint rule for numerical integration, denoted

by ε here. We have ũ1 =
∫ x1+∆x1/2

x1−∆x1/2 u1(x1) dx1 = ∆x1u1(x1) + ε with ε =
∆x3

1
24 ∂2

1u1(c) where
c lies somewhere in between x1 − ∆x1/2 and x1 + ∆x1/2. An expression for the residue of
the one-dimensional box filter is then obtained by dividing this error by −∆x1 and adding u1.

Thus to lowest order we get u′1(x1) = −∆x2
1

24 ∂2
1u1(x1) +O(∆x4

1).

On a three-dimensional, isotropic grid, i.e. ∆ = ∆x1 = ∆x2 = ∆x3, the above approximation
of the residue becomes u′i = −∆2

24 ∂2
j ui +O(∆4). With the help of this approximation it can be

shown that the subgrid stress tensor is given by [10]

τ(ũi) =
∆2

12
GGT +O(∆4). (3.16)

The leading-order term of Eq. (3.16) is the gradient model proposed by Clark [10], where
∆ denotes the filter length. Equation (3.16) has been derived for the box filter. However, it
can be shown that the same result is obtained for any convolution filter having a symmetric
kernel [11].
We stress that in the above derivation the grid is assumed to be isotropic, that is ∆ = ∆x1 =
∆x2 = ∆x3. For an anisotropic grid, we can postulate that the lowest-order approximation of
the subgrid stress also provides us with τ(ũi) ≈ ∆2

12 GGT , that is, the approximation (1) depends
quadratically on the velocity gradient, (2) is given by a symmetric tensor, (3) is invariant under
a rotation of the coordinate system, and (4) is proportional to ∆2. Here, however, we do not yet
know how to define the filter length, ∆, because the grid is anisotropic. For the gradient model,
however, we can define the filter length by mapping the anisotropic mesh onto an isotropic
mesh. Therefore we consider the coordinate transformation x̂1 = x1/∆x1, x̂2 = x2/∆x2 and
x̂3 = x3/∆x3. Expanding the subgrid stress as before, but now in the new, isotropic, coordinate
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system x̂1, x̂2, x̂3 and applying the chain rule for differentiation yields

τ(ũi) =
1

12
G∆GT

∆ +O(∆4). (3.17)

Here, the velocity gradient on the anisotropic grid is defined as

G∆ ≡ G∆, (3.18)

where ∆ is the second-order tensor containing the mesh information given by

∆ ≡ (∆x1, ∆x2, ∆x3). (3.19)

Equation (3.17) does not require an explicit definition of the filter length, ∆. In fact the filter
length is hidden in G∆ and is not represented by a scalar but by the tensor ∆. Since both
Eq. (3.16) and Eq. (3.17) represent the lowest-order approximation of the subgrid stress, we
can equate them and thus define the filter length ∆ in Eq. (3.16) for anisotropic meshes. Here it
may be remarked that we equate tensors, hence the equality is to be understood in least-square
sense. This leads to the following flow-dependent definition of ∆,

∆lsq =

√
G∆GT

∆ : GGT

GGT : GGT . (3.20)

We first remark that this length scale reduces to ∆ on an isotropic mesh. Secondly, since ∆lsq is
formally based on the lowest-order approximation of the subgrid stress, we see it as a generic
way to define the filter length. It can thus be applied in any turbulence model, not only in
eddy-viscosity models. The characteristic length scale given by Eq. (3.20) depends on the
velocity gradient, G, so it is locally defined and frame invariant. Moreover, ∆lsq is obviously
sensitive to flow orientation.

Furthermore, it may be noted that the numerator in Eq.(3.20) can be viewed as the Frobe-
nius norm of the tensor GTG∆, i.e. G∆GT

∆ : GGT = tr(G∆GT
∆GGT) = tr(G∆2GTGGT) =

tr(∆GTG(∆GTG)T) = ∆GTG : ∆GTG. Moreover, GGT : GGT = tr(GGTGGT) = tr(GTGGTG) =
GTG : GTG, so we can also express ∆lsq as

∆lsq =

√
∆GTG : ∆GTG

GTG : GTG
. (3.21)

From this definition it is obvious that ∆lsq is positive and well bounded. Its applicability
for unstructured meshes relies on the proper adaptation of the tensor ∆. Regarding the
computational cost of ∆lsq, this is relatively small when compared to the other flow-dependent
length scales discussed in this document and special attention is only required for indeterminate
forms of type 0/0.
The inherent simplicity and mathematical properties of the proposed length scale, as well as its
basis in representations of the subgrid stress tensor on different grids suggest that it can be a
robust definition that minimizes the effects of mesh anisotropies on the performance of LES
models.
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Figure 3.2: An example showing how the cell’s shape is affected by the β coeffi-
cient (5,1/5). The cell’s volume is constant and equal to 1.

Comparison of subgrid length scales for a 2D simplified flow

In this section, the performance of the new subgrid length scale, ∆lsq is compared with ∆̃ω (see
section 3.2). This study is assessed in a 2D simplified flow, based on the following parameters,

∆ =

(
∆x

∆y

)
=

(
β

β−1

)
,

G =

(
∂1u1 ∂2u1
∂1u2 ∂2u2

)
=

(
0 1

1− 2ω 0

)
. (3.22)

Both mesh and velocity gradient are uniform in space and time. Even though turbulence is
clearly a 3D phenomenon, this 2D analysis helps to understand the most essential properties of
each SLS. Notice that the size of the control volume remains equal to unity (Eq. 3.22); therefore,
∆vol = 1, regardless of the value of β (where ∆x1 is equal to β and ∆x2 is β−1). The effect of β
into the cell’s shape can be observed in figure 3.2.
∆lsq is adapted depending on the flow behaviour and the cell orientation, providing completely
different values in the simple shear (ω = 0.5) case. In that situation, the spatial length scale
reduces to β−1 = ∆x2, completely depending then on the mesh refinement at the highest
gradient direction (usually in the streamwise orthogonal directions). It means that, ∆lsq could
lead to completely bad results in case of having an insuficient refinement. However, it is
usually not the case if a Low-Re RANS models is used, as the refinement should be good
enough for properly capturing the flow behaviour at the highest gradient regions (leading to
meshes around ∼ x+2 ). Issues could arise when High-Re RANS models are applied, as they use
wall functions for representing the near wall behaviour and, thus, the extreme mesh refinement
is no longer needed. In this situation, the use of ∆SLA is more appropriate, as the ∆ would
be directly deactivated in 2D flow regions. In contrast to ∆lsq, ∆̃ω =

√
(β2 + β−2) /3 only

depends on the β ratio, but is not sensitive neither the flow behaviour nor the volume rotation
(the same results are obtained with β = 5 and β = 1/5). It is worth noting here that the reason
why the ∆SLA performance has not been included in figure 3.3, is because it is deactivated in
2D flow.
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Figure 3.3: Comparison between ∆̃ω and ∆lsq for the simple 2D flow defined in
Eq. 3.22 with different values of β = 1/5, 1/2, 2, 5, 10

Jacobian-based extension for unstructured meshes

In Section 3.3.1 a new method to compute the subgrid characteristic length has been proposed.
Although it has been derived in the context of Cartesian meshes, the idea can be extended to
unstructured meshes by noticing that it basically consists in projecting the leading term of the
Taylor series expansion of τ (see Eq. 3.17) onto the basic gradient model (see Eq. 3.16).
For non-uniform Cartesian grids we considered the coordinate transformation x̂1 = x1/∆x1,
x̂2 = x2/∆x2 and x̂3 = x3/∆x3. This leaded to a new, isotropic, coordinate system x̂i. Then,
applying the chain rule for differentiation yielded the approximation of the subgrid stress
tensor of Eq.(3.17). More generally, let ξi(xi) be a monotonic differentiable function which
defines a mapping from the physical space in the i-direction, xi, to the so-called computational
space, ξi. Using the chain rule we obtain

∂φ

∂xi
=

∂φ

∂ξi

dξi
dxi

=
1
Ji

∂φ

∂ξi
, (3.23)

where Ji is the Jacobian of the transformation xi → ξi. Here, no summation over
i is implied. Recalling that [G]ij = ∂jui, the leading term of τ can be written more
compactly as follows

τ =
1
12

GξGT
ξ +O(∆4

), (3.24)

where the gradient in the mapped space ξ is represented by

Gξ = GJ (3.25)

and J is the Jacobian of the transformation x→ ξ. Notice that this first term is generic
for all practical filters [11] in the context of LES, i.e. filters with a Fourier transform
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starting with Ĝ(k) = 1− k2∆/2 +O(k4). At the discrete level, for a Cartesian grid
the filter length in each direction is taken equal to the mesh size in the same direction,
i.e. ∆i = ∆xi. In this case, J = ∆ and Gξ = G∆ = G∆; therefore, the general expression
given in Eq. (3.24) reduces to Eq. (3.17) for non-uniform Cartesian meshes and to the
well-known gradient model [10] given in Eq. (3.16) for uniform grid spacings.

At this point, it becomes clear that the extension of the new subgrid characteristic
length ∆lsq (see Eq. 3.20) in section 3.3.1 for unstructured meshes relies on the com-
putation of the Jacobian, J, on such grids. It is important to note that the gradient
tensor, G, is actually being computed in any LES code. Below, the method to compute
the Jacobian, J, is solely based on the discrete gradient operator; therefore, it can be
easily applied to any existing code. Namely, using matrix-vector notation, the discrete
gradient operator is given by a block matrix

Gφh =

 Gx1
Gx2
Gx3

φh, (3.26)

where φh = (φ1, φ2, ..., φn)T ∈n, n is the number of unknowns in our domain and Gxi
represent the discrete gradient operator for each spatial direction.

As a preview of things, we first consider the discretization of the gradient operator,
G, in one spatial direction with periodic boundary conditions. Let us consider three
values of a smooth function φ(x): φi−1 = φ(xi−1), φi = φ(xi) and φi+1 = φ(xi+1)
with xi−1 = xi − ∆x1 and xi+1 = xi + ∆x1. By a simple combination of Taylor series
expansions of φ(x) around x = xi, the following well-known second-order accurate
approximation of the derivative follows

∂φ(xi)

∂x
≈ φi+1 − φi−1

2∆x1
. (3.27)

Then with a uniformly meshed periodic direction, Gx1 results into a skew-symmetric
circulant matrix of the form

Gx1 =
1

2∆x1
circ(0, 1, 0, · · · , 0,−1). (3.28)

Thus, eigenvalues of Gx1 lie on the imaginary axis, λ
Gx1
k ∈ I. Then, the eigenvalues

can be easily bounded with the help of the Gershgorin circle theorem, i.e. |λGx1
k | ≤

1/∆x1. Notice that the upper bound exactly corresponds to the Jacobian, Jx1 = 1/∆x1,
of the mapping from the physical to the computational space for Cartesian grids. This
idea can be extended to any grid or numerical method if we consider that, at the
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discrete level, the Jacobian, J, is as a diagonal matrix

J ≡
 Jx1

Jx2
Jx3

 , (3.29)

that, like in the Cartesian case, guarantees that the spectral norm of the gradient in the
so-called computational space, G ≡ JG = (Gx1 ,Gx2 ,Gx3)

T is equal to or smaller than
unity, i.e. ‖G‖2 ≤ 1. This condition can easily be realized by using the Gershgorin
circle theorem. Namely,

|λGx
i − G

x1
ii | ≤ ∑

j 6=i
|Gx1

ij | where Gx1
ij = J x1

ii Gx1
ij , (3.30)

and Gx1
ij = [Gx1 ]i,j, Gx1

ij = [Gx1 ]i,j and J x1
ij = [Jx1

]i,j are the coefficients of the matrices
Gx1 , Gx1 and Jx1

, respectively. Since G (also G) is usually a zero-diagonal matrix,
i.e. Gii = 0 (summation not implied), the condition ‖G‖2 ≤ 1 simplifies to

|λGx1
i | ≤ ∑

j 6=i
|Gx1

ij | ≤ 1 ∀i = 1, . . . , n, (3.31)

where n is the number of unknowns in our domain. Finally, recalling that the Jacobian
must be positive, Jii > 0, and extending the previous analysis to the y and z directions,
the following definition for the Jacobian

J x1
ii ≡

1
∑j 6=i |Gx1

ij |
J x2

ii ≡
1

∑j 6=i |Gx2
ij |

J x3
ii ≡

1
∑j 6=i |Gx3

ij |
, (3.32)

guarantees that inequalities (3.31) are always satisfied. Here, no summation over
i is implied. Therefore, the spectral norm of Gξ is equal to or smaller than unity,
i.e. ‖G‖2 ≤ 1. In this way, the local Jacobian for the node i, Ji, is given by

Ji =

 J x1
ii
J x2

ii
J x3

ii

 . (3.33)

Notice that the definitions of the Jacobian given in Eq.(3.32) are solely based on the
coefficients of the discrete gradient operator, G. Therefore, there is no restriction
regarding the type of grid and the numerical method. Moreover, it is worth to notice
that for a Cartesian uniform mesh, this formula reduces to J = (∆x1, ∆x2, ∆x3) like
the definition of ∆ given in Eq.(3.19).

In this way, the subgrid characteristic length scale proposed in Section 3.3.1 is
straightforwardly extended to unstructured meshes by simply replacing ∆ in Eq.(3.20)
by the local Jacobian, Ji, defined in Eqs.(3.32) and (3.33).
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3.3.2 Turbulence Models, S3PQR
This subsection is a summary of the work published by Trias et al. [12].

Introduction

Eddy-viscosity models rely on differential operators that should properly detect different flow
configurations (laminar and 2D flows, near-wall behavior, transitional regime. . . ). Most of
them are based on the combination of invariants of a symmetric tensor that depends on the
gradient of the resolved velocity field, G = ∂jũi. In this subsection, models are presented
within a framework consisting of a 5D phase space of invariants. In this way, new models can
be constructed by imposing appropriate restrictions in this space. For instance, considering
the three invariants PGGT , QGGT and RGGT of the tensor GGT , and imposing the proper cubic
near-wall behavior, i.e. νe = O(x3

2), it was deduced that the eddy-viscosity is given by νe =

(Cs3pqr∆)2Pp
GGT Q−(p+1)

GGT R(p+5/2)/3
GGT . Moreover, only RGGT -dependent models, i.e. p > −5/2,

switch off for 2D flows. This is an important feature for Hybrid RANS-LES models as it
contributes to the mitigation of the Grey Area in free shear layer regions, instabilizing the
flow in a natural manner. For instance, the family of S3PQR and the σ-model consider this
interesting property.

Theory

The essence of turbulence are the smallest scales of motion. They result from a subtle balance
between convective transport and diffusive dissipation. Numerically, if the grid is not fine
enough, this balance needs to be restored by a turbulence model. The success of a turbulence
model depends on the ability to capture well this (im)balance. In this regard, many eddy-
viscosity models for LES have been proposed in the last decades [13, 14]. In order to be frame
invariant, most of them rely on differential operators that are based on the combination of
invariants of a symmetric second-order tensor (with the proper scaling factors). To make them
locally dependent such tensors are derived from the gradient of the resolved velocity field,
G ≡ ∂jũi. This is a second-order traceless tensor, tr(G) = ∂iũi = 0. Therefore, in 3D, this 3× 3
tensor contains 8 independent elements and it can be characterized by 5 invariants (3 scalars
are required to specify the orientation in 3D). Following the same criterion that in [15, 16], this
set of five invariants can be defined as follows

{QG, RG, QS, RS, V2}, (3.34)

where QA = 1/2{tr2(A)− tr(A2)} and RA = det(A) = 1/6{tr3(A)− 3tr(A)tr(A2) + 2tr(A3)}
represent the second and third invariant of the second-order tensor A, respectively. Moreover,
the first invariant of A will be denoted as PA = tr(A). Notice that if A is traceless, tr(A) =
0, these formulae reduce to PA = 0, QA = −1/2tr(A2) and RA = det(A) = 1/3tr(A3),
respectively. Finally, V2 = 4(tr(S2Ω2)− 2QSQΩ), where S = 1/2(G + GT) and Ω = 1/2(G−
GT) are the symmetric and the skew-symmetric parts of the gradient tensor, G. Notice that all
these tensors are also traceless, tr(S) = tr(Ω) = tr(G) = 0. The following relations between
their principal invariants can be easily obtained
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PG = PS = PΩ = 0, (3.35)

QG = QS + QΩ, (3.36)

RG = RS + tr(Ω2S), RΩ = 0. (3.37)

Starting from the classical Smagorinsky model [17], most of the eddy-viscosity models for LES
are based on invariants of second-order tensors that are derived from the gradient tensor, G.
Therefore, it seems natural to re-write them in terms of the 5D phase space defined in (3.34). This
is addressed in the next section. However, for convenience some other important invariants (or
relations) in the context of eddy-viscosity models for LES are defined before. Namely,

tr(GGT) = tr(S2)− tr(Ω2) = 2(QΩ −QS), (3.38)

tr(S2Ω2) = 1/8(tr(G4)− tr(GGTGGT)) = 1/8(2Q2
G − tr(GGTGGT)), (3.39)

tr(S2Ω2) = V2/4 + 2QSQΩ, (3.40)

tr(Ã2) = tr(A2)− 1/3tr2(A), (3.41)

where Ã = A− 1/3tr(A) denotes the traceless part of tensor A. In this context, it is also useful
to define the three eigenvalues, λ1 ≥ λ2 ≥ λ3 of A. They are solutions of the characteristic
equation

det(λ− A) = λ3 − PAλ2 + QAλ− RA = 0, (3.42)

where
PA = λ1 + λ2 + λ3; QA = λ1λ2 + λ1λ3 + λ2λ3; RA = λ1λ2λ3, (3.43)

whereas for traceless tensors it simplifies to

PÃ = 0; QÃ = −1/2 (λ1λ1 + λ2λ2 + λ3λ3) ; RÃ = λ1λ2λ3. (3.44)

A unified framework for eddy-viscosity models

Smagorinsky model

The Smagorinsky model [17] can be written in terms of the above-defined invariants as follows

ν
Smag
e = (CS∆)2|S(ũi)| = 2(CS∆)2(−QS)

1/2, (3.45)

where CS is the Smagorinsky constant, ∆ is the filter length (related with the local grid size)
and |S| = (2S : S)1/2. Notice that the Frobenius norm of S is S : S = tr(S2) = −2QS.

Vreman’s model

The Vreman’s model [18] is based on the ratio between the second and the first invariant of the
tensor GGT . With the help of the identity (3.38), the latter can be written as follows

PGGT = tr(GGT) = 2(QΩ −QS), (3.46)
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whereas the former is given by QGGT = 1/2{tr2(GGT)− tr(GGTGGT)}. Then, with the help of
the identities (3.38) and (3.39), QGGT can be expressed in terms of more basic invariants

QGGT = 2(QΩ −QS)
2 −Q2

G + 4tr(S2Ω2), (3.47)

and simplified further using (3.36) and (3.40)

QGGT = V2 + Q2
G. (3.48)

In the Vreman’s model the eddy-viscosity is given by the following expression

νVr
e = (CVr∆)2 (QGGT /PGGT )1/2 . (3.49)

Finally, plugging identities (3.46) and (3.48) leads to

νVr
e = (CVr∆)2

(
V2 + Q2

G

2(QΩ −QS)

)1/2

. (3.50)

σ-model

Even more recently, Nicoud [19] proposed a new eddy-viscosity model. In this case, it is based
on the singular values of the tensor G. Namely,

νσ
e = (Cσ∆)2 σ3(σ1 − σ2)(σ2 − σ3)

σ2
1

, (3.51)

where σi are the three singular eigenvalues of G, i.e. σi =
√

λi where λi is an eigenvalue of
GGT , and σ1 ≥ σ2 ≥ σ3. Hence, the eigenvalues of GGT need to be determined. To do so, firstly
we need to compute the three invariants of GGT : the first two invariants, PGGT and QGGT , are
respectively given by the identities (3.46) and (3.48), whereas the third invariant of GGT follows
straightforwardly

RGGT = det(GGT) = det(G)det(GT) = R2
G. (3.52)

Finally, the eigenvalues of GGT are obtained by solving its characteristic equation. Hence, the
formula for the eddy-viscosity given in Eq.(3.51) can be computed in terms of the following
four basic invariants: QG, QS, V2 and RG. However, it requires the numerical solution of a
cubic equation.

S3PQR-model

At this point it is interesting to observe that new models can be derived by imposing restrictions
on the differential operators they are based on. For instance, let us consider models that are
based on the invariants of the tensor GGT

νe = (Cs3pqr∆)2Pp
GGT Qq

GGT Rr
GGT , (3.53)

where PGGT , QGGT and RGGT are given by Eqs.(3.46), (3.48) and (3.52), respectively. This tensor is
proportional to the gradient model [10] given by the leading term of the Taylor series expansion
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of the subgrid stress tensor τ(ũi) = (∆2/12)GGT +O(∆4). The local dissipation of gradient
model is then proportional to −GGT : S = −tr(GGTS) = 1/3(tr(G3)− 4tr(S3)) = RG − 4RS.
Hence, the local dissipation introduced by the model, i.e. (∆2/12)(RG − 4RS), can also take
negative values; therefore, the gradient model cannot be used as a standalone LES model, since
it produces a finite time blow-up of the kinetic energy [20]. From the asymptotic near-wall
behavior of the basic invariants it is easy to deduce that PGGT , QGGT and RGGT scale 0, 2 and
6, and their units are [T−2], [T−4] and [T−6], respectively. Then, the exponents p, q and r in
Eq.(3.53), must satisfy the following equations

−6r− 4q− 2p = −1; 6r + 2q = s, (3.54)

to guarantee that the differential operator has units of frequency, i.e. [Pp
GGT Qq

GGT Rr
GGT ] = [T−1]

and a slope s for the asymptotic near-wall behavior, i.e. s. The forcing of the proper cubic
near-wall behavior [21], i.e. s = 3, leads to a family of p-dependent eddy-viscosity models,

νS3PQR
e = (Cs3pqr∆)2Pp

GGT Q−(p+1)
GGT R(p+5/2)/3

GGT . (3.55)

Hereafter, this family of models will be referred as S3PQR-model. Restricting ourselves to
solutions involving only two invariants of GGT three models are found. Namely,

νS3PQ
e = (Cs3pq∆)2P−5/2

GGT Q3/2
GGT , (3.56)

νS3PR
e = (Cs3pr∆)2P−1

GGT R1/2
GGT , (3.57)

νS3QR
e = (Cs3qr∆)2Q−1

GGT R5/6
GGT , (3.58)

for p = −5/2, p = −1 and p = 0, respectively. Considering that only RGGT -dependent
models, i.e. p > −5/2, switch off for 2D flows, and the importance of this feature for mitigating
the Grey Area in Hybrid RANS-LES models, the S3QR and S3PR are desirable. Moreover, the
fact that r is higher in S3QR than S3PR, makes S3QR the choice made, as it reduces νe in 2D
flow areas, triggering instabilities in free shear layers.
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4

Assessment of the new

techniques for mitigating

the Grey Area in DDES

models

Main contents of this chapter have been submitted to AIAA Journal:

A. Pont-Vı́lchez, A. Duben, A. Gorobets, A. Revell, A. Oliva and F.X. Trias . New strategies for
mitigating the Grey Area in DDES models. AIAA Journal (submitted).

Abstract. The new approach presented in the previous section for mitigating the Grey Area
numerical issue, is used in two classic cases and compared with standard methodologies in
both incompressible and compressible flow. Moreover, two different codes have been used,
OpenFOAM and NOISEtte, for cross-validation purposes. Encouraging results have been
obtained with the new approach, supporting its suitability as a good candidate for addressing
the Grey Area numerical issue.

4.1 Introduction
During the last decades, numerical simulations have become an essential tool for every-day
understanding and prediction of the flow behavior in industrial applications. Reynolds-
Averaged Navier-Stokes (RANS) models have been, and continue to be, widely used due
to their cost-effective nature, but their limitations for predicting complex flow motions and

81
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providing unsteady data are also well-known. Moreover, the routine use of more accurate
numerical methodologies such as Large Eddy Simulation (LES) usually require a heavy amount
of computational resources, so its use remains relatively low; limited to industrial sectors
and research cases where extra accuracy requirements justify the additional expense. In this
regard, a set of hybrid RANS-LES methodologies were specifically designed for circumventing
the issues mentioned above, modelling the boundary layer using RANS and simulating the
unsteady flow away from the wall using LES based methods.
In this context, DDES [1] is one of the most widely used hybrid models, due to its user-friendly
non-zonal approach and its proven success in a range of applications, particularly for cases
where RANS becomes unreliable, such as massive flow separation. In contrast to the original
version of Detached Eddy Simulation (DES) [2], the DDES non-zonal approach not relies only
on the mesh for defining the RANS and LES regions, but also on the flow field, by means of the
shielding function, fd. However, while some important weaknesses of the initial DES version
where resolved, some others remain open. First, the flow separation due to adverse pressure
gradient depends mainly on the underlying RANS model, with associated weaknesses and
case dependency. The slow transition from RANS to LES also leads to unphysical results,
delaying the natural development of flow instabilities free shear layers. This numerical issue
is known as the Grey Area (GA). While a number of developments have been proposed to
address the aforementioned shortcomings, some general issues remain unclosed.
The present chapter is focused on diminishing the unphysical delay in transition for the
RANS to LES region, improving the accuracy of the resolved instabilities in such areas. An
example of previous efforts to overcome these issues is the extensive work presented by Mockett
et al. [3] where two different strategies were described. First, reducing the eddy-viscosity,

νsgs =
(
Csgs∆

)2 Dsgs (ũi) , (4.1)

in transition areas by either diminishing the Subgrid Length Scale (SLS), ∆, or the differential
operators, Dsgs (ũi), or both. Second, introducing artificial oscillations for triggering turbulence
in the region of interest. Even though both strategies deal with the delay problem, the first one
is preferable as it is consistent with the non-zonal DES ideology.
In this regard, a new SLS was introduced [3], sensitive to the flow kinematics and defending
the importance of using the maximum meaningful scale at each LES control volume,

∆̃ω =
1√
3

max
n,m=1,...,8

|ln − lm|. (4.2)

Where l = ω/‖ω‖× rn, rn (n=1,. . . ,8 for hexahedral cell) are the locations of the cell vertices. In
addition, various alternative differential operators were considered based on other LES models,
aside from the classical Smagorinsky [4] (SMG). In particular, the σ− LES [5] was selected as a
good candidate for its ability to switch off in 2D flow regions. When both strategies (∆̃ω and
σ− LES) were combined (also called σ− DES), significant improvements were obtained with
respect to the original DDES [1] at comparable computational cost [6, 7],
In addition, Shur et al. [8] proposed another SLS in combination with the SMG model,

∆SLA = ∆̃ω FKH(〈VTM〉), (4.3)
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where the ∆̃ω was modified to switch off in 2D flow regions through a blending function,
FKH(〈VTM〉). This strategy is known as the Shear Layer Adapted (SLA) approach. The Vortex
Tilting Measure (VTM) coefficient is used as an indicator of 2D flow regions,

VTM =
| (Sω)×ω|
ω2
√−QS̃

, (4.4)

where S̃ is the traceless part of the rate-of-strain tensor, S = 1/2
(
∇ū +∇ūT), i.e. S̃ =

S− 1/3tr(S)I. Note that for incompressible flows tr(S) = ∇ · ū = 0, therefore, S̃ = S. Finally,
QA = 1/2(tr2(A)− tr(A2)) refers to the second invariant of a second-order tensor A. This
approach has been successfully applied to several flow configurations [7, 9], reducing the delay
of the flow instabilities in the shear layer.
The objective of this chapter, which is aligned with the σ− DES strategy, consists of exploring
a recently developed LES strategy for mitigating the GA phenomenon. The hypothesis is
that this numerical issue can be mitigated via the appropriate choice of SLS and Dsgs (ũi)
strategies. In this regard, the improvements suggested here are inherited from Trias et al. [10,
11], who developed a new family of LES models, S3PQR, and a new kinematic-sensitive
SLS, ∆lsq, based on the velocity gradient. They are explained in detail in chapter 3. While
both approaches, S3PQR and ∆lsq, were originally designed and tested for LES applications,
preliminar studies [12,13] showed how they can be successfully applied to address the GA issue
in DDES simulations.
In this chapter, the performance of the new approach is compared to the existing methodologies
described above (SMG + ∆SLA [8] and the σ− DES [6]) in three different flow configurations.
Namely, (i) the experimental results obtained by Vogel and Eaton [14] for an incompressible
Backward Facing Step (BFS) at Reh = 28000 (based on inflow bulk velocity, Ub, and the step
edge, h) and Expansion Ratio, ER = 5/4, a ratio of the outflow vs the input heigths; (ii) the
Direct Numerical Simulation (DNS) results of a BFS at Reτ = 395 (based on the inlet conditions)
and ER = 2 [15], where the growth of the Kelvin-Helmholtz instabilities in a shear layer is
studied in detail and (iii) a compressible subsonic jet at Re = 1.1× 106 and M = 0.9 [16,17]. All
these simulations have been carried out using two CFD codes, OpenFOAM and NOISEtte [18].
The rest of the chapter is arranged as follows. In the next section, the new strategies proposed for
mitigating the GA issue are defined. The cases used for studying the GA mitigation capabilities
of the standard and new strategies are described in section 4.3, as well as a complete description
of the two codes used in this chapter. The behavior of the new approach is compared with the
standard mitigation techniques in section 4.4, using the cases and codes mentioned above.

4.2 Decaying Homogeneous Isotropic Turbulence (DHIT)
Before applying and comparing the new approaches, ∆lsq, with the present well-established
techniques for mitigating the Grey Area, they have been firstly calibrated in a DHIT case (Wray [19]
configuration), where the DDES turbulence model acts in LES mode.
Different CDES coefficients have been analysed (Eq. 3.9), concluding that CDES = 0.65 is the
most appropriate, regardless of the subgrid length scale. The study considering different
CDES has not been included in this thesis, but it is worth noting that both meshes, 323 and
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Figure 4.1: Assessment of the mesh resilience capabilities for different subgrid length
scales in a DHIT (CDES = 0.65) case; ∆max (top), ∆lsq (middle) and ∆̃ω (bottom).
“Book” (left) and “Pencil” (right) cells are considered.

643 have been studied. Regarding the subgrid length scale resilience in anisotropic meshes, a
couple of cell configurations have been considered in figure 4.1, Book (32× 32× N,left) and
Pencil (32× N × N,right), respectively. First, ∆max is too dissipative with anisotropic meshes
in both situations, but their effects are pronounced in the Pencil case, where the length scale
clearly underestimate the mesh capabilities for solving turbulence. The contrary is true in
the ∆lsq case, where the dissipation introduced by the DDES model is not enough, increasing
the energy retained in the smallest scales. This behaviour can be attributed to the subgrid
length scale property discussed in section 3.3.1, where ∆lsq allows values similar to the smallest
scale (β−1). However, in contrast to ∆max, the same reaction is observed for Book and Pencil cells,
indicating a beneficial lack of sensitivity to the kind of mesh anisotropy. Finally, the most
robust behaviour is presented by ∆̃ω , which apparently does not present any missalignment
in the Book shape and only small discrepancies are observed in the Pencil case. This feature is
associated with the intrinsic definition of the subgrid length scale, where the diagonal value of
the cell volume is assessed. By definition, it means that ∆̃ω is always going to depend at least
on 2 dimensions, being sensitive to the mesh anisotropies, but at the same time limiting their
downward excursions, something that cannot be guaranteed in the ∆lsq. Results from ∆SLA

have not been shown here as they behave like ∆̃ω in a DHIT case, where there is no any clear
2D flow. The spacial filter used in 〈VTM〉 is actually used for ensuring such feature.
It is worth mentioning here that even we have observed an interesting clear advantage of ∆̃ω
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and ∆SLA over ∆lsq, this is not observed in the choosen flow configurations presented in the
next section. We also need to consider that any of the cases simulated in this thesis does not
resamble any complex industrial application (at least in terms of geometry), so future research
would be needed in this area.

4.3 Simulation Set-up
A set of three different flow configurations has been used to test the above-mentioned tech-
niques, considering both incompressible and compressible flows. Moreover, the performance
of the new SLS and differential operators has been tested with two different CFD codes,
OpenFOAM and NOISEtte.

4.3.1 Cases
All cases used here are well-known in the DDES community for assessing the impact of GA mit-
igation methods. They present free shear layer regions in simple geometrical configurations,
where the impact of the model on the anticipated development of instabilities can be easily
studied.

• BFS: Vogel & Eaton
This BFS configuration resembles the experimental study carried out by Vogel and
Eaton [14] at Reh = 28000 and ER equal to 5/4. The fluid is incompressible and the Reτ

at the inflow is around 2500. The computational domain, mesh and boundary conditions
can be found in work by Spalart et al. [1]. This configuration is a reference case in the
DDES literature for studying the RANS to LES transition downstream of the step-edge.
Hereafter, this case is named BFS-VE .

• Instabilities’ growth at the shear layer
As well as considering fluctuation intensity as a means for evaluating model capabilities
in the RANS to LES transition region, in this case we may also use a BFS case to study
the growth of these instabilities along the shear layer. The case reported by Pont-Vı́lchez
et al. [15] covers both of these aspects in an incompressible BFS at Reτ = 395 and
ER = 2.0. Emphasis was placed downstream of the step-edge, where the shear layer
instabilties appear. In the present work, the dimensions of the computational domain
have been reduced respect to the reference DNS case, in order to resemble the BFS-VE
domain. The new dimensions are 24h× 2h× 2h in the stream-wise, normal and span-
wise directions, respectively. The sudden expansion is located at 4h from the inflow. The
origin of coordinates is placed at the step-edge. Three meshes with different refinement
levels in the stream-wise direction (free shear layer area) just downstream the step-edge,
x1 = [0, h], have been considered for evaluating the mesh resilance capabilities of the
candidate GAM approaches. The length of the first grid cell after the step-edge in the
stream-wise direction is 8, 16 and 32 wall-units. The rest of mesh parameters are kept
constant. These are: the Poisson growth ratio equal to 1.1, the number of cells per
x1x2-plane equal to 11800 and the number of planes in the periodic direction equal to
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60. Regarding the boundary conditions, a turbulent channel flow is set at the inflow at
Reτ = 395. Hereafter, this case is named BFS-DNS .

• Round unheated compressible jet
The immersed jet exiting from a conical nozzle at Mjet = 0.9 and ReD = 1.1 × 106

based on the jet diameter D and jet exit velocity Ujet is considered. The resulting
flow dynamics are similar to cases studied experimentally by several authors in the
literature [20–24]. The computational domain, mesh and boundary conditions can
be obtained from the study carried out by Shur et al. [25]. Afterwards this case was
used in different investigations [8, 26]. It is considered to be a reference configuration
for assessing the RANS to LES transition capabilities of different SLS and Dsgs (ũi) in
compressible flows. The simulation of the jet follows a two-stages approach when nozzle
and jet-plume computation is performed using RANS at the first stage, while only the jet-
plume region is considered at the second stage, with profiles from the first stage imposed
at the nozzle exit boundary surface. These profiles of gas-dynamic and turbulence model
variables were provided by M. Shur and M. Strelets from Peter the Great St. Petersburg
Polytechnic University. The structured (hexahedral) Grid 3 from the papers [25] is used
for computations of the jet case. It has 160 cells in the azimuthal direction and contains
8.87M nodes in total.

4.3.2 Codes
Both codes employ a time integration implicit second-order scheme, doing several iteration
stages per time step to achieve the desired degree of convergence. The Courant number has
been kept below unity in the LES zone to ensure a proper triggering of turbulence. Both codes
use the hybrid convective scheme suggested by Spalart et al. [27], switching from Symmetry-
Preserving to Upwind-based depending on the flow behavior. In particular, the upwind
dissipation vanishes in LES areas, whereas it is activated in RANS and some critical zones to
guarantee system stability. The rest of code’s features are different. Namely,

• OpenFOAM
This well-known open-source CFD code is based on a collocated unstructured finite-
volume approach. All simulations have been carried out using a second-order implicit
scheme. The hybrid convective scheme blends between a 2nd order central difference
in the LES region and a 2nd order upwind-biased scheme in the RANS and irrotational
area.

• NOISEtte
The numerical algorithm realized in the research code NOISEtte [28] is based on quasi-1D
vertex-centered EBR (Edge-Based Reconstruction) schemes [29, 30]. These schemes com-
bine the advantages of structured and unstructured methods and provide a reasonable
balance between accuracy and computational costs in scale-resolving simulation. On
arbitrary unstructured meshes, the EBR schemes are theoretically of maximum second-
order depending on the type of mesh elements and duals. NOISEtte exploits an implicit
second-order time integration scheme which is based on Newton iterations algorithm
and a bi-conjugate gradient approach for solving the system of linearized algebraic
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equations at each iteration. Regarding the convective scheme, NOISEtte used a 4th order
centered and 5th order upwind schemes in the LES and RANS areas, respectively.

4.4 Results and Discusions
The results provided here have been obtained employing the GAM techniques shown in
table 4.1. They have been grouped by case, which are defined in subsection 4.3.1.

Table 4.1: GAM techniques considered in this thesis. The new approach is marked
with (∗).

SLS Dsgs (ũi)

∆SLA SMG

(∗) ∆lsq
SMG
S3PQR

∆̃ω
SMG
σ

4.4.1 BFS: Vogel & Eaton
It can be observed in both codes how the new SLS, ∆lsq, behaves slightly better than the
standard strategies for mitigating the GA (figure 4.2). Especially at the free shear layer area,
close to the step edge. While there is no experimental or high-quality numerical data supporting
this comparison, the triggering of oscillations at the free shear layer appear to be linked to an
improved resolution of the flow dynamics in the LES region. This is, indeed, the main objective
of the GA mitigation strategies. Apart from that, all SLS present a good agreement downstream
the free shear layer at x1 > 2h.
First, we discuss the results obtained with OpenFOAM and using a SMG turbulence model.
The differences observed between the SLS strategies at the free shear layer area can be explained
by drawing a comparison between earlier results for homogeneous flows, shown in figure 3.3
and the ∆ distribution downstream the step-edge in figure 4.3. As expected, ∆max returns
the highest values, translating to higher dissipation in the shear layer which contributes to
an excessive delay. An important reduction of ∆ is shown in figure 4.3 when using ∆̃ω , as a
2D flow behaviour in the x1x2 plane downstream of the step-edge is detected (GA region),

ignoring ∆x3 and getting closer to the diagonal value in this plane; ∆̃ω−2D =
√
(∆x2

1 + ∆x2
2)/3.

It is worth noting here that ∆̃ω will never provide values lower than the lowest 2D diagonal of
the cell,

∆̃ωmin = min
i!=j

(√
(∆x2

i + ∆x2
j )/3

)
. (4.5)

In this case, ∆̃ω and ∆̃ω−2D do not completely collapse as the numerical oscillations start
from the very beginning of the step-edge (rms values in figure 4.3, left, at x1/h = 0 are not
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Figure 4.2: Resolved Reynolds stresses in the stream-wise direction, rms(u′), consid-
ering various SLS in combination with different Dsgs (ũi) (left) and its evolution at
x2 = 0 (right). Where Uo refers to the inflow bulk velocity. Reference experimental
data, Exp., has been obtained from Vogel and Eaton [14].
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0). This is attributed to the high aspect ratio close to the step-edge (∆x/∆y ∼ 32). Therefore,
these oscillations lead to ∆ values which are representative of 3D structures, i.e. ∆̃ω−3D =√
(∆x2

1 + ∆x2
2 + ∆x2

3)/3 rather than 2D, ∆̃ω−2D (figure 4.3). These undesirable oscillations also
affect the ∆SLA natural behaviour, which is not deactivated close to the step-edge. Considering
the impact of these oscillations in the overall simulation, a special test has been carried out in
the next case in order to understand how they are affected by the aspect ratio at the step-edge.
In contrast to ∆̃ω , where the minimum value is limited by Eq. 4.5, ∆lsq can provide values
as small as the wall mesh refinement allows ∆x2 (the order of wall units in RANS-LES
simulations). This interesting property was noted previously in chapter 3 and in figure 3.3
for “Simple Shear” dynamics. This feature is thus highly relevant to the BFS, and many other
configurations exhibiting similar separation and subsequent development of instabilties in
the shear layer. The small ∆ values lead to a strong reduction of the eddy-viscosity, generally
unlocking the Kelvin-Helmholtz instabilities and improving the quality of the simulation in
the LES region. However, while we can observe in figure 4.3 how ∆lsq follows a similar trend
than ∆x2 distribution, there is a clear offset, mainly produced by the initial oscillations at the
step-edge. It explains why the transition from “Simple Shear” to “Pure Rotation” cannot be
completely appreciated in figure 4.3 (both terms are defined in figure 3.3). It is important noting
here that ∆lsq still presents the lowest values of ∆, which explains the good behaviour of the
oscillations observed in figure 4.2.
The behavior of the fluid close to the wall has also been studied by means of the skin friction,〈

C f

〉
, distribution in both, the upper and lower walls in figure 4.4.

Apart from showing a slightly better performance for ∆lsq in the lower wall, we can confirm
that both ∆lsq and ∆̃ω behave in a really similar way. It was not so predictible considering that
∆lsq can present values around ∆xn (where n indicates the normal wall direction) close to the
wall (figure 3.3), could severly reduce the RANS area due to the LES invasions (harming the
shielding function), reducing the turbulent viscosity and strongly affecting the skin friction.
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edge for the Vogel and Eaton BFS case [14].

Therefore, the fact of observing that ∆lsq and ∆̃ω present a similar behavior, clearly indicates
that the new approach does not significantly affects the DDES shielding function in such flow
configuration.
Regarding the results obtained with other differential operators, we can note that combining
∆̃ω with a 2D-sensitive formulation, such as σ, results in a significant improvement in the free
shear layer area (figure 4.2). This is in good agreement with the observations carried out by
previous authors [6,7]. This is not the case for ∆lsq + S3QR, which presents almost no difference
in comparison with ∆lsq + SMG. Figure 4.2 also demonstrates that very similar trends are
observed in both codes, OpenFOAM and NOISEtte, which is clearly a good indication of the
reliability and code independence of the new approach.
While the BFS-VE case is an important reference for hybrid methods, the lack of detailed refer-
ence data in the free shear layer region reduces the scope for a more detailed analysis of model
performance. For this reason, a comparison with DNS data has been performed in the next
section, using another BFS configuration [15]. In particular, it enables a detailed examination of
the intriguing oscillations which appear just after the step-edge in the OpenFOAM . They are
anticipated to be due to the high cell aspect ratio in this area, ∆x1/∆x2 ∼ 32, but their relation
is not clear. As such, a set of meshes with different aspect ratios and refinements downstream
the step-edge are tested in the BFS-DNS case.

4.4.2 Instabilities’ growth at the shear layer
As identified in the previous section, the motivations for considering this case; 1) to investigate
performance of the new appproach in free shear layer region and 2) to assess their sensitivity
in this region, to high aspect ratio cells. Figure 4.5 demonstrates how rms(u′) is affected by
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Figure 4.5: Resolved Reynolds stresses, rms(u′), along the stream-wise direction at
x2 = 0, considering similar meshes with different aspect ratios, ∆x1/∆x2, at the step
edge. These are: 32 (left), 16 (middle) and 8 (right). Where Uo refers to the inflow bulk
velocity. Reference data, DNS, has been obtained from Pont-Vı́lchez et al. [15].

the cell aspect ratio, ∆x1/∆x2, at the step edge in the x1x2 plane. In addition to observing
that stronger fluctuations are triggered by ∆lsq compared to the other candidates, we can also
appreciate the good alignment with the DNS dataset. This supports the hypothesis that ∆lsq
contributes to an improved definition of the Kelvin− Helmholtz -instabilities in the shear layer
region. Furthermore, it seems that the observed oscillations just after the step-edge are strongly
mitigated when the cell aspect ratio in this region is reduced. Other interesting interpretations
can be made from figure 4.5, such as the strong mesh resilience presented by ∆lsq and ∆SLA

with respect to ∆̃ω . The poor performance of ∆̃ω observed in figure 4.5 (left) is attributed to the
cell’s stream-wise size (at x1/h ∼ 1) and the strong dependence of this value on ∆̃ω . This is not
true for the other definitions of SLS, since ∆lsq might not depend on this value (figure 3.3) and
∆SLA can be considerably reduced if a 2D flow is detected (as in this case). Finally, it also seems
that while there appears at first glance to be some ’benefit’ of these unphysical oscillations in
the development of turbulence downstream of the step, this is likely to be fortuitous, since the
tests for AR = 32 never entirely recover the DNS levels of rms(u′). The subsequent analysis
considers only the mesh with ∆x1/∆x2 = 16. The rms distributions along the stream-wise
direction are presented in figure 4.6. In addition to a significant improvement of ∆lsq + SMG
in comparison to ∆̃ω + SMG and ∆SLA + SMG at the shear layer, all SLS behave similarly
downstream of the step-edge (x1 > 2) for both codes. A general misalignment is seen at x1 = 8,
which is attributed to the lack of mesh resolution in this region. The positive effect of using a
2D sensitive differential operators, such as σ, in combination with ∆̃ω is demonstrated once
again in the free shear layer area (figure 4.6, right). In a similar way to in the previous case,
there was almost no sensitivity of ∆lsq to the Dsgs (ũi) used, as as observed in the BFS-VE case,
similar results are obtained with both codes, OpenFOAM and NOISEtte.
It is worth noting here that in both BFS we observed how ∆̃ω + SMG presented a clear delay in
the shear layer oscillations in comparison to other SLS, such as ∆SLA + SMG and ∆lsq + SMG.
However, in the simulations carried out with NOISEtte, ∆̃ω + SMG is the one that presented the
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Figure 4.6: Resolved Reynolds stresses in the stream-wise direction, rms(u′), consid-
ering various SLS in combination with different Dsgs (ũi) (left) and its evolution at
x2 = 0 (right). Where Uo refers to the inflow bulk velocity. Reference data, DNS, has
been obtained from Pont-Vı́lchez et al. [15].
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best results downstream of the step edge, once the delay of the shear layer was recovered. This
effect is due to the fact the vortex created in the shear layer with ∆̃ω + SMG are more energetic
than those created with the other considered SLS. In other words, as the difussion is higher
and the convection lower, the eddies created in the shear layer does not decompose in smaller
eddies so quickly. This mechanism explains the presence of higher oscillation downstream of
the step-edge for those SLSwhich are too diffussive. It is also true that this effect is not so well
observed in the OpenFOAM case. This is attributed to the convective schemes, as the one used
by NOISEtte provides lower levels of numerical dissipation.

Regarding the behavior of the fluid close to the wall, we can observe the skin friction,
〈

C f

〉
,

distribution in both, the upper and lower walls in figure 4.8.

First, the improvements of
〈

C f

〉
coefficient triggered by the better resoultion of the shear

layer can be clearly observed at the lower wall (Fig.4.8, left, A) with the ∆lsq. In that case,

the
〈

C f

〉
peak is also better captured than the RANS− SA simulation and ∆̃ω (B). Moreover,

the improvement of DDES− SA respect to the RANS− SA is also evident at the upper wall,
where the separation point is delayed (C). However, DDES− SA model does not properly
capture the channel flow recovering process neither in the upper nor the lower walls (D). The〈

C f

〉
depletion at the upper wall is produced because of the LES interference into the RANS

zone, diminishing the eddy viscosity in a place where turbulence is not well triggered yet. The

improvements observed in the
〈

C f

〉
at the lower wall with ∆lsq is in good agreement with the

results presented in BFS-VE (section 4.4.1). Again, they clearly indicate that the new approach
does not significantly affects the DDES shielding function in such flow configuration. Unfortu-
nately, this observation has been obtained only comparing the same BFSflow configuration, so
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it cannot be extrapolated to other cases (where extra research is clearly needed). Similar trends
can be observed with the pressure coefficient,

〈
Cp
〉
, distribution, where DDES− SA models

present a clear advantage over RANS− SA, as they are clearly benefited from the transient
resolution of the flow at the shear layer.
Finally, the instabilities’ growth at the shear layer presented by different SLS is analyzed using
the same approach described by Pont-Vı́lchez et al. [15]. A scheme view of this phenomenon is
presented in figure 4.9. The instabilities’ size in the stream-wise direction, ∆δ1, is calculated
using a set of 2-point correlations of u′2 along the stream-wise direction downstream of the step-
edge (figure 4.10). Unfortunately, this technique cannot be applied for assessing the instabilities’
size in the normal direction (∆δ2), as the flow behaves laminarly in some parts along the normal
direction. These feature makes the 2-point correlations unusable for estimating ∆δ2, so another
approach has been used [15, 31],

∆δ2 = ∆U1/(∂ 〈u1〉 /∂x2)max. (4.6)

Even though the rms profiles present a strong dependence on the SLS (figure 4.6) along the
shear layer, this is not so significant in the ∆δ1 distribution (figure 4.10, top). In particular, ∆lsq,
together with ∆SLA, show the best alignment at x1 ∈ [0, 0.8h]. This strong correlation with DNS
data is somewhat reduced downstream, leading to a shallower slope in comparison to ∆̃ω and
the DNS. This deterioration is attributed to the mesh coarsening in this region.
Regarding ∆δ2, it seems to be quite sensitive to the SLS (figure 4.10, bottom). This was an
expected behaviour as the terms used for estimating ∆δ2 ( Eq.4.6), indirectly depends on other
terms which are highly influenced by SLS, such as rms(u′). Hence, figure 4.10 (bottom) clearly
demonstrates once again how diffusion introduced by ∆SLA and ∆̃ω is too high to ensure the
correct development of the Kelvin-Helmholtz instabilties along the shear layer.
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Figure 4.9: Schematic view of the Kelvin-Helmholtz vortices in a shear layer, where
∆δ1 and ∆δ2 represent a estimation of the vortex size in the stream-wise and normal
direction, respectively.

4.4.3 Round unheated compressible jet
The jet plume region characteristics obtained using different approaches realized in both
codes (NOISEtte and OpenFOAM ) are presented on the figures 4.11-4.15. In terms of the
correspondence with the reference data, the first observation is that all approaches evaluated
in this thesis capture the jet dynamics reasonably well, with the exception of one model. The
limited capability for GA mitigation of the ∆̃ω length scale in the jet case is expected and was
already reported in previous studies [3, 8, 16].
Figures 4.11 and 4.12 present a comparison of the averaged stream-wise velocity and its rms
distributions, correspondingly, over the jet centerline. All the approaches (except ∆̃ω + SMG)
allow to predict the length of the jet core region more or less correctly. The results obtained
using the NOISEtte research code are notably more consistent than the OpenFOAM ones. This
behaviour could be due to the numerical scheme employed for convective fluxes and its
dissipation properties. NOISEtte uses the higher accuracy EBR scheme which exploits extended
stencils to achieve higher resolution which results in less dissipation from the numerical scheme.
So the RANS-to-LES transition in the shear layer develops more smoothly, without sudden
exposure-like wakes or instabilities. This observation is supported by figure 4.12, where the
rms levels of stream-wise velocity start to grow permanently, in the region 2x/D till 3.5x/D
and are noticeably overestimated by the region 5 < x/D < 10, in contrast to the corresponding
distributions obtained using the NOISEtte. After reducing a maximum between 10 < x/D < 12,
the centerline distributions of rms(u′) obtained by all the considered GA mitigation approaches
and both codes are close to each other and to the experimental values.
A more in-depth evaluation of performance is now considered by analyzing the distributions of
various characteristics along the lip line downstream of the nozzle edge; presented in the figures
4.13-4.15. The averaged subgrid length scale normalized by its maximum, ∆max, local value and
turbulent to molecular viscosity ratio are shown on the figures 4.13 and 4.14, correspondingly.
By analyzing these plots the following features can be revealed. First of all, none of the
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Figure 4.10: Estimation of the Kelvin-Helmholtz rate of growth in the stream-
wise (top) and normal (bottom) directions downstream of the step-edge using dif-
ferent SLS, ∆δ1 and ∆δ2 respectively. Reference data, DNS, has been obtained from
Pont-Vı́lchez et al. [15]. The float value in the legend shows the slope of the linear
regression, which have been calculated for each curve.
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Figure 4.11: Average of the stream-wise velocity over the jet center line starting from
the jet nozzle exit.

considered subgrid scales (∆̃ω , ∆SLA and ∆lsq) does reach ∆max value either at the early shear
layer region (as it is highly desirable for fast RANS-to-LES transition) or far downstream the
nozzle exit. This is related with the anisotropy of the mesh used in the simulations along the
lip line. Another obvious property is that the ∆lsq values and, accordingly, turbulent viscosity
levels are significantly lower than those provided by ∆̃ω and ∆SLA length scales. In the very
early shear layer region (see the right plots of figure 4.13), at x/D . 0.1, the ∆SLA length scale
drops to very low values with strong growth till x/D ≈ 0.3 (due to impact of FKH (〈VTM〉)
function). The ∆lsq is proportional to ∆min before x/D = 0.2− 0.3. After x/D = 0.3 both length
scales (∆SLA and ∆lsq) have the same increasing trend up to x/D ≈ 0.9. In the developed shear
layers regions, with resolved 3D turbulence, the ∆ distributions behave like O(∆max) with slight
deviation in the approximate region 0.4∆max < ∆ < 0.7∆max. The turbulent viscosity levels
(presented on the figure 4.14) mostly follow the corresponding subgrid length scale values’
trends. The distributions of stream-wise velocity rms values are presented on the figure 4.15.
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Figure 4.12: Average of the stream-wise velocity root-mean square over the jet center
line starting from the jet nozzle exit.

Overall, all the considered approaches result in a good correlation with the reference data and
with each other. It is being observed for both codes, NOISEtte and OpenFOAM, too. The only
noticeable discrepancy can be revealed in the early shear layer region at 0 < x/D < 2: the
peak values of rms(u′) from the OpenFOAM simulations are higher than the NOISEtte ones.
It can be attributed to, as already mentioned above in this subsection, to the behaviour of the
numerical scheme for convective fluxes: low dissipativity and higher accuracy of the numerical
scheme facilitate earlier and more smooth RANS-to-LES transition while the turbulent viscosity
has the same levels. This slight delay results in a notably more intense “numerical” transition
downstream, that is manifested in higher levels velocity rms distributions in this part of the
shear layer. It is seen from the figure 4.15 (right) that ∆SLA provides faster development of the
separated flow apparently due to the lower levels of turbulent viscosity. As also pointed out in
the previous subsections (4.4.1 and 4.4.2) two peaks of stream-wise velocity rms are observed
in the early shear layer region (see right subfigures of figure 4.15): the first lays at x/D ≈ 0.05
in the NOISEtte distributions and at x/D ≈ 0.15 in the OpenFOAM ones; the second – in the
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Figure 4.13: Average of the subgrid length scales over the lip line starting from the jet
nozzle exit (left) and its zoom view near the edge (right).

region 0.3 < x/D < 0.7, depending on the method and the code used. The first peak, driven
by RANS-to-LES “numerical” transition, has an unphysical nature, likely related to the mesh
anisotropy in this region, while the second is attributed to the resolved turbulence in the shear
layer.
The usage of alternative LES subgrid model, σ in combination with ∆̃ω and S3QR in combina-
tion with ∆lsq, perceptibly addresses the GA problem by ensuring much lower dissipation in the
very early shear layer regions. It is seen from figures 4.11, 4.12 and 4.15 that the results obtained
using ∆̃ω + σ and ∆lsq + S3QR are in close agreement with those provided by ∆SLA + SMG
in the jet core region. Downstream, x/D ≈ 7− 8, the predicted jet plume flow characteristics
become more distinguishable. It is conducted by the LES model and corresponding turbulent
dissipation provided by it. While the σ model increases turbulent viscosity, with respect to
results using SMG, S3PQR model yields reduced levels (see figure 4.14). In general, the incor-
poration of an alternative LES model enhances the simulation of the jet and does not lead to
any noticeable drawbacks.
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Figure 4.14: Average of the turbulent to molecular viscosity ratio over the lip line
starting from the jet nozzle exit (left) and its zoom view near the edge (right).

4.5 Conclusions
The main aim of this work was to address, or at least partly mitigate, the Grey Area issue
present in DDES models by means of techniques initially developed for LES turbulence models.
In both applications there is an inherent need to reduce νsgs in critical regions, where flow does
not strictly behave in a fully turbulent manner. For this reason, we decided to compare some
recently developed Grey Area Mitigation techniques, such as ∆SLA + SMG and ∆̃ω + σ, with
two new approaches initially designed for LES models (see section 3.3), in order to assess their
ability to move from RANS to LES in areas where the flow presents a complex behaviour such
as free shear layers.
The new approaches have been demonstrated to behave in a similar, and in some cases superior,
manner to those techniques previously proposed to address those issues, such as ∆SLA + SMG
and ∆̃ω + σ. This conclusion has been supported by applying the new approach to three
different cases (considering incompressible and compressible flows), each computed with two
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Figure 4.15: Average of root mean square of the stream-wise velocity over the lip line
starting from the jet nozzle exit (left) and its zoom view near the edge (right).

different codes. As well as demonstrating improved performance, the new approaches are
grounded in well-established physical LES modelling assumptions, whereas the standard
GAM techniques incorporate a certain degree of tuning and blending which renders the model
more empirical.
It is also worth mentioning that the beneficial influence of ∆lsq is considerably more impactful
than that obtained when using a differential operator sensitised to 2D flows, such as S3QR; the
effect of these models is only noticed when the SLS is too difussive, such as for ∆̃ω . In contrast,
when ∆lsq is used, the substitution of SMG with S3QR resulted in only minor differences.
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5

Conclusions and further

work

5.1 Concluding remarks
The first chapter has attempted to provide a general overview of turbulence, from a physical
and mathematical point of views. The different numerical approaches for modelling turbulence
have also been introduced. The implications of the turbulence model selection are discussed
using a practical example, showing up its huge impact in both computational resources and
degree of modelling. These studies, together with RANS unreliability for certain configurations,
the unfeasibility of LES/DNS simulations for industrial applications and the impressive rate of
growth of the computational resources during the last years, are clear indicators that Hybrid
RANS-LES models will be the next main technique to be adopted by the industrial sector in the
near future (shifting the RANS predominance).
Within the family of hybrid models, Delayed-Detached Eddy Simulation (DDES) outstands
due to its user-friendly non-zonal approach and its proved success in several applications.
Despite their benefits, these models usually suffer from a slow RANS to LES transition (named
Grey Area), resulting in unphysical delays of critical flow instabilities in sensitive regions, such
as Kelvin-Helmholtz structures in free shear layers. In this regard, this thesis has performed
a consistent study of different techniques for mitigating such a delay, as well as presenting
a promising easy-to-apply new strategy. This is explained in detail in chapter 3 and tested
in chapter 4. However, due to the lack of publicly available highly reliable data set, we have
previously carried out a DNS of a BFS at Reτ = 395 and expansion ratio (ER) two in the second
chapter for comparison purposes. As a result, the thesis provides a highly reliable data set
publicly available on internet, as well as a competitive new technique for mitigating the Grey
Area shortcoming.
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5.1.1 Concluding remarks on the DNS simulation
A DNS of a BFS with a ER = 2 has been carried out at Reτ = 395, defining a case close to the
recirculation length asymptotic behaviour. A turbulent channel flow has been used as an inflow,
which has been obtained from a previous simulation. All tests have provided reasonable results
concluding that the parameter values satisfy the challenging DNS requirements. Once verified,
the DNS results have been compared with the experimental and numerical studies present in
the literature. Besides presenting good agreement with the experimental results, the nearness
in the recirculation length asymptotic behaviour zone has also been observed.
The rate of growth of the Kelvin-Helmholtz instabilities have been identified through two-
point correlations in the stream-wise and normal directions. A switching from circular to
elliptical structures has been detected close to the step-edge (up to ∼ 0.4h) produced by the
advection velocity and the vortex pairing phenomenon. The elliptical shape trend agrees with
experimental observations, showing a major-to-minor axis ratio close to 2.
Finally, the results obtained with this DNS have been used in the present thesis for comparing
the reliability of the new approaches for mitigating the Grey Area phenomenon in DDES models.
Currently, DNS data is publicly available on internet for being used by the scientific community.

5.1.2 Concluding remarks on the new GAM
The main aim of this thesis was to address, or at least partly mitigate, the Grey Area issue
present in DDES models by means of techniques initially developed for LES turbulence models.
In both applications there is an inherent need to reduce νsgs in critical regions, where flow does
not strictly behave in a fully turbulent manner. For this reason, we decided to compare some
recently developed Grea Area Mitigation techniques, such as ∆SLA + SMG and ∆̃ω + σ, with
two new approaches initially designed for LES models (∆lsq and S3QR), in order to assess their
ability to move from RANS to LES in areas where the flow presents a complex behaviour such
as free shear layers.
The new SLS, ∆lsq, was initially tested and calibrated with the DHIT case, where we observed
how ∆̃ω offered better resiliance capabilities in comparison to ∆lsq. This feature is associated
with the intrinsic definition of ∆̃ω , where the diagonal value of the cell volume is assessed. By
definition, it means that ∆̃ω is always going to depend at least on 2 dimensions, being sensitive
to the mesh anisotropies, but at the same time limiting their downward excursions, something
that cannot be guaranteed in the ∆lsq.
It is worth mentioning here that even we have observed an interesting clear advantage of ∆̃ω

and ∆SLA over ∆lsq in the DHIT it case, this is not observed in the other flow configurations
presented in the thesis (BFS and jet). Regarding these other cases, ∆lsq have been demonstrated
to behave in a similar, and in some cases superior, manner to those techniques previously
proposed to address the Grey Area, such as ∆SLA + SMG and ∆̃ω + σ. This conclusion has
been supported by applying the new approach to incompressible and compressible flows, and
also running the simulations using two different codes, OpenFOAM and NOISEtte. The same
trends have been observed in all the comparisons.
Special attention has been focused on the BFS case, due to its suitability for studying the
free-shear layer development and also for the fact of having reliable DNS data. In both BFS we
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observed how ∆̃ω + SMG presented a clear delay in the shear layer oscillations in comparison
to other SLS, such as ∆SLA + SMG and ∆lsq + SMG. However, in the simulations carried
out with NOISEtte, ∆̃ω + SMG is the one that presented the best results downstream of the
step edge, once the delay of the shear layer was recovered. This effect is due to the fact the
vortex created in the shear layer with ∆̃ω + SMG are more energetic than those created with
the other SLS (∆lsq and ∆SLA). In other words, as the difussion is higher and the convection
lower, the eddies created in the shear layer does not decompose in smaller eddies so quickly.
This mechanism explains the presence of higher oscillation downstream of the step-edge for
those SLS which are too diffussive. It is also true that this effect is not so well observed in the
OpenFOAM case. This is attributed to the convective schemes, as the one used by NOISEtte
provides lower levels of numerical dissipation.
Regarding the turbulent models behavior close to the wall, they have been studied by means

of the sking friction,
〈

C f

〉
. We have observed that either in the BFS-VE or the BFS-DNS , ∆lsq

presented a slightly better performance in the lower wall. Apart from this, we have confirmed
that both ∆lsq + SMG and ∆̃ω + SMG behave in a really similar way. This fact was not so
predictible considering that ∆lsq + SMG can present values around ∆xn (where n indicates
the normal wall direction) close to the wall (figure 3.3), which could severly harm the DDES
shielding function, reducing the RANS area because of the LES invasions. It would directly
lead to a reduction of the turbulent viscosity, so strongly affecting the flow properties close
to the wall such as the skin friction. Therefore, the similar behavior observed in ∆lsq + SMG
and ∆̃ω + SMG clearly indicates that the new approach does not significantly affects the DDES
shielding function in such flow configuration. Unfortunately, it cannot be extrapolated to other
cases, so extra research in this area is clearly needed. Similar trends were observed with the
pressure coefficient,

〈
Cp
〉
, distribution, where DDES− SA models present a clear advantage

over RANS− SA, as they are clearly benefited from the transient resolution of the flow at
the shear layer. In particular, the new SLS approach, ∆lsq, presented a better transition in the
adverse pressure gradient zone than ∆̃ω .
Another interesting observation from the skin friction distribution is the recirculatino length,
which has presented a similar accuracy in all DDES turbulent models.
Apart from demonstrating an acceptable performance in all cases, the new approaches are
grounded in well-established physical LES modelling assumptions, whereas the standard
GAM techniques incorporate a certain degree of tuning and blending which renders the model
more empirical.
It is also worth mentioning that the beneficial influence of ∆lsq is considerably more impactful
than the one obtained when using a differential operator sensitised to 2D flows, such as
S3QR; the effect of these models is only noticed when the SLS is too difussive, such as for
∆̃ω . In contrast, when ∆lsq is used, the substitution of SMG with S3QR resulted in only minor
differences.
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5.2 Further work
The future strategies to develop and continue this study are mainly focused on the application of
the new approach for mitigating the Grey Area in new flow configurations and also investigating
how they perform when other physics are coupled to the fluid dynamics.
First, for the applicability in new configurations, we are mainly concerned in understanding
how the new approach, ∆lsq, can affect the RANS area close to the wall (shielding function).
Even though we have observed that the skin friction in the BFS behaves similarly in all
turbulence models (so indicating that the shielding function is not significantly affected by the
new approaches), it is not clear which effect they can have in other scenarios.
In particular, for those cases with free inflow boundary conditions, where the νt values are
significantly smaller than the ones presented by the cases studied in this thesis. For instance,
this can be the case of any bluff-body, such as circular cylinders or airfoil profiles, or any other
flow configuration where the flow does not has a developed turbulence at the inflow, such
as the wall-mounted hump. In all these situations (at high Reynolds values), the effects of
turbulence can be present either at the very beginning or developed through the wall. In
DDES models, only the RANS-mode close to the wall can attempt to control the skin friction
development; provide acceptable values of νt; and predict the separation point (in case of any).
LES is clearly incapable of managing such situations properly because the meshes used in
DDES are insufficient for developing a proper level of resolved turbulence in such regions.
Therefore, a reduction/damage of the RANS area close to the wall can have an impact into the
overall simulation. This is the case for the new SLS approach, as the values it provides can be
around ∆xn (where n indicates the normal wall direction) close to the wall. This issue has not
been observed in this thesis, basically because all the considered cases presented a developed
turbulence (high νt values) at the inflow, activating the shielding function and providing an
stable RANS region in the critical areas.
Besides the skin friction and the flow behavior close to the wall, there is another interesting
topic related to the flow configurations chosen in this thesis. This is related to the clear stability
advantage of ∆̃ω and ∆SLA over ∆lsq observed in the DHIT case. Even though it was not clearly
observed in the other cases (BFS and jet), it does not mean that it could play an important role
in simulating real complex industrial application, where the common meshes usually present a
high level of anisotropy, resembling the book and pencil meshes commented in section 4.2.
After studying the benefits and the possible flaws provided by the new approach into the
flow dynamic DDES simulations, there are still lots of questions that remain unanswered. In
particular, the effect that the new approaches can cause in simulations where other physics are
coupled, such as fluid-structure interaction, chemical species reaction, heat transfer, aeroacous-
tics. Apparently, all simulations can be benefited from a better resolution of the instabilities in
the shear layer area (in other words, reduction of the Grey Area issue), as all these couplings
clearly depend on the quality of the unsteady data. In this regard, the chosen flow configura-
tions studied in this thesis set a good basis for analysing such couplings, as the BFS cases are
commonly used for testing heat transfer and chemical species models in canonical geometries,
and Jet is a well-known case for the aeroacoustics field.
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