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Abstract

This thesis consists of three essays that analyze the role of sec-

toral heterogeneity on inflation dynamics and optimal monetary

policy. In the first chapter, I consider a framework where firms

are connected through input-output linkages. Inflation dynamics

depend on the importance of the production network to the over-

all economy and on the importance of particular sectors within

the network. Calibrating the model to data from the United

States, I document how changes to the U.S. production network

can explain why the sensitivity of inflation to economic activity

has declined in the past 50 years. In chapter 2, we explore the

implications of market power for inflation and monetary policy.

We document how the whole distribution of markups as well as

the correlation between market power and price rigidity matter

for the effectiveness of monetary policy and the optimal design of

monetary policy. Chapter 3 provides an empirical investigation of

the relative forecasting performance of core inflation for predicting

underlying inflation. My results indicate that the forecast accuracy

of different measures of core inflation is time-varying and that

there is a trade-off in the exclusion of items between reducing

noise and removing signals.
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Resum

Esta tesis consta de tres art́ıculos que analizan el rol de la het-

erogeneidad sectorial en las dinámicas de inflación y la poĺıtica

monetaria óptima. El primer caṕıtulo parte de un marco teórico

en el que las empresas están conectadas mediante v́ınculos “input-

output”. Las dinámicas de inflación dependen de la importancia

de la red productiva para la economı́a en general, y de la impor-

tancia de sectores particulares dentro de la red. Calibrando el

modelo con datos de Estados Unidos, documento cómo los cambios

en la red productiva estadounidense pueden explicar por qué la

sensibilidad de la inflación a la actividad económica ha disminuido

en los últimos 50 años. En el segundo caṕıtulo exploro las im-

plicaciones del poder de mercado para la inflación y la poĺıtica

monetaria. Este caṕıtulo documenta que tanto la distribución

completa de márgenes de ganancia como la correlación entre poder

de mercado y rigidez de precios son relevantes para la efectividad

de la poĺıtica monetaria y su diseño óptimo. El tercer caṕıtulo

ofrece una investigación emṕırica del desempeño predictivo relativo

de la inflación núcleo para predecir la inflación subyacente. Mis

resultados indican que la exactitud predictiva de distintas medidas

de inflación núcleo vaŕıa en el tiempo, y que al excluir elementos

hay un dilema entre reducir el ruido y eliminar señales.
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Preface

My fourth question goes to the heart of monetary

policy: What determines inflation? [...] I hope that

researchers will strive to improve our understanding of

inflation dynamics and its interactions with monetary

policy.

— Janet L. Yellen, Macroeconomic Research After the

Crisis, 2016

Inflation plays a central role in modern economics. On the one

hand, it is key to the optimal conduct of monetary policy by central

banks in the world. A crucial responsibility of any central bank is

to control inflation. If inflation, i.e., the average rate of increase in

the prices of a broad group of goods and services usually measured

in terms of consumer price inflation (CPI), were not stable at a

moderately low level, this would impose high costs on households

and businesses. For instance, an unexpected rise in inflation tends

to reduce the real purchasing power of labor income because nom-

inal wages are generally slow or even unable (”Downward Rigidity

of Nominal Wages”) to adjust to price level movements. Moreover,

persistently high inflation induces businesses to adjust prices more

frequently than they would otherwise consider necessary. This

adjustment of prices usually comes at a cost (”Menu Costs”). This

vital role manifests itself by inflation control being one half of

the Federal Reserve’s dual mandate (besides pursuing maximum

employment) and the single primary objective for the European

Central Bank (ECB). Therefore, understanding what determines

inflation, its relationship to monetary policy, and how to forecast

inflation is of primary interest.

This thesis consists of three self-containing chapters related

to the role of sectoral heterogeneity on inflation dynamics and

monetary policy. Chapter one and two present and evaluate

theoretical multi-sector models for analyzing production networks’

role and the markup distribution. Chapter three tests for time

variation in the forecasting performance of competing measures of

core inflation.
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Chapter one analyzes the role of changes in the structure of

production networks on the flattening of the Phillips curve over

the last decades. I build a multi-sector model with production

networks and heterogeneity in input-output linkages and the degree

of nominal rigidities. In the production network model, inflation

sensitivity to the output gap depends on the topology of the

economy’s network. In particular, I show that two characteristics

of the network matter for inflation dynamics: (i) the network

multiplier and (ii) output shares. Analyzing the U.S. Input-Output

structure from 1963 to 2017, I document structural changes in

the production network. Calibrating the model to these sectoral

changes can account for a decrease in the slope of up to 15 percent.

Decomposing the aggregate effect shows that the flattening is

primarily due to an increase in the centrality of sectors with more

rigid prices that is incompletely reflected by compositional changes

in value-added.

Chapter two, a co-authored work with Donghai Zhang, studies

the role of the distribution of markups, and its changes on inflation

dynamics and optimal monetary policy. The average markup of

firms in the United States has increased due to the increase in the

right tail of the markup distribution. We complement these empiri-

cal findings by showing that the left tail of the markup distribution

has declined. We then study the implications of these findings

based on a Multi-sector New Keynesian model with heterogenous

markups and nominal rigidities. First, more dispersed markups

lead to higher money non-neutrality in an economy with decreas-

ing returns to scale. Second, changes in the markup distribution

have minimal impact on the Phillips Multiplier – the ratio of the

cumulative responses of inflation and output to a monetary policy

shock – in the U.S. due to the off-setting effects of the increase in

the right tail and the decrease in the markup distribution’s left tail.

Third, markups are negatively correlated with nominal rigidities

across sectors, which has important implications for designing the

optimal inflation target. Particularly, our findings challenge the

conventional wisdom that the central bank should always attach a

higher weight to a sector with a higher degree of nominal rigidity.
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We construct the optimal inflation index and show how it has

evolved over time.

The third chapter evaluates core inflation’s relative perfor-

mance in forecasting future medium term inflation in the U.S. I

consider an approach that takes into account the possibility that

the models’ relative forecast performance can be time-varying.

I show that the predictive ability of different measures of core

inflation indeed changed dramatically over time and identify three

distinct episodes. In the 1970s and until the mid-1980s, autore-

gressive models performed better than core inflation. From the

mid-1980s until the beginning of the 2000s, all measures of core

inflation outperformed headline inflation. Since the 2000s, there is

no statistical difference in the predictive accuracy of both economic

models. I complement these results by comparing the forecast

performance of different measures of core inflation, such as perma-

nent or temporary exclusion indices. The evidence suggests again

that the relative performance is time-varying, and no measure

performed best at all times. Finally, I suggest a way to test for

the signaling effect of excluded components and find that missing

signals from non-core inflation cannot explain why the predictive

ability of core and headline are similar in recent years. These

results help to understand why policymakers should monitor a

wide range of core inflation indices or combine them.
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PRODUCTION NETWORKS AND

THE FLATTENING OF THE

PHILLIPS CURVE

The connection between slack in the economy or level of

unemployment and inflation was very strong if you go back

50 years. It has gotten weaker and weaker and weaker to the

point where it’s a faint heartbeat.

— Jerome Powell, Congressional Testimony on July 10, 2019

1.1 introduction

The strength of the relationship between inflation and economic activity,

represented by the Phillips curve, has been at the center stage of dis-

1



1. Production Networks and the Flattening of the Phillips
Curve

cussions among economic commentators and policymakers in the past

few years. Empirical studies have found a flattening of the slope of the

Phillips curve over time. This is of central importance to policymakers

and central banks in particular because the sensitivity of inflation to the

output gap has important implications for controlling and predicting

inflation. It gives a sense of how real activity affects inflation. For in-

stance, given a positive output gap, a smaller sensitivity implies smaller

inflationary pressures. In this situation, maintaining an inflation target

will become harder for a central bank. To reach the same target level,

larger movements in economic activity are needed, which in turn require

larger shifts in the interest rate. This is of particular concern, in times

of the zero lower bound on the interest rate.

The evidence on the flattening documents that the sensitivity of

inflation to output has declined by more than 50 percent, with most of

the change taking place in a period after the 1980s.1

Understanding the sources of this shift is crucial, and economists

have suggested many possible explanations. Commonly proposed expla-

nations include the success of monetary policy in anchoring expectations

(Bernanke, 2010), the credibility of the central bank (McLeay and Ten-

reyro, 2020), or global forces (Jorda et al., 2019). Those explanations

have different implications for how optimal policy would need to change:

from a larger role of fiscal policies or combined money-fiscal policies

(Gali, 2020) towards rethinking inflation targeting.

In this paper, I propose a novel explanation for the flattening of

the Phillips curve. I investigate the implications of changes to the

production network structure of the economy for inflation dynamics.

These changes go beyond changes in the value-added composition of the

economy. Networks are important since firms use a variety of inputs to

1 See for instance Ball and Mazumder (2011), Blanchard et al. (2015), Kiley
(2015), Coibion and Gorodnichenko (2015), or for a recent overview Stock and Watson
(2019). Studies on the wage Phillips curve include Gali and Gambetti (2019), or
Hooper et al. (2020).

2



1.1. Introduction

build their products. Thereby, they form a complex web of input-output

linkages. Analysis of the input-output tables of the U.S. economy shows

large changes in those interlinkages that coincide with inflation changes

in the 1980s. Changes in the input-output structure have implications

for the sensitivity of inflation as they alter sectoral input-output linkages.

I show how the slope of the Phillips curve depends on the topology

of the network. Moreover, using historical data on the input-output

linkages, I find that a network-augmented Phillips curve can account

for a part of the flattening of the Phillips curve since the mid-1980s.

Inflation dynamics depend on the network structure of the economy.

In this paper, I study a multi-sector economy with monetary frictions in

which industries are connected through input-output linkages. Addition-

ally, I consider heterogeneity across the network structure, the degree of

nominal rigidities, and markups. The first main result of this paper is

that two network statistics matter for inflation dynamics: (i) network

multiplier and (ii) centrality captured by sectoral gross output shares.

These network statistics describe specific attributes of the input-output

linkages, based on fundamentals of the economy. They have direct

empirical counterparts that can be easily observed.

The network multiplier is a measure of the overall importance of the

network in this economy. Total production in an economy exceeds real

value-added (GDP) by intermediate good use. The network multiplier

captures this excess production relative to final consumption and, there-

fore, how important the network channel is in an economy. The larger

the network multiplier, the stronger the production networks’ role in

the transmission of shocks.

The output share is a measure of network centrality. A sector’s

output share captures the importance of the sector’s output (i) as an

input to all other sectors and (ii) for the final good. If other sectors in

the economy extensively use a sector’s output, its equilibrium output

share will be high. Whether a sector has a high or low output share

depends on the network structure. Sectors with larger output shares

3
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will contribute more to the input prices of other sectors and, therefore,

to aggregate inflation dynamics. If central sectors have higher degrees of

nominal rigidities, the aggregate sensitivity of inflation in this economy

will be smaller.

The importance of a sector in the economy will not be given by its

value added-share but rather by its gross output share. A standard multi-

sector model predicts that the importance of a sectors and, therefore,

the extent of their effects on aggregate inflation is related to the share of

that sector in final goods aggregate demand. Instead, in the production

network model, a sector can have a positive influence on the aggregate

inflation dynamics even if its value-added share share is zero.

The network structure affects aggregate inflation dynamics through

another channel that dampens the sensitivity of inflation: strategic

complementarities. When the optimal price chosen by a firm depends

positively (negatively) on the prices of other firms, we speak of strategic

complementarities (substitutes) (see Cooper and John, 1988). Here,

strategic complementarities arise because of sticky intermediate good

prices. However, in my production network setting, there are two critical

differences with strategic complementarities in standard formulations of

intermediate goods as in Basu (1995). First, prices depend positively on

the sector-specific input price instead of the aggregate price level. The

sectoral input price depends on the composition of the sectoral input

good, which depends on the composition of those goods constituting

inputs. As an implication, the degree of strategic complementarity

depends on the particular network structure of the whole economy

because of those indirect supply channels. Second, the degree of strategic

complementarity will be sector-specific and larger for sectors with a

larger share of intermediate goods used in production.

A second implication concerns the estimation of the Phillips curve.

Inflation dynamics are determined by endogenous variables in addition

to the output gap. The presence of these variables biases the estimated

slope coefficient of the standard Phillips curve because they are correlated

4



1.1. Introduction

with the output gap. As I demonstrate, the bias depends on the network

structure. Therefore, the evolution of the Phillips curve could either be

caused by a decrease in the standard slope coefficient or by a change

in the bias through changes in the endogenous variables. I show that,

additionally to the former effect, changes in the network structure

influence the correlation between these endogenous variables and the

output gap, which leads to lower estimates of the Phillips curve.

Figure 1.1: U.S. Production Network in 1963 vs. 2017

Farms

Forestry fishing,

Oil gas

Mining Support mining

Utilities

Construction

Wood products

Nonmetallic mineral

Primary metals

Fabricated metal

Machinery

Computer electronic

Electrical

Motor vehicles

Other transpo

Furniture

Misc manufacturing

Food beverage tobacco

Textile

Apparel

Paper products

Printing

Petro coal

Chemical

Plastics rubber

Wholesale

Retail

Air transpo

Rail transpo

Water transpo

Truck transpo

Pipeline transpo

Other transpo

Warehousing

Publishing

Broadcasting tele

Information

Fed banks

Finance

Insurance
Real estate

Rental

Legal services

Manage Prof scientific technical

Administrative

Waste

Educational

Health care

Hospitals

Arts enter rec

Accommodation

Food other services

(a) Production Network in 1963
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(b) Production Network in 2017

Note: Author’s own calculation. This figure displays the production network corre-

sponding to U.S. Input-Output data in 2017. Each node in the network corresponds to

a sector in the 1963 input-output data, while each edge corresponds to a input-output

relation between two sectors. Larger nodes represent more central sectors in terms of

output shares. Color-codes represent: (i) Manufacturing (blue), (ii) Services (red)

and (iii) others (orange). Source: Bureau of Economic Analysis. The figure is drawn

with the software package Gephi.

The network structure of the U.S. economy has changed over time.

The Bureau of Economic Analysis (BEA) provides Input-Output ac-

counts for the U.S. economy from which a snapshot of the production

network of the U.S. economy can be drawn. Panels (a) and (b) of

Figure 1.1 provide network representations of the input-output linkages,
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in which nodes (circles) represent sectors, and edges (lines) represent

input flows between sectors; the color of the node shows the originating

sector. The color of nodes captures whether a sector belongs to one

of three broad categories: (i) manufacturing (blue), (ii) services (red),

and (iii) others (orange). Furthermore, the size of a node corresponds

to the sector’s centrality as measured by its output share. A thicker

edge documents that the destination sector spends more expenditure

on goods from the originating sector. The centrality of manufacturing

firms and selected other sectors such as construction or farms, captured

by the size of the blue and orange nodes, respectively, has decreased

between 1963 and 2017. Conversely, the centrality of service increased as

reflected by the size of red nodes in 2017. This reallocation of centrality

illustrates the structural changes in the production network, while nor-

mally, structural transformation refers to the change in the value-added

(GDP) shares of sectors.2

I study the role of the structural changes in the production network

on the flattening of the Phillips curve by calibrating the multi-sector

production network model to the input-output structures for each year

between 1963 and 2017. I then estimate the implied sensitivity of

inflation to the output gap using model-generated data for each period.

The model’s baseline calibration shows a flattening of the Phillips curve

that is consistent with empirical evidence on the shape and timing of the

flattening. While before 1980 and after 2000 the slope shows a diverging

behavior in the data and the model, there is an evident flattening in the

1980s and 1990s. From the peak in the 1980s until the beginning of the

21st century, the slope of the calibrated model decreases by about 15%.

The most important channel contributing to this evolution is that

changes in the production network have shifted centrality towards sectors

with higher nominal rigidities: service sectors. This is equivalent to

2Galesi and Rachedi (2019) document an increase in the use of services as an
intermediate input across all sectors (service share of intermediate inputs) and refer
to this process as services deepening.
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1.1. Introduction

an increase in the aggregate degree of nominal rigidity in the economy.

Specifically, aggregate inflation has become more rigid because service’s

prices are much stickier than manufacturing’s prices. There is evidence

from micro studies showing that service prices are more rigid than those

in the manufacturing sector, e.g., Bils and Klenow (2004), Klenow and

Kryvtsov (2008) or Nakamura and Steinsson (2008). Increases in the

degree of nominal rigidity translate into a smaller sensitivity of inflation

to the output gap in the Phillips curve.

Considering the economy’s input-output structure is vital to under-

stand the decline in the slope of the Phillips curve. Simple compositional

changes in value-added fail to capture all of the explained changes to the

Phillips curve. Due to sectoral reallocation, the increase in aggregate

rigidity exceeds the one that would arise, considering changes in value-

added shares only. Using the model, I can decompose the aggregate

change to the slope estimate into the contribution of each of those two

channels. I find that changes in the network structure and the value-

added shares each contribute half to the explained decline in the slope

of the Phillips curve.

This paper relates to the literature on sectoral heterogeneity and

production networks. A growing literature studies the implications of

networks on the transmission of shocks (e.g. Horvath, 2000, Acemoglu

et al., 2012, Acemoglu et al., 2016 or Carvalho, 2014). In these studies,

the size of the network’s role in the amplification of shocks is usually

related to the Leontief-Inverse matrix (Acemoglu et al., 2016 or Bigio

and La’O, 2020). I contribute two new insights to this literature. First,

I show that the network’s impact on the transmission of shocks depends

on two network statistics that capture different components of the

network effects: (i) the importance of the overall network and (ii) the

relative importance of sectors. Second, in the presence of nominal

frictions, the network statistics and network effects become dependent

on countercyclical markups. In another study, Rubbo (2020) analyses

analytically optimal policy in a multi-sector framework with general
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input-output structures. I document the importance of the bias in

estimating the slope of the Phillips curve and identify reallocation

effects as the main source of the flattening in contrast to changes to the

overall importance of the network.

The paper is also related to New Keynesian models with production

networks. It is connected to studies that emphasize the role of networks

and sectoral heterogeneity in price rigidity in amplifying the degree of

aggregate monetary non-neutrality (e.g., Carvalho, 2006, Galesi and

Rachedi, 2019, and Pasten et al., 2019) on government spending multi-

pliers (Bouakez et al., 2018), or the role of price dispersion on optimal

policy (Cienfuegos, 2019). My paper also ties in closely with Pasten et al.

(2020), who argue that in the presence of heterogeneity in intermediate

input consumption and nominal rigidities, the relevant measure of the

size of a sector changes.3 In contrast to these studies, I focus on the

role of production networks (and changes to it) on inflation dynamics.

Moreover, I depart by allowing for a more general network structure via

heterogeneity in sectoral intermediate good shares and sectoral degrees

of market power. I discuss the implications of this model for the slope

of the Phillips curve and calibrate it for the U.S. economy at different

points in time to compare the estimated slopes of the Phillips curve.

Section 1.2 motivates by describing the Phillips curve and reporting

the problems in estimating the slope of the Phillips curve. Section 1.3

outlines the structure of the model and explains the importance of the

two network statistics. Section 1.4 describes the calibration of the model

and shows how the network structure, as measured by the two network

statistics, has changed over time. Section 1.5 investigates inflation

dynamics and predictions of the model for the sensitivity of inflation to

the output gap by comparing different network economies. Section 1.6

reports the implied slope of the Phillips curve and decomposes the role

of different channels. Finally, Section 1.7 concludes the paper.

3In particular, the effective distribution of size and centrality (out-degree) argu-
ment resembles my distinction between output shares and value-added shares.
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1.2. The Phillips Curve

1.2 the phillips curve

At the center of macroeconomics is the theory that the economy’s

real and nominal side are linked through a Phillips curve relationship.

Phillips (1958) provided the first formal statistical evidence on this

trade-off using data on wage inflation in the U.K. Samuelson and Solow

(1960) extended the “Phillips’ curve” to U.S. data and price inflation.

In this paper, I focus on the most widely used model of this kind, the

New Keynesian Phillips curve (NKPC). It gained popularity from its

theoretical microfoundations that build on early work of Fischer (1977),

Taylor (1980) and Calvo (1983). It is centered around staggered price-

setting by forward-looking individuals and firms.4 The critical property

of the NKPC is that inflation dynamics reflect changes in economic

activity and inflationary expectations. The standard macroeconomic

textbook version of the NKPC as in Woodford (2011) or Gali (2015) is

πt = βEtπt+1 + κŷt + vt. (1.1)

According to this equation, inflation πt depends on three factors:

expected inflations, Etπt+1, the output gap ŷt as a measure of economic

activity and vt corresponds to cost-push shocks. Moreover, β is the time

discount factor. The measure of economic activity in these models is

usually marginal costs, which in turn are related to the output gap. The

coefficient κ here describes the relationship between economic slack and

inflationary pressures, i.e., the slope of the Phillips curve.5

A growing literature estimates κ and reports a decrease in the

coefficient over time. As an illustration of this flattening, I follow

4Achieved by two common ingredients: a microeconomic environment with (i)
monopolistically competitive firms, and (ii) facing constraints on price-adjustment.

5In a standard version of this model in Gali (2015), the slope is usually given
by κ = (1− θ)(1− θβ)/θ ∗ (σ + ϕ) where θ is the Calvo parameter - the probability
of not adjusting prices, β corresponds to the time discount factor, σ denotes the
intertemporal elasticity of substitution and ϕ is the Frisch labor supply elasticity.
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Stock and Watson (2019) in formalizing inflation expectations in an

adaptive way, i.e., πet = 0.25(πt−1 + πt−2 + πt−3 + πt−4). This yields

an accelerationist Phillips curve and the Phillips correlation instead

of the slope of the NK Phillips curve, κ. I measure inflation, πt, by

year-on-year changes in PCE inflation, and the output gap, ŷt, as the

difference of output from its natural level, by the Congressional Budget

Office’s (CBO) estimates. The data is at a quarterly frequency. 6

Figure 1.2: Changing Phillips Correlation

Note: This figure illustrates the flattening of the Phillips curve. It displays observa-

tions for predicted inflation and the output gap before and after 1985Q1 together

with the implied slope estimates. Inflation is measured by the year-on-year change in

PCE headline inflation. Inflation expectations (backward-looking) are captured by

the four-quarter moving average of PCE inflation. The output gap is the year-on-year

difference between output and the natural rate of output from the Congressional

Budget Office’s (CBO) estimates. Author’s calculations. The figure replicates Figure

1 from Stock and Watson (2019).

The evidence of Figure 1.2 reproduces the analysis in Stock and

Watson (2019) and documents that the slope of the Phillips curve was

steep before 1984 (0.27) and has flattened by half since then (0.15).

6Details of this exercise together with more empirical evidence on the flattening
can be found in the Appendix 1.8.
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This flattening of the Phillips curve has led many researchers to think

about possible explanations. Among those, the most prominent include

anchored inflation expectations (Bernanke, 2010), the credibility of the

central bank (McLeay and Tenreyro, 2020), or global forces (Jordá et

al., 2019).

However, researchers face several identification problems when they

seek to estimate the slope of the Phillips curve. Mavroeidis et al. (2014)

report a weak identification problem that yields a wide range of estimates

for κ because there is not enough variation in aggregate data. Hazell

et al. (2020) or McLeay and Tenreyro (2020) attempt to overcome this

problem by using regional data. Barnichon and Mesters (2020a) show

that using identified demand shocks might overcome the simultaneity

problem of distinguishing demand and supply shocks, the measurement

error in the output gap, and unobserved inflation expectations. In this

paper, I document another identification problem in estimating the

Phillips curve, which arises in the presence of omitted variables. To see

the relevance of omitted variables, consider that the following formula

describes the Phillips curve instead of equation 1.1

πt = βEtπt+1 + κŷt + Ψt + ut, (1.2)

where Ψt is an endogenous variable and vt = Ψt + ut resemble the cost-

push shock in equation (1.1). If the omitted variable, Ψt, is correlated

with the output gap, ŷt, the estimate of κ is biased. The bias arises

because E(ŷtvt) 6= 0. I show that such a bias can arise in the presence

of production networks. In the next section, I outline a multi-sector

model with sectors that are related via input-output relationships. I will

discuss how inflation dynamics will include an additional variable Ψt

that depends on the structure of the production networks and introduces

a bias in estimating the slope of the Phillips curve.
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1.3 model and network statistics

I consider a multi-sector New Keynesian Model with nominal rigidities

and linkages in production via the use of sector-specific intermediate

goods. In comparison to standard New Keynesian (Gali, 2015) or

multi-sector models, firms use as inputs to production not only labor

but also goods produced by firms from potentially all sectors of the

economy. Additionally, heterogeneity in the degree of nominal rigidities,

the elasticity of substitution, and intermediate good share are modeled.

The model represents an extension of the standard New Keynesian model

(Gali, 2015), with the sectoral models of Carvalho (2006), Carvalho and

Lee (2011), Pasten et al. (2019), Cienfuegos (2019), and the intermediate

good model of Basu (1995) as limiting cases.7 The economy consists of

firms, households, and a government.

The economy is composed of a continuum of firms i ∈ [0, 1] each

of which belongs to a sector k ∈ {1, 2, ..,K}. Each firm produces a

differentiated good that can be used either in consumption or in the

production of other goods. Within each sector, firms face monopolistic

competition (Dixit-Stiglitz) and produce with the same Cobb-Douglas

production function that combines labor and intermediate inputs (with

share γk). They set prices à la Calvo (1983), i.e., they can reset prices

with an exogenous but sector-specific probability, θk.

On the consumption side, the economy is represented by a single

representative household that chooses labor and aggregate consumption.

The latter comprises sectoral consumption bundles, which themselves

are CES aggregators of goods produced by individual firms within a

sector. The labor aggregator is CES, too.

The government consists of a monetary authority, which sets the

nominal interest rate following a Taylor-rule.

7Carvalho (2006) considers a multi-sector model with heterogeneity in nominal
rigidities. Carvalho and Lee (2011) and Pasten et al. (2019) add roundabout produc-
tion structures. Cienfuegos (2019) studies a model with trend inflation and without
heterogeneity in the elasticity of substitution and intermediate good shares.
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1.3.1 Households

The economy is populated by an infinitely-lived representative household

with preferences on consumption, Ct, and labor, Lt. She seeks to

maximize expected lifetime utility given by

E0

∞∑
t=0

βt

[
C1−σ
t

1− σ
− L1+ϕ

t

1 + ϕ

]
, (1.3)

where Ct is aggregate (final) consumption, Lt is labor input, β is the

subjective time discount factor, σ is intertemporal elasticity of substi-

tution, ϕ inverse of the Frisch elasticity of labor supply and E0 is the

expections operator conditional on information up to time t = 0.

The aggregate consumption bundle is a CD aggregator of sectoral

consumption bundles

Ct =
K∏
k=1

Cϑkk,t, (1.4)

where ϑk is the expenditure share of sectoral consumption from sector

k. Also
∑

k ϑk = 1. The sectoral consumption bundles Ck,t themselves

are CES aggregators of the individual firms indexed in [0, 1]

Ck,t =

[∫ 1

0
Ck,t(i)

εk−1

εk

] εk
εk−1

, (1.5)

where Ck,t(i) is the quantity of good i of sector k consumed by the

household, and εk is the sector-specific elasticity of substitution between

different goods of a sector. It is a measure of competitiveness in sectors.

Note also that one usually assumes εk > 1, which implies that it is harder

to substitute consumption goods from different sectors than substitute

goods within the same sector.

A prominent feature of business cycle data is the sectoral comovement

of output and hours worked. To capture this feature, I follow Horvath
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(2000) and assume that labor provided by the household to the firms

cannot move perfectly across sectors. Lee and Wolpin (2006) document

that there are large mobility costs that impair the sectoral allocation

of labor and Katayama and Kim (2018) document a significant degree

of intersectoral labor immobility from estimates using data on sectoral

hours worked. In detail, I model the aggregate labor bundle as a CES

aggregator of sectoral labor supply, Lk,t, that is

Lt =

[
K∑
k=1

L
(1+ν)/ν
k,t

]ν/(1+ν)

, (1.6)

where ν gives labor mobility.8 At ν =∞, labor is perfectly mobile, and

all sectors pay the same wage.

The household purchases a bundle of consumption goods and allo-

cates the remaining income to the purchase of new bonds. She derives

income from providing labor, receiving nominal profits from firms, and

interest on her bond holdings. The period budget constraint is therefore

given by

K∑
k=1

∫ 1

0
Pk,t(i)Ck,t(i)di+Bt =

∑
k

Wk,tLk,t + It−1Bt +

K∑
k=1

∫ 1

0
Dk,t(i)di,

(1.7)

for t = 0, 1, 2, ..., where Lt denotes the aggregate labor bundle, Wt is

nominal wage, Bt represents purchases of one-period discount bonds with

interest It, and
∑K

k=1 Dk,t =
∑K

k=1

∫ 1
0 Πk,t(i)di are aggregate dividends

received from the ownership of all firms in the economy.

The household must decide on how to allocate its consumption

expenditure among the different goods. The solution to this cost min-

8Horvath (2000) document that the idea of this specification is “to capture some
degree of specificity of labor while not deviating from the representative consumer/-
worker assumption”.
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imization of the aggregate consumption bundles yields the sectoral

demand function

Ck,t = ϑk
Pt
Pk,t

Ct, (1.8)

where the aggregate price index is Pt = ΠK
k=1

(
Pk,t
ϑk

)ϑk
. Similarly, cost

minimization of the sectoral consumption bundles yields demand for the

good of firm i in sector k

Ck,t(i) =

(
Pk,t(i)

Pk,t

)−εk
Ck,t, (1.9)

where sectoral price indices are Pk,t =
(∫ 1

0 Pk,t(i)
1−εkdi

) 1
1−εk and where

Pk,t(i) denotes the price of an individual firm i in sector k. Moreover,

PtCt =
∑K

k=1

∫ 1
0 Pk,j,tCk,j,tdj. Eventually, optimal allocation of sectoral

labor gives labor supply

Lk,t =

(
Wk,t

Wt

)ν
Lt, (1.10)

with Wt =
[
(1/K)

∑K
k=1W

1+v
k,t

]1/(1+v)
. Given the solution to the cost

minimization problems, the problem of the household reduces to choosing

consumption Ct, labor Lt and savings Bt to maximize lifetime utility

subject to the budget constraint (1.7). The solution is described by

the optimality conditions concerning labor supply and intertemporal

consumption choices

Wt

Pt
= Lϕt C

σ
t , (1.11)

1 = Et

[
β
C−σt+1

C−σt

Rt
Πt+1

]
, (1.12)
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where Πt+1 is the gross inflation rate of the aggregate price index between

t and t+ 1.

1.3.2 Firms

Firms assemble differentiated varieties of output using labor and in-

termediate inputs. The goods produced are then sold as an aggregate

consumption bundle to households and intermediate goods to other

producers. In each sector, k = 1, ...,K, there is a continuum of monopo-

listically competitive producers indexed by i ∈ [0, 1]. Within a sector k,

each firm i produces with the same Cobb-Douglas production function

that combines labor input and sector-specific intermediate inputs

Qk,t(i) = Lk,t(i)
1−γk

(
K∏
r=1

Xk,r,t(i)
ωk,r

)γk
, (1.13)

where Qk,t(i) is gross output by this producer, Lk,t(i) is labor used

by firm (k, i), γk denotes the share of constant intermediate good use

in the sector, ωk,r is the relative intensity with which firms in sector

k use goods produced in sector r (Input-Output shares). I assume

that
∑K

r=1 ωkr = 1 ∀k. The K-by-K matrix containing the shares

of intermediate input use gives the representation of the production

network, denoted by W . The CES - aggregator of intermediate goods

purchased by firm (k, i) from all firms in sector r, Xk,r,t(i), is given by

Xk,r,t(i) =

(∫ 1

0
Xk,r,t(i, j)

εk−1

εk dj

)εk/εk−1

,

where Xk,r,t(i, j) is intermediate inputs purchased by firm (k, i) from

firm j in sector r.

The firm’s problem can then be solved in two steps. First, finding

the optimal mix of inputs for a given output price that minimizes costs

and, then, finding the optimal price a firm would set given these inputs.
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Marginal Costs. Each firm i in sector k faces the following cost

minimization problem subject to expenditure minimization of sectoral

inputs, where costs are given by

C(Qk,t(i)) = min
Lk,t(i),{Xk,r,t(i)}r

Wk,tLk,t(i) +
K∑
r=1

Pr,tXk,r,t(i), (1.14)

subject to the production function (1.13). Due to the CRS technology,

the cost minimization problem for firm (k, i) can be rewritten in sectoral

variables only, and marginal costs are the same for all firms within the

same sector. The price index for sectoral intermediate inputs is the

same as for sectoral consumption goods by assuming the same elasticity

of substitution in consumption and production. It yields the following

formula for the nominal marginal costs of production in sector k

MCk,t =

(
Wk,t

1− γk

)1−γk (P kt
γk

)γk
, (1.15)

where P kt is the industry-specific price index of intermediate inputs given

by

P kt =
K∏
r=1

(
Pr,t
ωk,r

)ωk,r
. (1.16)

The cost minimization has implications for firms’ conditional factor

demands. The firm’s optimal choice of inputs, labor, and gross output,

given input prices, are

Wk,tLk,t(i) = (1− γk)
MCk,t
Pk,t

Pk,tQk,t(i), (1.17)

Pr,tXk,r,t(i) = γkωk,r
MCk,t
Pk,t

Pk,tQk,t(i). (1.18)

17



1. Production Networks and the Flattening of the Phillips
Curve

Expenditure on labor input or any particular intermediate input r

is proportional to the firm’s total expenditure.

Market Clearing. I can derive the total demand for goods produced

by firm (i, k). This firm can either sell its product as consumption

goods to the representative household, Ck,t(i) or as intermediate input

to all firms from all sectors of the economy Xr,k,t(j, i). This implies the

following market-clearing conditions

Qk,t(i) = Ck,t(i) +

K∑
r=1

∫ 1

0
Xr,k,t(j, i)dj. (1.19)

I can use the optimality conditions from the expenditure problems to

replace the CES aggregates Ck,t(i) =
(
Pk,t(i)
Pk,t

)−εk
Ck,t and Xr,k,t(j, i) =(

Pk,t(i)
Pk,t

)−εk
Xr,k,t(j) to derive a demand for sectoral gross output

Qk,t(i) =

(
Pk,t(i)

Pk,t

)−εk
Qk,t, (1.20)

where Qk,t is sectoral gross output. It is defined as

Qk,t = Ck,t +

K∑
r=1

Xr,k,t, (1.21)

where Xr,k,t =
∫ 1

0 Xr,k,t(j)dj is the total demand of sector r for inputs

from sector k.

Price-Setting. Price-setting is modeled as in Calvo (1983), but with

sector-specific probabilities as in Carvalho (2006). In particular, (1− θk)

is the probability to reset prices in sector k. The firm’s problem is then

to choose the optimal price Pk,t(i) to maximize the current market value
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of the profits generated while the price remains effective. Formally, firm

(i, k) solves the problem

max
Pk,t(i)

Et

[ ∞∑
s=0

(θk)
sΛt,t+sQk,t+s(i)

[
Pk,t+s(i)−MCk,t+s|s(i)

]]
, (1.22)

subject to firm demand (1.20) and where Λt,t+s is the stochastic discount

factor implied by the household problem. The first-order condition is

then given by

0 = Et

∞∑
s=0

Λt,t+sθ
s
kQk,t+s(i)

[
P ∗k,t −

εk
εk − 1

MCk,t+s

]
,

where P ∗k,t is the optimal sectoral price, and µk = εk/(εk − 1) is the

sectoral markup absent nominal rigidities. Thus, firms resetting their

prices will choose a price that equals the markup over their current and

expected marginal costs. The weights depend on the economy’s discount

rate and the probability of the firm’s price remaining unset until each

respective horizon.

Defining relative prices as p∗k,t =
P ∗k,t
Pt

and rewriting the optimality

condition in the standard recursive form, yields

p∗k,t =
εk

εk − 1

ψk,t
∆k,t

, (1.23)

where ψk,t and ∆k,t are auxiliary variables that represent expected

discounted values of marginal costs and revenues. They are defined

recursively as

ψk,t = Qk,tC
−σ
t mck,t + θkβEt

[
Πεk
k,t+1ψk,t+1

]
, (1.24)
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∆k,t = Qk,tC
−σ
t + θkβEt

[
Πεk
k,t+1

Πt+1
∆k,t+1

]
, (1.25)

where mck,t = MCk,t/Pt are real marginal costs and Πk,t−1,t+s =

Pk,t+s/Pk,t−1 is the gross nominal inflation rate.

The Calvo environment implies that sectoral price dynamics are

described by

Pk,t =
[
(1− θk)

(
P ∗k,t

)1−εk + θk (Pk,t−1)1−εk
]1/1−εk

. (1.26)

1.3.3 Monetary Policy

The monetary authority sets the short-term nominal interest rate, It,

according to the following Taylor rule with value-added output and

aggregate inflation

It
Ī

=

(
Yt
Ȳ

)φc (Πt

Π̄

)φπ
eυt , (1.27)

where Πt = ΠK
k=1Πϑk

k,t is the aggregate inflation rate, variables with a bar

denote steady-state values, Yt is aggregate nominal value-added and υt

is a monetary policy shock that follows an AR(1) process. In this model,

the respective real measure is the value-added output, Yt, instead of gross

output, Qt, and the inflation index relevant for household consumption

is Πt. The coefficients φc and φπ measure the degree to which the

monetary authority adjusts the nominal interest rate in response to

changes in the consumption-based inflation rate and changes in the

value-added output, respectively.

1.3.4 Equilibrium

Before turning to the model’s log-linearized solution and the Phillips

curve, in this section, I describe the model’s equilibrium system. In
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particular, I stress its properties related to the determinants of marginal

costs and the connection between gross output and value-added output.

The equilibrium is described by the firms’ and household’s optimality

conditions along with market clearing conditions.

Aggregation and Value-Added Output. In this economy, real

aggregate value-added (i.e. real GDP), Yt, is equal to consumption, Ct.

Let Yk,t(i) denote the nominal value-added of producer i in sector k. It

is defined as the value of gross output produced by this firm abstracting

the value of intermediate inputs it is using, i.e.

Yk,t(i) = Pk,t(i)Qk,t(i)−
K∑
r=1

Pr,tXk,r,t(i). (1.28)

Aggregating over all real value-added output of all producers in

sector k

Yk,t =

∫ 1

0
Yk,t(i)di = Pk,tQk,t −

K∑
r=1

Pr,tXk,r,t, (1.29)

where Xk,r,t =
∫ 1

0 Xk,r,t(i)di by intermediate input clearing condition.

I can aggregate nominal dividends by using

Dk,t =

∫ 1

0
Dk,t(i)di = Pk,tQk,t −Wk,tLk,t −

K∑
r=1

Pr,tXk,r,t = Yk,t −Wk,tLk,t,

(1.30)

where I use the labor market clearing condition Lk,t =
∫ 1

0 Lk,t(i)di.

Eventually, substituting into the household’s budget constraint (1.7),

aggregate dividends and the bond market-clearing Bt = 0, I obtain
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PtCt =

K∑
k=1

Wk,tLk,t +

K∑
k=1

Dk,t =

K∑
k=1

Yk,t. (1.31)

The aggregate nominal value-added equals the nominal value of

total consumption. Real aggregate value-added (i.e., real GDP), Yt, can

then be derived by deflating the nominal aggregate value-added by the

aggregate consumption price index, Pt, that is

Yt =

∑K
k=1 Yk,t

Pt
= Ct. (1.32)

Wages and Total Expenditure. The role of total production in

affecting marginal costs becomes clearer when deriving the equilibrium

wages in this economy. Combining the labor market clearing condition

Lk,t =
∫ 1

0 Lk,t(i)di with labor demand from firms (1.17) yields sectoral

labor demand

Lk,t = (1− γk)
mck,t
pk,t

pk,tQk,tdk,tw
−1
k,t , (1.33)

where mck,t =
MCk,t
Pt

, pk,t =
Pk,t
Pt

, and wk,t =
Wk,t

Pt
are real sectoral

marginal costs, relative sectoral prices and real sectoral wages respec-

tively. Moreover, dk,t =
∫ 1

0

(
Pk,t(i)
Pk,t

)−εk
di is within sector price disper-

sion. This corresponds to price dispersion in a one-sector model, and

as shown in Gali (2015), around a zero inflation steady state, price

dispersion is approximately zero. Thus, for expositional purposes, I

will not carry it along in the derivations that follow since it becomes

negligable up to a first order approximation.9 The exposition shows that

9It will become relevant under the assumptions of positive trend inflation (Ascari
and Sbordone, 2014). Then this will introduce the propagation of sectoral price
dispersions as discussed in Cienfuegos (2019).
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sectoral labor demand depends on the total sectoral expenditure of the

sector. This expenditure is the share of total revenue from production

that is not spent on markups. Labor demand is increasing in the real

value of sectoral production and decreasing in sectoral markups.

One can combine labor supply (1.11) and labor demand (1.17) with

marginal costs (1.15) to solve for real wages

wk,t =
Wk,t

Pt
=

((
1− γk
γk

)γk
(pkt )

γkQk,t

) ϕ
1+γkϕ

C
σ

1+γkϕ

t (1.34)

The wage rate depends on firms’ demand for labor input and the

household’s labor supply via the following mechanisms. Wages increase

in firms’ demand for labor input if their total production increases, Qk,t,

and in the cost of intermediate goods, pkt , as they can substitute labor

inputs for intermediate inputs. On the other hand, wages increase in

household’s labor supply if their demand for the aggregate consumption

good, Ct, increases, or the disutility from working, ϕ, falls.

Marginal costs. Replacing wages (1.34) in marginal costs (1.15), we

can show that the average marginal cost in sector k yields

mck,t = φkY
(σ+ϕ)(1−γk)

1+γkϕ

t

(
pk,tQk,t
Yt

)ϕ(1−γk)
1+γkϕ

(
pkt
γk

pk,t

) (1+ϕ)
1+γkϕ

, (1.35)

where φk = 1
1−γk

(
1−γk
γk

) γk(1+ϕ)
1+γkϕ is a constant.

In this economy, marginal costs are affected by three components: (i)

the aggregate demand channel, Yt, (ii) the real value of sectoral output,

and (iii) the price of intermediate inputs. While the first channel

is standard, the other two are due to production networks. This is,

however, only a partial equilibrium analysis since the three variables are

endogenous.
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Linking Sectoral Production to GDP. The next step in the deriva-

tion is to solve for the real value of sectoral production, pk,tQk,t, in terms

of real value-added, Yt. In particular, I will show that sectoral markups

will affect other industries through the production network channel.

Therefore, I will introduce two network statistics that measure (i) the

share of production from a sector in total production (output share)

and (ii) the share of intermediate goods in total production (network

multiplier). I use the definitions of real value-added, the market-clearing

condition (1.15) and the budget constraint (1.7) to obtain the following

characterization for the real value of sectoral production in terms of real

aggregate value-added, i.e., GDP.

Proposition 1.3.1 Let Qt ≡
∑

r pr,tQr,t denote the real value of total

production (gross output), δk,t ≡ pk,tQk,t/Qt be the output share of sector

k, and ΦNM
t ≡ Qt/Yt the network multiplier of the economy. The real

value of sectoral production in the multi-sector economy with production

networks and nominal frictions is linked to aggregate real value-added

and given by

pk,tQk,t = δk,tΦ
NM
t Yt, (1.36)

with

ΦNM
t

(−→
1

Mt
, δt

)
=

[
1− 1′(γ �

−→
1

Mt
� δt)

]−1

, (1.37)

δt

(−→
1

Mt

)
=

[
I− (W ′ − VC1′)

(
1

(
γ �
−→
1

Mt

)′)]−1

VC ,

where � denotes the Hadamard (entrywise) product and
−→
1
Mt

the Kx1

vector of sectoral real marginal cost deflated by sectoral prices which is

also related to the inverse of sectoral markups 1
Mk,t

=
mck,t
pk,t

. Also, γ,
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VC and δt are Kx1 vectors of sectoral intermediate good shares, sectoral

consumption shares and sectoral output shares, respectively. W ′ is the

inverse of the input-output matrix, reflecting how much intermediate

goods each sector k provides to all other sectors.

Proposition 1.3.1 states that the real value of sectoral production

is proportional to real value-added and depends on the topology of

the production network. The network structure is captured by two

statistics, (i) the network multiplier of the economy and (ii) the output

share of a sector. Those two statistics – and hence the relationship

between sectoral production and value-added – are affected by variations

of markups across sectors.

In the next two sections, I will provide insight into the two network

statistics and explain why we can think about the network multiplier

as a measure of the importance of the network to the economy and the

output share as a measure of the centrality of a sector.

Network Multiplier. The network multiplier, ΦNM
t , provides a link

between real value-added production, Yt, and the real value of total

production (gross output), Qt ≡
∑

r pr,tQr,t, in the economy. In a

model without intermediate goods, the multiplier would be one. In

the multi-sector model with production networks, to produce one more

unit of the aggregate consumption good, additional production units

are produced that will be used as intermediate goods. Therefore, the

network multiplier will be larger than one.

The larger the network multiplier, the more labor is needed to

produce the same consumption unit. One can think about this as a

proxy for the length of the production chain in this economy. The longer

the production chain, the more intermediate goods, and hence labor

input is needed for production.

To derive the network multiplier, I rewrite the budget constraint

(1.7) in terms of real value-added and the total value of production
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Qt = Yt +
K∑
k=1

γk
mck,t
pk,t

δk,tQt, (1.38)

where I use the definition of the output shares pk,tQk,t = δk,tQt. The

real value of total production exceeds real aggregate value-added by the

aggregate expenditure on intermediate goods.

This recursive expression of the real total value of production can

be iterated to obtain a representation capturing all direct and indirect

expenditure effects along with the production network

Qt = Yt +
K∑
k=1

γk
mck,t
pk,t

δk,tYt +
K∑
k=1

γk
mck,t
pk,t

δk,t

K∑
r=1

γr
mck,t
pk,t

δr,tYt + . . .︸ ︷︷ ︸
network component

.

(1.39)

The first term captures the household’s expenditure on the con-

sumption good. The second term captures the indirect expenditure on

intermediate goods as a proportion of total consumption. The third and

higher terms reflect the expenditure on intermediate goods higher in the

production chain. All of those indirect effects decay at the rate given by

the intermediate good share, γk, and the markup, 1
M(k,t)

.10 The size of

the decay is weighted by the importance of a particular sector, reflected

by its output share, δk,t. The network component captures these indirect

effects. It increases if large (in terms of output shares) sectors have

larger intermediate good shares and smaller markups. Here we can see

how distortions in markups can propagate through the network and

10If we assume the intermediate share to be constant, γk = γ, we would find

Qt = Yt + γ

K∑
k=1

mck,t
pk,t

δk,tYt + γ2
K∑
k=1

mck,t
pk,t

δk,t

K∑
r=1

mck,t
pk,t

δr,tYt + . . . ,

i.e., higher-order terms are devaluated by the rate γ.
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change total expenditure. In the New Keynesian model, markups are

countercyclical in response to demand shocks, which means that the

network component and the network multiplier increase in booms.

The decay of the network multiplier has another intriguing interpre-

tation. The smaller the decay, the longer will be the production chain.

If the network structure is such that more central sectors have larger

intermediate shares, then the total decay of the network will be smaller,

and the total multiplier larger. I will investigate this mechanism further

when I look at different examples of networks.

Rewriting the sums in vector form, I can rewrite the last expression

as

Qt =

[
1− 1′

(
γ �
−→
1

Mt
� δt

)]−1

︸ ︷︷ ︸
=ΦNMt

Yt, (1.40)

where γ,
−→
1
Mt

and δt are Kx1 vectors of sectoral intermediate good shares,

sectoral markups and sectoral output shares, and Qt as well as Yt are

scalars.

The network multiplier, ΦNM
t , shows how much total production is

needed in order for the household to consume one unit of the consumption

good. By capturing the size of the network component relative to the

direct expenditure on the consumption good, it is, therefore, a measure

of the relative importance of the network in this economy. As long

as intermediate good shares are positive, the network component will

be non-zero, and the network multiplier will be larger than one. The

network multiplier is not constant as it depends on markups and the

output shares. In the next section, I develop a closed-form expression

for output shares.

Output Shares. The output share, δk,t, provides a link between the

real value of sectoral production and the real value of total production.
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The output share will be equal to the consumption share in a model

without intermediate goods, VC . However, in the multi-sector model

with production networks, each sector also provides intermediate goods

to other sectors. From the system of market-clearing conditions (1.21)

in combination with sectoral intermediate good demands (1.18), the

demand for sectoral production yields

pk,tQk,t = ϑkCt +
K∑
r=1

ωr,kγr
mcr,t
pr,t

pr,tQr,t, (1.41)

where the first part on the right-hand side represents the household’s

direct demand for goods from sector k. This demand is fully described

by the consumption share of goods from sector k in the total demand of

the household for the aggregate consumption good, ϑk, i.e., it reflects the

preferences of the household.11 The second component is the demand

from other sectors r that use sector k’s good as an intermediate input.

It is given by the share sector r spends on goods from sector k, ωr,k,

relative to its total intermediate good expenditure.

Combining the previous expression with the budget constraint (1.7)

and dividing by the total real value of production yields an iterated

representation of the output shares

δk,t = ϑk +

K∑
r=1

ω̃r,kϑr +

K∑
r=1

K∑
s=1

ω̃s,rω̃r,kϑs + . . .︸ ︷︷ ︸
network component

, (1.42)

where ω̃r,k,t = (ωr,k − ϑk)γr 1
Mr,t

is a weighting matrix.

The first term represents the direct demand for goods from sector k

from the household. The first term of the network component captures

the importance of sector k to its immediate customers, firms that are

11By the Cobb-Douglas assumption on the consumption aggregator, this is thus a
constant fraction of total consumption.
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directly connected to k. The specific contribution of sector r to k’s

output share depends on sector r’s own share, δr,t, and on a weighting

matrix, ω̃r,k. This weighting matrix depends on the network weight

connecting both sectors, ωr,k and the intermediate good expenditure

of sector r. The second term of the network component captures the

indirect importance of k through sectors that buy inputs from sector

k’s customers. In other words, this is the indirect demand from the

customers of the customers of sector k. The third and higher-order

terms capture the importance of k through customers that are one or

more further steps away from sector k.

Again, we can rewrite the last equation in vector form to represent

the relationship between the vector of sectoral real values of production,
−−→
PQt, and the total real value of production, Qt, in this economy

−−→
PQt = (I− W̃t)

−1VC︸ ︷︷ ︸
=δt

Qt, (1.43)

where W̃t = (W ′ − VC1′)(1(γ �
−→
1
Mt

)′).

The output share summarizes the network structure by specifying

how much sectoral production pk,tQk,t is needed in order to satisfy a

given demand for gross output, Qt =
∑

r pr,tQr,t. In fact, output shares

are equal to the network centrality of Katz (1953), i.e. they capture

the relative importance of each node (sector) in a network (aggregate

economy). A sector is important if its outdegree is larger than its

consumption share, i.e. (W ′k − VC,k > 0), and if its customers have

large intermediate good shares, γk, or small markups, Mk,t. In the

absence of intermediate goods or markups, the output share equals the

consumption share, VC . Again, fluctuations in markups in other sectors

are transmitted through the network via intermediate good use, W .
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1.3.5 Steady State and Network Examples

In this section, I highlight some key features of network statistics in

steady-state. Therefore, I examine some examples of network structures

to provide insight into the network statistics introduced before. Moreover,

I discuss how both statistics can be directly calculated from the data.

The main difference between a zero-inflation steady-state and the

equilibrium is that markups are constant and given by M̄ = εk
εk−1 in the

former. Evaluating network statistics and marginal costs in steady-state

yields

Φ̄NM =

[
1− 1′(γ �

−→
1

M̄
� δ)

]−1

, (1.44)

δ̄ =

[
I− (W ′ − VC1′)

(
1

(
γ �
−→
1

M̄

)′)]−1

VC . (1.45)

This expression shows that the two network statistics only depend

on network characteristics, the sectoral markups, and are independent of

nominal rigidities. In the dynamic model (i.e., outside the steady-state),

the markups will vary and, hence, both network statistics.

Another interesting implication comes from these equations. Given

observables for intermediate good shares, value-added shares, the input-

output tables, and markups, we can calculate both network characteris-

tics directly (without additional assumptions) from the data. They have

direct empirical counterparts in the data and can be observed at the

yearly frequency from input-output tables. Thus, they could potentially

be used as sufficient statistics for the slope of the PC.

Before I turn to the calibration part, where I show how the network

statistics have changed over time, I will outline how different features of

hypothetical network economies affect the two network statistics.
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Example 1: Change in Network Multiplier. This economy has

two sectors. I assume that the household preference weights on each

good are the same, VC = [0.5; 0.5]. Markups are symmetric and equal

to 20%, i.e. 1
M

= 5/6. Moreover, I consider two networks that differ in

their intermediate shares

W1 = W2 =

(
0.5 0.5

0.5 0.5

)
and γ1 =

(
0.75

0.75

)
and γ2 =

(
0.5

0.5

)
.

Both networks feature a symmetric roundabout production network:

Sectors 1 and 2 equally spend their input expenditure on inputs from

Sectors 1 and 2. The equivalence of consumption shares and outdegrees

implies that both sectors have the same output share in steady-state (δ =

VC), with each sector having 50% of the market. However, Network 2

has a smaller network multiplier of 1.71 because of its lower intermediate

share than Network 1 of 2.67.

In this example, the network multiplier changes without changes in

output shares. This will become important later to decompose changes

in the slope through the lens of a symmetric network model.

Example 2: A (non-)“irrelevant” sector. Keeping the markup

structure of Example 1, and adjusting the houshold preferences such

that Sector 1 becomes irrelevant for households VC = [0; 1], Network 3

and is given by

W3 =

(
1 0

1 0

)
and γ3 =

(
0.75

0.75

)
.

This network represents a star network: Sectors 1 and 2 spend all of

their input expenditure on inputs from Sectors 1. Therefore, Sector one

that is irrelevant from the household perspective is the central sector of

this economy from the network perspective: Sector 1 has non-zero output
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shares as δ = [0.63; 0.37] 6= VC . By the symmetry of the intermediate

good shares and markups, Network 3 has the same network multiplier

as Network 1, 2.67.

Hence, consumption weights do no longer characterize the importance

of a sector for the economy. This illustrates that Hulten’s law (Hulten,

1978) does not hold in this economy. The impact of a sectoral TFP

shock is not equal to the sector’s share in total value-added.

1.3.6 Equilibrium Conditions and Dynamics

The equilibrium is described by a system of 7N + 3 equations to pin

down the 7N + 3 endogenous variables: sectoral variables {Πk,t, pk,t,

Qk,t, mck,t, dk,t, ψk,t,∆k,t}Kk=1 and aggregate {Yt, It,Πt} variables given

the monetary shocks eυt . The three aggregate equations are the Euler

equation (1.12), the Taylor rule (1.27) and the aggregate labor supply

(1.11). The sectoral equations are output demand (1.21), labor demand

and marginal costs (1.15) those that determine the optimal pricing

decision (1.23), (1.24), and (1.25).

1.4 calibration and network changes

This section describes the baseline calibration of the model and the

data sources. One of the objectives of the calibration is to compute the

model’s implied slope of the Phillips curve over time. I will allow for

time-variation in the calibration of different parameters: the production

network, i.e. (i) the composition of sectoral intermediate goods, W ,

which will be derived from the Input-Output tables, as well as (ii)

sectoral intermediate good shares, γk, and (iii) the size of each sector as

measured by its value-added share, ϑk.

In the second part, I outline how the production network in the

U.S. has structurally changed in the past decades as represented by

the two network statistics introduced in the last section: (i) network

32



1.4. Calibration and Network Changes

multiplier and (ii) output shares. In this respect, I show that services

have not only become more central in value-added terms but also with

respect to the network structure. It follows a discussion of examples

and characteristics that describe those sectors that have become most

central.

1.4.1 Calibration

Starting from the sectoral definitions of the “summary level” of the

Input-Output tables from the BEA, I excluded the government sector

to be consistent with the model. Moreover, the specification of sectors

has changed from 1996 to 1997. To account for these changes in the

classification, I merged five sectors to be consistent with the 1963

specification. Eventually, the dataset covers 53 sectors at roughly the

3-digit NAICS level from 1963 to 2017.

Production Network. I use data from the Bureau of Economic

Analysis (BEA) on the flow of goods from each industry in the U.S.

economy to other industries. The aggregated industries defined by the

BEA sum to gross domestic product and therefore cover the entire

economy. The Input-output tables are available at an annual frequency

and show the dollar value of goods produced, for example, in industry i

that industry j uses as inputs. For each sector, I use this information

to derive the composition of intermediate goods ωk,r, final demand ϑ,k

as well as the intermediate goods share, γk.

Frequency of Price Changes. The frequency of price changes is

calibrated using data from Pasten et al. (2019).12 They calculate monthly

frequencies using confidential microdata underlying the Bureau of Labor

Statistic’s (BLS) Producer Price Index (PPI). Based on these frequencies

of price adjustments at the goods level, they aggregate these into the

12I am grateful to Michael Weber for sharing this data.
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350-sector industry-level definitions of the Bureau of Economic Analysis

(BEA). To map them into the 53-sector specification, I compute the

median frequency within each 3-digit sector. The monthly frequencies

are transformed to match the quarterly calibration of the model.

Other Parameters. I calibrate the model at the quarterly frequency

using standard parameter values in the literature. The discount factor

is assumed to be β = 0.99, which implies an annual steady-state return

on financial assets of about 4 percent. It is also assumed a unitary

intertemporal elasticity of substitution and inverse Frisch elasticity of

labor supply as well as labor mobility σ = ν = ϕ = 1. As to the

interest rate rule coefficients, it is assumed φπ = 1.5 and φc = 0.5/4.

The persistence parameter of monetary shocks is ρm = 0.5. Finally,

the constant elasticity of substitution is set equal to ε = 6 in order

to match a steady-state markup of 20%.13 Table 1.1 summarizes the

calibration of the other business cycle parameters. Table 1.1 summarizes

the calibrated values for all parameters.

Parameter Description Value

σ Constant relative risk aversion 1
ν Inverse of Frisch elasticity of labor 1
ε Constant elasticity of substitution 6
φπ Inflationary response of the Taylor Rule 1.5
φc Output-gap response of the Taylor Rule 0.5/4

Table 1.1: Calibration Homogenous Parameters

13In the empirical part of the paper, I abstract from heterogeneity in the elasticity
of substitution in the benchmark case.
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1.4.2 Structural Change in the Production Network

This section documents how the input-output network structure of the

U.S. economy has changed over time. I use the BEA input-output

data to analyze the U.S. economy over a long time span (from 1963 to

2017) at an annual frequency. Importantly, I find that a sectoral change

from manufacturing to services did not only take place for final demand

but also in terms of the network structure. Consistent with a process

of service deepening (Galesi and Rachedi, 2019), I find that certain,

usually services-based industries have become more important in terms

of centrality or intermediate good provision in the network over time. In

the second part of the section, I study how these changes are reflected

in the two network statistics from Section 1.3.

Changes in the Input-Output Structure over Time. First, I

will look at changes to the economy’s network structure by comparing

the input-output tables from 1963 to 2017. An input-output matrix

shows the contribution from all the other sectors to the intermediate

goods of sector k (vertical axis). Figure 1.3 displays the difference

in Input-output matrices as created by the BEA handbook guidelines.

Increases in the use of an input from sector j (horizontal axis) by sector

k (vertical axis) from 1963 to 2017 are colored in blue, while decreases

in the use are colored in red. Over time, there is a substantial increase

in the use of services – input use from services are on the right of the

horizontal axis – across the board. Notably, two service sectors besides

FIRE have become significantly more important, as illustrated by two

blue vertical lines: (i) management of companies and enterprises and

professional, scientific, and technical services (“Man prof scie tech”) and

(ii) administrative services.

Which Industries have Become More or Less central? In this

section, I re-confirm the previous result by analyzing how the input-

output relationships have changed over time using our first network
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Figure 1.3: U.S. Input-Output Structure Over Time

Note: This figure shows the change in the Input-output matrix from 1963 to 2017 as

created by the BEA handbook guidelines. While increases in the intensity of demands

or provisions are colored blue, decreases in the importance of an edge are colored red.

characteristic: output shares. The output share, δk, is a centrality

measure, as outlined in Section 1.3. Centrality is one way of measuring

each node’s (industry) relative importance in a graph (network). It

is particularly important because centrality considers an industry’s

connections to other industries and the strength of these connections,

and how connected the other industries are. In this way, an industry

will tend to have a high centrality measure if it is connected to other

industries with high centrality.

Figure 1.4 shows the evolution of centrality in terms of output shares

of selected industries. Panel A of Figure 1.4 reports those sectors that

decreased in centrality. These were mostly manufacturing firms such

as “food, beverage and tobacco products”, or “motor vehicles, and
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Figure 1.4: Centrality of Selected Industries Over Time

Note: This figure shows the change in the output shares, δk,t from 1963 to 2017 for

selected industries. Panel A shows industries that were among the top decreases in

centrality, while Panel B displays industries that increased most in centrality. Sources:

Bureau of Economic Analysis and author’s own calculations.

parts”. They were among the most central firms in the 1960s but have

declined dramatically in their importance. We can find 4 Manufacturing

firms among the least central industries in 2017, while in 1963, none

was manufacturing. In 2017, half of the most central industries were

services. This is confirmed by Panel B of 1.4 which shows industries

that increased in centrality. Important contributors to this change is the

increasing importance of the health sector with “hospitals and nursing

and residential care facilities” or “ambulatory health care services” as

well as the FIRE sector represented by “real estate” and “insurance

carriers and related activities”.
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Does this Resemble the Structural Transformation in Value-

Added Shares? Industries with high centrality do not necessarily

also have high value-added. For instance, “management, professional,

scientific, and technical services” is among the top rank increases in

terms of centrality; however, the industry’s GDP share has stayed almost

unchanged. The same can be observed for sectors that became less

central. While “primary metals”, “machinery” and “fabricated metal

products” are among the industries that became less central, their GDP

share did not change. Centrality measures an industry’s importance

as part of the input-output network, not necessarily its importance

within GDP. GDP counts only the amount of goods and services that

go into final uses, e.g., consumption or investment (value-added). GDP

excludes input-output flows since intermediate goods are excluded from

the value-added output. Therefore, industries that are large providers

of intermediates goods but not final goods can have high centrality but

low value-added, and vice versa. Across all industries and all years, the

correlation between an industry’s value-added and its centrality is 0.41,

a moderate level that suggests a not-very-strong link between the two

measures.

Therefore, industries that are important from a network perspective

may not necessarily be important from a GDP perspective. Conversely,

just because an industry is important in terms of value-added, does not

imply that it has a large role in the input-output network.

No Trend in Network Multiplier Over Time. This section doc-

uments how the second network statistic has changed over time: The

network multiplier. The network multiplier, ΦNM
t , is a measure of the

importance of the network to the economy. It takes values above one

to reflect that to produce one more unit of the aggregate final good,

additional units of intermediate goods need to be produced. The network

multiplier’s empirical counterpart from the BEA input-output tables is

the ratio of total gross production to value-added output. Figure 1.5

38



1.4. Calibration and Network Changes

shows the evolution of the U.S. network multiplier. There was a spike

at the end of the 1970s, but overall there is no trend in the importance

of the production network. On average, the network multiplier is 1.8,

which translates into an excess production of 80% due to the use of

intermediate goods.

Figure 1.5: Network Multiplier Over Time

Note: This figure shows the change in the network multiplier over time. The empirical

counterpart in the data is the ratio of gross production to value-added production.

Sources: Bureau of Economic Analysis and author’s own calculations.

In summary, this section has documented important changes to

the U.S. network over time. While there was no change in the overall

importance of networks to the economy – represented by a flat network

multiplier – there has been an increase in the importance of service

sectors to the U.S. production network. There was not only a reallocation

between sectors in terms of value-added shares (usually referred to

as structural transformation), but also in terms of the centrality of
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sectors (structural change in production networks). In particular, services

became the most central sector in the economy (service deepening). This

has important implications on the sensitivity of inflation to the output

gap, as discussed in the next section.

1.5 inflation dynamics

In this section, I discuss how the production network is reflected in the

Phillips curve. I will show how the multi-sector model with production

networks compares to other models concerning inflation’s sensitivity to

the output gap. Before analyzing the impact of the structural changes

in the network statistics identified in the previous section, I will derive

the sensitivity in different cases to study the contribution of each feature

of the model on inflation dynamics.

To derive the Phillips curve in this environment, I start by log-

linearizing the model’s equilibrium conditions around a zero-inflation

steady-state and analyzing the resulting system of difference equations.

Unless otherwise noted, I use the ∧ symbol on top of a variable to

indicate the deviation from its steady-state value.14

1.5.1 The Sectoral Phillips Curves

As standard in New Keynesian models, inflation dynamics are described

by a forward-looking relationship between inflation and marginal costs

π̂k,t = βEtπ̂k,t+1 + κk(m̂ck,t − p̂k,t), (1.46)

where κk = (1− θk)(1− βθk)/θk. Due to heterogeneities in the multi-

sector model, each sector will be described by a separate Phillips curve.
14One could also express the solution of the Phillips curve in terms of deviations

from the natural level of output as common in the NK literature. In our model,
without productivity shocks, the natural level of output is a constant, and the slope
coefficient is unchanged. For illustrative purposes and a better comparison to other
multi-sector models, I deviate from this convention.
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In the next step, I combine the previous expression with markups from

equation (1.35) to describe sectoral Phillips curves by

π̂k,t = βEtπ̂k,t+1 +
(1− γk)
1 + γkϕ

ΦStd
k ŷt + Ψk,t, (1.47)

where ΦStd
k = κk(σ+ϕ) is the slope coefficient in the standard one-sector

NK model (with sector-specific θk) and Ψk,t is an endogenous term

Ψk,t = κk
ϕ(1− γk)
1 + γkϕ

(δ̂k,t + Φ̂NM
t )︸ ︷︷ ︸

ΨNWk,t

+κk
(1 + ϕ)

1 + γkϕ
(γkp̂

k
t − p̂k,t)︸ ︷︷ ︸

ΨSCk,t

, (1.48)

where I define ΨNW
k,t as the network component and ΨSC

k,t as the strategic

complementarity component.

The expression shows that sectoral inflation dynamics in this economy

depend on three variables additional to future expected inflation: (i) the

output gap as in the standard Phillips curve, (ii) network changes, either

due to the network multiplier or to the sectoral output share, (Φ̂NM
t +δ̂k,t)

and (iii) sectoral input price and relative price gaps, γkp̂
k
t − p̂k,t. The

latter two variables are two channels that determine inflation but are

ignored in one-sector models.

The production network enters in three ways. First, the coefficients

in front of the three variables depend on the sectoral intermediate share,

γk. With more intensive intermediate good use, the first two channels

(via the wage channel) become less important, and marginal costs depend

more on input price gaps, p̂kt . Second, these relative input price gaps

depend on the input-output network via W since they are defined by

p̂kt =
∑

r ωk,rp̂r,t. Three, the network component depends on (i) the

network multiplier and (ii) output shares as delineated in Section 1.3.

There are numerous implications from the sectoral Phillips curves in

(1.47). First, relative price gaps in the sectoral Phillips curves add per-

sistence into the inflation dynamics (see Woodford, 2011). In particular,
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relative prices are lagged endogenous variables, and, thus, they introduce

a backward-looking component in the determination of inflation. This

occurs due to the multi-sector structure with heterogeneity in nominal

rigidity as in Woodford (2011), which is represented by p̂k,t. Addition-

ally, the presence of intermediate goods in production introduces relative

price gaps via input price gaps. Second, due to the presence of relative

price gaps and sectoral production in the determination of aggregate

inflation, there will not be a so-called “divine coincidence” (Blanchard

and Gali, 2007). Instead, the central bank will face a trade-off between

the stabilization of inflation and the output gap.

1.5.2 Aggregate Inflation Dynamics and the Slope of the Phillips Curve

Using the definition of the aggregate price index, π̂t =
∑

k ϑkπ̂k,t, the

aggregate Phillips curve is a weighted average of the sectoral Phillips

curves given by

π̂t = βEtπ̂t+1 + ΦStdŷt + Ψt, (1.49)

where ΦStd =
∑

k ϑkκk
(1−γk)
1+γkϕ

(σ + ϕ) and Ψt = ϑkΨk,t.

Aggregate inflation dynamics in this economy are determined by the

sum of sectoral dynamics of the output gap, and inflation expectations,

βEtπ̂t+1. Moreover, they depend on an additional endogenous variable,

Ψt, that is the sum of a network component, ΨNW
t =

∑
k ϑkΨ

NW
t , and

a strategic complementarity component, ΨSC
t =

∑
k ϑkΨ

SC
k,t .

What is the slope of the Phillips curve, i.e., the sensitivity of ag-

gregate inflation to the output gap? Naturally, one would say it is the

coefficient in front of the output gap, ΦStd. However, in the multi-sector

model with production networks, this answer is incomplete because the

endogenous variable is correlated with the output gap, i.e., E[ŷtΨt] 6= 0.

Thus, the slope of the Phillips curve is the sum of the standard slope,

ΦStd, and the sensitivity of the endogenous variable, Ψt, with respect to
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the output gap. To find the slope of the Phillips curve, the correlation

between the output gap and the endogenous variable needs to be calcu-

lated. If this correlation is negative, then the presence of the production

network has a dampening effect on the slope of the Phillips curve.

What would an econometrician, estimating the sensitivity of inflation

to the output gap uncover? Estimating the model in equation (1.1),

while the data-generating model is described by equation (1.49), he

would get a biased estimate of κ. The reason is that we can think

of the endogenous variable, Ψt , as cost-push shocks, vt, in equation

(1.1). This generates an omitted variable bias because E[ŷtvt] 6= 0,

and introduces a bias in estimating the slope of the standard Phillips

curve. The flattening of the Phillips curve could then either be because

(i) a decline in the standard slope, ΦStd, or (ii) a change in the bias,

E[ŷtΨt]. The bias depends on the network component and the strategic

complementarity component. In the next section, I will quantify the size

of the bias in a calibrated multi-sector model.

A few additional things are noteworthy about the strategic comple-

mentarity component. It shows the presence of strategic complementari-

ties in price-setting. When the optimal price chosen by a firm depends

positively (negatively) on the prices of other firms, we speak of strategic

complementarities (substitutes) (Cooper and John, 1988)15. There are

different sources for strategic complementarities such as kinked demand

curves (Kimball, 1995) or factor attachments (see Basu, 2005). In the

present case, strategic complementarities arise because of (i) relative

sectoral demand, pk,t, and (ii) sticky intermediate good prices, γkp
k
t .

However, in the production network setting, there are two distinct differ-

ences to strategic complementarities from general standard formulations

of intermediate goods (Basu, 2005).

First, prices depend positively on the sector-specific input price, pkt ,

instead of the aggregate price level, pt. As an implication, the degree

15In the simple setting of CJ, strategic complementarity arises if the profit of a
firm V (pi, p−i) is such that V12(pi, p−i) > 0.
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of strategic complementarity will be sector-specific and depend on the

share of intermediate goods used in production. Second, due to the

network structure, also indirect effects will be present. The price-setting

of a firm will depend on the prices of their suppliers. However, since

those use intermediate goods in production, their prices depend on

the suppliers’ suppliers’ prices and so on. Consequently, the degree of

strategic complementarity depends on the particular network structure of

the whole economy. In particular, the interaction of suppliers’ stickiness,

θk, and intermediate good share, γk, will impact downstream sectors;

e.g., if an important supplier is rigid, its downstream sectors will exhibit

large degrees of strategic complementarity, too. This feature reduces

the sensitivity of real marginal cost and hence aggregate inflation to

changes in aggregate demand (real rigidity, Ball and Romer, 1990).

Before calculating the size of the bias in the slope of the Phillips

curve in different models, in the next section, I will look at one particular

case of the economy from Section 1.3 and illustrate the implications for

the Phillips curve and its slope.

Multi-Sector Model without intermediate goods. Here, I will

derive the Phillips curve of a multi-sector model without intermediate

goods, γk = 0, but with heterogeneity in nominal rigidities (Woodford,

2011 Ch. 3 or Carvalho, 2006). The aggregate inflation dynamics in

this model are given by

π̂t = Etπ̂t+1 + ΦStdŷt − (1 + ϕ)
∑
k

ϑkκkp̂k,t (1.50)

where ΦStd =
∑

k ϑkκk(σ + ϕ) is the average slope coefficient.

Here, the standard slope of the Phillips curve is given by ΦStd. The

last term in Equation (1.50) is due to heterogeneity in nominal rigidi-

ties.16 The endogenous variable will be based only on the relative price,
16In the absence of heterogeneity in nominal rigidities, prices are symmetric:∑
k ϑkp̂k,t = 0.
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p̂k,t, and not the input price part, γkp̂
k
t , of the strategic complementary

component, ΨSC
t . The network component is absent because, without

intermediate goods, gross production is equivalent to final demand. The

econometrician estimating equation 1.1, will again recover a biased esti-

mate of ΦStd due to the omitted variable bias, E[ŷtΨ
SC
t ] 6= 0. For this

reason, oil prices or prices of imported goods are commonly added to the

estimation of standard Phillips curves to capture the effect of relative

price changes, ΨSC
t , and recover the standard slope, ΦStd. However, this

will not be enough in the presence of production networks since one also

needs to account for the network component, ΨNW
t .

1.5.3 Implications for the Slope in Different Economies

In this section, to quantify the importance of the estimation bias, I cali-

brate the economy to the input-output structure of 2007. I will compute

the model implied slope, which I define as the slope an econometrician

will estimate using (1.1) and compare it to the standard slope coefficient,

ΦStd, and the bias from the multi-sector model, E[ŷtΨt]. Moreover, I

will provide a decomposition of the bias into the network component,

ΨNW
t , and the strategic complementarity component, ΨSC

t . Before I

explain how I calculate the model implied slope, I will describe different

versions of the fully calibrated model that I will use to compare the

contributions of different elements of the model for the slope and the

bias.

Different Economies. In particular, I start with the homogeneous

multi-sector model (Case 1) and will add step-wise (i) heterogeneity

in the frequency of price change (Case 2), (ii) in the intermediate

share (Case 4), and (iii) asymmetry in the network structure (Case 5).

Eventually, Case 6 represents the fully calibrated U.S. economy in 2007.

Case 1: “Homogeneous Multi-Sector Economy”: Multi-sector model,
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no production network, homogeneous frequency of price adjust-

ment

Case 2: “Heterogenous Multi-Sector Economy”: Multi-sector model,

no production network, heterogenous frequency of price adjustment

Case 3: “Symmetric Input-Output Economy”: Symmetric production

network, homogeneous intermediate share, homogeneous frequency

of price adjustment

Case 4: “Heterogeneous Intermediate Shares Economy”: Symmetric

production network, heterogenous intermediate shares, homoge-

neous frequency of price adjustment

Case 5: “Asymmetric Network Economy”: Asymmetric production net-

work, homogeneous intermediate shares, homogeneous frequency

of price adjustment

Case 6: “Full 2007 Economy”: Asymmetric production network, het-

erogenous intermediate shares, heterogenous frequency of price

adjustment

Monte Carlo Evidence. This section will calculate the model im-

plied slope of the Phillips curve in the following steps. In the first step,

the system formed by the equilibrium equations described in Section

1.3.6 and calibrated to the U.S. economy in 2007 as in Section 1.4.1

is simulated 2000 times for 200 periods, respectively. The simulated

data series of aggregate inflation, π̂t, the output gap, ŷt, the network

component, ΨNW
t , and the strategic complementarity component, ΨSC

t ,

are collected at each repetition and will depend on the specific series of

monetary policy shocks in the considered Taylor rule, (1.27).

In the second step, I use the simulated data to calculate the model

implied slope and the biases. The standard slope coefficient, ΦStd, can be

calculated directly using the parameters of the model and equation (1.49).
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The model implied slope, is the sensitivity of inflation to changes in the

output gap an econometrician would estimate from model (1.1) and the

simulated data, i.e., the estimate κ̂ in πsimt = βEtπ
sim
t+1 + κŷsimt + vt. To

calculate the size of the bias from the network component, BiasNW =

E[ŷtΨ
NW
t ], I will project the network component, ΨNW,sim

t , on the output

gap, ŷsimt . The bias from the strategic complementarity component,

BiasSC , is calculated in the same way. Finally, I will compare the sum

of the standard slope coefficient, and the biases with the model implied

slope, κ̂.

Table 1.2 reports the mean estimates of the Phillips curve compo-

nents, averaged over 2000 repetitions. Using medians, instead, does

not change the results. The first column of Table 1.2 corresponds to

the multi-sector economy without production networks or intermedi-

ate goods and with a homogeneous frequency of price adjustment. In

this economy, the slope of the Phillips curve is equal to the standard

slope coefficient, ΦStd, and the econometrician is estimating exactly this

coefficient without a bias, κ̂.17

The multi-sector economy without intermediate goods but with

heterogeneous degrees of nominal rigidities is illustrated in Column two.

The standard slope coefficient, ΦStd, increases in comparison to Case

1 because of a concave relationship between sectoral price rigidities

and the sectoral slope coefficient (see Imbs et al., 2011, or Chapter 2

for more details). Heterogeneous price rigidity also introduces relative

price gaps as in Carlstrom et al. (2006). As outlined in equation (1.50),

relative price gaps are an additional endogenous variable correlated with

the output gap. From the simulated data, we can see that the bias in

estimating the Phillips curve, BiasSC , is negative. Relative price gaps

are increasing in response to the output gap, but the coefficient in front

of relative price gaps, p̂k,t, is negative in equation (1.49). However, the

sensitivity of inflation to the output gap is given by the sum of the

17Specifically, the slope collapses to the textbook one-sector economy, ΦStd =
κ(θ̄)(σ + ϕ), where θ̄ is the average degree of price rigidity in the economy.
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Table 1.2: The Slope Components of the Phillips Curve in Multi-Sector
Models

Multi-Sector Production Network 2007 Economy
Homogenous Heterogenous Symmetric Heterogenous Asymmetric
Frequency Frequency Network Int. Shares Network
(Case 1) (Case 2) (Case 3) (Case 4) (Case 5) (Case 6)

Panel (a) Slope Components

ΦStd 0.48 2.63 0.94 0.83 0.94 0.83

BiasNW 0 0 0.33 0.28 0.25 0.22

BiasSC 0 -2.21 -1.04 -0.88 -0.94 -0.81∑
0.48 0.42 0.23 0.225 0.246 0.249

Panel (b) Model Implied Slope

κ̂ 0.51 0.448 0.243 0.237 0.26 0.263

Note: This table compares the slope components (Panel (a)) and the model implied

slope (Panel (b)) from different calibrated economies of the multi-sector model, calcu-

lated using simulated data. The standard slope coefficient, ΦStd, is calculated directly

from the parameters. The biases BiasNW (or BiasSC) are derived by projecting

simulated data for the network (or strategic complementarities) component of the

endogenous variable, ΨNW,sim
t , on simulated data for the output gap. Panel (b) shows

the result of projecting simulated data for inflation on simulated data for the output

gap. The first two columns represent multi-sector models without intermediate goods

and homogenous or heterogeneous degrees of nominal rigidity respectively. Columns

3 and 5 consider the production network model with homogenous intermediate shares

but a symmetric network or the actual (asymmetric) network. Column 4 adds hetero-

geneity in intermediate good shares to the symmetric network in column 3. Column

6 represents the full production network model calibrated to 2007.
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standard slope and the bias. Overall, the bias has a dampening effect,

and the implied slope of the Phillips curve, κ̂, is smaller than in Case

1. The smaller slope increases monetary non-neutrality in this type

of model as in Carvalho (2006), or Carvalho and Schwartzman (2015),

where amplification depends on the distribution of price rigidity across

sectors.

The production network is introduced step-wise in the next four

columns. The network structure affects the different components of the

aggregate Phillips curve in three ways. First, the size of the standard

slope coefficient, ΦStd, is reduced. The reason is that wages are less

elastic to changes in the output gap in the presence of intermediate goods.

The relationship is proportional to the sectoral share of intermediate

good use, γk. In particular, the dampening is stronger for heterogenous

intermediate good shares (Case 4), indicating that sectors with large

intermediate good shares tend to have larger degrees of nominal rigidity

in the U.S. economy.

Second, the bias from strategic complementarities decreases. The

strategic complementarities component is a combination of input price

gaps and relative price gaps, γkp̂
k
t−p̂k,t. The bias from intermediate good

price gaps is smaller and of opposite sign and reduces the overall bias

from strategic complementarities. The dampening effect is decreasing

in the sectoral share of intermediate good use, γk.

Third, the network bias is positive because the output gap and the

network component, ΨNW
t , are positively related. This is consistent

with Bils et al. (2018) who document that the intermediate good use is

pro-cyclical in the U.S. economy. The size of the bias depends on the

network multiplier, Φ̂NM
t , and the centrality, δ̂k,t, of sticky sectors. Case

5 illustrates that in the asymmetric network, the centrality of sticky

sectors has increased, which decreases the network bias relative to the

symmetric network in Case 3.

The sum of the biases and the standard slope coefficient is again

equivalent to the model implied slope. However, a small difference arises
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from a bias due to inflation expectations.18

In summary, the biases and the model implied slope depend on the

structure of the production network. The analysis of this section has

shown two main results: First, in the U.S. production network, the

standard slope coefficient, and the bias from strategic complementarities

cancel each other out. The elasticity of inflation to the output gap

is almost completely related to the bias from the network component.

Second, comparing a symmetric and an asymmetric production network

shows that the bias of the network component decreases if the centrality

of sticky sectors in the economy increases.

1.6 the slope of the phillips curve over time

In this section, I study the evolution of the Phillips curve through the

lens of the multi-sector model. The flattening of the Phillips curve

could either be because of (i) a decline in the standard slope or (ii) a

change in the bias. To answer this question, I combine the model with

historical data on input-output linkages for the U.S. economy from 1963

until 2017.19 The identification strategy is that changes in the network

structure will be reflected as changes to firms’ technology in the model.

Precisely, I match parameters of the production function in the model

to changes in the expenditure shares from the input-output tables in the

data. The exercise is then to fit the model to the production structure

at each point in time, simulate data from the model, and estimate the

model implied slope of the Phillips curve from equation (1.1), κ̂. This

approach allows us (i) to decompose the changes in the model implied

18In the calculations of the slope components, we did not use inflation expectations,
while we assumed the econometrician observes them for the implied slope. In the
appendix, I calculate the size of the inflation expectations bias.

19An alternative way is to directly estimate equation (1.49) in the data. Due to
data limitations related to historical sectoral input prices, I follow the structural
approach in this paper.
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slope into variations in the standard slope coefficient and the biases,

and (ii) to perform counterfactual exercises.

1.6.1 The Production Network Model Implied Slope

Figure 1.6: The Model Implied Slope of the Phillips Curve

Note: This figure reports the model implied slope of the Phillips curve over time.

The slope is constructed by simulating time series for inflation and the output gap

from the multi-sector model at different points in time and then regressing inflation

on the output gap. The shaded regions report point-wise 68% and 90% credible sets.

The model implied slope of the Phillips curve, κ̂, is flattening over

time. The solid black line in Figure 1.6 depicts the model implied

slope of the Phillips curve together with confidence bands derived from

estimates of different repetitions.20 The line matches the shape and

the timing of the identified changes to the Phillips curve. Until the

20Compared to the evidence from the data, the level of the slope is larger than
the data would suggest. A possible explanation includes an aggregation effect that is
prominent in multi-sector models as compared to the slope in a one-sector model. In
the following analysis, I focus on the change over time.
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mid-1980s, the slope is relatively flat. From the mid-1980s until the

beginning of the 2000s, the slope is flattening, and since then, we can

see a slight rebound and a generally diverging behavior of the slope.

From the peak in the 1980s until the beginning of the 2000s, the slope

decreases by about 15%. This corresponds to 25 to 50 percent of the

total decrease in the sensitivity of inflation to the output gap that was

estimated in the literature (see Stock and Watson, 2019 and an analysis

in the Appendix 1.8).

1.6.2 The Role of the Network Bias

Figure 1.7: Decomposition of the Model Implied Slope

Note: This figure displays the evolution of the the bias from the network component,

BiasSC , (blue solid line) together with the sum of the standard slope of the Phillips

curve, ΦStd, and the bias from strategic complementarities, BiasSC , (black dashed

line).

The evidence from the previous section documented that changes to

the production network can explain a significant part of the flattening

of the Phillips curve. To understand the sources of this flattening,

Figure 1.7 decomposes the evolution of the model implied slope into

the different components introduced in the previous section. The solid
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blue line depicts the evolution of the bias that arises from the network

component, ΨNW
t . The network bias falls by about 50% over time and,

therefore, constitutes the main source of the flattening of the slope.

In contrast, the other two components of the Phillips curve, i.e., the

standard slope coefficient and the bias from strategic complementarities,

cannot explain the flattening. Figure 1.7 illustrates that the sum of

these two components (black dashed line) is increasing over time. In

recent years, the sum of them is close to zero. In conclusion, the change

in the network bias is the most important source of the flattening of

the Phillips curve. The next two sections analyze the roles of structural

changes to the two network statistics in the decrease in the bias: (i) the

role of the centrality of sectors and (ii) the role of the network multiplier.

1.6.3 Channel 1: The Role of the Reallocation of Centrality to Sticky

Sectors.

Section 1.4.2 documented that the production structure of the U.S.

economy has changed over time. In particular, the centrality of services

as measured by their output shares, δk,t increased. These changes have

an important effect on the sensitivity of inflation to economic activity

because sectors have different price-setting behavior. There is ample

evidence from micro studies showing that prices are more rigid in the

service sector (e.g., Bils and Klenow, 2004, Klenow and Kryvtsov, 2008,

or Nakamura and Steinsson, 2008).

Sectors that have become more central have more rigid prices. To give

a first impression of this reallocation, Figure 1.8 compares the sectoral

heterogeneity in nominal rigidities in 1963 and 2017. Each sector is

represented by a bubble, where the size of the bubble corresponds to the

centrality of the sector measured by its output share, δk,t, in 1963 and

2017, respectively. The figure shows that service sectors (red bubbles)

increase in centrality and that they display a larger rigidity. In contrast,

a number of formerly important manufacturing sectors (blue) become
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Figure 1.8: Relationship Between Centrality, Price Rigidity and Inter-
mediate Share

Note: This figure shows the sectoral relationship between the sectoral degree of nomi-

nal rigidity (vertical axis), intermediate good share (horizontal axis) and centrality of

a sector (bubble size). Panels A and B show the relationship in 1963 and 2017.

irrelevant in 2017.

The degree of nominal rigidity plays an important role in New

Keynesian models. When the probability of adjusting prices decreases,

the average duration of firm’s prices increases, so it becomes more likely

that those prices are away from their optimal level. Sectors with larger

nominal rigidities (larger Calvo parameters, θk), therefore, have a smaller

sensitivity of inflation to the output gap.

Changes to the network have increased the aggregate degree of

nominal rigidity by shifting production towards stickier sectors - i.e.,

sectors with a larger Calvo parameter. Panel (a) of Figure 1.9 displays

the average degree of nominal rigidity in the economy, where the weights
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Figure 1.9: The Model Implied Evolution of the Phillips Multiplier in
the U.S.: The Role of Sectoral Heterogeneity in Price Rigidity

(a) Aggregate Degree of Nominal Rigidity (b) Counterfactual: Homogeneous Price
Rigidity

Note: Panel (a) of this Figure displays the aggregate (weighted average) degree of

nominal rigidity in the U.S. economy, where the weights are sectoral output shares,

δk,t, (black solid line) or value-added shares, ϑk,t, (black dashed line). Panel (b)

shows the evolution of the model implied slope of the Phillips (black dashed line)

together with a counterfactual slope that is derived from a multi-sector model with

homogeneous price rigidity across sectors.

are either the value-added shares (dashed line) or output shares (dashed

line) of the respective sector. The average degree of nominal rigidity

increases over time, particularly, after 1980 irrespective of the weighting.

Inspecting the scales, however, the change is bigger if sectors are weighted

by their output shares.21

To formally test for the role of heterogeneity in the degree of nominal

rigidity, I perform a counterfactual exercise. Panel (b) of Figure 1.9

shows the path of the model implied slope of the Phillips curve (black

21Although the scale in the change of the degree of nominal rigidity appears small,
the impact on the slope of the Phillips curve is significant, due to the non-linear
relationship. The increase of rigidity from 0.57 to 0.61 in the graph, decreases the
slope by over 20% from 0.33 to 0.25, considering κ = (1− θ) ∗ (1− βθ)/θ.
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dashed line) and compares it to a counterfactual slope (solid black line)

that is derived from a multi-sector model with a homogeneous degree of

nominal rigidities across sectors. In the latter economy, each sector’s

nominal rigidity is set to the average rigidity in the economy at that

point in time. Figure 1.9 confirms the importance of the reallocation

channel because preventing this channel; the slope of the Phillips does

not flatten over time.

The Role of Structural Transformation. The increase in aggre-

gate rigidity could arise from changes in the value-added shares of sectors

(structural transformation) or changes in output shares. The changes in

the sectoral GDP shares as measured by final demand from the BEA

Use table show a decline in the size of manufacturing and an increase

in the size of services. The increase is strongest for services related to

health care.22 Nevertheless, Panel (a) of Figure 1.9 documents that the

impact of those changes on aggregate price rigidity is smaller than those

from variation in output shares.

To disentangle the role of structural transformation on the slope,

Figure 1.10 reports the result of a counterfactual exercise, where the

value-added shares, VC , are kept constant at their levels from 1963 (solid

black line). Any change in the solid line is due to structural changes

in the network structure instead of changes in the value-added shares.

Figure 1.10 shows that structural transformation in networks and value-

added shares each contribute half to the total decline in the slope (black

dashed line). To understand the flattening of the Phillips curve, it is

important to consider both (i) structural transformation in value-added

shares and (ii) changes to the network structure.

22Details can be found in the Appendix.
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Figure 1.10: The Model Implied Evolution of the Phillips Multiplier
in the U.S.: The Role of Sectoral Reallocation

Note: This figure shows the evolution of the model implied slope of the Phillips (black

dashed line) together with a counterfactual slope that is derived from a multi-sector

model with with no change in the value-added shares, ϑk, from 1963

1.6.4 Channel 2: The Role of the Network Multiplier.

The second potential channel through which changes to the network

structure can influence the network bias and, hence, the slope of the

Phillips curve is via the network multiplier. According to equation (1.37)

the most important determinant for the network multiplier is the output

share weighted average intermediate input share,
∑
δk,tγk,t because I

abstract from heterogeneity in markups in the calibrated model.

Panel (a) of Figure 1.11 shows that the calibrated network multiplier

is proportional to the average output share weighted intermediate good

share. This also provides an external validity exercise since the model

does a good job at matching the observed (and un-targeted) network

multiplier from the data (Figure 1.5). Panel (a) of Figure 1.11 stresses

the result from Section 1.4.2 that the network multiplier is relatively

constant over time. The underlying reason for this is twofold and can

be explained by observing the cross-section.

Figure 1.8 shows the sectoral change in the intermediate good use
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Figure 1.11: The Model Implied Evolution of the Phillips Multiplier
in the U.S.: The Role of the Network Multiplier

(a) Relationship Intermediate Share and
Network Multiplier

(b) Counterfactual: Homogeneous Inter-
mediate Good Shares

Note: Panel (a) of this Figure displays the average intermediate good share (black

dashed line) and the network multiplier (black solid line). Panel (b) shows the evolu-

tion of the the model implied slope of the Phillips (black dashed line) together with a

counterfactual slope that is derived from a multi-sector model with an homogeneous

intermediate good share.

shares between 1963 and 2017. First, manufacturing firms (blue) tend to

have larger intermediate good shares than service sectors (red). There-

fore, the reallocation to service sectors should decrease the aggregate

share of intermediate goods used in the economy. However, Panel B of

Figure 1.8 documents that the intermediate good shares of service sec-

tors (red) have increased from 1963 to 2017. The two effects counteract,

and the overall intermediate share stays relatively constant.

To assess the role of the network multiplier on the slope, Panel

(b) of Figure 1.10 reports the result of a counterfactual exercise. The

Figure shows the implied slope of the Phillips curve (black dashed line)

together with the implied slope derived from a model with homogeneous

intermediate good shares. The evidence shows that heterogeneity in the

degree of intermediate good shares cannot explain the flattening as the
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counterfactual slope decreases stronger than in the baseline case.23

1.7 conclusion

A growing literature documents that the Phillips curve has flattened over

time. I contribute to this discussion by providing evidence that changes

to the network structure can be an important explanation. Using a

multi-sector model with production networks, I show that input-output

linkages in the production function of firms affect inflation dynamics and

introduce a bias in the estimation of the slope of the Phillips curve. The

size of the bias depends on the network structure and on the degree of

strategic complementarities. When calibrated to the U.S. economy from

1963-2017, changes to the network structure of the economy are able

to explain a significant part of the flattening of the Phillips curve. In

this project, I abstracted from two dimensions of change in the network

that are promising avenues for future research: (i) international linkages

in production networks and (ii) the role of rising market power for

the network multiplier. Accounting for production networks and its

changes over time has important implications for inflation dynamics

and contributes to better understand the changes to the Phillips curve

relationship in the past decades.

23In the calibration exercise, variations in the network multiplier are solely caused
by changes in the intermediate good share since we abstract from changes in markups.
However, a number of recent studies have shown that market power may have risen
in several sectors in the economy (DeLoecker et al., 2020). Heterogeneity in markups
is an alternative way to explore variations in the network multiplier.
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1.8 appendix

evidence on the flattening of the phillips curve

In this section, I present evidence on the evolution of the Phillips curve

over the past 50 years. I will focus on three components: (i) the size

of the change, (ii) the pattern of the change and (iii) the timing of the

change.

Coefficient over Time

I continue by estimating this relationship for the U.S. economy between

1960 and 2007. These estimates are robust to different specifications,

for instance concerning the measure of inflation, or the output gap. To

characterize the strength of economic activity, I use estimates of the

Congressional Budget Office for the potential level of GDP. Concerning

inflation expectations, I follow Ball and Mazumder (2011) as well as

Coibion and Gorodnichenko (2015), and assume as a simple baseline

that inflation expectations are backward-looking. Specifically, I assume

that inflation expectations are a four-quarter average of past inflation

rates,

Etπt+1 =
1

4
(πt−1 + πt−2 + πt−3 + πt−4).

where I use the inflation rate from the personal consumption expenditure

survey (PCE), πt.

First, I investigate how the sensitivity of inflationary dynamics to

economic activity has changed over time. Was there a particular point

in time when the slope broke down or was this rather a smooth process?

Has the slope only flattened or was there a time when it was increasing?

To answer these questions, I estimate the relationship (1.1) by OLS over

rolling windows of 50 quarters.
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Figure 1.12: Rolling Window Estimates of Phillips Curve Slope

Note: This figure displays the results of a rolling window estimates of the Phillips

curve as in Equation (1.1). Window size is 50 quarters.

In Figure 1.12, I report the average relationship between the output

gap and deviations of inflation from expectations for each window, κ,

together with the one standard deviation confidence intervalls. Two

results stand out. First, the slope of the Phillips curve has not always

been flattening. Instead, we can basically observe three episodes since

1975. In the first part of the sample and up the middle of the 1980s,

we can observe an increasing slope of the Phillips curve. In the second

period which goes until the start of the 2000s, there is an apparent

flattening of the slope. In the final phase, the relationship diverges on a

low level, with periods in which the average relationship is significant

and insignificant.

Second, there has not been a particular event that reduced the slope

permanently. Instead, we can observe a protracted episode in which

the slope has decreased since the mid-1980s. Therefore, the results of

this section indicate that the flattening of the Phillips curve is a smooth

process that started in the middle of the 1980s.
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Timing of the Flattening

After identifying the shape of the flattening of the Phillips curve, I

investigate the exact timing of the change. Therefore, I employ a

Andrews (1993) test for parameter instability with unknown break

date. I investigate the statistical evidence for a structural break in the

relationship between inflation dynamics and the output gap by formally

allowing for a break in the relationship at unknown τ as follows:

Table 1.3: Test for the Break Date in the Phillips Curve

Specification Break Date p-value

πPCE , yt 1982q3 0.0323
πCPI , yt 1983q2 0.0032
πPCE , ut 1981q1 0.0000
πPCE , ugapt 1982q3 0.1260
πCPI , ut 1995q3 0.0008
πCPI , ugapt 1983q2 0.0917
IV: πPCE , yt 1983q2 0.0502
IV: πPCE , ugapt 1982q1 0.0942
IV: πPCE , urt 1982q1 0.0009

Note: This table displays the results of an Andrews (1993) test with 15% trimming

and supremum LR-test.

πt − βEtπt+1 = c+ κ1 ∗ I(t < τ) ∗ xt + κ2 ∗ I(t ≥ τ) ∗ xt + vt

where I are time dummy variables equal to one if the respective condition

is satisfied and zero otherwise. The null hypothesis of the Andrews test

is that the slope coefficients in both periods are equal.

Table 1.3, reports results for the Andrews test for different spec-

ifications for the inflation measure, forcing variable and estimation

methodology. Consistent with results of the previous section, the test
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cannot reject the null that the slope is unchanged. The protracted

flattening episode is represented by a series of potential break dates in

1982 or 1983.

Next, I will use the previous result on the break date to calculate

the size of the change in the slope coefficient. In Figure 1.2, I present a

scatter plot of quarterly output gaps for the United States against the

deviations of inflation that quarter from expected, discounted inflation.

Data from 1960Q1 until our estimated break date 1982Q3 is represented

by circles, while data from 1982Q4 is plotted by diamonds. The lines

represent the slope of the average relationship estimated by OLS over

each sample period. The slope is positive, indicating that economic slack,

i.e. economic activity that is lower than potential, is associated with

inflationary pressures below expectations. The sensitivity has changed

over time. We can observe a flattening in the sensitivity of inflation to

economic activity and estimates of the slope suggest that those are in

the magnitude of 40 to 80 percent.

The statistical evidence of this section provided insights into the size,

timing and shape of the flattening of the Phillips curve. The findings

suggest that the flattening was a smooth process that started in 1982Q2

and saw a decrease in the slope of 40-80%.
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The Bias from Inflation Expectations

In the monte carlo study in Section 1.5, there was a small difference

between the OLS estimate of the slope, κ̂, and the sum of the standard

slope and the biases. The difference is due to the unobserved inflation

expectation. In this section, I quantify the size of the bias by comparing

the model implied slope of the Phillips curve from simulated data

from the multi-sector model to assuming that we can observe inflation

expectations and estimate a modified projection on the model simulated

data:

π̂Simt − βπ̂Simt+1 = κ ∗ ŷt + vt.

Figure 1.13: Bias From Inflation Expectations in Estimating Phillips
Curve Slope

Note: This figure compares the baseline estimate of the evolution of the model implied

slope of the Phillips curve (black solid) with a counterfactuar exercise where we

assume that the econometrician can observe inflation expectations without error

(black solid with markers).

Figure 1.13 reports that the bias from not observing inflation expec-

tations in the present exercise is small.
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Relationship Between Network Statistics, Leontief Inverse and Domar

Weights

In this section, I will show that the two network statistics introduced in

this paper are related to other network statistics used in the literature:

the Domar weights and the Leontief-inverse. First, the Domar weights

are defined as the ratio of sectoral gross production to value-added

output, which in the notation of this paper yields

λk,t =
pk,tQk,t
GDPt

=
pk,tQk,t
Yt

.

Second, the Leontief-inverse can be expressed as the infinite sum

of the powers of the (adjusted) input-output matrix W (Carvalho and

Tahbaz-Salehi, 2019)

L = [IK − γ
−→
1

Mt
W ]−1.

Finally, the vector of Domar weights can be shown to be characterized

by the Leontief-inverse or the two network statistics ((i) output share

and (ii) network multiplier)

Λ = V ′cL = δΦNM .
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Alternative Examples of Output Structures

Example 3: Change in Output Share. In the next example, I

want to show how the change of the I/O structure can change the output

shares. Keeping the consumption shares, and intermediate good shares

from Network 3 but increasing the markup from Sector 1 to 50%, i.e.
1
M

= [3/6; 5/6], I will look at the transition from Network 4 to Network

3, where the former is given by

W4 =

(
1 0

0.5 0.5

)

In Network 4, Sector 2 is equally spending its expenditure on inputs

from both sectors instead of solely using inputs from Sector 1 (Network

3). Therefore, Sector 1 will be relevant again but with a lower output

share δ4 = [1/3; 2/3]. Transitioning to Network 3, the outdegree of

Sector 1 increases and so does its output share to δ3 = [1/2; 1/2]. The

increase in the centrality has another interesting implication in this

example. Since, Sector 1 has a higher markup, the aggregate output

share weighted markup increases. This decreases the network multiplier

from 2.18 to 2.24

Example 4: Increasing the “Length” of the Production Chain.

In the last example, I want to show how the change of the I/O structure

can increase the network multiplier by increasing the length of the

network. Keeping the consumption shares, and markups from Network

1, I will consider the following two networks

W5 =

(
0.5 0.5

0.5 0.5

)
and W6 =

(
0.9 0.1

0.9 0.1

)
and γ5 = γ6 =

(
0.5

0.5

)
24This is also smaller as the multiplier in the Network 3 in Example 2, of 2.67,

because in Example 2 both sectors had lower markups.
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While Network 5 is a symmetric network again as in example 1,

Network 6 is a star network with Sector 1 being the central sector.

Increasing the centrality of the sector that uses more intermediate goods

can be seen as increasing the overall length of that network as discussed

in Section 3.4.6. Making Sector 1 the “star” in the star network increases

its centrality from 0.5 to 0.73 as measured by its output share. This

increases the network multiplier from 2.08 to 2.32.

log-lin system of equations

The log-linear system of equations is described by

ŷt = Etŷt+1 −
1

σ
(̂it − Etπ̂t+1)

ît = φyŷt + φππ̂t + ẑmt

p̂k,t = π̂k,t − π̂t + p̂k,t−1

π̂k,t = βEtπ̂k,t+1 + κk
((1− γk)ϕ

1 + γkϕ
(p̂k,t + q̂k,t)

+
σ(1− γk)
1 + γkϕ

ŷt +
(1 + ϕ)

1 + γkϕ
(γkp̂

k
t − p̂k,t)

)
p̂k,t + q̂k,t =

Ȳk
Q̄k

ŷt +
K∑
r=1

X̄r,k

Q̄k
(m̂cr,t − p̂r,t + p̂r,t + Q̂r,t)

π̂t =

K∑
k=1

ϑkπ̂k,t

p̂kt =

K∑
r=1

ωk,rp̂r,t
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Accounting for the Fall in the Labor Share

In this section, I recalibrate the intermediate share to account for the fall

in labor share. Because I assume only two inputs in production but the

BEA input-output tables consider three inputs, there is an ambiguity

in the calibration. Instead of calibrating the share of intermediate

goods used, I target the labor share. This results in a fall of the labor

share and an increase in intermediate shares in the economy over time.

However, while the original calibration is consistent with the observed

network multiplier, this alternative calibration results in an increase in

the network multiplier over time. Figure 1.14 shows the result of this

alternative calibration. The slope is falling by about 18%. The fall is

stronger because of an increasing network multiplier, and, thus, bias

from the network component in the model implied slope.

Figure 1.14: The Model Implied Slope of the Phillips Curve With a
Falling Labor Share

Note: This figure shows the model implied slope of the Phillips curve under an

alternative calibration that targets the labor share instead of the intermediate good

share.
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More Evidence on Changes in the Production Network Over Time

Finally, in this section, I will provide additional evidence on how the

distribution of industries has changed in terms of value-added shares,

output shares and intermediate good shares. In general, we can observe

again structural changes in the network structure (process of service

deepening) additionally to structural transformation.

Table 1.4: Comparison of Most and Least Central Sectors in 1963 vs.
2017

Top 10 central industries in 1963 Top 10 central industries in 2017

23 Construction 531 Real estate
311FT Food, beverage, tobacco products 5412OP Manage Prof scientific technical
44RT Retail trade 42 Wholesale trade
531 Real estate 81 Other services, except government
81 Other services, except government 44RT Retail trade

5412OP Manage Prof scientific technical 622 Hospitals
42 Wholesale trade 23 Construction

3361MV Motor vehicles, and parts 524 Insurance and related
111CA Farms 621 Ambulatory health care services

325 Chemical products 311FT Food, beverage, tobacco products

Bottom 10 central industries in 1963 Bottom 10 central industries in 2017

514 Information services 486 Pipeline transportation
486 Pipeline transportation 315AL Apparel and leather products
493 Warehousing and storage 483 Water transportation
562 Waste management services 323 Printing and support activities
213 Support activities for mining 337 Furniture and related products
483 Water transportation 313TT Textile mills
523 Securities 482 Rail transportation
721 Accommodation 212 Mining, except oil and gas
323 Printing and support activities 113FF Forestry, fishing, and related
481 Air transportation 562 Waste management

Note: This table compares sectors’ centrality in 1963 vis-a-vis 2017. Bureau of

Economic Analysis and author’s calculations.
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Table 1.5: Characteristics of Most Central Sectors

Top 10 rank improvements from 1963 to 2017

Industry θk γ1963
k γ2017

k ∆Wc W
′,1963
k W

′,2017
k

622 Hospitals 0.79 0.24 0.45 0.05 0 0.01
531 Real estate 0.50 0.13 0.31 0.01 1.61 3.26

5412OP Manage Prof scientific technical 0.78 0.37 0.37 0.00 3.46 6.17
621 Ambulatory health care services 0.83 0.39 0.34 0.03 0.01 0.07
561 Administrative and support services 0.65 0.22 0.40 0.00 0.64 2.96
524 Insurance carriers and related activities 0.82 0.49 0.57 0.01 1.53 1.58
5411 Legal services 0.87 0.45 0.27 0.02 1.05 1.46
523 Securities 0.55 0.53 0.47 0.01 0.22 0.99
42 Wholesale trade 0.45 0.16 0.38 0.01 2.42 3.70

521CI Federal Reserve banks 0.08 0.37 0.31 0.01 1.75 1.53

Top 10 rank decline from 1963 to 2017

Industry θk γ1963
k γ2017

k ∆Wc W
′,1963
k W

′,2017
k

311FT Food. beverage. tobacco products 0.61 0.71 0.72 -0.04 1.63 0.85
23 Construction 0.42 0.59 0.49 -0.05 0.87 0.56

44RT Retail trade 0.56 0.41 0.39 -0.04 0.69 0.46
111CA Farms 0.02 0.52 0.65 -0.01 1.15 0.68

3361MV Motor vehicles and parts 0.69 0.64 0.78 -0.02 1.08 0.81
315AL Apparel 0.81 0.69 0.64 -0.02 0.5 0.35

331 Primary metals 0.20 0.61 0.72 0.00 2.64 1.64
333 Machinery 0.78 0.46 0.60 -0.01 0.96 0.85

313TT Textile mills 0.75 0.70 0.66 0.00 1.32 0.59
332 Fabricated metal products 0.73 0.54 0.58 0.00 1.76 1.62

Note: This table compares the change in sectors’ centrality from 1963 to 2017 and

reports some key characteristics such as frequency of price change θ, intermediate

share γ, change in value added share ∆Wc, and outdegree W ′. Bureau of Economic

Analysis and author’s calculations.
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Figure 1.15: Change in Sectoral Output Shares, δk,t, from 1963 to
2017

Note: This figure shows the change in sectoral output shares, δk,t, a measure of

the network centrality of a sector. Services became the most central sector in the

economy. Sources: Bureau of Economic Analysis and author’s own calculations.

Figure 1.16: Change in Sectoral Outdegrees from 1963 to 2017

Note: This figure displays the change in sectoral outdegrees, which are another

measure of network centrality and equal to W ′. Services became the most central

sector in the economy also according to the outdegree. Sources: Bureau of Economic

Analysis and author’s own calculations.
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Figure 1.17: Input-Output Matrix in 1963

Note: This figure displays the Input-output matrix as created by the guidelines of

BEA handbook in 1963. It shows how much inputs each sector is demanding from

other sectors (vertical axis) and how much it is providing (horizontal axis). The

shades of blue represent the proportion of use, whereby darker shades represent more

intense use.
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Figure 1.18: Input-Output Matrix in 2017

Note: This figure displays the Input-output matrix as created by the guidelines of

BEA handbook in 2017. It shows how much inputs each sector is demanding from

other sectors (vertical axis) and how much it is providing (horizontal axis). The

shades of blue represent the proportion of use, whereby darker shades represent more

intense use.
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Figure 1.19: Sectoral Distribution of Change in Value-Added Share
from 1963 to 2017

Note: This figure illustrates the change in sectoral value-added shares as measured

by final demand from the BEA Use table from 1963 to 2017. While manufacturing

sectors see a decline in the importance, services increase strongly in terms of GDP

share.

Figure 1.20: Change in Sectoral Intermediate Good Use Share

Note: This figure shows the change in sectoral intermediate good use in industries’

production from the BEA Use table from 1963 to 2017.
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Figure 1.21: Sectoral Distribution of Frequency of Price Adjustment

Note: This figure plots the distibution of frequency of price change for each sector.

It is measured as the average proportion of goods within each sector from the BEA

survey of PPI firms that changes prices each month. I thank Michael Weber for

providing the data. Generally manufacturing sectors tend to have a higher frequency

of price change, i.e. they are less rigid than services.
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2

DISPERSED MARKET POWER,

PHILLIPS MULTIPLIER, AND THE

OPTIMAL INFLATION TARGET

(joint with Donghai Zhang)

Several indicators suggest that competition may be decreasing

in many economic sectors, including the decades-long decline

in new business formation and increases in industry-specific

measures of concentration.

— Council of Economic Advisors, 2016
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2. Dispersed Market Power

2.1 introduction

Recent contributions in empirical macroeconomics have highlighted that

the average markup/market power for firms in the U.S. has increased

over the past decades (DeLoecker et al., 2020). Market power has an

interesting interaction with nominal rigidities if firms have non-constant

returns to scale production function. According to a basic one-sector

New Keynesian model with decreasing returns to scale, this increase

in markups implies an increasing Phillips Multiplier and a decreasing

monetary non-neutrality (see, e.g., Coibion and Gorodnichenko, 2015),

see Figure 2.1. The intuition is the following. Facing a reduction in

marginal cost, a firm resets its price downward. Due to staggered prices,

such a price cut then generates excess demand in the future. With

decreasing returns to scale, marginal costs would rise in the future. As

a result, the firm cuts its price less than it would otherwise do in the

absence of this feedback effect. The degree of competition in the market

amplifies this effect, altering the effects of real shocks to nominal prices.

The previous analysis ignores the possibility that (i) the distribution of

the average markups are dispersed and that (ii) the entire distribution

might be evolving over time. How has the entire distribution of markups

evolved over time in the data? What are the implications for the conduct

of monetary policy?

In this paper, we first complement the recent empirical literature

by showing that the distribution of steady-state markups spread out

over time. This is driven by both the increase in the top quantiles and

a decrease in the bottom quantiles of the distribution. We then study

the implications of those findings based on a New Keynesian model

with heterogeneous sectors. Particularly, we examine the implications of

dispersed markups and the evolution of the distribution of markups over

time for (i) monetary non-neutrality, (ii) the Phillips Multiplier, and (iii)

the optimal inflation index (OII) stabilization policy. Understanding the

degree of monetary non-neutrality, the size of the Phillips Multiplier,
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Figure 2.1: Evolution of U.S. Markups and its Implications

Note: Authors’ own calculation. The solid blue line in the left panel plots the aggregate

markup computed using the cost-share approach using data from Compustat that

covers publicly listed firms in the U.S. The dashed black line reports the average

over the respective decade, which we interpret as the markup’s steady-state value.

The right panel reports the implied Phillips Multiplier for each decade based on the

simple New Keynesian model outlined in Gali (2015).

and the composite of the OII are essential for the conduct of monetary

policy. In fact, these three statistics are the foundations of the Federal

Reserve’s (Fed) dual mandate: Foster economic conditions that achieve

both stable prices and maximum sustainable employment. The first

statistic, monetary non-neutrality, measures the central bank’s ability

to stimulate the economy to achieve maximum sustainable employment.

The second statistic, the Phillips Multiplier (Barnichon and Mesters,

2020b) – defined as the ratio of the cumulative response of inflation

to the cumulative response of real GDP after an exogenous monetary

intervention – measures the trade-off between the stabilization of prices

and the stimulation of employment. Third, the OII informs policymakers
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which inflation index they should target to achieve price stability and

whether their current practice is close to the optimal. In the U.S., the

Fed monitors the headline and the core of the personal consumption

expenditures (PCE) inflation, which does not necessarily coincide with

the OII. Our contribution is in showing how dispersed steady-state

markups affect those three statistics both on average and over time are

relevant for guiding policy discussions.

We derive the following results. First, dispersed steady-state markups

lead to stronger money non-neutrality, and a smaller Phillips Multiplier

in the presence of decreasing returns to scale. This is because monetary

non-neutrality is concave in the steady-state level of markups. This result

suggests that the central bank’s ability to stimulate employment might

be higher than previously thought, based on a model with homogenous

market power or constant returns to scale.

Second, we investigate how changes in steady-state markup distribu-

tion and sector sizes affect the size of the Phillips Multiplier based on

calibrations of a seventeen-sectors model that consists of constitutes of

the PCE index in the United States. We find that changes in steady-

state markup distribution have a minimal impact on the size of the

Phillips Multiplier independent of the returns to scale. This result is

driven by the spreading out of the markup distribution: Effects that

arise through the changes in the right tail cancel out with the effects

emerging from the movements in the left tail. However, our calibrated

model predicts a 20% reduction in the Phillips Multiplier due to the

reallocation of resources to stickier price sectors.

We then study the policy implications. Specifically, we study the

OII stabilization policy: the optimally weighted inflation index that

the central bank should target to minimize the social welfare loss. One

important mechanism that academics and policymakers focus on is the

relative price stickiness channel. We label this as the stickiness channel,

see e.g., Aoki (2001), Benigno (2004) and Mankiw and Reis (2003). In

this paper, we address the heterogeneity in markups (the competition
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channel) in the design of the OII.

Empirically, we document that markups are negatively correlated

with nominal rigidities across sectors (see Figure 2.2), which is consis-

tent with costly price adjustment models developed by Barro (1972),

Sheshinski and Weiss (1977) and Golosov and Lucas (2007). Therefore,

analyzing the stickiness channel without considering the origin of the

relative frequency of price adjustment might be misleading.

Figure 2.2: Frequencies of Price Adjustment vs. Markups
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Note: Authors’ own calculation. This figure plots the frequencies of price adjustment
against steady-state markups in seventeen sectors that are constitutes of the PCE
index in the U.S. The size of a circle measures the size of the underlying industry.
The black line is the fitted linear relationship according to the OLS.

We show that a more competitive (lower market power) sector is

associated with a higher weight in the OII. In the extreme case, when a

market is infinitely close to a perfect competition market (flat demand

curve), the optimal inflation index is the one that only consists of inflation

in that sector. The intuition is as follows. In a more competitive market,

firms face a flatter demand curve. Consequently, a given change in prices

leads to a more significant movement in quantity. In the presence of price
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stickiness, this results in a more significant dispersion in output, which is

welfare detrimental due to consumers’ love of variety. In sum, inflation

in a more competitive sector creates a bigger distortion. Therefore,

stabilizing inflation in that sector is relatively more important, hence

the higher weight. To illustrate the interaction between the competition

channel and the stickiness channel, we calibrate a two-sector model

with heterogeneous degrees of nominal rigidities and market power to

the manufacturing and service sectors in the data. Interestingly, the

competition channel offsets the stickiness channel. As a result, the PCE

(weighted by the size of the market) stabilization performs similarly as

compared to the stabilization of an inflation index that is merely based

on the relative price stickiness. We label the latter as the stickiness-based

price index (SPI). This finding challenges the conventional wisdom that

the central bank should always attach a higher weight to a sector with

a higher degree of nominal rigidity.

We compute the OII for the seventeen-sector model calibrated to

the U.S. data over time. In the 1960s, the competition channel played a

minimal role: the welfare loss associated with the stabilization of the SPI

is almost identical to the case of the stabilization of the OII. However,

changes in the distribution of market powers that have occurred in

the data affected this result. In the twenty-first century, ignoring the

heterogeneity in market competition results in a welfare loss that is

6.1%, measured in terms of welfare loss under a PCE stabilization policy,

higher than the outcome under the OII stabilization policy.

Lastly, we conduct a positive analysis by plotting the OII and com-

pare it with the headline and the core PCE. A simple visual inspection

suggests that during the Great Moderation periods, the OII was consis-

tently higher than the two PCE measures that the Fed relies on in their

policy analysis. This demonstrates that the OII stabilization cannot be

achieved by monitoring a weighted average of the headline and the core

PCE. During the periods following the Great Recession of 2008, similar

to other inflation measures, the OII is below the 2% target.
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Literature review This paper is related to studies on multi-sector

New Keynesian models. Those studies share the insight that hetero-

geneous price rigidity increases the effects and persistence of demand

shocks, e.g., Carvalho (2006), Nakamura and Steinsson (2010), or Car-

valho and Schwartzman (2015). In recent studies, the focus has shifted to

the interaction of nominal rigidities with other sources of heterogeneities.

Pasten et al. (2019) or Chapter 1 show that production networks can

magnify the importance of price rigidities through its effects on marginal

costs. In contemporary work, Reinelt and Meier (2020) show that firms

with more rigid prices optimally set higher markups due to the precau-

tionary price-setting motive. We study the implications of steady-state

markup dispersions for the conduct of monetary policy, and we highlight

the importance of monitoring the entire distribution.

Previous literature on the optimal inflation index is abundant, but

most conclusions are drawn based on frameworks that introduce nominal

rigidity into different markets, in the spirit of Aoki (2001), Benigno

(2004) and Mankiw and Reis (2003). Erceg et al. (2000) show that

in the presence of nominal wage rigidity, the optimal monetary policy

index includes wage inflation. Huang and Liu (2005) demonstrate

that with price stickiness in intermediate sectors, it is optimal for the

central bank to respond to both PCE inflation and PPI inflation. By

introducing nominal rigidity to the investment goods sector, Basu and

Leo (2016) conclude that the optimal policy reacts to inflations in both

consumption goods and investment goods. Anand et al. (2015) consider

the optimal inflation targeting policy for developing countries. They

show that with a significant fraction of hand-to-mouth workers in the

food sector, stabilizing headline PCE is welfare improving compared to

maintaining core PCE. Eusepi et al. (2011) derive an optimal inflation

index considering heterogeneity in nominal rigidity and the labor share

and find that optimal weights mostly depend on price stickiness. We

show that a sector with a more rigid price is not necessarily associated

with a higher weight in the OII due to the competition channel and its
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empirical correlation with the stickiness channel.1

2.2 empirical evidence

This section documents new empirical observations on the dispersion

of markups and the empirical relationship between nominal rigidity

and market power across sectors. In detail, we show additional facts

regarding to the increase in average market power over time: (i) the

dispersion in markups increases over time, (ii) this is driven not only

by increases in the markups of high markup firms but also by decreases

for low markup firms. Additionally, we show that (iii) firms in more

competitive sectors change prices more often.

2.2.1 Data

Before we turn to the evidence, we first outline the data we use for

the empirical analysis and in order to calibrate our theoretical model.

Specifically, we combine and match data from three different data

sources.

Firm-Level Markups. We use quarterly firm-level balance-sheet

from 1967 - 2017 of publicly traded firms in Compustat to calculate

firm-level markups. The data covers sales, employment, capital, and

input factors of firms (cost of goods sold) over a long sample for a wide

range of sectors covering manufacturing and service sector firms. We

estimate firm-level markups following the single-input approach of Hall

1More broadly, this paper is related to the literature that studies the optimal
monetary policy with a dynamic price elasticity originating from firm entry and exit.
See, for example, Bilbiie et al. (2008), Bilbiie et al. (2014), Bergin and Corsetti (2008),
Cooke (2016), Etro and Rossi (2015), Faia (2012) and Lewis (2013). In contrast
to those studies, this paper focuses on the heterogeneity in the steady-state price
elasticity across sectors. In another closely related paper, Andrés et al. (2008) rely
on cross-country heterogeneity in competition to explain inflation differentials in the
EMU.
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(1986) and Hall (1988) and DeLoecker and Warzynski (2012). According

to this approach, the markup µi,t of a firm i at time t can be computed

from one flexible input, Xi, as the ratio of the output elasticity of the

input, εQ,Xi , to the revenue share of that input, sR,Xi

µi,t =
εQ,Xi,t
sR,Xi,t

. (2.1)

Compustat reports a composite input called Cost of Goods Sold

(COGS), which consists of intermediate and labor input and that will

be used as the (partially) flexible input, Xi. DeLoecker et al. (2020)

use a variant of the technique introduced by Olley and Pakes (1996)

and described in DeLoecker and Warzynski (2012) to estimate a Cobb-

Douglas function and obtain a time-independent estimate of output

elasticity at the sector level. The markups are then derived by dividing

the former by the share of COGS to revenue. We split our analysis into

two parts given the critique on estimating markups using the production

approach using revenue data, e.g., Bond et al. (2020) or Basu (2019).

First, in the main part of the paper, we follow the cost share approach

and focus on revenue shares to learn about the variation in markups

across firms and over time. We calculate firm-specific revenue shares

as the ratio of costs of goods sold to sales. Bond et al. (2020) outline

that this approach can be used to study this variation under minimal

restrictions without estimating an output elasticity. We check the

robustness of these results to calculating markups as in DeLoecker et al.

(2020) and report those results in the Appendix 2.7.

When transforming the data, we drop all firms in the sectors govern-

ment or FIRE. We consider only observations that are positive and linear

interpolate observations that are missing for one period. Additionally,

we perform outlier adjustments by trimming at 1% (5%) of calculated

markups.

One concern with Compustat is that it covers only publicly traded

firms and thus is not representative of the distribution of the universe
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of firms. We account for a representativeness bias by using each sector’s

weights in the Compustat data from the PCE expenditure shares to

account for sectoral composition (while we still calculate markups from

publicly traded firms).

Frequency of Price Adjustment. We use sector-level frequencies

of price adjustment, FPA, from producer price data (PPI), averaged

over the period 2005 - 2011 from Pasten et al. (2019). The PPI measures

selling prices of goods from the perspective of producers and covers

goods-producing industries and services. The original confidential micro

price data underlies the PPI and is collected by the BLS, covers about

25,000 establishments for approximately 100,000 individual items every

month. The data we use is the median monthly frequency at the 6-digit

NAICS level.

The aggregate price adjustment frequency, FPA, of matched indus-

tries is 0.64, close to the reported price frequencies in Nakamura and

Steinsson (2008) or Bils and Klenow (2004). We can match 88 percent of

firms with an FPA. Wherever we use it, we define implied price duration

following Nakamura and Steinsson (2008) as -1/ln(1-FPA). In contrast

to Nakamura and Steinsson (2008) or Bils and Klenow (2004), the data

source is not consumer prices but producer prices. This aims to account

for the fact that, first, markups are set at the producer level, and, second,

the Compustat data is defined on NAICS levels.2

Personal Consumption Expenditures and Sectoral Prices. The

use of personal consumption expenditure (PCE) data has two advantages.

First, the main inflation target for monetary policy in the United States

is the PCE deflator. Thus, we will use the PCE deflator as the reference

2Eusepi et al. (2011) aggregate FPA of entry-level items (ELIs) in the non-shelter
component of the consumer price index (PCE) from Nakamura and Steinsson (2008)
into PCE sectors. As we show when we discuss our seventeen sectors economy, when
we aggregate the PPI based FPAs into PCE sectors, we arrive at mostly similar
frequencies.
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point for our optimal policy analysis. Second, we use PCE bridge tables

to match NAICS sectors with the sectors that compromise the PCE

deflator. For the baseline calibration, we choose 17 sectors. This choice

is driven by the 15 major types of PCE products plus a division of

utilities into a core and non-core component. This allows us to compare

the resulting index to the core price PCE index. Moreover, we separate

food services from accommodations since they have a relatively large

share and are characteristically very different. We measure the size of

sectors by their average expenditure share over each decade from NIPA

Table 2.3.5.U. that reports personal consumption expenditures by Major

Type of Product and by Major Function. We use PCE Bridge tables

from the underlying detail estimates of the Industry Economic Accounts.

These are annual tables that outline the commodity composition of

the PCE categories from the National Income and Product Accounts

(NIPAs) from 1997-2019.3 In detail, they specify for each PCE cate-

gory the commodities it is composed of together with the purchasers’

value, which we will use as weights. We will use this information to

match each PCE sector into the different NAICS sectors for which we

have generated estimates on markups and price rigidity.4 Finally, we

aggregate the matched data into three different levels: a one-sector

economy, a two-sector economy – in which we distinguish between goods

and services – and a 17-sector case composing of the major types of

products of the PCE. To study the optimal price index, we use sectoral

price indices data from the underlying detail table 2.4.4.U. for personal

consumption expenditures by type of product.

3For the years before 1997, we do not have information on the weights of com-
modity composition. We deal with this by considering the average weights between
1997-2019 for all years.

4Results of this exercise can be seen in Table 2.2
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2.2.2 Markup Dispersion and Correlation

We derive new empirical results on the evolution of markups over time

and their relationship to firms’ price-setting behavior. Our focus is

twofold. First, we want to document the evolution of the distribution

of markups over time. Since we later uncover the consequences of

different parts of the markup distribution on monetary policy, we can use

those results to draw conclusions about alterations to the transmission

mechanism induced by these changes. Second, we will use the cross-

sectional variation to calibrate a 17-sector version of our theoretical

model.

Observation 1: Markup Dispersion Increases Over Time. We

estimate yearly markups at the firm-level from 1967-2017. We take

10-year moving averages of markups and obtain a distribution of smooth

markups for each year. Panel A in Figure 2.1 plots the resulting average

markup over time. The increase in markups compares to other recent

estimates in a literature that documents increasing market power in

economies. DeLoecker et al. (2020) compares the distribution of markups

in 1980 and 2016 and argues that a thicker right tail – more mass of

firms with high markups – leads to the higher estimate of the average

markup over the sample time.

Based on the distribution of smooth markups over time, we then

calculate the dispersion of individual markups in each year via three

measures: (i) the standard deviation (ii) the interquartile range (IQR),

and (iii) the range between the 90th and 10th percentiles. Panel A of

Figure 2.3 and Figure 2.4 show that the resulting dispersion is increasing

over time, independent of the considered measure. For all three measures,

this process began in the 1980s and quantitatively led, for instance, to

more than a doubling of the standard deviation. As for the two measures

of range, we can observe an additional acceleration at the end of the

1990s. Moreover, the interquartile range (right y-axis) increases less,
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Figure 2.3: Steady-State Markups by Quantiles and their Dispersion

Note: Authors’ own calculation. This figure displays the dispersion and the different
quantiles of firm-level steady-state markups (measured as cost-share) in Compustat
from 1967-2017.

reflecting the stronger increasing dispersion between very high markup

firms and very low markup firms. Next, we want to investigate where

the increase in dispersion is coming from.

Observation 2: Gap Between Left and Right Tail Widens by

Both Sides. Where does the dispersion come from? Conceptually,

it could arise because markups of high markup firms increase, due to

falling markups at the left tail of the markup distribution, or both.

DeLoecker et al. (2020) report that the mean markup increase is due to

composition effects. Firms with larger markups increase in size. This
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Figure 2.4: Steady-State Markups by Sectors and their Dispersion
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Note: Authors’ own calculation. This figure displays the dispersion and the steady-

state markups (measured as cost-share) in Compustat from 1967-2017 for seventeen

sectors that are constituents of the PCE.

leads to increases in the highest percentiles of the distribution.

Panels B and C of Figure 2.3 and Figure 2.4 confirm these results.

For the highest percentiles (80 and 90), markups increase by more than

50 percent since the 1980s. In contrast, we observe decreases at the

bottom of the markup distribution in smaller proportions. They are

not sufficient to counteract the overall increase in average markups.

However, as we will argue, they will become important later due to

non-linearities in theoretical models even if their relative size appears

to be irrelevant compared to the impressive increases at the top. We
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redo the same exercise for the seventeen sectors that constitute the

PCE index. Figure 2.4 shows that we can find the same results on the

dispersion but also on the gap between the left and the right tail in the

less aggregated data.

In summary, we observe large increases in markups’ dispersion across

firms in the U.S. since the 1980s. We find that these are not only because

of increases at the right tail of the distribution but also due to decreasing

markups for low markup firms.

Observation 3: Firms With Higher Markups Change Prices

Less Often. We also compare markups and nominal rigidity. In the

data, we observe that firms can keep prices unchanged for an extended

period of time. The degree of price rigidity is a leading explanation for

the large effects of demand shocks (e.g., monetary policy) on output

and is a central ingredient in New Keynesian macroeconomics. To test

the relationship, we observe matched markup-frequency pairs at the

3-digit industry level from our constructed dataset. Since frequencies

have been calculated over the 2005-2011 period, we calculate sectoral

markups over the same timespan. In the first piece of evidence, we

aggregate these 3-digit sectors into seventeen sectors that composite

the PCE price index. Figure 2.2 illustrates a clear negative correlation

between markups and frequency of price adjustment. The interpretation

is that firms in sectors that are more competitive change prices more

frequently. This is confirmed by a negative slope coefficient of an OLS

regression on these seventeen sectors. We further verify this result by

running OLS regressions with controls on a panel of 3-digit sectors. We

find a negative and significant relationship between markups and the

frequency of price adjustment in all versions. Details of this exercise are

in the Appendix 2.7.
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2.3 the economic mechanism

In the previous section, we documented that the steady-state markups

are dispersed and evolving over time. We highlight both the positive

trend in the right tail and the negative trend in the markup distribution’s

left tail. We will now assess the implications of those facts for the conduct

of monetary policy. Before moving to the full model, we illustrate the

key mechanism based on a basic NK model borrowed from Gali (2015)

Chapter 3. For details about the setup and meanings of parameters,

we refer readers to the original textbook. The following equations

characterize the equilibrium of the economy:

ỹt = Etỹt+1 −
1

σ
[it − Eπt+1 − ρ)], (2.2)

πt = βEπt+1 + κỹt, (2.3)

it = ρ+ φππt + φyỹt + vt, φπ > 1, (2.4)

where ỹt, πt, it denote the output gap, inflation, and the nominal interest

rate, respectively. Monetary shocks vt, which follow a AR(1) process

vt = ρvvt−1 + εvt , are the only shocks that hit the economy. The slope

of the Phillips Curve κ is a composite of the deep parameters in the

model:

κ ≡ (1− βθ)(1− θ)
θ

1− α
1− α+ αε

(
σ +

ϕ+ α

1− α

)
, (2.5)

where the key parameter ε that we are interested in is the elasticity of

substitution across goods. It is worth emphasizing that ε is the measure

of the degree of competition in the economy, i.e., it is negatively related

to the degree of market power. Specifically, the steady-state markup is
ε
ε−1 . The parameter α determines the returns to scale of the production.

The basic model can be solved analytically to obtain:

yt = ỹt = −Ωvt, (2.6)
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where Ω ≡ 1−βρv
(1−βρv)[σ(1−ρv)+φy ]+κ(φπ−ρ) measures the size of the effect of

a monetary policy shock on real GDP, which we denote as the degree

of monetary non-neutrality. From this expression, we can derive the

following proposition.

Proposition 2.3.1 With decreasing returns to scale, the slope of the

Phillips Curve κ is a decreasing convex function of the elasticity of

substitution across goods ε and the degree of monetary non-neutrality

(Ω) is an increasing concave function of ε.

Jensen’s inequality implies that with decreasing returns to scale, the

average of the money non-neutralities in different economies with het-

erogeneous market powers is higher than the money non-neutrality of a

representative economy featuring the average market power. Similarly,

the average of the slopes of the Phillips Curve in different economies

with heterogeneous market powers is smaller than an economy with the

average market power.5

The intuition for the slope of the Phillips Curve changing in ε is

the following. In the presence of nominal rigidity, a firm’s optimal price

does not depend on the current marginal cost, but also the future ones:

p∗t = µ+ (1− βθ)
∞∑
k=0

(βθ)kEt{ψt+k|t}, (2.7)

where ψt denote the log marginal cost, and ψt+k|t denotes the marginal

cost in period t + k for a firm that last reset its price in period t.

Moreover, the following relationship holds:

ψt+k|t = ψt+k −
αε

1− α
(p∗t − pt+k). (2.8)

This equation states that the marginal cost in period t+k for a firm that

last reset its price in period t is decreasing in p∗t , as long as the marginal

5 Imbs et al. (2011) analyze the role of dispersion in price rigidity on sectoral
Phillips curves. They document that the average of the slopes of sectoral Phillips
curves with heterogeneous price rigidity is larger than an economy with the average
price rigidity.
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product of labor is decreasing in output. Therefore, the firm sets a lower

p∗t than it would otherwise do in the absence of this endogenous feedback

effect. The market power channel that we emphasize interacts with this

endogenous feedback effect. In particular, the latter is amplified in a

more competitive market (bigger ε). Because for the same amount of the

price differential (p∗t − pt+k), the quantity differential is larger in a more

competitive market. As a result, firms’ prices respond less to shifts in

marginal costs. In other words, the slope of the Phillips Curve is flatter.

It follows that the degree of monetary non-neutrality is increasing in ε.

Although a multi-sector version of the model is not a simple weighted

average of the multiple basic models, the intuition provided in this

subsection does carry over. The remainder of this section will illustrate

the quantitative importance of the outlined effect in a multi-sector

model.

2.4 implications of dispersed markups

We assess the implications of the facts we documented in section (2.2)

for the conduct of monetary policy based on a multi-sector NK model

(Woodford, 2011, Carvalho, 2006). In this section, we discuss the

implications for the degree of monetary non-neutrality and the Phillips

Multiplier. We analyze the inflation targeting policy in section 2.5.

2.4.1 The Multi-sector New Keynesian Model

In this section, we present a dynamic multi-sector model (Woodford

(2011), Carvalho, 2006) with heterogeneous degrees of market power,

nominal rigidities, and sizes across sectors. The heterogeneity in market

power is modeled in the following way. We assume that within a sector

k, firm-level goods are aggregated into the sectoral aggregate goods Ckt
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according to the following CES function:

Ckt ≡

[
n
−1/εk
k

∫ nk

0
Ckt(i)

(εk−1)/εkdi

]εk/(εk−1)

, (2.9)

with an elasticity of substitution εk (hence the market power) that varies

across sectors. The multi-sector economy is populated by a continuum

of (0,1) of households, a fraction nk of monopolistic competitive firms in

sector k for k = 1, 2..,K, a government, and a central bank. A fraction

of 1 − θk of firms in sector k is allowed to reset their prices in each

period. The degree of market power in each sector k is characterized by

the elasticity of substitution across goods within the sector. Households

consume the composite goods, buy a one-period risk-free government

bond, supply labor to the sectoral competitive labor market, receive

dividends (profits) from firms, and pay taxes or receive transfers from

the government. Firms demand labor to produce and sell goods to

households. The government issues government bonds, collects lump-

sum taxes (or pays transfers) from (to) households. The central bank

follows a Taylor rule. We leave the detailed description of the model to

the Appendix 2.7.

Sectoral Phillips Curves. By solving the firms’ optimization prob-

lem we obtain the New Keynesian Phillips Curve (NKPC) for each

sector k:

πkt = κkỹt + γkỹR,kt + βEtπk,t+1 (2.10)

where ŷR,kt ≡ ŷkt − ŷt, κk ≡ λk(σ + ϕ+α
1−α ), γk ≡ λk(η

−1 + ϕ+α
1−α ), λk ≡

(1−βθk)(1−θk)
θk

Θk, Θk ≡ 1−α
1−α+αεk

. Sectoral heterogeneities give rise to

relative price (or quantity) dispersion across sectors; therefore, a full

stabilization of both inflation and output gap is no longer feasible.6 More

6An exception is when all relative output gaps are zero, e.g., in the presence of
shocks to which all firms respond homogeneously. Here, instead, we consider sectoral
shocks, and the firms’ responses will be heterogeneous.
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specifically, the aggregate Phillips Curve can be obtained by summing

up the Sectoral NKPCs:

πt =

K∑
k=1

nkκkỹt +

K∑
k=1

nkγkỹR,kt + βEtπt+1, (2.11)

where πt ≡
∑K

k=1 nkπk,t denotes the aggregate inflation index (PCE).

Monetary Policy. The central bank sets the nominal interest rate

according to a Taylor rule that targets an inflation index (πcbt ) and the

output gap:

it = φππ
cb
t + φyŷt + vt, (2.12)

where vt denotes exogenous monetary policy shocks following an AR(1)

process with persistence ρv. Before moving to the discussion of the

optimal choice of πcbt , we assume that the central bank targets the PCE

index πt.

Calibration. We use the evidence from the empirical section to cal-

ibrate the parameters of the multi-sector model that govern sectoral

heterogeneity. For the other parameters that characterize aggregate

dynamics, we mostly follow Gali (2015). The model is calibrated to

match the main categories that underly the PCE price index in the

NIPA tables. Additionally, we decompose utilities into two categories

to differentiate between core and non-core components. The model is

calibrated at a quarterly frequency.

Homogenous Parameters. Most parameters are calibrated to values

that are frequently used in the literature. We set the discount factor to

0.99, implying an (annualized) steady-state interest rate of 4%. σ = 2

implies that inter-temporal elasticity of substitution equal to 0.5. The

Frisch elasticity of labor supply (1/ϕ) is set to be 1/5. The produc-

tion function has decreasing returns to scale with α = 1/3, a value
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commonly used in business cycle literature. We adopt interest rule

coefficients suggested by Taylor (1993) as φπ = 1.5 and φy = 0.125.

Shock persistence are set to 0.8 and the variance of sectoral technology

shocks and the monetary policy shock are chosen to be σak = 0.033 and

σm = 0.044 following Billi and Gali (2020). One important parameter

is the across-sector elasticity of substitution, η. In one-sector models,

there is only one parameter that governs aggregate markups. Here,

we differentiate between within-sector elasticities, which finally govern

sector-specific markups, and across-sector elasticities of substitution.

We follow Atalay (2017) who calibrates the across sector elasticity using

different approaches, finding that it is usually very small, implying that

goods are rather inelastic across sectors. We follow his medium estimate

and use η = 0.5.

Table 2.1: Calibration Homogenous Parameters

Utility function σ = 2, ϕ = 5

Discount factor β = 0.99

Production function α = 1/3

Technology shocks ρk = 0.8, σ2
ak = 0.033

Demand shock ρm = 0.8, σ2
m = 0.044

Elasticity of substitution η = 0.5

Heterogeneous Parameters. Table 2.2 shows the calibrated values

for all heterogeneous parameters. First, the heterogeneity in the size

of a sector, nk, corresponds to the steady-state share of expenditure

the consumer assigns to this sector. Accordingly, we use the average

personal consumption expenditures of households attributed to this

sector over different decades.

Second, we calibrate the frequency of price adjustment. In the Calvo

model, the frequency of price adjustment directly matches into price

rigidity, since every quarter a fraction (1− FPAk) of goods within the
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sector cannot adjust prices. We calculate the sales-weighted median of

the frequency of price adjustment within each category as the respective

measure of price stickiness. We convert monthly frequencies from the

table into quarterly frequency. Here, there are two possible approaches:

from the consumer or the producer side. While the former uses Nakamura

and Steinsson (2008) estimates aggregated by Eusepi et al. (2011), the

latter represents our aggregations based on the data on FPAs from Pasten

et al. (2019).7 The weighted average quarterly aggregate calibrated price

rigidity – a fraction of firms that cannot change prices – in the 17-sector

model is 0.6, which is in line with the aggregate rigidity (0.63) found

in Gorodnichenko and Weber (2016a). One crucial observation is the

similarity of many frequencies across these highly different approaches.8

This is more surprising given that they do not share the same database

as the origin. Instead, one is aggregated from ELI goods prices and the

other from PPI prices. This gives us confidence for the aggregation of the

markups that follow the same methodology as for the PPI frequencies.

Third, we calculate markups across sectors using the cost-shares

approach at the firm level. In a first step, we aggregate firm-level

markups at the three-digit NAICS level using Compustat declarations

and take average values across decades. We then use PCE bridge tables

to assign the NAICS sectors to the personal consumption categories.

We use weights based on the producer value of goods. The markups

we derive following this approach are reported in Table 2.2 and can be

matched into sector-specific elasticities of substitution, εk.

7We are grateful to Michael Weber for sharing this data with us.
8Particularly interesting is the health care sector. The frequency based on the

health care ELIs included in the CPI research database studied by Nakamura and
Steinsson (2008) is 3.4 percent, implying an average duration of prices of 29 months.
Given this high rigidity, Eusepi et al. (2011) deviate and choose an ad-hoc value of
8.3 to have an implied duration of 12 months to match spikes in October and January
of the underlying data. Our estimates based on the PPI data generate a rigidity of
7.96, close to the implied duration of 12 months, supporting the view that prices in
this sector change at least once a year.
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Table 2.2: Calibrated Parameter Values

Sector name Core
PCE
share
1960s

PCE
share
2000s

FPA
PPI

FPA
CPI

Markup
1960s

Markup
2000s

i) One sector

PCE 100 100 14.17 12.93 1.3 1.6

ii) 2 sectors

Manufacturing 51.67 34.78 11,57 1.2 1.58
Services 48.33 65.22 8,47 1.6 1.81

iii) 17 sectors

Motor vehicles X 6.51 5.03 38.66 36.6 1.27 1.30
Furnishings and household X 4.93 3.26 10.76 9.2 1.50 1.94
Recreational goods X 2.51 3.75 9.48 1.64 3.03
Other durable goods X 1.45 1.80 6.55 10.9 1.39 1.65
Food (off-premises) 17.98 8.62 16.96 13 1.42 1.93
Clothing and footwear X 7.97 3.94 6.92 32.2 1.41 2.41
Gasoline & energy goods 4.62 3.40 79.83 87.6 1.50 1.32
Other nondurable goods X 8.90 8.90 15.59 10.4 1.41 1.73
Housing X 15.17 17.09 29.79 10.3 1.52 1.90
HH Utilities Core X 0.48 0.81 17.86 11.4 1.35 1.60
HH Utilities Non Core 2.62 2.37 33.82 38.5 1.72 1.33
Health care X 6.31 16.78 7.96 8.3 1.49 1.20
Transportation X 2.98 3.68 10.55 71.5 1.28 1.27
Recreation services X 2.19 4.23 5.06 10 1.47 1.91
Food services X 6.10 5.83 25.51 1.34 1.27
Accommodations X 0.43 0.95 21.28 1.25 1.25
Other services X 8.84 9.56 4.49 7.5 1.38 1.95

Note: This table shows the calibrated parameters of the different sector economies.

Share and frequencies are in percentage points. FPA PPI is from Pasten et al. (2019)

and FPA CPI is from Nakamura and Steinsson (2008). Markups are calculated using

Compustat at the firm level and aggregated to PCE sectors using PCE bridge tables.
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2.4.2 Results: Money Non-Neutrality

This section reports the first theoretical results on the relationship

between non-neutrality and the Phillips multiplier with different compo-

nents of the markup distribution – (i) mean and (ii) dispersion. Note that

we consider mean and dispersion as stand-ins for the whole distribution

of markups. In this sense, it is likely that higher moments like kurtosis

will also affect non-neutrality. While the analysis of those exceeds this

paper’s scope, the aim is to motivate to look at the whole distribution

instead of solely the average markup to study the relationship between

non-neutrality and markups. We do so in a simple three-sector version

of the multi-sector model, where we will control the moments of the

markup distribution. The homogenous parameters follow the exposition

in the last section, and sector sizes and the frequency of price adjustment

are calibrated to their average levels. In the second part, we will then

look at predictions concerning the Phillips multiplier in the different

decades of the model’s seventeen-sector calibration as outlined in Table

2.2.

Non-Neutrality Decreases in Average Markup. First, we study

the effect of increases to the average markup on non-neutrality in the

multi-sector model while keeping other moments of the distribution

constant. This resembles the exercise performed in the motivational

example with the difference that there we showed the effect of an increase

in a one-sector model (as, e.g., in Gali, 2015). In particular, we calibrate

different versions of the model that feature heterogeneity in sectoral

markups and differ in the average markup across versions.

Figure 2.5 shows the cumulative response of output to a 25bp ex-

pansionary monetary policy shock in different calibrations of the model

with the average markup of those calibrations on the horizontal di-

mension. We find a clear negative relationship between markups and

non-neutrality as in the text-book one-sector model. With less compe-
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Figure 2.5: Monetary Non-neutrality and Aggregate Markup

Note: This figure shows the cumulative output response to a 25bp expansionary

monetary policy shock in different three-sector calibrations of the multi-sector model

that differ in the aggregate degree of market power.

tition in an economy, monetary policy becomes less effective. We also

highlight the size of average markups in the economy in the 1980s and

2000s. According to the model, the increase in markups of 30 percentage

points decreased non-neutrality by over 20 percent. This is a direct

application of Proposition 2.3.1 since an increase in the average markup

is related to a decrease in the aggregate elasticity of substitution, εk. In-

tuitively, if demand is less elastic to changes in prices, demand increases

will lead to larger changes in prices with smaller output adjustments.

Consequently, money non-neutrality becomes smaller for all sectors.

This also implies that the Phillips curve multiplier becomes steeper for

all sectors and, thus, also on the aggregate. In conclusion, the results in

the multi-sector model are consistent with the one-sector model.
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Non-Neutrality Increases in Markup Dispersion. As we have

seen in the empirical evidence, dispersion measured by the standard devi-

ation of idiosyncratic markups more than doubled over time. Therefore,

we are interested in measuring the effect of increases in the dispersion

of sectoral markups on non-neutrality in the multi-sector model. For

this, we consider the three-sector model again, but this time we keep

the average markup constant. Instead, we increase step-wise markup

dispersion by decreasing (increasing) the lower (higher) markups in the

same proportions. In the one-sector model, a change in the composition

of sectoral markups does not change any predictions as long as the

aggregate markup stays the same.

Figure 2.6: Monetary Non-neutrality Increases in Markup Dispersion

Note: This figure shows the cumulative output response to a 25bp expansionary

monetary policy shock in different three-sector calibrations of the multi-sector model

that differ in the dispersion of markups but have the same aggregate degree of market

power.

Figure 2.6 shows the cumulative response of output to a 25bp expan-

sionary monetary policy shock when the dispersion of markups across
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sectors increases (horizontal axis). Figure 2.6 shows a clear positive

relationship between markup dispersion and non-neutrality. With more

dispersed markups in an economy, monetary policy becomes more ef-

fective. Specifically, the increase in dispersion in the U.S. economy

from the 1960s until today could have increased non-neutrality by more

than 40 percent. The reason is the non-linearity in the size of the

output response to the level of markups outlined in Proposition 2.3.1.

Intuitively, decreasing the markups of the low markup sectors increases

their non-neutrality. This increase is larger than the decrease in non-

neutrality due to the equivalent increase in the markups of the high

markup sectors. Consequently, the increase in dispersion over time

could offset the predictions of increasing markups in the one-sector and

multi-sector models. We will study whether this is indeed the case in

the next section, where we calibrate the multi-sector model to the actual

moments we observed for the U.S. between 1967 - 2017.

Phillips Multiplier in the U.S. Now, we consider the seventeen-

sector version of the multi-sector model and calibrate it to the data

described in the previous section and summarized in Table 2.2. To

identify the effects of changes in markup distribution, we fix sectoral

sizes at their 2000 level. Figure 2.7 shows the Phillips multiplier for

each decade from the 1960s until the 2010s. Our analysis defines the

Phillips multiplier as the ratio between the cumulative responses of

inflation and output to a 25bp expansionary monetary policy shock.

We find a relatively stable Phillips multiplier (blue line) and monetary

non-neutrality (blue line in the top panel of Panel B) over time.9 The

reason for these stable statistics is the spreading-out of the markup

distribution. The effects of a decline in the left tail offset the effects of

an increase in the markup distribution’s right tail. This is verified by

9Due to aggregation effects, the Phillips multiplier and slope of the Phillips curve
tend to be larger in multi-sector models than in a one-sector model. The reason is
that κk in equation (2.10) is non-linear in θk and εk (see Imbs et al. (2011)).
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the red lines in Panel A and B: had the left tail remained constant over

time – in the counterfactual, we fix the markups of the four sectors with

the lowest markups at their 1960s value – the Phillips multiplier would

have increased.

Figure 2.7: The Implied Evolution of the Phillips Multiplier in the
U.S.: The Role of the Distribution of Markups

(a) Phillips Multiplier (b) Cumulative Responses

Note: Panel (a) of this Figure shows the dynamic multiplier (blue line) as the ratio

of the cumulative responses of inflation and output to a 25bp expansionary monetary

policy shock in seventeen-sectors calibrations of the multi-sector model keeping the

sizes of sectors fixed at their 1960s value over time. Panel (b) shows each cumulative

response separately. In the counterfactual (red line), we fix the markups of the four

sectors with the lowest markups at their 1960s value.

Next, we calibrate our seventeen-sector over time to also consider

the changes in sector sizes, nk. Figure 2.8 plots the results. Due to

changes in sector sizes, the degree of monetary non-neutrality in the

U.S. has increased over time. The inflation-output tradeoff summarized

by the Phillips multiplier has declined by roughly 20%. Moreover,

Panel A of Figure 2.8 shows another important result. The graph

compares the calibrated 17-sectors model with a counterfactual that

keeps the lowest markups constant. The prediction on the change in the
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Phillips multiplier would otherwise be of opposite sign and about 50%

higher. This confirms the importance of monitoring the whole markup

distribution.

Figure 2.8: The Implied Evolution of the Phillips Multiplier in the
U.S.: The Role of Changes in Sizes

Note: This Figure shows the dynamic multiplier (blue line) as the ratio of the

cumulative responses of inflation and output to a 25bp expansionary monetary policy

shock in the seventeen-sectors calibration of the multi-sector model with changes in

the sizes of sectors over time. In the counterfactual (red line), we fix the markups of

the four sectors with the lowest markups at their 1960s value.

Next, we want to understand where the decreasing Phillips multiplier

in Panel A of Figure 2.8 comes from. To understand these results, we

look at the aggregate New Keynesian Phillips curve, equation (2.11).

The slope of the Phillips curve is the elasticity of inflation to changes in

the output gap. In the present case, it is represented by the coefficient

in front of the output gap, κ̄ =
∑
nkκk.

10

10Chapter one shows that in multi-sector models, the slope of the Phillips curve
is measured with a bias since relative output gaps are possibly correlated with the
aggregate output gap. In the present case, the bias appears not to be driving the
results and of small size.
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Figure 2.9: Phillips Multiplier vs. Phillips Curve

Note: This Figure shows the estimated Phillips multiplier from Figure 2.8 together

with the aggregate slope coefficient – defined as the weighted sum of sectoral slope

coefficients, κk – over time.

Figure 2.9 shows that the decrease in the Phillips multiplier (solid

blue line) is almost entirely explained by the decreasing aggregate slope

coefficient (solid red line) in the model. The slope coefficient, κ̄, depends

non-linearly on the sectoral elasticity of substitution. Consequently,

changes to smaller εk have a smaller impact on the aggregate coefficient

than those to larger εk. This is confirmed if we look at the cumulative

responses of output and inflation in Figure 2.9. The Phillips multiplier is

smaller because the slope coefficient decreases; larger output fluctuations

require smaller deviations of inflation (blue line).

2.5 the optimal inflation target policy

Welfare Loss Function Before moving to the central bank’s problem,

we will derive the welfare loss function, which is the objective of the

central bank. Following Rotemberg and Woodford (1997, 1999) and
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Woodford (2002), we derive the welfare loss function as the second-

order approximation of the representative consumer’s period welfare loss

expressed in consumption equivalent variation (CEV):

L =

K∑
k=1

εk
λk
nkvar(πkt) + (σ +

ϕ+ α

1− α
)var(ỹt) (2.13)

+ (η−1 +
ϕ+ α

1− α
)
K∑
k=1

nkvar(ỹR,kt),

where λk ≡ (1−βθk)(1−θk)
θk

Θk defined as above. Normalize the weights on

πkt such that
∑
φk = 1:

L =
K∑
k=1

φkvar(πkt) + λyvar(ỹt) + λRy

K∑
k=1

nkvar(ỹR,kt), (2.14)

where

φk =
nkεkλ

λk
, λy = (σ +

ϕ+ α

1− α
)λ, λRy = (η−1 +

ϕ+ α

1− α
)λ,

and λ is defined as:

λ ≡ (
K∑
0

nkεkλ
−1
k )−1.

See the Appendix 2.7 for details of the derivations.

Interestingly, by allowing for sectoral heterogeneity in market power,

inflation of a sector with a higher elasticity of demand enters in the

welfare loss function with a bigger relative weight, i.e., ∂φk
∂εk

> 0.

The Optimal Inflation Index Stabilization Policy The central

bank adopts inflation targeting as the means of conducting monetary

policy. This is the case for many central banks around the world. We

assume that the target rate is zero (the steady-state inflation rate), and

the goal is always achieved. This is equivalent to a Taylor rule with
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strict inflation index targeting. The monetary instrument is the ex-ante

choice of an inflation index that the central bank stabilizes ex-post. This

question can be formulated as the following:

min
{ωk}

L = min
{ωk}

K∑
k=1

φkvar(πkt) + λyvar(ỹt) + λRy

K∑
k=1

nkvar(ỹR,kt),

(2.15)

subject to equilibrium conditions, resources constraints, and
∑K

k=1 ωkπkt =

0.

Previous studies have uncovered two main results. First, if sectors

share the same degrees of nominal rigidities and market competition,

the stabilization of PCE is optimal. Second, it is optimal to give higher

weight to the sector with a higher degree of nominal rigidity. The

remaining of this paper is to investigate the role of market power and,

in particular, how it might interact with the stickiness channel.

2.5.1 Special Cases

We begin with analyzing a limiting case in which one sector is infinitely

close to perfect competition11, i.e., εk → ∞. In this case, the loss

function collapses to:

L→ var(πk).

It follows immediately that:

Proposition 2.5.1 In the limiting case εk → ∞ and θk 6= 0, the

optimal monetary policy is to set πk = 0.

This does not mean that the welfare loss under the optimal monetary

policy is zero. In fact, due to asymmetric shocks, the aggregate, the

11It only makes sense to talk about the infinitely close case because in the limiting
case with perfect competition, firms are price takers. Therefore the firm’s problem
discussed in the previous section, price setter firms, would not carry over.
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relative output gap, and inflation in the remaining sectors fluctuate,

which gives rise to welfare losses. It means that if goods in sector k

are almost perfect substitutes, then, in terms of welfare loss, stabilizing

inflation in this sector is infinitely more valuable than stabilizing any

other variables. This is the case because, with a flat demand curve and

nominal rigidity, price dispersion that arises from inflation leads to an

infinitely big dispersion in output.

Next, we investigate whether the competition channel affects the

optimality of core inflation stabilization suggested by Aoki (2001) and

Benigno (2004).

Proposition 2.5.2 If the price is flexible in sector k, independent of

the relative market power, the optimal weight for this sector is zero.

Proof : see Benigno (2004).

If the price is flexible, inflation does not lead to price dispersion. There-

fore welfare loss originating from inflation is trivial no matter how

competitive the market is. A more interesting interaction between

market power and nominal rigidity arises in the general case.

2.5.2 Inflation Targeting Policies in a More Aggregated Two-Sector

Model

We begin by illustrating the mechanism based on a two-sector model

calibrated to the manufacturing and service sector in the U.S. Those

two sectors represent a significant fraction of aggregate production in

the U.S. Therefore, the results we find below represent the findings for

a relatively (compared to a 17-sector model) more aggregated model.

Calibration. Unless otherwise specified, the model’s parameters are

calibrated to be those reported in Table (2.1) and (2.2) in the 2000s. The

heterogeneous parameters are calibrated to match their counterparts in

the manufacturing (sector 1) and service (sector 2) sectors in the U.S.
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from 2000-2010. The sectoral degrees of nominal rigidity are θ1 = 0.69

and θ2 = 0.77 for the manufacturing and service sectors. They are

chosen to match the monthly frequency of price adjustments based on

the PPI and are similar to those reported in Gorodnichenko and Weber

(2016b). The sectoral elasticities of substitution are calibrated to be

ε1 = 2.72 and ε2 = 2.25 in order to match markups in manufacturing

(1.58) and service sectors (1.81) estimated by DeLoecker et al. (2020).

Those markups are higher than the values that are typically assumed in

the literature: 1.1 or 1.2. We provide a robustness check using those

commonly used values, and qualitatively the results are unchanged.

What matters is the markup in the service sector is higher than in

manufacturing, which is confirmed by Christopoulou and Vermeulen

(2012) in their estimates of markups for both the U.S. and the Euro

Area.

The Competition Channel Offsets the Stickiness Channel. We

conduct a welfare analysis under alternative inflation index stabilization

policies: the optimal inflation index (OII), the stabilization of the

PCE inflation index, and the stickiness-based index (SPI). The optimal

weights of the policies are chosen to minimize the welfare loss. To

compute the welfare minimizing weights of the SPI, we consider a model

with only heterogeneities in price rigidities as in Aoki (2001) or Benigno

(2004). For the optimal inflation index, we consider a model with

heterogeneities in both price rigidities and markups. We then compare

the welfare implications in an economy with both heterogeneities, where

we consider different values of the steady-state markup in sector one.

Figure 2.10 reports the results. The reported welfare loss is the CEV

defined above in deviation from the CEV under the optimal monetary

policy. The left panel shows the welfare loss under alternative policy

rules, and the right panel plots the associated weights.

Interesting results arise when comparing the performance of PCE

stabilization with the stabilization of SPI. When markup in sector 1
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Figure 2.10: Inflation Targeting Policy in a Two-Sector Model

Note: Welfare loss as a function of markup in sector 1 under alternative policies.

The welfare loss is the corresponding CEV in deviation from the CEV under optimal

monetary policy. The red dot corresponds to the point where the markup in sector 1

equals 1.58 – the markup for the manufacturing sector in the data.

is large enough, stabilizing the inflation index based on stickiness as

recommended by Benigno (2004) and Mankiw and Reis (2003) is welfare

improving compared to the stabilization of PCE. However, if sector 1 is

competitive with a small markup, stabilizing PCE is superior. Hence,

stabilizing SPI is a sensible policy advice (compared to the stabilization

of PCE) if the sector with a relatively more flexible price (sector 1)

is associated with a bigger markup. This is not the case in the data:

Figure(2.2) shows a negative relationship between price flexibilities and

steady-state markups.12 This suggests that the competition channel

works against the stickiness channel. The red dot in Figure 2.10 points

12Costly price adjustment models developed by Barro (1972), Sheshinski and
Weiss (1977) and Golosov and Lucas (2007) predict more flexible price in a sector
with higher competition.
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out the steady-state markup in sector 1 in the data. Interestingly, in

the calibrated two-sector model that we consider here, the competition

channel fully offsets the stickiness channel. As a result, the stabilization

of PCE or SPI leads to welfare losses of a similar amount.

2.5.3 Inflation Targeting Policies in a Calibrated Seventeen-Sector

Model

We now consider the inflation targeting policies in a seventeen-sector

model. The model’s parameters are calibrated to be those reported in

Table (2.1) and (2.2) for the 1960s and the 2000s subsamples. Sectors are

heterogeneous in their degree of nominal rigidities, market powers, and

sector sizes. We consider four inflation index weights: (i) the optimal

inflation index (OII) weights computed using a model with the three

heterogeneities; (ii) the stickiness-based inflation index (SPI) weights are

computed without the consideration of heterogeneity in market power,

i.e., sectoral markups are set to the economy-wide average level; (iii)

the markup weights are inferred from an economy where there is no

heterogeneity in nominal rigidities, and all sectoral frequencies of price

adjustment are set to the economy-wide average level; (iv) the PCE

weights are given by the size of a sector, inferred from their expenditure

share in the data, nk.

The Importance of the Markup Channel Increased Over Time.

Table (2.3) reports the percentage gain in the welfare loss under al-

ternative inflation targeting policies relative to that under the PCE

stabilization policy. That is, we report 100 ∗ (LPCE − Li)/(LPCE),

where i = {OII, SPI,Markup} and Li denotes the welfare loss under

an inflation targeting policy i. The role of the market channel played a

minor role in the 1960s. However, in the twenty-first century, the market

channel has gained importance in the design of inflation targeting policy.

The stabilization of SPI leads to a welfare loss that is 11.3% smaller

than the loss under the stabilization of the PCE. In contrast, the OII
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that takes market power heterogeneity into consideration leads to a

welfare gain of 17.4%.

Table 2.3: Welfare Gain Relative to the Stabilization of PCE

Inflation Targeting Policies 1960s 2000s

OII 7.5% 17.4%

SPI 7.4% 11.3%

Markup 0.3% 8.2%

The pattern on the importance of the markup channel over time is

confirmed in Figure 2.11, where we plot the OII weights, SPI weights,

and the markup weights for each sector in the two subsamples. A clear

pattern stands out: in the 1960s, the SPI weights almost coincide with

the OII weights, whereas the difference between the two weights is more

pronounced in the 2000s. The service sectors are plotted towards the

end of the x-axis. The optimal weights for those sectors in the 2000s

(red bar) lay in between the SPI weights (yellow bar) and the markup

weights (blue bar), indicating that the markup channel partly offsets the

stickiness channel as we explained in the two-sector calibration. However,

the major change between the 1960s and the 2000s is the weight on

the health care sector. Our OII weight on the health care sector is of

a similar magnitude as in Eusepi et al. (2011). The health care sector

deserves a significant weight in the 2000s because it is a sector with

a large size, low markup, and low frequency of price adjustment. As

shown in Figure 2.2, the health care sector is an outlier in the markup

and price flexibility relationship.

The Evolution of the OII. We construct the time series of realized

OII over time by combining the OII weights with realized sectoral price
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Figure 2.11: Optimal Inflation Index Weights (OII) 1960s vs. 2000s.

Note: This figure compares the sectoral weights for each policy considered: (i) the
OII weights (red), (ii) the SPI weights (yellow) and (iii) the markup weights (blue).
They are computed from the 17-sectors version of the model calibrated either to the
heterogeneous parameters in the 1960s (first panel) or to those in the 2000s (second
panel).

dynamics. We build the OII as

πOIIt =

K∑
k=1

ωOIIk,t πk,t,

where the weights ωOIIk,t are the optimal weights derived in the 17-sectors

calibration in the multi-sector model with heterogeneity in markups

and nominal rigidity in each decade. The sectoral inflation rates, πk,t,
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Figure 2.12: The Optimal Inflation Index

Note: This figure compares the OII (yellow dashed line) with the historical series
of PCE headline (blue solid line) and PCE core (red solid line) inflation. The
OII is constructed by combining the OII weights from each decade, ωOIIk,t , with
the historical time series of the inflation rates of the PCE components, πk,t. For
consistency, the PCE inflation rates are calculated by averaging the sectoral weights
for each decades instead of using yearly data on weights.

are the historical time series of realized inflation rates in the 17 PCE

categories. Replacing the optimal weights by the expenditure shares of

sectors, nk, one can derive the time series of realized PCE inflation.

Figure 2.12 plots the OII together with the headline and the core

PCE. During the Great Moderation periods, the OII was consistently

higher than the two PCE measures that the Fed relies on in their

policy analysis. This demonstrates that the OII stabilization cannot be

achieved by monitoring a weighted average of the headline and the core

PCE. During the periods following the Great Recession of 2008, similar

to other inflation measures, the OII is below the 2% target.
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2.6 conclusion

We have witnessed a substantial change in the average markups in the

U.S. in the last decades. In this paper, we document that those changes

are heterogeneous across sectors. Particularly, while there is a persistent

increase in the right tail of the markup distribution, firms in the left tail

suffered a persistent decline in the steady-state markups. This finding

has important implications for the conduct of monetary policy.

First, the degree of monetary non-neutrality is higher in a model that

features heterogeneity in steady-state markups compared to a model

with homogenous market powers.

Second, changes in the markup distribution have minimal impact

on the Phillips Multiplier in the U.S. due to the offsetting effects of

the increase in the right tail and the decrease in the left tail of markup

distribution.

Third, addressing markup dispersions is relevant for the optimal

inflation targeting policy. Based on a two-sector model calibrated to

the manufacturing and service sectors in the U.S, we show that the

heterogeneity in markups offsets the stickiness channel. This finding

challenges the conventional wisdom among academics and policymakers

that a sector’s optimal weight in the OII is proportional to its relative

price rigidity; instead, heterogeneities in market powers matter, too.

Crucial to this finding is the negative relationship between sectoral

steady-state markups and the frequency of price adjustment that we

document in this paper. Moreover, we show, based on the model

calibrated to seventeen sectors in the U.S., the importance of the markup

channel became more important in the 2000s as compared to the 1960s.
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2.7 appendix

Empirical Results for Alternative Markups

We reproduce the empirical results concerning the markup distribution

by calculating markups following the approach outlined in DeLoecker

et al. (2020) using Compustat again as data source. The difference to

the cost-share approach is that we calculate sectoral output elasticities,

εQ,Xi , by estimating a four-digit industry-specific production function.

Figure 2.13 shows that the results show the same patterns as our baseline

estimates.

Figure 2.13: Steady State Markups by Quantiles and their Dispersion:
Robustness

Note: This figure documents the dispersion and quantiles in markups calculated by

the production approach and Compustat data following DeLoecker et al. (2020) from

1967-2017.
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Estimation of Negative Correlation Between Markups and Frequency

We want to estimate the size and sign of the relationship between

markups and nominal rigidity. To test the relationship, we observe

matched markup-frequency pairs at the 3-digit industry level from our

constructed dataset. Since frequencies have been calculated over the

2005-2011 period, we calculate sectoral markups over the same timespan.

Columns (1) and (4) of Table 2.4 document that firms with higher

markups change prices less often. To control for possible omitted variable

bias, we add two sets of control variables: (i) firm characteristics such

as size, output, fixed capital stock, and (ii) firm- and time-specific

volatilities. With the former fixed effects at the 2-digit industry level,

we intend to control other sector-specific characteristics we did not

consider. Columns (2) and (5) show that the estimated relationship is

of the same sign, size, and significance, but the adjusted R-squared has

increased. Firms could change prices more often when they are subject

to more volatile shocks. In columns (3) and (6), we control for those

effects via sector- and time-specific volatilities. Note that the number

of observations decreases in this case because there were not sufficient

observations to calculate volatilities for each sector. With these controls,

the estimated correlation becomes stronger and remains of the same

sign.
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Table 2.4: Regression Markups and Nominal Rigdity 2005-2011

FPA Duration
(1) (2) (3) (5) (6) (7)

Markup -0.057∗∗∗ -0.066∗∗∗ -0.079∗∗∗ 2.278∗∗∗ 2.475∗∗∗ 2.836∗∗∗

(0.016) (0.016) (0.019) (0.54) (0.54) (0.56)

Sales 0.0376∗ -0.0732 -0.0687 5.07∗∗∗

(0.0157) (0.045) (0.541) (1.35)

Employment -0.134 0.999 -24.3 -76.9∗

(1.01) (1.21) (34.9) (36.2)

Output -0.374 -0.144 -4.38 -12.6
(0.252) (0.261) (8.69) (78.1)

Capital 0.954∗∗ 0.679∗ -6.08 3.51
(0.333) (0.337) (1.15) (1.01)

V olatilityi -0.0254 0.102
(0.102) (3.06)

V olatilityt 3.59∗ -16.6∗∗∗

(1.39) (4.16)

FE NO YES YES NO YES YES

N 501 501 377 501 501 377
adj. R2 0.022 0.253 0.244 0.032 0.202 0.294

Note: Table shows results of regressing FPA (duration) on markups. Controls

include sales, output (in million), employment and capital (per 100.000) and

volatitility of sales across time or within sector. Fixed effects are at the 2-digit sector

level. Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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description of the model

Households

A representative household seeks to maximize the following utility func-

tion:

E
∞∑
t=0

βt

[
C1−σ
t

1− σ
−

K∑
k=1

N1+ϕ
k,t

1 + ϕ

]
,

subject to budget constraint:

PtCt +QtBt+1 ≤ Bt +
K∑
k=1

WktNkt +
K∑
k=1

Tkt,

where Pt denotes the aggregate price defined below, Qt denotes the price

at time t of a one period bond that pays Bt+1 at time t + 1, Wkt the

sectoral wage and Tkt the lump-sum transfer including profit from firms.

There are K sectors in the economy, each of those sectors requires a

sector-specific labor Nk. The aggregate consumption that enters utility

function is a CES aggregate of K subindices:

Ct ≡

[
K∑
k=1

n
1/η
k C

(η−1)/η
kt

]η/(η−1)

, , (2.16)

with the elasticity of substitution across sectors η > 0, and nk denotes

the size of the sector k with
∑K

k=1 nk = 1. Each subindices Ckt is a CES

aggregate of the following form:

Ckt ≡

[
n
−1/εk
k

∫ nk

0
Ckt(i)

(εk−1)/εkdi

]εk/(εk−1)

, (2.17)

with an elasticity of substitution εk that varies across sectors.

The implied sectoral prices index are:

Pkt ≡

[
n−1
k

∫ nk

0
pkt(i)

1−εkdi

]1/(1−εk)

. (2.18)
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The implied aggregate price index is:

P ≡

[
K∑
k=1

nkP
1−η
kt

]1/(1−η)

. (2.19)

Solving the consumers’ problem regarding the optimal allocation of

demand across varieties yields the following demand functions:

Ckt(i) =
1

nk
Ckt

(
Pkt(i)

Pkt

)−εk
, Ckt = nkCt.

(
Pkt
Pt

)−η
(2.20)

The former is the demand function faced by an individual firm i in sector

k, and the one on the right is the sectoral demand faced by sector k. It

is worth emphasizing that the price elasticity of demand faced by firm i

in sector k is −εk, the same magnitude as the elasticity of substitution

with the opposite sign (downward sloping). This is intuitive: the higher

the elasticity of substitution, the easier it is for a consumer to substitute

goods i by goods j in the same sector. Hence, the more elastic is the

demand, the more competitive this sector is. In the limiting case of

εk →∞, the market is perfectly competitive.

Firms

There are K sectors in the economy, with a continuum of monopolistic

competitive firms operating in each of those sectors. All sectors share

the production function of the same functional form but are subject to

different shocks:

Ykt = eaktN1−α
kt . (2.21)

Firms are subject to nominal rigidity à la Calvo (1983): Each firm may

reset its price with probability 1−θk. Hence, the log level price at sector

k, pkt, evolves as the following:

pkt = θkpk,t−1 + (1− θk)p∗kt,
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where p∗kt is the optimal price that a reoptimizing firm at sector k would

set. This is the solution to the following problem:

max
P ∗kt

∞∑
h=0

θhkEt
{
Qt,t+h

(
P ∗ktYk,t+h|t −Ψk,t+h(Yk,t+h|t)

)}
, (2.22)

subject to its demand constraints specified in (2.20). Here Qt,t+h ≡
βk(Ct+h/Ct)

−σ(Pt/Pt+h) denotes the stochastic discount factor, Ψk,t+h

denotes the cost function and Yk,t+h|t is the output for a firm in sector

k that last reset its price in period t.

The optimality condition implied by the firm’s problem is:

∞∑
h=0

θhkEt
{
Qt,t+hYk,t+h|t

(
P ∗kt −

εk
εk − 1

Ψ′k,t+h(Yk,t+h|t)
)}

= 0.

Thus, the desired markup, defined as the markup under flexible price, is

equal to εk
εk−1 . The frictionless markup is decreasing in εk: The monop-

olistic competitive firm charges a lower markup in a more competitive

market.

Equilibrium

Solve the household’s problem and log-linearize to obtain the dynamic

IS equation:

ỹt = Eỹt+1 −
1

σ
[it − Eπt+1 − rNt )], (2.23)

where

ỹt ≡ yt − yNt , yNt = ψa
K∑
k=1

nkakt, rNt ≡ σψa
K∑
k=1

nkEt4ak,t+1,

with ψa ≡ (1+ϕ)
σ(1−α)+ϕ+α . Throughout this paper, a variable with tilde

denotes this variable in deviation from its natural level and a variable

with hat denotes this variable in deviation from its steady-state. Solving
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the firms’ optimization problem and log-linearize, we obtain the New

Keynesian Phillips Curve (NKPC) for each sector k:

πkt = λk(m̂ckt − p̂R,kt) + βEtπk,t+1, (2.24)

where λk ≡ (1−βθk)(1−θk)
θk

Θk, Θk ≡ 1−α
1−α+αεk

, pR,kt is the sector k’s

relative price (relative to aggregate price), defined as pkt− pt. And m̂ckt

is the real marginal cost in sector k, which is defined as:

m̂ckt = σ(ŷt − ŷNt ) +
α+ ϕ

1− α
(ŷkt − ŷNkt) + η−1(ŷNt − ŷNkt). (2.25)

In the derivations of m̂ckt, we have used household’s labor supply

equations and the fact that m̂cNkt = −η−1(ŷNkt − ŷNt ) as it is implied by

the sectoral demand function together with firms’ frictionless desired

prices. Plug (2.25) into (2.24) and replace pR,kt by −η−1ŷR,kt, where

ŷR,kt ≡ ŷkt − ŷt, we obtain the following sectoral NKPC:

πkt = κkỹt + γkỹR,kt + βEtπk,t+1, (2.26)

where κk ≡ λk(σ + ϕ+α
1−α ) and γk ≡ λk(η

−1 + ϕ+α
1−α ). Alternatively, the

NKPC can be rewritten as:

πkt = κkỹt − ηγkp̃R,kt + βEtπk,t+1. (2.27)

As is the case in standard multi-sector NK models, sectoral het-

erogeneities give birth to relative price (or quantity) dispersion across

sectors. Consequently, a full stabilization of both inflation and output

gap is no longer feasible. Moreover, while a positive aggregate out-

put gap raises inflation in all sectors, an increase in relative price (or

quantity) in one sector has a disinflationary impact in that sector and

increases inflation pressure in the other sectors.

Derivation of the Welfare Loss Function

The second order Taylor expansion of the representative household’s

utility Ut around a steady-state (C,L) in terms of log deviations can be
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written as:

Ut − U ≈ UcC
(
ŷt +

1− σ
2

ŷ2
t

)
+

K∑
k=1

ULkLk

(
l̂kt +

1 + ϕ

2
l̂2kt

)
di.

Note that

(1− α)l̂kt = ŷkt − akt + dkt,

where dkt ≡ (1− α)
∫
log(Pkt(i)Pkt

)−
εk

1−αdi.

Proposition 2.7.1 dkt = εk
2Θvari{pkt(i)}, with Θk ≡ 1−α

1−α+αεk

Proof : Gali (2015) Chapter 4 Therefore,

Ut − U ≈ UcC
(
ŷt +

1− σ
2

ŷ2
t

)
+

K∑
k=1

ULkLk
1− α

(
ŷkt +

εk
2Θk

vari{pkt(i)}

+
1 + ϕ

2(1− α)
(ŷkt − akt)2

)
+ t.i.p.,

where t.i.p denotes the terms independent of policy. Under the assump-

tion that cost of employment is subsidized optimally at sectoral level

to eliminate distortions originating from monopolistic competition, the

steady-state is efficient and −ULk
Uc

= MPN .

Approximate the CES aggregate Ct defined in (2.16) around ck =

c+ log(nk):

K∑
k=1

nkŷkt ≈ ŷt −
1− η−1

2

K∑
k=1

nkŷ
2
R,kt,

with
∑K

k=1 nkŷ
2
R,kt ≡

∑K
k=1 nk(ŷkt − ŷt)2. Using the fact that MPN =
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(1− α)(Yk/Lk), Y = C, it follows that:

Ut − U
UcC

≈ −1

2

[ K∑
k=1

(εknk
Θk

vari{pkt(i)}
)
− (1− σ)ŷ2

t − (1− η−1)
K∑
k=1

nkŷ
2
R,kt

+
1 + ϕ

1− α

K∑
k=1

nk(ŷkt − akt)2
]

+ t.i.p

= −1

2

[ K∑
k=1

(εknk
Θk

vari{pkt(i)}
)
− (1− σ)ŷ2

t − (1− η−1)
K∑
k=1

nkŷ
2
R,kt

+
1 + ϕ

1− α

K∑
k=1

nk(ŷ
2
kt − 2ŷktakt)

]
+ t.i.p

= −1

2

[ K∑
k=1

(εknk
Θk

vari{pkt(i)}
)

+ (σ +
ϕ+ α

1− α
)ŷ2
t

+ (η−1 +
ϕ+ α

1− α
)
K∑
k=1

nkŷ
2
R,kt − 2

1 + ϕ

1− α

K∑
k=1

nkŷktakt

]
+ t.i.p

= −1

2

[ K∑
k=1

(εknk
Θk

vari{pkt(i)}
)

+ (σ +
ϕ+ α

1− α
)ŷ2
t

+ (η−1 +
ϕ+ α

1− α
)
K∑
k=1

nkŷ
2
R,kt − 2

1 + ϕ

1− α

K∑
k=1

nk(ŷt + ŷkt − ŷt)akt)
]

= −1

2

[ K∑
k=1

(εknk
Θk

vari{pkt(i)}
)

+ (σ +
ϕ+ α

1− α
)ŷ2
t

+ (η−1 +
ϕ+ α

1− α
)

K∑
k=1

nkŷ
2
R,kt − 2(σ +

ϕ+ α

1− α
)ŷty

N

− 2(η−1 +
ϕ+ α

1− α
)

K∑
k=1

nk(ŷkt − yt)(ŷNkt − yNt )
]

+ t.i.p

= −1

2

[ K∑
k=1

(εknk
Θk

vari{pkt(i)}
)

+ (σ +
ϕ+ α

1− α
)ỹ2
t

+ (η−1 +
ϕ+ α

1− α
)
K∑
k=1

nkỹ
2
R,kt

]
+ t.i.p,
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where ỹt ≡ yt − yNt . From line 2 to line 3, we have used the fact

that
∑K

k=1 nkŷ
2
kt =

∑K
k=1 nkŷ

2
R,kt + (

∑K
k=1 nkŷkt)

2 ≈
∑K

k=1 nkŷ
2
R,kt + ŷ2

t .

From line 4 to line 5, where the fact was used that akt = σ(1−α)+α+ϕ
1+ϕ yNt

and akt −
∑K

k=1 akt = −η−1(1−α)+α+ϕ
1+ϕ (̂yNkt − yNt ).

To summarize, the second order approximation of the representative

consumer’s welfare loss as a fraction of steady-state consumption is:

W = E0

∞∑
t=0

βt
(Ut − U
UcC

)
= −1

2
E0

∞∑
t=0

βt
[ K∑
k=1

(εknk
Θk

vari{pkt(i)}
)

+ (σ +
ϕ+ α

1− α
)ỹ2
t

+ (η−1 +
ϕ+ α

1− α
)

K∑
k=1

nkỹ
2
R,kt

]
+ t.i.p.

Proposition 2.7.2
∑∞

t=0 β
tvari{pkt(i)} = θk

(1−βθk)(1−θk)

∑∞
t=0 β

tπ2
kt

Proof : Woodford, 2011 Chapter 6

Thus we obtain the following welfare loss function:

W = −1

2
E0

∞∑
t=0

βt
[ K∑
k=1

εk
λk
nkπ

2
kt + (σ +

ϕ+ α

1− α
)ỹ2
t

+ (η−1 +
ϕ+ α

1− α
)

K∑
k=1

nkỹ
2
R,kt

]
+ t.i.p.,

where λk ≡ (1−βθk)(1−θk)
θk

Θk defined as above. Normalize the weights on

πkt such that
∑
ωk = 1:

W = −1

2
E0

∞∑
t=0

βt
[ K∑
k=1

φkπ
2
kt + λyỹ

2
t + λRy

K∑
k=1

nkỹ
2
R,kt

]
+ t.i.p.,

(2.28)
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where

φk =
nkεkλ

λk
, λy = (σ +

ϕ+ α

1− α
)λ, λRy = (η−1 +

ϕ+ α

1− α
)λ,

and λ is defined as:

λ ≡ (

K∑
0

nkεkλ
−1
k )−1.

From the sectoral demand equation, one can rewrite sectoral output

dispersion as a function of sectoral price dispersion:

W = −1

2
E0

∞∑
t=0

βt
[ K∑
k=1

εk
λk
nkπ

2
kt + (σ +

ϕ+ α

1− α
)ỹ2
t

+ η(1 +
ϕ+ α

1− α
η)vark(p̃kt)

]
+ t.i.p.

Normalize the weights on πkt:

W = −1

2
E0

∞∑
t=0

βt
[ K∑
k=1

φkπ
2
kt + λyỹ

2
t + λRpvark(p̃kt)

]
+ t.i.p., (2.29)

where

λRp = η(1 +
ϕ+ α

1− α
η)λ.
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3

TIME-VARYING FORECAST

PERFORMANCE OF CORE

INFLATION

This decomposition [into core and non-core inflation] is use-

ful because food and energy prices can be extremely volatile,

with fluctuations that often depend on factors that are be-

yond the influence of monetary policy, such as technological

or political developments (in the case of energy prices) or

weather or disease (in the case of food prices). As a result,

core inflation usually provides a better indicator than total

inflation of where total inflation is headed in the medium

term.

— Janet L. Yellen, The Philip Gamble Memorial Lecture

September 24, 2015
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3.1 introduction

Central banks are concerned to know how underlying inflation will evolve.

Their price stability goals are often defined in terms of inflation over

the medium term. For instance, the price stability objective of the ECB

– as clarified by the Governing council in 2003 – is to maintain year-

on-year increases in the Harmonised Index of Consumer Prices (HICP)

for the euro area of below, but close to, 2% over the medium term.1

Nevertheless, the volatility in headline inflation can pose a challenge

for policymakers to detect the effects of cyclical inflation pressures.

To succeed in this exercise, central banks need to discern persistent

sources of inflationary pressures from short-lived, reversible movements.

Transitory variation potentially complicates both inflation forecasting

and policymaking because it is unrelated to changes in cyclical inflation

pressures, or it might deteriorate the public’s confidence in the central

bank’s commitment to long-run price stability.

Measures of core inflation are designed to filter out the short-term

volatility in headline inflation in order to reveal the cyclical signal

(underlying inflation).2 The most common of these core measures are

exclusion indices, e.g., consumer price inflation excluding food and

energy (CPIExFE). They are constructed by identifying several items

that are considered to be the cause of the excess volatility and then

building a new price index that excludes them throughout history.

Historically, these tend to be food and energy prices.3 Figure 3.1

illustrates the idea of removing volatile food and energy prices (yellow

1Equally, in their statement on longer-run goals and monetary policy strategy,
the U.S. Federal Reserve’s Federal Open Market Committee (FOMC) “reaffirms its
judgment that inflation at the rate of 2 percent, as measured by the annual change
in the price index for personal consumption expenditures, is most consistent over the
longer run with the Federal Reserve’s statutory mandate” since January 24, 2012.

2The concept was conceived by Gordon (1975) to describe an underlying instead
of a transitory inflation rate.

3Blinder (1997) has alternatively argued that the real reason they were excluded
was that they are mostly beyond the control of the central bank.
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Figure 3.1: Inflation Comparison: Headline vs. Core

Note: Comparison of different measures of inflation. Headline CPI inflation
(year-on-year change) in solid blue line, core CPI inflation in solid red line and Food
and Energy CPI inflation in yellow dashed line.

dotted line) from headline inflation (solid blue line) in order to obtain

an estimate of underlying inflation (solid red line) for CPI. Another way

to construct an index of core inflation4 are temporary exclusion indices

(or central tendency statistical measures) such as trimmed-mean or

weighted median.5 They are based on the idea that large price changes

in a few items can be the source of excess volatility and should therefore

be excluded (Bryan and Pike, 1991 and Bryan and Cecchetti, 1994).

In this paper, I focus the analysis on these two because they dominate

the portfolio of monitored core inflation rates by most central banks.6

Because of their simplicity, they are more transparent and easier to

4Alternative approaches to constructing core inflation include persistence weight-
ing, variance weighting, component smoothing, exponential smoothing, and dynamic
factors, among others. For an overview of different core measures, see the extensive
account in Detmeister (2011).

5Examples used in praxis are the Dallas Fed trimmed-mean PCE and the FRB
of Cleveland’s median CPI.

6Ehrmann et al. (2018) provide an overview in Table A.
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communicate to the public.

A crucial assumption behind the use of core as a measure of under-

lying inflation is that the excluded time series are indeed noise. If those

items had a long-lasting impact on medium term inflation, removing

them from inflation would disregard their signaling effect. With less

information, forecasts from core inflation would then perform worse than

alternative inflation measures. How well does core inflation forecast

medium term inflation? Do alternative measures of core contain different

information sets and therefore perform differently? Does the relative

performance of those core measures change over time? What is the role

of the signaling effect of non-core inflation?

This paper revisits the empirical evidence on these questions by

adding an important dimension to the analysis: I allow for instabilities.

There is ample evidence on the existence of parameter instability in

forecasting GDP or inflation (Stock and Watson, 2003, Clark and Mc-

Cracken, 2005, or Faust and Wright (2013)). I show that instabilities

are also present when forecasting underlying inflation. Existing studies

follow classic approaches (Diebold and Mariano, 1995 or West, 1996)

and compare competing models’ relative forecasting performance on

average over different periods. In contrast, I follow Giacomini and Rossi

(2010) and apply their Fluctuation test to check for equal predictive

accuracy by considering that the relative performance of competing

models might have changed over time. In practice, the Fluctuation test

uses the test statistic of Diebold and Mariano (1995) computed over

rolling windows to test the null hypothesis that the forecast never beats

the benchmark at any point in time. In this paper, I focus on predicting

medium term inflation as the three-year-ahead inflation rate7 by using

a forecasting model that includes different core inflation measures as

explanatory variables and possible controls. I study different measures of

inflation such as consumer price inflation (CPI) and personal consump-

7I check for robustness to alternative definitions such as 4-year-ahead inflation
rate or year-on-year inflation in two years.
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tion expenditure inflation (PCE) as well as various measures of core

measures inflation as predictors, e.g., exclusion indices (e.g., PCEExFE)

or statistical tendency (Dallas FED trimmed-mean).

Our empirical findings confirm that there are instabilities in fore-

casting medium term inflation. I document three distinct periods when

comparing the forecast performance of core inflation, in comparison

to headline inflation. In the 1970s and until the middle of the 1980s,

headline outperforms core in predicting underlying inflation. However,

the predictive ability reversed, and core inflation had a better relative

forecasting performance from the mid-1980s until the beginning of the

2000s. In the later part of the sample and recent years, there is no

statistical difference between both forecast models.

These results are consistent with the changes in the (time-series)

process of inflation that have been documented in Mishkin (2007) or

Stock and Watson (2007). Those studies estimate a steady decline

in the persistence of inflation after the mid-1980s. Fluctuations in

inflation tended to fade away more quickly. Since core inflation abstracts

from those transitory components, its relative performance increased

compared to autoregressive models. In recent years, inflation is harder to

forecast in the sense that competing models perform equally well because

successful inflation anchoring and forward-looking monetary policy have

increased the importance of inflation expectations as a relevant predictor

(Faust and Wright, 2013).

The results are the same when I consider alternative measures of core

inflation. In detail, I redo the analysis with temporary exclusion indices

(central tendency measures): (i) Dallas FED trimmed-mean PCE and

FRB of Cleveland (ii) median CPI and (iii) 16-percent trimmed-mean

CPI. The availability of those indices is restricted to a shorter sample.

Notwithstanding, the evidence reports that these core measures predict

better than headline inflation in the 1990s and until the beginning of the

2000s. In recent times, there is no statistical difference between forecast

models.
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This paper also studies which alternative core measure performs best.

Previous studies (Dolmas and Koenig, 2019, or Luciani and Trezzi, 2019,

or Ehrmann et al., 2018 for Europe) could not find clear evidence that

any alternative core inflation measure has a higher forecast accuracy

than permanent exclusion indices. According to my analysis, the reason

for the ambiguity is that the relative forecast accuracy of different core

measures greatly varied over time. For instance, trimmed PCE was a

better predictor than PCE excluding food and energy (PCEExFE) in

the 1990s, but since then, the relative forecast performance has reversed.

There is no single core inflation measure that outperforms the others

all the time. Instead, different measures perform well at different times.

Finally, I show that averaging – looking at 36-month inflation instead of

year-on-year – may not be a successful way to construct core inflation.

Once I take instabilities into account, the results do not unambiguously

confirm the hypothesis that longer samples provide better forecasts in

contrast to previous studies (Detmeister, 2011, or Bryan and Meyer,

2011). First, the relative forecasting performance of different sample

lengths highly depends on the forecasting model considered. Second,

averaging does reduce not only volatility but also eliminates signals.

The results suggest that the transitory component is not only noise.

Instead, it may at times contain signals about future inflationary trends

missed by averaging.

For this reason, I test for the importance of the signaling effect

of non-core components for underlying inflation and if it has changed

over time. Because core only predicts better in the middle sample,

this raises the question of whether the excluded items contain essential

information (signals) about future inflation. To test for the signaling

effect, I apply a forecast rationality test to detect if forecasts from core

inflation are not rational, e.g., biased, and information from non-core

inflation could explain the lack of rationality. Given the instabilities

in forecasting medium term inflation that I have uncovered before,

situations with lack of rationality might appear in sub-samples of the
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data. Thus, I apply a rationality test that is robust to the presence

of instabilities as outlined by Rossi and Sekhposyan (2016).8 I find

that non-core components contain important information about future

medium term inflation that can complement forecasts from core inflation.

The evidence indicates that there was a signaling channel in the 1980s

and early 2000s.9 However, the signaling effect does not explain why

there is no difference in predictive accuracy between core and headline

in recent years.

Related Literature. The paper is closely related to two branches

of literature. More broadly, this paper adds to the literature that has

focused on forecasting inflation and instabilities. Stock and Watson

(2007) show that inflation has become both harder and easier to forecast

over time. They argue that while the overall MSFEs of models has fallen,

the difference between models became smaller. The authors relate this

observation to the declining persistence of inflation in a stochastic trend-

cycle model. Faust and Wright (2013) provide a horse-race between a

large set of models and methods. They find that judgmental survey

forecasts outperform most other models. A number of papers have

documented instabilities in forecasting GDP and inflation (e.g. Stock

and Watson, 2003, Clark and McCracken, 2005, or Nason, 2006), and

different methods to deal with those have been developed (e.g. Giacomini

and Rossi, 2010). Rossi and Sekhposyan (2016) applied these frameworks

to show how the forecasting performance of different economic models

for U.S. inflation and GDP growth has changed over time. They report

that most indicators lost their predictive power for inflation in the 1980s.

I show that instabilities also play an important role when forecasting

medium term inflation. I provide empirical evidence that supports the

8A similar framework was used by Hoesch et al. (2020) to study the informational
advantage of central banks with respect to the private sector.

9The first can be linked to the oil price shocks in the 1970s and the second to the
run-up of commodity prices in the mid-2000s.
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previous estimates of a change in forecasting performance in the 1980s

and adds another reversal at the beginning of the 2000s.

Second, this paper is related to a literature that studies the forecast-

ing performance of different measures of core inflation, e.g. Blinder and

Reis (2005), Smaghi (2011), Bryan and Meyer (2011), Crone et al. (2013),

Thornton (2011), Krugman (2011), Lenza and Reichlin (2011). I also

compare the relative forecasting performance of core and headline, but in

contrast, I focus on out-of-sample performance. Out-of-sample accuracy

is considered because in-sample analyses are subject to overfitting and

structural breaks. This often means that good in-sample fit fails to

translate into good out-of-sample forecasting performance. Detmeister

(2011), Detmeister (2012), Dolmas and Koenig (2019) or Luciani and

Trezzi (2019) compare different measures of core inflation with regards

to a number of different criteria including volatility, size of revisions

and predictive power. I focus solely on predictive accuracy because it is

the most important criterium. Moreover, some of the alternative core

measures are constructed to outperform core on specific criteria (e.g.,

volatility), which would make a comparison unnecessary. In contrast

to these studies, I consider the role of instabilities in forecasting per-

formances. Rich and Steindel (2005) Rich and Steindel (2007) for the

U.S. and Ehrmann et al. (2018) for the E.U. also identify instabilities,

noting that the performance of the measures of underlying inflation

in tracking the persistent component of headline inflation is episodic.

I show that by focusing on the average performance over subsamples,

we might average over periods of under- and overperformance and lose

important information on the evolution of relative forecast performance

of different models over time. Moreover, the present study considers a

longer sample period and reports evidence on multiple break dates.

The paper is organized as follows. Section 3.2 discusses the motiva-

tion to look at time-variation in the forecast performance of core inflation.

Section 3.3 provides an overview of the empirical framework and data.

It also discusses results on the forecast performance of exclusion indices.
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Section 3.4 summarizes findings for other core inflation measures, and

Section 3.5 investigates if non-core inflation components add information

to core forecasts. Section 3.6 provides details on robustness exercises

and Section 3.7 concludes.

3.2 are instabilities important in forecasting

medium term inflation?

In this section, I compare the pseudo out-of-sample forecasting perfor-

mance of different models using either core or headline inflation for

predicting future U.S. medium term inflation. Using rolling window

estimates of loss differences, I confirm that the relative forecast perfor-

mance is indeed time-varying. I discuss that the forecast performance

of different core measures may vary over time due to (i) a changing per-

sistence of inflation in the excluded items or (ii) a changing composition

and volatility of those goods. First, I describe the forecasting model

and the data considered that will be used in this and the next section.

3.2.1 Forecasting Model

In order to investigate whether core or headline inflation is the better

predictor of future medium term inflation, I compare the forecasting

performance of regressions of the form

πt,t+h = α+ θ(L)xt−12,t + εt, t = 1, 2, ...T, (3.1)

where πt,t+h is a measure of medium term inflation, xt−12,t is the year-on-

year change in a predictive variable and α is a constant. Specifically, h

is the forecasting horizon. The model to predict inflation differs slightly

from other papers in this literature which either use a form of predicting

medium term inflation via πt,t+h = α+ θxt−12,t + εt (Blinder and Reis,

2005 and Crone et al., 2013 ) or πt,t+h−πt,t−s = α+θ(xt,t−12−πt,t−s)+εt

as in Clark (2001), Cogley (2002), Detmeister (2011), Detmeister (2012)
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or Rich and Steindel (2007). I specify the model in the above form to

ackowledge results from Stock and Watson (2007) or Faust and Wright

(2013) that stress the importance of autoregressive terms. Faust and

Wright (2013) show that it is hard to beat a univariate AR(1) model

for forecasting inflation. Only surveys (Greenbook, SPF, Blue Chip) or

forecast combinations (Rossi (2013)) consistently beat an AR(1) in gap

form with a fixed slope coefficient. Notwithstanding, I will also consider

these alternative forecast models in the robustness section of this paper.

Moreover, Rossi and Sekhposyan (2010) detail that there are few

explanatory variables for inflation that still have significant forecasting

power for inflation after the 1980s, justifying the exemption of those

in the baseline analysis. Nevertheless, to acknowledge the literature on

Phillips curves, I also consider models including additional explanatory

variables related to economic activity. I add the output gap (CBO) as an

additional control In one model as in standard Phillips curve regressions.

The measure of medium term inflation I consider as baseline is the

(annualized) headline inflation rate over the next 36 months, i.e., h = 36

or πt+36,t = 100/3 ln(CPIt/CPIt−12). Nevertheless, I also consider

inflation over the next 48 months or year-on-year inflation from 24

months ahead to 36 months ahead. As a possible explanatory variable,

xt, t− 12 is either the year-on-year change in (i) headline inflation or (ii)

core inflation. As a measure of headline inflation, I consider year-on-year

(i) consumer price inflation (CPI), (ii) personal consumption expenditure

inflation (PCE), and (iii) producer price inflation (PPI). Inflation is

constructed as annualized change in prices, for instance, for the y-to-y

inflation rate as πt,t−12 = 100 ln(CPIt/CPIt−12). In contrast, I consider

the corresponding exclusion inflation index as measure of core inflation,

i.e., the respective change in prices from the index excluding food and

energy prices – (i) CPIExFE (ii) PCEExFE and (iii) PPIExFE. In the

robustness section 3.6, I also study the performance of food and energy

inflation and add controls to equation (3.1).

Model (3.1) is estimated by OLS in rolling samples of 120 observa-
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tions (10 years). Thus, as the sample starts in 1959:1, and the effective

sample size reduces by one observation due to differencing, the first

36-month ahead out-of-sample forecast is made for 1972:2.

Next, to compare relative forecast performance, I construct relative

Mean Squared Forecast Errors (rMSFE). Therefore, I first denote the

pseudo out-of-sample forecast errors of model (3.1) with core or headline

inflation, respectively, by ε̂coret+h and ε̂headlinet+h . They are constructed as the

difference between the realization of medium term inflation πt,t+h and

its forecasted value using the model in (3.1) with either core or headline

as predictor π̂t+h|core or π̂t+h|headline. Next, I construct estimates of

the relative Mean Squared Forecast Errors (rMSFE) as the difference

between the mean squared forecast errors of both models. In order

to capture time variation in relative performance, I construct those

rMSFEs in a rolling window fashion:

rMSFEt =

 1

m

j=t+m/2∑
j=t−m/2

(ε̂headlinet+h )2 − 1

m

j=t+m/2∑
j=t−m/2

(ε̂coret+h )2

 , (3.2)

where m is the size of those windows. The construction of the loss

differences depends on the choice of two parameters: (i) the forecast

evaluation window size (m), and (ii) the size of the sample (R) used

to estimate the forecasting model. There is a trade-off between good

estimates for the forecasting model and accurate estimates of rMSFE

vis-á-vis a large sample of rMSFE estimates to better track the evolution

of relative forecast performance over time. I chose the estimation sample

size of 120 months and window size, m, of 120 months in the benchmark

case. Nevertheless, I verified the robustness of those results to alternative

choices for both parameters in Section 3.6.

3.2.2 Instabilities in Forecasting Medium Term Inflation

An important challenge that an econometrician who attempts to in-

vestigate which measure of core inflation predicts better faces, is that
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forecasts are unstable. For instance, there is broad empirical evidence on

the existence of parameter instability in forecasting GDP and inflation

(as documented, for example, by Stock and Watson, 2003, and Clark

and McCracken, 2005 or Nason, 2006, or on how economic models’

forecasting performance for U.S. output growth and inflation changed

over time (Rossi and Sekhposyan, 2016) but also when using measures

of core inflation (Detmeister, 2011, or Ehrmann et al., 2018). The

presence of instabilities in forecasting medium term inflation is docu-

mented in Figure 3.2. Panel A of Figure 3.2 reports forecast errors

from predicting medium term inflation as the difference between the

realization of medium term inflation and its predicted value. The dashed

red line reports forecast errors associated with core inflation, while the

black dotted line shows the forecast errors using headline inflation as a

predictor.

The first observation from Figure 3.2 is that medium term inflation

was harder to forecast at the beginning of the sample, as indicated by

the larger forecast errors. This was equally true for both predictors. In

recent years, however, the forecast errors and the difference in forecast

errors have become smaller. This confirms the findings in Stock and

Watson (2007) that inflation became both easier and harder to forecast

over time and extends them to medium term inflation.

From the forecast errors, it becomes evident that there are times

when the forecasts from both explanatory variables consistently over- or

underpredict medium term inflation. For instance, in the 1990s, both

headline and core inflation systematically overpredicted medium term

inflation, i.e., the forecasts were likely biased, and the forecast models

misspecified. Nevertheless, even during these times, one model can

still perform better than the other. From the graph, it is evident that

the forecast errors from core inflation in the 1990s were smaller. This

observation is confirmed when we look at the rMSFEs in Panel B of

3.2. Intuitively, the graph shows a smoothed version of the difference

in forecast errors. Positive values reflect that core inflation has lower

140



3.2. Are Instabilities Important in Forecasting Medium Term Inflation?

Figure 3.2: Instability in Forecasting Medium Term Inflation

Note: This figure compares forecasts of medium term inflation from using core
inflation or headline inflation as predictors. The left Panel A shows forecast errors as
actual in predicted value of medium term inflation over time. Forecast errors from
core inflation are depicted with a red dashed line and those from headline inflation
with a black dashed line. The right Panel B reports rolling window estimates of
forecast losses as defined in Equation (3.2).

forecast errors. Again, there is evidence of time-variation in the relative

forecast performance.

The suggestive evidence raises concerns for the use of full sample

analyses. If the historical period includes episodes of relative over- and

under-performance of a model, then on average, it might look as if

the model does not have an advantage compared to the other model.

However, in reality, there is a forecasting edge of that model for certain

periods. Thus, I investigate the properties of the forecasts by employing

statistical tests that account for the identified instability in relative

forecast performance (Giacomini and Rossi, 2010). In the next section,

I will describe the statistical framework used in detail. However, before,

I want to briefly discuss potential explanations for why the relative
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forecast performance of core and headline inflation can vary over time.

3.2.3 Why Did the Forecast Performance of Core Inflation Vary Over

Time?

According to the idea of core inflation, it is a better measure of underlying

inflation because it strips out transitory variations in inflation and better

reveals the cyclical state from inflation. The first underlying premise is

that the excluded components have no long-lasting impact on underlying

inflation. Otherwise, changes in prices of excluded items could affect

medium term inflation, and including this information would result in

better forecasts. Another critical assumption is that the “correct” items

have been removed. The most volatile items are not necessarily the ones

with the most noise, and the volatility of items can change over time.

Evidence points towards time-variation in the validity of both of these

two assumptions.

Excluded items can have a lasting impact on overall inflation. Histor-

ically, oil shocks were viewed to cause only transitory changes (“blip”) to

the inflation process (Blinder and Reis, 2005). They do not affect long-

term inflationary expectations and fade away on their own and, therefore,

should be ignored by central banks. However, excluded items can have a

lasting impact on overall inflation if there is a pass-through from shocks

to those components to headline inflation. This pass-through could work

via indirect effects (i) by affecting other items in the consumer price

basket through higher production costs (the network channel), (ii) by

influencing inflation expectations (Coibion and Gorodnichenko, 2015)

or (iii) by impacting wages. Empirical evidence confirms time-variation

in this pass-through. There is widespread evidence that the relationship

has been unstable over time (see, e.g., Edelstein and Kilian, 2009, Her-

rera and Pesavento, 2009, Blanchard and Gaĺı, 2009, Ramey and Vine,

2010, Baumeister and Peersman, 2013). In particular, several researchers

have noted a substantial decline in the macroeconomic consequences of
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oil price shocks. If the persistence of excluded items has changed, as

this evidence suggests, it may distort the reliability of signals of future

underlying inflation from core inflation.

On the other hand, core inflation may exclude the “wrong” items.

Excluding the most volatile items from headline inflation might reduce

not only noise but also signals. This is equally true for exclusion

indices as for temporary exclusion indices like statistical central tendency

measures. One channel is indirect effects, as argued before. Another

could be that excluded items contain leading information (see Giannone

et al., 2014). More volatile prices – and those with large price changes –

tend to be more “sticky” items. As these prices change less often, the

price-setters are more forward-looking and, thus, tend to incorporate

persistent changes rather than transitory fluctuations.10 But, not all

volatile items are sticky prices. Moreover, the empirical evidence points

towards hybrid inflation dynamics, i.e., forward- and backward-looking.

In this case, it might even take longer for persistent shocks to be reflected

in “sticky” prices. Instead, flexible prices could be leading indicators

and improve forecast performances.

Furthermore, the volatility and expenditure share of items can change

over time. Food and energy inflation indeed tend to be more volatile

than core inflation, as illustrated by Figure 3.1. However, Figure 3.1 also

shows that the volatility of different items can vary over time. Food and

energy inflation appears to deviate less from headline and core inflation

in the 1980s and 1990s. However, as outlined by Dolmas and Koenig

(2019), not all sub-categories among the food and energy prices are the

most volatile items. Their study reports that about 14 percent of food

and energy items (by expenditure share) are less volatile than other core

items. This means that we might involuntarily remove signals in the

construction of core inflation, and likewise allow some excess volatility

10This reasoning motivates Aoki (2001)’s optimal price index that puts larger
weight on more sticky prices. The FRB of Atlanta publishes such a sticky-price CPI
index.
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to remain in the index. This concern becomes even more alarming when

we contemplate that (i) the expenditure shares and (ii) volatilities of

those items are time-varying. Thus, what would have been an optimal

exclusion in the past may no longer be today.

The forecast performance of different core measures may vary over

time due to a changing persistence of inflation in the excluded items or

a changing composition and volatility of those goods. This is why, in

contrast to most of the current literature, I use a testing approach that

is fully robust to instabilities. This is important as we might otherwise

fail to detect a break in forecast performance.

3.3 does core forecast medium term inflation

better?

In this section, I compare the pseudo out-of-sample forecasting perfor-

mance of different models using either core or headline inflation for

predicting future U.S. medium term inflation. I explicitly account for

time-variation and possible instabilities in relative forecast accuracies

by performing fluctuation tests (Giacomini and Rossi, 2010). Before I

turn to the results of this exercise that confirm that the relative forecast

performance is indeed time-varying, I describe the forecasting model, the

data considered, and the statistical method used to study the research

question.

3.3.1 Tests for Instability in Relative Forecasting Performance

This section describes the statistical method used to study more struc-

turally the time-variation in relative forecasting performance and its

implementation. To test whether the two models’ relative forecasting

performance has changed over time, I employ as statistical method the

144



3.3. Does Core Forecast Medium Term Inflation Better?

Fluctuation test developed by Giacomini and Rossi (2010).11

The test statistic relies on a normalized version of the rolling MSFE

introduced in the last section. In particular, the Fluctuation test statistic

is a measure of the local relative forecasting performance of two models

over rolling windows of data and re-scaled by an asymptotic variance

FOOSt,m = σ̂−1m−1/2

j=t+m/2∑
j=t−m/2

(ε̂headlinet+h )2 −
j=t+m/2∑
j=t−m/2

(ε̂coret+h )2

 , (3.3)

where σ̂−1 is a Heteroskedasticity and Autocorrelation Consistent (HAC)

estimator of the asymptotic variance.12 I consider the following bandwith

estimator (Newey and West, 1987) for the asymptotic variance

σ̂2 =

q(P )−1∑
i=−q(P )+1

(1− | i
q(P ) |)
P

T∑
j=R+h

((ε̂headj )2 − (ε̂corej )2)((ε̂headj−i )2 − (ε̂corej−i )2),

(3.4)

where the bandwidth q(P ) is q(P ) = P 1/4.

The null hypothesis of the test is that the two models’ forecasting

performance is equal at each point in time, i.e.

H0 : E((ε̂headlinet )2 − (ε̂corej )2)) = 0, t = R+ h, ..., T. (3.5)

Giacomini and Rossi (2010) show that the asymptotic distribution

of the Fluctuation test under the H0 can be approximated by functional

Brownian motion. Moreover, they also provide critical values for various

11They developed a second test; the One-time Reversal test. This test can be
employed to test for an exact break date. In contrast, the Fluctuation test uses local
losses and suggests a time period for the change in relative performance. On the
other hand, the former test is less applicable in the context of multiple break dates.

12The asymptotic variance is σ = var(P−1/2 ∑T
j=R+h((ε̂headlinej )2 − (ε̂corej )2))

where P is the sample used for forecasting, i.e., P = T −R.
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significance levels as well as window and sample sizes.13 Following

Rossi and Sekhposyan (2010), I chose the test statistic to represent

the mid-point of the forecast evaluation window, which implies that

the effective sample size reduces by m/2 observations at the beginning

and end of the sample. Thus, the sample path for the test is t =

R + h + m/2, ..., T − m/2 + 1 where R is the size of the estimation

sample.

The test is implemented by plotting the evolution of local losses

together with critical values. If local losses are outside the bands

indicated by the critical values, this can be interpreted as one model

outperforming the other. In our specification, positive relative local losses

indicate that core performs better. Thus, if the path of the Fluctuation

test crosses the upper bound, this reads that core outperforms headline

at some point around this time. If the path crosses the lower bound,

then one can conclude that the headline model forecasts better. Note

that due to the nature of the test displaying normalized averages of

the relative performance over a window m, it is not possible to infer

the exact timing of a change in forecasting performance but only an

indication – which is more or less precise given the choice of m (hitherto,

in our case ten years).14 Finally, it is worth noting that the applicability

of the Fluctuation test relies on i) stationarity assumptions (no high

persistence in the local losses, e.g., unit roots) and ii) global covariance

stationarity (no breaks in the variance of MSFE).

13I implemented the test using Giacomini and White (2006)’s framework where
the losses depend on estimated in-sample parameters and do not need a correction
for parameter error. The latter’s requirement is the use of a rolling estimation with a
fixed window size to produce the out-of-sample forecasts which I will implement.

14If the interest is to identify the exact timing of a break date, it is advisable
to use the one-time reversal of Giacomini and Rossi (2010) which, however, is not
applicable in the present case since the later evidence will indicate multiple instead
of just one break date.
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3.3.2 Core Predicts Better Only in the Middle Part of the Sample

In this section, I report results on the Fluctuation test to study the

relative predictive ability of core and headline inflation to forecast U.S.

medium term inflation by considering different measures of medium

term inflation and the inflation rate itself. As measures of core inflation,

I consider exclusion indices, i.e., inflation indices that exclude food and

energy prices. As the baseline case, I will consider inflation over the

next 36 months – i.e. h = 36 in equation (3.1) – as measure of medium

term inflation.

Figure 3.3: Fluctuation Test: Medium Term Inflation

Note: Fluctuation Test with 36m medium term inflation. Fluctuation test statistic,
calculated as (standardized) difference between MSFE of the headline inflation
and MSFE of the core model calculated over rolling windows (m = 100), across
different specifications for core inflation and equation (3.1). Red dashed line shows
the fluctuation test’s one sided critical value at 10%.

Figure 3.3 reports empirical evidence based on tests of equal pre-

dictive ability on average over the sample period, starting in 1977:2

and ending in 2011:6 – except for PPI inflation for which the available
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sample is shorter15 and thus the rolling normalized rMSFEs start in

1989:2. For each panel, the graph shows the Fluctuation test statistic

(solid blue line), which is the normalized rMSFE differences over time,

together with the two-sided critical values at 10% (red dashed lines).

Positive values of the test statistic indicate that the model with core

inflation has higher forecast accuracy than the model with headline

inflation.

Panel A focuses on consumer price inflation (CPI). By inspection

of the path of the test statistic, there is compelling empirical evidence

that there is strong time variation in the relative performance of the

two economic models. This is consistent with the accounts of Stock

and Watson (2003), Faust and Wright (2013), Rossi and Sekhposyan

(2010),16 and Detmeister (2011) that there are instabilities in the relative

forecasting performance of different forecast models. In fact, the visual

evidence points towards two reversals in the evolution of the two models’

relative forecast performance. Next, I want to test if these differences

are statistically significant. Therefore, I test the null hypothesis that

the two models’ relative performance is the same at each point in time.

The alternative is that either model performs better at the 10 percent

significance level. The red dashed line depicts the critical values for

testing the null hypothesis at the 10% level. How can we interpret

the results of the Fluctuation test from the graph? If the normalized

rMSFE differences remain within the bounds, we cannot reject that the

relative forecast performance is the same at all times, i.e., core never

beats headline. Instead, if the path is outside the bounds, the relative

predictive ability did not stay the same over time.

Panel A suggests that there have been broadly three periods over

time. At the beginning of the sample and until the end of the 1980s,

15While headline PPI is available from 1947:4, BLS only started reporting an
exclusion index for PPI from 1974:1.

16Rossi and Sekhposyan (2010) document that some variables had significant
forecast performance in the early 1980s which subsequently disappeared.
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core performs worse than headline inflation. This can be seen from the

negative normalized rMSFE. Moreover, in at least three instances, the

test statistic is below the negative boundary line. In the second period,

which broadly goes from the end of the 1980s until the beginning of

the 2000s, the normalized rMSFE turns positive and exceeds the upper

boundary line, indicating that the relative forecasting performance of

the two economic models has reversed. Eventually, since the beginning

of the 2000s, the rMSFE does not exceed the critical values. Thus,

the performance of core CPI is not statistically significantly different

from that of headline. In summary, the empirical evidence suggests

that core CPI inflation only performed better in the 1990s. Before,

headline CPI had a higher forecast accuracy, and since the beginning

of the 2000s, the relative predictive ability was about the same. In

the interpretation of these results, it is important to note that the

Fluctuation test is a supremum-type test, i.e., it either rejects or does

not reject the hypothesis of equal forecast performance at all times.

Here, the evidence shows that the test rejects the null hypothesis, which

means that the two models do not forecast equally well all the time. In

the interpretation of the three periods, I consider that the test statistic’s

signs of revert over time and get close to zero in recent years.

How do these results compare to using other measures of inflation?

To answer this question, Figure 3.3 also plots the result of the Fluctuation

test for other measures of core inflation. Thus, I will look at personal

consumption expenditure inflation (PCE) next, depicted in Panel B.

The evolution of the two PCE inflation models’ relative predictive ability

is very similar to the one of CPI inflation, except for two observations.

In the first period, the evidence of a superior relative predictive ability

of headline is less evident. The path of the (normalized) rMSFE is only

once outside the negative boundary line and even positive for a short

time at the end of the 1970s. The second observation is that core PCE

has maintained its predictive ability for a shorter period than core CPI

inflation at the beginning of the 2000s.
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Panels C of Figure 3.3 illustrates the relative forecast performances

of core vis-á-vis headline producer price inflation (PPI). The Fluctuation

test’s evolution strongly differs from the others insofar that the relative

performance of core PPI becomes statistically different from headline

PPI only at the end of the 1990s.

Finally, I consider a variation of the model in (3.1) by accounting

for additional explanatory variables according to the Phillips curve

relationship. In favor of such models, Stock and Watson (1999) and

Stock and Watson (2013) found empirical evidence in favor of the Phillips

curve as a forecasting tool by demonstrating that inflation forecasts

produced by the Phillips curve are generally more accurate than forecasts

based on other economic variables. Thus, I add the unemployment gap –

the deviation of the unemployment rate from its natural rate estimate

from the CBO – to the model in (3.1) for both core and headline inflation.

Panel D visualizes the results of a Fluctuation test. The evolution of

rMSFE is very similar to those from CPI and PCE inflation. According

to this panel, core inflation appears to have maintained its predictive

ability since the mid-1980s.

In summary, there is ample evidence that different exclusion indices

as a measure of inflation have higher predictive accuracy than headline

inflation from the end of the 1980s until the beginning of the 2000s.

Outside this time period, there is a reversal in the relative forecast

performance. While headline appears to perform better in the 1970s

and part of the 1980s, there is no statistical difference between both

forecast models after the 2000s. In the next section, I will discuss in

more detail the results of these observations.

3.3.3 Why Did the Forecast Accuracy Vary in the Three Episodes?

The evidence of the section 3.3.2 indicates that there are three subperiods

with distinctively different relative forecast performances of headline

and core inflation. In this section, I will provide a brief discussion on
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the potential economic drivers of these results.

Figure 3.3 suggests that headline inflation was a better predictor

of medium term inflation than core inflation in the 1970s and for most

of the 1980s. Evidence by Mishkin (2007) or Stock and Watson (2007)

shows that the inflation process was highly persistent during the 1970s

and until the mid-1980s. Under those conditions, an increase in inflation

caused the trend component to rise in tandem, and both stayed up. In

these cases, inflation is well approximated by a low-order autoregression.

In fact, this was a time with a high inflation level, mainly driven by

large increases in the price of oil triggered by the Yom Kippur war in 1973

and the Iranian revolution of 1979, respectively. In combination with

more structural economic conditions such as the monetary policy stance,

this resulted in an un-anchoring of trend inflation. Another potential

contributing factor was that the share of oil in consumer expenditures

was larger during this time. In the context of forecasting, non-core

components contained signals about future inflation, and core inflation

failed to pick those up, which lead to the inferior relative forecasting

performance of core in the first part of the sample.

This changed in the second part of the sample, where I reported

evidence of a reversal in relative forecast accuracy. From Figure 3.3 it

becomes apparent that the second time period – from the mid-1980s

until the beginning of the 2000s – is characterized by a falling trend in

inflation and smaller fluctuations around that trend. This is confirmed

by an analysis of Stock and Watson (2007), who estimate a time-varying

trend-cycle model of inflation over time. While the variance in the tran-

sitory component of this model has remained constant, the variability of

the permanent component has sharply decreased since the mid-1980. A

change in inflation then reflected a change in the transitory component

and not in the trend as in the 1970s. In consequence, fluctuations in

inflation tended to fade away more quickly. Hence, inflation persis-

tence was much lower, which explains the relatively poor performance

of autoregressive models, like model (3.1) that uses lags of headline
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inflation. Instead, core inflation predicts better in this time period as

it abstracts from the transitory components and better picks up the

declining permanent component.

There are several possible reasons for the changing properties of the

inflation process that reflect more fundamental changes in the economy

and that are mostly captured in the literature on the great moderation

(e.g., Blanchard and Simon, 2001, or Stock and Watson, 2003). The

most prominent explanation is changes to the conduct of monetary

policy. Central banks adopted inflation targeting strategies and, hence,

committed to maintaining an explicit inflation target. This has possibly

led to an anchoring of inflation expectations (Mishkin, 2007 or Bernanke,

2007) that eventually brought inflation to the target level and led to

smaller reactions of both inflation and output to temporary shocks due to

improvements in the policy trade-off. Other possibilities include changes

to the nature of the structural shocks hitting the economy,17 or changes

in the structure of the real economy (e.g., structural transformation).

Since the 2000s and in recent years, we cannot reject both models’

equal forecast performance. Looking at the rMSFE in Figure 3.2, one

can observe that they are systematically close to zero. At the same time,

overall forecast errors became smaller. In the words of Stock and Watson,

2003, inflation became both easier and harder to predict. This section’s

analysis confirms that it became harder because, since the beginning of

the 2000s, it is more difficult to differentiate between forecast models.

One explanation for this observation may be that inflation anchoring was

completed at the end-1990s. The estimated persistent components in

Mishkin, 2007 or Stock and Watson, 2007 had been decreasing until the

end of the 1990s and remained mostly stable since then. The anchoring

of inflation expectations led to a stabilization of trend inflation and hence

a decline in inflation persistence. With inflation expectations anchored,

a given shock to inflation – demand, commodity, exchange-rate – will

17This might be reflected by the smaller volatility of food and energy inflation in
this period in Figure 3.3.
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have a smaller effect on expected inflation and, thus, on trend inflation.

Under such conditions, an inflationary shock – like a substantial rise in

energy prices – is less likely to spill into expected inflation and, hence,

trend inflation.

The role of inflation expectations has become even more important

since central banks have started to use more forward guidance explicitly –

through formal committee statements – or implicitly — through speeches

and testimony by its members. Campbell et al. (2012) and Campbell et al.

(2016) show that this was done long before the financial crisis. Therefore,

in such an environment, a better measure of underlying inflation is

inflation expectations. This hypothesis is confirmed by Faust and

Wright (2013), who perform a horse-race among a large set of traditional

and more recent forecasting methods, and find that judgemental survey

forecasts – e.g., Blue Chip survey, survey of professional forecasters, or

FED staff’s Greenbook forecasts – perform best.

Another set of explanations for the behavior of forecasts in recent

years is centered around the Lucas-critique. If the central bank uses

a core measure to forecast inflation and successfully controls inflation,

the core measure should lose its predictive ability. In this case, the best

predictor of inflation will again be the target of the central bank (Det-

meister, 2011, Rowe, 2011). As Blinder and Reis (2005) and Bernanke

(2010) report, there was indeed a shift towards core inflation. At the

beginning of the 2000s, the FED replaced CPI, first, with headline PCE,

and, then, added core PCE. However, the assumptions surrounding this

critique are strong and, thus, it is usually ignored by the core inflation

literature.

A final observation is that headline and core might have become

more similar in recent years. While the previous explanations rested

on the premise that there is less to predict in medium term inflation in

recent years, another possibility is that the differences in the information

of both inflation rates have declined. Looking at the composition of PCE

inflation, it becomes evident that the share of non-core components
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in the aggregate index has declined. While the PCE share of core

components in the 1960s was 74.78%, it has increased to 86.96% in the

2010s. However, the evidence in Figure 3.3 suggests that despite this

decline, headline and core displayed different patterns with extended

divergences between both rates, mainly due to an increase in the volatility

of non-core components.

3.4 forecasting performance of alternative

measures of core inflation

In the first part of this paper, I have focused on one class of core

inflation measures: exclusion indices. Exclusion indices attribute volatil-

ity in headline inflation to a subset of sectors (food and energy) and

permanently exclude them. However, there are many ways to mea-

sure underlying inflation, and in this section, I will look at two sets of

promising alternative measures of core inflation. The first set of core

measures is temporary exclusion (central tendency statistical measures)

indices, which by means of statistical methods, choose which of the

items are to be excluded on a monthly basis. The second class includes

frequency-based approaches that filter out the transitory component

using averaging.

For each of these alternative measures, I will first study the relative

forecasting performance of the alternative measures to headline inflation.

Afterwards, I will follow more recent policy papers and compare the

relative forecasting performance of exclusion indices in comparison to

the alternative measures of core inflation.

3.4.1 Temporary Exclusion Indices

The earliest measures of underlying inflation were exclusion indices.

They build on the idea to identify those items which are the source of

excess volatility in headline. They are then constructed by creating
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a new price index that excludes those items. The works of Bryan

and Pike (1991), Bryan and Cecchetti (1994), and Dolmas (2005) have

shifted the focus to the idea that extensive price changes in a few items

can cause the excess volatility in headline and that those items might

not be the very same throughout history. Following this idea, a core

measure is then constructed by removing the items with the smallest

and largest price changes each month. Notable examples for the U.S.

include two measures published by the FRB of Cleveland (i) 16-percent

trimmed-mean CPI inflation rate (Trimmed CPI, henceforth) and (ii)

Median CPI (Median CPI, henceforth) and one from the Dallas FED (iii)

trimmed-mean PCE inflation rate (Trimmed PCE). The trimmed-mean

excludes fixed proportions of mass from the lower and upper tails of

the distribution of item-level price changes in each period. In detail,

the trimmed CPI uses symmetric trimming proportions of 8% from the

lower and 8% from the upper tail. The median CPI picks the item

whose expenditure weight is in the 50th percentile of the price change

distribution. In contrast, the trimmed PCE uses asymmetric trimming

proportions; in its calculation 24%, of the mass from the lower tail and

31 % from the upper tail is trimmed.

A number of papers (Dolmas and Koenig, 2019 or Luciani and Trezzi,

2019) have compared the relative performance of these core measures to

exclusion indices. They focused on a series of characteristics besides their

predictive ability for underlying inflation, including reducing volatility

or the size of revisions. The consensus in these studies is that neither

measure clearly dominates classical exclusion indices in a forecasting

sense. In the following analysis, I will show that this result arises from

the time-varying relative forecast performance of those measures.

Alternative Measures Perform Similarly. In the first exercise,

I want to compare these alternative measures’ forecast accuracy to

headline inflation. For this purpose, I will redo the exercise of Section

3.3, where the only difference is that now I will use one of the three
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previous core inflation measures (i)-(iii) as a predictive variable instead

of an exclusion index. Then εcoret+h will represent the forecast error from

these models. Thus, positive values of the local losses of equation (3.3)

will indicate that the respective alternative core measure performs better

than headline inflation in forecasting medium term inflation. Another

difference is that the sample period reduces since the alternative core

measures are available for shorter timespans.18 Thus, the respective

time paths of rMSFE are 1998:1 - 2011:6 for the two CPI measures and

1991:12 - 2011:6 for trimmed PCE inflation.

Figure 3.4: Fluctuation Test: Alternative Core Inflation Measures

Note: Fluctuation Test of other core inflation measures vis-á-vis headline inflation
with 36 months medium term inflation. Fluctuation test statistic, calculated as
(standardized) difference between MSFE of the headline inflation and MSFE of the
core model calculated over rolling windows (m = 120). Red dashed line shows the
Fluctuation test’s two sided critical value at 10%.

Figure 3.4 reports the result of the fluctuation test for the three

alternative core inflation measures. The first two panels — A and

B – display the results for trimmed and median CPI, and Panel C

for trimmed PCE. The shorter timespan prevents an evaluation of

18E.g., the specific disaggregation used for trimmed PCE is only available from
1977:1, and, hence, trimmed PCE starts in this year.
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predictive accuracy in the 1970s and 1980s, where according to the last

section, headline inflation is expected to perform better. Focusing on

the second sample period (the 1990s and early 2000s), Figure 3.4 shows

that alternative core measures perform better than headline inflation.

The rMSFE is positive, indicating that forecast errors using headline

inflation as a predictor are larger than forecast models with core inflation.

Additionally, the test statistic exceeds the upper bound, suggesting that

the null hypothesis of equal performance of the two respective models

can be rejected. Similarly as before, the reversal in forecast accuracy

appears to be earlier for PCE inflation (beginning of the 2000s) than

for CPI inflation (mid-2000s). The likely determinant of this difference

is the different treatment of house prices. Overall, the results of this

episode are in line with those from exclusion indices.

While the results for the alternative core CPI inflation measures

in the third subsample look like those for the CPI exclusion index

(CPIExFE), trimmed PCE becomes less accurate than headline infla-

tion. Around the mid-2000s, there is a reversal in forecast accuracy

of trimmed and median CPI. The (standardized) rMSFEs both turn

negative. Statistically, however, we cannot reject that the alternative

measures’ forecast performance is different to headline CPI inflation,

given that the (standardized) local losses are within the two bounds. In

contrast, trimmed PCE inflation shows a briefly interrupted reversal at

the beginning of the 2000s. Moreover, trimmed PCE forecasts medium

term inflation worse than headline inflation at the end of the 2000s as

indicated by the Fluctuation test statistic, which not only turns negative

but also breaks through the lower bound. The reversal occurred around

the Great Recession and extended up until the recent time period. This

is in contrast to exclusion core inflation in Panel B of Figure 3.3, which

never performs significantly worse than headline inflation. Does this

imply that exclusion core is a better predictor of medium term inflation

than trimmed PCE in recent years?
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Predictive Accuracy of Various Measures of Core Inflation

Varies Strongly Over Time. To answer which measure of core

inflation is a better predictor of medium term inflation, I will compare

the forecast performances of the alternative measures of core inflation to

core exclusion indices. This means that I compare each of the previous

three core measures to the respective exclusion index instead of headline

inflation. Note that this is a different exercise with potentially different

results than merely comparing the Figures 3.3 and 3.4. Forecast models

using different core measures might have the same accuracy as headline

inflation, but there could still be one model that performs better than

the other.

Why should we expect differences between the two core indices? As

discussed in the last subsection, there are essential differences in the

construction of exclusion and temporary exclusion indices. While the

basket of goods removed from exclusion indices is fixed, the particular

items eliminated from temporary exclusion indices are time-varying.

Excluding the items with the largest price changes is likely to decrease

volatility, but it might also eliminate the signals about future inflationary

pressures these items contain. Massive changes in prices can still affect

medium term inflation, either if they are not temporary or if they affect

other items indirectly.

To test the relative predictive accuracy of trimmed and median

inflation to inflation, excluding food and energy, I modify the Fluctuation

test statistic from the previous section

FOOSt,m = σ̂−1m−1/2

j=t+m/2∑
j=t−m/2

(ε̂excoret+h )2 −
j=t+m/2∑
j=t−m/2

(ε̂othercoret+h )2

 , (3.6)

where ε̂excoret+h and ε̂othercoret+h denote the pseudo out-of-sample forecast

errors of model (3.1) with exclusion core indices or temporary exclusion

indices, respectively. They are again constructed as the difference

between the realization of medium term inflation πt,t+h and its forecasted
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value using the model in (3.1) with either trimmed or median inflation

(π̂t+h|othercore) or inflation excluding food and energy (π̂t+h|excore) as a

predictor.

Figure 3.5: Fluctuation Test: Alternative Core vs. Exclusion Indices

Note: Fluctuation Test alternative core inflation measures vis-á-vis exclusion indices.
Fluctuation test statistic, calculated as (standardized) difference between MSFE
of the excusion core inflation and MSFE of the alternative core models calculated
over rolling windows (m = 120), across different specifications for core inflation and
equation (3.1). Red dashed line shows the Fluctuation test’s two sided critical value
at 10%.

Figure 3.5 reports the results of the Fluctuation tests. Positive

values of the (standardized) rMSFEs indicate that other core measures

perform better than the standard exclusion index. Due to the shorter

sample period, the timespan of the path of rMSFEs is the same as in

the previous section: 1998:1 - 2011:6 for the two core CPI measures and

1991:12 - 2011:6 for trimmed PCE inflation.

Let me first focus on the results in Panels A and B on CPI inflation.

The evidence suggests strong time-variation in the relative forecast

performances with similar trimmed CPI and medium CPI performances.

In the early 2000s, standard core measures had higher forecast accuracy.

There was a reversal in relative forecast performance in the mid-2000s.
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At this time, alternative measures performed better than exclusion

core as indicated by the rMSFE exceeding the upper bound. Since

the mid-2000s, however, all core CPI models have a similar forecast

accuracy.

The first two observations are interesting insofar as all CPI core

measures forecasted better than headline CPI from the beginning until

the middle of the 2000s. Nevertheless, it appears that while CPIEXFE

was able to pick up inflationary pressures around 2000 (housing prices),

trimmed and median CPI inflation outperformed around 2005 (run-up

of commodity prices). This suggests that there is no core measure that

is strictly preferable to the other due to this time-variation. Instead, it

might be useful to follow a set of core measures since it is impossible to

predict which measure will do best in real-time.

When looking at PCE inflation (Panel C), the empirical patterns

are different, but the conclusions appear to be in the same vein. In

the first third of the sample and until the beginning of the 2000s,

trimmed PCE inflation predicted significantly better than PCEExFE.

In the middle of the sample, the difference in both models’ forecast

performance was not significant. With the onset of the Great Recession,

standard exclusion PCE inflation forecasted better as indicated by the

negative rMSFE. However, the difference in forecast performance is not

statistically significant because the test statistic is within the bounds in

recent years.

In recent years, the other core measures seem to perform worse

than standard exclusion indices. This last observation is consistent

with Ehrmann et al. (2018), who report results of Diebold and Mariano

(1995) tests in subsamples from 2000-2018 for Europe. They find that

the performance of other core measures worsened since 2007. They show

that the reported RSME increased more than those of exclusion core

for the same period.

To summarize, there is no clear answer to which core inflation

measure is the best one. According to the analysis performed in this

160



3.4. Forecasting Performance of Alternative Measures of Core Inflation

paper, the reason is that the relative forecast performances varied

greatly over time. This explains why different analyses found different or

ambiguous answers to the question. In reality, different measures perform

better at different times. Since it is impossible to know which one is

currently better in real-time, it is advisable to follow many indicators

simultaneously. Another possibility could be to construct a composite

index (see Cristadoro et al., 2005). However, in this section, I have shown

that many core measures do not outperform headline inflation in recent

years. Thus, combining them might not help to predict inflationary

pressures. In the next section, I want to look at another alternative way

of constructing a measure of core inflation.

3.4.2 Average Inflation Indices

If you want to predict inflation over the next three years,

you really don’t want to look just at inflation over the past

3 months or 6 months; you really want to look at inflation

over the past three years. And if for whatever reason you

want to use a shorter historical period [...] you should use

core inflation, not headline. (Krugman, 2011)

Another way to reduce volatility in the hope of decreasing noise, and,

hence, another measure of underlying inflation is to increase sample

selection size. This means looking at average inflation over the past 36

months instead of month-to-month changes. The underlying idea is that

both transitory and persistent components drive the headline inflation.

By taking averages of past inflation, one applies a one-sided moving

average filter that filters out higher frequency fluctuations and should

leave us with the low-frequency trend related to underlying inflation.19

19Alternative approaches are smoothed versions of headline inflation such as
exponential smoothing (Cogley, 2002) or unobserved components-stochastic volatility
(UC-SV) models (Stock and Watson, 2007). Another alternative is component-
smoothed inflation measures (Gillitzer et al., 2006) such as the supercore measure of
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By construction, this moving average places less weight on the current

observation, which might result in a lagging indicator. This section

concerns whether taking longer samples is indeed a good alternative to

other core inflation measures.

A number of studies have explored the performance of averages of

inflation measures (Blinder and Reis, 2005, Detmeister, 2011, or Bryan

and Meyer, 2011). Among those, the consensus is that inflation rates

for almost all measures predict future inflation better when averaged

over a considerable number of months. To reconcile these findings in a

framework accounting for instabilities, I perform Fluctuation tests on

different sizes of sample intervals. In contrast to previous studies, I find

that average inflation is not always a good measure of medium term

inflation. On the one hand, averaging does reduce not only volatility

but also eliminates signals. On the other hand, the relative forecasting

performance of different sample lengths highly depends on the forecasting

model considered. Therefore, the evidence suggests caveats in the use

of averaging as a measure of core inflation.

To analyze different sample lengths of headline inflation, I compare

year-on-year PCE headline inflation as a benchmark to both more low

frequency and higher frequency PCE inflation rates. As forecasting

model I will consider a modified version of equation (3.1) which follows

Blinder and Reis (2005) and Crone et al. (2013).20 Specifically, I allow

for different sampling intervals in

πt,t+h = α+ θxt−b,t + βyt + εt, (3.7)

where πt,t+h is a measure of medium term inflation, xt−b,t is a predictive

variable over the previous b months and α is a constant. Specifically,

underlying inflation of the ECB. It filters out the transitory component of components
using econometric techniques. In particular, it selects those items that are estimated
to co-move more with the business cycle.

20Model (3.1) is no longer adequate because considering polynomials of lagged
average inflation would create filtered inflation itself.
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h is the forecasting horizon, and b is the length of trend inflation. As

predictors, I compare year-over-year PCE headline inflation to average

PCE inflation for different sampling intervals, b. The variable yt is a

potential control variable. I will consider either (i) no control variable or

(ii) the unemployment gap to consider a more structural Phillips curve

model.

Accordingly, the test statistic of the Fluctuation test is modified in

a similar way, comparing year-on-year headline (b = 12) to different

average inflation rates

FOOSt,m = σ̂−1m−1/2

j=t+m/2∑
j=t−m/2

(ε̂averaget+h )2 −
j=t+m/2∑
j=t−m/2

(ε̂headline12
t+h )2

 ,

(3.8)

where ε̂averaget+h and ε̂headline12
t+h are the forecast errors using either average

inflation over different horizons, b, or year-on-year inflation as a predictor.

Positive values of the test statistic represent a higher forecast accuracy

of average inflation compared to the alternative measure.

A Longer Sample Interval Reduces Volatility But Also Signals.

The idea of averaging is to reduce the influence of transitory fluctuations.

Comparing the standard deviations of year-on-year headline (2.73), year-

on-year core (2.47), and average headline inflation over the past 36

months (2.42) shows that the latter series successfully reduces volatility

even more than core inflation.

Looking at the results from the Fluctuation tests, the outlook for

improving predictive accuracy by averaging is rather pessimistic. Figure

3.6 displays the evidence for models with a different size of the coefficient

b and without additional control variables. A positive rMSFE implies

that the respective average inflation rate performs better than year-

on-year inflation. In contrast, if the test statistic breaks through the

lower bound, year-on-year headline inflation predicts better. Panels B
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Figure 3.6: Comparison of Average Inflation Rates

Note: Fluctuation Test comparing different average PCE inflation rates to
year-on-year PCE inflation. Fluctuation test statistic, calculated as (standardized)
difference between MSFE of the headline inflation and MSFE of the core model
calculated over rolling windows (m = 120), across different specifications of equation
(3.7). Red dashed line shows the Fluctuation test’s two sided critical value at 10%.

to D show that averaging inflation improves predictive accuracy only at

the beginning of the sample and in the early 2000s. The improvement

is larger and statistically significant for larger averages, especially for

average inflation over the past four years. In the same vein, inflation

over the past six months (b = 6) appears to be performing better than

year-on-year inflation for most of the time.

The Performance Depends on the Model. To study if this result

is model-specific, I investigate a more structural model. To do so, I

add as an additional control variable, yt, the unemployment gap to

equation (3.7). In this case, the forecast model resembles a Phillips

curve relationship with the unemployment gap as a measure of economic

activity.

Figure 3.7 illustrates the relative performance of different average
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Figure 3.7: Comparison of Average Inflation Rates in PC Framework

Note: Fluctuation Test comparing different average PCE inflation rates to
year-on-year PCE inflation. Fluctuation test statistic, calculated as (standardized)
difference between MSFE of the headline inflation and MSFE of the core model
calculated over rolling windows (m = 120), across different specifications of equation
(3.7). Red dashed line shows the Fluctuation test’s two sided critical value at 10%.

PCE inflation rates in this case. There is strong evidence of a non-

linear relationship between the selected sample length and forecast

performance. While six month and four-year average PCE inflation

show better relative forecast performance than year-on-year inflation, the

evidence for the other sample selection lengths is less strong. Irrespective

of the horizon, the relationship breaks down at the beginning of the

2000s. Similar to all previous results, it appears that different measures

of core inflation perform similarly in recent years.

To summarize, the evidence of this exercise does not unambiguously

confirm the hypothesis that longer sample periods provide better fore-

casts. Nevertheless, there are indeed periods and models when it might

improve accuracy to take averages over longer periods. Notwithstanding,

averaging comes with significant drawbacks. Those measures put less
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weight on the most recent monthly or quarterly data, assuming that it is

so noisy that it has nothing useful to contribute to measuring underlying

inflation. The results suggest that there are vital signals about future

inflationary trends in recent data missed by averaging. The differences

in results as compared to other studies originate from the consideration

of instabilities and out-of-sample analysis.

3.5 do non-core inflation components add in-

formation?

In the previous sections, I have studied if and when alternative core

inflation measures have a forecasting edge towards headline inflation.

The evidence suggests that this is indeed the case but only in the

middle of the sample. This raises the question if the excluded items

may contain important information about future inflationary pressures.

In this case, one might have reduced volatility, but at the expense of

eliminating signals. To test this possibility, this section revisits the

empirical evidence on the informational content of Food and Energy

prices.

Why should non-core components add not only noise but also infor-

mation? First, the idea of core inflation is to exclude the most volatile

items from headline inflation. Food and energy inflation indeed tend

to be more volatile than core inflation, as illustrated by Figure 3.8.

However, as outlined by Dolmas and Koenig (2019), not all items among

the food and energy prices are the most volatile items. Their study

reports that about 14 percent of food and energy items (by expenditure

share) are less volatile than other core items. This means that we

might involuntarily remove signals in the construction of core inflation

and likewise allow some excess volatility to remain in the index. This

concern becomes even more alarming when we contemplate that (i) the

expenditure shares and (ii) volatilities of those items are time-varying.
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Figure 3.8: Inflation Comparison: Non-Core Components of Inflation

Note: This figure compares the core and non-core components of PCE inflation. The
figure considers year-on-year changes in core PCE inflation (solid blue line), food
PCE inflation (red dashed) line and energy inflation (yellow dashed line).

Second, the purpose of measures of core inflation is to exclude transitory

fluctuations (”blips”) in inflation. However, the implicit presumption is

that food and energy inflation do not have a lasting impact on inflation.

However, we have seen historical episodes where it can be argued that

non-core inflation affected inflationary pressures/medium term inflation,

e.g., during the oil prices shocks in the 1970s or during the run-up in

global commodity prices in the mid-2000s. Both of these time periods

can be seen in Figure 3.8. Another way in which non-core inflation

might have a lasting effect on inflation is via indirect effects. Higher

food and energy prices can influence other items in the consumer basket

by affecting their production costs (production networks) or by changing

inflation expectations (Coibion and Gorodnichenko, 2015). Accordingly,

excluding non-core items might reduce the timeliness and reduce the

reliability of signals of core inflation.

To assess whether non-core components add information to core
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forecasts, I consider the following regression:

πt,t+h − πcoret+h|t = δ + βiπ
i
t+h|t + βCx

core
t+h|t + ηt+h, (3.9)

where πt,t+h is actual medium term inflation and πit+h|t are forecasts

generated from the model in equation (3.1) using either core, non-core,

food or energy inflation as predictor, xt,t−12. Forecasts from non-core

inflation are useful beyond forecasts from core inflation if βi is different

from zero. One can also think about this regression as testing whether

non-core forecasts add any marginal value to those forecasts derived from

core inflation. This type of regression is usually used when testing the

rationality of a forecast model (West and McCracken, 1998, or Mincer

and Zarnowitz, 1969). Alterations of this framework are otherwise

employed in studies that discuss the informational advantage of central

banks with respect to private sector forecasts (Romer and Romer, 2000

or Hoesch et al., 2020).

In order to evaluate whether forecasts from non-core inflation and

its components, πit+h|t, where i = {noncore, food, energy}, provide ad-

ditional information to core inflation’s forecasts, I need to test if βi 6= 0.

Following the same reasoning as in Section 3.2, I want the test to be ro-

bust to the presence of possible time-variation in βi. Therefore, I use the

Fluctuation Rationality test proposed by Rossi and Sekhposyan (2016).

The procedure is the following: A series of forecasts of medium term

inflation using core and non-core components,πit+h|t, and the forecast

model (3.1) is generated. Then, equation (3.9) is estimated in rolling

windows of size 180 months (m = 180) with estimates, β̂i. For each

rolling window estimate, I construct Wald-test statistics (Wi) of the null

hypothesis of no information benefit, i.e., βi = 0. The parameters are

estimated by OLS, and HAC-robust standard errors (Newey and West,

1987) with a bandwidth equal to P 1/4 are constructed. The Fluctuation

rationality test is a supremum test. Hence, the test statistic to test

the information benefit, ti , is the largest absolute value of the test
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statistic across all rolling windows. I use the tabulated critical values for

model-free forecasts reported in Rossi and Sekhposyan (2016).21 The

time path of test statistics covers the time period from 1979:6-2008:6.

Figure 3.9: Information Advantage Test: PCE

Note: Fluctuation Rationality Test of equation (3.9). The figure reports the test
statistic W (Wald test) for the null hypothesis βi 6= 0 based on m = 180 at the 10%
significance level.

Figure 3.9 shows the result of the information-advantage test for

PCE inflation. In detail, it plots the Fluctuation-type test statistic

(Wi) together with 5% critical values. The date on the horizontal axis

provides information about the timing of the breakdowns by reflecting

the center point of each rolling window.

I will focus first on the results of non-core inflation depicted in the

two top panels. The evidence on the information advantage of non-core

inflation complements the observations about forecast breakdowns of

core inflation. Panel A of Figure 3.9 shows that non-core inflation added

21As discussed in Rossi and Sekhposyan (2016), using rolling window estimation
with fixed window size guarantees that this assumption is satisfied, and the critical
values in Table II can be used.
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information to forecasts from core inflation in two time periods: (i)

the beginning of the 1980s and (ii) around the 2000s. Both of these

episodes are consistent with reversals in the forecast performance of core

inflation. While the first can be linked to the period of high inflation in

the 1970s, the second is related to the run-up of commodity prices in

the mid-2000s. During that period, the increase was primarily driven by

rapid economic growth in Asia. Rising global demand for commodities

caused their prices to rise and put intense upward pressures on headline

inflation. Interestingly, there appears to be no important information

from non-core inflation in recent years.

In Panels C and D, I decompose the signaling channel of non-core

inflation into its two components – (i) food (black dashed line) and (ii)

energy inflation (red dashed line). The evidence points to the same

two time periods where we can reject the hypothesis of no information

benefit from food and energy inflation. Food and energy inflation

provide no additional information in times when core inflation forecast

performed well. The information Fluctuation test statistic is the largest

absolute value of the test statistics across the rolling windows. For food

inflation, this occurred in the 1980s.22 In contrast, the signaling effect

was strongest in the mid-2000s. Next, I turn to the coefficients. Both

decrease over time and even turn negative. Negative coefficients likely

reflect that core underpredicted headline inflation during the mid-2000s

when increasing oil prices increased the aggregate inflation rate.

In summary, non-core components contain important information

about future medium term inflation that can complement forecast from

core inflation. This is particularly true in times when the relative

forecast accuracy of core inflation becomes smaller. The evidence points

to two periods where this happened. In these times, commodity prices

had a lasting impact on medium term inflation. Thus, it would have

22Baumeister and Kilian (2014) show that there appears to be no evidence that
oil price shocks can be associated with non-negligible increases in U.S. retail food
prices in recent years.
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yielded forecast benefits to include them in forecasting medium term

inflation. This implies that there can be signals in non-core components,

and removing them from core inflation might be detrimental. In recent

years, however, the information in food and energy appears not to be

the reason for the relative forecast performance of core inflation.

3.6 robustness analysis

In this Section, I test the robustness of the results from the previous

Sections concerning different dimensions. In detail, I will look at the

measure of medium term inflation, the choice of different parameters

such as window length or estimation sample, or alternative forecasting

models. The analysis of this section will focus on the results for PCE

inflation, which are depicted in Panel B of Figure 3.3.

Other Measures of Medium Term Inflation. To address concerns

about the correct measurement of medium term inflation, I consider

alternative series for underlying inflation. Panel A of Figure 3.10 illus-

trates results for two alternatives: (i) inflation over the next 48 months,

πt,t+48, (solid blue line) and (ii) year-on-next-year inflation in 24 months,

πt+24,t+36, (red dashed line). From the evidence in Figure 3.10 it is clear

that our main conclusions do not depend on the specific measure of

medium term inflation.

Parameter Selection. I examine the robustness of the results when

changing the size of the estimation sample, R, and the window size

for forecast evaluation, m. In choosing these two, we face a trade-off

between obtaining good estimates of the loss differences (larger m and

R) and receiving a longer sample of relative rMSFEs to observe the

evolution of relative forecast performance (smaller m and R). Panels

B and C of Figure 3.10 compare our main results to different choices

of m and R respectively. From Panel B, it is apparent that the main
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Figure 3.10: Fluctuation Test: Robustness

Note: This Figure shows various robustness checks to the Fluctuation Test results of
Section 3.3. In each Panel, the solid blue line shows the Fluctuation test statistic of
Panel B in Figure 3.3. Whenever critical values vary, I plot those of the alternative
model.

qualitative results remain unchanged when the window for the local

losses is changed to 50, 100, or 150. The same is true when I choose

different estimation sample sizes, e.g., 60 or 180.

Lag Length. The empirical results in Section 3.3 were based on a

forecast model where the lag length was selected via a BIC criterion over

the full sample period. The lag length was kept constant to minimize the

impact of lag selection on forecasting performance for the comparison.

I deal with this concern in two ways. First, I allow for a recursive
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lag-length selection, i.e., the lag length to be chosen each time the model

is re-estimated. Second, I will abstract from lags of the explanatory

variables in the forecasting model (3.1) and, instead, follow the forecast

models in Blinder and Reis (2005) and Crone et al. (2013)

πt,t+h = α+ θxt−12,t + εt, (3.10)

where πt,t+h is the measure of medium term inflation and xt−12,t is

year-on-year change in the explanatory variable. Figure 3.10 shows that

the results remain basically the same when the lag length is re-optimized

each time the model is re-estimated.

Adding Lagged Headline Inflation. It is crucial to consider the

robustness of the results to including autoregressive headline inflation

terms. Stock and Watson (2007) reports that inflation in the 1970s was

well described by an AR(1) process and Faust and Wright (2013) docu-

ment that only surveys of inflation expectations can beat autoregressive

models in forecasting headline inflation. Thus, I consider an alternative

forecasting regression that includes either lagged headline inflation or

lagged medium term inflation in

πt,t+h = α+ θ(L)xt−12,t + βπt−l,t + εt, t = 1, 2, ...T, (3.11)

where πt−l,t is a measure of lagged inflation. I consider (i) lagged headline

inflation, l = 1, or (ii) lagged medium term inflation, l = 36.

It is evident from Panel E of Figure 3.10 that our results are robust

to adding autoregressive terms either in headline inflation (black dashed

line) or medium term headline inflation (black dotted line).

Inflation Expectations. The most widely used model to predict

inflation is based on the New-Keynesian Phillips curve. In this form,

inflation is not only a function of economic activity but also of future

inflation. To circumvent problems with the availability – most measures
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such as Michigan survey of households expectations or survey of profes-

sional forecaster are quarterly and start in 1984– we follow Blanchard

(2016) or Ball and Mazumder (2011) and consider backward-looking

inflation expectations. In detail, I augment the forecast model in (3.1)

adding inflation expectations, πet ,

πt,t+h = α+ θxt−12,t + βπet + εt, (3.12)

where πet = 0.25(πt−1 + πt−2 + πt−3 + πt−4). This has two consequences.

First, the model will better track the declining trend inflation rate in the

1980s and 1990s. Second, the model can flexibly account for increased

inflation anchoring via changes in the window estimate β̂. Panel F of

Figure 3.10 shows the results of the relative forecast performance of NK

Phillips curves for PCE inflation. The evidence from this exercise does

not qualitatively differ from our main results.

Marginal Forecast Value of Core Inflation. In his critique in the

use of core inflation, Bullard (2011) argues that univariate models are

the wrong metric to assess the usefulness of core inflation. Instead, the

author argues that one should look at the marginal predictive value of

core inflation in forecasting medium term inflation. For this purpose,

one should consider a sophisticated model of inflation and then add

core inflation. If the marginal value of adding core inflation is positive,

then core inflation has some special information about future underlying

inflation.

To address this concern, I apply a forecast rationality test similar

to the Fluctuation-type test we performed in Section 3.5. In detail, I

test if forecasts from core inflation can provide additional information

to a forecasting model based on headline inflation. To assess whether

core inflation adds marginal value to the forecasts based on headline

inflation, consider the following regression:

πt+h − πHt+h|t = δ + βcπ
C
t+h|t + βhπ

H
t+h|t + ηt+h, (3.13)
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where πHt+h|t and πCt+h|t are the forecasts from model (3.1)with either

headline or core inflation as predictive variable. Core forecasts have a

marginal predictive value if βc 6= 0. To test this type of questions in the

presence of instabilities, I use the Fluctuation Rationality test proposed

by Rossi and Sekhposyan (2016). The procedure and parameter choice

is the same as in Section 3.5.

Figure 3.11: Test for Marginal Predictive Value of Core Inflation

Note: Fluctuation Rationality test of equation (3.13). This Figure reports the test
statistic W for the null hypothesis βc 6= 0 based on m = 120 at the 10% significance
level.

Figure 3.11 sheds light on the marginal predictive value of core

inflation. The Figure plots the Fluctuation-type test statistics over time,

together with the critical values at the 10% level. It shows that there

was indeed an information advantage of core inflation in the 1990s which,

subsequently, deteriorated in the mid-2000s. However, the results of

this exercise are not surprising because, under specific conditions, this

test collapses to the Fluctuation test that compares the loss differences

between each model separately.
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3.7 conclusion

This paper investigates the relative forecasting performance of different

measures of core inflation over time. There are two central conclusions.

First, I documented crucial instabilities in the forecast performance of

core inflation measures. Second, the evidence in this study shows that

no single measure of core inflation is the best predictor of underlying

inflation in the U.S. over the whole history. Instead, I document insta-

bilities in forecasting medium term inflation. I show that different core

inflation indices perform better than autoregressive headline inflation

models from the mid-1980s until the beginning of the 2000s. However, all

considered models perform equally well in recent years. I leave for future

work to investigate why different measures have no forecast advantage

towards headline inflation in recent years.

When comparing the performance of different core inflation measures,

I do not find that one measure of core dominates the others. Instead, I

document that the relative performance is highly time-varying. In fact,

they might offer different perspectives and insights that jointly help

to understand developments in underlying inflation. As individually

different core measures may not consistently give very precise or reliable

signals, this calls for monitoring a wide range of measures of underlying

inflation or constructing a composite index (Cristadoro et al., 2005, or

Granziera and Sekhposyan, 2019).
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