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Abstract

Critical Real-Time Embedded Systems (CRTES) are the subset of embed-
ded systems with timing constraints whose miss behavior can endanger
human lives or expensive equipment. To provide evidence of correctness,
CRTES are designed, implemented and deployed in adherence to safety
standards and certification regulations. To that end, CRTES follow strict
Validation & Verification (V&V) procedures of their functional and non-
functional properties. One of the most important non-functional proper-
ties is timing, which builds on computing the worst-case execution time of
tasks and a schedule of tasks so that the overall system timing behavior
is correct. However, the use of more complex hardware and software to
satisfy CRTES unprecedented performance requirements, heavily increase
the cost of V&V.

For timing V&V, statistical techniques, like Measurement-Based Prob-
abilistic Timing Analysis (MBPTA) help to address the complexity of
hardware and software in CRTES. To that end, they benefit from ran-
domization of temporal behavior at the hardware level. In this line, Time-
Randomized Processors (TRP) contain timing V&V costs by breaking
systematic pathological behaviors and enabling MBPTA applicability.

In the context of TRP, this thesis shows that hardware and software de-
signs incorporating randomization can not only successfully tackle the
existing timing analysis problem, but also provide helpful properties to
other emerging non-functional metrics key in CRTES like reliability, secu-
rity and energy. For reliability, we show that TRP are naturally resilient
against hardware aging effects and voltage noise and we add up to such
resilience by improving its design. Also, TRP hinders security threats and
intrusions by breaking and mangling the deterministic association between
memory mapping and access time and we develop a framework for secure
automotive operation. Finally for energy, we introduce a taxonomy to
guide the future challenges for worst-case energy estimation and make the
first steps towards the use of MBPTA-like methodology to address worst-
case energy estimation under the presence of process variation. Moreover
this thesis also shows that together with the application of MBPTA-like
methodology, TRP also naturally expose and break pathological energy
consumption patterns and help in validating and accounting instantaneous
peak power demands. In summary, this thesis pioneers several aspects of
the use of TRP to address the emerging challenges that CRTES face in
the reliability, security and energy domains.
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Chapter 1

Introduction

“Safety? Where the fuck’s that? Her aunt in the Eyrie is dead. Her
mother’s dead. Her father’s dead. Her brother’s dead. Winterfell is a
pile of rubble. There is no safety, you dumb bitch.”

— Sandor Clegane

Historically, the use of computers has been restricted to desktop systems and large
platforms such as mainframes and supercomputers. As the chip manufacturing and
integration technology improved over the years, computing systems have benefited
from lighter and smaller form factors which allowed embedding them into devices
that required spatial mobility and small integration sizes. Embedded Systems can
be found in a variety of devices, from simple household appliances to Electronic
Control Unit (ECU) inside cars. The special properties of Embedded Systems have
made them more numerous than traditional computing platforms and their growth in
market share [1] and applicability is projected to increase even more in the following
years.

The unprecedented growth in popularity, coupled with their low cost and a higher
reliability than their mechanical counterparts, has lead Embedded Systems to be
integrated into devices that perform functionalities where highly valuable material
or even lives are at stake. Space, avionics, automotive and railway systems are just
some examples of critical domains where Embedded Systems are used to perform
critical functionalities while increasing the integration scale of the system. Those are
generally referred to as Critical-Real Time Embedded Systems (CRTES).

1.1 A Changing Paradigm in CRTES

Safety standards guide the planning, design, development and validation processes
that CRTES manufacturers should follow to attain certification®. By following this

L Certification is the process of determining the safety goals of the system, specifying the safety
requirements, designing the system in accordance with those requirements, verifying the system
against those requirements, and validating that those requirements, and ultimately also the safety
goals, are met during the integration of the different items of the system [2]. Certification is issued by
legally stated certification authorities and allows the operation and deployment of certain products.
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guidance, CRTES designers can easily provide proof and guarantee CRTES correct-
ness to certification authorities. In the case of CRTES, manufacturers and system
integrators need to provide evidence that both functional and non-functional safety
requirements are met. For instance, certification standards like ISO-26262 [3] for
automotive or DO-178C [4] for avionics provide the guidelines and recommendations
that vehicular systems should follow to comply with safety requirements. These guar-
antees are provided by thorough Validation and Verification (V&V).

Software timing is a long-studied non-functional property of CRTES that must
be taken into account during the V&V process. Ensuring timing correctness requires
gathering evidence that software tasks are completed before their deadlines and there-
fore that the system is able to guarantee a feasible schedule. According to the system
under analysis, different levels of criticality might imply varying degrees of evidence
of correctness that must be met according to the specific properties defined in the
standard.

In general, V&V is covered with extensive testing campaigns that increase pro-
duction costs due to the involvement of many qualified experts probing and validating
the designs for a high degree of confidence. In some cases the validation process might
even take 50% of the development budget [5].

Up until recently, V&V has been kept under feasible constraints [5] due to the
simplicity of the past CRTES. This past simple CRTES were typically designed as
federated architectures where different software functionalities were kept isolated from
each other in its own ECU [6].

However, recently CRTES are experiencing important changes due to the increas-
ing demand for more advanced functionalities that pushes manufacturers to gain
the competitive edge in the market. Concepts like Integrated Modular Avionics
(IMA) [7, 8] were among the first steps of the CRTES evolution by proposing the
move from federated architectures to more integrated ones and involving the use of
shared resources to diminish the costs of CRTES. Nowadays, new software applica-
tions are driving CRTES evolution. Artificial Intelligence (AI) algorithms have gained
momentum thanks to their improvements in speed and accuracy. This technologi-
cal breakthrough becomes fundamental to applications such as Autonomous Driving
(AD), currently one of the most important growing industry paradigms [9, 10], and
forces further changes to CRTES as its software becomes more demanding.

Emerging CRTES software applications (e.g., AD) demand performance well be-
yond what typical CRTES processors can offer. In the case of Al, the amount of data
and computation is scaled to unprecedented levels never seen in the embedded do-
main and requires complex high performance processors and hardware features. Some
industrial projections even indicate that the compute performance needed in vehicles
will increase in 100x in the following years [11]. This evidences that performance will
be of paramount importance for future CRTES.

In order to provide high computing performance, modern systems adopt a plethora
of high performance hardware features such as multi-cores, hardware accelerators and
other hardware optimizations. For instance, cache memories allow data to be accessed
much faster by keeping a subset of the main memory closer to the processor. In the
same way, multi-cores integrate the performance of multiple processors by sharing

4
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some common arbitrated structure to perform multiple tasks at once without fully
replicating all resources. All of these changes have a substantial impact in the V&V
process.

The benefit of introducing high performance hardware features comes at the ex-
pense of more complexity. Among these features, we find shared functional units,
speculation schemes, caches, and many more elements that increase system com-
plexity. This increase in complexity hampers V&V of functional and non-functional
metrics and induces a cost increase that in some cases might even make unfeasible
the adoption of new technology.

The introduction of this new hardware high-performance features brings a whole
set of new properties that makes other non-functional aspects arise in importance.
Besides hampering timing V&V, modern and future CRTES based on complex hard-
ware and software challenge the achievement of other requirements like reliability,
security and energy.

1.2 Emerging Non-functional Requirements

Non-functional metrics comprise all those aspects of the system design that lay outside
the correctness of the (functional) computational operation. In the case of CRTES,
extensive V&V is also required for all those metrics. Four main non-functional metrics
are covered in this thesis: Software timing (introduced in previous sections), hardware
reliability, security and energy.

1.2.1 Software Timing

In CRTES, typically the major non-functional concern has been to provide guarantees
that tasks execute in their budgeted amount of time and that they are able to meet
their deadlines. Therefore, accuracy and tightness are of paramount importance when
analyzing the execution time of tasks. To that end, during system planning and design
phase the Worst-Case Execution Time (WCET) is estimated and used to adequately
size the platforms and provide feasible schedules. The process of deriving WCET's
relies on the ability of experts to precisely exert control and account for the worst
possible states and instruction sequences that a processor might exhibit at deployment
time. Up until now, either static analysis techniques, through their processor models,
or measurement-based techniques, through their engineering margin factors? [12] were
enough to derive WCETsSs feasibly.

However, these currently existing techniques might have a hard time coping with
all the different states in which a machine can be, due to the introduction of new com-
plex high performance hardware features which require even more in-depth knowledge
of the processor and increase timing uncertainty. Furthermore, manufacturers usu-
ally protect their Intellectual Property (IP) by hiding and obfuscating details of the

2A common typical margin factor would be 20% for a single core processor in domains like
avionics or space.
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architecture in manuals which greatly jeopardizes the possibility of understanding all
the internals of their platforms [13].

This scenario calls for new timing analysis techniques that are able to handle
the exponential growth of processor states and provide trustworthy timing estimates
without delivering too much pessimism.

1.2.2 Hardware Reliability

Shrinking the device size allows the integration of more transistors, wires and vias
in the same space boosting performance by allowing more cores on the same pack-
age, higher operating frequencies, lower power dissipation and other improvements.
Despite all the advantages, shrinking devices makes processors less reliable. For in-
stance, shrinking the device size has a negative impact in the aging of the devices
which directly clashes with the needs of upcoming CRTES [14, 15, 16]. Some of the
main sources of failure due to aging relate to degradation of (1) different parts of
the transistor caused due to Hot-Carrier Injection (HCI), Bias Transistor Instability
(BTI), either negative (NBTI) or positive (PBTI) and Time-Dependent Dielectric
Breakdown (TDDB); (2) different parts of wires due to electromigration and stress
migration; and (3) the pins and packaging itself due to thermal cycling.

The expansion in the use of smaller technologies is leading them to be deployed
in systems for which their expected lifetime is more extent than typical consumer de-
vices [17, 18]. Personal desktop and laptop computers or smartphones have relatively
low expected lifetime in the 5 to 10 years time frame. On the other hand CRTES
deployed in cars or satellites are expected to last for much longer time spans [19].

In some domains, CRTES are deployed in environments that constantly stress
the reliability capabilities of their hardware. This is the case for avionics and space,
where the presence of radiation and cosmic rays is more prevalent than at surface
level. CRTES in this kind of domains are more likely to be affected by Single-Event
Upset (SEU) and experience soft-errors caused by the aforementioned phenomena.
In the presence of critical funcionality, measures must be put in place to prevent
catastrofic failures due to the presence of SEU.

Further more, reliability failures do not only affect the functional correctness of
the device since in the context of fault-tolerant processors, failures will impact proces-
sors performance and therefore the WCET further compromising the timing analysis
process [20, 21, 22]. For instance caches are processor features that improve mem-
ory access time. Over time, hardware components of caches degrade and some bits
might turn unusable diminishing the effective size of the cache. This size reduction
translates into less capacity to store data in the cache and therefore, into more cache
misses which increase the execution time of tasks [23]. Moreover, this timing impact
is arbitrary and potentially inordinate thus being hard to account for. This effect
is an example of how the initial analysis of WCET might be compromised by faults
and hardware reliability as the devices show different behaviors from production to
deployment and until the end of their lifespan.
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1.2.3 Security

Security violations are one of the most important research fields nowadays due to
their impact in society. It is estimated that the cost of information attacks only in the
United States amounted between 57 and 109 billion dollars just in the year 2016 [24].
As society becomes more connected and computerized it is expected to increase even
more as more information and control is exposed to the environment. Additionally,
the security domain turns out to be one of the most challenging, not only because it
demands profound understanding of the mathematics and cryptographic algorithms
involved, but also because of the variety of attack vectors and hidden vulnerabilities
in hardware designs. This specific characteristic unique to the security domain makes
it very hard to predict and evaluate whether systems are secure or not and would
require very complex models for which it is not completely known if the model is
suitable for attacks yet to discover.

Communication is a basic feature of modern computers and CRTES are not an
exception. Communication in vehicles allows information sharing that enables devices
to coordinate and acquire information out of the reach of their sensors. For instance,
Vehicle-to-Vehicle (V2V) communication or swarm intelligence are new concepts aris-
ing in the vehicle domain that will require open communication between vehicles and
the environment [25]. Moreover, the new wireless connection technologies like 5G will
enable Over-the-Air (OTA) software updates of vehicles in order to decrease vehicle
maintenance costs [26, 27]. At the same time, the introduction of the much needed
high performance hardware features often involves the presence of shared resources
and performance improving features. The conjunction of the new connectivity capa-
bilities with the new hardware resources opens the door to new attack vectors and
covert information channels that malicious agents can use to steal information or take
control of CRTES.

In the case of CRTES this problem is aggravated with the context in which such
systems operate. In this domain, users do not only might loose control of their
information, but highly costly equipment and even human lives are at stake if an
attack successfully manages to take control over critical equipment (e.g., vehicles).

1.2.4 Energy

The proliferation of battery-powered Internet of Things (IoT) and power-constrained
devices controlling increasingly critical aspects of human life is relentless in domains
such as health, smart cities, and intelligent transportation systems [28]. The com-
plexity of software running on those devices increases every generation to cover the
demands for more autonomous operation, implementing decision making and data
analysis techniques among others. Handheld devices, which will govern part of the
critical-applications functionality, will also inherit part of application criticality.

In battery-powered devices, energy is one of the most important resources as
battery life is a key element for products’ competitive edge. Analogously, power-
constrained devices cannot exceed specific energy thresholds in short time frames due
to limited power sources (e.g., solar cells in space). Therefore, when the device im-
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plements some type of critical functionality, a new set of energy-related requirements
arises. This emanates from the fact that critical functionality (and in particular the
hardware and software implementing it) has to undergo a stringent V&V process
to show adherence to the prospects in domain-specific standards [29]. With the in-
crease in complexity and performance of new CRTES, energy demands will put more
pressure on the battery capacity making worst-case energy estimation of paramount
importance. Similarly, power dissipation profiles under worst conditions becomes
hard to predict, hence challenging the design for power-constrained devices and their
power delivery networks.

Energy consumption impacts CRTES in many significant ways. For instance,
thermal effects are directly related to the power dissipation of electric devices. Many
CRTES are usually located in confined spaces that difficult air circulation and temper-
ature dissipation and sometimes perform tasks under extreme heat conditions [18, 30].
The weight limitations also place important restrictions on the capabilities of dis-
sipation systems that can be installed, hence the amount of consumed energy by
CRTES places constraints in their design. Additionally, in order to keep temperature
within specific operating ranges, some processors use frequency throttling or might
shut-down some parts of the device. Voltage or frequency scaling during operation
jeopardizes timing analysis done during the design phase leading to manufacturers
disabling those features and further limiting the performance capabilities. All these
implications exacerbate the need for energy and power accounting under the worst
conditions as they need to show adherence to stringent power and energy bounds.

1.3 Summary of Challenges in future CRTES

As computing performance demands rise in CRTES, new hardware and software fea-
tures are introduced to meet such demands. This results in CRTES increased com-
plexity that, in turn, requires more effort to successfully carry out V& V. Historically,
CRTES have been kept very simple to ease in the validation efforts and reduce its sky
rocketing costs [5]. However, in order to keep the competitive edge of their products,
CRTES manufacturers desperately need the high performance provided by advanced
hardware and software. Hence they are faced with the conundrum of providing high
performance while containing V&V costs.

Moreover, CRTES not only require an increase in computing performance, but
also to be integrated with technologies that extend their past capabilities. To appeal
to the future markets and costumers, CRTES manufacturers must integrate demands
like communication and internet connection while providing security against external
threats and at the same time attaining highly reliable and durable devices. Introduc-
ing all these requirements greatly increases the effort needed to validate and verify
CRTES in order to guarantee correct functional and non-functional behavior. Future
CRTES need all these requirements to be tackled at the same time even when some
of them might (initially) be opposed.
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1.4 Time-Randomized Processor Architectures

To approach the need for timing validation, randomization has recently been intro-
duced in CRTES to obtain (probabilistic) timing predictability in complex proces-
sors [31]. Many new processor features introduce new processor states that impact
execution time in arbitrary ways. By introducing randomization the dependence and
relationship between the specific processor states and execution times is broken. The
rationale behind this idea is that injecting randomization into the timing behavior
of hardware resources that exhibit time jitter will give probabilistic properties to
time variability and make the system probabilistically analyzable [32]. By injecting
randomization in certain variable latency hardware features a new class of proces-
sors (Time-Randomized Processors (TRP)) arises, with the capability of effectively
randomizing the execution time of tasks.

Figure 1.1 showcases how access time to memory in TRP is randomized. Caches
are fast memories used to quickly feed data into processors functional units. However,
they only allow a subset of data from main memory to be stored at any given time.
Placement and replacement policies are then implemented to determine which data
should be kept and which data should be evicted. The execution time of tasks is
therefore dependent on the specific placement policy since finding the desired data in
cache (hit) translates into faster access times, while not finding it (miss) translates
into longer execution times. Traditionally, the placement of data is deterministically
determined by the address in memory of the data. Therefore the memory layout
defines deterministically the cache layout, the miss and hit ratio and consequently
the execution time. Different memory layouts have an arbitrary impact in the exe-
cution time. Typically during WCET estimation of each individual functionality the
final memory layout of the integrated system is unknown, hence uncertainty further
hardens WCET estimation . Instead, in a TRP the placement is randomized using a
random seed that can be changed. Now the hit and miss patterns are randomly deter-
mined and vary independently from the memory placement. Therefore, measurements
for a given functionality before integration are probabilistically representative of its
behavior after integration. Figure 1.1 shows how a single static memory mapping
can create multiple different and independent cache memory mappings by the use of
different random seeds and smart placement policies. Different cache mappings will
have different conflicts in cache, exhibiting different execution times for a particular
task and effectively randomizing the execution time of memory accesses. Hence, by
collecting a sufficiently large number of measurements, cache impact in execution
time can be characterized.

By acquiring randomized properties, measurements of tasks’ execution time can
now be treated as independent observations of the complete possible execution time
space [33]. A process of sampling is used then to evaluate possible processor states
through its execution time. Because of the probabilistic nature of the randomized
behavior, execution times will be observed according to a given probability, average
cases will be observed more frequently and extreme cases will have a lower probability
of appearance. Now, if enough observations are gathered, a mathematical argument
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Figure 1.1: Relation between memory layout and cache layout. TRP randomize cache
layouts to explore extreme execution times of tasks. Black tiles show conflicts that create
evictions and misses in different cache layouts.

can be made about having observed extreme events with a certain probability, sim-
ilarly to performing a Monte Carlo experiment. Despite the usefulness of statistical
exploration, the observability of worst cases is limited to the amount of samples.
To develop further guarantees, tools are needed to augment the statistical analysis
and extrapolate the results. Coupling the sampling process with statistical tools like
Extreme Value Theory (EVT) allows end-users to seamlessly derive WCET without
the need of extensive knowledge of the processor and backed up by mathematical
probabilistic guarantees [13]. EVT is a branch of statistics that provides the tools
to extrapolate extreme values from a small amount of samples basically allowing to
extrapolate the execution times that would be observed if millions of samples were
taken by just having thousands of samples. Measurement-Based Probabilistic Tim-
ing Analysis (MBPTA) [34, 33] is the process of applying this specific methodology
which allows to estimate the WCET of a task by injecting randomization into cer-
tain processor features and then sampling and mathematically treating the results.
The manifold advantages that randomization (within MBPTA methodology) provides
with respect to other timing-analysis techniques makes TRP a suitable solution for
providing the much needed high performance without loosing the timing guarantees
that CRTES must provide [35, 36].

1.5 Hypothesis

Despite the suitability of TRP for tackling the software timing problem, new ap-
plications bring other challenges to CRTES such as energy, security and reliability
constrains, but the potential benefits of TRP in solving them remain to be assessed.
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Moreover, the new challenges affecting the non-functional properties of CRTES must
be met simultaneously together with the old ones, even when some are opposite
requirements. For instance, verifying timing predictability usually requires observ-
ability and transparency while providing evidence of security requires obfuscation and
unpredictability to provide protection against attacks. At the same time, providing
performance improvements like shrinking the device size might come at the cost of
diminished reliability.

Improving all metrics is the key to the success of new technologies in a highly de-
manding environment like the CRTES domain. Up until now, randomization has been
successfully used to jointly tackle what initially seemed to be two contradicting princi-
ples, the need for more powerful hardware, and the need for timing predictability [13].
In that case, TRP, by introducing randomization in software timing, simplifies the use
of probabilistic techniques to estimate with high confidence and accuracy the timing
behavior of performance enhancing hardware features that usually exhibit hard to
predict timing variability.

Randomization provides mathematical properties widely exploited in many do-
mains. Randomized events follow distributions, break dependencies and meddle with
repeatability. All these effects can be used to tackle the challenges of CRTES. For
instance, randomized distributions have been widely used in mathematics to predict
patterns that at first instance seem chaotic. Timing and energy models with a large
number of variables, like in complex processors, are daunting and costly to operate
and verify, but by introducing randomization, processor behavior can be modeled in
an easier, more accurate and effective way. Furthermore, randomization also breaks
dependencies and repeatability, properties needed typically to reliably transmit infor-
mation but become undesirable under cases were non-disclosure of the information or
control has to be preserved, like modern CRTES with specific security requirements.
Moreover, decay and degradation are effects much related to usage. Under deter-
ministic operation, these effects are greatly amplified, but when under randomization
schemes random distributions allow for smoother and less acute usage patterns that
can increase lifetime and reliability of devices. Overall, this thesis holds and tries to
verify the hypothesis that injecting randomization in the timing behavior of hardware
resources, not only benefits the already studied non-functional metrics (i.e., timing-
analyzability), but its properties can also be used to impact positively on all the other
non-functional metrics. Therefore, the question we try to address is if randomization
can be used to tackle the challenges posed by the new hardware reliability, security
and energy requirements at the same time in CRTES.

1.6 Contributions

The goal of this thesis is to pioneer in the use and application of TRP for non-
functional requirements outside the timing-analysis for which TRP were initially pro-
posed for. This thesis sets the fundamental knowledge for using TRP as a solution to
tackle the new challenges posed by high performance hardware and software features
on CRTES design, testing, implementation and usage.

11



1. INTRODUCTION

The thesis is presented into three different themes each referring to one of the
non-functional metrics explored, reliability, security and energy. The vastness and
richness of topics inside each of these domains makes unfeasible tackling them to
its completeness so this thesis attacks specific challenges under each theme. The
following sections specify the contributions of this thesis and narrow down which
particular topics of the specified themes the thesis covers.

1.6.1 Reliability

This thesis first tackles the reliability domain, specifically, hardware reliability under
the presence of aging effects. As a first contribution to this theme, we analyze the
impact of a new randomized cache placement policy (Random Modulo) [37] in terms
of HCT [38] aging and BTI [39] for L1 caches as we hypothesize that randomization
will show greater results and leave other effects like electromigration or TDDB for
future work. Our results show that benefits in terms of HCI are meaningful and
can be further improved, whereas BTI gains are very limited. Secondly, we propose
an enhanced randomized cache placement design (Enhanced Random Modulo) to
mitigate HCI aging. Finally, we analyze the impact of an existing randomized cache
policy (Hash Random Placement) in terms of HCI in L2 caches showing that benefits
are already significant. Additionally, we also contribute towards demonstrating the
resilience of TRP against resonant voltage noise by analyzing patterns in the energy
consumption behavior.

1.6.2 Security

In the security domain we focus mainly on a particular type of security intrusions
due to the implications of time-randomization, Cache-Timing Side-Channel Attacks
(SCA) [10] and how a Timing-Analyzable processor can be made resilient against
this kind of threats. We first make an in-depth analysis of the properties required
to enable MBPTA to deal with jittery timing behavior of applications running on
complex hardware. We cover how randomization helps dealing with SCA and de-
scribe the vulnerability of the randomization support for MBPTA to specific SCA.
We proceed by assessing the time predictability of the randomization support for
SCA solutions showing that they fail to meet MBPTA principles. We then propose a
Time-Predictable Secure Cache (TSCache) that provides increased resilience in front
of specific SCA while keeping MBPTA compliance. The TSCache, hence, reconciles
security (robustness against certain SCA) and safety (by adhering to MBPTA princi-
ples to derive reliable timing budgets) in cache design. Finally, with our simulator tool
modeling a commercial automotive processor, we experimentally show the resilience
of our solution against the Bernstein attack [11] while keeping MBPTA compliance.
Other security challenges like Denial of Service (DoS) attacks and other vulnerabilities
are also assessed to how can those be tackled with randomization.
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1.6.3 Energy

The contributions in the energy domain focus on the topic of Worst-Case Energy
Consumption (WCEC) and power modeling/estimation and validation. Our first
contribution is a taxonomy of the factors affecting dynamic and static energy con-
sumption and hence, WCEC estimation. We describe the difficulties in deriving tight
WCEC estimates using model and measurement-based approaches. We capitalize
on how Process, Aging, Voltage and Temperature (PAVT) variations cause jitter on
power with bearing consequences on WCEC estimation. Overall, we settle the ground
on the challenges for practical and reliable WCEC estimation and aim at becoming
a reference for future works on WCEC estimation.

Our second contribution builds on the previous concepts to propose a model to
derive tight WCEC estimates in the presence of Process Variation (PV), which em-
anate from the fact that PV causes energy consumption variations and, therefore,
different WCEC across different nominally-identical processor units. Our methodol-
ogy, performs the entire estimation on a single processor unit, while delivering WCEC
estimates that hold for all processor units and simplify the V&V process of CRTES.

As third contribution, we tackle pathological systematic worst-case power dissipa-
tion patterns that may remain hidden during testing and occur during operation. We
show how time-deterministic behavior of processors challenges, in general, identifying
whether power measurements in the test campaigns expose relevant power peaks. We
demonstrate how the use of TRP contributes to exposing feasible power peaks and
to the mitigation of pathological power dissipation effects, and, therefore, enables the
ability to provide safer and tighter guarantees.

1.7 Structure of the Thesis

The contents of each of the chapters is as follows:

e Chapter 2 presents background concepts and terminology of the CRTES domain
and timing analysis. Also, some background on hardware reliability, security
and energy is also presented together with the description of available random-
ized hardware solutions for MBPTA.

e Chapter 3 explains the experimental setup, methodology and the tools we use
to quantify and evaluate the thesis’ hypothesis.

e Chapter 4 tackles reliability in CRTES. It introduces improvements to existing
randomized hardware designs to improve CRTES lifetime and assess the impact
of TRP in the reliability domain.

e Chapter 5 describes how protection can be achieved against security intrusions
and what role do TRP play in securing CRTES. It also demonstrates TRP
effectiveness when protecting CRTES with a real malicious attack use case.

e Chapter 6 opens the energy theme by surveying and analyzing the current
state of Worst-Case Energy Consumption estimation, stating the challenges of
obtaining safe WCEC and proposing a taxonomy for energy estimation methods.
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e Chapter 7 proposes a novel methodology for obtaining safe WCEC estimates
under the presence of PV that appear during processor manufacturing.

e Chapter 8 proposes the use of TRP to discover, account and hinder pathological
power peaks in CRTES processors. First we explain how with randomized
hardware events of high power demand can be observed while with deterministic
it would require a significant effort and expert knowledge to expose them. We
follow up with a demonstration of how these pathological scenarios are naturally
mitigated by randomized architectures.

e Chapter 9 presents the final conclusions of the thesis, defines its impact and
exposes directions for future work.
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Chapter 2

Background

“It is of great advantage to the student of any subject to read the
original memoirs on that subject, for science is always most completely
assimilated when it is in the nascent state.”

— James Clerk Maxwell

2.1 Timing Analysis

Safety standards provide guidance to Critical-Real Time Embedded Systems (CRTES)
industry on the evidence to provide on systems’ correct behavior to pass the certifica-
tion process. To that end they define the Validation and Verification (V&V) process
that CRTES must undergo on their functional and non-functional behaviors. Software
Timing is the main non-functional requirement to be satisfied by CRTES. The soft-
ware timing analysis process aims to provide guarantees on estimated execution times
so tasks in CRTES can meet their deadlines and produce feasible schedules. Timing
analysis builds primarily on the ability to derive trustworthy Worst-Case Execution
Time (WCET) estimates and scheduling. This activity is hampered as the execution
time of a task, and therefore its WCET, depends on many factors that range from the
number of instructions being executed and the input data to the underlying hardware
microarchitecture. This vastness in parameter diversity directly impacts the execu-
tion time, which eventually leads to jitter (variation) in execution times, even when
running the same exact binary. For instance, in the case of microarchitectural impact,
cache memories rely on temporal and spatial locality of data to provide performance
improvements, which means that successive runs will benefit from data reuse, hence
reducing their execution time. In this line, Figure 2.1 illustrates the common result
from repeatedly measuring the execution time of a program executed in the same
hardware.

In Figure 2.1 we can identify three distinct relevant points. From lowest to highest
execution time, first we have the Maximum Observed Execution Time (MOET), this
defines the highest water mark and it is obtained through an extensive testing cam-
paign with multiple inputs and system states. Following MOET is the real WCET.
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Figure 2.1: Nomenclature of possible execution times of a given task. Repeatedly
sampling the execution time of a task will show a distribution of observed execution times.
The actual distribution is generally unknown, but the goal of computing the WCET
estimate is to obtain an upper-bound to the worst-case execution time.

In an ideal scenario, which implies total knowledge of the software and hardware,
experts could make the MOET match the real WCET by managing inputs and pro-
cessor states so the worst possible case for that particular task and system is exposed.
Finally, we have the estimated WCET. The main goal of a timing analysis technique
is to approximate the estimated WCET to the real WCET, but due to uncertainty
a safety margin is usually applied. The safety margin width defines the overesti-
mation of the timing analysis technique and should be as tight as possible without
compromising safety. The consequence of an overestimated WCET is an overdesigned
system that greatly increases the procurement and integration costs of CRTES. Over-
all, the main challenges lay on providing evidence that the derived WCET estimate
is trustworthy while minimizing overestimation.

To tackle this problem, the research in this field has led to a myriad of techniques
[32, 42] that cope with such a vast problem. We proceed to provide a brief descrip-
tion of the general taxonomy of methodologies and techniques that govern the Timing
Analysis field of research (see Figure 2.2). In that regard, we can separate the Tim-
ing Analysis techniques in two different categories: Deterministic and Probabilistic
methodologies.

2.1.1 Deterministic Timing Analysis

Deterministic methods seek for a single WCET value that holds as an upper-bound
on any possible existing execution time.

e Static-Deterministic Timing Analysis (SDTA) [413]. SDTA techniques de-
rive WCET estimates without executing the program under analysis and employ
instead timing models of the hardware and software. Applying SDTA not only
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Figure 2.2: Timing analysis techniques taxonomy map. Mainly classified into
probabilistic and deterministic or measurement-based and model-based techniques,
although hybrid versions exist in both axes.

requires analysis of the program binary but also of the hardware architecture in
which it will be executed. The basic methodology involves applying techniques
like Implicit Path Enumeration Technique (IPET) [44] to determine worst cases
of program paths, and use the acquired knowledge together with detailed timing
architectural models to derive a single WCET. The trustworthiness of SDTA
techniques resides on the validity of the underlying model used to compute the
latency (or cost) of each instruction and processor event. As a downside, despite
its maturity, as processor complexity rises, providing evidence of the reliability
of static timing models is becoming increasingly difficult [13] and even causes
an slow-down in the process of integrating greater performance in CRTES. Ad-
ditionally, problems of tightness to leverage hardware and software complexity
also arise.

e Measurement-Based Deterministic Timing Analysis (MBDTA) [45].
MBDTA techniques are widely used in industry due to its simplicity and low
cost. The basic working principle is to collect measurements under stressing
conditions of the task under analysis and apply a safety margin to the MOET
to cover unknowns. In MBDTA techniques, the responsibility for control of
state and input conditions is left to the end user. Being able to derive the
correct analysis conditions that upper-bound conditions at operation is the key
aspect for obtaining a reliable measurement-based WCET. This approach is also
hindered by the increasing processor complexity, due to all the new processor
states that must be taken into account.
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Figure 2.3: Results from different WCET estimation techniques. a) shows results from
SDTA. b) depicts probabilistic estimates of execution time from the application of
MBPTA. Note that the probability axis in b) shows the complementary cumulative

density function of execution times.

e Hybrid-Deterministic Timing Analysis (HDTA) [46]. Hybrid techniques
use a combination of the previously mentioned methods. Some involve the use
of MBDTA to derive architectural details like latency when they are not pub-
licly available to later use those with a static analysis tool. Consequently, this
techniques suffer from a combination of the problems that SDTA and MBDTA
approaches have.

2.1.2 Probabilistic Timing Analysis

Probabilistic methods [45, 32, 42], differently to deterministic ones, provide a Prob-
abilistic Worst-Case Execution Time (pWCET) which materializes in a probability
distribution of WCET. The final result of applying PTA is an association of WCET
with a probability of exceeding such WCET. This allows us to reason on tighter
WCET with an accountable safety compromise. Figure 2.3 illustrates the results
from applying different WCET estimation techniques.

e Static-Probabilistic Timing Analysis (SPTA) [47]. SPTA uses a discrete
spectrum of probabilities of events with associated latencies. Then, for a given
task it combines them using proper convolution operations to finally derive a
discrete distribution of WCET with attached probabilities.

e Measurement-Based Probabilistic Timing Analysis (MBPTA) [34, 418].
MBPTA involves the use of measurements together with statistical analysis
methods that allows the end user to derive a probabilistic curve of pWCET.
The advantage of this method resides in bringing together the lowered costs of
Measurement-Based analysis and the scientific support to the safety margin by
using mathematically backed statistical analysis tools. The focus of this work
revolves around the MBPTA technique and the randomization solutions that
sprew from it.
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e Hybrid-Probabilistic Timing Analysis (HPTA) [19]. Similarly to the
previous hybrid variant, HPTA combine probabilistic measurement-based and
static techniques.

2.2 MBPTA Methodology and Requirements

MBPTA [34, 33, 50, 51] is a probabilistic framework to derive probabilistic timing
bounds for real-time tasks. MBPTA builds upon two central elements: a platform
with specific support to simplify reliable statistical analysis, and a statistical WCET
estimation tool. MBPTA requires that execution time measurements during the anal-
ysis phase of the system are representative and collected under conditions that reliably
upper-bound the system behavior during operation [34, 33]. For that purpose, some
components are time-randomized to relieve the end user from having to exercise any
low-level control on the platform timing, and instead let randomization expose corner
cases.

Time-Randomized Processors (TRP) facilitate the use of MBPTA in complex
processor architectures. To use the MBPTA methodology, the platform under analysis
must be able to control the sources of time jitter. This can be done in two ways:

e Time Upper-bounding. This solution consists in forcing hardware resources
to always operate at maximum latency, therefore effectively always providing
execution time upper-bound. One example of this would be forcing the floating-
point unit to operate at maximum latency independently of its input values.

e Randomization. This approach consists in transforming the sources of time
jitter into a random information source. For instance, by randomizing cache
interference, memory access latency will show a randomized behavior.

Note that MBPTA can be applied regardless of the strategy adopted since both
of them provide control over the jittery sources.

In that regard, the purpose of randomization, and therefore TRP, is to improve
representativeness of the measurements. For example, if a task’s execution time is
measured 1,000 times on a deterministic platform but each execution maintains the
same memory layout, memory cache interference and evictions will not be properly
accounted for since the layout may change arbitrarily across software integration
steps. In contrast, operating in a randomized environment allows us to test and
deploy one different layout each execution, therefore increasing the representativeness
of the testing campaign [52, 53].

This is of paramount importance since it allows the end user to detach from the
need of controlling all the dependent states and relationships between hardware fea-
tures of a processor. Instead randomization automatically mangles the processor’s
states for the user isolating the processor from deterministic and pathological combi-
nations of events. For example, in a deterministic architecture, certain cache layouts
and access patters could cause programs to exhibit WCET that can be up to 20 times
worse than the average execution time [54]. Discovering this specific situation might
be an overwhelming task specially with complex architectures and applications.
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2.2.1 Statistical Analysis

MBPTA builds upon Extreme Value Theory (EVT) [55] to predict the probabilities
of high execution times (probabilistic WCET, pWCET, estimation). EVT is a branch
of statistics used to predict extreme (rare) events in fields like finance (major stock
market incidences) and hydrology (river floods). EVT tags its outcomes (events) with
a probability with which the event is predicted to occur. To that end, EVT models
the largest (tail) values measured from the phenomenon under analysis. Based on an
execution time sample, an appropriate use of EVT [34, 33, 50] allows delivering reliable
exceedance probability bounds for high execution times, including values above those
observed.

The key advantage of the use of EVT, as part of MBPTA, is that it is a black-
box method that can be applied on any type of sample provided that it complies
with certain statistical requirements and has in fact been used in other domains
such hydrological, meteorological or financial. However, the obtained distribution is
relevant only for the system sampled. In the case of embedded systems, this implies
that execution conditions used during analysis match (or upper-bound) those during
operation, which is a too demanding constraint in the general case, especially for
increasingly complex hardware and software. The use of time-randomization (in the
case of timing) allows guaranteeing representativeness of analysis conditions with
respect to operation ones, and thus, simplifies obtaining reliable pWCET estimates.

For the Measurement-Based Probabilistic Timing Analysis using Coefficient of
Variation (MBPTA-CV) implementation [33] in particular, MBPTA application is a
straight-forward process. In the following list we enumerate and explain the necessary
steps to obtain a pWCET through MBPTA.

1. Perform task executions: First, each task is executed in the MBPTA-
compliant platform. A platform can be made MBPTA-compliant by guarantee-
ing that timing jittery sources are either upper-bounded during analysis time or
by forcing a probabilistic behavior (i.e., randomization) on them during analysis
and operation [13, 32]. The execution time of the task under analysis is sam-
pled repeatedly. MBPTA-CV imposes the use of a sample sufficiently large so
that the number of high values is sufficient for a very tight pWCET estimation
(typically between few hundreds and few thousands of measurements). Usually
the most common number is around 1,000 executions. However,this number
actually depends on the application and the degree of confidence that must be
reached.

2. Check for statistical representativeness: One of the most important re-
quirements that MBPTA must comply with, is that data gathered must be
extracted from a representative scenario. In order for WCET estimates to hold,
validators must enforce that conditions during analysis (while development is
going on) upper-bound those at operation (once the system is deployed). This
is necessary since the statistical treatment that will later be applied only acts as
a black-box without considering specific parameters of the observations taken.
One example of topics falling into this concern is program path coverage [56].
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MBPTA-CV also tests whether the pWCET can be reliably upper-bounded
with an exponential distribution. This occurs for any distribution with a maxi-
mum value, even if such value is unknown (i.e., a maximum exists even if we do
not know it). This property holds for the distribution sampled, since real-time
programs have a finite duration, and so a maximum value in terms of cycles.
Hence, the sample of such execution time distribution also meets the statistical
property that allows upper-bounding it with an exponential tail.

3. Check for Independence and Identical Distribution (i.i.d.): To obtain
guarantees that statistical treatment can be used on a set of measurements,
those must be first tested for appropriate statistical treatment condition. This
means that execution time measurements must have two key properties. In
the case of EVT, these are, that the values are independent! among them, and
also that they are identically distributed?. This can be easily tested by using
statistical tools like the Kolmogorov-Smirnov test [57] or the Ljung-Box test [58]
that assess the independence or the identical distribution properties of a sample.
Typically this holds probabilistically for any MBPTA-compliant platform and
hence, samples converge statistically to these properties.

4. Apply Extreme Value Theory (EVT): Finally, with i.i.d. tests passed,
EVT can be applied to model the extreme execution times and therefore provide
a pWCET curve. MBPTA-CV delivers a pWCET fitting an EVT distribution
with shape parameter & = 0, thus with exponential slope. The pWCET curve
represents the highest probability with which one run of a task exceeds a time
bound. Figure 2.4 (right) shows an illustrative pWCET distribution for which
the probability of the task exceeding 7 ms is below 107! per run. MBPTA is
well-settled with industrial case studies performed in automotive, avionics, and
space [59, 60, 61].

2.3 Processor and Code Architectures favoring Ran-
domization

Current cutting-edge processors are comprised of a myriad of components aimed
towards improving average performance. In the context of CRTES, safety and pre-
dictability are of more importance than high-performance, hence CRTES proces-
sors are simplified versions of their high-performance relatives. For instance, high-
performance processors include features that allow to speculatively execute instruc-
tions ahead of time, branch prediction or out-of-order pipelines. Instead, CRTES
processors contain a much smaller subset of high-performance features due to high-
performance designs proving too complex to verify for critical applications. In the

ITwo events are deemed independent if the occurrence of one does not alter the occurrence
probability of the other.

2Two events are deemed identically distributed if they can be modeled after the same probability
distribution.
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Figure 2.4: MBPTA process and example of pWCET curve. In this example, the task
is expected to take more than 7 ms at most once every 10'° runs.

context of this thesis (and CRTES in general) we focus mainly on bus connected
multi-cores, with in-order execution, no branch prediction or static branch prediction
and a low count number of processor stages. Regarding the interconnect component,
efforts to analyze the Network-on-Chip (NoC) for CRTES and provide support for
many-cores have been made in other studies [62]. In this thesis though, we will focus
on single-core and multi-core processors with few cores.

Randomization has been recently applied to provide guaranteed performance with-
out loss of predictability by randomizing the timing behavior of processors [63]. There
are two main high-performance hardware resources that have been enabled for its use
in CRTES with time-randomization, these are: caches and shared resource arbitration
policies [32]. In the case of caches, randomization can be applied either at software
or hardware level. For arbitration policies, hardware solutions have tackled arbiters
of shared buses, which enables the possibility to obtain WCET of multi-core archi-
tectures.

2.3.1 Software Randomization

Software solutions to provide MBPTA compliance have emerged to enable the use
of MBPTA with Commercial Off-The-Shelf (COTS) processors. Due to the long
development and adoption cycles when designing hardware, software randomization
solutions ease in the adoption of MBPTA as timing analysis technique. In that re-
gard two different approaches exists, Dynamic Software Randomization (DSR) [64]
and Static Software Randomization [65]. The idea behind software solutions is to
generate randomized cache layouts by rearranging and changing the placement of
program sections in a random fashion. DSR performs a dynamic allocation of code
and data segments at runtime during program initialization. Static Software Ran-
domization (SSR) emerges as a solution to safety standards like ISO-26262 [3] which
for example, discourages the use of dynamic objects and pointers. Instead, SSR cre-
ates random layouts between different binaries of the same program, hence cache
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layout randomization is effectively done by executing different binaries rather than
during program initialization. Without loss of generality this thesis focuses on the
hardware applicability of randomization. We refer the interested reader to [64, 65, 66]
for further details on software randomization.

2.3.2 Time-Randomized Caches

In the real-time domain, time-randomized caches were initially proposed to provide
probabilistic guarantees [67] that tasks do not suffer pathological cache miss pat-
terns that cause a big impact in performance and are hard to capture during test-
ing [68, 52, 53]. The first proposals on random caches presented non-parametric
random caches [69, 70] mainly focused towards attaining better average performance.
Parametric random placement [31, 71, 37] soon appeared to provide representative-
ness [32], increase timing predictability and ease the applicability of MBPTA. These
properties of time-randomized caches are attained by the fact that cache conflicts be-
come independent of the actual addresses (memory placement) where code and data
are placed unlike traditional placement and replacement cache policies.

e Cache Random Replacement: The replacement mechanism decides, within
a given cache set, which cache lines stay and which cache lines must be evicted
to make room for new recently accessed data. In contrast with other determin-
istic replacement techniques, random replacement provides independence from
previous evictions and an equal probability for data to be evicted from the cache
set.

e Cache Random Placement: Random placement procures the randomization
of data placement across sets. In contrast to random replacement, which works
within a given cache set, cache lines are allocated in sets using their memory
address so they can later be retrieved when accessed. To reconcile the recovery
of data with non-deterministic placement, a random number (random seed) is
combined using a hash function with the memory address to randomize the
destination set. Hence, every time the random seed is changed a different set is
chosen even if the memory layout (addresses) is the same. To maintain cache
coherency, every time the random seed changes, a cache flush must be performed
as placed data from previous random seeds (synonyms) will remain scattered
across other cache sets. In the case this data is modified at some point, future
random seeds might make accesses use old cache lines with the outdated values
if no flush is performed on a random seed change.

Figure 2.5 illustrates the generic architecture for time-randomized caches. The
research in random caches has been successful in proving its feasibility for the real-
time domain. Time-randomized cache designs have been evaluated with space case
studies [35] and implemented in a Register-Transfer Level (RTL) prototype of a 4-core
LEON3 processor [72]. While performance on top of time-randomized caches cannot
be regarded as higher or lower than that on top of conventional caches with mod-
ulo placement and Least Recently Used (LRU) replacement in the general case [30],
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Figure 2.5: Block diagram of a generic time-randomized cache. Address bits are
combined with a random seed to access a random set in cache.
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Figure 2.6: Schematic of the hash logic of hRP.

they have been shown to provide execution times less than 2% higher than those
on conventional caches on average [37]. Note that conventional caches are intended
for optimizing average performance while time-randomized ones are intended to pro-
vide low pWCET. In this thesis we mainly work with two different implementations
of randomized cache placement designs, Hash-Based Random Placement (hRP) and
Random Modulo (RM) [37].

2.3.2.1 Hash-Based Random Placement (hRP)

hRP randomly maps memory addresses in the same cache-line boundary to a cache set
based on a random seed, which is changed across program runs. ARP is implemented
using a hash function that rotates address bits based on a random seed (RII) and
RII bits based on some address bits. Finally, all bits of those rotations are XORed
to obtain the cache set index, as shown in Figure 2.6. This provides independence
of the address mapping to sets, hence memory layouts during analysis provide repre-
sentativeness of memory layouts during operation. While this provides the properties
needed by MBPTA, it may produce bad placements in terms of miss rates: even
if a program accesses few cache lines, those lines may be randomly placed into the
same cache set. Conversely, deterministic modulo (M) placement maps consecutive
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Figure 2.7: Example of a 4-bit Benes network.

memory lines into consecutive sets, thus avoiding this type of conflicts. However,
conflicts across lines are not random and strictly depend on memory location. Since
memory location of objects during operation is hard to be controlled and mimicked
at analysis time, conflicts at analysis are unlikely to represent those during operation,
hence thwarting the use of MBPTA.

2.3.2.2 Random Modulo (RM)

RM aims at getting the best of hRP and M worlds. RM randomizes cache placement
within cache way boundaries (also using a random seed) so that, as long as cache
ways do not exceed memory page size (typical case for L1 caches), consecutive cache
lines within cache way boundaries cannot conflict among them by construction, as
it is the case for deterministic modulo placement. This is achieved by randomizing
placement by randomly permuting the index bits of the memory address therefore
taking advantage of data locality (data packed close together with higher chances of
being accessed won’t contend for the same cache sets). Still, conflicts among lines
beyond cache way boundaries are random. Hence, average performance is close to that
of deterministic modulo placement and worst-case placements deliver performance
close to the average performance [37].

Random modulo is implemented by means of a Benes network where each node
allows input signals go through or commute based on control signals (see Figure 2.7).
In the case of random modulo, input bits (those coming from the left in the figure) are
those address bits used as index in regular modulo placement, and control bits (one
control bit per box, not shown in the figure) are produced by XORing conveniently
the tag bits® and a random seed that is changed across program executions. In this
way a given memory line is randomly placed in cache, such placement holds constant
during the whole execution, and it changes randomly across executions by changing
the random seed (and flushing cache contents). Since addresses within cache way
boundaries have distinct index bits, the Benes network delivers a bijective function
so that, given specific control signals (those produced by addresses with the same tag

3An address includes — from right to left — offset bits identifying the bytes accessed within the
cache line, index bits identifying the cache set accessed, and tag bits that identify different addresses
placed in the same cache set.
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with the same random seed) each index is placed in one set and each set corresponds
to exactly one cache index. Therefore, a permutation is obtained and conflicts cannot
occur across lines with identical tag.

Note, however, that the particular way to combine tag bits and the random seed
determines the particular index bit permutation chosen. Also, the output of the
network is determined by the particular index bits of the address being accessed.
This is further detailed in Chapter 4, where the reliability assessment is performed
and an improved version of the RM indexing is proposed.

2.3.2.3 Hybrid Placement Configurations

Throughout the years, improvements on random cache designs have been proposed
to solve the downsides that the first implementations presented. For instance, RM
offers substantial improvements over hRP but cannot be implemented at all the cache
hierarchy levels. In particular, the RM design implemented in L1 data and instruc-
tion caches and the hRP in the L2 cache has been shown to be the most convenient
configuration [37]. A priori, RM cannot be used in L2 caches since cache ways are
much larger than page size, so hRP is the only choice for L2 caches. For RM to
provide representative measurements the cache way size must be equal to or a divi-
sor of the page size mainly because randomization can only guarantee that conflicts
are explored as long as pages map in the same sets. RM explores cache conflicts
across pages while avoiding conflicts within the page, if cache ways fit more than
one page, the interference between such pages becomes dependent on the memory
placement (deterministic) and therefore representativeness during the analysis phase
is compromised as memory layouts can change during software integration.

Recently, researchers have implemented randomized placement policies that allow
the use of RM in higher-level caches where the way size is greater than the page
size. To that end, they propose hybrid placement techniques [73] that randomize the
location of pages within the cache way so that interference patterns between different
pages are explored.

2.3.2.4 Random Replacement

The initial use of time-randomized caches in real-time systems came from the appli-
cation of random replacement policies [(67]. Under the real-time context, evict-on-
access [A7] and evict-on-miss [31] replacement policies emerged as solutions to add
timing-predictability to caches. In evict-on-access random replacement caches, data
can be evicted even when accesses hit in cache. This property allows users to reason
on the probability of a value to be evicted regardless of whether memory accesses to a
different cache line in the same cache set are hit or miss as the probability of eviction
is known. In evict-on-miss caches, a cache line is randomly selected for eviction only
when the access is a miss. This policy offers greater performance at the cost of pre-
dictability. Works like [74] effectively employ this policy for SPTA. Recently, Random
Permutation Replacement (RPR) was proposed as a new random replacement policy
that improves on previous proposals by avoiding pathological eviction patterns [75].
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For the rest of this thesis, we focus on the evict-on-miss random replacement policy.

2.3.3 Randomized Arbitration Policies

With the apparition of the power wall in the early 2000s, multi-cores began to pop-
ularize as the main route to keep improving performance. However when multiple
processing agents are integrated into the same chip, not all elements are replicated,
hence creating sharing restrictions for different hardware features. Some examples
of these are the buses to shared caches or memory controllers. In order to be able
to use them, arbitration policies must be put in place to coordinate access to such
resources. However, WCET estimates of tasks that involve the use of shared resources
are impacted by the activity of other cores and will need an MBPTA compliant way
to account for such activity. One of the most simple ways, which does not require
randomization but rather is a form of upper-bounding, is to use Time-Division Mul-
tiple Access (TDMA) or Round-Robin to assign a fixed time slot to each of the
contenders of a shared resource. Therefore each task can expect to have his own
dedicated amount of time for using such shared resource. Although this technique is
timing analyzable, since it reliably bounds the amount of time any core can wait for
its contenders to liberate the hardware resource, it produces pessimistic WCET due
to the need to account for the worst situation possible always, which is to wait for all
the contenders to finish with their time slots [70].

On the other hand, randomized arbitration has been shown to offer tighter pWCET
and also to outperform the aforementioned deterministic arbitration schemes on av-
erage performance. In our case we focus on shared bus arbitration. Basically two
different randomized arbitration techniques exist for arbitrating buses in TRP . Lot-
tery Bus [77] is the most straight-forward time-randomized implementation were at
each arbitration round the access is granted randomly to one of the cores. In this
fashion, the probability of not being granted access to the bus follows an exponential
distribution that decreases for increasing numbers of arbitration rounds lost, therefore
asymptotically approaching a probability equal to 0.0 of not being granted access, and
probabilistically bounding how many times an specific core will wait for bus access.
Random Permutations [70] is an alternative that also has been successfully applied
in NoC [78] which in contrast to the Lottery bus, guarantees that probability to be
given access to the shared resource will be 1 within a window of access slots. The
basic working principle is that the arbiter does not randomly decide on each slot, but
rather on a window of slots of size matching the number of contenders, therefore cre-
ating random sequences that change on every arbitration round and that will always
contain at least once any of the possible cores. Thanks to this scheme pWCET can
be further tightened with respect to the previous solutions.

2.4 Non-Functional Metrics

In this section we introduce some background knowledge on the specifics of the dif-
ferent non-functional metrics covered in this thesis. We introduce each metric with
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emphasis on the aspects relevant for this thesis.

2.4.1 Reliability

Devices that incorporate CRTES are usually expected to showcase higher standards
in durability and lifetime mainly because of their costly maintenance and difficult
accessibility once deployed. In that sense, reliability of CRTES plays a paramount
role as those devices are expected to perform flawlessly due to their criticality for
years.

In this reliability context we focus on aging effects, in particular, Hot-Carrier
Injection (HCI) [38] and Bias Transistor Instability (BTI) [39]. HCI and BTI are
particularly interesting because of their different relation to circuit activity and our
purpose will be to study how random placement can mitigate HCI and BTI by bal-
ancing the contents of cache cells. In addition to aging considerations, we also make
an assessment on how randomized caches and TRP are more resilient to the Resonant
Voltage Noise (RVN) phenomenon.

e HCI Aging: HCI [38] aging occurs when a carrier (either an electron or a
hole) is injected from the conducting channel into the silicon substrate or the
gate dioxide, where it stays permanently trapped. Then, whenever the gate is
intended to charge or discharge current, further electron-hole pairs need to be
made due to the trapped carrier, thus affecting negatively both gate delay and
leakage, and potentially making the gate fail its specifications. HCI, among
other sources of transistor degradation, affects devices proportionally to the
activity produced, which in turn depends on the access distribution across cache
sets.

e BTI Aging: BTI [39] breaks progressively silicon-hydrogen bonds at the sili-
con/oxide interface whenever a negative voltage is applied at the gate of P-type
Metal-Oxide-Semiconductor Logic (PMOS) transistors Negative-Bias Transis-
tor Instability (NBTT) or a positive voltage for N-type Metal-Oxide-Semiconductor
Logic (NMOS) ones Positive-Bias Transistor Instability (PBTI). This creates
new carriers affecting gate delay and leakage as in the case of HCI. However,
BTI degradation does not relate to switching activity as HCI does but, instead,
relates to the amount of time MOS transistors spend in conductive mode. This
effect is particularly relevant for cache memories since they are typically im-
plemented with the smallest devices ( so the ones that may fail earlier ) and
conventional 6T and 8T cells consist of 2 inverters arranged in a ring fashion so
that the PMOS transistor of one inverter degrades due to NBTT and the NMOS
transistor of the other inverter degrades due to PBTI regardless of the cell con-
tents. In this context, it has been observed that aging is maximized when the
cell stores always the same value, so two transistors degrade constantly whereas
the other two do not degrade at all. Conversely, aging is minimized when the
cell stores a "0’ 50% of the time and a "1’ also 50% of the time [79)].

e Resonant Voltage Noise: Pathological behavioral patterns can occur in the
time dimension if events such as, for instance, memory accesses, occur with
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precise frequencies. Using deterministic caches, and arbiters in interconnects
and memory controllers, can create those systematic and pathological patterns.
A side effect of that occurring is that power dissipation follows those patterns.
The synchronization of power demanding events and the frequency at which
those events occur has been shown to be the factors with major contribution
to the voltage noise in the power distribution networks of multi-core proces-
sors [80]. RVN is created by power fluctuations and this effect is amplified
when such fluctuations are repetitively caused by the synchronization of high
power consuming events. This may cause severe voltage droops and hence, fail-
ures affecting all tasks running in the processor.

Thesis focus: The items previously described downgrade lifetime and safe opera-
tion of CRTES. The goal of this thesis (and Chapter 4 in particular) regarding these
reliability hampering effects is to leverage how TRP mitigate them and propose de-
signs that further improve the lifetime of CRTES and their reliable operation while
preserving MBPTA compliance for pWCET estimation.

2.4.2 Security

Connected vehicles have become one of the major goals of car makers given their
potential to, for instance, provide the user with new software updates that add new
features and enhance existing functionality [27]. These interconnection capabilities
compounded with the utilization of high-performance processor features, can be used
by malicious software to perform several types of attacks. In particular, we mainly
focus on Cache-Timing Side-Channel Attacks (SCA) [81] but also consider Unautho-
rized Control Information Tampering (UCIT) [32] and Denial of Service (DoS) [83].

2.4.2.1 Unauthorized Control Information Tampering (UCIT)

UCIT vulnerabilities include many common software-related security problems such
as buffer overflow, format string, integer overflow, and double-freeing of heap buffer [34,
85]. Attackers exploit these vulnerabilities by changing control information (e.g., pro-
cessor state registers) with the purpose of pointing to the attacker’s malicious code.
These attacks do not depend on the potential actions on the user side but simply
exploit existing program bugs to attack the system.

2.4.2.2 Denial of Service (DoS)

In high-performance multi-core processors, some key resources are shared among run-
ning tasks. Resource sharing allows processors to improve area and power efficiency
but introduce a side effect on the security, and also time-analyzability, when proces-
sors do not provide sufficient performance isolation properties. Multi-core processors
are vulnerable to DoS attacks since one shared resource, typically the memory sys-
tem, can be unfairly shared among multiple cores. In this context, a malicious task
can compromise the performance of another task running in the same processor by
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clogging a shared resource, significantly affecting the performance of co-running tasks
or even precluding resource utilization by others. Intuitively, one may think that
this effect only arises in processor designs for the mainstream market with limited
performance isolation properties, however, this effect has also been observed in some
processors targeting the real-time domain [36].

2.4.2.3 Cache Timing Side-Channel Attacks (SCA)

Side-channel attacks exploit system’s information leakage to the physical environment
when an encryption or security process executes in order to steal cryptographic keys
or interfere with information processes. With Cache Timing-Based Side-Channel
Attacks, which we will simply refer to as SCA, the attacker infers information about
the keys based on the execution time variability caused by cache memories [87, 41, 88].
SCA exploit the difference in time that memory access patterns expose; in particular,
hit and miss patterns that occur in caches. When these patterns are related to the
placement of the data in memory, for instance, attackers can exploit the deterministic
behavior of high-performance computing caches to extract cryptographic keys [11].
In particular, SCA are enabled by two basic principles:

1. The time difference between accesses: misses on a cache take longer to resolve
than hits, hence leaking which data is being used and present in cache, and
which data is not in there.

2. The use of lookup tables that are input dependent in cryptographic algorithms
(e.g., Advanced Encryption Standard (AES)).

Following those principles, two different types of attacks can be performed on
caches:

Contention-based attacks. In this thesis we focus on the particular SCA attack
referred to as contention-based attacks [89]. In this case an attacker contends for the
same cache sets with the victim process, potentially leading to eviction of one’s cache
line by the other. When the contention and eviction is deterministic, the attacker
can infer the memory address (determined by the value accessed) of the victim based
on the cache sets that have been accessed.

Reuse-based attacks. Reuse attacks [39] exploit the shorter execution times
experienced by memory accesses when fetched data blocks are stored in the cache (i.e
they are reused). Victim or attacker processes will execute faster if one the oppos-
ing tasks has brought sensitive data into the cache, therefore leaking such information.

Thesis focus: Although security is nowadays one of the main concerns in computer
architecture, most of the time it is not addressed until major flaws and attacks are
discovered. In this thesis (specifically in Chapter 5) we aim to provide security for
MBPTA-compliant CRTES against SCA and other attacks.

2.4.3 Energy
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The proliferation of battery-powered devices together with the power wall and the
drive towards power-efficient systems have made energy a first-class citizen for CRTES.
Nowadays, a lot of system design decisions are influenced by energy consumption.
Many CRTES usually have to operate under limited energy availability (e.g., satel-
lites and drones) and must ensure that they execute critical tasks to completion.
Because of these reasons, energy accountability and validation is of paramount im-
portance, specially so, when critical applications are involved. Hence, CRTES require
thorough energy validation and accurate energy models.

In this thesis we tackle two energy related topics, worst-case power/energy esti-
mation and peak power validation. To understand the intrinsic behavior of energy
consumption, it is necessary to comprehend how energy is usually accounted for. To
that end, we first start by introducing the basic concepts of power estimation with
a well accepted general energy consumption model of processors and its parame-
ters. Throughout the energy related chapters we mainly build on power formulation
(rather than energy), although power and energy can be used interchangeably given
a fixed execution time ¢. The relation between power (P) and energy (E) is given by
E=P-t

Total dissipated power can be classified into two complementary terms as shown
in equation 2.1.

Ptotal = Pstat + den (21)

Static power (Py,;) dissipates when maintaining a circuit powered up. It covers
the power dissipated through leakages, free carriers (electrons and holes) that are
able to escape the isolation layers of the silicon. There are several models for deriving
static energy consumption but a widely accepted formulation is shown in Equation
2.2.V,. is the nominal voltage for the circuit; N the number of transistors; kgesign, an
implementation dependent constant; and Ijeqrqge the leakage current that depends on
the technology used for the chip implementation [90].

Pstatic = ‘/cc' N- kdesign' [leakage (22)

Interestingly, N and kgesign are truly constant parameters, while V.. and Ijcqrage
are theoretically assumed constant, but they can actually suffer some fluctuation. V..
may vary due to techniques for power saving such as Dynamic Voltage and Frequency
Scaling (DVFS) and drowsy operation modes [91]. V. also depends on the quality
of the voltage supply source and the chip package. It further suffers from significant
fluctuations at operation time, especially in multi-core setups [80], since the likelihood
of abrupt power dissipation variations increases due to, for instance, several cores
having high energy consumption requirements at the same time. This creates current
glitches and thus, voltage droops. Ijcqrage highly depends on the thermal status, so
that high temperatures increase the leakage current, thus increasing the dissipated
static power.

It is also worth noting that although FKgesign is constant, it is an approximation
to abstract the internal complexities of processor designs and also depends on the
individual chip fabricated since process variations lead to variations across chip units.
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Despite those sources of variation, Py, is often assumed constant due to it being
highly stable over time, which makes nominal Py, estimates be very precise with
respect to average behavior. However, this does not necessarily hold for maximum
P, estimates, which are the ones of interest in our proposals.

Dynamic power (Fy,,) dissipates due to the charging and discharging of tran-
sistor’s gate capacitance and can be expressed as shown in Equation (2.3), where A is
the switching activity or activity factor, representing the percentage of transistors’ ca-
pacitance flipping value, V. is the nominal voltage, C, is the equivalent capacitance
of the transistor inputs and f is the operating frequency of the device.

Payn = A-V2-Cop f (2.3)

In general, all those parameters are subject to variations, and so it is Fyy,.

A strongly depends on the input changes of the components. Those inputs include
data and control signals of the circuit. As an example, A for an adder depends
on the input data variation as well as on the control signals to add/subtract, etc.
Deriving approximations to A has been the subject of intense research [92]. It has
been observed that A decreases exponentially across gate levels when moving from
inputs to outputs [92]. However, this cannot be proven in general and the exponential
factor can only be approximated for specific circuit types. Thus, to the best of our
knowledge, reliable and tight upper-bounds to the activity factor usable for any type
of circuit do not exist.

V.. suffers from the same variation effects explained before. In the case of DVFS,
both V.. and f vary coordinately. In that case, we regard f as constant with respect
to V., so that given a nominal V.. value, a given nominal f is set. In practice, f
may change when the clock source is subject to some form of variation, such as, for
instance, temperature variations, which may slow down or speed up the clock slightly
given a fixed V.. value. C, is a nominal value that depends on the size of the tran-
sistors and it is also subject to process variations introduced during manufacturing.

Thesis focus: Parametric models have been widely employed to predict energy con-
sumption of processors. New CRTES will increasingly be made energy-aware and
their attached criticality demands more rigorous and accurate predictions. Accuracy
of models is challenged when faced by increasing complexity and parametric variabil-
ity. In this thesis (particularly Chapters 6 to 8) we address how current models like
the one previously described show limitations regarding CRTES necessity of rigorous
estimations and we propose suitable methods to leverage uncertainty in the energy
domain building upon MBPTA-compliant processor designs and selected methodolo-
gies.

34



Chapter 3

Experimental Setup

“A theory is something nobody believes, except the person who
made it. An experiment is something everybody believes, except the
person who made it.”

— Albert Einstein

The experimental setup used to evaluate the proposals made in this thesis covers
four main aspects: Modeled processor architectures, tools and simulators, bench-
marks, and other methodological considerations.

3.1 Architectures

We mainly model three different architectures from the Critical-Real Time Embedded
Systems (CRTES) domain: the Cobham Gaisler’s LEON4 [93], the Cobham Gaisler’s
NGMP [94] and the NXP 20024 [95]. Although their architecture is similar some
small differences arise between them that made them more suitable for particular
experiments. For instance, the Cobham Gaisler’s LEON4 has been extensively used
in space applications and hence it’s a perfect representative of that domain. The
NGMP is the natural evolution of the LEON4, as it includes a multi-core system that
permits to evaluate multitask workloads. Finally, the NXP €200z4 is a well-known
automotive processor, representative of automotive applications. By the time this
thesis started many-core and General Purpose Graphics Processing Units (GPGPUs)
made small impact in CRTES architecture, therefore in this thesis we focus on simple
in-order bus-connected multi-cores for which code and memory performance is the
key and whose deployment in commercial systems is still in process.

In Table 3.1 the microarchitectural details and options of each architectures are
detailed. Figure 3.1 displays one of our reference architectures, the Next Generation
Microprocessor (NGMP), which also shows the internal architecture of the LEON4
since the NGMP is composed of LEON4 cores.

e LEON4 Core. The LEON4 [93] is the successor of the LEON3 [96] processor
and our reference processor architecture on which we base most of our assess-
ments. The LEON4 is an in-order core that comprises a pipeline with 7 stages:
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Figure 3.1: Simplified block diagram of the NGMP Architecture. Our modeled
reference LEON4 architecture would contain only one core while the simplified NXP
€200z4 would substitute the LEON4 for the NXP €200z4 architecture.

Fetch, Decode, Register Access, Execute, Memory, Exception and Write-Back
implementing a SPARC V8 [97] Instruction Set Architecture (ISA). It features
configurable instruction and data L1 caches and a unified L2 cache together
with write buffers and a fully pipelined IEEE-754 Floating-Point Unit (FPU).
Although the LEON4 code name refers to the architecture of a core, throughout
this thesis we use indistinctly the LEON4 term to refer to the implementation
of an entire single core LEON4 processor including cache memory hierarchy and
memory controller.

¢ NGMP Multi-core. The NGMP [94] is the European Space Agency (ESA)
processor for the future space missions which we model as our reference multi-
core architecture, in particular the GR740 implementation [98]. This processor
is composed of 4 LEON4 cores with an AHB AMBA bus interconnect, shared
L2 cache, and memory controllers. Floating-point units have two separate dat-
apaths, one for square roots and divisions and another fully-pipelined one for
the rest of the floating-point operations.

e NXP e200z4. We also emulate a processor resembling the NXP €200z4 [95]
a single-core automotive microcontroller chip that implements a POWER ISA
architecture. We model a 5-stage in-order processor with Instruction Fetch,
Decode, Execution0, Executionl and Result feed-forward stages. We model this
architecture with a complete cache hierarchy, separate instruction and data L1
caches (4-way, 128 sets) and unified L2 cache (4-way, 2048 sets). To better
comprehend the behavior of the security challenge, instruction prefetching is
disabled and a single-issue implemented instead.
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3.1 Architectures

Parameters LEON4 | NGMP | NXP e200z4

Stages 7 7 5

@ | Core Count 1 4 1

8 Write Buffer Size 2 1
Clock Rate 700 MHz
Operating Voltage 09V
Line Size 32 Bytes

%’ Way Size 128 Sets

8 Associativity 4 Way

a Total Size 16 KiB

—~ | Write Policy Write-Through

3 | Placement Policy M, hRP, RM
Replacement Policy LRU, Random Replacement
Line Size 32 Bytes
Way Size 2048 Sets

% Associativity 4 Way

& | Total Size 256 KiB

S Write Policy Copy-Back
Placement Policy M, hRP
Replacement Policy LRU, Random Replacement

9 Arbitration Policies | Round-Robin, Random Permutations

A | Width 128 bits

Table 3.1: Summary of modeled reference architectures. LEON4 as a single core
architecture, the NGMP as the multi-core reference containing 4xLEON4 and the NXP
€200z4 as a simpler reference automotive architecture.
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3. EXPERIMENTAL SETUP

3.2 Tools & Simulators

We build on simulations in order to evaluate and test the hypotheses in this thesis.
For modeling microarchitectural timing and functional behavior we use a modified
version of SoCLiB [99] simulator. SoCLiB is an open virtual prototyping tool for
multiprocessors and a SystemC based simulator. This tool allows us to perform Cycle-
Accurate Bit-Accurate (CABA) simulations of System-on-Chip (SoC) architectures.
We configure the SoCLiB simulator to emulate the different embedded architectures.
Accuracy of the timing simulator has been assessed to be on average 3% off from
the reference N2X implementation of the NGMP [100]. SoCLiB’s improved simulator
builds on a decoupled two-fold architecture were functional emulation and timing
simulation are separated which brings flexibility by allowing the implementation of
different ISA that can use the same microarchitectural timing model.

We improve our microarchitectural simulator by attaching the McPAT [101] power
simulator. McPAT is the MultiCore integrated Power, Area and Timing Modeling
framework from HP labs that provides estimates on energy, timing and area by using
architectural descriptions of the hardware and parametric performance values. By at-
taching both simulators together we can obtain either instantaneous or global precise
energy and power estimations of our platforms. Additionally, for one of the contri-
butions we also involve the use of the McPAT-PVT. McPAT-PVT is an extended
version of the McPAT simulator that not only offers energy and area estimates but
also reports how those values vary under the presence of Process Variation (PV).
McPAT requires two different types of inputs: Parameters that define the architec-
tural model (e.g., number of L1 caches and number of cores) and parameters that
define the simulation (e.g., cycle count and instructions executed). The architectural
parameters are statically defined according to each of the reference architectures and
the simulation parameters are extracted from the performance metrics of SoCLiB.
This pipelined behavior is illustrated in Figure 3.2.

In some contributions we include information about area and delays from hard-
ware designs. When evaluating hardware designs’ implementations we use as synthesis
tool the Synopsys Design Compiler [102] and make use of the TSMC 45 nm technol-
ogy library [103] before place & route. In the cases where we resort to hardware
simulation we use the QuestaSim [104] simulation framework instead. Note that we
use different technologies for power simulation (McPAT) and hardware implementa-
tions, the reasons behind this lay on the higher relative accuracy of McPAT for power
measurements.

Finally we make use of the MBPTA-CV tool that generates the pWCET estimates
and curves and checks of i.i.d properties. This tool is based on the application of
MBPTA and EVT using the Coefficient of Variation (CV) algorithm [33]. MBPTA-
CV is implemented using R statistical software and programming language [105].
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3.3 Benchmarks & Applications

3.3 Benchmarks & Applications

We mainly use benchmarks from one source, the EEMBC Automotive suite [106]
and complement them with 3 other sources of benchmarks: custom designed micro
kernels, two space use-case applications from the European Space Agency [107, 108],
and a couple of Milardalen benchmarks [109] that add variety to our evaluation.
The complete benchmark suite used along with the brief description can be seen in
Table 3.2. Benchmarks are executed without Real-Time Operating System (RTOS)
support for simplicity of implementation and to avoid interference due to preemption
or other RTOS mechanisms.

¢ EEMBC Automotive. The Embedded Microprocessor Benchmark Consor-
tium (EEMBC) [106] Automotive suite is a compilation of benchmarks that
perform control of automotive functions such as gear rotation, ignition sys-
tems, and more. The suite is purposefully designed to provide measurements
of performance in embedded processors. The inner workings of the EEMBC
are very simple, the binaries embed input data that would come from sensors,
and a main body loop calls different functions that actuate on such data. The
EEMBC allow configuration of the number of iterations the main body loop
must perform.

e Mailardalen. The Milardalen open-source benchmark [109] suite is also an-
other well known suite for real-time systems. In contrast to the EEMBC, the
Malardalen benchmarks contain a simpler version of program structure that
mainly consists of small loops and linear code. This is because the Malardalen
suite was originally intended to be used for WCET tool analysis. In this thesis
we make use of the matmult and firkn benchmarks as probes for mathematical
linear equation computation and nested loops respectively.

e ESA benchmarks. In the case of the ESA benchmarks we make use of DE-
BIE [107] and OBDP [108] benchmarks. The DEBris in orbit Evaluator (DE-
BIE) manages an instrument for small space debris and micrometeoroids ob-
servation, by detecting their impacts on its sensors. DEBIE has been part of
PROBA-1 satellite. The On-Board Data Processing (OBDP), is part of the near
infrared (NIR) HAWAII-2RG detector. This algorithm processes raw frames
provided by such detector.

e Microkernels. Finally, and for specific experiments, we have developed custom
microkernels to stress particular regions or behaviors of the processor. Our
main objective with these benchmarks is to generate controlled synchronization
or desynchronization of events to observe power surges and pathological events.
These microkernels are basically composed of instructions that stress as many
regions of the processor as possible and then contain a mix of long latency
instructions its number depending in case we wanted synchronization or not.
To that end, we generate two different microkernels, one that synchronizes high
power demanding events, and another one that does not synchronize events.
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EEMBC Autobench
a2time Angle to Time Conversion
aifftr Fast Fourier Transform (FFT)
aifirf Finite Impulse Response (FIR) Filter
aiifft Inverse Fast Fourier Transform (iFFT)
basefp Basic Integer and Floating-Point
bitmnp Bit manipulation
cacheb Cache buster
canrdr CAN Remote Data Request
idctrn Inverse Discrete Cosine Transform (iDCT)
iirflt Infinite Impulse Response (IIR) Filter
matrix Matrix Arithmetic
pntrch Pointer Chasing
puwmod Pulse Width Modulation (PWM)
rspeed Road Speed Calculation
tblook Table Lookup and Interpolation
ttsprk Tooth to Spark

Malardalen benchmarks
matmult | Multiplication of two 20x20 matrices
firFn Finite Impulse Response (FIR) Filter 700 items sample size
ESA Applications
OBDP On-Board Data Processing
DEBIE Debris inOrbit Evaluator
Microkernels

pvsync Power virus with synchronization
pvunsync | Power virus without synchronization

Table 3.2: Summary of benchmarks used for evaluation.
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Figure 3.2: Overview of the evaluation framework. Benchmark’s binaries and
parametric files are inputs to our microarchitectural simulator, that provides performance
metrics. This performance metrics can later be processed by the energy simulator
(McPAT), used to extract conclusions, or passed to the MBPTA-CV algorithm
implemented in R to perform statistical analysis and derive probabilistic estimates.

3.4 Methodology

The metrics that we obtain from our experimental framework are shown in Figure 3.2
inside the elliptic shapes. For reliability evaluations, we rely mainly on performance
metrics obtained from our microarchitectural simulator, SoCLiB. Measurements to
prove our hypotheses in the security assessment will also come from SoCLiB’s available
performance metrics.

In the case of energy we feed the performance metrics to the power and energy sim-
ulators McPAT and McPAT-PVT, which provide us with power and energy estimates.
Finally, to compute probabilistic estimates and project tails of measured distributions
we apply Extreme Value Theory (EVT) using the Measurement-Based Probabilistic
Timing Analysis using Coefficient of Variation (MBPTA-CV) algorithm from which
we obtain probabilistic Worst-Case Execution Time (WCET) and Worst-Case Energy
Consumption (WCEC) in the energy evaluation. The MBPTA-CV implementation
uses the open source R statistical software tool to compute such estimates.

For multi-core executions we create two types of workloads. The first type involves
a single task under analysis that will be executed until completion while contenders
run on the background ( all other tasks iterate indefinitely on the background ). The
second type is for a multitask unit of analysis ( simulation will be stopped once all
the tasks have at least completed once ). Which methodological process is followed
is detailed in the evaluation section of each of the chapters whenever multi-cores are
involved.

For energy modeling we build on McPAT. McPAT computes energy estimates from
event counters that can be provided either at any given instant or for the complete
execution of a task. Each of these events activates certain processor features, wires
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Figure 3.3: McPAT functional unit blocks nomenclature mapped to a detailed
NGMP/LEON4 Architecture. The only changes with respect to SoCLiB’s model are the
naming convention, both simulators allow the emulation of a 7-stage pipeline.

or cells that have an associated cost in energy. This energy cost is then leveraged by
McPAT together with the usage and access counts to compute the energy estimate.
The addition of all the energy costs of all these events makes for the complete energy
estimate that given an execution time can be then turned into dissipated power.
Regarding the parameters, unless indicated otherwise, architectures are modeled after
90 nm fabrication process! and set to 0.9 V nominal voltage. In Figure 3.3 we can see
all the high level components modeled by McPAT, which we refer to as Functional
Unit Block (FUB). As it can be seen, the configured McPAT model maps very well
to the NGMP or LEON4 architecture (depending on whether multi-core or single-
core is used). The main features and FUBs include: instruction fetch unit (IFU),
load-store Unit (LSU), register file (RegF), integer ALU (IALU), floating-point unit
(FPU), result broadcast bus (RBB), L2, NoC, and memory controller (MC).

Due to the nature of event counting in our performance simulator, to compute
meaningful energy estimates, we must first ensure that we measure a time window
that at least reports a new event. Our longest latency operation that would stall a
single core architecture for the longest of time takes around 30 cycles, therefore the
granularity at which we can measure instant energy consumption with our perfor-
mance and power simulators will be of 43 ns, at a standard frequency of 700 MHz.
Summarizing, for instantaneous energy estimates granularity is of 43 ns, unless stated
otherwise. Finer sample rates have not been considered due to the intrinsic limits of
the power model, which fails to spread power dissipation of an event across multiple
cycles, thus creating anomalies at too fine rates (e.g., every cycle). For global energy
estimates, granularity will be the full task duration.

L As previously stated, simulation technology differs w.r.t. synthesis due to exhibiting higher
relative accuracy.
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Chapter 4

Enhanced Randomized Cache
Designs for Improved Aging and
Reliability

“In life, unlike chess, the game continues after checkmate.”

— Isaac Asimov

4.1 Introduction

Systems such as those in the avionics and automotive domains (among others) deal
with functionalities with human in the loop or that relate to the integrity of the
system itself. This requires assessing that those systems will perform their operation
correctly and in time following the guidelines in the corresponding safety standards
(i.e., ISO-26262 in automotive [3] and DO-178C in avionics [4]).

Measurement-Based Probabilistic Timing Analysis (MBPTA), as stated in Chap-
ter 2 [34], has been proposed to derive reliable Worst-Case Execution Time (WCET)
estimates on top of complex hardware. MBPTA benefits from hardware platforms
providing some properties such as random placement and replacement in caches [31,
110, 37]. In this line, different implementations of random placement have shown to be
suitable for first-level (1) and second-level (L2) caches. In particular, Hash-Based
Random Placement (hRP) [110] has been shown convenient for L2 caches whereas
Random Modulo (RM) has been shown more convenient for L1 caches [37]. While
they simplify the use of MBPTA to obtain Probabilistic Worst-Case Execution Time
(pWCET) estimates, their fault tolerance (needed for functional correctness) has been
barely considered. In fact, the robustness properties of randomized hardware plat-
forms have only been exploited to derive pWCET estimates that hold valid in the
presence of faults in random placement and replacement caches [111, 23].

However, the intrinsic robustness of randomized hardware designs has not been
assessed yet. As explained before, the number and type of sources of failure due to
aging is abundant. The purpose of this work is not being exhaustive in the analysis of
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all of those sources, but illustrating how randomized hardware designs can contribute
positively to mitigate aging at least for some sources of aging.

In this chapter we perform, for the first time, an assessment of the aging-robustness
of random placement cache designs: random modulo and hash-based random place-
ment. We propose a new random modulo implementation preserving its key benefits
in terms of low critical path impact, low miss rates and MBPTA compliance; while
reducing hot-carrier injection aging by achieving a better (yet random) activity dis-
tribution across cache sets. On the other hand we show that gains in terms of Bias
Transistor Instability (BTI) aging are limited for random placement designs on their
own. Additionally, we also introduce some considerations on Time-Randomized Pro-
cessors (TRP) resilience against Resonant Voltage Noise (RVN). We refer the reader
to Section 2.4.1 for a detailed description of these effects.

4.2 Enhanced Aging-Friendly Random Cache Place-
ment

In this section we first describe the functioning of the default Random Modulo (RM)
cache design, used for L1 caches, in terms of its limitations related to aging. We then
present our new enhanced RM implementation that makes a far more balanced use
of the cache sets, thus more friendly from an (mostly Hot-Carrier Injection (HCI))
aging perspective. Finally, we study hRP set distribution for L2 caches, and show
that it uses cache sets in a fairly balanced way. In particular we show how the
particular address-to-set mapping influences the utilization of each set and, therefore,
their degradation in terms of HCI. Hence, we aim at finding a better random modulo
implementation that balances utilization of the cache sets regardless of the particular
access pattern and indexes of the addresses accessed.

4.2.1 Random Modulo Set Distribution

RM is intended to randomly distribute addresses (indexes in particular) among cache
sets. To that end, RM combines address tags with random bits from the random seed
to set control signals in the Benes network (see Chapter 2). The goal is to reach a
homogeneous and random permutation selection for index bits. However, index bits
themselves are not random since they are completely program dependent.

Let us illustrate this with an example. Let us assume a program accessing 4
addresses (once offset bits have been removed): 0x00 (00000000b), 0x01 (00000001b),
0x02 (00000010b) and 0x03 (00000011b), and a cache memory with 16 sets, so that
only the 4 lowermost bits are used for choosing the set being accessed. Note that
offset bits indicate the bytes accessed within the cache line, but do not relate to cache
line identification, so they are irrelevant for this example.

o Interestingly, regardless of the particular bit permutation selected, address 0x00
can only be placed in set 0 (0000b). Since the 4 lowermost bits are “0”, any
permutation of them leads to exactly the same set identifier: 0000b.
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Figure 4.1: Example address distribution for a 16-set cache with default random
modulo design.

Instead, addresses 0x01 and 0x02 can be mapped to any set such that its set
identifier contains exactly one “1” given that their binary representation has
exactly one “1” and three “0” (0001b and 0010b respectively) in the 4 lowermost
bit positions. This corresponds to sets 1 (0001b), 2 (0010b), 4 (0100b) and 8
(1000b). Any other set cannot be reached with bit permutations of addresses
0x01 and 0x02 regardless of the permutation selected since their lowermost 4
bits — those forming the cache index — only contain one “1”.

Finally, address 0x03 can only be mapped to sets 3 (0011b), 5 (0101b), 6
(0110b), 9 (1001b), 10 (1010b) and 12 (1100b) since they are the only ones
whose set identifiers contain exactly 2 bits set to “1” (these are the only per-
mutations possible with 0011b as input).

This is graphically illustrated in Figure 4.1, where we can see that the frequency

with which each set is used is highly heterogeneous. For instance, set 0 is intensively
used by address 0x00 (100% of the times address 0x00 is placed in set 0). Some other
sets are used with different degrees of intensity by addresses 0x01, 0x02 and 0x03. For
instance, addresses 0x01 and 0x02 are mapped to set 1 25% of the times each (per-
mutation 0001b). Some other sets (7, 11, 13, 14, 15) are never used since no address
has enough bits set to “1” to be mapped to any of those sets under any permutation.
For instance, since no address has 4 bits set to “1”, no bit permutation can make any
address access set 15. Further note that, if addresses are accessed heterogeneously,
the impairment in the use of the different cache sets can be potentially much higher.
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Figure 4.2: Schematic of the baseline implementation of a random modulo cache.

Having an heterogeneous cache set utilization is expected to lead to higher degra-
dation for the most used sets due to, for instance, HCI among other sources of transis-
tor degradation, since HCI affects devices proportionally to their switching activity,
which in turn depends on the access distribution across cache sets.

In terms of balancing contents stored, relevant for BTI, placement cannot vary
what contents are stored in each particular bit of the line. Thus, if a particular bit
(e.g., bit 30) is highly biased towards ‘0’, placement functions cannot change this fact.
However, when all addresses make an homogeneous use of the sets, the maximum bias
of any particular bit in each position is minimized. For instance, if 90% of the lines
have bit 30 set to ‘0’, a deterministic placement may make that some specific sets
have bit 30 100% of the time set to ‘0’, whereas others have it set to ‘0’ less than
90% of the time. This would cause the fastest degradation for that bit in some sets,
making cache fail earlier. Instead, with a perfectly randomized cache placement all
cache lines will have 90% bias for bit 30, thus delaying the occurrence of the first
failure.

Hence, we aim at finding a better RM implementation that balances utilization of
the cache sets regardless of the particular access pattern and indexes of the addresses
accessed.

4.2.2 Randomizing Set Distribution

Our proposal to make index bits have a random distribution is analogous to that
used for making control bits in the Benes network be random: hashing address bits
with random bits. In the particular case of the index bits, we XOR them with some
random bits of the random seed. For instance, let us recall our previous example.
If we XOR the index bits of 0x00 (so 0000b) with a random value, in essence we
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Figure 4.3: Schematic of the enhanced implementation of a random modulo cache.
Red-dashed parts indicate the changes introduced.

will obtain 16 different indexes — all binary values that can be encoded with 4 bits
— with homogeneous probability. This also holds for any other address regardless of
their particular index bits. Thus, all addresses are placed to all sets with identical
probability regardless of their particular index bits. Therefore, in the long run all sets
are expected to be used homogeneously regardless of the particular access patterns
of the programs being run.

The drawback of this approach is that a XOR gate is introduced in the path
of the index bits to the Benes network, thus potentially affecting the critical path.
Still, since a single XOR gate is added, the impact is limited as proven later in the
evaluation section.

Figures 4.2 and 4.3 show the baseline RM design and our enhanced RM design
respectively. As shown, in our enhanced version we add a level of XOR gates to
combine index bits (D bits) with D random bits taken from the random seed. In the
figure we show that the random bits used for the index generation (those in the left
side of the Benes network) and control bits generation (those on the top part of the
Benes network) correspond to different random bits. In practice there is no constraint
on using the same bits or different ones since they are used for different purposes.

For the sake of completeness, we show in Figure 4.4 the effects of implementing
ERM on the example depicted in Figure 4.1. As shown, a uniform distribution is
achieved with ERM regardless of the specific index bits value used as input for the
indexing policy.

In summary, as shown later, this conceptually minor — but highly powerful — mod-
ification allows balancing the utilization of the cache sets, thus mitigating maximum
aging and so increasing the lifetime of the cache memory. The impact in the critical
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Cache Mapped Addresses
Set

0000 | 00000000 (6.25%), 00000001 (6.25%)
@ @ - 0001 | 00000000 (6.25%), 00000001 (6.25%)
0010 | 00000000 (6.25%), 00000001 (6.25%)
0011 | 00000000 (6.25%), 00000001 (6.25%)
@: 00000000 b 0100 | 00000000 (6.25%), 00000001 (6.25%)
00000001b ......... 0101 | 00000000 (6.25%), 00000001 (6.25%)
@ ................................. 0110 | 00000000 (6.25%), 00000001 (6.25%)
0111 | 00000000 (6.25%), 00000001 (6.25%)
1000 | 00000000 (6.25%), 00000001 (6.25%)
1001 | 00000000 (6.25%), 00000001 (6.25%)
1010 | 00000000 (6.25%), 00000001 (6.25%)
1011 | 00000000 (6.25%), 00000001 (6.25%)
1100 | 00000000 (6.25%), 00000001 (6.25%)
1101 | 00000000 (6.25%), 00000001 (6.25%)
1110 | 00000000 (6.25%), 00000001 (6.25%)
1111 | 00000000 (6.25%), 00000001 (6.25%)

Figure 4.4: Example address distribution for a 16-set cache with the enhanced random
modulo design.

path is low (at most an extra XOR gate), address-to-set mapping within cache way
boundaries is a permutation (thus keeping miss rates low by avoiding many potential
conflicts), and MBPTA compliance is preserved since cache set location is random.

4.2.3 Hash Random Placement Set Distribution

hRP has been designed with the aim of making each address have the same probability
to be mapped to each set. In the design of hRP Figure 2.6 (in Section 2.3.2) we
can observe that the 3 leftmost rotate blocks use as input random bits, which are
rotated based on some address bits. The 3 rightmost rotate blocks do the opposite:
use as input address bits and rotate them based on some random bits. Overall,
the output of the 3 leftmost blocks is a set of random bits, which are later XORed
with the other bits, thus leading to a purely random output. Hence, regardless of
the input address being accessed, its probability of being mapped to each different
cache set is homogeneous in the long run. Therefore, the default hRP design already
achieves the homogeneous set distribution of addresses for L2 caches obtained with
our proposed enhanced RM for L1 caches. The homogeneous set distribution of
hRP has already been proven before [71]. Note, however, that hRP, differently to
RM and ERM, does not put any constraint on whether consecutive addresses can be
randomly mapped to the same cache set. Therefore, even with small workloads fitting
comfortably in cache, hRP can lead to high miss rates, even if with low probabilities.
RM and ERM instead avoid cache misses for cache lines mapped within the same
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Random Placement | Performance | Even Distribution | Page Size
hRP - + +
RM + - -
ERM + + -

Table 4.1: Summary of the different random placement implementations and its
trade-offs.

memory page. In Table 4.1 we provide a summary of the different random placement
implementations and its trade-offs. Generally speaking, random modulo techniques
offer better performance than hRP but present implementation limitations for certain
cache sizes (see Section 2.3.2.2), our proposed ERM implementation improves the
cache set usage distribution w.r.t. RM.

4.3 Evaluation

This section evaluates our enhanced RM placement and the default ARP and their
impact on aging. First, we introduce the evaluation methodology. Then we present
the results in terms of access distribution across sets, and how this can improve
lifetime in terms of HCI and BTI. Finally, we show the impact of the hardware
modification in the critical path.

4.3.1 Methodology

We model the first level instruction (IL1) and data (DL1) caches of a NGMP 4-core
processor designed for the space domain [94]. Those caches are 16 KB 4-way 32
B/line. Thus, they have 128 sets each. We refer the reader to Chapter 3 for further
details on the architecture.

We evaluate the different cache placement designs: modulo (M), default Random
Modulo (RM) and our Enhanced Random Modulo (ERM) for L1 caches, and modulo
and hRP for L2 caches. For our evaluation we use the EEMBC autobench suite,
a well-known benchmark suite used in the real-time domain [106]. Each EEMBC
benchmark is analyzed using its default input data. Considering multipath effects in
the context of MBPTA has been addressed elsewhere [112] and is orthogonal to the
work in this chapter.

Benchmarks have been run once in an improved version of SoCLib [99] to extract
instruction and data address traces. Then, cache set distribution of each placement
function has been evaluated in a cache simulator processing those address traces.

For estimating the HCI lifetime improvement, we use the expressions provided in
[113] showing that transistors lifetime degradation due to HCI is inversely propor-
tional to their switching activity. For analyzing the potential impact on BTT lifetime,
we measure bit bias for all cache bits. Whether the relation of bit bias with lifetime is
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Table 4.2: Distribution of accesses across sets for the different placement functions and

L1 caches.

Cache IL1 DL1
Placement M | RM | ERM M | RM | ERM
a2time 5.5 1.5 1.0 32.0 | 3.5 1.0
aifftr 3.2 2.2 1.0 173 | 2.1 1.0
aifirf 5.9 1.4 1.0 27.7 | 10.9 1.0
aiifft 2.4 1.5 1.0 172 | 2.1 1.0
basefp 7.4 1.8 1.0 36.6 | 4.1 1.0
bitmnp 2.1 14 1.0 26.8 | 2.6 1.0
cacheb 12.7 | 2.6 1.0 24.8 | 2.3 1.0
canrdr 11.1 | 2.0 1.0 36.4 | 5.7 1.0
idctrn 3.0 2.9 1.0 26.7 | 2.8 1.0
iirflt 7.7 1.3 1.0 20.6 | 4.2 1.0
pntrch 3.9 1.8 1.0 309 | 34 1.0
puwmod 19.1 2.7 1.0 63.3 | 3.2 1.0
rspeed 8.5 2.1 1.0 41.7 | 3.6 1.0
tblook 4.2 2.0 1.0 22.1 | 4.2 1.0
ttsprk 18.6 | 2.1 1.0 53.8 | 7.1 1.0

HARMEAN | 49 | 18 | 10 [279] 34 | 10 |

linear (self-healing effect is negligible) or exponential (self-healing is significant) does
not change the conclusions reached analyzing bit bias only.

To quantify delay overheads of the FRM implementation we have described both
circuit implementations, the original RM and the enhanced one, with VHDL and syn-
thesized them using Synopsys DC [102] with a TSMC 45nm technology library [103].
Additionally, both implementations have been integrated in a 4-core Leon3-based
processor resembling the NGMP and synthesized in a Stratix IV Altera device at 100
MHz.

4.3.2 Set distribution

First we evaluate the access distribution across sets for each cache (IL1, DL1 and
L2) and placement function: Modulo, Random Modulo and our Enhanced Random
Modulo for L1 caches, and Modulo (M) and hRP for L2. For each one we show
the ratio between the maximum number of accesses per set and the average number
of accesses per set (MAX/AVG). In the ideal case where accesses are perfectly
balanced, M AX/AV G should be exactly 1. In general we can expect MAX/AV G to
be higher than 1.

Table 4.2 summarizes the results for all benchmarks for L1 caches. We use 100, 000
runs with different random seeds for RM and ERM. Since M always delivers the
same distribution, one run suffices. As shown, M produces high imbalance across
sets, particularly for the DL1 cache. The particular addresses accessed determine
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Figure 4.5: IL1 per-set access distribution for pntrch. Values are normalized with
respect to the number of accesses of the maximum accessed set in the modulo
configuration.

the sets accessed, and so the set distribution. Thus, M distribution is completely
program-dependent. This is in part mitigated for the IL1 since loops contain some
significant sequential code accessed many times, thus leading to quite homogeneous
distribution (at least for the sets accessed in the loop). Conversely, access patterns
for DL1 can be highly irregular in many cases, thus leading to high imbalance in the
set access distribution. The harmonic mean for the set distribution of M is 4.9 for
the IL1 and 27.9 for the DL1, thus far from the ideal value 1.0.

RM balances accesses much better due to the randomness introduced in the gen-
eration of the set index. This is particularly noticeable for the DL1. Still, since some
dependence exists between the actual addresses accessed and the sets where they
map, set distribution improves only to some extent. The harmonic mean for the set
distribution of RM is 1.8 for the IL1 and 3.4 for the DL1. While these results are far
better than for M, they are still far from the ideal value 1.0, especially for the DL1.

Finally, our ERM removes the dependence of the set index on the particular
address accessed, thus delivering much better set access distributions. This effect is
particularly relevant for the DL1, where the imbalance for both M and RM is high.
The harmonic mean for the set distribution of ERM is 1.0 (Max:1.028) for the IL1
and 1.0 (Max:1.044) for the DL1, very close to the ideal value 1.0. This translates
into marginally better average performance (below 0.1% performance improvement).

For completeness, we show the per-set distribution for the different L1 placement
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Figure 4.6: DL1 per-set access distribution for pntrch. Values are normalized with
respect to the number of accesses of the maximum accessed set in the modulo
configuration. Note the different scales in each configuration.

policies for 2 specific examples: the IL1 and the DL1 for pntrch. The former (see
Figure 4.5) is a relatively good case for M, whereas the latter (see Figure 4.6) is a
relatively bad case for M. Figures show in the x-axis the different cache sets and in
the y-axis the utilization normalized with respect to the highest utilization in the M
case.

The example in Figure 4.5 shows that M uses some sets quite often, whereas others
are barely used. Still, the number of sets used often is relatively large. RM achieves
a much better distribution across sets and only some sets have higher utilization than
the average. Those sets correspond to those with most index bits being zero (or
one), so that randomization has limited effect. Finally, our FRM achieves almost
homogeneous cache set utilization.

The example in Figure 4.6, instead, shows that M uses very few sets of the DL1
cache for pntrch. This leads to an extremely unbalanced distribution. In the case of
RM (note that the y-axis only reaches 0.2) the distribution is far better as the most
used set is used around 8 times less than for M. Still, unbalance is high. Finally,
ERM achieves almost homogeneous set utilization.

When analyzing set distribution for the L2 cache (see Table 4.3), we observe that
the set distribution for M is highly biased, ranging between 99.7 and 866.2 across
benchmarks, being much worse than for L1 caches. This occurs due to two combined
effects: (1) the number of sets in L2 is much larger, thus increasing the chances that
highly used sets are still highly used whereas many more sets remain mostly unused;
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Table 4.3: Distribution of accesses across sets for the different placement functions in
the L2 cache.

Cache L2

Placement M hRP
a2time 679.9 | 1.17
aifftr 160.3 | 1.08
aifirf 396.7 | 1.17
aiifft 159.9 | 1.08
basefp 712.6 | 1.16
bitmnp 99.7 | 1.09
cacheb 353.1 | 1.15
canrdr 772.8 | 1.23
idctrn 631.3 | 1.18
iirflt 583.9 | 1.16
pntrch 294.8 | 1.12
puwmod 866.2 | 1.19
rspeed 638.1 | 1.17
tblook 651.6 | 1.18
ttsprk 829.8 | 1.20

HARMEAN | 339.4 [ 1.15 |

and (2) L1 caches filter many accesses to L2, which typically increases the imbalance
across sets. hRP instead achieves a highly homogeneous distribution across sets with
an harmonic mean of 1.15 across benchmarks and a maximum of 1.23 for canrdr
benchmark. Moreover, hRP imbalance progressively approaches 1.0 as we increase
the number of runs, which is the expected value after an infinite number of runs due
to the purely random address-to-set mapping nature of hRP.

4.3.3 Lifetime

Next we elaborate on the impact of the improved set distribution on HCI and BTI
lifetime.

HCI. We use the HCI model reported in [113], as explained before, where it
is shown that HCI is directly proportional to the switching activity. Thus, we use
actual switching activity of the cache accesses to estimate the relative HCI lifetime
improvements. We assume that a failure occurs when the first permanent fault due to
HCIT occurs. Thus, the bit with highest switching activity determines cache lifetime.
While other models could be used, our work is centered around safety-related real-
time systems where timing verification occurs before operation and assuming that
the processor is fault-free. Thus, unless otherwise considered during the analysis
phase, one faulty cache line may impact the WCET and thus, invalidates those timing
guarantees on which the certification process has been conducted.

Since the actual lifetime value depends not only on HCI, but also on other sources
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Figure 4.7: Increase in cache lifetime due to HCI impact. RM and ERM configurations
normalized with respect to M for both IL1 and DL1, and hRP configuration normalized
with respect to M for L2. Note that scales are different in each plot.

of failure and hardware components, we report how much the lifetime of the IL1 and
DL1 is extended due to HCI for RM and ERM normalizing the results with respect
to M placement. Results are shown in Figure 4.7. We observe that lifetime grows by
3.9x and 8.8x on average for IL1 and DLI respectively for RM. Results for ERM
are far better, extending HCI lifetime by 7.6x and 30.9x on average for IL1 and DL1
respectively. If we compare ERM with respect to RM, lifetime grows by a factor of
1.9x and 3.5x for IL1 and DL1 respectively.

Regarding the L2 cache, we observe that hRP extends L2 lifetime by a factor of
257x with respect to M placement, which is a huge gain. Still, one must consider that
HCT is proportional to switching activity and L2 cache lines are typically read /written
only a fraction of the times L1 caches are. Therefore, if L1 and L2 caches use the
same type of transistors, L1 caches experience much higher switching activity and
thus, L1 caches are the reliability bottleneck for HCI. If, instead, L2 caches are
implemented with smaller transistors for achieving further integration, then L2 caches
may be the reliability bottleneck for HCI, particularly if DL1 is write-through so
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that all store operations are forwarded to L2 cache. Note that write-through DL1
caches are common in the safety-related domain due to the complexity to implement
complex error correcting codes in DL1 caches without impacting cycle time or cache
latency [94]. Instead, these latencies are better tolerated in L2 caches and L1 caches
can implement parity instead since error correction can be performed using L2 cache
contents.

BTI. As explained before, BTT aging does not relate to the switching activity but
to the content bias of the cache cells. In order to understand the benefits of ERM
in L1 caches and hRP in the L2 cache, we have performed the following experiment
for the IL1: we collect the bit bias for each cache line bit considering the actual
switching activity for the EEMBC benchmarks and disregarding the effect of replace-
ment policies, therefore using a 1-way IL1 since random replacement already exhibits
a fair random distribution and we focus just on the placement. Note that random
replacement, as well as hRP and ERM, are fully random. Hence, what cache line is
replaced in a cache with N sets and W ways is randomly chosen and homogeneous
across IV - W lines. This is also the case for a cache with N - W sets and 1 way. In
the case of RM (or M), the actual cache set selected is not fully random and homo-
geneous. As we increase the number of ways and decrease the number of sets (e.g.,
2x ways, 0.5x sets), using random replacement, the bias introduced by the placement
policy would get increasingly mitigated. Thus, we evaluate direct mapped caches to
exacerbate differences. We have performed this experiment for all benchmarks and
obtained similar results across all of them. While this experiment provides only a
first-order approximation to the impact of ERM on BTI, our conclusions would hold
with any BTTI lifetime model in the light of the results presented next. Figure 4.8
shows in the top part the bit bias obtained for each bit of each set (i.e., a line in a 1
way cache) in the IL1 for M placement for pntrch EEMBC benchmark, where lighter
bits indicate they are highly biased (i.e., storing a particular value for most of the
time) towards ‘1’ whereas darker bits are highly biased towards ‘0’. As shown, many
bits are very highly biased towards specific values. In fact, 235 out of the 256 bits per
cache line are 100% biased towards ‘0’ or towards ‘1’ in at least one of 128 cache sets.
Thus, independently of how much time each cache line is stored in cache and how the
replacement policy distributes cache lines across ways, there will be some bits 100%
biased towards ‘0’ or ‘1’, thus experiencing maximum degradation. Note that the
distribution is heterogeneous across sets, thus reflecting the fact that the particular
sets used with M placement directly depend on the memory addresses where objects
(code in this case) are stored.

We have evaluated what ERM could achieve in terms of bit bias considering ac-
tual switching activity, also disregarding the effect of replacement policies as for M
placement. The bit map, again for pntrch, is shown in the bottom part of Figure 4.8.
As shown, ERM homogenizes the bias across sets (visually across rows), but cannot
do anything to further reduce the bias. This would bring some gains in terms of BTI
lifetime since the maximum bias across all bits in cache decreases from 100% to 80%,
which would extend lifetime. How much lifetime would be extended would depend
on the actual technology and the degree of self-healing it achieves. Lifetime gains
would be proportional to the maximum bit bias reduction if self-healing is neglected.
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Figure 4.8: Bit bias for the IL1 cache with M (top) and ERM (bottom) placement
policies for the pntrch EEMBC benchmark. Lighter color indicates higher bias towards
"1’ while darker color indicates higher bias towards ’0’.

Considering self-healing would affect those results, which could be potentially opti-
mistic. In any case, the bit bias achieved is still far away from the ideal 50%. Similar
conclusions are reached for FRM in DLL1 and hRP in L2 cache across all benchmarks
since bias in those caches reaches 100% for M, but remains far away from the 50% for
randomized designs. Hence, caches implementing some form of random placement are
expected to achieve higher BTT lifetime than those implementing modulo placement
based on our bit bias measurements, but are far from the lifetime gains that could be
achieved by fully balancing bit bias with techniques such as those in [114, 115, 110]
based on inverting cache contents. This effect is expected since random placement
homogenizes bit bias across cache sets, but cannot do anything if specific bit positions
are highly biased towards one value.

Therefore, we can conclude that, while randomized caches could provide some ben-
efits in terms of BT lifetime, other orthogonal techniques based on content inverting
are likely needed to mitigate BT aging if it is a reliability bottleneck.
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Figure 4.9: Frequency spectrum of power dissipation for a regular processor (top) and a
time-randomized processor (bottom).

4.3.4 Delay impact

We have synthesized our EFRM design using a TSMC 45nm technology library to mea-
sure its impact on cycle time. After synthesis we have seen FRM has zero impact
with respect to the maximum operating frequency that the regular RM implementa-
tion can achieve. RM critical path depends on the complexity introduced for XORing
and combining TAG bits and random seed bits to configure the Benes network. With
the implementation described in [37] the critical path for both ERM and RM is 1.01
ns whereas the path affected by the inclusion of the XOR gate has 0.22 ns delay in
the case of ERM (0.09 ns for RM plus 0.13 ns due to the level of XOR gates added).
While faster RM implementations could be devised, they require at least two levels of
XOR gates to combine TAG and random bits, thus being 0.26 ns the lowest potential
delay (still higher than 0.22 ns).

4.4 Resonant Voltage Noise Resilience

Interestingly, randomization can be in fact also beneficial against another reliability
related problem, the RVN phenomenon. RVN are pathological energy consumption
patterns induced by the power demand behavior of instructions and processor events.
The alignment of this events at Power Delivery Network (PDN) resonant frequencies
can create power droops that might hinder processor’s correct operation.

In conventional processor architectures this pathological scenarios can lead to
the systematic occurrence of recurrent high power demanding events. In processors
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including randomization the occurrence likelihood of extreme situations is not only
reduced but also it can be measured quantitatively using statistical tools, which allows
to properly dimension the system [80]. Figure 4.9 shows the frequency spectrum
resulting from the application of the Fast Fourier Transform (FFT) to the power
profile of a pathological benchmark executed in a conventional processor (top) and
in a time-randomized one (bottom). As shown in the plot, in a time-randomized
processor the synchronization of power demanding events is much less significant
leading to an almost flat spectral behavior.

4.5 Related Work

Several approaches have been proposed in the literature to address the impact of HCI
and BTT in processors and cache structures [116, 117, 115]. While the majority of
works focus on BTI effects, some recent works have also pointed out the importance
of considering the effects of HCI degradation [118, 113, 114]. In fact, authors in [114]
have already proposed improving the uniformity of accesses to the cache to mitigate
HCT and Negative-Bias Transistor Instability (NBTI) degradation. Unlike in [114],
where authors rely on introducing dedicated hardware resources to achieve uniform
access distribution, we rely on the good properties of random modulo [37] and hash-
based random placement [31, 110, 71] to achieve the same goal at roughly no cost.

While different works offer divergent views on the benefits of the self-healing ef-
fect for BTI, this has no impact on the conclusions of our work, but on the actual
lifetime gains that could be obtained. In particular, some authors show that, when-
ever transistors are not degrading, their degradation rolls back progressively to some
extent [79]. Other authors, however, notice that such recovery rolls back very quickly
when the transistors are stressed again, thus questioning to what extent this recovery
extends the lifetime of transistors [119]. Nevertheless, the best and worst case for
SRAM cells do not change regardless of the benefits of the self-healing effect. Hence,
in our particular study we stick to a first-order approximation for BTI effects relat-
ing BTI degradation to stress duration, thus disregarding the self-healing effect. As
shown later in our evaluation, our conclusions would not be affected by this effect if
taken into account.

Considering WCET estimation together with reliability issues has been done at
several fronts. Some authors propose preserving WCET estimation methods by devis-
ing hardware cache designs able to tolerate permanent faults with no effect (or easy
to account effect) on WCET estimates [22, 120]. Other authors propose accounting
for the timing impact of faults in a probabilistic manner in combination with static
deterministic timing analysis methods by studying the impact and probabilities of
different fault distributions [20, 121, 21]. However, since those approaches do not
use randomized cache designs, the impact estimation of (random) faults has to rely
on the most conservative assumptions. Additionally, they cannot be applied in the
context of measurement-based timing analysis.

Recently, some authors have done some preliminary work in the context of WCET
analysis of faulty hardware together with MBPTA [111, 23]. Results are promising
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and prove that the random nature of the timing of hardware providing the properties
required by MBPTA matches very well with the random nature of faults, thus leading
to efficient solutions. While that work shows to be efficient to account for the impact
of transient faults and a limited number of permanent faults, it does not provide
means to mitigate aging effects.

In this chapter, instead, we assess the reliability of the different random placement
designs, random modulo for L1 caches and hash-based random placement for L2
caches, in terms of aging (HCI and BTI). Then, we propose an enhanced random
modulo implementation such that reliability of L1 caches is improved while preserving
the good properties of random modulo.

4.6 Summary

Fault tolerance and WCET estimation, needed both for safety-related real-time sys-
tems verification, have often been addressed as separate concerns. In this context,
approaches based on MBPTA have been shown to match very well the needs of both
concerns by relying on the same principle: randomness. Therefore, efficient solutions
can be built to consider both concerns simultaneously.

In this chapter we assessed the reliability in terms of HCI and BTI of random
modulo cache designs for L1 caches and hash-based random placement for L2 caches,
proven convenient for MBPTA. Our results show that random placement designs
effectively mitigate HCI aging and provide some limited benefits in terms of BTIL.
Still, random modulo is far from being optimal in terms of HCI. Therefore, we pro-
pose an alternative random modulo implementation that further mitigates HCI aging
while preserving the main features of random modulo: low impact in critical path,
low miss rates and adherence to the requirements of MBPTA. Additionally we also
demonstrated how TRP are naturally more resilient to pathological effects like RVN.
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Chapter 5

Attaining Side-Channel Attack
Resiliency and Time-Predictability

“It is possible to provide security against other ills, but as far as
death is concerned, we men live in a city without walls.”

— Epicurus

5.1 Introduction

Security has become a primary concern for computing systems in the last decades
with a plethora of types of attack already proven successful. For instance buffer
overflow, double freeing or Spectre [122] attacks have demonstrated security flaws in
the design of software and hardware.

In this chapter we analyze how time-predictability (as an example of safety con-
cern) and side-channel attacks (as an example of security issue) in cache memories
can be jointly tackled and later extend on how randomization can also be used against
other security intrusions.

Increasingly autonomous and connected Automotive Systems (ATS) require on-
board computing systems with resilient operation under timing faults and attacks.
The increased connectivity of these systems opens the door to security threats (e.g.,
side-channel attacks, an effective security intrusion for obtaining secret keys). In
particular, Cache-Timing Side-Channel Attacks (SCA) (see Section 2.4.2.3) allow
attackers to fully or partially recover keys, which can later be used to take control
over the ATS. On the other hand, ATS increasingly deal with safety (e.g., autonomous
driving), which requires a reliable response time of all critical software services.

Until recently, ATS comprised relatively simple Electronic Control Unit (ECU)
deploying 8 and 16 bit microcontrollers. The execution time of software on such
simple devices was mostly jitterless (or suffering very small execution time variabil-
ity) simplifying the task of deriving Worst-Case Execution Time (WCET) estimates
and mitigating the risk of SCA. However, the advent of more complex value-added
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software functionalities, managing increasing amounts of diverse data, has raised the
performance needs for the automotive sector.

The execution time of tasks on complex hardware strongly depends on their input
data and processor’s state, thus exposing the system to SCA. This is a major concern
for ATS to protect sensible information and prevent safety issues as ATS control
critical aspects with humans in the loop like autonomous driving.

Interestingly, randomization has been independently proposed as a solution for
WCET estimation and preventing SCA. For WCET estimation, the most extended
industrial practice builds on collecting execution time measurements of the software
running on the target platform. Obtaining evidence about whether those measure-
ments are representative of the WCET during operation is challenging on complex
hardware [13].

These difficulties have been addressed by using probabilistic techniques to WCET
analysis, so called Measurement-Based Probabilistic Timing Analysis (MBPTA) tech-
niques [34]. MBPTA benefits from injecting randomization in cache timing to sim-
plify modeling and provide evidence for certification as needed by safety standards.
For SCA, randomization solutions break the dependence between input data (and/or
cache state) and execution time so that for the same input data and processor state a
sufficiently random execution time is experienced. However, it remains to be proven
whether a single solution can tackle both, WCET and SCA issues.

While injecting randomization in cache timing-behavior addresses each of those
concerns separately, we show that randomization solutions for time-predictability do
not protect against side-channel attacks and vice-versa. We then propose a random-
ization solution to achieve both safety and security goals.

5.2 MBPTA and SCA Properties

To understand the inherent properties that each of the domains (safety and security)
demand we first make a separate analysis of the desired characteristics for MBPTA
and security.

5.2.1 Random Caches for MBPTA

Often, in the automotive domain, system integrators subcontract the development
of certain software to different software providers. Across software integrations of
the software units contributed by each provider, the objects of a function (i.e., glob-
als, stack and code) can change their addresses resulting in different cache layouts,
with arbitrarily different hits/misses and execution time [123]. In general, it is un-
feasible for users creating test scenarios during the Analysis Phase (AP) accounting
for the worst memory placement (and cache layouts) that can occur during system’s
Operation Phase (OP) [13].

Cache randomization [37, 124] ensures that a new random cache layout is exer-
cised on every program run so that the impact of caches on execution time becomes
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independent of the actual memory layout. This relieves users from controlling mem-
ory/cache layout of objects since (random) cache layouts experienced during AP and
OP are probabilistically identical. MBPTA builds upon collecting a sample of execu-
tion times of the task under analysis on the target platform and verifying that those
samples meet certain statistical properties in order to properly apply statistical tools
to enable timing analysis, see Figure 2.4 (left). In particular, MBPTA applies Ex-
treme Value Theory (EVT) [34] that requires independence and identical distribution
of the execution times [34] (see Section 2.2.1).

Cache randomization involves three main elements: a Pseudo-Random Number
Generator (PRNG), random placement and random replacement, the latter of which
is optional. Several works show the existence of low-overhead PRNG that provide
enough quality in the sequences produced to avoid correlations [125]. Regarding
random placement [31, 37, 124], it requires to adhere to certain properties for MBPTA
compliance (referred to as mbpta-pz).

mbpta-pl Time composability across incremental software integration ensures
that early phase WCET estimates (ideally at the unit testing level) hold upon inte-
gration. This decreases the risk of costly detection of timing violations during late
design phases. Time composability, relates cache layouts (i.e., how addresses are
mapped to cache sets) during AP and OP. Time composability builds on one of the
following properties on random cache placement.

mbpta-p2 Full Randomness. Let us assume two different addresses A and B (i.e.,
they differ at least in one bit, excluding offset bits within the cache line) and a cache
with S sets.

1. A (and B) is randomly placed to different sets for different seeds: That is, there

exist seeds seed;, seed; and seedy, so that S5 # ijedj ,and S5l = §5cedk,
2. The set where A and B are mapped to is not systematically identical. That is,

d: d; seed seed
for some seeds, seed;, S5 # SE", whereas for others, seed;, S, 7 =Sz

3. It is required to keep the same cache-line alignment during AP and OP so that
if A and B belong to different cache lines at OP, they also do in experiments
carried out at AP.

Note that, for any seed, it is not needed that A and B have the same probability
of being mapped to the same set.

mbpta-p3 Partial APOP-fized Randomness. In this case, randomization is car-
ried out at memory page boundary.

1. If A and B are in the same page boundary, the probability to map them to the
same set is null for any seed.

2. If A and B belong to different pages, the same principles than for full-randomization
apply.

3. It is required to keep the same memory-page alignment during AP and OP so
that if A and B belong to different pages at OP, they also do in experiments
carried out at AP.
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5.2.2 Random Caches for Security

SCA extract secret key data by exploiting the information leakage resulting from
the physical implementation of the system. An important bulk of SCA exploits the
information leakage of the hardware through input data dependent execution time.
The most common timing-related SCA exploit cache behavior to obtain sensitive
information. There are several main types of SCA able to exploit different cache
properties, but in this thesis we focus on the contention-based SCA.

Contention attacks are based on conflicts between cache lines, and include Prime-
Probe and Evict-Time attacks. The basic concept is to use caches to perform or
expect evictions of cache lines, and from there infer which data is being utilized.
The attack vector is enabled because cache lines are stored in sets in a deterministic
fashion.

Given that accesses to the lookup tables depend on the input data, an attacker
is able to extract cryptographic keys by measuring the time it takes to the victim
or itself to load certain data. Most of this kind of attacks assume that the attacker
shares the use of the processor with the victim [81]. However, it is not necessary
to have a contender in the same processor in order to perform contention attacks.
Bernstein [411] for instance, proved that interference inside the victim’s own accesses
might be enough to reveal full cryptographic keys.

Let € be the universe of input states, I' the universe of execution times that a
task can exhibit, 7 the execution time v € I" of a cryptographic task given the input
w € Q, and P(t)) the probability of observing such execution time.

For protection against SCA, sca-p1 cache designs must ensure that no correlation
exists between the input data and the observed execution time. In this way, any single
input state can exhibit several execution times with equal probability, thus preventing
any attacker from identifying the input state from the execution time:

1

5.3 Assessing the Time-Predictability of Secure
Cache Designs

The RPCache [126] decouples cache interference of the attacker from the victim by
randomizing interference whenever a memory access from a process different from the
victim’s one contends for the same cache line. On the event of a contention event that
might leak information, a random set is selected for replacement. So far the MBPTA
compliance of this design has not been assessed. In particular we identify two features
of this approach that fail to meet MBPTA requirements: First, the timing behavior of
the task under analysis depends on the actual addresses accessed. Therefore, WCET
estimates do not hold across integration with other software units, which may change
the actual addresses of the task and hence, change its timing behavior arbitrarily.
This prevents achieving time composability (requirement mbpta-pl). And second,
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contender tasks produce cache evictions in random sets upon contention with the
task under analysis. Hence, since whether contention exists is fully dependent on
task’s contenders behavior, so is the case for task’s cache evictions. Thus, the WCET
estimate obtained for the task strongly depends on the contenders behavior, typically
unknown in early design phases (when WCET estimates need to be successfully as-
sessed against timing budgets). This is against time composability needed in ATS
(mbpta-pl), as explained before.

The Newcache [127] builds on the same concept as RPCache and introduces
several improvements to reconcile high-performance and security, offering low miss
rates and faster accesses. However, the main concept and limitations for MBPTA-
compliance behind the placement policy remains the same as for RPCache.

Aciicmez [128] proposes a placement policy to secure instruction caches that
randomizes the cache set where addresses are placed by XORing the index bits with
a random number. Let’s assume two addresses A and B and further assume that
they have identical index bits. Hence they are placed in the same set with modulo.
By XORing their (identical) index bits with a random number, the set obtained
is random, but identical for both addresses, hence breaking mbpta-p2 principles.
Furthermore, if A and B have different index bits they are placed in different sets
with modulo. By XORing their (different) index bits with a random number, the set
obtained is also different, so they are placed in different sets. This breaks mbpta-p2
since it is not the case that for different seeds seed; and seed;: S5 # Si“% and
Sjeedj _ S;eedj.

While [128] performs a random permutation of cache sets based on the random
number used, its timing behavior is strictly dependent on the addresses and analo-
gous to that of modulo placement, breaking mbpta-pl. Also, performance (and so
WCET) are strictly dependent on the actual addresses accessed, so WCET estimates
become invalid upon integration since different memory locations of objects will lead
to arbitrarily different cache conflicts.

5.4 Assessing the SCA-robustness
of Time-Predictable Cache Designs

For MBPTA compliance, caches implement random placement and (optionally) ran-
dom replacement. The latter, on the event of a miss in a given cache set, randomly
chooses one line in the set to be evicted and replaced. As explained before, random
replacement builds on PRNGs so that choices are sufficiently random [125]. Random
placement, determines the cache set where an address is mapped by operating the
address (tag and index bits) together with a random number called random seed or
just seed [31, 37, 124]. The remaining address bits (offset bits) are only used to select
the particular word accessed within the cache line. Given an address and a seed,
random placement delivers a fixed cache set. However, differently to the proposal
by Aciicmez [128], addresses are placed randomly and independently in cache. For
instance, addresses A and B are placed on the same set for some seeds only. Hence,

67



5. ATTAINING SIDE-CHANNEL ATTACK RESILIENCY AND
TIME-PREDICTABILITY

| TAG |INDEX| OFFSET | | RANDOM SEED |
| TAG | INDEX | OFFSET | | RANDOM SEED |
_ —Dc—> —D>c—>
@ T bits D bits D bits T bits
e | I
(] L[]
— L
¢ 1
—
©
e
aE
L €
]
g a) b) BENESNETWORK
_-_

Figure 5.1: (a) hRP and (b) ERM cache architectures.

cache conflicts across different seeds are random, making actual addresses irrelevant
when determining the cache sets they are mapped to. This relieves the end user from
controlling memory mapping. Two different designs implement random placement:
hash-based parametric random placement (hRP) [31] and random modulo (RM) or
enhanced random modulo (ERM)* [37, 124], see Figure 5.1.

hRP [31] operates on tag+index address bits with a seed by means of rotator
blocks and XOR gates so that conflicts in different sets are made random, see Fig-
ure 5.1 (a). hRP poses no constraint on whether cache lines need to belong to the
same page. Its performance is slightly lower than that of ERM and modulo place-
ment, but it is compatible with second level (L2) and third level (L3) caches whose
way size may be much larger than the page size. hRP achieves Full Randomness
(mbpta-p2).

ERM! [37, 124] takes as input the XORed bits of the seed with the index and
tag bits of the address, see Figure 5.1 (b). The XORed index bits are the input to
a Benes Network [129] and the XORed tag bits are used to drive the network. The
output of this Benes Network is a randomized permutation of the index bits that
point to a particular cache set. ERM is compatible with caches whose page size is
equal or a multiplier of the cache way size. Often first level (L1) caches use a way
size equal to the page size. With ERM each address is placed in a random set with
uniform probability, but addresses in the same page are placed in different cache sets.
ERM is compatible with MBPTA when contents in each memory page are preserved
across integrations (easily achieved by current RTOS), while allowing pages move
freely in the memory space. Overall, ERM achieves Partial APOP-fixed Randomness
(mbpta-p3).

Compliance with SCA protection properties. MBPTA compliance for caches

'Without loss of generality, in this chapter we will be using ERM, the enhanced version of RM
(see Chapter 4 for more details on its implementation).
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relies on random placement to exhibit randomized execution times. To achieve SCA
robustness, random placement must also decouple cache interference of the attacker
from the victim. That is, memory addresses from victim and attacker’s processes must
not contend systematically in the same cache set. Instead, each memory address from
each process must be randomly and independently placed in a set, thus randomizing
interference. In the following section we detail how to achieve time-predictability and
security against SCA in the same design.

5.5 Time-Secure Caches

In order to attain both, MBPTA-compliance and SCA robustness, either MBPTA-
randomization solutions are made SCA-aware or SCA-randomization solutions are
made MBPTA-aware. Without loss of generality, we opt for the former. SCA-aware
caches cause variations in timing behavior for which achieving MBPTA-compliance
require specific ad-hoc solutions. Studying those solutions is part of our future work.

hRP and ERM preserve the same seed during the execution of a task, so that cache
contents can be retrieved and kept consistent. When cache contents are private to
each task (there is no shared data), then flushing is not needed across different tasks
despite using different seeds since coherency is not affected (across different tasks).
Whenever a given task instance (i.e., job) executes, then either cache contents need
to be flushed or the seed used in the previous job of the task has to be used again to
preserve coherency.

MBPTA-compliance adds light constraints on seed management. Depending on
the scope of the application of the WCET estimate, which for instance defines whether
exceedance thresholds apply to the task as a whole or to each job independently, the
granularity at which the seed has to be changed varies. On one extreme of the
spectrum the seed is (randomly) set once before the execution of the first job of a
task. On the other extreme of the spectrum the seed is changed right before every
job release.

Interestingly MBPTA-compliance sets no constraint on the seeds used for different
software units (tasks), which threatens security since two different tasks could have
the same seed and therefore their behavior can be reproduced.

In the context of SCA, for contention attacks if the attacker task is allowed to
use the same seed as the task under analysis, then it will have the same (random)
placement as the victim. Hence, it will have the ability to learn about the victim as we
show later in the evaluation section, using contention-based attacks. Instead, if each
task is forced to have a different seed, conflicts between attacker’s and victim’s cache
lines are random and independent across runs, thus defeating any contention-based
attack, since the attacker loses the ability to create contention for specific victim’s
data.

Implementing per-process unique seeds. In order to prevent contention-
based attacks with hRP and ERM, a different seed has to be provided to each process
which requires some Operating System (OS) support, see Figure 5.2. In the context
of AUTOSAR, applications are divided into Software Components (SWCs), and each
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Figure 5.2: Example of AUTOSAR application and seed management.

SWC is further divided into runnables (the atomic unit of execution). Each runnable
has an associated execution period, see Figure 5.2, where an application has 2 SWCs
(SWC1 and SW(C2), and another 1 SWC (SWC3), consisting of 1, 2, and 2 runnables
respectively. For instance, runnable R, executes every 10 ms and it produces some
output read by R3. Also, SWC1 produces some output read by SWC2. Communi-
cation across runnables in the same SWC can be done via shared memory, whereas
across SWC with message passing. Finally, runnables of different SWC are organized
into tasks where each task has a specific execution period. For instance, task A in-
cludes all runnables with period 10 ms (R; and R»). Runnables are scheduled within
a task preserving application dependencies.

In order to allow the communication between runnables of a given SWC via shared
memory, with our proposed TSCache, all runnables of a given SWC must use the same
seed. Preserving the same seed across runnables of the same SWC also reduces the
number of cache flushes and hence, overheads. In the case of runnables of different
SWC, they may have been developed by different providers (even if they belong to
the same application). Hence, they must not use the same seed to prevent contention-
based attacks across SWCs?. This implies that, on a context switch across runnables
of different SWC, the OS must store the seed in the task struct of the SWC, empty
the pipeline, and restore the seed of the incoming SWC. This way SWCs cannot
learn from the cache behavior of the other SWCs. This is indicated in Figure 5.2
with red arrows and the seed that needs to be set. Note that whenever the OS is
invoked (e.g., during Rj), the OS seed needs to be used for memory coherency and
to prevent also contention-based attacks. Finally, whenever the whole hyperperiod
elapses (20 ms in the example), the OS needs to set new random seeds and flush cache
contents. This ensures that execution times across runnables in different hyperperiods
are random and independent. Note, however, that if the instances of a given runnable
within a hyperperiod use the same seed, their timing is not independent (e.g., the
two instances of R;). The only practical implication is that their — arbitrarily low —
exceedance probability is not independent and, if one of those instances would ever

2Note also that by enforcing different seeds across SWCs the system is also protected from
memory attacks exploiting software vulnerabilities.
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overrun its pWCET, all other instances of this runnable in the hyperperiod could also
do it.

Despite seeds are changed often, cache is not flushed, so the overhead is negligible
(emptying the pipeline and updating seed registers). Instead, cache flushing occurs
only once per hyperperiod, as already needed for MBPTA compliance.

5.6 Case Study

5.6.1 Methodology
5.6.1.1 Berstein Attack and Threat Model

Due to the current nature of ATS, Bernstein’s attack [11] is a realistic scenario, since
attacker and victim do not have to share the processor during the contention attack,
thus being less restrictive. Additionally the vector of attack for Bernstein’s intrusion
matches the processor architecture currently used in ATS (i.e., the cache hierarchy).

We emulate two independent processors that execute cryptographic operations
independently, the victim and the attacker. Both processors execute 128-bit AES
encryption functions. For the attacker the key is known, for the victim, a randomized
128 bits key is generated. We collect then timing measurements from the processes
of encryption, and then we perform a statistical correlation on the timing profiles
of attacker and victim to find the secret victim’s key. In the original Bernstein’s
experiment, victim’s timing measurements were taken on the victim’s machine to
reduce interference. Hence, performing the analysis on-line or off-line gives exactly
the same result. For this experiment victim and attacker obtain 107 samples of AES
encryption operations each.

We try Bernstein’s attack on different setups, basically extracting for each 16-
byte input value the average computation time per byte and value. In particular, we
evaluate the robustness of the different setups by executing the attack and observing
how much information (bits from the key) the attack is able to disclose. When
computing the correlation between execution times observed and key values, we use for
each byte the most stringent correlation factor so that (1) the number of combinations
preserved is minimized while (2) keeping the correct value among those regarded as
feasible. Hence, this is the best case for the attacker.

5.6.1.2 Experimental Setup

We use a cycle accurate simulator based on SocLib [99], modified accordingly to
include the RPCache, hRP and ERM caches. The processor setup resembles the
NXP e200z4 [95] a single-core automotive microcontroller chip. Details about the
architecture modeled can be read in Chapter 3.

We evaluate four different setups: (a) deterministic: a baseline vulnerable proces-
sor with time-deterministic caches; (b) RPCache: a secure processor implementing
the RPCache [126]; (¢) MBPTACache: a processor implementing a random cache
for MBPTA compliance; and (d) T'SCache: our proposal to simultaneously handle
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Figure 5.3: Time variations with respect to average across all different values of input
byte number 4.

timing and SCA. For MBPTACache and TSCache, the L1 caches implement ERM
while the shared L2 cache hRP. Further details on the experimental setup can be
found in Chapter 3.

5.6.2 Results

5.6.2.1 SCA robustness

In Figure 5.3 we show how certain values for a given input (byte number 4) take
slightly longer to be processed on the baseline deterministic setup. Those values with
higher execution time allow the attacker to retrieve the value of the particular byte of
the key or, at least, reduce the number of potential combinations drastically so that
a brute force exploration of the (limited) remaining combinations can break the key.

Figure 5.4 shows for each cache setup the different bytes of the key in the y-axis
and their potential values in the x-axis. White cells correspond to values effectively
discarded by the attack, whereas grey cells correspond, to values that could not be
discarded. Black cells correspond to the particular value of the key. Hence, the whiter,
the more effective the attack. As shown, Bernstein’s attack is effective for half of the
bytes on the deterministic setup (top left plot): the attack is able to determine 33 bits
out of the 128 bits of the key and other combinations are also discarded, the number
of remaining combinations decreases to 25°. This number of potential key values is
below the 212, decreasing the cost of a brute force attack by a factor of 2%%.

For the RPCache, the same bytes as for the baseline setup are vulnerable to
the attack. However, the RPCache proves to be stronger in front of this attack by
keeping the number of potential keys to explore at 2'°%. Still, some information is
leaked. When using the MBPTACache (bottom left plot), vulnerability to the attack
occurs in different bytes as for the other caches. Overall, the number of potential key
values is 2194, thus close to the case of the RPcache.

Finally, with the proposed TSCache, the best case attack is unable to disregard any
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Figure 5.4: Effectiveness of the Bernstein’s attack. Black cells show the used value of

the secret key, grey values show attacker’s considered candidates while white values show

discarded values. Note how in TSCache the attacker is not able to successfully correlate
the potential key values with the actual ones, and hence, no value is discarded.

value for any byte. Since TSCache makes placement fully random and independent
of the actual address accessed across different seeds, Bernstein’s attack fails to reveal
any information, thus preserving key strength at 2'2%. In fact, Bernstein’s attack
regards some values as more likely to be the key ones for several bytes, but discarding
the key value for some of those bytes. Hence, TSCache, rather than preventing the
attack from inferring any information by transforming it into noise, fools the attacker
by providing wrong information that would not allow a brute force attack to reveal
the key if fewer combinations are explored.

Generalization. Contention-based attacks, such as Bernstein’s one, rely on de-
terministic eviction of controlled cache lines. Hence, Prime-Probe and Evict-Time
Attacks, both contention-based, are thwarted by using secure time-predictable caches
since the cache layouts of different processes are completely independent and random-
ized. As explained in Section 5.4, those attacks rely on the ability to reproduce and
infer from timing profiles the inputs used by the victim. By having different seeds
for victim and attacker tasks, their input state differs and so the timing profiles also
differ. Hence, contention-based attacks cannot relate execution time variations with
any other information, thus failing as Bernstein’s one.
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5.6.2.2 MBPTA-compliance

TSCache achieves Partial APOP-fixed Randomness properties (mbpta-p3), maintain-
ing MBPTA-compliance (see Section 5.2). We further validated that the observed
execution time fulfills the independence and identical distribution properties as re-
quired by EVT as used in MBPTA. We use the Ljung-Box independence test [58] to
test autocorrelation for 20 different lags simultaneously, a very strong independence
test. We have also applied the Kolmogorov-Smirnov two-sample i.d. test [57]. All
our samples have passed both tests for a o = 0.05 significance level.

5.6.2.3 Overheads

For the sake of clarification we discuss on the implications on hardware of the modi-
fications needed to implement hRP and ERM in terms of performance and area.

Area. ERM and hRP caches have already been implemented on a LEON3-based
multi-core processor causing no operating frequency degradation on an FPGA [37].
In terms of area, while we cannot isolate the cost of cache modifications, making the
whole processor MBPTA-compliant (so modifying all caches, bus arbitration and FP
units included) and adding an enhanced tracing feature costed less than 1% processor
area increase.

Performance. hRP and ERM have been shown to have no effect on the maximum
operating frequency of their FPGA implementation [37]. Also, they have similar cache
behavior to that of standard modulo placement. Specially ERM has shown a miss
rate 1% far from modulo [37], hence with negligible impact on average performance.
The impact in performance due to the seed change is also negligible. Seed changes
are produced for security reasons for which restoring the seed of the process to be
executed next would only require to wait until all accesses in flight of the previous
process have been served, which would take tens of cycles. Also changing the seed
for time-predictability reasons implies flushing the cache. However this is required at
coarser granularity, hence the relative cost of flushing is contained.

5.7 Other Security Implications of Applying Ran-
domization

Following the argumentation, we note how randomization can also be applied in other
regions of the processor to increase security against other security threats different
from SCA. We provide a qualitative analysis of how existing solutions based on ran-
domization could be used for protection against other security threats. In particular
we reason about other types of side-channel attacks, Unauthorized Control Informa-
tion Tampering (UCIT) vulnerabilities (see Section 2.4.2.1) and Denial of Service
(DoS) attacks (see Section 2.4.2.2).
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5.7.1 Power-Based Side-Channel Attacks

The amount of power dissipated by a program can also leak cryptographic informa-
tion. When instructions execute fixed-time repetitive operations, like cryptographic
algorithms that use multiple iterations for a given secret key, attackers can match
power profiles obtained to infer the cryptographic data.

Randomizing the execution time to achieve protection against power analysis at-
tacks was proposed in [130] by introducing random noise via randomly interleaving
dummy instructions with the actual code when the execution of encryption algo-
rithms is detected. However, memory layout randomization schemes such as those
implemented in [35] already randomize the execution time exhibited by the processor
thus being a better option to protect from both sources of attacks, namely contention-
based and power analysis attacks.

5.7.2 Unauthorized Control Information Tampering (UCIT)

Randomization offers a path to address UCIT attacks by relocating both position
independent and dependent regions either by software or hardware means. Different
randomization schemes based on memory layout randomization can effectively protect
the system from UCIT vulnerabilities by randomizing the locations of critical data
elements and thus, making difficult, if at all possible, for an attacker to exactly deter-
mine the runtime locations of vulnerable points using experimentation. Coarse-grain
randomization mechanism like the transparent runtime randomization [82] suffice to
protect the system from UCIT vulnerabilities. While they fail to meet other proper-
ties like protection against SCA, fine-grain randomization mechanisms like [131] can
provide that protection.

5.7.3 Denial of Service (DoS)

DoS attacks can be prevented by allowing a fair utilization of shared resources. This
requires (1) a proper dimensioning of system resources with per-core dedicated buffers
to avoid scenarios where an attacker stalls a shared resource, and (2) adequate ar-
bitration policies. A time-randomized processor meeting these goals is presented in
[35]. It ensures a fair utilization of shared resources by (1) limiting the number of
in-flight requests for each core (thus limiting the maximum delay a request can suffer
due to contention), and (2) implementing a random arbitration policy that accounts
for the time each core uses shared resources [35]. Hence, shared resource bandwidth
is fairly shared across cores regardless of their timing behavior. Moreover, such time-
randomized arbitration policy is compatible with Advanced Microcontroller Bus Ar-
chitecture (AMBA) protocols for communications, since AMBA adds no constraints
on the particular arbitration policy used.
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5. ATTAINING SIDE-CHANNEL ATTACK RESILIENCY AND
TIME-PREDICTABILITY

5.8 Related Work

Several works mitigate different cache SCA [10, 81]. In this context, cache partitioning
has been proposed to solve both, contention-based SCA [132, 126] and to achieve time
predictability [133]. The idea is to disable interference by isolating cache lines across
different processes. However, cache partitioning severely limits the effectiveness of
shared caches in multi-cores affecting both, performance and the ability to share
data across threads running in different cores [134]. This relates to the difficulties to
partition also all cache buffers and queues, as well as to the performance impact of
reduced cache associativity per partition. Some proposals explore this option further
beyond the cache, by extending isolation to other resources (e.g., miss status holding
register) and putting other measures in place to tackle information leakage holistically
across the processor [135].

Randomization mitigates the amount of information leaked [132, 126, 89] and
has been applied to tackle contention and reused based attacks. More recent pro-
posals also employ randomized mapping with similar hashing functions to protect
caches against contention attacks [136]. Despite the increased protection, other tech-
niques explore how to surpass the randomization barrier by efficiently finding eviction
sets [137] which would enable contention attacks on randomized schemes as long as
the mapping stays fixed for enough time. Works like [138, 136], based around our
proposal, try to address this by using different hashing functions for each way or
remapping cache blocks. However, as stated previously, the applicability of these
solutions to timing analysis is inherently compromised. Overall, to the best of our
knowledge this is the first work proposing hash-based randomized hardware designs
for security and SCA that also address timing analysis.

5.9 Summary

Increasing performance needs in ATS requires the adoption of high-performance hard-
ware features such as caches, that however, challenge time-predictability and make
systems vulnerable to timing-based SCA. While those concerns have been addressed
individually, existing solutions have not been proven compatible for both concerns.
We analyzed the suitability of the solutions devised for each concern against the
requirements of the other, proving that they fail to achieve both goals simultane-
ously. We propose Time-Predictable Secure Cache (TSCache) which effectively de-
livers time-predictability for MBPTA and robustness against contention-based SCA.

In this chapter, we propose and demonstrate an effective use of MBPTA time-
randomized caches to deliver both, time-predictability for MBPTA and robustness
against contention-based Cache-Timing Side-Channel Attacks. We assess its effec-
tiveness against the Bernstein’s attack proving that it preserves the strength of the
key. We also consider the benefits of Time-Randomized Processors (TRP) against
other types of security intrusions like UCIT or DoS attacks.
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Chapter 6

Worst-Case Energy Consumption,
a New Challenge

“If knowledge can create problems, it is not through ignorance that we
can solve them.”

— Isaac Asimov

6.1 Introduction

The number of (edge) devices connected to the Internet of Things (IoT) is on the
rise, reaching hundreds of billions in the next years. Many devices will implement
some type of critical functionality, for instance in the medical market this includes
infusion pumps and implantable defibrillators. Energy awareness is mandatory in
the design of IoT devices given their huge impact on worldwide energy consumption
and the fact that many of them are battery powered. Critical IoT devices further
require addressing new energy-related challenges. On the one hand, factoring in the
impact of energy-solutions on device’s performance, providing evidence of adherence
to domain-specific safety standards. On the other hand, deriving safe Worst-Case
Energy Consumption (WCEC) estimates is fundamental to ensure the system can
continuously operate under a pre-established set of power/energy caps, safely deliv-
ering its critical functionality.

The rise of battery-powered and power-constrained critical devices makes energy
a first-class citizen, as relevant as functional and timing requirements. At the Vali-
dation and Verification (V&V) level, evidence must be provided that power-control
techniques do not jeopardize the safe operation of the device [139]. This relates to
assessing the effect of those techniques on the timing of the software to prevent any
overruns and providing evidence that they are triggered/deactivated in a controlled
manner [110]. V&V of critical battery-powered devices also require obtaining guar-
antees (evidence) that with a given energy budget the device can effectively run all
critical activities (tasks) due to battery or power source related constraints. This calls
for methods and tools for WCEC estimation. In battery-powered devices evidence is
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needed to show that task runs (jobs) can execute adhering to their WCEC bound,
so that the total energy consumed during operation is proven not to exceed battery
capacity. Meanwhile, in power-constrained devices similar evidence is needed within
smaller time frames to prove that energy consumed does not exceed power supply
capabilities.

Intuitively, the properties required on WCEC estimates are comparable to those
for Worst-Case Execution Time (WCET) estimates, namely providing tight upper
bounds to actual energy consumption and evidence for certification. However, as we
show in this chapter, despite the similarities in the concept, WCET and WCEC esti-
mation are different processes subject to fundamentally different sets of requirements
coming from the hardware. The latter shapes the set of assumptions that can be made
on the hardware information required for tight energy measuring and modeling.

In this line, we analyze for the first time the impact that different hardware phys-
ical parameters have on both model-based and measurement-based WCEC modeling,
for which we also show the main challenges they face compared to chip manufactur-
ers’ current practice for energy modeling and validation. Under the set of constraints
that emanate from how certain physical parameters can be actually modeled (see

Section 2.4.3), we show that measurement-based WCEC is a promising way forward
for WCEC estimation.

6.2 Sources of Power Variability

Two are the main physical factors that particularly complicate power estimation at
the hardware component level.

1. The power dissipation of any hardware component (e.g., the whole processors
or a floating point unit) varies across units'. Furthermore, power dissipation
figures differ from their (theoretical) nominal value. This relates to physical
variability for hardware manufacturing.

2. The power dissipation of a given component varies over time in each unit due
to several sources of variation.

Operation-time (fabrication) Process, Aging, Voltage and Temperature (PAVT)
variations cause that, even if hardware designers could model circuits at the lowest
(most-accurate) level, designers would still miss the actual variations experienced by
each individual processor unit. This seriously complicates — in fact makes it de facto
impossible — predicting exactly power consumption a priori. Furthermore, specific
processor unit(s) under study are used to derive power estimates for all of them.

Process Variations. Limitations in the manufacturing process cause device
(e.g., wires, vias and transistor components) parameters (e.g., geometry, thickness
and number of dopants) to differ from their nominal values. Taking as an example
the lithographic process, variations have a systematic and a random component. The

LA unit is a physical implementation of a given component (e.g., a processor may have two
floating-point units; also two single-core chips are two different processor units).
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Figure 6.1: Average power dissipation of a program through execution time for different
temperatures. The binary alternates execution of memory and FPU instructions on an
in-order 4 stage processor with separate instruction and data level 1 caches, and a unified
level 2 cache.

former manifests in spatial correlation so that variations affect in a similar manner
neighboring devices; while the random component refers to individual devices suf-
fering independent variations. Variations make delay and power dissipation of each
individual device differ from nominal values and at a coarser granularity, those vari-
ations lead to delay and power variability of processor components. For instance, 3x
power variations with 90 nm technology [141] and 20x leakage (static) power varia-
tions [142] with 180 nm technology have been reported by industry across different
processor units (between the most power efficient and the most power hungry units).

Accounting for those variations requires studying each different processor unit
separately, or using statistical means [143] to determine average or maximum power
dissipation.

Aging Variations. Electromigration, Bias Transistor Instability (BTT) and Hot-
Carrier Injection (HCI) [144, 145, 146] (among others), affect the resistance of wires
and threshold voltage (V;) of transistors. They also change processor behavior (
including energy consumption ) over time and affect physical characteristics of the
devices by displacing molecules and dopants from their original locations. Hence,
power dissipation for a unit slowly changes over time.

Temperature and Voltage Variations. Processors operate within a given
temperature and supply voltage range. Both of them vary due to the activity of
the whole processor, ambient temperature and physical characteristics of the supply
source, package, processor pins, etc. For instance, if some cores in a multi-core
move from idle to active, they will increase switching activity, thus consuming more
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power. This will produce higher temperature, that will propagate to the neighbor
cores, and will reduce the amount of current available for other cores, which will
perceive a V.. decrease. This, ultimately, affects power dissipation dynamically at
very fine grain (e.g., voltage variations may occur at the scale of few nanoseconds).
As an illustrative example, Figure 6.1 shows average power measurements of 500-
cycle intervals for a program execution in a relevant temperature range for many
embedded microcontrollers [147]. A temperature increase of 100 degrees leads to a
power increase of up to 3.5x.

6.3 Current Practice on Processor-Level Typical
and Maximum Power Estimation

As an initial step to define a method to derive reliable WCEC bounds, we describe
current practice for low-level processor energy modeling. Arguably, chip vendors have
the most advanced techniques and tools for that purpose. Hence, understanding the
limitations of those models is fundamental to understand the limits of WCEC estima-
tion. Note that chip vendors are interested in determining suitable cooling solutions,
so their focus is on sustained power estimation under highly stressful scenarios.

Power models and measurements are used to estimate power during processor
design [148, 149]. They help iteratively modifying the design until there is enough
evidence that target peak power values are not exceeded (see Figure 6.2). During the
process, chip vendors also use techniques such as adaptive body bias® [150] to trade
off between maximum operating frequency and power dissipation of the processor.
Due to the known inaccuracy of the models at the different abstraction levels, safety
margins are applied to account for the unknown, such as deviations in the actual
switching activity estimated, the impact of PAVT variations or the effectiveness of
the cooling solutions [151].

Models. Model-based techniques are known for being slow, limiting the window
of analysis to few thousands of cycles at most. For instance, in electrical-level SPICE
models, characterizing a memory macrocell with synthetic stimuli can take days of
simulation, with a single BSIM4 CMOS transistor model accounting for more than 40
parameters [152]. On the one hand, the huge time requirements of models are handled
by abstracting physical behavior keeping the model usable but reducing its accuracy.
On the other hand, despite the complexity of the models, their accuracy with respect
to reality may not be sufficiently high and, moreover, it is also hard to be estimated.
This emanates from the limitations of the model to capture all physical effects and
its inability to model ezactly PAVT variations, often accounted for statistically [143].

Power models are used in chip industry for pre-silicon validation and design refine-
ment (Figure 6.2), for instance for determining whether the power supply is enough,
the appearance of power hot-spots and the efficiency of cooling solutions. Models

2Body bias techniques rely on modifying the voltage of the substrate to either increase threshold
voltage (V) so that leakage power and speed decrease; or to decrease V; causing an increase in speed
and leakage power.
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Figure 6.2: Usage of (measurement/analytical) models and measurements during the
hardware design process.

comprise an analytical part and a wide set of parameters obtained from measure-
ments on ‘prototype implementations’ such as macrocells, small prototype chips, etc.
or technology projections derived from previous implementations on similar technol-
ogy (feature size) [153]. The model is evaluated on small hand-made kernels (power
viruses) to derive extreme behavior. However, power viruses do not guarantee that
the worst power is captured. This relates to the difficulties to produce those inputs
leading to the worst switching across the full chip, under the worst PAVT variations
conditions. Identifying the sequence of inputs needed for each Functional Unit Block
(FUB) of the processor is simply unaffordable. Then, producing those inputs simulta-
neously in all FUBs is more challenging requiring controllability to produce the worst
combined inputs and preventing to control PAVT variations.

Measurements. Measuring actual power consumption in real processors is lim-
ited by the availability of power monitoring units. The granularity at which power
readings can be provided is coarse in time (e.g., 1 second [154]) and space (e.g., com-
ponents in the pipeline can neither be isolated nor accessed physically to measure their
power dissipation). As a result, engineers stick to external means to take coarse-grain
power measurements. Interestingly, while some processors provide built-in power
monitors for some components, those are power-proxy approaches with which power
is derived as a linear model of performance monitoring counters (activities), which
are weighted by constants. Those constants are derived empirically with a regression
model from the execution of several reference applications. This is the case of the
IBM POWERT [155].

Measurements are used for post-silicon validation (see Figure 6.2). Due to the
complexity of achieving accurate power estimates analytically, chip vendors verify chip
power using actual measurements — despite their own limitations. This allows deriving
power and energy figures for the different processor components. The main challenge
for deriving worst-case energy and power measurements resides on the definition of
representative scenarios. For example, maximum peak power numbers for processors
are obtained using benchmarks that generate the most (ezpected) stressing situations,
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aka, power viruses [156].

Despite advanced models and measurement approaches, the risk of inaccuracies is
not removed. One of the most well-known failures in the prediction of the peak/typ-
ical power, is the Intel Tejas processor (aka, Pentium V), which finally exceeded its
power /temperature budgets due to model inaccuracy at a level that even body biasing
could not correct, so its production was abandoned [157]. Although these practices
are costly and not always effective, they are still affordable and used in practice by
experts due to being the most accurate methods available.

Summary. Overall, model-based approaches build on detailed knowledge of the
system. The applicability of this type of white-box approaches is challenged by the
lack of details of real processors. In contrast, measurement-based approaches, a form
of black-box approach, can still derive estimates through experimentation although
uncertainty may remain due to the difficulties to create representative tests.

6.3.1 Validation and Verification

Criticality derives from functional safety and safety standards (e.g., IEC 62304 for
medical devices and IEC 61508 for industry). Interestingly, safety standards do not
aim at removing the appearance of failures, which is arguably impossible in a real
system. Instead, they aim at making their likelihood of occurrence to be quantified
and assessed against reference values, asserting with sufficiently high confidence that
the residual risk of violation falls below tolerable rates. In this line, despite common
wisdom, systems are designed such that a task overrun never leads to an unsafe
state of the system, which would mean a bad-designed safety solution. A safety
process is defined (according to the corresponding standard) covering the definition
of safety goals and requirements, and a safety strategy in general, to mitigate the
risk that hardware or software misbehavior causes a system failure. As the criticality
of the software component under analysis increases, more mechanisms are put in
place (replication, online monitoring, watchdog) to detect and react to undesired
situations.

6.4 Model-Based Task-Level WCEC

In this section, we detail the main difficulties found by static (model) based ap-
proaches to estimate the maximum energy consumption of a given task. Intuitive
solutions based on multiplying the average power consumption and the WCET esti-
mate for a task may not lead to high-quality WCEC estimates since energy and time
do not necessarily correlate [158].

Few works address the problem of WCEC estimation from an analytical point
of view [158, 159]. Following the principles of static WCET analysis, model-based
(static) WCEC analysis builds on deriving a cost function for each instruction, with
the (obvious) observation that the latter uses energy as cost function. Energy cost is
derived at instruction level and then combined to derive energy cost of basic blocks.
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From that point on, standard Integer Linear Programming (ILP) formulation — or
any other sound formulation — is used to derive WCEC estimates for the task.

WCEC techniques work at a high abstraction level compared to what we discussed
in the previous section. Those techniques focus on pipeline effects (Fetch, Decode,
etc.) and hardware components used in each stage (e.g., caches, functional units
and the like). As reference figures to compare against, WCEC models use estimates
provided by open-source power models. Those models are generic (i.e., not tailored
to any particular processor) and can indistinctly result in over- or under-estimates.
Hence, obtaining WCEC estimates above the estimates provided by the reference
model does not guarantee high-quality WCEC estimates as they can be lower or far
higher than the actual energy figures.

6.4.1 Granularity and Accuracy

There are several levels at which power can be modeled, such as (in increasing order
of abstraction) electrical (e.g., SPICE models), gate level and Register-Transfer Level
(RTL). At the highest levels, small programs are used to derive power estimates
for a given hardware component. These programs are usually restricted to small
power viruses [156] that aim at generating high power consumption by, for instance,
increasing the activity factor.

Modeling full-program energy consumption poses many challenges. One of them
relates to keeping the execution time requirements affordable, which inevitably re-
sults in simplifying the underlying power model. In particular, the number of phys-
ical details factored in is reduced, which basically plays against the accuracy of the
power estimates. Model simplifications may cause inaccuracies either under- or over-
estimating power. For instance, gate-level or RTL models lose some accuracy and can
only be afforded to simulate small programs (e.g., simulating a full processor during
several thousands of execution cycles may require several days of simulation). As the
complexity of the models decreases to make the problem tractable, information such
as the switching activity of the transistors is lost. A feasible approach to increase the
granularity minimizing the impact on accuracy would be using measurements coupled
with statistical bounding analysis at the desired granularity level as inputs for the
models. Following this approach, any implementation-dependent factor is captured
by the measurements and upper-bounded by statistical formulation. For instance,
the specific implementation of an adder (e.g., carry-lookahead and Kogge-Stone) de-
termines how its transistors switch, and the physical implementation determines the
size of the different transistors, so how much capacity switches for each transistor.
Hence, the lack of accurate information on the capacity switched on each operation
in each component may lead to large inaccuracies.

6.4.2 Upper-Bounding the Activity Factor

The activity factor (aka, switching activity) of a given FUB is a figure in the range 0-1
that describes the fraction of the total capacity of the FUB that switches (and hence
consumes dynamic power) in a particular processor cycle. The activity factor plays
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a key role when estimating dynamic power (see Section 2.4.3). Deriving the activity
factor for a FUB requires extensive knowledge about the particular transistors (and
their geometries) whose inputs change on a FUB input change, if not every cycle, on
average.

First, many processor details are not visible at the software level. For instance, it
is inconceivable to devise how control signals switch (e.g., to manage queues between
pipeline stages) from the abstract analysis of program instructions.

Second, this information can only be obtained with transistor-level simulations,
which incur huge overheads to enable modeling full programs. Note that chip vendors
may not make those details public for competitive reasons. Additionally, it is simply
unaffordable precomputing the energy consumption of all potential input transitions
due to computational and storage cost. As an illustrative example, let us assume a
particular FUB such as an adder. A 32-bit adder has, at least, 264 different inputs if
we ignore control signals, and so there are at least 2'2® different input transitions pos-
sible, each one producing a specific capacity to switch. Identifying the worst possible
transition analytically (out of the thousands of transistors) or empirically is beyond
the reach of any circuit designer which, at most, can guess what the worst transition
is. Hence, the complexity of obtaining and managing such detailed information is
beyond the reach of static models.

An intuitive way to handle this, as done in WCET analysis, is making pessimistic
assumptions. For instance, switching activity is assumed to be 1 since providing
evidence that a lower value is an actual upper bound would resort to unaffordable
low-level information/models. However, typical switching activity is largely below 1
due to idle blocks whose inputs do not change in specific cycles, or due to the usual
bias of input values operated and stored towards specific values, which lead to very
limited switching activity. To provide concrete empirical evidence on this general
intuition, we show an example that builds on the so called toggle factor in Table 6.1.
It represents the fraction of nodes® that have switched at least once in the processor
and hence, can be regarded as an upper-bound of the switching activity of a circuit
since only a subset of the transistors in the toggled nodes have effectively switched. In
particular, we have computed with the QuestaSim RTL simulator the toggle activity
factor for several benchmarks executed in an RTL LEON3 processor description. As
shown, only around 40% of the nodes toggled (i.e., the activity factor is at most 40%,
but typically much lower).

Worst-case assumptions on the activity factor result in remarkably pessimistic
estimates. On the previous example, and assuming that half of the transistors switch
in a toggled node, the processor could consume 20 W, while we would account for
40 W assuming the toggle factor, and 100 W assuming switching activity 1. Hence,
the estimated WCEC may implicitly lead to a power dissipation above the actual
capabilities of the processor, reducing its practical use. As explained before, switching
activity decreases exponentially (often quadratically) across gate levels, so activity
factors of up to 5% are expected for simple circuits [160]. Lower factors are expected
for more complex circuits.

3A node in RTL represents a high number of transistors in the actual circuit.
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Table 6.1: Toggle coverage for different Workloads on a RTL model of the LEON3.

EEMBC AutoBench Maélardalen WCET

IU components | rspeed | canrdr | ttsprk | matmult firFn
Fetch 72.58% | 72.58% | 74.19% | 57.26% 58.06%
Decode 70.27% | 68.92% | 72.30% | 63.51% 60.13%
Register access 80.00% | 77.88% | 79.70% | 73.33% | 71.82%
Execute 77.78% | 76.19% | 77.38% | 73.54% 72.22%
Memory access 62.43% | 60.22% | 62.15% | 65.19% | 74.86%
Exception 66.51% | 64.22% | 65.82% | 76.15% 76.26%
Write back 29.19% | 28.57% | 28.57% | 26.09% 45.96%
Data cache 57.52% | 57.21% | 57.52% | 56.44% | 57.06%
Instruction cache | 41.32% | 41.32% | 42.36% | 35.33% | 41.32%
Register file 92.48% | 92.48% | 92.48% | 87.97% 97.97%
Others 12.38% | 10.6% | 10.78% | 15.32% 16.09%
Total 39.2% 37.8% 38.5% 39.8% 41.6%

6.4.3 PAVT Variations

As detailed in Section 6.2, PAVT variations can produce large power variations across
units. Any static WCEC estimation model aiming at providing arguably sound energy
upper-bounds — that cannot be exceeded under any circumstance — cannot afford
using typical values or values obtained from statistical distributions (e.g., mean plus
six sigma). The latter can be probabilistically exceeded and, even if that could
occur with a negligible probability, it cannot be proven to be zero. Such a WCEC
estimation approach confronts with chip vendors’ current practice: simply deriving
the worst possible value is out of the reach of chip manufacturers that, instead of
relying on a theoretical value, build upon measurements to determine the parameters
of a Gaussian distribution matching best the observed values. Then, an upper-bound
value is chosen based on N-sigma approaches. In other words, industry resorts to
measurements to determine bounds to different parameters and use as upper-bound
the mean (u) plus N times the standard deviation (o), where N is typically in the
range 3-6, depending on the exceedance rate that can be afforded for that particular
component and metric [161].

Interestingly, even if we assume that the highest observed value is a true upper-
bound, in practice due to the uncertainty brought by test campaigns on specific pro-
cessor units, the degree of pessimism for power estimation can be huge. For instance,
process variations may produce power discrepancies of 3x across processor units [141],
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voltage variations can produce ~25% power variations [142], and temperature varia-
tions around 3.5x power variations as shown before. Therefore, even neglecting aging
variations, PAVT variations in power (and so in energy) can be as significant as 13x
if the absolute worst case needs to be accounted for.

6.5 Measurement-based WCEC Estimation

To our knowledge, no measurement-based WCEC estimation technique exists. Next,
we detail the main aspects of WCEC estimation for tasks with measurement-based
approaches.

6.5.1 Quality of the Measurements

Using the target platform for collecting power measurements offers the advantage
of speed and removes discrepancies with reality due to modeling. Furthermore,
measurement-based analysis can also handle complex scenarios by mimicking real-
world workloads (i.e., multiple tasks running simultaneously) through the use of
stressing tests and operation conditions (e.g., high temperature), thus accounting
for interactions between tasks by merely executing them together without the need
for any detailed model (i.e., a form of black-box approach). Moreover, a measurement
based technique can capture the effects of multi-task workloads and their interactions
between them. Whenever some effects cannot be properly accounted for through
measurements, then disabling or enabling some features (e.g., cache partitioning) can
limit the complexity of multi-task workload interference. The other side of the coin
are the challenges to observe and account for PAVT variations as well as software-
dependent (internal) effects.

Regarding observability, while power meters can be used, they may create some
effects on the power consumption of the processor due to the coupling of the power
supply lines and may have some degree of inaccuracy. Moreover, power meters mea-
sure the power of the full processor rather than the power of the task only, so deducing
task energy consumption can only be done with separate experiments running and
not running the task, but some non-controlled PAVT variations may interfere mea-
surements differently across runs. Finally, synchronizing the start of the run of the
task with measurement collection is a tough task, so measurements need to be col-
lected at a coarse granularity (e.g., for 1,000 runs of the task with identical inputs)
to mitigate this effect.

Regarding PAVT variations, process variations correspond to those of the ac-
tual processor being used, so how they represent other processor units can only be
studied statistically using other processor units, extrapolating the effect from small-
scale experiments on simulated platforms or with data provided by the manufacturer.
Analogously, aging, voltage and temperature conditions observed may be representa-
tive of neither the typical case nor the worst case. Thus, it may be required to use
simulations for extrapolating their typical effect for statistically relevant scenarios.
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Figure 6.3: Average energy consumption of a two-path program. Note that, even
though the cache intensive path takes more cycles, the FPU intensive path consumes more
energy.

6.5.2 Input Space Coverage and Representativeness

As for timing analysis, measurement-based WCEC analysis has to deal with all chal-
lenges related to input-space coverage such as program path coverage and memory
placement of objects (and its influence on cache behavior), both in single-core and
multi-core execution environments. However, differently to timing analysis, some of
these factors have non-obvious effects on power and, moreover, a number of parame-
ters may be innocuous for performance, but not for power.

Cache behavior correlates well with energy in general, with hits served faster and
with lower energy than misses. The latter need to further access another cache level
or memory and take longer to be served. Still, it is possible finding specific examples
where hits lead to higher energy consumption than misses.

Execution Paths. While path coverage is equally important for both, timing and
energy analysis, the challenge for energy relates to the fact that higher execution time
does not imply necessarily higher energy consumption. First, there is a direct relation
between execution time and energy consumption due to static energy, which is roughly
proportional to execution time. Thus, in general, paths with longer execution time
will likely produce higher energy consumption, but only if the instruction mix and
values operated are similar enough. And second, an execution path that incurs many
cache misses may take longer than a computation intensive path. However, the latter
may produce much higher switching activity due to computation than the former,
where the pipeline stays mostly idle with low switching activity. Figure 6.3 illustrates
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Figure 6.4: Diagram of the main challenges, and potential paths to follow, addressed by
model-based and measurement-based WCEC estimation.

this effect by showing dynamic and static energy consumption for 50 execution cycles
intervals for a multipath program with 2 paths, each executed twice. On the second
iteration of the program, the first cache-intensive path takes 48650 cycles to execute
and consumes 11 pJ while the second computation-intensive path consumes more
energy (i.e., 12.2 uJ) and has a shorter duration (i.e., 44750 cycles).

Overall, assessing the relationship between energy and execution time for a given
task, or simply identifying the paths leading to the highest energy consumption for
a task, is an open challenge. Initial solutions can build on those derived for WCET
based on using the input data used for functional testing or some type of randomiza-
tion to automatically cover the design space and derive probabilistic coverage argu-
ments [49, 80].

Activity Factor. The relationship between the activity factor and input data is
extremely hard to establish. As indicated before, input values for FUBs may produce
high or low switching activity. This often relates to the number of changing bits across
operated values, since changing bits may induce some switching activity. However,
other effects such as memory placement (and so cache placement), even if performance
remains the same, may lead to significantly different switching activities. For instance,
different addresses may produce different switching activity when operated to add an
offset. Analogously, if two addresses are mapped to the same cache set, even if their
accesses produce the same hit/miss sequences, may cause different switching activity
in the cache decoders, in the replacement information of the cache sets, etc. Hence,
determining a realistic and tight upper-bound to the switching activity of the task
under analysis is difficult. Since it depends on highly distant layers (i.e., input data
for the task and transistor-level implementation of the processor), no practical means
can be realistically set up to get measurable confidence. Instead, only argumentation
based on exhaustiveness of test campaigns can be used, whose reliability is difficult
to assess.
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6.5.3 PAVT Variations

Some variations, such as temperature and voltage, can be induced during analysis by
placing the chip in an oven and manipulating the power source of the processor. Yet,
relating those conditions with worst-case operation conditions is a complex challenge.

Other variations, such as aging, can be accounted for applying accelerated aging on
a processor. This is typically done by applying overly high temperatures and voltages
so that the accumulated aging occurred in several years of operation is produced in a
few hours. However, whether accelerated aging produces ezactly the same effects as
aging during operation due to physical implications of using different stress conditions
is unclear.

Finally, process variations change across processor units, thus making energy esti-
mates obtained for a given chip unit be invalid for any other chip unit. Thus, the only
reasonable way to account reliably for the effect of process variations is performing
the analysis on the chip to be deployed. This, however, poses a serious issue for many
industries: power analysis needs to be repeated for all processor units delivered. This
is virtually unaffordable for many industries where the number of units can be in
the range of millions and cost constraints are severe. Although industry performs a
number of verification tests in all units deployed to detect obvious defects, the full val-
idation and verification process followed for certification/qualification purposes is not
repeated for each system unit, including all its components. Thus, process variations
also bring uncertainty to WCEC estimates. Similar to the model-based approaches,
and as stated in Section 6.4, process variation effects can be accounted by analyzing a
representative large enough number of processor units and obtaining its corresponding
statistical and probabilistic distributions.

6.6 Putting it All Together

Power models may produce power estimates with arbitrarily large under- or over-
estimate inaccuracies with respect to nominal power dissipation, which in turn, may
also have large deviations with respect to the actual power dissipation of a given
processor unit in a given time interval due to PAVT variations.

Complex power models have been used for low-level hardware energy modeling
(e.g., hardware component, transistor, and capacitor level). Extending these models
to derive WCEC estimates at the task level faces the challenges of granularity and
precision, see the top part of Figure 6.4. The former covers the infeasibility of using
existing slow models to scale to the size of tasks. The latter covers the fact that
abstractions are needed to reduce performance requirements, which naturally cause
trading some precision of the models. This translates into making worst-case assump-
tions for many parameters, resulting in pessimistic estimates that limit their usability
and restrict them to early design stages when the objective is to derive initial tasks’
energy /power budgets and task schedules that fit a given energy /power budget.

Measurement-based approaches offer proxies close enough to reality to be usable
and to be understood by end users in their certification arguments about tasks worst-
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case energy consumption. Yet it is required to deal with several sources of uncertainty
with qualitative reasoning and statistical methods as the only approaches available
to ascertain the degree of uncertainty, see the bottom part of Figure 6.4. In particu-
lar, mechanisms need to be devised to mitigate uncertainty and increase confidence
and representativeness of measurements collected: i) for increasing the observability
of hardware and software interactions measurements have to comprise a very high
number of observations first with identical inputs and later varying inputs to achieve
sufficient coverage. Tests have to be intended to enable out-of-normality cases to sur-
face to the observer; ii) for hardware-state and program-input effects, we can build on
existing solutions used for WCET either based on randomization as a way to naturally
explore complex interactions of software and hardware [19] or techniques based on the
user’s ability to build test campaigns able to cover the worst possible situations [30];
iii) the activity factor case builds upon exhaustive tests and a necessary qualitative
argumentation to reliably trust those tests; iv) temperature and voltage variations
can be accounted by stressing the hardware under analysis by subjecting it to extreme
cases of voltage variations or applying accelerated aging; v) finally, process variation
uncertainty can be reduced by the use of a large enough test pool of processor units
from which to derive statistical distributions that allow the application of a correction
factor on the WCEC measurements.

6.7 Related Work

Powerful tools exist to measure power at the electrical level, such as SPICE [162],
or higher granularities, such as CACTI [163], which models resistances and capaci-
tances of memory structures, and McPAT [101] and WATTCH [164], which estimate
the power of full processors building upon CACTI. Literature on power and energy
estimation mostly focuses on empirical regression models, dealing with the selection
of the features that should be used to most effectively model energy for different types
of platforms or processors (e.g., CPU, GPU and ARM Based) building upon their
performance counters [165, 166, 167]. Hybrid models, which combine analytical and
empirical models, are also proposed to trade accuracy for microarchitecture indepen-
dence [168]. Other works approach energy modeling from a probabilistic view by using
stochastic models and random distributions [169]. The use of manufacturer-provided
models (e.g., Intel’s RAPL) has also been considered and enhanced by several works
as an out-of-the-shelf viable accurate alternative[170]. However, none of those tools
or models is intended for WCEC estimation of full tasks, as needed in the context of
critical real-time systems.

Other works [171] have also verified that variations across identical instances of
the same processor are not negligible, which directly impacts empirical models and
how to account for the worst-case across a processor pool.

However, for critical tasks and real-time systems where tight bounds on resource
consumption must be defined (either time or energy) this is rather a new field.

Some authors have assessed the strong dependence between WCEC and input
values of different components [172]. Others [173] assess the validity of current WCEC
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methods, showing that WCEC cannot be estimated with mathematical proofs, instead
of requiring a shift towards a more statistical framework. In other domains, circuit
high power has been predicted using Monte-Carlo approaches and Extreme Value
Theory (EVT) [174] focusing on Thermal Design Point (TDP) rather than WCEC.
Representativeness of the estimates is only discussed to some extent as they rely on
the ability of the user to define representative testing scenarios, thus facing the same
problems of state-of-the-art power verification approaches.

For model-based WCEC techniques, [158] shows that multiplying average power
by the WCET is not reliable, so they build upon model-based WCEC estimates
for basic blocks extrapolated from micro-architectural level power models and use
Implicit Path Enumeration Technique (IPET) to estimate the global WCEC. This
approach has been improved [159, 175] combining IPET with genetic algorithms to
trade off between reliability and tightness and provide hard and soft WCEC estimates.
However, these models work at a high abstraction level, assuming a fixed amount of
energy per instruction, which fails to reflect the underlying variability at hardware
level caused by Process Variation (PV) and other effects. On the other hand, it is
unclear how static models could account for stochastic effects such as those of PV.

We attack the WCEC estimation problem from a different angle. Starting from
current industrial practice, we identify the key elements challenging industrially-viable
WCEC estimation and provide the basis for a measurement-based probabilistic ap-
proach.

6.8 Summary

Energy is a key metric in critical battery-power and power-constrainted edge devices,
calling for effective means for WCEC estimation. While the theory behind timing
(WCET) analysis has been developed during years, WCEC estimation has received
much less attention.

In this chapter, we describe key aspects of WCEC estimation (impact of switching
activity and PAVT variations) so far ignored by previous methods. To our knowledge,
no previous work covers the increasing gap between WCEC estimation methods and
how energy varies in real systems. We make a first step in that direction by bringing
together knowledge from industrial practice on energy estimation and WCEC esti-
mation in the embedded domain. Overall, this chapter settles the ground on the
grand challenges (and directions to address them) for practical and reliable WCEC
estimation and aims at becoming a reference for future works on WCEC estimation.
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Chapter 7

Worst-Case Energy Consumption
Modeling Methodology under the
Presence of Process Variations

“Aut viam inveniam aut faciam.”

— Hannibal Barca

7.1 Introduction

As explained in the previous chapter, processor energy and power can suffer significant
variation across different units due to Process Variation (PV) (i.e., variability in the
electrical properties of transistors and wires due to imperfect manufacturing) which
challenges existing Worst-Case Energy Consumption (WCEC) estimation methods
for applications.

Therefore, WCEC estimation must (1) scale to arbitrarily complex software-
hardware systems and (2) account for the impact of PV intrinsic to highly-integrated
process technologies. PV is an inherent consequence of the processor’s manufacturing
process and makes transistors and wires that were initially designed to be identical,
end up having significantly different electrical properties. As a result, energy con-
sumption varies significantly across different instances of the same processor. This
challenges WCEC estimation since the WCEC estimates obtained for a given chip
unit are not valid for other chip units. Performing Validation and Verification (V&V)
activities on every deployed chip poses a serious issue for autonomous systems indus-
try, because the number of units can be in the range of millions and the costs are
simply unaffordable (e.g., due to the low cost of drones and high chip count in cars).
Although industry carries out several tests to all deployed units, the full V&V process
followed for certification is not repeated for each system unit. In this context, this
chapter proposes a statistical modeling approach to capture PV impact on applica-
tions energy and a methodology to compute their WCEC capturing PV, as required
to deploy portable critical devices.
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Figure 7.1: Per-FUB power variability for the CPU and memory intensive benchmarks.

7.2 PV-related power variability

PV causes transistors and wires, which are designed to have a common nominal
behavior, to have different electrical properties. The chemical metal planarization
process of wires creates capacitance and resistance variations that arise as a conse-
quence of variations in wire dimensions and defects introduced in the layout [176]. For
transistors, the sources of variation are systematic and random PV. Systematic PV
causes the effective length of transistors to vary as a consequence of imperfections in
the photo-lithographic process. The most important source of random PV is random
dopant fluctuations.

PV makes power consumption vary across different processor units (instances)
and Functional Unit Blocks (FUBs) (i.e., instances of functional units on the same
processor unit). The latter is due to the fact that different FUBs are built using dif-
ferent transistors and wires with radically different electrical properties. For instance,
memory structures included in processors are built using full custom transistor-based
bit cells (6T, 8T), whereas simple combinatorial logic is built using logic gates created
with standard-cell libraries.

Within-chip PV, while less severe than chip-to-chip PV, makes the effects of man-
ufacturing deviations be different across FUBs. For instance, within-chip systematic
PV, caused by imperfections in the photo-lithographic process, presents a strong
spatial correlation causing distant transistors to present different manufacturing de-
viations.

Specific per-FUB PV creates an indirect dependence between the specific software
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FUB Leakage | Mem. bench. | CPU bench.
Instruction Fetch Unit (IFU) | 31% 29% 26%
Load/Store Unit (LSU) 31% 30% 31%
Register File 31% 24% 18%
Integer ALU 28% 16% 28%
FPU 40% 40% 18%
Result Broadcast Bus (RBB) | 17% 17% 14%
L2 31% 31% 31%
NoC 6.2% 4.7% 6.2%
Memory Controller (MC) 27% 27% 27%

Table 7.1: FUB power variability.

executed and the observed PV related power variability. This dependence poses new
difficulties in the WCEC estimation process since accounting for the impact of PV
requires knowing the exact contribution to the power variability of each FUB. To illus-
trate this, we have performed an experiment using 2 synthetic software applications:
a memory-intensive application and a compute-intensive one.

Intuitively, power variability caused by PV is not the same for all programs.
For instance, the PV power variability in the Floating-Point Unit (FPU) has no
impact on the memory-intensive benchmark: Figure 7.1 shows the PV-related power
consumption variability for each FUB obtained with McPAT-PVT [177]. Probability
distribution functions are normalized to make their y-axis values match the same
range for visualization reasons. This allows visualizing the power variability of all
processor FUB in the same plot, what would not be possible otherwise since the
power Probability Distribution Function (PDF) across blocks varies significantly. We
observe that for the compute-intensive benchmark the FUBs with greater contribution
to the power variability are the Instruction Fetch Unit (IFU) and the FPU, whereas
for the memory benchmark the FUBs with higher power variation are the IFU and
Load Store Unit (LSU).

One key observation on which our proposal builds on is that the Relative Power
Variability (RPV) of FUBs is constant for a given processor implementation. The
relative variability of a distribution (a.k.a the coefficient of variation) is defined as
the ratio of the standard deviation (¢) to the mean variation (u). This is so because
RPV depends only on the physical properties of each hardware block like its archi-
tecture and the technology library used to manufacture it. This observation allows
accounting for the impact of PV in the WCEC since it enables the derivation of
power quantification methods that hold regardless of the exercised workload. Two
additional conclusions can be obtained from RPV values collected for the most rep-
resentative FUBs of our processor design, as summarized in Table 7.1. We observe
the variability of each FUB is different going from 17.5% for the RBB up to 31.2%
for the L2. The second observation is that it still exists a dependence between the
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Figure 7.2: Example of different distributions per FUB.

relative power and the running workload making for instance the RPV of the ALU go
from 16.2% up to 27.7% for the memory- and compute-intensive workloads, respec-
tively. Interestingly, the dependence of the RPV with the workload disappears when
considering the relative power variation per FUB access.

Also note that PV causes different impact on different FUBs, which makes the
power probability distribution function vary across FUBs!. For instance, some FUBs
can follow a Gaussian distribution while others chi-square, log-logistic, or Weibull
distributions [178, 179, 180, 181]. The combination of these distributions can result
in an arbitrary statistical distribution for the overall processor, see illustrative picture
for 4 FUB in Figure 7.2. Building on these observations, in the next section we
propose a practical methodology for estimating WCEC using energy measurements
and considering the impact that PV have in the reliability of the estimates.

7.3 PV-aware Energy Modeling

Next we propose a methodology for capturing the impact of PV through measure-
ments. We describe our methodology, its parameters, and its fitness for certification.
The proposed methodology builds on current industrial practice in CPU power mod-
eling [148], which facilitates its potential adoption.

!Note that our power simulator (McPAT-PVT) assumes a Gaussian distribution for all
FUBs [177], hence our results and illustrative examples will reflect that, even though the actual
implemented FUBs might display a different distribution.
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Table 7.2: Summary of distributions used for modeling PV features.

Processor feature Distribution
PV-induced power variability Gaussian [178]
Manufacturing deviations Gaussian fields [179]
Power and Delay due to Gate Length PV | Non-Gaussian [181]
Dynamic power per FUB Multi-modal [180]

7.3.1 Random Nature of PV

PV impacts the physical characteristics of devices (transistors and wires), altering
their nominal operation characteristics, including power and delay. PV is usually
decomposed into systematic PV and random PV. The systematic component of PV
is usually subject to strong spatial correlation across neighbor devices (transistors
and wires). However, it has been shown that systematic PV impact on the different
physical parameters can be accounted as an additive factor together with random PV,
thus simplifying model complexity [179]. The random part of PV is a consequence
of different uncontrolled phenomena like random dopant fluctuations. Random PV
is modeled with probabilistic methods [143] that are applied either across processor
units or across devices (transistors and wires). The particular implementation details
of the circuits cause the impact of PV in energy distribution to vary across FUBs.

Due to the diverse nature of PV, the treatment of PV requires developing specific
models to accurately capture its random impact. We list some specific methods to
capture the PV impact of different parameters in Table 7.2. It follows that the actual
random distribution of PV may have any shape as also illustrated in Figure 7.2.
Hence, our proposal needs to build on a non-parametric statistical method. Extreme
Value Theory (EVT) [55] is such a method, since it is agnostic to the particular
distribution of the phenomena whose extreme behavior is to be predicted. EVT may
incur some pessimism due to the fact that it fits a tail model to the maxima, as if
all the population behaves as the maxima. EVT inflates the expected probability of
maxima in its application process, thus bringing some limited, but not null, pessimism
as shown in Section 7.5. Yet, EVT ends up being a reliable and tight choice as we
show in this chapter.

7.3.2 The Model

Let us start representing the energy consumption of a given task as the addition of
its static and dynamic components (Ey, and Egy, as described in Section 2.4.3).
Each component can be further broken down into the individual contributions across
FUBs (e.g., fetch unit and L2 cache). Then, the static energy per FUB is roughly
proportional to execution time and depends on the specific activity generated by each
task in the case of dynamic energy. Commonly, models describe dynamic energy con-
sumption per access type (e.g., read, write) per FUB and static energy consumption
per time unit (static power) and FUB. Hence, energy consumption of a task can be
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described as shown in Equation 7.1, where 7, is the task under analysis and t, its
execution time. Our processor has F FUBs, and each individual FUB, f, has f,
access types (e.g., reads, writes, different opcodes). Hence, Pfsm stands for the static

power of the FUB f and E%" for the dynamic energy per access type y of FUB f.

Finally, Acc!¥ stands for the number of accesses of type y on FUB f performed by
Ta-

By = By 4 B =3 (P oty) + 303 (B Accl?) (7.1)

fer feFyefy

PV alters energy consumption, introducing random variations into P#* and E%"
In particular, and based on the fact that dynamic and static energy consumption
have a different nature, each component suffers a different relative dynamic and static
energy variation. Still, all access types to a given component are subject to the same
relative amount of variation.

Task energy accounting for PV can be derived as shown in Equation 7.2, where
pv7® and pvjfy" stand for the correction factors to account for the specific PV affecting
static and dynamic energy of each FUB respectively.

Bpvo = 3 (P o 1) + 30 D (Efy g™ Aecl?) (1)

fer FEF yEfy

The impact of PV on energy for each FUB varies due to the different devices used
for their implementation. Therefore, the impact of PV on energy can be modeled
by means of specific probabilistic distributions across FUBs, where each FUB is sub-
ject to a relative power variation. This variation, though different across FUBs, is
regarded as homogeneous for any given FUB, so it impacts all accesses to the FUB
homogeneously and does not change over time since it relates to the particular effects
of PV on the chip manufactured.

Hence, pvi® and pv?y” can be modeled according to the underlying distribution.
For instance, if such distribution is Gaussian, they would be modeled as follows:

puit ~ N <1, (aj}t“)2> (7.3)

pv?yn ~N (1, (U?y")Q) (7.4)
sta

where 03 and U? are the relative standard deviation for static and dynamic
power (and energy) consumption of FUB f (e.g., 0.03 if the standard deviation for
power variation is 3%).

yn

7.3.3 Model Parameters

Table 7.3 summarizes the inputs needed in our model and how they can be derived.
Processor related parameters estimates are needed during the design and fab-
rication process to verify that power dissipation will not exceed the Thermal Design
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Table 7.3: Parameters needed for applying the methodology.

P]ft“ Static power per FUB
p Ejfyy” Dynamic energy per FUB per access type
rocessor
related G}im Standard deviation for static energy consumption per FUB
U?yn Standard deviation for dynamic energy consumption per FUB
Soft ta Task’s execution time
oftware
related Accg’y Number of accesses per component and access type

Point (TDP) before manufacturing the chip. Hence, chip vendors model those param-
eters from information obtained in process technology tests. Once power is verified
to stay below affordable levels with the electrical power model, chips are fabricated
and tested. Typically, chip manufacturers use in-field data to feed models back and
correct discrepancies. Hence, chip vendors can estimate with high precision the power
parameters needed in Equations 7.2, 7.3, and 7.4.

Software related parameters can be measured during software tests by means of
the Performance Monitoring Unit (PMU). Current PMUs offer several Performance
Monitoring Counters (PMCs) to monitor a large variety of events, including a break-
down for each type of operation. PMCs allow monitoring events with high accuracy,
yet some residual error may exist due to, for instance, the fact that events are counted
with some little slack between the time they occur and the time they are effectively
counted in the corresponding PMC. However, this effect may distort the statistics
for, at most, few tens of cycles, thus few tens of nanoseconds. Given that typical
execution times for tasks in autonomous systems are in the order of milliseconds, the
inaccuracy introduced by PMUs in terms of both timing and energy is fairly below
0.01%, which is completely negligible in comparison with the precision of the power
delivered by the power supply, or the energy consumed by mechanical components in
the system.

7.4 WCEC Estimation Methodology

WCEC estimation is useful for application developers or system integrators that need
to provide guarantees about their software being compliant with strict energy con-
sumption constraints for autonomous systems. Our WCEC estimation approach,
whose overall process we summarize in Figure 7.3, consists of two main steps: (1) col-
lecting representative energy measurements of the task and (2) estimating the energy
budget needed so that it cannot be exceeded with a relevant probability.
Measurement collection (sampling). Once the task has been executed and
software-related parameters obtained through the PMU, our method produces en-
ergy measurements accounting for the impact of PV. To that end, we perform a
Monte-Carlo experiment where pv7® and pv?y" in Equation 7.2 are sampled from
their reference distributions. Each observation of the Monte-Carlo experiment (i.e.,
o € O) delivers specific pvf's and pv?f’o” values for each FUB f € F. These are used to
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Figure 7.3: WCEC estimation process and inputs it builds on.

produce a specific PV corrected energy sample (Epv?) from the energy sample (E,)
of the task under analysis 7,.

WCEC distribution. In order to derive the WCEC estimates, a method suitable
for estimating extreme behavior based on the observations of the central behavior is
needed. We regard EVT [55] as a convenient method for that purpose. EVT has
already been used successfully in the context of Worst-Case Execution Time (WCET)
estimation, resulting in probabilistic WCET estimates [33, 51, 50] and we refer the
reader to Section 2.2 for details on EVT.

In particular, in applying EVT to WCEC estimation we resort to the EVT appli-
cation process in [33], which carries the following application requirements: it applies
to independent data and processes and when an exponential tail is guaranteed to be a
reliable upper-bound. Energy measurements in the sample correspond to independent
and identically distributed observations of the same phenomenon (random variable)
by construction of the process studied (energy consumption variation due to PV) and
measurement protocol used (not carrying any state across measurements). From this
observation, it follows that no dependence exists across input measurements, which
we empirically assess with proper Independence and Identical Distribution (I.I.D.).
tests [58, 57], which are a prerequisite for the reliable application of EVT.

The minimum sample size for a reliable application of EVT is only dictated by
EVT itself. We start generating 1,000 energy measurements as initial sample size
and increase the sample size whenever the method requests it. In this work in par-
ticular some of the experiments required 2,000 measurements, hence we used 2,000
measurements for the sake of homogeneity.

Accounting for multiple program inputs. Our methodology covers a spe-
cific set of input values for the program. However, test campaigns need to account
for different operation conditions, which are modelled using multiple input sets for
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the program under analysis. The way to proceed resembles the approach followed
for WCET (timing) estimation [56]. Hence, the methodology above needs to be ap-
plied independently for each set of input values, and EVT used in each individual
set of measurements for a given input set. Then, the different WCEC distributions
obtained need to be combined using the max envelope operator which, for each ex-
ceedance probability selects the highest energy value across all WCEC distributions,
thus delivering the tightest WCEC distribution that upper-bounds all those for each
individual input set.

7.4.1 WCEC Interpretation and Safety Standards

Once we obtain the WCEC distribution, we can select as WCEC estimate the value
whose exceedance probability is sufficiently low. Since the only source of variation
is PV and it changes across chip units, a given exceedance probability relates to the
probability of having a processor unit that may exceed such energy value systemati-
cally due to its specific PV.

This approach fits current V&V practice according to safety standards (e.g., IEC-
62304 for medical devices and IEC-61508 for industry). Safety standards require the
quantification, or the qualitative assessment, that the risk of hazardous situations is
below tolerable rates. In general, safety goals and safety requirements are defined with
the aim of mitigating — rather than eliminating — the risk that hardware or software
misbehavior causes a system failure. As an illustrative example, for automotive, ISO-
26262 stipulates the maximum allowable likelihood of occurrence of random hardware
faults. In doing so, ISO-26262 acknowledges that safety techniques cannot achieve
full coverage, allowing different diagnostic coverage. For instance, for the highest-
criticality items (ASIL-D), ISO-26262 requires proving residual failure rates below
1077 for diagnostic coverage above 99.9%.

Overall, the interpretation of the energy exceedance probability matches that of
defective hardware components (e.g., the probability of having a defective processor
or a defective wheel). For instance, we can set the exceedance probability down to

1072, thus meaning that at most 1 every 10° processors may lead to exceeding the
WCEC estimate for this task.

7.5 Experimental Results

7.5.1 Evaluation Framework

Architectural, power, and PV models. While processor vendors have the data
needed by our model, this information is usually not released for commercial pro-
cessors for autonomous systems. Hence, we build on SoCLib [99], a cycle accurate
simulator, to model the timing behavior of a LEON4 processor, whose block diagram
we replicate from Chapter 3 in Figure 7.4 for ease of reading.

We integrated McPAT-PVT [177] power estimation methodology into SoCLib to
collect energy and power measurements. McPAT-PVT is an extended version of the
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Figure 7.4: Block diagram of our reference architecture.

McPAT tool [101] that allows accounting for the impact of PV in power measurements.
For our experiments, we model a process technology of 22 nm, an operating voltage
of 0.9 V, and an operating frequency of 700 MHz. Note that, the methodology is
architecture and benchmark agnostic and our set-up just a representative example of
the real-time domain.

Benchmarks and case studies. 1) We evaluate two space case studies: DEBIE
and OBDP. 2) We also use EEMBC automotive benchmarks [106] as reference bench-
mark suite, since they represent a number of critical real-time functions of some
automotive systems. In particular we use cacheb, a2time, aifftr, aifirf, aiifft,
basefp, bitmnp, canrdr, idctrn, iirflt, matrix, pntrch, puwmod, rspeed, tblook,
ttsprk. We refer the reader to Chapter 3 for further details on the experimental
setup.

Statistical Characterization of PV. We randomly generate a population of
processor instances, N,, whose FUB’s PV behaves according to the specific distri-
butions that would be provided by the processor manufacturer for real processors.
In our setup used for illustration and evaluation purposes, we obtained those values
from the McPAT-PVT power estimation tool due to the lack of this information from
a real processor. However, in a practical case, such information would be provided by
the chip vendor. Note, however, that our methodology holds regardless of the actual
values used and hence, the representativeness of McPAT-PVT values, although it has
already been discussed in [177], has no impact on the method proposed in this chap-
ter. This approach delivers NNV, independent energy measurements per benchmark
that resemble the chip-to-chip energy variations. Unless stated otherwise, we focus
on Gaussian distributions in the remaining of the chapter.
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Table 7.4: Maximum observed energy, and pWCEC (in pJ) with PV.

bench MAX | AEpy | pWCEC | AfYT .. | pPWCEC | ASyes o
EVT(1077) Gauss
cacheb 202.7 | 92.9% 239.4 18.1 % 249.2 23.0 %
matrix 8259.2 | 92.7 % 9716.5 17.6 % 10031.2 21.5 %
aifftr 2070.1 | 95.0 % 2520.3 21.7 % 2486.2 20.1 %
pntrch 51.4 | 98.2% 58.2 132 % 62.2 21.1 %
rspeed 15.0 | 104.7 % 18.4 22.8 % 17.9 19.8 %
puwmod 54.4 | 101.2 % 67.0 23.1 % 65.4 20.2 %
aifirf 394 | 943 % 53.3 354 % 48.7 23.8 %
aiifft 1914.5 | 94.7 % 2051.9 7.2 % 2301.6 20.2 %
a2time 25.6 | 98.8 % 33.1 29.3 % 31.5 23.1 %
idctrn 348.2 | 92.2 % 437.9 25.7 % 429.0 23.2 %
iirflt 38.3 | 103.5 % 49.5 29.2 % 46.5 21.5 %
basefp 59.7 | 106.5 % 64.5 8.0 % 70.7 18.4 %
bitmnp 196.8 | 98.2 % 231.1 17.4 % 236.1 20.0 %
tblook 17.1 | 100.9 % 21.6 26.3 % 20.8 21.5 %
canrdr 36.6 | 99.8% 46.8 278 % 44.3 21.1 %
ttsprk 37.6 | 103.7 % 46.2 22.9 % 44 .4 18.4 %
OBDP 143817.0 | 94.6 % 205486.1 429 % || 176506.2 22.7 %
DEBIE || 228420.7 | 100.2 % 263980.0 15.6 % || 269121.3 17.8 %

7.5.2 PV-generated power variability

In our setup, from the execution of each benchmark in the simulator we obtain the
number of accesses to each FUB (Acc/*) and the task’s execution time (¢,), which
we fed into the power model of McPAT-PVT. McPAT-PV'T provides static power per
FUB and cycle (Pft“) and dynamic energy per access type per component (E%")
Building on these parameters, we obtain the power dissipation per component as well
as a power variation o per component due to PV, as presented in Section 7.3.

The first two columns (after the benchmark names) in Table 7.4 show the absolute
maximum energy consumption per benchmark, and the magnitude of the impact
of variations, labeled as AEpy. The latter is computed as ™2 We observe
increments as high as 117% (the maximum is ~2.2x the average), while average
variations are of 100% (~2x). This means that the maximum value observed is, on
average, 2x times the average, thus further emphasizing the importance of accounting
for PV in WCEC estimation.
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Figure 7.5: pWCEC distribution in pJoules and empirical CCDF of the PV-adjusted
energy measurement.

7.5.3 Probabilistic WCEC Estimates

As presented before, starting from a set of measurements o € O of the energy for
the modeled processor unit under analysis , E¢, we use specific statistical correction
factors pvis and pvﬁ” values for each FUB f to produce a PV corrected energy
sample (Epv?). This sample is passed as an input to EVT to generate a Probabilistic
Worst-Case Energy Consumption (pWCEC) estimation that describes the probability
of an arbitrary processor unit to exceed an energy consumption value.

We carried out this process for all the reference benchmarks used in this chapter,
and we show results for a representative subset of them. In particular, Figure 7.5
shows 3 plots — 2 European Space Agency (ESA) applications, and the EEMBC
with the highest pWCEC over-estimation (aifirf) — with their corresponding pWCEC
distributions. Red dashed lines correspond to the empirical Empirical Complementary
Cumulative Distribution Function (ECCDF) of the measurements, whereas straight
black lines stand for the pWCEC distributions.

To provide evidence on the confidence in deriving WCEC estimates, we collected
10" measurements for each benchmark. Note that performing such an experiment
is not needed (and it is infeasible in the general case). We use it for comparison
purposes and hence, pWCEC is estimated with 2,000 measurements. For the lowest
probability for which we measured the actual distribution, 10=7, pWCEC curves are
22.6% higher than observations on average.

We observe that pWCEC distributions upper-bound observed energy consumption
for all benchmarks, and gently follow the observed distributions. We also observe that
the slope (the vertical variation) of the observed distribution is also gentle. This shows
that the impact of PV is high and emphasizes the importance of properly accounting
for PV in the process of WCEC estimation, as PV can produce large energy variations.

7.5.4 Multitask Workloads

We execute a set of four tasks under analysis in a multi-core environment, and ap-
ply the previously described methodology to such setup. In particular, we created 4
workloads that cover all EEMBC benchmarks. These workloads are Wy ={a2time, id-
ctrn, aifftr, aifirft, Wy ={ aiifft, basefp, bitmnp, cacheb}, W3 ={canrdr, iirflt, matriz,
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Figure 7.6: pWCEC estimates for multi-core workloads.

pntrch}, and Wy ={puwmod, rspeed, tblook, ttsprk}.

Figure 7.6 shows pWCEC results like those in Figure 7.5 but where each plot
represents the simultaneous execution of 4 EEMBC benchmarks. We see that EVT
successfully upper-bounds the maximum energy consumption observed, with an over-
estimation that ranges between 21.4% (W3) and 31.8% (W) with an average of 26.04%
with respect to maximum observed value. Although the overestimation is not high,
there is margin for tighter bounds which could be obtained by tuning and changing
the EVT algorithm, but such objective remains out of the scope of this work.

7.5.5 Comparing EVT vs Gaussian approach

So far we focused on the All-Gaussian PV setup, in which all sources of PV follow
a Gaussian distribution. In this scenario, intuitively, Gaussian modeling instead of
EVT seems a better fit. We have compared the pWCEC estimates produced with
both. The last two columns in Table 7.4 shows the absolute estimate produced by
Gaussian and its degree of overestimation with respect to the maximum observed
energy value. For this experiment, in the g+ N - o formulation, we set N = 5.33 so
that the exceedance probability is below the chosen threshold. As it can be observed,
Gaussian modeling produces quite similar results to those of EVT (22.6% vs 21.2%
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Figure 7.7: pWCEC curves and ECCDF of the samples.

larger than maximum observed values on average).

However, Gaussian modeling provides poor (unreliable) estimates as soon as the
underlying PV does not follow a Gaussian distribution, as it has been shown to be
the case for some circuit parameters (see Section 7.2). To provide evidence on this
matter, we repeated the experiments but focusing on the mixed-distribution PV setup
introduced in Section 7.5.1. In particular, for this experiment we focus on a2time
benchmark.

The resulting pWCEC estimates can be seen in Figure 7.7. In blue we have
the pWCEC-Gaussian distribution, in red the empirical data observations, and in
black the pWCEC-EV'T distribution. We can see that, as the exceedance probability
decreases, the Gaussian model losses fitness and starts under-estimating the WCEC.
In contrast, the EVT curve properly upper-bounds the sampled data.

7.6 Summary

We have analyzed PV impact on the processor energy consumption, and presented
a methodology based on statistical-modeling that deals with PV during the WCEC
estimation process of autonomous systems. This enables the estimation of WCEC by
accounting for the probabilistic nature of PV and using probabilistic approaches for
WCEC estimation, such as EVT. Our results show that the impact on energy of PV
is large, and can be appropriately bounded with probabilistic means.
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Chapter 8

Detecting and Hampering
Worst-Case Power Peak Events
during Testing

“Alea itacta est.”

— Gaius Julius Caesar

8.1 Introduction

The verification and validation process of embedded critical systems requires pro-
viding evidence of their functional correctness, and also that their non-functional
behavior stays within limits. In this chapter, we focus on power peaks, which may
cause voltage droops and thus, challenge performance to preserve correct operation
upon droops. The use of complex software and hardware in critical embedded sys-
tems jeopardizes the confidence that can be placed on the tests carried out during
the campaigns performed at analysis. This occurs since it is unknown whether tests
have triggered the highest power peaks that can occur during operation and whether
any such peak can occur systematically. In this chapter we propose the use of time
randomization, already used for timing analysis of real-time systems, as an enabler
to guarantee that (1) tests expose those peaks that can arise during operation and
(2) peaks cannot occur systematically inadvertently.

In embedded critical systems, the Validation and Verification (V&V) process
builds not only on collecting evidence about their correct functional behavior, but
also about their non-functional behavior including timing, power and temperature
among other concerns. Due to economical and practical reasons, industry often relies
on measurement-based approaches to derive such evidence [182].

The increasing performance needs in embedded critical systems are satisfied at a
reasonable cost by using advanced (complex) hardware platforms. In those platforms,
deriving test cases that trigger worst-case conditions becomes increasingly difficult for
end users. For power verification, defining appropriate test cases and input vectors
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is critically important to identify whether (high) power peaks can occur and whether
they can occur systematically [156]. Power peaks may lead to sporadic or frequent
voltage droops that need lowering speed or stalling execution to preserve correct-
ness [183, 184, 185], hence impacting timing of tasks in general, and real-time tasks
in particular. For instance, power peaks may depend on the simultaneous occurrence
of a number of events in cores, caches and on-chip interconnects, whose fine-grain
control cannot be practically exercised. Thus, by analyzing power traces, end users
are generally unable to tell whether higher power peaks can occur and, if so, whether
they could occur systematically. The feasibility of triggering worst-case power sce-
narios determines whether real-time tasks, and especially those with some form of
criticality (e.g., due to safety or security), can be successfully verified or not.

Recently, injecting randomization at hardware and software level has been pro-
posed as a means to facilitate timing analysis of critical real-time tasks [186, 50] by (1)
breaking systematic pathological timing behaviors, so that increasingly higher execu-
tion times have rapidly decreasing probabilities, and (2) making bad (long) execution
times not to occur during test campaigns with probabilistically low bounds. The
latter simplifies deriving the probability of occurrence of high execution times (i.e.,
those beyond the maximum observed execution time) with statistical means such as
Extreme Value Theory (EVT) [55].

However, to our knowledge the applicability and the specific application process
of time-randomization solutions to mitigate power peaks and reduce the cost of power
testing campaigns have not been explored. To cover this gap, we explore whether the
randomization injected in Time-Randomized Processors (TRP) [186] can be used in
embedded systems to expose pathological worst-case power profiles and break their
systematic occurrence, so that their impact is limited and can be properly accounted
for.

8.2 Challenges of Power Verification in Complex
Processors

8.2.1 Power Delivery Network Sizing

Power Delivery Networks (PDNs) in processors are typically designed to serve enough
power ”in most cases”, but due to efficiency reasons, they are not designed to meet the
power requirements in the absolute worst case, since it may occur only occasionally.
For instance, Figure 8.1 shows the power profile of an arbitrary benchmark running
in a simple and a more complex processors. We observe that power variation is
significant and the relative difference between the absolute worst case observed and
the typical case is large, and it increases in absolute terms for increasingly complex
designs. Thus, sizing PDNs for the absolute worst case would result in a waste of
resources.

Overall, instantaneous power demand may surpass the capacity of the PDN, thus
leading to a scenario where circuits become under-powered during relatively short time
intervals, until the power demand decreases. In such scenario, voltage decreases to
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Figure 8.1: Histogram of instantaneous power measurements in a simple and a complex

processor. Synthetic experiment showing the increase in power variability as processor
complexity rises.

levels where correct operation cannot be preserved — often referred to as voltage droops
—and actions such as decreasing operating frequency must be taken to decrease power
demand and preserve correct operation [183, 184, 185]. While the effect of droops
is relatively small in high-performance systems, in critical systems their impact on
metrics like worst-case timing and power budgeting can be high.

8.2.2 Critical Real-Time Systems Verification

Processor verification is typically performed using power viruses [187] to characterize
the corner power cases of the processor, size its PDN and accommodate mechanisms
able to detect overly high power consumption and throttle (or even stop) operation
to preserve processor physical integrity. For embedded critical (real-time) systems
verification, processor integrity is not a concern, since appropriate means have al-
ready been set by the chip manufacturer. However, voltage droops as well as overly
high sustained power dissipation may lead to performance issues due to, for instance,
performance throttling. Authors in [184] show that a usual solution would be de-
creasing operating frequency down to its minimum (e.g., 1/32 of its maximum value)
and increase it progressively as long as power demand does not exceed affordable
limits. Hence, assessing during system analysis phases whether power peaks can oc-
cur, their magnitude and their frequency is critically important to evaluate whether
timing bounds will be respected. However, end users often lack the knowledge of
how power peaks arise in a specific processor, and lack the means to assess whether
applications can trigger them. This may jeopardize the complete timing verification
of the system if the impact of voltage droops is not properly accounted for during
testing.
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Figure 8.2: Power profile on a conventional (simple) architecture when running two
unsynchronized benchmarks.
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Figure 8.3: Power profile on a conventional (simple) architecture when running two
synchronized benchmarks.

8.2.3 An Illustrative Example

Let us consider a simple example with two programs running simultaneously in dif-
ferent cores of a multi-core processor. Figure 8.2 shows their joint power profile, with
power measured every 43 ns (see Section 8.4) and the x-axis showing each of these
observations over time. The two programs iteratively spend some time performing
local (in core) computations, followed by a period of sustained memory write opera-
tions. As shown, frequent power peaks due to memory accesses interleave accesses of
both programs and stay below 1.4 W.

In a second experiment, we modified one of the benchmarks introducing few de-
lays in between their memory accesses, thus effectively decreasing its average power
dissipation and without impacting its individual maximum power dissipation. As
shown in Figure 8.3, the time alignment of the power peaks changes slightly and,
despite the overall average power dissipation decreases, the power peaks increase in
magnitude, being above 1.4 W sustainedly. If the PDN of this processor could only
afford up to 1.4 W of power, we would move from a scenario with no voltage droops
to a scenario with systematic droops. And potentially, the latter scenario could not
occur during testing, which would lead to the risk of missing deadlines systematically
due to frequent unforeseen voltage droops.

In this particular example, we first created the two programs and run them with-
out any specific synchronization. Then, since the platform used is a performance
simulator, we had access to the internals of the architecture and could debug why
some events were not occurring simultaneously and applied reverse engineering to
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Figure 8.4: Power profile on a conventional (complex) architecture when running four
benchmarks.

cause a pathological systematic behavior where events align perfectly and lead to
higher power peaks. However, in the general case this is not doable. In fact, we
repeated the same experiment modeling a more complex processor with 4 cores in-
stead of 2, allowing multiple memory requests in flight and increasing store buffers
and, despite having full access to the architecture in the simulator, we were unable to
exercise the control needed to synchronize events. Figure 8.4 shows the power profile
of the execution of four benchmarks in the 4 cores and, as shown, some peaks occur
from time to time, but it is unclear whether higher peaks can occur and whether they
can occur systematically.

In summary, in complex hardware with time-deterministic behavior it cannot be
assessed whether tests trigger the highest power peaks and whether those can occur
systematically. This jeopardizes the confidence that can be obtained from test cam-
paigns with uncertainty on the risk of deadline violations due to voltage droops since
they cannot be bound reliably.

8.3 Time-Randomization for Power Analysis

Power variation is highly correlated with the same events that create timing variation,
which include cache hits/misses, arbitration delays in shared resources, variable de-
lays in queues, etc. Time-randomization, either implemented by hardware or software
means [186], allows exploring, for timing analysis purposes, the different outcomes of
those events enforcing probability distributions that hold during analysis and opera-
tion. In this section, we analyze how time-randomization serves also the purpose of
exploring power peaks, either in frequency or in magnitude, as well as the limits of
time-randomization.

8.3.1 Event Alignment

Power peaks emanate from the simultaneous occurrence of multiple high-power events.
Next we review how events relate to each other and the influence that time-randomization
may have on them:

Potentially aligned events. Some events may align under certain conditions,
such as those shown in Figures 8.2 and 8.3. By introducing time-randomization at a
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Figure 8.5: Power profile on a time-randomized (simple) architecture when running two
unsynchronized benchmarks.
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Figure 8.6: Power profile on a time-randomized (simple) architecture when running two
synchronized benchmarks.

fine granularity (by making arbitration delays vary by few cycles, and making some
cache hits become misses and vice versa) the power-hungry events that might concur
are enforced to concur with some probability. This contrasts with the scenario drawn
for time-deterministic platforms, in which events may never (or frequently) align with
specific tests, and whose behavior can change completely during operation simply
because the initial state of the processor or memory varies subtly. Overall, time-
randomization allows making a probabilistic argument on the appearance of such
type of events, and more importantly, make them not occur systematically.

Figures 8.5 and 8.6 show the same experiments done for Figures 8.2 and 8.3, but
carried out on a time-randomized platform. In particular, random placement and
replacement caches as well as random bus and memory controller arbitration are im-
plemented, as detailed later in Section 8.4 [186]. As shown, both power profiles show
those peaks occurring when power-hungry events align, but they do not occur system-
atically. Moreover, power profiles are probabilistically almost identical among them
since event alignment occurs with similar probabilities across experiments. Therefore,
power peaks are naturally exposed and can be accounted for conveniently.

Never aligned (or nonexistent) events. Some events may never align in
time-deterministic systems because, for instance, the initial conditions that trigger
their alignment never occur during operation. In this case, the difficulties emanate
from the fact that, upon not observing their alignment, end users lack information
on whether they can never align, whether tests simply failed to align them (as in
Figure 8.2), or even whether higher peaks exist. Time randomization, instead, will
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Figure 8.7: Power profile on a time-randomized (complex) architecture when running
four benchmarks.

make those events align with a probability, so they are observed and accounted for
(perhaps pessimistically). Even when time randomization does not make them align,
then confidence is gained that they cannot align with high probability.

It may also occur that time randomization causes some high-power events that
would not occur without time randomization (e.g., causing few additional cache
misses). While this effect is known to be very low since time-randomization degrades
performance negligibly in the average case [186], it may lead to some pessimism due
to triggering peaks that would not exist ever without time randomization.

Systematically aligned events. Some events may be highly aligned leading to
systematic power peaks. If randomization may unalign them, it will allow reducing
their impact due to voltage droops. Instead, if they cannot be unaligned because
their occurrence is caused by events with no practical variability (e.g., sustained
floating point operations), then randomization brings no quantitative difference. Yet,
randomization brings confidence on the fact that high power peaks are observed
during testing, so that their worst impact can be reliably predicted.

Overall, while time-randomization will have little influence in the average power
dissipation and average number of power peaks across programs, it has two key ad-
vantages:

1. It guarantees probabilistically that peaks that can occur during operation are
observed during testing.

2. If systematic behavior can be broken, it is effectively broken, thus allowing to
account for peaks probabilistically without having to resort to overly pessimistic
assumptions.

8.3.2 An Illustrative Example

For the sake of completeness, we have also repeated the experiment on the complex
processor with time-randomization. As shown in Figure 8.7, power peaks are naturally
exposed. In fact, some peaks are clearly higher than those observed in the time-
deterministic setup. Thus, time-randomization allows accounting for their occurrence.
Instead, in the case of time-deterministic platforms, it is unknown whether they can
occur in practice and, if so, whether they can do it systematically, thus defeating any
confidence had on the test campaign.
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8.3.3 On Predicting Power Peaks

With time-randomized platforms we can use power measurements to predict both (1)
peaks magnitude and (2) frequency. For that purpose, we build on the Measurement-

Based Probabilistic Timing Analysis using Coefficient of Variation (MBPTA-CV)
method, given that the properties needed for its input data are preserved:

e Independence and Identical Distribution (I.I.D.): MBPTA-CV inherits from
the use of EVT the need for I.I.D. input data. While power measurements are
not fully independent in practice at any time granularity, they quickly become
independent since processor events last typically up to some tens of nanoseconds,
which is the same order of magnitude of peaks duration to cause voltage droops.
Hence, measurements at short distance are already independent. Moreover,
EVT, in practice, does not need [.I.D. measurements but I.I.D. maxima which
means that dependencies across those values not belonging to the upper-tail
of the distribution are irrelevant [51]. In any case, input samples passed to
MBPTA-CV need to be tested against 1.1.D. statistical properties for a reliable
use of MBPTA-CV.

e Exponentiality: MBPTA-CV fits exponential tails, thus discarding heavy tails.
This is only a reliable choice for distributions that have a maximum value,
despite such maximum can be unknown. In the case of power, either due to
temperature limitations or due to power supply limitations, a maximum power
is known to exist and hence, the premise for the use of MBPTA-CV holds.

We identify two different ways of using MBPTA-CV in the context of power veri-
fication:

e High power peaks determination to retrieve either the highest power value that
could occur with a meaningful probability (e.g., that could only be exceeded
with a probability below 107!2 per time unit). Also whether a particular power
value could be exceeded with a probability higher than a given threshold (e.g.,
whether a peak causing a voltage droop occurs with a probability above 10712
per time unit). Note that the time unit relates to the granularity at which
voltage droops may occur (e.g., a peak of few picoseconds would be irrelevant).

e Estimating the number of times that a given threshold is exceeded. By measur-
ing the number of times the threshold is exceeded in each run of the program
or the workload, we can estimate the highest number of peaks we can expect
whose exceedance probability is below a given threshold (e.g., how many power
peaks we can expect so that a higher number of peaks is expected less than once
every 10 runs). In this case, by using an upper-bound of the time to recover
from a voltage droop (e.g., 100 ns), we can increase the Worst-Case Execution
Time (WCET) estimate accounting for the maximum number of peaks expected
(e.g., 50 peaks) multiplied by the recovery time for any such peak.
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8.4 Quantitative Assessment

In this section we show a practical application of time-randomized platforms together
with MBPTA-CV for power verification.

8.4.1 Experimental Setup

For the details on our experimental setup in this section we refer the reader to Chap-
ter 3. As processor model we use the Cobham Gaisler NGMP [94]. For the examples
in Sections 8.2 and 8.3, we use a simple version with only 2 cores, 2-entry store buffers
and up to one outstanding core request (L1 cache miss). For the complex version,
we use the full 4-core setup with 8-entry store buffers and up to 6 outstanding core
requests (typically non-blocking store operations).

The time-randomized setup uses random modulo placement L1 caches, random
hash placement L2 cache, random replacement in all caches, and random permutation
arbitration in the bus and memory controller [37]. The time-deterministic setup,
instead, uses modulo placement and Least Recently Used (LRU) replacement caches,
and round-robin bus and memory controller arbitration.

Apart from the benchmarks used for the previous examples, we use the EEMBC
Automotive reference benchmark suite [106], which includes a number of representa-
tive applications for critical real-time systems.

8.4.2 Power Verification

First, we evaluate the highest power peak expected. Whether this analysis needs to
be done at chip level (so for the full workload) or at core level (so for each benchmark
individually) relates to the organization of the PDN, and so the region where voltage
droops can occur. For instance, in the case of a multi-core with an independent PDN
for each core, it might be more appropriate for the methodology to require individual
per core analysis of peaks, while with a shared workload or PDN, whole-system peak
analysis might be more suitable. However, this is irrelevant for the application of
the methodology. For instance, Figure 8.8 shows the power profile of the whole chip
for one run of a 4-benchmark workload on the time-randomized complex setup. As
shown, the randomized behavior of the power peaks can be noticed regardless of the
integration level.

For simplicity and illustration purposes, the rest of the discussion is done for
individual benchmarks executed in a single-core. Figure 8.9 shows the probabilistic
power distribution for aifirf benchmark in W, in the form of the Complementary
Cumulative Distribution Function (CCDF). The red dashed line corresponds to the
actual measurements, the black thick line to the estimated high power distribution,
and the blue thin lines to the 95% confidence interval. As shown, by having the full
distribution, we can obtain the power value for any exceedance probability or the
exceedance probability for any power value.

While estimating the highest power peak for a given program may have several
applications, in the context of critical real-time system we regard as more relevant
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estimating the number of peaks causing a voltage droop, so we focus on the latter due
to limited space. For the sake of illustration, we set the threshold to determine a high
power peak for samples above 95% of the maximum observed power in the determin-
istic setup. Table 8.1 shows how many peaks we observe in one run (execution) on the
deterministic setup, the highest number of peaks per run observed across 1000 runs
in the time-randomized setup and the number of peaks that could only be exceeded
up to once every 102 program runs'. The latter is derived using the number of peaks
per run in the time-randomized setup as input for MBPTA-CV. As shown, the use of
time-randomized setups allows us estimating the highest number of peaks expected,
which ranges between few tens and few thousands of peaks. Then, by multiplying
those peaks by the cost to recover from a voltage droop, the Probabilistic Worst-Case
Execution Time (pWCET) estimate can be padded conveniently to account for the
cost of those voltage droops. Instead, the number of peaks for the time-deterministic
setup comes without any guidance on how to determine whether a higher number
of peaks is possible. In fact, the deterministic nature of such a setup could lead to
arbitrarily higher power peaks due to events aligning systematically.

8.5 Related Work

Power simulators have been used to provide power estimates despite the inaccuracies
of their estimates, since they have been proven useful to evaluate the practicality of
new techniques and perform comparisons [188, 164]. In our case, we rely on a par-
ticular simulator as a research vehicle to illustrate the applicability of our approach.
However, our proposal is orthogonal to the source of the power measurements.

The use of EVT for power analysis has also being explored in [174]. In particu-
lar; this work targets maximum circuit power, for which worst-case scenarios can be
created with appropriate power viruses. However, such a solution is not enough to
estimate the highest power peak of a task since there is no way to relate testing data
with operation behavior, and thus cannot be used for the problem considered in our
work.

Resonant supply noise has also been deeply studied. Authors in [80] evaluate the
events producing dangerous power peaks in a multi-core, thus allowing to improve
chip-wide strategies to power-up/use cores. Some authors solve the resonant supply
noise problem that these power peaks cause by using a staggered core activation [189],
whereas other works suppress such supply noise by using active damping circuits [190].
In any case, those works cannot be used to forecast neither the frequency nor the
magnitude of power peaks caused by user tasks, as our proposal does.

8.6 Summary

Power verification of embedded critical (real-time) systems is a mandatory step to
assess their correct operation. Voltage droops caused by power peaks may lead to

1Other values (e.g., 107%) deliver similar conclusions.
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8. DETECTING AND HAMPERING WORST-CASE POWER PEAK
EVENTS DURING TESTING

Table 8.1: Maximum peak count for the deterministic and randomized architectures,
and probabilistically estimated number of power peaks

EEMBC | MAX Det | MAX Rand | Worst Case Number

of Peaks (107'?)
a2time 105 113 130
aifftr 148 183 301
aifirf 34 41 70
aiifft 142 181 281
basefp 135 148 170
bitmnp 56 60 90
cacheb 2850 2875 3042
canrdr 69 74 108
idctrn 10 21 52
iirflt 5 8 13
matrix 848 855 1102
pntrch 262 392 569
puwmod 483 489 509
rspeed 99 102 103
tblook 81 90 121
ttsprk 320 362 492
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8.6 Summary

performance losses to allow recovering from those droops. Unfortunately, to the best
of our knowledge, there is no practical way to estimate reliably how many such power
peaks can occur in complex processors.

In this chapter we have presented an approach that, based on the use of time-
randomized platforms, allows exposing power peaks during testing, breaking system-
atic behavior and estimating reliably the number of power peaks occurring during
operation, so that the cost of recovery can be accounted for to prove that critical
real-time tasks can execute timely.

In this chapter we evaluated the use of TRP for non-functional power analysis for
Safety-Critical Systems (SCS). We demonstrated that TRP reveal and break patho-
logical high power demand scenarios that are detrimental to the normal operation
of SCS, hence proving that TRP expand their properties beyond the timing analysis
domain and into the power analysis domain.
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Chapter 9

Conclusions and Future Work

“Labor omnia vicit improbus et duris urgens in rebus egestas.”
— Vergil

Thorough Validation and Verification (V&V) of non-functional properties is a fun-
damental step in the development of Critical-Real Time Embedded Systems (CRTES)
that differentiates them from other, more traditional, computing environments. Un-
til recently, the most important non-functional property has been timing correct-
ness, which is verified by means of Timing Analysis. For years, Timing Analysis
based its working principles in the ability to control the processors states and to
have specific and deep knowledge of the platform and software under analysis. How-
ever, advanced-functionality applications demand high computing performance, like
autonomous driving or vehicle-to-vehicle communication. This needs can be deliv-
ered by processing platforms incorporating features and improvements that greatly
increase processor’s and program’s complexity. This puts timing analysis in a conun-
drum; The well studied and existing timing analysis techniques that have to provide
trustworthy Worst-Case Execution Times become prohibitively costly in front of very
complex software and hardware. In this context Time-Randomized Processors (TRP)
and Measurement-Based Probabilistic Timing Analysis (MBPTA) appeared to pro-
vide timing analyzability and high-performance simultaneously in CRTES. Both sim-
plify the derivation of trustworthy Worst-Case Execution Time (WCET) estimates
in complex platforms.

It is also the case that advanced-functionality software (applications) and tech-
nologies bring other challenges to the CRTES domain like security threats, diminished
hardware reliability and power/energy verification difficulties. All of them are addi-
tional non-functional properties that require V&V. The coverage in the literature on
how to holistically address all these new challenges of CRTES is limited. In this thesis,
we have advocated for the use of TRP as a baseline paradigm that can drive future
CRTES to succeed in overcoming the challenge of V&V in new CRTES improving
system behavior in front of all these new challenges.

We have assessed and adapted TRP to be a solution in three of the most important
non-functional metrics:
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e In the reliability domain, this thesis shows that TRP extend lifetime of caches
in the presence of aging effects and at the same time protect processors from
pathological energy consumption scenarios that may lead to voltage droops,
thus causing failures (e.g., Resonant Voltage Noise).

e In the security domain, we prove that TRP successfully defend against con-
tention based timing attacks to caches and how randomization as a concept is
used in aiding to security threat mitigation.

e In the energy domain we show how estimating energy in future CRTES will be
of paramount importance and that existing models are far from providing the
needed guarantees for CRTES. We show how the processes and methodologies
that use TRP can be extrapolated to generate trustworthy energy estimates
holding for different processor instances subject to different degrees of Process
Variation. Moreover, we also demonstrate that TRP can also be used for val-
idation of extreme power dissipation events since they naturally expose and
neutralize such events.

In this thesis we assessed our hypothesis with representative use cases. In terms
of hardware, we model state of the art CRTES processors, like the NGMP or the
LEON4, which are currently being used or expected to be deployed in future space
missions, in particular by the European Space Agency (ESA). In terms of software,
space use-cases like OBDP or DEBIE, deployed in space missions or widely accepted
automotive benchmarks like the Automotive EEMBC benchmark suite.

We believe this thesis to be the corner stone of a new design exploration space
that considers randomization, and in particular TRP, as a key design paradigm of
future CRTES. To that end we provided evidence of such hypothesis.

9.1 Impact

The hypotheses of this thesis are a natural follow up to projects that created and
solidified the idea of using time-randomized hardware to enable probabilistic timing
analysis. In that regard, this thesis further grounds the idea of TRP applicability
pointing out how emerging non-functional requirements can be tackled with the use
of TRP while at the same time promoting and expanding the use of MBPTA as a
suitable timing analysis technique.

European level projects like Probabilistically Analyzable Real-Time Systems (FP7-
PROARTIS) or Probabilistic Real-Time Control of Mixed-Criticality Multi-core and
Many-core Systems (FP7-PROXIMA) settled the starting point of this thesis and
have been in turn benefited by the discoveries here made.

Throughout its development, the research done in this thesis created multiple
opportunities for obtaining new funding and collaborations. For instance, initial
contacts with one of the groups in the Instituto Madrileno de Estudios Avanzados
(IMDEA) have yielded multiple collaboration opportunities in the security field, and
we are currently looking into joining efforts to further improve the security capabilities
of TRP. The research community also acknowledges the impact of our proposals.
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For instance, researchers producing highly relevant work in the security domain like
[122) 138, 191] base their proposals around our randomized designs.

Similarly, the discoveries in this thesis lead to new funding and the creation of
new projects like H2020-UP2DATE. H2020-UP2DATE looks into the future of Over-
the-Air (OTA) software updates and envisions the use of software randomization to
increase security of such updates, mostly in automotive systems but also in other
domains.

Another project under submission that also arose from the work in this thesis
is the H2020-HARDCORE project. This project will explore the uses of hardware
randomization on real state of the art hardware for CRTES and test and implement
new security solutions that will mitigate a wide variety of threats.

9.2 Future Work

This thesis sets the ground for several lines of future work and unexplored ideas.
This work pioneers in the application of Time-Randomized Processors to solve the
challenges of other non-functional metrics outside of timing predictability: Reliability,
Security and Energy. The future direction in each of these 3 areas (and others) are:

e Reliability: Reliability and resilience is left unexplored for other resources of
the processor other than the cache. For instance, the impact of aging in the
TLBs or more complex cache hierarchies could also be assessed. Additionally,
also other aging effects, like electromigration and the suitability of TRP to resist
such events are left as future work.

e Security: Security is a very active field of research that is constantly spawning
new threats and defenses. In this thesis, we proposed to solve conflict-based
Cache-Timing Side-Channel Attacks (SCA) with an existing Time-Analyzable
solution. The most immediate step would be to focus on tackling the other
part of the equation, which are reuse-based SCA. These attacks rely on the
fundamental working principles of the caches (temporal and spatial locality) and
exploit the fact that reused secret data will exhibit shorter memory access times
in contrast to the conflict-based SCA which exploits the interference patterns
of cache evictions. Other approaches yet to discover might be to start from
a current secure solution and make it MBPTA-compliant. At the moment it
is not clear whether cache placement implementations like Random Fill [89]
would suffice as they are for timing analysis. We also left the assessment of
how TRP can help in other types of Side-Channel Attacks like power-based
attacks as future work. In that regard, the project H2020-HARDCORE aims
towards increasing the Technology Readiness Level (TRL) of security solutions
presented in this work for easing the technology adoption.

e Energy/Power: Worst-case energy estimation is one of the most difficult and
yet to be researched areas in non-functional metrics. Providing guarantees
over physical phenomena that present so much variability is a challenge that
will require many years to solve. Among the problems to be addressed are
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mechanisms to address the estimation and accountability of the activity factor
or to control and guarantee tight estimates under the presence of voltage and
temperature variations. Accounting for aging variations should also be explored
since it is also another source of uncertainty for energy models.

e Temperature: Another key non-functional metric to study that has not been
addressed in this thesis is processor temperature and thermal accounting. This
non-functional metric is highly related to power and energy consumption, but
with different implications and solutions (e.g., power is an instantaneous issue
whereas temperature changes much slower).

e General: Scaling the solution towards arbitrarily complex processors is also a
task that involves extending the work done in this thesis. This might require
exploring solutions for more complex processors that might include large net-
worked multicores, GPUs and accelerators. The solutions proposed in this thesis
set the initial path toward more mature solutions for complex architectures.
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