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Abstract

This thesis explores classification and perturbation problems for group
actions on a class of Poisson manifolds called bm-Poisson manifolds.
bm-Poisson manifolds are manifolds which are symplectic away from a
hypersurface along which they satisfy some transversality properties.
They often model problems on symplectic manifolds with boundary
such as the study of their deformation quantization and celestial me-
chanics.

One of the interesting properties of bm-Poisson manifolds is that
their study can be achieved considering the language of bm-forms. That
is to say, we can work with forms which are symplectic away from the
critical set and admit a smooth extension as a form over a Lie algebroid
generalizing De Rham forms as form over the standard Lie algebroid of
the tangent bundle of the manifold. To consider bm-forms the standard
tangent bundle is replaced by the bm-tangent bundle.

This thesis starts with the equivariant classification of bm-Poisson
structures investigating, in particular, the analogue of Moser’s classifi-
cation theorem for symplectic surfaces and their equivariant analogues.
The classification invariants in the case of surfaces are encoded in a co-
homology called bm-cohomology which has been deeply studied by [1].
Mazzeo-Melrose type formula for bm-cohomology decomposes it in two
pieces which can be read off the De Rham cohomology of both the
ambient manifold M and the critical hypersurface. As an outcome of
this identification, the Poisson classification of these manifolds is given
by the De Rham cohomology of the manifold and the hypersurface.

vii
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This classification is extended to the equivariant setting if we as-
sume that the singular forms are preserved by the group action of a
compact Lie group. These techniques can be extended to the classifi-
cation of bm-Nambu structures which are also considered in this thesis.

Group actions re-appear in the last chapters as integrable systems
on these manifolds turn out to have associated Hamiltonian actions
of tori in a neighbourhood of a Liouville torus. We use this Hamilto-
nian group action to prove existence of action-angle coordinates in a
neighborhood of a Liouville torus. The action-angle coordinate theo-
rem that we prove gives a semilocal normal form in the neighbourhood
of a Liouville torus for the bm-symplectic structure which depends on
the modular weight of the connected component of the critical set in
which the Liouville torus is lying and the modular weights of the as-
sociated toric action. This action-angle theorem allows us to identify
a neighborhood of the Liouville torus with the bm-cotangent lift of the
action of a torus acting by translations on itself.

We end up this thesis proving a KAM theorem for bm-Poisson man-
ifolds which clearly refines and improves the one obtained for b-Poisson
manifolds in [2]. As an outcome of this result together with the
extension of the desingularization techniques of Guillemin-Miranda-
Weitsman to the realm of integrable systems, we obtain a KAM theo-
rem for folded symplectic manifolds where KAM theory has never been
considered before. In the way, we also obtain a brand new KAM the-
orem for symplectic manifolds where the perturbation keeps track of
a distinguished hypersurface. In celestial mechanics this distinguished
hypersurface can be the line at infinity or the collision set.
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Resumen

Esta tesis doctoral explora problemas de clasificación y perturbación
para acciones de grupo en una clase particular de variedades de Poisson
llamadas variedades de bm-Poisson. Las variedades de bm-Poisson son
variedades que son simplécticas fuera de una hipersuperficie en la cual
satisfacen ciertas propiedades de transversalidad. A menudo modelan
problemas en variedades simplécticas con borde tales como el estudio
de la cuantización por deformación o problemas de mecánica celeste.

Una de las propiedades interesantes de las variedades bm-Poisson
es que se pueden estudiar usando el lenguage de bm-formas. Es de-
cir, que podemos trabajar con formas que son simplécticas lejos un
conjunto cŕıtico y que admiten una extensión suave como forma sobre
un algebroide de Lie generalizando formas de De Rham como formas
sobre el algebroide de Lie del fibrado tangente de la variedad. Para
considerar bm-formas el fibrado tangente estándar debe reemplazarse
por el fibrado bm-tangente.

Esta tesis empieza con una clasificación equivariante de estructuras
bm-Poisson, investigando, en particular, el análogo del teorema de clasi-
ficación de Moser para superficies simplécticas y sus análogos equiv-
ariantes. La clasificación de invariantes en el caso de superf́ıcies estan
codificados en una cohomologia llamada bm-cohomologia que ha sido
estudiada en profundiad por [1]. Una fórmula del tipo de Mazzeo-
Melrose para la bm-cohomologia descompone en dos partes que pueden
interpretarse como las cohomologias de De Rham tanto de la variedad
ambiente M como de la hypersuperficie cŕıtica. Como consecuencia

ix
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de esta identificación, la clasificación de Poisson de estas variedades
viene dada por la cohomologia de De Rham de la variedad y de la
hipersuperficie.

Esta clasificación se extiende al contexto equivariante si asumimos
que las formas singulares son preservadas por la acción de un grupo de
Lie compacto. Estas técnicas pueden ser extendidas a la clasificación
de structuras de bm-Nambu que se consideran también en esta tesis.

Las acciones de grupo reaparecen en los últimos capitulos ya que
los sistemas integrables en estas variedades resulta que tienen asoci-
adas acciones Hamiltonianas de toros en un entorno de un toro de
Liouville. Usamos estas acciones Hamiltonianas de grupos para de-
mostrar la existencia de coordenadas accion-ángulo en un entorno de
un toro de Liouville. El teorema de acción-ángulo que demostramos
da un teorema de formas normales semilocales en un entorno del toro
de Liouville para la forma bm-simpléctica que depende tanto del peso
modular de la componente conexa de la hipersuperf́ıcie donde se en-
cuentra el toro de Liouville como los pesos asociados a la acción tórica.
Este teorema de accion-ángulo nos permite identificar un entorno del
toro de Liouville como el bm-cotangent lift de la acción de un toro
actuano por translaciones sobre śı mismo.

Acabamos la tesis demostrando un teorema KAM para variedades
de bm-Poisson que claramente refina y mejora el teorema obtenido
para variedades de b-Poisson en [2]. Como consecuencia de este re-
sultado junto con la extension de las técnicas de desingularización
de Guillemin-Miranda-Weitsman en el ambiente de los sistemas inte-
grables, obtenemos un teorema KAM para variedad folded-simplécticas
donde la teoria KAM nunca ha sido considerada con anterioridad.
En el camino, también obtenemos un nuevo teorema KAM para var-
iedades simplécticas dónde la perturbación permite seguir con detalle
una hipersupeŕıcie concreta. En mecánica celeste esta hipersuperf́ıcie
puede ser interpretada cómo la ĺınea al infinito o el conjunto de colisión.
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Chapter 1

Introduction

Both symplectic and Poisson geometry emerge from the study of classi-
cal mechanics. Both are broad fields widely studied and with powerful
results. But the fact that Poisson structures are far more general than
the symplectic ones imply that a lot of powerful results in symplectic
geometry do not translate well to Poisson manifolds. Here is where
bm-Poisson structures come to play. bm-Poisson structures (or bm-
symplectic structures) lie somewhere between these two worlds. They
extend symplectic structures but in a really controlled way. Because
of this reason, a lot of results that worked in symplectic geometry still
work in bm-symplectic geometry.

The study of bm-Poisson geometry sparked from the study of sym-
plectic manifold with boundary [3]. In the last years the interest in
this field increased after the classification result for b-Poisson struc-
tures obtained in [4]. Later on, [5] translated these structures to the
language of forms and started applying symplectic tools to study them.
A lot of papers in the following years studied different aspects of these
structures: [6], [5], [7], [8], [9] and [10] are some examples.

Inspired by the study of manifolds with boundary, we work on a
pair of manifolds (M,Z) where Z is an hypersurface and call this pair
b-manifold

1
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2 CHAPTER 1. INTRODUCTION

In this context, [1] generalized the b-symplectic forms by allow-
ing higher degrees of degeneracy of the Poisson structures. The bm-
symplectic structures inherited most of the properties of b-symplectic
structures. This thesis studies different aspects of bm-symplectic struc-
tures. First, we present some preliminary notions necessary to under-
stand the core of the thesis. Then we illustrate the connection between
bm-symplectic structures and classical mechanics by providing several
examples. After this we present a result that classifies all possible bm-
symplectic structures on surfaces up to bm-symplectomorphisms. This
classification comes encoded by some cohomology classes associated to
those structures. We also present a theorem that determines when it
is possible for a b-manifold to have a bm-symplectic structure on it. In
the next section we present similar results for bm-Nambu structures,
which are top-degree structures with similar singularities as the ones
allowed for bm-symplectic structures. We also give a classification re-
sult, in this case for manifolds of any dimension, as well as an existence
result. Finally we study the analog of KAM theory in the bm-setting.
We present an action-angle theorem for bm-Poisson structures. Finally
we state and prove the KAM theory equivalent in manifolds with bm-
symplectic structures.

Arising from this thesis there have appeared three different publica-
tions, and we hope a fourth will follow from the two last chapters. The
first publication is [11], and presents the results that appear at Chapter
4, about classification of bm-symplectic structures. The second paper
published was [12] and presents the results about classification of bm-
Nambu structures explained in chapter 5. The last paper published
was a joint effort from the laboratory of geometry and dynamical sys-
tems. The results were published at [13]. Some of the examples on
this publication are presented in chapter 3. Finally we are hoping to
have a version of chapters 6 and 7 adapted for sending to a journal and
have it published soon.
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1.1. STRUCTURE AND RESULTS OF THIS THESIS 3

1.1 Structure and results of this thesis

1.1.1 Chapter 2: Preliminaries

In the preliminaries we give the basic notions that lead to the ques-
tions we are addressing in this thesis. In the first part we introduce
the concept of b-Poisson manifolds, a type of Poisson manifold that
comes from the study of manifolds with boundary. Next we talk about
a generalization of these structures, that allow higher degree of degen-
eracy of the structure: the bm-symplectic structures. These structures
are the main focus of our study in this thesis. We also introduce the
concept of desingularizing these manifolds. Finally we give a short
introduction to KAM theory, a theory that will be generalized in the
setting of bm-manifolds in the last chapter.

1.1.2 Chapter 3: Examples of singular symplectic
forms in celestial mechanics

In this section we give several examples of singular symplectic struc-
tures appearing naturally in classical problems of celestial mechanics.
We also have a section where we present the difficulties of finding these
examples, and the subtleties of dealing with these structures.

First we present a change of coordinates in the Kepler problem
and how this change transforms the standard symplectic form to a
degenerate form along a hypersurface given by two hyperplanes.

Then we present a change of coordinates made in the restricted
elliptic 3-body problem, that sends the standard symplectic form to a
b3-symplectic structure.

Finally we present an example of a change of coordinates in the
two body problem that leads to a b-symplectic manifold, while talking
about why it is hard to find more naturally appearing examples.
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4 CHAPTER 1. INTRODUCTION

1.1.3 Chapter 4: Existence and classification of
bm-symplectic structures

In this chapter we present the results published in [11]. We start by pre-
senting some examples of bm-symplectic structures in both orientable
and non-orientable surfaces. Then we give an equivariant version of the
Moser theorem for bm-symplectic surfaces which lead to a classification
of these structures on surfaces.

Theorem (A). Suppose that S is a closed surface, let Z be a union of
non-intersecting embedded curves. Consider the bm-manifold given by
(S,Z). Fix m ∈ N and let ω0 and ω1 be two bm-symplectic structures
on (S,Z) which are invariant under the action of a compact Lie group
ρ : G × (S, Z) −→ (S,Z) and defining the same bm-cohomology class,
[ω0] = [ω1]. Then, there exists an equivariant bm-diffeomorphism ξ1 :
(S,Z)→ (S,Z), such that ξ∗1ω1 = ω0.

We also state an equivariant bm-Moser theorem for higher dimen-
sions, taking into account that we need a path joining the two bm-
symplectic structures.

Theorem (B). Let (M,Z) be a closed bm-manifold with m a fixed
natural number and let ωt for 0 ≤ t ≤ 1 be a smooth family of bm-
symplectic forms on (M,Z) such that the bm-cohomology class [ωt] does
not depend on t.

Assume that the family of bm-symplectic structures is invariant by
the action of a compact Lie group G on M , then, there exists a family of
equivariant bm-diffeomorphisms φt : (M,Z)→ (M,Z), with 0 ≤ t ≤ 1
such that φ∗tωt = ω0.

After this we present three theorems that talk about conditions on
the manifolds to allow bm-symplectic structures.

Theorem (C). If a closed surface admits a b2k-symplectic structure
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1.1. STRUCTURE AND RESULTS OF THIS THESIS 5

then it is orientable.

Theorem (D). Given a bm-manifold (S,Z) (fixed m) with S closed
and orientable, there exists a bm-symplectic structure whenever:

1. m = 2k,

2. m = 2k + 1 if only if the associated graph Γ(S,Z) is 2-colorable.

Theorem (E). Let (S,Z) be a closed non-orientable b2k+1-surface.
Then, (S,Z) admits a b2k+1-symplectic structure if and only if the fol-
lowing two conditions hold:

1. the graph of the covering (S̃, Z̃), G(S̃, Z̃) is 2-colorable and

2. the non-trivial deck transformation inverts colors of the graph
obtained in the covering.

Finally we have a section where we talk about desingularizing bm-
symplectic structures. And what happens to the classes of the struc-
tures when desingularized.

Theorem (F). Let (S,Z, x), be a b2k-manifold, where S is a closed
orientable surface and let ω1 and ω2 be two b2k-symplectic forms. Also
let ω1ε and ω2ε be the fε-desingularizations of ω1 and ω2 respectively. If
[ω1] = [ω2] in b2k-cohomology then [ω1ε] = [ω2ε] in de Rham cohomology
for any fixed ε.

1.1.4 Chapter 5: Existence and classification of
bm-Nambu structures

In this chapter we follow the results in [12]. We first define the concept
of bm-Nambu structure. Then we present some examples. We then
present a theorem relating bm-Nambu structures and orientability.
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6 CHAPTER 1. INTRODUCTION

Theorem (G). A compact n-dimensional manifold M admitting a b2k-
Nambu structure is orientable.

We finally present an equivariant theorem on classification of bm-
Nambu structures extending the results of [14].

Theorem (H). Let Θ0 and Θ1 be two bm-Nambu forms of degree n

on a compact orientable manifold Mn and let ρ : G ×M −→ M be a
compact Lie group action preserving both bm-forms. If [Θ0] = [Θ1] in
bm-cohomology then there exists an equivariant diffeomorphism φ such
that φ∗Θ1 = Θ0.

1.1.5 Chapter 6: An action-angle theorem for bm-
Poisson manifolds

In this section we define the concept of bm-functions, bm-integrable
systems. We present several examples of bm-integrable systems that
come from classical mechanics. After all this we present a version of
the action-angle theorem for bm-symplectic manifolds.

Theorem (I). Let (M,x, ω, F ) a bm-integrable system, where F =
(f1 = a0 log(x) +∑m−1

j=1 aj
1
xj
, f2, . . . , fn). Let m ∈ Z be a regular point,

and such that the integral manifold through m is compact. Let Fm be
the Liouville torus through m. Then, there exists a neighborhood U of
Fm and coordinates (θ1, . . . , θn, σ1, . . . , σn) : U → Tn ×Bn such that:

1. We can find an equivalent integrable system F = (f1 = a′0 log(x)+∑m−1
j=1 a′j

1
xj

) such that a′0, . . . , a′m−1 ∈ R,

2.

ω|U =
 m∑
j=1

c′j
c

σj1
dσ1 ∧ dθn

+
n∑
i=2

dσi ∧ dθi

where c is the modular period and c′j = −(j − 1)a′j−1, also

3. the coordinates σ1, . . . , σn depend only on fn, . . . fn.
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1.1.6 Chapter 7: KAM theory on bm-symplectic
manifolds

In this chapter we give our version of a KAM theorem for bm-symplectic
manifolds. We begin by presenting the structure of the chapter. Then
we give an outline of how to construct the bm-symplectomorphism that
will be the main protagonist in the proof of the theorem. After this
we present some technical results that are needed for the proof, which
are quite similar to the standard KAM equivalents, but there are some
subtleties that need to be adressed. After all the preliminaries we state
and prove the bm-KAM theorem.

Theorem (J). Let G ⊂ Rn, n ≥ 2 be a compact set. Let H(φ, I) =
ĥ(I) + f(φ, I), where ĥ is a bm-function ĥ(I) = h(I) + q0 log(I1) +∑m−1
i=1

qi
Ii1

defined on Dρ(G), with h(I) and f(φ, I) analytic. Let û = ∂ĥ
∂I

and u = ∂h
∂I

. Assume |∂u
∂I
|G,ρ2 ≤M , |u|ξ ≤ L. Assume that u is µ non-

degenerate (|∂u
∂I
| ≥ µ|v| for some µ ∈ R+ and I ∈ G. Take a = 16M .

Assume that u is one-to-one on G and its range F = u(G) is a D-set.
Let τ > n− 1, γ > 0 and 0 < ν < 1. Let

1.
ε := ‖f‖G,ρ ≤

ν2µ2ρ̂2τ+2

24τ+32L6M3γ
2, (1.1)

2.
γ ≤ min(8LMρ2

νρ̂τ+1 ,
L

K′
) (1.2)

3.
µ ≤ min(2τ+5L2M, 27ρ1L

4Kτ+1, βντ+122τ+1ρτ1), (1.3)

where ρ̂ := min
(

νρ1
12(τ+2) , 1

)
. Define the set Ĝ = Ĝγ := {I ∈ G −

2γ
µ
|u(I) is τ, γ, c, q̂−Dioph.}. Then, there exists a real continuous map
T :W ρ1

4
(Tn)× Ĝ→ Dρ(G) analytic with respect the angular variables

such that
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1. For all I ∈ Ĝ the set T (Tn×{I}) is an invariant torus of H, its
frequency vector is equal to u(I).

2. Writing T (φ, I) = (φ+ Tφ(φ, I), I + TI(φ, I)) with estimates

|Tφ(φ, I)| ≤ 22τ+15ML2

ν2ρ̂2τ+1
ε

γ2

|TI(φ, I))| ≤ 210+τL(1 +M)
νρ̂τ+1

ε

γ

3. meas[(Tn×G)\T (Tn×Ĝ)] ≤ Cγ where C is a really complicated
constant depending on n, µ, D, diamF , M , τ , ρ1, ρ2, K and L.

Also, we obtain a way to associate a standard symplectic integrable
system or a folded integrable system to a bm-integrable system, depend-
ing on the parity of m. This is done in such a way that the dynamics
of the desingularized system are the same than the dynamics of the
original one.

Theorem (K). The desingularization transforms a bm-integrable sys-
tem into an integrable system for m even on a symplectic manifold.
For m odd the desingularization transforms it to a folded integrable
system. The integrable systems are such that:

Xω
fj

= Xωε
fjε
.

Also this allows us to obtain two new KAM theorems using this
desingularization in conjunction with our bm-KAM theorem. The first
of this theorems is a KAM theorem for standard symplectic manifolds,
where the perturbation has a particular expression. This result is more
restrictive than the standard KAM but in exchange we can ensure that
the perturbations leave a given hypersurface invariant. This means
that the tori belonging to that hypersurface remain there after the
perturbation.
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Theorem (L). Consider a neighborhood of a Liouville torus of an in-
tegrable system Fε as in 7.26 of a symplectic manifold (M,ωε) semilo-
cally endowed with coordinates (I, φ), where φ are the angular coor-
dinates of the torus, with ωε = c′dI1 ∧ dφi + ∑n

j=1 dIj ∧ dφj. Let
H = (m − 1)cm−1c

′I1 + h(Ĩ) + R(Ĩ , φ̃) be a nearly integrable system
where  Ĩ1 = c′

Im+1
1
m+1 ,

φ̃1 = c′Im1 φ1,

and  Ĩ = (Ĩ1, I2, . . . , In),
φ̃ = (φ̃1, φ2, . . . , φn).

Then the results for the bm-KAM theorem 7.3.1 applied to Hsing =
1

I2k−1
1

+ h(I) +R(I, φ) hold for this desingularized system.

The second one is a KAM theorem for folded-symplectic manifolds,
where KAM theory never was considered before.

Theorem (M). Consider a neighborhood of a Liouville torus of an
integrable system Fε as in 7.27 of a folded symplectic manifold (M,ωε)
semilocally endowed with coordinates (I, φ), where φ are the angular
coordinates of the Torus, with ωε = 2cI1dI1∧dφ1 +∑m

j=2 dIj ∧dφj. Let
H = (m− 1)cm−1cI

2
1 + h(Ĩ) +R(Ĩ , φ̃) a nearly integrable system with

 Ĩ1 = 2c I
m+2
1
m+2 ,

φ̃1 = 2cIm+1
1 φ1,

and  Ĩ = (Ĩ1, I2, . . . , In),
φ̃ = (φ̃1, φ2, . . . , φn).

Then the results for the bm-KAM theorem 7.3.1 applied to Hsing =
1
I2k

1
+ h(I) +R(I, φ) hold for this desingularized system.
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10 CHAPTER 1. INTRODUCTION

1.2 Publications resulting from this the-
sis

As stated previously the results of this thesis can be found in the
following articles:

1. E. Miranda and A. Planas, “Equivariant classification of bm-
symplectic surfaces,” Regular and Chaotic Dynamics, vol. 23,
pp. 355–371, Jul 2018.

2. E. Miranda and A. Planas, “Classification of bm-Nambu struc-
tures of top degree,” C. R. Math. Acad. Sci. Paris, vol. 356,
no. 1, pp. 92–96, 2018.

3. R. Braddell, A. Delshams, E. Miranda, C. Oms, and A. Planas,
“An invitation to singular symplectic geometry,” International
Journal of Geometric Methods in Modern Physics, 05 2017.

4. E. Miranda and A. Planas, “A KAM theorem for bm-symplectic
manifolds,” Pre-print.
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Chapter 2

Preliminaries

Let M be a smooth manifold, a Poisson structure on M is a bilinear
map {·, ·} : C∞(M)×C∞(M)→ C∞(M) which is skew symmetric and
satisfies both the Jacobi identity and the Leibniz rule. It is possible
to express {f, g} in terms of a bivector field via the following equality
{f, g} = Π(df ∧ dg) with Π a section of Λ2(TM). Π is the associated
Poisson bivector. We will use indistinctively the terminology of Pois-
son structure when referring to the bracket or the Poisson bivector.

A b-Poisson bivector field on a manifold M2n is a Poisson bivector
such that the map

F : M →
2n∧
TM : p 7→ (Π(p))n (2.1)

is transverse to the zero section. Then, a pair (M,Π) is called a b-
Poisson manifold and the vanishing set Z of F is called the critical
hypersurface. Observe that Z is an embedded hypersurface.

This class of Poisson structures was studied by Radko [4] in dimen-
sion two and considered in numerous papers in the last years: [6], [5],
[7], [8], [9] and [10] among others.

11
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12 CHAPTER 2. PRELIMINARIES

2.1 b-Poisson manifolds

Next, we recall Radko’s classification theorem and the cohomological
re-statement presented in [5].

In what follows, (M,Π) will be a closed smooth surface with a
b-Poisson structure on it, and Z its critical hypersurface.

Let h be the distance function to Z as in [9]1.

Definition 2.1.1. The Liouville volume of (M,Π) is the following
limit: V (Π) := limε→0

∫
|h|>ε ω

n2.

The previous limit exists and it is independent of the choice of the
defining function h of Z (see [4] for the proof).

Definition 2.1.2. For any (M,Π) oriented Poisson manifold, let Ω
be a volume form on it, and let uf denote the Hamiltonian vector field
of a smooth function f : M → R. The modular vector field XΩ is
the derivation defined as follows:

f 7→
LufΩ

Ω .

Definition 2.1.3. Given γ a connected component of the critical set
Z(Π) of a closed b-Poisson manifold (M,Π), the modular period of
Π around γ is defined as:

Tγ(Π) := period of XΩ|γ.

Remark 2.1.4. The modular vector field XΩ of the b-Poisson mani-
fold (M,Z) does not depend at Z on the choice of Ω because for differ-
ent choices for volume form the difference of modular vector fields is

1Notice the difference with [4] where h is assumed to be a global defining func-
tion.

2For surfaces n = 1.
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2.1. B-POISSON MANIFOLDS 13

a Hamiltonian vector field. Observe that this Hamiltonian vector field
vanishes on the critical set as Π vanishes there too.

Definition 2.1.5. LetMn(M) = Cn(M)/ ∼ where Cn(M) is the space
of disjoint oriented curves and ∼ identifies two sets of curves if there is
an orientation-preserving diffeomophism mapping the first one to the
second one and preserving the orientations of the curves.

The following theorem classifies b-symplectic structures on surfaces
using these invariants:

Theorem 2.1.6 (Radko [4]). Consider two b-Poisson structures Π,
Π′ on a closed orientable surface M . Denote its critical hypersurfaces
by Z and Z ′. These two b-Poisson structures are globally equivalent
(there exists a global orientation preserving diffeomorphism sending Π
to Π′) if and only if the following coincide:

• the equivalence classes of [Z] and [Z ′] ∈Mn(M),

• their modular periods around the connected components of Z and
Z ′,

• their Liouville volume.

An appropriate formalism to deal with these structures was intro-
duced in [6].

Definition 2.1.7. A b-manifold3 is a pair (M,Z) of a manifold and
an embedded hypersurface.

In this way the concept of b-manifold previously introduced by Mel-
3The ‘b’ of b-manifolds stands for ‘boundary’, as initially considered by Melrose

(Chapter 2 of [15]) for the study of pseudo-differential operators on manifolds with
boundary.
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14 CHAPTER 2. PRELIMINARIES

rose is generalized.

Definition 2.1.8. A b-vector field on a b-manifold (M,Z) is a vec-
tor field tangent to the hypersurface Z at every point p ∈ Z.

Definition 2.1.9. A b-map from (M,Z) to (M ′, Z ′) is a smooth map
φ : M →M ′ such that φ−1(Z ′) = Z and φ is transverse to Z ′.

Observe that if x is a local defining function for Z and (x, x1, . . . , xn−1)
are local coordinates in a neighborhood of p ∈ Z then the C∞(M)-
module of b-vector fields has the following local basis

{x ∂
∂x
,
∂

∂x1
, . . . ,

∂

∂xn−1
}. (2.2)

In contrast with [6], in this paper we are not requiring the existence
of a global defining function for Z and orientability of M but we require
the existence of a defining function in a neighborhood of each point of
Z. By relaxing this condition the normal bundle of Z need not be
trivial.

Given (M,Z) a b-manifold, [6] shows that there exists a vector
bundle, denoted by bTM whose smooth sections are b-vector fields.
This bundle is called the b-tangent bundle of (M,Z).

The b-cotangent bundle bT ∗M is defined using duality. A b-
form is a section of the b-cotangent bundle. Around a point p ∈ Z the
C∞(M)-module of these sections has the following local basis:

{1
x
dx, dx1, . . . , dxn−1}. (2.3)

In the same way we define a b-form of degree k to be a section of the
bundle ∧k(bT ∗M), the set of these forms is denoted bΩk(M). Denoting
by f the distance function4 to the critical hypersurface Z, we may
write the following decomposition as in [6] for any ω ∈b Ωk(M) :

4Originally in [6] f stands for a global function, but for non-orientable manifolds
we may use the distance function instead.



i
i

“ThesisArnauPlanas” — 2020/7/23 — 16:32 — page 15 — #29 i
i

i
i

i
i

2.2. ON BM -SYMPLECTIC MANIFOLDS 15

ω = α ∧ df
f

+ β, with α ∈ Ωk−1(M) and β ∈ Ωk(M). (2.4)

This decomposition allows to extend the differential of the de Rham
complex d to bΩ(M) by setting dω = dα ∧ df

f
+ dβ. The associated

cohomology is called b-cohomology and it is denoted by bH∗(M).

Definition 2.1.10. A b-symplectic form on a b-manifold (M2n, Z)
is defined as a non-degenerate closed b-form of degree 2 (i.e., ωp is of
maximal rank as an element of Λ2( bT ∗pM) for all p ∈M).

The notion of b-symplectic forms is dual to the notion of b-Poisson
structures. The advantage of using forms is that symplectic tools can
be ‘easily’ exported.

Radko’s classification theorem [4] can be translated into this lan-
guage. This translation was already formulated in [6]:

Theorem 2.1.11 (Radko’s theorem in b-cohomological language,
[5]). Let S be a closed orientable surface and let ω0 and ω1 be two b-
symplectic forms on (S,Z) defining the same b-cohomology class (i.e.,[ω0] =
[ω1]). Then there exists a diffeomorphism φ : S → S such that
φ∗ω1 = ω0.

2.2 On bm-Symplectic manifolds

2.2.1 Basic definitions

By relaxing the transversality condition allowing higher order singular-
ities ([16] and [17]) we may consider other symplectic structures with
singularities as done by Scott [1] with bm-symplectic structures. Let m
be a positive integer a bm-manifold is a b-manifold (M,Z) together
with a bm-tangent bundle attached to it. The bm-tangent bundle is (by
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16 CHAPTER 2. PRELIMINARIES

Serre-Swan theorem [18]) a vector bundle, bmTM whose sections are
given by,

Γ(bmTM) = {v ∈ Γ(TM) : v(x) vanishes to order m at Z},

where x is a defining function for the critical set Z in a neighborhood
of each connected component of Z and can be defined as x : M \Z →
(0,∞), x ∈ C∞(M) such that:

• x(p) = d(p) a distance function from p to Z for p : d(p) ≤ 1/2

• x(p) = 1 on M \ {p ∈M such that d(p) < 1}.5

(This definition of x allows us to extend the construction in [1] to the
non-orientable case as in [9].) We may define the notion of a bm-map
as a map in this category (see [1]). The sections of this bundle are
referred to as bm-vector fields and their flows define bm-maps. In
local coordinates the sections of the bm-tangent bundle are generated
by:

{xm ∂

∂x
,
∂

∂x1
, . . . ,

∂

∂xn−1
}. (2.5)

Proceeding mutatis mutandis as in the b-case one defines the bm-
cotangent bundle (bmT ∗M), the bm-de Rham complex and the bm-
symplectic structures.

A Laurent Series of a closed bm-form ω is a decomposition of ω
in a tubular neighborhood U of Z of the form

ω = dx

xm
∧ (

m−1∑
i=0

π∗(αi)xi) + β (2.6)

with π : U → Z the projection of the tubular neighborhood onto Z, αi
a closed smooth de Rham form on Z and β a de Rham form on M .

5Then a bm-manifold will be a triple (M,Z, x), but for the sake of simplicity we
refer to it as a pair (M,Z) and we tacitly assume the function x is fixed.
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2.2. ON BM -SYMPLECTIC MANIFOLDS 17

In [1] it is proved that in a neighborhood of Z, every closed bm-
form ω can be written in a Laurent form of type (2.6) having fixed a
(semi)local defining function.

bm-Cohomology is related to de Rham cohomology via the following
theorem:

Theorem 2.2.1 (bm-Mazzeo-Melrose, [1]). Let (M,Z) be a bm-
manifold, then:

bmHp(M) ∼= Hp(M)⊕ (Hp−1(Z))m. (2.7)

The isomorphism constructed in the proof of the theorem above is
non-canonical (see [1]).

The Moser path method can be generalized to bm-symplectic struc-
tures:

Theorem 2.2.2 (Moser path method, [1]). Let ω0, ω1 be two bm-
symplectic forms defining the same bm-cohomology class [ω0] = [ω1]
on (M2n, Z) with M2n closed and orientable then there exist a bm-
symplectomorphism ϕ : (M2n, Z) −→ (M2n, Z) such that ϕ∗(ω1) = ω0.

An outstanding consequence of Moser path method is a global clas-
sification of closed orientable bm-symplectic surfaces à la Radko in
terms of bm-cohomology classes.

Theorem 2.2.3 (Classification of closed orientable bm-surfaces,
[1]). Let ω0 and ω1 be two bm-symplectic forms on a closed orientable
connected bm-surface (S,Z). Then, the following conditions are equiv-
alent:

• their bm-cohomology classes coincide [ω0] = [ω1],

• the surfaces are globally bm-symplectomorphic,

• the Liouville volumes of ω0 and ω1 and the numbers∫
γ
αi
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18 CHAPTER 2. PRELIMINARIES

for all connected components γ ⊆ Z and all 1 ≤ i ≤ m coincide
(where αi are the one-forms appearing in the Laurent decompo-
sition of the two bm-forms of degree 2, ω0 and ω1).

Definition 2.2.4. The numbers [αi] =
∫
γ αi are called modular weights

for the connected components γ ⊂ Z.

A relative version of Moser path method is proved in [8] as a corol-
lary we obtain the following local description of a bm-symplectic man-
ifold:

Theorem 2.2.5 (bm-Darboux theorem, [8]). Let ω be a bm-symplectic
form on (M,Z) and p ∈ Z. Then we can find a coordinate chart
(U, x1, y1, . . . , xn, yn) centered at p such that on U the hypersurface Z
is locally defined by x1 = 0 and

ω = dx1

xm1
∧ dy1 +

n∑
i=2

dxi ∧ dyi.

Remark 2.2.6. For the sake of simplicity sometimes we will omit
describing Z and we will talk directly about bm-symplectic structures
on manifolds M implicitly assuming that Z is the vanishing locus of
Πn where Π is the Poisson vector field dual to the bm-symplectic form.

Next we present two lemmas that allow us to talk about bm-symplectic
structures and bm-Poisson as a single kind of structure. They are dual
to each other and in one-to-one correspondence.

Lemma 2.2.7. Let ω be a bm-symplectic and Π its dual vector field,
then Π is bm-Poisson.

Proof. The quickest way to do this is to take the inverse, which is
a bivector field, and observe that it is a Poisson structure (because
dω = 0 implies [Π,Π] = 0). To see that it is bm-Poisson it is enough
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2.2. ON BM -SYMPLECTIC MANIFOLDS 19

to take a point p on the critical set Z and because of our bm-Darboux
theorem ω = dx1/x

m
1 ∧ dy1 + ∑

i>1 dxi ∧ dyi This means that in the
new coordinate system Π = xm1 ∂x1 ∧ ∂y1 +∑

i>1 ∂xi ∧ ∂yi and thus Π
is bm-Poisson.

Lemma 2.2.8. Let Π be bm-Poisson and ω its dual vector field, then
ω is bm-symplectic.

Proof. If Π transverse à la Thom on Z with singularity of order m then
because of Weinstein’s splitting theorem we can locally write

Π = xm1 ∂x1 ∧ ∂y1 +
∑
i>1

∂xi ∧ ∂yi

now its inverse is ω = dx1/x
m
1 ∧ dy1 + ∑

i>1 dxi ∧ dyi which is a
bm-symplectic form.

Hence we have a correspondence from bm-symplectic to bm-Poisson.

2.2.2 Desingularizing bm-Poisson manifolds

In [8] Guillemin, Miranda and Weitsman presented a desingulariza-
tion procedure for bm-symplectic manifolds proving that we may as-
sociate a family of folded symplectic or symplectic forms to a given
bm-symplectic structure depending on the parity of m. Namely,

Theorem 2.2.9 (Guillemin-Miranda-Weitsman, [8]). Let ω be a
bm-symplectic structure on a closed orientable manifold M and let Z
be its critical hypersurface.

• If m = 2k, there exists a family of symplectic forms ωε which
coincide with the bm-symplectic form ω outside an ε-neighborhood
of Z and for which the family of bivector fields (ωε)−1 converges
in the C2k−1-topology to the Poisson structure ω−1 as ε→ 0 .
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• If m = 2k + 1, there exists a family of folded symplectic forms
ωε which coincide with the bm-symplectic form ω outside an ε-
neighborhood of Z.

As a consequence of Theorem 2.2.9, any closed orientable manifold
that supports a b2k-symplectic structure necessarily supports a sym-
plectic structure.

In [8] explicit formulae are given for even and odd cases. Let us
refer here to the even dimensional case as these formulae will be used
later on.

Let us briefly recall how the desingularization is defined and the
main result in [8]. Recall that we can express the b2k-form as:

ω = dx

x2k ∧
(2k−1∑
i=0

xiαi

)
+ β. (2.8)

This expression holds on a ε-tubular neighborhood of a given con-
nected component of Z. This expression comes directly from equation
2.6, to see a proof of this result we refer to [1].

Definition 2.2.10. Let (S,Z, x), be a b2k-manifold, where S is a
closed orientable manifold and let ω be a b2k-symplectic form. Con-
sider the decomposition given by the expression (2.8) on an ε-tubular
neighborhood Uε of a connected component of Z.

Let f ∈ C∞(R) be an odd smooth function satisfying f ′(x) > 0 for
all x ∈ [−1, 1] and satisfying outside that

f(x) =


−1

(2k−1)x2k−1 − 2 for x < −1,
−1

(2k−1)x2k−1 + 2 for x > 1.
(2.9)

Let fε(x) be defined as ε−(2k−1)f(x/ε).
The fε-desingularization ωε is a form that is defined on Uε by

the following expression:

ωε = dfε ∧
(2k−1∑
i=0

xiαi

)
+ β.
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This desingularization procedure is also known as deblogging in
the literature.

Remark 2.2.11. Though there are infinitely many choices for f , we
will assume that we choose one, and assume it fixed through the rest
of the discussion. It would be interesting to discuss the existence of an
isotopy of forms under a change of function f .

Remark 2.2.12. Because ωε can be trivially extended to the whole S
in such a way that it agrees with ω (see [8]) outside a neighborhood of
Z, we can talk about the fε-desingularization of ω as a form on S.

2.3 A crash course on KAM theory

The last chapter of this thesis is entirely dedicated to prove a KAM
theorem for bm-symplectic structures. So the aim of this section is to
give a quick overview on the traditional KAM theorem. The setting
of the KAM theorem is a sympletic manifold with action angle coor-
dinates and an integrable system in it. The theorem says that under
small perturbations of the Hamiltonian ”most” of the Liouville tori
survive.

Consider Tn × G ⊂ Tn × Rn with action-angle coordinates in it
(φ1, . . . , φn, I1, . . . , In) and the standard symplectic form ω in it. And
assume the Hamiltonian function of the system is given by h(I) a
function only depending on the action coordinates. Then the Hamilton
equations of the system are given by

ιXhω = dh

where Xh is the vector field generating the trajectories. Because h
does not depend on φ the angular variables the system is really easy
to solve, and the equations are given by



i
i

“ThesisArnauPlanas” — 2020/7/23 — 16:32 — page 22 — #36 i
i

i
i

i
i

22 CHAPTER 2. PRELIMINARIES

x(t) = (φ(t), I(t)) = (φ0 + ut, I0),

where u = ∂h/∂I is called the frequency vector. These motions
for a fixed initial condition are inside a Liouville torus, and are called
quasiperiodic.

The KAM theorem studies what happens to such a systems when
a small perturbation is applied to the Hamiltonian function, i.e. we
consider the evolution of the system given by the Hamiltonian h(I) +
R(I, φ), where we think of the term R(I, φ) as the small perturbation in
the system. With this in mind the Hamilton equations can be written
as

φ̇ = u(I) + ∂
∂I
R(I, φ), İ = − ∂

∂φ
R(I, φ),

Another important concept to have in mind is the concept of ratio-
nal dependency. A frequency u is rationally dependent if 〈u, k〉 = 0 for
some k ∈ Zn, if there exists no k satisfying the condition then the vec-
tor u is called rationally independent. There is a stronger concept to
being rationally independent and that is the concept of being Diophan-
tine. A vector u is γ,τ -diophantine if 〈u, k〉 ≥ γ

|k|τ1
for all k ∈ Zn \ {0}.

γ > 0 and τ > n− 1.
The KAM theorem states that the Liouville tori with frequency

vector satisfying the diophantine condition survive under the small
perturbation R(I, φ). There are conditions relating the size of the per-
turbation with γ and τ . Also the set of tori satisfying the Diophantine
condition has measure 1− Cγ for some constant C.

Now we give a proper statement of the theorem as was given in
[19].

Theorem 2.3.1 (Isoenergetic KAM theorem). Let G ⊂ Rn, n > 2, a
compact, and let H(φ, I) = h(I) + f(φ, I) real analytic on Dρ(G). Let
ω = ∂h/∂I, and assume the bounds:
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∣∣∣∣∣∂2h

∂I2

∣∣∣∣∣
G,ρ2

≤M, |ω|G ≤ L and |ωn(I)| ≥ l∀I ∈ G.

Assume also that ω is µ-isoenergetically nondegenerate on G. For
a = 16M/l2, assume that the map Ω = Ωω,h,a is one-to-one on G, and
that its range F = Ω(G) is a D-set. Let τ > n−1, γ > 0 and 0 < ν < 1
given, and assume:

ε := ‖f‖G,ρ ≤
ν2l6µ2ρ̂2τ+2

24τ+32L6M3 · γ
2, γ ≤ min

(
8LMρ2

νlρ̂τ+1 , l

)
,

where we write ρ := min
(

νρ1
12(τ+2) , 1

)
. Define the set

Ĝ = Ĝγ :=
{
I ∈ G − 2γ

µ
: ω(I)isτ, γ − Diophantine

}
.

Then, there exists a real continuous map T : W ρ1
4

(Tn) × Ĝ →
Dρ(G), analytic with respect to the angular variables, such that:

1. For every I ∈ Ĝ, the set T (Tn×{I}) is an invariant torus of H,
its frequency vector is colinear to ω(I) and its energy is h(I).

2. Writing
T (φ, I) = (φ+ Tφ(φ, I), I + TI(φ, I)),

one has the estimates

|Tφ|Ĝ,( ρ1
4 ,0),∞ ≤

22τ+15L2M

ν2l2ρ̂2τ+1
ε

γ2 , |TI |Ĝ,( ρ1
4 ,0) ≤

2τ+16L3M

νl3µρ̂τ+1
ε

γ

3. meas[(Tn×G)\T (Tn× Ĝ)] ≤ Cγ, where C is a very complicated
constant depending on n, τ , diamF , D, ρ̂, M , L, l, µ.

Remark 2.3.2. This verion of the KAM theorem is the isoenergetic
one, this version ensures that the energy of the Liouville Tori identified
by the diffeomorphism after the perturbation remains the same as before
the perturbation. Our version of the bm-KAM is not isoenergetic for
the sake of simplifying the computations.
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Also we have to remark that the KAM theorem has already been
explored in singular symplectic manifolds before. In [2] the authors
proved a KAM theorem for b-symplectic manifolds, for a particular
kind of perturbations.

Theorem 2.3.3 (KAM Theorem for b-Poisson manifolds). Let Tn ×
Bn
r be endowed with standard coordinates (ϕ, y) and the b-symplectic

structure. Consider a b-function

H = k log |y1|+ h(y)

on this manifold, where h is analytic. Let y0 be a point in Bn
r with first

component equal to zero, so that the corresponding level set Tn × {y0}
lies inside the critical hypersurface Z.

Assume that the frequency map

ω̃ : Bn
r → Rn−1, ω̃(y) := ∂h

∂ỹ
(y)

has a Diophantine value ω̃ := ω̃(y0) at y0 ∈ Bn and that it is non-
degenerate at y0 in the sense that the Jacobian ∂ω̃

∂ỹ
(y0) is regular.

Then the torus Tn × {y0} persists under sufficiently small pertur-
bations of H which have the form mentioned above, i.e. they are given
by εP , where ε ∈ R and P ∈bC∞(Tn ×Bn

r ) has the form

P (ϕ, y) = k′ log |y1|+ f(ϕ, y)

f(ϕ, y) = f1(ϕ̃, y) + y1f2(ϕ, y) + f3(ϕ1, y1).

More precisely, if |ε| is sufficiently small, then the perturbed system

Hε = H + εP

admits an invariant torus T .
Moreover, there exists a diffeomorphism Tn → T close6 to the iden-

tity taking the flow γt of the perturbed system on T to the linear flow
6By saying that the diffeomorphism is “ε-close to the identity” we mean that,

for given H,P and r, there is a constant C such that ‖ψ − Id‖ < Cε.
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on Tn with frequency vector(
k + εk′

c
, ω̃

)
.
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Chapter 3

Examples of singular
structures in Celestial
Mechanics

In this chapter we present several examples appearing in Celestial Me-
chanics where singular symplectic forms show up. Part of this chapter
(not all) is contained in the article [13]. Most of the singularities ap-
pear as an outcome of regularization techniques. We invite the reader
to consult the book [20] for a pedagogical approach to the study of
regularization.

This list of examples is of special relevance for this thesis as the
theoretical results that we obtain such as action-angle coordinates or
KAM can be, de facto, applied to the list of problems considered below.

3.1 Transformations and Singular Sym-
plectic Forms

Structures which are symplectic almost everywhere can arise as the
result of a non-canonical changes of coordinates. Given configuration
space R2 and phase space T ∗R2 as is seen, for example, in the Kepler

27
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problem, the traditional (canonical) Levi-Civita transformation is the
following: identify R2 ∼= C so that T ∗R2 ∼= T ∗C ∼= C2 and treat (q, p)
as complex variables (q1 + iq2 := u, p1 + ip2 := v) . Take the following
change of coordinates (q, p) = (u2/2, v/ū), where ū denotes the com-
plex conjugation of u. The resulting coordinate change can easily be
seen to be canonical. However this canonical change of coordinates can
result in more difficult equations of motion, or a more difficult Hamil-
tonian, which can both obscure certain aspects of the dynamics of the
system.

3.1.1 The Kepler Problem

In suitable coordinates in T ∗ (R2 \ {0}), the Kepler problem has Hamil-
tonian

H(q, p) = ‖p‖
2

2 − 1
‖q‖

. (3.1)

With the canonical Levi-Civita transformation (q, p) = (u2/2, v/ū),
this becomes

H(u, v) = ‖v‖2

2‖ū‖2 −
1
‖u‖2 . (3.2)

Sometimes, as in this case, canonical changes lead to a more difficult
system, so it may be desirable to leave the momentum unchanged
and examine instead the transformation (q, p) = (u2/2, p) which can
result in a simpler Hamiltonian. Now the transformation is not a
symplectomorphism and the symplectic form on T ∗R2 pulls back under
the transformation to a two-form symplectic almost everywhere, but
degenerate on a hypersurface of T ∗R2.
Explicitly, the Liouville one-form p1dq1 + p2dq2 = <(pdq̄) pulls back to

θ = <
(
pd

(
ū2

2

))
= < (pūdū)

= p1(u1du1 − u2du2) + p2(u2du1 + u1du2)

and computing −dθ we get the almost everywhere symplectic form

ω = u1du1 ∧ dp1 − u2du1 ∧ dp2 + u2du2 ∧ dp1 + u1du2 ∧ dp2.
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Wedging this form with itself we find

ω ∧ ω = (u2
1 − u2

2)du1 ∧ dp1 ∧ du2 ∧ dp2

which is degenerate along the hypersurface given by u1 = ±u2.

3.1.2 The Problem of Two Fixed Centers

Related to the folded symplectic form found in the Levi-Civita transfor-
mation is the folded form associated with elliptic coordinates, employed
while regularizing the problem of two fixed centers. This describes the
motion of a satellite moving in a gravitational potential generated by
two fixed massive bodies. We assume also that the motion of the satel-
lite is restricted to the plane in R3 containing the two massive bodies.
The Hamiltonian in suitable coordinates is given by

H = p2

2m −
µ

r1
− 1− µ

r2
(3.3)

where µ is the mass ratio of the two bodies (i.e. µ = m1
m1+m2

).
Euler first showed the integrability of this problem using elliptic

coordinates, where the coordinate lines are confocal ellipses and hy-
perbola. Explicitly, consider a coordinate system in which the two
centers are placed at (±1, 0), in which the (Cartesian) coordinates are
given by (q1, q2). Then the elliptic coordinates of the system are given
by

q1 = sinhλ cos ν (3.4)

q2 = coshλ sin ν (3.5)

for (λ, ν) ∈ R×S1. Thus lines of λ = c and ν = c are given by confocal
hyperbola and ellipses in the plane, respectively. Similar to the Levi-
Civita transformation this results in a double branched covering with
branch points at the centers of attraction.
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m1 = 1− µ m2 = µ

q

r2 = q − q2r1 = q − q1

Center of mass

r

q1 q2

Figure 3.1: Scheme of the three body problem.

Pulling back the canonical symplectic structure ω = dq∧dp we find

ω = coshλ cos ν(dλ∧ dp1 + dν ∧ dp2)− sinh λ sin ν(dν ∧ dp1 + dλ∧ dp2)
(3.6)

which is degenerate along the hypersurface (λ, ν) satisfying cosh λ cos ν =
sinh λ sin λ.

3.2 Escape Singularities and b-symplectic
forms

The restricted elliptic 3-body problem describes the behavior of a mass-
less object in the gravitational field of two massive bodies, orbiting in
elliptic Keplerian motion. The planar version assumes that all motion
occurs in a plane. The associated Hamiltonian of the particle is given
by

H(q, p) = ‖p‖
2

2 + 1− µ
‖q − q1‖

+ µ

‖q − q2‖
= T + U (3.7)

where µ is the reduced mass of the system.
After making a change to polar coordinates (q1, q2) = (r cosα, r sinα)

and the corresponding canonical change of momenta we find the Hamil-
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tonian
H(r, α, Pr, Pα) = P 2

r

2 + P 2
α

2r2 + U(r cosα, r sinα) (3.8)

where Pr, Pα are the associated canonical momenta and

U(r cosα, r sinα)

is the potential energy of the system in the new coordinates.
The McGehee change of coordinates is traditionally employed to

study the behavior of orbits near infinity, see also [21]. This non-
canonical change of coordinates is given by

r = 2
x2 . (3.9)

The corresponding change for the canonical momenta is easily seen to
be

Pr = −x
3

4 Px. (3.10)

The Hamiltonian is then transformed to

H(r, α, Pr, Pα) = x6P 2
x

32 + x4P 2
α

8 + U(x, α). (3.11)

By dropping the condition that the change is canonical and simply
transforming the position coordinate (3.9), we are left with a simpler
Hamiltonian, however the pull-back of the symplectic form under the
non-canonical transformation is no longer symplectic, but rather b3-
symplectic:

ω = 4
x3dx ∧ dPr + dα ∧ dPα. (3.12)

3.3 Why is it so hard to find examples?

In this section we find another example of b-symplectic structure ap-
pearing quite naturally in physical dynamical systems. From this ex-
ample it would seem natural that a collection of different examples
for bm-symplectic models or even bm-folded models would follow. But
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one finds a major problem while pursuing these examples. We give an
important remark to why this example does not extend to construct
bm-symplectic models of bm-folded for any m.

First let us introduce te McGehee coordinate change.
The system of two particles moving under the influence of the gen-

eralized potential U(x) = −|x|−α, α > 0, where |x| is the distance
between the two particles, is studied by McGehee in [22]. We fix the
center of mass at the origin and hence can simplify the problem to the
one of a single particle moving in a central force field.

The equation of motion writes down as

ẍ = −∇U(x) = −α|x|−α−2x (3.13)

where the dot represents the derivative with respect to time. In the
Hamiltonian formalism, this equation becomes

ẋ = y,

ẏ = −α|x|−α−2x.
(3.14)

To study the behavior of this system, the following change of coordi-
nates is suggested in [22]:

x = rγeiθ,

y = r−βγ(v + iw)eiθ
(3.15)

where the parameters β and γ are related with α in the following way:

β = α/2,
γ = 1/(1 + β).

(3.16)

Identifying once more the plane R2 with the complex plane C, we can
write the symplectic form of this problem as ω = <(dx ∧ dy).

Remark 3.3.1. To check that a form ω is actually a bm-symplectic
form, it is no enough to check that the multi-vector field dual to ω ∧ ω
is a section of ∧2n(bmTM) which is transverse to the zero section. One
has to check additionally that the Poisson structure dual to ω itself is
a proper section of ∧2(bmTM).
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Proposition 3.3.2. Under the coordinate change (3.15), the symplec-
tic form ω is sent to a b-symplectic structure for α = 2.

Proof. The proof of this proposition is a straightforward computation.
Observe that the change is not a smooth change, so we are not working
with standard de Rham forms. But, we will see at the end of the
computation that the form becomes a b-symplectic form and hence the
computations are legitimate. If one does the change of variables, we
obtain:

ȳ = rβγ(v − iw)e−iθ.
dx = γrγ−1eiθdr + rγeiθidθ.

dȳ = r−βγ−1(−βγ)(v − iw)e−iθdr + r−βγe−iθdv

+rβγ(v − iw)e−iθ(−i)dθ.

(3.17)

We wedge the previous two forms:

dx ∧ dȳ = dr ∧ dv(γrγ−1−βγ)
+ dr ∧ dw(γrγ−1−βγ)
+ dr ∧ dθ(γrγ−1−βγ(−iv − w))
+ dθ ∧ dr(irγ−1−βγ(−βγ)(v − iw))
+ dθ ∧ dv(irγ−βγ)
+ dθ ∧ dw(irγ−βγ(−i)).

(3.18)

Now we can take the real part of this form and use that γ − 1− βγ =
−αγ. In the new coordinates, we obtain.

ω = <(dx ∧ dȳ) = γr−βγ+γ−1dr ∧ dv − γ(1− β)r−βγ+γ−1wdr ∧ dθ
− r−βγ+γdw ∧ dθ.

(3.19)
Moreover, we can use that γ(1+β) = 1 to further simplifly the previous
expression to:

ω = (dr∧dv+dr∧dw)γr−αγ+dr∧dθ(wr−αγ)+dθ∧dw(r−αγ+1). (3.20)

We would like to know what kind of structure this form is. If we want
to check this we have to wedge it with itself and look at the structure
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of the form in the singular set. Wedging this form, we obtain

ω ∧ ω = −γr−2βγ+2γ−1dr ∧ dv ∧ dθ ∧ dw
= −γr

2−3α
2+α dr ∧ dv ∧ dθ ∧ dw.

(3.21)

where we use (3.16). Let us set f(α) = 2−3α
2+α . We see that this function

does not take values lower than −3 or higher than 1. We easily see
that we obtain When α = 2 this gives us a b-symplectic structure:

ω ∧ ω = −γrdr ∧ dv ∧ dθ ∧ dw.

The section of ∧4(bTM) given by the dual structure of ω ∧ ω is cleary
transverse to the zero section.

On the other hand if α = 2, then β = 1 and hence:

ω = γr−1dr ∧ ω ∧ dv,

and its dual Poisson structure is clearly also a proper section of∧2(bTM).

Remark 3.3.3. One may ask if for other values of α it is possible to
obtain other kinds of bm-symplectic structures. For example for α = 6,
ω ∧ ω = −γr−2dr ∧ dv ∧ dθ ∧ dw seems likely to be a b2-symplectic
form. But it actually is not. If one takes a look at the expression of ω
it becomes clear that it is not a proper section of ∧2(b2

T ∗M)
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Chapter 4

Existence and classification
of bm-symplectic structures

In this chapter we follow the article [11].
The motivation of this chapter comes from the theorem of clas-

sification of volume forms on a manifold. In the particular case of
surfaces this corresponds to classification theorem on symplectic forms
on a surface.

In his article [23], Moser proved the following theorem:

Theorem 4.0.1 (Classification of symplectic surfaces, [23]). Let
S be a compact oriented surface, and and let ω0 and ω1 be two sym-
plectic forms on (M,Z) with [ω0] = [ω1]. Then there exists a diffeo-
morphism φ : M →M such that φ∗ω1 = ω0.

Later on Radko classified b-symplectic forms on a surface. In this
case, Z is a union of smooth curves and each point in these curves is a
symplectic leaf of the symplectic foliation induced on Z. In [4], Radko
describes the following invariant of b-Poisson surfaces:

• The set of curves γ1, . . . , γn along which the Poisson structure
vanishes.

35
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• The periods along the curves γ1, . . . , γn of a modular vector field
on M associated to the volume form ωΠ, the two-form dual to Π,
on the complement of Z.

• The regularized Liouville volume of (M,Π), which is a correction
along Z of the natural volume associated to the Poisson structure
which blows up at Z. It is defined by the integral∫

M
ω = lim

ε→0

∫
|f |>ε

ω,

where f is a defining function for Z. This limit exists and is
independent of the choice of f .

The following classification holds:

Theorem 4.0.2 (Radko). The set of curves, modular periods and reg-
ularized Liouville volume completely determines, up to Poisson diffeo-
morphisms, the b-Poisson structure on a compact surface M .

This was reproved in [5] by Guillemin-Miranda-Pires by identifying
these invariants as determining the b-cohomology class. In this sense
the theorem below is just Moser’s classification theorem replacing the
standard De Rham cohomology by b-cohomology.

Corollary 4.0.3 (Classification of b-symplectic surface, [5]).
Let S be a compact orientable surface and and let ω0 and ω1 be two
b-symplectic forms on (M,Z) defining the same b-cohomology class
(i.e.,[ω0] = [ω1]). Then there exists a diffeomorphism φ : M → M

such that φ∗ω1 = ω0.

In this chapter we investigate constructions of bm-surfaces using
combinatorial invariants associated to the critical set and we prove an
analogue of the theorem above by identifying the invariants of Scott in
terms of bm-cohomology considering also its equivariant counterparts.
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4.1 Toy examples of bm-symplectic sur-
faces

In this section we describe several examples of orientable and non-
orientable bm-symplectic surfaces.

1. A bm-symplectic structure on the sphere: Consider the
sphere S2 ⊂ R3 with the equator Z = {(x1, x2, x3) ∈ S2|x3 = 0}
as critical set. Let h = x3 the height function. Then (S2, Z, h)
is a bm-manifold for any m. Consider ω = 1

hm
dh ∧ dθ, where θ

stands for the angular coordinate. This form is a bm-symplectic
form.

2. A bm-symplectic structure on the torus: Consider T2 as
quotient of the plane (T2 = {(x, y) ∈ (R/Z)2}). Let ω =

1
(sin 2πx)mdx ∧ dy be a bm-symplectic structure on R2. The ac-
tion of Z2 leaves this form invariant and therefore this bm-form
descends to the quotient. Observe that this bm-form defines
Z = {x ∈ {0, 1

2}}.

Figure 4.1: Example: bm-symplectic structure in the torus.

3. A b2k+1-symplectic structure on the projective space: Con-
sider Example (1) and consider the quotient of S2 by the antipo-
dal action. Because this action leaves the critical set invariant,
the bm-manifold structure (S2, Z) descends to (RP2, Ẑ) and gives
a non-orientable bm manifold. Ẑ is the equator modulo the an-
tipodal identification (thus diffeomorphic to RP1 ∼= S1). More-
over a neighborhood of Z is diffeomorphic to the Moebius band.
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Observe that ω is invariant by the action for m = 2k+1, yielding
a b2k+1-symplectic form in RP2 with critical set Ẑ.

p
x

−x
x ' −x

Figure 4.2: The b2k+1-symplectic structure on the sphere S2 that van-
ishes at the equator induces a b2k+1-symplectic structure on the pro-
jective space RP2.

4. A b2k+1-symplectic structure on a Klein bottle: Consider
the torus with the structure given in Example (2).

Consider Z/2Z acting on (x, y) ∈ T2 by -Id·(x, y) = (1−x, y+1/2
(mod 1)). The orbit space by this action is the Klein bottle K.
Then the bm-manifold (R2, Z), descends to (K, Ẑ) where Ẑ is the
quotient of Z by the action. It is easy to see that Ẑ ∼= S1 t S1.
Moreover the tubular neighborhood of each S1 is isomorphic to
the Moebius band.

Thus, the bm-symplectic form ω = 1
(sin 2πx)mdx∧ dy induces a bm-

symplectic structure in T if ω is invariant by the action of the
group. It is easy to check that ω is invariant if and only if m
is odd, in this case one obtains a bm-symplectic structure on the
Klein bottle.

Remark 4.1.1. The previous examples only exhibit b2k+1-symplectic
structures on non-orientable surfaces. As we will see in Section 4.3
only orientable surfaces can admit b2k-symplectic structures.
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4.2 Equivariant classification of bm-surfaces
and non-orientable bm-surfaces.

In this section we give an equivariant Moser theorem for bm-symplectic
manifolds. This yields the classification of non-orientable surfaces thus
extending the classification theorems of Radko and Scott for orientable
surfaces (see Theorem 4.2.4).

We now extend the classification result (Theorem 2.2.2) for mani-
folds admitting a compact Lie group action leaving the bm-symplectic
structure invariant. The following theorem is a simple consequence of
applying the equivariant tools to the Moser path method. We include
the detail of the proof for the sake of completeness. Other applications
of the equivariant tools in b-geometry can be found in [7] and [24].

Theorem 4.2.1 (Equivariant bm-Moser theorem for surfaces).
Suppose that S is a closed surface, let Z be a union of non-intersecting
embedded curves. Consider the bm-manifold given by (S,Z). Fix m ∈
N and let ω0 and ω1 be two bm-symplectic structures on (S,Z) which are
invariant under the action of a compact Lie group ρ : G × (S,Z) −→
(S,Z) and defining the same bm-cohomology class, [ω0] = [ω1]. Then,
there exists an equivariant bm-diffeomorphism ξ1 : (S,Z) → (S,Z),
such that ξ∗1ω1 = ω0.

Proof. Denote by ρg the induced diffeomorphism for a fixed g ∈ G.
i.e., ρg(x) := ρ(g, x). Consider the linear family of bm-forms ωs =
sω1 +(1−s)ω0. Since the manifold is a surface, the fact that ω0 and ω1

are non-degenerate bm-forms and of the same sign on S \Z1 (thus non-
vanishing sections of Λ2(bT ∗(S))) implies that the linear path is non-
degenerate too. We will prove that there exists a family ξs : S → S,

1This is a consequence of Mazzeo-Melrose theorem and the determination of the
Liouville volume from it.
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with 0 ≤ s ≤ 1 such that
ξ∗sωs = ω0. (4.1)

We want to construct ξ1 as the time-1 flow of a time-dependent
Hamiltonian vector field Xs (as in the standard Moser trick).

Since the cohomology class of both forms coincide, ω1 − ω0 = dα

for α a bm-form of degree 1.
Therefore Moser’s equation reads

ιXsωs = −α. (4.2)

This equation has a unique solution Xs because ωs is bm-symplectic
and therefore it is non-degenerate. Xs depends smoothly on s because
ωs depends smoothly on s and ωs defines a non-degenerate pairing
between bm-vector fields and bm-forms. Furthermore, the solution is a
bm-vector field but this solution may not be compatible with the group
action. From this solution we will construct an equivariant solution
such that its s-dependent flow gives an equivariant diffeomorphism.

Since the forms ω0 and ω1 are G-invariant, we can find a G-invariant
primitive α̃ by averaging with respect to a Haar measure the initial
form α: α̃ =

∫
G ρ
∗
g(α)dµ and therefore the invariant vector field, XG

s =∫
G ρg∗(Xs)dµ is a solution of the equation,

ιXG
s
ωs = −α̃. (4.3)

We can get an equivariant ξGs by integrating XG
s . This family satisfies

ξG∗t ωt = ω0 and it is equivariant. Also observe that since XG
t is a

bm-vector field ξGt is a bm-diffeomorphism of (S,Z).

A non-orientable manifold can be seen as a pair (M̃, ρ) with M̃

the orientable covering and ρ the action given by deck-transformations
of Z/2Z on M̃ . This perspective is very convenient for classification
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issues because equivariant mappings on the orientable covering yield
actual diffeomorphisms on the non-orientable manifolds. We adopt this
point of view to provide a classification theorem for non-orientable bm-
surfaces in cohomological terms.

Remark 4.2.2. Observe that the bm-Mazzeo-Melrose allows us to de-
termine whether a given bm-cohomology of degree 2 is non-zero by re-
ducing this question to de Rham cohomology.

Corollary 4.2.3. Let (S,Z) be a non-orientable bm-manifold where Z
is its critical set and let ω1 and ω2 be two bm-symplectic forms such
that [ω1] = [ω2] in bm-cohomology then (S, ω1) is equivalent to (S, ω2),
i.e., there exists a bm-diffeomorphism ϕ : (S,Z) → (S,Z) such that
ϕ∗ω2 = ω1.

Proof. Consider m fixed and assume [ω1] = [ω2] in bm-symplectic co-
homology. Let p : S̃ → S be a covering map, and S̃ the orientation
double cover. (Ŝ, p−1(Z)) is a bm-manifold and p∗(ω1), p∗(ω2) are bm-
symplectic structures on (Ŝ, p−1(Z)). By construction the previous
two forms are invariant under the action by deck transformations of
Z/2Z. The defining function of the critical set in the double cover is
the pullback by p of the defining function in (S,Z). Since [ω1] = [ω2]
then [p∗(ω1)] = [p∗(ω2)]. By Theorem 4.2.1, there exists a Z/2Z-
equivariant bm-diffeomorhism ϕ̃ : (Ŝ, p−1(Z))→ (Ŝ, p−1(Z)) such that
ϕ̃∗p∗ω2 = p∗ω1. Since ϕ̃ is Z/2Z-equivariant it descends to a map
ϕ : S → S. Moreover, because ϕ̃(p−1(Z)) = p−1(Z), it follows that
ϕ(Z) = Z. Since ϕ̃ is smooth and p is a submersion, then φ is smooth,
(the same argument shows ϕ−1 is smooth). It follows that ϕ is a dif-
feomorphism and because ϕ(Z) = Z it is also a bm-diffeomorphism.
Moreover, by construction, the condition ϕ̃∗p∗ω2 = p∗ω1 implies that
ϕ∗ω2 = ω1.
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A similar equivariant bm-Moser theorem as theorem 4.2.1 holds for
higher dimensions. In that case we need to require that there exists
a path ωt of bm-symplectic structures connecting ω0 and ω1, which is
not true in general [25]. The proof follows the same lines as Theorem
4.2.1. Such a result was already proved for b-symplectic manifolds (see
Theorem 8 in [26]).

Theorem 4.2.4 (Equivariant bm-Moser theorem). Let (M,Z) be
a closed bm-manifold with m a fixed natural number and let ωt for
0 ≤ t ≤ 1 be a smooth family of bm-symplectic forms on (M,Z) such
that the bm-cohomology class [ωt] does not depend on t.

Assume that the family of bm-symplectic structures is invariant by
the action of a compact Lie group G on M , then, there exists a family of
equivariant bm-diffeomorphisms φt : (M,Z)→ (M,Z), with 0 ≤ t ≤ 1
such that φ∗tωt = ω0.

4.3 Constructions and classification of bm-
symplectic structures

In this section we describe constructions of bm-symplectic structures
on closed surfaces. We obtain topological constraints on b2k-symplectic
surfaces as we will prove that the underlying closed surface needs to be
orientable, see Theorem 4.3.1. Then we characterize the existence of
bm-symplectic forms depending on the parity of m and the colorability
of an associated graph. We also obtain a result about non-orientable
surfaces: if m = 2k + 1 we find necessary and sufficient conditions for
a non-orientable bm-surface to admit a bm-symplectic structure (see
Theorem 4.3.10).
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4.3.1 b2k-symplectic orientable surfaces

We start by proving that only orientable surfaces admit b2k-symplectic
structures:

Theorem 4.3.1. If a closed surface admits a b2k-symplectic structure
then it is orientable.

Proof. The proof consists in building a collar of b2k-Darboux neigh-
borhoods with compatible orientations (the local orientations on the
complement of the critical hypersurface induced by the b2k-Darboux
charts agree) in a neighborhood of each connected component of Z.
Indeed the proof does more, it constructs a symplectic structure in a
neighborhood of Z which can be extended to S. This in particular will
give an orientation on S.

Let (S,Z) be a closed b2k-surface and let ω denote a b2k-symplectic
structure on (S,Z). Pick (S̃, Z̃) an orientable double cover of the
b2k-surface (S,Z), with ρ : Z/2Z × S̃ → S̃ the action by deck trans-
formations. For each point q ∈ Z̃, using Theorem 2.2.5, we can find a
b2k-Darboux neighborhood Uq (by shrinking the neighborhood if neces-
sary) which does not contain other points identified by ρ (ρ(Uq) ∼= Uq).
Let us define Vq := p(Uq), where p is the projection from S̃ to S. With
the previous construction we have ω|Uq = 1

x2kdx ∧ dy.
Now we can use the desingularization formulae in Theorem 2.2.9

and Definition 2.2.10 in each Uq (because every Uq is orientable) to ob-
tain a symplectic form ωεq on each Uq. All these symplectic structures
and hence the orientations on each Uq glue in a compatible manner
because the function x is globally defined.

Since Z̃ is compact we can take a finite subcovering for Uq to define
a collar U of symplectic and compatible orientations. Furthermore we
can assume this covering to be symmetric as we can shrink further
the neighborhoods and add the pre-images of all of them -for each Uq

the image ρ(Uq) is included in the covering.
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Since ρ preserves ω, and the defining function is invariant by ρ, it
also preserves the deblogged symplectic forms ωεq and the compatible
orientations and indeed the deblogged symplectic form descends to S,
thus defining a symplectic form and an orientation on V = p(U). Using
the standard techniques of Radko [4] the symplectic structures on V \Z
can be glued to define a compatible symplectic structure on the whole
S. When Z has more than one connected component we may proceed
in the same way by isolating collar neighborhoods of each component.
Thus proving that S admits a symplectic structure and in particular
it is oriented.

U1

U2

U3

ρ(U1)

ρ(U2)

ρ(U3)

Figure 4.3: A collar of compatible neighborhoods.

4.3.2 Associated graph of a b-manifold.

Let us introduce some definitions that will be needed in the next sub-
section.

Definition 4.3.2. Let (M,Z) be a closed b-manifold. The associated
graph Γ(M,Z) to this b-manifold is defined as follows:

1. The set of vertices is in one-to-one correspondence with the con-
nected components (U1, . . . , Un) of M \ Z.



i
i

“ThesisArnauPlanas” — 2020/7/23 — 16:32 — page 45 — #59 i
i

i
i

i
i

4.3. CL. OF BM -SYMPLECTIC STRUCTURES 45

Z1 Z2

Z3

Z4 Z5

Z6
C4

C2

C3

C1

(a) Example of a non-colorable as-
sociated graph.

Z1

Z2 Z3

Z4

Z5

Z6
C4

C3C2
C1

(b) Example of a colorable associated
graph.

Figure 4.4: Examples of associated graphs.

2. Let (Z1, . . . , Zn) be the connected components of Z. Two vertices
(vi, vj), (represented by (Ui, Uj)) are connected by an edge if and
only if for any tubular neighborhood of some Zk, it intersects both
Ui and Uj.

Remark 4.3.3. As observed in [1] (Section 3.2), associated to any
bm-manifold there is a canonical b-manifold, obtained by forgetting the
distance function. The latter is henceforth said to be underlying the
former. Using definition 4.3.2, the graph associated to a bm-manifold
is the graph associated to its underlying b-manifold.

Remark 4.3.4. Given an oriented closed bm-manifold (M,Z), a bm-
symplectic structure induces a standard orientation on each connected
component of M \ Z. Comparing this orientation with the fixed one
determines a sign that can be attached to each vertex of Γ(M,Z). A
natural question to ask is whether adjacent vertices possess equal or
opposite signs, thus yielding the following notions.

Definition 4.3.5. A 2-coloring of a graph is a labeling (with only
two labels) of the vertices of the graph such that no two adjacent vertices
share the same label.
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Definition 4.3.6. Since not every graph admits a 2-coloring, a graph
is called 2-colorable if it admits a 2-coloring.

4.3.3 b2k+1-symplectic orientable surfaces

Theorem 4.3.7. Given a bm-manifold (S,Z) (fixed m) with S a closed
and orientable surface, there exists a bm-symplectic structure whenever:

1. m = 2k,

2. m = 2k + 1 if and only if the associated graph Γ(S,Z) is 2-
colorable.

Proof. (of Theorem 4.3.7)
Let C1, . . . , Cr be the connected components of S \Z, let Z1, . . . , Zs

the connected components of Z and let U(Z1), . . . ,U(Zs) tubular neigh-
borhoods of the connected components. Moreover, we denote the union
of U(Z1), . . . ,U(Zs) by U(Z).

We assume there is an orientation defined by some symplectic form
in S, that allows us to define a sign criterion.

The proof consists in 3-steps:

1. Using Weinstein normal form theorem. Fix i ∈ {1, . . . , s},
where s is the number of connected components. By virtue of
Weinstein’s normal form theorem for Lagrangian submanifolds
(Corollary 6.2 in [27]) each tubular neighborhood U(Zi) can be
identified with the zero section of the cotangent bundle of Zi.
Now replace, the cotangent bundle of Zi by the bm-cotangent
bundle of Zi2. In this way the neighborhood of the zero section
of the bm-cotangent bundle has a bm-symplectic structure that
we will denote ωU(Zi).

2This can be done after fixing a point in Z to define a bm-structure on Z.
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2. Constructing compatible orientation using the graph.
For any i = 1, . . . , s, U(Zi) \ Zi has two connected components
(as S is orientable); to each such component, we assign the sign
of the restriction of the bm-symplectic form ωU(Zi). Note that
the sign does not change for m even, but it changes for k odd.
Observe that we can apply Moser’s trick to glue two rings that
share some Cj (as done in Radko [4] to extend a symplectic form
between the two rings) if and only if the sign of the two rings
match on this component.

Now, let us consider separately the odd and even cases:

(a) For b2k the color of adjacent vertices must coincide. And
hence we have no additional constraint on the topology of
the graph.

(b) In the b2k+1 case the sign of two adjacent vertices must be
different. Then, we have to impose the associated graph to
be 2-colorable.

These two conditions are necessary for the existence of the b2k−
and b2k+1−forms respectively.

3. Gluing. Now we may glue back this neighborhood to S \ U(Z)
in such a way that the symplectic structures fit on the boundary
(again using the standard techniques used in Radko [4] to extend
with a symplectic form between the two rings), using the Moser’s
path method.

Given a b2k+1-symplectic structure ω on a b2k+1-surface (S,Z) (where
S is closed oriented) one can obtain a 2-coloring of the associated graph
(by the local expression given by the bm-Darboux theorem -see The-
orem 2.2.5-, the sign has to change every time we cross a component
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Zi) by assigning to each connected component Ci of S \ Z the ‘color’
sign(

∫
Ci
ω).

Remark 4.3.8. Observe that any given 2-coloring has to be equivalent
to the 2-coloring induced by a b2k+1-symplectic form. This is due to the
fact that for every connected component of the graph there exist only 2
possible 2-colorings of a graph (when it is 2-colorable). The difference
between the two 2-colorings is only re-labeling of the signs. Then, if the
2-coloring induced by the b2k+1-symplectic form does not correspond to
the prescribed 2-coloring, it can be matched by changing the orientation
of the underlying manifold at every connected component.

Another way to construct b2k-structures on a surface is to use de-
composition theorem as connected sum of b2k-spheres (1) and b2k-torus
(2). The drawback of this construction is that it is harder to adapt
having fixed a prescribed Z.

4.3.4 b2k+1-symplectic non-orientable surfaces

Definition 4.3.9. Let (S,Z) be a closed orientable b2k+1-surface and
Γ(S,Z) its associated graph. Fix the 2-coloring on Γ(S,Z) given by
by sign(

∫
Ci
ω). We say that a b2k+1-map ϕ inverts colors of the

associated graph if sign(
∫
Ci
ω) = −sign(

∫
ϕ(Ci) ω).

Theorem 4.3.10. Let (S,Z) be a closed non-orientable b2k+1-surface.
Then, (S,Z) admits a b2k+1-symplectic structure if and only if the fol-
lowing two conditions hold:

1. the graph of some covering (S̃, Z̃), G(S̃, Z̃) is 2-colorable and

2. the non-trivial deck transformation inverts colors of the graph
obtained in the covering3.

3Observe that if a transformation inverts colors for a given coloring, then it
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Proof. Let us assume the two conditions on the statement of the the-
orem hold. Apply Theorem 4.3.7 to endow the covering (S̃, Z̃) with
a b2k+1-symplectic structure, if the form obtained is invariant by the
deck transformations, then it descends to the quotient, thus obtaining
a b2k+1-symplectic structure on (S̃, Z̃) and then we are done.

Now, let us assume that the b2k+1-form ω obtained via theorem
4.3.7 is not invariant by deck transformations. We will note the deck
transformation induced by −Id as ρ. Observe that

sign
(∫

Ci
ρ∗ω

)
= −sign

(∫
ρ(Ci)

ω

)
= +sign

(∫
Ci
ω
)
. (4.4)

The first equality is due to ρ changing orientations and the second
one is due to ρ inverting colors. Then the pullback of ω has the same
sign as ω, and hence ω + ρ∗(ω) is a non-degenerate b2k+1-form that is
invariant under the action of ρ, and it descends to the quotient. Hence
a b2k+1-symplectic structure is obtained on (S,Z).

The other implication is easier. If we have a b2k+1-symplectic form
on (S,Z) we can pull it back to the double cover by means of the pro-
jection. Then we obtain a b2k+1-form on the double cover, that induces
a 2-coloring defined by the orientations. And since the b2k+1-form on
the double cover has to be invariant by the deck transformation, the
deck transformation has to invert colors.

Example 4.3.11. Let us illustrate what is happening in the previous
proof with an example. Take the sphere having the equator as critical
set and endowed with the b-symplectic form ω = 1

h
dh ∧ dθ. Let us call

the north hemisphere C1 and the south hemisphere C2, and let ρ be
the antipodal map. Look at the coloring of the graph (a path graph of

inverts colors for all of them (there is only 2 possible 2-colorings when a graph is
2-colorable, and they correspond with the possible choices of orientation).
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length two):

sign(C1) = sign
(∫

C1
ω
)

= sign
(

lim
ε→0

∫ π

−π

∫ 1

ε

1
h
dh ∧ dθ

)

= sign(lim
ε→0
−2π log |ε|) (4.5)

which is positive. And

sign(C2) = sign
(∫

C2
ω
)

= sign
(

lim
ε→0

∫ π

−π

∫ −ε
−1

1
h
dh ∧ dθ

)

= sign(lim
ε→0

2π log |ε|) (4.6)

which is negative. Then,∫
C1
ρ∗ω = lim

ε→0

∫ π

−π

∫ 1

ε
ρ∗
(1
h
dh ∧ dθ

)
= lim

ε→0

∫ π

−π

∫ 1

ε

1
−h

d(−h) ∧ dθ

=
∫
C1
ω. (4.7)

In this case ω was already invariant, but one can observe that if ρ
inverts colors then the signs of the form and the pullback are the same.

Example 4.3.12. One may ask why the condition of inverting colors
is necessary. Next we provide an example where b2k+1-structures can
be exhibited on the double cover but cannot be projected to induce a
b2k+1-structure on the non-orientable surface.

Consider the Example 3 in Section 4.1. If one translates the critical
set in the h direction in the projective space, the double cover is still
the sphere, but instead of Z being the equator, Z consists of different
meridians {h = h0} and {h = −h0}.

Observe that the associated graph of this double cover is a path graph
of length 3, that can be easily 2-colored. Take a generic b2k+1-form
ω = f(h, θ)dh∧dθ, and look at the poles N,S. sign(f(N)) = sign(f(S))
because of the 2-coloring of the graph. But ρ∗(ω)|N = f(ρ(N))d(−h)∧
dθ = −f(S)dh∧ dθ. Then sign(ω) 6= sign(ρ∗(ω)), and hence ω can not
be invariant for ρ.
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4.4 Desingularization of closed
b2k-symplectic surfaces

In this section we only refer to the desingularization of b2k-symplectic
structures, because as we explained in section 2.2.2 the desingular-
ization procedure, associates folded symplectic structures to b2k+1-
symplectic structures instead of symplectic structures. The goal of this
section is to compare the classification schemes in the bm-symplectic
and symplectic realms.

The aim of this section is to use the desingularization formulas
described in section 2.2.2 in the case of closed orientable surfaces. The
main result of this section (Theorem 4.4.1) is that if [ω1] = [ω2] (where
ω1 and ω2 are two b2k-symplectic forms on a b2k-surface (S,Z)) in
b2k-cohomology, then the desingularization of the two forms also is
in the same class [ω1ε] = [ω2ε]. But the converse is not true: it is
possible to find different classes of b2k-forms that go the same class
when desingularized.

Next we apply our classification scheme and see how it behaves
under the desingularization procedure.

Theorem 4.4.1. Let (S,Z, x), be a b2k-manifold, where S is a closed
orientable surface and let ω1 and ω2 be two b2k-symplectic forms. Also
let ω1ε and ω2ε be the fε-desingularizations of ω1 and ω2 respectively. If
[ω1] = [ω2] in b2k-cohomology then [ω1ε] = [ω2ε] in de Rham cohomology
for any fixed ε.

Before proceeding to proving the theorem we will state some defi-
nitions in [1] that are necessary for the proof.

Definition 4.4.2. Let (M,Z, x) be an n-dimensional bm-manifold.
Given ω a bm-form of top degree with compact support, ε > 0 small,
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and let Uε an ε-tubular neighborhood4, then volε(ω) is defined as:

volε(ω) =
∫
M\Uε

ω

Theorem 4.4.3 (Theorem 4.3 in [1]). For a fixed [ω] the bm-cohomology
class of a bm-form ω, on a bm-manifold (M,Z, x) with Z compact, there
is a polynomial P[ω](t) for which

lim
ε→0

(P[ω](1/ε)− volε(ω)) = 0

for any ω representing [ω].

Definition 4.4.4. The polynomial P[ω] described in Theorem 4.4.3 is
the volume polynomial of [ω]. Its constant term P[ω](0) is the Li-
ouville volume of [ω].

Remark 4.4.5. Let U = [−1, 1] × Z be a tubular neighborhood of Z
containing Uε. From the definition of the Liouville volume we may
write:

P[ω](0) =
(∫

M\U
ω +

∫
U
β +

k∑
i=1

( −2
2i− 1

) ∫
Z
α2i

)
. (4.8)

Observe that in the proof of Theorem 5.3 in [1] the term
∫
M\U ω does

not appear. This is because in [1] M is assumed to be U for the sake of
simplicity. Adding this term is the way to extend this expression when
U  M .

Proof. (of Theorem 4.4.1) Our strategy for the proof is to show that
the cohomology class of a desingularization of a b2k-symplectic struc-
ture on a closed orientable surface (which is the cohomology class of a
symplectic structure and hence it can be encoded by its signed area,
i.e. the integral of itself over S), only depends on the b2k-cohomology of

4the ε-tubular neighborhood is defined using the x from the bm-manifold
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the b2k-symplectic structure (which, in its turn, can be encoded by the
integral of the forms appearing in its Laurent series and its Liouville
volume -Theorem 2.2.3-).

In order to compute the class of the desingularization we calculate
the integral of the desingularized form over the whole manifold. We
are going to proceed in two steps. Firstly we are going to compute
the integral of the desingularization inside the ε-neighborhood Uε of Z,
and then we compute it outside.

Using the expression of ωε we compute:∫
Uε
ωε =

∫
Uε
dfε ∧

(2k−1∑
i=0

xiαi

)
+
∫
Uε
β

= ε−(2k−1)
∫
Uε
df(x/ε) ∧

(2k−1∑
i=0

xiαi

)
+
∫
Uε
β

= ε−2k
∫
Uε

df(x/ε)
dx

dx ∧
(2k−1∑
i=0

xiαi

)
+
∫
Uε
β

= ε−2k
2k−1∑
i=0

∫ +ε

−ε

df(x/ε)
dx

xidx
∫
Z
αi +

∫
Uε
β.

Then, because f is an odd function, df(x/ε)/dx is even and hence
the integral

∫+ε
−ε

df(x/ε)
dx

xidx is going to be different from 0 if i is even.
Thus,∫

Uε
ωε = ε−2k

k−1∑
i=1

∫ +ε

−ε

df(x/ε)
dx

x2idx
∫
Z
α2i +

∫
Uε
β.

Recall that outside the ε-neighborhood the desingularization ωε co-
incides with the b2k-symplectic form ω. Moreover, let us define U a
tubular neighborhood of Z containing Uε, (assume U = [−1, 1] × Z).
Following the computations in [1] we obtain,∫

M\Uε
ωε =

∫
M\Uε

ω

=
∫
M\U

ω +
∫
U\Uε

ω

=
∫
M\U

ω +
(∫

U\Uε
β +

k∑
i=1

−2
2i− 1

∫
Z
α2i

)

+
k∑
i=1

( 2
2i− 1

∫
Z
α2i

)
ε2i−1.

Now we may add the two terms in order to compute the integral
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over the whole surface M :∫
M
ωε = ε−2k

k−1∑
i=1

∫ +ε

−ε

df(x/ε)
dx

x2idx
∫
Z
α2i +

∫
Uε
β

+
∫
M\U

ω +
(∫

U\Uε
β +

k∑
i=1

−2
2i− 1

∫
Z
α2i

)
+∑k

i=1

(
2

2i−1
∫
Z α2i

)
ε2i−1

= ε−2k
k−1∑
i=1

∫ +ε

−ε

df(x/ε)
dx

x2idx
∫
Z
α2i

+
∫
M\U

ω +
(∫

U
β +

k∑
i=1

−2
2i− 1

∫
Z
α2i

)
︸ ︷︷ ︸

=P[ω](0) by the expression 4.8

+∑k
i=1

(
2

2i−1
∫
Z α2i

)
ε2i−1.

In a more compact way:∫
M
ωε =

k−1∑
i=1

ai(ε)
∫
Z
α2i + P[ω](0) +

k∑
i=1

bi(ε)
∫
Z
α2i (4.9)

This integral only depends on the classes [αi] and the Liouville
Volume P[ω](0), which are determined by (and determine) the class of
[ω]. So, two b2k-forms on the same cohomology class, determine the
same cohomology class when desingularized.

Remark 4.4.6. This previous theorem asserts that, for b2k-surfaces
(S,Z) with S closed and orientable and f and ε fixed, equivalent b2k-
symplectic structures get mapped to equivalent symplectic structures
under the desingularization procedure. Non-equivalent b2k-symplectic
structures might get mapped to equivalent symplectic structures via de-
blogging. It is easy to see that there are different classes of b2k-forms
that desingularize to the same class by looking at expression (4.9). We
only have terms [αi] with i even. As a consequence, if two forms differ
only in the odd terms, they have the same desingularized forms (as-
suming the auxiliary function f in the desingularization process is the
same). We compute a particular example below.
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Example 4.4.7. Consider S2 with coordinates (h, θ). Consider the b2-
manifold given by (S2, {h = 0}, h) with the following two b2-symplectic
structures:

ω1 = 1
h2dh ∧ dθ, ω2 =

(1
h

+ 1
h2

)
dh ∧ dθ = 1

h2dh ∧ (hdθ + dθ).
(4.10)

As before, assume f and ε fixed. Observe that for ω1, the forms
in the Laurent series are α1

0 = dθ and α1
1 = 0, while for ω2 they are

α2
0 = dθ and α2

1 = dθ. Then
∫
Z α

1
1 = 0 6=

∫
Z α

2
1 = 2π, and hence

[α1
1] 6= [α2

1] and [ω1] 6= [ω2]. The desingularized expressions of those
forms are given by:

ω1ε =


dfε(h)
dh

dh ∧ dθ if |h| ≤ ε,

ω1 otherwise,
(4.11)

and

ω2ε =


dfε(h)
dh

dh ∧ (hdθ + dθ) if |h| ≤ ε,

ω2 otherwise.
(4.12)

Let us compute the classes of ω1ε and ω2ε.∫
S2
ω2ε =

∫
S2\Uε

ω2 +
∫
Uε

dfε(h)
dh

(hdθ + dθ)

=
∫
S2\Uε

1
h2dh ∧ (hdθ + dθ) +

∫
Uε

dfε(h)
dh

(dθ)

+
∫
Uε

dfε(h)
dh

(hdθ)︸ ︷︷ ︸
=0

=
∫
S2\Uε

1
h2dh ∧ dθ +

∫
S2\Uε

1
h
dh ∧ dθ︸ ︷︷ ︸

=0

+
∫
Uε

dfε(h)
dh

(dθ)

=
∫
S2
ω1ε.

Let us consider the action of S1 over S2 given by φ : S1 × S2 →
S2 : (t, (h, θ)) 7→ (h, θ + t). Observe that both ω1 and ω2 are invariant
under the previous action. Moreover, their desingularizations are also
invariant.
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Chapter 5

Existence and classification
of bm-Nambu structures

In this chapter we consider a natural generalization of bm-Poisson struc-
tures by imposing transversality conditions on higher order multivector
fields. Nambu mechanics is a generalization of Hamiltonian mechanics
involving multiple Hamiltonian functions.

Nambu structures originally considered in [28] and a Nambu bracket
can be defined attached to a set of Hamiltonian functions which in-
spired the following axiomatic definition to Takhtajan [29]:

Definition 5.0.1. A Nambu structure of degree k on a smooth
manifold Mn, where k ≤ n, is an k-multilinear, skew-symmetric bracket,

{·, . . . , ·} : C∞(M)× · · · × C∞(M)︸ ︷︷ ︸
k

→ C∞(M),

satisfying:

1. The Leibniz rule:

{fg, f1, . . . , fr−1} = f{g, f1, . . . , fk−1}+ {f, f1, . . . , fk−1}g,

2. The identity:
{f1, . . . , fr−1, {g1, . . . , gk}}

57
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=
k∑
i=1
{g1, . . . , {f1, . . . ., fk−1, gi}, . . . , gk};

This is indeed a generalization of Poisson bracket and thanks to the
Leibniz rule, it can be encoded in the language of multivectorfields. In
that language a Nambu structure of order k is defined by the following
simple criteria:

Definition 5.0.2. A Nambu structure of order k on a smooth manifold
M is a k-vector field Π on M such that for any point p ∈ M such
that Π(p) 6= 0, there is a local coordinate system (x1, . . . , xn) in a
neighborhood of p such that

Π = ∂

∂x1
∧ . . . ∧ ∂

∂xk

in that neighborhood.

We can think of the following definition above as an integrability
condition. In this chapter we study normal forms of Nambu struc-
tures with a bm-singularities which are of maximal degree. We study
normal forms, existence and classification à la Moser in terms of bm-
cohomology in the same terms as the previous chapter.

The contents of this section are published in the Comptes Rendus
de l’Academie des Sciences de Paris (joint paper with Eva Miranda)
(see [12]).

5.1 Constructions and classification of bm-
Nambu structures

Nambu structures of bm-type can be described using forms which are
singular along a smooth hypersurface.

We now introduce bm-Nambu structures of top degree,
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Definition 5.1.1. A bm-Nambu structure of top degree on a pair

(Mn, Z)

with Z a smooth hypersurface is given by a smooth n-multivector field
Λ such that there exists a local system of coordinates for which

Λ = xm1
∂

∂x1
∧ . . . ∧ ∂

∂xn
(5.1)

and Z is defined by x1 = 0 in a neighborhood of Z.

Dualizing the local expression of the Nambu structure we obtain
the form

Θ = 1
xm1

dx1 ∧ . . . ∧ dxn (5.2)

(which is not a smooth de Rham form), but it is a bm-form of degree n
defined on a bm-manifold. As it is done in [5], we can check that this
dual form is non-degenerate. So we may define a bm-Nambu form as
follows.

Mimicking the same condition as for bm-symplectic forms we can
talk about non-degenerate bm-forms of top degree. This means that
seen as a section of Λn(bT ∗M) the form does not vanish.

Notation: We will denote by Λ the Nambu multivectorfield and
by Θ its dual.

Definition 5.1.2. A bm-Nambu form is a non-degenerate bm-form of
top degree.

We first include a collection of motivating examples, and then prove
an equivariant classification theorem.
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5.1.1 Examples

1. bm-symplectic surfaces: Any bm-symplectic surface is a bm-
Nambu manifold with Nambu structure of top degree.

2. bm-symplectic manifolds as bm-Nambu manifolds: Let a
pair (M2n, ω) be a bm-symplectic manifold, then (M2n, ω ∧ . . . ∧ ω︸ ︷︷ ︸

n

)

is automatically bm-Nambu.

3. Orientable manifolds: Let (Mn,Ω) be any orientable manifold
(with Ω a volume form) and let f be a defining function for Z,
then (1/fm)Ω defines a bm-Nambu structure of top degree having
Z as critical set.

Any Nambu structure can be written in this way if the hypersur-
face can be globally described as the vanishing set of a smooth
function.

4. Spheres: In [14], it was given special importance to the ex-
ample (Sn,tiS(n−1)

i ) because of the Schoenflies theorem1, which
imposes the associated graph to be a tree. The nice feature of
this example is that O(n) acts on the bm-manifold (Sn, S(n−1)),
and it makes sense to consider its classification under these sym-
metries. This also works for other homogeneous spaces of type
(G1/G2, G2/G3) with G2 and G3 with codimension 1 in G1 and
G2 respectively.

5.1.2 bm-Nambu structures of top degree and ori-
entability

We start proving:

1The nature of this theorem is purely topological in dimension equal or greater
than four, and so is its construction.



i
i

“ThesisArnauPlanas” — 2020/7/23 — 16:32 — page 61 — #75 i
i

i
i

i
i

5.1. CLASSIF. OF BM -NAMBU STRUCTURES 61

Theorem 5.1.3. A compact n-dimensional manifold M admitting a
b2k-Nambu structure is orientable.

Proof: Consider a collar of charts for the b2k-Nambu structure
such that in local coordinates the Nambu structure can be written as
x2k

1
∂
∂x1
∧ . . . ∧ ∂

∂xn
with compatible orientations in a neighborhood of

each connected component of Z.
Consider a 2:1 orientable covering (M̃, Z̃) of the manifold and de-

note by ρ : Z/2Z × M̃ → M̃ the deck transformation. For each point
p ∈ Z̃ take a neighborhood Up which does not contain other points
identified by ρ thus Up ∼= π(Up) =: Vp, and Θ = 1

x2kdx1 ∧ . . . ∧ dxn.
This form defines an orientation on Vp \ π(Z). Take a symmetric cov-
ering of such neighborhoods to define a collar of Z with compatible
orientations, and compatible with the covering. The compatible orien-
tations and the symmetric coverings descend to (M,Z), thus defining
an orientation in (M,Z). Thus, we have an orientation in V \ Z. By
perturbing Θ in V we obtain a volume form on V , ω̃, and thus an
orientation in V . These can be glued to define an orientation via the
volume form Θ̃ on the whole M proving that M is oriented.

5.1.3 Classification of bm-Nambu structures of top
degree and bm-cohomology

We present the definitions contained in [14] of modular period attached
to the connected component of an orientable Nambu structure using
the language of bm-forms.

Let Θ be the dual to the multivectorfield Λ defining a Nambu struc-
ture. From the general decomposition of bm-forms as it was set in
Equation 2.8 we may write:

Θ = Θ0 ∧
df

fm

with Θ0 ∈ Ωn−1(M).
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This decomposition is valid in a neighborhood of Z whenever the
defining function is well-defined. For non-orientable manifolds a similar
decomposition can be proved by replacing the defining function f by
an adapted distance (see [9]).

With this language in mind, the the modular (n−1)-vector field
in [14] of Θ along Z is the dual of the form Θ0 in the decomposition
above which is indeed the modular (n− 1)-form along Z in [14].

Recall from [14] in our language:

Definition 5.1.4. The modular period TZΛ of the component Z of
the zero locus of Λ is

TZΛ :=
∫
Z

Θ0 > 0.

In fact, this positive number determines the Nambu structure in a
neighborhood of Z up to isotopy as it was proved in [14].

The following theorem gives a classification of bm-Nambu struc-
tures.

Theorem 5.1.5. Let Θ0 and Θ1 be two bm-Nambu forms of degree n
on a compact orientable manifold Mn. If [Θ0] = [Θ1] in bm-cohomology
then there exists a diffeomorphism φ such that φ∗Θ1 = Θ0.

Proof: We will apply the techniques of [23] with the only difference
that we work with bm-volume forms instead of volume forms.

Since Θ0 and Θ1 are non-degenerate bm-forms both of them are a
multiple of a volume form and thus the linear path Θt = (1−t)Θ0+tΘ1

is a path of non-degenerate bm-forms.
Because Θ0 and Θ1 determine the same cohomology class:

Θ1 −Θ0 = dβ

with d the bm-De Rham differential and β a bm-form of degree n− 1.
Now consider the Moser equation:

ιXtΘt = −β. (5.3)
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Observe that since β is a bm-form and Θt is non-degenerate. The
vector field Xt is a bm-vector field. Let φt be the t-dependent flow
integrating Xt.

The φt gives the desired diffeomorphism φt : M → M , leaving Z

invariant (since Xt is tangent to Z) and φ∗tΘt = Θ0.
In particular we recover the classification of b-Nambu structures of

top degree in [14]:

Theorem 5.1.6 (Classification of b-Nambu structures of top
degree, [14]). A generic b-Nambu structure Θ is determined, up to
orientation preserving diffeomorphism, by the following three invari-
ants: the diffeomorphism type of the oriented pair (M,Z), the modular
periods and the regularized Liouville volume.

By Theorem 2.2.1,

bHn(M) ∼= Hn(M)⊕Hn−1(Z).

The first term on the right hand side is the Liouville volume im-
age by the De Rham theorem, as it was done in [7] for b-symplectic
forms. The second term collects the periods of the modular vector
field. So if the three invariants coincide then they determine the same
b-cohomology class.

In other words, the statement in [14] is equivalent to the following
theorem in the language of b-cohomology.

Theorem 5.1.7. Let Θ1 and Θ2 be two b-Nambu forms on an ori-
entable manifold M . If [Θ1] = [Θ2] in b-cohomology then there exists
a diffeomorphism φ such that φ∗Θ1 = Θ2.

This global Moser theorem for bm-Nambu structures admits an
equivariant version,

Theorem 5.1.8. Let Θ0 and Θ1 be two bm-Nambu forms of degree n
on a compact orientable manifold Mn and let ρ : G ×M −→ M be a
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compact Lie group action preserving both bm-forms. If [Θ0] = [Θ1] in
bm-cohomology then there exists an equivariant diffeomorphism φ such
that φ∗Θ1 = Θ0.

Proof: As in the former proof, write

Θ1 −Θ0 = dβ

with d the bm-De Rham differential and β a bm-form of degree n − 1.
Observe that the path Θt = (1 − t)Θ0 + tΘ1 is a path of invariant
bm-forms.

Now consider Moser’s equation:

ιXtΘt = −β. (5.4)

Since Θt is invariant we can find an invariant β̃. For instance take
β̃ =

∫
G ρ
∗
g(β)dµ with µ a de Haar measure on G and ρg the induced

diffeomorphism ρg(x) := ρ(g, x).
Now replace β by β̃ to obtain,

ιXG
t

Θt = −β̃ (5.5)

with XG
t =

∫
G ρg∗Xtdµ. The vector field XG

t is an invariant b-vector
field. Its flow φGt preserves the action and φGt

∗Θt = Θ0.
Playing the equivariant bm-Moser trick using the 2:1 cover of a non-

orientable manifold and taking as G the group of deck transformations
we obtain,

Corollary 5.1.9. Let Θ0 and Θ1 be two bm-Nambu forms of degree
n on a manifold Mn (not necessarily oriented). If [Θ0] = [Θ1] in bm-
cohomology then there exists a diffeomorphism φ such that φ∗Θ1 = Θ0.
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Chapter 6

An action-angle theorem for
bm-Poisson manifolds

In this chapter we continue with the study of classification theorems.
In this case we consider the semilocal classification for any bm-Poisson
manifold in a neighbourhood of an invariant compact submanifold.
The compact submanifold which we will be considering are the compact
invariant leaves of the distribution D generated by the Hamiltonian
vector fields Xfi of an integrable system. An integrable system is
given by a set of n functions on a 2n-dimensional symplectic manifold
which we can order in a map F = (f1, . . . , fn). Historically, integrable
systems where introduced to actually integrate Hamiltonian systems
XH using the first-integrals fi and, classically, we identify H = f1. It
turns out that in the symplectic context the compact regular orbits
of the distribution D coincide with the fibers F−1(F (p)) for any point
p on these orbits/fibers. The fact that the orbit coincides with the
connected fiber is part of the magic of symplectic duality.

The same picture is reproduced for singular symplectic manifolds
of bm-type or bm-Poisson manifolds as we will see in this chapter.

The study of action-angle coordinates has interest from this ge-
ometrical point of view of classification of geometric structures in a

65
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neighbourhood of a compact submanifold of a bm-Poisson manifold,
but also an interest from a dynamical point of view as these compact
submanifolds now coincide with invariant subsets of the Hamiltonian
system under consideration.

From a geometric point of view, the existence of action-angle co-
ordinates determines a unique geometrical model for the bm-Poisson
(or bm-symplectic) structure in a neighbourhood of the invariant set.
From a dynamical point of view, the existence of action-angle coor-
dinates provides a normal form theorem that can be used to study
stability and perturbation problems of the Hamiltonian systems (as
we will see in the last chapter of this thesis).

An important ingredient that makes our action-angle coordinate
theorem brand-new from the symplectic perspective is that the sys-
tem under consideration is more general than Hamiltonian, it is bm-
Hamiltonian as the first-integrals of the system can be bm-functions
which are not necessarily smooth functions. Dynamically, this means
that we are adding to the set of Hamiltonian invariant vector fields,
the modular vector field of the integrable system.

In contrast to the standard action-angle coordinates for symplectic
manifolds, our action-angle theorem comes with m additional invari-
ants associated to the modular vector field which can be interpreted
in cohomological terms as the projection of the bm-cohomology class
determined by the modular vector field on the first cohomology group
of the critical hypersurface under the Mazzeo-Melrose correspondence.

The strategy of the proof of the action-angle coordinate systems is
the search of a toric action (so this takes us back to the motivation
of the use of symmetries in this thesis). In contrast to the symplectic
case, it is not enough that this action is Hamiltonian as then a direction
of the Liouville torus would be missing. We need the toric action to be
bm-Hamiltonian. The structure of this proof looks like the one in [2]
but encounters serious technical difficulties as in order to check that the
natural action to be considered is bm-Hamiltonian we need to go deeper
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inspired by [1] in the relation between the geometry of the modular
vector field and the coefficients of the Taylor series ci of one of the
first-integrals. This enables to understand new connections between
the geometry and analysis of bm-Poisson structures not explored before.

Once we prove the existence of this bm-Hamiltonian action the proof
looks very close to the one in [2].

We end up this chapter restating the action-angle theorem as a
cotangent lift theorem with the following mantra:

Every integrable system on a bm-Poisson manifold looks like a bm-
cotangent lift in a neighborhood of a Liouville torus.

6.1 Basic definitions

6.1.1 On bm-functions

The definition of the analogue of b-functions in the bm-setting is some-
what delicate. The set of bmC∞(M) needs to be such that for all the
functions f ∈bm C∞(M), its differential df is a b-form, where d is the
bm-exterior differential. Recall that a form in bmΩk(M) can be locally
written as

α ∧ dx

xm
+ β

where α ∈ Ωk−1(M) and β ∈ Ωk(M). Recall also that

d

(
α ∧ dx

xm
+ β

)
= dα ∧ dx

xm
+ dβ.

We need df to be a well-defined bm-form fo degree 1. Let f = g 1
xk−1 ,

then df = dg 1
xk−1 − g k−1

xk
dx. This from can only be a bm-form if and

only if g only depends on x. If f = g log(x), then dg log(x) + g 1
x
dx,

which imposes dg = 0 and hence g to be constant.
With all this in mind, we make the following definition.
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Definition 6.1.1. The set of bm-functions is defined recursively ac-
cording to the formula

bmC∞(M) = x−(m−1)C∞(x) + bm−1C∞(M)

with C∞(x) the set of smooth functions in the defining function x and

bC∞(M) = {g log |x|+ h, g ∈ R, h ∈ C∞(M)}.

Remark 6.1.2. A bmC∞(M)-function can be written as

f = a0 log x+ a1
1
x

+ . . .+ am−1
1

xm−1 + h

where ai, h ∈ C∞(M).

Remark 6.1.3. From this chapter on we are only considering bm-
manifolds (M,x, Z) with x defined up to order m. I.e. we can think
of x as a jet of functions that coincide up to order m to some defining
function. This is the original viewpoint of Scott in [1] which we adopt
from now on. The difference with respect to the other chapters is that
we do not fix an specific function (but the jet in this chapter).

Definition 6.1.4. We say that two bm-integrable systems F1, F2 are
equivalent if there exists ϕ, a bm-symplectomorphism, i.e. a diffeomor-
phism preserving both ω and the critical set Z (“up to order m”1), such
that ϕ ◦ F1 = F2.

Remark 6.1.5. The Hamiltonian vector field associated to a bm-function
f is a smooth vector field. Let us compute it locally using the bm-

1I.e. it preserves the jet x
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Darboux theorem:

Π = xm1
∂

∂x1
∧ ∂

∂y1
+

m∑
i=2

∂

∂xi
∧ ∂

∂yi
and f = a0 log x1 +

m−1∑
i=1

ai
1
xi1

+ h.

Then if we compute

df =
c1︷︸︸︷
a0

1
x1

+
m−1∑
i=1

ci︷ ︸︸ ︷
(a′i − (i− 1)ai−1) 1

xi1
dx1

−
cm︷ ︸︸ ︷

(m− 1)am−1
1
xm1
dx1 + dh

=
m∑
i=1

ci
xi1
dx1 + dh.

Then,

Xf = Π(df, ·) =
m∑
i=1

cix
m−i
1

∂

∂y1
+ Π(dh, ·), (6.1)

we obtain a smooth vector field.

6.1.2 On bm-integrable systems

In this section we present the definition of bm-integrable system as well
as some observations about these objects.

Definition 6.1.6. Let (M2n, Z, x) be a bm-manifold, and let Π be a bm-
Poisson structure on it. F = (f1, . . . , fn)2 is a bm-integrable system3

if:

1. df1, . . . , dfn are independent on a dense subset of M and in all the
points of Z where independent means that the form df1∧ . . .∧dfn
is non-zero as a section of Λn(bmT ∗(M)),

2. the functions f1, . . . , fn Poisson commute pairwise.
2fi are bm-functions.
3In this thesis we only consider integrable systems of maximal rank n.
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Definition 6.1.7. The points of M where df1, . . . , dfn are independent
are called regular points.

The next remarks will lead us to a normal form for the first function
f1.

Remark 6.1.8. Note that df1, . . . , dfn are independent on a point if
and only if Xf1 , . . . , Xfn are independent at that point. This is because
the map

bmTM →bm T ∗M : u 7→ ωp(u, ·)

is an isomorphism.

Remark 6.1.9. The condition of df1, . . . , dfn being independent must
be understood as df1∧. . .∧dfn being a non-zero section of ∧n( bmT ∗M).

Remark 6.1.10. By remark 6.1.8 the vector fields Xf1 , . . . , Xfn have
to be independent. This implies that one of the f1, . . . , fn has to be a
singular (non-smooth) bm-function with a singularity of maximal de-
gree. If we write fi = c0,i log(x1) +∑m−1

j=1
cj,i

xj1
+ f̃1

Xfi =
m∑
j=1

xm−j1 ĉj,i
∂

∂y1
+Xf̃i

where ĉj,i(x) = d(cj,i)
dx
− (j − 1)cj−1,i. If there is no bm-function with

a singularity of maximum degree all the terms in the ∂/∂y1 direction
become 0 at Z. And hence Xf1 , . . . , Xfn cannot have maximal rank at
Z.

Lemma 6.1.11. Let F = (f1, . . . , fn) a bm-integrable system. If f1 has
a singularity of maximal degree, there exists an equivalent integrable
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system F ′ = (f ′1, . . . , f ′n) where f ′1 has a singularity of maximal degree
and no other f ′i has singularity of any degree.

Proof. Let fi = c0,i log(x1) +
m−1∑
j=1

cj,1

xj1︸ ︷︷ ︸
ζi(x1)

+f̃i = ζi(x1) + f̃i. By remark

6.1.104,

Xfi =
m∑
i=1

xm−j1 ĉj,i︸ ︷︷ ︸
gi(x1)

∂

∂y1
+Xf̃i

= gi(x1) ∂

∂y1
+Xf̃i

.

Note that gi(x1) = gi(0) = ĉm,i at Z. Let us look at the distribution
given by the Hamiltonian vector fields Xfi = gi(x1) ∂

∂y1
+ Xf̃i

. This
distribution is the same that the one given by:

{Xf1 , Xf2 −
g2(x1)
g1(x1)Xf1 , . . . , Xfn −

gn(x1)
g1(x1)Xf1}. (6.2)

Observe that for i > 1, Xfi −
gi(x1)
g1(x1)Xf1 = Xf̃i

+ g2(x1)
g1(x1)Xf̃1

. Also g1(x1)
is different from 0 close to Z because at Z g1(x1) = ĉm,1. Since the dis-
tribution given by these vector fields is the same, an integrable system
that has Hamiltonian vector fields 6.2 would be equivalent to F . From
the expression 6.2 it is clear that the new vector fields commute. And
it is also true that this new vector fields are Hamiltonian. Let us take
F ′ the set of functions that have as Hamiltonian vector fields 6.2.

From now on we will assume the integrable system to have only
one singular function and this function to be f1.

Remark 6.1.12. Because we asked Xf1 , . . . , Xfn to be linearly inde-
pendent at all the points of Z and using the previous remarks cm :=
cm,1 6= 0 at all the points of Z.

Furthermore, we can assume f1 to have a smooth part equal to
zero as subtracting the smooth part of f1 to all the functions gives an

4Here have used the bm-Darboux theorem to do the computations.
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equivalent system. Also, we can assume that cm is 1 because dividing
all the functions of the bm-integrable system by cm also gives us an
equivalent system.

As a summary, we can assume f1 = a0 log(x) + a11/x + . . . +
am−21/xm−2 + 1/xm−1 and f2, . . . , fn to be smooth, a0 ∈ R and
a1, . . . , am−2 ∈ C∞(x).

Also we are going to state lemma 3.2 in [26], because we are going
to use it later in this section. The result states that if we have a toric
action on a bm-symplectic manifold (which we will prove in a neigh-
bourhood of a Liouville torus), then we can assume the coefficients
a2, . . . , am−2 to be constants. More precisely

Lemma 6.1.13. There exists a neighborhood of the critical set U =
Z × (−ε, ε) where the moment map µ : M → t∗ is given by

µ = a1 log |x|+
m∑
i=2

ai
x−(i−1)

i− 1 + µ0

with ai ∈ t0L and µ0 is the moment map for the TL-action on the sym-
plectic leaves of the foliation.

6.1.3 Examples of bm-integrable systems

The following example illustrates why it is necessary to use the defini-
tion of bm-function as considered above. There are natural examples
of changes of coordinates in standard integrable systems in symplec-
tic manifolds that yield to bm-symplectic manifolds but do not give
bm-integrable systems.

Example 6.1.14. This example makes a time change in the two body
problem, to obtain a b2-integrable system. In the classical construction
used to solve the 2-body problem we obtain the following two conserved
quantities:

f1 = µy2

2 + l2

2µr2 − k
r
,

f2 = l,



i
i

“ThesisArnauPlanas” — 2020/7/23 — 16:32 — page 73 — #87 i
i

i
i

i
i

6.1. BASIC DEFINITIONS 73

with symplectic form ω = dr ∧ dy + dl ∧ dα, where r is the distance
between the two masses and l is the angular momentum. We also know
that l is constant along the trajectories. Because l is a constant of the
movement, we can do a symplectic reduction on its level sets. The form
on the symplectic reduction becomes dr ∧ dy. To simplify the notation
we will note x instead of r. Then ω = dx∧dy. With hamiltonian given
by f = µ

2y
2 + l

2µ
1
x2 − k 1

x
. Hence, the equations are:

ẋ = ∂f
∂y
,

ẏ = −∂f
∂x
.

Doing a time change τ = x3t then dx
dτ

= 1
x3

dx
dt

. With this time coordi-
nate, the equations become:

ẋ = 1
x3

∂f
∂y
,

ẏ = − 1
x3

∂f
∂x
.

These equations can be viewed as the motion equations given by a b3-
symplectic form ω = 1

x3dx ∧ dy.
Let us check that this is actually a bm-integrable system.

• All the functions Poisson commute is immediate because we only
have one.

• df = µydy + ( k
x2 − l

µ
1
x3 )dx is a b3-form because the term with dx

does not depend on y.

• All the functions are independent, this is true because df does not
vanish as a b3-form.

Example 6.1.15. In the paper [30] the author builds an action of
SL(2,R) over (P, ωP ) where P = {ξ ∈ C|i(ξ̄ − ξ) > 0} is the complex
semi-plane, with moment map JP (ξ) = R

ξim
((|ξ|2 + 1), 2ξr,±(|ξ|2 + 1)),

where the ± sign depends on the choice of the hemisphere projected
by the stereographic projection. From now on we will take the sign +.
Also the symplectic form ωP has the following expression:
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ωP = ± R

ξ2
im

dξr ∧ dξim

For sake of simplifying the notation we will identify P with the real
half-plane P = {x, y ∈ R2|y > 0}. With this identification, the moment
map becomes Jp(x, y) = R

y
(x2 + y2 + 1, 2x, x2 + y2 + 1). Obviously, this

moment map does not give an integrable system. The symplectic form
writes as:

ωP = R

y2dy ∧ dx.

Which can be viewed as a b2-form if we extend P including the line
{y = 0} as its singular set. Let us consider only one of the components
of JP as bm-function and let us see if it gives a bm-integrable system.
First we will try with f1 = R

y
(x2 + y2 + 1) and then f2 = R

y
(2x).

1. f1 = R
y

(x2 + y2 + 1) We have to check three things to see if this
gives a b2-integrable system.

(a) All the functions Poisson commute is immediate because we
only have one.

(b) All the functions are bm-functions. This point does not hold
because df1 = R

y2 (2xydx + (y2 − x2 − 1)dy) and the first
component does have no sense as a section of Λ1(b2

T ∗M).

(c) All the functions are independent. In this case we have to
check that df1 does not vanish, but since it is not a bm-form
it has no sense to be a non-zero section of Λ1(b2

T ∗M).

2. f2 = R
y

(2x)

(a) Same as before.

(b) All the functions are bm-functions. This point does not hold
because df2 = 2R

y
dx − 2Rx

y2 dy and the first component does
have no sense as a section of Λ1(b2

T ∗M).
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(c) Same as before.

Now we give a couple examples of bm-integrable systems.

Example 6.1.16. This example uses the product of bm-integrable sys-
tems on a bm-symplectic manifold with an integrable system on a sym-
plectic manifold. Given (M2n1

1 , Z, x, ω1) a bm-symplectic manifold with
f1, . . . , fn1 a bm-integrable system and (M2n2

2 , ω2) a symplectic manifold
with g1, . . . , gn2 an integrable system. Then (M1×M2, Z ×M2, x, ω1 +
ω2) is a bm-symplectic manifold and (f1, . . . , fn1 , g1, . . . , gn2) is a bm-
integrable system on it.

Example 6.1.17. (From integrable systems on cosymplectic
manifolds to bm-integrable systems:)

Using the extension theorem (Theorem 50) of [5] we can extend
any integrable system (f2, . . . , fn) to an integrable system in a neigh-
bourhood of a cosymplectic manifold (Z, α, ω) by just adding a bm-
function f1 to the integrable system so that the new integrable system
is (f1, f2, . . . , fn) and considering the associated bm-symplectic form:

ω̃ = p∗α ∧ dt

tm
+ p∗ω. (6.3)

(t is the defining function of Z).

6.2 Looking for a toric action

One of the main difficulties in comparison with the construction for
b-symplectic structures it is that is not easy to prove that coefficients
a1, . . . , an can be considered constants. This makes more difficult to
prove the existence of a Tn action, but once we have it we can use the
results in [8] to assume that the coefficients a1, . . . , an are constant.
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Proposition 6.2.1. Let (M,Z, x, ω) be a bm-symplectic manifold such
that Z is connected with modular period k. Let π : Z → S1 ' R/kZ
be the projection to the base of the corresponding mapping torus. Let
γ : S1 = R/kZ → Z be any loop such that π ◦ γ is positively oriented
and has constant velocity 1. Then the following are equal:

1. The modular period of Z,

2.
∫
γ ιLω,

3. The value am−1 for any bmC∞(M) function

f = a0 log(x) +
m−1∑
j=1

aj
1
xj

+ h

such that the hamiltonian vector field Xf has 1-periodic orbits
homotopic in Z to some γ.

Proof. Let us prove separately that (1)=(2) and later (2)=(3).

(1)=(2) Lets denote by Vmod the modular vector field. Recall from [8]
that ιL(Vmod) is the constant function 1. Let s : [0, k] → Z be
the trajectory of the modular vector field. Because the modular
period is k, s(0) and s(k) are in the same leaf L. Let ŝ : [0, k +
1] → Z a smooth extension of s such that s|[k,k+1] is a path in
L joining ŝ(k) = s(k) to ŝ(k + 1) = s(0). This way ŝ becomes a
loop. Then,

k =
∫ k

0
1dt =

∫
S
ιLω =

∫
ŝ
ιLω =

∫
γ
ιLω

(2)=(3) Let r : [0, 1] 7→ Z be the trajectory of Xf the hamiltonian vector
field of f . Recall that Xf satisfies

ιXfω =
m∑
j=1

cj
dx

xi
+ dh.
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Let xm ∂
∂x

be a generator of the linear normal bundle L. We know
that Xf is 1-periodic and its trajectory is homotopic to γ. Hence,

k =
∫
r ιLω =

∫ 1

0
ιxm ∂

∂x
ω(Xf |r(t))dt

=
∫ 1

0
−(

m∑
j=1

ci
dx

xi
+ dh) · (xm ∂

∂x
)|r(t)dt

= −cm = −am−1

Theorem 6.2.2 (Darboux-Carathéodory (bm-version)). Let

(M2n, x, Zω)

be a bm-symplectic manifold and m be a point on Z. Let f1, . . . , fn

be a bm-integrable system. Then there exist bm-functions (q1, . . . , qn)
around m such that

ω =
n∑
i=1

dfi ∧ dqi

and the vector fields {Xfi , Xqj}i,j commute. If f1 is not smooth (recall
f1 = a0 log(x) + ∑m−1

j=1 aj
1
xi

with an 6= 0 on Z and a0 ∈ R) the qi

can be chosen to be smooth functions, and (x, f2, . . . , fn, q1, . . . , qn) is
a system of local coordinates.

Proof. The first part of this proof is exactly as in [2]. Assume now

f1 = a0 log(x)+
m−1∑
j=1

aj
1
xi

. We modify the induction requiring also that

µi (in addition to be in Ki) is also in T ∗M ⊆b T ∗M . We can also ask
this extra condition while asking µi(Xfi) = 1, we only have to check
that Xfi does not vanish in TM . This is clear because Xfi does not
vanish at bTM and

0 = {fn, fi} =
(

m∑
i=1

ãi
dx

xi

)
(Xfi) =

(
dx

xm

m∑
i=1

aix
i

)
(Xfi).
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Where the last expression becomes 0 for each and every term except
for the one of degree m.

Then dx/xm is in the kernel of Xfi , hence Xfi does not vanish on
TM and the qi can be chosen smooth.
{Xx, Xf2 , . . . , Xfn , Xq1 , . . . Xqn} commute because {Xfi , Xqi}i,j com-

mute. Then

dx ∧ df2 . . . ∧ dfn ∧ dq1 ∧ . . . ∧ dqn

is a non-zero section of ∧n(bTM). And hence

(x, f2, . . . , fn−1, q1, . . . , qn)

are local coordinates.

Lemma 6.2.3 (Topological Lemma). Let m ∈ Z be a regular point of
a bm-integrable system (M,x, Z, ω, F ). Assume that the integral mani-
fold Fm through m is compact. Then there exists a neighborhood U of
Fm and a diffeomorphism

φ : U ' Tn ×Bn

which takes the foliation F to the trivial foliation {Tn × {b}}b∈Bn.

Proof. As in the proof of [2] we follow the steps of [31]. In this case,
the only extra step that must be checked is that the foliation given
by the bm-hamiltonian vector fields of F = (f1, f2, . . . , fn) is the same
as the one given by the level sets of F̃ := (x, f2, . . . , fn). In our case
f1 = a0 log(x) + ∑m−1

u=1 ai
1
xi

, where a0 ∈ R, ai ∈ C∞(x), am−1 = 1.
Hence the foliations are the same. Then as in [31], we take an arbitrary
Riemannian metric on M and this defines a canonical projection ψ :
U → Fm. Let us define φ := ψ × F̃ . We obtain the commutative
diagram (Figure 6.1).
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U Tn ×Bn

Bn

φ

F̃ p

Figure 6.1: Commutiative diagram of the construction of the isomor-
phism of bm-integrable systems.

which provides the necessary isomorphism of bm-integrable systems.

6.2.1 Action-angle coordinates on bm-symplectic
manifolds

In a neighbourhood of one of our Liouville tori all we can assume about
the form of our bm-symplectic structure is that is given by the Laurent
series defined in [1].

That is to say we can assume that in a tubular neighborhood U of
Z

ω =
m−1∑
j=1

dx

xi
π∗(αi) + β,

where π : U → Z is the projection of the tubular neighborhood onto
Z, αi are closed smooth de Rham forms on Z and β a de Rham form
on M .

Theorem 6.2.4 (Action-angle coordinates for bm-symplectic mani-
folds). Let (M,x, ω, F ) be a bm-integrable system, where F = (f1 =
a0 log(x) + ∑m−1

j=1 aj
1
xj
, . . . , fn) with aj for j > 1 functions in x. Let

m ∈ Z be a regular point and let us assume that the integral manifold
of the distribution generated by the Xfi through m is compact. Let Fm
be the Liouville torus through m. Then, there exists a neighborhood U
of Fm and coordinates (θ1, . . . , θn, σ1, . . . , σn) : U → Tn×Bn such that:

1. We can find an equivalent integrable system F = (f1 = a′0 log(x)+
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∑m−1
j=1 a′j

1
xj
, . . . , fn) such that the coefficients a′0, . . . , a′m−1 of f1

are constants ∈ R,

2.

ω|U =
 m∑
j=1

c′j
c

σj1
dσ1 ∧ dθ1

+
n∑
i=2

dσi ∧ dθi

where c is the modular period and c′j = −(j − 1)a′j−1, also

3. the coordinates σ1, . . . , σn depend only on f1, . . . fn.

Proof. The idea of this proof is to construct an equivalent bm-integrable
system whose fundamental vector fields define a Tn-action on a neigh-
borhood of Tn × {0}. It is clear that all the vector fields Xf1 , . . . , Xfn

define a torus action on each Liouville tori Tn × {b} where b ∈ Bn,
but this does not guarantee that their flow defines a toric action on
all Tn × Bn. The proof is structured in three steps. The first one is
the uniformization of the periods, i.e. we define an Rn-action on a
neighborhood of Tn × {0} such that the lattice defined by its kernel
at every point is constant. This allows to induce an actual action of a
torus (as the periods are constant) of rank n: A Tn action by taking
quotients. The second step consists in checking that this action is ac-
tually bm-Hamiltonian. And in the final step we apply theorem 6.2.2
to obtain the expression of ω.

1. Uniformization of periods.

Let Φs
XF

be defined as the joint flow by the Hamiltonian vector
fields of the action:

Φ : Rn × (Tn ×Bn) → (Tn ×Bn)
((s1, . . . , sn), (x, b)) 7→ Φs1

Xf1
◦ · · · ◦ Φsn

Xfn
((x, b))

(6.4)

this defines an Rn-action on Tn×Bn. For each b ∈ Bn at a single
orbit Tn × {b} the kernel of this action is a discrete subgroup of
Rn. We will denote the lattice given by this kernel Λb. Because
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the orbit is compact, the rank of Λb is maximal i.e. n. This
lattice is known as the period lattice of Tn × {b} as we know by
standard arguments in group theory that the lattice has to be
of maximal rank so as to have a torus as a quotient. In general
we can not assume that Λb does not depend on b. The process
of uniformization of the periods modifies the action 6.4 in such a
way that Λb = Zn for all b. Let us consider the following Hamil-
tonian vector field ∑n

i=1 kiXfi . The bm-function that generates
this Hamiltonian vector field is:

k1

a0 log(x) +
m−1∑
j=1

aj
1
xj

+
n∑
i=2

kifi

where recall that am−1 is constant equal 1. Observe that the
coefficient multiplying 1/xm−1 is k1. By proposition 6.2.1 k1 = c

the modular period. In this case c = [αm].

Hence, for b ∈ Bn−1 × {0} the lattice Λb is contained in Rn−1 ×
cZ ⊆ Rn. Pick (λ1, . . . , λn) : Bn → Rn such that:

• (λ1(b), . . . , λn(b)) is a basis of Λb for all b ∈ Bn,

• λni vanishes along Bn−1 × {0} at order m for i < n and λi

is equal to c along Bn−1 × {0}.

In the previous points, λji denotes the j-th component of λi.
The first condition can be satisfied by using the implicit function
theorem. That is because Φ(λ,m) = m is regular with respect
to the s coordinates. The second condition is automatically true
because Λb ⊆ Rn−1 × cZ. We define the uniformed flow as:

Φ̃ : Rn × (Tn ×Bn) → (Tn ×Bn)
((s1, . . . , sn), (x, b)) 7→ Φ(∑n

i=1 siλi, (x, b))
(6.5)

2. The Tn action is bm-Hamiltonian. The objective of this step is to
find bm-functions σ1, . . . , σn such that Xσi are the fundamental
vector fields of the Tn-action Yi = ∑n

j=1 λ
j
iXfj .
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By using the Cartan formula for a bm-symplectic form:

LYiLYiω = LYi(d(ιYiω) + ιYidω)
= LYi(d(−∑n

j=1 λ
j
idfi))

= −LYi(
∑n
j=1 dλ

j
i ∧ dfj) = 0

Note that λji are constant on the level sets of F because Φ(λ,m) =
m is solved in the definition of λ and the level sets of F are
invariant by Φ.

Recall that if Y is a complete periodic vector field and P is a
bivector such that LYLY P = 0, then LY P = 0. So,the vector
fields Yi are Poisson. To show that each ιYiω has a bmC∞ primitive
we will see that [ιYiω] = 0 in the bm-cohomology.

One one hand, if i > 1, ιYiω vanishes at Z. This holds because
Yi has not any component ∂/∂Y .

Recall Proposition 6 from [5]

Proposition 6.2.5. If ω ∈b Ω(M) with ω|Z = 0, then ω ∈
Ω(M).

The same holds for bm-forms thus,

Proposition 6.2.6. If ω ∈bm Ω(M) with ω|Z vanishing up to
order m, then ω ∈ Ω(M).

Thus as ιYiω vanishes at Z, the bm-forms ιYiω are indeed smooth.
Thus we can now apply the standard Poincaré lemma and as
these forms are closed they are locally exact. This proves that
all the vector fields Yi with i > 1 are indeed Hamiltonian.

On the other hand, the fact that ιY1ω = cdf1 is obvious.
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Then, because we have a toric action that is Hamiltonian, we can
use lemma 3.2 in [26], and we get an equivalent system such that
ai are all constant and moreover 〈a′i, X〉 = αi(Xω). Note that by
dividing by a′m−1, we can still assume a′m−1 = 1 to be consistent
with our notation, but we then have to multiply f1 · c in the next
step.

3. Apply Darboux-Carathéodory.

The construction above gives us some candidates σ1 = cf1, σ2, . . . , σn

for the action coordinates.

We now apply the Darboux-Carathéodory theorem and express
the form in terms of x:

ω =
 m∑
j=1

c
cj
xj
dx ∧ dq1

+
n∑
i=2

dσi ∧ dqi.

Since the vector fields Xσi = ∂
∂qi

are fundamental fields of the
Tn-action the flow 6.5 gives a linear action on the qi coordinates.

Observe that the coordinate system is only defined in U . It may
not be valid at points outside U that may be in the orbit of
points in U . Let us see that we can extend the coordinates to
these points.

Define U ′ the union of all tori that intersect U . We will see that
the coordinates are valid at U ′.

Let {pi, θj} be the extension of {σi, qj}. It is clear that {pi, θj} =
δij by its construction in the Darboux-Carathéodory theorem.

To see that {θi, θj} = 0 we take the flows by Xpk and extend the
expression to the whole U ′:

Xpk({θi, θj}) = {{θi, θj}, pk} = {θi, δij} − {θj, δjk} = 0.
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The fact that ω is preserved is obvious because Xpk are hamilto-
nian vector fields and thus they preserve the bm-symplectic forms.
Moreover t, θ1, p2, θ2, . . . , pn, θn are independent on U ′ and hence
are a coordinate system in a neighbourhood of the torus.

Remark 6.2.7. In the proof we have seen that there exists an equiv-
alent integrable system where the coefficients of the singular function
are indeed constant. From now on when considering a bm-integrable
system we are going to make this assumption.

6.3 Reformulating the action-angle coor-
dinate via cotangent lifts

The action-angle theorem for symplectic manifolds (also known as
action-angle coordinate theorem) can be reformulated in terms of a
cotangent lift.

Recall that given a Lie group action on any manifold its cotan-
gent lifted action is automatically Hamiltonian. By considering the
action of a torus on itself by translations this action can be lifted to
its cotangent bundle and give a semilocal normal form theorem as the
Arnold-Liouville-Mineur theorem for symplectic manifolds. If we now
replace this cotangent lift to the cotangent bundle to a lift to the bm-
cotangent bundle we obtain the semilocal normal form of the main
theorem of this chapter.

Let us recall this from the article [32].
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6.3.1 Cotangent lifts and Arnold-Liouville-Mineur
in Symplectic Geometry

Let G be a Lie group and let M be any smooth manifold. Given a
group action ρ : G × M −→ M , we define its cotangent lift as the
action on T ∗M given by ρ̂g := ρ∗g−1 where g ∈ G. We then have a
commuting diagram

T ∗M T ∗M

M M

ρ̂g

π̂ π

ρg

Figure 6.2: Commutiative diagram of the construction of the isomor-
phism of bm-integrable systems.

where π is the canonical projection from T ∗M to M .
The cotangent bundle T ∗M is a symplectic manifold endowed with

the exact symplectic form given by the differential of the Liouville
one-form ω = −dλ. The Lioville one-form can be defined intrinsically:

〈λp, v〉 := 〈p, (πp)∗(v)〉 (6.6)

with v ∈ T (T ∗M), p ∈ T ∗M .
A standard argument (see for instance [33]) shows that the cotan-

gent lift ρ̂ is Hamiltonian with moment map µ : T ∗M → g∗ given
by

〈µ(p), X〉 := 〈λp, X#|p〉 = 〈p,X#|π(p)〉,

where p ∈ T ∗M , X is an element of the Lie algebra g and we use
the same symbol X# to denote the fundamental vector field of X
generated by the action on T ∗M or M . This construction is known as
the cotangent lift.

In the special case where the manifold M is a torus Tn and the
group is Tn acting by translations, we obtain the following explicit
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structure: Let θ1, . . . , θn be the standard (S1-valued) coordinates on
Tn and let

θ1, . . . , θn︸ ︷︷ ︸
=:θ

, t1, . . . , tn︸ ︷︷ ︸
=:t

(6.7)

be the corresponding chart on T ∗Tn, i.e. we associate to the coor-
dinates (6.7) the cotangent vector ∑i tidθi ∈ T ∗θ Tn. The Liouville
one-form is given in these coordinates by

λ =
n∑
i=1

tidθi

and its negative differential is the standard symplectic form on T ∗Tn:

ωcan =
n∑
i=1

dθi ∧ dti. (6.8)

Denoting by τβ the translation by β ∈ Tn on Tn, its lift to T ∗Tn is
given by

τ̂β : (θ, t) 7→ (θ + β, t).

The moment map µcan : T ∗Tn → t∗ of the lifted action with respect to
the canonical symplectic form is

µcan(θ, t) =
∑
i

tidθi, (6.9)

where the θi on the right hand side are understood as elements of t∗ in
the obvious way. Even simpler, if we identify t∗ with Rn by choosing the
standard basis ∂

∂θi
of t then the moment map is just the projection onto

the second component of T ∗Tn ∼= Tn ×Rn. Note that the components
of µ naturally define an integrable system on T ∗Tn.

We can rephrase Arnold-Liouville-Mineur theorem in terms of the
symplectic cotangent model:

Theorem 6.3.1. Let F = (f1, . . . , fn) be an integrable system on the
symplectic manifold (M,ω). Then semilocally around a regular Liou-
ville torus the system is equivalent to the cotangent model (T ∗Tn)can
restricted to a neighbourhood of the zero section (T ∗Tn)0 of T ∗Tn.
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6.3.2 The case of bm-symplectic manifolds

Let us now go to the case of bm-symplectic manifolds.
Let start introducing what is called the twisted bm-cotangent model

for torus actions. This model has additional invariants: the modular
vector field of the connected component of the critical set and the
modular weights of the associated toric action. Consider T ∗Tn be
endowed with the standard coordinates (θ, t), θ ∈ Tn, t ∈ Rn and
consider again the action on T ∗Tn induced by lifting translations of the
torus Tn. We will now view this action as a bm-Hamiltonian action with
respect to a suitable bm-symplectic form. In analogy to the classical
Liouville one-form we define the following non-smooth one-form away
from the hypersurface Z = {t1 = 0} :

cc1 log |t1|+
m∑
i=2

cci
t
−(i−1)
1
−(i− 1)

 dθ1 +
n∑
i=2

tidθi.

When differentiating this form we obtain a bm-symplectic form on
T ∗Tn which we call (after a sign change) the twisted bm-symplectic
form on T ∗Tn with invariants (cc1, . . . , ccm):

ωtw,c :=
 m∑
j=1

cj
c

tj1
dt1 ∧ dθ1

+
n∑
i=2

dti ∧ dθi, (6.10)

where c is the modular period. The moment map of the lifted action
is then given by

µtw,q0,...,qm−1) := (q0 log |t1|+
m∑
i=2

qit
−(i−1)
1 , t2, . . . , tn), (6.11)

where we are identifying t∗ with Rn and cj = −(j − 1)qj−1.
We call this lift together with the bm-symplectic form 6.10 the

twisted bm-cotangent lift with modular period c and invariants
(c1, . . . , cm). Note that the components of the moment map define
a bm-integrable system on (T ∗Tn, ωtw,(cc1,...,ccm)).
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The model of twisted bm-cotangent lift allows us to express the
action-angle coordinate theorem for bm-integrable systems in the fol-
lowing way:

Theorem 6.3.2. Let F = (f1, . . . , fn) be a bm-integrable system on
the bm-symplectic manifold (M,ω). Then semilocally around a regu-
lar Liouville torus T, which lies inside the critical hypersurface Z of
M , the system is equivalent to the cotangent model (T ∗Tn)tw,(cc1,...,ccm)

restricted to a neighbourhood of (T ∗Tn)0. Here c is the modular pe-
riod of the connected component of Z containing T and the constants
(c1, . . . , cm) are the invariants associated to the integrable system and
its associated toric action.
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Chapter 7

KAM theory on
bm-symplectic manifolds

The KAM theorem explains how integrable systems behave under small
perturbations. More precisely, it studies how an integrable system
in action-angle coordinates responds to a small perturbation on its
hamiltonian. The trajectories of an integrable system in action-angle
coordinates can be seen as linear trajectories over a torus. The KAM
theorem fins a way to transform these original trajectories to other
linear trajectories over some transformed torus. The KAM theorem
states that most of these tori, and the linear solutions of the system
on these tori, survive if the perturbation is small enough.

The objective of this chapter is to give a construction of KAM
theory in the setting of bm-symplectic manifolds and with bm-integrable
systems. The core of the chapter is the construction of the proper
statement and the proof of the equivalent of the KAM theorem on
bm-symplectic manifolds.

This chapter is divided in 5 sections:

1. On the structure of the proof. On this section we are going
to present the main ideas that are going to appear in the proper
statement and proof of the main theorem. The idea of the theo-

89
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rem is to build a sequence of bm-symplectomorphisms such that
its limit transforms the hamiltonian to only depend on the action
coordinates.

2. Technical results and definitions. On this section we present
some technical results and definitions that are key for the proof
of the main theorem.

3. KAM theorem on bm-symplectic manifolds. On this sec-
tion we present the statement and the proof of the main result of
this chapter. The proof is structured in 6 parts. In the first part
we define the parameters that are going to be used to define the
sequence of bm-symplectomorphisms. In the second part we build
precisely this sequence of bm-symplectomorphisms. In the third
part we see that the sequence of frequency maps of the trans-
formed Hamiltonian functions at every step converges. In the
fourth part we wee that the sequence of bm-symplectomorphisms
converges. In the fifth part we obtain results on the stability
of the trajectories under the original perturbation. In the sixth
part we find bounds to explain how close the invariant tori are
from the unperturbed. In the last part we obtain a bound for
the measure of the set of invariant tori.

4. Desingularization of bm-integrable systems. We present a
way to use the desingularization of bm-symplectic manifolds pre-
sented in [8] to construct standard smooth integrable systems
from bm-integrable systems. This desingularized integrable sys-
tem is uniquely defined.

5. Desingularization of the KAM theorem on bm-symplectic
manifolds. In this section we use the desingularization of bm-
integrable systems in conjunction with the KAM theorem for
bm-symplectic manifolds to deduce the original KAM theorem as
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well as a completely new KAM theorem for folded symplectic
forms.

7.1 On the structure of the proof

The first thing we do is to prove that we can reduce our study to
the case the perturbation is not a bm-function but an analytic one.
This is because any purely singular perturbation only has effect on
the component in the direction of the modular vector field and can be
easily controlled.

The idea of the proof is really similar to the classical KAM case. We
want to build a diffeomorphism such that its transformed hamiltonian
only depends on the action coordinates. But it is not possible to build
this diffeomorphism in one step. What we do, as it is done in the
classical case, it is to build a sequence of diffeomorphisms such that the
part of the hamiltonian depending on the angular variables decreases
at every step. The idea is to remove the first K terms of its Fourier
expression at every step while making K rapidly increase. This is
done by assuming the diffeomorphism comes as the flow at time 1
generated by a Hamiltonian function. In this way one can use the
Lie Series in conjunction with the Fourier series to find the expression
for the hamiltonian function that generates our diffeomorphism. The
final diffeomorphism will be the composition of all the diffeomorphisms
obtained at each step. One of the main difficulties of the proof, as in
the classical case, is to prove that these diffeomorphisms converge and
to prove some bounds of its norm.

We also note that for our bm-symplectic setting, the diffeomor-
phisms we consider leave the defining function of the critical set in-
variant up to order m, this will have an important role later. Also
observe in particular that the critical set can not be transformed by
any perturbation given by a bm-function.
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Next we give some technical definitions and results. We define the
norms we are going to use to do all the estimates. We set the nota-
tion for the proof and the statement of the theorem. We define the
notion of non-resonance for a neighborhood of the critical set of the
bm-symplectic manifold. We study the set of all possible non-resonant
vectors. And we state the inductive lemma, which gives us estimates
and constructions for every step of our sequence of diffeomorphisms.

After all this discussion we are in conditions to properly state the
bm-version of the KAM theorem. One important difference to the clas-
sical KAM theorem is that we have to guarantee that at Z the set
of non-resonant vectors does not become the whole set of frequencies.
This condition can be understood as the perturbation being smaller
than some constant multiplied by the inverse of the modular period.

The proof of the theorem is done in six different steps by following
the structure on [19]. Since we are going to use the inductive lemma
at every step, first we define the parameters and sets to which we are
going apply such lemma. Then we check that we can actually apply the
lemma and obtain some extra estimates for the results of the lemma.
After this we see that the sequence of frequency vectors converges. We
do the same with the sequence of canonical transformations. Then we
get some bounds for the size of the components of the final diffeomor-
phism. Next we characterize the tori that survive by the perturbation.
Finally we give some estimates for the measure of the set of these tori.

Note that our version of the bm-KAM theorem improves the one in
[2] in several ways. Firstly it is applicable to bm-symplectic structures
not only for b-symplectic. Also we give several estimates that are not
obtained in [2], this estimates have sense in a neighborhood of the
critical set Z, while [2] only studied the behavior at Z. Finally the
type of perturbation we consider is far more general, since we do not
have any condition of the form of the perturbation but only on its size.
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7.1.1 Reducing the problem to an analytical per-
turbation.

In the standard KAM, we assume to have an analytic Hamiltonian
h(I) depending only on the action coordinates and we add to it a
small analytical perturbation R(φ, I). This perturbed system receives
the name of nearly integrable system. And then find a new coordinate
system such that h(I)+R(φ, I) = h̃(Ĩ) where most of the quasi-periodic
orbits are preserved and can be mapped to the unperturbed quasi-
periodic orbits by means of the coordinate change.

In our setting we may assume h(I) to not be analytical and be a
bm-function. Also the perturbation R(φ, I) may as well be considered a
bm-function. In the following lines we justify without loss of generality
that actually we can assume the perturbation to be analytical.

Let us state this more precisely. Let (M,x, Z, ω, F ) be a bm-manifold
with a bm integrable system F on it. Consider action angle coordinates
on a neighborhood of Z. Then we can assume the expressions:

ω =
 m∑
j=1

cj

Ij1

 dI1 ∧ dφ1 +
n∑
i=2

dIi ∧ dφi, and

F = (q′0 log I1 +
m−1∑
i=1

q′i
1
I i1

+ h(I), f2, . . . , fn)

where h, f2, . . . , fn are analytical.
Let the Hamiltonian function of our system be the first component

of the moment map ĥ′ = q′0 log I1 + ∑m−1
i=1 q′i

1
Ii1

+ h = ζ ′ + h, where
ζ ′ := q′0 log I1 + ∑m−1

i=1 q′i
1
Ii1

. Note that dζ ′ = ∑m
i=1 q̂

′
i

1
I′1

, where q̂′i =
−(i−1)q′i−1. Note that by the result of the previous chapter cj/q̂′j = K
the modular period. In particular cm/q̂′m = K.

The hamiltonian system given by ĥ′ can be easily solved by φ =
φ0 + u′t, I = I0 where u′ is going to be defined in the following sec-
tions. Consider now a perturbation of this system: Ĥ ′ = ĥ′(I) =
R̂(I, φ), where R̂ is a bm-function R̂(I, φ) = Rζ(I1) + R(I, φ) where
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Rζ(I1) = (r0 log I1 +∑m−1
i=1 ri

1
Ii1

) is the singular part. Then we can con-
sider the perturbations Rζ(I1) and R(I, φ) separately. This way, we
may consider Rζ(I) as part of ĥ′(I). Then we have a new hamiltonian

ĥ(I) = (q′0 + r0) log I1 +
m−1∑
i=1

(q′i + ri)
1
I i1

+ h = q0 log I1 +
m−1∑
i=1

qi
1
I i1

+ h.

Now, instead of the identity Kq̂′j = cj we will have K(q̂j − r̂j) = cj,
which implies K

(
1− r̂j

q̂′j+r̂j

)
= cj

q̂j
. In particular

K
(

1− r̂m
q̂′m + r̂m

)
= cm
q̂m

Let us define K′ = K
(
1− r̂m

q̂′m+r̂m

)
. So from now on we assume

ĥ = q0 log I1+∑m−1
i=1 qi

1
Ii1

+h, that the perturbation R(φ, I) is analytical,
and we have the condition cm

q̂m
= K′. Observe that this system with

only the singular perturbation is still easy to solve in the same way
that the system previous to this perturbation was.

7.1.2 Looking for a bm-symplectomorphism

Assume we have a Hamiltonian function H = ĥ(I) +R(φ, I) in action-
angle coordinates. Where ĥ(I) is the singular component of the bm-
integrable system, i.e.

ĥ(I) = h(I) + q0 log(I1) +
m−1∑
i=1

qi
1
I i1
, (7.1)

where h(I) is analytical1. Assume also that the bm-symplectic form ω2

in these coordinates is expressed as:

ω =
 m∑
j=1

cj

Ij1

 dI1 ∧ dφ1 +
n∑
i=2

dIi ∧ dφi. (7.2)

1If another component of the moment map is chosen to be the hamiltonian of
the system, the result still holds: the computations can be replicated assuming
ĥ(I) = h(I).

2In classical KAM, ω is used to denote the frequency vector ∂h
∂I . We need ω to

denote the bm-symplectic form so we are going to use u to denote the frequency
vector.
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And finally, the expression for the frequency vector is:

û = ∂ĥ

∂I
=
∂(h(I) + q0 log(I1) +∑m−1

i=1 qi
1
Ii1

)
∂I

=
(
u1 +

m∑
i=1

q̂i
I i1
, u2, . . . , un

)
,

where q̂1 = q0 and q̂i−1 = −iqi if i 6= 0.

The objective is to follow the steps of the usual KAM construction
(the steps followed are highly inspired in [19]) replacing the standard
symplectic form for ω and taking as hamiltonian the bm-function ĥ.

Remark 7.1.1. The objective of the construction is to find a diffeo-
morphism (actually a bm-symplectomorphism) ψ such that H ◦ ψ =
h(Ĩ). This is done inductively, by taking H ◦ψ = H ◦φ1 ◦ . . . ◦φq ◦ . . .,
while trying to make R(φ, I) smaller at every step.

Let us focus in one single step

Recall the classical formula:

Lemma 7.1.2. See [19].

f ◦ φt =
∞∑
j=0

tj

j!L
j
Wf, LjWf = {Lj−1

W f,W}

Where W is the Hamiltonian that generates the flow φt, and {·, ·} is
the corresponding Poisson bracket.

We will denote rk(H,W, t) = ∑∞
j=k

tj

j!L
j
WH.
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H ◦ φ = H ◦ φ|t=1 =
∞∑
j=0

tj

j! L
j
W H︸︷︷︸

ĥ+R

∣∣∣∣∣∣∣
t=1

= ĥ+R{ĥ+R,W}+ r2(H,W, 1)

= ĥ+R + {ĥ,W}+ {R,W}+ r2(ĥ,W, 1)

+r2(R,W, 1)

= ĥ+ R + {ĥ,W}︸ ︷︷ ︸
We want to cancel

this term as
fast as we can

+r2(ĥ,W, 1) + r2(R,W, 1)

(7.3)
We want {ĥ,W}+R≤k = 0, equivalently {W, ĥ} = R≤k, where R≤k

means the Fourier expression of R up to order K:

R≤k =
∑
k∈Rn
|k|1≤K

Rk(I)eik·φ

Let us impose the condition {W, ĥ} = R≤K . Let us write the
expression of the Poisson bracket associated to the bm-symplectic form.

{W, ĥ} =
 1∑m

j=1
cj

Ij1

∂W
∂φ1

∂ĥ

∂I1
− ∂W

∂I1

∂ĥ

∂φ1


+

n∑
i=2

∂W
∂φi

∂ĥ

∂Ii
− ∂W

∂Ii

∂ĥ

∂φi


Because ĥ depends only on I, ∂ĥ

∂φi
= 0 for all i. Moreover, the

singular part of the bm-function only depends on I1 and hence its
derivatives with respect to the other variables are also 0. Using that
∂ĥ
∂I

= u+∑m
i=1

q̂i
Ii1

the previous expression can be simplified:
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{W, ĥ} =
u1 +∑m

i=1
q̂i
Ii1∑m

j=1
cj

Ij1

 ∂W

∂φ1
+

n∑
i=2

∂W

∂φi
ui

To expand the expression further we develop W in its Fourier ex-
pression: W = ∑

k∈Rn
|k|1≤K

Wk(I)eikφ. The Fourier expansion is added up
to order K, because it is only necessary for the expressions to agree up
to order K. With this notations the condition becomes:

{W, ĥ}≤K =
u1 +∑m

i=1
q̂i
Ii1∑m

j=1
cj

Ij1

 ∂

∂φ1

 ∑
k∈Rn
|k|1≤K

Wk(I)eikφ



+
n∑
j=2

uj
∂

∂φj

 ∑
k∈Rn
|k|1≤K

Wk(I)eikφ



=
u1 +∑m

i=1
q̂i
Ii1∑m

j=1
cj

Ij1


 ∑

k∈Rn
|k|1≤K

Wk(I)eikφik1



+
n∑
j=2

uj

 ∑
k∈Rn
|k|1≤K

Wk(I)eikφikj



=
∑
k∈Rn
|k|1≤K

Wk(I)eikφ ·
ik1

u1 +∑m
i=1

q̂i
Ii1∑m

j=1
cj

Ij1

+
n∑
j=2

ikjuj



= R≤K

Then, it is possible to make the two sides of the equation equal by
imposing the condition term by term:
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Wk(I) = Rk(I) 1

i

k1

u1+
∑m

i=1
q̂i
Ii1∑m

j=1
cj

I
j
1

+∑n
j=2 kjuj



= Rk(I) 1

i

k1

u1+
∑m

i=1
q̂i
Ii1∑m

j=1
cj

I
j
1

+ k̄ū

 ,
(7.4)

where we adopted the notation ∑n
j=2 kjuj = k̄ū.

Remark 7.1.3. Observe that the expression 7.4 has no sense when
k = ~0 and hence {W,h}0 = R0

3 can not be solved. Let W0(I) = 0,
then {h,W}≤K = R≤K −R0.

Plugging the results above into the equation 7.3, one obtains:

H ◦ φ = ĥ+R0 +R≥K + r2(ĥ,W, 1) + r1(R,W, 1)

With this construction the diffeomorphism φ is found. But this
only makes for one of the steps that must be done. If q denotes the
number of the iteration of this procedure, in general, we obtain:

H(q) = H(q−1) ◦ φ(q) = ĥ(q−1) +R
(q−1)
0 +R

(q−1)
≥K

+r2(h(q−1),W (q), 1) + r1(R(q−1),W (q), 1),
(7.5)

and at every step:

ĥ
(q) = ĥ(q−1) +R

(q−1)
0

R(q) = R
(q−1)
>K + r2(ĥ(q−1),W (q), 1) + r1(R(q−1),W (q), 1)

(7.6)

3The zero term of the Fourier series can be seen as the angular average of the
function
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7.1.3 On the change of the defining function under
bm-symplectomorphisms

Note that since we are in a bm-manifold it only has sense to consider I1

up to order m, see [1]. When talking about defining functions we are
interested in [I1] its jet up to order m. By definition bm-maps preserve
I1 up to order m and bm-vector fields X are such that LX(I1) = g · Im1
for g ∈ C∞(M).

Lemma 7.1.4. Let φt be the integral flow of X a bm-vector field, then
φt is a bm-map.

Proof. We want
I1 ◦ φt = I1 + Im1 · g

fo some g ∈ C∞(M). We will use 7.1.2.

I1 ◦ φt =
∞∑
j=0

tj

j!L
j
XI1 = I1 + LX(I1) +

∞∑
j=2

tj

j!L
j
XI1

= I1 + Im1 +
∞∑
j=2

tj

j!L
j
XI1.

On the other hand, let us prove by induction LkXI1 = g(k)Im1 . The base
case is obvious, assume the case k holds and let us prove the case k+1.

Lk+1
X I1 = {LkXI1, X}

= {g(k)Im1 , X}
= (LXg(q))Im1 + g(k) ·mIm−1

1 LXI1

= (LXg(k) + g(k) ·m · Im−1
1 · g)Im1

= g(k+1)Im1

where g(k+1) = LXg
(k) + g(k) ·m · Im−1

1 · g.

Lemma 7.1.5. The Hamiltonian vector flow of some smooth hamil-
tonian function h is a bm-vector field.
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Proof. At each point of Z the following identity holds LXhI1 = Im1
∂f
∂φ1

.
The result can be extended at a neighborhood of Z.

Observe that combining the two previous results we get that the
hamilonian flow of a function preserves I1 up to order m.

7.2 Technical results

As the non-singular part of our functions we will be considering an-
alytic functions on T × G, G ⊂ Rn. The easiest way to work with
these functions is to consider them as holomorphic functions on some
complex neighborhood. Let us define formally this neighborhood.

Wρ1(Tn) := {φ : <φ ∈ Tn, |=φ|∞ ≤ ρ1},

Vρ2(G) := {I ∈ Cn : |I − I ′| ≤ ρ2 for some I ′ ∈ G},

Dρ(G) :=Wρ1(Tn)× Vρ2(G),

where | · |∞ denotes the maximum norm and | · |2 denotes de Eu-
clidean norm. Now it is necessary to clarify the norms that are going
to be used on these sets.

Definition 7.2.1. Let f be an action function (only depending on the
I coordinates), and F an action vector field.

|f |G,η := supI∈Vη(G) |f(I)|, |f |G := |f |G,0
|F |G,η,p := supI∈Vη(G) |F (I)|p, |F |G,η := |F |G,η,2

Now, assume f(I, φ) to be an action-angle function written in its Fourier
expansion as ∑k∈Zn fk(I)eik·φ, and F to be an action-angle vector field.

|f |G,ρ := sup(φ,I)∈Dρ(G) |f(I)|, ‖f‖G,ρ := ∑
k∈Zn |fk|G,ρ2e

|k|1ρ1

|F |G,ρ,p := ∑
k∈Zn |Fk|G,ρ2,pe

|k|1ρ1 , ‖F‖G,ρ = ‖F‖G,ρ,2
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Lemma 7.2.2 (Cauchy Inequality).∥∥∥∥∥∂f∂φ
∥∥∥∥∥
G,(ρ1−δ1,ρ2),1

≤ 1
eδ1
‖f‖G,ρ

∥∥∥∥∥∂f∂I
∥∥∥∥∥
G,(ρ1,ρ2−δ2),∞

≤ 1
δ2
‖f‖G,ρ

Definition 7.2.3. If Df = (∂f
∂φ
, ∂f
∂I

),

‖Df‖G,ρ,c := max
(
‖∂f
∂φ
‖G,ρ,1, c‖

∂f

∂I
‖G,ρ,∞

)

Definition 7.2.4. To simplify notation let us define:

A(I1) =
∑m
j=1

q̂j

Ij1∑m
j=1

cj

Ij1

and B(I1) = 1∑m
j=1

cj

Ij1

.

Remark 7.2.5. With this notation, equation 7.4 can be written as:

Wk(I) = Rk(I)
i(k1B(I1)u1 + k̄ū+ k1A(I1))

Observe that A(I1) and B(I1) are analytic (holomorphic in the
complex extended domain) where the denominator does not vanish.
We can assume that this does not happen by shrinking the domain G

in the direction of I1. Observe in particular that when I1 → 0, A(I1)→
q̂m/cm = 1/K′ the inverse of the modular period and B(I1) → 0. In
this way, we can define the norms of A(I1) and B(I1) are bounded
and well defined. We will denote this norms KA and KB respectively.
Also, since A(I1) and B(I1) are analytic, their derivatives will also be
bounded, and we will denote the norms of this derivatives as KA′ and
KB′ .

To further simplify notation in the next computations we introduce
the following definition:
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Definition 7.2.6.

Ā =
 A

0

 and B̄ =
 B 0

0 Idn−1,n−1


Remark 7.2.7. With this notation, equation 7.4 can be written as:

Wk(I) = Rk(I)
i(kB̄(I1)u+ kĀ(I1))

(7.7)

Definition 7.2.8. Having fixed ω a bm-symplectic form (as in equa-
tion 7.2) and ĥ a bm-function (as in equation 7.1) as a hamiltonian.
Given an integer K and α > 0, F ⊂ Rn (or Cn) the space of frequen-
cies is said to be α,K-nonresonant with respect to (c1, . . . , cm) and
(q̂1, . . . , q̂m) if

|kB̄(I1)u+ kĀ(I1)| ≥ α, ∀k ∈ Z \ {0}, |k|1 ≤ K, ∀u ∈ F.

We are going to use the notation α,K, c, q̂-nonresonant.

Remark 7.2.9. The non-resonance condition is established on u =
∂h/∂I, not on û = ∂ĥ/∂I, because our non-resonance condition al-
ready takes into account the singularities. In this way we can use the
analyticity of u.

Remark 7.2.10. If
∣∣∣∂u
∂I

∣∣∣
G,ρ2

is bounded by M ′, then
∣∣∣ ∂
∂I

(
B̄u+ Ā

)∣∣∣
G,ρ2

is also bounded:

∣∣∣ ∂
∂I

(
B̄u+ Ā

)∣∣∣
G,ρ2

≤
∣∣∣∂B̄
∂I
u+ B̄ ∂u

∂I
+ ∂Ā

∂I

∣∣∣
G,ρ2

≤ KB′ |u|G,ρ2 +KBM
′ +KA =: M.

(7.8)

Remark 7.2.11. When we consider the standard KAM theorem, the
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frequency vector u is relevant because the solution to the Hamilton equa-
tions of the unperturbed problem has the form:

I = I0, φ = φ0 + ut.

Let us see what plays the role of u in our bm-KAM theorem. Let us
find the coordinate expression of the solution to ιXĥω = dĥ, where ω is
a bm-symplectic form in action-angle coordinates.

Xĥ = İ1
∂

∂I1
+ . . .+ İn

∂

∂In
,

where İ1, . . . , İn are the functions we want to find.

dĥ =
 m∑
j=1

q̂i
1
Ij1

 dI1 + dh,

and hence,

Xĥ = Π(dĥ, ·) =
∑m
i=1

q̂i
Ii1∑m

i=1
cj

Ij1

∂

∂φi
+Xh.

Hence φ = φ0 + (B̄u+ Ā︸ ︷︷ ︸
u′

)t. So the frequency vector that we are

going to be concerned about is going to be u′ and not û = ∂
∂I
ĥ.

Lemma 7.2.12. If u is one-to-one from G to its image then u′ =
B̄u + Ā is also one-to-one from G ′ to its image in a neighborhood of
Z, while at Z it is the projection of u such that the first coordinate is
sent to q̂m

cm
= 1/K′ the inverse of the modular period, were G ′ ⊆ G.

Proof. Because

u′ =

 1∑m
j=1

cj

Ij1

u1 +
∑m
j=1

q̂j

Ij1∑m
j=1

cj
I1

, u2, . . . , un

 ,
and B is invertible outside I1 = 0, shrinking G if necessary in the first
dimension the map is one-to-one. But at the critical set {I1 = 0}, u′
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is a projection of u where the first component is sent to the constant
value q̂m

cm
= 1
K′ .

Lemma 7.2.13. If u(G) is α,K, c, q̂-nonresonant, then u(Vρ2(G)) is
α
2 , K, c, q̂-nonresonant, assuming that ρ2 ≤ α

2MK
and

∣∣∣∂u
∂I

∣∣∣
G,ρ2
≤M ′

Proof. Fix k ∈ Z \ {0}, we want to bound |kB̄(I1)v + kĀ(I1)| where
v ∈ u(Vρ2(G)) as a function on v. Given v ∈ u(Vρ2(G)) one must ask
if there is any bound for the distance to some v′ ∈ u(G).

v ∈ u(Vρ2(G))⇒ v = u(x), x ∈ Vρ2(G)⇒ ∃y ∈ G such that |x−y| ≤ ρ2.

Take v′ = u(y).

|v−v′| ≤ |x−y|
∣∣∣∣∣∂u∂I

∣∣∣∣∣
G,ρ2

≤ ρ2M
′ ≤ ρ2M/KB ≤

α

2MK
M/KB = α

2KKB
.

Where we used equation 7.8 in the third inequality.

|k1B(I1)v1 + k̄v̄ + k1A(I1)| ≥ |k1B(I1)v′1 + k̄v̄′ + k1A(I1)|︸ ︷︷ ︸
≥α

−|k1B(I1)(v1 − v′1) + k̄(v̄ − v̄′)|

≥ α−KB |k · (v − v′)|︸ ︷︷ ︸
≤Kα/(2KKB)

≥ α− α/2 = α/2

Proposition 7.2.14. Let ĥ(I) be a bm-function as in equation 7.1.
Assume h(I) and R(φ, I) be real analytic on Dρ(G), u(G) = ∂h

∂I
(G)

is α,K, c, q̂-nonresonant. Assume also that | ∂
∂I
u|G,ρ2 ≤ M ′ and ρ2 ≤

α
2MK

. Let c > 0 given. Then R0(φ, I), W≤K(φ, I) given by the previous
construction are both real analytic on Dρ(G) and the following bounds
hold
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1. ||DR0||G,ρ,c ≤ ||DR||G,ρ,c

2. ||D(R−R0)||G,ρ,c ≤ ||DR0||G,ρ,c

3. ||DW ||G,ρ,c ≤ 2A
α
||DR0||G,ρ,c

Where A = 1 + 2Mc
α

Proof. Inequalities 1 and 2 are obvious because of the Fourier expres-
sion. Let us prove inequality 3. Let us expand R(φ, I) and W (φ, I) in
their Fourier expression:

R =
∑
k∈Rn

Rk(I)eik·φ, W =
∑
k∈Rn

Wk(I)eik·φ.

We will bound this expression finding term-by-term bounds.

∂R

∂φ
=

∑
k∈Rn

Rk(I)eik·φik.

Hence, if we denote [∂R
∂φ

]k the k-th term of the Fourier expansion of
∂R
∂φ

, we have: [
∂R

∂φ

]
k

= Rkik.

Let us compute the derivative of Wk with respect to the I variables:

∂Wk

∂I
= ∂

∂I

(
Rk

i(kB̄(I1)u+ kĀ(I1))

)

= ∂Rk/∂I

i(kB̄(I1)u+ kĀ(I1)))
−
Rki

∂
∂I

(kB̄(I1)u+ kĀ(I1)))
[i(kB̄(I1)u+ kĀ(I1)))]2

= ∂Rk/∂I

i(kB̄(I1)u+ kĀ(I1)))
+
Rkik

∂
∂I

(B̄(I1)u+ Ā(I1)))
[(kB̄(I1)u+ kĀ(I1)))]2

= ∂Rk/∂I

i(kB̄(I1)u+ kĀ(I1)))
+

[∂Rk
∂φ

]k ∂
∂I

(B̄(I1)u+ Ā(I1)))
[(kB̄(I1)u+ kĀ(I1)))]2

.
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Then, we take norms (| · |G,ρ2,∞) at each side of the equation.

∣∣∣∣∣∂Wk

∂I

∣∣∣∣∣
G,ρ2,∞

≤ 2
α

∣∣∣∣∣∂Rk

∂I

∣∣∣∣∣
G,ρ2,∞

+ 4M
α2

∣∣∣∣∣
[
∂Rk

∂φ

]
k

∣∣∣∣∣
G,ρ2,∞

≤ 2
α

∣∣∣∣∣∂Rk

∂I

∣∣∣∣∣
G,ρ2,∞

+ 4M
α2

∣∣∣∣∣
[
∂Rk

∂φ

]
k

∣∣∣∣∣
G,ρ2,1

.

Taking the supremum at the whole domain:

∥∥∥∥∥∂Wk

∂I

∥∥∥∥∥
G,ρ2,∞

≤ 2
α

∥∥∥∥∥∂Rk

∂I

∥∥∥∥∥
G,ρ2,∞

+ 4M
α2

∥∥∥∥∥
[
∂Rk

∂φ

]
k

∥∥∥∥∥
G,ρ2,1

.

Moreover,

∂W (I)
∂φ

= ∂

∂φ

∑
k∈Rn

Wk(I)eik·φ


= ∂

∂φ

∑
k∈Rn

ikWk(I)eik·φ
 .

Hence, the k-th term of the Fourier series of ∂W
∂φ

is[
∂W

∂φ

]
k

= Wkik = Rk

i(kB̄(I1)u+ kĀ(I1)))
ik

= 1
i(kB̄(I1)u+ kĀ(I1)))

[
∂R

∂φ

]
k

.

Taking norms (‖ · ‖G,ρ,1) at each side:∥∥∥∥∥∂W∂φ
∥∥∥∥∥
G,ρ,1
≤ 2
α

∥∥∥∥∥∂W∂φ
∥∥∥∥∥
G,ρ,1

.

Then,

‖DW‖G,ρ,c = max
∥∥∥∥∥∂W∂φ

∥∥∥∥∥
G,ρ,1

, c

∥∥∥∥∥∂W∂I
∥∥∥∥∥
G,ρ,∞
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≤ max
 2
α

∥∥∥∥∥∂R∂φ
∥∥∥∥∥
G,ρ,1

, c
2
α

∥∥∥∥∥∂R∂I
∥∥∥∥∥
G,ρ2,∞

+ c
4M
α2

∥∥∥∥∥∂R∂φ
∥∥∥∥∥
G,ρ2,1



≤ max
 2
α

∥∥∥∥∥∂R∂φ
∥∥∥∥∥
G,ρ,1

,
2
α
‖DR‖G,ρ2,c

+ c
4M
α2 ‖DR‖G,ρ2,c



= max
 2
α

∥∥∥∥∥∂R∂φ
∥∥∥∥∥
G,ρ,1

,
2
α

(
1 + 2M

α
c
)
‖DR‖G,ρ2,c



≤ 2
α

(
1 + 2M

α
c
)
‖DR‖G,ρ2,c

≤ 2
α
A ‖DR‖G,ρ2,c

,

where A is as desired.

Recall the Cauchy inequalities, see [34]:
∥∥∥∥∥∂f∂φ

∥∥∥∥∥
G,(ρ1,ρ2),1

≤ 1
eδ1
‖f‖G,ρ∥∥∥∥∥∂f∂I

∥∥∥∥∥
G,(ρ1,ρ2−δ2),∞

≤ 1
δ2
‖f‖G,ρ

(7.9)

Lemma 7.2.15. Let f, g be analytic functions on Dρ(G), where 0 <
δ = (δ1, δ2) < ρ = (ρ1, ρ2) and c > 0. Define δ̂c := min(cδ1, δ2). The
following inequalities hold:

1. ‖Df‖G,ρ−δ,c ≤ c
δ̂c
‖f‖G,ρ

2. ‖{f, g}‖G,ρ ≤ 2
c
‖Df‖G,ρ,c · ‖Dg‖G,ρ,c

3. ‖D(f>K)‖G,(ρ−δ1,ρ2),c ≤ e−Kδ1‖Df‖G,ρ,c

Proof. Let us prove each point separately.
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1. Using the Cauchy inequalities one obtains the following:∥∥∥∥∥∂f∂φ
∥∥∥∥∥
G,ρ−δ,1

=
∥∥∥∥∥∂f∂φ

∥∥∥∥∥
G,(ρ1−δ1,ρ2−δ2),1

≤
∥∥∥∥∥∂f∂φ

∥∥∥∥∥
G,(ρ1−δ1,ρ2),1

≤ 1
eδ1
‖f‖G,ρ,

∥∥∥∥∥∂f∂I
∥∥∥∥∥
G,ρ−δ,∞

=
∥∥∥∥∥∂f∂I

∥∥∥∥∥
G,(ρ1−δ1,ρ2−δ2),∞

≤
∥∥∥∥∥∂f∂I

∥∥∥∥∥
G,(ρ1,ρ2−δ2),∞

≤ 1
δ1
‖f‖G,ρ.

Putting the two inequalities inside the definition of the norm:

‖Df‖G,ρ−δ,c = max


∥∥∥∥∥∂f∂φ

∥∥∥∥∥
G,ρ−δ,1

, c

∥∥∥∥∥∂f∂I
∥∥∥∥∥
G,ρ−δ,∞


≤ max

{ 1
eδ1
‖f‖G,ρ,

c

δ2
‖f‖G,ρ

}

≤ max
{ 1
eδ1

c

c
,
c

δ2

}
‖f‖G,ρ

≤ max
{
c

eδ̂c
,
c

δ̂c

}
‖f‖G,ρ,

where the last inequality holds because δ̂c = min(cδ1, δ2).

2. Let us find the expression of {f, g} for a bm-symplectic structure.
{f, g} = ω(Xf , Xg) where Xf and Xg are such that ιXfω = df

and ιXgω = dg. Let restrict the computions only to f .

df =
n∑
i=1

∂f

∂φ1
dφ1, Xf =

n∑
i=1

ai
∂

∂φi
+

n∑
i=1

bi
∂

∂φi
.

Where ai and bi are coefficients to be determined by imposing
the following condition:
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ιXfω =
 m∑
j=1

cj

Ij1

 (a1dI1 − b1dφ1) +
n∑
i=2

(aidIi − bidφi) = df.

Then, solving for the coefficients the following expressions are
obtained:

a1 = 1(∑m
j=1

cj

Ij1

) ∂f

∂φ1
and ai = ∂f

∂φi
for i 6= 1,

b1 = − 1(∑m
j=1

cj

Ij1

) ∂f

∂φ1
and bi = − ∂f

∂φi
for i 6= 1.

Hence, the expression for the hamiltonian vector fields becomes:

Xf = 1(∑m
j=1

cj

Ij1

) ( ∂f
∂φ1

∂

∂φ1
− ∂f

∂I1

∂

∂I1

)
+

n∑
i=1

(
∂f

∂φi

∂

∂φi
− ∂f

∂Ii

∂

∂Ii

)
,

Xg = 1(∑m
j=1

cj

Ij1

) ( ∂g

∂φ1

∂

∂φ1
− ∂g

∂I1

∂

∂I1

)
+

n∑
i=1

(
∂g

∂φi

∂

∂φi
− ∂g

∂Ii

∂

∂Ii

)
.

Then the Poisson bracket applied to the two functions:

{f, g} = ω(Xf , Xg) = 1(∑m
j=1

cj

Ij1

) ( ∂f
∂I1

∂g

∂φ1
− ∂f

∂φ1

∂g

∂I1

)

+
n∑
i=2

(
∂f

∂Ii

∂g

∂φi
− ∂f

∂φi

∂g

∂Ii

)
.

And hence the norm of the Poisson bracket becomes:
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‖{f, g}‖G,ρ =

∥∥∥∥∥∥∥∥
1(∑m

j=1
cj

Ij1

) ( ∂f
∂I1

∂g

∂φ1
− ∂f

∂φ1

∂g

∂I1

)

+
n∑
i=2

(
∂f

∂Ii

∂g

∂φi
− ∂f

∂φi

∂g

∂Ii

)∥∥∥∥∥
G,ρ

≤
∥∥∥∥∥
n∑
i=1

(
∂f

∂Ii

∂g

∂φi
− ∂f

∂φi

∂g

∂Ii

)∥∥∥∥∥
G,ρ

Where we assumed
∣∣∣∣∑m

j=1
cj

Ij1

∣∣∣∣ ≥ 1. This assumption makes sense,
because we are interested in the behaviour close the critical set
Z. Close enough to the critical set this expression holds. Then,

‖{f, g}‖G,ρ ≤
n∑
i=1

∥∥∥∥∥ ∂f∂Ii
∥∥∥∥∥
G,ρ

∥∥∥∥∥ ∂g∂φi
∥∥∥∥∥
G,ρ

+
n∑
i=1

∥∥∥∥∥ ∂f∂φi
∥∥∥∥∥
G,ρ

∥∥∥∥∥ ∂g∂Ii
∥∥∥∥∥
G,ρ

≤
∣∣∣∣∣∂f∂I

∣∣∣∣∣
G,ρ,∞

∣∣∣∣∣∂g∂I
∣∣∣∣∣
G,ρ,1

+
∣∣∣∣∣∂f∂I

∣∣∣∣∣
G,ρ,1

∣∣∣∣∣∂g∂I
∣∣∣∣∣
G,ρ,∞

≤ 1
c
|Df‖G,ρ,c‖Dg‖G,ρ,c + 1

c
|Df‖G,ρ,c‖Dg‖G,ρ,c

≤ 2
c
‖Df‖G,ρ,c‖Dg‖G,ρ,c.

3. Lastly,

‖D(f>K)‖G,(ρ1−δ1,ρ2),1

= max


∥∥∥∥∥∂f>K∂φ

∥∥∥∥∥
G,(ρ1−δ1,ρ1),1

, c

∥∥∥∥∥∂f>K∂I

∥∥∥∥∥
G,(ρ1−δ1,ρ1),∞

 .
We will proceed by bounding each term separately. On one hand:∥∥∥∥∥∂f∂φ

∥∥∥∥∥
G,(ρ1,ρ2),1

=

∥∥∥∥∥∥
∑
k∈Zn

ikfk(I)eikφ
∥∥∥∥∥∥
G,(ρ1,ρ2),1
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≥
∑
k∈Zn

k ‖fk(I)‖G,ρ2,1 e
|k|1ρ1

≥
∑
k∈Zn
|k|1>K

k ‖fk(I)‖G,ρ2,1 e
|k|1(ρ1+δ1−δ1)

≥ eKδ1
∑
k∈Zn
|k|1>K

k ‖fk(I)‖G,ρ2,1 e
|k|1(ρ1−δ1)

= eKδ1

∥∥∥∥∥∂f>K∂φ

∥∥∥∥∥
G,(ρ1−δ1,ρ2),1

.

On the other hand:∥∥∥∥∥∂f∂I
∥∥∥∥∥
G,(ρ1,ρ2),∞

=

∥∥∥∥∥∥
∑
k∈Zn

∂fk(I)
∂I

eikφ

∥∥∥∥∥∥
G,(ρ1,ρ2),∞

≥
∑
k∈Zn

∥∥∥∥∥∂fk(I)
∂I

∥∥∥∥∥
G,ρ2,∞

e|k|1ρ1

≥
∑
k∈Zn
|k|1>K

∥∥∥∥∥∂fk(I)
∂I

∥∥∥∥∥
G,ρ2,∞

e|k|1(ρ1+δ1−δ1)

≥ eKδ1
∑
k∈Zn
|k|1>K

∥∥∥∥∥∂fk(I)
∂I

∥∥∥∥∥
G,ρ2,∞

e|k|1(ρ1−δ1)

≥ eKδ1

∥∥∥∥∥∂f>K∂I

∥∥∥∥∥
G,(ρ1−δ1,ρ2),∞

.

Hence ‖D(f>k)‖G,(ρ1−δ1,ρ2),c ≤ e−Kδ1‖Df‖G,ρ,c.
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Now we define a norm that indicates how close a map Φ is to the
identity.

Definition 7.2.16. Let x = (φ, I) ∈ C2n, then

|x|c := max(|φ|1, c|I|∞)

Definition 7.2.17. For a map Υ : Dρ(G) → C2n its norm and the
norm of its derivative its defined as:

|Υ|G,ρ,c := sup
x∈Dρ(G)

|Υ(x)|c,

|DΥ|G,ρ,c := sup
x∈Dρ(G)

|DΥ(x)|c,

where |DΥ(x)|c = sup
y∈R2n

|y|c=1

|DΥ(x) · y|c

Lemma 7.2.18. If Υ is analytic on Dρ(G), then |DΥ|G,ρ−δ,C ≤ |Υ|G,ρ,c
δ̂c

Proof. Observe that if we have ‖.‖ any norm on Cn and we have a
matrix A of size n× n, and ‖A‖ defines the induced norm of matrices
i.e.

‖A‖ = sup
y∈C2n

‖y‖=1

‖A · y‖

then one has that ‖(‖a1‖′, . . . , ‖an‖′)‖ ≤ ‖A‖ where aj denotes the j-th
row of A. Also note that ‖ · ‖′ can be a any norm consider the infinity
norm. This can be easily proven in the following way:

‖A · y‖ =

∥∥∥∥∥∥∥∥∥


a1 · y

...
an · y


∥∥∥∥∥∥∥∥∥ ≤

∥∥∥∥∥∥∥∥∥


‖a1‖′‖y‖′

...
‖an‖′‖y‖′


∥∥∥∥∥∥∥∥∥

Where ∀y ∈ Cn such that ‖y‖ = 1. Let aj be the rows of DΥ(x),

aj =
(
∂Υj

∂φ
,
∂Υj
∂I

)
,
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and be ‖aj‖′ its norm. With this property in mind we proceed as
follows:

|DΥ|G,ρ−δ,c = sup
x∈Dρ−δ(G)

|DΥ(x)|c

≤ sup
x∈Dρ−δ(G)

|(|a1|∞, . . . , |an|∞)|c

≤
∣∣∣(supx∈Dρ−δ ‖DΥ1‖∞ , . . . , supx∈Dρ−δ ‖DΥ2n‖∞

)∣∣∣
c

=
∣∣∣(‖DΥ1‖G,ρ−δ,∞ , . . . , ‖DΥ2n‖G,ρ−δ,∞

)∣∣∣
c

≤
∣∣∣( 1
δ1
‖Υ1‖G,ρ , . . . ,

1
δ1
‖Υ2n‖G,ρ

)∣∣∣
c

≤ 1
δ̂c

∣∣∣‖Υ1‖G,ρ , . . . , ‖Υ2n‖G,ρ
∣∣∣
c

= 1
δ̂c

supx∈Dρ(G) |Υ1, . . . ,Υ2n|c = 1
δ̂c

supx∈Dρ(G) |Υ|c

= 1
δ̂c
|Υ|G,ρ,c

Lemma 7.2.19. Let W be an analytic function on Dρ(G), ρ > 0 and
let Φt be its Hamiltonian flow at time t (t > 0). Let δ = (δ1, δ2) > 0 and
c > 0 given. Assume that ‖DW‖G,ρ,c ≤ δ̂c. Then, Φt maps Dρ−tδ(G)
into Dρ(G) and one has:

1. |Φt − Id|G,ρ−tδ,c ≤ t‖DW‖G,ρ,c,

2. Φ(Dρ(G)) ⊃ Dρ−tδ(G) for ρ′ ≤ ρ− tδ,

3. Assuming that ‖DW‖G,ρ,c < δ̂c/2e, for any given function f an-
alytic on Dρ(G), and for any integer m ≥ 0, the following bound
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holds:

‖rm(f,W, t)‖G,ρ−tδ

≤
∞∑
l=0

 1(
l+m
m

) · (2e‖DW‖G,ρ,c
δ̂c

)l tm
m!‖L

m
Wf‖G,ρ

= γm

(
2e‖DW‖G,ρ,c

δ̂c

)
· tm‖LmWf‖G,ρ,

where for 0 ≤ x ≤ 1 we define

γm(x) :=
∞∑
l=0

l!
(l +m)!x

l

Proof. During the proof we are going to denote Φs(φ0, I0) by (φ(s), I(s)).
Let us find the coordinate expression of the hamiltonian flow for

the expression 7.2 of a bm-symplectic form. Recall that the equation
for the hamiltonian flow is d

ds
φi(s) = {φi,W} and d

ds
Ii(s) = {Ii,W}.

{φi,W} = 1(∑m
j=1

cj

Ij1

) (∂φi
∂I1
· ∂W
∂φ1
− ∂φi
∂φ1
· ∂W
∂I1

)

+
n∑
j=2

(
∂φi
∂Ij
· ∂W
∂φj
− ∂φi
∂φj
· ∂W
∂Ij

)
.

Hence,

d

ds
φi(s) = − 1(∑m

j=1
cj

Ij1

) ∂W
∂I1

if i = 1 and d

ds
φi(s) = −∂W

∂Ii
if i 6= 1.

On the other side,

{Ii,W} = 1(∑m
j=1

cj

Ij1

) ( ∂Ii
∂I1
· ∂W
∂φ1
− ∂Ii
∂φ1
· ∂W
∂I1

)

+
n∑
j=2

(
∂Ii
∂Ij
· ∂W
∂φj
− ∂Ii
∂φj
· ∂W
∂Ij

)
.
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Hence,

d

ds
Ii(s) = 1(∑m

j=1
cj

Ij1

) ∂W
∂φ1

if i = 1 and d

ds
Ii(s) = ∂W

∂φi
if i 6= 1.

1. Assume now that 0 < s0 ≤ t. Then,

|φ(s0)− φ0|∞ ≤ s0 sup0<s≤s0 |φ
′(s)|∞

= s0 sup0<s≤s0 (max(|φ′1(s)|, . . . , |φ′n(s)|))

= s0 sup
0<s≤s0

max


∣∣∣∣∣∣∣∣

1(∑m
j=1

cj

Ij1

) ∂W
∂I1

∣∣∣∣∣∣∣∣ ,
∣∣∣∣∣∂W∂I2

∣∣∣∣∣ , . . . ,
∣∣∣∣∣∂W∂In

∣∣∣∣∣



≤ s0 sup0<s≤s0

∣∣∣∂W
∂I

∣∣∣
∞
≤ s0

∥∥∥∂W
∂I

∥∥∥
G,ρ,∞

Where we have used again that on the domain Dρ(G) the inequal-
ity

∣∣∣∣∑m
j=1

cj

Ij1

∣∣∣∣ ≥ 1 holds. Similarly, |I(s0)−I0| ≤ s0‖∂W∂φ ‖G,ρ,1, and
hence |Φt − Id|G,ρ−tδ,c ≤ t‖DW‖G,ρ,c.

Because

|φ(s)− φ0|∞ ≤ t‖∂W
∂I
‖G,ρ,∞ ≤ t δ̂c

c
≤ tδ1

c
c

= tδ1 ∀0 < s ≤ s0

|I(s)− I0|1 ≤ t‖∂W
∂φ
‖G,ρ,1 ≤ tδ̂c ≤ tδ2 ∀0 < s ≤ s0

(7.10)

hence, (φ(s), I(s)) ∈ Dρ−tδ+tδ(G) = Dρ(G) for all 0 < s ≤ s0.

2. Repeat the same argument as in 7.10 with φ(−s). If (φ0, I0) ∈
Dρ′−tδ, then (φ(−s), I(−s)) ∈ Dρ′−tδ+tδ(G) = Dρ′ . Hence,

Dρ′(G) ⊃ Φ−1(Dρ′−tδ(G)),

then Φ(Dρ′(G)) ⊃ Dρ′−tδ(G).

3. Consider f an analytical function. By the previous construction
f ◦ Φt is defined in Dρ−tδ(G). Because W is analytic we also
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have that f ◦Φt is analytic and we can expand its Lie series. Let
m ∈ Z, l ≥ m+ 1, j = m+ 1, . . . , l then

‖LjWf‖G,ρ−(j−m)tη ≤ 2
c
‖D(Lj−1

W f)‖G,ρ−(j−m)tη,c‖DW‖G,ρ,c
≤ 2

tη̂c
‖Lj−1

W f‖G,ρ−(j−1−m)tη‖DW‖G,ρ,c,

where we used lemma 7.2.15 and defined η = δ
(l−m) and η̂c =

min(cη1, η2).

Then,

‖LlWf‖G,ρ−tδ ≤
(2‖DW‖G,ρ,c

tη̂c

)l−m
≤ el−m · (l −m)!

(2‖DW‖G,ρ,c
δ̂c

)l−m
‖LmWf‖G,ρ,

where we used that η̂c = δ̂c
l−m and (l −m)(l−m) ≤ el−m · (l −m)!

And hence, the bound for ‖rm(f,W, t)‖G,ρ−tδ is

∞∑
l=m

tl

l!‖L
l
Wf‖G,ρ−tδ ≤

 ∞∑
l=m

(l −m)!
l!

(
2e‖DW‖G,ρ,c

δ̂c

)l−m·tm‖LmWf‖G,ρ
and this series converges if ‖DW‖G,ρ,c ≤ δ̂c

2e .

Theorem 7.2.20. [Iterative Lemma] H(φ, I) = ĥ(I) + R(φ, I) where
ĥ(I) is as in equation 7.1 defined on Dρ(G). Let û = ∂ĥ

∂I
and u = ∂h

∂I
,

and assume u is α,K, c, q̂-non-resonant. Assume that
∣∣∣ ∂
∂I
u
∣∣∣
G,ρ2
≤ M ′.

Let δ < ρ and c > 0, A = 1+ 2Mc
α

. Assume that ρ2 ≤ α
2MK

, ‖DR‖G,ρ,c ≤
αδ̂c
74A . Then, there exists a real analytic map Φ : Dρ− δ2 (G) → Dρ(G),
such that H ◦ Φ = ĥ+ R̃,with:

1. ‖DR̃‖G,ρ−δ,c ≤ e−Kδ1‖DR‖G,ρ,c + 14A
αδ̂c
‖DR‖2

G,ρ,c,
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2. |Φ− Id|G,ρ− δ2 ,c ≤
2A
α
‖DR‖G,ρ,c,

3. Φ(Dρ′(G)) ⊃ Dρ′− δ2 (G) for ρ′ ≤ ρ− δ
2

Proof. Recall that
∣∣∣ ∂
∂I
u
∣∣∣
G,ρ2
≤ M ′ implies

∣∣∣ ∂
∂I

(B̄u+ Ā)
∣∣∣
G,ρ2
≤ M by

equation 7.8. By equation 7.6

R(q) = R
(q−1)
>K + r2(ĥ(q−1),W (q), 1) + r1(R(q−1),W (q), 1).

To simplify the notation we are going to omit the index of the
iteration:

R̃ = R>K + r2(ĥ,W, 1) + r1(R,W, 1). (7.11)

Where W is defined in terms of its Fourier expressions by equation
7.7:

Wk(I) = Rk(I)
i(kB̄(I1)u+ kĀ(I1))

By proposition 7.2.14: ‖DW‖G,ρ,c ≤ 2A
α
‖DR‖G,ρ,c ≤ 2A

α
αδ̂c
74A = δ̂c

37 .
And Φ is defined as in lemma 7.2.15: Φ : Dρ− δ2 (G)→ Dρ(G).

1. Differentiating equation 7.11 we obtain:

DR̃ = DR>K +Dr2(ĥ,W, 1) +Dr1(R,W, 1).

Taking norms at every side of the expression:

‖DR̃‖G,ρ−δ,c = ‖DR>K +Dr2(ĥ,W, 1) +Dr1(R,W, 1)‖G,ρ−δ,c
≤ ‖DR>K‖G,ρ−δ,c + ‖Dr2(ĥ,W, 1)‖G,ρ−δ,c

+‖Dr1(R,W, 1)‖G,ρ−δ,c
≤ e−Kδ1‖DR‖G,ρ,c

+2c
δ̂c

(
‖r2(ĥ,W, 1)‖G,ρ− δ2 ,c + ‖r1(R,W, 1)‖G,ρ− δ2 ,c

)
Let us further develop the two last terms of the previous expres-
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sion, by using lemma 7.2.19:

‖r2(ĥ,W, 1)‖G,ρ− δ2 ,c ≤ γ2

(
2e‖DW‖G,ρ,c

δ̂c/2

)
‖L2

Wh‖G,ρ
≤ γ2

(4e‖DW‖G,ρ,c
δ̂c

)
‖{{h,W},W}‖G,ρ,

‖r1(ĥ,W, 1)‖G,ρ− δ2 ,c ≤ γ1

(
2e‖DW‖G,ρ,c

δ̂c/2

)
‖L1

WR‖G,ρ
≤ γ1

(4e‖DW‖G,ρ,c
δ̂c

)
‖{R,W}‖G,ρ.

Then, using the second statement of lemma 7.2.15 and that
{W,h} = R≤K :

‖{R,W}‖G,ρ ≤
2
c
‖DR‖G,ρ,c‖DW‖G,ρ,c, and

|{{h,W},W}‖G,ρ = ‖{R≤K ,W}‖G,ρ

≤ 2
c
‖DR≤K‖G,ρ,c‖DW‖G,ρ,c

≤ 2
c
‖DR‖G,ρ,c‖DW‖G,ρ,c.

Moreover, it is easy to see that γ1(x) = − log(1−x)
x

and γ2(x) =
x+(1−x) log(1−x)

x2 . Observe that these functions are monotonously
increasing in x. Recall that ‖DW‖G,ρ,c ≤ 2A

α
‖DR‖G,ρ,c. Then,

‖r1(ĥ,W, 1)‖G,ρ− δ2 ,c
+‖r2(ĥ,W, 1)‖G,ρ− δ2 ,c ≤ γ1

(4e‖DW‖G,ρ,c
δ̂c

)
‖{R,W}‖G,ρ

+γ2
(4e‖DW‖G,ρ,c

δ̂c

)
‖{{h,W},W}‖G,ρ

≤ γ1
(4e‖DW‖G,ρ,c

δ̂c

)
2
c
‖DR‖G,ρ,c‖DW‖G,ρ,c

+γ2
(4e‖DW‖G,ρ,c

δ̂c

)
2
c
‖DR‖G,ρ,c‖DW‖G,ρ,c

≤ γ1
(4e‖DW‖G,ρ,c

δ̂c

)
2
c

2A
α
‖DR‖2

G,ρ,c

+γ2
(4e‖DW‖G,ρ,c

δ̂c

)
2
c

2A
α
‖DR‖2

G,ρ,c

≤ 2
c
[γ1( 4e

37) + γ2( 4e
37)]2A

α
‖DR‖2

G,ρ,c

= 4A
αc

[γ1( 4e
37) + γ2( 4e

37)]‖DR‖2
G,ρ,c.
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Moreover γ1( 4e
37) + γ2( 4e

37) ≈ 1.741 . . . < 7
4 .

Then,

‖DR̃‖G,ρ−δ,c ≤ e−Kδ1‖DR‖G,ρ,c + 2c
δ̂c

4A
αc

7
4‖‖

2
G,ρ,c

≤ e−Kδ1‖DR‖G,ρ,c + 14A
δ̂cα
‖DR‖2

G,ρ,c,

as we wanted to prove.

2. Direct from lemma 7.2.19:

|Φ− Id|G,ρ. δ2 ,c ≤ ‖DW‖G,ρ,c ≤
2A
α
‖DR‖G,ρ,c

3. Also direct from lemma 7.2.19:

Φ(Dρ(G)) ⊃ Dρ′− δ2 (G), for ρ′ ≤ ρ− δ/2

Definition 7.2.21. ∆c,q̂(k, α) = {J ∈ Rn such that |kB̄(I1)J+kĀ(I1)| <
α}

Lemma 7.2.22. With the previous definitions we have the following
bounds.

Outside of Z:

meas (F ∩∆c,q̂(k, α)) ≤ (diamF )n−1 2α
|k|2,ω

.

At Z:

meas (F ∩∆c,q̂(k, α))

 = 0 if α ≤ |k1|
K′

≤ (diamF )n if α > |k1|
K′

Proof. It is important to understand the geometry of the set ∆c,q̂(k, α).
Recall that kB̄(I1)J = k1B(I1)J1+k̄J̄ , hence this part of the expression
can be interpreted as the scalar product of the vector J with the vector
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(k1B(I1), k2, . . . , kn). Then the set {J ∈ Rn such that |kB̄(I1)J | < α}
is the space between two hyperplanes orthogonal to (k1B(I1), k2, . . . , kn).
Adding the term kĀ(I1) only applies a transition to the previous set.
Let us find what is the separation between the hyperplanes. Assume
J is parallel to (k1B(I1), k2, . . . , kn) with lengths a:

J = a
(k1B(I1), k2, . . . , kn)

|k|2,ω
,

where |k|2,ω =
√
B(I1)2k2

1 + k2
2 + . . . k2

n. Then,

J · (B(I1), k1, . . . , kn) = c(B(I1)k2
1 + k2

2 + . . . k2
n) 1
|k|2,ω

= a|k|2,ω ≤ α⇔ a ≤ α
|k|2,ω .

And finally,

meas (F ∩∆c,q̂(k, α)) ≤ (diamF )n−1 2α
|k|2,ω

.

The previous formula can not be applied if when we are at Z and

(B(I1)k1, k2, . . . , kn)

|kB̄(I1)J + kĀ(I1)| < α

|kB̄(I1)J | < α
−kĀ(I1)

Figure 7.1: Graphical representation of the set ∆c,q̂(α)

k = (k1, 0, . . . , 0). At Z,

∆c,q̂(K,α) = {J ∈ Rn such that |K̄J̄ + k1
q̂m
cm
| < α}.
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And if k = (k1, 0, . . . , 0) then

∆c,q̂(K,α) = {J ∈ Rn such that |k1
q̂m
cm
| < α}.

Then

∆c,q̂(k, α) =

 Rn if |k1| < α cm
q̂m

= αK′,
{∅} if |k1| ≥ α cm

q̂m
= αK′.

Using this last identity, the statement we wanted to prove is imme-
diate.

Definition 7.2.23. G − b := {I ∈ G such that Ub(I) ⊂ G}, where
Ub(I) is the ball of radius b centered at I.

Definition 7.2.24. F is a D-set if meas[(F − b1)\ (F − b2)] ≤ D(b2−
b1).

Lemma 7.2.25. Let F ⊂ Rn be a D-set for d ≥ 0, τ > 0, β ≥ 0 and
k ≥ 0 an integer. Consider the set

F (d, β,K) := (F − d) \
⋃

k∈Zn\{0}
|k|1≤K

∆c,q̂

(
k,

β

|k|τ1

)
.

Then, outside of Z:

1. If d′ ≥ d, β′ ≥ β, k′ ≥ k, then

meas[F (d, β, k) \ F (d′, β′, k′)] ≤

D(d′−d)+2(diamF )n−1

 ∑
k∈Zn\{0}
|k|1≤K

β′ − β
|k|τ1|k|2,ω

+
∑

k∈Zn\{0}
0<|k|1≤K

β′

|k|τ1|k|2,ω


2. For every b ≥ 0

meas[F (d, β,K) \ (F (d, β,K)− b)] ≤ (D + 2n+1(dimF )n−1Kn)b
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And inside of Z, if we assume β ≤ 1
K′ , the equation 1 holds adding

only the terms k̄ 6= 0 and 2 holds without any change.

Proof. Recall that

∆c,q̂

(
k,

β

|k|τ1

)
=
{
J ∈ Rn such that

∣∣∣kB̄(I1)J + kĀ(I1)
∣∣∣ < β

|k|τ1

}
.

First we will prove the results outside of Z and then

1. Let us expand the expression of meas[F (d, β, k) \ F (d′, β′, k′)]:
(F − d) \

⋃
k∈Zn\{0}
|k|1≤K

∆c,q̂

(
k,

β

|k|τ1

)\
(F − d) \

⋃
k∈Zn\{0}
|k|1≤K

∆c,q̂

(
k,

β

|k|τ1

) .

Now we use the following property on the previous expression:

(A \B) \ (C \D) = [(A \B) \ C] ∪ [(A \B) ∩D]
⊂ (A \ C) ∪ [(A \B) ∩D]
= (A \ C) ∪ (A ∩ (D \B)),

where the last equality is true because D ⊃ B. Using this prop-
erty we have that meas[F (d, β, k) \ F (d′, β′, k′)] is included in

[(F − d) \ (F − d′)] ∪

(F − d) ∩


 ⋃
k∈Zn\{0}
|k|1≤K′

∆c,q̂

(
k,

β′

|k|1

)

\

 ⋃
k∈Zn\{0}
|k|1≤K

∆c,q̂

(
k,

β

|k|1

)

 .

And this expression is equivalent to:
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[(F − d) \ (F − d′)] ∪
⋃

k∈Zn\{0}
|k|1≤K

(
(F − d) ∩

(
∆c,q̂

(
k,

β′

|k|τ1

)

\∆c,q̂

(
k,

β

|k|τ1

)))

∪
⋃

k∈Zn\{0}
K<|k|1≤K′

(
(F − d) ∩∆c,q̂

(
k,

β′

|k|τ1

))
.

Now, using lemma 7.2.22 we obtain:

meas(F (d, β,K) \ F (d′, β′, K ′)) ≤

≤ D(d′−d)+(diamF )n−1

 ∑
k∈Zn\{0}
|k|1≤K

2(β′ − β)
|k|τ1|k|2,ω

+
∑

k∈Zn\{0}
K<|k|1≤K′

2β′
|k|τ1|k|2,ω


2. Observe that:

F (d, β,K)− b =

(F − d) \
⋃

k∈Zn\{0}
|k|1≤K

∆c,q̂

(
k,

β

|k|τ1

)− b
⊃ (F − (d+ b)) \

⋃
k∈Zn\{0}
|k|1≤K

∆c,q̂

(
k,

β

|k|τ1
+ b|k|2,ω

)
.

Then,

meas[(F (d, β,K)) \ (F (d, β,K)− b)]

≤ meas
[(

(F − d) \ ⋃k∈Zn\{0}
|k|1≤K

∆c,q̂

(
k, β
|k|τ1

))
\(

(F − (d+ b)) \ ⋃k∈Zn\{0}
|k|1≤K

∆c,q̂

(
k, β
|k|τ1

))]
≤ meas [(F − d) \ (F − (d+ b))∪
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⋃
k∈Zn\{0}
|k|1≤K

(
(F − d) ∩

(
∆c,q̂

(
k, β
|k|τ1

+ b|k|2,ω
)))
\
(
∆c,q̂

(
k, β
|k|τ1

))]
≤ Db+∑

k∈Zn\{0}
|k|1≤K

(diamF )n−1 2b|k|2,ω
|k|2,ω

≤ Db+ 2nKn(diamF )n−1 · 2 = Db+ 2n+1Kn(diamF )n−1,

where in the last inequality we used that the number of vectors
k such that |k|1 ≤ K is less or equal than 2nKn.

The previous identities worked outside of Z. Let us understand the
set F (d, β,K) when we are ate Z.

F (d, β,K) := (F − d) \ ⋃k∈Zn\{0}
|k|1≤K

∆cq̂(k, β
|k|τ1

)

= (F − d) \


⋃k∈Zn\{0}

|k|1≤K
k̄ 6=0

∆cq̂(k, β
|k|τ1

)


∪

⋃k∈Zn\{0}
|k|1≤K
k̄=0

∆cq̂(k, β
|k|τ1

)




= (F − d) \


⋃k∈Zn\{0}

|k|1≤K
k̄ 6=0

∆cq̂(k, β
|k|τ1

)


∪

⋃ k1∈Z\{0}
|k|1≤ β

|k1|τ
K′
Rn

.

Note that if for some k1 ∈ Z\{0}, |k|1 ≥ β
|k|τ1
K′, we take out all the

possible frequencies. Then seems natural to ask |k|1 ≥ β
|k|τ1
K′ for all

k1 ∈ Z\{0}, which holds if and only if |k1|1+τ ≥ βK ′ for all k1 ∈ Z\{0}
or simply β ≤ 1

K′ which we assumed. Then

F (d, β,K) := (F − d) \
⋃

k∈Zn\{0}
|k|1≤K
k̄ 6=0

∆cq̂(k,
β

|k|τ1
).

Hence we can replicate the proof of 1 only with the terms k̄ 6= 0. And
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the bound of 2 can be slightly improved by using that the number of
vectors k ∈ Zn \ {0} such that |k|1 ≤ K and |k̄| 6= 0 is bounded by
2nKn −K, but since it is not a big improve, for the sake of simplicity
we assume the bound 2 at Z.

Lemma 7.2.26. Let G ⊂ Rn be compact. u, ũ : G→ Rn maps of class
C2. |ũ − u| ≤ ε. Assume that u is one-to-one on G, let F = u(G).
Consider the following bounds:∣∣∣∣∣∂u∂I

∣∣∣∣∣
G

≤M,

∣∣∣∣∣∂u∂I (I) · v
∣∣∣∣∣ ≥ µ|v| ∀v ∈ Rn,∀I ∈ G,

∣∣∣∣∣∂ũ∂I
∣∣∣∣∣
G

≤ M̃,

∣∣∣∣∣ ∂ũ∂I2

∣∣∣∣∣
G

≤ M̃2,

∣∣∣∣∣∂ũ∂I (I)v
∣∣∣∣∣ ≥ µ̃|v| ∀v ∈ Rn,∀I ∈ G,

µ̃ < µ and M̃ < M . Assume ε ≤ m̃u2/(4M̃2). Then, given a subset
F̃ ⊂ F − 4Mε

µ̃
and writing G̃ = (ũ)−1(F̃ ), the map ũ is one-to-one from

G̃ to F̃ and
G̃ ⊂ G− 2ε

µ̃
, u(G̃) ⊃ F̃ − ε.

Moreover,
|(ũ)−1 − u−1|F̃ ≤

ε

µ

Proof. The statement is not any different than the classical one, so we
are not going to prove it in here. A proof can be found in [19].

Lemma 7.2.27 (Inductive lemma). Let G ⊂ Rn be a compact.

H(φ, I) = ĥ(I) +R(φ, I)

where ĥ is defined as in 7.1 in the domain Dρ(G),and R(φ, I) analytic
on the same domain. Let û = ∂ĥ

∂I
and u = ∂h

∂I
. Assume that | ∂

∂I
u|G,ρ2 ≤

M ′ and |u|G ≤ L. Also, assume that u is non-degenerate:∣∣∣∣∣∂u∂I v
∣∣∣∣∣ ≥ µ|v| ∀I ∈ G.
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Let M̃ > M , L̃ > L and µ̃ < µ. Assume u is one-to-one on G and
denote F = u(G). Assume τ > 0, 0 < β ≤ 1 and K given. Assume
also that

F ∩∆c,q̂

(
K,

β

|k|τ1

)
= ∅, ∀k ∈ Zn, |k|1 ≤ K, k 6= 0.

Denote ε := ‖DR‖G,ρ,c, η := |R0|G,ρ2 and ξ :=
∣∣∣∂R0
∂I

∣∣∣
G,ρ2

.

1. ρ2 ≤ β
2MKτ+1

2. ε ≤ min
(

βδ̂c
74AKτ ,

µ̃2(ρ2−δ2)
4M̃

)
3. ξ ≤ min

(
(M̃ −M)δ2/R, (µ− µ̃)ρ2

)
Then there exists a real canonical transformation

Φ : Dρ− δ2 (G)→ Dρ(G)

and a decomposition H ◦Φ = ˜̂
h(I)+ R̃(φ, I). Writing ũ = ∂

∂I
h̃ one has.

1. |ũ− u|G,ρ2 = ξ, |h̃− h|G,ρ2 = η,

2. ε̃ := ‖DR̃‖G,ρ−δ,c ≤ e−Kδ1ε+ 14AKτ

βδ̂c
ε2,

3. η̃ := |R̃0|G,ρ2−
δ2
2
≤ 7AKτ

cβ
ε2,

4. |Φ− Id|G,ρ− δ2 ,c ≤
2AKτ

β
ε,

5.
∣∣∣ ∂
∂I
ũ
∣∣∣
G,ρ2
≤ M̃ ′, |ũ|G ≤ L̃,

6. |∂ũ
∂I
v| ≥ µ̃|v| ∀I ∈ G,

7. Given a subset F̃ ⊂ F − 4Mε
µ̃

, G̃(ũ)−1(F̃ ) the map ũ is one-
to-one from G̃ to F̃ , G̃ ⊂ G − 2ε

µ̃
, u(G̃) ⊃ F̃ − ε. Moreover

|ũ−1 − u−1|F̃ ≤ ε/µ.
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Proof. The set u(I) is β/Kτ , K-non-resonant with respect to ω. This
implies that

|k1B(I1)u1 + k̄ū+A(I1)u1| ≥ β/Kτ . ≥ β

|k|τ1
≥ β

Kτ
. (7.12)

Then ρ2 ≤ β/Kτ

2MK
= β

2MKτ+1 , ‖DR‖G,ρ,c ≤ β/Kτ δ̂c
74A = βδ̂c

74AKτ . We apply
the iterative lemma (Theorem 7.2.20) to obtain Φ : Dρ− δ2 (G)→ Dρ(G),
such that H ◦ Φ = h̃+ R̃ where h̃ = h+R0.

We have taken out the points that are not β/Kτ , K-non-resonant
with respect to ω. Because of conditions 1 and 2 we can apply the
Iterative lemma. Now let us prove each of the points in the statement.

1. We know by definition that ũ = ∂h̃
∂I

= ∂(h+R0)
∂I

= ∂h
∂I

+ R0
∂I

, hence:

|ũ− u|G,ρ2 = |∂h
∂I

+ ∂R0

∂I
− ∂h

∂I
|G,ρ2 = |∂R0

∂I
|G,ρ2 = ξ

h̃ = h+R0 ⇒ |h̃− h|G,ρ2 = |h+R0 − h|G,ρ2 = |R0|G,ρ2 = η

2. By the iterative lemma:

‖DR̃‖G,ρ−δ,c ≤ e−Kδ1‖DR‖G,ρ,c + 14A
αδ̂c
‖DR‖G,ρ,c

≤ e−Kδ1ε+ 14A
αδ̂c
ε2

= e−Kδ1ε+ 14AKτ

βδ̂c
ε2,

where we have used that α = β
Kτ .

3. At this point we use an inequality used in the proof of the itera-
tive Lemma (theorem 7.2.20).

|R̃0|G,ρ2−δ2/2 ≤ |r2(h,W, 1) + r1(R,W, 1)|G,ρ2−δ2/2

≤ 7A
αc
‖DR‖2

G,ρ,c = 7AKτ

β
ε2.

4. Also using the the iterative Lemma:

|Φ− id|G,ρ−δ/2,c ≤
2A
α
‖DR‖G,ρ,c = 2AKτ

β
‖DR‖G,ρ,c.
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5. Recall that | ∂
∂I
Aωũ|G,ρ2−δ2 ≤ M̃ , |ũ|G ≤ L̃, h̃ = h+R0, | ∂

∂I
Aωu|G,ρ2 ≤

M , |u|G ≤ L. Note that A(I1) ≤ m · maxj(qj)/minj(cj) and
B(I1) ≤ 1/minj(cj). HenceA(I1)+B(I1) ≤ maxj(qj)/minj(cj)+
1/minj(cj) := R, and we have that |Aω| ≤ R.

| ∂
∂I
Aωũ|G,ρ2−δ2 = | ∂

∂I
Aωũ+ ∂

∂I
Aωu− ∂

∂I
Aωu|G,ρ2−δ2

≤ | ∂
∂I
Aω(ũ− u)|G,ρ2−δ2 + | ∂

∂I
Aωu|G,ρ2−δ2

≤ | ∂
∂I
AωR0|G,ρ2−δ2 +M

≤ |Aω |G,ρ2 |R0|G,ρ
δ2

+M

≤ |Aω |G,ρ2 ·ξ
δ2

+M

≤ Rξ
δ2

+M

≤
( (M̃−M)δ2

R )R
δ2

+M ≤ M̃ −M +M = M̃,

where ξ ≤ (M̃ −M)δ2/R.

6. We know |∂u
∂I

(I)v| ≥ µ|v| for all I ∈ G, then |∂u
∂I

(I)v|G ≥ µ|v|.
We want to find |∂ũ

∂I
(I)v|G ≥ µ′|v| if µ′ < µ.

|∂ũ
∂I
v|G = |(∂ũ

∂I
+ ∂u

∂I
− ∂u

∂I
)v|G

= |(∂2R0
∂I2 + ∂u

∂I
)v|G

≥ −|∂2R0
∂I2 v|G + |∂u

∂I
v|G

≥ µ|v| − |∂2R0
∂I2 |G|v|

≥ µ|v| − |∂R0
∂I
|G 1

δ2
|v|

≥ µ|v| − ξ
ρ2
|v| = (µ− ξ/ρ2)|v| ≥ µ′|v|,

where we have used that |∂2R0
∂I2 |G ≤ |∂R0

∂I
| 1
ρ2

, and also that µ′ <
µ− ξ/ρ2, hence ξ ≤ (µ− µ′)ρ2.

7. To apply lemma 7.2.26 we only need to check that ε ≤ µ̃2

M̃2
.

M̃2 can be chosen such that |∂2u
∂I2 |G ≤ M̃2. Note that |∂2u

∂I2 |G ≤
|∂2u
∂I2 |G,ρ2−δ2 .

|∂u
∂I
|G,ρ2−δ2 ≤ M̃ ⇒ |∂2u

∂I2 |G,ρ2−δ2(ρ2 − δ2) ≤ |∂u
∂I
|G,ρ2−δ2 ≤ M̃

⇒ |∂2u
∂I2 |G,ρ2−δ2 ≤ M̃

ρ2−δ2
= M̃2

⇒ |∂2u
∂I2 |G ≤ M̃2
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Then ε ≤ M̃
4M̃2

if and only if ε ≤ µ2/(4 M̃
(ρ2−δ2)) if and only if

ε ≤ µ2(ρ2−δ2)
4M̃ which it is assumed in the statement.

7.3 KAM theorem on bm-symplectic man-
ifolds

Theorem 7.3.1 (bm-KAM theorem). Let G ⊂ Rn, n ≥ 2 be a compact
set. Let H(φ, I) = ĥ(I) + f(φ, I), where ĥ is a bm-function ĥ(I) =
h(I) + q0 log(I1) + ∑m−1

i=1
qi
Ii1

defined on Dρ(G), with h(I) and f(φ, I)
analytic. Let û = ∂ĥ

∂I
and u = ∂h

∂I
. Assume |∂u

∂I
|G,ρ2 ≤ M , |u|G ≤ L.

Assume that u is µ non-degenerate (|∂u
∂I
v| ≥ µ|v| for some µ ∈ R+ and

I ∈ G. Take a = 16M . Assume that u is one-to-one on G and its
range F = u(G) is a D-set. Let τ > n− 1, γ > 0 and 0 < ν < 1. Let

1.
ε := ‖f‖G,ρ ≤

ν2µ2ρ̂2τ+2

24τ+32L6M3γ
2, (7.13)

2.
γ ≤ min(8LMρ2

νρ̂τ+1 ,
L

K′
) (7.14)

3.
µ ≤ min(2τ+5L2M, 27ρ1L

4Kτ+1, βντ+122τ+1ρτ1), (7.15)

where ρ̂ := min
(

νρ1
12(τ+2) , 1

)
. Define the set Ĝ = Ĝγ := {I ∈ G −

2γ
µ
|u(I) is τ, γ, c, q̂−Dioph.}. Then, there exists a real continuous map
T :W ρ1

4
(Tn)× Ĝ→ Dρ(G) analytic with respect the angular variables

such that

1. For all I ∈ Ĝ the set T (Tn×{I}) is an invariant torus of H, its
frequency vector is equal to u(I).
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2. Writing T (φ, I) = (φ+ Tφ(φ, I), I + TI(φ, I)) with estimates

|Tφ(φ, I)| ≤ 22τ+15ML2

ν2ρ̂2τ+1
ε

γ2

|TI(φ, I))| ≤ 210+τL(1 +M)
νρ̂τ+1

ε

γ

3. meas[(Tn×G)\T (Tn×Ĝ)] ≤ Cγ where C is a really complicated
constant depending on n, µ, D, diamF , M , τ , ρ1, ρ2, K and L.

Proof. This proof, as the one in [19] is going to be structured in six
sections. First we define the parameters used in each iteration while
building the diffeomorphism. After that, we prove that we can apply
the inductive lemma 7.2.27 and we prove some bound that hold using
the results of the inductive lemma. After that we find that the suc-
cession of frequency vectors and the succession of diffeomorphisms we
built actually converge. Then we find estimates of the components of
the canonical transformation we have built. Then we find a way to
identify the invariant tori and finally we give a bound for the measure
of the set fo invariant tori.

1. Choice of parameters

We are going to make iterative use of proposition 7.2.27. So we
need to properly define all the parameters in the statement for
every iteration. Let:

Mq = (2− 1
2q )M,

Lq = (2− 1
2q )L,

µq = (1 + 1
2q )µ2 .

Note that Mq, Lq monotonically increase from M to 2M and L to
2L when q →∞. On the other hand µq monotonically decreases
from µ to µ/2. Also, let:
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 K0 = 0,
Kq = K · qq−1, q ≥ 1,

where K is the minimum natural number such that is greater or
equal than 1/ρ̂ and greater or equal than ( νβ

µ22τ+12 )1/τ . Moreover
β := γ/L ≤ 1, and


ρ(q) = (ρ(q)

1 , ρ
(q)
2 ),

ρ
(q)
1 = (1 + 1

2νq )ρ1
4 ,

ρ
(q)
2 = νβ

32MKτ+1
q+1

.

Notice that ρ(q)
1 decreases monotonically from ρ1/2 to ρ1/4. Also,

ρ
(q)
2 decreases to 0. We also denote:


δ

(q)
1 = ρ

(q−1)
1 − ρ(q)

1 ,

δ
(q)
2 = ρ

(q−1)
2 − ρ(q)

2 ,

cq = δ
(q)
2
δ

(q)
1
.

Note that
δ

(q)
1 =

(
1 + 1

2ν(q−1

)
ρ1
4 −

(
1 + 1

2νq
)
ρ1
4

=
(

1
2ν(q−1) − 1

2νq
)
ρ1
4

= 1−1/2ν
2ν(q−1)

ρ1
4 .

Also, since 0 < ν < 1 then ν/2 ≤ 1− 1/2ν ≤ ν. Using this in the
previous equation we obtain:

νρ1

2ν(q−1)8 ≤ δ
(q)
1 ≤

νρ1

2ν(q−1)4 . (7.16)

Also,

δ
(q)
2 = νβ

32MKτ+1
q
− νβ

32MKτ+1
q+1

= νβ
32M(K2q−1)τ+1 − νβ

32M(K2q)τ+1

= νβ
32M(K2q−1)τ+1

(
1− 1

2τ+1

)
.
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Also, since τ > 0 then 1/2 ≤ (1− 1/2τ+1) ≤ 1. Using this in the
previous equation:

νβ

64MKτ+1
q

≤ δ
(q)
2 ≤

νβ

32MKτ+1
q

. (7.17)

Using equations 7.16 and 7.17 we find bounds for cq



cq ≤

(
νβ

32MKτ+1
q

)
(

νρ1
2ν(q−1)

) = β2ν(q−1)

4MKτ+1
q ρ1

,

cq ≥

(
νβ

64MKτ+1
q

)
(

νρ1
2ν(q−1)4

) = β2ν(q−1)

16MKτ+1
q ρ1

.

Then, we also define

 βq = (1− 1
2νq )β,

β′q = βq+βq+1
2 .

Observe that both βq and β′q tend to β. Also observe that β′q ≥
ν
4β, because:

β′q = βq+βq+1
2

=
(1− 1

2νq )+
(

1− 1
2ν(q+1)

)
2 β

=
(

1−
(

1+ 1
2ν

2νq

)
1
2

)
β

≥
(
1− (1− 1/2ν)1

2

)
β ≥ ν

4β.

Because K is the minimal natural number such that K ≥ 1/ρ̂
then K ≤ 2/ρ̂. Hence ρ̂ ≤ 2

K
. Also

1
ρ̂τ+1 ≥

(
K

2

)τ+1
.

Recall that ρ̂ = min( νρ1
12(τ+2) , 1) and, in particular, ρ̂ ≤ νρ1 and

ρ̂ ≤ 1.
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By definition γ ≤ 8LMρ2
νρ̂τ+1 . And because β = γ/L:

βL ≤ 8LMρ2

νρ̂τ+1 ≤
8LMρ2K

τ+1

ν
.

Because we assumed ε ≤ ν2µ2ρ̂2τ+2

24τ+32L6M3γ
2 then, using that γ = Lβ

and ρ̂ ≤ 2/K:

ε ≤
ν2µ2

(
2
K

)2τ+2

24τ+32L6M3 ≤
ν2µ2β2

24τ+30L4M3K2τ+2 . (7.18)

Also using again the assumption that ε ≤ ν2µ2ρ̂2τ+2

24τ+32L6M3γ
2 we want

to prove that

ε ≤ ν3ρ1β
2

22τ+22MK2τ+1 . (7.19)

It is enough to check that:

ν2µ2ρ̂2τ+2L2β2

24τ+32L6M3 ≤ ν3ρ1β
2

22τ+22MK2τ+1

where we used γ = Lβ. Now using ρ̂ ≤ νρ1 it suffices to see

ν2µ2ν2τ+2ρ2τ+2
1 L2β2

24τ+32L6M3 ≤ ν3ρ1β
2

22τ+22MK2τ+1 ,

which simplifies to

µ2ρ2τ+2
1

24τ+10L4M2 ≤
1

K2τ+1 .

Using that K ≥ 1/(νρ1) is enough to see that

µ2ρ2τ+1
1 ν2τ+2

22τ+12L4M2 ≤ (νρ1)2τ+1,

which holds if and only if µ ≤ 2τ+5L2M as we assumed.
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2. Induction

Let us take G0 = G. The objective now is to construct a decreas-
ing sequence of compacts Gq ⊂ G and a sequence of real analytic
canonical transformations

Φ(q) : Dρ(q)(Gq)→ Dρ(q−1)(Gq−1), q ≥ 1.

Denoting Ψ(q) = Φ1 ◦ · · · ◦ Φ(q) the transformed Hamiltonian
functions will be noted by H(q) = H ◦Ψ(q) = ĥ(q)(I) +R(q)(φ, I).
Moreover, u(q) = ∂h(q)

∂I
and û(q) = ∂ĥ(q)

∂I
.

We are going to show that the following bounds hold for all q ≥ 0:

(a) εq := ‖DR(q)‖Gq ,ρ(q),cq+1 ≤
8ε

νρ12(2τ+2)q ,

(b) ηq := |R(q)
0 |Gq ,ρ(q)

2
≤ ε

2(2τ+3)q and ξq := |∂R
(q)
0
∂I
|
Gq ,ρ

(q)
2
≤ 4MKτ+1ε

νβ2(τ+2)q ,

(c) |∂2h(q)

∂I2 |Gq ,ρ(q)
2
≤Mq, |u(q)| ≤ Lq ∀I ∈ Gq,

(d) u(q) is µq-non-degenerate on Gq,

(e) u(q) is one-to-one on Gq, and u(q)(Gq) = Fq where we define:

Fq := (F − βq) \
⋃

k∈Zn\{0}
|k|1≤K

∆cq ,q̂(K,
βq
|k|τ1

)

To prove this we proceed by induction. For q = 0:


G0 = G,
h(0) = h, ĥ(0) = ĥ,

R(0) = f.

Using the definitions from the previous point:

 ρ
(0)
1 = (1 + 1)ρ1

4 = ρ1/2,
ρ

(0)
2 = νβ

32MKτ+1 ≤ ρ2
2 ,
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where in the last inequality we have used that β ≤ 8Mρ2Kτ+1

ν
and

hence ρ2 ≥ βν
8MKτ+1 .

Then,

ε0 = ‖Df‖G,ρ(0),c1 = ‖Df‖G,ρ(1)+δ(1).

Now, let us use that |DΥ|G,ρ−δ,c ≤ 2|Υ|G,ρ,c
δ̂c

while having in mind
that δ̂(1)

c1 = min(c1δ
(1)
1 , δ

(1)
2 ). Then,

‖Df‖G,ρ(1),c1 ≤
c1|f |G,ρ(0)

δ̂c1

≤
|f |G,ρ(0)

δ
(1)
1

≤
|f |G,ρ(0)8
νρ1

= 8ε
νρ1

,

where we have used δ
(1)
1 ≥ νρ1

8·2ν(1−1) = νρ1
8 . This proves the base

case for 2a).

Let us prove now the base case for 2b). On one side η0 =
|R(0)

0 |G0,ρ2(0) ≤ ε
2(2τ+3)0 = ε, which holds because |R(0)

0 |G0,ρ
(0)
2
≤

|R(0)|G,ρ(0) = |f |G,ρ(0) = ε. On the other hand ξ0 = |∂R
(0)
0
∂I
|
G0,ρ

(0)
2
≤

|∂R
(0)
0
∂I
|G0,ρ2−ρ2/2 ≤ 1

ρ2/2‖R0‖G,ρ ≤ 2ε
ρ2
≤ ε

ρ
(0)
2

, where we used that
ρ2(0) ≤ ρ2/2 = ρ2 − ρ2/2.

The base case of 2c) is immediate because |∂2h(0)

∂I2 |G0,ρ
(0)
2
≤ |∂2h

∂I2 |G,ρ2 =
M = M0 and also |u(0)|G0 = |u|G ≤ L = L0.

The base case of 2d holds because u(0) = u is µ non-degenerate
in G = G0.

The base case of 2e holds because u(0) = u is one-to-one inG0 = G
by hypothesis. u(0)(G0) = F0 where F0 = (F − β0) \ {∅} = F

because K0 = 0 and β0 = 0.

For q ≥ 1, we assume the statements true for q− 1 and we prove
it for q. Let us apply proposition 7.2.27 (Inductive Lemma) to
H(q−1) = hq−1 +Rq−1 with Kq instead of K.

We have to be careful with the condition F ∩ ∆c,q̂(k, β
|k|τ1

) = ∅
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∀k ∈ Zn, |k|1 ≤ Kq, k 6= 0 and with the definition

Fq−1 := (F − βq−1) \
⋃

k∈Zn\{0}
|k|1≤K

∆c,q̂(k,
βq−1

|k|τ1
),

because the resonances have to be removed up to order Kq, not
Kq−1. Let us define

F ′q−1 := (F − βq−1) \
⋃

k∈Zn\{0}
|k|1≤K

∆c,q̂(k,
β′q−1

|k|τ1
)

where we simply replaced βq−1 for β′q−1 because ∆c,q̂(k, βq−1
|k|τ1

)
makes no sense when q = 1, βq−1 = 0.

Accordingly let us define G′q−1 := (u(q−1))−1(F ′q−1). The condi-
tions in proposition 7.2.27 are going to be satisfied with F ′q−1,
β′q−1, Kq, Mq−1, Lq−1, µq−1,ρ(q−1), δ(q), cq, Mq, Lq, µq replacing
F, β,K,M,L, µ, ρ, δ, c, M̃ , L̃, µ̃. And also a = 16M ≥ 8Mq.

We are now going to check that 1, 2 and 3 are satisfied so we can
apply proposition 7.2.27.

– 1 We want to see that ρ
(q−1)
2 ≤ β′q−1

2MqK
τ+1
q

. By definition

ρq−1
2 = νβ

32MKτ+1
q
≤ 4β′q−1

32MKτ+1
q
≤ β′q−1

8MqK
τ+1
q
≤ βq−1

2MqK
τ+1
q

, where we
used that Mq ≥M .

– 2 We want to see that εq−1 ≤ min
(

βq−1ρ̂
(q)
c

74AqKτ
q−1
,
µτq (ρ(q−1)

2 −δ(q−1)
c )

4Mq

)
,

where Aq := 1 + 2Mq−1cqKτ
q

β′q−1
.

Notice that:
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Aq := 1 + 2Mq−1cqKτ
q

β′q−1

≤ 1 + 8Mq−1cqKτ
q

νβ

≤ 1 + 8Mq−1β2ν(q−1)Kτ
q

4MKτ+1
q ρ1νβ

= 1 + 2Mq−12ν(q−1)

MKqρ1ν

= 1 + 2Mq−12ν(q−1)

MK2q−1ρ1ν

≤ 1 + 4M2q−1

MK2q−1ρ1ν

= 1 + 4
Kρ1ν

≤ 1 + 4 = 5

First we will check that εq−1 ≤ βq−1ρ̂
(q)
c

74AqKτ
q−1

.
By induction hypothesis we know that εq−1 ≤ 8ε

νρ12(2τ+2)(q−1) .
Hence it is enough to see

8ε
νρ12(2τ+2)(q−1) ≤

β′q−1δ
(q)
2

75 · 5Kτ
q

.

Notice that
β′q−1δ

(q)
2

379Kτ
q
≥ νβ

4
νβ

64MKτ+1
q

1
37Kτ

q

= ν2β2

4·64·370
1

MK2τ+1
q

= ν2β2

4·64·370·M2(q−1)(2τ+1)K2τ+1 .

And this holds if the following is true:

8ε
νρ1
≤ ν2β2

4 · 64 · 379 ·K2τ+1M
⇔ ε ≤ ν3β2ρ1

212135MK2τ+1 .

Which is true because in the previous section we have seen
that ε ≤ ν3ρ1β2

22τ+30MK2τ+1

Let us now prove that ε ≤ µ2
q(ρ

(q−1)
2 −δ(q−1)

2 )
2Mq

. First of all ob-
serve that (ρ(q−1)

2 − δ(q)
2 ) = ρ

(q)
2 . So, what we want to prove

is equivalent to proving εq−1 ≤
µ2
qρ

(q)
2

2Mq
.

On the other hand, we know that εq−1 ≤ 8ε
νρ12(2τ+2)(q−1) . And

observe also that µ2
qρ

(q)
2

2Mq
≥ (µ/2)2 νβ

32MKτ+1
2M = µ2νβ

28M2Kτ+1 .
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If are able to check that 8ε
νρ12(2τ+2)(q−1) ≤ µνβ

28M2Kτ+1 we would
be fine. The previous equation holds if and only if the fol-
lowing holds,

ε ≤ µν2βρ12(2τ+2)(q−1)

211M2Kτ+1 .

If we knew beforehand that ε ≤ µν2βρ12−(2τ+2)

211M2Kτ+1 = µν2βρ1
22τ+13M2Kτ+1

we would be done.
But we also know that

ε ≤ ν2µ2β2

22τ+30L4M3K2τ+2 .

Then it is enough to check that

ν2µ2β2

22τ+30L4M3K2τ+2 ≤
µν2βρ1

22τ+13M2Kτ+1 .

And this holds because µ ≤ 27ρ1L
4Kτ+1

– 3 Lastly we want to see that

ξq−1 ≤ min((Mq −Mq−1)δ
(q)
2
R
, (µq−1 − µq)ρ(q−1)

2 ).

Observe that R does not depend on q because at each itera-
tion ĥ(q) singular part is not modified. ĥ(q) = ĥ(q) +R

(q)
0 and

R0 is analytic depending only on the action coordinates. By
induction hypothesis we know that

ξq−1 = |∂R
(q)
0

∂I
|
Gq ,ρ

(q)
2
≤ 4MKτ+1ε

νβ2(τ+2)q .

We are going to check the two different inequalities sepa-
rately

(a) ξq−1 ≤ (Mq −Mq−1) δ
(q)
2
R . Note that Mq = (2 − 1

2q )M ,
then Mq −Mq−1 = M

2q .

δ
(q)
2 ≥

νβ

64M(K2q−1)τ+1 ≥
νβ

64M(K2q)τ+1
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= νβ

64MKτ+1
1

2qτ+q .

We deduce

(Mq −Mq−1)δ(q)
2 ≥

νβ

64Kτ+1
1

2τq+2q .

Hence we only need to check that

4MKτ+1ε

νβ2(τ+2)q ≤
νβ

64Kτ+1
1

2τq+2q .

The previous condition holds if and only if

4MKτ+1ε

νβ
≤ νβ

26Kτ+1 ⇔ ε ≤ ν2β2

2K2τ+2M
.

On the other hand, let us use again ε ≤ ν2µ2β2

22τ+30L4M3K2τ+2 .
If we apply the condition µ ≤ 2τ+6L2M in the last
expression we obtain:

ε ≤ ν2β222τ+12L4M2

22τ+30L4M3K2τ+2 = ν2β2

28K2τ+2M
.

(b) ξq−1 ≤ (µq−1 − µq)ρ(q−1)
2 .

Observe that

µq = (1 + 1
2q )µ2 ,

(µq−1−µq) = ((1 + 1
2q−1 )− (1 + 1

2q ))µ2 = ( 1
2q−1 −

1
2q )µ2

=
(2− 1

2q
)
µ

2 = 1
2q
µ

2 = µ

2q+1

Also,

ρ
(q−1)
2 = νβ

32MKτ+1
q

= νβ

32M(K2q−1)τ+1

≥ νβ

32MKτ+12q(τ+1) .
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Then,

(µq−1 − µq)ρ(q−1)
2 ≥ µ

2q+1
νβ

32MKτ+12q(τ+1) .

Then we only have to check that

4MKτ+1ε
νβ2τq+2q−2 ≤ µ

2q+1
νβ

32MKτ+12q(τ+1)

= µ
2τq+2q+1

νβ
32MKτ+1 .

Which holds if and only if

MKτ+1ε

νβ2−2 ≤ µ

2
νβ

32MKτ+1 .

Then,

ε ≤ µ2−2

2
ν2β2

32M2K2τ+2 = µν2β2

28M2K2τ+2 .

But we know

ε ≤ ν2µ2β2

2τ+30L4M3K2τ+2

≤ ν2µ2τ+5L4Mβ2

2τ+30L4M3K2τ+2

= ν2µβ2

225M2K2τ+2

≤ µν2β2

28M2K2τ+2

as we wanted. In the second inequality we used that
µ ≤ 2τ+5L4M .

So, finally we can apply the inductive lemma 7.2.27 with
the parameters mentioned previously in this section. Hence
we obtain a canonical transformation Φ(q) and a transformed
hamiltonianH(q) = h(q)+R(q). The new domainsGq ⊂ G′q−1

are going to be specified in the following lines. So now we
are going to prove 2a,2b,2c,2d,2e.

– 2a. We want to see εq := ‖DR(q)‖Gq ,ρ(q),cq+1 ≤
8ε

νρ12(2τ+2)q .
By the second result of proposition 7.2.27 we have:
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εq ≤ e−Kqδ
(q)
1 εq−1 +

14AqKτ
q

β′q−1δ
(q)
2
ε2
q−1. (7.20)

Now we are going to bound each term of the right hand
of the expression at a time.
Recall that δ(q)

1 ≥ νρ1
82ν(q−1) .

Kqδ
(q)
1 ≥ K2q−1 νρ1

8 2−ν(q−1)

= νρ1
8 K2(1−ν)(q−1)

≥ 12(τ+2)
8 2(1−ν)(q−1)

= (3/2τ + 3)2(1− ν)(q − 1)
≥ (2τ + 3)3

4 ≥ (2τ + 3) ln 2,

where we used that Kρ̂ ≥ 1 and hence K ≥ 12(τ+2)
νρ1

. So
we conclude that e−Kqδ

(q)
1 ≤ 1

22τ+3 , and we have bounded
the first term of 7.20. Let us bound the second one.
On one hand we have that

14AqKτ
q

β′q−1
≤

14 · 5Kτ
q

νβ
4

≤
29K2

q

νβ

where we have used that β′q ≥ νβ
4 and Aq ≤ 5.

Now we are going to apply that εq−1 ≤ 8ε
νρ12(2τ+2)(q−1) ,

δ
(q)
2 ≥ νβ

64MKτ+1
q

and ε ≤ ν3ρ1β2

22τ+22MK2τ+1 to obtain

14AqKτ
q

β′q−1δ
(q)
2
εq−1 = 14AqKτ

q

β′q−1

1
δ

(q)
2
εq−1

≤ 29Kτ
q

νβ

64MKτ+1
q

νβ
8ε

νρ12(2τ+2)(q−1)

≤ 218MK2τ+1
q

ν3β2ρ12(2τ+2)(q−1)
ν3ρ1β2

22τ+22MK2τ+1

≤ 2182(q−1)(2τ+1)−(2τ+2)(q−1)−(2τ+22)

= 2(1−q)2−2τ−4 = 1
22τ+32q−1 .

This gives us the bound of the second term of 7.20. Now
we put both bounds together:
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εq ≤
1

22τ+3 εq−1 + 1
22τ+3

1
2q−1 εq−1 ≤

1
22τ+2 εq−1.

That implies εq ≤ ε
2(2τ+2)(q−1) as we wanted. Because we

can assume νρ1 ≤ 1.
– 2b

Let us write σ(q)
2 = ρ

(q−1)
2 − δ(q)

2 /2 = ρ
(q)
2 + δ

(q)
2 /2 ≥ ρ

(q)
2 ,

then ηq = |R(q)
0 |Gq ,ρ(q)

2
≤ |R(q)

0 |Gq ,σ(q)
2

.
By the inductive lemma 7.2.27:

ηq ≤ 7AqKτ
q

cqβ′q−1
ε2
q−1

≤ 7AqKτ
q

β′q−1
ε2
q−1

δ
(q)
1
δ

(q)
2

= 14AqKτ
q

β′q−1δ
(q)
2
ε2
q−1

δ
(q)
1
2

≤ 1
22τ+32q−1 εq−1

δ
q)
1
2

≤ 1
2

δ
(q)
1

22τ+32q−1
ε

νρ12(2τ+2)(q−1)

≤ 1
2

νρ1
4·2ν(q−1)

1
22τ+32q−1

8ε
νρ12(2τ+2)(q−1)

≤ ε
2(2τ+3)q .

For the second part we only need to apply Cauchy in-
equalities:

ξq ≤
2
δ

(q)
2
|Rq

0|Gq ,ρ(q)
2
≤ 2
δ

(q)
2

ε

2(2τ+3)q .

– 2c and 2d are direct from lemma 7.2.27.
– 2e We need to consider again the results from lemma

7.2.27 with Fq as F . We have to check the condition
Fq ⊂ F ′q−1 −

4Mq−1εq−1
µq

. Let us define dq := βq−βq−1
2Kτ+1

q
.

Using that F ′q−1 := (F − βq−1) \ ⋃k∈Zn\{0}
|k|1≤K

∆c,q̂(k.
β′q−1
|k|τ1

)

we have

F ′q−1−dq ⊃ (F−(βq−1+dq))\
⋃

k∈Zn\{0}
|k|1≤K

∆c,q̂(k,
β′q−1

|k|τ1
+|k|dq).
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Moreover,



βq−1 + dq ≤ βq, and
β′q−1
|k|τ1

+ |k|dq =
β′q−1+|k|τ1 |k|

βq−βq−1
2Kτ+1
q

|k|τ1

≤
β′q−1+Kτ+1

q
βq−βq−1

2Kτ+1
q

|k|τ1
= β′q−1+βq

2 −
βq−1

2
|k|τ1

= βq
|k|τ1
.

Now if we see that 4Mq−1εq−1
µq

≤ dq we will have the
inclusion we want. Observe that 4Mq−1

µq
≤ 4·2M

µ/2 = 16M
µ

.
So, it is enough to check that 16M

µ
εq−1 ≤ dq.

εq−1 ≤ 8ε
νρ12(2τ+2)q

≤ 8ν3ρ1β2

νρ12(2τ+2)q2(2τ+22)MK2τ+1

≤ 8ν2β2

2(2τ+2)q+2τ+20MK2τ+1

≤ 8ν2β
2(βq−βq−1)

ν

2(τ+1)q+(τ+1)q+2τ+20MK2τ+1

= 8νβ2(βq−βq−1)
2(τ+1)+(τ+1)q+2τ+20MKτ+1

q Kτ

= 8νβ2
2(τ+1)+(τ+1)q+2τ+19MKτ

(βq−βq−1)
2Kτ+1

q

= νβ
2(τ+1)+(τ+1)q+2τ+15MKτ dq

≤ νβ
23τ+16MKτ dq.

Hence, it is enough to prove the following:

16M
µ

νβ

23τ+16MKτ
dq ≤ dq.

Wich holds if an only if

16M
µ

νβ

2τ+16MKτ
≤ 1⇔ Kτ ≥ νβ

µ2τ+12 ,

which we assumed when choosing K.

3. Convergence of diffeomorphisms

Now we are going to prove the convergence of the successive maps

u(q) : Gq → Fq
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i.e. we want to see that exist proper sets G∗, F ∗ and an analytical
map u∗ such that u(q) : Gq → Fq converge to u∗ : G∗ → F ∗.

Let us use lemma 7.2.27 as before.

For q ≥ 1 we obtain

|u(q) − u(q−1)|Gq ≤ ξq and |(u(q))−1 − (u(q−1))−1|Fq ≤
εq
µq
.

Now, because the following two inequalities hold

 ξq ≤ 4MKτ+1ε
νβ2(τ+2)q

εq
µq
≤ 8ε

νρ122τ+2q
1

(1+ 1
2q )µ2

= 8ε2q−1

νβ2(2τ+2)q(2q+1)µ

the sequences uq and (u(q))−1 converge to maps u∗ and Υ respec-
tively. This maps are defined on the following sets:

G∗ := ⋂
q≥0Gq,

F ∗ := ⋂
q≥0 Fq = (F − β) \ ⋃k∈Zn\{0}

|k|1≤K
∆c,q̂(k, β

|k|τ1
).

The second equality holds because F ∗ is a compact for being
intersection of compact sets. We can now deduce that

|u∗ − u(q)|G∗ ≤
∑
s≥q |u(q) − u(q−1)|G∗

≤ ∑
s≥q |u(q) − u(q−1)|G

≤ ∑
s≥q ξq.

with the same argument we see that |Υ − (u(q))−1|F ∗ ≤ . . . ≤∑
s≥q

εq
µq

.

The next steps are going to be to prove that Gq ⊂ Gq−1 − 2εq−1
µq−1

and Fq ⊂ Fq−1 − 4Mq−1εq−1
µq−1

. If we check it and we take the limit
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we would have:

G∗ ⊂ Gq −
∑
s≥q

2εq
µq

and F ∗ ⊂ Fq −
∑
s≥q

4Mqεq
µq

.

Let us first check Fq ⊂ Fq−1− 4Mq−1εq−1
µq−1

. Let us define x := 4Mq−1
µq−1

.

Fq−1 − x ⊃ (F − (βq−1 + x)) \ ⋃k∈Zn\{0}
|k|1≤K

∆c,q̂(k, βq−1
|k|τq

+ |k|x)

⊃ (F − (βq−1 + x)) \ ⋃k∈Zn\{0}
|k|1≤K

∆c,q̂(k, βq−1+Kτ+1
q x

|k|τq
).

To have the inclusion we want, we have to check that:

(a) βq−1 + x ≤ βq.

(b) βq−1+Kτ+1
q x

|k|τ1
≤ βq
|k|τ1
⇔ βq−1 +Kτ+1

q x.

Since the second one implies the first we will only check the
second one.

βq−1 +Kτ+1
q x = βq−1 +Kτ+1

q
4Mq−1εq−1

µq−1

≤ βq−1 +Kτ+1
q

16Mεq−1
µ

≤ βq−1 +Kτ+1
q dq

= βq−1 +Kτ+1
q

βq−βq−1
2Kτ+1

q

= βq−1 − βq−1/2 + βq/2
= βq−1+βq

2

= βq

Where we have used that 16Mεq/µ ≤ dq and that βq is mono-
tonically increasing with q.

The inclusion Gq ⊂ Gq−1− 2εq−1
µq−1

is given as a result of the lemma
7.2.27.

So we proved what we wanted. We are now going to see that u∗
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is one-to-one on G∗ and taht u∗(G∗) = F ∗.

Tale I ∈ G∗, we have that u(q)(I) ∈ Fq for every q. Hence
u∗(I) ∈ F ∗, and we deduce that u∗(G∗) ⊂ F ∗. With the same
argument we see Υ(F ∗) ⊂ G∗. Let us prove that Υ(u∗(I)) = I.

|Υ(u∗(I))− I| ≤ |Υ(u∗(I))− (u(q))−1(u∗(I))
+(u(q))−1(u∗(I))− (u(q))−1(u(q)(I))|

≤ |Υ(u∗(I))− (u(q))−1(u∗(I))|
+|(u(q))−1(u∗(I))− (u(q))−1(u(q)(I))|

≤ |Υ− (u(q))−1|F ∗ + 1
µq
|u∗ − u(q)|G∗ .

Where to bound the second term we used the mean value the-
orem, i.e. |u(q)(x) − u(q)(y)|Gq ≤ | ∂∂Iu

(q)|Gq |x − y|, and the fact
that because of the µq-nondegeneracy, |∂u(q)

∂I
| ≥ µq|v|, ∀v ∈ Rn

and ∀I ′ ∈ Gq. Note that we can use the mean value theorem
because u∗(I)− u(q)(I) belongs to Fq because 4Mqεq

µq
≥ ξq. Let us

prove this inequality. If we want to see 4Mqεq
µq
≥ ξq, it is enough

to see 4Mεq
µ
≥ ξq.

ξq ≤ 2
δ

(q)
2
|R(q)

0 |Gq ,σ(q)
2

≤ 2
δ

(q)
2

δ
(q)
1 εq−1

2
1

22τ+32q−1

= 1
cq

1
22τ+22q−1 εq−1 ≤ 4M

µ
εq−1

The last inequality is true if and only if

µ ≤ β2ν(q−1)22τ+32q−1

Kτ+1
q ρ14

= β2ν(q−1)22τ+32q−1

Kτ+12(τ+1)(q−1)ρ14

≤ β22τ+3

Kτ+1ρ14

= β22τ+1

Kτ+1ρ1

≤ β22τ+1

( 1
νρ1

)τ+1ρ1
= βντ+122τ+1ρt1au
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as we assumed at the statement of the theorem. Since the bound
obtained tends to 0, we have Υ(u∗(I)) = I and hence u∗ is one-to-
one. Analogously we obtain u∗(Υ(J)) = J ∀J ∈ F ∗. Finally u∗

is one-to-one and u∗(G∗) = F ∗. Note also that from the inductive
lemma we obtain |h(q) − h(q−1)|

Gq ,ρ
(q−1)
2
≤ ηq−1. Also observe the

following bound that we are going to use in the next sections.

|u∗ − u(q)|G∗ ≤
∑
s≥q

4MKτ+1ε

νβ2(τ+2)s .

4. Convergence of the canonical transformations

Let σ(q) = ρ(q−1) − δ
(q)
2 /2. Observe that this definition implies

that σ(q)−ρ(q) = δ
(q)
2 and σ(q)−δ(q)

2 = ρ(q). Observe that applying
the inductive lemma 7.2.27:

|Φ(q) − id|Gq ,σ(q),cq ≤ 2Aq−1Kτ
q

β′q−1
εq−1

≤ 2·5·4
νβ

8ε
νρ12(2τ+2)(q−1)

≤ 29Kτ ε
ν2ρ1β2(τ+2)(q−1)

≤ 29Kτν3ρ1β2

ν2ρ1β2(τ+2)(q−1)22τ+22MK2τ+1

≤ 29νβ
2(τ+2)(q−1)22τ+20MKτ+1

= νβ
26M(K2q−1)τ+1

29

2(q−1)22τ+14

≤ δ
(q)
2

1
2(q−1)22τ+5

≤ δ
(q)
2

2(q−1)32 ,

where we have used that δ(q)
2 ≥ νβ

84MKqPτ+1 , ε ≤ ν3ρ1β2

22τ+20MK2τ+1 ,
β ≤ 8MKτ+1ρ2

ν
and β′q−1 ≥ νβ

4 .

Now, recall that δ̂c = min(cδ1, δ2), then δ̂cq = min(cqδ(q)
1 , δ

(q)
2 ) =

min(δ(q)
2 , δ

(q)
2 ) = δ

(q)
2 .

Now using that |DΥ|G,ρ−δ,c ≤ |Υ|G,ρ,c
δ̂c

, we can obtain:

|DΦ(q) − Id|Gq ,ρ(q),cq = |D(Φ(q))− id|Gq ,ρ(q),cq

≤ |D(Φ(q))− id|
Gq ,σ(q)−δ(q)

2 ,cq
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≤
|Φ(q)−id|

Gq,σ
(q),cq

δ̂cq

≤
|Φ(q)−id|

Gq,σ
(q),cq

δ
(q)
2

≤
2|Φ(q)−id|

Gq,σ
(q),cq

δ
(q)
2

≤ 2
δ

(q)
2

δ
(q)
2

2(q−1)·32 ≤
1

2q−116 ≤
1

2(q−1)4

Let x, y be such that the segment joining them is contained in
Dρ(q)(Gq). Using the mean value theorem one can deduce the
following bound:

|Φq(x)− Φq(y)|cq ≤ |DΦ(q)|Gq ,ρ(q),cq · |x− y|cq .

By 7.22, in particular |Φ(q)(x)−x|cq ≤ δq2 and |Φ(q)(y)−y|cq ≤ δq2.
Then the segment that join Φ(q)(x) and Φ(q)(y) is contained in
Dρ(q−1)(Gq−1) = Dρ(q)+δ(q) , because Gq ⊂ Gq−1− 2εq−1

µq−1
and because

ρ(q) − ρ(q−1) ≤ δ
(q)
2 because ρ(q) − ρ(q−1) = δ

(q)
2 .

Therefore we can apply the mean value theorem once again:

|Φ(q−1)(Φ(q)(x))− Φ(q−1)(Φ(q)(y))|cq−1

≤ |DΦ(q−1)|Gq−1,ρq−1,cq−1|Φ(q)(x)− Φ(q)(y)|cq−1

≤ 2τ+1−ν |DΦ(q−1)|Gq−1,ρq−1,cq−1 |Φ(q)(x)− Φ(q)(y)|cq ,

where we have used that cq−1/cq = δ
(q−1)
2 /δ

(q−1)
1

δ
(q)
2 /δ

(q)
1

= δ
(q−1)
2
δ

(q)
2

δ
(q)
1

δ
(q−1)
1

=
2τ+1 1

2ν = 2τ+1−ν .

Using the previous bounds and iterating by q, we obtain the
following:

|Ψ(q)(x)−Ψ(q)(y)|c1

≤ 2(τ+1−ν)(q−1)|DΦ(1)|G1,ρ(1),c1 · . . . · |DΦ(q)|Gq ,ρ(q),cq |x− y|cq
≤ 2(τ+1−ν)(q−1)(1 + 1

4)(1 + 1
4·2) · . . . · (1 + 1

4·2q−1 )|x− y|cq
≤ 2(τ+1−ν)(q−1)e1/2|x− y|cq ≤ 2(τ+1−ν)(q−1) · 2|x− y|cq .
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Which holds for q ≥ 1 and for every x, y such that the segment
joining them is contained in Dρ(q)(Gq). Now, given q ≥ 2 and
x ∈ Dρ(q)(Gq) let y = Φ(q)(x):

|Ψ(q)(x)−Ψ(q−1)(x)|c1 = |Ψ(q−1)(Φ(q)(x))−Ψ(q−1)(x)|c1

≤ 2(τ+1+ν)(q−2)2|Φ(q)(x)− x|cq−1

≤ 2(τ+1+ν)(q−1)2|Φ(q)(x)− x|cq
≤ 2(τ+1+ν)(q−1)2δ(q)

2

≤ 2(τ+1+ν)(q−1)2 28Kτ ε
ν2ρ1β2(τ+2)(q−1)

= 29Kτ ε
ν2ρ1β2(1+ν)(q−1) .

Which holds even for q = 1 by setting Ψ(0) = id by 7.22. Hence
7.25 implies that Ψ(q) converges to a map

Ψ∗ : D(ρ1/4,0)(G∗) =W ρ1
4

(Tn)×G∗ → Dρ(G).

And we deduce for every q ≥ 0 that

|Ψ∗ −Ψ(q)|G∗,( ρ1
4 ,0),c1 ≤

210Kτε

ν2ρ1β2(1+ν)q .

Moreover by taking the limit to the equation

H ◦Ψ(q) = h(q) +R(q)

we see that H ◦Ψ∗ = h∗(I) on D( ρ1
4 ,0)(G∗).

5. Stability estimates

Next we see that for q → ∞, the motions associated to the
transformed hamiltonian Ĥ(q) = ĥ(q) +R(q) and the quasiperiodic
motions of ĥ(q) become closer and closer.

Let us denote x(q)(t) = (φ(q)(t), I(q)(t)) the trajectory of H(q),

x̂(q)(t) = (φ̂(q)(t), Î(q)(t)) the trajectory of Ĥ(q)
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corresponding to a given initial condition x(q)(0) = x∗0 = (φ∗0, I∗0 ) ∈
Tn ×Gq. Let

 x̃(q)(t) := (φ̃(q)(t), I∗0 ) = (φ∗0 + u(q)(I∗0 ))t, I∗0 ,
ˆ̃x(q)(t) := ( ˆ̃φ(q)(t), I∗0 ) = (φ∗0 + u′(q)(I∗0 ))t, I∗0

the corresponding trajectories of the integrable parts of h(q) and
h̃(q) respectively. Recall that ĥ(q)(I) = h(q)(I)+ζ(q)(I1) = h(q)(I)+
q0 log(I1) + ∑m−1

i=1 qi
1
Ii1

and u′(q) = B̄u(q) + Ā(I1). It is clear that
x̃(q)(t) and ˆ̃x(q)(t) are defined for all t ∈ R.

Let us denote:

Tq = inf{t > 0 : |I(q)(t) − I∗0 | > δ
(q+1)
2 or |φ(q)(t) − φ̃(q)(t)|∞ >

δ
(q+1)
1 }. T̂q = inf{t > 0 : |Î(q)(t) − I∗0 | > δ

(q+1)
2 or |φ̂(q)(t) −

ˆ̃φ(q)(t)|∞ > δ
(q+1)
1 }.

Observe that x(q)(t) and x̂(q)(t) are defined and belong doDρ(q)(Gq),
for 0 ≤ t ≤ Tq and 0 ≤ t ≤ T̂q respectively, because δ(q) ≤ ρ(q).
Also recall the Hamiltonian equations. Let us first state the mo-
tion equations for our Hamiltonian function Ĥ(q):

ιX
Ĥ(q)ω = dĤ(q), or XĤ(q) = Π(dĤ(q), ·).

Let us write

XĤ(q) = ˙̂
I

(q)
1

∂

∂I1
+ . . .

˙̂
I(q)
n

∂

∂In
+ ˙̂
φ

(q)
1

∂

∂φ1
+ . . .+ ˙̂

φ(q)
n

∂

∂φn
.

Moreover
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dĤ(q) = dĥ(q) + dR(q)

= dζ(q) + dh(q) + dR(q)

= ∑n
i=1

∂ζ(q)

∂Ii
+

n∑
i=1

∂ζ(q)

∂φi︸ ︷︷ ︸
=0

+∑n
i=1

∂h(q)

∂Ii

+
n∑
i=1

∂h(q)

∂φi︸ ︷︷ ︸
=0

+∑n
i=1

∂R(q)

∂Ii
+∑n

i=1
∂R(q)

∂φi
.

Recall

ω =
 m∑
j=1

cj

Ij1

 dI1 ∧ dφ1 +
n∑
i=2

dIi ∧ dφi,

Π = 1(∑m
j=1

cj
IJ1

) ∂

∂I1
∧ ∂

∂φ1
+

n∑
i=2

∂

∂Ii
∧ ∂

∂φi
.

Then:


˙̂
I

(q)
j = −∂R(q)

∂φj
(x̂(q)(t)), if j 6= 1 and

˙̂
I

(q)
1 = − 1(∑m

i=1
ci
Ii1

) ∂R(q)

∂φj
(x̂(q)(t)) = −B(I1)∂R(q)

∂φ1
(x̂(q)(t)).

Observe that

| ˙̂I(q)
1 (t)| ≤

∣∣∣∣∣∂R(q)

∂φ1
(x̂(q)(t))

∣∣∣∣∣ . (7.21)

Moreover,



˙̂
φ

(q)
j = û

(q)
j (Î(q)(t)) + ∂R(q)

∂Ij
(x̂(q)(t))

= u
(q)
j (Î(q)) + ∂R(q)

∂Ij
(x̂(q)(t)) if j 6= 1

˙̂
φ

(q)
1 = (B(I1)u(q)

1 +A(I1))︸ ︷︷ ︸
u

(q)
1

(Î(q)(t)) + B(I1)∂R(q)

∂I1
(x̂(q)(t)),
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where we have used that û(q)
j = u

′(q)
j if j 6= 1. Using 7.21 we

obtain

| ˙̂I(q)(t)| ≤
∥∥∥∥∥∂R(q)

∂φ

∥∥∥∥∥
Gq ,ρ(q)

≤ εq.

Hence,

| ˙̂φ(q) − u′(q)(I∗0 )|∞ = |u′(q)(Î(q)(t)) + B̄ ∂R(q)

∂I1
(x̂(q)(t))− u′(q)(I∗0 )|∞

≤ |u′(q)(Î(q))(Î(q)(t))− u′(q)(I∗0 )|∞ + |∂R(q)

∂I
(x̂(q)(t))|∞

≤ M ′
q|Î(q)(t)− I∗0 |+ ‖∂R

(q)

∂I
‖Fq ,ρ(q),∞

≤ Mq|Î(q)(t)− I∗0 |+
εq
cq+1

≤ 2Mδ
(q+1)
2 + εq

cq+1
≤ 3Mδ

(q+1)
2 .

Where in the last bound we used that

εq
cq+1

≤Mδ
(q+1)
2 , (7.22)

that holds because:

εq
cq+1

≤ 16MKτ+1
q+1 ρ1

β2νq
8ε

νρ12(2τ+2)q

≤ 16MKτ+1
q+1 ρ1

βeνq
8

νρ12(2τ+2)q
ν2µ2β2

2τ+30L4M2K2τ+2

≤ 27Kτ+1
q+1 νµ

2β

2(2τ+2)q+νq+τ+30L4M2K2τ+2

≤ νβµ2

Kτ+1
q+1 2νq+τ+23L4M2

= µ2

2νq+τ+17L4M
νβ

26MKτ+1
q+1

≤ µ2

2τ+17+νqL4M
δ

(q+1)
2

≤ 22τ+12L4M2

2τ+17+νqL4M
δ

(q+1)
2

≤ 2τ−5−νqδ
(q+1)
2

≤ 2τ
25+νqMδ

(q+1)
2

≤ Mδ
(q+1)
2 if q is large enough.

Thus, since one of the inequalities defining T̂q has to be an equal-
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ity for t = Tq we have that

δ
(q+1)
2 = |Î(q)(Tq)− I∗0 | ≤ Tqεq, or
δ

(q+1)
1 = |φ̂(q)(Tq)− ˆ̃φ(q)(T1)|∞ ≤ Tq3Mδ

(q+1)
2 .

Hence, T̂q ≥ min( δ
(q+1)
2
εq

,
δ

(q+1)
1

3Mδ
(q+1)
2

) ≥ 1
3Mcq+1

, where we used again
7.22.

Let us denote T ′q := 1
3Mcq+1

, then T̂q ≥ T ′q. This implies

|x̂(q)(t)− ˆ̃x(q)(t)|cq+1 ≤ δ
(q+1)
2 for |t| ≤ T ′q.

Since Ĥ(q) = Ĥ ◦ Ψ(q) and Ψ(q) is canonical it turns out that
Ψ(q)(x̂(q)(t)) is a trajectory of Ĥ defined for t ≤ T ′q. It is impor-
tant to observe that for q big enough this trajectory remains near
the torus Ψ(q)(Tn × {I∗0}). Moreover T ′q tends to infinity when
q →∞.

6. Invariant tori

Assume now that x∗0 ∈ Tn ×G∗ and let us write

 x∗(t) = (φ∗0 + u∗(I∗0 )t, I∗0 )
x̂∗(t) = (φ∗0 + u′∗(I∗0 )t, I∗0 )

for t ∈ R.

Note that

|ˆ̃x(q)(t)− x̂∗(t)|cq+1 ≤ cq+1|u′(q)(I∗0 )− u′∗(I∗0 )|∞|t|
≤ cq+1|u′(q) − u′∗|G∗,∞|t|.

And observe that if |t| ≤ δ
(q+1)
1

|u′(q)−u′∗|G∗,∞
=: T ′′q then,

|ˆ̃x(q)(t)− x̂∗(t)|cq+1 ≤ cq+1|u′(q) − u′∗|G∗,∞ δ
(q+1)
1

|u′(q)−u′∗|G∗,∞

≤ δq+1
2
δq+1

1
δq+1

1 = δq+1
2 .
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Observe that

|u′∗ − u′(q)|G∗ = |B̄u∗ + Ā − B̄u(q) − Ā|G∗

= |B(u∗ − u(q))|G∗ ≤ |u∗ − u(q)|G∗ ,

close enough to Z.

Hence the bound obtained for |u∗ − u(q)|G∗ also holds for |u′∗ −
u′(q)|G∗ .

|u′∗ − u′(q)|G∗ ≤
∑
s≥q

4MKτ+1ε

νβ2(τ+2)s ≤
8MKτ+1ε

νβ2(τ+2)q .

Using this bound, we see that T ′′q tends to infinity because

T ′′q ≥
(
νρ1

8 · 2νq
)(

νβ2(τ+2)q

8MKτ+1ε

)
= ν2βρ1

64MKτ+1ε
2(τ+2−ν)q.

Then

|x̂(q)(t)−x̂∗(t)|cq+1 ≤ |x̂(q)(t)−ˆ̃x(q)(t)|cq+1+|ˆ̃x(q)(t)−x̂∗(t)|cq+1 ≤ 2δ(q+1)
2 .

when t ≤ T ′′′q := min(T ′q, T ′′q ).

Next, we see that the trajectory Ψ(q)(x(q)(t)) is very close to
Ψ∗(x∗(t)) for large values of q. This is true because, when |t| ≤
T ′′′q .

|Ψ(q)(x̂(q) −Ψ∗(x̂∗(t)))|c1

≤ |Ψ(q)(x̂(q)(t))−Ψ(q)(x̂∗(t))|c1 + |Ψ(q)(x̂∗(t))−Ψ∗(x̂∗(t))|c1

≤ 2(τ+1−ν)(q−1) · 2|x̂(q)(t)− x̂∗(t)|cq + |Ψ(q) −Ψ∗|G∗,(ρ1/4,0),c1

≤ 2(τ+1−ν)(q−1) · 4δ(q+1)
2 + |Ψ(q) −Ψ∗|G∗,(ρ1/4,0),c1

≤ 2(τ+1−ν)(q−1) · 4δ(q+1)
2 + 210Kτ ε

ν2ρ1β2(1+ν)q

≤ c1
cq+1

4δ(q+1)
2

2(τ+1−ν) + 210Kτ ε
ν2ρ1β2(1+ν)q

≤ c14
2(τ+1−ν)

δ
(q+1)
1
δ

(q+1)
2

δ
(q+1)
2 + 210Kτ ε

ν2ρ1β2(1+ν)q

≤ c14
2(τ+1−ν) δ

(q+1)
1 + 210Kτ ε

ν2ρ1β2(1+ν)q
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where we used that cq−1/cq = 2τ+1−ν then c1/cq+1 = 2(τ+1−ν)q.

The bound 7.28 tends to zero. So we deduce, for every fixed
t, Ψ(q)(x̂(q)(t)) exits or q large enough and its limit is Φ∗(x̂∗(t)).
This fact and the continuity of the flow of Ĥ imply that Ψ∗(x̂∗(t))
is also a trajectory of Ĥ, which is defined for all t ∈ R.

This holds for every initial condition x∗0 = (φ∗0, I∗0 ) ∈ Tn × G∗

for this reason Ψ∗(Tn × {I∗0}) is an invariant torus of Ĥ, with
frequency vector u′∗(I∗0 ). Observe that the energy on the torus
is Ĥ(Ψ∗(φ∗0, I∗0 )) = h∗(I∗0 ).

The preserved invariant tori are completely determined by the
transformed actions I∗0 ∈ G∗. We are now going to characterize
the preserved tori by the original action coordinates.

First, let us see that u(Ĝ) ⊂ F ∗. Recall that:

∆c,q̂(k, α) = {J ∈ R such that |kB̄u(I) + kĀ| < α},

Ĝ = {I ∈ G − 2γ
µ

such that |kB̄u(I) + kĀ| < β

|k|τ1
}.

With this definition is obvious that if I ∈ Ĝ then u(I) is β
|k|τ1
, K, c, q̂-

nonresonant. Hence u(I) /∈ ∆c,q̂(k, β
|k|τ1

) for all k 6= 0. Then
u(Ĝ) ⊂ F ∗.

We want to find a correspondence between the invariant tori of
ĥ and the invariant tori of the perturbed system Ĥ = ĥ + R, or
in the new coordinates ĥ∗.

Recall
u′ = B̄u+ Ā,

u′∗ = B̄u∗ + Ā = ( 1∑m
i=1

ci
Ii1

u∗1 +
∑m
i=1

q̂i
Ii1∑m

i=1
ci
Ii1

, u∗2, . . . , u
∗
n).

Observe u′∗(0, I2, . . . , In) = q̂m
cm

= 1
K′ the inverse of the modular

period, hence u′∗ and u′ are not one-to-one at Z because they
project the first component of u∗ and u to 1

K′ .
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Dρ(G) =Wρ1(Tn × Vρ1(G)) Wρ1/4(Tn)×G∗

Wρ1/4(Tn)×G

Wρ1/4(Tn)× Ĝ

Ĝ

u(Ĝ) ⊂ F F ∗

Ψ∗

u∗

i

i

π

u|Ĝ

T

i

(u∗)−1

Figure 7.2: Diagram of the different maps and sets used in the proof.

Let us define I∗0 = (u∗)−1(u(I0)), recall that u and u∗ are in-
deed one-to-one even though u′ and u′∗ are not, so I∗0 is properly
defined.

With this definition u∗(I∗0 ) = u(I0) and this implies u′∗(I∗0 ) =
u′(I0). Now, let us define T (φ0, I0) = Ψ∗(φ0, I

∗
0 ).

We obtain 7.13 because the set T (Tn × {I0}) is an invariant
torus of the hamiltonian flow of Ĥ with frequency vector u′∗(I∗0 )
because Tn × {I∗0} is an invariant torus for the hamiltonian flow
of ĥ∗. And we have seen that u′∗(I∗0 ) = u′(I0). In a nutshell, the
original frequencies (of the unperturbed system) u(I0) for I0 ∈ Ĝ
are in F ∗ and hence can be seen as frequencies of the unperturbed
system in the new coordinates u∗(I∗0 ). Hence we can conclude
that for this I0 ∈ Ĝ its new (perturbed) solution is also linear in
a torus (φ0 + u′∗t, I∗0 ) ∈ Ψ∗(Tn×{I∗0}) = T (Tn×{I0}). And the
new frequency vector u′∗ is such that u′∗ = u′.

Let us now prove 7.14. Let us write, for (φ0, I
∗
0 ) ∈ W ρ1

4
(Tn)×G∗.
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Ψ∗(φ0, I
∗
0 ) = (φ0 + Ψ∗φ(φ0, I

∗
0 ), I∗0 + Ψ∗I(φ0, I

∗
0 )).

And for (φ0, I0) ∈ W ρ1
4 (Tn)×Ĝ.

T (φ0, I0) = (φ0 + Tφ(φ0, I0), I0 + TI(φ0, I0)).

Then, for (φ0, I0) ∈ W ρ1
4 (Tn)×Ĝ:

Tφ(φ0, I0) = Ψ∗φ(φ0, I
∗
0 ), and TI(φ0, I0) = Ψ∗I(φ0, I

∗
0 )+I0−I∗0 .

Let us bound the norms of these terms:

|Ψ∗φ(φ0, I
∗
0 )|∞ ≤ 1

c1
|Ψ∗ − id|G∗,( ρ1

4 ,0),c1

≤ 16MKτ+1ρ1
β

210Kτ ε
ν2ρ1β

≤ 214MK2τ+1ε
ν2β2 ,

where we used that c1 ≥ β
16MKτ+1ρ1

. Then,

Ψ∗I(φ0, I
∗
o ) ≤ |Φ∗ − id|G∗,( ρ1

4 ,0,c1)

≤ 210kτ ε
ν2ρ1β

.

Now it only remains the term I∗0 − I0:

|I∗0 − I0| ≤ |(u∗)(−1) − (u)(−1)|F ∗ ≤
∑
s≥0

ξs

≤
∑
s≥0

4MKτ+1ε

νβ2(τ+2)s ≤
8MKτ+1ε

νβ2(τ+2) .

Let us put everything together and use ρ̂ ≤ νρ1, K ≤ 2/ρ̂ and
β = γ/L.

|Ψ∗φ(φ0, I
∗
0 )|∞ ≤ 214M( 2

ρ̂
)2τ+1ε

ν2( γ
L

)2

≤ 22τ+15ML2

ν2ρ̂2τ+1
ε
γ2
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|Ψ∗(φ0, I
∗
0 )|+ |I∗0 − I0| ≤

210( 2
ρ̂

)τ ε
νρ̂( γ

L
) + 8M( 2

ρ̂
)τ+1ε

ν( γ
L

)2(τ+2)

= 210+τLε
νρ̂τ+1γ

+ 8M2τ+1Lε
νρ̂τ+1γ2(τ+2)

≤ 220+τLε+M2τ+4Lε
νρ̂τ+1γ

≤ 210+τL(1+M)
νρ̂τ+1

ε
γ

7. Estimate of the measure

Finally we carry out the estimate of part 3. Let us write

Ĝ∗ = (u∗)−1(u(Ĝ)).

The invariant tori fill the set

T (Tn × Ĝ) = Ψ∗(Tn × Ĝ∗)

i.e. all the tori inside T (Tn× Ĝ) are invariant although there are
more of them. Because Ψ(q) are hamiltonian transformations, in
particular preserve the volumes:

meas[Ψ(q)(Tn × Ĝ∗)] = meas(Tn × Ĝ∗) = (2π)nmeas(Ĝ∗).

Now, let us consider the measure of the limit:

meas[Ψ∗(Tn × Ĝ∗)].

To do this we use the superior limit of sets:

∞⋂
n=q

∞⋃
j=q

(Ψ(j)(Tn × Ĝ∗)).

Because Ψ(j)(Tn × Ĝ∗) are compact and we have the bound

|Ψ∗ −Ψ(q)|G∗,( ρ1
4 ,0),c1 ≤

210Kτε

ν2ρ1β2(1+ν)q ,

⋃∞
j=q(Ψ(j)(Tn × Ĝ∗)) is also compact. All the measures are well

defined and we can say that
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meas[Ψ∗(Tn × Ĝ∗)] ≥ (2π)nmeas(Ĝ∗).

Then, to bound the measure of the complement of the invariant
set it is enough to bound the measure of G \ Ĝ∗.

But first we are going to define some auxiliary sets. Let β̃ = 2γM
µ

,
β̃q = (1 − 1

2νq )β̃. Note that β̃ ≥ β if and only if µ ≤ 2ML and
we assumed µ ≤ 2τ+6L2M .

Then, for q ≥ 0 we define

F̃q = (F − β̃q) \
⋃

k∈Zn\{0}
|k|1≤K

∆c,q̂(k,
β̃q
|k|τ1

), G̃q = (u(q))−1(F̃q)

and

F̃ ∗ =
⋂
q≥0

F̃q = (F − β̃) \
⋃

k∈Zn\{0}
|k|1≤K

∆c,q̂(k,
β̃

|k|τ1
), G̃∗ =

⋂
q≥0

G̃q.

In order to prove the bounds, we need to prove previously the
inclusions G̃∗ ⊂ Ĝ∗ and G̃0 ⊂ G.

(a) G ⊃ G̃0 = (u(0))−1(F̃0) = (u)−1(F−β̃), but we know u(G) =
F .

(b) G̃∗ ⊂ Ĝ∗. Take I ∈ G̃∗, then I ∈ G̃q∀q ≥ 0. Hence ∃J ∈
˜̃Fq∀q such that u(q)(I). Then ∃J ∈ F̃ ∗ such that u∗(J) = I.
If we check that J ∈ u(G̃) the we will have that (u∗)−1(J) =
I ∈ Ĝ∗ and we will be done. We want F̃ ∗ ⊂ u(Ĝ). Because
we take out all the resonances in F̃ ∗ it is enough to see
(F−β̃) ⊂ u(G− 2γ

µ
). We only need to use that |∂u

∂I
|G,ρ2 ≤M .

Then F − β̃ ⊂ u(G − 2γ
µ

). This holds if and only if β̃
M
≤ 2γ

µ

which is true because β̂ ≤ 2γM
µ

.
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Then, we proceed as follows

meas(G \ Ĝ∗) ≤ meas(G \ G̃∗)
≤ meas(G̃0 \ G̃∗)
≤ ∑∞

q=1 meas(G̃q−1 \ G̃q).

For q ≥ 1 we obtain the following estimate:

meas(G̃q−1\G̃q) ≤
1

| det(∂u(q−1)

∂I
(I))|

meas(

u(q−1)(G̃q−1)︷ ︸︸ ︷
F̃q−1 \(

u(q−1)(G̃q)︷ ︸︸ ︷
F̃q − εq−1)).

Where we have used lemma 7.2.27. Also det(∂u(q−1)

∂I
(I)) ≥ µnq−1

because of the µq−1-nondegeneracy condition all the eigenvalues
have to be greater than µq−1.

meas(G̃q−1 \ G̃q) ≤ 1
µnq−1

meas(F̃q−1 \ (F̃q − εq−1))
≤ 2n

µn
meas(F̃q−1 \ (F̃q − εq−1)).

Now, we are going to apply lemma 7.2.25 with

F̃q−1 = F (β̃q−1, β̃q−1, Kq − 1)

and F̃q = F (β̃q, β̃q, Kq).

Applying the lemma:

meas(F̃q−1 \ F̃q) ≤ D(β̃q − β̃q−1)

+2(diamF )n−1

 ∑
k∈Zn\{0}
|k|1≤Kq−1

β̃q − β̃q−1

|k|τ1|k|2,ω
+

∑
k∈Zn\{0}

Kq−1≤|k|1≤Kq

β̃q
|k|τ1|k|2,ω


and
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meas(F̃q \ (F̃q − εq)) ≤ (D + 2n+1(diamF )n−1Kn)εq.

Putting everything together (and using that β̃0 = 0), we get

meas(G \ Ĝ∗) ≤ 2n
µn

Dβ̃ + 2(diamF )n−1 ∑
k∈Zn\{0}

β̃

|k|τ1|k|2,ω

+D
∞∑
q=1

εq−1 + 2n+1(diamF )n−1
∞∑
q=1

Kn
q εq−1

 .
(7.23)

We now only have to check that the series converge in the pre-
vious expression converge. Let us check that they converge at Z
first and then outside of Z. Recall that at Z we take the vectors
k̄ 6= 0.
∑
k∈Zn\{0}

k̄ 6=0

1
|k|τ1 |k|2,ω

≤ ∑
k∈Zn\{0}

k̄ 6=0

1
|k|τ1 |k̄|

≤ ∑
k̄∈Zn−1\{0}

k̄ 6=0

∑
kn∈Z

√
n

(|k̄|1+|kn|)τ |k̄|1

≤
√
n2n−1∑∞

j=1
∑
kn∈Z

jn−3

j+|kn|)τ

where we used that the number of vectors k̄ ∈ Zn−1 with |k̄|1 =
j ≥ 1 can be bounded by 2n−1jn−2. This series can be bounded
by comparing it to an integral:

∑
kn∈Z

1
(j + |kn|)τ

≤ 1
jτ

+ 2
∫ ∞

0

dx

(j + x)τ

= 1
jτ

+ 2
(τ + 1)jτ−1 ≤

τ + 1
τ − 1

1
jτ+1 .

Where we used that τ > 1 because n ≥ 2. Then

∑
k∈Zn\{0}

k̄ 6=0

1
|k|τ1|k|2,ω

≤
√
n2n−1(τ + 1)
τ − 1

∞∑
j=1

1
jτ−n+2
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which converges by the condition τ > n− 1.

Now let us check that it converges outside of Z.

∑
k∈Zn\{0}

1
|k|τ1 |k|2,ω

= ∑
k∈Zn\{0}

k̄ 6=0

1
|k|τ1 |k|2,ω

+∑
k∈Zn\{0}

k̄=0

1
|k|τ1 |k|2,ω

= ∑
k∈Zn\{0}

k̄ 6=0

1
|k|τ1 |k̄|

+∑
k1∈Z

1
|k|τ1 |k

2
1B(I1)2|

We have seen before that the first term converges. The second
term:

∑
k1∈Z

1
|k1|τ |kτ1B(I1)2|

= 1
B(I1)2

∑
k1∈Z

1
kτ+2

1
,

which converges ∀I1 6= 0, i.e. outside of Z.

Now we go back to the expression 7.23. The other terms of that
expression can be bounded simultaneouslty inside and outside
Z. Now we only have to check that the third series converges,
because if the third converges so does the second. We only have
to check that ∑∞q=1K

n
q εq−1 converges. We will use that ε ≤

8ε
νρ12(2τ+2)(q−1) .

∑∞
q=1K

n
q εq−1 = Kn∑∞

q=1 2n(q−1)εq−1

= Kn∑∞
q=1

8ε2n(q−1)

νρ12(2τ+2)(q−1)

= Kn 8ε
νρ1

∑∞
q=1

1
2(2τ+2−n)(q−1) .

Which converges if and only if 2τ + 2− n ≥ 1. And we are done
because 2τ ≥ n− 1 since τ ≥ n− 1 by hypothesis.

Putting everything together:
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meas(G \ Ĝ∗)

≤ 2n
µn

D2 2γM
µ

+ 2(diamF )n−1 2γM
µ

√
n2n−1(τ + 1)
τ − 1

∞∑
j=1

1
jτ−n+2

D
8ε
νρ1

∞∑
q=1

1
2(2τ + 2)(q − 1)

+2n+1(diamF )n−1Kn 8ε
νρ1

∞∑
q=1

1
2(2τ+2−n)(q−1)


Now using that

ε ≤ ν2µ2β2

2τ+30L4M3K2τ+1 ≤
2τ−18 · 8MKτ+1ρ2

LMK2τ+2 γ ≤ 2τ−15ρ2

LKτ+1 γ

We can write meas(G \ Ĝ∗) ≤ C ′γ where C ′ depends only on n,
µ, D, diamF , M , τ , ρ1, ρ2, L, K and if we efine C = (2π)nC ′.
Hence,

meas[(Tn × G) \ T (TnĜ)] ≤ Cγ.

7.4 Desingularization of bm-integrable sys-
tems

In this section, we follow [8], for the definition of the desingularization
of the bm-symplectic form.

Definition 7.4.1. The fε-desingularization ωε form of ω = dx
xm
∧(∑m−1

i=0 xiαm−i
)

+ β is:

ωε = dfε ∧
(
m−1∑
i=0

xiαm−i

)
+ β.
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Where in the even case, fε(x) is defined as ε−(2k−1)f(x/ε). And f ∈
C∞(R) is an odd smooth function satisfying f ′(x) > 0 for all x ∈ [−1, 1]
and satisfying outside that

f(x) =


−1

(2k−1)x2k−1 − 2 for x < −1,
−1

(2k−1)x2k−1 + 2 for x > 1.
(7.24)

And in the odd case, fε(x) = ε−(2k)f(x/ε). And f ∈ C∞(R) is an
even smooth positive function which satisfies: f ′(x) < 0 if x < 0,
f(x) = −x2 + 2 for x ∈ [−1, 1], and

f(x) =


−1

(2k+2)x2k+2 − 2 if k > 0, x ∈ R \ [−2, 2]

log(|x|) if k = 0, x ∈ R \ [−2, 2].
(7.25)

Remark 7.4.2. With the previous definition, we obtain smooth sym-
plectic (in the even case) or smooth folded symplectic (in the odd case)
forms that agree outside an ε-neighbourhood with the origial bm-forms.
Moreover, there is a convergence result in terms of m. See [26] for the
details.

To simplify notation, we introduce Fm−i
ε (x) = ( d

dx
fε(x))xi, and

hence F i
ε (x) = ( d

dx
fε(x))xm−i. With this notation the desingularization

ωε is written:

ωε =
m−1∑
i=0

Fm−i
ε (x)dx ∧ αm−i + β.

Definition 7.4.3. The desingularization for (M,ω, µ) is the triple
(M,ωε, µε) where ωε is defined as above and µε is:

µ 7→ µε =
(
f1ε =

m∑
i=1

ĉiG
i
ε(x), f2(Ĩ , φ̃), . . . , fn(Ĩ , φ̃)

)
,

where

µ =
(
f1 = c0 log(x) +

m−1∑
i=1

ci
1
xi
, f2(I, φ) . . . , fn(I, φ)

)
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Gi
ε(x) =

∫ x

0
F i
ε (τ)dτ,

and ĉ1 = c0 and ĉi−1 = −ici if i 6= 0. Also


Ĩ = (Ĩ1, I2, . . . , In), Ĩ1 =

∫ I1
0

(∑m

i=1KĉiF
i
ε(τ)∑m

i=1
Kĉj
τj

)
dτ

φ̃1 = (φ̃1, φ2, . . . , φn), φ̃1 =
∑m

i=1KĉiF
i
ε(I1)∑m

i=1
Kĉj
I
j
1

φ1

Remark 7.4.4. Observe that with the last definition, when ε tends to
0, µε tends to µ.

Lemma 7.4.5. The desingularization transforms a bm-integrable sys-
tem into an integrable system for m even on a symplectic manifld. For
m odd the desingularization transforms it to a folded integrable system.
The integrable systems are such that:

Xω
fj

= Xωε
fjε
.

Proof. Let us first check the singular part, i.e. let us check that that
Xω
f1 = Xωε

f1ε . Let us compute the two equations that define each one of
the vector fields. We have to impose −df1 = ιXω

f1
ω and −df1ε = ιXωε

f1ε
ωε.

But observe first that we can rewrite ω = ∑m
i=1

1
xi
dx ∧ αi + β and

ωε = ∑m
i=1 F

i
εdx ∧ αi + β. The conditions translate as:

−
m∑
i=1

ĉi
1
xi
dx = ιXω

f1

(
m∑
i=1

1
xi
dx ∧ αi + β

)
,

−
m−1∑
i=0

ĉiF
i
ε (x)dx = ιXωε

f1ε

(
m−1∑
i=0

F i
ε (x)dx ∧ αi + β

)
.

Since the toric action leaves ω invariant, in particular the singular
set is invariant, and then Xωε

f1ε and Xω
f1 are in the kernel of dx. More-

over, since β is a symplectic form in each leaf of the foliation and Xωε
f1ε

and Xω
f1 are transversal to this foliation, they are also in the kernel of

β.
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−
m−1∑
i=0

ĉi
1
xi
dx =

m−1∑
i=0

1
xi
dx ∧ αi(Xω

f1),

−
m−1∑
i=0

ĉiF
i
ε (x)dx =

m−1∑
i=0

F i
ε (x)dx ∧ αi(Xωε

f1ε).

Then, the conditions over Xω
f1 and Xωε

f1ε are respectively:

−ĉi = αi(Xω
f1),

−ĉi = αi(Xωε
f1ε).

Then, the two vector fields have to be the same.
Let us now see Xω

fj
= Xωε

fjε
for j > 1. Assume now we have the bm-

symplectic form in action-angle coordinates ω = ∑m
i=1

Kĉi
Ii1
dI1 ∧ dφ1 +∑n

i=1 dIi ∧ dφi.
The differential of the functions are

df εi = ∂fεi
∂I1
dI1 + ∂fεi

∂φ1
dφ1 +∑n

j=2

(
∂fεi
∂Ij
dIj + ∂fεi

∂φj
dφj

)
= ∂fi

∂I1

(∑m

i=1KĉiF
i
ε(τ)∑m

i=1
Kĉj
τj

)
dI1 + ∂fi

∂φ1

(∑m

i=1KĉiF
i
ε(τ)∑m

i=1
Kĉj
τj

)
dφ1

+∑n
j=2

(
∂fεi
∂Ij
dIj + ∂fεi

∂φj
dφj

)
.

On the other hand, the desingularized form is:

ωε =
m∑
j=1
KĉiF j

ε (I1)dI1 ∧ dφ1 +
m∑
j=2

dIj ∧ dφj.

Hence, one can see that the expression for both Xω
fj

and Xωε
fjε

is

Xω
fj

= Xωε
fjε

=
∂fi
∂I1∑m
i=1

Kĉi
Ii1

∂

∂φ1
−

∂fi
∂φ1∑m
i=1

Kĉi
Ii1

∂

∂I1
+

n∑
j=2

(
∂f εi
∂Ij

dIj + ∂f εi
∂φj

dφj

)

Remark 7.4.6. The previous lemma tells us that the dynamics of the
desingularized system are identical to the dynamics of the original bm-
integrable system in the bm-symplectic manifold.



i
i

“ThesisArnauPlanas” — 2020/7/23 — 16:32 — page 167 — #181 i
i

i
i

i
i

7.5. BM -KAM DESINGULARIZATION 167

Hence the desingularized bm-form goes to folded in the case m =
2k + 1 and to symplectic for m = 2k. And the bm-integrable system
goes to a folded integrable system (see [35]) in the case m = 2k + 1
and to a standard integrable system for n = 2k.

7.5 Desingularization of the KAM theo-
rem on bm-symplectic manifolds

The idea of this section is to recover some version of the classical
KAM theorem by “desingularizing the bm-KAM theorem”, as well as
a new version of a KAM theorem that works for folded symplectic
forms. Observe that no KAM theorem is known for folded symplectic
forms. The best that is known is a KAM theorem for presymplectic
structures that was done in [36]. Desingularizing the KAM means
applying the bm-KAM in the bm-manifold and then translate the result
to the desingularized setting.

To be able to obtain proper desingularized theorems we need to
identify which integrable systems that can be obtained as a desingular-
ization of a bm-integrable system. To simplify computations we are go-
ing to use a particular case of bm-integrable systems, where f1 = 1

Im−1
1

.
We call these systems simple. Observe that by taking a particular case
of bm-integrable systems we will not get all the systems that can be
obtained by desingularizing a bm-integrable system, but some of them.

1. Even case m = 2k.

F = (f1 = 1
I2k−1

1
, f2, . . . , fn), ω = 1

Im1
dI1 ∧ dφ1 + ∑n

j=1 dIj ∧ dφj.
Observe that close to Z in the even case we can assume f(I1) =
cI1 for some c > (2 − 1

22k−1 ). Then fε(I1) = 1
ε(2k−1)

cI1
ε

= c′I,
hence ωε = c′dI1 ∧ dφ1 + ∑n

j=1 dIj ∧ dφj. Also Fm
ε (I1) = c′,

Gm
ε (I1) = c′I1. Then,
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 Ĩ1 =
∫ I1

0
c′

1/τmdτ =
∫ I1
0 c′τmdτ = c′

Im+1
1
m+1 ,

φ̃1 = c′

1/Im1
φ1 = c′Im1 φ1

F ε = ((m− 1)cm−1c
′I1, f2(Ĩ , φ̃), . . . fn(Ĩ , φ̃)). (7.26)

Hence, the systems in this form can be viewed as a desingular-
ization of a bm-integrable system.

Theorem 7.5.1 (Desingularized KAM for symplectic manifolds).
Consider a neighborhood of a Liouville torus of an integrable sys-
tem Fε as in 7.26 of a symplectic manifold (M,ωε) semilocally
endowed with coordinates (I, φ), where φ are the angular coordi-
nates of the torus, with ωε = c′dI1 ∧ dφi + ∑n

j=1 dIj ∧ dφj. Let
H = (m−1)cm−1c

′I1+h(Ĩ)+R(Ĩ , φ̃) be a nearly integrable system
where  Ĩ1 = c′

Im+1
1
m+1 ,

φ̃1 = c′Im1 φ1,

and  Ĩ = (Ĩ1, I2, . . . , In),
φ̃ = (φ̃1, φ2, . . . , φn).

Then the results for the bm-KAM theorem 7.3.1 applied to Hsing =
1

I2k−1
1

+ h(I) +R(I, φ) hold for this desingularized system.

Remark 7.5.2. This theorem is not as general as the standard
KAM, but we also know extra information of the dynamics. For
instance the perturbed of trajectories in tori inside of Z will be
trajectories lying inside of Z. In this sense the theorem is new
because it leaves invariant an hypersurface of the manifold.

2. Odd case m = 2k + 1.

F = (f1 = 1
I2k

1
, f2, . . . , fn) and ω = 1

I2k+1
1

dI1∧dφ1+∑n
j=1 dIj∧dφj.

Before continuing we need the following notions defined in [35].
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Definition 7.5.3. A function f : M → R in a folded symplectic
manifold (M,ω) is folded if df |Z(v) = 0 for all v ∈ V = kerω|Z.

Definition 7.5.4. An integrable system in a folded symplectic
manifold (M,ω) with critical surface Z is a set of functions F =
(f1, . . . , fn) such that they define Hamiltonian vector fields which
are independent (df1∧. . .∧dfn 6= 0 in the folded cotangent bundle)
on a dense subset of Z and M , and commute with respect to ω.

Note that we need to prove that the desingularized functions in
this case are folded.

Observe that close to Z in the odd case we can assume f(I1) =
−I2

1 +2. Then fε(I1) = ε−(2k)f( I1
ε

) = 1
ε2k (−( I1

ε
)2 +2) = cI2

1 + 2
ε2k .

Then

ωε = 2cI1dI1 ∧ dφ1 +
n∑
j=1

dIj ∧ dφj.

Also Fm
ε (I1) = 2cI1, Gm

ε (I1) = cI2
1 . Then,

 Ĩ1 =
∫ I1

0
2cτ

1/τmdτ = 2c I
(m+2)
1

(m+2) ,

φ̃1 = 2cIm+1
1 φ1

Then the desingularized moment map becomes

F ε = ((m− 1)cm−1cI
2
1 , f2(Ĩ , φ̃), . . . fn(Ĩ , φ̃)). (7.27)

It is a simple computation to check that these functions are actu-
ally folded and hence they form a folded integrable system. Note
that the systems of the form 7.27 can be viewed as a desingu-
larization of a bm-integrable system. Then, like we proceeded in
the even case:
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Theorem 7.5.5 (Desingularized KAM for folded symplectic man-
ifolds). Consider a neighborhood of a Liouville torus of an in-
tegrable system Fε as in 7.27 of a folded symplectic manifold
(M,ωε) semilocally endowed with coordinates (I, φ), where φ are
the angular coordinates of the Torus, with ωε = 2cI1dI1 ∧ dφ1 +∑m
j=2 dIj∧dφj. Let H = (m−1)cm−1cI

2
1 +h(Ĩ)+R(Ĩ , φ̃) a nearly

integrable system with Ĩ1 = 2c I
m+2
1
m+2 ,

φ̃1 = 2cIm+1
1 φ1,

and  Ĩ = (Ĩ1, I2, . . . , In),
φ̃ = (φ̃1, φ2, . . . , φn).

Then the results for the bm-KAM theorem 7.3.1 applied to Hsing =
1
I2k

1
+ h(I) +R(I, φ) hold for this desingularized system.

Remark 7.5.6. The last two theorems can be improved if con-
sidering bm-integrable systems non necessarily simple.

7.6 Applications to Celestial mechanics

In this last section of the thesis we catch up with the circular planar
restricted three body problem which we discussed in Chapter 2. Given
an autonomous Hamiltonian system of a symplectic manifold of dimen-
sion 2n, the level sets of the Hamiltonian function are often endowed
with a contact structure ( a contact structure is given by a one form
α satisfying a condition of type α ∧ (dα)n−1 6= 0).

In [37, 38] the authors discuss applications of the b-apparatus in this
context. In particular the notion of bm-contact structures is introduced
by translating the condition above for bm-forms. The classical notions
in the contact realm such as Reeb vector fields can also be introduced
in this set-up.
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In particular by considering the Mc Gehee change as we did in the
contact context, the authors of [38] prove:

Theorem 7.6.1. After the McGehee change, the Liouville vector field
Y = p ∂

∂p
is a b3-vector field that is everywhere transverse to the level

sets of the Hamiltonian Σc for c > 0 and the level-sets (Σc, ιY ω) for
c > 0 are b3-contact manifolds. Topologically, the critical set of this
contact manifold is a cylinder (which can be interpreted as a subset of
the line at infinity) and the Reeb vector field admits infinitely many
non-trivial periodic orbits on the critical set.

One of the possible applications of our KAM theorem would be to
find new periodic orbits of the restricted three body problem close to
infinity by perturbing the periodic orbits described above.
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