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Abstract
Elliptic curves with a bilinear map, or pairing, have a rich algebraic structure that
has been fundamental to develop practical Non-Interactive Zero-Knowledge (NIZK)
proofs.

On the theoretical side, we explore how efficient can NIZK proofs be under weak
complexity assumptions. Specifically, we reduce the cost of proofs of satisfiability
of quadratic equations, we define a new commitment scheme that is compatible with
other pairing-based NIZK arguments, and we construct a simulation-sound argument
that results in a new a signature of knowledge with communication sublinear in the
circuit size under standard assumptions.

Additionally, we study how to reduce the cost of verification in one of the most
widely deployed NIZK arguments in practice.

Resum
Les corbes el·lṕtiques amb una aplicació bilineal, o pairing, tenen una estructura alge-
braica molt rica que ha sigut fonamental per desenvolupar les proves no interactives de
zero coneixement (NIZK).

En la banda teòrica, explorem quant eficients poden ser les proves NIZK sota
hipòtesis de complexitat dèbils. Més concretament, reduı̈m el cost de les proves de
satisfacció per equacions quadràtiques, definim un nou esquema de compromı́s que és
compatible amb altres proves NIZK basades en pairings i construı̈m una prova que re-
sulta en una nova signatura de coneixement amb una comunicació sublineal en la mida
del circuit sota hipòtesis estàndards.

A més, estudiem com es redueix el cost de verificació en una de les proves NIZK
més desenvolupades a la pràctica.
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Chapter 1

Introduction

Etymologically, cryptography means hidden or invisible writing. Traditionally, it was
concerned with the design of cyphers, but modern cryptography comprises a huge
amount of different primitives, systems and protocols.

In the Ancient Age, we find some examples of encryptions like the Spartan Scy-
tale, which is based on transposing the letters of the message, or the Julius Caesar, a
substitution cypher where we change each letter of the message for the letter in the
alphabet at some fixed distance. At that time, it was used mostly by governants and
military people. However, the concept has been changing over the time with the emer-
gence of new technologies, especially during the last century with the development of
computing machines and, even more, since the launch of the internet.

In the middle of the last century, cryptography became the science between Math-
ematics and Computer Science that studies the mathematical techniques for protecting
information and systems against adversarial attacks. Nowadays, this discipline rep-
resents an essential set of complex tools and protocols designed for protecting infor-
mation in the communications. We will begin giving a general view of the principles
and basic notions of this science, and then we present Zero-Knowledge proofs, a cryp-
tographic primitive that allows to validate the correctness of some statement without
leaking secret information about it, that is the main object of study of this thesis.

1.1 Modern cryptography and basic notions
Cryptography is a puzzling kaleidoscope where we have to face and use
malice at the same time, to rationalize irrational behaviors, to prove un-
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provability, and to twist mathematics to make it fit applications.
Serge Vaudenay

Designing cryptographic schemes is not an easy task. As cryptographers, when cre-
ating a new scheme for some specific functionality we have to take into account the
presence of malicious parties, that try to extract information or modify data for some
particular interest. The difficulty resides on that we cannot prevent all the possible ac-
tions for these attacks. As every other science, cryptography has some basic principles
that must be followed in the process of constructing new cryptographic schemes, Katz
and Lindell [89] enumerate them as formal definitions, conditions where the definitions
hold and rigorous proofs that guarantee that a scheme satisfies the definition under the
specified conditions.

The formal definitions establish the security goals that we desire for our scheme
and set what we consider as a successful attack. This determines the power of the
adversary, like its computational limitations and the threat model, for example, in a
chosen-plaintext attack, the adversary learns some plaintexts-ciphertexts pairs of its
choice and it has to deduce information about the plaintext of a new ciphertext (all
generated with the same key).

Some cryptographic constructions can be proven to be unconditionally secure.
However, most of them are proven conditionally secure, that is, security holds if some
computational complexity problems are hard, or “infeasible”. We use the term as-
sumptions to express mathematically that solving some computational problem is con-
jectured to be hard.

Some assumptions provide more confidence than others. It is preferable to base
security on those that have been studied and tested for more time. For example, the
Factorization assumption that, given a very big natural numberN product of two prime
numbers, N = p · q, it is infeasible to find p, q; or the Discrete Logarithm assumption,
that given two elements g, a ∈ Z∗p, with p prime, it is infeasible to find the Discrete
logarithm of a respect to g, i.e. α such that gα = a. Both assumptions are examples of
extensively researched assumptions.

Moreover, it is preferable to work with a weak assumption than a strong one. Be-
cause the stronger can be refuted, while the weaker can remain true.

In 2003, Naor classified assumptions [105] into falsifiable, those for which we
can design an experiment that allows us to efficiently check if it is false or true that
someone has broken the assumption, and non-falsifiable, where we cannot design such
an experiment. In the latter type, these assumptions usually not only assume that a
certain problem is hard, but also restrict the type of strategies the adversary can follow
to come up with the final message.

The assumptions that we mentioned above and most of the assumptions that we
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consider in this thesis are falsifiable. However, many interesting constructions of NIZK
proofs are secure under non-falsifiable assumptions. For example, the Knowledge of
Exponent assumption (KEA) [42] assumes that an adversary who is given g, gα and
comes up with elements Y,C, such that Y = Cα, must know c such that C = gc.
Indirectly, we are assuming that the way of computing Y is Y = (gα)c. Another
example is the assumption that the adversary is generic or algebraic. In both, we restrict
the strategies of the adversary to group operations and we can extract the coefficients
that express each new element output by the adversary as a linear combination of the
elements that it has access to.

If we sort the assumptions that we have mentioned already by their strength, we
have the weakest of the falsifiable assumptions first, progressively stronger falsifiable
assumptions, and then the non-falsifiable from weakest to strongest: first, knowledge
of exponent type, and then, those where we assume restricted type of adversaries, first
the algebraic group model (AGM, [57]) and, the last, the generic group model (GGM,
[117]).

Once the formal definition and the assumption in which security relies on are de-
termined, the proof of security provides a mathematical guarantee that no adversary
will succeed in attacking the scheme. Typically, this is done by a reduction argument
where we assume an adversary success in the attack to the scheme and, by a sequence
of rigorous steps, we deduce the assumption is broken. Then, the advantage of the ad-
versary, i.e. the probability of breaking the scheme, is upper bound by the probability
of breaking the assumption with some multiplication factor. Ideally, we want the factor
to be similar to 1, which means the time and effort to break the assumption and the time
and effort to break the scheme are similar, which is captured by the notion of tightness.

Our scope
In this thesis, we work on Zero-Knowledge (ZK) proof schemes, which is a primitive
that allows one party, called the prover, to provide a convincing proof about the validity
of some statement to another party, the verifier, without revealing any additional infor-
mation. Intuitively, having such a proof that some claim holds is equivalent to having
received from a trusted party that this claim is true.

Zero-Knowledge proofs are considered one of the fundamental primitives in cryp-
tography. Although, for many years it was a mostly theoretical tool, in the last decade
it has been improved with new techniques from pairing-based cryptography, becoming
order of magnitude more efficient. Nowadays, it is used in practice as a proof of correct
computations in blockchain applications.

Our results propose new trade-offs between better security, with weaker assump-
tions and stronger definitions, and better efficiency, in terms of generation of the public
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parameters, the complexity of the parties or proof size.
The rest of this chapter is organized as follows. We present in Section 1.2 the basic

definitions and the building blocks used in this thesis, but formal definitions are given
in Chapter 2. In Section 1.3, we present a summary of our results and finally, a list of
the publications.

1.2 Zero-Knowledge Proofs
In mathematics, a proof is a sequence of consistent statements derived logically from
the axioms and premises to the conclusion by using some rules. These proofs are
considered as fixed objects and they are fundamental for trusting the validity of a result,
for example, a theorem. In real-life, proofs have a dynamic interpretation, they are
considered as a process by which the validity of a claim is proven. In both cases, there
is an entity who provides the proof, the prover, and a verification procedure, that is a
simpler procedure to validate and it is executed by the verifier.

In 1989, Goldwaser, Micali and Rackoff introduced Zero-Knowledge (ZK) Proofs
in [66]. Given a language L, that defines a type of problems, the prover goal’s is to
convince the verifier that some public statement x is in this language without revealing
its secret information, the witness w. They interchange a series of messages until
the verifier is convinced about the validity of the statement, x ∈ L or the contrary,
so it decides to accept or reject the proof. There is a polynomial-time algorithm RL
associated to the language L, to recognize if a possible solution w satisfies the relation
with x, i.e. if (x,w) ∈ RL. Ideally, if both parties are honest and the relation is
satisfied, the verifier should accept.

In the following, we briefly present the fundamental properties of these proofs, then
other additional properties that we use in our results, and the concrete objectives of the
thesis.

Fundamental properties
We require that all the proofs have two fundamental properties, Completeness and
Soundness. The proof should be convincing for the verifier as long as the statement is
true, which is captured by the definition of completeness. This is the desired behaviour
when both parties are honest. On the other hand, the soundness property ensures that
malicious provers cannot convince the verifier of false statements.

Apart from these properties, in ZK proofs we also require the Zero-Knowledge
property, which guarantees that no extra information is leaked from the messages in-
volved in the proof, beyond the validity of the statement. Here, by extra information
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we mean that the verifier cannot gain more knowledge about the witness from the ex-
change of the messages. In other words, what the verifier was able to do or what it knew
about the witness is the same before and after the exchange of messages, i.e. it did not
gain any additional knowledge. To prove this property, we define an algorithm called
simulator, that has access to some trapdoor, a secret parameter, that gives the power
to make a proof that passes the verification without knowing the witness. Then, we
prove Zero-Knowledge by showing indistinguishability between honest proofs, those
created with the witness, and simulated proofs, those created with the trapdoor. The
idea behind this is that if such a simulator exists, in the verifier’s view, the same output
could have been generated without the actual witness.

There are different variations in the definitions of these fundamental properties. For
example, soundness can be guaranteed by a statistical argument (soundness is proven
unconditionally). In this case, we have perfect soundness. On the other hand, in scenar-
ios where the prover has limited resources of computation, a relaxed notion is enough.
When a proof has computational soundness is called Argument.

Arguments are interesting because computationally-sound proofs are much more
efficient than those perfectly sound. Moreover, usually, they can be constructed with
perfect zero-knowledge property. Many NIZK arguments for general statements (i.e.
for NP-complete languages), prioritize efficiency over security and prove soundness
under very strong (often non-falsifiable) assumptions. Several results in this thesis
solve this trade-off in the opposite way and study how efficient can we go in efficiency
under mild assumptions.

Additional properties
Beyond the fundamental properties of ZK proofs, there exist other notions that guaran-
tee stronger security.

The simulation soundness property is a stronger notion of soundness that guaran-
tees that no adversary can come up with a valid proof for a false statement even when it
has seen some simulated proofs previously. This notion is interesting because it ensures
that the proof is sound and non-malleable, that is the adversary cannot re-use previous
proofs, obtained from querying the simulator with some statements of its choice, to
compute a fresh one for a new statement.

Additionally, a proof is of Knowledge, or knowledge sound, if the prover claims
knowledge of some object and uses it to compute the proof. Technically, we consider
that a machine knows some object if there exists another efficient algorithm that can
extract this object from it. We distinguish between two types of extraction, black-
box when the extractor can extract the witness from the outputs of the prover, and
non-black-box when we assume the extractor has access to the code of the prover.
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Black-box extraction is more realistic since it does not need to access the code of the
adversary.

Moreover, if the proof is knowledge and simulation sound, we say it is simulation-
extractable (SE), [70]. This is the strongest definition, and it guarantees that the ad-
versary cannot come up with a fresh valid proof unless it knows a witness, even if it
has seen an arbitrary number of simulated proofs.

Finally, in all our constructions we work in the non-interactive setting, where the
proof consists of just one single message. Non-interactive ZK (NIZK) proofs are very
interesting in practice because its verification can be done offline.

Pairing-based Non-Interactive Zero-Knowledge Proofs
In this thesis, we deal with Non-Interactive Zero-Knowledge Proofs. The first ZK
proofs were introduced as an interactive protocol between the prover and the verifier,
where the verifier randomly samples elements to create challenges for the prover and
expects convincing answers. In contrast, in the non-interactive proofs, this exchange of
messages is substituted by a single one from the prover to the verifier that constitutes
the proof and can be checked off-line by the verifier. Then, intuitively, some parameters
that substitute the verifier’s challenge are needed. The Common Reference String (crs)
model introduced by Blum et al. [20] assumes that the prover and the verifier share
some public parameters generated by a trusted third party. In this model, the prover
should combine the witness with the elements in the crs to create the proof, instead of
the challenge of the verifier.

The usability of NIZK proofs depends on the class of languages that they apply to
and the efficiency associated with the proof system. Ideally, one would like to define
proof systems that allow to prove very general statements, like CircuitSat that is a very
powerful language because it is NP-complete. This means that any NP problem can be
converted in an efficient way to a CircuitSat instantiation. Further, circuits encode in a
natural way many types of computation. However, historically it was difficult to design
efficient proofs for these powerful languages. For many years, the only known efficient
constructions were for very specific languages, like identification schemes ([55]) and
shuffle arguments for electronic voting [116].

In the last decades, this field suffered a big change with the development of cryp-
tography in bilinear groups. A bilinear group consists of two elliptic curves along
with a bilinear operation called pairing or bilinear map. The bilinear structure is very
suitable to develop efficient constructions of NIZK proofs with efficient public verifica-
tion. Pairing-based NIZK proofs were introduced by Groth, Ostrovsky and Sahai [75]
in 2006 where the authors constructed the first efficient NIZK argument for NP lan-
guages in the crs model. Although this work was much more efficient concretely than
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any other NIZK proof in the crs model, a proof for CircuitSat requires communication
linear in the circuit size, which is completely impractical for most interesting circuits.
The techniques introduced in Groth, Ostrovsky and Sahai were important to inspire
the framework of Groth-Sahai proofs [78] in 2008, which defines proofs for specific
languages, concretely proofs of satisfiability of several types of quadratic equations in
bilinear maps. For many equations types they remain the best alternative based on fal-
sifiable assumptions in bilinear maps. In this line of work all proofs are secure under
weak falsifiable assumptions.

After that, in 2010, Groth [71] presented the first constant size NIZK argument for
CircuitSat combining ideas from the interactive setting and techniques from previous
pairing-based NIZK proofs. Intuitively, since the proof is very small (constant, inde-
pendent of the circuit size), it is not possible under standard assumptions to extract a
witness that allows to decide if the adversary has cheated. Then, a non-black-box as-
sumption is needed to extract a witness linear in the circuit size in the security proof, as
formalized by the result of Gentry-Wichs [63]. Therefore, in Groth’s work [71] the se-
curity is proven under a knowledge of exponent assumption, which is non-falsifiable.
This technique started a line of research followed by Gennaro et al. [61] and other
works that progressively decrease the size of the proof, all of them are based on non-
falsifiable assumptions. These constructions are called zk-Succinct Non-Interactive Ar-
guments of Knowledge (zk-SNARKs).

Another line of research that makes the proof very efficient in terms of communica-
tion under very weak falsifiable assumptions was introduced by Jutla and Roy in [85]
with the Quasi-Adaptive NIZK (QA-NIZK) proofs. For some very specific pairing lan-
guages, they consist in just one group element, for example, for membership in a linear
space defined in a group.

Our work combines techniques from the three lines of research. In the follow-
ing, we explain these building blocks with more detail and we introduce commitment
schemes that, are a fundamental tool for building NIZK proofs.

Building blocks
“You may seek it with thimbles — and seek it with care;
You may hunt it with forks and hope;
You may threaten its life with a railway-share;
You may charm it with smiles and soap — ”
(“That’s exactly the method”, the Bellman bold in a hasty parenthesis
cried,
“That’s exactly the way I have always been told.
That the capture of Snarks should be tried!”)
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Lewis Carroll, The Hunter of The SNARK

Zk-SNARKs represent an important breakthrough in the zero-knowledge field. The
combination of the succinctness property with the fact that they are defined for very
general statements, makes them very useful to work in different scenarios. In ver-
ifiable delegation of computation, some party delegates to another party with more
resources a computation, and receives the computation result along with a zk-SNARK
proving its correctness (Pinocchio [108]). On the other hand, they have been imple-
mented in the field of cryptocurrencies (Zcash[2, 82], Ethereum[29], Monero[1]) where
zk-SNARKs guarantee the correctness of the transactions, in the sense of preventing
double-spending and offering anonymity. They are also implemented in smart contracts
(Hawk [93]) and anonymous identification systems (iden3[3]).

More in detail, the key of their efficiency is that zk-SNARKs are not only succinct,
but also they are concretely efficient in terms of communication and verification. The
shortest proof consists of just 3 group elements and its verification is dominated by 3
pairings.

The main idea to achieve constant size proof is based on characterizing CircuitSat
in terms of some polynomials identities as we will explain in the following. We are
interested in the study of this technique because in our results we explore how it can be
adapted to work with other NIZK proofs to improve their efficiency and we propose a
codification for boolean CircuitSat.

In 2013 Gennaro et al [61] presented the first zk-SNARK with linear crs. The
authors abstracted ideas from Groth [71] and defined two models of computation,
Quadratic Span Programs (QSP) for boolean circuits and Quadratic Arithmetic Pro-
grams (QAP) for arithmetic circuits. A QAP, or a QSP, express a CircuitSat relation
in terms of some polynomial identity. The name “Quadratic” comes because gate op-
erations of a circuit can be expressed as quadratic equations. All these equations are
compressed to a single divisibility relation of polynomials that is equivalent to the sat-
isfiability of all the gates of the circuit.

The idea to make the proof succinct is that this divisibility relation is checked at
one single point chosen by the setup algorithm. This is enough because the prover only
knows this secret point in the source group of some bilinear group. If the divisibility
relation of polynomials would not hold, the only way a cheating prover can still prove
that the relation holds at the secret point is to know it in the field, which is hard because
of the DLOG assumption.

The choice of codification for CircuitSat has a direct impact in the performance of
the zk-SNARK. For this reason, some alternatives have been proposed. For example,
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Square Span Programs (SSP) were presented by Danezis et al. in [45], which are a
simplified version of QSP and in 2017 Groth and Maller [74] defined the analogous
codification for arithmetic circuits, Square Arithmetic Programs (SAP). Both “Square”
versions offer better efficiency in proof terms but roughly double the number of poly-
nomials, which increases the crs size by approximately a factor of 2.

Quasi-Adaptive NIZK Arguments were introduced in 2013 by Jutla and Roy [85]
for membership in linear spaces in Gm1 with m ∈ N. Quasi-adaptive means the crs of
the argument depends on the specific language we are proving membership to, which
allows us to construct very efficient proofs under very weak assumptions. More tech-
nically, these NIZK proofs are constructed for a relation Rρ chosen from a collection
of relations {Rρ}ρ∈D where the ρ parameter is chosen according to some distribution
D and the crs is defined as a function of ρ. In the most important QA-NIZK con-
structions, ρ is a matrix A of group elements chosen according to a matrix distribution
M that parametrizes the language of membership in the column-space of A in Gι,
LA = {x ∈ Gmι such that ∃w,Aw = x}. In addition, the relation Rρ is witness-
sampleable, if the parameter ρ can be sampled with a witness that is a valid parameter.
In the previous example, the witness is a matrix with the DLOGs of the entries of A.

In the most efficient instances, the proof consists of just one group element, like
constructions in Jutla and Roy [86], and Kiltz and Wee [92] for linear spaces in Gm1 ,
m ∈ N for witness-sampleable distributions. There is also a simulation sound construc-
tion for an unbounded number of queries in Kiltz and Wee [92] for the same language,
that we use in our constructions. Other arguments have been developed in the QA-
NIZK setting for different languages, like bilateral spaces (linear spaces in Gm1 ×Gn2 ),
the same opening language, or the set of integer commitments that open to bits, in
González et al. [67].

Common applications of these constructions are shuffles and range proofs, like
in González et al. [68]. Shuffle arguments are used to check that two collections of
ciphertexts encrypt the same set of permuted plaintexts. It is very useful in electronic
voting to check correct mixing of the votes. On the other hand, range arguments are
proofs that guarantee some encrypted element belongs to a certain interval.

In our constructions we will use some of these QA-NIZK arguments as sub-proofs
of our schemes, like the same opening argument, and we also prove new security prop-
erties of some of them.

Commitment schemes and NIZK arguments. A commitment scheme is a primitive
where a party commits itself to a secret value, that can be revealed after some time. We
can think of it as the cryptographic version of an envelope because this value is not
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revealed until the party decides to open it. The hiding property ensures that no one
can gain any knowledge of the value from the envelope. It also should be guaranteed
that the opening value is the one chosen at the committing phase, the so-called binding
property.

Commitment schemes are naturally used in NIZK proofs, where often the prover
commits to the witness and gives the commitment along with a proof that the open-
ing satisfies some relation. Moreover, if a party owns the extraction trapdoor of the
commitment key, it can extract the witness, which is very suitable for the reduction in
a knowledge sound proof. We refer to the commit-and-prove technique to designate
those proofs that follow this strategy.

In this thesis, commitment schemes play a fundamental role. They are used as a
building block in most of our results in NIZK arguments and they are the main subject
of the results in Chapter 6.

1.3 Our results
We construct several NIZK arguments in bilinear groups building on the recent results
on QA-NIZK arguments and zk-SNARKs. We can classify the contributions in three
main directions.

1. We construct QA-NIZK arguments for a specific type of quadratic equations in
a finite field under falsifiable assumptions. We improve on the state-oh-the-art
in terms of communication complexity and crs size, in exchange for stronger
assumptions.

• In Chapter 3, we give three QA-NIZK arguments for different equations
sub-types extending the techniques of the zk-SNARK for boolean circuit
of [45] to work under new falsifiable assumptions.

• In Chapter 6, we present an analogous result for general arithmetic circuits.
2. We strengthen the soundness of some previous notable NIZK arguments to make

them simulation-extractable (SE) sound with minimal overhead:
• In Chapter 4, we add SE to the González and Ràfols’s QA-NIZK argu-

ment [69] for boolean CircuitSat, which is sub-linear in the circuit size
under falsifiable assumptions. One of our main contributions is a new anal-
ysis of the Unbounded Simulation Sound arguments for membership in
linear spaces of Kiltz and Wee [92] and the tight variant of Abe et al. [5],
which might be of independent interest . We also give two Signatures of
Knowledge constructed from them.

• In Chapter 5, we add SE to the most efficient zk-SNARK in the literature,
Groth16 [72]. We build on the work of Bowe and Gabizon [26], that has
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the same crs size and prover complexity as Groth16, but it is proven secure
in the RO (a part from the GGM inherited from Groth16). We give two
constructions, where we reduce the verification to just one extra pairing
respect to Groth16. In our second zk-SNARK, we avoid the use of a RO
by making minimal changes to the crs and the verifier.

3. In Chapter 6 we define a new primitive, called Somewhere Statistically Binding
commitments, that is a generalization of the Extended Multi-Pedersen commit-
ments defined in [67]. We give the formal definitions and some applications in
CircuitSat and Oblivious Database Queries. We also define Functional Some-
where Statistically Binding commitment schemes, which formalize the commit-
ment scheme already used in our first result ( Chapter 3) as an implicit technique
to extract linear functions of the witness in the security proof.

In the following Sections 1.3.1 to 1.3.3 we give more detail of our contributions
and finally, provide a list with the publications of this work.

1.3.1 Shorter QA-NIZK proofs for quadratic equations

Quadratic equations in a finite field appear naturally in cryptographic schemes, like
shuffle and range arguments, and also they can be proven efficiently in bilinear groups.
Often these equations are used to prove that certain committed value is a bit or, more
generally a set of committed values opens to a bit-vector. We can prove membership
in that language using the Groth-Sahai proof system [78] with constant size crs, com-
mitment and proof sizes linear in the number of bits under very weak assumptions1.
To the best of our knowledge, the only improvement is the argument in González and
Ràfols[67], with a crs quadratic in the size of the bit-vector, constant proof and com-
mitment linear in the size of the number of bits.

In Chapter 3, our main result is a QA-NIZK argument for l quadratic equations of
the form Xi(Xi − 2) = 0, where Xi is a linear combination of n variables in Zp. In
particular, with this argument, we can prove that a set of commitments opens to a bit-
string. We use techniques inspired in the zk-SNARK for Square Span Programs (SSP,
[45]) to express these equations to a single equation of polynomials and the argument
results in the most efficient in proof and crs size based on falsifiable assumptions. We
give two other arguments based on the main construction. The first one is a unit vector
argument, that uses a weaker version of our assumption, where the bit-vector is a unit
vector in a multi-dimensional space. The second argument is a generalization of the
main argument, that proves a commitment opens to values that are in a set of size m in
Zp, {z1, . . . , zm} ⊂ Zp, instead of membership in the set {0, 2} as the main argument.

1We think in commit-and-prove as was formalized by Escala and Groth [50]
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We have some new applications: two shuffle arguments and one range argument.
Technically, the motivation of this work is to explore how efficient NIZK proofs

based on falsifiable assumptions can be when one exploits the polynomial aggregation
techniques of zk-SNARKs. By polynomial aggregation we refer to the technique of
proving many equations together, by expressing them in a single divisibility relation
as a SSP. If we think of the construction as a commit-and-prove argument, the “prove”
part, that proves the divisibility relation holds, is constant-size. Since our assumption
is falsifiable, to extract the whole witness in the security proof, we need a commitment
linear in the witness size. This is because quadratic equations are NP-complete and
Gentry-Wichs [63] states that any proof for an NP statement cannot be sub-linear in the
witness size under falsifiable assumptions, unless some surprising results in complexity
theory hold. We use a QA-NIZK argument for same opening [67] to prove the opening
of the commitment is the witness of the SSP relation.

A common strategy to all soundness security proofs of commit-and-prove argu-
ments, the commitment is extracted and the witness is used to break a hard problem
with the “prove” part. In particular, Danezis et al.[45] use a non-falsifiable assump-
tion to extract from a succinct commitment the whole witness in the field and use the
“prove” part to break the q-TSDH assumption. We can extract from the linear com-
mitment the whole witness but in the source group, so we need to use a different as-
sumption. Still, we want a new assumption that is no too far from the q-TSDH, then we
design a new one that is a generalization of the q-TSDH. For that, the reduction needs
to extract some linear functions of the witness in the group to break it. Instead of doing
itself, we use a strategy of González et al. [67] to make the adversary compute these
linear functions and commit to them in a way the reduction can use it to break the new
assumption.

Overall, we give some commit-and-prove arguments that allow us to have succinct
proofs while avoiding the Gentry-Wichs impossibility result because the commitment
is long. In some scenarios, like electronic voting, the commitment can be used in
different proofs, so it is preferable to have the linear part of the proof in the “commit”
and not in the “prove”.

1.3.2 Simulation Extractability

As we explained above, simulation extractability (SE) is the strongest soundness notion
(knowledge and simulation), where the adversary cannot come up with a fresh valid
proof unless it knows a witness, even if it has seen an arbitrary number of simulated
proofs. In the following two contributions, we adapt some arguments to satisfy this
property.
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Signatures of Knowledge for Boolean Circuits Under Standard Assumptions. In Chap-
ter 4, we build a SE-NIZK for boolean CircuitSat based on the scheme of González and
Ràfols [69], which is the first NIZK argument sub-linear in the circuit size under stan-
dard assumptions in bilinear groups. Their proof is linear in the depth and the secret
input size of the circuit, so it is independent of the number of gates.

Several SE proofs are constructed using the traditional OR approach described in
Groth [70]. Briefly, given some circuit and public input, a proof shows that either the
circuit is satisfiable or a signature is known for some signature scheme specified in
the crs. The honest prover gives a proof using its witness and the simulator uses the
secret key of the signature as a trapdoor to sign. This approach changes the relation
and the crs. On the contrary, we use a new strategy for simulation to achieve SE with a
minimum overhead based on the structure of the scheme in [69].

The main idea of [69] is to prove the satisfiability of the circuit by giving a proof
of knowledge of the secret input along with a proof of satisfiability of all gates in one
level of the circuit. At each level, they prove separately quadratic (gate operations) and
linear equations (correct wiring).

Our construction is based on the observation of that it is enough to have a simulation
sound QA-NIZK for the linear equations to provide simulation-soundness to the whole
proof.

González and Ràfols need to prove a stronger notion of soundness for linear equa-
tions. Intuitively, they want to prove that a QA-NIZK satisfies a “linear knowledge
transfer”. Technically, they use a QA-NIZK argument for membership in linear spaces
such that the adversary cannot create a valid proof for statements (x>,y>)> ∈ Im(M>,N>)>

where x = Mw for some known w, but y 6= Nw. The condition that x = Mw for
public value of w is called the promise, because it is never verified. When we use this
argument as a sub-argument in our CircuitSat proof, the promise holds at some level
because it is already proven in the previous levels, starting from the proof of knowledge
of the input.

Concretely, we adapt the security proof of the unbounded simulation sound2 argu-
ment of membership in linear spaces of Kiltz and Wee [92], which is the most efficient
in the literature, to satisfy the stronger soundness notion related to promise problems,
which is non-trivial.

As we mentioned, the simulation soundness property of our construction is derived
from the USS property of our sub-argument for linear constraints. We also prove that
when the USS QA-NIZK is tight, this property is also extended to the whole proof.
We adapt the security proof of the tightest USS QA-NIZK in the literature [5] to work
with promise problems resulting in a tight Signature of Knowledge for boolean circuits

2Unbounded refers to the number of queries of the adversary to the simulator.
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under falsifiable assumptions. A Signature of Knowledge is a generalization of digital
signatures where one can sign the message just if it has a valid witness for membership
in the language.

As we explained in Section 1.2, QSP and SSP were presented as models of compu-
tation for boolean CircuitSat. As Groth observed in [72], QAP, originally defined for
arithmetic CircuitSat, can be also used to express boolean CircuitSat. Although, this
transformation is not hard to do, there are several possible ways. We propose a simple,
canonical transformation.

Simulation Extractable Versions of Groth’s zk-SNARK Reviseted. Since zk-SNARKs
are widely developed and used in practice, and efficiency is extremely important, in our
next result we accept to work with non-falsifiable assumptions. In Chapter 5, we im-
prove the soundness notion of Groth16 [72], the most efficient zk-SNARK in terms of
proof size and verification cost. However, Groth and Maller [74] showed the proof is
malleable, so an adversary who has access to a valid proof can modify it and obtain
very easily a fresh proof that will pass the verification.

There have been many efforts to make Groth16 SE to avoid malleability. The
Bowe and Gabizon’s approach [26] has the most efficient prover and crs size, while it
adds Random Oracle (RO). Atapoor and Baghery’s approach [11] reduces in 1 pairing
the verification cost in comparison to other approaches, but it increases the crs and the
prover’s work considerably. Another construction given by Lipmaa [102] adds just one
element in the proof respect to Groth16, but it increases the other complexities.

We construct two zk-SNARKs with the same verification as Atapoor and Bagh-
ery [11]. The first construction has the same crs and proof size as [26], and requires
4 pairings in the verification as [11], it just increases 1 pairing compared to Groth16.
In the second construction, we get rid of the RO by using a collision-resistant hash
function and adding one element in the crs and one exponentiation in the target group
in the verification. Then, the second approach is proven directly in the GGM as the
original Groth16.

Both constructions follow Bowe and Gabizon’s approach, that randomizes one pa-
rameter of Groth16’s zk-SNARK and the prover gives the modified proof along with
a proof of knowledge (PoK) of the randomization factor. We observe that in the GGM
it is enough to replace the PoK with a variation of Boneh-Boyen’s signature. This is
possible because the proof of knowledge of the randomization factor never needs to be
simulated for proving ZK of the zk-SNARK.
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1.3.3 Somewhere Statistically Binding Commitment Schemes
In Chapter 6, we define a new primitive called Somewhere Statistically Binding (SSB)
commitment scheme, which is a generalization of dual-mode commitments of vectors.
In this primitive, the commitment key sets some indices where the coordinates are
statistically binding and computationally hiding, and the remaining coordinates are
statistically hiding and computationally binding. The set of indices where statistically
binding holds is predetermined but only known by the commitment key generator.

The interest of this primitive is that it appears naturally in commit-and-prove ar-
guments for NP languages. Indeed, in the falsifiable setting, the best we can hope
for is that the “prove part” is constant and the “commit” part is linear in the witness
size. In this sense, we can think of the “prove” part as a second commitment to the
witness that is succinct. Therefore, the information that we can extract of the wit-
ness from the “prove” part (under falsifiable assumptions) can only be constant for
information-theoretic reasons. The challenge for constructing the security proof is to
combine this constant size information of the witness with the whole witness extracted
from the “commit” part to break a hard problem. In González et al. [67] construction it
is enough to extract just one coordinate of the shrinking commitment. Our generaliza-
tion allows extraction3 of a set of coordinates of arbitrary size. This primitive provides
additional flexibility that can be useful to apply this strategy to other contexts.

We formally define SSB commitment schemes and prove that they cover as a spe-
cial case the Extended Multi-Pedersen (EMP) commitments introduced in González et
al. [67, 68].

We also give a characterization of Algebraic Commitment Schemes, where com-
mitment keys are matrices, proving that the key matrices’ distributions define the SSB
properties at each coordinate. We also show that the SSB properties can be expressed
in terms of membership in linear spaces.

Moreover, we introduce another primitive called Functional SSB commitment scheme,
which is a generalization of an SSB commitment scheme where the extraction key in-
stead of recovering certain coordinates of the committed vector, returns some functions
of the committed vector. The set of functions is defined when the commitment key is
set up. This primitive for a family of linear functions was already used in our first
result Chapter 3 as a technique in the security proof to extract linear functions of the
witness computed by the adversary.

We have some new applications of Functional SSB commitments:
• A QA-NIZK Argument for SAP relations, which is a generalization of our result

in Chapter 3,
• Two efficient applications in Oblivious transfer.

3F -extraction for a chosen function F .

15



1.3.4 List of Publications
[46] Shorter quadratic QA-NIZK proofs, V. Daza, A. González, Z. Pindado, C. Ràfols,
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Chapter 2

Preliminaries

In this chapter we establish the notation used in the thesis, define the circuit satisfia-
bility problem, bilinear groups and non-interactive zero-knowledge proofs. We briefly
explain the idealized models of computation that are used to analyse security of the
schemes, as well as the assumptions. Finally, we present some concrete schemes that
we use in our constructions as building blocks.

2.1 Notation and Preliminaries

2.1.1 Algorithms, functions and probabilities notions
Let λ be the security parameter, an integer value that parametrizes cryptographic schemes
and the involved parties. We consider the running-time of any adversary and the prob-
ability of its success as functions of this parameter.

Algorithms and functions

We write y ← S for sampling y uniformly at random from the set S.
For an algorithm A, let Im(A) be the image of A, i.e., the set of valid outputs of

A. By y ← A(x; r) we denote the fact that A, given an input x and a randomizer r,
outputs y. For algorithmsA and EA, we write (y ‖ y′)← (A‖EA)(x; r) as a shorthand
for “y ← A(x; r), y′ ← EA(x; r)”.

All algorithms by default are considered probabilistic, or randomized. Let RNDλ(A)
denote the random tape of an algorithm A, it is given in addition to its input and con-
tains the uniformly distributed bits that A can use in its execution.

17



All adversaries will be stateful, i.e. the algorithms they use are capable of storing
information seen previously.

Let PPT denote probabilistic polynomial-time, and NUPPT denote non-uniform
PPT. NUPPT is a stronger model where the algorithm is given some advice depending
on the length of the input. Then, we have more confidence if a NUPPT algorithm
cannot do some computation.

We denote by poly(λ) an arbitrary polynomial function in λ and by negl(λ) an
arbitrary negligible function in λ, that is a function asymptotically smaller than any
inverse polynomial function in λ.

Oracle access. An oracle is an ideal black-box machine that receives inputs and re-
turns some output. If an algorithm is given access to an oracle, it means this algorithm
gets access to the answers of some queries without specifying how the answers are
computed. We denote by AO(x) the fact that the algorithm A on input x is given
oracle access to O.

Asymptotic notation. We write f(x) = O(g(x)) to express that when x goes to
infinity, the function g bounds the function f .

If a function f(x) verifies |f(x)| = O
(

1
p(x)

)
for all polynomial p(x), this function is

called negligible. A function f is called overwhelming if 1− f is negligible.
Given a family of computational problems parametrized by λ, informally we say that
It is hard to solve a problem of size λ, when the probability to find a solution to this
problem is negligible in terms of the security parameter λ.
Functions f, g are negligibly close, denoted f ≈λ g, if |f − g| = negl(λ). In case of
negligible functions, we write f ≈λ 0, or just f ≈ 0.

Computational indistinguishability. Given two probability distributions X and Y ,
we say they are computationally indistinguishable, which is noted by X ≈ Y , if no
adversary is able to decide whether a given string s is sampled from distribution X or
Y . Formally, for all PPT adversary A, |Pr[s← X : A(s) = 1]− Pr[s← Y : A(s) =
1]| ≤ negl(λ).

Advantages and winning experiments. We denote that an adversary A wins the
experiment E byA(E) = 1. The probability of the adversary wins an experiment E is
the advantage and we denote it by AdvE(A), i.e. AdvE(A) = Pr[A(E) = 1].
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2.1.2 Arithmetic

Sets. We denote by N the set of the natural numbers and Z the set of integers. We
denote by {0, 1}n the set of bit-strings of length n, for a positive integer n, and {0, 1}∗
the set of all bit-strings. The order of a set is the number of elements that belong to
this set.

Groups

Let Fp be a finite field of order p, the set Fp\{0} is an abelian group with the associated
binary operation ·, i.e. a commutative group. Mostly, we use Zp as the finite field with
p prime and denote by G = Zp \ {0} the group.
For a group G, we denote by G∗ the set of all the elements in G but the identity element.

Cyclic groups. A cyclic group is a group G that can be generated by a single el-
ement, called generator. If G is a group of order N and P a generator of G, then
{P, 2P, . . . , NP} is all G. Equivalently, given a generator P , for all [Q] ∈ G there
exists a unique α ∈ ZN such that αP = [Q].

Note that we are using additive notation because it is more convenient when we
work with vectors and matrices of elements in the group. In the cryptographic liter-
ature, often multiplicative notation is used to express elements in a group where g is
the generator we write gα, and the group is generated by exponentiating the generator:
{g, g2, . . . , gN} = G.

Matrices and vectors notation

In refers to the identity matrix in Zn×np , 0m×n refers to the all-zero matrix in Zm×np ,
and eni the ith element of the canonical basis of Znp (simply I, 0, and ei, respectively,
if n,m are clear from the context).

2.1.3 Lagrange Interpolation

Given a set R = {r1, . . . , rn} ⊂ Zp, ri 6= rj for all i 6= j, we denote by λi(X) =∏
j 6=i

(X − ri)
(rj − ri)

the ith Lagrange basis polynomial associated toR.

The linear combination of these polynomials with coefficients {y1, . . . , yn} ⊂ Zp
is the Lagrange Interpolation polynomial

∑n
i=1 yiλi(X), a degree n − 1 polynomial

that passes through all the points (r1, y1), . . . , (rn, yn).
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2.2 Circuit Satisfiability problem
In computational complexity theory, a decision problem is a question whose answer is
yes or no. We consider those problems where possible inputs are a set of binary strings
or strings over a finite field. The subset of strings for which the problem returns yes is
a formal language.

We are interested in the Circuit Satisfiability (CircuitSat) problem, a decision prob-
lem that determines whether a given circuit has an assignment of its inputs that makes
the output true. We briefly define circuits and the CircuitSat problem in the following.

2.2.1 Circuits
A circuit is a directed acyclic graph that consists in a set of wires and gates with a set
of equations relating the inputs and outputs of the gates.

There are two types of circuits, boolean and arithmetic, depending on the data type
of the inputs, bits or elements in a field F, and the type of operations in the gates, binary
operations or addition and multiplication in F, respectively.

Formally, a boolean circuit is a function C : {0, 1}n0 → {0, 1}`, where n0 is the
number of inputs and ` the number of outputs. An arithmetic circuit over a field F is a
function C : Fn0 → F`, where n0 is the number of inputs and ` the number of outputs.

2.2.2 CircuitSat
We define in the following the Circuit Satisfiability (CircuitSat) problem for boolean
and arithmetic circuits. A boolean circuit C is satisfiable if and only if there exists an
assignment of inputs that makes the output of the circuit true. An arithmetic circuit is
satisfiable if and only if for an assignment of inputs and outputs the circuit is correctly
computed.

We formalize the satisfiability definition by a circuit checker function associated
to the circuit that outputs 0/1 if the circuit is satisfiable. Let Gi be the operation of
the ith gate of the circuit. We denote the assignment of the input by x ∈ {0, 1}n0+n,
including the input values, intermediate values that are the output of the gates and the
output values.

Definition 1. Let C : {0, 1}n0 → {0, 1}` be a boolean circuit with n gates. Given an
input (x1, . . . , xn0

), a circuit checker is a functionG : {0, 1}n0+n → {0, 1} associated
to C such that G(x1, . . . , xn0+n) = 1 if and only if C(x1, . . . , xn0

) = 1 and xn0+i

is the output of the ith gate when C is evaluated on input (x1, . . . , xn0) for all i =
1, . . . , n.
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Figure 2.1: Circuit sketch

Analogously, we define the satisfiability of an arithmetic circuit.

Definition 2. Let C : Fn0 → F` be an arithmetic circuit with n gates. Given an
input (x1, . . . , xn0

) and output (xn−`+1, . . . , xn), a circuit checker is a function G :
Fn0+n → {0, 1} associated to C such that G(x1, . . . , xn0+n) = 1 if and only if
C(x1, . . . , xn0) = (xn−`+1, . . . , xn) and xn0+i is the output of the ith gate when C is
evaluated on input (x1, . . . , xn0) for all i = 1, . . . , n.

In Figure 2.1 we give a sketch of a circuit where we show the graph with the input
wires, middle wires and output wires. We split the vector into public and secret values,
x = (xp,xs), because in most cases the public values are given in the statement. Given
some xp, the prover shows there exists some xs such that the gate checker is satisfied.
We write CircuitSat as a system of equations with variables a, b, c for left, right and
output, wires respectively. The operations in the gates depend on the circuit, we use
here the operator symbol x to indicate some boolean gate when the circuit is boolean
and a multiplication gate when the circuit is arithmetic

Note that for any circuit C with more than one output, we can always construct
an equivalent circuit C ′ with enough additional gates that has just one output gate
indicating the satisfiability of the circuit with 0/1. This output value should be the
same as the circuit checker output. Then, we assume w.l.o.g. that circuits have one
single output which is a bit.
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Now, we give the formal definition of an NP language to define CircuitSat formally.

Definition 3. A languageL is inNP if there exists a Boolean relation RL ⊂ {0, 1}∗×
{0, 1}∗ and a polynomial p such that RL can be recognized in deterministic polynomial
time and x ∈ L if and only if there exists a w such that |w| ≤ p(|x|) and (x,w) ∈ RL.
We call w the witness for membership of x ∈ L.

A CircuitSat problem is an NP language that we write formally:

LC = {xp : ∃w = (xs, xn0+1, . . . , xn0+n), such that G(xp,w) = 1},

where G is the circuit checker of the circuit C, so it outputs 1 if and only if the circuit
is satisfied in the terms of the above definitions respect to w.

The boolean satisfiability problem is NP-complete by the Cook-Levin Theorem
([39], [95]). That is, all NP boolean problems can be reduced to a circuit satisfiability
problem, however this does not imply the reduction is concretely efficient. Given an
instantiation x of a problemL′, it could be translated to a CircuitSat instantiation, f(x),
for some efficient function f , such that x ∈ L′ if and only if f(x) ∈ LC .

2.3 Bilinear Groups and Implicit Notation
Bilinear Groups were introduced in 1993 for breaking elliptic curve schemes, con-
cretely using the Weil and Tate pairings [118]. Although they were initially used for
cryptanalysis, in 2000 they started being used for designing new primitives and im-
prove schemes like Identity-Based Encryption [84], Signatures and much more. They
have a very rich structure that allows to design very efficient primitives.

In this section we define bilinear groups and establish the notation that we use to
designate the elements in those groups.

2.3.1 Definition
Definition 4. A bilinear group is a tuple gk := (p,G1,G2,GT , e,P1,P2), where
G1,G2 and GT are additive groups of prime order p, the elements P1,P2 are gen-
erators of G1,G2 respectively, e : G1 × G2 → GT is an efficiently computable, non-
degenerate bilinear map, and there is no efficiently computable isomorphism between
G1 and G2.

We may refer to the e above as a bilinear map or pairing indistinguishably. By
definition, e(P1,P2) is a generator of GT .

Galbraith et al. in [59] give a classification of bilinear groups of these three types:
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• Type I: Symmetric bilinear groups. When G1 = G2, we denote G1 and G2 as G
and the bilinear group as (N,G, g,GT , e).

• Type II: Asymmetric bilinear groups for which there exists an efficiently-computable
homomorphism ψ : G2 → G1, but its inverse is hard to compute.

• Type III: The asymmetric bilinear groups for such homomorphism is not known.

We are more interested in type III because asymmetric bilinear groups are more
efficient in practice than the other types. Elliptic curves are the only instantiations of
these groups, and they are commonly used in cryptography. All the constructions in
this thesis are defined over Bilinear groups. We give some of the assumptions used to
prove the constructions in section 2.4.

Note that N can be a prime or composite number hard to factor. In this thesis, we
consider prime order bilinear groups because the computations of pairings are more
efficient.

We use implicit (or additive) notation explained in the following that is taken from
elliptic curves where the elements of the group are points and the operation is the
addition of points.

2.3.2 Implicit notation

Elements in Gι are denoted implicitly as [a]ι := aPι, where ι ∈ {1, 2, T} and PT :=
e(P1,P2). For simplicity, we often write [a]1,2 for the pair [a]1, [a]2. The pairing
operation will be written as a product · or any of the forms: [a]1 · [b]2 = [a]1[b]2 =
e([a]1, [b]2) = [ab]T .

Bilinearity. By bilinearity, for all α, β ∈ ZN , [a]1 ∈ G1, [b]2 ∈ G2 it holds that
e(α[a]1, β[b]2) = e(αβ[a]1, [b]2) = e([a]1, αβ[b]2) = αβ · e([a]1, [b]2).

Vectors and matrices notation. Vectors and matrices are denoted in boldface. Given
a matrix T = (ti,j), [T]ι is the natural embedding of T in Gι, that is, the matrix whose
(i, j)th entry is ti,jPι. We denote by |Gι| the bit-size of the elements of Gι and by
(·, ·) the bit-size of elements in G1 and G2 in each component.

We write the pairing operation for matrices and vectors in groups writing [M1]1 ·
[M2]2 = [M1M2]T for any compatible matrices M1 and M2.
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2.4 Computational Assumptions
In this section we introduce the standard assumptions DLOG and DDH, some matrix
assumptions that we use in our work including some q-assumptions and knowledge
assumptions.

2.4.1 Standard Assumptions
We give the definitions of two standard assumptions, the Discrete Logarithm (DLOG)
Assumption and the Decisional Diffie-Hellman (DDH) assumption, that is stronger and
relies on it. They are the basis of the assumptions presented in the following.

Discrete Logarithm Assumption

DLOG. Let G a cyclic group, remember that for all [Q] ∈ G there exists a unique
α ∈ ZN such that αP = [Q]. This α is called the Discrete Logarithm of [Q] respect
to P , we denote it as DLOGP [Q].

The Discrete Logarithm Problem in a cyclic group G with generator P is to com-
pute DLOGP [Q] for a uniform element [Q] ∈ G.

Definition 5 (Discrete Logarithm Assumption). The Discrete Logarithm (DLOG) as-
sumption holds relative to G, if for all PPT adversary A,

Pr
[

(G, N,P)← G(1λ); [Q]← G;α← A(G, N,P, [Q]) : [Q] = αP
]
≈ 0.

Decisional and Computational Diffie-Hellman Assumption. The Decisional Diffie-
Hellman (DDH) problem relative to G, given a tuple (P, aP, bP, [Q]) where P is a
generator of a cyclic group G ← G(1λ) of order N , a, b ∈ ZN and [Q] ∈ G, is to
distinguish if [Q] has been generated computing [Q] = abP or if [Q] is generated
uniformly at random in the group ([Q]← G).

We give the definition of DDH assumption in the following. To denote the adver-
sary receives the tuple (P, aP, bP,Q) and wins in the sense it guesses correctly the
last element is a uniformly sampled element Q in G, or it is generated by computing
abP , we write A(P, aP, bP, [Q]T ) = 1.

Definition 6 (Decisional Diffie-Hellman Assumption). The Decisional Diffie-Hellman
(DDH) assumption holds relative to G if, for all probabilistic polynomial time adver-
sary A,

|Pr [A(gk, aP, bP, abP) = 1)]− Pr [A(gk, aP, bP,Q) = 1] | ≈ 0,
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where the probability is taken over gk = (N,P,G,GT , e) ← G(1λ), a, b ← ZN ,
[Q]← G and the coin tosses of adversary A.

The computational version of the problem is the Computational Diffie-Hellman
(CDH) that, relative to G, given a tuple (P, aP, bP) where P is a generator of a cyclic
group G ← G(1λ) of order N , a, b ∈ ZN , consists of computing abP . If a, b are
sampled uniformly, by the DLOG assumption it is hard to compute such an element
abP without knowing a or b.

Note that if we work with symmetric bilinear pairings, the decisional problem is
easy because if we know aP and bP with P ∈ G a generator of the group and
a symmetric bilinear pairing e : G × G → GT , we can compute e(aP, bP) =
e(P, abP) and compare it to e(P,Q). In bilinear case, we use analogous problems
based on the DH problem for bilinear groups that are hard even with symmetric bi-
linear groups, for example the 2-LIN assumption introduced by Boneh et al. [23].
This assumptions states that the following tuples are computational indistinguishable
([a1], [a2], [a1r1], [a2r2], [r1+r2]) ≈ ([a1], [a2], [a1r1], [a2r2], [z]), where a1, a2, r1, r2, z ←
Zp, and it is generalized to k-LIN assumptions where 1-LIN=DDH ([81]).

2.4.2 Matrix Assumptions
We present the generalization of DDH to group matrix distributions defined in [52].
Let `, k ∈ N be the parameters that define the dimensions of the matrices.

Definition 7. We call D`,k a matrix distribution if it outputs (in PPT time, with over-
whelming probability) matrices in Z`×kp . We define Dk := Dk+1,k.

The following applies for Gι, where ι ∈ {1, 2}.

Assumption 1 (Matrix Decisional Diffie-Hellman Assumption in Gι [52]). For all
non-uniform PPT adversaries A,

|Pr[A(gk, [A]ι, [Aw]ι) = 1]− Pr[A(gk, [A]ι, [z]ι) = 1]| ≈ 0,

where the probability is taken over gk ← G(1λ), A← D`,k,w ← Zkp, [z]ι ← G`ι and
the coin tosses of adversary A.

Intuitively, the D`,k-MDDH assumption means that it is hard to decide whether a
vector is in the image space of a matrix or it is a random vector, where the matrix is
drawn from D`,k. We use the following matrix distributions:

Lk : A =


a1 0 ... 0
0 a2 ... 0

.

.

.

.

.

.
. . .

.

.

.
0 0 ... ak
1 1 ... 1

 , U`,k : A =

( a1,1 ... a1,k

.

.

.
. . .

.

.

.
a`,1 ... a`,k

)
,
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where ai, ai,j ← Zp. The Lk-MDDH Assumption is the k-linear family of Decisional
Assumptions and corresponds to the Decisional Diffie-Hellman (DDH) Assumption in
Gι when k = 1. The SXDH Assumption states that DDH holds in Gι for all ι ∈
{1, 2}. The U`,k-MDDH assumption is the Uniform Assumption and is the weakest of
all matrix assumptions of size `× k.

Additionally, we use the family of computational assumptions called Kernel Diffie-
Hellman (KerDH) Assumptions in Gι and its analogue for asymmetric bilinear groups
Split Kernel Diffie-Hellman Assumption. The KerMDH was presented in [104] as a
natural computational analogue of the MDDH assumption, which generalizes different
assumptions already used for particular cases. The problem behind this assumption is
given [A]ι to find a non-zero vector which image by the matrix A is the vector zero.
Actually, it is the right computational analogue of the MDDH assumption in the sense
that, given a distributionD`,k, theD`,k-KerMDH is implied by theD`,k-MDDH, since
a solution to the kernel allows to decide membership in Im([A]ι).

Assumption 2 (Kernel Diffie-Hellman Assumption in Gι [104]). For all non-uniform
PPT adversaries A:

Pr
[
[x]3−ι ← A(gk, [A]ι) : x 6= 0 ∧ x>A = 0

]
≈ 0,

where the probability is taken over gk ← G(1λ), A ← D`,k and the coin tosses of
adversary A.

In asymmetric bilinear groups, there is a natural variant of this assumption, that is
the Split Kernel Diffie-Hellman Assumption.

Assumption 3 (Split Kernel Diffie-Hellman Assumption [67]). For all non-uniform
PPT adversaries A:

Pr
[
[r]1, [s]2 ← A(gk, [A]1,2) : r 6= s ∧ r>A = s>A

]
≈ 0,

where the probability is taken over gk ← G(1λ), A ← D`,k and the coin tosses of
adversary A.

While the KerMDH Assumption says one cannot find a non-zero vector in one
of the groups which is in the kernel of A, the split assumption says one cannot find
different vectors in G`1 × G`2 such that the difference of the vector of their discrete
logarithms is in the co-kernel of A.

2.4.3 q-type Assumptions
A q-type assumption is a family of assumptions that depend on a parameter q, that
commonly is the number of queries to an oracle. For example, in signatures schemes
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it is the number of queries of a signature scheme, in zk-SNARKs it is the number of
powers of a secret point. The dependency on this parameter is a drawback in the design
of schemes because the security of the scheme depends on the number of queries the
adversary does, which is a weakness. For example, Cheon in [37] shows that when q
holds some particular relation with the order of the group, the complexity of the scheme
that relies on the q-assumption is reduced by O(

√
q). However, they are very useful in

the works that we take as a reference and some times it is preferable for efficiency to
use them in our constructions. Moreover, the constant case of these assumptions, i.e.
when q = 1, usually is weaker than those with q > 1, because they do not have this
dependency on a parameter of the scheme.

We recall the q-Target Strong Diffie-Hellman assumption, that we refer to in our re-
sults in Chapters 3 and 6. This assumption essentially says that the inversion operation
is hard in the exponent, even given q powers of the element to invert.

Assumption 4 (q-Target Strong Diffie-Hellman Assumption, q-TSDH [21]). For all
non-uniform PPT adversaries A:

Pr

[
(r, [ν]T )← A(gk, {[si]1,2}qi=1) : ν =

1

s− r

]
≈ 0,

where the probability is taken over gk ← G(1λ), s ← Zp and the coin tosses of
adversary A.

2.4.4 Knowledge Assumptions

Knowledge assumptions are a family of non-falsifiable assumptions because they as-
sume if the adversary comes out with some elements that satisfy a desired condition, it
has to know something. For example, the coefficients used to output a linear combina-
tion of the input elements. In other words, they assume which strategy the adversary
used to create its output. This is formalized for each such adversary assuming the
existence of an extractor that gives this knowledge to the adversary.

The Knowledge of Exponent Assumption (KEA) is a basic example presented by
Damgård in [42]. KEA establishes that given the tuple (P, αP) as input, it is infeasible
to output ([c], α[c]) without knowing the DLOGP [c] = DLOGαP(α[c]), i.e. an element
a such that [c] = aP and α[c] = αaP .

There are several generalizations of this assumption, we define the bilinear version
for the Diffie-Hellman assumption of KEA, the BDH-KEA, that we use in Chapters 3
and 6 to reduce our new q-assumptions to the q-TSDH assumption, basically we show
that they are equivalent under BDH-KE assumption.
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Assumption 5 (Bilinear Diffie-Hellman Knowledge of Exponent Assumption, BD-
H-KE [4]). For all non-uniform PPT adversaries A:

Pr [([α1]1 , [α2]2 ‖a)← (A‖XA)(gk) : e ([α1]1 , [1]2) = e ([1]1, [α2]2) ∧ aP1 6= α1] ≈ 0,

where the probability is taken over gk = (N,P1,P2,G1,G2,GT , e)← G(1λ) and the
coin tosses of adversary A.

2.5 Idealized Models of Computation
In this section we briefly describe two idealized models of computation widely used in
the literature to prove some security proofs that we also use in our results.

2.5.1 Generic Group Model
The Generic Group Model (GGM) is an idealized model where groups do not have any
specific property, [117]. It is a tool commonly used in the analysis of cryptographic
problems.

In this model, the algorithms are restricted just to ask an oracle for basic group
operations, such as computing the group law, checking for equality of elements, and
possibly additional operations without being able to exploit any specific property of a
given group representation.

In any proof, a generic adversary constructs the elements as linear combinations of
the elements that it has access. Being secure in the GGM is the minimum required for
any cryptographic protocol. For new assumptions, for example, holding in GGM is the
first that we prove and then, we would try to find a reduction to another assumption.

2.5.2 Random Oracle Model
The Random Oracle (RO) Model is another idealized model where it is assumed that
a Random Oracle machine that behaves as a truly random function exists and some
parties have access to it, [89]. These parties can send queries x to the RO, who answers
with a random value.

This model is widely used to prove cryptographic schemes. We use it in Chap-
ter 5 for the first construction where we assume the hash function is evaluated only by
querying the RO. The parties send x and the RO answers with H(x).

In practice, when the schemes are implemented in real-world, the RO is instantiated
by a hash function and the parties evaluate it by its own. It does not exist a perfect hash
function that generates truly random elements, because it is a deterministic function,
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but there exist hash functions that are considered to be close enough to a RO in practise.
In section 2.6.4 we define hash functions.

2.6 Cryptographic Primitives
In this section we define the basic cryptographic primitives commitment schemes, en-
cryption schemes and signature schemes briefly. We also give examples of them that
are used in our results.

2.6.1 Commitment schemes

A commitment scheme is a cryptographic primitive where a party P commits itself
to a value, that can be a vote or a solution of a problem, that does not want to reveal
until it decides and it cannot change it. Briefly, in the first phase, the sender P sends
the commitment of the value to a receiver V , and the requirement is secrecy, i.e. V
cannot gain any knowledge of the value from the commitment before the next phase.
In the revealing phase, P opens the commitment revealing the value used to commit
and V checks that this value corresponds to the commitment that it has received in the
previous phase, the requirement is unambiguity, P is bound to the value, it cannot alter
the content of the commitment. We define it formally in the following.

Definition 8. A commitment scheme is a tuple of probabilistic polynomial-time algo-
rithms (Gen,Com) such that:

• Gen(1λ): The generator algorithm takes the security parameter as input and
outputs the public parameters pp, which includes the commitment key ck, the
commitment, message and randomizer spaces, CSP, MSP, RSP, respectively, and
also the commitment algorithm Com.

• Com(pp,m, r): The commitment algorithm takes the public parameters pp, a
message m ∈ MSP and a randomness r ∈ RSP, and outputs a commitment c ∈
CSP. This algorithm is used by the sender P to commit the value m by sampling
r ← RSP itself.

The sender can later decommit c and reveal m by sending (m, r) to the receiver. The
receiver verifies this by checking that Com(pp,m, r) = c holds.

The requirements of privacy and unambiguity are captured by the hiding and bind-
ing properties, respectively, defined in the following.
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Definition 9 (Hiding). The commitment (Gen,Com) is hiding if for all PPT adversary
A,

Pr

[
pp← Gen(1λ), (m0,m1)← A(pp),m0,m1 ∈ MSP,
b← {0, 1}, r ← RSP, c = com(pp,mb, r) : A(c) = b

]
≤ 1

2 + negl(λ).

Definition 10 (Binding). The commitment (Gen,Com) is binding if for all PPT adver-
sary A,

Pr

[
pp← Gen(1λ), (m0,m1, r0, r1, c)← A(pp) :

m0 6= m1, com(pp,m0, r0) = c = com(pp,m1, r1)

]
≤ negl(λ).

2.6.2 Public-key encryption schemes
We give in the following the definition of public-key encryption scheme. Basically, the
difference between private-key and public-key encryption schemes is that the public-
key contains two keys, the secret key sk and the public key pk, and the encryption and
decryption processes are different, while in private-key there is just one secret key and
the encryption and decryption processes are interchangeable. We also call symmetric
and asymmetric for private and public key encryption schemes, respectively.

Definition 11. A public-key encryption scheme is a triple of probabilistic polynomial-
time algorithms (Gen,Enc,Dec) such that

• Gen(1λ): The generator algorithm takes the security parameter as input and
outputs (pk, sk) where pk is the public key and sk the secret key. It also fixes the
message and ciphertext spaces MSP, CSP.

• Encpk(m): The probabilistic encryption algorithm takes a public key pk and a
message m ∈ MSP as input, and outputs a ciphertext c← Encpk(m).

• Decsk(c): The deterministic decryption algorithm takes a secret key sk and a
ciphertext c ∈ CSP, and outputs a message m or the symbol ⊥ denoting failure.

For any m ∈ MSP, it holds that Decsk(Encpk(m)) = m except with negligible probabil-
ity over (pk, sk).

Example: Lifted ElGamal encryption. As an example of encryption scheme we
give the definition of the Lifted ElGamal encryption, that is a version of the ElGamal
encryption scheme where the message is encrypted and recovered in the group. Both
are IND-CPA secure under the DDH assumption, which means that no PPT adversary
is able to, given the public key and for any two messages of its choice, distinguish with
probability higher than 1

2 which one of them was encrypted.
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Definition 12. The Lifted ElGamal encryption scheme is defined by the following al-
gorithms:

• Gen(1λ): The generator algorithm takes the security parameter as input and
runs (G, q,P)← gk(1λ) that gives a group, the order of the group and a gener-
ator. Then, chooses a uniform x← Zq and fixes sk = x, pk = skP = [sk] ∈ G.
It outputs (pk, sk).

• Encpk(m): The probabilistic encryption algorithm takes a public key pk and a
message m ∈ MSP as input, chooses a random element r ∈ Zq , and outputs the

ciphertext
[

c1

c2

]
= Enc[sk](m, r) = m[e2] + r

[
1
sk

]
.

• Decsk(c): The deterministic decryption algorithm takes a secret key sk and a
ciphertext c ∈ CSP, and recovers the message m in G by computing [c2] −
sk[c1] = [m].

The Lifted ElGamal encryption scheme can be seen as a commitment scheme, in
which case it is perfectly binding and computationally hiding under the DDH assump-
tion, and in fact this is how we will use it in our schemes.

2.6.3 Signature schemes

In this section we briefly define signature schemes and give as an example the Boneh-
Boyen signatures used in our results (directly in Chapter 3 and some variations in Chap-
ter 5).

A signature scheme is a cryptographic primitive that allows a signer S to sign a
message using a secret key sk in such a way that anyone who knows the associated
public key pk can verify that S was who signed the message and it was not modified.
We give the formal definition in the follwing.

Definition 13. A signature scheme is a triple of probabilistic polinomial-time algo-
rithms (Gen,Sign,Ver) such that

• Gen(1λ): The generator algorithm takes the security parameter as input and
outputs (pk, sk) where pk is the public key and sk the private key. It also fixes
the message and signature spaces MSP, SSP.

• Signsk(m): The probabilistic encryption algorithm takes a private key pk and a
message m ∈ MSP as input, and outputs a signature σ ← Signsk(m).
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• Verpk(σ): The deterministic verification algorithm takes as input a public key sk
and a signature σ ∈ SSP, and outputs a bit b = Verpk(m, σ) which is 1 if the
signature is valid for the message m, and 0 otherwise.

For any m ∈ MSP, it holds that Verpk(Signsk(m)) = 1 except with negligible probability
over (pk, sk).

The sender S runs the generator algorithm Gen(1λ) to obtain keys (pk, sk). Then,
pk is publicized as the public key of S. When S wants to authenticate a message m, it
computes the signature σ ← Signsk(m) using its private key sk and sends (m, σ). The
receiver verifies the authenticity of m by checking if Verpk(m, σ) = 1.

The requirement is that no adversary can forge a signature. For a fixed public key
pk of S, a forgery is a message m along a valid signature σ that was not previously
signed by S.

As an example of signature schemes, we recall the Boneh-Boyen signatures pre-
sented in [22] in the following. In Section 2.7.3 we give the definition and security
definitions of another kind of signatures schemes called signatures of knowledge that
can be seen as a generalization of signatures schemes, where one can sign if, instead of
who possesses the secret key, who has a valid witness for membership in a language.

Example: Boneh-Boyen signatures. The generator algorithm returns a bilinear group
(p,G1,G2,GT , e,P1,P2), fixes the message space to be Zp, and the signature space
G2. It chooses the secret key sk ← Zp, and defines the public key as [sk]1 ∈ G1. To
sign a message m ∈ Zp, the signer computes

[σ]2 = Signsk(m) =

[
1

sk−m

]
2

.

The receiver validates the signature if the equation e([sk]1 − [m]1, [σ]2) = [1]T holds,
it requires one pairing. Boneh-Boyen signatures are existentially unforgeable under
the q-SDH assumption, which means no adversary can forge a signature even when it
knowns many signatures of messages chosen by itself.

2.6.4 Hash functions
In this section we briefly define the hash functions, which are functions that take a
string of some length and compress it into a shorter string of a fixed-length. A common
requirement for a hash function H is to have few collisions, where a collision is a pair
of different inputs x, x′ such that the output of the hash for both strings is the same, i.e.
H(x) = H(x′).
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Definition 14. A hash function with output length ` is a pair of probabilistic polynomial-
time algorithms (Gen, H) such that

• Gen(1λ): the generator of the key takes as input a security parameter and out-
puts a key s.

• H(s, x): the function H takes as input a key s and a string x ∈ {0, 1}∗ and
outputs a string Hs(x) ∈ {0, 1}`.

Note that sometimes the input length is fixed, say `′, then we require that `′ > `.
The collision resistance property states that no adversary is able to find a collision

except with negligible probability. Collision-resistant hash functions were formally
defined by Damgärd in [41].

Definition 15. A hash function (Gen, H) is collision resistant if for all probabilistic
polynomial-time adversaries A

Pr

[
s← Gen(1λ), (x, x′)← A(s, `′) :

x, x′ ∈ {0, 1}`′ , x 6= x′, Hs(x) = Hs(x′)

]
≤ negl(λ).

For simplicity we will refer to H or Hs as a collision-resistant hash function, in-
stead of (Gen, H).

2.7 Non-Interactive Zero-Knowledge
Zero-Knowledge (ZK) proofs allow to prove a statement without yielding anything
beyond its validity. In these proofs the prover is the party who provides the proof and
the verifier, the one who validates it. Formally, the prover claims some statement of
the type x ∈ L, where L is a language, and gives a proof for that. For example, if
the prover claims that some equations hold, let L be the language defined by solvable
equations of a fixed number of variables. Then, x ∈ L if and only if there exists a valid
assignment of the variables such that the equations hold.

To set the formal definitions of ZK proofs properties, we use the notation of lan-
guages and relations already stablished in Section 2.2.2. We recall briefly that a lan-
guage is defined by

L = {x : there exists some w such that (x,w) ∈ RL}

where RL is the relation checker that validates if the tuple (x,w) satisfies the relation.
In ZK proofs the prover claims x ∈ L, where we call x the statement, and gives a proof
of the existence of a w, that we call the witness, such that (x,w) ∈ RL.
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ZK proofs should satisfy the basic properties of completeness, soundness and zero-
knowledge. We briefly recall them here and give the formal definitions for NIZK Ar-
guments in the following.

• Completeness: The prover can always convince the verifier that a given statement
is true if the prover knows a witness testifying to the truth of the statement.

• Soundness: A malicious prover cannot convince the verifier. The statement
might be true and still if the malicious prover does not have the witness, it should
not be able to convince the verifier.

• Zero-knowledge: The proof does not reveal any information beyond the validity
of the statement. It means that the message exchange between prover and verifier
does not leak any knowledge about the witness. This is formalized by the exis-
tence of a simulator who generates the proofs with indistinguishable distribution
just using the statement and public parameters.

2.7.1 NIZK Arguments
Non-interactive ZK proofs are those which consists in just one message from the prover
to the verifier. Blum, Feldman and Micali [20] introduced NIZK proofs using a com-
mon reference string (crs) as public parameters shared between the prover and the
verifier. The authors showed the crs is enough to achieve zero-knowledge without re-
quiring any interaction. The crs consists of some group elements created honestly by a
trust party and shared by the other parties. The prover uses them to produce the proof,
the verifier to check the proof and the simulator uses them along with some secret in-
formation to produce a simulated proof. It should be created by a trusted third party,
the same who produces this secret information to the simulator that we call simulation
trapdoor (tr), or just trapdoor when it’s clear from the context.

There exist different notions for the soundness property in ZK proofs: computa-
tional soundness guarantees that no polynomial-time adversary chan cheat and statis-
cal or perfect soundness guarantees even an adversary with unbounded prover cannot
convince the verifier of a false statement. An Argument is a computationally sound
Zero-Knowledge proof that we define in the following.

Definition 16. Given a language L ∈ NP , a non-interactive argument for RL is a
quadruple of efficient algorithms (Setup,Prove,Verify,Simulate) such that

(crs, tr)← Setup(1λ,R): Setup is a PPT algorithm that takes as input a security
parameter and a relation R ∈ RL and returns a common reference string crs
and a simulation trapdoor tr for the relation R.
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π ← Prove(crs, x, w): Prove is a PPT algorithm executed by the prover, given a com-
mon reference string crs for a relation R, a statement x and a witness w such
that (x,w) ∈ R, and returns an argument π.

{0, 1} ← Verify(crs, x, π): Verify is a PPT algorithm executed by the verifier, that
takes as input a crs, a statement x and a proof π, and returns either 0 (reject) or
1 (accept).

π ← Simulate(crs, x, tr): Simulate is a PPT algorithm that, given (crs,x, tr), outputs
a simulated argument π.

We say that (Setup,Prove,Verify,Simulate) is a non-interactive zero-knowledge ar-
gument for RL if it has perfect completeness, soundness and perfect zero-knowledge
defined as follows.

Perfect Completeness. For all R ∈ RL, (x,w) ∈ R,

Pr

[
(crs, tr)← Setup(1λ,R), π ← Prove(R, crs, x, w) :

Verify(R, crs, x, w) = 1

]
= 1.

Computational Soundness. For all non-uniform polynomial time adversaries A,

Pr

[
(R, z)← RL(1λ), (crs, tr)← Setup(1λ,R),

(x, π)← A(R, z, crs) : x 6∈ L,Verify(crs, x, π) = 1

]
≈ 0.

Perfect Zero-Knowledge. For all (R, z) ← RL(1λ), (x,w) ← R and all adver-
saries A,

Pr

 (crs, tr)← Setup(1λ,R),
π ← Prove(R, crs, x, w) :
A(R, z, crs, π) = 1

 = Pr

 (crs, tr)← Setup(1λ,R),
π ← Simulate(R, crs, x, tr) :
A(R, z, crs, π) = 1

 .
Extraction

Arguments of knowledge have the additional requirement that to pass the verification
the prover should use the witness w to create valid proofs such that (x,w) ∈ R. As we
have explained previously, this property is formulated with the existence of an extractor
able to compute a witness whenever a statement x and a proof π are valid. There exist
two types of extractors, black box (BB) and non-black box (nBB). In BB extraction the
extractor E does not need access to the source code to extract the witness, the extrac-
tion procedure works for all the adversaries; while nBB that is a stronger notion, the
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extractor EA depends on the adversary A. Then, it is preferable to have BB extraction,
like some of the Groth-Sahai proofs [78] and our construction in Chapter 4, where we
define formally BB Knowledge Soundness. The nBB Knowledge Soundness property is
the one used in zk-SNARKs and in our construction in Chapter 5, we define it formally
in the following.

Definition 17. Let L be a language inNP , a NIZK argument π for a relation R ∈ RL
has Knowledge Soundness if for all non-uniform polynomial-time adversariesA, there
exists a non-uniform polynomial-time extractor EA such that

Pr

[
(crs, tr)← Setup(1λ,R); ((x, π)||w)← (A||EA)(R, crs) :

(x,w) 6∈ R,Verify(crs, x, π) = 1

]
≈ 0.

We recall the definitions of an extractable proof and the notion of f -extractability
defined by Belenkiy et al. [17].

We also consider a generalization of extractability where instead of extracting the
witness, the extractor gives a function of the witness, which is a weaker notion but
enough in some cases. For example, in some of our results we use the exponentiation
in the group, f(x) := [x]ι, and in the case the witness a string of bits, this is equivalent
to have extraction in the field.

Definition 18. In a f -extractable proof system for R, the extractor extracts a value z
such that z = f(w) and (x,w) ∈ R for some witness w. If f(·) is the identity function,
we get the usual notion of extractability.

2.7.2 Groth-Sahai proofs and QA-NIZK arguments

In this section we present the Groth-Sahai proof system, the definition of Quasi-Adaptive
NIZK argument and some concrete languages of membership in linear spaces for which
there exists constant-size QA-NIZK constructions that we use as building blocks in our
results.

Dual-mode commitments and Groth-Sahai proofs [78]

Groth-Sahai proofs allow to prove satisfiability of quadratic equations in bilinear groups
in the non-interactive setting. More precisely, Groth-Sahai proofs deal with equations
of the form

my∑
j=1

ajyj +

mx∑
i=1

bixi +

mx,my∑
i,j=1

γi,jxiyj = t,
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in which the set of variables is divided into two disjoint subsets X = {x1, . . . , xmx} and
Y = {y1, . . . , ymy}, and depending on the type of equation X,Y ⊂ Zp (quadratic equa-
tions in Zp), X ⊂ Zp,Y ⊂ Gι (multi-exponentiation equations in Gι) for ι ∈ {1, 2} or
X ⊂ G1 and Y ⊂ G2 (pairing product equations). Here the product means a bilinear
operation which is multiplication in Zp, exponentiation or the pairing operation.

The scheme can be seen as a commit-and-prove scheme [50], where in the first step
the prover gives commitments to the solutions, and in the second provides a proof that
these commitments verify the corresponding equation. In particular, the commitments
used are dual-mode commitments, that is, commitments that can be either perfectly
binding or perfectly hiding, and we can switch from one to the other with an indistin-
guishable change of security game. More precisely, Groth-Sahai commitments to field
elements z ∈ Zp and group elements [z] ∈ Gι are, respectively:

Com(z;w) = z [u]ι+w[u1]ι, Com([z]ι;w1, w2) =

[
0
z

]
ι

+w1[u1]ι+w2[u2]ι,

where [u], [u1], [u2] are vectors in G2 given in the commitment key, and their defini-
tions depend on whether we want the commitments to be perfectly binding or perfectly
hiding.

Groth-Sahai proofs are sound, witness-indistinguishable and, in many cases, zero-
knowledge. More precisely, the proof is always zero-knowledge for quadratic equa-
tions in Zp and multi-exponentiation equations, and also for pairing product equations
provided that t = 1. Some generalizations are possible, as discussed in [51].

Quasi-Adaptive Non-Interactive Zero-Knowledge Arguments

In this section we recall the formal definition of Quasi-Adaptive non-interactive zero-
knowledge proofs. A Quasi-Adaptive NIZK proof system [85] enables to prove mem-
bership in a language defined by a relation Rρ, which in turn is completely determined
by some parameter ρ sampled from a distribution Dgk . We say that Dgk is witness
sampleable if there exists an efficient algorithm that samples (ρ, ω) from a distribution
Dpar

gk such that ρ is distributed according to Dgk , and membership of ρ in the param-
eter language Lpar can be efficiently verified with ω. While the Common Reference
String (crs) can be set based on ρ, the zero-knowledge simulator is required to be a
single probabilistic polynomial-time algorithm that works for the whole collection of
relations Rgk .

Definition 19. A tuple of algorithms (K0,K1,P,V) is called a QA-NIZK proof system
for witness-relations Rgk = {Rρ}ρ∈sup(Dgk ) with parameters sampled from a distri-
bution Dgk over associated parameter language Lpar, if there exists a probabilistic
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polynomial time simulator (S1,S2), such that for all non-uniform PPT adversariesA1,
A2, A3 we have:

Perfect Quasi-Adaptive Completeness:

Pr

[
gk ← K0(1λ); ρ← Dgk ; crs← K1(gk , ρ);
(x,w)← A1(gk , crs);π ← P(crs, x, w)

:
V(crs, x, π) = 1
if Rρ(x,w)

]
= 1.

Computational Quasi-Adaptive Soundness:

Pr

[
gk ← K0(1λ); ρ← Dgk ;
crs← K1(gk , ρ); (x, π)← A2(gk , crs)

:
V(crs, x, π) = 1 and
¬(∃w : Rρ(x,w))

]
≈ 0.

Perfect Quasi-Adaptive Zero-Knowledge:

Pr[gk ← K0(1λ); ρ← Dgk ; crs← K1(gk , ρ) : AP(crs,·,·)
3 (gk , crs) = 1] =

Pr[gk ← K0(1λ); ρ← Dgk ; (crs, tr)← S1(gk , ρ) : AS(crs,tr,·,·)
3 (gk , crs) = 1]

where

• P(crs, ·, ·) emulates the actual prover. It takes input (x,w) and outputs a
proof π if (x,w) ∈ Rρ. Otherwise, it outputs ⊥.

• S(crs, tr, ·, ·) is an oracle that takes input (x,w) and outputs a simulated
proof S2(crs, tr, x) if (x,w) ∈ Rρ and ⊥ if (x,w) /∈ Rρ.

We assume that crs contains an encoding of ρ, which is thus available to V.

We have defined the basic properties of NIZK that we require in QA-NIZK proof
systems. However, for witness sampleable distributions, there is a stronger notion of
soundness, where the adversary has also access to a witness of the parameter ρ. This
notion is defined in the full version of [67] and we recall it in the following. We use
this notion in Chapters 3 and 6.

Definition 20. A QA-NIZK argument (K0,K1,P,V) is Computational Quasi-Adaptive
Strong Soundness if for all non-uniform PPT adversary A2,

Pr

[
gk ← K0(1λ); (ρ, ω)← Dpar

gk ;

crs← K1(gk , ρ); (x, π)← A2(gk , ω, crs)
:

V(crs, x, π) = 1 and
¬(∃w : Rρ(x,w))

]
≈ 0.
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QA-NIZK Arguments of Membership in Linear Spaces [85]. We describe some
languages for which there exist constant-size QA-NIZK arguments of membership
which will be used as building blocks in our constructions. These languages are (i)
linear subspaces of Gmι , ι ∈ {1, 2}, in [86, 92], and (ii) bilateral linear subspaces, that
is, linear subspaces of Gm1 ×Gn2 , in [67]. For ι ∈ {1, 2},

L[M]ι := {[x]ι ∈ Gnι : ∃w ∈ Ztq, x = Mw}, (i)

L[M]1,[N]2 := {([x]1, [y]2) ∈ Gm1 ×Gn2 : ∃w ∈ Ztq, x = Mw, y = Nw}, (ii)

We use LS (BLS) to designate (bilateral) linear subspace proof systems for the lan-
guages L[M]ι , L[M]1,[N]2 . These proof systems verify strong soundness, which essen-
tially means that they are sound even when the discrete logarithm of the matrices is
given. This property is formally defined in González et al. [67]. Case (i) can be instan-
tiated based on the Kernel Diffie-Hellman Assumption 2, and the proof has size |Gι|,
whereas (ii) can be based on the Split Kernel Diffie-Hellman Assumption 3, and the
proof has size 2|G1|+ 2|G2|.

2.7.3 Signatures of Knowledge

A Signature of Knowledge (SoK) [36] generalizes the concept of digital signature. One
can sign the message just if it has a valid witness for membership in a language, for
example, in Chapter 4 we give one SoK for boolean CircuitSat.

A SoK requires the three basic properties: Correctness ensures that all signers with
a valid witness can always produce a signature that convinces the verifier, Simulation-
Extractability that any adversary able to issue a new signature, even after seeing arbi-
trary signatures for different instances, should know a witness and Perfect Simulatabil-
ity ensures that the verifier learns nothing new about the witness from a signature. We
give the formal definitions of [74] in the following.

Definition 21 (Signature of Knowledge). LetL be a language andRL a set of relations
parametrized by the language L. Then, a tuple (SSetup,SSign,SVer,SSimulate) is a
Signature of Knowledge scheme for R ∈ RL if it is correct, simulatable, simulation-
extractable (defined in the following) and it is composed by the following algorithms:

trs, tre, pp ← SSetup(1λ,R): the setup algorithm is a PPT algorithm that takes as
input the public parameter 1λ and a relation R ∈ RL and returns public pa-
rameters pp, together with a simulation trapdoor trs and an extraction trapdoor
tre. It also fixes the message and the signature spaces, MSP, SSP, respectively.
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σ ← SSign(pp, x, w,m): the signing algorithm is a PPT algorithm that takes as input
the public parameters pp, a pair (x,w) ∈ R and a message m ∈ MSP and
returns a signature σ.

0/1 ← SVer(pp, x,m, σ): the verification algorithm is a deterministic polynomial
time algorithm that takes as input some public parameters pp, an instance x, a
message m ∈ Mλ, and a signature σ and outputs either 0 or 1 if it rejects or
accepts, respectively.

σ ← SSimulate(pp, trs, x,m): the simulated signing algorithm is a PPT algorithm
that takes as input some public parameters pp, a simulation trapdoor trs, and an
instance x and returns a signature σ.

A trusted party runs the SSetup algorithm to obtain pp, trs, tre and publicizes pp.
When the sender wants to authenticate a message m, it computes the signature σ using
its witness w as secret key. The verifier checks m and σ using pp. The simulator uses
the simulation trapdoor to produce a valid signature without knowing the witness.

Definition 22. A Signature of Knowledge is correct if for all R ∈ RL, for all (x,w) ∈
R and for all m ∈ MSP,

Pr
[
pp← SSetup(1λ,R);σ ← SSign(pp, x, w,m) : SVer(pp, x,m, σ) = 1

]
= 1,

Definition 23. A Signature of Knowledge forRL is simulatable if for all R ∈ RL, for
any non-uniform PPT adversary A,

Pr

[
pp← SSetup(1λ,R); b← {0, 1},

b′ ← AOSignbpp,trs
(·,·,·)(pp)

: b = b′
]

=
1

2
+ negl(λ),

where OSignbpp,trs(xi, wi,mi) checks ((xi, wi) ∈ R,mi ∈ MSP) and returns σi ←
SSign(pp, xi, wi,mi) if b = 0 and σi ← SSimulate(pp, trs, xi,mi) if b = 1.

Definition 24. A Signature of Knowledge forRL is (black-box) simulation-extractable
if for all R ∈ RL, for any non-uniform PPT adversary A, there exists a PPT extractor
E such that

Pr

 (pp, trs, tre)← SSetup(1λ,R)(x,m, σ)← AOSimpp,trs (·,·),
w ← E(pp, tre, (x,m, σ)) :

(x,w) 6∈ R, (x,m, σ) 6∈ Q, 1← SVer(pp, ~x,m, σ)

 ≈ 0,

where OSimpp,trs(xi,mi) returns σi ← SSimulate(pp, trs, xi,mi) and adds {(xi,mi, σi)}
to the set Q, which is initialized to ∅.
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In this definition the extractor E is a PPT algorithm that only accesses A’s output,
as opposed to the (white-box) simulation-extractable definition where the extractor has
nBB access to the adversary.
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Chapter 3

Shorter QA-NIZK for
Quadratic Equations under
falsifiable Assumptions

This chapter is based in our result Shorter quadratic QA-NIZK proofs [46] published
in the Public Key Conference 2019.

3.1 Introduction

NIZK in Bilinear Groups. As we have explained in previous chapters, NIZK proofs
are a very useful building block in the construction of cryptographic protocols. Since
the first pairing-friendly NIZK proof system of Groth, Ostrovsky and Sahai [75] many
different constructions have emerged in different models and under different assump-
tions, for various types of statements. Compared to a plain discrete logarithm setting,
bilinear groups have a rich structure which is specially amenable to construct NIZK
proofs.

Among this variety of results, there are three particularly interesting families with
different advantages in terms of generality, efficiency or strength of the assumptions.
On the one hand, there is a line of research initiated by Groth, Ostrovsky and Sahai
[75, 76] and which culminated in the Groth-Sahai proof system [78, 79] that we ex-
plained in in Section 2.7.2. The latter result provides relatively efficient proofs for
proving satisfiability of several types of quadratic equations in bilinear groups based
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on standard assumptions. Although several works have tried to improve the efficiency
of Groth-Sahai proofs like Escala and Groth [50] and Ràfols [112], for many equation
types they still remain the best alternative based on falsifiable assumptions.

Another family of results are the constructions of quasi-adaptive NIZK (QA-NIZK)
arguments initiated by Jutla and Roy [85] and leading to very efficient proofs of very
concrete statements that we explained in Section 2.7.2. Most notably, given a bilinear
group gk := (p,G1,G2,GT , e,P1,P2), proving membership in linear spaces in Gm1
or Gm2 , for some m ∈ N, requires only one group element [92, 86]. The power of the
quasi-adaptive notion of zero-knowledge allows to specialize the common reference
string to the language one is proving membership in, trading generality for efficiency
under very weak computational assumptions. Other works have constructed proofs for
different languages in the QA-NIZK setting, like the proof for bilateral spaces (linear
spaces in Gm1 ×Gn2 ) [67], or, beyond linear spaces, the language of vector commitments
to integers opening to a boolean vector [67] or shuffles and range proofs [68].

Finally, as we explained in Section 1.2 in the last few years, an extremely success-
ful line of research has constructed succinct non-interactive arguments of knowledge
(zk-SNARKs) [71, 101, 61, 45, 72] for NP complete languages, which are not only
constant-size (independent of the witness size) but which are also very efficient in a
concrete sense. One of the main downsides of zk-SNARKs is that their security relies
on knowledge of exponent assumptions, a very strong type of assumptions classified as
non-falsifiable [105]. However, one cannot achieve succinctness (proofs essentially in-
dependent of the size of the statement being proved and its witness) and security based
on falsifiable assumptions at the same time, as per the impossibility result by Gentry
and Wichs [64].

Commit-and-Prove. In a broad sense, we can think of many of the results in these
three families as commit-and-prove schemes [32]. This is very clear for the Groth-
Sahai proof system, which has even been recasted in the commit-and-prove formal-
ism by Escala and Groth [50]. This is probably less obvious for some results in the
QA-NIZK setting. However, as noted already in the first QA-NIZK construction of
membership in linear spaces [85], in these cases one can often think of the statement
as a commitment to the witness. For instance, in the case of proving that a vector y
in the exponent is in the linear span of the columns of some matrix A, this means that
y = Aw and we can think of y as a commitment to w. Finally, in the case of many
zk-SNARK constructions, e.g. [45] the commitment is usually a “knowledge commit-
ment” – from which the witness is extracted in the soundness proof using knowledge
assumptions – while the rest can be considered the “proof”.

With this idea in mind, it is interesting to compare these three approaches for con-
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structing proofs of satisfiability of l equations in n variables in bilinear groups in terms
of proof size. We observe that for linear equations, while the original Groth-Sahai proof
system required O(n) group elements for the commit step and O(l) for the “prove”
one, recent works have shown how to aggregate the proof in the quasi-adaptive setting
[86, 67], reducing the “prove” step to O(1) in many cases. For quadratic equations in
the other hand, we summarize the three different approaches in Table 3.1. For concrete-
ness, assume that one wants to prove that a set of values x1, . . . , xn form a bitstring,
that is, satisfiability of xi(xi − 1) = 0. In this table we added two constructions that
come after our contribution was published, González and Ràfols [67] for CicuitSat that
is linear in the depth of the circuit, i.e. the number of multiplicative layers in the circuit,
and the compack NIZK constructions of Katsumata et al. [88] under standard assump-
tions for all NP languages. We consider both as proofs for CircuitSat where the size of
the circuit is the number of wires and multiplicative gates (n+ l).

Construction Assumption Commitment Proof crs

Groth-Sahai [77] Standard O(n) O(l) O(1)

Danezis et al. [45] Non-falsifiable |G1|+ |G2| 2|G1| O(n+ l)

GonHevRaf15 [67] Falsifiable O(n) 10|G1|+ 10|G2| O(l2)

GonRaf19 [67] Falsifiable
O(d+ ns)|G1|
+O(d)|G2|

O(d)|G1|
+O(d)|G2|

O(n+ l)

Katsumata et al. [88] Standard n+ poly(λ) l + poly(λ) O(n+ l)

Table 3.1: Different approaches for proving l quadratic equations with n variables in
bilinear groups. Note that d denotes the depth of the circuit, ns the secret input size.
Consider |G1| and |G2| are multiplicative in λ.

Motivation. Quadratic equations are much more powerful than linear ones. In par-
ticular, they allow to prove boolean CircuitSat, but they are also important to prove
other statements like range, shuffle proofs or validity of an encrypted vote. While for
proving statements about large circuits non-falsifiable assumptions are necessary to get
around impossibility results, it would be desirable to eliminate them in less demanding
settings, to understand better what the security claims mean in a concrete sense. As in
the QA-NIZK arguments for linear spaces, there are even natural situations in which
the statement is already “an encrypted witness”, and it seems unnatural to use the full
power of knowledge of exponent assumptions in these cases (for instance, in the case
of vote validity).

In summary, it is worth investigating efficiency improvements for quadratic equa-
tions under falsifiable assumptions. In particular, aggregating the “prove” step would
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be an important step towards this goal. The techniques for the linear case do not apply
to the quadratic one, and we are only aware of one result in aggregating the proof of
quadratic equations, namely the bitstring argument of González et al. [67] for proving
that a set of commitments to integers opens to boolean values. There is a large con-
crete gap between this result and the others in the non-falsifiable setting both in terms
of the size of the proof and the common reference string. Thus, it is natural to ask if
it is possible to reduce the gap and improve on this result importing techniques from
zk-SNARKs in the falsifiable setting.

3.1.1 Our results

We introduce new techniques to aggregate proofs of quadratic equations. We summa-
rize our constructions in Table 3.2.

First, in Section 3.3.1, we construct a proof system for proving that l equations of
the type Xi(Xi − 2) = 0 are satisfied, where Xi is an affine combination of some
a1, . . . , an. The size of the proof is constant and the set of commitments to the vari-
ables is of size linear in n, and the size of the crs is linear in l. The prover computes
a number of exponentiations linear in n + l, while the verifier computes a number of
pairings linear in l. Our proof system is perfect zero-knowledge and computationally
sound under a variant of the so-called target strong Diffie-Hellman assumption, which
is equivalent to it under KEA (proven in Section 3.2.1). These assumptions belong to
the broader class of q-assumptions, where each instance of the problem is of size pro-
portional to some integer q, which in our case is the number of equations. In particular,
the bitstring language of [67] can be formulated as such a system of equations.

In Section 3.4 we discusss as a particular case an argument for unit vector, and argue
how to modify our general proof system so that it can be proven sound under static
assumptions. A typical application of membership in these languages is for computing
disjunctions of statements such as “the committed verification key vk is equal to V1,
or V2, . . . , or Vm”, which might be expressed as vk =

∑m
i=1 biVi, bi ∈ {0, 1} and

(b1, . . . , bm) is a unit vector.
Next, in Section 3.5, we generalize the previous argument to prove that d equations

of the type (Xi − z1)(Xi − z2) . . . (Xi − zm) = 0 are satisfied, where Xi is an affine
combination of the variables a1, . . . , an. For this we combine techniques from the
interactive setting of [30] for proving set membership in a set of size m ∈ Zp with
ideas from Section 3.3.1 and from quasi-adaptive aggregation [86]. In Section 3.6.2, we
illustrate how to use this for improve range proofs in bilinear groups under falsifiable
assumptions.
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Section Language Proof size crs size Assumption

3.3.1 Quadratic equations 4|G1|+ 6|G2|
(l +O(1))|G1|
+(l + 3n+O(1))|G2|

q-STSDH (7)

3.4 Unit vector 6|G1|+ 6|G2|
(4(n+ 1) +O(1))|G1|

+(5(n+ 1) +O(1))|G2|
1-STSDH (7)

3.5.2 Set Membership 6|G1|+ 6|G2|
(mn+ 2n+ 3m+O(1))|G1|

+(5mn+O(1))|G2|
Z-GSDH (6),
q-QTSDH (8)

Table 3.2: The table shows the proof sizes (not including commitments) and crs sizes
of our constructions. We consider l variables and n equations, and m is the size of the
set from the set membership proof. The assumptions 6, 7 and 8 are new.

Finally, in Section 3.6.1 we discuss two approaches to construct shuffle arguments.
They are the most efficient in terms of proof size in the common reference string model
under falsifiable assumptions in bilinear groups (comparing favorably even to the best
constructions in the algebraic group model [7]), but they have large public parameters
(quadratic in the shuffle size). We give a comparison of our shuffle arguments with
state-of-the-art arguments in Table 3.3.

Work Proof size crs size Assumption

[73] 15n+ 246 2n+ 8 PPA, SPA, DLIN

[53] (4n− 1)|G1|+ (3n+ 1)|G2| O(n)(|G1|+ |G2|) GGM

[68] (4n+ 17)|G1|+ 14|G2| O(n2)|G1|+O(n)|G2|
SXDH,

SSDP [68]

Sect. 3.6.1 (4n+ 11)|G1|+ 8|G2| O(n2)|G1|+O(n)|G2|
SXDH,

1-STSDH (7)

Sect. 3.6.1 (2n+ 11)|G1|+ 8|G2| O(n2)(|G1|+ |G2|)
SXDH,

n-QTSDH (7)

[7] 4n|G1|+ 3n|G2| O(n)(|G1|+ |G2|) AGM

Table 3.3: Comparison of our shuffle arguments with state-of-the-art arguments. PPA
stands for the Pairing Permutation Assumption and SPA for the Simultaneous Pairing
Assumption.
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3.1.2 Our techniques

Let G1,G2,GT be groups of prime order p and let e : G1 × G2 → GT be a bi-
linear map. Both zk-SNARKs and our schemes can be seen as “commit-and-prove”
schemes [50]: in the first step we commit to the solution of the equations. In the
case of zk-SNARKs, the knowledge assumption allows to extract the solutions from a
constant-size commitment during the soundness proof, but we are trying to avoid using
these assumptions, so we require perfectly binding commitments for each element of
the solution. The second step is a proof of the opening of the commitments verifying
the equations.

Let r1, . . . , rl ∈ Zp. The “prove” part is handled with a polynomial aggregation
technique in which satisfiability of a set of l equations is encoded into a polynomial
p(X) such that p(rj) = 0 if and only if the jth equation is satisfied. To prove that l
equations are satisfied, one needs to prove that p(X) is divisible by

∏l
j=1(X−rj). The

key to succinctness is that the divisibility condition is only checked at a secret point s
chosen by the trusted party who generates the crs. This preserves soundness as long as
the prover only knows s (or powers thereof) in G1 or G2, but not its discrete logarithm.

In the soundness proof, the witness is extracted from the knowledge commitment,
and then used to find some rj such that p(rj) 6= 0 and compute auxiliary information
which, together with the proof, allows to break a hard problem, e.g. the q-Target Strong
Diffie-Hellman Assumption in [45]. Under non-falsifiable assumptions the commit-
ments, even if perfectly binding, can be only opened in the source groups, instead of in
Zp. This has an impact on the soundness proof, as it is not possible to eliminate some
terms in the proof to find a solution to the q-TSDH assumption, so we need to consider
a more flexible assumption. Furthermore, since the solutions define the coefficients of
polynomial p(X), our access to this polynomial is much more limited.

For our set-membership proof we start from the following insight: the satisfiability
of equation b(b− 1) = 0 can be proven showing knowledge of a signature for b if only
signatures for 0 or 1 are known. This approach can be easily extended for larger sets of
solutions as done by Camenisch et al. [30]. To express the validity of many signature
and message pairs, we again encode the signature verification equations as a problem
of divisibility of polynomials.

This requires the signature verification to be expressible as a set of quadratic equa-
tions. While structure preserving signatures clearly solve this problem, it is overkill,
since we only need unforgeability against static queries. Further, even the generic
group construction of [72] requires at least 3 group elements. We choose basic Boneh-
Boyen signatures [23], defined in Section 2.6.3, since each signature consists of only
one group element. Our argument needs to solve other technical difficulties which are
explained in more detail in Section 3.5.
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3.1.3 Related Works

The recent line of research in zk-SNARKs started with [71], in which the first sub-
linear arguments without random oracles were presented, but with crs of quadratic size.
Subsequent works have defined alternative models for the encoding of the circuit [100,
61, 45, 72], reducing the crs size to linear and obtaining smaller proofs, going as small
as 3 group elements in the case of [72]. In particular, our encodings are based on those
of [61, 45].

When considering falsifiable assumptions, one classic way to prove quadratic equa-
tions in the non-interactive setting makes use of Groth-Sahai proofs [78], which are
quite efficient and can be aggregated to obtain a constant-size proof of many equations.

In this work, we also use techniques from QA-NIZK proofs. This model was in-
troduced in [85] to build proofs of membership in linear subspaces over G1 or G2. It
was later improved to make proofs constant-size (independent of the size of the wit-
ness) [86, 92, 97] and adapted to the asymmetric setting [67]. Although introduced
initially to build proofs of linear equations, the QA-NIZK setting has also been used
to build the first constant-size aggregated proofs of some quadratic equations under
standard assumptions [67], in particular the proof that a set of commitments open to
bits.

The usage of signatures for proving membership in a set dates back to the work
of Camenisch et al. [30] in the interactive setting, and in the non-interactive setting
by Rial et al. [114]. Both works achieve constant-size proofs but without aggregation
(i.e. proving n instances requires O(n) communication). Set membership proofs were
also recently investigated by Bootle and Groth [25] in the interactive setting. They
construct proofs logarithmic in the size of the set and aggregate n instances with a
multiplicative overhead of O(

√
n). In the non-interactive setting, González et al. [68]

constructed set membership proofs of size linear in the size of the set and aggregated
many instances without any overhead.

Organization

This chapter is organized in the following sections. In Section 3.2 we present our new
assumptions, prove they are falsifiable and secure in the GGM. As a novelty, compared
to the published version [46], we prove in Section 3.2.1 the new assumptions are equiv-
alent to the q-Target Strong Diffie Hellman assumption under the BDH-KE Assump-
tion 5. In Section 3.3, we present the main construction for satisfiability of quadratic
equations, where as a novelty compared to the published version we added the knowl-
edge soundness proof for some specific cases. In Section 3.4, we give an argument to
prove that a commitment opens to a unit vector which can be proven secure based on
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a static assumption. In Section 3.5 we present an aggregated argument to prove mem-
bership in a set of Zp. In Section 3.6.1 we discuss new approaches to construct shuffle
arguments and in Section 3.6.2, to construct range proofs.

3.2 New Falsifiable q-Assumptions
The soundness proofs of our schemes will rely on the following variations of the two
assumptions q-SDH and q-TSDH recalled in Section 2.4.3.

Assumption 6 (Z-Group Strong DH Assumption in Gγ , Z-GSDH). LetZ ⊂ Zp such
that #Z = q. For all non-uniform PPT adversaries A:

Pr

[
([z1]1, [z2]ι, [ν]2)← A

(
gk,Z, [ε]1,2, {[si]1,2}qi=1

)
:
z1 6∈ Z ∧ z2 = εz1

ν =
∏
z∈Z(s−z)
s−z1

]
≈ 0,

where the probability is taken over gk ← G(1λ), s, ε ← Zp and the coin tosses of
adversary A.

The name is motivated by the fact that it is a variant of the q-SDH Assumption in
which the adversary must only give [z1]1 in the group G1, instead of giving it in Zp as
in the q-SDH Assumption.

Assumption 7 (q-Square TSDH Assumption, q-STSDH). For all non-uniform PPT
adversaries A:

Pr

[
(r, [β1]1, [β2]2, [ν]T )← A

(
gk, [ε]2, {[si]1,2}qi=1

)
:

β1 6= ±1

β2 = εβ1 ∧ ν =
β2
1−1
s−r

]
≈ 0,

where the probability is taken over gk ← G(1λ), s, ε ← Zp and the coin tosses of
adversary A.

Note that the challenger knows ε, s, so this assumption is falsifiable. Indeed, upon
receiving (r, [β1]1, [β2]2, [ν]T ), the challenger verifies that [β1]1 6= [±1]1, e([1]1, [β2]2) =
e(ε[β1]1, [1]2), and ε(s− r)[ν]T = e([β1]1, [β2]2) − e([ε]1, [1]2). A similar argument
can be made for the other assumptions in this section.

Assumption 8 (q-Quadratic TSDH Assumption, q-QTSDH). For all non-uniform PPT
adversaries A:

Pr


(
r, [β1]1, [β2]1, [β̃1]2, [β̃2]2, [ν]T

)
← A

(
gk, [ε]1,2, {[si]1,2}qi=1

)
:

β1β̃1 6= 1

β2 = εβ1 ∧ β̃2 = εβ̃1 ∧ ν = β1β̃1−1
s−r

 ≈ 0,
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where the probability is taken over gk ← G(1λ), s, ε ← Zp and the coin tosses of
adversary A.

3.2.1 Hardness of Assumptions
In this section we prove our new assumptions are secure in the GGM and we prove
our q-STSDH and q-QTSDH assumptions are equivalent to the q-TSDH assumptions
under KEA.

Generic Hardness

Proposition 1. The Z-GSDH Assumption (6) in Gγ holds in the generic group model.

Proof. A generic adversary receives Z in Zp, ε and the powers 1, s, . . . , sq in G1, and
ε and 1, s, . . . , sq in G2. Then any z1 output by the adversary must be of the form

z1 =

q∑
i=0

bis
i,

for some coefficients bi, i ∈ {0, . . . , q}, and since z2 = εz1, we have that necessarily

z2 =

q∑
i=0

biεs
i.

This forces bi = 0 for i ∈ {1, . . . , q}, since a generic adversary cannot compute εsi in
Gγ . Thus z1 = b0.

Then the adversary cannot compute∏
r∈Z(s− r)
s− r1

in GT , since r1 is not a root of p(s) =
∏
r∈Z(s−r), so the above is a rational function,

which cannot be computed with group operations.

Proposition 2. The q-STSDH Assumption( 7) holds in the generic group model.

Proof. A generic adversary receives the powers 1, s, . . . , sq in G1, and ε and 1, s, . . . , sq

in G2. Then any β1 output by the adversary must be of the form

β1 =

q∑
i=0

bis
i,
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for some coefficients bi, i ∈ {0, . . . , q}, and since β2 = εβ1, we have that necessarily

β2 =

q∑
i=0

biεs
i.

This forces bi = 0 for i ∈ {1, . . . , q}, since a generic adversary cannot compute εsi

in G1. Thus β1 = b0. Now, if a generic adversary is able to compute β2
1−1
s−r in GT ,

necessarily there exist polynomials p1, p2 such that

b20 − 1

s− r
= p1(s, ε) · p2(s),

where deg p1,deg p2 ≤ q and p1 does not have terms in εsi for any i. However, since
β1 is a constant with respect to s, ε, and β2

1 − 1 6= 0, the above is a rational function,
which cannot be computed with group operations.

Proposition 3. The q-QTSDH Assumption (8) holds in the generic group model.

Proof. A generic adversary receives ε and the powers 1, s, . . . , sq in G1, and 1, s, . . . , sq

in G2. Then any β1 output by the verifier must be of the form

β1 =

q∑
i=0

bis
i + bq+1ε,

for some coefficients bi, i ∈ {0, . . . , q + 1}, and since β2 = εβ1, we have that neces-
sarily

β2 =

q∑
i=0

biεs
i + bq+1ε

2.

This forces bi = 0 for i ∈ {1, . . . , q}, since a generic adversary cannot compute εsi

in G1, and bq+1 = 0, since it cannot compute ε2 either. Thus β1 = b0. Analogously,
β̃1 = b̃0 for some constant b̃0. Now, if a generic adversary is able to compute β1β̃1−1

s−r
in GT , necessarily there exist polynomials p1, p2 such that

b0b̃0 − 1

s− r
= p1(s, ε) · p2(s, ε),

where deg p1,deg p2 ≤ q and p1 does not have terms in εsi for any i. However, since
β1β̃1 is a constant with respect to s, ε, and β1β̃1 − 1 6= 0, the above is a rational
function, which cannot be computed with group operations.
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Reduction to Knowledge Assumptions

We prove that if the Knowledge of Exponent Assumption in bilinear groups holds,
then both q-Target Strong Diffie-Hellman (q-TSDH) and q-Square Target Strong Diffie-
Hellman assumptions are equivalent, similarly it can be proven that both q-TSDH and
q-QTSDH are equivalent as well.

Lemma 4. Given a bilinear group gk = (q,G1,G2,GT ), if the q-STSDH assumption
holds then the q-TSDH assumption holds.

Proof. Assume that A is an adversary against the q-TSDH assumption, we construct
another adversary B against q-STSDH assumption. This adversary B receives a chal-
lenge tuple (gk , {[si]1,2}qi=1, [ε]2) and sends the elements (gk , {[si]1,2}qi=1) toA. Then,
A returns (r, [ν]T ) such that breaks q-TSDH, the adversary B chooses β1 ← Zp such
that β1 6= 1 and sends to the Challenger

(
r, [β1]1, β1[ε]2, (β

2
1 − 1)[ν]T

)
that breaks the

q-STSDH assumption.

Lemma 5. Given a bilinear group gk = (q,G1,G2,GT ) where BDH-KE assumption
holds, if the q-TSDH assumption holds then the q-STSDH assumption holds.

Proof. Assume that A is an adversary against the q-STSDH assumption, we con-
struct an another adversary B against q-TSDH assumption. This adversary B re-
ceives a challenge tuple (gk , {[si]1,2}qi=1), chooses ε ← Zp and sends the elements
(gk , {[si]1,2}qi=1, [ε]2) to A. Then, the adversary A returns (r, [β1]1, [β2]2, [ν]T ) that
breaks q-STSDH. NowB computes 1

ε [β2]2 which satisfies e([β1]1, [1]2) = e([1]1,
1
ε [β2]2).

By the BDH-KE assumption there exists an extractor of β1 that solves the q-TSDH as-
sumption with

(
r, 1
β2
1−1

[ν]T

)
.

3.3 Proving Satisfiability of Quadratic Equations

In this section we present a scheme in which soundness is based on the q-STSDH
Assumption.
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3.3.1 Arguments for Quadratic Equations from q-Assumptions
Intuition

Given n, l ∈ N, the number of variables and equations, respectively, we build a proof
system for the family of languages

Lquad,ck =

 ([c]1,V, b) ∈ G2n
1 × Zn×lp × Zlp

∣∣∣∣∣∣∣
∃a,w ∈ Znp s.t
[c]1 = Comck(a,w) and{
a>vj + bj

}l
j=1
∈ {0, 2}


where [c]1 = Comck(a,w) is a vector of ElGamal encryption. This generalizes to
any other perfectly binding commitment of the form [c]1 = Comck(a;w) = [U1a +
U2w]1 for ck = ([U1]1, [U2]1), and [U1]1, [U2]1 are from a witness sampleable dis-
tribution.

We follow the approach of Danezis et al. [45] and encode the equations

a>vj + bj ∈ {0, 2}

into a Square Span Program (SSP): we construct n+1 polynomials v0(X), . . . , vn(X)
and a target polynomial t(X), where deg(vi) < deg(t) = l for all i ∈ {0, . . . , n}. This
codification asserts that a witness a satisfies the set of equations if and only if t(X)
divides p(X), where

p(X) =

(
v0(X) +

n∑
i=1

aivi(X)

)2

− 1.

The polynomials vi(X), i ∈ {1, . . . , n}, are defined as the interpolation polynomials
of the coefficients vij of V at r1, . . . , rl, which are fixed, arbitrary, pairwise different
points of Zp. Similarly, v0(X) is the interpolation polynomial of bj − 1 at the same
points. That is, if vj is the jth column of V,

a>vj + bj − 1 =

n∑
i=1

aivij + bj − 1 =

n∑
i=1

aivi(rj) + v0(rj).

Note that the statement Z ∈ {0, 2} is equivalent to (Z − 1)2 − 1 = 0 and hence,
the polynomial p(X) interpolates the left side of this equation in r1, . . . , rl when Z is
replaced by a>vj + bj − 1 for each j ∈ {1, . . . , l}. The target polynomial t(X) =∏l
i=1(X−ri) is 0 at r1, . . . , rl and therefore encodes the right sides. This codification

gives us the equivalence: the equations hold if and only if t(X) divides p(X).
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Danezis et al. constructed a zk-SNARK for this statement, “t(X) divides p(X)”,
which is very efficient because it just checks that the divisibility relation holds at a
single secret point s ∈ Zp whose powers [s]1, [s]2, . . . , [s

l]1, [s
l]2 are published in the

crs. That is, the proof essentially shows “in the exponent” that

p(s) = h(s)t(s),

where h(X) = p(X)/t(X). When all the equations hold, h(X) is a polynomial and
the evaluation at s can be constructed as a linear combination of the powers of s in the
crs. When some equation does not hold, h(X) is a rational function, and its evaluation
at s is no longer efficiently computable from the crs. The actual proof system has
some additional randomization elements to achieve Zero-Knowledge, but its soundness
follows from this argument.

In the scheme of Danezis et al., the prover outputs a perfectly hiding commitment
to the witness. In the soundness proof, one uses a knowledge of exponent assumption
to extract the witness in Znp from the commitment. The witness is used to derive a
reduction from breaking soundness to the l-TSDH Assumption. More precisely, it
follows from the SSP characterization that if the equation with index j∗ does not hold,
then p(X) = q(X)(X − rj∗) + b, for some b 6= 0. From the extracted value of the
witness a one can identify at least one such j∗ and also recover the coefficients of q(X)
and the value b in Zp. From the verification equation, the reduction can obtain[

p(s)

s− rj∗

]
T

=

[
q(s) +

b

s− rj∗

]
T

(3.1)

and using b, q(s) derive
[

1

s− rj∗

]
T

.

In other words, there are two ways in which the Danezis et al.’s scheme (as well as
most other zk-SNARKs) use knowledge assumptions: (a) extracting vectors of com-
mitted values from one single group element (beyond what is information-theoretically
possible), and (b) extract in the base field, so computing discrete logarithms. Our goal
is to avoid knowledge of exponent assumptions, so to circumvent (a) we change the
scheme to include perfectly binding commitments to the witness. However, we still
have to deal with (b), as our commitments to a can only be opened to [a]γ ∈ Gγ .
Therefore, we are no longer able to compute [q(s)]T since it requires to compute terms
of the form [aiajs

k]T from [ai]1, [aj ]2 and powers of s in one of the groups, in any
case it would be a multiplication of three group elements.

At this point, we would like to be able to include in the proof a commitment that
allows the reduction to extract q(s), but the fact that q(s) is “quadratic” in the witness
makes this difficult. For this reason, we factor q(X) into two polynomials q1(X) and
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q2(X). In the soundness game we will program the crs1 to depend on an index j∗ and
let the prover compute binding commitment to [q2(s)]2, while [q1(s)]1 can be directly
computed from the proof. From these factors we are able to compute [q(s)]T . However,
extracting b in Zp to obtain a reduction to the l-TSDH problem seems difficult, so we
will rely on a more flexible security assumption where we do not need to remove b. The
idea of the new assumption is to give the adversary powers of s in the source groups
and ask the adversary to output

(
rj∗ , [β]1,

[
b

s− rj∗

]
T

)
, where β2 − 1 = b.

However, this is not a hard problem, as the adversary can set b as a combination of
s−rj∗ to achieve elimination of the denominator in b

s−rj∗
. For example, if an adversary

sets β = s − rj∗ + 1, it can compute a valid solution as (rj∗ , [β]1, [s − rj∗ + 2]T ),
since β2− 1 = (s− rj∗ + 2)(s− rj∗). To prevent this type of attacks from happening,
we add an element [ε]2 ∈ G2 to the challenge, and ask the adversary to output [εβ]2
too, so that β cannot be set as a function of s (since the adversary will not be able to
compute εs in G2). We call the modified assumption the l-STSDH, which is proven to
be generically secure and equivalent to TSDH under KEA in Section 3.2.1). Further,
it can be easily checked that the assumption is falsifiable as we note in Section 3.2. To
make sure that we can extract [εβ]2 from the prover’s output and also that the rest of
the elements of the proof are of the right form, we will require the prover to show that
its output is in a given linear space.

Scheme description

Given n, l ∈ N we construct a QA-NIZK argument for the language Lquad,ck.

K0: The algorithm K0(gk , n, l) samples ck = [u]1 ← L1. A commitment Comck(a;w)
is the concatenation of Encck(ai;wi) = [aie2 +wiu]1. That is, Comck(a;w) =
[U1a + U2w]1, where U1,U2 are 2n × n matrices such that U1 has e2 in the
diagonal and U2 has u in the diagonal.

K1: The algorithm K1(gk , ck, n, l) picks s ← Zp,
{
φ̂i

}
i∈{1,...,n+1}

← Z3
p, Q2 ←

U3,3 and generates also the crs for proving membership in bilateral linear spaces

1This is why we lose a factor 1/l in the soundness reduction.
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of Section 3.2, BLS.CRS, for the linear spaces generated by the matrices:

[M]1 =


e2

. . .
e2

u
. . .

u

0

v1(s) . . . vn(s) 0 t(s) 0


1

,

[N]2 =

[
v1(s) . . . vn(s)

φ̂1 . . . φ̂n
0

t(s) 0

φ̂n+1 Q2

]
2

[M]1 ∈ G(2n+1)×(2n+4)
1 , [N]2 ∈ G4×(2n+4)

2 .
The crs includes the elements(

gk , ck,
{[
si
]
1,2

}
i∈{1,...,l}

,
{[
φ̂i

]
2

}
i∈{1,...,n+1}

, [Q2]2,BLS.CRS

)
.

P: The prover P with input (crs, [c]1,V, b,a) picks δ ← Zp, rq.2 ← Z3
p and defines

the polynomial

p(X) =

(
v0(X) +

n∑
i=1

aivi(X) + δt(X)

)2

− 1 ∈ Zp[X],

where each vi(X), for i ∈ {1, . . . , n}, is the interpolation polynomial of the
components vij of V at points rj , for j ∈ {1, . . . , l}, and v0(X) is the interpo-
lation polynomial of bj − 1 at the same points. It then computes h(X) = p(X)

t(X) ,
which is a polynomial in Zp[X] because a satisfies the equations, and the fol-
lowing elements:

[V ]1 = [
∑n
i=1 aivi(s) + δt(s)]

1
[V ]2 = [

∑n
i=1 aivi(s) + δt(s)]

2

[H]1 = [h(s)]1 [q2]2 =
[∑n

i=1 aiφ̂i + δφ̂n+1 + Q2rq.2

]
2
.

The prover can compute all these elements as linear combinations of the powers
of s in the crs. The prover also computes a BLS proof ψ of

([c]1, [V ]1 , [V ]2 , [q2]2)
> ∈ Im

(
[M]1
[N]2

)
with witness (a,w, δ, rq.2)

> ∈ Z2n+4
p .

Finally, it sends the proof π to the verifier, where π :=
(

[H]1 , [V ]1,2 , [q2]2 , ψ
)
.
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V: The verifier V with input (crs, [c]1,V, b, π) checks whether the equation

e([v0(s) + V ]1 , [v0(s) + V ]2)− [1]T = e([H]1 , [t(s)]2) (3.2)

holds and BLS.verify(ψ) = 1. If both conditions hold, it returns 1, else it returns
0.

Completeness

This property is based on the perfect completeness of membership in bilateral spaces,
and the observation that the left hand side of the verification equation is

e ([v0(s) + V ]1 , [v0(s) + V ]2)− [1]T =
[
(v0(s) + V )2 − 1

]
T

= [p(s)]T ,

and the right hand side is e ([H]1 , [t(s)]2) = e ([h(s)]1 , [t(s)]2) = [p(s)]T .

Soundness

We introduce two technical lemmas that we will use in the following to prove the
soundness of the scheme. We define Uk,k,r to be the uniform distribution on k × k
matrices over Zp with rank r.

Lemma 6. For any k, r ∈ N, r < k, there exists an L1-MDDHG1 PPT adversary B0

such that for any PPT adversary A

Pr[M← Uk,k,r+1 : A([M]1) = 1]− Pr[M← Uk,k,r : A([M]1) = 1]|
≤ AdvL1-MDDH,G1

(B0).

Proof. Direct application of Theorem 1 of [119].

Lemma 7. Let v(X) be a polynomial in Zp[X]. For any r ∈ Zp, we define q2(X) and
β as the quotient and remainder, respectively, of the polynomial division of v(X) by
X − r, i.e. v(X) = q2(X)(X − r) + β. If p(X) = v(X)2 − 1, then

p(X) = (v(X) + β) q2(X)(X − r) + β2 − 1.

Proof. By definition, p(X) = v(X)2 − 1, if we expand this expression using the
definition of q2(X) we have:

p(X) =v(X) (q2(X)(X − r) + β)− 1 = v(X)q2(X)(X − r) + v(X)β − 1

=v(X)q2(X)(X − r) + q2(X)(X − r)β + β2 − 1

=(v(X) + β)q2(X)(X − r) + β2 − 1.
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Theorem 8. Let AdvSound(A) be the advantage of any PPT adversary A against the
soundness of the scheme. There exist PPT adversaries B1,B3 against the L1-MDDHG2

and l-STSDH Assumptions, respectively, and an adversary B2 against strong sound-
ness ( Definition 20) of the BLS argument such that

AdvSound(A) ≤ l
(

2AdvL1-MDDH,G2
(B1) + AdvBLS(B2) + Advl-STSDH(B3)

)
.

Proof. In order to prove soundness we will prove indistinguishability of the following
games.

• Real: This is the real soundness game. The output is 1 if the adversary produces
a false accepting proof, i.e. if there is some equation a>vi + bi 6∈ {0, 2} and the
verifier accepts the proof.

• Game0: This game is identical to the previous one, except that the commitment
key u is chosen by the game.

• Game1: This game is identical to the previous one, except that some j∗ ←
{1, . . . , l} is chosen and the game aborts if a satisfies the j∗-th equation, i.e.
[a]>1 vj∗ + [bj∗ ]1 ∈ {[0]1, [2]1}.

• Game2: For r = rj∗ and i ∈ {1, . . . , n+1} let αi(X) and βi be the quotient and
the reminder of the polynomial division of vi(X) by X − rj∗ if i ∈ {1, . . . , n},
and of t(X) by X − rj∗ if i = n+ 1. This game is identical to the previous one,
except that Q2 is now a uniformly random matrix conditioned on having rank 1,
and each

[
φ̂i

]
2

is changed to[
φ̂i

]
2

= [αi(s)]2e2 + βi[ε]2e3 + [Q2]2ri,

where ε← Zp, ri ← Z3
p and ei is the ith vector of the canonical basis of Z3

p.

Obviously, the games Real and Game0 are indistinguishable.

Lemma 9. Pr[Game0(A) = 1] ≤ l · Pr[Game1(A) = 1].

Proof. IfA breaks soundness, at least one equation does not hold. Thus the challenger
has at least a probability of 1/l of guessing this equation.

Lemma 10. There exists a L1-MDDHG2
adversary B1 such that

|Pr[Game1(A) = 1]− Pr[Game2(A) = 1]| ≤ 2AdvL1-MDDH,G2(B1).
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Proof. We construct an adversary B1 against the U3,3-rank problem in which it receives
[Q2]2 ∈ G3×3

2 as input and must decide if the matrix has rank 1 or rank 3. B1 constructs
the elements of crs as in the previous game, but it uses [Q2]2 as commitment key and
defines [φ̂i]2 as:[

φ̂i

]
2

= [αi(s)]2e2 + [Q2]2ri, where ri ← Z3
p.

If [Q2]2 has full rank, then [Q2]2ri is a uniformly distributed element of G3
2, so

adversary perfectly simulates Game1, else it perfectly simulates Game2.
We conclude by using the reduction between the rank problem and theL1-MDDHG2

problem, as established in Lemma 6.

Lemma 11. There exists an adversary B2 against the strong soundness of the BLS
proof and a l-STSDH adversary B3 such that

Pr[Game3(A) = 1] ≤ AdvBLS(B2) + Advl-STSDH(B3).

Proof. For any adversary which breaks soundness A, let E be the event that

([c]1, [V ]1, [V ]2, [q2]2)> ∈ Im

(
[M]1
[N]2

)
of Section 2.7.1 and E be the complementary event. Obviously,

Pr[Game3(A) = 1] ≤ Pr[Game3(A) = 1|E] + Pr[Game3(A) = 1|E]. (3.3)

We can bound the second summand by the advantage of an adversary B2 against the
strong soundness of BLS. Such an adversary receives [M]1, [N]2 sampled according
to the distribution specified by Game3 and the witness that proves that M,N are sam-
pled according to this distribution, which is s (see strong soundness, defined in Sec-
tion 2.7.1). It also generates the BLS.CRS, and the rest of the crs is chosen in the
usual way. Adversary B2 can use the output of A to break the soundness of BLS in a
straightforward way.

In the following, we bound the first term of the sum in equation (3.3) by con-
structing an adversary B3 which breaks the l-STSDH Assumption in the case that E
happens. Note that in this case there exists a witness (a,w, δ, rq.2)

> of member-

ship in Im

(
[M]1
[N]2

)
. Further, this witness is partially unique, because [c]1 is a per-

fectly binding commitment, so a,w, δ are uniquely determined, and in particular this
uniquely determines the polynomial p(X).
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We now describe the full reduction. Adversary B3 receives a challenge of the
l-STSDH Assumption and plugs it in the crs. The rest of the elements are chosen
by adversary B3 with the distribution specified by the game. The crs is then sent to the
soundness adversary A, who eventually outputs π for the corresponding [c]1.

Adversary B3 extracts [a]1 ∈ G1 from the knowledge of u ∈ Z2
p and aborts if

the j∗-th equation is satisfied. By definition e([v0(s) + V ]1 , [v0(s) + V ]2) − [1]T =
[p(s)]T . If we divide both sides of the verification equation (3.2) by s− rj∗ ,[

p(s)

s− rj∗

]
T

= e

(
[H]1 ,

[
t(s)

s− rj∗

]
2

)
= e

[H]1 ,

∏
i 6=j∗

(s− ri)


2

 , (3.4)

so the adversary B3 can compute
[
p(s)

s− rj∗

]
T

from [H]1 and the powers of [s]1,2 in the

crs. On the other hand, if we apply Lemma 7 to p(X), we have[
p(s)

s− rj∗

]
T

=

[
(v(s) + β)q2(s) +

β2 − 1

s− rj∗

]
T

, (3.5)

and we have β2 − 1 6= 0 (otherwise the j∗-th equation is satisfied, in which case the
game aborts). We describe in the following how B3 can compute right side of (3.5) and
the elements to break the l-STSDH Assumption.
B3 can compute [β]1 =

∑n
i=0[ai]1βi and also [v(s) + β]1 = [V ]1 + [β]1, because

it knows [V ]1 from the proof π and the extracted values [ai]1, and βi are the reminders
of dividing vi(X) by X − rj∗ .

Since B3 sampled Q2 itself, it can recover [q2(s)]2 and [εβ]2 from [q2]2 because it
can compute two vectors v2,v3 ∈ Z3

p such that v>i [Q2]2 = 0, v>i ej = 0 if i 6= j and
v>i ej = 1 if i = j. B3 multiplies these vectors by q2 (which is correctly computed,
because E holds), resulting in:

v>2 [q2]2 =

[
v>2

n+1∑
i=1

ai (αi(s)e2 + βiεe3 + Q2ri) + v>2 Q2rq.2

]
2

=

[
n+1∑
i=1

aiαi(s)

]
2

,

v>3 [q2]2 =

[
n+1∑
i=1

aiβiε

]
2

.

From these values, B3 can compute [q2(s)]2 and [εβ]2 by adding [α0(s)]2 and
β0[ε]2 to the above extracted elements, respectively:[

α0(s) +

n+1∑
i=1

aiαi(s)

]
2

= [q2(s)]2, β0[ε]2 +

[
ε

n+1∑
i=1

aiβi

]
2

= [εβ]2.
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From these values and [v(s)+β]2, computed above, B can derive [(v(s) + β)q2(s)]T

as e([v(s) + β]1, [q2(s)]2), and from equation (3.5) recover
[
β2 − 1

s− rj∗

]
T

.

Finally, B3 returns
(
rj∗ , [β]1, [εβ]2,

[
β2 − 1

s− rj∗

]
T

)
, breaking the l-STSDH As-

sumption.

With the last lemma we finalize the proof of strong soundness security of the The-
orem 8.

Knowledge Soundness

Now, we analyse the extractability of the scheme. The definitions used in this section
are recalled in Section 2.7.1. First we show the scheme above is f -extractable where
f is the exponentiation function in the group. Then, we prove plain extraction of the
witness when the matrix V of the language has rank at least n. Intuitively, this condi-
tion sets the system of equations has a unique solution, then it is efficient to compute
it solving the system. Then, when this condition holds our proof in Section 3.3.1 is
knowledge sound.

Theorem 12. For any adversary A able to produce a valid proof for the language
Lquad,ck there is a universal PPT [·]-extractor E that can extract efficiently a [·]-witness
when the proof is accepted.

Proof. Let ExtractSetup be an algorithm that samples the trapdoor uE ← L1 and the
crs identically distributed to the ones generated by the Setup algorithm of the argument.
Let E be an algorithm that receives (crs,uE , [c]1,V, b, π). It computes the orthogonal
vector to the trapdoor u⊥E such that u⊥E e

>
2 = 1 and then extracts the witness in the

group by computing: u⊥E [c>i ]1 = u⊥E [aie2 + wiuE ] =
[
aiu
⊥
E e2

]
1

= [ai]1 ∈ G1 for
all i ∈ [n].

Theorem 13. For any adversary A able to produce a valid proof for ([c]1,V, b) ∈
Lquad,ck for a matrix V of rank at least n, there is a PPT extractor E that can extract
efficiently a witness from such a proof with overwhelming probability when the proof is
accepted.

Proof. Let ExtractSetup and E be the Setup and the extraction algorithms constructed
in the same way as in the previous proof for f(·)-extractability. We have proven that E
can extract the solution vector in the group [a]1 ∈ Gn1 .
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Since this argument is computational sound (Section 3.3.1), we know the equations
{a>vj + bj}lj=1 ∈ {0, 2} hold, which are equivalent to {a>v}lj=1 ∈ {−bj , 2 − bj}.
The algorithm E can check efficiently if a>vj = −bj or a>vj = 2 − bj for each j
because vj , bj are given in the statement. In l steps it can define cj as the correct option
in each case, for j = 1, . . . , l the extractor E knows the equations:

a>V = c ∈ Gl1

where the entrances of V and c are known in Zp. So, since the matrix V has rank at
least n, it is enough by the extractor E to compute the solution a ∈ Znp efficiently just
solving the system (by gaussian elimination or LU decomposition methods). Moreover,
it just needs n independent equations of the total l equations.

Zero-Knowledge

We describe the simulation algorithms (S1,S2) in the following.
S1: The crs simulator S1(gk) outputs (crs, tr = {s}, trBLS), the common reference

string computed in the usual way plus the simulation trapdoor s ∈ Zp and the
simulation trapdoor of the bilateral spaces membership proof.

S1: The simulator S2 with input (crs, [c]1, tr, trBLS) samples V S ∈ Zp,
[
qS2
]
2
← G3

2,
and defines: [

HS
]
1

=

[
(V S)2 − 1

t(s)

]
1

.

S2 also constructsψS ← BLS.simulator(crs, [c]1 ,
[
V S
]
1
,
[
V S
]
2
,
[
qS2
]
2
, trBLS).

The algorithm outputs π := ([c]1 ,
[
V S
]
1
,
[
V S
]
2
,
[
qS2
]
2
, ψS).

Theorem 14. The scheme above is Perfect Zero-Knowledge.

Proof. The key idea behind the proof is that all its the elements can be seen as perfectly
hiding commitments to a, where a is the opening of [c]1. For any V S and any a, there
always exists a compatible δ. Further, since Q2 has full rank,

[
qS2
]
2

is compatible with
any values a, δ.

[
HS
]
1

is uniquely determined by V S and the rest of the elements
of the crs. Finally, perfect zero-knowledge follows from the perfect zero-knowledge
property of the bilateral space membership proof.
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3.4 Unit Vector from Static Assumptions
Given n, we build a proof system for the family of languages

Luv,ck =

 [c]1 ∈ G2n
1

∃a,w ∈ Znp s.t. [c]1 = Comck(a,w),

a ∈ {0, 1}n and
n∑
j=1

aj = 1

 ,

where Comck is a perfectly binding commitment scheme, with ck chosen from a wit-
ness samplable distribution Dρ. For simplicity, we assume that [c]1 is a vector of
ElGamal encryptions as in the previous schemes.

Alternatively, to better match the description of the language Lquad,ck given in Sec-
tion 3.3.1, we can also define this language as:

Luv,ck =

{
[c]1 ∈ G2n

1

∃a,w ∈ Znp s.t. [c]1 = Comck(a,w),

a>V + b> ∈ {0, 2}n

}
,

where

V =

 2 1
. . .

...
2 1

 , b =


0
...
0
1

 .

That is, V = (2In|1) and b = (0n|1)>. In particular, this is a special case of the
language Lquad,ck, with V = (vij) and b fixed.

Our argument for this language is almost identical to the argument in Section 3.3.1,
except that we use a dual point of view and now the points R = {r1, . . . , rn+1} are
published only in the exponent, while s ∈ Zp can be public2. We remark that this
change affects crucially the information that must be included in the crs to allow the
prover to compute [H]1, the quotient of dividing p(s) by t(s). In the general case (for
any V, b), this information would be quadratic in n after this change. On the other
hand, the advantage of this approach is that soundness is based on a static assumption.
The intuition behind it is that if the points r1, . . . , rn+1 are random and unrelated, one
can reduce satisfiability of the jth equation to a computational problem which is only
related to rj and independent of the rest.

The fact that the crs is quadratic makes the scheme less interesting in the general
case. For this reason, we restrict this dual approach to the unit vector argument. A

2Actually it is not necessary for completeness, but it can be published without compromising security.
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similar situation is found in the paper of González et al. [67], in which they provided a
constant proof that a set of perfectly binding commitments to integers open to bits. In
the general case, the common reference string was quadratic, while in the unit vector
case it was linear.

Intuition

Apart from the change of basis for computing [H]1, another important but very tech-
nical difference with respect to the previous scheme is that we use a special form
of interpolation. Given some points {r1, . . . , rn+1} we can define the polynomial

vi(x) =
∑n+1
j=1 vij λ̃j(X) where λ̃j(X) =

∏
k 6=j

X − rk
rj − rk

is the (normalized) La-

grange interpolation polynomial for which vi(X) is the polynomial that at the point
rj goes through vij , that is the ijth matrix entry of V of Section 3.3.1. We want to
prove security under static assumptions. So, we just want one point challenge instead
of l as in the previous constructions, where the assumptions were not static. In our
construction we need to compute the interpolation polynomials knowing all the inter-
polation points in Zp but one, say rj∗ , that we know in the group Gγ . The polynomials
λ̃j(x) are rational functions in terms of rj∗ and they are infeasible to compute in this
situation. Our approach allows us to compute the interpolation polynomials as degree
1 polynomials in terms of rj∗ . We achieve that using the non-normalized Lagrange
interpolation with polynomials λj(X) =

∏
k 6=j(X − rk) for which vi(x) in point rj

goes through µjvij , where µj =
∏
k 6=j(rj − rk).

As in Section 3.3.1 if we consider Z = a>V + b>, Z satisfies equations Z ∈
{0, 2}n+1 if and only if (Z − 1)2 = 1. Given a set of points R = {r1, . . . , rn+1},
the non-normalized interpolation polynomials, vi(X) such that vi(rj) = µjvij for
i ∈ {1, . . . , n} and v0(rj) = µj(bj − 1) have a very specific form, namely

v0(X) = −
n∑
i=1

λi(X), vi(X) = 2λi(X)+λn+1(X), for i ∈ {1, . . . , n}.

With the definition of λi(X) that we are using, by a similar argument as in previous
sections now the polynomial p(X) is of the form:

p(X) =

(
−

n∑
i=1

λi(X) +

n∑
i=1

ai (2λi(X) + λn+1(X))

)2

−

(
n+1∑
i=1

λi(X)

)2

, (3.6)

where
∑n+1
i=1 λi(X) is the interpolation polynomial that has value µi in each point ri.

The equation (3.6) is 0 in {r1, . . . , rn+1} if and only if all the equations are satisfied.
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If [c]1 is in the language and a is its opening, there exists an index i∗ such that
ai∗ = 1 and aj = 0 if j 6= i∗. Thus, substituting these values in the equation (3.6),

p(X) =

− n∑
i=1,i6=i∗

λi(X) + λi∗(X) + λn+1(X)

2

−

(
n+1∑
i=1

λi(X)

)2

.

Consequently, in order to compute the polynomial h(X) = p(X)
t(X) , the prover would

need products like λj,i :=
λj(X)λi(X)

t(X) =
∏
k 6=i,j(X − rk). The trivial solution is to

provide {λj,i}n+1
i,j=1 in the crs, but this implies a quadratic crs. Our approach allows to

give just n + 1 combinations of λi as we can see in the following, which results in a
linear crs.

Again, the key difference with the scheme of Section 3.3.1 is that here we want
the prover to know s in Zp but not the interpolation points, so the way we compute H
changes. We decompose p(X) in a product of polynomials as follows. Let v(X) =
v0(X) +

∑n
i=1 aivi(X) = −

∑n
i=1,i6=i∗ λi(X) + λi∗(X) + λn+1(X) and k(X) =∑n+1

i=1 λi(X). Then,

p(X) = (v(X) + k(X))(v(X)− k(X)). (3.7)

Note that

v(X) + k(X) =−
n∑

i=1,i6=i∗
λi(X) + λi∗(X) + λn+1(X) +

n+1∑
i=1

λi(X)

=2 (λi∗(X) + λn+1(X)) ,

v(X)− k(X) =−
n∑

i=1,i6=i∗
λi(X) + λi∗(X) + λn+1(X)−

n+1∑
i=1

λi(X)

=− 2

n∑
i=1,i6=i∗

λi(X).

(3.8)

Now we can use this decomposition to compute h(X):

h(X) =
(v(X) + k(X))(v(X)− k(X))

t(X)
=
−4
(∑n

i=1,i6=i∗ λi(X)
)

(λi∗(X) + λn+1(X))

t(X)

= −4

n∑
i=1,i6=i∗

λi,i∗(X) + λi,n+1(X).

(3.9)
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This h(X) can be computed evaluated in s for any i∗ using equation (3.9) by an honest
prover who is given 

n∑
j=1,j 6=i

λj,i(s) + λj,n+1(s)


i∈{1,...,n+1}

in the crs.
Note that in the scheme, h(X) is randomized with an additional term δt(X) in

v(X), where δ ← Zp, in order to get zero-knowledge.

Scheme description

Given n ∈ Zp we construct a QA-NIZK argument for the language Luv,ck.
K0: The algorithm K0(gk , n) samples ck = ([u]1) from the 1-Lin distribution L1.

A commitment Comck(a;w) is the concatenation of Encck(ai;wi) = [aie2 +
wiu]1 of ElGamal encryptions.

K1: The algorithm K1(gk , ck, n) picks s, {rj}j∈{1,...,n+1} ← Zp, computes the non-
normalized Lagrange interpolation polynomials λi(X) =

∏
k 6=i(X − rk) using

the points rj as interpolation points, and evaluates λi(s), for i ∈ {1, . . . , n+ 1}.
It also defines t(X) :=

∏n+1
i=1 (X − ri) andLi(s) :=

n∑
j=1,j 6=i

λj,i(s) + λj,n+1(s)


i∈{1,...,n+1}

.

It picks
{
φi, φ̂i

}
i∈{1,...,n+1}

← Z2
p × Z3

p, Q1 ← U2,2, Q2 ← U3,3 and gener-

ates also the crs for proving membership in bilateral linear spaces BLS.CRS, for
the linear space generated by the matrices:

e2
. . .

e2

u
. . .
u

0

2λ1(s) + λn+1(s) . . . 2λn(s) + λn+1(s)
φ1 . . . φn

0
t(s) 0 0
φn+1 Q1 0


1

,

[
2λ1(s) + λn+1(s) . . . 2λn(s) + λn+1(s)

φ̂1 . . . φ̂n
0

t(s) 0 0

φ̂n+1 0 Q2

]
2

,
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[M]1 ∈ G4×(2n+6)
2 , [N]2 ∈ G(2n+3)×(2n+6)

1 , respectively.
The crs includes the elements(
gk , ck,

{
[λi(s)]1,2, [Li(s)]1,2, [φi]1 ,

[
φ̂i

]
2

}
i∈{1,...,n+1}

, [t(s)]1,2, [Q1]1, [Q2]2,

BLS.CRS

)
.

P: The prover P(crs, [c]1,V, b,a) picks δ ← Zp, rq.1, rq.2 ← Z2
p×Z3

p and computes

[V ]1,2 = [2λi∗(s) + λn+1(s) + δt(s)]1,2 ,

defines p(s) = (v0(s) + V +
∑n+1
i=1 λi(s))(v0(s) + V −

∑n+1
i=1 λi(s)) and H =

h(s) = p(s)
t(s) . The prover can compute

[H]1 =
[
−4Li∗(s) + 2δ(v0(s) + V )− δ2t(s)

]
1

(see the intuition above)

and the following elements:

[q1]1 = [
∑n
i=1 aiφi + δφn+1 + Q1rq.1]

1
,

[q2]2 =
[∑n

i=1 aiφ̂i + δφ̂n+1 + Q2rq.2

]
2
.

The prover also computes a BLS proof ψ that

([c]1, [V ]1 , [q1]1, [V ]2 , [q2]2)
> ∈ Im

(
[M]1
[N]2

)
,

with witness (a,w, δ, rq.1, rq.2)
> ∈ Z2n+6

p . Finally, it sends the proof π to the
verifier, where

π := ([H]1 , [V ]1 , [V ]2 , [q1]1 , [q2]2 , ψ) .

V: The verifier V(crs, [c]1,V, b, π) checks whether the equation

e([v0(s) + V ]1 , [v0(s) + V ]2)−e

([
n+1∑
i=1

λi(s)

]
1

,

[
n+1∑
i=1

λi(s)

]
2

)
= e([H]1 , [t(s)]2)

(3.10)
holds, where [v0(s)]1 = −

∑n
i=1[λi(s)]1, and BLS.verify(ψ) = 1. If both con-

ditions hold, it returns 1, else it returns 0.
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Completeness

The reason why the prover can compute H is explained in the intuition. On the other
hand, membership in bilateral spaces is perfectly complete. Further, the right hand
side of the verification equation is e ([H]1 , [t(s)]2) = e

([
p(s)
t(s)

]
1
, [t(s)]2

)
= [p(s)]T ,

while the left hand is
[
(v0(s) + V )2 −

(∑n+1
i=1 λi(s)

)2
]
T

= [p(s)]T .

Soundness

Theorem 15. Let AdvPS(A) be the advantage of any PPT adversary A against the
knowledge soundness of the scheme. There exist PPT adversaries B1,B2,B3,B4 such
that

AdvKS(A) ≤ (n+ 1)
(

AdvL1-MDDH,G1
(B1) + 2AdvL1-MDDH,G2

(B2)

+ AdvBLS(B3) + Adv1-STSDH(B4)
)
.

Proof. In order to prove soundness we will prove indistinguishability of the following
games.

• Real: This is the real soundness game. The output is 1 if the adversary produces
a false accepting proof, i.e. if there is some equation a>vi + bi 6∈ {0, 2} and the
verifier accepts the proof.

• Game0: This game is identical to the previous one, except that the commitment
key u is chosen by the game.

• Game1: This game is identical to the previous one, except that some j∗ ←
{1, . . . , n + 1} is chosen and the game aborts if a satisfies the j∗-th equa-
tion. This can be checked by opening c thanks to knowledge of u and checking
whether [a]>1 vj∗ + [bj∗ ]1 ∈ {[0]1, [2]1}.

• Game2: This game is identical to the previous one, except that Q1 is now a
uniformly random matrix conditioned on having rank 1. If j∗ 6= n + 1, the
elements [φi]1 are changed to

[φi]1 =

{
[Q1]1ri, i = 1, . . . , n+ 1, i 6= j∗

[2λj∗ ]1e
2
1 + [Q1]1rj∗ , i = j∗
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where ri, rj∗ ,← Z2
p and e2

1 is the first element in the canonical basis of Z2
p,

while if j∗ = n+ 1, each [φi]1 is changed to

[φi]1 =

{
[λn+1(s)]1 e

2
1 + [Q1]1ri, i = 1, . . . , n

[Q1]1 rn+1, i = n+ 1

where ri, rn+1 ← Z2
p.

• Game3: This game is identical to the previous one, except that Q2 is now a
uniformly random matrix conditioned on having rank 1. If j∗ 6= n + 1, the
elements

[
φ̂i

]
2

are changed to

[
φ̂i

]
2

=


[2λi,j∗(s) + λn+1,j∗(s)]2 e

3
1 + [Q2]2r̃i, i = 1, . . . , n, i 6= j∗

[ε]2 e
3
3 + [Q2]2r̃j∗ i = j∗

[λj∗(s)]2 e
3
1 + [Q2]2r̃n+1 i = n+ 1

where r̃i, r̃j∗ , r̃n+1 ← Z3
p, ε ← Zp and e3

i is the ith element in the canonical

basis of Z3
p, while if j∗ = n+ 1, the elements

[
φ̂i

]
2

are changed to

[
φ̂i

]
2

=

{
[2λi,n+1(s)]2 e

3
1 + [ε]2 e

3
3 + [Q2]2r̃i, i = 1, . . . , n, i 6= j∗

[λn+1(s)]2 e
3
1 + [Q2]2r̃n+1, i = n+ 1

where r̃i, r̃n+1 ← Z3
p, ε← Zp.

Obviously, the games Real and Game0 are indistinguishable. The indistinguisha-
bility of the other games is based on the rank problem as in the soundness proof in Sec-
tion 3.3.1.

Lemma 16. There exists an adversary B3 against the strong soundness of the BLS
argument and an adversary B4 against the 1-STSDH assumption such that

Pr[Game3(A) = 1] ≤ AdvBLS(B3) + Adv1-STSDH(B4).

Proof. As in the proof of Lemma 11, we distinguish two events, the event that the
adversary succeeds in giving a false proof of membership in bilinear spaces (event
E), and the complementary event E, which is the interesting part of the proof. It can
be proved easily following an analogous argument that such an adversary B3 could
break soundness of BLS. We describe the reduction for adversary B4 that receives a
challenge (gk, [ε]2, [α]1,2) of the 1-STSDH Assumption and plugs (gk, [ε]2) in the crs.
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Adversary B4 chooses s← Zp, and all the points ri, i 6= j∗ as random elements in Zp.
Then it implicitly sets rj∗ to be s − rj∗ = α, so that rj∗ can be computed in G1 and
G2 but not in Zp. Then it sets:

[λj(s)]1,2 =
∏
i 6=j,j∗(s− ri) [α]1,2 for j 6= j∗,

[λj∗(s)]1,2 =
[∏

i 6=j∗(s− ri)
]

1,2
,

[Lj(s)]1,2 =
∑n
i=1,i6=j ([λj,i(s)]1,2 + [λn+1,i(s)]1,2) ,

[t(s)]1,2 =
∏
i 6=j∗(s− ri) [α]1,2

for j ∈ {1, . . . , n+ 1}. The rest of the elements of the crs are computed as sampled as
specified by the game. All these elements are added to the crs and sent to the soundness
adversary A, who eventually outputs π for the corresponding [c]1 .

Adversary B4 extracts [a]1 ∈ G1 from [c]1 and the knowledge of u ∈ Z2
p and

aborts if the j∗th equation is satisfied.
By definition e([v0(s) + V ]1 , [v0(s) + V ]2)−e

([∑n+1
i=1 λi(s)

]
1
,
[∑n+1

i=1 λi(s)
]

2

)
=

[p(s)]T . We note that it can compute
[
p(s)
α

]
T

from [H]1:[
p(s)

α

]
T

= e

(
[H]1,

[
t(s)

α

]
2

)
= e([H]1, [λj∗(s)]2) (3.11)

by the verification equation (3.10) and [λj∗(s)]2 is efficiently computable by the adver-
sary.

Moreover, p(s) can be factored as p(s) = (v(s) + k(s))(v(s)− k(s)) for equation
(3.9). We can write v(s) = (V0 + αV1) and k(s) = (K0 + αK1), where V0,K0 are
the terms which the adversary does not know how to divide by α. More specifically,

p(s) = (V0 + αV1)2 − (K0 + αK1)2, (3.12)

and therefore

p(s)

α
=

(
V0

α
+ V1

)
(V0 + αV1)−

(
K0

α
+K1

)
(K0 + αK1)

=
V 2

0 −K2
0

α
+ 2V0V1 + αV 2

1 − 2K0K1 − αK2
1

=
V 2

0 −K2
0

α
+ (2V0 + αV1)V1 − 2K0K1 − αK2

1

=
V 2

0 −K2
0

α
+ (V0 + V )V1 − 2K0K1 − αK2

1

(3.13)
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The BLS proof guarantees the existence of values a, δ, rq.1, rq.2, binding property of
commitments ci assure ai are unique. So, the elements V0, V1,K0,K1 are uniquely
determined. We remember here the polynomials v(X), k(X) that we have defined
above in (3.8) but adding the randomization term in v(X):

v(X) =

n∑
i=1

(2ai − 1)λi(X) +

n∑
i=1

aiλn+1(X) + δt(X),

k(X) =

n+1∑
i=1

λi(X),

for which the equation (3.6) holds. Assuming j∗ 6= n+ 1, if we divide by X − rj∗ , we
obtain

v(X)

X − rj∗
=

(2aj∗ − 1)λj∗(X)

X − rj∗
+

n∑
i=1,i6=j∗

(2ai − 1)λi,j∗(X)

+

n∑
i=1

aiλn+1,j∗(X) + δλj∗(X),

k(X)

X − rj∗
=
λi∗(X)

X − rj∗
+

n+1∑
i=1,i6=j∗

λi,j∗(X),

(3.14)

where the first term that is not divisible by X − rj∗ corresponds to V0, K0 in each
equation, respectively when the polynomials are evaluated on s. The other terms of the
equations correspond to V1,K1 respectively. So, if j∗ 6= n+ 1:

V0 = (2aj∗ − 1)λj∗(s)

V1 =

n∑
i=1,i6=j∗

(2ai − 1)λi,j∗(s) +

(
n∑
i=1

ai

)
λn+1,j∗(s) + δλj∗(s)

K0 = λj∗(s)

K1 =

n+1∑
i=1,i6=j∗

λi,j∗(s),
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otherwise, if j∗ = n+ 1:

V0 =

n∑
i=1

aiλn+1(s)

V1 =

n∑
i=1

(2ai − 1)λi,n+1(s) + δλn+1(s)

K0 = λn+1(s)

K1 =

n∑
i=1

λi,n+1(s).

In either case, B4 knows [V ]1,2 from the proof, K0,K1 ∈ Zp, we will now argue that
V0 can be computed in G1 from one of the extracted values of [q1]1 and V1 can be
computed in G2 from the extracted values of [q2]2. More specifically, remember that
in this game if j∗ 6= n+ 1,

[q1]1 =

 n∑
i=1,i6=j∗

aiQ1ri + aj∗
(
2λj∗(s)e

2
1 + Q1rj∗

)
+ δQ1rn+1 + Q1rq.1


1

[q2]2 =

 n∑
i=1,i6=j∗

ai
(
(2λi,j∗(s) + λn+1,j∗(s))e

3
1 + Q2r̃i

)
+ aj∗

(
εe3

3 + Q2r̃j∗
)

2

+
[
δ
(
λj∗(s)e

3
1 + Q2r̃n+1

)
+ Q2rq.2

]
2
,

and if j∗ = n+ 1,

[q1]1 =

[
n∑
i=1

ai
(
λn+1(s)e2

1 + Q1ri
)

+ δQ1rn+1 + Q1rq.1

]
1

[q2]2 =

[
n∑
i=1

ai
(
2λi,n+1(s)e3

1 + εe3
2 + Q2r̃i

)
+ δ

(
λn+1(s)e3

1 + Q2r̃n+1

)
+ Q2rq.2

]
2

.

Since B4 sampled Q1,Q2 itself, it can extract the following values from [q1]1 and [q2]2
defining appropriate orthogonal vectors to theses matrices, similarly to the extraction
explained in Lemma 11:

• if j∗ 6= n + 1, it extracts
[∑n

i=1,i6=j∗ ai(2λi,j∗(s) + λn+1,j∗(s)) + δλj∗(s)
]

2
,

[aj∗2λj∗(s)]1 and [εaj∗ ]2.
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• if j∗ = n + 1, it extracts [
∑n
i=1 aiλn+1(s)]

1
, [
∑n
i=1 2aiλi,n+1 + δλn+1(s)]

2
and [ε

∑n
i=1 ai]2.

From these values it can compute [V0]1, [V1]2 in both cases, and also defining β :=
2aj∗−1 for j∗ 6= n+1 and β :=

∑n
i=1 ai for j∗ = n+1, it can compute [εβ]2 in both

cases (if j∗ 6= n+1, computes 2 [εaj∗ ]2−[ε]2, otherwise it has extracted [ε
∑n
i=1 ai]2).

Combining [V0]1, [V1]2, [α]1,2 with K0, K1 it can substract from equation (3.11)
the terms [(V + V0)V1 + 2K0K1 + αK2

1 ]T in equation (3.13), so the adversary can
compute in GT :

[
V 2

0 −K2
0

α

]
T

=


[

(2aj∗ − 1)2 − 1

α
λ2
j∗(s)

]
T

, j∗ 6= n+ 1[
(
∑n
i=1 ai)

2 − 1

α
λ2
n+1(s)

]
T

, j∗ = n+ 1.

Since the adversary knows λ2
j∗(s) ∈ Zp in both cases, it can compute:

[
V 2

0 −K2
0

αλ2
j∗(s)

]
T

=


[

(2aj∗ − 1)2 − 1

α

]
T

, j∗ 6= n+ 1[
(
∑n
i=1 ai)

2 − 1

α

]
T

, j∗ = n+ 1

which is
[
β2 − 1

α

]
T

in both cases.

Finally, the adversary returns
(
rj∗ , [β]1, [εβ]2,

[
β2 − 1

α

]
T

)
, which breaks the 1-STSDH

Assumption.

Since the matrix V has rank n, by the Theorem 13, we know there exists an extrac-
tor of the witness in the field. Then, we have proven knowledge soundness.

Theorem 17. The scheme above is Perfect Zero-Knowledge, i.e. there exists a simula-
tor algorithm S who has access to the trapdoor tr = {s, r1, . . . , rn+1}, that constructs
a simulated proof πS such that it is statistically indistinguishable from the real proof
π.

The proof is analogous to the one of Theorem 14 of Section 3.3.1.
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3.4.1 Detailed Efficiency Comparison

In Table 3.4 we give more a detailed comparison of our arguments for bit-strings and
unit vector in Sections 3.3.1 and 3.4 with the analogous results in [67].

Language Proof size crs size Assumption

Sect. 3.3.1 Bitstring 4|G1|+ 6|G2|
(n+O(1))|G1|+
+(4n+O(1))|G2|

q-STSDH [7]

Sect. 5 of [67] 10|G1|+ 10|G2|
O(n2)|G1|+
+O(n2)|G2|

SSDP

Sect. 3.4 Unit vector 6|G1|+ 6|G2|
(4(n+ 1) +O(1))|G1|+
+(5(n+ 1) +O(1))|G2|

1-STSDH [7]

Sect. 5 of [67] 10|G1|+ 10|G2|
(20n+O(1))|G1|+
+(18n+O(1))|G2|

SSDP

Table 3.4: The table shows the proof sizes (not including commitments) for bitstrings
and unit vectors of size n.

3.5 Aggregated Set Membership Arguments

In the construction of Section 3.3.1, if V is the identity matrix and b = 0, the equa-
tions aV + b ∈ {0, 2}l just prove that each ai ∈ {0, 2}. In this section we consider a
generalization and build a proof system which proves that some perfectly binding com-
mitments open to ai ∈ Z = {z1, . . . , zm} ⊂ Zp. The proof is constant-size and uses
the Boneh-Boyen signature scheme (the basic scheme from [22, Sect. 4.3]) together
with a technique to aggregate quadratic equations similar to the one of Section 3.3.1
and inspired by the quadratic span programs of Gennaro et al. [61].

First, in Section 3.5.1, we describe how to construct an argument of membership
for a single a ∈ Z and then in Section 3.5.2 we show how to aggregate the argument.
In Section 3.6.2 we show how to apply these ideas to construct a range proof.

3.5.1 Non-Aggregated Set Membership Argument

Intuition

We build a constant-size proof of membership for polynomially-large sets in Zp with
linear crs. The idea is to give in the common reference string Boneh-Boyen signatures
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to each element of the set. The proof of membership is just a proof of knowledge of a
valid signature. Recall that [σ]2 is a valid signature for x if and only if

e([sk− x]1, [σ]2)− [1]T = [0]T .

The statement x ∈ Z is proven committing to x and to [σ]2 =
[

1
sk−x

]
2
, and giving a

Groth-Sahai proof for the satisfiability of the verification equation.
The problem with this approach is that it is not possible to extract x ∈ Zp from its

Groth-Sahai commitment, but only [x]1 ∈ G1. Therefore, it is not clear how to reduce
soundness to the EUF-CMA security of Boneh-Boyen, as the reduction can only output
a “relaxed form” of forgery ([x]1, [σ]2), for some x /∈ Z , instead of (x, [σ]2).3.

It turns out that Boneh-Boyen signatures are not unforgeable when purported forg-
eries are pairs of the form ([x]1, [σ]2). The problem is that [x]1 may be dependent of
sk, whereas this is impossible when x ∈ Zp must be given. Indeed, for any message of
the form [sk− x]1 one might compute a forgery as [1/x]2.

To solve this issue, we force the prover to commit to [εx]1, where the discrete
logarithm of [ε]1 remains hidden. Since [sk · ε]1 is not given, the adversary cannot
choose x to be a function of sk.

Scheme description

We give a proof of membership in Z = {z1, . . . , zm} ⊂ Zp. More precisely, we build
a proof for the family of languages:

Lmemb,Z,ck :=
{

[c]1 ∈ G2
1

∣∣ ∃w ∈ Zp s.t. [c]1 = Comck(x;w) and x ∈ Z
}
.

Setup: The setup algorithm generates the parameters for the Boneh-Boyen signatures,
chooses ε ← Zp and computes the crs that contains [ε]2, signatures [σj ]2 =[

1
sk−zj

]
2

of each zj ∈ Z , and the Groth-Sahai crs. The simulation trapdoor is ε

and the GS simulation trapdoor for equations which are right-simulatable 4.
P: The prover P does the following. If x ∈ Z , then there is some pair ([y]2, [σ]2),

where [σ]2 is in the crs, such that

e([sk]1 − [x]1, [σ]2) = [1]T and [y]2 = x[ε]2.

3An alternative is of course to commit to x bit-by-bit to make it extractable, but it is completely imprac-
tical.

4See Ràfols [112]. These are statements for which only the commitments in G2 need to be perfectly
hiding and where it is sufficient to get the simulation trapdoor to equivocate commitments in G2.
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The prover produces a Groth-Sahai proof of the equations:

e ([sk]1 − [X]1, [Σ]2) = [1]T and [Y ]2 = X[ε]2

where X,Y,Σ are the variables.
V: The verifier V accepts if and only if both proofs are valid.

Theorem 18. The argument above is computationally quasi-adaptively sound under
the Z-GSDH Assumption in G2 and the soundness of Groth-Sahai proofs.

Proof. We construct an adversary B against the Z-GSDH assumption, which receives
gk := (p,G1,G2,GT , e,P1,P2) together with [ε]1,2 and {[si]1,2}mi=1 from the chal-
lenger. The adversary defines a new generator for G2, P2 = [

∏m
i=1(s − zi)]2, defines

a new group key gk := (p,G1,G2,GT , e,P1,P2), and defines [sk]1 = [s]1. Note
that we use implicit notation with respect to P1,P2 and not with respect to the new
generators.

The adversary can now build the signatureszj [ε]2,
 m∏
i=1
i 6=j

(s− zi)


2

 =

(
zj [ε]2,

1

sk− zj
P2

)

which are valid with respect to the group key gk.
LetA be an adversary against our set membership proof. Adversary B runsA with

the new group key gk, Groth-Sahai commitment keys for which it knows the discrete
logarithm (in order to open commitments), and signatures ([σ1]2, . . . , [σm]2). Suppose
that A wins by producing an accepting proof for some x 6∈ Z . From the adversary’s
proof and committed values one can extract [x]1 and ([y∗]2, [σ

∗]2) and, from perfect
soundness of Groth-Sahai proofs, it follows that

e([sk]1 − [x]1, [σ
∗]2) = e(P1,P2) and [y∗]2 = x[ε]2.

This implies that [σ∗]2 =
[∏m

j=1(sk−zj)
sk−x

]
2
, and hence ([x]1, [y

∗]2, [σ
∗]2) is a solution

to the Z-GSDH problem.

Theorem 19. The argument above is composable zero-knowledge under the compos-
able zero-knowledge property of Groth-Sahai proofs.

Proof. The proof simulator uses the Groth-Sahai trapdoor and ε to simulate the Groth-
Sahai proof of both equations (note that even though the commitment [c]1 is part of the
statement, both equations are right-simulatable when ε is known).
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3.5.2 Aggregated Set Membership Argument
Let Z ⊂ Zp , m = |Z|, and n ∈ N. We construct a QA-NIZK argument for the
following language

Lmemb,Z,ck :=

{
[c]1 ∈ G2n

1

∣∣∣∣ ∃w ∈ Znp s.t. [c]1 = Comck(x;w)
and x1, . . . , xn ∈ Z

}
,

where [c]1 = Comck(x;w) is a vector of ElGamal encryptions. The generalization to
other perfectly binding commitments is straightforward.

Intuition. To express the validity of n signatures and message pairs, we construct
polynomials v(X), y(X), which encode the set of n verification equations for the
Boneh-Boyen signatures. Given the set R = {r1, . . . , rn} ⊂ Zp, recall that we de-
note as λi(X) the ith Lagrange interpolation polynomial associated toR.

We define v0(X) as the constant polynomial v0(X) = sk, and t(X) =
∏
rj∈R(X−

rj). The set of polynomials v0(X), {λi(X)}ni=0, t(X) accepts x1, . . . , xn if and only
if t(X) divides (v0(X)− v(X))y(X)− 1, where

v(X) =

n∑
j=1

xiλi(X), y(X) =

m∑
i=1

σk(i)λi(X),

and σk(i) is the signature of some zk(i) such that xi = zk(i).
That is, at any point rj ∈ R, if xj = v(rj), then y(rj) is a a valid signature of xj .

This follows from

(v0(X)− v(X))y(X)− 1 = h(X)t(X) for some polynomial h(X)

=⇒ (v0(rj)− v(rj))y(rj)− 1 = 0 ⇐⇒ (sk− xj)y(rj)− 1 = 0.

In particular, if j ∈ [n] is such that xj /∈ Z , then y(rj) is a forgery for xj . For
simplicity, in this exposition we ignore the issue mentioned in previous section about
commitment extractability, but this is taken into account in the argument.

Note that to compute y(X) given λi(X) in some source group, the prover would
need to know the discrete logarithm of the signatures. To render the interpolation
polynomials efficiently computable, we include in the crs the terms [σis

j ]2, where
σi = 1

sk−zi , for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, and all other values which require
the signature’s discrete logarithm. Consequently, our crs is of size O(nm).

A direct instantiation of techniques from Section 3.3.1 requires perfectly binding
commitments to each of the signatures and hence, a proof of size linear in the number
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of statements. But it turns out that perfectly binding commitments to signatures are
not necessary for proving membership in Z . To achieve this, we use a trick similar to
Section 3.3.1. We program the crs in order to extract a valid signature for xj∗ , for a
random j∗ ∈ {1, . . . , n}, in such a way that the adversary might only detect the change
in the crs with negligible probability.

Scheme description

Given m,n ∈ N and a set Z ⊂ Zp, |Z| = m, we construct a QA-NIZK argument for
the language Lmemb,Z,ck.
K0: Algorithm K0(gk) sets ck = [u]1 ← L1.
K1: Algorithm K1(gk , ck) picks s ← Zp,

{
φi, φ̂i

}
i∈{1,...,n+1}

← Z3
p × Z4

p, Q1 ←
U3,3,Q2 ← U4,4, picks a Boneh-Boyen secret key sk ← Zp, generates signa-
tures [σ1]2, . . . , [σm]2 for each element in Z and generates also crsΠ1 and crsΠ2

for proving membership in the linear spaces generated, respectively, by the ma-
trices M,N, where:

[M]1 =


e2

. . .
e2

u
. . .

u

0

λ1(s) . . . λn(s)
φ1 . . . φn

0
t(s) 0
φn+1 Q1


1

,

[N]2 =

[
σ1λ1(s) σ1λ2(s) . . . σmλn(s)

σ1φ̂1 σ1φ̂2 . . . σmφ̂n

t(s) 0

φ̂n+1 Q2

]
2

,

[M]1 ∈ G(2n+4)×(2n+4)
1 , [N]2 ∈ G5×(nm+5)

2 .
The crs includes the elements(
gk , ck,

{
[sj ]1, [sksj ]1, [σis

j ]1,2, [φi]1, [σiφ̂j ]2

}
i∈{1,...,m},j∈{1,...,n}

, [φn+1]1,

[φ̂n+1]2, [Q1]1, [Q2]2, crsΠ1
, crsΠ2

)
.

P: The prover P(crs, [c]1,x,w) picks δv, δy ← Zp, rq.1 ← Z3
p, rq.2 ← Z4

p and de-
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fines the polynomials

v(X) =

n∑
i=1

xiλi(X) + δvt(X), y(X) =

n∑
i=1

σk(i)λi(X) + δyt(X)

h(X) =
(v0(X)− v(X))y(X)− 1

t(X)

where v0(rj) = sk, for all j ∈ {1, . . . , n}, t(X) =
∏
r∈R(X − r) and λi(X)

is the ith Lagrangian interpolation polynomial associated to R. By definition of
the language, each xi is equal to zk(i), for some k(i) ∈ {1, . . . ,m}.
The prover computes the following elements:

[H]1 = [h(s)]1 , [q1]1 = [
∑n
i=1 xiφi + δvφn+1 + Q1rq.1]

1
,

[V ]1 = [v(s)]1 ,

[Y ]2 = [y(s)]2 , [q2]2 =
[∑n

i=1 σk(i)φ̂i + δyφ̂n+1 + Q2rq.2

]
2
.

The prover also computes two LS proofs

ψ1 ← Π1.LS.prove

crsΠ1 ,

 c
V
q1


1

,


x
w
δv
rq.1


 ,

ψ2 ← Π2.LS.prove

crsΠ2
,

[
Y
q2

]
2

,

 y
δy
rq.2

 ,

where y = (y1,1, y1,2, . . . , yn,m) and yi,j is equal to 1 if i = k(j) and 0 other-
wise. Finally, it sends the proof π to the verifier, where

π := ([H]1 , [V ]1 , [Y ]2 , [q1]1 , [q2]2 , ψ1, ψ2) .

V: The verifier V(crs, π) checks whether the equation

e([H]1 , [t(s)]2) = e([v0(s)]1 − [V ]1, [Y ]2)− [1]T holds, and

Π1.LS.verify

crsΠ1
,

 c
V
q1


1

, ψ1

 = 1, Π2.LS.verify

(
crsΠ2

,

[
Y
q2

]
2

, ψ2

)
= 1.

If all of these conditions hold, it returns 1, else 0.
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Completeness

If x1, . . . , xn ∈ Z then (v0(rj)− v(rj))y(rj)− 1 = (xk(j) + sk)σk(j) − 1 = 0 for all
j, and thus (v0(X)−v(X))y(X) = 1 mod t(X). This implies that h(X) is a well de-
fined polynomial in Zp[X] such that e ([h(s)]1 , [t(s)]2) = e ([v0(s)− v(s)]1 , [y(s)]2)−
[1]T . It is easy to check that cV

q1

 = M


x
w
δv
rq.1

 and
(
Y
q2

)
= N

 y
δy
rq.2

 ,

where y = (y1,1, . . . , ym,n), and therefore ψ1, ψ2 are valid proofs.

Soundness

Theorem 20. Let AdvPS(A) be the advantage of a PPT adversaryA against the sound-
ness of the scheme. There exist PPT adversaries B1,B2,B3,1,B3,2,B4,B5 such that

AdvPS(A) ≤ n ( 2AdvL1-MDDH,G1
(B1) + 3AdvL1-MDDH,G2

(B2) + AdvLS,Π1
(B3,1)

+AdvLS,Π2
(B3,2) + AdvZ-GSDH,G1

(B4) + Advn-QTSDH(B5)) .

Proof. In order to prove soundness we will prove indistinguishability of the following
games.

• Real: This is the real soundness game. The output is 1 if the adversary produces
a false accepting proof, i.e. if there is some xi /∈ Z and the verifier accepts the
proof.

• Game0: This game is identical to the previous one, except that the commitment
key u is chosen by the game in order to extract [x]1 from [c]1.

• Game1: This game is identical to the previous one, except that some j∗ ←
{1, . . . , n} is chosen and the game aborts if the extracted value [x]1 is such that
[xj∗ ]1 ∈ [Z]1.

• Game2: For i = 1, . . . , n, let αi(X) and βi be the quotient and the reminder,
respectively, of dividing λi(X) by X − rj∗ . Let αn+1(X) and βn+1 be the
quotient and the reminder of dividing t(X) byX−rj∗ . This game is identical to
the previous one, except that Q1 is now a uniformly random matrix conditioned
on having rank 1, and for i = 1, . . . , n+ 1, [φi]1 is changed to

[φi]1 = [αi(s)]1e
3
2 + βi[ε]1e

3
3 + [Q1]1ri,
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where e3
j is the jth vector of the canonical basis of Z3

p, ri ← Z3
p, ε← Zp.

• Game3: Let αi(X) and βi be defined as above. This game is identical to the
previous one, except that Q2 is now a uniformly random matrix conditioned on
having rank 1, and each

[
φ̂i

]
2

is now defined as

[
φ̂i

]
2

= [αi(s)]2e
4
2 + [βi]2e

4
3 + βi[ε]2e

4
4 + [Q2]2r̃i,

where e4
j is the jth vector of the canonical basis of Z4

p, r̃i ← Z4
p and ε ← Zp is

the same value used in the definition of [φi]1.

Obviously, the games Real and Game0 are indistinguishable. The proofs of indis-
tinguishablility of Game1,Game2 and Game2,Game3 are the same as their analogues
in Section 3.3.1. We proceed to prove that in Game3 the adversary wins only with
negligible probability.

Lemma 21. There exists adversaries B3,i against the soundness of Πi.LS, an adver-
sary B4 against Z-GSDH in G1, and an adversary B5 against n-QTSDH such that

Pr[Game3(A) = 1] ≤ AdvLS(B3,1)+AdvLS(B3,2)+Advn-QTSDH(B4)+AdvZ-GSDH,G1(B5).

Proof. Let E1 be the event where (c, V, q1) is not in the image of M, E2 the event that
(Y, q2) is not in the image of N, and E3 = E1 ∪ E2. Then

Pr[Game3(A) = 1] ≤Pr[Game3(A) = 1|E1] + Pr[Game3(A) = 1|E2]+

+ Pr[Game3(A) = 1|E3], (3.15)

and, clearly,

Pr[Game3(A) = 1|E1]+Pr[Game3(A) = 1|E2] ≤ AdvΠ1.LS(B3,1)+AdvΠ2.LS(B3,2).

We now proceed to bound Pr[Game3(A) = 1|E3]. Conditioned on E3, there exist
some x†,w, δv, rq.1 and y†, δy, rq.2 such that (c, V, q1)> = M(x†,w, δv, rq.1)> and
(Y, q2)> = N(y†, δy, rq.2)>. Given that c is perfectly binding, it must be that x = x†.
It follows that V =

∑n
i=1 xiλi(s)+δvt(s) = v(s) and Y = y†(s) for some polynomial

y†(X) =
∑n
i=1

∑m
j=1 y

†
i,jσiλi(X) + δyt(X). Further, except with probability 1/q,

each eij is linearly independent of the columns of [Q1]1, [Q2]2, so one can extract
from [q1]1 (resp. [q2]2) the coefficients of these vectors in its expression in terms of
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[Q1]1, e
3
2, e

3
3 (resp. [Q2]2, e

4
2, e

4
3, e

4
4), which are:[ ∑n+1

i=1 xiαi(s)∑n+1
i=1 xiβiε

]
1

=

[
α(s)
βε

]
1

,
∑m,n
i,j=1 y

†
i,jσiα̃j(s) + δyα̃n+1(s)∑m,n

i,j=1 y
†
i,jσiβj + δyβ̃n+1∑m,n

i,j=1 y
†
i,jσiβjε+ δyβ̃n+1ε


2

=

 α̃(s)

β̃

β̃ε


2

where xn+1 = δv and α(X), α̃(X) are the quotients and β, β̃ are the reminders of
dividing, respectively, v(X) and y(X) by X − rj∗ .

If we divide both sides of the verification equation by (s− rj∗), and we denote by
α0(s), β0 we get that

e

(
[H]1,

[
t(s)

s− rj∗

]
2

)
=

1

s− rj∗
(e([v0(s)]1 − [v(s)]1, [y(s)]2)− [1]T )

=
1

s− rj∗

[
(v0(s)− v(s))(α̃(s)(s− rj∗) + β̃)− 1

]
T

=[(v0(s)− v(s))α̃(s) + α(s)β̃]T +

[
(v0(s)− β)β̃ − 1

s− rj∗

]
T

.

Note that β = v(rj∗) = xj∗ , v0(s) = sk and thus if (v0(s)− β)β̃ − 1 = 0, then β̃ is a
valid signature for xj∗ .

Let E4 the event (v0(s) − β)β̃ − 1 = 0 and thus Pr[Game4(A) = 1|E3] ≤ Pr[
Game4(A) = 1|E4 ∩ E3] + Pr[Game4(A) = 1|E4 ∩ E3].

We build an adversaryB4 against Assumption 6 which receives gk,{[ski]1, [ski]2}i∈[m],
[ε]1,2. Essentially, the adversary works as the one described in Section 3.5.1 for the
(non-aggregated) set membership argument. It simulates Game4(A) computing all the
discrete logarithms of the crs itself, except for the Boneh-Boyen secret key, [ε]1,2, and
the signatures in the crs are computed as in Section 3.5.1. WhenA outputs [q1]1, [q2]2,
B4 extracts [βε]1, [β̃]2 and returns ([xj∗ ]1, [βε]1, [β̃]2). In the caseE4, we have already
argued that β̃ is a valid signature for xj∗ , and in this game xj∗ /∈ S. We conclude that
Pr[Game4(A) = 1|E4 ∩ E3] ≤ AdvZ-GSDH,G1

(B4).
We also construct B5 an adversary against Assumption 8. It receives as input

[ε]1, [ε]2, [s]1, [s]2, . . . , [s
d]1[sd]2 and it starts a simulation of Game4(A), by sampling

honestly the rest of the elements of the crs. Finally, A outputs [V ]1, [Y ]2, [q1]1, [q2]2
as part of the purported proof for [c]1. We will see in the following how B4 com-
putes [ν]T :=

[
(v0(s)−β)β̃−1

s−rj∗

]
T

and returns ([v0(s)− β]1 ,[(v0(s)− β)ε]1, [β̃]2, [β̃ε]2,
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[ν]T ), with (v0(s)− β)β̃ − 1 6= 0, breaking Assumption 8.
The values [α̃(s)]2, [β̃]2 and [β̃ε]2 are extracted from [q2]2, while [α(s)]1, [βε]1 are

extracted from [q1]1, [β]1 = [xj∗ ]1 is extracted from [c]1, β0 = sk, and [v0(s)ε]1 =
sk[ε]1 can be computed by B5 because it sampled sk. The value [ν]T is computed as

[ν]T := e

(
[H]1,

[
t(s)

s− rj∗

]
2

)
− e([v0(s)]1 − [V ]1, [α̃(s)]2)− e

(
[α(s)]1, [β̃]2

)
.

With this lemma we finish the security proof of the Theorem 20.

Zero-Knowledge.

The proof of perfect zero-knowledge is essentially the same as for Theorem 14. Note
that [V ]1, [Y ]2, [q1]1, [q2]2 are independent of x, while [H]1 is the unique solution to
the verification equation. Perfect zero-knowledge of the argument of membership in
linear spaces implies that the proofs ψ1, ψ2 can be simulated with the same distribution
as honest proofs.

3.6 Applications

3.6.1 Shuffle Arguments
From our results, we can construct two different shuffle arguments in the crs model
under falsifiable assumptions. They both follow the basic template of the shuffle ar-
gument of [68]. Let [c1]2, [c2]2 be two vectors of n ciphertexts which open to vectors
of plaintexts [m1]2, [m2]2, respectively, and we want to prove that m2 is a permu-
tation of m1. The shuffle argument of [68] consists of the following steps. The crs
includes a vector of group elements [z]1 = ([z1]1, . . . , [zn]1) sampled uniformly and
independently. The prover chooses a permutation [x]1 = ([x1]1, . . . , [xn]1) of [z]1 and
proves: (1) xi ∈ Z = {z1, . . . , zn} for all i ∈ {1, . . . , n}, (2)

∑
xi =

∑
zi and (3)∑

zim1,i =
∑
xim2,i.

The first two steps force x to be a permutation of z: if all xi ∈ Z and their sum
equals the sum of all the elements in Z and x is not a permutation, the prover has
found a non-trivial combination of elements of Z which is 0, which is a type of kernel
problem. The last step links this fact withm2 being a permutation ofm1.

In both our constructions and in the original argument of [68], Steps (2) and (3)
are handled with the following Groth-Sahai equations, in which uppercase letters are
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variables for which the prover has provided commitments: (2)
∑

[Xi]1 =
∑

[zi]1 and
(3)
∑
e([zi]1, [M1,i]2) =

∑
e([Xi]1, [M2,i]2).

We next specify two different ways of proving Step 1, which results in two different
constructions with different performance.

Unit Vector Argument

The first approach is the closest to the work of González et al. [68]. There, Step 1 is
rewritten as proving that x = z>B, for a matrix B = (b1| . . . |bn) ∈ {0, 1}n2

, where
the bi are unitary vectors (not necessarily different, as this is handled by step 2). The
approach of [68] is to adopt a commit-and-prove strategy using arguments for linear
spaces and the bitstring argument of [67]. The ‘prove’ part is constant-size, but the
‘commit’ part is a priori quadratic, as we would need to commit to each entry of the
matrixB.

To overcome this and obtain linear complexity, they switch to shrinking commit-
ments to each row b∗i of B, which take only two elements each. Obviously these
commitments cannot be perfectly binding, and this fact interferes with the extraction
step in soundness proof. However, a key step in their argument is that they set these
commitments in a way that one single coordinate j∗ (which remains unknown to the
adversary) is perfectly binding. Thus the corresponding column is uniquely determined
and can be extracted in the proof. From here, it is concluded that an adversary cannot
cheat in the j∗-th ciphertext, and since j∗ is unknown to the adversary, general sound-
ness is reduced to this case with a tightness loss of 1/n. Note that this is on top of the
factor 1/n from the bitstring argument, resulting in a soundness loss of 1/n2.

We observe that we can plug our unit vector argument instead of the one from [67],
modified to accept shrinking commitments to each of the rows of B as those in [68]. We
include an additional game at the beginning of the soundness proof of the unit vector
argument, in which we choose a random coordinate and abort if the corresponding com-
mitment is not in the language. From here on the proof works as in Section 3.4. This
proof inherits the disadvantages of [68], namely the quadratic crs and the tightness loss
in the security reduction, but we improve the proof size from (4n+ 17)|G1|+ 14|G2|
to (4n+ 11)|G1|+ 8|G2| and our proof still uses falsifiable and static assumptions.

Argument of Membership in a Set of Group Elements

Another approach to Step 1, instead of the aggregated unit vector proofs, is to prove
directly membership in a subset Z = {[z1]1, . . . , [zn]1} ⊂ G1. Note that the set is
witness sampleable and in particular, the discrete logarithms might be known when
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generating the crs. More precisely, we want to construct an argument for the language

Lmemb,Z,ck :=
{

[c]1 ∈ G2
1

∣∣ ∃w ∈ Zp s.t. [c]1 = Comck([x]1;w) and [x]1 ∈ Z
}
,

and for efficiency, the proof should be aggregated. This can be achieved by modifying
the aggregated membership proof in a subset of Zp from Section 3.5.2. Note that there
we had x ∈ Zp, and this was necessary to produce the proof, so to ensure completeness
when the prover knows only [x]1 ∈ Z ⊂ G1, we provide additional elements in the crs.
This is possible because the set is witness sampleable. More precisely, x was involved
in the definition of the terms

[V ]1 = [v(s)]1, where v(X) =

n∑
i=1

xiλi(X) + δvt(X),

[q1]1 =

[
n∑
i=1

xiφi + δvφn+1 + Q1rq.1

]
1

,

so we include the elements {[ziλj(s)]1, [ziφj ]1}i,j∈{1,...,n} in the crs. The proof works
exactly the same, as the reduction could only open the commitments in the group.

We can use this to prove Step 1 of the shuffle argument above. In this case, the
crs size is still quadratic in the number of ciphertexts, but we avoid losing the second
factor 1/n in the reduction, and the proof consists only of the commitments to [xi]1 and
a constant number of elements. More precisely, the proof size is (2n+11)|G1|+8|G2|.

3.6.2 Range Argument in the Interval [0, 2n − 1]

We want to prove that a Groth-Sahai commitment [c]1 opens to some integer y in the
range [0, 2n − 1]. That is, we want to construct a NIZK proof system for the language

Lrange,ck :=

{
[c]1 ∈ G2

1 :
∃y, r ∈ Zp s.t. [c]1 = Comck(y; r)
and y ∈ [0, 2n − 1]

}
,

where ck := ([u1]1, [u2]1)← K0(1λ).
We follow a widely used approach (for example [114, 30] to name a few), which

divides the statement y ∈ [0, 2n − 1] into ` range proofs in smaller intervals. That is,

1. commit to y1, . . . , y`,

2. show that yi ∈ [0, d− 1], for each i ∈ [`],

3. show that y =
∑
i∈[`] yid

i−1.
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We commit to y1, . . . , y` using only `+1 group elements using a simple adaptation
of ElGamal to vectors of size n. To prove point 3 we could use membership in linear
spaces, as done in [67, Sect. 5.5], requiring only one element from G1. For point 2 we
use our aggregated set-membership proof which requires 6 elements of G1 and 6 of G2.
The total size of the proof is thus

(
n

log d + 7
)
G1 + 6G2. Choosing d = nk we get that

` = n
lognk

= n
k logn , and thus the size of our Range Proof is

(
n

k logn + 7
)
G1 + 6G2,

for an arbitrarily chosen k ∈ N. The size of the crs is dominated by 5` · d = 5 nk+1

k logn
(the size of matrix N in our set membership proof).

In practice, the size of the proof is bounded by the security parameter, i.e. n <
128 (one can’t commit to a number bigger than the field size). Although for such a
big n the size of the crs is huge, ≈ 12000 and ≈ 730000 group elements for k =
1, 2 respectively, the size of the proof is just 26 and 18 group elements for k = 1, 2
respectively. For n = 64 and k = 2, the size of a proof is 13 group elements, it requires
roughly 70000 group elements in the crs. For n = 64 and k = 1, the size of a proof is
bounded by ≈ 18 group elements and the crs contains roughly 2000 group elements.
For more conservative ranges, say n ≈ 10, one gets proofs of size 10 group elements
while the crs contains roughly 500 group elements, for k = 2, or of size 12 with a crs
of size 50 for k = 1.

Language Proof size crs size Assumption

Sect. 3.6.2 Range Proof

(
n

k logn + 7
)
|G1|

+6|G2|

(
nk+1

k logn +O(1)
)
|G1|+

+
(

5 n
k+1

k logn +O(1)
)
|G2|

Z-GSDH [6],
q-QTSDH [8]

Sect. 4 [114] ≈ 15 n
logn (|G1|+ |G2|) O

(
n

logn

)
q-HSDH

Table 3.5: The table shows the proof sizes (not including commitments for bitstring
and unit vector) and crs sizes of our results in range proofs. The range considered is
[0, 2n− 1] and k > 0 is a free parameter (e.g. k = 1/4, 1/2, 1, 2, . . .), and the constant
of [114] is at least 4, for committing to signatures, plus 3 · 4 elements for Groth-Sahai
proofs of the signature verification.

87



88



Chapter 4

Signatures of Knowledge for
Boolean Circuits under
Standard Assumptions

In this chapter we present the full version of our result Signatures of Knowledge for
Boolean Circuits Under Standard Assumptions published in Africacrypt 2020.

4.1 Introduction

Due to their impressive advantages and functionalities, as we have already mentioned,
NIZK proof systems are used ubiquitously to build larger cryptographic protocols and
systems [18, 80]. Among the various constructions of NIZK arguments, there is usually
a trade-off between several performance measures, in particular, between efficiency,
generality and the strength of the assumptions used in the security proof.

Zero-knowledge Succinct Arguments of Knowledge (zk-SNARKs) [61, 72] are
among the most practically interesting NIZK proofs. They allow to generate succinct
proofs for NP-complete languages (3 group elements for CircuitSat [72]), but they are
constructed based on non-falsifiable assumptions (e.g. knowledge assumptions [42],
Section 2.4). A well-known impossibility result of Gentry and Wichs [64] shows that
this is unavoidable if one wants to have succinctness for general languages. Thus, non-
falsifiable assumptions are an essential ingredient to have very efficient constructions,
while falsifiable assumptions give stronger security guarantees and more explicit and
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meaningful security reductions [105].
Groth-Sahai proofs [78] also allow to prove general languages1 under standard as-

sumptions non-succinctly, trading security for succinctness. On the other hand, some
QA-NIZK constructions generate very efficient proofs based on falsifiable assump-
tions for very specific statements (e.g. membership in linear spaces). Somewhere
in between, recent work by González and Ràfols [69] constructs a NIZK argument
for boolean CircuitSat under falsifiable assumptions by combining techniques of QA-
NIZK arguments and zk-SNARKs. The proof size of their construction is O(ns + d)
group elements, where ns is the length of the secret input and d is the depth of the
circuit.

The primary requirements in a NIZK argument are Completeness, Zero-Knowledge
(ZK), and Soundness. However, in practice usually bare soundness is not sufficient and
one might need stronger variations of it, known as Knowledge Soundness, Simulation
Soundness or Simulation Knowledge Soundness (a.k.a. Simulation Extractability) [115,
70]. As we explain in Section 2.7.1, knowledge soundness ensures that if an adversary
manages to come up with an acceptable proof, he must know the witness. Simulation
soundness (a.k.a. unbounded simulation soundness) ensures that an adversary cannot
come up with valid proof for a false statement, even if he has seen an arbitrary number
of simulated proofs. This notion basically guarantees that the proofs are sound and non-
malleable. The strongest case, Simulation Extractability (SE) implies that an adversary
cannot come up with a fresh valid proof unless he knows a witness, even if he has seen
an arbitrary number of simulated proofs. In both notions knowledge soundness and
simulation extractability the concept of knowing is formalized by showing that there
exists an extraction algorithm, either non-Black-Box (nBB) or Black-Box (BB), that
can extract the witness from the proof.

Zk-SNARKs (either knowledge sound ones [61, 72], or SE ones [74, 13]) are prob-
ably the best-known family of NIZK arguments. They achieve knowledge soundness
with nBB extraction under non-falsifiable assumptions. As we mentioned in Sec-
tion 1.2 about the two types of extraction, although SE with nBB extraction is a stronger
notion in comparison with (knowledge) soundness, an ideal-world simulator should be
able to extract witnesses without getting access to the source code of environment’s
algorithm, which is only guaranteed by BB SE [32, 70].

SE NIZK arguments have great potential to be deployed in practice [94, 90], or
construct other primitives such as Signature-of-Knowledge (SoK) [36]. In a SoK, a
valid signature of a message m for some statement x and a relation R can only be
produced if the signer knows a valid witness w such that (x,w) ∈ R. Groth and

1GS proofs allow to prove satisfiability of any quadratic equation over Zp, where p is the order of a
bilinear group. In particular, this can encode CircuitSat. The size of the resulting proof is linear in the total
number of wires.
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Maller [74] constructed a SE zk-SNARK and a generic construction of a SoK from any
SE NIZK argument, resulting in an SoK for CircuitSat. While their construction is for
general NP relations and it is also succinct, it also relies on non-falsifiable assumptions
and the extraction is nBB.

In this chapter, we construct a SE NIZK argument with BB extraction for Boolean
CircuitSat which is secure under falsifiable assumptions. The proposed construction
is based on the result of [69]. We show that the proposed construction adds minimal
overhead to the original construction, resulting in a SE NIZK argument with BB ex-
traction and proof size O(n + d), where d is the depth and n is the input size of the
circuit. Moreover, the proposed construction also allows one to construct a tight SoK
of the same size.

The restriction to Boolean CircuitSat (and not arithmetic) for our SE-NIZK argu-
ment is inherited from the NIZK argument of [69] on which our argument is based.
This restriction is due to the fact that we need the DLOG-based commitments to the
input of the circuit to be extractable, and this is only possible (for a BB extractor) if the
message space is of polynomial size. Thus, we restrict ourselves to the important spe-
cial case of Boolean CircuitSat. As an independent result, in this paper we also give a
simple formula to encode Boolean CircuitSat as a Quadratic Arithmetic Program [61],
which we later use for our construction.

4.1.1 Our Contribution
Trivial Approach for Boolean CircuitSat

Let φ be some boolean circuit, and let ai, bi, ci be the left, right and output wires of
gate i. A zero-knowledge argument for Boolean CircuitSat, where the prover shows
knowledge of some secret input satisfying the circuit, can be divided into three sub-
arguments:

1) an argument of knowledge of some boolean input: to prove that the secret input
is boolean, the prover must show that each input value satisfies some quadratic
equation,

2) a set of linear constraints, which proves “correct wiring”, namely that ai, bi are
consistent with c and the specification of the circuit,

3) a set of quadratic constraints, which proves that for all i, ai, bi and ci are in some
quadratic relation which expresses correct evaluation of gate i.

It is straightforward to prove CircuitSat by computing perfectly binding commitments
to all the wires ai, bi, ci and use, for example, Groth-Sahai NIZK proofs for each of
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the three sub-arguments. However, the proof size is obviously linear in the number of
wires.

New Techniques

In a recent result, González and Ràfols [69] give a proof for Boolean CircuitSat of size
O(ns + d) group elements under falsifiable assumptions in bilinear groups. We now
give an overview of their techniques, which is the main building block of our paper.
The key to their result is to prove 2) and 3) succinctly for each level of the circuit.
More specifically (ignoring zero-knowledge, momentarily), if Lj (resp. Rj , Oj) is a
shrinking (non-hiding, deterministic) commitment to all left (resp. right, output) wires
at depth j, they construct:

2’) an argument that shows that the opening of Lj (resp. Rj) is in the correct linear
relation (given by the wiring constraints in the circuit specification) with the
input and the openings of O1, . . . , Oj−1,

3’) an argument that shows that the opening ofOj is in the correct quadratic relation
(which depends on the type of gates at level j) with the opening of Lj and Rj .

The abstraction given above of the results of [69] hides an important subtlety: “the
opening of Lj” (and similarly for the other shrinking commitments Oj , Rj) is not well
defined, as many openings are possible, so it is unclear what it means for these sub-
arguments to be sound. However, as the authors of [69] observe, when we are using
these as part of a global proof of CircuitSat, “the opening ofLj” to which we intuitively
refer is well defined in terms of the openings in previous levels. In other words, in the
soundness proof, 2’) can be used to prove that if the reduction can extract an opening of
O1, . . . , Oj−1 consistent with the input and the circuit, it can also extract a consistent
opening of Lj (and similarly Rj). On the other hand, 3’) shows that if the reduction
can extract an opening of Lj andRj consistent with the input and the circuit, it can also
extract an opening of Oj . For this reason, González and Ràfols informally called 2’)
and 3’) “arguments of knowledge transfer” (linear and quadratic, respectively): given
knowledge of the input, arguments 2’) and 3’) can be used alternatively to transfer this
knowledge to lower levels of the circuit.

Promise Problems

To formalize this intuitive notion, the authors of [69] define their sub-arguments 2’) and
3’) as arguments (with completeness and soundness) for certain promise problems:
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2’) Given the input c0 and openings (c1, . . . , cj−1) of O1, . . . , Oj−1, the argument
shows that Lj can be opened to some aj with the correct linear relation to
(c0, c1, . . . , cj−1) (similarly for Rj).

3’) Given aj and bj , openings of Lj and Rj , the argument shows that there is an
opening cj of Oj that is in the correct quadratic relation (which depends on the
type of gates at level j) with aj and bj .

From an efficiency point of view, the interesting thing is that the arguments are of
constant size. This explains the proof sizeO(n+d): O(n) is for committing to the input
(with extractable commitments, which exist under falsifiable assumptions because the
input is boolean), and d is the cost of doing 2’) and 3’) repeatedly for each level. At
a conceptual level, the key issue is that the verifier never checks that the openings are
correct (i.e. in 2’) it never checks that ci is a valid opening of Oi, and in 3’) that aj , bj
are valid openings of Lj , Rj), which is the promise. Soundness is only guaranteed if
the promise holds, and nothing is said when it does not hold (when the given openings
are invalid). In fact, the verifier does not need these openings, they are just part of the
statement to define soundness in a meaningful way, reflecting the fact that in the global
argument for boolean CircuitSat, the openings at level j are uniquely determined by
transferring the knowledge of the circuit to lower levels. So excluding the need to read
the statement, the verifier works in constant time (it would work in linear time if it
verified the statement). In particular, when using the sub-arguments in a global proof,
verification of each of the sub-arguments is constant size, and the global verifier runs
in time O(ns + d).

Security Proof

The sub-arguments 2’) and 3’) of [69] are not new. More specifically, for 2’) the authors
just use the QA-NIZK argument of linear spaces for non-witness samplable distribu-
tions of Kiltz and Wee [92], a generalization of [85, 96] and for 3’) they use techniques
appeared in the context of zk-SNARKs (as e.g. [61]) to write many quadratic equa-
tions as a single relation of polynomial divisibility that can be proven succinctly. The
challenge they solve is to give a proof that 2’) and 3’) are sound for the aforementioned
promise problems under falsifiable assumptions, which is not implied by the soundness
of the NIZK arguments they use for 2’) and 3’). More specifically, for the linear con-
straints the soundness of the argument of membership in a linear space does not protect
from “witness switching attacks” as explained in [69]. Indeed, to prove that two shrink-
ing commitments c1, c2 open to vectors of values with a certain linear relation, it is
natural to write this as a membership proof in a linear space defined by matrices M,
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N, i.e. to prove that
(
c1

c2

)
∈
(

M
N

)
, which ensures that there exists somew such

that c1 = Mw and c2 = Nw. However, given some opening w of c1 (which in our
analysis is known because of knowledge of the input and the transfer to lower levels of
the circuit), the argument does not prove that c2 = Nw, as it only proves that there is
some common opening. Therefore, standard soundness does not prevent the adversary
from ”switching the witness”: if the adversary is able to find another witness w′ such
that c1 = Mw = Mw′ it can use w′ for c2, for some w′ that does not satisfy the
linear constraints.

This attack is easy to reduce to the binding property of commitment schemes if the
reduction can extract w′ from the adversary, but since the commitments are shrinking,
this would require some non black-box extraction, deviating from the goal of using
standard assumptions. The authors of [69] get around this by showing how to prove
soundness for the promise problems associated to linear constraints using a decisional
assumption related to the matrix M. For 3’) they prove that the soundness of their argu-
ment for the promise problem is a straightforward consequence of a q-type assumption
in bilinear groups.

Our Techniques: General Approach

This paper builds a SE NIZK for CircuitSat under falsifiable assumptions building on
the work of [69]. There are several generic techniques to solve this problem. To the best
of our knowledge, existing generic solutions are variations of the following approach,
described for example in [70]: build an OR proof that given some circuit φ and a public
input xp, either the circuit is satisfiable with public input xp or a signature of M =
(φ,xp) is known. The simulator uses as a trapdoor the signature secret key. We note
that this approach results in a considerable (although also constant) overhead (around
20 group elements).2 Our approach is based on the following observation: to compute
“fake proofs” of satisfiability, a simulator just needs to lie either about the satisfiability
of quadratic equations or linear equations, but not both. Further, it is sufficient to lie
in the last gate. In particular, we choose the following strategy to simulate a proof for
a circuit φ and a public input xp: complete the input arbitrarily, compute consistent
assignments to all gates but choose the last left and right wire arbitrarily so that the
last gate outputs one. Thus the simulator outputs only honest proofs except for the last
linear relation, which is a simulated proof for a false statement, i.e. the simulator does
not need the simulation trapdoor for sub-arguments 1) and 3’) and standard soundness
is sufficient. To be consistent with this strategy, our SE NIZK for boolean CircuitSat

2Using OR proofs (the less efficient construction for PPE given in [112] or adding a bit as an auxiliary
variable) plus the Boneh-Boyen signature for adaptive soundness.
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uses the construction of [69] but replaces 2’), the proof that the linear relation holds,
with 2”) an unbounded simulation-sound proof for the same promise problem.

Recall that the argument 2’) of [69] is just the QA-NIZK argument for member-
ship in linear spaces of Kiltz and Wee for non-witness samplable distributions with
a security proof adapted for promise problems (non-trivially). We take the most ef-
ficient Unbounded Simulation Sound (USS) QA-NIZK argument of membership in
linear spaces in the literature, also due to Kiltz and Wee [92] and we adapt the USS
argument to work for bilateral linear spaces (linear spaces split among the two source
groups in a bilinear group) as in [67] and for promise problems as in [69]. The overhead
of the construction with respect to the original CircuitSat proof is minimal (3|G1|). BB
extractability is achieved because of the soundness of the argument which proves that
the input is boolean and the fact that ElGamal ciphertexts of 0 or 1 are BB extractable
(the extraction trapdoor is the secret key).

Our approach modularly combines a USS argument of membership in linear spaces
with other arguments. The USS NIZK argument of Kiltz and Wee is not tight. How-
ever, to get tight security we only need to construct a tight USS for promise problems
for linear spaces (or for bilateral spaces if we want to improve efficiency). In Sec-
tion 4.7 we give such a construction, we take the most tight QA-NIZK argument in the
literature, Abe et al. [5], and we adapt the security proof to build an argument for the
promise problem related to satisfiability of linear constraints. The result is a signature
of knowledge for circuits with a loss of d (the circuit depth) in the reduction (inherited
from [69]), but independent of the number of queries to the simulation oracle.

As Groth and Maller [74] pointed out, USS arguments for CircuitSat are very close
to Signatures of Knowledge (SoK). We use the fact that our CircuitSat argument is
tag-based to obtain a very simple transformation to SoK. In particular, our second
construction results in a tight SoK.

Adapting the USS Argument to Promise Problems

Technically, the main challenge that we solve is to prove that the tag-based USS argu-
ments for membership in linear spaces of Kiltz and Wee [92] (in Section 4.6) and of
Abe et al. [5] (in Section 4.7) are sound for the promise problem defined in [69] for
linear constraints. More precisely, what we prove is that the adversary cannot create a
valid proof for the statement (

x
y

)
∈ Im

(
M
N

)
such that x = Mw for some knownw but y 6= Nw even after seeing many simulated
proofs. The idea is that if the linear constraints are satisfied until a certain level, they
must be satisfied also at lower levels of the circuit.
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In the following, we give an overview on how we adapt Kiltz and Wee USS ar-
gument for this promise problem. The tight construction based on Abe et al. in Sec-
tion 4.7 follows the same lines. The main idea of the USS argument of Kiltz and Wee,
ΠLIN-USS is to add a pseudorandom MAC to their QA-NIZK argument of membership
in linear spaces ΠLIN. The soundness of the argument ΠLIN that proves membership
in the space spanned by the columns of some matrix U is guaranteed by the fact that
y>K is uniformly random in the adversary’s view given UK if y 6∈ Span(U). The
proof of simulation soundness of ΠLIN-USS shows, in the first place, that under some
decisional assumption, the queries made by the adversary do not give additional infor-
mation to the adversary, in particular, they do not leak additional information about the
secret key other than the one in the common reference string. We can adapt this part of
their argument in a straightforward way. Then their proof concludes by arguing that in
the final game the common reference string information theoretically hides part of the
secret key, more concretely, y>K remains information theoretically hidden.

We need to add one extra game in the proof of ΠLIN-USS to account for the fact

that in our case U =

(
M
N

)
spans all of the space. In particular, on the one hand,

our soundness condition is different, as explained (the adversary breaks soundness for
(x>,y>) if x = Mw for some known w but y 6= Nw). On the other hand, the com-
mon reference string reveals all information about the secret key (since U>K reveals
everything about K), so the information theoretic argument used by Kiltz and Wee
to conclude the proof of ΠLIN-USS does not apply. We solve this in the same way as
González and Ràfols [69], who show that if the Matrix Decisional DDH Assumption
[52] associated to the distribution of the first block M holds, then we can switch to a
game where (0>,N>)K is information theoretically hidden. Intuitively, this means
the adversary cannot compute valid proofs such that if x = Mw for some known w
but y 6= Nw), because it does not know the projection of the secret key on the second
block without involving the first block.

Generalization of Our Techniques

The observation that to add unbounded simulation soundness to NIZK arguments which
prove both quadratic and linear equations it suffices to have USS in the linear part can
have other applications. For example, a direct application is to give USS to our main
construction in Chapter 3, which gives a compact proof that a set of perfectly binding
commitments open to 0 or 1.
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A Canonical Transformation of Boolean Circuits to QAPs

To prove quadratic equations compactly, González and Ràfols adopt the idea of [61]
to encode many quadratic equations as a problem of divisibility among polynomials.
More in detail, in a breakthrough result building on [71], Gennaro et al. [61] introduced
in 2013 two caracterizations of circuit satisfiability, as we have already mentioned,
(Quadratic Span Programs or QSPs for boolean circuits and Quadratic Arithmetic Pro-
grams or QAPs for arithmetic circuits over Zp where p should be the order of the
bilinear group of the zk-SNARK, inspired by the notion of Span Programs [87]) and
proposed an efficient zk-SNARK for it. As we explained in Section 1.2, the basic idea
is that the correctness of all the computations of the circuit is expressed as a divisibility
relation among certain polynomials which define the program. This leads to a succinct
proof in the crs model by checking the divisibility relation only in a secret point given
in the crs “in the exponent”. In 2014, Danezis et al. [45] introduced Square Span Pro-
grams (SSP) for boolean circuits to simplify QSPs. The reason why special encodings
for Boolean circuits exist is because these are an important special case, and they have
special characteristics (a part from checking gate satisfiability, one must check that
the wires are boolean). In 2016, Groth [72] introduced the most efficient zk-SNARK
for QAPs, and also mentioned that QAPs can encode boolean CircuitSat but did not
give an explicit transformation. González and Ràfols [69] gave an explicit encoding of
Boolean CircuitSat, separating linear and quadratic constraints and dividing the encod-
ing by layers of same depth as needed by their construction. That is, essentially they
were spelling out a QAP for satisfiability of all boolean gates of the same depth.

We spell out a canonical QAP to describe boolean CircuitSat as a problem of satis-
fiability of polynomials. We call the transformation canonical because it is essentially
the direct and simplest way to do this transformation. Although encoding Boolean Cir-
cuitSat as a QAP is not difficult and can be easily done with a computer, we give an
exact formula that describes a simple QAP from the description of the gates. This is a
contribution of independent interest, and when combined with Groth16’s zk-SNARK
it results in an argument with the polynomials that define the QAP are very simple, la-
grangian polynomials or sums of them. Then, we use this transformation from boolean
CircuitSat to QAP to derive a simpler transformation from Boolean CircuitSat (sep-
arated in linear and quadratic constraints for each depth) compared to González and
Ràfols [69] (they needed to check a more complex quadratic equation at each depth).

Organization

In Section 4.2 we give the concrete security definitions of the simulation QA-NIZK
arguments that we use in this contribution. In Section 4.3, we define a canonical QAP
codification for Boolean Circuits. In Section 4.4 we recall the sub-schemes of Ag-
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Construction Lang Signature Size Assumption Tightness
BFG [19] PE (nPPEnX , nPPEnY ) + `K Falsifiable -
GM [74] SAP (2, 1) + `K Non-falsifiable O(Q)

Sec. 4.5.1. 4.6 QE (2ns + 10d− 4, 6d+ 4) Falsifiable O(Q)
Sec. 4.5.1. 4.7 QE (2ns + 10d+ 8, 6d+ 4) Falsifiable O(logQ)

Table 4.1: A comparison of our proposed SoK schemes in Sec. 4.5.1 with the USS ar-
gument for membership in linear spaces for in Section 4.6 and Section 4.7 respectively,
with prior schemes. Lang means language. In the last column we show the tightness re-
spect to the number of the queries Q for those constructions that are simulation sound.
ns denotes the secret input size in a boolean circuit, d the depth of the circuit, nPPE

is the number of pairing product equations (each multiplication gate in an arithmetic
circuit can be encoded as a pairing product equation, in such case nPPE = n), nX , nY
are the number of variables in all the pairing product equations in G1,G2, respectively,
`K is the size of the output of a hash function. PE: Pairing Equations, SAP: Square
Arithmetic Equations, QE: Quadratic Equations.

gregated Proofs of Quadratic Equations and Aggregated Proofs of Linear Equations
applied to our codification. In Section 4.5 we give our main construction, we present
a framework of SE NIZK Argument for Boolean CircuitSat that uses three building
blocks, two concrete instantiations of the framework in 4.5.1 and the SoK based on the
SE NIZK framework in 4.5.2. In Section 4.6 we prove the USS argument of Kiltz and
Wee is still secure with the promise problem. Same for Abe et al. USS argument in
Section 4.7. Finally, in Section 4.8 we show how to improve the efficiency of the main
construction with respect to a naive use of Groth-Sahai proofs.

4.2 Preliminaries
We gave the formal definition of QA-NIZK arguments inSection 2.7.2, now we define
a QA-NIZK argument system that works with a tag space and give additional defi-
nitions of simulation. For witness-relations Rgk = {Rρ}ρ∈sup(Dgk ) with parameters
sampled from a distributionDgk over associated parameter language Lpar, a QA-NIZK
argument system Π consists of tuple of PPT algorithms Π = (K0,K1,P,V,S0,S1, E),
defined as follows,

Parameter generator, gk ← K0(1λ): K0 is a PPT algorithm that given 1λ generates
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group description gk .

CRS generator, crs← K1(gk , ρ): K1 is a PPT algorithm that given gk , samples string
ρ ← Dgk , and then uses gk , ρ and generates (crs, trs, tre), it also defines the
tag space T ; finally output crs (that also contains parameter ρ) and stores the
simulation trapdoor trs and extraction trapdoor tre as trapdoors.

Prover, π ← P(crs,x,w, τ): P is a PPT algorithm that, given (crs,x,w, τ), where
(x,w) ∈ R outputs an argument π with respect to a tag τ ∈ T . Otherwise, it
outputs ⊥.

Verifier, {0, 1} ← V(crs,x, π, τ): V is a PPT algorithm that, given (crs,x, π, τ), re-
turns either 0 (reject) or 1 (accept).

Prover Simulator, π ← S(crs,x, trs, τ): S is a PPT algorithm that, given (crs,x, trs),
outputs a simulated argument π with respect to a tag τ ∈ T .

Extractor, w ← E(gk , crs,x, π, τ, tre): E is a PPT algorithm that, given (crs,x, π, τ, tre)
extracts the witness w; where tre is the extraction trapdoor.

We require an argument QA-NIZK system Π to be quasi-adaptive complete, compu-
tational quasi-adaptive sound and computational quasi-adaptive zero-knowledge, as
defined below.

Definition 25 (Quasi-Adaptive Completeness). A quasi-adaptive argument Π is per-
fectly complete for Rρ, if for all λ, all (x,w) ∈ Rρ, and all τ ∈ T ,

Pr

[
gk ← K0(1λ), ρ← Dgk ,
crs← K1(gk , ρ), π ← P(crs,x,w, τ)

: V(crs,x, π, τ) = 1

]
= 1 .

Definition 26 (Computational Quasi-Adaptive Soundness). A quasi-adaptive argu-
ment Π is computationally quasi-adaptive sound for Rρ, if for all λ, and for all non-
uniform PPT A,

Pr

[
gk ← K0(1λ), ρ← Dgk ,
crs← K1(gk , ρ), (x, π, τ)← A(gk , crs)

:
V(crs,x, π, τ) = 1 ∧

(x,w) 6∈ Rρ

]
≈ 0.

Definition 27 (Computational Quasi-Adaptive Zero-Knowledge). A quasi-adaptive ar-
gument Π is computationally quasi-adaptive zero-knowledge for Rρ, if for all λ, all
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τ ∈ T , and for all non-uniform PPT A,

Pr


gk ← K0(1λ), ρ← Dgk ,

crs← K1(gk , ρ) :

AOreal(x,w)(gk , crs) = 1

(x,w) ∈ Rρ

 ≈ Pr


gk ← K0(1λ), ρ← Dgk ,

(crs, trs, tre)← K1(gk , ρ) :

AOsim(x,w)(gk , crs) = 1

(x,w) ∈ Rρ


where Oreal(x,w, τ) returns P(crs,x,w, τ) which emulates the actual prover for
(x,w) ∈ Rρ, otherwise it outputs ⊥; and Osim(x,w, τ) that returns S(crs, trs,x, τ)
on input (x,w) ∈ Rρ and ⊥ if (x,w) /∈ Rρ.

We also consider simulation soundness for our proofs, we take the next definition
from Kiltz and Wee [92].

Definition 28 (Unbounded Simulation Adaptive Soundness). A quasi-adaptive argu-
ment Π is unbounded simulation adaptive sound for Rρ, if for all λ, and for all non-
uniform PPT A,

Pr

 gk ← K0(1λ), ρ← Dgk ,
(crs, tr)← K1(gk , ρ);
(x∗, π∗, τ∗)← AO(·)(gk , crs, ρ)

:
τ∗ 6∈ Qtags ∧ (x∗,w∗) 6∈ Rρ

∧ V(crs,x∗, π∗, τ∗) = 1

 ≈ 0,

where O(x) returns S(crs, tr,x, τ) and adds τ to the set Qtags.

Now, we define a variation of definition BB simulation extractability for QA-NIZKs
that is satisfied by our schemes.

Definition 29 (Quasi-Adaptive BB Simulation Extractability). A non-interactive argu-
ment scheme Π is quasi-adaptive black-box simulation-extractable for Rρ, if for all λ,
and for all non-uniform PPT A, there exists a black-box extractor E such that,

Pr


gk ← K0(1λ), ρ← Dgk ,
(crs, trs, tre)← K1(gk , ρ);
(x∗, π∗, τ∗)← AO(·)(gk , crs, ρ),
w∗ ← E(gk , crs,x∗, π∗, τ∗, tre)

:
V(crs,x∗, π∗, τ∗) = 1

∧ (x∗,w∗) 6∈ Rρ ∧ (x∗, π∗) 6∈ Q
τ∗ 6∈ Qtags

 ≈ 0,

where O(x, τ) returns S(crs, trs,x, τ) and adds (x, π) to the set of simulated proofs
Q and τ to the set Qtags.

A key point about Def. 29 is that the extraction procedure is black-box and the
extractor E works for all adversaries.

100



4.3 Canonical QAP for Boolean Circuits
Boolean circuits are acyclic directed graphs where the edges are called wires and the
vertices are called gates. In this work, we consider boolean circuits φ : {0, 1}n0 −→
{0, 1}`, with possibly some set of public inputs np and some set of private inputs ns,
ns + np = n0. Gates are arbitrary gates of fan-in two, (excluding non-interesting or
trivial gate types). We denote m the total number of wires, n the number of boolean
gates of the circuit. Usually, it would be the case that m = np + ns + n+ 1.

It is a well-known fact that, if a, b ∈ {0, 1}, correct gate evaluation can be expressed
as a quadratic equation over Z. That, is for each gate type there exist values ρ, ω, γ, ε ∈
Z, such that if a, b ∈ {0, 1}, and c = ρab + ωa + γb + ε, then c ∈ {0, 1} and c is
the correct value of the gate evaluated at a, b. The constants satisfy that ε ∈ {0, 1},
ω, γ ∈ {0,±1}, ρ ∈ {±1} for all gate types except for XOR and XNOR, where
ρ ∈ {±2}. More specifically, the important gate types are the following3

AND(a, b, c): c = ab.

NAND(a, b, c): c = −ab+ 1

OR(a, b, c): c = −ab+ a+ b.

NOR(a, b, c): c = ab− a− b+ 1

XOR(a, b, c): c = −2ab+ a+ b.

XNOR(x, y, x): c = 2ab− a− b+ 1.

G1(a, b, c) = (c = a ∧ b) : c = −ab+ b.

G2(a, b, c) = (c = a ∧ b) : c = ab− b+ 1.

G3(a, b, c) = (c = a ∧ b) : c = −ab+ a.

G4(a, b, c) = (c = a ∧ b) : c = ab− a+ 1.

Therefore, we can express a boolean circuit of m wires and n gates as a tuple
(F,G,ρ,ω,γ, ε), where F = (fij),G = (gij) ∈ {0, 1}m×n are the matrices which
express the constraints for the left and right inputs for every gate and ρ,ω,γ, ε ∈ Zn
are the vectors of constants associated to every gate. That is, if ajL (resp. ajR ) is the
left (resp. right) wire of gate j, then ajL =

∑m
i=1 fijai (resp. ajR =

∑m
i=1 gijai), i.e.

fj = (f1j , . . . , fmj) is a unit vector which selects the left wire.
We show how to encode correct boolean circuit computation to prove that some

pair (x,y) satisfies that φ(x) = y as a simple QAP. The vector a will denote the
assignment of the circuit, so (a1, . . . , an0) = x and (am−`+1, . . . , am) = y.

Theorem 22. Let p be some prime number, p > 2. Let φ : {0, 1}n0 → {0, 1}`, be a
circuit with n boolean gates, m wires, ns secret inputs and np public inputs, defined by
(F,G,ρ,ω,γ, ε) ∈ ({0, 1}m×n)2 × (Znp )4 as described above. Define the matrices

A,B,C ∈ Zm×(ns+n)
p as

A =

 0(np+1)×ns γ
Ins

0n×ns
F′

 , B =

 0(np+1)×ns ω′

Ins
0n×ns

G

 ,

3As observed in [45], the last remaining 6 gate types depend mostly on one input and are not used.
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C =

 0(np+1)×ns ε− γ ◦ ω′
Ins

0ns×n

0ns×n
In

 ,

where F′ = F

 ρ1
. . .

ρn

 , ω′ = ω

 ρ−1
1

. . .
ρ−1
n

.

Then, a = (1, a1, . . . , am) ∈ Zm+1
p is a valid assignment of the circuit wires if and

only if
(a>A) ◦ (a>B)− a>C = 0>ns+n, (4.1)

which is equivalent to

(a′>A + γ̂) ◦ (a′>B + ω̂)− a′>C + ε̂− γ̂ ◦ ω̂ = 0>ns+n, (4.2)

where a′ = (a1, . . . , am), A(B,C) ∈ Zmp is the matrix A (resp. B, C) without the
first row, γ̂ =

(
0ns γ

)
, ω̂ =

(
0ns ω′

)
, ε̂ =

(
0ns ε

)
∈ Zns+np .

As we will see, the first ns equations (corresponding to the first ns columns)
prove that the secret inputs of the circuit anp+1, . . . , anp+ns are boolean and the last n
columns correspond with correct gate evaluation equations for the wiring correspond-
ing with matrices F,G.

Proof. We first observe that the matrices are well defined since ρ−1
j mod p is always

defined because ρj 6= 0 and its absolute value is at most 2 for the type of gates consid-
ered.

We then note that when restricted to i = np + 2, . . . , np + ns + 1, j = 1, . . . , ns,
all three matrices Aij , Bij , Cij are the identity matrix Ins . Therefore, for any assign-
ment a the first ns columns of equation (4.2) expresses the fact that the secret input is
boolean. IfAj ,Bj , Cj are the jth column of the matrices A,B,C, for j = 1, . . . , ns
we have (a>Aj) ◦ (a>Bj) − a>Cj = ajaj − aj = a2

j − aj = 0 is satisfied if and
only if ai ∈ {0, 1}, for i = np + 2, . . . , np + ns + 1 = n0.

We now look at the equations determined by the last n columns of equation (4.2).
If F ′j , Gj are the jth columns of F′, G, then, the (ns + j)th equation in expression
( 4.2) can be rewritten as:

(a′>F ′j + γj) ◦ (a′>Gj + ω′j)− a′>n| In,j + εj − γjω′j = 0 (4.3)

where the vector a′n| contains the last n components of a′, i.e. (a′n0+1
, . . . , a′m).

The circuit φ specifies, for the jth circuit gate, a pair of indexes jL, jR which
indicate the left and right wires. By definition of F′ = (f ′i,j),G = (gi,j), for i =

102



1, . . . ,m, j = 1, . . . , n, the constants f ′i,j and gi,j are 0 everywhere except for f ′jL,j =

ρj and gjR,j = 1. Then, a′>F ′j = ρjajL , a′>Gj = ajR and a′>Ins+j = a′n0+j + εj .
Replacing these values in equation (4.3), we obtain:

(ρjajL + γj)(ajR + ω′j)− an0+j
− γjω′j + εj = 0. (4.4)

Using the fact that, by definition, ω′j = (ρ−1
j ωj) mod p, we can rewrite this equation

as:
an0+j = ρjajLajR + ajLωj + ajRγj + εj , (4.5)

which by definition of the constants encodes the satisfiability of gate j. �

The reason why the encoding is very simple is because the matrices B and C are
mostly independent of the gate type, and have only 0, 1 entries, whereas the entries of
matrix A are {0,±1,±2}. Further, matrices A,B,C are as sparse as possible (with
n + ns non-zero entries) and all columns have exactly one non-zero value. This is
optimal, since n+ ns equations are required to prove that the secret input (of size ns)
is boolean and n gates are satisfied, this is why we call it canonical. For completeness,
in the next Theorem, we express all the quadratic equations (boolean input and correct
gate evaluation) as a divisibility relation following the usual “polynomial aggregation
technique” of [61].

Theorem 23. Let R ⊂ Zp be some fixed set of cardinal ns + n and let λi(X) be
the associated Lagrangian polynomials and t(X) the polynomial whose roots are the
elements ofR. Let φ : {0, 1}n0 → {0, 1}, be any circuit with n boolean gates,mwires,
ns secret inputs. There exist some polynomials {ui(X); vi(X);wi(X)}mi=0} such that
a = (a0, a1, . . . , am), with a0 = 1, is a valid assignment to the circuit wires if and
only if

(
∑m
i=0 aiui(X)) · (

∑m
i=0 aivi(X))− (

∑m
i=0 aiwi(X)) ≡ 0 mod t(X). (4.6)

Proof. Numerate the rows of matrices A,B,C from 0, . . . ,m. For i ∈ [1,m] set

ui(X) =

ns+n∑
j=1

Aijλj(X), vi(X) =

ns+n∑
j=1

Bijλj(X),

wi(X) =

ns+n∑
j=1

Cijλj(X).
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Further, define

u0(X) =

ns+n∑
j=ns+1

γjλj(X), v0(X) =

ns+n∑
j=ns+1

ω′jλj(X),

w0(X) =

ns+n∑
j=ns+1

(εj − γjω′j)λj(X).

Finally, if we let

u(X) =

m∑
i=1

aiui(X) + u0(X), v(X) =

m∑
i=1

aivi(X) + v0(X),

w(X) =

m∑
i=1

aiwi(X) + w0(X)

it holds that a satisfies equation ( 4.6) if and only if t(X) divides p(X) = u(X)v(X)−
w(X). This is a direct consequence of the definition of the polynomials and Theo-
rem 22.

The simple form of matrices A, B and C translates into very simple expressions
for {ui(X), vi(X), wi(X)}mi=1. For instance, the vi(X)’s can be computed as a sum
of Lagrangian polynomials, without any exponentiation. Similarly, u0(X) has a very
simple expression as γj ∈ {±1}, v0(X) is slightly more complicated (the coefficients
take values in {±1,±2−1 mod p}) and so is w0(X).

4.3.1 Circuit Slicing
As we explain in Section 4.4 following González and Ràfols [69], the prover aggregates
the proofs that all the gates are satisfied at level i (a set of quadratic equations), on the
one hand, and all the linear equations that show “correct wiring”, i.e. that the outputs
at level at most i− 1 are correctly transferred to inputs at level i, on the other hand.

For this, as in [69], we slice a boolean circuit in layers according to the depth of
each gate. That is, we index the gates of φ by a pair (i, j), where i denotes the gate
depth and j is some index in the range 1, . . . , ni, where ni is the number of gates at
level i, and we write down, for each level, the set of quadratic and affine constraints
that need to be satisfied. In the following, φ : {0, 1}n → {0, 1} and we call d the depth
of the circuit.
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We define a witness for Boolean CircuitSat as a tuple (a, b, c) which is, respec-
tively, a valid assignment to the left, right and output wires of φ when each boolean
gate is written as a multiplicative constraint, as explained below. To “slice” the circuit,
each of these vectors is written as a concatenation of vectors, one for each multiplica-
tive depth. That is, a = (a1, . . . ,ad), b = (b1, . . . , bd) and c = (c0, c1, . . . , cd)
and yi = (yi,1, . . . , yi,ni) for all y ∈ {a, b, c}. Gate (i, j) is described by constants
ρi,j , ωi,j , γi,j , εi,j , and ρi,ωi,γi, εi ∈ Zni are the vectors of constants associated to
the ni gates at level i.

A valid assignment should give ai,j , bi,j and ci,j the values that prove correct eval-
uation of gate (i, j), namely, ci,j = (ai,j + γi,j)(bi,j +ω′i,j)− (γi,jω

′
i,j + εi,j) that are

consistent with some boolean input c0,1, . . . , c0,n are some boolean values that repre-
sent a satisfying input.

We differ from [69] in that we take advantage of our work in the previous section
characterizing Boolean CircuitSat as a QAP, therefore, the set of equations that need to
be satisfied is simpler.

Lemma 24 breaks down CircuitSat in different items which reflect the different
building blocks used by [69] and also our work. The input vector x (which corre-
sponds to c0) is divided in two parts, the first np components being the public input xp
and the rest is the secret input xs of length ns. The main achievement of [69] is to do
two aggregated proofs of all the constraints at the same depth with just two constant
size proofs, one for the multiplicative and the other for the linear constraints. There-
fore, items c) (resp. d)) require that for each i = 1, . . . , d, a set of quadratic (resp.
linear) equations holds. In the next two subsections (Section 4.4.1,4.4.2) we sketch the
aggregated proofs of the sets of equations described in c) and d).

Lemma 24. Let φ : {0, 1}n0 → {0, 1}, be a circuit with m boolean gates. Then, for
any public input xp ∈ {0, 1}np , (a, b, c) is a valid input for satisfiability of φ(xp, ·) if
and only if:

a) (c0,1, . . . , c0,np) = (xp).

b) Boolean secret input: (c0,np+1, . . . , c0,n) = (xs) ∈ {0, 1}ns .

c) Correct gate evaluation at level i, for i = 1, . . . , d there exists a vector of con-
stants ki such that:

ci = ki + ai ◦ bi, j = 1, . . . , ni.

d) Correct “wiring” (linear constraints) at level i: there exist some matrices F̃i, G̃i

such that ai = F̃ic|i−1 and bi = G̃ic|i−1, where c>|i−1 = (1, c>0 , . . . , c
>
i−1).
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e) Correct output: cd,1 = 1.

The matrices F̃i, G̃i and the constants ki,j are defined naturally from the descrip-
tion in Theorem 22, namely:

• F̃i =
(
γi F′i

)
where F′i =

 ρi,1
. . .

ρi,ni

F>i , where if F is the

matrix given in the circuit description, Fi ∈ Z(
∑i−1
j=0 nj)×ni

p is the matrix that
describes the left wires of gates at level i.

• G̃i =
(
ω′i G>i

)
, where ω′i = ωi

 ρ−1
i1

. . .
ρ−1
ini

, and if G is the

matrix given in the circuit description, Gi ∈ Z(
∑i−1
j=0 nj)×ni

p is the matrix that
describes the right wires of gates at level i.

• ki,j = εi,j − γi,jωi,jρ−1
i,j .

4.4 GR19 Argument for Boolean CircuitSat

In Section 4.3 we have described Boolean CircuitSat as d sets of linear and quadratic
constraints, where d is the depth of the circuit. In this section, we revisit the results of
González and Ràfols [69] but using the simpler characterization of Boolean CircuitSat
given in 4.3.1. Recall that [69] shows how to give a constant size proof for each of
these sets of constraints while basing security on falsifiable assumptions provided a
witness of satisfiability is known for the “previous” sets of equations (ordering the sets
of equations in the natural order from the input).

4.4.1 Aggregated Proofs of Quadratic Equations

We now describe the construction proposed in González and Ràfols [69] to prove cor-
rect gate evaluation at level i, for i = 1, . . . , d−1, i.e. a proof that ci,j = ki,j−ai,jbi,j ,
for all j = 1, . . . , ni. It consists, for k = 1, 2, of a Groth-Sahai NIZK Proof that some
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secret values [Li,k]1, [Ri,k]2, [Oi,k]1, [O
∗
i,k]2, [Hi,k]1 satisfy the following relation4:

e([Ki,k]1, [1]2) + e([Li,k]1, [Ri,k]2)− e([Oi,k]1, [1]2) = e([Hi,k]1, [tk]2), (4.7)
e([Oi,k]1, [1]2) = e([1]1, [O

∗
i,k]2). (4.8)

where if t(X) =
∏
r∈R(X − r), tk = t(sk) and λi(X) =

∏
j∈R\{ri}

(X − rj)
(ri − rj)

is the

ith Lagrangian polynomial associated to R, a set of W = maxi=1,...,d ni points used
for interpolation, then

Li,k =
∑

ajλj(sk), Ri,k =
∑

bjλj(sk), Ci,k =
∑

cjλj(sk), Hi,k = hi(sk),

where s1, s2 are random secret points specified in the crs,

hi(X) = (1− (
∑

ajλj(X))(
∑

bjλj(X))−
∑

cjλj(X))/t(X)

and [Ki,k]1 =
∑
ki,jλj(sk). Alternatively, for each ni we define

Λni =

(
λ1(s1) . . . λni(s1)
λ1(s2) . . . λni(s2)

)
,

[Li]1 = [Λniai]1, [Ri]2 = [Λnibi]2, [Oi]1 = [Λnici]1,

and Λ is called Lagrangian Pedersen commitment in [69].
To the reader familiar with the literature, it is obvious that equation (4.7) uses zk-

SNARK techniques originally appeared in [61] (what we could call “polynomial ag-
gregation”) for proving many quadratic equations simultaneously. What is new in [69],
is the security analysis, which avoids non-falsifiable assumptions.

GS proofs are necessary for zero-knowledge because Li,Ri,Oi need to be deter-
ministic for the proof to work. The authors of [69] use this proof as a building block in
a larger proof, and for this we prove the following:
“if (ai, bi) are valid openings of [Li,k]1, [Ri,k]2 for k = 1, 2 then ki+ai ◦bi is a valid
opening of Oi,k.”

Formally, we define the languages

Lquad
YES =

{
(a, b, [L]1, [R]2, [O]1) : k + a ◦ b = c,

[L]1 = [Λ]1a, [R]2 = [Λ]2b, [O]1 = [Λ]1c

}
4The second equation is added to have the element Oi,k in both groups G1,G2. This will allow us to

use simple QA-NIZK proofs of membership in linear spaces in G1 and G2 for the linear constraints, instead
of using proofs of membership in bilateral spaces (spaces with parts in G1 and in G2.)
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Lquad
NO =

{
(a, b, [L]1, [R]2, [O]1) : k + a ◦ b = c,

[L]1 = [Λ]1a, [R]2 = [Λ]2b, [O]1 6= [Λ]1c

}
.

The argument consists of giving some values H,O∗ chosen by the prover which
satisfies equations (4.7) for L,R,O. Completeness holds for Lquad

YES and soundness
for Lquad

NO under the (R,m)-Rational Strong Diffie-Hellman assumption ( [69]). When
( 4.7) are proven with GS proofs, the authors argue that zero-knowledge also holds.

Note that the fact [L]1 = [Λ]1a, or [R]2 = [Λ]2b is never checked by the verifier,
this is the promise. The argument does not give any guarantee when this does not hold.

4.4.2 Aggregated Proofs of Linear Equations

In this section we explain the technique used in González and Ràfols [69] to prove
correct “wiring” at level i, for i = 1, . . . , d − 1, i.e. an aggregated proof for linear
constraints applied to the equations defined in 4.3.1. As we have seen in Lemma 24,
we can express linear constraints at level i as:

ai = F̃ic|i−1, bi = G̃ic|i−1 for all i = 1, . . . , d. (4.9)

Then at level i left and right constraints can be expressed, respectively as:(
O|i−1

Li

)
=

(
Ci

NL
i

)
c|i−1,

(
O|i−1

Ri

)
=

(
Ci

NR
i

)
c|i−1 (4.10)

where Ci =


I 0 . . . 0
0 Λn1

. . . 0

0 0
. . . 0

0 0 . . . Λni−1

, NL
i = ΛniF̃i, NR

i = ΛniG̃i and Λni is the

matrix of the Lagrangian Pedersen commitment key defined in the last section, andO0

is just the input of the circuit.
To make the argument zero-knowledge, the prover does never giveOi,Li orRi in

the clear, but rather, for k = 1, 2 and any i ∈ [d], it gives GS commitments [z]1 to the
input (i.e. to all components ofO0 = c0), to the vectorOi as [zO,i]1, to the vectorLi as
[zL,i]1 and to the vectorRi as [zR,i]2 (a part from other GS commitments necessary for
the quadratic proof). The matrices which define the linear relation between committed
values are defined from Ci, NL

i = ΛniF̃i, NR
i = ΛniG̃i adding columns and rows

to accommodate for the GS commitment keys in the relevant groups (see full details in
[69]). We denote the matrix that define the left (resp. right) constraints until level i− 1
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as ML
i (resp. MR

i ), that is:

ML
i =


Ci

NL
1

...
NL
i−1

 , MR
i =


Ci

NR
1
...

NR
i−1

 .

González and Ràfols prove that the QA-NIZK argument of Kiltz and Wee [92]
(with standard soundness) for membership in linear spaces for non-witness samplable
distributions is an argument for the following promise problem parametrized by matri-
ces M,N:

LLin
YES =

{
(w, [x]1, [y]1) :

[x]1 = [M]1w and
[y]1 = [N]1w

}

LLin
NO =

{
(w, [x]1, [y]1) :

[x]1 = [M]1w and
[y]1 6= [N]1w

}
.

If we use this construction for matrices ML
i and NL

i (similarly for right side), this
argument can be used to prove that, if we can extract c|i−1, then we can extract an
opening ai of Li which is in the correct linear relation with c|i−1. In other words,
this proves that if all the linear constraints are satisfied until level i − 1, they must be
satisfied until level i.

The authors prove completeness of the argument for statements in LLin
YES and sound-

ness for LLin
NO underM>L -MDDH,M>R-MDDH and KerMDH assumption, whereML

(resp.MR) is the distribution of matrices ML
i (resp. MR

i ) described above5.

Efficiency Improvements

We note that for simplicity, we have explained the result of [69] as proving a linear
system of constraints for each level and each side (left or right), but in fact a single
QA-NIZK argument for bilateral spaces for non-witness samplable distributions [67]
is used in [69] to gain efficiency (the proof requires then only 2 elements in G1 and G2

instead of O(d) elements).

5An important point is that these MDDH assumptions can be reduced to a decisional assumption in
bilinear groups which does not depend on the circuit. In fact, ML

i only depends on n, n1, . . . , ns, and the
assumption can be reduced to a decisional assumption which only depends on Λ and the GS commitment
key.
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4.5 SE NIZK Argument for Boolean CircuitSat
We present our Quasi-Adaptive argument for Boolean CircuitSat for the language de-
fined as

Lφ =
{

(xp) ∃xs ∈ {0, 1}ns s.t. φ(xp,xs) = 1
}
.

As consequence of Lemma 24 the language Lφ,ck can be equivalently defined as

Lφ =

 (xp)

∃xs s.t. xs ◦ (xs − 1) = 0;
c0 := (xp,xs);
∀i ∈ [d],∃ai, bi, ci ∈ Znip s.t. ;

ai = F̃ic|i−1, bi = G̃ic|i−1 ∈ Znip ,
ki + ai ◦ bi = ci.

 .

In the following ΠQ denotes the argument for Quadratic Equations described in
Section 4.4.1, ΠL a tag-based USS membership argument for linear spaces that can be
either the one presented in Section 4.6 or the one presented in Section 4.7 and Input an
argument to prove that some BB extractable commitments to integers open to binary
values.

K0(λ,W,R): On input some set R ⊂ Zp of cardinal W , choose a bilinear group
gk and output (gk,W ).

Dgk,W,R: Pick commitment keys (ck1, ck2) = ([Λ]1, [Λ]2) that are the Lagrangian
Pedersen commitment keys associated toR. Output (ck1, ck2, crsGS).

K1 (gk , φ): Given (ck1, ck2, crsGS) ← Dgk,W and φ : {0, 1}n → {0, 1} of max-
imum width W . For each i ∈ [d] define matrices [ML

i ]1, [MR
i ]2, [NL

i ]1, [MR
i ]2 as

explained in Section 4.4.2. Let crsInput the crs of the argument Input for a vector of
size ns is binary. Let crsQ the crs of ΠQ for proving correct evaluation of (at most)
W gates. For each i ∈ [d], let crsLL,i (crsRL,i) the crs for the USS argument of linear
knowledge transfer ΠL of left (right) wires at depth i. Let crsL =

{
crsLL,i, crsRL,i

}
i∈[d]

and trL =
{

trLL,i, trRL,i
}
i∈[d]

be the crs and the trapdoors of the ΠL arguments of left
(right) wires at depth i, where crsL includes the tag space T .

Output crs = (ck1, ck2, crsGS, crsInput, crsQ, crsL), tr = trL.

P (crs,xp,xs, r,a, b, c, τ): Computes the commitment of the secret input [z]1 =

comck1,ck2(xs, r) and constructs the proof Input for [z]1. For each i ∈ [d] compute La-
grangian Pedersen commitments to the output, left and right wires [Oi]1,2, [Li]1, [Ri]1,2,
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give a GS proof ΠQ,i that they satisfy the equations (4.7) and let [zO,i,k]1, [z∗O,i,k]2,
[zL,i,k]1, [zR,i,k]2, [z

∗
R,i,k]1 the correspondent GS commitments to O,L,R, for k =

1, 2. Compute proofs ΠL,i of correct wiring, ΠL,0 that the opening of [z]1 is correctly
assigned to [zO,0]1 and that the openings of [zR]2, [z

∗
R]1 and [zO]1, [z

∗
O]2 are equal

respectively.
The proof is

π = ([z]1, Input, [zO]1, [zL]1, [z
∗
O]2, [zR]2 , [z

∗
R]1 ΠL,ΠL,0,ΠQ) .

V (crs,xp, π, τ): Verify all the proofs in π with the corresponding verification al-
gorithms VInput, VΠL (which uses τ ) and check the GS proofs of equations (4.7).

S (crs, tr,xp, τ): Extend the input with zeros, x = (xp, 0, . . . , 0) and evaluate
the circuit honestly with this input to obtain the corresponding ai, bi, ci for each i =
1, . . . , d. Change the last gate values, i.e. the right and left values of the last gate at level
d, ad,1, bd,1, and cd,1 consequently, to have an assignment that satisfies the equation
of this gate. Compute the commitment [z]1 = comck1,ck2(0, r), honest proofs Input

and ΠQ,i, and commitments [zO,i,k]1, [zL,i,k]1, [z∗O,i,k]2, [zR,i,k]2,
[
z∗R,i,k

]
1

for each

i = 1, . . . , d. Run the simulator SΠL to obtain d simulated ΠSL,i,Π
S
R,i together with

ΠSL,0. Output πS = ([z]1, Input, [zO]1, [zL]1, [zR]2 , [z
∗
O]2,Π

S
L,Π

S
L,0,ΠQ).

Completeness is direct from the completeness of the respective subarguments.

Computational Zero-Knowledge follows from witness sampleability of the GS com-
mitment keys and the fact that in GS proofs, commitments are dual mode commitments.
This means that the common reference string can be generated in an indistinguishable
way so that all commitments are perfectly hiding. In particular, in this setting, the
distributions of real and simulated proofs are indistinguishable.

Unbounded Simulation Extractable Adaptive Soundness is proved in the follow-
ing theorem.

Theorem 25. If A is an adaptive adversary against the Unbounded Simulation BB
Extractability Soundness of the Boolean CircuitSat argument described in Section 4.5
that makes at most Q queries to S, then there exist PPT adversaries B1, B2, B3 against
the BB Extractable Soundness of Input, the unbounded simulation soundness of ΠL
argument and the soundness of ΠQ argument, respectively, such that

AdvUSS(A) ≤ AdvES-Input(B1) + dAdvUSS-ΠL(B2) + 2dAdvSound-ΠQ(B3).
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Proof. (sketch) The simulator algorithm generates honestly the Input and ΠQ argu-
ments and an adversary sees only simulated proofs of the linear argument ΠL. There-
fore, an adversary that creates a new proof for an invalid statement breaks either the
knowledge soundness of the Input, the soundness of the ΠQ arguments, or the USS of
the linear arguments ΠL.

4.5.1 Concrete SE QA-NIZK for Boolean CircuitSat

For the scheme described above, one can take as Input, and ΠQ the same building
blocks as [69], namely the bitstring argument in Chapter 3 and ΠQ the argument de-
scribed in Section 4.4.1. An USS argument for promise problems either the one given
in Section 4.6 or the one given in Section 4.7.

To simplify the exposition we have omitted many details that actually make the
proof more efficient. In particular, instead of using two linear arguments for each depth
of the circuit, we can use the linear argument for all the linear constraints of the circuit
at once (as it is also done in the original work [69]). First, it is easy to see one can prove
all the left (and right) constraints together, by considering a larger matrix. Second,
left and right constraints can be merged in a single matrix which consists of elements
in both groups, and using an argument for some promise problem in bilateral linear
spaces. This also makes the auxiliary variable O∗ (and related equations) unnecessary.

Efficiency. Then, the building blocks Input, ΠQ of our instantiation are exactly the
same as in González and Ràfols [69]. The cost of committing to the input plus proving
it is boolean with the argument of Chapter 3 is (2ns + 4, 6). We take the same idea for
quadratic constraints proof from [69] with Zero-Knowledge applied to our equations
( 4.7, 4.8), that is (6d−3, 2d−1) for the commitments and (4d−4, 8d−8) for the GS
proofs. This is the same cost as in [69], using an approach where we add more elements
in the crs, but we gain in the commitment size. This approach is explained in detail in
Section 4.8, in our case the direct approach gives us (12d− 12, 4d− 4) elements in the
commitment, while using the approach in Section 4.8 we add (4d−2, 2d−2) elements
in the crs and the commitment size is reduced to about 25% in group G1. Finally,
the overhead of using an USS argument for promise problems in bilateral spaces as
opposed to the argument for bilateral spaces with standard soundness used in González
and Ràfols [69] is only 3 elements in G1 in case of USS argument in 4.6, and 15
elements in 4.7.
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SSetup(1λ,R)

Run (crs, trs, tre)← K1(gk , φ) where crs fixes
a tag space T , define a collision resistant
hash function H and return pp = (crs, H).

SSign(pp,xp,w,m)

Compute τ = H(xp,m),
return σ ← P(crs,xp,w, τ).

SVer(pp,xp,σ,m)

Compute τ = H(xp,m),
return V(crs,xp,σ, τ).

SSimulate(pp, trs,xp)

Compute τ = H(xp,m),
return σ ← S(crs, trs,xp, τ).

Figure 4.1: SoK based on the tag-based SE-NIZK of Section 4.5, with algorithms
(P,V,S) and m ∈M.

4.5.2 Signature of Knowledge

Next, we construct a Signature of Knowledge (SoK) for boolean CircuitSat. Similarly,
Groth and Maller [74](See Section 2.7.3) build a SoK using a Simulation Extractable
NIZK with non-black-box extraction along with a universal one-way hash function.
We use a different approach and take advantage of having a tag-based argument, and
we set the tag to be the output of a hash function of the message to be signed together
with the public input. The efficiency of the SoK is essentially the same as the SE-NIZK
on which it relies, because we just need to add a collision resistant hash function in the
public parameters and compute a hash for proving/verifying the relation.

The construction of Groth and Maller is based on knowledge assumptions and non-
black box extraction, while our NIZK is based on falsifiable assumptions and the ex-
tractor is used as a black box.

Signature of Knowledge for circuit satisfiability under standard assumptions

We present a Signature scheme of Knowledge based in the tag-based SE-NIZK argu-
ment of Section 4.5 for boolean CircuitSat. To sign a message m, we use a collision
resistant hash function of the message and the public statement, the result is used as
the tag of the argument behind. If an adversary tries to reuse the same proof to forge a
signature, it should be for a different message, otherwise we have the same tag.

Given a message spaceM and a relation R ∈ R, we give a signature scheme in
Figure 4.1 that is the natural transformation of the tag-based SE-NIZK argument of
Section 4.5 to a Signature of Knowledge for R.
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4.6 USS QA-NIZK Arguments of Knowledge Transfer
for Linear Spaces

In this section we prove that the USS argument for membership in linear spaces of Kiltz
and Wee also satisfies the “knowledge transfer” property, or more technically, that it
has soundness for the same promise problem described in Section 4.4.2. We give the
argument for membership in linear spaces in one group in detail in Section 4.6.1 and
we present the scheme for the bilateral version in Section 4.6.2.

4.6.1 USS LinDk argument
In this section we present LinDk , a quasi-adaptive USS argument of membership in
linear spaces in the group G1 for the promise problem defined by languages

LLin
YES =

{
(w, [x]1, [y]1) :

[x]1 = [M]1w and
[y]1 = [N]1w

}

LLin
NO =

{
(w, [x]1, [y]1) :

[x]1 = [M]1w and
[y]1 6= [N]1w

}
parameterized by matrices M ∈ Z`1×np ,N ∈ Z`2×np sampled from some distributions
M,N . Completeness holds for YES instances, and soundness guarantees that NO in-
stances will not be accepted. That is, as in [69], we assume [x]1 = [M]1w holds when
proving soundness. In the CircuitSat context, this can be assumed because the idea is
that this is proven by first proving knowledge of the input and then by “transferring”
this knowledge to the lower layers via the quadratic or the linear argument we have
presented. We consider the general language L that includes all tuples (w,x,y) of the
right dimension, some of them which are outside of LLin

YES ∪LLin
NO. We allow simulation

queries for any tuple in L. Note that it would be enough to allow the adversary just to
ask for queries in LLin

NO in some contexts, as in Section 4.5 for CircuitSat, but we define
this more generally.

Scheme Definition

The argument is presented in Figure 4.2 and note that it is just the USS QA-NIZK
argument of [92] written in two blocks, which adds a pseudorandom MAC to the basic
(not simulation sound, just sound) QA-NIZK argument of membership in linear spaces
for general distributions also given in [92]. If in the basic arguments the proofs are of
the form [x>,y>]1(K1,K2), in the USS variant they are given by
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K (gk , [M]1, [N]1) :

K1 ← Z`1×(k+1)
p ,K2 ← Z`2×(k+1)

p ,

K> =
(

K>1 ,K
>
2

)
A,Ω← Dk,
Ω0,Ω1 ← Z(k+1)×(k+1)

p

C1 = K1A,C2 = K2A,

[B]1 =
[
M>K1 + N>K2

]
1
,

(P0,P1) = (Ω>Ω0,

Ω>Ω1)
(Q0,Q1) = (Ω0A,Ω1A)
Return crs =

(
gk , [B]1, [A]2, [P0]1 ,

[P1]1 , [Q0]2, [Q1]2, [C1]2, [C2]2, [Ω]1
)

tr = (K1,K2)

P (crs, τ, [x]1, [y]1,w) :

Pick r ← Zkp and return
π =

(
w>[B]1 + r

>[P0 + τP1]1,

[r>Ω>]1
)
.

V (crs, τ, [x]1, [y]1,π) :

Check if:
e (π1, [A]2)− e

([
x>,y>

]
1
, [C]2

)
= e (π2, [Q0 + τQ1]2)
S (crs, τ, [x]1, [y]1, tr) :

Sample r ← Zkp and return
π =

(
[x>,y>]1K + r>[P0 + τP1]1,

[r>Ω>]1
)
.

Figure 4.2: The LinDk argument for proving membership in linear spaces in blocks
[x,y]1 ∈ Im[M,N]1 where M ∈ Z`1×np ,N ∈ Z`2×np .

([
(x>,y>)(K1,K2) + r>Ω(Ω0 + τΩ1)

]
1
,
[
r>Ω>

]
1

)
.

Our contribution is not in the scheme but in the security analysis. Our proof fol-
lows [69], that proved that the basic argument in [92] is complete and sound for the
same promise problem under some MDDH and KerMDH assumptions related to the
matrix distribution M. Our contribution is to modify their analysis to adapt it to be
simulation sound for the scheme of Figure 4.2.

Perfect Completeness, Perfect Zero-Knowledge. Our language LLin
YES is the same

language for membership proofs in a linear space [M,N]
>
1 used in [92]:{

(w, [x,y]1) : [x>,y>]>1 = [M,N]
>
1 w

}
, so perfect completeness and perfect zero-

knowledge are immediate.

Unbounded Simulation Soundness. We use Definition 28, for any adversaryA that
sends any number Q of queries (wi, [xi,yi]1) ∈ L to the query simulator oracle S,
receives simulated proofs {πi}Qi=1 as described in Figure 4.2, the probability that the
adversary A comes up with (w∗, [x∗,y∗]1, τ

∗,π∗) such that (w∗, [x∗,y∗]1) ∈ LLin
NO

different of the queried ones, different tag τ∗ and V(crs, τ∗, [x∗,y∗]1,π
∗) = 1 is

negligible.
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Our proof is analogous to the USS proof of [92], where the authors argue that partial
information about matrix K is computationally hidden across all the simulated proofs.
Essentially, what the authors are doing is to reduce the proof of USS to a standard
soundness proof. More concretely, they switch to a game where the simulated proofs
hide information theoretically the projection of K for vectors outside of the span of
the columns of a matrix M̃ that defines the language. Therefore, one can argue, as in
the standard soundness proof, that the probability of providing a valid proof for a false
statement is negligible.

Our proof combines the work of [92] to show that the queries do not provide addi-
tional information, with the work of [69] to show standard soundness to the language
associated to the promise problem. Indeed, in the case we are interested in the matrix
M̃ spans the whole space so the standard soundness proof used by [92] cannot be used
and we need an extra change of games to use a technique proposed by [69] that proves
that the block K2,2 is hidden from the adversary. This block is part of the matrix K2

and corresponds to the part of the statement that is not in the correct linear space. That
is, for breaking soundness the adversary has to create a valid proof for (w, [x]1, [y]2)
such that y 6= Nw and x = Mw), and the coordinates of this block correspond to
the projection by matrix N. Concretely, at some point in their proof, Kiltz and Wee
change the key matrix uniformly sampled for another of the form K′ + ba⊥, where
K′ is uniformly sampled and a⊥ is in the co-kernel of A. We apply the same change
but in blocks, b = (b1, b2), so our extra game consists in changing the projection of
b1 by M> to some random vector z, i.e. we change M>b1 + N>b2 to z + N>b2

by assuming theM>-MDDHG1
assumption, whereM> is the matrix that defines the

distribution of M> (as in [69]). So, what the adversary can see about b is just N>b2

but it is hidden by z.
For the following theorem, we use the Computational Core Lemma of Kiltz and

Wee in Section 4.1. of [92], which is independent ofM,N , it just assumes the Dk-
MDDHG1

, so we can use it directly in our proof.

Theorem 26. The LinDk scheme in Figure 4.2 is a Quasi-adaptive Non-Interactive
Zero-Knowledge Argument with Unbounded Simulation Soundness such that for any
adversary A that makes at most Q queries to S there exist adversaries B1, B2, B3

against the Dk-KerMDH,M>-MDDH assumptions in G1 for which the advantage of
A is bounded by

AdvUSS-LinDk
(A) ≤AdvDk−KerMDHG1

(B1) + 2QAdvDk-MDDHG1
(B2)

+ AdvM>-MDDHG1
(B3) +

Q+ 1

p
.

Proof. Let A be an adversary that plays the game described in USS definition 28. We
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will proceed by changing to indistinguishable games in order to bound the advantage
of A. Let Game0 be the real game and Advi the advantage of winning Gamei.

Game1 is the same as Game0 except the verification algorithm V is changed to

V∗(crs, τ, [x,y]1,π) :

Check: π1 = [x>,y>]1K + π2(Ω0 + τΩ1).

If a tuple ([x,y]1,π) passes verification of V but does not pass verification of
V∗, it means that the value π − [x>,y>]1K − π2(Ω0 + τΩ1) ∈ Gk+1

1 is a
non-zero vector in the co-kernel of A. Thus, there exists an adversary B1 against
KerMDHG1 such that

|Adv0 − Adv1| ≤ AdvDk−KerMDHG1
(B1).

Game2 is the same as Game1 except the simulation algorithm S is changed to

S∗(crs, τ, [x,y]1, tr) :

r ← Zkp, µ← Zp
Return: π = ([(x>,y>)K + µa⊥ + r>(P0 + τP1)]1, [r

>Ω]1),

where a⊥ is an element from the Kernel of A. Let B2 be an adversary against
Dk-MDDHG1 . B2 picks K itself and answers queries (τi,wi, [xi,yi]1) from A:

• if τi 6= τ∗: B2 queries the oracle Ob, defined in the core lemma [92], who
simulates S if b = 0, or S∗ if b = 1.

• if τi = τ∗: B2 samples r ← Zp and computes ([(x>i ,y
>
i )K + r>(P0 +

τiP1)]1, [r
>Ω>0 ]1).

Then, B2 queries V∗ to simulate verification of the final message ofA, (τ∗,w∗, [x∗,y∗]1).
Now, it is easy to check if (w∗, [x∗,y∗]1) ∈ LLin

NO by computing [N]1w
∗. The

difference between respective advantages is bounded using the core lemma of
[92] as

|Adv1 − Adv2| ≤ 2QAdvDk−MDDHG1
(B2) +

Q

p
.

Game3 is the same as Game2 except the matrix K ← Z(`1+`2)×(k+1)
p is changed in

K to K = K′ + ba⊥ where K′ ← Z(`1+`2)×(k+1)
p , b1 ← Z`1p , b2 ← Z`2p ,

b> = (b>1 , b
>
2 ) and B = (M>,N>)K + (z + N>b2)a⊥, where z = M>b1.

It is direct to see that both K, K′ are uniformly distributed in Z(`1+`2)×(k+1)
p , so

the advantages in both games are equivalent.
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Game4 is the same as Game3 except that now z ← Z`1p . Let B3 be an adversary
against Dk-MDDHG1 that receives ([M>]1, [z]1) as a challenge and computes
the crs as in the previous game with this [z]1 in B and runs A as in Game3. Fi-
nally, the advantage of B3 to distinguish between Game3 and Game4 is bounded
by the probability of distinguishing between a random vector from the image of
the matrix M>, so

|Adv3 − Adv4| ≤ AdvM>−MDDHG1
(B3).

Now we bound the advantage of adversaryA in winning Game4. Firstly, we show what
is leaked about vector b in the adversary’s view:

• the matrix C = (K′ + ba⊥)A completely hides the vector b,

• the output of S∗, (x,y)>(K′+ba⊥)+µa⊥ completely hides b because µmasks
(x>,y>)b,

• the matrix B contains information about z + N>b2, but z is uniformly random
and independent of b2, so z masks b2.

Note that if the adversaryA passes the verification V∗ with some π∗ for a statement
(w∗,x∗,y∗) ∈ LLin

NO, it can compute y = Nw∗ and construct a valid proof π =
(π∗1 −w∗B,π∗2) that the vector (0,y − y∗) is in the span of the columns (M>,N>).
It must hold that

π = (0,y − y∗)(K′ + ba⊥) = (y − y∗)K′2 + (y − y∗)b2a
⊥. (4.11)

Note y − y∗ is not zero because y 6= y∗. Since b2 remains completely hidden to the
adversary and K′2 is independent of b2, the probability than Equation (4.11) holds is
less that 1/p.

4.6.2 USS BLinDk argument
In this section we present the USS argument for membership in linear spaces in groups
G1, G2, which is just an extension to bilateral spaces of the USS LinDk argument
presented in Section 4.6.1 for the promise problem defined by languages

LBlin
YES =

{
(w, [x1]1, [x2]1, [y]2) :

[x1]1 = [M]1w and
[x2]1 = [N]1w, [y]2 = [P]2w

}
LBlin

NO =

{
(w, [x1]1, [x2]1, [y]2) :

[x1]1 = [M]1w and
[x2]1 6= [N]1w or [y]2 6= [P]2w

}
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K (gk , [M]1, [N]1, [P]2) :

K1 ← Z`1×(k+1)
p ,K2 ← Z`2×(k+1)

p ,

K3 ← Z`3×(k+1)
p ,

A,Ω← Dk,Γ← Zn×(k+1)
p ,

Ω0,Ω1 ← Z(k+1)×(k+1)
p

C1 = K1A,C2 = K2A,C3 = K3A,

[B]1 =
[
M>K1 + N>K2 + Γ

]
1

[D]2 =
[
P>K3 − Γ

]
2

(P0,P1) = (Ω>Ω0,Ω
>Ω1)

(Q0,Q1) = (Ω0A,Ω1A)
Return crs = (gk , [B]1, [A]1,2, [P0]2,
[P1]2 , [Q0]1, [Q1]1, [C1]2, [C2]2,
[C3]1, [Ω]1)
tr = (K1,K2,K3)

P (crs, τ, [x1]1, [x2]1, [y]2,w) :

Pick r ← Zkp and return
π =

(
w>[B]1 + r

>[P0 + τP1]1,

[r>Ω>]1
)
,

θ = w>[D]2.

V (crs, τ, [x1]1, [x2]1, [y]2,π,θ) :

Check if: e (π1, [A]2)− e ([A]1,θ)

−e
([
x>1
]
1
, [C1]2

)
− e

([
x>2
]
1
, [C2]2

)
+e
(
[C3]1 ,

[
y>
]
2

)
= e (π2, [Q0 + τQ1]2)

S (crs, τ, [x1]1, [x2]1, [y]2, tr) :

Sample r ← Zkp and return
π =

(
[x1,x2]1(K

>
1 ,K

>
2 )

+r>(P0 + τP1), [r
>Ω>]1

)
,

θ = [y]2K
>
3 .

Figure 4.3: The BLinDk argument for proving membership in linear spaces in blocks
([x1,x2]1, [y]2) ∈ Im ([M,N]1, [P]2, ) where M ∈ Z`1×np ,N ∈ Z`2×np ,P ∈ Z`3×np .

parameterized by matrices M ∈ Z`1×np ,N ∈ Z`2×np ,P ∈ Z`3×np sampled from some
distributionsM,N ,P . This argument is presented in Figure 4.3. QA-NIZK arguments
of membership in linear spaces were extended to the bilateral case in [67] for both
samplable and non-witness samplable distributions. In [69], the authors proved that the
argument for non-witness samplable distributions of [67] is also sound and complete
for this promise problem. Adding the pseudorandom MAC given in [92] we get USS.
The proof is essentially the same as in 4.6.1, but now the linear spaces are split in two
groups G1 and G2. The core lemma would be the same and the reduction of the proof
of USS is bounded by SKerMDH and Dk-MDDHG1

Assumptions.

4.7 Tight USS QA-NIZK Arguments of Knowledge Trans-
fer for Linear Spaces

In this section we prove that the Tight USS argument of Abe et al. [5] for membership
in linear spaces satisfies the knowledge transfer property explained in Section 4.4.2.
The authors present a Designated Verifier (DV) QA-NIZK argument and then use a
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well-known conversion from DV to public verifier QA-NIZK with pairings. We follow
the same approach and we further modify it to be a tag-based argument and adapt
the sub-argument for disjunction spaces to the one of Couteau and Hartmann [40] for
efficiency.

In Section 4.7.1 we prove the DV QA-NIZK of [5] is perfectly complete, perfectly
zero-knowledge and USS for the language associated to promise problems for linear
spaces, already defined in Section 4.6, namely:

LLin
YES =

{
(w, [x]1, [y]1) :

[x]1 = [M]1w and
[y]1 = [N]1w

}

LLin
NO =

{
(w, [x]1, [y]1) :

[x]1 = [M]1w and
[y]1 6= [N]1w

}
parametrized by matrices M ∈ Z`1×np ,N ∈ Z`2×np sampled from some distributions
M,N . In Section 4.7.2 we present its natural conversion to a publicly verifiable QA-
NIZK argument. We only give the argument for membership in linear spaces in one
group, the bilateral version is straightforward following the work of [67], where the
authors transform QA-NIZK arguments for membership in linear spaces in one group
to membership in linear spaces to both groups, namely bilateral spaces.

Security Proof: Intuition

Our construction revisits the proof of Abe et al.’s DV argument for promise problems.
In this approach the secret keys are vectors k0,k1 and the proofs, (x>i ,y

>
i )(k0 +

τik1) where τ is a different value in Zp for each proof. We split the secret keys
k0 = (k1,0,k2,0), k1 = (k1,1,k2,1) to indicate the components that come with M>,
k1,0,k1,1, and the others with N>, k2,0,k2,1.

We use a similar solution as in Section 4.6 and argue that partial information of the
secret keys necessary to produce a proof in the NO language is hidden across all the
proofs. In this construction, the crs contains projections of the secret keys k0,k1 by
matrices M>,N>. Assuming theM>-MDDHG1 assumption holds, whereM> is the
distribution of M>, as in Section 4.6, we change the projection by M> by a random
vector z, which masks completely the projection by N>.

Note that in the construction of Abe et al.’s we use in this section, there are also
more projections of the secret keys leaked from simulated proofs, concretely: x>i (k1,0+
τik1,1) + y>i (k2,0 + τik2,1). But we can use the same information-theoretic argument
as in [5], namely, since τi is different each time, k1,0+τik1,1, k2,0+τik2,1 are pairwise
independent, then they do not add any clue to the adversary.

120



4.7.1 Tight DV QA-NIZK Argument of Knowledge Transfer for
Linear Spaces.

The DV QA-NIZK argument presented in Figure 4.4 is the argument for linear spaces
of Abe et al. [5] written in blocks, and (trivially) modified to admit tags. Also, We use
the disjunction argument of Couteau and Hartmann [40], which is 3 group elements
more efficient than the one presented in [6] (used in the first construction of Abe et
al. [5]), and we denote it by or.

Security

We prove it has completeness for LLin
YES and USS for LLin

NO. USS relies in the same core
lemma as in Abe et al. (Lemma 3 in [5]), the security of the MAC presented in Gay et
al. [60], the soundness of an argument for membership in a disjunction space of [40].
Our contribution is to combine this with the same techniques as in Section 4.6 to adapt
the proof for promise problems.

The scheme in Figure 4.4 is perfectly complete and perfect zero knowledge for YES
instances, and soundness guarantees that NO instances will not be accepted as we show
in the following. As in Section 4.6 we consider the general language L that includes
all tuples (w,x,y) of the right dimension, some of them are outside of LLin

YES ∪ LLin
NO.

We allow simulation queries for any tuple in L.

Perfect Completeness, Perfect Zero-Knowledge. Our language LLin
YES is the same

language for membership proofs in a linear space [M,N]
>
1 used in [5]:{

(w, [x,y]1) : [x,y]>1 = [M,N]
>
1 w

}
.

Thus, we directly obtain perfect completeness and perfect zero-knowledge.

Unbounded Simulation Soundness. We use the definition 28 where for any adver-
saryA that sends any number Q of queries (wi, [xi,yi]1, τ̃i) to the query simulator or-
acle S, receives simulated proofs {[πi]1}Qi=1 as described in Figure 4.4. The probability
of the adversary A comes up with a proof [π∗]1 for a statement (w∗, [x∗,y∗]1) ∈ LLin

NO
different of the queried ones and different tag τ̃∗, such that V(crs, τ̃∗, [x∗,y∗]1, [π

∗]1) =
1, is negligible.

Abe et al.’s construction is based in the USS Kiltz and Wee argument [92], where
the security relies in three security features that we use as black-boxes: their core
lemma (Lemma 3 in [5]), the security of a MAC scheme presented in Gay et al. [60],
and the soundness of the or argument, all proven secure under standard assumptions.
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K (gk , [M]1, [N]1) :

A0,A1 ← D2k,k, H ← H,
crsor ← K(gk ,A0,A1)

k← Z2k
p ,k0 = (k1,0,k2,0),

k1 = (k1,1,k2,1)← Znp ,
k1,0,k1,1 ∈ Z`1p ,k2,0,k2,1 ∈ Z`2p
[p]1 = [A>0 k]1 ∈ Gk1 ,
[p0]1 = [M>k1,0 + N>k2,0]1 ∈ Gn1 ,
[p1]1 = [M>k1,1 + N>k2,1]1 ∈ Gn1 ,
crs = (crsor, [A0]1, [p]1, [p0]1, [p1]1, H)
tr = (k0,k1), vk = (k,k0,k1).

S (crs, [x]1, [y]1, τ̃ , tr) :

s← Zkp, [t]1 = [A0]1s,
[πor]1,2 ← Por(crsor, [t]1, s)

τ = H([x]1, [y]1, [t]1, [πor]1,2, τ̃) ∈ Zp,
[u]1 = [x>]1(k1,0 + τk1,1)

+[y>]1(k2,0 + τk2,1) + s
>[p]1

Return [π]1 = ([t]1, [u]1, [πor]1,2)

P (crs, [x]1, [y]1, τ̃ ,w) :

s← Zkp, [t]1 = [A0]1s
[πor]1,2 ← Por(crsor, [t]1, s)

τ = H([x]1, [y]1, [t]1, [πor]1,2, τ̃) ∈ Zp
[u]1 = [w>(p0 + τp1) + s

>p]1
Return [π]1 = ([t]1, [u]1, [πor]1,2).

V (crs, [x]1, [y]1, vk, [π]1, τ̃) :

Parse [π] = ([t]1, [u]1, [πor]1,2),
τ = H([x]1, [y]1, [t]1, [πor]1,2, τ̃) ∈ Zp,
Check [πor]1,2 and
[u]1 = [x>]1(k1,0 + τk1,1)

+[y>]1(k2,0 + τk2,1) + [t>]1k
Return 0/1.

Figure 4.4: Tight DV QA-NIZK Argument for membership in linear spaces of Abe
et al. [5] in blocks, [x,y]1 ∈ Im[M,N]1, where M ∈ Z`1×np ,N ∈ Z`2×np and H a
family of collision-resistant hash functions. The scheme is modified to be tag-based
and is written in blocks. We use the disjunction argument or of [40] with |crsor| =
(4n+ 8)|G1|+ (2`1 + 3)|G2|, |πor| = 8|G1|+ 3|G2|.
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Both [92] and [5] use a MAC scheme to add randomness to the proof. Concretely,
by the Gay et al. MAC, the term t>k is added to the proof, where k is uniformly
random and t ∈ Span(A0) ∪ Span(A1) for some fixed matrices A0,A1 ∈ Z2k×k

p in
the crs. The basic idea is the prover computes t directly in the image of [A0]1, uses the
argument or to prove membership of t in Span(A0) ∪ Span(A1) and uses the image
space of [A1]1 to add randomness in the security proof. The last is done by changing
to a game where k ∈ Z2k

p is switched to k + RF(·), with RF : Zp → Z2k
p a random

function. Indistinguishability of both games is proven in [60], concretely, the lemma
gives the following tight bound for any adversary A that is able to distinguish between
both MAC schemes:

AdvCL(A) ≤ (4kdlogQe+ 2)AdvD2k,k-MDDHG1
,B(λ) + (2dlogQe+ 2)Advzk-or,B′(λ)

+dlogQe∆D2k,k
+

4dlogQe+ 2

p− 1
+
dlogQeQ

p
,

where ∆D2k,k
is statistically small term for D2k,k, B and B′ are adversaries against the

D2k,k-MDDHG1 assumption and zero-knowledge of argument or (zk-or) respectively.

Theorem 27. The argument of Figure 4.4 is a Designated Verifier Quasi-Adaptive
Non-Interactive Zero-Knowledge argument that guarantees USS such that for any ad-
versaryA that makes at mostQ queries to S, there exist adversaries B1, B2, B3 against
collision resistance ofH, core lemma of [60] andM>-MDDHG1 assumption such that

AdvUSS(A) ≤ AdvCR(B1) + AdvCL(B2) + 2AdvM>-MDDHG1
(B3) +

Q

p
.

Proof. We proceed via changes of games starting with Game0 that is the real USS
game of definition 28. Let Advi be the advantage of adversary A winning Gamei.

• Game1 is the same as Game0 except the simulator computes the element [u]1
as [x]1(k1,0 + τk1,1) + [y]1(k2,0 + τk2,1) + [t>]1k and verification of final
adversary’s message (w∗, [x∗]1, [y

∗]1, [π
∗]1, τ̃

∗) checks:

– (w∗, [x∗]1, [y
∗]1) ∈ LLin

NO,

– ([x∗]1, [y
∗]1) 6∈ Qsim,

– receives τ̃∗, and checks that τ̃∗ 6∈ Qtag . With overwhelming probability, by
the collision resistance ofH , this implies that τ∗ = H([x∗]1, [y

∗]1, [t
∗]1, [π

∗
or]1,2, τ̃

∗)
is also different from all the tags used in the simulated proofs.
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The new element [u]1 just differs on the element [t>]1k, which in Game0 is
s>[p]1, they pass verification with same probability because they are equivalent
by definition. Thus,

|Adv0 − Adv1| ≤ AdvCR(B1).

• Game2 is the same as Game1 except that the key k is changed to k+RF(·) where
RF : Zp → Z2k

p is a random function. Concretely, the element [p]1 = [A>0 k]1 is
switched to [p]1 = [A>0 (k+ RF(0))] in K and the element [u]1 in S is computed
as [u]1 = [(xi,yi)(k0+τik1)+t>i (k+RF(i))]1 for the i-th query. Moreover, the
verifier V defines the set S = {[(x∗,y∗)(k0 + τ∗k1)+ t∗>(k+ RF(j∗))]1}Qj∗=0

and checks [u∗]1 ∈ S. The indistinguishability between Game1 and Game2 is
direct from the core lemma [5] because it is equivalent of indistinguishability
between both MACs defined in the core lemma, thus

|Adv1 − Adv2| ≤ AdvCL(B2).

• Game3 is the same as Game2 except that the elements [p0]1 = [M>k1,0 +
N>k2,0]1 and [p1]1 = [M>k1,1 + N>k2,1]1 are switched to [p0]1 = [z0 +
N>k2,0]1 and [p1]1 = [z1 + N>k2,1]1 in K, where z0, z1 ← Znp . We can
think in an intermediate game where we just switch [p0]1, then for any adversary
B3 able to distinguish between these intermediate games and Game2 is breaking
M>-MDDHG1

. By the same argument, B3 distinguishing between the interme-
diate game and Game3 is breakingM>-MDDHG1

. Finally,

|Adv2 − Adv3| ≤ 2AdvM>-MDDHG1
(B3).

Before studying the probability of the adversary A wins the Game3, note that by lin-
earity, we observe that the proof π∗ is a valid proof to prove membership in the lin-
ear space of the vector ([0]1, [y

∗]1). For any adversary that makes a proof [π∗]1 for
(w∗, [x∗]1, [y

∗]1) ∈ LLin
NO, the element [u∗]1 = [u∗]1−w∗[p0]1−w∗[p1]1τ

∗ is a valid
proof for ([0∗]1, [y

∗ − y]1) where y = Nw∗ (with same [t∗]1 and [πor]1,2).
Now, we use an information-theoretic argument to bound the probability of suc-

cess of the adversary A. In the first place, we study what is leaked about the secret
keys. The elements [p0]1 = [z0 + N>k2,0]1, [p1]1 = [z1 + N>k2,1]1 in the crs do
not leak information about N>k2,0 and N>k2,1 because the vectors [z0]1, [z1]1 hide
completely the projections by N. Then, the element y∗>(k2,0 + τ∗k2,1) in the proof,
where [y∗]1 6∈ Span[N]1, is uniformly random in adversary’s view.

The adversary A also learns the following projections of the secret keys from each
query i: x>i (k1,0 + τik1,1) + y>i (k2,0 + τik2,1), but they are pairwise independent
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and yi 6= y∗ for all i = 1, . . . , Q. So, given x>i (k1,0 + τik1,1) + y>i (k2,0 + τik2,1)
from the i-th query, the term y∗>(k2,0 + τ∗k2,1) in the proof is distributed uniformly
at random. Thus, the probability of A computes this term and passes verification is
1/p. Finally, taking into account there are Q simulated proofs, we have

|Adv3(A)| = Q

p
.

4.7.2 Tight USS LinDk QA-NIZK
The QA-NIZK argument in Figure 4.5 is the Tight USS QA-NIZK argument for mem-
bership in linear spaces of Abe et al. [5] written in blocks for promise problem lan-
guages LLin

YES and LLin
NO defined in Section 4.7. It is the straightforward construction

from the tight DV QA-NIZK of the previous Section 4.7.1 to public verifier QA-NIZK
with pairings.

The security proof is analogous to the security proof of the tight QA-NIZK of Abe
et al. [5]. In that construction, the authors give a tight reduction where the advantage
of breaking the USS of the QA-NIZK is bounded by the advantage of breaking USS of
the DV QA-NIZK and a kernel assumption. As we have seen in Section 4.7.1 the USS
of our DV QA-NIZK is proven by a tight reduction that is linear in logQ, where Q is
the number of simulated queries. So, the USS of the QA-NIZK argument presented
here inherits the same tightness loss linear in logQ.

The bilinear QA-NIZK argument of Section 4.5 is a membership proof in linear
spaces in two groups G1, G2, for the same languages as defined in 4.6.2. It is easily
constructed from the bilinear version of the DV QA-NIZK argument 4.7.1. The reduc-
tion is analogous to the unilateral QA-NIZK reduction. We bound the advantage of
breaking USS of the QA-NIZK for bilateral spaces by the advantage of breaking the
USS of DV QA-NIZK for bilateral spaces and the SKerMDH assumption, with same
tightness loss linear in logQ.

4.8 Adapting GS Proofs for Improved Efficiency
In this section we show how to add zero-knowledge to the circuit satisfiability proof.
A naive use of GS proofs results in a considerable overhead.

More concretely, we need to prove many quadratic Pairing Product Equations (PPEs),
i.e. equations with variables in G1 and G2. Recall that GS proofs have a commit-and-
prove structure: first, given an equation, the prover commits to the witness (a solution
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K (gk , [M]1, [N]1) :

A0,A1 ← D2k,k,
crsor ← K(gk ,A0,A1)
H ← H,A← Dk
K← Z2k×k

p ,m = `1 + `2,
for i = 0, 1 :

Ki =
(
Ki,Ki

)> ← Zm×(k+1)
p ,

Ki ∈ Z`1×(k+1)
p ,Ki ∈ Z`2×(k+1)

p .

[P]1 = [A>0 K]1 ∈ Gk×(k+1)
1

[P0]1 = [M>K0 + N>K0]1 ∈ Gn×(k+1)
1

[P1]1 = [M>K1 + N>K1]1 ∈ Gn×(k+1)
1 ,

C = KA ∈ Z2k×k
p ,

C0 = K0A,C1 = K1A ∈ Zm×kp

crs = (crsor, [A0]1, [P]1, [P0]1, [P1]1, [A]2,
[C]2, [C0]2, [C1]2, H) ,
tr = (K0,K1).

P (crs, [x]1, [y]1,w, τ̃) :

s← Zkp, [t]1 = [A0]1s,
[πor]1,2 ← Por(crsor, [t]1, s)

τ = H([x]1, [y]1, [t]1, [πor]1,2, τ̃) ∈ Zp
[u]1 = [w>(P0 + τP1) + s

>P]1 ∈ Gk+1
1

Return [π]1 = ([t]1, [u]1, [πor]1,2).

V (crs, [x]1, [y]1, [π]1, τ̃) :

Parse [π]1 = ([t]1, [u]1, [πor]1,2),
τ = H([x]1, [y]1, [t]1, [πor]1,2, τ̃) ∈ Zp,
Check [πor]1,2 and[
u>
]
1
[A]2 = [x>,y>]1 [C0 + τC1]

+[t>]1C
Return 0/1.

S (crs, [x]1, [y]1, tr, τ̃) :

s← Zkp, [t]1 = [A0]1s,
[πor]1,2 ← Por(crsor, [t]1, s)

τ = H([x]1, [y]1, [t]1, [πor]1,2, τ̃) ∈ Zp,
[u]1 = [x>,y>]1(K0 + τK1) + s

>[P]1.

Figure 4.5: Tight QA-NIZK Argument for membership in linear spaces of Abe et al. [5]
in blocks, [x,y]1 ∈ Im[M,N]1, where M ∈ Z`1×np ,N ∈ Z`2×np and H a family of
hash functions that are collision resistant. The scheme is modified to be tag-based. We
use the disjunction argument or of [40] with |crsor| = (4n + 8)|G1| + (2`1 + 3)|G2|,
|πor| = 8|G1|+ 3|G2|.

126



to the equation, which is a vector [x]1 of elements in G1 and a vector [y]2 of ele-
ments in G2) and then it gives a proof that the committed values satisfy the equation.
When trying to save group elements of the proof, we will save on the number of group
elements necessary to commit to the witness.

We note that although there are several techniques to save on the ”proof part” of
GS proofs [86, 67] by aggregating proofs, they work for linear equations and not for
quadratic.

In order to commit to the witness of satisfiability (a pair [x]1, [y]2) of an equation,
individual commitments to each coordinate of these vectors are computed. We focus
on the Symmetric EXternal Diffie-Hellman assumption instantiation of GS proofs for
efficiency. Under this assumption, each individual commitment is either a dual-mode
commitment based on DDH or an ElGamal ciphertext.

A natural idea to explore to reduce the commitment cost is to compute a single
commitment to the whole vector [x]1 (and similarly for [y]2). This approach fails in
general because GS proofs use some homomorphic properties of the commitments to
combine them in a proof, and these are lost when using a single commitment to all of
[x]1. This explains why, to the best of our knowledge, there is no technique to save
on the commitment part of GS proofs which works in general, that is, for every set of
equations of any form6.

However, for the specific form of the equations we use in this paper, it is possible
to exploit the specific form of the PPEs that we need to prove. More precisely, we can
exploit that the equations, which depend on some group variables {Li, Ri, Oi}di=1 do
not have cross terms, i.e. terms which multiply Li with Rj , i 6= j.

More specifically, we show how to reduce the size of GS proofs for equations which
can be written in this form:

e([kj ]1, [1]2) + e([xj ]1, [yj ]2)− e([wj ]1, [1]2) = e([hj ]1, [bj ]2), j = 1, . . . ,m
(4.12)

for some constants [kj ]1, [bj ]2, and variables xj , yj , wj , hj (in fact in our case bj is
the same for all equations, namely t(s)).

GS proofs use dual mode commitments to commit to the witness, meaning that
commitments are either used in perfectly hiding or perfectly binding mode. To sim-
ulate proofs, the trapdoor is the equivocation trapdoor of the commitment scheme in
both G1 and G2. However, for this particular type of equation it is enough to use stan-
dard ElGamal encryption for G2 (see [51]), the reason being that the equation admits

6What is important in the equation form for using simultaneous commitments is the structure of the
quadratic part. On the other hand, this is independent of the equation type, i.e. this remark applies to
multiscalar multiplication or quadratic equations in the field as well.
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the trivial solution in G1. That is, it is enough for commitments in G2 to be computa-
tionally hiding, it is not necessary that there is a setup mode in which they are perfectly
hiding. This allows us to save on the proof size ((2, 4) elements per equation).

The idea to save on the number of commitments is to reuse the randomness and
encrypt all the variables x, (resp. y, z,w) with a single vector of commitments. This
reduces the size of the commitments from 2m to m + 1 for committing to each of the
variable vectors. We define the commitment key in Gm+1

1 as:

U = (u1,u2), where u1 ← Um+1,1,u2 = τu1, τ ← Zp.

and the commitment as:

ComU ([x]1, r) =

[(
x
0

)]
1

+ r1[u1]1 + r2[u2]1,

where r ∈ Z2
p and Um+1,1 is the uniform distribution of vectors of Zm+1

p .
On the other hand, in G2 the commitment key is defined as:

V = (v1), where v← Um+1,1,

and the commitment as

ComV ([y]2, s) =

[(
y
0

)]
2

+ s[v]2.

The idea is that a commitment [zy]ι to a vector [y]ι can be divided into small
parts [zyi ]ι, such that each part is a commitment to yi. More precisely, components
(i,m+1) are a commitment to yi with the commitment key corresponding to the com-
ponents of (i,m + 1) of u1,u2 (for commitments in G1) and of v (for commitments

in G2). That is, commitment keys are: ui1 =

(
u1,i

u1,m+1

)
and ui2 =

(
u2,i

u2,m+1

)
, and

ComU ([xi]1, r) = r1[ui1]1 +r2[ui2]1 +

[(
xi
0

)]
1

. Similarly, we can get a commitment

to [yi]2 by getting the components (i,m + 1) of a commitment in G2 with respect to

the key vi =

(
vi

vm+1

)
.

Therefore, we can now prove the equation i with different commitments keys, that
is, it is as if we were using a different GS common reference string for each equation,
namely, the keys ui1,u

i
2,v

i.
The form of the jth verification equation is:
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e(
[
zjx
]
1
,
[
zjy
]
2
)− e(

[
zjw
]
1
, [z1]2)

=e(
[
zjh

]
1
,
[
zbj
]
2
) +

2∑
i=1

e([uji ]1, [πi,j ]2) + e([θj ]1, [v
j ]2),

where zjα is the result of keeping the jth and the (m+ 1)th coordinate of the commit-

ment to vector α and z1 =

(
1
0

)
, zbj =

(
bj
0

)
, for j = 1, . . . ,m.

Soundness obviously holds because the partial commitment keys define perfectly
binding commitments, so the same argument as in GS proofs applies.

On the other hand, one can claim computational witness indistinguishability under
the DDH Assumption in G1. Indeed, in the security proof of witness indistinguisha-
bility, after the setup of the common reference string, the adversary can choose two
witnesses W0 = ([x0]1, [y0]2, [w0]1, [h0]1), and W1 = ([x1]1, [y1]2, [w1]1, [h1]1),
and receive a proof for Wb, b← {0, 1}.

We define a sequence of games, {Gamei,0,Gamei,1,Gamei,2}mi=1.

1. In Gamei,0 the commitment key is changed to define a perfectly hiding commit-
ment to the ith coordinate of G1, as u2 = τu1 + ei, where ei is the ith vector in
the canonical basis of Zm+1

p .

2. In Gamei,1 the challenger samples a bit b but uses the witness W ∗i,b to create the
proof, where W ∗i,b = ([xi,b]1, [yb]2, [wi,b]1, [hi,b]2) and [xi,b]1, [wi,b]1, [hi,b]1
are the same as [xb]1, [wb]1, [hb]1 replacing the first i coordinates with 0.

3. In Gamei,2 the coordinate i is changed to define a perfectly binding commitment
in G1, as u2 = τu1.

At the end of the sequence of Games, the part in G1 of the witness is changed to
the all zero vector, and is independent of b.

To complete the proof, we observe that the equation is left simulatable. This means
that, in particular, using the properties of GS proofs it is possible to compute a valid
proof of the equation given a commitment to the part of the witness of G2, without
knowing an opening. For this reason, in the last m games we can switch to the all-zero
witness for the elements in G2 based on the IND-CPA security of ElGamal, namely
based on the DDH Assumption in G2.

This argues Witness Indistinguishability, which is all we need for our Signature
of Knowledge, although ZK follows immediately from the fact that the equations are
trivially satisfiable.
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This strategy adds to the crs 2(m − 1) elements in G1 and m − 1 in G2, and, as
explained, this reduces the cost of committing to the witness from 3 · 2m elements in
G1 and 2m in G2 to 3(m+ 1) in G1 and m+ 1 in G2.
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Chapter 5

Simulation Extractable
zk-SNARK for Circuit SAT

This chapter is based on the full version of our result Simulation Extractable Versions
of Groth’s zk-SNARK Revisited published in CANS 2020.

5.1 Introduction
As we already mentioned, Zero-knowledge Non-Interactive Succinct Arguments of
Knowledge (zk-SNARKs) are among the most interesting NIZK proof systems in prac-
tice, as they allow to generate very short proofs for NP complete languages and, con-
sequently, they are also very efficient to verify ([61, 72]). zk-SNARKs have had a
tremendous impact in cryptographic practice and they have found numerous applica-
tions, including verifiable computation systems [109], privacy-preserving (PP) cryp-
tocurrencies [18], PP smart contract systems [94], PP proof-of-stake protocols [90],
and efficient ledger verification protocols [24], are some of the best known applications
that use zk-SNARKs to prove different statements very efficiently while guaranteeing
the privacy of the prover. Because of their practical importance, particularly in large-
scale applications like blockchains, even minimal savings (especially in proof size or
verification cost) are considered to be relevant.

In 2016, Groth [72] introduced the most efficient zk-SNARK for Quadratic Arith-
metic Programs or QAPs, which is still the state-of-the-art, Groth16. Its proof is 3
group elements and the cost of verification is dominated by 3 pairing computations.
In the original paper, it is proven to achieve knowledge soundness in the generic
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group model (GGM). As we mentioned in Section 1.3.2, the proof of Groth16 is
malleable, as it is shown in [74]. Generating non-malleable proofs is a necessary re-
quirement in building various cryptographic schemes, including universally compos-
able protocols [94, 90], cryptocurrencies (e.g. Zcash) [18], signature-of-knowledge
schemes [74], etc. Therefore, in practice, it is important to have a stronger notion of
knowledge soundness, known as (strong) simulation extractability (SE). This notion
guarantees that a valid witness can be extracted from any adversary producing a proof
accepted by the verifier, even after seeing an arbitrary number of simulated proofs.

There have been considerable efforts to refine Groth’s zk-SNARK to achieve SE
and guarantee the non-malleability of proofs. Firstly, in 2017 Groth and Maller [74]
proposed a SE zk-SNARK, which is very efficient in terms of proof size but very inef-
ficient in terms of Common Reference String (crs) size and prover time. They also
showed how one can use SE zk-SNARKs to build Signature of Knowledge (SoK)
schemes [36] with succinct signatures. In 2018, Bowe and Gabizon [26] proposed
a less efficient construction in terms of proof size (5 group elements vs 3 in the original
version) based on Groth16 which needs a Random Oracle (RO) (apart from GGM), but
with almost no overhead in the crs size or additional cost for the prover. Last year, Lip-
maa [102] proposed several constructions, including the most efficient QAP-based SE
zk-SNARK in terms of proof size and with the same verification complexity as [74, 26],
but less efficient in terms of crs size and prover time compared to [26]. In [11], At-
apoor and Baghery used the traditional OR technique to achieve SE in Groth16. Their
variant requires 1 paring less for verification in comparison with previous SE construc-
tions, however it comes with an overhead in proof generation, crs, and even larger
overhead in proof size. For a particular instantiation they add ≈ 52.000 constrains to
the underlying QAP instance, which adds fixed overhead to the prover and crs, that
can be considerable for mid-size circuits. They show that for a circuit with 10 × 106

Multiplication (Mul) gates, their prover is about 10% slower, but it can be slower for
circuits with less than 10× 106 gates.

Recently, Baghery, Kohlweiss, Siim, and Volkhov [15] explore another direction.
Instead of modifying Groth16 to achieve strong SE, they first show that the original
construction of Groth16 achieves weak SE with white-box extraction. Weak SE al-
lows proof randomization, while it guarantees that a proof cannot be changed to prove
a new statement. Then, considering the first result, they propose two efficient con-
structions of Groth16 that achieve weak SE with black-box extraction. Both weak
and strong SE zk-SNARKs can be lifted to achieve black-box simulation extractability
with a simple compiler [12, 15]. However, to realize the standard ideal functionality
defined for NIZK arguments, one would need to use a strong SE NIZK with black-box
extraction [70].
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SNARK Model crs Prover Proof Verifier

Groth [72] GGM
m+ 2n− lG1

nG2

m+ 3n− l E1

n E2

2 G1

1 G2

l E1

3 P

GM [74] GGM
2m+ 4n G1

2n G2

2m+ 4n− l E1

2n E2

2 G1

1 G2

l E1

5 P

BG [26]
GGM,
ROM

m+ 2n− l G1

n G2

m+ 3n− l E1

n E2

3 G1

2 G2

l E1

5 P

AB [11] GGM
m′ + 2n′ − l G1

n′ G2

m′ + 3n′ − l E1

n′ E2

4 G1

2G2 + 2λ
l′ + 2 E1

4 P

Lipmaa [103]
AGM,

Tag-based
m+ 3n− l G1

n G2

m+ 4n− l E1

n E2

3 G1

1 G2

l + 1 E1

5 P

Section 5.3
GGM,
ROM

m+ 2n− l G1

n G2

m+ 3n− l E1

n E2

3 G1

2 G2

l E1,1 E2

4 P

Section 5.4
GGM,
CRH

m+ 2n− l G1

n G2

m+ 3n− l E1

n E2

3 G1

2 G2

l E1, 1 E2

1 ET , 4 P

Table 5.1: In the first row we have the Groth’s zk-SNARK, Groth16. In the following
rows we show a omparison of our proposed variations of Groth16 along with the other
SE zk-SNARKs for arithmetic circuit satisfiability with n Mul gates (constraints) and
m wires (variables), of which l are public input wires (variables). A typical set of
values is n = m = 106 and l = 10. In the case of crs size and prover’s computation we
omit constants. In [74], nMul gates andm wires translate to 2n squaring gates and 2m
wires. In [11], SE is achieved with an OR approach which requires to add constraints
and variables, resulting in n′ ≈ n+ 52.000, m′ ≈ m+ 52.000, and l′ = l+ 4. G1,G2

and GT : group elements, Ei: exponentiation in group Gi, Mi: multiplication in group
Gi, P : pairings. GGM: Generic Group Model, ROM: Random Oracle Model, AGM:
Algebraic Group Model, CRH: Collision Resistant Hash.

5.1.1 Our Contributions

In this work, we revise the simulation extractable variants of Groth16, presented
in [26] and [11], to get the best of both constructions.

Our focus is mainly on Bowe and Gabizon’s variation [26] which has the most
efficient prover and the shortest crs among other SE zk-SNARKs [74, 26, 103, 11],
while requires a RO. To achieve (strong) simulation extractability, their prover replaces
all the original computations which depend on some parameter δ given in the crs by
some δ′ and the prover must give [δ′]2 and a proof of knowledge (PoK) of the DLOG
of [δ′]2 w.r.t [δ]2.

Using the same approach [26], we construct two strong SE zk-SNARKs that are the
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most efficient simulation extractable variants of Groth16 in terms of crs size, prover
complexity, and verification. Both zk-SNARKs use some sophisticated modification of
Boneh-Boyen signatures [22] to prove knowledge of the DLOG of δ′ which require 1
pairing less in the verification in comparison with the argument in Bowe and Gabizon’s
construction. The first construction uses non-programmable RO, while in the second
construction, in the cost of a single new element in the crs and a collision-resistant
hash function, we get rid of the RO and similar to Groth16, prove the security of
construction in the GGM model.

Tab. 5.1 presents a comparison of our proposed variants of Groth16 with several
other constructions for a particular instance of arithmetic circuit satisfiability. As it can
be seen, in comparison with [26], both our constructions require 1 paring less in the
verification, while retaining all the other properties of their construction.

The second construction avoids using ROs, in the cost of a single new element
in the crs which is negligible in practice. In comparison with [11], both of our vari-
ants have a negligible overhead in the proof generation and crs size, and they both
also come with smaller overhead in proof size. 1 Among two proposed variants, both
constructions require 4 parings in the verification, however considering the number of
exponentiations, we expect to have a slightly faster verification in the first construction,
presented in Section 5.3.

Finally, we highlight that using the technique proposed in [74], both the proposed
SE zk-SNARKs can be used to build succinct SoK schemes, which would be more
efficient than previous constructions. In general, due to relying on non-falsifiable as-
sumptions, succinct SoK schemes have better efficiency in comparison with the con-
structions that are built under standard assumptions [36, 19, 14]. We also note that
to achieve strong (white-box) SE, our proposed zk-SNARKs require minimal changes
in comparison with the original Groth16, particularly the proof generation and proof
verification of Groth16 is a part of the proof generation and verification in our proto-
cols. Therefore, one can use the same compiler or ad-hoc approach proposed in [12]
and [15], respectively, to construct a more efficient strong black-box SE zk-SNARK.

5.1.2 Organization

In Section 5.2, we introduce the relevant security definitions. In Section 5.3, we give
our first SE zk-SNARK from non-programmable RO in the GGM, and in Section 5.4
our second SE zk-SNARK in GGM without RO.

1In the worst case, our changes add only one element to the crs of Groth16 and since Groth16 is already
proven to achieve subversion ZK (ZK without trusting a third party) [4, 56], our variants also can be proven
to achieve Sub-ZK using the technique proposed in [13].
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5.2 Preliminaries
We use the definitions of NIZK arguments from [72]. Let GR be a relation generator,
such that GR(λ) returns a polynomial-time decidable binary relation R = {(x,w)}.
Here, x is the statement and w is the witness. Security parameter λ can be deduced
from the description of R. The relation generator also outputs auxiliary information
zR that will be given to the honest parties and the adversary. As in [72], zR is the value
returned by G(1λ), and is given as an input to the parties.

Let LR = {x : ∃w, (x,w) ∈ R} be an NP-language. A NIZK argument system
for GR consists of tuple of PPT algorithms (K,P,V,S), such that:

CRS Generator: K is a PPT algorithm that, given (R, zR) where (R, zR) ∈ Im(GR(λ)),
outputs crs := (crsP, crsV) and stores trapdoors of crs as ts. We distinguish crsP

(needed by the prover) from crsV (needed by the verifier).

Prover: P is a PPT algorithm that, given (R, zR, crsP,x,w), if (x,w) ∈ R, outputs
an argument π; otherwise, it outputs ⊥.

Verifier: V is a PPT algorithm that, given (R, zR, crsV,x, π), returns either 0 (reject)
or 1 (accept).

Simulator: S is a PPT algorithm that, given (R, zR, crs, ts,x), outputs a simulated
argument π.

Besides succinct proofs, i.e. polynomial in λ, an SE zk-SNARK is required to
satisfy completeness, simulation extractability, and zero-knowledge.

Definition 30 (Perfect Completeness). A non-interactive argument is perfectly com-
plete for GR, if for all λ, all (R, zR) ∈ Im(GR(1λ)), and (x,w) ∈ R,
Pr
[
crs← K(R, zR), π ← P(R, zR, crsP,x,w) : V(R, zR, crsV,x, π) = 1

]
= 1.

Here, zR can be seen as a common auxiliary input to A that is generated by using
a benign relation generator.

Definition 31 (Simulation Extractability [74]). Let RNDλ(A) denote the random tape
of A. A non-interactive argument is (strong) simulation-extractable for GR, if for any
NUPPT A, there exists a NUPPT extractor ExtA s.t. for all λ,

Pr

(R, zR)← GR(1λ), (crs ‖ ts)← K(R, zR), r ← RNDλ(A),

((x, π) ‖w)← (AO(ts,.) ‖ExtA)(R, zR, crs; r) :

(x, π) 6∈ Q ∧ (x,w) 6∈ R ∧ V(R, zR, crsV,x, π) = 1

 = negl(λ).
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Here, Q is the set of simulated statement-proof pairs. Note that simulation ex-
tractability implies knowledge soundness.

Definition 32 (Zero-Knowledge (ZK) [72]). A non-interactive argument is computa-
tionally ZK for GR, if for all λ, all (R, zR) ∈ Im(GR(1λ)), and for all NUPPT A,
ε0 ≈c ε1, where

εb = Pr[(crs ‖ ts)← K(R, zR) : AOb(·,·)(R, zR, crs) = 1].

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it returns
P(R, zR, crsP,x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R, otherwise
it returns S(R, zR, crs, ts,x). The argument is perfect ZK for GR if one requires that
ε0 = ε1.

5.3 A Simulation Extractable zk-SNARK in the ROM

As we discussed, the main idea in Bowe and Gabizon’s [26] work to achieve simulation
extractability is to replace all the computations which depend on some parameter δ
given in the crs by some randomization of it, say δ′, and the prover must give [δ′]2 and
a Proof of Knowledge (PoK) in the ROM of the Discrete Logarithm (DLOG) of [δ′]2
w.r.t [δ]2. This makes it harder for the adversary to re-use elements from the simulated
proofs that are created with the original parameter δ.

Our idea is to replace the PoK with a Boneh-Boyen signature. A nice feature of this
construction inherited from [26] is that SE is achieved essentially without modifications
in the crs or the prover complexity, or changes in the security model (which is still
Generic Group Model and Random Oracle Model).

5.3.1 Scheme definition

In Fig. 5.1, we describe the proposed variation of Groth16 that can achieve SE. We
highlight the changes in the new construction with gray background.

Our modification follows closely the one of Bowe and Gabizon [26], except that in
their scheme [d]1 = [y]1ζ where [y]1 = H(A ‖ B ‖ C ‖ δ′) and their verification
checks that [δ′]1[y]2 = [d]1[δ]2, which requires 2 pairings. The security proof shows
that this is a simulation extractable PoK of the DLOG of [δ′]2 with respect to [δ]2. We
follow the same idea but our approach embeds a Boneh-Boyen signature in the proof
as argument of knowledge for this DLOG, which requires 1 pairing, instead of 2.
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Setup, crs← K(R, zR): Similar to the original scheme it picks x, α, β, δ ← Z∗p, H ←
H, and returns crs defined as the following (by considering the observation in [27]
that γ in the original scheme can be set 1),

(crsP, crsV):= crs←


[α, β, δ, {xi}n−1

i=0 , {uj(x)β + vj(x)α+ wj(x)}lj=0,

{(uj(x)β + vj(x)α+ wj(x))/δ}mj=l+1 , {x
it(x)/δ}n−2

i=0 ]1,

[β, δ, {xi}n−1
i=0 ]2, [αβ, t(x)]T , H

.
Prover, π ← P(R, zR, crsP,x = (a1, . . . , al),w = (al+1, . . . , am)): assuming a0 =

1, it acts as follows,
1. Selects a random element ζ ← Z∗p, and sets [δ′]2 := ζ[δ]2
2. Let A†(X) ←

∑m
j=0 ajuj(X), B†(X) ←

∑m
j=0 ajvj(X), C†(X) ←∑m

j=0 ajwj(X),
3. Set h(X) =

∑n−2
i=0 hiX

i ← (A†(X)B†(X)− C†(X))/t(X),
4. Set [h(x)t(x)/δ]1 ←

∑n−2
i=0 hi [x

it(x)/δ′]1 ,
5. Set ra ← Zp; Set [A]1 ←

∑m
j=0 aj [uj(x)]1 + [α]1 + ra [δ

′]1 ,
6. Set rb ← Zp; Set [B]2 ←

∑m
j=0 aj [vj(x)]2 + [β]2 + rb [δ

′]2 ,

7. Set [C]1 ← rb[A]1+ra
(∑m

j=0 aj [vj(x)]1 + [β]1
)
+
∑m
j=l+1 aj [(uj(x)β+

vj(x)α+ wj(x))/δ
′ ]1 + [h(x)t(x)/δ′ ]1,

8. Sets m = H([A]1 ‖ [B]2 ‖ [C]1 ‖ [δ′]2) , where H : {0, 1}∗ → Z∗p is a
secure hash function,

9. Computes [D]1 = 1
ζ+m

[t(x)/δ]1 = [ t(x)
δ′+mδ ]1

10. Return π := ([A,C, D ]1, [B, δ
′ ]2).

Verifier, {1, 0} ← V(R, zR, crsV,x = (a1, . . . , al), π = ([A,C,D]1, [B, δ
′]2)):

assuming a0 = 1, and setting m = H([A]1 ‖ [B]2 ‖ [C]1 ‖ [δ′]2) checks if

1. [A]1[B]2 = [C]1 [δ
′]2 +

(∑l
j=0 aj [uj(x)β + vj(x)α+ wj(x)]1

)
[1]2 +

[αβ]T
2. [D]1[δ

′ + δm]2 = [t(x)]T (Note that:[t(x)/δ]1[δ]2 = [t(x)]T )
and return 1 if both checks pass, otherwise return 0.

Simulator, π ← S(R, zR, crsV,x = (a1, . . . , al), ts): Given the simulation trapdoors
ts := (β, δ) acts as follows,

1. Choose random ζ ← Z∗p and set δ′ := ζδ
2. Choose random δ′ ← Z∗p
3. Choose A,B ← Zp
4. Let [C]1 =

[
(A ·B −

∑l
j=0 aj(uj(x)β + vj(x)α+ wj(x))− αβ)/δ′

]
1

5. Let m = H([A]1 ‖ [B]2 ‖ [C]1 ‖ [δ′]2)

6. Set [D]1 =
t(x)

δ′ +mδ
[1]1

7. Return π := ([A]1, [B]2, [C]1, [D]1 , [δ
′]2 ).

Figure 5.1: The proposed simulation-extractable variation of Groth16 for R along
with a Boneh-Boyen signature. H is a family of collision resistant hash functions that
maps to Z∗p. The element [t(x)]T is redundant and can be computed from the rest of
the elements in the crs. Alternatively, one can describe Groth16 as corresponding to
ζ = 1 and where the proof consists only of [A,C]1, [B]2.
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5.3.2 Security
A part from saving one pairing on verification with respect to [26], our scheme also has
the nice property that the RO maps to elements in Zp and it does not need the property
that H can sample elements of G obliviously (i.e. soundness does not use that the
DLOG of image elements is hard).

In a nutshell, we show that we can embed a Boneh-Boyen signature in the proof
and this results in a SE argument of knowledge in the GGM and the ROM. Namely,
the element [1/(δ′ + δm)]1, which is a Boneh-Boyen signature of δm for public key
[δ′]2 can be constructed from [1/δ]1 for all m ∈ Zp, if and only if, the DLOG of δ′

w.r.t δ is known. The adversary might be able to cheat for a specific m (i.e. if it sets
δ′ = kδ−m∗δ it can cheat form∗) but the RO ensures that δ′ cannot be set as a function
of m. Given knowledge of the DLOG of δ′, following the same blueprint as the proof
of Bowe and Gabizon, we prove that the simulated queries are useless to the adversary.
Then, we can easily conclude that the scheme is SE if Groth16 is knowledge sound.

Theorem 28 (Completeness, ZK, SE). The variation of Groth16 described in Fig. 5.1,
guarantees 1) perfect completeness, 2) perfect zero-knowledge and 3) simulation-extractability
in the asymmetric Generic Group Model and the Random Oracle Model.

Proof. Perfect completeness and perfect zero-knowledge are obvious and the proof is
omitted. Knowledge extractability is proven by reduction (in the GGM) to the knowl-
edge soundness of Groth16. The reduction works in two steps (similarly to [26], al-
though the proof of each of these steps is different):

Step 1 Extraction of the DLOG of δ′.

Step 2 Reduction to the Knowledge Soundnesss of Groth16.

Proof of Step 1) SupposeA has made a sequence of queries x1, · · · ,xv to S(ts, ·),
and received answers {πj = (Aj , Bj , Cj , Dj , δj)}vj=1. LetQ′ be the union of elements
in the crs together with those from the replies of S(ts, ·); namely,

Q′ :=



[
α, β, δ, {xi}n−1

i=0 ,

{uj(x)β + vj(x)α+ wj(x)}lj=0,{
uj(x)β + vj(x)α+ wj(x)

δ

}m
j=l+1

,

{xit(x)/δ}n−2
i=0

]
1
, [β, δ, {xi}n−1

i=0 ]2

 ∪

{[
Aj , Cj :=

AjBj−icj−αβ
δj

,

Dj :=
t(x)

δj +mjδ

]
1

[Bj , δj ]2,mj}vj=1


where icj =

∑l
i=0 a

j
i (ui(x)β + vi(x)α + wi(x)), xj = (aj1, . . . , a

j
l ), and mj ∈ Zp

the message that simulator receives from the RO for each Aj , Bj , Cj , δj .
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Now, assume A has produced elements (A,B,C,D, δ′) such that

A ·B ≡ C · δ′ +
(∑l

j=0 aj(uj(x)β + vj(x)α+ wj(x))
)

+ αβ

and, for m := H(A ‖ B ‖ C ‖ δ′), D(δ′ + δm) = t(x). Let Q′1 be the set with the
elements of Q′ in G1 and Q′2 the elements in G2. Since the adversary is generic it has
constructed these elements as a linear combination of the elements in Q′ which are in
the relevant group (i.e. element of Q′1 in G1 for A,C,D and of Q′2 for B, δ′) and we
can extract the coefficients of this linear combination.

We will use the notation of kx,q in the following to denote the coefficient of the
term q that appears in the expression of the element x.

First, we prove that the adversary has knowledge of the discrete logarithm of δ′

w.r.t. δ. From the second verification equation, D = t(x)
δ′+δm . On the other hand,

from adversary A we can recover a vector kD with the coefficients that it has used to
construct D, that is, D =

∑
q∈Q′1

kD,q q, and a vector kδ′ with the coefficients that it
has used to construct δ′ =

∑
q∈Q′2

kδ′,q q.

We argue that δ′ + δm cannot be a polynomial in x, i.e. δ′ + δm is a linear com-
bination of terms in Q′1 without x. Indeed, if δ′ + δm is a polynomial in x, then this
polynomial must divide t(x) because the adversary does not see any rational functions
with x. Then, there exists a polynomial ν such that δ′ + δm = (x − r)ν, for some r
root of t(x). However, since δ′ + δm cannot have any terms xδ (xδ 6∈ Q′2), the only
possibility is that ν does not have any term with δ, and neither δ′ + δm. This means
that δ′ = δ′′ − δm, for some δ′′ independent of δ. But since H is a RO, the probability
that given δ′ and δ′′, m satisfies this relation, is 1/p.

Therefore, x only appears in the numerator of the expressionD = t(x)
δ′+δm , and thus,

we have

t(x)

δ′ + δm
= kD,0

t(x)

δ
+

v∑
j=1

kD,j
t(x)

δj +mj
(5.1)

where, to simplify the notation, we define kD,0 = k
D,

t(x)
δ

. kD,j = k
D,

t(x)
δj+mjδ

.
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Defining δ0 = δ, m0 = m, then

t(x)

δ′ + δm
=

v∑
j=0

kD,j
t(x)

δj +mjδ
⇐⇒ 1

δ′ + δm
=

v∑
j=0

kD,j

∏v
i=0,i6=j(δi +miδ)∏v
i=0(δi +miδ)

(5.2)

⇐⇒
v∏
i=0

(δi +miδ) = (δ′ + δm)
( v∑
j=0

kD,j

v∏
i=0,i6=j

(δi +miδ)
)
.

(5.3)

It follows that the term δ′ + mδ must divide the left side of the equation (5.2).
Therefore, there exists some index j∗ and k ∈ Zp such that δ′+mδ = k(δj∗ +mj∗δ).
Now, dividing Eq. (5.2) by (δj∗ +mj∗δ), we come to the following expression∏v
i=0,i6=j∗(δi+miδ) = k·

(
kD,j∗

∏v
i=0,i6=j∗(δi +miδ) +

∑v
j=0,j 6=j∗ kD,j

∏v
i=0,i6=j(δi +miδ)

)
,

which is equivalent to

0 = (1− k · kD,j∗)
∏v
i=0,i6=j∗(δi +miδ)−

∑v
j=0,j 6=j∗ k · kD,j

∏v
i=0,i6=j(δi +miδ).

Since all summands are linearly independent polynomials, k = k−1
D,j∗ , and kD,j =

0 if j 6= j∗. We distinguish two cases: (1) δ′ + mδ = kδ (j∗ = 0) or (2) δ′ + mδ =
k(δj∗ +mj∗δ) (j∗ 6= 0).

In case (1), we are done, as we can extract the DLOG of δ′ as k −m.
In case (2), there exists some k′ ∈ Zp such that δ′ = kδj∗+k

′δ andm = kmj∗−k′.
Since H is a RO, m is a uniform random element given δ′, (and thus, given k, k′,) and
therefore the probability of this event is 1/p.

Thus, the adversary cannot compute the elements of such a proof belonging to the
Span(Q′) unless it knows ζ.

Proof of Step 2) We show that the elements A,B,C do not use the elements of the
simulated proofs, i.e. {[Aj ]1, [Bj ]2, [Cj ]1, [Dj ]1, [δj ]2}vj=1, and then, with the knowl-
edge of ζ such that δ′ = ζδ, we can reduce our proof to the knowledge soundness proof
of Groth16 [72], since [A]1, [B]2, [Cζ]1 is a valid proof of it.

To prove that A,B,C are not constructed from the elements [Aj ]1, [Bj ]2, [Cj ]1,
[δj ]2, we follow the exact same reasoning as Bowe and Gabizon [26] in the asymmetric
generic group model. First of all, we argue that the term αβ is in the expression of
AB, which means the coefficient kAB,αβ 6= 0. Since AB = Cδ′ + ic + αβ from the
verification equation, the term αβ is not in ic by definition; if it was in Cδ′, then the
term αβ

δ would appear in the expression of C but this cannot be possible because it is
not in Q′1; then αβ is in the expression of AB, i.e. kAB,αβ 6= 0.

140



In the following, we show that α is in A and β is in B by ruling out all other
possibilities.

Looking at Q′ we have that kAB,αβ = kA,αkB,β + kA,CjkB,δj 6= 0 because the
elements in Q′1 capable to generate A and produce αβ when the product AB is com-
puted are [α]1[β]2 and

[
αβ
δj

]
1

[δj ]2, all the other combinations contain the variable x.
Now, we show that kA,αkB,β 6= 0.

We assume kA,αkB,β = 0. Then, kA,CjkB,δj 6= 0. We distinguish two cases, and
show that no-one is possible:

1. If kA,AjkB,Bj = 0, i.e. Aj does not appear inA andBj does not appear inB, but
Cj appears in A and δj in B. We have kCδ′,AjBj = kA,CjkB,δj = kAB,αβ 6= 0,
then either the term AjBj appears in ic + αβ, which cannot be possible by
definition, or AjBjδ appears in C, but this term cannot be computed from therms
in Q′1.

2. Otherwise, kA,AjkB,Bj 6= 0, i.e. Aj and Bj appear in A and B, respectively.
• if Cj appears in A, then kAB,CjBj = kCδ′,CjBj = kA,CjkB,Bj 6= 0, and
Cj
δ appears in C, but it cannot be produced from elements in Q′1.

• if δj appears in B, then kAB,Ajδj = kCδ′,Ajδj = kA,AjkB,δj 6= 0, and
Ajδj
δ appears in C, but it cannot be produced from elements in Q′1.

Now, that we have α, β appear in the expressions of A, B, respectively, we use it
to show that A,B,C are not produced by Aj , Bj , Cj , Dj , δj .

1. Aj , Cj cannot appear in A, and Bj , δj cannot appear in B.
• If Aj appears in A, then kAB,Ajβ = kA,AjkB,β 6= 0, and Ajβ

δ appears in
C.

• If Cj appears in A, then kAB,AjBj βδj
= kA,CjkB,β 6= 0, and AjBjβ

δjδ
ap-

pears in C.
• If Bj appears in B, then kAB,αBj = kA,αkB,Bj 6= 0, and αBj

δ appears in
C.

• If δj appears in B, then kAB,αδj = kA,αkB,δj 6= 0, and αδj
δ appears in C.

Any of previous cases cannot occur, because the elements Ajβδ ,
AjBjβ
δjδ

,
αBj
δ ,

αδj
δ

cannot be produced from the elements in Q′1.
2. Aj , Cj cannot appear in C. IfAj , Cj appears in C, thenAjδ, Cjδ appear inAB,

respectively, which implies Aj , Cj appear in A, that is already ruled out.
3. Dj cannot appear inA. AssumeA has been generated from someDj = t(x)

δj+mjδ
,

so kA,Dj 6= 0. Observe that from the verification equation and the fact that
kB,β 6= 0, implies kAB,Djβ 6= 0. But this cannot be cancelled out by any of
the other terms in the equation, so kCδ′,Djβ 6= 0. Since β is independent of δ′,
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kC,Dj 6= 0, but Djcannot be computed from elements in Q′1.
4. Dj cannot appear in C. Otherwise, kC,Dj 6= 0, so kCδ,Djδ′ 6= 0. However, this

would imply that kAB,Djδ′ 6= 0 and since δ′ ∈ Q′2, kA,Dj 6= 0, which we ruled
out previously.

Note that we make the proof in the asymmetric GGM for simplicity, but the analo-
gous proof in the symmetric model gives very similar impossible terms. The difference
is that we have to consider the wholeQ′ in the argumentations and in the second part of
the proof we have to analyse more possible cases (considering α in any of the groups).

5.4 A Simulation Extractable zk-SNARK without RO
In this section, we present another variation of the Groth16 which is very similar to
the construction in Section 5.3. It also offers simulation extractability in the Generic
Group Model, but without involving the Random Oracle. This is done in exchange for
adding one element in the crs.

5.4.1 Scheme definition
In Fig. 5.2, we propose our second variation of Groth16 for QAP. It is inspired by the
simulation extractable version of Bowe and Gabizon [26] and is very similar to the first
construction of this work (see Section 5.3 for intuition).

In this approach, we change the Proof of Knowledge (PoK) of the DLOG of [δ′]2
w.r.t. [δ]2 to another PoK in the GGM without using random oracles with a variation
of Boneh-Boyen signatures, where we just use the collision resistance property of the
hash function. We briefly give an intuition in the following.

Avoiding Random Oracle

Our proof uses the collision resistance property of the hash function and the generic
group model. Very roughly, the new variable γ gives some additional guarantees be-
cause to compute t(x) (γ+m)

(δ′+δm) fromDj such thatmj 6= m, it is necessary to know both
1

(δ′+δm) and γ
(δ′+δm) , but this is only possible when δ′ + δm = kδ. Then, either we

have the knowledge of the DLOG of δ′ respect to δ (k −m), which is straightforward,
or either we have re-used δ′j and mj from some jth query. The last case is discarded
when we reach that same message had to be re-used, m = mj , which breaks collision
resistance of the hash.

142



5.4.2 Security

We prove security of our construction (in Fig. 5.2) in the following theorem.

Theorem 29 (Completeness, ZK, SE). The variation of Groth16 described in Fig. 5.2,
guarantees perfect completeness, perfect zero-knowledge and simulation-extractability
in the asymmetric Generic Group Model.

Proof. Perfect completeness and perfect zero-knowledge are obvious and the proof is
omitted. Knowledge extractability is proven in the same way as the proof of Section 5.3
by reduction (in the GGM) to the knowledge soundness of Groth16, the reduction
works in these two steps:

Step 1 Extraction of the DLOG of δ′.

Step 2 Reduction to the Knowledge Soundnesss of Groth16.

Proof of Step 1) SupposeA has made a sequence of queries x1, · · · , xv to S(ts, ·),
and received answers {πj = ([Aj ]1, [Bj ]2, [Cj ]1, [Dj ]1, [δj ]2)}vj=1. Let Q′ be the
union of elements in the crs together with those from the replies of S(ts, ·); namely,

Q′ :=


[α, β, δ, {xi}n−1

i=0 , γt(x)/δ

{uj(x)β + vj(x)α+ wj(x)}lj=0,

{uj(x)β + vj(x)α+ wj(x)

δ
}mj=l+1,

{xit(x)/δ}n−2
i=0 ]1, [β, δ, {xi}n−1

i=0 ]2

 ∪

{[
Aj , Cj :=

AjBj−icj−αβ
δj

,

Dj :=
t(x)(γ +mj)

δj +mjδ

]
1

[Bj , δj ]2,mj}vj=1



where icj =
∑l
i=0 a

j
i (ui(x)β + vi(x)α + wi(x)), xj = (aj1, . . . , a

j
l ), and mj ∈ Zp

the message that simulator receives from the hash function for each Aj , Bj , Cj , δj .

We assume the adversary A has produced elements (A,B,C,D, δ′) such that

A ·B ≡ C · δ′ +
(∑l

j=0 aj(uj(x)β + vj(x)α+ wj(x))
)

+ αβ
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Setup, crs← K(R, zR): Similar to the original scheme pick x, α, β, δ ← Z∗p, H ← H,
and returns crs defined as the following,

(crsP, crsV):= crs←


[
α, β, δ, {xi}n−1

i=0 , {uj(x)β + vj(x)α+ wj(x)}lj=0,
γt(x)
δ{

uj(x)β + vj(x)α+ wj(x)

δ

}m
j=l+1

,

{
xit(x)

δ

}n−2

i=0

]
1
,

[β, δ, {xi}n−1
i=0 ]2, [αβ, t(x), γt(x) ]T , H

.
Prover, π ← P(R, zR, crsP,x = (a1, . . . , al),w = (al+1, . . . , am)): assuming a0 =

1, it acts as follows,
1. Selects a random element ζ ← Z∗p, and sets [δ′]2 := ζ[δ]2
2. Let A†(X)←

∑m
j=0 ajuj(X), B†(X)←

∑m
j=0 ajvj(X),

3. Let C†(X)←
∑m
j=0 ajwj(X),

4. Set h(X) =
∑n−2
i=0 hiX

i ← (A†(X)B†(X)− C†(X))/t(X),
5. Set [h(x)t(x)/δ′]1 ← (1/ζ)(

∑n−2
i=0 hi[x

it(x)/δ]1),
6. Set ra ← Zp; Set [A]1 ←

∑m
j=0 aj [uj(x)]1 + [α]1 + ra [δ

′]1 ,
7. Set rb ← Zp; Set [B]2 ←

∑m
j=0 aj [vj(x)]2 + [β]2 + rb [δ

′]2 ,

8. Set [C]1 ← rb[A]1 + ra
(∑m

j=0 aj [vj(x)]1 + [β]1
)
+

(1/ζ)
∑m
j=l+1 aj([(uj(x)β+vj(x)α+wj(x))/δ]1)+[h(x)t(x)/δ′ ]1,

9. Set m = H([A]1 ‖ [B]2 ‖ [C]1 ‖ [δ′]2) , where H : {0, 1}∗ → Z∗p is a se-
cure hash function,

10. Compute [D]1 = m
ζ+m

[ t(x)
δ

]1 +
1

ζ+m
[ γt(x)

δ
]1 = [ (m+γ)t(x)

δ′+mδ ]1

11. Return π := ([A,C, D ]1, [B, δ
′ ]2).

Verifier, {1, 0} ← V(R, zR, crsV,x = (a1, . . . , al), π = ([A,C,D]1, [B, δ
′]2)):

assuming a0 = 1, and setting m = H([A]1 ‖ [B]2 ‖ [C]1 ‖ [δ′]2) checks if

1. [A]1[B]2=[C]1 [δ
′]2+
(∑l

j=0 aj [uj(x)β + vj(x)α+ wj(x)]1

)
[1]2+[αβ]T

2. [D]1[δ
′ + δm]2 = m[t(x)]T + [γt(x)]T

and returns 1 if both checks pass, otherwise return 0.
Simulator, π ← S(R, zR, crsV,x = (a1, . . . , al), ts): Given the simulation trapdoors

ts := (β, δ) acts as follows,
1. Choose random ζ ← Z∗p and set δ′ := ζδ
2. Choose A,B ← Zp
3. Let [C]1 = [(A ·B −

∑l
j=0 aj(uj(x)β + vj(x)α+ wj(x))− αβ)/δ′]1

4. Let m = H([A]1 ‖ [B]2 ‖ [C]1 ‖ [δ′]2)
5. [D]1 = m

ζ+m
[ t(x)
δ

]1 +
1

ζ+m
[ γt(x)

δ
]1 = [ (m+γ)t(x)

δ′+mδ ]1

6. Return π := ([A,C, D ]1, [B, δ
′ ]2).

Figure 5.2: The proposed simulation-extractable variation of Groth16 for R along
with a modification of the Boneh Boyen signature. H is a family of collision resistant
hash functions that maps to Z∗p. The elements [αβ, t(x), γt(x)]T are redundant and
can in fact be computed from the rest of the elements in the crs. Alternatively, one can
describe Groth16 as corresponding to ζ = 1, γ = 0 and where the proof consists only
of [A,C]1, [B]2. Differences with Groth16 are highlighted.

144



and, for m := H([A]1 ‖ [B]2 ‖ [C]1 ‖ [δ′]2), D(δ′ + δm) = t(x)(m+ γ). Let Q′1
the elements in Q′ in G1 and Q′2 the elements in G2. Since the adversary is generic it
has constructed these elements as a linear combination of the elements in Q′ which are
in the relevant group (i.e. element of Q′1 in G1 for A,C,D and of Q′2 for B, δ′) and we
can extract the coefficients of this linear combination.

First, we prove that the adversary has knowledge of the discrete logarithm of δ′

w.r.t. δ. From the second verification equation we know that D = t(x) γ+m
δ′+mδ . On the

other hand, from adversary A we can recover a vector kD with the coefficients that it
has used to construct D, that is, D =

∑
q∈Q′1

kD,q q. Equating these two expressions,

t(x)(m+ γ) = (
∑
q∈Q′1

kD,q q)(δ
′ +mδ), (5.4)

where δ′ =
∑
q∈Q′2

kδ′,q q for another vector of coefficients kδ′ . The terms which
include γ in both sides of the equation must be the same.

On the other hand, by assumption, in the asymmetric GGM, the term δ′ is con-
structed as a linear combination of elements inQ′2 and therefore δ′+δm is independent
of γ. Then, keeping only the terms with γ in equation (5.4), we obtain the following
relation:

t(x)γ = kD,0
γt(x)
δ (δ′ +mδ) +

∑v
j=1 kD,j

γt(x)
δj+mjδ

(δ′ +mδ), (5.5)

where we have set kD,0 = k
D,

γt(x)
δ

and kD,j = k
D,

γt(x)
δj+mjδ

to simplify the notation.

Dividing both sides of the equation by t(x)γ and defining δ0 = δ′, m0 = 0, we
obtain the following equivalent equation:

1 =
(∑v

j=0 kD,j
1

δj+mjδ

)
(δ′ +mδ) =

∑v
j=0 kD,j

∏v
i=0,i 6=j(δi+miδ)∏v
i=0(δi+miδ)

(δ′ +mδ)

⇔
∏v
i=0(δi +miδ) = (δ′ +mδ)

(∑v
j=0 kD,j

∏
i=0,i6=j(δi +miδ)

)
. (5.6)

From the last equation it follows that the term δ′ +mδ must divide the left side of the
equation (5.6). Therefore, there exists some index j∗ and k ∈ Zp such that δ′ +mδ =
k(δj∗ + mj∗δ). Now, dividing Eq. (5.6) by (δj∗ + mj∗δ), we come to the following
expression

0 = (1− k · kD,j∗)
∏v
i=0,i6=j∗(δi +miδ)−

∑v
j=0,j 6=j∗ kD,j

∏v
i=0,i6=j(δi +miδ).

Since all summands are linearly independent polynomials, k = k−1
D,j∗ , and kD,j =

0 if j 6= j∗. We distinguish two cases: (1) δ′ + δm = kδ (j∗ = 0) or (2) δ′ + δm =
k(δj∗ +mj∗δ) (j∗ 6= 0).
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In case (1), we are done, as we can extract the DLOG of δ′ as k −m.
In case (2), from equation (5.4) and putting everything together, we have that:

t(x)(m+γ) = kD,j∗
(γ +mj∗)

(δj∗ +mj∗δ)
(δ′+mδ) = kD,j∗k

−1(γ+mj∗)t(x) = (γ+mj∗)t(x).

This implies that mj∗ = m is a collision of H .
Proof of Step 2) We show that the elements A,B,C do not use the elements of the

simulated proofs, say V := {[Aj ]1, [Bj ]2, [Cj ]1, [Dj ]1, [δj ]2}vj=1, and then, with the
knowledge of ζ such that δ′ = ζδ, we can reduce our proof to the knowledge soundness
proof of Groth16 [72], since [A]1, [B]2, [Cζ]1 is a valid proof of Groth16.

For this, we need to argue that A,B,C cannot have been constructed from any
of the elements of the queries. To prove that A,B,C are not constructed from the
elements [Aj ]1, [Bj ]2, [Cj ]1, [δj ]2, we follow the exact same reasoning as Bowe and
Gabizon [26] in the GGM and we omit the details. Next, we prove that to construct
A,C the prover cannot have used any of the Dj terms, which are the new elements in
our proof.

Analogously to proof in Section 5.3, assume A has been generated from some
Dj =

t(x)(mj+γ)
δj+mjδ

. Observe that the verification equation contains the term αβ which
is produced by AB by a similar argument to Section 5.3.Thus, if kA,Dj 6= 0, then
kAB,Djβ 6= 0. However, this term in AB cannot be cancelled out by any of the other
terms in the equation. Because if kCδ′,Djβ 6= 0, then kC,Dj 6= 0 because δ′ is indepen-
dent of β, but Dj cannot be computed from elements in Q′1.

Now, assume Dj appears in C, then kCδ′,Djβ 6= 0. However, neither the term αβ
nor the sum of public values can include it, so the only possibility is that it appears in
AB. Since δ′ ∈ Q′2, then A would contain Dj , which we ruled out previously.
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Chapter 6

Somewhere Statistically Binding
Commitments

This chaper is based on the result Somewhere Statistically Binding Commitments ac-
cepted to be published in Financial Cryptography 2021.

6.1 Introduction

As we already mentioned in Chapter 1, commitment schemes are one of the most useful
primitives in cryptography. In essence, a commitment to a value binds this value to
the commitment but hides it from other parties. Commitment schemes are naturally
used in zero-knowledge proofs, where one often proves statements about a committed
value while keeping it hidden. For instance, to complete a digital transaction, a party
may need to prove he has available funds in his account without actually revealing his
exact balance. Such proofs on committed values are very efficient due to works like
Bulletproofs [28], and are used in many privacy-preserving cryptocurrency designs
such as Mimblewimble [111, 58] and Quisquis [54].

Dual-mode commitment schemes [44, 34, 43] are an interesting variant where the
commitment key can be set up in one of two modes: binding or hiding. In the binding
mode, the commitment can only be opened to one valid value. Meanwhile, in the hiding
mode, a commitment hides the committed value even to unbounded adversaries. For
this definition to make sense, one should not be able to guess which mode is being used
based on the commitment key, i.e., the commitment key hides the mode. Dual-mode
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commitments are an essential tool in Groth-Sahai proofs [78] which is a framework for
constructing non-interactive zero-knowledge (NIZK) proofs for algebraic relations.

In the case of committing to a vector, the two modes of a dual-mode commitment
can be seen to be two extremes: the commitment is either binding in all positions in
the vector or none of them. A natural way to generalize the notion would be to have
multiple modes of commitment, specifying that the commitment is binding in some
positions in the vector of values. A similar generalization for hash functions is known
as somewhere statistically binding hash [83, 107], in which one can compute a hash of
a vector v such that the computed hash is statistically binding in one coordinate of v.

A generalization of dual-mode commitments would lead to interesting applications
in NIZK arguments. In a typical zero-knowledge succinct argument of knowledge (zk-
SNARK) for Circuit-SAT [71, 100, 61, 45], the prover commits to the witness (i.e.,
all the inputs to a circuit), and the proof of (knowledge) soundness involves using a
non-falsifiable assumption to extract the whole committed vector, which is then used
to check each gate to establish where exactly the prover cheated; based on the knowl-
edge of the witness one then breaks a computational assumption. One can get a more
efficient extraction under falsifiable assumptions if the commitment was binding only
on the values corresponding to the inputs and outputs of a specific gate: one then only
needs to check the extracted values against a randomly chosen gate. As a caveat, the
technique will lead to a security loss linear in the number of gates.

In fact, the above extraction technique has been done before in Chapter 3 and [69]
using a generalization of the Pedersen commitment scheme called Extended Multi-
Pedersen [67, 68] and resulting in efficient NIZK arguments under falsifiable assump-
tions. However, the above results are not zk-SNARKs: they are Quasi-Adaptive NIZK
(QA-NIZK) arguments which means the crs may depend on the relation, and while the
argument is succinct, the commitment is not.1 Moreover, Chapter 3 neither [69] did
not formalize which properties of a commitment scheme would be required to enable
efficient NIZK arguments.

In the above construction, we need a succinct somewhere statistically binding prop-
erty that guarantees that the chosen coordinate is statistically binding while the re-
maining coordinates can be computationally binding. On the other hand, to get zero-
knowledge, the commitment needs to be almost-everywhere statistically hiding, that is,
computationally hiding at the chosen coordinate, and statistically hiding at any other
coordinates. We also need index-set hiding, which means an adversary that is given the
commitment key does not know which particular coordinate is statistically binding.

1One cannot construct NIZK arguments in a black-box way from falsifiable assumptions [64], hence any
black-box construction from falsifiable assumptions will not be fully succinct.
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Our Contributions

Formalizing the properties of the Extended Multi-Pedersen (EMP) commitment scheme
[67, 68], we define a somewhere statistically binding (SSB) commitment scheme to n-
dimensional vectors. In the commitment key generation phase of an SSB commitment
scheme, one chooses an index-set S ⊆ [1..n] of size at most q ≤ n and defines a
commitment key ck that depends on n, q and S. A commitment to an n-dimensional
vector x will be statistically binding and extractable at coordinates indexed by S and
perfectly hiding at all other coordinates. Moreover, commitment keys corresponding to
any two index-sets S1 and S2 of size at most q must be computationally indistinguish-
able. Thus, an SSB commitment scheme is required to be SSB, somewhere statistically
extractable (SSE), almost everywhere statistically hiding (AESH), and index-set hid-
ing (ISH). An SSB commitment scheme generalizes dual-mode commitment schemes
(where n = 1 and q ∈ {0, 1} determines the mode) and the EMP commitment scheme
(where q = 1 and n is arbitrary).

In Section 6.4, we define algebraic commitment schemes (ACS), where the com-
mitments keys are matrices of general matrix distributions. We prove that the distri-
bution of key matrices defines which properties of SSB commitments hold in each
coordinate and show that these commitments are suitable for working with QA-NIZK
arguments. This is because they behave like linear maps and the properties of SSB
commitments can be expressed in terms of membership to linear subspaces. Next,
we generalize the EMP commitment scheme to work with arbitrary values of q. Impor-
tantly, a single EMP commitment consists of q+1 group elements and it is thus succinct
given small q. We prove that EMP satisfies the mentioned security requirements under
a standard Matrix DDH assumption [52].

In Section 6.5, we define functional SSB commitments, which are statistically bind-
ing on some components that are outputs of some functions S = {fi}i where |S| ≤ q.
It is a generalization of SSB commitments, where the extracted values are the result of
some linear functions of the committed values, instead of the values themselves. We
show that results which hold for SSB commitments, also naturally hold for functional
SSB commitments. The notion of functional SSB commitments for families of linear
functions was already used indirectly in our prior work in Chapter 3; however, they
were not formally defined and their security properties were not analyzed. We also
see that a minor modification of EMP works as a functional SSB commitment if we
consider only linear functions.

We provide some applications of functional SSB commitments. In Section 6.6.1
we propose a novel (but natural) application that we call oblivious database queries
(ODQ). In an ODQ protocol, a sender has a private database x and a receiver wants
to query the database to learn f1(x), . . . , fq(x) without revealing the functions fi.
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This can be directly realized with linear EMP if we restrict fi to be linear functions.
The receiver sends a commitment key (which encodes S = {fi}i) to the sender who
responds with a commitment to the database x. The receiver can then extract the
query results with an extraction key (SSE property). Unfortunately, linear EMP only
has F -extractability [17] (more precisely, one can only extract the message as a vec-
tor of group elements, not a vector of integers), and thus we are only able to extract
{gfi(x)}i where g is a generator of some cyclic group. The protocol is secure in the
semi-honest model2. In particular, the receiver’s privacy follows from the function-set
hiding property (analogue to ISH in functional SSB commitments), which holds un-
der the DDH assumption. Sender’s privacy holds information-theoretically since using
AESH property, we can perfectly simulate the commitment. We also achieve near-
optimal download rate (the ratio between output size and sender’s message size) which
is q/(q+1) ≈ 1 but sub-optimal total rate (ratio between output size and total transcript
size) of approximately 1/(n+ q).

A similar approach also gives us oblivious linear function evaluation (OLE) [49,
65, 48] where the sender has a private linear function f and the receiver wants to learn
f(x) of his private input x. However, in this case, both download rate and total rate
are sub-optimal.

Recently, Döttling et al. [47] proposed an oblivious matrix-vector product protocol
in the semi-honest model using trapdoor hash functions. In their case, the receiver has
x, the sender has a matrix M, and the receiver wants to learn Mx. If we interpret
linear functions {fi}i as a matrix M, then our ODQ can be seen as an OMV protocol
where the roles of sender and receiver are switched. They gave a construction under
the Learning with Errors (LWE) and the Quadratic Residuosity (QR) problems, which
work over fields with small characteristic or rings modulo a smooth integer. Interest-
ingly, they also achieve a download rate of 1 but sub-optimal total rate. Thus our work
can be viewed as complementary to their result.

In Section 6.6.2 we present a QA-NIZK for Square Arithmetic Programs (SAP, [74])
that follows a similar strategy to our main construction in Chapter 3, but can be used for
arithmetic circuit satisfiability instead of Boolean circuit satisfiability. This QA-NIZK
has comparable efficiency to the boolean one in Chapter 3 and it is also proven under
falsifiable assumptions.

Application: Shorter QA-NIZK for arithmetic circuits

In Chapter 3, we constructed an efficient commit-and-prove QA-NIZK argument for
Square Span Programs (SSP, [45]) under falsifiable assumptions, which can be used

2A semi-honest party follows the protocol, but tries to learn extra information from their view in the
protocol [47].

150



to prove boolean circuit satisfiability. We present a QA-NIZK for Square Arithmetic
Programs (SAP, [74]) in Section 6.6.2 that follows a similar strategy but can be used
for arithmetic circuit satisfiability with comparable efficiency and also proven under
falsifiable assumptions. Both constructions use a linear-length perfectly binding com-
mitment of the witness, but they are otherwise succinct arguments; the arguments also
contain perfectly hiding commitments that come from zk-SNARK techniques for prov-
ing satisfiability of quadratic equations and a functional SSB commitment to extract
certain linear functions of the witness in the security reduction.

We note that the construction in Chapter 3 uses linear EMP commitment schemes
indirectly. We formalize and generalize them in our framework as functional SSB
commitments and then use them as a black box in our QA-NIZK application. This
significantly simplifies the understanding of the scheme in two ways. Firstly, the tech-
niques used in the security proof are natural functionalities of algebraic commitment
schemes that we present in this work, e.g., using a commitment key consisting of two
orthogonal matrices to enable extraction. Secondly, the notation of our commitments
is more compact, which helps to see that soundness is guaranteed by the SSB, [·]-SSE,
and FSH properties of functional SSB and zero-knowledge is guaranteed by AESH.

We give an intuition of the proof and soundness strategy in the following. The
proof consists of two subarguments: one based on zk-SNARK techniques where many
quadratic equations are proved to be satisfied using a single polynomial divisibility re-
lation with polynomials evaluated at a secret point s, and a proof of membership in
subspace showing that all the commitments in the argument open to the same witness.
We have one linear perfectly binding commitment [c]1, which is an ElGamal encryp-
tion of the witness in the source group G1. Similarly to zk-SNARKs, the witness is
extracted in the security proof and used to detect which quadratic equation of the lan-
guage does not hold. However, our commitment is only F -extractable, which is not
enough to break the underlying falsifiable assumption. Note that zk-SNARKs typically
use a non-falsifiable assumption at this point to avoid this issue. We instead use a linear
EMP commitment [d]2 in the source group G2 that perfectly hides the witness in the
honest proof (setting S = ∅).

In the security proof, we change to an indistinguishable game (by the FSH prop-
erty) where the commitment key now encodes some linear functions that depend on
the secret point s. This will allow us to F -extract linear combinations of the form∑
i wiαi(s) where {wi}i is the witness and αi(s) are coefficients of the function we

choose. Essentially it allows us to trick the prover into computing some secret linear
function of the witness. We see that the extra knowledge from the commitment [d]2
allows us to break a variant of the q-target strong Diffie-Hellman (TSDH) assump-
tion [21]. We also prove that the new assumption is falsifiable and equivalent to the
q-TSDH assumption under a knowledge assumption in Section 6.6.2.
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Relation to other primitives

The SSB requirement makes the EMP commitment scheme look similar to SSB hash
functions [83, 107], but there are obvious differences. SSB hash has the local opening
property, where the committer can efficiently open just one coordinate of the committed
vector, but SSB commitments do not3. Meanwhile, we need hiding while SSB hash
does not. This is, intuitively, a natural distinction and corresponds to the difference
between collision-resistant hash families and statistically hiding commitment schemes.
Also, we allow ck to be long, but require commitments to be succinct.

SSB commitments are directly related to two-message oblivious transfer (OT) pro-
tocols as defined in [8]. Essentially, SSB commitments are non-interactive analogs of
such protocols: the commitment key corresponds to the first OT message ot1 and the
commitment corresponds to the second OT message ot2. Importantly, while in OT,
the ot1 generator is always untrusted, in our applications, it is sufficient to consider a
trusted ck generator. This allows for more efficient constructions.

We discuss the relation to existing primitives in more detail in Section 6.7.

6.2 Preliminaries
For a set S, let P(S) denote the power set (i.e., the set of subsets) of S, and let P(S, q)
denote the set of q-size subsets of S. For an n-dimensional vector α and i ∈ [1..n],
let αi be its ith coefficient. For a tuple S = (σ1, . . . , σq) with σi < σi+1, let αS =
(ασ1 , . . . , ασq ). Let α∅ be the empty string.

6.3 SSB Commitment Schemes
In an SSB commitment scheme, the commitment key depends on n, q, and an index-
set S ⊆ [1..n] of cardinality ≤ q (in the case of Groth-Sahai commitments [78], n =
q = 1 while in the current result n = poly(λ) and q ≥ 1 is a small constant). At
coordinates described by S, an SSB commitment scheme must be statistically binding
and F -extractable [17] for a well-chosen function F , while at all other coordinates it
must be statistically hiding and trapdoor. Moreover, it must be index-set hiding, i.e.,
commitment keys corresponding to any two index-sets S1 and S2 of size ≤ q must be
computationally indistinguishable.

3The properties of SSB and local opening are orthogonal: it is possible to construct efficient SSB hashes
without local opening [107] and efficient vector commitments [98, 33] (which have a local opening) without
the SSB property
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The Groth-Sahai commitments correspond to a bimodal setting where either all
coefficients are statistically hiding or statistically binding, and these two extremes are
indistinguishable. SSB commitments correspond to a more fine-grained multimodal
setting where some ≤ q coefficients are statistically binding and other coefficients are
statistically hiding, and all possible selections of statistically binding coefficients are
mutually indistinguishable. Our terminology is inspired by [83, 107] who defined SSB
hashing; however, the consideration of the hiding property makes the case of SSB
commitments sufficiently different.

6.3.1 Formalization and Definitions
Definition 33. AnF -extractable SSB commitment scheme COM = (G,KC, com, tdOpen,ExtF )
consists of the following polynomial-time algorithms:

Parameter generation: G(1λ) returns parameters pp (e.g., description of a bilinear
group).

Commitment key generation: for parameters pp, n = poly(λ), q ∈ [1..n], and a
tuple S ⊆ [1..n] with |S| ≤ q, KC(pp, n, q,S) outputs a commitment key ck and
a trapdoor td = (ek, tk) consisting of an extraction key ek, and a trapdoor key
tk. Also, ck implicitly specifies pp, n, q, the message space MSP, the randomizer
space RSP, the extraction space ESP, and the commitment space CSP, such that
F (MSP) ⊆ ESP. For invalid input, KC outputs (ck, td) = (⊥,⊥).

Commitment: for pp ← G(1λ), ck 6= ⊥, a message x ∈ MSPn, and a randomizer
r ∈ RSP, com(ck;x; r) outputs a commitment c ∈ CSP.

Trapdoor opening: for pp ← G(1λ), S ⊆ [1..n] with |S| ≤ q, (ck, (ek, tk)) ←
KC(pp, n, q,S), two messages x0,x1 ∈ MSPn, and a randomizer r0 ∈ RSP,
tdOpen(pp, tk;x0, r0,x1) returns a randomizer r1 ∈ RSP.

Extraction: for pp ← G(1λ), S = (σ1, . . . , σ|S|) ⊆ [1..n] with 1 ≤ |S| ≤ q,
(ck, (ek, tk))← KC(pp, n, q,S), F : MSP→ ESP and c ∈ CSP, ExtF (pp, ek; c)
returns a tuple (yσ1

, . . . , yσ|S|) ∈ ESP|S|. We allow F to depend on pp.

Note that SSB commitment schemes are non-interactive and work in the crs model;
the latter is needed to achieve trapdoor opening and extractability.

With the current definition, perfect completeness is straightforward: to verify that
c is a commitment of x with randomizer r, one just recomputes c′ ← com(ck;x; r)
and checks whether c = c′.

An F -extractable SSB commitment scheme COM is secure if it satisfies the fol-
lowing security requirements. (See Table 6.1 for a brief summary.)
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Abbreviation Property Definition
ISH Index-set hiding The commitment key reveals nothing about

the index-set S
SSB Somewhere statistically binding A commitment to x statistically binds the

values xS
AESH Almost everywhere statistically

hiding
The commitment is statistically hiding in the
indices outside the set S

F -SSE Somewhere statistical F -
extractability

Given a commitment to x and the extraction
key, one can extract the values F (xS)

Table 6.1: Properties of an SSB commitment scheme

Index-Set Hiding (ISH): ∀λ, PPT A, n = poly(λ), q ∈ [1..n], AdvishA,COM,n,q :=

2 · |εish
A,COM,n,q(λ)− 1/2| ≈λ 0, where εish

A,COM,n,q(λ) :=

Pr

[
pp← G(1λ); (S0,S1)← A(pp, n, q) s.t. ∀i ∈ {0, 1},Si ⊆ [1..n] ∧ |Si| ≤ q;
β ← {0, 1}; (ckβ , tdβ)← KC(pp, n, q,Sβ) : A(ckβ) = β

]
.

Somewhere Statistically Binding (SSB): ∀λ, unbounded adversary A, n = poly(λ),
q ∈ [1..n], AdvssbA,COM,n,q ≈λ 0, where AdvssbA,COM,n,q :=

Pr

pp← G(1λ);S ← A(pp, n, q) s.t. S ⊆ [1..n] ∧ |S| ≤ q;
(ck, td)← KC(pp, n, q,S); (x0,x1, r0, r1)← A(ck) :

x0,S 6= x1,S ; com(ck;x0; r0) = com(ck;x1; r1)

 .

COM is somewhere perfectly binding (SPB) if AdvssbA,COM,n,q = 0.

Almost Everywhere Statistically Hiding (AESH): ∀λ, unbounded adversaryA, n = poly(λ),
q ∈ [1..n], Advaesh

A,COM,n,q := 2·|εaesh
A,COM,n,q(λ)−1/2| ≈λ 0, where εaesh

A,COM,n,q(λ) :=

Pr

pp← G(1λ);S ← A(pp, n, q) s.t. S ⊆ [1..n] ∧ |S| ≤ q;
(ck, td)← KC(pp, n, q,S); (x0,x1)← A(ck) s.t. x0,S = x1,S ;

β ← {0, 1}; r ← RSP : A(com(ck;xβ ; r)) = β

 .

COM is almost everywhere perfectly hiding (AEPH) if Advaesh
A,COM,n,q = 0. If A

is PPT, COM is almost everywhere computationally hiding (AECH).

154



Somewhere Statistical F -Extractability (F -SSE): ∀λ, n = poly(λ), q ∈ [1..n],
S = (σ1, . . . , σ|S|) with |S| ≤ q, (ck, (ek, tk))← KC(pp, n, q,S), and PPTA,
AdvsseA,F,COM,n,q :=

Pr
[
x, r ← A(ck) : ExtF (pp, ek; com(ck;x; r)) 6= (F (xσ1), . . . , F (xσ|S|))

]
≈λ 0 .

Additionally, an SSB commitment scheme can but does not have to be trapdoor.

Almost Everywhere Statistical Trapdoor (AEST): ∀λ, n = poly(λ), q ∈ [1..n],
and unbounded A, AdvaestA,COM,n,q ≈λ 0, where AdvaestA,COM,n,q =

Pr

pp← G(1λ);S ← A(pp, n, q) s.t. S ⊆ [1..n] ∧ |S| ≤ q;
(ck, td) = (ek, tk))← KC(pp, n, q,S); (x0, r0,x1)← A(ck) s.t. x0,S = x1,S ;

r1 ← tdOpen(pp, tk;x0, r0,x1) : com(ck;x0; r0) 6= com(ck;x1; r1)

 .

It is almost everywhere perfect trapdoor (AEPT) if AdvaestCOM,n,q = 0.

It is important to consider the case |S| ≤ q instead of only |S| = q. For example,
when q = n, the perfectly binding (PB) commitment key (|S| = n) has to be indistin-
guishable from the perfectly hiding (PH) commitment key (|S| = 0). Moreover, in the
applications to construct QA-NIZK argument systems, like those in [67, 68]and Chap-
ter 3, one should not be able to distinguish between the cases |S| = 0 and |S| = q.

F -extractability [17] allows one to model the situation where xi ∈ Zp but we can
only extract the corresponding bracketed value [xi]ι ∈ Gι; similar limited extractability
is satisfied say by the Groth-Sahai commitment scheme for scalars [78]. Note that in
this case, F depends on pp. Interestingly, extractability implies SSB.

Lemma 30 (F -SSE & F is injective ⇒ SSB). Let COM be an SSB commitment
scheme. Fix n and q. Assume F is injective. For all PPT A, there exists a PPT B
such that AdvssbA,COM,n,q ≤ 2 · AdvsseB,F,COM,n,q .

Proof. Assume that for given n and q, A breaks SSB with probability AdvssbA,COM,n,q .
This means that for some S of cardinality ≤ q and honestly generated ck (w.r.t.
S), A outputs (x0,x1, r0, r1) such that x0S 6= x1S and C := com(ck;x0; r0) =
com(ck;x1; r1).

Sincex0,S 6= x1,S andF is injective, we get thatF0 := (F (x0σ1
), . . . , F (x0σ|S|)) 6=

(F (x1σ1), . . . , F (x1σ|S|)) =: F1. Therefore, there exists β ∈ {0, 1}, such that ExtF (pp, ek;C) 6=
Fβ . Thus, if B outputs (xβ , rβ) for β ← {0, 1}, Advsseβ,F,COM,n,q ≥ AdvssbA,COM,n,q/2

and hence AdvssbA,COM,n,q ≤ 2 · Advsseβ,F,COM,n,q .
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If q = 0 then AESH is equal to the standard statistical hiding (SH) requirement,
and AEST is equal to the standard statistical trapdoor requirement. If q = n then SSB
is equal to the standard statistical binding (SB) requirement, and F -SSE is equal to the
standard statistical F -extractability requirement. We will show that any secure SSB
commitment scheme must also be computationally hiding and binding in the following
sense.

Computational Binding (CB): ∀ PPTA, n = poly(λ), q ∈ [1..n], where AdvcbA,COM,n,q :=

Pr

pp← G(1λ);S ← A(pp, n, q) : S ⊆ [1..n] ∧ |S| ≤ q;
(ck, td)← KC(pp, n, q,S); (x0,x1, r0, r1)← A(ck)

s.t. x0 6= x1; com(ck;x0; r0) = com(ck;x1; r1)

 ≈λ 0 .

Computational Hiding (CH): ∀ PPT A, n = poly(λ), q ∈ [1..n], AdvchA,COM,n,q :=

2 · |εch
A,COM,n,q(λ)− 1/2| ≈λ 0, where εch

A,COM,n,q(λ) :=

Pr

pp← G(1λ);S ← A(pp, n, q) s.t. S ⊆ [1..n] ∧ |S| ≤ q;
(ck, td)← KC(pp, n, q,S); (x0,x1)← A(ck);β ← {0, 1};
r ← RSP : A(com(ck;xβ ; r)) = β

 .

Theorem 31. Let COM be an SSB commitment scheme. Fix n and q.

(i) (ISH + SSB ⇒ CB) For all PPT A, there exist PPT B1 and unbounded B2, such
that AdvcbA,COM,n,q ≤ AdvishB1,COM,n,q + n

q−4·AdvishB1,COM,n,q

· AdvssbB2,COM,n,q .

(ii) (ISH + AESH⇒ CH) For all PPT A, there exist PPT B1 and unbounded B2, such
that AdvchA,COM,n,q ≤ AdvishB1,COM,n,q + AdvaeshB2,COM,n,q .

Proof. Let Pr[Gamei(Adv) = 1] denote the probability A wins in Gamei.
(i: ISH + SSB ⇒ CB) We prove the theorem using a sequence of hybrid games,

defined as follows, where εi := Pr[Gamei(Adv) = 1].

Game1 The original computational binding game. For given n and q, by definition A
can break CB with probability ε1 = AdvcbA,COM,n,q .

Game2 Game1, but instead of ck, A gets ck′ where (ck′, td′) ← KC(pp, n, q,S1)
for S1 ← P([1..n], q). Note that a distinguisher B1 for Game1 and Game2 can
be used to break the ISH game with advantage εish = AdvishB1,COM,n,q . Hence
|ε1 − ε2| ≤ εish, which implies that ε2 ≥ ε1 − εish.
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We now require the following lemma.

Lemma 32. Assume A outputs (x0, r0,x1, r1) with x0 6= x1. Then Pr[(x0)S1 6=
(x1)S1 in Game2] ≥ q/n− 4 · εish.

Proof. Assume for any S1 of size q sampled uniformly at random,A can output distinct
x0,x1 such that Pr[(x0)S1 6= (x1)S1 in Game2] = ε.

We construct an adversary B that uses A to break ISH as follows.
1. Given pp, n, q, B sets S1 ← P([1..n], q) and receives S0 ← A(pp, n, q).
2. B sends (S0,S1) to the ISH challenger, and receives ck corresponding to Sβ .
3. B gets (x0, r0,x1, r1)← A(ck).

• If A does not win, abort.
• If (x0)S1 6= (x1)S1 return β′ ← {0, 1}.
• Else, return 1.

Note that β = 0 corresponds to Game1, and β = 1 corresponds to Game2. More-
over, for β = 0, A’s output (x0, r0,x1, r1) is independent of S1, in which case
Pr[(x0)S1 6= (x1)S1 ] ≥ |S1|/n = q/n. Hence we get that if A wins,

Pr[Gameish(B) = 1] =
1

2
Pr[Gameish(B) = 1|β = 0] +

1

2
Pr[Gameish(B) = 1|β = 1]

=
1

2
Pr[(x0)S1 6= (x1)S1 in Game1 ∧ β′ = 0]

+
1

2
Pr[(x0)S1 = (x1)S1 in Game2]

+
1

2
Pr[(x0)S1 6= (x1)S1 in Game2 ∧ β′ = 1]

≥ q

4n
+

1− ε
2

+
ε

4

=
1

2
+
q − nε

4n
.

Hence 4 · εish ≥ q/n− ε, as required.

It is easy to see that an adversary that wins Game2 with (x0)S1 6= (x1)S1 also wins
the SSB game. Hence there exists an adversary B2 such that

AdvssbB2,COM,n,q ≥ ε2 · Pr[(x0)S1 6= (x1)S1 in Game2|x0 6= x1]

≥ (ε1 − εish)(q/n− 4 · εish) (due to Lemma 32).

This is equivalent to ε1 ≤ εish + n
q−4·n·εish

· AdvssbB2,COM,n,q.
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(ii: ISH + AESH ⇒ CH) Assume that for given n and q, A can break CH with
probability AdvchA,COM,n,q . Consider the following sequence of games with εi :=
Pr[Gamei(Adv) = 1].

Game1: In this game, A breaks CH with probability ε1. That is, given pp, A(pp, n, q)
outputs S0 such that |S0| ≤ q, and for (ck0, td0) ← KC(pp, n, q,S0), A(ck0)
outputs (x0,x1), s.t. Pr[β ← {0, 1} : A(com(ck0;xβ ; r)) = β] = ε1.

Game2: In this game, instead of ck0,A obtains ck1 where (ck1, td1)← KC(pp, n, q,S1)
for S1 = ∅. Clearly, for any PPT A that tries to distinguish Game1 and Game2,
there exists a PPT B1, such that |ε2 − ε1| ≤ AdvishB1,COM,n,q .

Let us consider the following AESH adversary B2 in Game2.
1. Given pp, n, q, B2 sets S1 ← ∅ and receives S0 ← A(pp, n, q).
2. B2 computes (ck1, td1)← KC(pp, n, q,S1) and receives (x0,x1)← A(ck).
3. B2 forwards (x0,x1) to the AESH challenger, and receives c← com(ck1,xβ ; r)

for some β ← {0, 1}, r ← RSP.
4. B gets and outputs β′ ← A(c).
If A returns the correct β′ then clearly also B2 returns the correct β′. For the

success of B2, it is also needed that x0,S1 = x1,S1 , which clearly holds since S1 = ∅.
Thus, AdvaeshB2,COM,n,q = ε2. Hence, AdvchA,COM,n,q ≤ |ε2−ε1|+ε2 ≤ AdvishB1,COM,n,q+

AdvaeshB2,COM,n,q .

6.4 Constructing SSB Commitment Schemes
In this section we generalize the notion of algebraic commitment schemes to general
matrix distributions, we show that they work nicely with QA-NIZK arguments and
that certain matrix distributions give us an SSB commitment scheme in Section 6.4.1.
We focus on the particular case of EMP in Section 6.4.2, where we propose a general
version of EMP and prove that it is an SSB commitment scheme.

6.4.1 Algebraic Commitment Schemes

Ràfols and Silva [113] defined the notion of algebraic commitment schemes (ACSs),
where the commitment keys are matrices, already used implicitly in other works [35,
38]. Since they behave like linear maps, it is very natural to work with them. We give a
more general definition in the following where the matrices are sampled from general
distributions.
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Definition 34. Let ι ∈ {1, 2}, and let n,m, k be small integers. Let D1 be a distri-
bution of matrices from Gk×nι and let D2 be a distribution of matrices from Gk×mι .
A commitment scheme COM is a (D1,D2)-algebraic commitment scheme (ACS) for
vectors in Znp , if for commitment key ck = [U1,U2]ι ← D1 × D2, the commitment
of a vector x ∈ Znp is computed as a linear map of x and randomness r ← Zmp , i.e.,
comck(x, r) := [U1]ιx+ [U2]ιr ∈ Gkι .

Ràfols and Silva mention that given different commitment key matrices, their distri-
butions are computationally indistinguishable under the MDDH assumption, and each
concrete distribution defines which coordinates of the commitments are SB or SH. We
prove in the following that it also gives a characterization of the coordinates of the key
matrices for the different SSB properties (AECH, ISH, SPB, SPE) based on linear de-
pendency and we also prove that to extract q elements from an ACS we need at least
q + 1 rows.

ACS as SSB commitment schemes. We will show that ACS defined in Section 6.4
are computationally hiding under MDDH. They are also perfectly binding in those
components that correspond to the linearly independent columns of U1. If they are also
pair-wise to columns of U2, the system of equations has maximum rank and unique
solution. We give this characterisation in Lemma 33.

Moreover, for extraction assume that span{U1} ∩ span{U2} = {0}. Intuitively,
U1 defines the space of the opening x, while U2 defines the randomness space. To
extract in q positions, we hence need ek is such that ek[U2]ι = 0 and ek[U1]ι =
(bi)

n
i=1, where bi is ei in q positions and 0 elsewhere. Then by the linearity of ACS,

ek · comck(x, r) = ek · [U1]ιx = [x]ι.

Lemma 33. Let n ≥ 1 and q ≤ n . Let COM be an ACS with commitment key
ck = [U1,U2]ι sampled from D1 ×D2 as defined in Definition 34.

(i) COM is AECH under D2-MDDHGι .

(ii) COM is ISH under D1,D2-MDDHGι .

(iii) COM is SPB if U1 has rank q and span{U1} ∩ span{U2} = {0}.

(iv) COM is [·]ι-SPE if U1 has rank q and span{U1} ∩ span{U2} = {0}.

Proof. Let S ⊆ [1..n], |S| ≤ q be the indices of x one can extract during opening.
(i: AECH) LetA be an adversary that breaks AECH with non-negligible probabil-

ity, say εA. Consider the following Gι-MDDH adversary B. B receives a challenge
[A,yβ ]ι where A← D2, y0 ← Zkp , and y1 ← Ar for r ← Zmp . B sets [U2]ι ← [A]ι,
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and generates U1 from the distribution D1. B sends ck = [U1,U2]ι to A who replies
with two messages x0,x1, such that x0,S ,x1,S . B computes c0 ← [U1]ιx0 + [U2]ιr,
for r ← Zmp , and c1 ← [U1]ιx1 + [yβ ]ι. B picks β′ ← {0, 1} and sends cβ′ to A. A
guesses which message was committed by returning βA ∈ {0, 1} to B. B sends βA to
the MDDH challenger. Clearly,

Pr[βA = β] = Pr[βA = 0|β = 0]/2 + Pr[βA = 1|β = 1]/2

=εA/2 + (Pr[βA = 1|β = 1, β′ = 0]/2 + Pr[βA = 1|β = 1, β′ = 1]/2)/2

=εA/2 + εA/4 + εA/8 = 7/8 · εA .

Thus if A succeeded with non-negligible probability, then so did B.
(ii: ISH) Firstly we prove that for any S0 with |S0| ≤ n, if S1 = S0 ∪ {i∗} for

some i∗ /∈ S0 and S0,S1 ⊆ [1..n], then D0,q
1,2 := ([DS0n,k]ι, [DS0m,k]ι) and D1,q

1,2 :=

([DS1n,k]ι, [DS1m,k]ι) are computationally indistinguishable under MDDH. Let A be an
adversary that can distinguish D0,q

1,2 and D1,q
1,2. We construct the following MDDH ad-

versary B that receives a challenge [A,yβ ]ι where A1,A2 ← D0
1,2, y0 ← Zkp , and

y1 ← (A>1 |A>2 )r for r ← Zmp . B sets [U1]ι ← [A1]ι, and [U2]ι ← ([A2]ι|[yβ ]ι). B
computes cβ ← [U1]ιx + [U2]ιr, for r ← Zmp and sends cβ to A who replies with
βA. Thus, B has the same advantage in breaking MDDH as A has in distinguishing
D0,q

1,2 and D1,q
1,2.

Now, for any sets S0 and S1 it holds that AdvindistA,D0
1,2,D1

1,2
≤ (|S0∪S1|− |S0∩S1|) ·

AdvMDDH
B,Dn,q1,2 ,G

.
(iii: SPB) Assume that all columns of U1 and U2 are pairwise linearly indepen-

dent. Consider the matrix system of equations defined by (U1,U2)( xr ) = comck(x, r).
This system has a unique solution because the matrix has full rank. Hence, each com-
mitment corresponds to a unique vector ( xr ). Now, if U1 has q columns pair-wise
linear independent and columns of U2 pair-wise linear independent to all of them,
consider the system that has a matrix with those q columns of U1 and the whole U2.
Its rank is maximum as well and the result follows.

(iv: [·]-SPE) Since k > m, for any matrix U2 of size k ×m there exist matrices
ek ∈ U⊥2 that define orthogonal spaces of U2 of size k′ × k for k′ ≥ k − m such

that ek · U2 =

(
0(k−m)×m

a

)
where a ∈ Z(k′−k+m)×m

p . This space has at least

dimension 1 because k > m. Moreover, there exists an appropriate change of basis of

the space such that ek ·U1 =

(
Iq
b1

b2

)
where b1 ∈ Z(k′−q)×q

p , b2 ∈ Zk
′×(n−q)
p .

This is well-defined since k −m ≥ q and if q columns of the matrices are pair-wise
linear independent then k′ − q ≥ k −m− q ≥ 0.
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Corollary 34. The minimum size of the k × m matrix to guarantee [·]ι-extraction of
n ≥ 1 elements is k = n+ 1, m = 1.

Proof. Information theoretically the commitment size should be no less than the di-
mension of the opening in order to extract it completely, so k ≥ n. The orthogonal
space has to be at least of dimension 1 in order to provide extraction, so the minimal
difference is k−m ≥ 1. We have k ≥ n+m directly by the linear independence of the
columns in matricesU1,U2. Hence, the minimal constants are m = 1, k = n+ 1.

ACS and QA-NIZK arguments. Algebraic commitments are suitable to work with
QA-NIZK arguments for linear spaces because most of their properties can be ex-
pressed in terms of membership or non-membership to certain linear subspaces. For
example, the works of González et al. [67, 68] and our construction in Chapter 3 implic-
itly use an SSB commitment scheme COM to construct efficient QA-NIZK argument
systems based on falsifiable assumptions. The soundness of their QA-NIZK system
depends on the ISH, SSB, and SSE properties, while the zero-knowledge property de-
pends on the AESH and CH properties. On the other hand, honest parties never need
to actually open the commitment; the opening (more precisely, extraction) is only done
inside the security proof by using the SSE property4. Moreover, in our QA-NIZK argu-
ment in Section 6.6.2, as well as Chapter 3, we use functional SSB commitments since
linear EMP is more straightforward to our use of it in the soundness proof.

6.4.2 The EMP Commitment Scheme
Extended Multi-Pedersen (EMP) commitment [67, 68] is a variant of the standard vec-
tor Pedersen commitment scheme [110]. In this section, we will depict a general ver-
sion of the EMP commitment scheme5 in group G. We redefine EMP by using a
division of the generator matrix g as a product of two matrices R and M; this repre-
sentation results in very short security proofs for EMP. To simplify notation, we will
write Ext instead of Ext[·]. We use a distributionDp,n,Sq+1 that outputs n+1 vectors g(i),
such that if i ∈ S ′ = S ∪ {n + 1} then g(i) is distributed uniformly over Zq+1

p , and
otherwise g(i) is a random scalar multiple of g(n+1).6

Definition 35. Let p = p(λ), n = poly(λ), and let q ≤ n be a small positive integer.
Let S ⊆ [1..n] with |S| ≤ q. Then the distribution Dp,n,Sq+1 is defined as the first part

4In this sense, one could also call them trapdoor hash functions [47] with the SSB and AESH properties
5González et al. [68] mostly considered the case q = 1; they also did not formalize its security by using

notions like ISH
6We add +1 to the dimension (e.g., q + 1) to accommodate the randomizer in EMP.

161



of Dgen(p, n,S, q) in Figure 6.1 (i.e., just g, without the associated extraction key or
trapdoor).

Note that [68] uses a distribution Dq+1,k instead of the uniform distribution Uq+1

over Zq+1
p , which means that taking a larger k gives a weaker security assumption but

with worse efficiency. Our version of EMP also works with a general distribution, but
for ease of presentation we only use Uq+1.

Dgen(p, n,S, q)
S ′ ← S ∪ {n+ 1}; // S ′ = {σ1, . . . , σq+1}
R ← Zq+1×(q+1)

p ,M ← 0(q+1)×(n+1);Mq+1,n+1 ←
1;
for j = 1 to n, do

if j 6∈ S ′, then Mq+1,j = δj ← Zp;
else let i be such that j = σi; Mi,σi ← 1;

g ← RM; tk← (δj)j∈[1..n]\S ; // g ∈ Z(q+1)×(n+1)
p ;

return (g,R, tk);

Figure 6.1: Generating Dp,n,Sq+1 , with associated extraction key R and trapdoor tk.

Example 1. In the Groth-Sahai commitment scheme, n = q = 1, soDgen first samples
R = ( r11 r12r21 r22 ) ← Z2×2

p . If S = {1} then M = ( 1 0
0 1 ) and g = RM = ( r11 r12r21 r22 ). On

the other hand, if S = ∅ then M =
(

0 0
δ1 1

)
and g = RM =

(
δ1r12 r12
δ1r22 r22

)
for δ1 ← Zp.

Consider the case n = 3, q = 2, and S = {3}. Then

M =
(

0 0 1 0
0 0 0 0
δ1 δ2 0 1

)
, g = RM =

(
δ1r13 δ2r13 r11 r13
δ1r23 δ2r23 r21 r23
δ1r33 δ2r33 r31 r33

)
, for δ1, δ2 ← Zp,R← Z3×3

p .

The following lemma shows that distributions [Dp,n,Sq+1 ] for different sets S are in-
distinguishable under the MDDH assumption.

Lemma 35. Let ι ∈ {1, 2}. Let p = p(λ) be created by G(1λ), n = poly(λ), and let
q ≤ n be a positive integer. Let S ⊆ [1..n] with |S| ≤ q. The distribution families
D0 := {[Dp,n,Sq+1 ]}λ and D1 := {[Dp,n,∅q+1 ]}λ are computationally indistinguishable
under the Uq+1-MDDHGι assumption relative to G: for any PPTA, there exists a PPT
B, such that AdvindistA,D0,D1 ≤ |S| · AdvMDDH

B,Uq+1,G .

Proof. Fix λ. We first prove that for any S0 with |S0| ≤ q − 1, if S1 = S0 ∪ {i∗} for
i∗ > maxi{i ∈ S0} and S0,S1 ⊆ [1..n], then D0 := [Dp,n,S0q+1 ] and D1 := [Dp,n,S1q+1 ]
are computationally indistinguishable.
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KC(p, n,S) // S ⊆ {1, 2, . . . , n} with |S| ≤ q
Sample (g,R, tkι)← Dgen(p, n,S, q) s.t. R has full rank;
ck← [g]; ek← R; //g ∈ Z(q+1)×(n+1)

p , R ∈ Z(q+1)×(q+1)
p

td← (ek, tk); return (ck, td);

com(ck;x ∈ Znp ; r ∈ Zp)
return [g]( xr ); // =

∑n
j=1 xj [g

(j)] + r[g(n+1)] ∈ Gq+1

tdOpen(pp, tkι;x0, r0,x1) Ext(pp, ek; [c])

r1 ←
∑
i∈[1..n]\S(x0,i − x1,i)δi + r0; [x′]← R−1[c];

return r1; return [xS ]← [x′[1..|S|]];

Figure 6.2: The EMP commitment scheme COM

Let A be an adversary that can distinguish D0 and D1. We construct the following
MDDH adversary B. The challenger C of the MDDH game samples A ← Zq+1

p and
w ← Zp. If β = 0 then C samples y ← Zq+1

p , otherwise C sets y ← Aw. C sends
(pp, [A,y]ι) to B. B does the following:

B(pp, [A,y])

[g(n+1)]← [A];
for i in [1..n], do

if i = i∗, then [g(i)]← [y];
elseif i ∈ S0, then g(i) ← Zq+1

p ;

else, δi ← Zp; [g(i)]← [g(n+1)]δi ;
return β ← A(pp, [g]);

Clearly, [g] is distributed according to Dβ . Thus, B has the same advantage in
breaking MDDH as A has in distinguishing D0 from D1. By using a standard hybrid
argument, AdvindistA,D0,D1 ≤ |S| · AdvMDDH

B,Uq+1,G .

As a simple generalization of Lemma 35, for any S0,S1 ⊆ [1..n] with Si ≤ q,
AdvindistA,[Dp,n,S0q+1 ],[Dp,n,S1q+1 ]

≤ |S0 4S1| · AdvmddhB,Uq+1,G .

We define EMP in Figure 6.2. We claim that it is indeed an SSB commitment
scheme in the following Theorem.
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Theorem 36. Let G be a bilinear group generator. Fix λ, n, and q. The EMP commit-
ment scheme is

(i) ISH under the U(q+1)-MDDHGι assumption,

(ii) F -SSE for F = [·] (thus, F depends on pp),

(iii) AEPT,

(iv) SPB,

(v) AEPH,

(vi) CB and CH under the U(q+1)-MDDHGι assumption.

Proof. (i: ISH) Due to the properties of Dp,n,Sq+1 , g(S∪{n+1}) has columns distributed
uniformly over Zq+1

p and hence by the Schwartz-Zippel lemma has full rank with prob-
ability ≥ 1− (q + 1)/p. It follows from Lemma 35 that for any PPT A, there exists a
PPT B, such that AdvishA,COM,n,q ≤ q · AdvMDDH

B,U(q+1)×(n+1),ι,G + (q + 1)/p.
(ii: [·]-SSE) We have [c] = [g]( xr ) = [RM]( xr ) for some ( xr ), where R has full

rank. But then [x′] = R−1[c] = [M]( xr ). Let S = {σi}. By the definition of M,
clearly x′i = Mi(

x
r ) = xσi for i ≤ |S|.

(iii: AEPT) Letx0 6= x1 butx0,S = x1,S . Then com(ck;x0; r0)−com(ck;x1; r1) =

RM
(
x0−x1
r0−r1

)
= R

(
0q∑

i∈[1..n]\S(x0,i−x1,i)δi+(r0−r1)

)
= 0q+1, since from tdOpen,

r1 =
∑
i∈[1..n]\S(x0,i − x1,i)δi + r0.

(iv: SPB) Since F = [·] is injective (because the bilinear group has a prime order),
this follows from Theorem 36 and Lemma 30.

(v: AEPH) Letx0,x1 be such thatx0,S = x1,S . Then M( x0
r0 ) = (x>0,S , 0, . . . , 0, r0+∑

i∈[1..n]\S x0,iσi)
> and similarly M( x1

r1 ) = ((x1,S)>, 0, . . . , 0, r1+
∑
i∈[1..n]\S x1,iσi)

>.
Thus, both have first q elements equal and the last element is uniformly random.
Clearly then also com(ck;x0; r0) = RM( x0

r0 ) and com(ck;x1; r1) = RM( x1
r1 ) are

indistinguishable.
(vi: CB and CH): Follows from Theorem 31, Theorem 36, SPB and AEPH.

Alternative constructions

One can also construct a SSB commitment from any IND-CPA secure cryptosystem
if both the message space and the randomness space are additively homomorphic, i.e.,
Encpk(m1; r1)+Encpk(m2; r2) = Encpk(m1+m2; r1+r2) for any public key pk, mes-
sagesm1,m2 and randomness r1, r2. For simplicity, consider the case when q = 1 and
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the i-th index is binding. We can set ck = (pk, c := (Encpk(ei,1; r1), . . . ,Encpk(ei,n; rn)),
tk = sk where ei is the i-th unit vector. In order to commit to x, we compute
c · x + Encpk(0; r) = Encpk(xi, r +

∑n
i=1 ri) for r ← RSP. Now, ISH follows di-

rectly from the IND-CPA security, SSB and F-SSE follow from the correctness of the
cryptosystem, and AESH follows since Encpk(xi, r +

∑n
i=1 ri) only depends on xi.

However, we obtain a less efficient construction than EMP. E.g., if we instantiate with
lifted Elgamal we would have a commitment size of 2q group elements, whereas EMP
has q + 1.

The above is similar to the technique of obtaining 2-message oblivious transfer
(OT) from additively homomorphic cryptosystems [8] and this is no coincidence. SSB
commitments can indeed be constructed from OT, and we can conversely construct OT
from SSB commitments. Hence there are various alternative constructions of SSB,
but in this paper we concentrate on EMP due to the applications we are interested in.
See Section 6.7.2 for more details.

6.5 Functional SSB Commitments
We generalize the notion of SSB commitments from being statistically binding on an
index-set S ⊆ [1..n] to being statistically binding on outputs of the functions {fi}qi=1

from some function family F . We construct a functional SSB commitment scheme
for the case when F is the set of linear functions. In particular, this covers functions
fj(x) = xj and hence we also have the index-set functionality of EMP commitment.

In our definition, given a family of functions F we require that the commitment
key ck will hide the functions {fi}qi=1 ⊂ F and given a commitment com(ck;x; r)
and an extraction key ek it is possible to F -extract fi(x) for i ∈ [1..q], i.e. if F is the
exponentiation function in the group, [fi(x)]ι. The commitment uniquely determines
the outputs of the functions (due to the SSB property) and commitments to messages
which produce equal function outputs are statistically indistinguishable (due to the
AESH property). Our definition is similar to Döttling et al.’s [47] definition for trapdoor
hash functions for a family of predicates F .

6.5.1 Definitions

Essentially the only difference between an SSB commitment and a functional SSB
commitment is that in the former S is a subset of [1..q] and in the latter S is a subset
of some function-set F . For the sake of completeness we provide the formal definition
below.
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Definition 36. An F -extractable functional SSB commitment scheme COM = (G,
KC, com, tdOpen,ExtF ) for a function family F consists of the following polynomial-
time algorithms:

Parameter generation: G(1λ) returns parameters pp (for example, group descrip-
tion). We allow F to depend on pp.

Commitment key generation: for parameters pp, a positive integer n = poly(λ),
an integer q ∈ [1..n], and a tuple S = (f1, . . . , f|S|) ⊆ F with |S| ≤ q,
KC(pp, n, q,S) outputs a commitment key ck and a trapdoor td = (ek, tk).
Here, ck implicitly specifies pp, the message space MSP, the randomizer space
RSP, and the commitment space CSP, such that F (MSP) ⊆ CSP, ek is the extrac-
tion key, and tk is the trapdoor key. For any other input, KC outputs (ck, td) =
(⊥,⊥).

Commitment: for pp ∈ G(1λ), a commitment key ck 6= ⊥, a message x ∈ MSPn, and
a randomizer r ∈ RSP, com(ck;x; r) outputs a commitment c ∈ CSP.

Trapdoor opening: for pp ∈ G(1λ), S ⊆ F with |S| ≤ q, (ck, (ek, tk)) ∈ KC(pp, n, q,S),
two messagesx0,x1 ∈ MSPn, and a randomizer r0 ∈ RSP, tdOpen(pp, tk;x0, r0,x1)
returns a randomizer r1 ∈ RSP.

Extraction: for pp ∈ G(1λ), S = (f1, . . . , f|S|) ⊆ F with 1 ≤ |S| ≤ q, (ck, (ek, tk)) ∈
KC(pp, n, q,S), and c ∈ CSP, ExtF (pp, ek; c) returns a tuple

(
F (f1(x)), . . . , F (f|S|(x))

)
∈

MSP|S|;

For {fi}qi=1 ⊆ F and vector x let us denote xS = (f1(x), . . . , fq(x)).

Definition 37. An F -extractable functional SSB commitment scheme COM for function
family F is secure if it satisfies the following security requirements.

Function-Set Hiding (FSH): ∀λ, PPT A, n = poly(λ), q ∈ [1..n], AdvfshA,COM,n,q :=

2 · |εfsh
A,COM,n,q(λ)− 1/2| ≈λ 0, where εfsh

A,COM,n,q(λ) :=

Pr

[
pp← G(1λ); (S0,S1)← A(pp, n, q) s.t. ∀i ∈ {0, 1},Si ⊆ F ∧ |Si| ≤ q;
β ← {0, 1}; (ckβ , tdβ)← KC(pp, n, q,Sβ) : A(ckβ) = β

]
.

Somewhere Statistically Binding (SSB): ∀λ, unboundedA, n = poly(λ), q ∈ [1..n],
AdvssbA,COM,n,q ≈λ 0, where AdvssbA,COM,n,q :=

Pr

pp← G(1λ);S ← A(pp, n, q) s.t. S ⊆ F ∧ |S| ≤ q;
(ck, td)← KC(pp, n, q,S); (x0,x1, r0, r1)← A(ck) s.t. x0S 6= x1S :

com(ck;x0; r0) = com(ck;x1; r1)

 .
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We say that COM is somewhere perfectly binding (SPB) if AdvssbA,COM,n,q = 0.

Almost Everywhere Statistically Hiding (AESH): ∀λ, unbounded A, n = poly(λ),
q ∈ [1..n], Advε

aesh

A,COM,n,q := 2·|εaesh
A,COM,n,q(λ)−1/2| ≈λ 0, where εaesh

A,COM,n,q(λ) :=

Pr

pp← G(1λ);S ← A(pp, n, q) s.t. S ⊆ F ∧ |S| ≤ q;
(ck, td)← KC(pp, n, q,S); (x0,x1)← A(ck) s.t. x0S = x1S ;

β ← {0, 1}; r ← RSP : A(com(ck;xβ ; r)) = β

 .

COM is almost everywhere perfectly hiding (AEPH) if AdvaeshA,COM,n,q = 0.

Somewhere Statistical F -Extractability (F -SSE): ∀λ, pp ∈ G(1λ), n = poly(λ),
q ∈ [1..n], S = (f1, . . . , f|S|) ⊆ F with |S| ≤ q, (ck, (ek, tk))← KC(pp, n, q,S),
and PPT A, AdvsseA,F,COM,n,q ≈λ 0, where AdvsseA,F,COM,n,q :=

Pr
[
x, r ← A(ck) : ExtF (pp, ek; com(ck;x; r)) 6=

(
F (f1(x)), . . . , F (f|S|(x))

)]
.

It is somewhere perfect extractable if AdvsseA,F,COM,n,q = 0.

Almost Everywhere Statistical Trapdoor (AEST): ∀λ, n = poly(λ), q ∈ [1..n] and
unbounded A, AdvaestA,COM,n,q(λ) ≈λ 0, where AdvaestA,COM,n,q(λ) =

Pr

pp ∈ G(1λ);S ← A(pp, n, q) s.t. S ⊆ F ∧ |S| ≤ q;
(ck, td)← KC(pp, n, q,S); (x0,x1, r0)← A(ck) s.t. x0S = x1S :

r1 ← tdOpen(pp, tk;x0, r0,x1) : com(ck;x0; r0) 6= com(ck;x1; r1)

 .

It is AEPT (almost everywhere perfect trapdoor) if AdvaestA,COM,n,q(λ) = 1.

Computational Binding (CB): ∀ PPT A, n = poly(λ), q ∈ [1..n], AdvcbA,COM,n,q =

negl(λ), where AdvcbA,COM,n,q :=

Pr

pp← G(1λ);S ← A(pp, n, q) s.t. S ⊆ F ∧ |S| ≤ q;
(ck, td)← KC(pp, n, q,S); (x0,x1, r0, r1)← A(ck) s.t. x0 6= x1 :

com(ck;x0; r0) = com(ck;x1; r1)

 .

Computational Hiding (CH): ∀ PPT A, n = poly(λ), q ∈ [1..n], AdvchA,COM,n,q :=

2 · |εch
A,COM,n,q(λ)− 1/2| = negl(λ), where εch

A,COM,n,q(λ) :=

Pr

pp← G(1λ);S ← A(pp, n, q) s.t. S ⊆ F ∧ |S| ≤ q;
(ck, td)← KC(pp, n, q,S); (x0,x1)← A(ck);β ← {0, 1};
r ← RSP : A(com(ck;xβ ; r)) = β

 .
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KC(p, n, q, [M]ι ∈ Gq×nι )

Set implicitly MSP = RSP = Znp and CSP = Gq+1
ι ;

Sample R← Z(q+1)×(q+1)
p so that it has full rank; Sample %← Znp ;

Set M′ ←
[
M 0
%ᵀ 1

]
ι
∈ G(q+1)×(n+1)

ι ;

Set ck← [RM′]ι ∈ G(q+1)×(n+1)
ι , td← (ek← R−1, tk← %);

return (ck, td);

com(ck;x ∈ Znp ; r ∈ Zp) tdOpen(pp, tk;x0, r0,x1) // [M]ιx0 = [M]ιx1

return ck( xr ); return r1 ←
∑
i∈[1..n](x0,i − x1,i)tki + r0;

Ext(pp, ek; [c])
return ek[c]ι without the last component;

Figure 6.3: Functional SSB commitment for linear functions

Linear EMP

We construct a functional SSB commitment for a family of linear functions. Our con-
struction follows the ideas of Chapter 3 which only dealt with some concrete functions
and never formalized the ideas.

We represent q linear functions by a matrix M ∈ Zq×np where each row contains
coefficients of one function. From a commitment to vector x ∈ Znp , our construction
allows to extract [Mx]ι. In particular, if we take M = (ei1 | . . . |eiq )> where eij ∈ Znp
is the ij th unit vector, then [Mx]ι = [xi1 , . . . , xiq ]

>
ι . A detailed construction is given

in Figure 6.3.
We want to note that the matrix [M]ι is extended into one row to place the ran-

domness vector % and one column to place the randomizator of the commitment, r, to
perfectly hide the secret vector x when we extract. Concretely, in the extraction phase
we obtain

[
M 0
%ᵀ 1

]
ι
[ xr ]ι =

[
Mx
%ᵀx+r

]
ι

from multiplying the commitment by the inverse
matrix of R. The first q rows contain the functions of x in the group that we want and
the last component contains a combination of x with % that is completely masked by r.

Moreover, if we take an ACS (Def. 34), the commitment key is ck = [U1,U2]ι ∈
G(q+1)×n
ι ×G(q+1)×1

ι , which is optimal size for extraction in q coordinates, as proven
in Corollary 34. The main differences with the EMP construction in Section 6.4.2 is
that in EMP M is a matrix in reduced row echelon form (with multiples of the column
vector (0, . . . , 0, 1)T possibly inserted in between). We prove security of linear EMP
in the following.
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Security proofs. Before proving the security of linear EMP, let us recall some well-
known decisional assumptions.

Decisional Diffie-Hellman (DDH) Assumption. Let ι ∈ {1, 2}. DDHGι holds rela-
tive to G, if ∀ PPT A, AdvddhA,ι,G := |ε0

Adv(λ)− ε1
Adv(λ)| = negl(λ), where

εβAdv(λ) := Pr
[
pp← G(1λ);x, y, z ← Zp : A(pp, [x, y, xy + βz]ι) = 1

]
.

Rank Assumption. Let ι ∈ {1, 2}. (`, k, r0, r1)-Rank assumption for 1 ≤ r0 <
r1 ≤ min(`, k) holds relative to G, if ∀ PPT A, AdvrankA,`,k,r0,r1,ι,G := |ε0

Adv(λ)−
ε1

Adv(λ)| = negl(λ), if

εβAdv(λ) := Pr
[
pp← G(1λ); A← U (rβ)

`,k : A(pp, [A]ι) = 1
]
,

where U (rβ)
`,k is the uniform distribution over rank rβ matrices Z`×kp .

Theorem 37 ([119]). Let ι ∈ {1, 2}. For any `, k, r0, r1 ∈ Z such that 1 ≤ r0 < r1 ≤
min(`, k), any PPT A, and any G,

AdvrankA,`,k,r0,r1,ι,G ≤ dlog2(r1/r0)e · AdvddhA,ι,G .

Theorem 38. Let Gbg be a bilinear group generator. Fix n and q. The commitment
scheme in Figure 6.3 is

(i) FSH relative to Gbg under the DDHGι assumption: for each PPT A, there exists a
PPT B, such that AdvfshA,COM,n,q ≤ dlog2(q + 1)e · AdvddhB,ι,G .

(ii) F -SSE for F = [·]ι (thus, F depends on pp),

(iii) SPB,

(iv) AEPH,

(v) AEPT,

(vi) CB and CH.

Proof. (i: FSH) Since given a matrix M ′ of rank k ∈ [1..q + 1], the matrix RM ′

is a random matrix of rank k with an overwhelming probability. Then, distinguishing
commitment keys ck1 = [R1M

′
1]ι and ck2 = [R2M

′
2]ι is equivalent to breaking

the rank assumption. Now, considering Theorem 37 we get that for each adversary A
against FSH, there exists an adversary B against the DDH in Gι such that the bound
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AdvfshA,COM,n,q ' AdvrankB,ι,G ≤ dlog2(r1/r0)e · AdvddhB,ι,G holds. In the worst case one
matrix has rank r0 = 1 and the other has rank r1 = q + 1, so the worst bound is
dlog2(q + 1)e · AdvddhB,ι,G .

(ii: F -SSE) For anyx ∈ Znp and r ∈ Zq+1
p , we have com(ck;x; r) = [RM ′( xr )]ι =

[c]ι. Then, Ext(pp, ek = R−1; [c]ι) computes R−1[c]ι = [M ′( xr )]ι =
[

Mx
%>x+r

]
ι

and outputs [Mx]ι which is exatly what we wanted to extract.
(iii: SPB) Clearly, there are no x0,x1 ∈ Znp such that Mx0 6= Mx1 and [c]ι :=

com(ck;x0; r0) = com(ck;x1; r1) since by theF -SSE property we have that Ext(pp, ek =
R−1; [c]ι) = [Mx0]ι = [Mx1]ι.

(iv: AEPH) Suppose that the adversary A on input (pp, n, q) outputs S = M ∈
Zq×np , then gets as an input the public key g = R ·M′ where M′ =

(
M 0
%> 1

)
, R ∈

Z(q+1)(q+1)
p is some full rank matrix, and % ∈ Znp , and finally outputs (x0,x1) such

that Mx0 = Mx1.
Let us analyse distributions of C0 = com(ck;x0;0 ) and C1 = com(ck;x1; r1) for

a uniformly random r0, r1. For β ∈ {0, 1}, we can define [uβ ] := [M′(
xβ
rβ )] =[

Mxβ

%>xβ+rβ

]
. We see that top q elements of u0 and u1 are equal and the last el-

ement is uniformly random. Thus, u0 and u1 are indistinguishable. Since Cβ =
com(ck;xβ ; rβ) = R[uβ ], then also C1 and C2 are indistinguishable.

(v: AEPT) Let r0 ∈ Zp and x0,x1 ∈ Znp such that Mx0 = Mx1. In tdOpen, we
define r1 =

∑
i∈[1..n](x0,i − x1,i)%i + r0. Then, %>x1 + r1 = %>x0 + r0. Using,

the definition of ub from the previous property, we see that u0 = u1 and then also
com(ck;x0; r0) = com(ck;x1; r1).

(vi: CB and CH) Follows directly from the analog of Theorem 31.

6.6 Applications of Functional SSB Commitments

We present three applications of functional SSB commitments. In Section 6.6.1 we
have two straightforward applications for linear EMP commitments: Oblivious Database
Queries (ODQ) and Oblivious Linear Function Evaluation (OLE) [49, 65, 48]. OLE
allows the receiver to learn f(x) where x is the receiver’s private vector and f is the
sender’s private linear function. ODQ essentially switches the roles of receiver and
sender: the receiver wants to learn f(x) where x is the sender’s private database and
f is the receiver’s linear query function. In Section 6.6.2 we present a new QA-NIZK
argument for SAP relations that uses linear EMP commitments as a technical tool in
the security proof.

170



6.6.1 ODQ & OLE

A very straight-forward application of linear EMP is oblivious database queries (ODQ).
We consider a scenario where the sender knows a private database x and the receiver
knows a set of private linear functions fi(X1, . . . , Xn) = bi +

∑n
j=1 ai,jXj for i ∈

[1..q] that he wants to evaluate on that database.
Our ODQ protocol works as follows:

• Receiver defines matrices A = (aij) ∈ Zq×np , B = diag(b1, . . . , bq) ∈ Zq×qp ,

and M = (A | B) ∈ Zq×(n+q)
p . Following the KC algorithm it creates the

commitment key ck, the extraction key ek, and sends ck to the sender.

• Sender has x ∈ Znp and ck as input. It sets x′ = ( x1q ), picks random r ← Zp
and sends COM = ck

(
x′

r

)
to the receiver.

• Receiver extracts [M · x′] from COM using the Ext algorithm with ek.

Privacy and Correctness. We follow privacy and correctness definitions proposed
by Döttling et al. [47] (see Section 5.1 of their paper for full definitions). From the
SSE property we know that the receiver can recover [M ( x1q )]ι = [Ax + b]ι and
thus correctness holds. Receiver’s (computational) privacy follows directly from the
FSH property, that is, any two function-sets of size at most q are indistinguishable.
Sender’s privacy is defined through simulatability of the protocol transcript given only
receiver’s input M and receiver’s output [Mx′] to the simulator. Simulatability is
slightly stronger than the AEPH property but still holds for linear EMP. As a first
message, the simulator can generate ck with M and store R. An honestly computed
second message has the form [R

(
M 0
rᵀ 1

)
]
(
x′

r

)
= R

[
Mx′

x′r>+r

]
and therefore we can

simulate it by sampling r∗ ← Zp and computing R
(

[Mx′]
r∗

)
. Thus sender’s privacy

also holds.

Efficiency. We define download rate as the ratio between output size and sender’s
message and total rate as the ratio between output size and total transcript size. The
total rate of our protocol is |[Mx′]|/(|ck|+|COM|) = q/((n+q+2)(q+1)). However,
we achieve very good download rate |[Mx′]|/|COM| = q/(q + 1) which tends to 1.
This is similar to Döttling et al. [47] where they achieve an optimal download rate but
sub-optimal total rate.
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OLE

We can achieve OLE in a very similar way. Suppose that now the sender has a function
f(X1, . . . , Xn) = b +

∑n
i=1 aiXi and the receiver has x. Then the receiver can

send a commitment key with M = (x1, . . . , xn, 1) and the sender responds with a
commitment to (a1, . . . , an, b). The receiver extracts to obtain [f(x)]ι. The proof is
identical to the ODQ case. However, the resulting OLE is less efficient with download
rate 1/2 and total rate 1/(2n+ 4).

6.6.2 QA-NIZK Argument for Quadratic Equations
We present a QA-NIZK argument which uses linear EMP commitments as an important
technical tool in the security proof, inspired by our work in Chapter 3 where we pre-
sented a commit-and-prove QA-NIZK argument for Square Span Programs (SSP, [45])
which can be used to encode the Boolean circuit satisfiability language. Their construc-
tion uses a specific setting of linear EMP commitments without explicitly formalizing
it. Our QA-NIZK is for Square Arithmetic Programs (SAP) [74] which can be used
to encode the arithmetic circuit satisfiability language, has roughly the same complex-
ity as the argument in Chapter 3 and follows a similar overall strategy. However, we
use linear EMP commitments as a black-box and thus have a more compact and clear
presentation.

A rough intuition of our commit-and-prove QA-NIZK is as follows. The statement
of our language LSAP,ck contains a linear-length perfectly binding (and [·]1-extractable)
commitment [c]1 of the SAP witness. Note that the commitment is only computed once
but can be reused for many different SAP relations. For simplicity, we use ElGamal
encryption in this role and the commitment key ck as a parameter of the language. The
argument itself is succinct and contains the following elements:

• a succinct zk-SNARK-type argument [V,H,W ]1, [V ]2 for the SAP relation,

• a succinct linear EMP commitment [c̃]2 that commits to the SAP witness and to
the randomness of the zk-SNARK,

• a succinct linear subspace argument BLS [67] that shows that commitments open
to consistent values (see BLS argument in Chapter 2). I.e., it guarantees that the
opening of [c]1 is also used in the zk-SNARK and in [c̃]2.

Preliminaries

Square Arithmetic Program (SAP). A square arithmetic program is a tuple SAP =
(pp, n, l,V ∈ Zn×lp ,W ∈ Zn×lp ). We define a commit-and-prove language for SAP as
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the following language with n variables and l quadratic equations

LSAP,ck =

 [c]1 ∈ G2n
1

∃a, r ∈ Znp : [c]1 = comck(a, r)∧{(
a>vj

)2 − a>wj = 0
}l
j=1


where comck is a perfectly binding commitment scheme, vj is j-th column of the
matrix V and wj is the j-th column of the matrix W.

SNARK for SAP. Let χ1, . . . , χl ∈ Zp be unique interpolation points. We define

v(X) =

n∑
i=1

aivi(X), w(X) =

n∑
i=1

aiwi(X) (6.1)

where vi(X), wi(X) are polynomials of degree less than l such that vi(χj) = vij
and wi(χj) = −wij . Moreover, let us define p(X) = v(X)2 − w(X) and t(X) =∏l
j=1(X − χj). We have that p(χj) = (a>vj)

2 − a>wj and thus the j-th SAP
equation is satified exactly when χj is a root of p(X). In particular, when all interpo-
lation points are roots of p(X), then t(X) divides p(X) and all the SAP equations are
satisfied.

Similarly as we explained in other chapters, we can use these polynomial repre-
sentations to construct a zk-SNARK. Our crs will contain {

[
si
]
1,2
}li=1 where s← Zp

is a secret point. The prover will compute [V ]1,2 = [V (s)]1,2, [W ]1 = [W (s)]1 and
[H]1 = [H(s)]1 where V (X) = v(X) + δvt(X), W (X) = w(X) + δwt(X), and
H(X) = (V (X)2 −W (X))/t(X). Elements δv and δw are picked randomly to hide
the witness. The verifier checks that the equation [V ]1[V ]2 − [W ]1[1]2 = [H]1[t(s)]2
is satisfied. Intuitively, we can use this to show that t(X) divides P (X) := V (X)2 −
W (X). It is easy to see that if t(X) | P (X) then also t(X) | p(X) and thus the SAP
relation is satisfied.

New target assumption. The q-target strong Diffie-Hellman assumption [21] says
that given {

[
si
]
1,2
}qi=1 for a random s, it is computationally hard to find [ν]T = [1/(s−

r)]T for any r ∈ Zp. We generalize this assumption and intuitively say that it is hard
to compute [ν]T = [c/(s − r)]T where r ∈ Zp and c is a constant independent of
s. In order to satisfy the latter requirement, we include a challenge value [z]2 and let
the adversary additionally output [c]1 and [c′]2 such that zc = c′. Intuitively, then c
cannot depend on si since otherwise c′ should depend on zsi which is not a part of the
challenge. For technical reasons, c in our assumption has a slightly more structured
form β2

1 − β2.
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Definition 38 (q-SATSDH). The q-Square Arithmetic Target Strong Diffie-Hellman
assumption holds relative to G, if ∀ PPT adversaries A,

Pr

 pp← G(1λ); s, z ← Zp;(
r, [β1, β2]1, [β̃1, β̃2]2, [ν]T

)
← A

(
pp, {

[
si
]
1,2
}qi=1, [z]2

)
:

β̃1 = zβ1 ∧ β̃2 = zβ2 ∧ β2
1 6= β2 ∧ ν =

β2
1−β2

s−r

 ≈λ 0.

We prove in the following that our new assumption is falsifiable and equivalent to
TSDH assumption under a knowledge assumption.

Let us first see that q-SATSDH is falsifiable. Observe that the challenger knows
z, s ∈ Zp. Thus, upon receiving (r, [β1, β2]1, [β̃1, β̃2]2, [ν]T ) it verifies that: (a)
[1]1[β̃1]2 = [β1]1[z]2, (b) [1]1[β̃2]2 = [β2]1[z]2, (c) 1

z [β1]1[β̃1]2 6= [β2]1[1]2, and (d)
(s− r)[ν]T = 1

z [β1]1[β̃1]2 − [β2]1[1]2.

Lemma 39. Given a bilinear group gk = (q,G1,G2,GT ), if the q-SATSDH assump-
tion holds then the q-TSDH assumption holds.

Proof. Assume that A is an adversary against the q-TSDH assumption, we construct
another adversary B against q-SATSDH assumption that receives a challenge tuple
(gk , {[si]1,2}qi=1, [z]2) and sends the elements (gk , {[si]1,2}qi=1) to A. A then re-
turns (r, [ν]T ) that breaks q-TSDH. The adversary B chooses β1, β2 ← Zp such that
β2

1 6= β2 and returns
(
r, [β1, β2]1, β1[z]2, β2[z]2, (β

2
1 − β2)[ν]T

)
which breaks the q-

SATSDH assumption.

Lemma 40. Given a bilinear group gk = (q,G1,G2,GT ) where BDH-KE assumption
holds, if the q-TSDH assumption holds then the q-SATSDH assumption holds.

Proof. Assume thatA is an adversary against the q-SATSDH assumption, we construct
an another adversary B against the q-TSDH assumption that receives a challenge tuple
(gk , {[si]1,2}qi=1). B chooses z ← Zp and sends the elements (gk , {[si]1,2}qi=1, [z]2) to
A. The adversary A then returns (r, [β1, β2]1, [β3, β4]2, [ν]T ) that breaks q-SATSDH.
Now B computes [β̂1]2 = 1

z [β3]2 and [β̂2]2 = 1
z [β4]2 which satisfy e([βi]1, [1]2) =

e([1]1, [β̂i]2) for i = 1, 2. By the BDH-KE assumption there exists and extractor of
β1, β2 that solves the q-TSDH assumption with

(
r, 1
β2
1−β2

[ν]T

)
.

QA-NIZK Argument scheme

Given n, l ∈ N we construct a QA-NIZK argument for LSAP,ck.
K0(λ): The algorithm K0 returns pp← G(1λ).
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Dpp(n, l): The algorithm Dpp(n, l) returns a commitment key ck = [u]1 = [1, u]>1
where u← Zp.

K1(pp, n, l, ck): The algorithm K1 picks s ← Zp, then sets qv = 4, n′ = n + 1,
M = 0 ∈ Zqv×n′p (i.e., Sv = ∅) and generates a linear EMP key ck′ =

[K]2 ← KC2(pp, n′, qv,M) ∈ G5×(n+2)
2 . Finally, it runs (BLS.CRS, tdBLS) ←

KBLS([N1]1 ∈ G(2n+2)×(2n+3)
1 , [N2]2 ∈ G5×(2n+3)

2 ) for

[N1]1 =


e2

. . .
e2

u
. . .

u

0

v1(s) . . . vn(s)
w1(s) . . . wn(s)

0 t(s) 0 0
0 t(s) 0


1

,

[N2]2 =

[
v1(s) . . . vn(s)

K(1) . . . K(n) 0
t(s) 0 0

K(n+1) 0 K(n+2)

]
2

.

Return the crs = (pp, ck, ck′, {
[
si
]
1,2
}li=1,BLS.CRS) with trapdoor (s, tdBLS).

P: The prover receives an input (crs, ([c]1,V,W), (a, r)). Let vi(X) and wi(X) be
the interpolation polynomials at some points {χj}j for the i-th column of V and
W respectively for i ∈ [1..n], and set t(X) =

∏l
i=j(X −χj). The prover picks

δv, δw, rv ← Zp and defines:

V (X) :=
∑n
i=1 aivi(X) + δvt(X), W (X) :=

∑n
i=1 aiwi(X) + δwt(X)

P (X) := V (X)2 −W (X) H(X) := P (X)/t(X)
(6.2)

The prover computes group elements [V ]1,2 = [V (s)]1,2, [W ]1 = [W (s)]1,
[H]1 = [H(s)]1 and a linear EMP commitment [c̃]2 = com(ck′; (a, δv), rv).
The prover also computes a BLS argument ψ for the statement

InputBLS := ([c]1, [V ]1, [W ]1, [V ]2, [c̃]2)
> ∈ Im

(
[N1]1
[N2]2

)
with witness

(a, r, δv, δw, rv)
> ∈ Z2n+3

p . Finally, it outputs the argument

π :=
(

[H]1 , [V ]1,2 , [W ]1 , [c̃]2, ψ
)

.
V: The verifier with input (crs, [c]1,V,W, π) returns 1 iff [V ]1[V ]2 − [W ]1[1]2 =

[H]1[t(s)]2 and VBLS(BLS.CRS, InputBLS, ψ) = 1.

Security intuition

In the security proof, the soundness game is first changed by randomly picking one of
the SAP equations

(
a>vj∗

)2 − a>wj∗ = 0 for some j∗ ∈ [1..l]; with probability
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≥ 1/l this equation does not hold, assuming that the adversary is successful. By the
characterization of the SAP, if the j∗-th equation does not hold, then X −χj∗ - P (X).
In particular, let qv(X), qw(X) be unique polynomials and βv, βw ∈ Zp be unique
values such that V (X) = qv(X)(X−χj∗)+βv andW (X) = qw(X)(X−χj∗)+βw.
Then we can express the division of P (X) = V (X)2−W (X) by X−χj∗ as follows,

P (X) = V (X)(qv(X)(X − χj∗) + βv)− qw(X)(X − χj∗)− βw
=(X − χj∗) (V (X)qv(X)− qw(X)) + V (X)βv − βw
=(X − χj∗) (V (X)qv(X)− qw(X)) + (qv(X)(X − χj∗) + βv)βv − βw
=(X − χj∗) (qv(X) (V (X) + βv)− qw(X)) + (β2

v − βw) . (6.3)

Since, X − χj∗ - P (X) we get that (β2
v − βw) 6= 0.

We denote by αi(X) and βv,i the quotient and the remainder of the polynomial
division of vi(X) by X − χj∗ , i.e., vi(X) = αi(X)(X − χj∗) + βv,i. Similarly, we
can also express wi(X) = α̂i(X)(X − χj∗) + βw,i. As a special case, we define
t(X) = αt(X)(X − χj∗) + βt. The definition of V (X) and Equation (6.1) give us
V (X) = (

∑n
i=1 aiαi(X) + δvαt(X)) (X − χj∗) +

∑n
i=1 aiβv,i + δvβt, and thus

qv(X) =

n∑
i=1

aiαi(X) + δvαt, βv =

n∑
i=1

aiβv,i + δvβt. (6.4)

Similarly, we get that

qw(X) =

n∑
i=1

aiα̂i(X) + δwβt, βw =

n∑
i=1

aiβw,i + δwβt. (6.5)

The security proof extracts the following functions of the witness a and δv, δw: [qv(s)]2 =
[
∑n
i=1 aiαi(s)+δvβt]2, [βvz]2 = [

∑n
i=1 aizβv,i+δvzβt]2, and [βwz]2 = [

∑n
i=1 aizβw,i+

δwzβt]2, where z, s ∈ Zp are secrets of SATSDH assumption. The idea is that we
can break the l-SATSDH assumption by computing [βv]1 =

∑n
i=1 βv,i[ai]1 + βt[δv]1

(note that [ai]1 and [δv]1 are extractable from the PB commitment and [V ]1), [βw]1 =∑n
i=1 βw,i[ai]1 + βt[δw]1 and moreover by Equation (6.3),

[
β2
v−βw
s−χj∗

]
T

=
[
P (s)
s−χj∗

]
T
−

([V ]1 + [βv]1)[qv(s)]2 + [qw(s)]T , where [ P (s)
s−χj∗

]T can be computed from the verifica-
tion equation. Together with other extracted elements, this is now enough to break the
SATSDH assumption. We refer to Theorem 42 for more details.

SSB functionality in the security proof

The security proof of the argument uses similar techniques as Chapter 3 but simplified
because we rely on the properties of SSB commitments. Intuitively, in the security re-
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duction we need to compute some elements of the form [
∑
i aiyi]2 where (a1, . . . , an)

is the witness and [y1, . . . , yn]2 are elements that can be computed from the challenge
of some falsifiable assumption or public elements. The actual reduction requires us to
extract multiple such linear combinations.

If an adversary wins the soundness game, its argument passes verification but at
least one SAP equation does not hold. In the security proof, the soundness game is
first changed by randomly picking one of the SAP equations

(
a>vj∗

)2 − a>wj∗ = 0
for some j∗ ∈ [1..l]. To complete the proof, we have to check the equation and break
a computational assumption. For the former, since our perfectly binding commitment
is only [·]1-extractable, we can at best extract [ai]1 which is not enough to check the
j∗-th equation, even if vj∗ and wj∗ are public. We need a square of a, so it suffices to
extract

∑
[ai]2vj∗,i in G2 and prove the equation in the target group. For the latter, we

break the l-SATSDH assumption 38, that is a version of the l-TSDH assumption with
some extra elements that are linear combinations of the witness.

Next, we switch the EMP commitment key that is in perfectly hiding mode in
the honest proof (S = ∅) to the mode that encodes the functions f(a1, . . . , an) =∑
i ai[yi]2 that we need. Then, from [c̃]2 we can extract [

∑
i aivj∗,i]2, and so check

the equation in GT , and also the linear combinations to break the assumption.
The FSH property guarantees that the adversary cannot learn the index j∗ and thus

the j∗-th SAP equation is not satisfied with probability ≥ 1/l. The [·]2-SSE property
allows us to extract some linear combinations of the claimed witness and break the
l-SATSDH assumption. Zero-knowledge is straightforwardly guaranteed by the AEPH
property. The full security proof is given in the following.

Proofs of security

The following two theorems prove the completeness, zero-knowledge, and soundness
properties of our QA-NIZK construction.

Theorem 41. The QA-NIZK argument has perfect completeness and perfect zero-
knowledge.

Proof. Completeness. Since the BLS argument is perfectly complete, we only need
to check the last verification equation: the left hand side is [V ]1[V ]2 − [W ]1[1]2 =[
V 2 −W

]
T

= [P (s)]T , and the right hand side is [H]1[t(s)]2 = [H(s)]1[t(s)]2 =
[P (s)]T .

Zero-knowledge. We prove it by showing that the proof can be efficiently simulated
given the BLS trapdoor tdBLS. Since we set Sv = ∅, then the SSB commitments are
perfectly hiding by the AEPH property. Thus we may simulate [c̃]2 by committing to
0. Next, V and W are uniformly random and independently distributed in the honest
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proof. Hence, the simulator can pick µ1, µ2 ← Zp and define [V ]1,2 = µ1[t(s)]1,2,
[W ]1 = µ2[t(s)]1. Then, [H]1 = µ2

1[t(s)]1 − [µ2]1 and the verification equation will
be satisfied. Finally, the BLS proof ψ can be perfectly simulated (see [67]) using the
trapdoor tdBLS.

Theorem 42. Let Advsnd(Adv) be the advantage of any PPT adversary A against the
soundness of the QA-NIZK argument. There exist PPT adversaries B1 against the DDH
assumption in G2, B2 against strong soundness of the BLS argument, and B3 against
the l-SATSDH assumption such that

AdvSnd(A) ≤ 3AdvDDH,G2(B1) + l
(
AdvBLS(B2) + Advl-SATSDH(B3)

)
.

Proof. In order to prove soundness we will prove indistinguishability of the following
games.

• Real: This is the real soundness game. The output is 1 if the adversary produces a
false accepting proof, i.e., if there is some equation

(
a>vi

)2−a>wi 6= 0 and the
verifier accepts the proof. Note that a is uniquely determined since commitment
[c]1 is perfectly binding.

• Game0: This game is identical to the previous one, except instead of generating
the commitment key as ck ← Dpp(n, l), the game samples u ← Zp himself,
sets ck = [1, u]>1 , and stores u. Clearly, A’s advantage is the same in Real and
Game0.

• Game1: This game is identical to the previous one except that some j∗ ← [1..l]
is chosen randomly and we change the commitment key ck′ by using a different
matrix M 6= 0 during its generation. For each i ∈ [1..n], let us express

vi(X) = αi(X)(X − χj∗) + βv,i

wi(X) = α̂i(X)(X − χj∗) + βw,i

and t(X) = αt(X)(X − χj∗) + βt. We will pick [z]2 ← G2 that is part of the
SATSDH challenge and change the EMP commitment key ck′ by setting

M =


α1(s) . . . αn(s) αt(s)
βv,1z . . . βv,nz 0
βw,1z . . . βw,nz 0
vj∗,1 . . . vj∗,n 0

 .

It is important to note that from {
[
si
]
1,2
}li=1 and [z]2 we can only compute [M]2.

However, looking at the KC algorithm in Figure 6.3, it is clear that ck′ can be
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computed even if only [M]2 is known. The game aborts if a satisfies the j∗-th
equation, i.e. if

(
a>vj∗

)2 − a>wj∗ = 07.

Let us now analyze the games.

Lemma 43. There exists an adversaryB1 against DDH in G2 such that |Pr[Game0(Adv) =
1]− Pr[Game1(Adv) = 1]| ≤ 3AdvDDH,G2(B1).

Proof. Game0 and Game1 differ only in the linear EMP commitment key that encode
different functions, but these keys are indistinguishable due to the FSH property. In
particular, we can bound the advantage of an adversary B1 against the DDHG2

assump-
tion as in Theorem 38: AdvfshA,COM,n,q ≤ dlog2(q + 1)e · AdvDDH

B1,2,G where in this case
q = 4.

Lemma 44. There exists an adversary B2 against the strong soundness of the BLS
proof and a l-SATSDH adversary B3 such that

Pr[Game1(A) = 1] ≤ l (AdvBLS(B2) + Advl-SATSDH(B3)) .

Proof. First of all, if A breaks soundness, at least one equation j∗ does not hold, and
the challenger can guess j∗ with probability at least 1

l .

Let E be the event that ([c]1, [V ]1, [W ]1, [V ]2, [c̃]2)
> ∈ Im

(
[N1]1
[N2]2

)
and E be

the complementary event. Obviously,

Pr[Game1(A) = 1] ≤ Pr[Game1(A) = 1|E] + Pr[Game1(A) = 1|E]. (6.6)

For the latter event, we can easily construct from A a PPT adversary B2 that breaks
strong quasi-adaptive soundness of the BLS argument. Such an adversary receives
as an input (crsBLS, % = ([N1]1, [N2]2), ωρ = (N1,N2)) sampled according to the
distribution specified by Game3. In particular, N2 contains t(s) and thus B2 can
efficiently recover s by finding roots of the polynomial t(X) − t(s). This is suffi-
cient to construct the rest of the crs chosen in the usual way. Now adversary B2 can
use the output of A to break the soundness of BLS in a straightforward way. Thus,
Pr[Game1(A) = 1|E] ≤ AdvBLS(B2).

In the following, we bound the first term of the sum in Equation (6.6) by construct-
ing an adversary B3 which breaks the d-SATSDH assumption in the case that E hap-
pens. Note that in this case there exists a witness (a, r, δv, δw, rv)

> for membership in

Im

(
[N1]1
[N2]2

)
. Furthermore, this witness is unique since

7This statement is well-defined since a is uniquely determined by the commitment [c]1. The check can
be done in GT from [ai]1 and [

∑
aivj∗,i]2.
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• [c]1 is perfectly binding and thus uniquely fixes a and r,

• [V ]1 and a uniquely fix δv ,

• [W ]1 and a uniquely fix δw, and

• [a]1 and δv uniquely fix rv .

In particular, this uniquely determines the polynomial P (X) = (v(X) + δvt(X))2 −
w(X) + δwt(X).

We now describe the full reduction. Adversary B3 receives the l-SATSDH assump-
tion challenge

(
pp, {

[
si
]
1,2
}qi=1, [z]2

)
and uses this to construct the crs just as it is

specified in Game1. Note that to create the commitment key ck′, it constructs the ma-
trix M and the corresponding extraction key ek′. The crs is then sent to the soundness
adversary A that returns [c]1 and π.

The adversary B3 extracts [a]1, [δv]1, [δw]1 ∈ G1 from [c]1 by using the secret
key u; and extracts [qv(s)]2 = [

∑n+1
i=1 aiαi(s) + δvαn+1(s)]2, [βvz]2, [βwz]2 and

[
∑
i aivj∗,i]2 from ek′. Then it aborts if the j∗-th equation is satisfied, i.e. if(

n∑
i=1

[ai]1vj∗,i

)
·

[
n∑
i=1

aivj∗,i

]
2

−

(
n∑
i=1

[ai]1wj∗,i

)
· [1]2 = [0]T .

Since verification succeeds, [V ]1[V ]2 − [W ]T = [H(s)]1[t(s)]2. By the definition of
P (X), we have that the left hand side is [V 2 −W ]T = [P (s)]T .

If we divide both sides of the verification equation by s− χj∗ , then

[
P (s)

s− χj∗

]
T

= [H]1 ·
[

t(s)

s− χj∗

]
2

= [H]1 ·

∏
i 6=j∗

(s− χi)


2

,

so the adversary B3 can compute
[
P (s)

s− χj∗

]
T

from [H]1 and the powers of [s]2 in the

crs. On the other hand, if we use equation (6.3) on P (X), then[
P (s)

s− χj∗

]
T

=

[
(V (s) + βv)qv(s)− qw(s) +

β2
v − βw
s− χj∗

]
T

, (6.7)

and we have β2
v − βw 6= 0 (otherwise the j∗-th equation is satisfied, in which case the

game aborts). We describe in the following how B3 can compute the right hand side of
Equation (6.7) and the elements to break the d-SATSDH Assumption.
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According to Equation (6.4) and Equation (6.5), B3 can compute [βv]1 =
∑n
i=0[ai]1βv,i+

[δv]1βt, [βw]1 =
∑n
i=0[ai]1βw,i + [δw]1βt and also [V (s) + βv]1 = [V ]1 + [βv]1, be-

cause it knows [V ]1 from the proof π and the extracted values [ai]1, and βi are the
reminders of dividing Vi(X) by X − χj∗ .

From these values, the extracted values and [V (s)+βv]2, B3 can derive [(V (s) + βv)qv(s)]T
as [V (s) +βv]1 · [qv(s)]2. Finally, it can directly compute [qw(s)]T from extracted ele-
ments [ai]1 for i ∈ [1..n] and [δw]1, and public α̂i(s): [

∑n
i=1 aiα̂i(s) + δwβt]1. Thus,

from equation (6.7) B3 recovers
[
β2
v − βw
s− χj∗

]
T

and returns

(
χj∗ , [βv]1, [βw]1, [zβv]2, [zβw]2,

[
β2
v − βw
s− χj∗

]
T

)
,

breaking the l-SATSDH assumption.
Hence by the triangle inequality we have 1

l Pr[Game1(A) = 1] ≤ AdvBLS(B2) +
Advl-SATSDH(B3).

Finally, by Lemmas 43 and 44 we get that

AdvSnd(A) ≤ 3AdvDDH,G2
(B1) + l

(
AdvBLS(B2) + Advl-SATSDH(B3)

)
.

Efficiency

The proof size in the original construction in Chapter 3 is 4 elements in G1 and 6
elements in G2, while our construction’s proof size is 5 elements in G1 and 8 elements
in G2.

6.7 Relation to Existing Primitives

6.7.1 Relation to SSB Hashes
The SSB requirement makes the EMP commitment scheme look similar to SSB hash
functions [83, 107], in which one can compute a hash of a vector v such that the com-
puted hash is statistically binding in one coordinate of v. However, there are also
obvious differences. First, to obtain zero-knowledge, we need hiding (AESH) that is
not required from hash functions. This is, intuitively, a natural distinction and cor-
responds to the difference between collision-resistant hash families and statistically
hiding commitment schemes.
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Second, [83, 107] require that an SSB hash has the local opening property, meaning
that the committer can efficiently open just one coordinate of the committed vector. In
the QA-NIZK application, we do not need this property: the commitment key ck is
created by a trusted third party, and there is no need for the honest parties to ever
open the commitment. Instead, in the soundness proof, we need somewhere statistical
extractability (SSE), stating that the creator of ck (e.g., the adversary B) must be able
to extract the succinct guilt witness. SSE is not needed in the case of SSB hashes.
Although not needed in our concrete applications, it is also desirable to have the almost
everywhere statistical trapdoor (AEST) property, where the creator of ck is able to
replace non-SB coordinates with anything she wishes. Finally, we allow ck to be long,
but require commitments to be succinct.

The properties of SSB and local opening are orthogonal: it is possible to construct
efficient SSB hashes without local opening [107] and efficient vector commitments [98,
33] (which have a local opening) without the SSB property.

6.7.2 Relation to Oblivious Transfer (OT)
SSB commitments are directly related to two-message OT protocols as defined in [8].
In an OT protocol, the sender has an n-element database and the chooser has an index-
set S with |S| ≤ q. The chooser wants to obtain xS ; no additional information should
be leaked either to the chooser or the sender. In a two-message OT protocol (in the
plain model), the chooser sends the first message otq (an encoding of S) to the sender
who replies with the second message otr (an encoding of xS ). OT protocols have
very wide applications in many areas of cryptography, with two-message OT protocols
in the plain model such as [106, 8, 62, 99] being of special interest because of their
efficiency.

Essentially, SSB commitments are non-interactive analogues of such protocols, the
commitment key corresponding to the first OT message ot1, and the commitment cor-
responding to the second OT message ot2. However, the connection is not completely
one-to-one, since there are subtle differences in the security definitions between SSB
commitment schemes and OT protocols. Importantly, while in OT, the ot1 generator is
always untrusted, in our applications it is sufficient to consider a trusted ck generator,
which allows to develop more efficient constructions. Additionally, SSB commitment
schemes (such as EMP) result in a flavour of OT where the receiver’s message ot1 is
long but can be reused multiple times, while the sender’s message ot2 is much shorter.

Thus, all secure two-message OT protocols are also secure SSB commitment schemes.
Unfortunately, none of the known efficient two-message OT protocols have the required
algebraic structure to construct QA-NIZKs, and thus they are unsuitable for our main
application.
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6.7.3 Relation to PCP-Based zk-SNARKs
The QA-NIZK application of SSB commitments is based on the observation that the
language of bit-strings (resp., CircuitSAT) has a local verifiability property, similar to
PCP [10, 9]: one can establish, by checking one random coordinate of the bit-string
(resp., all adjacent wires of a random gate), whether an input belongs to the language
or not. Typical PCP-based zero-knowledge arguments like [91] use PCPs with small
soundness error; as a drawback, such PCPs have a long proof and an inefficient re-
duction from CircuitSAT. The construction in Chapter 3 and the current contribution
use a trivial PCP with a large soundness error but with a trivial reduction from Cir-
cuitSAT. The use of SSB commitments means that the efficiency loss is logarithmic in
n (one needs to use ≈ 2 log n-bit longer group elements) while in the case of earlier
PCP-based arguments the efficiency loss is much larger. Nevertheless, the use of SSB
commitments is not limited to trivial PCP; one can use them together with any PCP
that has a small number of queries and short proof length.
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Conclusion

A common theme in this thesis is to reduce the strength of the assumptions used in the
security proof, while keeping the efficiency of the constructions. We emphasize two
techniques that we believe have potential for future work.

We constructed the first simulation-extractable QA-NIZK argument for boolean
CircuitSat, that is sub-linear in the circuit size but has full extraction under falsifiable
assumptions. To achieve complete extraction of the witness, all previous simulation-
extractable QA-NIZK proofs either use non-falsifiable assumptions or a proof linear in
the witness size. Then, the knowledge soundness under falsifiable assumptions for non-
interactive proofs, requires to have a linear proof. Our construction follows an approach
presented in González and Ràfols [69]. Briefly, the witness is split into smaller pieces
that are interlinked in a chain: if we have knowledge of the first piece and the link
to the next piece is correctly done, this knowledge is transferred in some way. Like
in a chain, if we prove the correctness of the links between each piece to the next
one, knowledge is transferred up to the final piece. This idea that naturally appears in
CircuitSat approach, we believe that can be exploited in other contexts to reduce the
proof size and improve the analysis security.

In some cases, arguments for membership in linear spaces are used as proof of
knowledge. For example, Campanelli et al.[31] use QA-NIZK argument to prove that
two Pedersen commitments, that are perfectly hiding, open to the same values. If we
try to write it as a proof of membership in linear spaces, we would express the space
as the image of some full rank matrix with more columns than rows. Since the image
of this matrix is the whole space, this only makes sense if we use the QA-NIZK as
a proof of knowledge of the witness. Our techniques extends the work of González
and Ràfols [69], which gives a way to analyse this use of QA-NIZK schemes under
falsfiable assumptions, in the simulation soundness setting.

Finally, we construct a simulation-extractable QA-NIZK for boolean CircuitSat,
which is sub-linear in the circuit size. We believe that other signatures can be developed
from this construction similarly as our SoK. For example, an Attribute-Based Signature

185



where the signer has to prove knowledge the secret keys of some attributes that satisfy
a certain circuit (signing policy). We think our techniques can be used to design an
Attribute-Based Signature scheme for general signing policies.
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[68] A. González and C. Ràfols. New techniques for non-interactive shuffle and range
arguments. In M. Manulis, A.-R. Sadeghi, and S. Schneider, editors, ACNS 16,
volume 9696 of LNCS, pages 427–444. Springer, Heidelberg, June 2016.
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