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Abstract

The work presented in this thesis is dedicated to the understanding
of practical and conceptual challenges in simulating dynamical prop-
erties beyond the quasi-static approximation, in solid-state quantum
devices in scenarios where a full quantum mechanical treatment is
necessary. The results of this thesis are particularly relevant for the
computation of the fluctuations of the electric current in the THz
regime which aids in determining the correlations, the evaluation of
tunnelling times that define the cut-off frequency of high-frequency
operated devices, or the assessment of thermodynamic work to realize

quantum thermal engines.

The above mentioned dynamical properties involve multi-time mea-
surements and hence are sensitive to quantum backaction. In the
context of Orthodox quantum mechanics, the definition of these dy-
namical properties cannot be detached from the specification of the
measurement apparatus. That is, defining apparatus-independent or
intrinsic dynamical properties of quantum systems is incompatible

with the postulates of Orthodox quantum mechanics.

All in all, a device engineer like me, working on practical problems
related with the present and future solid-state devices, is forced to
delve into the foundations of quantum mechanics if I really want to
properly understand the high-frequency performance of solid-state de-

vices. In this regard, I will show that the difficulties associated to the



understanding of dynamical properties can be solved by looking be-
yond Orthodox quantum mechanics. In particular, I have explored the
modal interpretation of quantum mechanics, which is a mathemati-
cally precise quantum theory that reproduces all quantum mechanical
phenomena. I will show that intrinsic properties can be easily defined
in this new (non-orthodox) context. Importantly, I will prove that
intrinsic properties can be identified with weak values and hence that

they can be measured!

Focused on a particular modal theory, viz., Bohmian mechanics, an
electron transport simulator will be discussed and applied to address
both methodological and practical issues related to the simulation
of quantum electron transport. The ontology of Bohmian mechanics
naturally enables describing continuously monitored open quantum
systems with a precise description of the conditional states for Marko-
vian and non-Markovian regimes. This helps to provide an alternate
to density matrix approach in the description of open quantum sys-
tems, which scales poorly computationally with the number of degrees

of freedom.

Thus the Bohmian conditional state strategy, which has led to the
development of an electron transport simulator, BITLLES will be
shown to compute the dwell times for electrons in a two-terminal
graphene barrier. It will be demonstrated that Bohmian trajectories
are very appropriate to provide an unambiguous description of transit
(tunneling) times and its relation to the cut-off frequencies in prac-
tical electron devices. Finally, a protocol incorporating collective-like
measurements to evade the current measurement uncertainty in the

classical and quantum computing electron devices will be discussed.
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INTRODUCTION



Chapter 1

From steady state to time

resolved quantum transport

Due to the miniaturization of electronic devices, semi-classical simulation tech-
niques are no longer able to provide a correct description of electron devices. The
majority of the device modelling community has thus migrated from semi-classical
to steady state quantum simulation techniques. Today, a number of quantum elec-
tron transport simulators are available to the scientific community [1H5] where in
almost all cases the framework of Orthodox quantum mechanics is utilized[] Most
of these quantum transport simulators use time-independent equations. And yet,
they can predict dynamical properties of devices such as AC, transients or noise.
The adopted strategy is as follows: (i) first, simulate the DC characteristics which
provides the dependence of the DC current and charge densities on the gate and
drain voltages, (ii) second, obtain the transconductance and capacitances from
these static properties, and (iii) finally, plug all this information into an analytical

expression of the frequency response calculated by a small signal circuit model.

! An important exception to this rule is the BITLLES simulator that utilizes the framework
of Bohmian Mechanics for quantum transport which is [available here:


http://europe.uab.es/xoriols/The_BITLLES_simulator.html

This strategy has been proven to be very successful in providing physical insights
into the operation of electron devices and at the same time has been shown to be
computationally very efficient [6, [7].

The success of time-independent (or steady-state) strategies relies in the fact
that the transit time of electrons (which is usually of the orders of picosecond) is
much less than the inverse of the operating frequency (of the orders of nanosecond)
at which these devices are simulated. In such circumstances, the current can be
reasonably computed under a steady-state approximation. By invoking ergodic
arguments the ensemble value of the current measured in different experiments at
different times can be said to be equivalent to the time average of the current in
a single experiment. Therefore, steady-state properties require, in principle, only
to deal with quantum computations that involve single-time measurement. The
amount of information that time-independent simulators can provide is limited
because they cannot offer information on multi-time correlations. Therefore,
their predicting capabilities are still far from those of the traditional Monte Carlo
solution of the semi-classical Boltzmann transport equation [§].

At moderately or very high frequencies, for example, the transit time of
electrons starts to be comparable to the inverse of frequency of operation and
the above time-independent (or steady-state) strategy starts to fail. Notably,
computing current correlations at high frequencies not only requires to aban-
don the time-independent Schrodinger equation in favor of the time-dependent
Schrédinger equation, but also needs a precise description of the collapse law,
which is ultimately responsible for producing a particular output value of the
current each time we measure. Whereas the Schrodinger equation is a unitary
equation of motion, the collapse is a random non-unitary process. That is, when
measured, quantum systems undergo a non-negligible perturbation that affects

their future evolution. The perturbation caused in the system by the measure-
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Figure 1.1: Figure depicting a typical scheme of an electronic device. The active region
is shown by a brown region connected with wires (depicted by pink region) one end
of which is connected to a battery (Vin) and the other end (Sp) is connected to an
ammeter (Pointer)

ment is usually referred to as quantum backaction. And this effect is responsible
for making dynamical properties at high frequencies a complicated problem not
only at the practical but also at the conceptual (or fundamental) level.

At this point it is important to understand the differences between classical
and quantum backaction. For example, when measuring the electric current in a
classical electronic circuit using an ammeter, the resistance of the ammeter affects
the actual current flowing in the circuit and thus a value which is slightly less
than the actual value of the current (without the ammeter) is measured. The cru-
cial difference between the two (classical and quantum) system is that while the
properties of a classical system are unambiguously defined even without the mea-
suring apparatus, in quantum systems, described under the ontology of Orthodox
quantum mechanics, these properties are undefined unless the measuring appa-
ratus is explicitly considered. These peculiarity of Orthodox quantum mechanics
introduces the following conceptual and practical difficulties in the modelling of

quantum transport at high frequencies:

Difficulties in providing the total current operator: In an electron

device the measurement of the current at the surface Sp in Figure [1.1] is done



through a long wire which is in-turn connected to the ammeter as shown in
Figure [I.1l The ammeter measures the total current along with the noise of
all the electrons in the wire. Furthermore, the measurement of this current by
the ammeter does not significantly effect the current in the surface Sp. So,
the measurement of the current in an electron device can be defined through a
particular class of measurements referred to as weak or semi-weak measurements.
The modelling of a weak measurement in Orthodox quantum mechanics requires
to find a weak measurement operator of the total current, which includes particle
and displacement components. The particle current is just related to the flux of
electrons, while the displacement current is proportional to the time derivatives
of the electrical field.

Importantly, at high frequencies one has to include both the displacement cur-
rent and the particle current [9 [10]. Therefore the weak measurement operator
must include the displacement currents (as no instantaneous current conservation
at a particular time can be guaranteed without it and the quasi-static approxi-
mation is no longer applicable). Roughly speaking, the expectation value of the
total current (/;) has to be given as the sum of the averaged particle current (1)
and the averaged displacement current (1), i.e.:

L) = L(£) + Lu(t) :/Sfd§+/se(7?)%-d§ (1.1)
where J is the current density, e(7) is the electric permitivity and E(7,¢t) is the
electric field E| The above discussed issue poses a problem even in the classical and
semi-classical regimes, where utilizing the Ramo-Schokley theorem for defining

the total current is necessary [ITHI3].

2The quantities in Eq. are the ensemble mean values from the point of view of Orthodox
theory. In Bohmian mechanics we have right to associate these properties to instantaneous
values.



Therefore, finding a total current weak operator has to be described from a
generalized measurement scheme (known as generalized Von-Neumann scheme),
mathematically described by a POVM (Positive Operator Valued Measure) (we
will discuss it in detail in subsequent sections). Orthodox theory only tells us that
there is a hermitian operator associated with every observable, but it does not tell
us which one. Therefore, we are left to answer the following questions in order
to construct this operator: What is the POVM associated with the measurement
of the total, particle plus displacement, current? Since the measurement has to
be weak, how can one decide the weakness of the measurement? What should
be the time lapse between measurements? These questions are certainly not easy
to answer. But, even if defining such a POVM is a complicated task, Orthodox
theory argues that such operator exists without providing any answer to the pre-
vious questions. Therefore, not being able to find a suitable operator is not a
shortcoming of the Orthodox theory but a limitation of the physicist or engineer

that is looking for it [

Difficulties in describing apparatus independent information: To
quantify the speed of a field effect transistor (FET) the scientific community use
some figure of merits (FoMs). The cut-off frequency (fr) is considered to be
an appropriate FoM to quantify the intrinsic speed of the FETs. The physical
mechanism behind the origin of this frequency arises from the response time of
electrons which gives rise to an intrinsic delay. This time is crucial in determining
the response of the device to the change in applied voltage specially in the digital

electronics applications, quantifying the intrinsic cut-off frequency. Now one can

3For example let us take a particle current operator which is defined as j =

L A (AP + 15|r_'><7_”|} One can, in principle, evaluate the eigenstates of this current oper-

2m

ator apparently with a lot of mathematical difficulty associated to it. But these eigenstates
even though mathematically correct are in form of functions which are too impractical to be
associated with some physical system.



ask a straightforward question: if the estimation of cut-off frequency depends
on the transit time of electrons in the active region how to calculate this time?
From the perspective of Orthodox theory the most elementary answer would be:
perform strong position measurement at the two extreme positions of the active
region (the source and the drain). Though this answer is straightforward, the
experimental realization of this proposition is simply useless as the first position
measurement will project the initial state into a position eigenstate and hence it
prevents the possibility of capturing any coherent evolution of the wavefunction.
What I want is to know what is the time it takes for the electron to go from
source to drain without including such measuring apparatus. Is it possible to get
such information without measuring it?

The above problem is a direct consequence of the conceptual restriction in the
ontology of the Orthodox theory, where properties of a quantum system does not
exist until they are measured. Apart from the problematic descriptions of issues
discussed above, the necessary inclusion of the measuring apparatus also leads
to quantum contextuality, which means that the outcome of the measurement is
dependent on the way the system is measured (or on the properties of the mea-
suring apparatus). Thus one can have as many outcomes as there are number of
measurement strategies which is very problematic in obtaining an unambiguous
definition of a measured property ﬂ This restriction imposes conceptual diffi-
culties in defining the properties like the tunnelling time, thermodynamic work
and the high frequency electrical current in a quantum system. These three

paradigmatic examples will be discussed in the later part of the thesis where I

41 want to reiterate that just like backaction, contextuality is also not exclusively found
in quantum mechanics, this also can takes place in a classical system which is measured with
different apparatus. For example measuring current in a circuit using ammeter of different
internal resistances will result in different value of electric current. But the different is that
whereas in classical system a well defined distinct value of a property is possible independent of
the measurement in Orthodox theory this is not possible and therefore contextuality becomes
so crucial.



will propose a strategy derived from the ontology of Bohmian mechanics which

will allow an unambiguous definition of these properties.

Difficulty in categorizing the system and the apparatus: In Ortho-
dox theory we define an isolated quantum system (a microscopic closed system)
which interacts with the classical (macroscopic) measuring apparatus. The dif-
ficulty with this proposition is, at what point will we place this distinction? Is
there some well defined boundary between a quantum system and an apparatus?
For example in an electron device is the definition of device region arbitrary or

there is a strict boundary between the device and the measuring apparatus?

Though I have explained three particular difficulties that one finds when try-
ing to explain the measurement of high frequency properties of quantum electron
devices, I could have also described these issues under a single umbrella of the
measurement problem in Orthodox theory as this is the origin of all the difficulties
described above. The mentioned limitations in the Orthodox theory poses a se-
rious problem in the near future as electron devices become even smaller and are
foreseen to operate at the Terahertz (THz) regime. The solution to simulate such
quantum electron devices necessitates one to enter into discussions pertaining to
several non-trivial issues in quantum mechanics. Such discussions will need a
very strict theoretical framework rather than engineering intuition. Typically the
theoretical physicists provide a correct description of a theory to the engineers
in order for them to apply those rigorously explored principles in engineering
applications. But in this particular case, as discussed above, physicists have not
been able to provide unequivocal recipe for computing some properties of interest
to the engineers and therefore engineers are forced to enter into the discussions

pertaining to the foundations of quantum mechanics. This thesis is therefore an



engineers perspective on the difficulties faced in the proper description of some

properties that are very crucial in describing the future quantum devices.

An attempt to answer these questions will lead me to first understand these
problems and their origin in the framework of Orthodox quantum mechanics and
then provide an answer in the framework of a non-Orthodox theory which is dis-
cussed in the PART II of the thesis. Most of the difficulties that we encounter
in the precise description of the dynamical information of a quantum system, in
the Orthodox theory can be associated to the explicit inclusion of the measuring
apparatus as discussed in chapter 2] These questions will then lead me to an
alternate representation of quantum mechanics known as the modal interpreta-
tion as discussed in chapter [3] T will discuss how in this interpretation all the
above discussed issues related to the backaction, quantum contextuality and the
definition of generalized operators can be circumvented.

In PART III of the thesis I will discuss a quantum transport methodology
derived from the ontology of Bohmian mechanics. The utility of this methodology
in providing a precise description of the open quantum system in Markovian and
non-Markovian regimes alike will be discussed in chapter [ In chapter [f] I will
discuss how the already discussed quantum transport methodology can be made
computationally more efficient.

In PART IV of the thesis an application to the previously discussed method-
ology in the simulation of practical devices will be discussed. Particularly in
chapter [6] the ability of the Bohmian intrinsic properties to compute tunneling
time in a two terminal graphene based device will be demonstrated using the
BITLLES simulator. In chapter [7] I will describe a proposal which will help to
evade the current measurement uncertainty in the classical and quantum com-

puting devices.



Finally, in PART V of the thesis I will provide a conclusion of all the work

carried out in the thesis.
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THEORETICAL OUTLOOK
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Chapter 2

Are electrons there when nobody

looks?

The predictions of quantum mechanics have been in many senses contrary to
the intuition of the classical physics. Phenomena like quantum superposition,
quantum entanglement, tunnelling, electron spin etc. has no parallel in classical
physics. The word quantum mechanics is usually understood as a gigantic um-
brella under which different interpretations of the quantum world exists e.g., the
Copenhagen (Orthodox) interpretation [14H17], Ghirardi- Rimini-Weber (GRW)
theory [I8], Bohmian mechanics (or the pilot-wave) theory [16 T9-21] or many-
worlds (or Everett) theory [22]. However, due to historical reasons the word
quantum mechanics has been traditionally associated to the Orthodox theory [1]
Throughout this thesis, unless stated explicitly, any reference to quantum me-
chanics in general will imply implicitly a reference to the Orthodox theory.

In chapter [1] it was concluded that the description of certain properties would

be greatly simplified if we could define an apparatus independent unperturbed

IFor example, if one says that there are no well-defined trajectories in quantum mechanics,
in fact, he/she wants to say there is no well-defined trajectories in the Orthodox interpretation
of quantum mechanics.

12



2.1 Wavefunction perturbation due to measurement and origin of
backaction

dynamics of the system. I will refer to such properties as intrinsic properties.
These properties can be defined as a pre-existing value of a beable E] before the
measurement. It is a property of a quantum system that is not connected to any
experimental setup, and hence are properties that, by construction, belong only
to the system. Orthodox quantum mechanics is, in general, incompatible with
these type of properties. In modal interpretations of quantum mechanics (for
eg. Bohmian mechanics) these properties are defined by simply disregarding the
interaction of the system with the measuring apparatus. A well known example
are the position of Bohmian particles of a quantum system without any position
detector [19, 211, 26].

In the following sections I will discuss the implications of inclusion of the
measuring apparatus which is a necessity in ontology of the Orthodox theory. I
will also discuss how in the framework of Orthodox theory the information of a
quantum system cannot be described without taking into account the backaction

and quantum contextuality related to the measuring apparatus.

2.1 Wavefunction perturbation due to measure-
ment and origin of backaction

In a classical system the properties are well defined regardless of whether these
properties are being measured or not. Therefore, evaluating a property of such
system at time t; and correlating the outcome with the value of the same (or
another) property at a later time ¢y provides an unequivocal way of representing
the dynamics of classical systems. In quantum mechanics, however, Bell [27] as

well as Kochen and Specker [28], showed that measurements cannot be thought

2John S. Bell coined the word beable for all those properties of quantum systems that, in
Bohmian mechanics, have a well-defined (pre-existing) values before any measurement is carried
out [23H25]
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backaction

of as simply revealing the underlying properties of the system in a way that is
independent of the context in which the observable is measured. The result of
correlating the outcome of measuring an observable at time ¢; with that at ¢5 of
the same (or another) observable depends, in general, upon the specification of the
measuring apparatus. As I have already mentioned in chapter [1] this property of
quantum mechanics is known as contextuality and the unavoidable perturbation
that measurements induce on the subsequent evolution of quantum systems is
commonly referred to as quantum backaction [29] 30].

To mathematically describe the measurement of a quantum system I make
use of the generalized Von-Neumann measurement protocol [31]. To simplify the
discussion of a generalized measurement of a property of a quantum system I
consider a Hilbert space H that is decomposed into three different Hilbert spaces
[32] corresponding to the system, ancilla and the pointer. First, the quantum
system of interest from which we want to get information is described by the
collective degree of freedom x. Second, the ancilla, which interacts with the
system and is represented by the collective degree of freedom y. And third, the
pointer, which interacts with the ancilla and is represented by the collective degree
of freedom z. Then, the weak or indirect measurement of the properties of the
system is, in fact, a strong measurement of the properties of the ancilla. That is,
while the ancilla-pointer interaction must be strong, and hence a given position
of the pointer z after a measurement is linked to a single position of the ancilla
y (position eigenstate of y), the system-ancilla interaction can be more general
and thus a given position of the ancilla y after the measurement cannot always
be linked to a single eigenstate of the system. For the sake of clarity I will omit
the reference to the pointer unless necessary.

I assume the full state of the system-ancilla-pointer to be initially described

14
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by a separable state vector:
9(0)) = >0)ls) @ aly: Oy @ [ (2,02} 1)

where the pure state system state vector [ [1/(0)) = 3=, ¢i(0)[s;) has been de-
fined using the eigenstates |s;) of the operator S of interest, with S|s;) = s;|s;).
Without the loss of generality, I choose here a discrete and nondegenerate spec-
trum {sq, $o, s3....} of the operator S. The (ancilla) state vector |pw (0)) =
[ a(y,0)|y)dy interacts with the system and also with the (pointer) state vec-
tor |¢p(0)) = [ f(2,0)|z)dz. The measurement process is a two step process
classified as the pre-measurement and the read out explained as follows,
Pre-measurement: In this step a unitary evolution from ¢t = 0 to t; entangles
the ancilla with the system and the pointer with the ancilla as follows (a more

detailed derivation can be found in Appendix [A)):

W) = Y alsd o faly ~ sy @ [£: - plabdz. (22
The original ancilla wavefunction a(y,0) splits into several wavefunctions a(y —
As;) with @ = 1,2, ..00. Also, A has been defined as a macroscopic parameter
with dimensions of [y]/[S] that relates y to s;. The shape of a(yx — As;) is arbi-
trary and includes, in particular, strong (direct measurement) interactions when
Jdy aly — Xs;)a(y — As;) = &;; and weaker (indirect measurement) interac-
tions when [dy a(y — As;)a(y — As;) # 0;;. I have defined 4, ; as a Kronecker
delta function. The only two conditions imposed on the ancilla wavefunctions
a(y — As;) to be representative of an indirect or weak measurement are: (i)

Jyla(y — As;)[Pdy = Xs; Vi, which implies that the center of mass of |a(y — As;)|?

31 could have as well described the system in terms of a many body mixed state which even
though rigorous would still not change the conclusions derived in this section. For the treatment

of this section in terms of many body mixed state the reader is referred to
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2.2 Ensemble expectation values in Orthodox theory

is As;, and (ii) [|a(y — As;)|’dy = 1 Vi, which simply states that the ancilla
wavefunction is well normalized.

Read-out: The read-out process is described by the non-unitary operator
I QI ®]f’>zk, where Ig is the identity operator defined in the system Hilbert space,
Iy is the identity operator defined in the ancilla Hilbert space, and P,, = |z) (2|
is a projector acting on the Hilbert space of the pointer. As mentioned pre-
viously, it becomes now evident that an indirect measurement of a system is
just a direct measurement of an ancilla that is entangled with the system. The
non-unitary operator Is @ Iy ® I@’zk causes the collapse of the pointer wave-
function providing the read-out value z; = y; and the measured state becomes
(Wi(t1)) = D, cialyr — Asi)|si) @ |yk) ® |2x). Therefore, the state of the system

can be effectively represented by:

k(1)) =D alye — Asi)eilsq), (2.3)
where the subscript k indicates the measurement of the pointer value z;, = .
Now the initial system state prior to the measurement was |¢(ty)) = >, ci|si)
and after the measurement the state can be given by Eq. [2.3] This state is what
we call as the perturbed state. Also it can be clearly seen that this system state
has been contaminated by the measuring apparatus, which is the effect of the

backaction of the measuring apparatus on the system.

2.2 Ensemble expectation values in Orthodox
theory

In contrast to classical mechanics Orthodox theory can only make statistical pre-

dictions about a system in a given state. Since in the most general cases the state
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|1h(t)) of the system is not an eigenstate of the operator S (representing an observ-
able s, I am interested in), one obtains random measurement outcomes in a set of
identically prepared experiments. Therefore to obtain a meaningful information
of the observable it is useful to determine the ensemble expectation values. In this
section I will discuss one time ensemble expectation values pertaining to single
time measurements and two-time ensemble expectations for scenarios where the

system state is measured consecutively at two different times

2.2.1 One-time expectation value

The expectation value of a property of a quantum system measured at time ¢y,

entangled with the ancilla giving the measurement outcomes y; is given byﬁ.

(y(tr)) = /dykykp(yk>7 (2.4)

where P(yy) is the probability of reading out a particular value yx = z,. The
probability of measuring a particular pointer position y; can be then easily
evaluated from Born’s rule P(yx) = (Vr(t1)|Vi(t1)) = (Yr(t1)|vr(t1)) applied
to the non-normalized state in Eq. [2.3] While the probability distribution
P(yx) = Y, lcilla(ys — Asi)|? clearly depends on the type of ancilla that I am

considering, the expectation value in Eq. [2.4]

wie)) = | w S leilatu = N0l = e =A8), (29

only depends on the system state [1(t1)) = >, ¢;|si).
It is apparent from Eq. that the expectation values of static (one-time)

properties provide information of the system that is not contaminated by the

4All integrals are definite integrals over all the possible values of the variables z, y and z
(700, +OO)
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2.2 Ensemble expectation values in Orthodox theory

measuring apparatus. Most of the quantum simulators working in steady state
therefore do not have any problem related to the backaction of the measuring
apparatus. In such situations it is enough to model the system correctly in terms
of the wavefunction following a unitary equation of motion and one can safely
avoid the complications associated to the non-unitary collapse law. This is the
strategy followed in most of the time-independent simulators that I had mentioned

in chapter [I}

2.2.2 Two-time expectation values

As discussed in chapter [1| there can be situations specially in the terahertz fre-
quency applications that the steady state approximations fails because in such
scenarios the dynamic characteristics will be influenced by the backaction of the
measuring apparatus. In such regimes it is very important to model the multi-
time correlations correctly. In the following discussion I will carefully compute
the two-time correlation function from the above measurement scheme to account
for a second measurement involving another observable G at time to, > t;. By
repeatedly reading-out the positions y (at ;) and y,, (at t9) for a large number
of identically prepared experiments, we can compute the corresponding two-time

correlation function (y(t2)y(t1)) as:

(y(t)y(t)) = / dye / A Yo P (s ) (2.6)

where P(y.,yx) is the joint probability of subsequently reading-out the values
yr and y, at times t; and t,, respectively. Primarily the state in Eq. can
be let to evolve freely from t; till {5 according to the time-evolution operator
U = exp(iH(ty — t,)/h), where H is the Hamiltonian that dictates the evolution

of the system degrees of freedom z in the absence of any interaction with the
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2.2 Ensemble expectation values in Orthodox theory

ancilla and pointer degrees of freedom. Therefore, the state of the system right

before the second pre-measurement can be written as the (non-normalized) state:

[Un(t2)) = Y alye — Asi)eicsilg;)- (2.7)
2
where ¢;; = <gj|U |s;). Subsequently, under the assumption that there is no

correlation between the ancilla degrees of freedom at times ¢; and to, the system
state vector in (2.7)) undergoes a second pre-measurement evolution by becoming

entangled again with the ancilla and the pointer wavefunctions (see Appendix

A):

U(t2) =Y alys — Asi)cicsilgs) ®/a(y —Agj)ly)dy @ / f(z=y)lz)dz, (2.8)
]
where now a(y — Ag;) is the pointer wavefunction displaced by Ag;.

The read-out of the pointer position (for an output value y,) at time ¢, is
described again by a non-unitary operator Is@ Iy ®]f”zw with If”zw = |zw)(2w|. This
non-unitary operator causes the collapse of the state in Eq. into |Wy ., (t2)) =
> i Ciciia(yr — Asi)a(yw — Agj)|95) @ [yw) ® |2w), and so the state of the system

can be effectively written as:
[Uro(t2)) = cicjialye — Asi)a(ys — Agj)|g;)- (2.9)
i,J

Born’s rule can be used again to write the probability:

P(Yu, Ur) = (Vi (t2) | Vhw(t2)) = (Vrw(t2)|Vrw(tz)) of subsequently measuring yy,

and y,, as:

P(Yu, yx) = Z Z Ceichuciad (ye — Asy) alyr — Asi)|a(y, — Agy)[>. (2.10)

J i
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2.2 Ensemble expectation values in Orthodox theory

By introducing the probability P(y,,yx) in Eq. into Eq. we finally get:

(y(t2)y(t1)) = )‘Z/dykyka(yk — Asp)a” (yx — Asi ) (P (t1)]sir) .

where I have used [ dy,, vy, |a(y, — Ag;)|> = Ag; and G = >-;9ilgj)(g;| together
with ¢; = (s;|¢(t1)) and ¢;; = (g;|U|s;). Expression is completely general
and describes the expectation value of the two-time correlation function of S
and G at times t; and ty. At this point what is significant is that in I
have not been able to eliminate the dependence of the ancilla degrees of freedom
a(yr — As;) and a*(yx — Asy) in the evaluation of (y(t2)y(t1)). Therefore the
backaction of the measuring apparatus cannot be removed in this case, contrarily
to what happens to the one-time expectation values in Eq. 2.5 Also Eq.
suggest clearly that for different types of measurements (ancillas) one will get
different time-correlation functions and hence the outcome is contextual since it
depends on the type of measuring apparatus used. Therefore, when computing
multi-time correlations, in the most general scenario in a quantum device, we
have to consider the backaction of the measuring apparatus and the associated
quantum contextuality which has as many different outcomes as the number of
different proposed measurement strategies. A simple numerical demonstration of
above discussion can be found in Appendix [E] (also see Figure [E.I|(a)).

Eq. is a two-time correlation function in the most general scenario where
one could witness an explicit backaction due to the measuring apparatus. But
we can still try to find some particular regimes where one can totally avoid the
backaction (perturbation) of the measuring apparatus on the system and obtain
the intrinsic (unperturbed) properties that we are looking for. The most educated

guess at this point could be to make the coupling between the system and the
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2.2 Ensemble expectation values in Orthodox theory

measuring apparatus so weak that it measures the system with the least possible
(negligible) perturbation. I refer to this regime as the ideally weak measurement

regime which is explained as follows,

The case of ideally weak measurements: In principle, one can erro-
neously expect that by minimizing the interaction between system and ancilla,
one can get a zero (or negligible) perturbation on the system. We will see
here that intuitive definition of what a weak value can be is not actually cor-
rect. I define an ideally-weak measurement as the one where the system-ancilla
coupling is minimized. This is mathematically equivalent to making the sup-
port of the ancilla wavefunction (in y) much larger than the support of sys-
tem wavefunction (in As) i.e. y > Ask. In this limit one can assume a first
order Taylor approximation so that the ancilla wave packet can be written as
alyr — Asi) =~ a(yx) — )\si%. As discussed in Appendix , the general result
in Eq. reduces to (y(t2)y(t1)) = A2Re[(¢(t1)|UTGUS|t)(t,))]. Defining the
Heisenberg operators G(t;) = UTGU and S(t;) = S, then in the ideally-weak

measurement regime one can write the two-time correlation function as:

(y(t2)y(t1)) = NRe[(¥(t1)|G(t2)S(t1) Y (t1))]- (2.12)

At this point, one could naively think that in Eq. we have finally arrived
at the expression of two-time correlation function which provides an unperturbed
dynamics of the system because the expression is independent of the measuring
apparatus. I want to clarify this subtle aspect carefully where I will conclude that
in-spite of obtaining the measurement independent outcome in Eq. 2.12] T still
will not be able eradicate the backaction of the measuring apparatus. In order
to show that I will demonstrate that the expectation value in Eq. can be

only understood as the result of a non-negligible perturbation of the measuring
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2.2 Ensemble expectation values in Orthodox theory

apparatus on the state of the system. To see that, I first rewrite the general state
in Eq. using the above mentioned Taylor series expansion (more details can

be found in Appendix |C)):

~—
S5
<
—~
<
G
~—
>
>

da(y.,

— ] 2 & T
ate)) = (atw)am) -+ X225 D) Girg — p P8
da(yx) 7 &
A )53 Y )

For simplicity, I defined da/0y = da(y)/0y. Erroneously assuming da(y)/dy = 0,
one could think that the state of the system after the two measurements can be ap-
proximated only by the first term in Eq. as | (t2)) = alyy)aly)Ul(ty)).
This approximation would indeed imply that the state of the system has not been

perturbed during the two-time measurement. However, |g[~)k7w(t2)> does not yield

the result in Eq. but a separable probability P(y.,, yx) = <1/~1k7w(t2) \1/;;{7w(t2)> ~
la(y) Pla(ye) > = P(y.) P(ys) that leads to (y(t2)y(t1)) ~ X*(G)(S). To under-
stand why the approximation |1 (t2)) & [k (t2)) vields a wrong result, let us
assume a system where either [y, P(y,)dy, = 0 or [ yrP(yr)dyr = 0. If this is
the case one will always get, (y(t2)y(t1)) = A2(G)(S) = 0 . Now, let us consider
the very rare (non-zero) output results for, y, — oo and y,, — 0o, corresponding
to a(y,)a(ye)Ulw(t)) — 0 (because a(y,), a(yx) — 0). Then, the other terms in
Eq. can no longer be neglected as they provide a non-zero contribution to
(y(t2)y(t1)). The rare events associated to y — oo, and hence to a large pertur-

bation of the system, provide physical non-zero correlations and are responsible

for providing non-zero correlations in Eq. E| Appendix @ gives a simple

®Obviously, one can always redesign our experiment to have [ yoP(yo)dy, # 0,
J yeP(yx)dyr, # 0, and both much more large (in absolute value) than the contributions from
very large values of y mentioned above. Then, it will be true that the two-time correlations
can be approximated by the uninteresting classical-like result (y(t2)y(t1)) =~ (y(t2)){y(t1)). In
this last case, since I have shown that (y(¢)) is apparatus-independent, (y(t2)y(¢1)) is also

22



2.2 Ensemble expectation values in Orthodox theory

numerical demonstration of Eq. and the corresponding discussion above,
where I have used the ground state of a harmonic oscillator as our system and a

Gaussian Krauss operator as our ancilla.

The case of initial eigenstate of S : The only scenario where the out-
come of the second measurement does not depend on the first measurement
is when the initial state of the system is an eigenstate of the operator S , 1.e.,
|9(t1)) = |sk). In this case the first measurement always yields the same output
result y. = Asp without having perturbed the state of the system, and hence
the second measurement happens to be independent of the first measurementﬂ.

Mathematically this can be stated as:
(y(t2)y (1)) = Nsu(se|UTGU|s1) = MG (t2))(S (1)), (2.14)

where I have used that (¢(t1)]sy)(si|¥(t1)) = (sk|si)(si|sk) = dip0p rr and that
[ dyylaly — \s)|* = Xs. Equivalently, if (si|U'GU|s;) = guds; which means that
the evolved state U |s;) is an eigenstate of G, then Eq. [2.11] can be also written

as (y(t2)y(t1)) = XNgu (P(t1)|S0(t1)) = N2(G(t2))(S(t1)). In these two scenarios,
since the results (G(t5)) and (S(t;)) are apparatus-independent, the two-time
correlation function in Eq. also represents an apparatus-independent corre-
lation function. Unfortunately, this result is not general enough and is invalid
in many practical situations where the initial state is a coherent superposition of

the observable eigenstates |Z| I can go even further to impose restrictions on the

operator itself to try to obtain the intrinsic properties as I have demonstrated

apparatus-independent.

6In the later part of the thesis I will explain this scenario that has a very crucial ontological
significance in the Orthodox theory and is referred to as the ‘eigenvalue-eigenstate’ link

"In quantum systems prepared by collapsing the system state into one eigenstate of the
operator Satt=0and measuring the system by such operator S without time evolution, the
trivial result (y(t2)y(0)) = A2(G(t2))(5(0)) is obtained.

23



2.3 Why intrinsic dynamical properties can not be defined in
Orthodox theory?

in the Appendix |[E| where I conclude that Orthodox theory does not allow an

unperturbed (intrinsic) dynamical information.

2.3 Why intrinsic dynamical properties can not

be defined in Orthodox theory?

I started my discussion in the previous sections by asking a question if it is possi-
ble to get unperturbed dynamical information in the ontology of Orthodox theory
and after a rigorous analysis I found out that the answer to that is not affirmative.
As already said, the impossibility of obtaining an unperturbed information of a
system complicates our description of systems that involves multi-time measure-
ments because they will always be plagued by the backaction of the measuring
apparatus and the quantum contextuality. But cannot one just ignore the mea-
suring apparatus and describe the properties of the system alone? The answer
provided by the Orthodox theory is a straight no ! In the following section I will
explain that the reason for this is attributed to the ontology of the Orthodox
theory.

In Orthodox theory there is defined a complex vector |¥(¢)) defining the quan-
tum system (which directly corresponds to a wavefunction) belonging to a Hilbert
space H. This complex vector |U(t)) defines the state of the system the evolution
of which follows a unitary Schrédinger equation. Further the Orthodox theory
postulates that for any observable S there is a well defined value only if the
state |¥(t)) is an eigenstate, |¥;(t)) of the operator S which provides an outcome
(eigenvalue) s;. Now, Schrodinger equation being linear allows the possibility of
the system to be in the linear superposition of the eigenstates |W;(¢)) i.e. even
the superposition state |V(t)) = >, ¢;|W¥;(t)) is a solution, which means that the

system has two or more values of the observable simultaneously. The implications
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of this are that one cannot give any definite eigenvalue value to these properties
and hence they are undefined. To explain why only one value is obtained in
the measurement outcome we need to define another dynamical law which unlike
Schrodinger equation is not unitary and is called as collapse law. This law pro-
vides the dynamical effect of transforming the state |¥(¢)) — |¥;(¢)) and in-turn
provide the outcome s; when a measurement is made which is referred to as the
“eigenstate-eigenvalue link”. The difficulty in this orthodox definition of what is
a well-defined property of a system is now very evident. Before the measurement
we cannot provide a well defined value of the system and therefore the ordinary
view of reality which means that the properties of an object (like its position or
velocity) have well defined values even when they are not measured is lost.

At this point I would like to mention that this difficulty of defining properties
of systems has forced people to follow the ”"shut up and calculate” approach. But
one cannot do much about it as it is just how the ontology of Orthodox theory is
meant to be; very hard to digest but still able to provide good predictions. This
predicament was faced by one of the best minds in the past. Since the Orthodox
conception of the idea that only the measurement of a property gives reality to
the property, there has been a lot of debate on the special status given to the
observer in this theory. Physicists, over the years have often questioned this
imposition in the Orthodox ontology. For example, Einstein wanted to discredit
this assumption when he mentioned “Do you think the moon is not there when
nobody is looking?” which is exemplified in Figure 2.1} Similarly, Feynman once
mentioned that “if a tree falls in a forest and there is nobody there to hear it,
does it make noise”. John Bell was one of the most outspoken physicist in this
regard when he said [33]

“It would seem that the theory is exclusively concerned about 'results of mea-

surement’, and has nothing to say about anything else. What exactly qualifies
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AP

Before Observation - Wave - spread out over space and time

=5 —
e

At the ime of observation - Particle- localised space time event

Figure 2.1: Figure depicting the predicament of Albert Einstein in relation to the
special status of the observer given in the ontology of Orthodox theory. This figure
shows that before observation the particle does not have a well defined position but
once observed the particle instantaneously appears in a well defined position. (Courtesy:
https://ponirevo.com/the-observer-effect-in-quantum-physics/)

some physical systems to play the role of ‘'measurer’? Was the wavefunction of
the world waiting to jump for thousands of millions of years until a single-celled
living creature appeared? Or did it have to wait a little longer, for some better
qualified system . . . with a PhD?”(See Figure

The problems that these physicists posed were related to the postulates of
Orthodox quantum mechanics, which says that only when the observation is
made is when the value of the property is created. Dirac supported this postulate
and also clarified it in his textbook [34] where he says that a definite value cannot
be ascribed to an observable measured in an arbitrary state. In his own words:
“The expression that an observable ‘has a particular value’ for a particular state
is permissible in quantum mechanics in the special case when a measurement of
the observable is certain to lead to the particular value, so that the state is an

eigenstate of the observable” [34].
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Figure 2.2: Figure depicting the question raised by Bell when he asks, what qualifies
some physical system to play the role of the observer? In the given figure the cat is
responsible for giving reality to the poison trigger, but the reality of cat depends on the
observation made by Schrodinger. Similarly the reality of Schrodinger is created by the
omnipresent observer. But which observer gives reality to the omnipresent observer?
(Courtesy: http://www.lls-ceilap.com/vi-jornadas—english.html)

As one can see from the above discussion the difficulties in defining apparatus-
independent or intrinsic (unperturbed) information about the dynamics of quan-
tum systems is rooted in the foundations of Orthodox quantum mechanics. More
specifically, the so-called “eigenvalue-eigenstate link” establishes that quantum
states cannot be associated to a well defined value of a given property unless such
property is explicitly measured, the only exception being when the state itself is
an eigensate of the measured property. There are, however, many situations
where the conceptual understanding of a given phenomenon would be greatly
simplified by the possibility of talking about well defined properties of quantum
objects without the necessity of explicitly measuring them. Importantly, it is well
known that the association of the definition of a property of a quantum system to
the fact of being measured is a “deliberate theoretical choice” that is “not forced

on us by experimental facts” [23]. In this respect, there are other quantum the-
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ories, in empirical agreement with the Orthodox theory, where the definition of
the properties of quantum objects is independent of the measurement [23]. These
other theories allow, in particular, to define properties of quantum systems even
when they are not measured (i.e., just as in classical mechanics). It is thus not
surprising that there is a renewed interest in defining intrinsic properties within
the so-called “quantum theories without observers” [35H37].

The definition of reality associated to the eigenstate-eigenvalue link exists
only in the Copenhagen interpretation of quantum mechanics. For the Bohmian
theory, for example, the trajectories of a quantum system are real independently
of the fact of being measured or not. Therefore the definition of reality has
different meaning in different quantum theories. One can hence say that the
quantum reality is linked to the ontology of a theory and not to the experiments.
Still this point of view is not very well understood in the scientific literature.
There have been many attempts to provide a concrete definition of reality which
does not need the support of any ontology i.e. the definition of reality that has
a purely operationalistic point of view. In this regard Legett and Garg proposed
a definition of reality constituting of two conditions that a property must meet
in order to be classified as real [38]. Though these conditions do not require any
ontology of a theory it indeed provides a check of the Orthodox reality associated
to the eigenstate-eigenvalue link. These conditions are encapsulated in form of
an inequality known as Legett-Garg inequality (LG inequality). They proposed
that a property is a non-realistic property if (i) it is in the superposition of
states (ii) if measuring these properties results in the perturbation of the system.
Even though not explicitly, they wanted to provide a general test of realism
(that they called macrorealism). However, as I have said, from the Bohmian
point of view, the trajectories of a particle are real independently of whatever the

Leggett and Garg define as real subjected to their inequality. What Leggett-Garg
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tested was only the orthodox notion of reality. Once we accept that the Leggett-
Garg inequality just deals with the concept of reality implicit in the Orthodox
theory, we can discuss some of its aspects that are being debated in the literature.
Though condition (i) is not very problematic there can always be an argument
against condition (ii) since any classical system which is subjected to a clumsy
measurement can be erroneously classified as non-realistic. This has led to what
is referred to as the clumsiness loophole. A proposal to narrow it down has been
discussed in [Publication Al

Let us notice that macrorealism (as defined by Legett and Garg) cannot be

proven true once and for all, viz., for any property at any time. If a test of
macrorealism aims at evaluating our notion of classical realism, then a quantum
object should satisfy the Leggett-Garg inequalities for any property at any time.
However, even if an object were to pass a number of tests for different properties
at different times, one never knows whether another property or lapse of time
exists which the corresponding inequality would fail to pass. Therefore it is
not a coincidence that most of experimental works testing Leggett and Garg
inequalities in the laboratory are focused on ordinary quantum systems rather
than on the type of "macroscopically distinct states” invoked by Leggett and
Garg [39]. That is, existing tests only investigate a particular observable of
interest A of a microscopic object (expected to behave quantum mechanically) at
a given time [40-42]. Therefore it is more convenient to define what I refer to as
microrealism which amounts to the relaxation of what Leggett and Garg called
macrorealism into a definition of realism that is based on the so-called “eigenstate-
eigenvalue link” | i.e., the assumption that a system only has a determinate value
for a particular observable when its state is an eigenstate of the corresponding
operator [43] 44] at a particular instant.

After all the above discussions I conclude that the definition of reality is
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2.3 Why intrinsic dynamical properties can not be defined in
Orthodox theory?

different in different ontologies of quantum mechanics. Therefore the question:
“Are electrons there when nobody looks?” has different answers depending on
to which theory this question is asked. In the ontology of Orthodox theory the
answer is “There are no electrons when nobody looks”. On the contrary the same
question in the Bohmian provides us the following answer: “Electrons always have
a well defined position irrespective of whether one is looking or not”. In the point
of view of the author, for one working with electron devices, saying that electrons

are not traversing the device when nobody is looking seems really hard to digest!
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Chapter 3

Looking for intrinsic properties
of quantum systems in

non-Orthodox theory

In the previous discussion I established that adopting the Orthodox ontology,
which implies the lack of intrinsic properties of general quantum systems, is
just a deliberate choice that is not imposed by any experimental fact. Also I
emphasised that there are other quantum theories empirically equivalent to the
Orthodox theory that can indeed provide the unperturbed dynamics that we are
looking for. Then, why should we disregard the possibility to define the intrinsic
(back-action free) dynamics of quantum systems? Let me emphasise that there
have been attempts in the past to define properties of the system beyond the
eigenstate-eigenvalue link. For example the so-called Wigner function (or Wigner
quasi-probability distribution function) was developed by Wigner himself as early
as 1932 [45] with the aim to link the wavefunction to a probability distribution
in phase space. This was one of the first attempts to look for additional intrinsic

information of the behaviour of a quantum system beyond that provided by the
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“eigenvalue-eigenstate link”. Following the Orthodox postulates, the number
of particles with a definite momentum at a given position is something that
cannot be measured in a single-experiment measurement. Thus, this property
(information of the system) cannot be a real value according to the Orthodox
view. And nonetheless, the Wigner quasi-probability distribution function has
been (and it is being) a very successful tool to gain insight into the dynamics of
quantum systems. Somehow, the negative values of the probability is the price
one has to pay when trying to go beyond the postulates of the Orthodox theory
in looking simultaneously for well-defined positions and momentum.

A paradigmatic example of the difficulties of Orthodox quantum mechanics to
provide intrinsic information is the tunneling time mentioned in previous sections.
For an electronic engineer, the tunnelling time (understood as the time is takes
an electron to traverse the device when no measuring apparatus is involved) is
crucial in determining the cut-off frequency of an electronic device. Since such
information is undefined in the Orthodox theory it must be provided by some
non-Orthodox alternative. When one says to an electron device engineer that
the time it takes an electron to traverse a barrier is undefined, the engineer will
try to get such intrinsic information from other (less Orthodox) sources because
he needs such information to anticipate what is the cut-off frequency of electron
quantum devices. Presently, as discussed above, the same problem appears for the
work distribution in the development of a quantum thermodynamic formalism of

a system without linking the results to a particular type of measuring apparatus.
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3.1 Defining intrinsic properties from modal theory

3.1 Defining intrinsic properties from modal the-
ory

To alleviate the problems that arise in the Orthodox theory, which mandates
defining properties linked to the measurement only, van Fraassen proposed to de-
velop new quantum theories without imposing the “eigenstate-eigenvalue link” [46].
In addition to the guiding state associated to the wavefunction of the Orthodox
theory, he introduced additional property states representing real valued prop-
erties not attached to any measurement. These theories are today known as
modal quantum mechanics [46-48]. The essential feature of these approaches
is that a quantum system has a well defined value of an observable even if the
guiding state is not in an eigenstate of the corresponding operator. That is, in
modal theories the property states are defined even if the quantum system is not
interacting with a measuring apparatus. These property states can be thus under-
stood as the intrinsic properties that we are looking for. Among a great variety
of modal theories, Bohmian mechanics is probably the most prominent example
where the property state of the position can be related to the so-called Bohmian
trajectory [47].

Let me now start the discussion of modal quantum mechanics by defining in-
trinsic properties of a system. It will be very helpful to categorize the properties
as static and dynamic properties which will help us to understand the utility of

these properties more carefully.

Static intrinsic property: A static property G contains information of a
system at a given time and for a given operator. When the system is decoupled
from the measurement apparatus, the value of property G, ¢(t), is an intrinsic

property of the quantum system. Now, when a property G is measured at time t
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3.1 Defining intrinsic properties from modal theory

it gives the value g(¢p). This value coincides with an eigenvalue g = g(to) of the
operator G in Orthodox theory. There is, however, a very important difference
between the two theories that will become dramatic when discussing dynamical
intrinsic properties. The Orthodox theory assumes that g is the (eigen) value of
the quantum system after (not before) it is strongly measured. On the contrary,
within the modal interpretation, g(to) is the intrinsic value of the system even
when no measurement is carried out. Thus, despite the fact that the eigenvalue
g in the Orthodox theory coincides with the static intrinsic value g(ty) in the
modal theory there are no static intrinsic properties defined in the Orthodox
theory. In other words, before the strong measurement, the Orthodox theory
states that the quantum system defined by the state |¢(¢)) has no property g
(unless |1(t)) = |g(t))) [49]. The well-known empirical uncertainty of quantum
experiments is recovered in modal theories by assuming that identically prepared
experiments are associated to the same guiding state |1(t)), but to a different
property state |g(t)). To ensure that a modal theory is empirically equivalent to
the Orthodox theory, the probability distribution of g = ¢(¢) at time ¢ has to
be given by [¢(g,t)[>. Then, the ensemble value of G given by the modal theory

(G)p in different identically-prepared experiments is given by:

(G = [ dg 60909 = (w(D) Gl (o) = (). (3.1

where for the case of a (partially) discrete spectrum the integral should be inter-

preted as a Stieltjes one.

Dynamic intrinsic property : A dynamical property bears information
that is associated, at least, to one operator at two different times or two different
(non-commuting) operators at the same time. Apart from the property g(¢)

that is always well-defined within a modal theory, we can envision other intrinsic
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3.1 Defining intrinsic properties from modal theory

properties Sy(g(t)) of the quantum system that is simultaneously defined by
property S and G. By construction, such function Sy (g(t)) has to be linked to
the guiding state [4(t)) and the property state |g(t)) [] The ensemble value of
this property is given by:

)= [ dgl0tg. 0 Sulo). (52)

I emphasize that, as it happens in Eq. the modal interpretation allows to
define Sy/(g(t)) as an intrinsic (not-measured) property of the quantum system.
An unavoidable requirement, however, is that the ensemble value reproduces the
empirical (and Orthodox) value. It can be easily demonstrated [16, 21] that by
defining Sy/(g(t)) as:

_ W*(g,1)S(g,9 )0(g', 1)
Suta) = [ ag =R (39

I get the desired identity:

_ 2 W (9,4)S(9: )0 (g, t)] _ 5 _
S = [ dgloioop | [ ar "L _<w<t>|5|w<zf>>—<(53>,4 |

where I have defined S(g,¢') = (g|§|g’) and used the identities [dg |g){g] = 1

and [dg |¢')(¢'| = 1. In the particular case when S and G commute, I get
(g91S]g') = s40(g — ¢') which implies Sy/(g) = s, with s, the eigenvalue of S
linked to the eigenvalue g. In other more general cases, the property Sy (g) is
a well-defined intrinsic property of the modal theory, without any counterpart

in the Orthodox theory. For non-commuting operators S and G, the eigenstate-

Let us emphasize here that the physical soundness of Sys(g(t)) within a modal theory is
not linked to the fact of whether Sps(g(¢)) is measurable or not. In other words, the Bohmian
velocity is a relevant intrinsic property of the Bohmian theory irrespective of its experimental
accessibility.
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3.2 Bohmian mechanics as a special case to modal theory

eigenvalue link of the Orthodox theory does not allow to associate the value Sy;(g)
with a real Orthodox property of the quantum system. Contrarily, according to
the modal theory, Sy/(g) can be understood as a dynamical property that pro-
vides simultaneous information about the properties associated to the operators
G and S. Thus while the definition of intrinsic static properties do not entail any
conceptual difficulty, in Orthodox quantum mechanics it is in not possible to de-
fine intrinsic dynamical properties for non-commuting operators. The dynamical

intrinsic property Sy(g) in Eq. can be rewritten as:

(g, 1)]2 T {glv(t) g{S)u (3.5)

Sw(g) :/dg’w(g’t)S(gag')@b(g’,t) (91S)())

where I have used [ dg’ |¢')(¢'| = 1. The identity Eq. shows that the dynam-
ical intrinsic property Sy (g) coincides with the weak value ,(S Yo introduced
by Aharonov, Albert and Vaidman (AAV) in 1988 [50]. This is a very important
result since it provides a useful link between the intrinsic properties of the system
derived from modal theories and the AAV weak values, which have been inter-
preted in many ways within the Orthodox theory. The possibility of obtaining
the AAV weak value in the laboratory thus opens the possibility of measuring

intrinsic properties. I will expand this discussion in section [3.3]

3.2 Bohmian mechanics as a special case to modal
theory

Having established an unambiguous definition of intrinsic properties within modal
quantum mechanics, I will now discuss the measurement of certain intrinsic prop-
erties in the context of Bohmian theory, which is a particular modal theory where

the property state is the position eigenstate |z(t)). Before starting this discus-
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3.2 Bohmian mechanics as a special case to modal theory

sion, though, it is appropriate to provide a brief review of the ontology of this
theory.

In Bohmian Mechanics, unlike in the Orthodox theory, a quantum particle
has a well defined position (intrinsic property) at all times independent of the
measurement. This position is then guided by the wavefunction, the evolution of

which is given by the Schrodinger equation,

m% = —;—v“’ +V(Z, )} (7, 1) (3.6)

where V(Z,t) is a scalar potential , m is the mass of the quantum particle, and
——V2 is the corresponding kinetic energy operator. Now Eq. [3.6| can be easily

manipulated to arrive to a continuity equation that reads,

o)V (#, 1)”

BT + V(@ t)=0 (3.7)

where |¥(Z,t)|? can be interpreted as the probability density of the particle and
J(@t) = |u(z, ¢)]?L Im ¥¥ is the current density. At this point, one can invoke a
natural assumption about the current density as the product of the charge density
and velocity i.e. j(Z,t) = p(Z,t)0(Z,t) with p(Z,t) = |U(Z, t)|?, and easily define
the Bohmian velocity of a particle at position x and time ¢ as as,
o t ot
U(Z,t) = H = Im (<,t)) (3.8)

Eq. is also known as the guidance equation. At this point, one can already

i3 Ri

notice the ontological differences between the Bohmain theory and the Orthodox
theory. Whereas in the Bohmain theory the velocity is a well defined property
independent of the measurement, in the Orthodox theory the concept of the

velocity of a particle at a particular position does not exist due to the prohibition

37



3.2 Bohmian mechanics as a special case to modal theory

of describing non-commuting observable at an instant, in this case the momentum
and the position. Now integrating Eq. I obtain the equation describing the

evolution of the so-called Bohmian trajectories,

F(t) = 7 (to) + / 7 (Z,t) dt'. (3.9)

to

One can derive similar equations for any number of degrees of freedom involved
in a many-body wavefunction including the system as well as the measuring appa-
ratus. So, in Bohmian mechanics there is no need to define an artificial boundary
between apparatus and system nor to introduce a new physical law when the
measurement is invoked (as it happens in the Orthodox theory). Accepting that
the output of the measurement is indicated by a pointer and that this pointer
is made of quantum particles too, then the measurement process can be simply
understood in terms of (Bohmian) pointer positions.

Bohmian mechanics is thus a deterministic theory in the sense that if one
knows the initial position of a particle one can then obtain the position at a later
time. And yet, even though this theory is deterministic, there is still randomness
involved in different experiments. This is because the exact initial positions of the
particles cannot be known with certainty. We can only know its probability dis-
tribution, which is defined according to the quantum equilibrium condition [51].
It is very important to emphasize that, in the non-relativistic regime, Bohmian
mechanics reproduces all empirical observations, just as Orthodox quantum me-
chanics does. This is a direct consequence of what is referred to as the equivari-
ance principle, which assures that Bohmian trajectories reproduce the probability
density at all times. Since the ontology of Bohmian mechanics allows to describe
the properties of the system independently of the measurement, one can in princi-
ple exclude the degrees of freedom of the measuring apparatus and describe only

the dynamics of the system alone. In the subsequent sections it will be shown
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3.2 Bohmian mechanics as a special case to modal theory

how this convenience helps us to define the intrinsic properties of the system.
As I have already mentioned in the beginning of this section, Bohmian me-
chanics can be understood as a modal theory where the property state |g(t)) =
|z(t)) specifies the property as position of particles g(t) = x(t) at all times (with
or without measuring apparatus)[47]. Once we understand that Bohmain me-
chanics is just a special case of the modal theory we can straightforwardly define
(Bohmian) intrinsic properties as in Eq. These Bohmian properties are
referred to as local-in-position Bohmian properties and are considered as real
numbers in the literature [16, 21]. Therefore we introduce an intrinsic Bohmian

property Sp as a real function through,

Sate) = e | [ =BT (310

Then, we can rewrite the Bohmian version of Eq. including the above con-
siderations as follows:

Sp(z) = Re [m<§>¢(t)} , (3.11)

where I have used S(z,2') = (x|S|2’) and [ dz'|2")(2’| = 1. The right hand part
of Eq. is refereed to as local-in-position weak value [16, 21] (an AAV weak
value with the postselected state as a position eigenstate) which is identical to
intrinsic Bohmian properties (independent of the measuring apparatus).

The equivalence in thus shows that local-in-position weak values are, by
construction, free from the measurement back-action and hence provide intrinsic
information of the system. The probability distribution of the different values
of the intrinsic property is also independent of the measuring apparatus and is

given by
Pp(s) = lim —Z(Ss—sB ()], (3.12)

M—oo M
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3.3 Interpretation of AAV weak values

where x¢(t) are the Bohmian trajectories corresponding to each i*" experiment

defined through the so-called quantum equilibrium condition [21].

3.3 Interpretation of AAV weak values

In the previous section I have established a clear-cut equivalence between intrin-
sic Bohmian properties and local-in-position weak values. The importance of this
connection is crucial because weak values can be experimentally determined in
many circumstances. For instance, Howard Wiseman [52] showed that an opera-
tionalist definition of the velocity of a quantum particle involving weak and strong
measurements separated by an infinitesimal time lapse (“using a technique that
would make sense even to a physicist with no knowledge of quantum mechan-
ics”) yields a weak value defined in the sense of Aharonov, Albert and Vaidman
(AAV) B0, 53]. This weak value is the Bohmian velocity [52] [54]. Following this
theoretical achievement, a number of experiments have been carried out where
the Bohmian velocity has been measured in the laboratory [55-59]. But, if the
Bohmian velocity can be measured by means of weak values, why is this property
not well-defined in Orthodox quantum mechanics?

The answer to the above apparent paradox is that the experimental procedure
to get the weak value in the laboratory does not correspond to a single measure-
ment of a unique system (but to the measurement of an ensemble of identical
systems). Note that the definition of AAV weak value is defined through a single
measurement (as demonstrated in Appendix , and yet it cannot be accepted
as an Orthodox property through the eingenvalue-eigenstate link. Thus there is
a clear distinction between an experimental (or operationalist) weak value and
AAV’s weak value. Experimentally evaluated weak values deal with an ensemble

of identically prepared quantum system. Each quantum system of the ensemble
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3.3 Interpretation of AAV weak values

suffers, first, a weak measurement of a property and, later, a strong measurement
of a second property. Only those quantum systems for which the second strong
measurement, outcome is compatible with a desired value of the first property are
(post-)selected. The experimental weak value is then proportional to the ensem-
ble average value of the first weak measurement conditioned to some post-selected

elements of the ensemble. We can describe the recipe of this procedure as follows,

1. Consider a large (infinite) ensemble of identically-prepared quantum sys-

tems at time ;.

2. For each element of the ensemble:

~

(a) A weak measurement of a property linked to the operator S, giving

the output ys, is carried out at time ;.

(b) After the weak measurement, the quantum system undergoes a unitary

time-evolution from ¢; till ¢,.

(c) At time t9, a strong measurement of a second property linked to the
operator G is carried out, giving the output y,. Note that in the case
of a strong measurement the output of the measuring apparatus y,
coincides with the eigenvalue of the system, g, linked to the operator
G.

3. From the ensemble of measured values ys and y,, only those quantum sys-
tems whose second strong measured output y, is compatible with a given
value of the second property y, = a are (post-)selected. This allows us
to construct the joint probability of obtaining the ancilla outcomes ¥y, and

Yy, =a as Py, = a,ys).

~

4. Finally, the experimental or operationalist weak value o(Seqp)y(t,) 15 Ob-
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3.3 Interpretation of AAV weak values

tained as:

_ fdys ysP(yg = a, ys)
t p—
2T [ dy, Py, = a,ys)

a<362p>¢( (3.13)
Notice that an experimental or operationalist definition of the weak value does
not need to assume that wavefunctions and operators exist, and yet is still crystal
clear what needs to be done in the laboratory to get a(gexpm(b). This definition
of weak value has no link with any ontology of any theory. However, once we
have an operationalist definition that gives a value in the laboratory, one aims at
looking for a physical interpretation within a given quantum theory.

AAV’s weak value is inspired by a time-symmetric formulation of quantum
mechanics |60, 61] to describe the system during the time interval between two
strong (projective) measurements: an initial one pre-selecting the quantum sys-
tem and a final one post-selecting it. The AAV’s weak value is found from a single
quantum system (not an ensemble) that interacts weakly and unitarily with an
ancilla under the (post-selected) condition that a strong measurement provides
the desired values of the property of the system (see Appendix [F]). There is no
explicit weak measurement in the AAV’s weak value because it is assumed that
the weak measurement can be done without any back-action. Unfortunately, it is
well known that this is not possible for general superposition states (as dicussed
in section 2.2.2)). Therefore, AAV’s weak values (e.g., the Bohmian velocity)
cannot be measured in a single measurement but only through an ensemble of
measurements. That is, the back-action present in each weak measurement can
only be eliminated in average, and therefore AAV’s weak values can be experi-
mentally accessed through ensemble averaging only. This is simply incompatible
with the eigenvalue-eigenstate link, and hence an interpretation of experimen-

tally accessible AAV’s weak values in terms Orthodox quantum mechanics is not
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3.4 Computing quantum high frequency noise from intrinsic
properties

possible.

Since its first introduction in 1988 [50], there have been many attempts in the
literature to find an interpretation of weak values without abandoning the Ortho-
dox quantum mechanics viewpoint, both in theory and experiments [55] [62H67].
Weak values have been given a number of different, often incompatible, inter-
pretations [68-74]; see Ref. [75] for a recent review on the difficulties to accom-
modate the weak values within the Orthodox ontology. In my opinion, many of
these attempts fail to properly distinguish between the AAV’s and experimental
weak values. Both can be numerically equivalent, but they are different at the

ontological level, as I have discussed in the previous paragraph.

3.4 Computing quantum high frequency noise
from intrinsic properties

Now, I should show that identifying local-in-position weak values with intrinsic
Bohmian properties yields an extraordinarily useful tool to unveil the intrinsic
dynamics of quantum systems. In particular, this will solve the conceptual and
practical inconveniences that we encountered in the Orthodox theory when deal-
ing with certain puzzling situations in defining the dwell time, the high frequency
noise or any property associated to multi-time (or continuous) measurements. An
unambiguous definition of these properties are of paramount importance in the
development of future quantum technologies. Here, I will exemplify the impor-
tance of intrinsic properties in describing the quantum noise at high frequency,
which is the most relevant example on the context of electron devices. The ex-
amples of the dwell time and thermodynamic work can be found in Appendix
[Hl

As I have already discussed in chapter (1| the evolution of quantum transport
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3.4 Computing quantum high frequency noise from intrinsic
properties

simulation strategies from steady state to time resolved regimes necessitates to
describe electrons explicitly from the perspective of quantum mechanics. This
results in various complications when computing the electric current within the
framework of Orthodox theory. For the sake of continuity I will re-emphasize the
discussion in chapter [I]and then provide a solution in terms of intrinsic properties.

The total current at high frequencies is the sum of the conduction (flux of
particles) plus the displacement (time-derivative of the electric field) components
[9, [10], 76} [77] as given in Eq. . It is a usual practice to partition an electron
device into the active region, where all the relevant quantum phenomena takes
place, for example tunnelling in the resonant tunnelling device, and the environ-
ment which collectively comprises of the metallic cables and the ammeter. The
displacement current on a surface of an active region in an electron device is
different from zero whenever electrons are able to modify the electric field on it
(independently on how far the electrons are from that surface). Therefore, while
in steady state this quantity is zero after time averaging, at high frequencies a
proper solution of Maxwell’s equations is needed to know the interplay between
scalar potentials and electrical currents.

Typically I am interested in getting information of the total electrical current
in a surface Sp of the electron device depicted in Figure (this surface is also
referred to as drain terminal of an electron device) of the active region. The
pertinent point in the discussion is that in a realistic experimental scenario, there
is no measuring apparatus on the surface Sp of the active device region where
the dynamics of electrons is simulated. Instead, the ammeter is usually located
at a macroscopic distance far from the active region of the nanoscale device and
connected to it through macroscopic cables (wires) with an amount of electrons
given by the Avogadro number as shown in Figure [1.1] Still, the current on

surface Sp coincides with the current in the ammeter because of the conservation
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3.4 Computing quantum high frequency noise from intrinsic
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of the total (particle plus displacement) current.

Now in order to simplify the discussion, I consider the unperturbed value of the
total electrical current when only one electron is present in the active region. Once
I am able to get the Bohmian trajectory 7(¢) of an electron moving through the
device by solving a transport equation like the one in Eq. [H.1] the total current

generated by this electron (trajectory) in a surface Sp is given as follows,

ﬁ(t):/ jg(f,t)-d§+/ e(?)%-dsﬂ (3.14)

Sp Sp

where ¢(7,t) is the (inhomogeneous) electric permittivity. The current (parti-
cle) density of the i*" experiment is given by ji(7,t) = qU(F(t),t)d[F — 7 (t)]
with ¢ the electron Charg. The electric field E#(7,¢) is just the solution of the
Gauss equation with the proper boundary conditions for a charge density given
by Q'(r,t) = qd[F — 7(t)]. In principle, the integration of the density current in
Eq. on the surface Sp has a dependence on its position. However, such de-
pendence disappears in practical two-terminal scenarios due to the total current
and its conservation law.

Now, it can be proven that in a two terminal device of distance L with metallic
contacts of surface Sp = W x H, if L <« W, H (width and height) the total current
can be written as [9, 10, [13]:

Ii(t) = %U;(t), (3.15)

where v’ (t) is the velocity in the transport direction of the considered electron in

the active region in the i*® experiment . Outside the active region, the electron

2Tt is important to see the difference in the similar looking equations namely Eq. and
Eq. Whereas the former is an Orthodox representation with the parameters defined as
expectation values, in the later Bohmian case, which is defined for an i-th experiment, one is
permitted to define an instantaneous value of the parameters involved.

3Typically, hundreds of electrons have to be considered in a realistic device and the total
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is screened and its contribution to the total current can be neglected. Now using
Eq. I will try to arrive at the weak value of the current and see if it is
equivalent to the unperturbed current I*(¢).

The Bohmian velocity v,(t) is evaluated by the Bohmian guidance equation

as follows,

S |-ALLL TR
walf) =21 [ ] R [ )

<f1ﬁx|w<t>>] | (316

where I have used (7P, |¢(t) = —ihZ (7, t). Now evaluating the velocity in Eq.
for a particular trajectory ¥ = 7(t) we get the current for an i*® Bohmian
experiment as in Eq. which can be rewritten using Eq. as,

<fi<¢>|ﬁxrw<t>>] _

L Re [m)wm(t)} . (3.17)

Thus the unperturbed current is equivalent to the local-in-position weak mea-
surement of the momentum operator P, in the transport direction x, where
(FlY(t)) = (' t) is the wavefunction of the electron in the active region and
ri(t) specifies the position where the local-in-position weak momentum is evalu-
ated. From the information of I'(t) in Eq. when 7 = 1,..., M experiments

are considered, we can compute the ensemble value of the current as,
(1) = Jim Z L Re [ (Pabuen] (3.18)

and also the autocorrelations of the total current.

The Fourier transform of the current correlations provides the power spectral

current in the i-th experiment can be computed by just adding the contribution of each electron
I = Zne I (t) with N, the number of electrons inside the volume L x W x H at time ¢.
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density of the fluctuations of the current at high frequencies.

PSD(w) = ]\/llgnoo % i (%)2 /OO dre ™ Re [ﬂ(t2)<px>¢(t2)]
i=1 >

Re {mtl)@m(m] . (3.19)

where I have assumed that we are dealing with a wide-sense stationary pro-
cess where the correlation depends only on the time difference 7 = t, — t;.
Some of the authors of this paper have elaborated these ideas into the simu-
lator named BITLLES which is an acronym for Bohmian interacting transport
in non-equilibrium electronic structures [78-84].

Thus, I have successfully demonstrated that the unperturbed value of the total
(particle + displacement) current in Eq. can be computed by the help of
the intrinsic property v, (t) which is called the Bohmian velocity. This property
has a concrete definition in the ontology of Bohmian mechanics. The evaluation
of intrinsic electrical currents helps us to safely avoid the complications involved
in defining the POVM associated to the total current (particle 4+ displacement).
Furthermore, since the above definition of the electrical current is independent of
the measuring apparatus, it is “universal” and non-contextual. Finally, is it easy
to see from Eq. that the intrinsic current is just the local-in-position weak

value of the momentum and is indeed experimentally accessible [52].
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Chapter 4

Conditional wavefunction
approach to many-body

correlations

In this chapter I outline some important ideas elaborated in the paper attached

in [Publication Bl Open quantum systems serve as the starting point to solve

the problem of dealing with a large number of degrees of freedom associated
to a closed quantum system comprising not only the system but also the en-
vironment degrees of freedom (where environment includes everything but the
system). Describing a closed system is conceptually very simple. The full wave-
function follows a unitary time dependent Schrodinger equation (TDSE) between
measurements. As discussed in previous chapters, during measurements, some
type of non-unitary collapse has to be included in the wavefunction. Solving this
TDSE is, but, a formidable task and practically impossible in an exact level when
more than very few degrees of freedom are involved. Thus it is a common practice
to partition the full closed system into a quantum system and the environment

and then address only the reduced density matrix of the quantum system by trac-
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ing out the degrees of freedom of the environment. Such a strategy can be used
in the description of the active region of an electron device as an open quantum
system [85], 86]. Once this is made possible, one can then borrow any state-of-
the-art mathematical tool developed to study open quantum systems [87, [88] for
simulating a particular quantum system at hand.

A preferred technique in this regard has been the stochastic Schrodinger equa-
tion (SSE) approach [89-96]. Instead of directly solving equations of motion for
the reduced density matrix, the SSE approach exploits the state vector nature
of the so-called conditional states to alleviate some computational burden (and
ensuring a complete positive map by construction [97]). Even if this technique
allows to always reconstruct the full density matrix, a discussion on whether dy-
namical information can be directly extracted from such conditional states in
non-Markovian scenarios has appeared recently in the literature [98, 99]. Some-
how, the conditional states are more natural element in Bohmian mechanics than
in Orthodox quantum mechanics. In other words, the Bohmian conditional wave
function is a physical element of the Bohmian theory, while the conditional Or-
thodox wave function is just a mathematical representation.

In this regard Wiseman and Gambetta has acknowledged the Bohmian con-
ditional wavefunction as a proper tool to describe general open quantum systems
in non-Markovian scenarios [100, T01]. In this work I reinforce this idea by show-
ing that the Bohmian conditional wavefunction is an exact decomposition and
recasting of the time-evolution of a closed quantum system that yields a set of
coupled, non-Hermitian, equations of motion that allows to describe the evolution
of arbitrary subsets of the degrees of freedom on a formally exact level. Further-
more, since the measurement process is defined as a routine interaction between
subsystems in Bohmian mechanics, conditional states can be used to describe

either the measured or unmeasured dynamics of an open quantum system.
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4.1 The Stochastic Schrédinger Equation (SSE)

4.1 The Stochastic Schrodinger Equation (SSE)

Consider a typical electronic device as depicted in Figure [4.1, where the active
region and the environment are distinguished for clarity. I can start with a closed
quantum system (as the one shown in Figure ) comprising of all the degrees of
freedom which is represented by a pure state, |¥(¢)), evolving unitarily according

to the time-dependent Schrodinger equation

L O|U(t -
D) = H|U(t)). (4.1)
ot
i/ Environment :'" Environment ) Meter
| e N | | e ]
A . A - A/.
=" e~
\* | L |
Unitary Evolution Non-unitary Evolution

(@) (b)

Figure 4.1: Panel (a): Schematic representation of an open quantum system, which can
be partitioned into active region and environment. The evolution of the entire device
is described by the state |¥(¢)) that evolves unitarily according to the time-dependent
Schrodinger equation. Panel (b): Schematic representation of a measured open quan-
tum system, which can be partitioned into meter, active region and environment. The
evolution of the device plus environment wavefunction is no longer unitary due to the
(backaction) effect of the measuring apparatus.

Finding a solution to Equation (4.1]) is inaccessible for most practical scenarios
due to the large number of degrees of freedom involved and thus it is common to

describe only the system (i.e., the active region) by a reduced density matrix,

Peys(t) = Treny [[W())(W ()], (4.2)

where Tr.,, denotes the trace over the environment degrees of freedom. If the

time evolution of solution to Equation (4.2) is known, then the expectation value
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4.1 The Stochastic Schrédinger Equation (SSE)

of any observable A of the system can be evaluated as follows when the system

is measured as depicted in Figure 4.1(b):

(A(t)) = Tros[peys(t)Al, (4.3)

We note that the Eq. is evaluated without invoking the measuring ap-
paratus as shown in Figure [4.1(a). Using the eigenstates |g) of the measuring
apparatus as a mathematical base of our Hilbert space I can write the wavefunc-

tion of the closed system shown in Figure [4.1fa) as follows,

(1)) = / /P D) ® [(®)), (4.4)

Measuring the wavefunction above as shown in Figure (b) gives the measure-

ment outcome ¢ and the collapsed wavefunction can be written as,

(Wq(t)) = vV P(q,1)]q) @ [thg(t))- (4.5)
Then the wavefunction of the system alone can effectively be written as,

(tal ® s ) 12(1))

) =~

7 (4.6)

The above wavefunction is conditioned on a particular environment value ¢ which
can be defined as the eigenvalue associated to the operator Q. Initially the
operator Q was considered only a mathematical construct (that is an element the
eigenstates of which are used just to construct a basis). In more recent times,
however, it has been generally accepted that the conditional states in Equation 4.6
can be interpreted as the states of the system conditioned on a type of sequential

(sometimes referred to as continuous) measurement of the operator Q of the
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4.2 Markovian and non-Markovian regimes

environment now representing a physical measuring apparatus. The stochastic
Schrodinger approach to open quantum systems consists on finding an equation

of motion for the state in Eq. [4.6]

4.2 Markovian and non-Markovian regimes

For discussing the SSEs it is very important to invoke the concept of Marko-
vianity. This is because the discussion will drastically differ depending on the
regime of operation i.e. Markovian or non-Markovian. The Markovian regime,
according to a pragmatic definition, is the regime where the entanglement be-
tween system and environment decays in a time scale tp < 7 where 7 is defined
as the time interval between measurements. In this regime the stochastic vari-
ables ¢; and ¢;,, which are the environment eigen-values measured at times ¢
and t + 7 respectively are sampled, separately, from the probability distributions
Plait) = (g (t) (1)) and P(quis,t +7) = {6yt + T)[t6y(t + 7)). Therefore no
matter how the trajectories {¢;} are connected in time, one always obtains the
correct time-correlation function (Q(¢)Q(t+7)). In this regime, the environment
itself can be thought of as a type of measuring operator (as appears in general-
ized quantum measurement theory [102]) that keeps the open system in a pure
state after the measurement (in fact after the system and environment correla-
tion time ¢p which is assumed to be very small). The open system can be then
seen as an SSE in which the stochastic variable ¢; (sampled from the distribution

P(q,t)) is directly the output of a sequential measurement of the environment

(see [Publication B (Page 7)|). The stochastic trajectory of this conditioned sys-

tem state generated by the (Markovian) SSE is often referred to as a quantum
trajectory [85, 911 [103] and can be used, for example, to evaluate time-correlation

functions of the environment.
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4.3 Bohmian conditional wavefunctions

The above argument, however, cannot be applied to the situations where
system-environment correlations are expected to decay on a time-scale compa-
rable to the time-scale relevant for the system evolution, i.e., tp ~ 7. If one
is aiming at computing multi-time correlations functions at high frequencies for
example, then it is necessary to incorporate the effect (backaction) of the succes-
sive measurements on the evolution of the conditioned state. Even though these
Orthodox conditional states are mathematically consistent to reproduce ensem-
ble values, they suffers from interpretational issues when trying to connect the
solutions of these conditioned states (trajectories) at different time.

This discussion can be simplified by saying that there is no wave function
for a subsystem in the ontology of the Orthodox theory. A subsystem has to
be defined from Orthodox theory by the reduced density matrix, not by a pure
state. Although using Orthodox pure states can be a useful approximation for
some (markovian) systems, in general, it is not possible to study quantum sub-
systems with Orthodox pure states. These ontological limitations are not true in
Bohmian mechanics, where the conditional wave function can be used to study

any (Markovian or non-Markovian) subsystem.

4.3 Bohmian conditional wavefunctions

A fundamental aspect of the Bohmian theory is that reality (of some properties) of
quantum objects does not depend on the inclusion of the measuring apparatus.
That is, the values of some observables, e.g., the value of the positions of the
particles of the environment, exist independently of the measurement. In order
to describe a measurement process with the explicit inclusion of the measuring
apparatus one just have to introduce an additional degree of freedom of the

apparatus into the equations of motion.

o4



4.3 Bohmian conditional wavefunctions

I explain now how the concept of conditional wave function for any subsystem
appears naturally in Bohmian mechanics. Let me define a collective degree of
freedom of the position of the particles of environment as ¢ (also consisting the
measuring apparatus) and x as the collective degree of freedom of the position of
particles of the system, then, the Bohmian theory defines an experiment in the

laboratory by means of two basic elements:

1. The wavefunction ¥(z, ¢, ), the evolution of which is governed by the time-

dependent Schrodinger equation.

2. The trajetories Q'(t) and X(¢) of the environment and system respectively,
which obey the guidance equation in Eq. [3.8

The ensemble of trajectories reproduce the probability distribution of the Or-
thodox wavefunction (solution of Equation (4.1))) at all times due to the equiv-
ariance principle [21] and thus ensemble values computed from the Orthodox
and Bohmian theory are empirically equivalent. From the full wavefunction
(x,q|¥(t)) = ¥(x,q,t) and the trajectories Q*(t), X*(t), one can then easily con-
struct the Bohmian conditional wavefunction of the system conditioned on the

particular trajectory Q'(t) of the environment as follows,

&Qi(t) (LL’, t) = \I/(l‘, Ql(t)a t) (47)

The relevance of the Bohmian conditional wave function is that the trajectory
of the system can be computed either from the velocity computed from Eq. [4.7]
or from the velocity computed from the total wave function W(x,q,t) (when
evaluated at the particular positions of the environment). The discussion about
the ontological role of these conditional wave function has been discussed by

Travis Norsen and co-authors |25, [104], but it is far from the scope of this paper.
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4.3 Bohmian conditional wavefunctions

Now once I impose Q(t) = ¢;, I obtain,

[Ga (8)) = Plge, ), (1)) (4.8)

The above equation is similar but not identical to Eq. [.5 Whereas in
Eq. the wavefunction can be used only at the particular instant of time of
measurement, the Bohmian trajectory Q(t) and the conditional wavefunction
|1hg, (1)) are valid for any time (with or without measurement) for one experiment
(labelled by the index ¢ in the Bohmian language). Thus, Bohmian trajectory
has a fundamental role in describing the history of the Bohmian conditional state
for one particular experiment. I have mentioned at the beginning of this chapter,
that the conditional wave functions has a physical role in Bohmian mechanics
that is missing in Orthodox quantum mechanics. The conclusion of this chapter
can thus be summarized as follows: The conditional wave function for Markovian
or non-markovian system cannot be defined within the Orthodox quantum theory
because, in general, an open quantum system cannot be described by a pure state.
The same description is possible in the framework of Bohmian theory, because

an open system can be described by an open system.

4.3.1 Application to electron transport

The Bohmian conditional wavefunction can be a very useful tool in the electron
transport simulations in the quantum electron devices. Let me start the discussion
by considering an arbitrary quantum system. The whole system, including the
open system, the environment and the measuring apparatus, is described by a
Hilbert space J{ that can be decomposed as H = H, ® H, where H, is the
Hilbert space of the open system and H, the Hilbert space of the environment.

If needed, the Hamiltonian J, can include also the degrees of freedom of the
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4.3 Bohmian conditional wavefunctions

measuring apparatus. I define x = {1, xs...x,} as the degrees of freedom of n
electrons in the open system, while ¢ collectively defines the degrees of freedom
of the environment (and possibly the measuring apparatus). The open system

plus environment Hamiltonian can then be written as:

A A

H=H,L +1,®H +V (4.9)

where H, is the Hamiltonian of the system, ffq is the Hamiltonian of the environ-
ment (including the apparatus if required), and V is the interaction Hamiltonian
between the system and the environment. We note at this point that the number
of electrons n in the open system can change in time and so the size of the Hilbert
spaces J(, and H, can depend on time too.

The equation of motion for the Bohmian conditional wavefunction (z |1, (t)) =
@th(w, t) in the position representation of the system can be derived by project-
ing the many-body (system-environment) Schrodinger equation into a particular

trajectory of the environment ¢, = Q(t), i.e. [105], 106]:

. d& t .Z',t & . dq
D ) len) + il @ )], 2 aa0)
dt a=at dt
Equation (4.10) can be rewritten as:
dijy, (x,1) n it "
St A/ e 4.11
Zh dt 2m VCIZ + th (x7 t) th ('x7 t) ( )
where
U;tff(x, t)=Ul(x,t) + V(x,q,t) + Az, ¢, t) +iB(x, g, t). (4.12)

In Equation 4.12, U(x,t) is an external potential acting only on the system de-
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4.3 Bohmian conditional wavefunctions

grees of freedom, V' (z,q;,t) = {(q| ® (x|‘7|\1'>/\11(1:,q,t)}q:qt is the Coulomb po-
tential between particles of the system and the environment evaluated at a given
trajectory of the environment, A(z,q;,t) = ;—vagllf(x,q,t)/\ll(:n,q, t)‘q:qt and
B(x,q,t) = bV ¥ (x,q,1)/V(x,q, t)|q:qtqt (with ¢, = dg;/dt) are responsible for
mediating the so-called kinetic and advective correlations between system and en-
vironment [105, [T06]. Equation (4.11]) is non-linear and describes a non-unitary
evolution.

In an electron device, the number of electrons contributing to the electrical
current are mainly those in the active region of the device. The number fluc-
tuates as there are electrons entering and leaving the active region. Thus it is
necessary to somehow model the addition and subtraction of the electrons in
the active region. This creation and destruction of electrons leads to an abrupt
change in the degrees of freedom of the many body wavefunction which cannot
be treated with a Schrodinger-like equation for g, (x,t) with a fixed number of
degrees of freedom. In the Bohmian conditional approach, this problem can be
circumvented by decoupling the system conditional wavefunction @/;qt (x,t) into
a set of conditional wavefunctions for each electron. More specifically, for each
electron x;, we define a single particle conditional wavefunction 1th (75, Xi(1), 1),
where X;(t) = {X1(¢),..,z;_1(t), Tiy1, .., Xn(t)} are the Bohmian positions of all
electrons in the active region except x;, and the second tilde denotes the single-
electron conditional decomposition that we have considered on top of the condi-
tional decomposition of the system-environment wavefunction. The set of equa-

tions of motion of the resulting n(t) single-electron conditional wavefunctions
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4.3 Bohmian conditional wavefunctions

inside the active region can be written as:

W, Xi(0), 1)

dt

ihd¢Qt (T, Xn<t>7 t)

dt

h2

2m

V2, 037 o, 0 (0,0)| o, ), 1013)

- 9 -

g O30 o Xa0,0)| G, (0010

That is, the first conditional process is over the environment degrees of freedom

and the second conditional process is over the rest of electrons on the (open)

system.

The above ideas have lead to the development of an electron transport simula-

tor based on the use of Bohmian conditional states. The resulting computational

tool is called BITLLES [78-84], 107-109]. The ideas discussed in the chapter are

elaborated in the published work which is attached in |Publication B|
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Chapter 5

GC-TDSE methodology for

geometric correlations

In this chapter I discuss important aspects of the paper attached in
[Cl where I derive and discuss a method that is named “geometrically correlated
1D time dependent Schrédinger equation solver” (GC-TDSE). The GC-TDSE
allows solving the 3D TDSE in terms of an ensemble of one-dimensional (1D)
TDSEs. The technique is inspired by the so-called Born-Huang ansatz [110],
which is a fundamental tool in the context of ab-initio molecular dynamics that

allows separating fast and slow degrees of freedom in an effective way [I11].

5.1 Motivation behind the method development

As an example of the practical utility of the SSE, a Monte Carlo simulation
scheme to describe quantum electron transport in open systems that is valid
both for Markovian or non-Markovian regimes guaranteeing a dynamical map
that preserves complete positivity was proposed in Chapter [l The resulting

algorithm for quantum transport simulations reformulates the traditional “curse
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5.2 Methodology

of dimensionality” that plagues all state-of-the-art techniques for solving the time-
dependent Schrodinger equation (TDSE). Specifically, the algorithm consists of
the solution of an ensemble of single-particle SSEs that are coupled, one to each
other, through effective Coulombic potentials [105, 112, 113]. Furthermore, the
simulation technique accounts for dissipation [I14] and guarantees charge and
current conservation through the use of self-consistent time-dependent boundary
conditions [84) [I15] 116] that partially incorporate exchange correlation [83, [84].
However, even if we are able to treat each electron individually and still keep
the correlations, through the conditional wave function, each electron still has
to be defined in the three dimensional physical space. Solving a large number of
three-dimensional (3D) single-particle TDSEs, may still be a very time-consuming
task. Therefore, the above technique would greatly benefit from the possibility

of further reducing the dimensionality of the associated numerical problem.

5.2 Methodology

Here, I consider an ansatz to separate transport and confinement directions. As
it will be shown, the resulting technique allows to describe arbitrary geometric
correlations in terms of a coupled set of 1D TDSEs. Therefore, while I have
motivated the development of this method in the context of the simulation of
(non-Markovian) quantum transport in open systems, the method presented here
could be of great utility in many research fields where the reduction of the com-
putational cost associated with the solution of an ensemble of SSEs may be ad-
vantageous. This includes, for example, the description of spin thermal trans-
port [117, [118], thermal relaxation dynamics [85] [IT9], ionic motion [120} [121], or
Bose-Einstein condensates [122H124] in terms of SSEs.
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5.2 Methodology

I start the discussion by considering a 3D-TDSE in position representation,

i%‘ll(:c,y,z,t) = H(z,y,2)V(z,y, z,1), (5.1)

where I have used atomic units, x, y, and z represent the three spatial coordinates,

and U (z,y, z,t) is a well normalized wavefunction, i.e., [[[ dx dy dz |¥(z,y, z,t)|?

1 Vt. In Eq. p.1} H(z,y, z) is the full Hamiltonian of the system:

H(z,y,z) = T,+T,+T.+V(z)+W(z,y,z), (5.2)
where T, = —%8‘9—;, T, = —%% and T, = —%g—; are the kinetic energies as-

sociated with the degrees of freedom, x y and z respectively, while V(z) is the
potential associated to the = degree of freedom. The scalar potential W (x,y, 2)
includes any other scalar potential that is not purely longitudinal, which is re-
sponsible for making the solution of Eq. non-separable.

I can rewrite the Hamiltonian in Eq. in terms of longitudinal and trans-

verse components as:
H(z,y,2) =T, + V(x) + Hr (y, 2), (5.3)
where HX(y, z) is the transverse Hamiltonian defined as:
HE(y,2) =T, +T. + W(z,y, 2). (5.4)
The transverse Hamiltonian follows the eigenvalue equation as follows:
H (y, 2) 5 (y, 2) = €30y, 2), (5.5)

where ¥ and ¢¥(y, ) are the corresponding eigenvalues and eigenstates respec-
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5.2 Methodology

tively, and k& € Z. Since the eigenstates ¢*(y, z) form a complete orthonormal
basis in which to expand the Hilbert space spanned by the variables z, y, and z

the 3D wavefunction in Eq. can be expressed in terms of transverse eigenstates

Oh(y, 2) as
U(z,y,2,t) = > X (2, )65y, 2), (5.6)
k=1

where x*(x,t) = [[ dydz¢%(y, 2)¥(z,y, z,t) are complex longitudinal coefficients
associated with the transverse eigenstate ¢ (y, 2).
The wavefunction expansion in Eq. can be introduced into Eq. to

obtain an equation of motion for the coefficients x*(z,):

o0

0 k k kl ko O !
(5.7)
where EF are effective potential energies (that correspond to the eigenvalues in
Eq. and F*(x) and S*(z) are geometric (first and second order) coupling

terms, which read:

P = [ dydzor . & h(w.2), (5.82)

S (a / / dydzg(y, 2 22 &y, 2). (5.8D)

Let me emphasize that it is the main goal of the set of coupled equations in Eq.
to allow the evaluation of relevant observables in terms of 1D wavefunctions
only. In this respect, let us take, for example, the case of the reduced probability

density p(z,t) = [[dydz¥*(z,y, z,t)¥(x,y, z,t). Using the basis expansion in
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Equation (5.6), p(z,t) can be written as:
plant) = S O () [ [ dydzorl(y.2)00.2), (5.9
k.l

and using the normalization condition
[ vzt v, 206k, 2) = b, v, (5.10)
the above expression reduces to:
plant) = 3 (e (.11
k=1

Therefore, according to Eq. [5.11} the reduced (longitudinal) density is simply
the sum of the absolute squared value of the longitudinal coefficients x*(x,t). A

numerical example to this methodology applied to a prototypical nanoconstriction

can be found in published paper attached in [Publication C|
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Part 1V

APPLICATION TO DEVICE
SIMULATION
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Chapter 6

Tunneling time in Graphene
devices operated at

high-frequencies

In Chapter [3]T discussed how intrinsic properties allows us to provide an unam-
biguous definition of quantities involving multi time measurements for instance,
tunnelling time which is explicitly discussed in Appendix These intrinsic
properties are implicitly included in the simulator BITLLES to provide, for ex-
ample, the information about the cut-off frequency of electron devices, which is

a very important figure of merit to determine their speed. The following section

provides a summary of the work included in [Publication D]

6.1 Motivation of the work

The trajectory-based Bohmian approach provides a very natural framework to
quantify Klein tunneling times [125, [126] in linear band graphene devices (as

shown in Figure|6.1)). This is because Bohmian theory can provide the information
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6.1 Motivation of the work

about the position of electrons even when they are not measured. Therefore,
through the use of the intrinsic property of the position of the electron as a
function of time, it is unproblematic to compute tunneling times. On the contrary,
the Orthodox theory has a lot of problems to define the tunneling time because,
in order to do that it has to look for an intrinsic property that is forbidden in its
own ontological framework.

A careful analysis in the Bohmian framework allows to distinguish, not only
between transmitted (N7) and reflected electrons (Ng*), but also allows to dis-
tinguish reflected electrons that spend a certain amount of time in the barrier
(Ng). Without such a distinction, typical expressions found in the literature to
compute dwell times derived from Orthodox ontology can give unphysical results
when applied to predict cut-off frequencies. I explain this claim by the following
arguments.

The typical expression for the Orthodox dwell time to quantify how much
time a particle spends in a 2D spatial region limited by the boundaries a < x < b

and —oo < z < oo is traditionally given by,

- :/Ooodt/:dx/zdzw(x,z,tn? (6.1)

The dwell time in Eq. can be evaluated equivalently with Bohmian tra-
jectories following the same procedure as detailed in Appendix to give the

following expression:

N
.1 ;
D = A}l_r}r(l)o N E_l T (6.2)

With the definitions of the trajectories discussed above, the total number of

trajectories can be given in their terms as N = Ny + N + Ng-. Then, the dwell
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Figure 6.1: (a) Conditional wavefunction of the electron that impinges perpendicularly
to a barrier in graphene (in the shaded orange region), along with the set of the as-
sociated Bohmian trajectories are plotted in the initial and final times computed from
the BITLLES simulator. As it can be seen, from both the wave packet and the set of
trajectories, the electron exhibits Klein tunneling and all trajectories traverse the bar-
rier. (b) The same plot for an electron that impinge to the barrier at some angle. Now,
there is no complete Klein tunneling and part of the wave packet and some trajectories
are reflected. The transmitted part of the wave packet and transmitted trajectories
suffered refraction according to Snell’s law-like expression..
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time 7p in Eq. can be rewritten as:

AL Ng
I B l m
-t (S ). 03]

since the trajectories Nz« do not contribute to the dwell time. From the above
equation I can define the transmission time, 7 and the reflection time, 75 as

follows:
1 Ny 1 Ng
l m
TP = — E 7" and Tp = — E T 6.4
r Nr — R Np — (6.4)

So the overall expression of the dwell time can be written as follows,
Tp = Pr 7r + Pr TR (6.5)

where I have defined the probabilities:

N
T=Pr= lim — (6.6)

N—oo

The computation of the transmission coefficient T" does not require a distinction
between Ni and Ny« trajectories since only the transmitted trajectories Ny are
relevant here. Identically,

. Ng
Pe= N oD

Notice that the reflected probability Pg is different from the reflection coefficient
R, Pr # R, because the reflection coefficient requires including Ny and Ny« in
the numerator of Eq. [6.7]

Furthermore, because of these trajectories the previous probability definitions
give Pr + Pr < 1 for which we would require to add the additional probability
Pr+ = Ng«/N to satisfy Pr + Pr + Pr- = 1. However, we know that the R*

trajectories have a transit time equal to zero, 7; = 0, then, the transit (tunneling)
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time definition in expression Eq. can be extremely misleading. If one get a
scenario where Ng« =~ N then we get the unphysical result 7p ~ 0 in Eq. [6.3]
that implies a cut-off frequency (fr = %) is going to be infinite which is an
unphysical result.

The mistake appears because we have to eliminate the trajectories Ny« from
the computations of the dwell times when such times have to be related to predict
the high-frequency behavior of electron devices as discussed in chapter [ The
fundamental problem is that the identification of the particles Ny, Ng and Ng- is
not possible within the Orthodox theory. This is just a different way of realizing
the controversy in defining the tunneling time in Orthodox quantum mechanics.
On the contrary, the Bohmian theory provides a transparent procedure to elim-
inate Ny« from the computations. Thus, the Bohmian dwell time (for deducing

properly high-frequency performances) needs to be defined as:

1 Ny Ng
= lim — by m 6.8
= i 5 (3274 35 ) 09

where Ng = Np + Ng are the number of trajectories entering into the barrier.
Notice that now the scenario N« ~ N does not imply the unphysical result

Tp, ~ 0 in Eq. because the particles Ng- have no role.

6.2 Numerical calculation of tunnelling times

This discussion above related to the correction in the Orthodox dwell time is used
in the numerical calculation of the dwell time in a Graphene based electron device.
I consider a two terminal device whose band structure (energy of the Dirac point
as a function of the z position) is plotted in Figure . The wave nature of the

electrons is represented by a bispinor solution of the Dirac equation. In Figure
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@ Dirac Point @ac point
7 > SO—
V()=0.15 Vo= 0.15ev

:b X

>

d

(b)

Figure 6.2: (a) Klein tunneling barrier region where the electron, which impinges per-
pendicularly to the barrier, has an energy E lower than the barrier height V. The cones
represents the linear energy momentum dispersion at different positions. The electron
has available states in the valence band of the barrier region which allows them to
tunnel freely. The transmission coefficient in such cases is close to unity. (b) The same
plot for an electron with energy similar to the barrier height £ = V. In this case
the electron has to occupy the Dirac point in the barrier region which has almost no
available energy states. In these scenarios the transmission probability almost vanishes.
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Figure 6.3: (a) Number of transmitted particles, Ny, particles entering into the barrier
but eventually reflected, N and particles that are reflected before entering the barrier
Ngr* as a function of the incident angle. (b) Transmission coefficient as a function of the
incident angle computed from the Orthodox quantum mechanics (dashed black line)
and from Bohmian trajectories (solid red line)
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6.2 Numerical calculation of tunnelling times

I show how the number of transmitted trajectories vary with the angle of
incidence (6 ). The simulations show that for 6; = 0, almost all the particles
are transmitted. Increasing 07 leads to an increase in the reflected particles. By
construction, the behavior of Ny in Figure just reproduces the transmission
coefficient T" in Figure . The estimation of the current delay in an electron
device takes into account only the particles entering in the barrier, either Ny
or Ng. Thus for an unequivocal description of the tunnelling times it is very
important to classify and discard the contribution by the trajectories Ng* which
do not contribute to the electrical current and thus, to the tunnelling times. In
the Orthodox computation, just with the bispinor (without trajectories), Ny, Ng
and Ng* cannot be treated separately, and thus the above mentioned ambiguity
appears.

In summary, the (Klein) tunneling times for electrons in a two-terminal graphene
device made of a potential barrier between two metallic contacts has been studied.
I show that for a zero incident angle (and positive or negative kinetic energy), the
transmission coefficient is equal to one, and the dwell time is roughly equal to the
barrier distance divided by the Fermi velocity. For electrons incident with a non-
zero angle smaller than the critical angle, the transmission coefficient decreases
and dwell time can still be easily predicted in the Bohmian framework. The
main conclusion of this work is that, contrary to tunneling devices with parabolic
bands, the very high mobility of graphene is roughly independent of the presence

of Klein tunneling phenomena in the active device region.
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Chapter 7

Evading measurement

uncertainty in electron devices

The following chapter provides a summary of the published work included in
[Publication E] In this work a protocol has been proposed to alleviate the quantum
uncertainty that arises due to a stochastic (collapse or state-reduction) law that
unavoidably yields an uncertainty (variance) associated with the corresponding

mean values.

7.1 Origin of Quantum measurement uncertainty
in electronic devices

The process of measurement in a quantum system involves an uncertainty which
is a consequence of the fact that each time a quantum measurement is done,
the wave function collapses into an eigenstate of the operator I associated with
the measuring apparatus. The observable output [, is a random value equal
to the eigenvalue associated with the mentioned eigenstate. In general, and this

is true for the measurement of the electrical current, the state before measure-
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7.1 Origin of Quantum measurement uncertainty in electronic devices

ment ¥y, (7, t) is not an eigenstate of the current 1;(7,t) # o (7, t). In fact,
the state before the measurement can be written as a superposition of many dif-
ferent current eigenstates. Thus, each time we repeat an experiment to obtain
information about the output current, we get different values. This random-
ness in the output values can be quantified through the probability distribution
P(I) = [{(¢1(7) %ot (T, 1))|* given by Born’s law. From a quantum engineering
point of view, this quantum uncertainty (seen as noise in the current) is inconve-
nient for efficiently processing logical (either classical or quantum) information.
Notice that here classical and quantum information is manipulated both by quan-
tum electron devices. The difference appears if the information is a bit or a g-bit,
but state-of-the art electronic devices are nowadays quantum electron devices as

mentioned in the introductory chapter.
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7.1 Origin of Quantum measurement uncertainty in electronic devices
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Figure 7.1: (a) Schematic of classical computing exemplified with RTD where only the
active device is governed by unitary quantum evolutions (enclosed in the cyan color
dashed line), while the contacts and the cable leads to quantum decoherence which
provides a fixed value of the current obtained in the measuring apparatus (shown at
the right end). (b) Schematic of quantum computing exemplified with an MZI where the
quantum wholeness require that a coherent unitary evolution appears in all the gates
(enclosed in the cyan color dashed line). Only at the end, when the wave function is
measured, decoherence can be accepted.

In classical computations, the uncertainty on the electrical current can be
eliminated by using the ensemble value of the current (/) computed from a large
number of identical experiments, each one giving I‘, with the subindex ¢ identi-
fying the experiment. The ensemble value is defined as (I) = (3w ) /Newp,
where Ng;, — 00 is the number of experiments. In principle, this ensemble value
would require repeating the same experiment for a large set of N, identical
quantum electron devices. In practice, by invoking ergodic arguments, the repe-

tition of the experiment is substituted by measuring at different times in the same

quantum electron device as shown schematically in Figure (represented by a
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7.1 Origin of Quantum measurement uncertainty in electronic devices

horizontal red arrow). Thus, instead of defining the signal of the output logical
value as the instantaneous current I (which has noise) one defines it as the DC
value of the electrical current (I) computed during a large time interval (which
has no noise). This solution is efficient for reducing the noise, but it requires a
large measuring time. (In our simulation example with an RTD with a device
active region length of 10 nm, the injection time of 0.05 ps and the velocity of
electrons as 10 m/s, the time after which we get the non-fluctuating value of the
current is around 50 ps. In any case, the measuring time is again a parameter
that depends on many factors, like injection time, velocity of electrons, electron
density, level of tolerable uncertainty. etc., and that can be enlarged or reduced
as desired by manipulating these parameters.)

The quantum uncertainty described above represents also a problem for quan-
tum computing. In fact, although the logical output information in quantum
computing is encoded in the final wave function 1,,(7,t) (not in an observable
I'), the quantum state t.,(7,t) is not itself an observable (i.e., it cannot be
measured in a single shot measurement). Thus, the quantum state of the system
needs to be deduced from the expectation value (I) constituting an infinite set of
experiments, ideally as schematically shown in Figure (represented by vertical
red arrow). Carrying out these number of ensemble experiments consumes a lot
of resources and time. For example an ion trap experiment [127] characterizing
an 8 qubit state required 10 hours of measurements, despite collecting only 100
samples per observable and approximately a week for the postprocessing.

Therefore, the measurement process of such observable (I) has the same in-
conveniences mentioned above for classical computing, due to the quantum un-
certainty. We notice that in a quantum computing algorithm, with many inter-
connected quantum gates, the measurement of the observable is done only at the

last gate. In fact, trying to measure at an intermediate gate would be understood
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7.2 Collective-like measurement of current in electron devices

as a type of decoherent phenomena that would dramatically perturb the unitary
evolution required in typical quantum algorithms. In Figure I encircle the
regions of the connected gates where the dynamics of electrons are supposed to
be governed by unitary quantum evolutions. From Figure [7.1, one can under-
stand why decoherence is a serious problem for quantum computing, but not for
classical computing. In an array of interconnected classical computing devices,
the decoherence that can appear at the output of each particular device due to
the measurement does not affect the performance of the algorithm because the
interconnection between devices is done in terms of observables (not in terms of

wave functions).

7.2 Collective-like measurement of current in

electron devices
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Figure 7.2: Figure depicting a scheme to represent the different aspects of obtaining a
mean value in the classical and quantum computing devices. Whereas in the classical
computing device the mean value is usually the time averaged value. The same in a
quantum computing device is the ensemble value over an infinte number of experiments.
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7.2 Collective-like measurement of current in electron devices

Certainly, the above problem could be alleviated if we were able to measure the
ensemble value of the current or voltage in a single experiment. For that we
foresaw a general strategy that is summarized bellow. Let us first discuss this
strategy in the context of a classical computing device. This can be divided into

two steps:

1. Modify the quantum device to accommodate a large number N of electrons

defined by a many-particle wave function Wp(t;,) at time ¢;, is:

T (tin)) = [0 (tin)) @ [0 (tin) @ .. @ [N (tin)), (7.1)

where the wave function |1*(;,)) is the single-electron wavefunction corre-
sponding to the i-th electron prepared under the same conditions that we
have used to prepare the wave function [¢!(¢;,)) in the original quantum

electron device.

2. We substitute the measuring apparatus described by the single-particle op-
erator I with a new measuring apparatus whose associated many-body

operator fT is:
'+ 4+ 1Y
T — N )

(7.2)

where I' = 1® ... @ I' ® ... ® I acts only on the quantum state |¢%(t;,))
and T is the identity operator in the small Hilbert space of each degree of
freedom. Notice the presence of the factor N — oo in the denominator of

the operator Ir.

How the above two steps can be accommodated using the present semiconduc-
tor technology has been discussed and numerically studied for a resonant tunnel-

ing diode and a Mach-Zehnder interferometer, for classical and quantum com-

putations, respectively has been discussed in detail in [Publication E| It is also
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7.2 Collective-like measurement of current in electron devices

shown that the resulting protocol formally resembles the so-called collective mea-

surements, although, its practical implementation is substantially different.
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Part V

CONCLUSIONS
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Conclusions derived from PART I : The need for smaller and faster solid
state devices is pushing the technological and theoretical limits of device mod-
elling community understanding. This has brought, in particular, the theoretical
discussions which was once limited to classical (semi-classical) arguments to full
quantum mechanical description. The classical mechanics has been a well estab-
lished theory since centuries and therefore to develop devices based on classical
mechanics one just need an accurate engineering perspective.

The regime where the present and future solid state devices are envisioned,
classical mechanics fail to provide a proper description to the observed phenom-
ena. These devices have to be explained from the principles of quantum mechanics
which in the most general cases is the Orthodox theory. But the arguments that
was used for the classical mechanics where the physicist provides the theoretical
framework to the engineer, does not work since, Orthodox theory has difficulties
to describe all the phenomena with the same comprehensibility as classical me-
chanics for classical electron devices. The primary reason for this is attributed
to the necessity of defining the measurement dependent properties of a quantum
system within the framework of the popular Orthodox theory as discussed in chap-
ter [1) which leads to conceptual and practical difficulties. Therefore, presently a
device engineer is forced to either “shut up and calculate” or to enter into the

discussions related to the foundations of quantum mechanics (Orthodox theory).

Conclusions derived from PART II: Since Orthodox theory poses serious
challenges in providing an accurate description of the present and future electronic
devices it is important to understand the issues and an attempt has to be made to
provide the solution. Therefore in chapter [2| (specially in section and section
an attempt is made to first understand why is it not possible to obtain

intrinsic properties (such as the position of electron inside an electron device)
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in Orthodox theory. This already forces the author to enter into the discussions
pertaining to the foundations of quantum mechanics. It can be thus realized that
the very ontology of Orthodox theory prohibits in giving a definite value to any
property of a system that is not measured. This difficulty in getting apparatus-
independent or intrinsic information about the dynamics of quantum systems
is actually rooted in the foundations of Orthodox theory as discussed in section
More specifically, the so-called “eigenvalue-eigenstate link” establishes that
quantum states cannot be associated to a well defined value of a given property
unless such property is explicitly measured, the only exception being when the
state itself is an eigensate of the measured property.

Importantly, it is well known that the association of the reality (meaning
that properties have well defined property even when they are not observed)
with measurement is a “deliberate theoretical choice” that is “not forced on us
by experimental facts” [23]. In this respect, there are other quantum theories, in
empirical agreement with the Orthodox theory, where the reality of the properties
of quantum objects is independent of the measurement [23]. These other theories
allow, in particular, to define properties of quantum systems even when they are
not measured (i.e., just as in classical mechanics). It is thus not surprising that
there is a renewed interest in defining intrinsic properties within the so-called
“quantum theories without observers”

In this respect the modal interpretation of quantum mechanics, which defines
the properties of quantum systems without invoking the measuring apparatus
are proven to be appropriate to describe the intrinsic properties of a quantum
system as discussed in section . A special case of this type of theories is,
Bohmian mechanics, which is introduced in section 3.2} This theory is a math-
ematically precise quantum theory of particles that grounds the formalism and

the predictions of Orthodox quantum mechanics. Bohmian mechanics introduces
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the well defined position of particles in a quantum system at an ontological level
independently of its measurement. That is, at every moment of time there ex-
ists not only a wavefunction but also a well-defined particle configuration. In
particular, it is then straightforward to define a property of the system in terms
of Bohmian trajectories [19 21l 26]. Intrinsic properties in Bohmian mechanics
are thus defined as the properties of the system when it does not interact with a
measuring apparatus. That is, since the trajectories of the particles are defined
at the ontological level, viz., irrespective of whether they are measured or not,
defining the intrinsic dynamics of any property does not involve any ontological
inconvenience.

Even though the intrinsic properties can be described without the need of
a measuring apparatus it has been shown in section that these unperturbed
properties can be obtained in the laboratory through Aharonov, Albert and Vaid-
man (AAV) weak values. Likewise, in the framework of Bohmian mechanics as
demonstrated in section [3.2] the local-in-position Bohmain intrinsic property can
be obtained experimentally through the AAV weak values when the post-selected
state is the position eigenstate, which is also referred to as local-in-position weak
values [50]. Importantly, and contrarily to weak or indirect measurements of
time-correlation functions (which was discussed in section, local-in-position
weak values are free from quantum backaction effects. As a result, the intrinsic
dynamics of quantum systems can be genuinely formulated in terms of unper-
turbed properties and experimentally assessed through weak values. This is a
relevant statement, as the scientific community is persistently looking for dynam-
ical properties whose expectation value is free from the contamination of mea-
suring apparatuses [128]. Hence the intrinsic properties serves to be very useful
in alleviating the conceptual and practical difficulties in defining the quantities

that involves multi-time measurement.
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In section [3.3|a very important discussion is provided pertaining to the inter-
pretation of the AAV weak values. The conclusion that is drawn is that these
intrinsic properties cannot be defined within the eigenvalue-eigenstate link of Or-
thodox quantum mechanics (unless the system is in an eigenstate of the associated
property operator). Contrarily, intrinsic properties arise naturally in the context
of modal quantum theories (e.g., Bohmian mechanics). It has been shown that
intrinsic properties and AAV’s weak values are the same precise thing (see Eq.
and Eq. . Thus, any attempt to give a physical meaning to AAV’s weak
values by means of a given ontology is, at the same time, an attempt to give
physical meaning to the intrinsic properties described in thesis (and vice versa).
In this respect, it has been shown that intrinsic properties and AAV’s weak values
have a clear-cut meaning within the ontology of modal quantum mechanics.

A simple byproduct of this result is that intrinsic properties and AAV’s weak
values cannot have a physical interpretation within the ontology of Orthodox
quantum mechanics. Another important inference that is derived from the discus-
sions is that the AAV weak value is in principle different from the operationalist
definition of a weak value. The AAV weak value is found from a single quantum
system where it is assumed that there is no explicit weak measurement. This is
done by neglecting the perturbation induced by the weak measurement which as
we have shown in section is an incorrect assumption. The operationalist
definition on the other hand implies an ensemble of experiments instead of a sin-
gle measurement. So, only when the ensemble procedure is able to wash out the
backaction present in each weak measurement due to ensemble averaging does the

numerical value of AAV weak value and the operationalist weak value coincide.

Conclusion derived from PART III: The Bohmian mechanics ontology

also leads to the development of robust methodologies for describing open quan-
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tum systems as discussed in chapter [4] where the quantum system is an electron
device. This methodology aids in defining a conditional state which can be inter-
preted as the state of the open quantum system evolving while its environment
is under continuous monitoring. The ontological nature of the trajectories in
Bohmian mechanics introduces the possibility of evaluating dynamic properties
in terms of conditional wavefunctions for Markovian and non-Markovian dynam-
ics, no matter whether the environment is actually being measured or not. The
Bohmian conditional states thus lend themselves as a rigorous theoretical tool
to evaluate static and dynamic properties of open quantum systems in terms of
state vectors without the need of reconstructing a reduced density matrix which
escalates the computational burden very quickly with the number of degrees of
freedom.

The above technique would greatly benefit from the possibility of further re-
ducing the dimensionality of a single particle 3D-TDSE by decoupling the trans-
verse and the longitudinal components of the 3D wavefunction. In chapter |5 an
efficient simulation scheme is provided inspired from the Born-Huang ansatz (GC-
TDSE methodology). This methodology is applied to a prototypical 2D nanocon-
striction having perfect agreement with the exact solution of the 2D wavefunction
providing an appreciable computational advantage. For smooth time-independent
constriction profiles under low applied bias, the GC-TDSE method implies up to
three orders of magnitude less computational resources than solving the full 3D
TDSE directly. For very high applied bias or time-dependent constriction pro-
files, the GC-TDSE may still be significantly less expensive than the solution of
the full 3D TDSE, but would require introducing approximations to the solution
of the potential-energies €%, (F* (x,t) and S*(z,1)).

Conclusions derived from PART IV: The work presented in chapter [0]
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describes the dwell times for electrons in a two-terminal graphene barrier using
the BITLLES simulator. It has been shown that Bohmian trajectories are well
suited formalism to discuss transit (tunneling) times and its relation to the cut-
off frequencies of electron devices. We have shown that Klein tunneling time
(in gapless graphene with linear band structure) is not like the typical tunneling
time (in materials with parabolic bands and with an energy gap). Such differ-
ences directly imply completely opposite features in the transit (tunneling) times
of graphene structures in comparison to what is expected from traditional semi-
conductor structures with parabolic bands.

Because of the Klein paradox, for an incident angle equal to zero, 6 = 0,
the transmission coefficient is roughly equal to the unity, " = 1, with Ng = 0
and Ng+ =~ 0. Then, the velocity of particles in the barrier region and outside is
roughly equal to the Fermi velocity, vy = 10° m/s. This is true for all incident
kinetic energy (with positive or negative kinetic energy). Then, the dwell time in
the barrier region can be identically computed from the Orthodox expression 7p
or the Bohmian one 7p,, roughly estimated as 7p ~ 7p, ~ d/vy.

But for incident angles different from zero i.e. 6z > 0, the transmission
coefficient decreases because Ng+ > 0. Under these scenarios, the dwell time of
the electrons has to be estimated only for the trajectories that spend some time
in the barrier (what we name Ny and N in the text) but not by the trajectories
Npg+ that do not spend time in the barrier. Then, the Orthodox expression 7p in
Eq. is not adequate and it has to be substituted by the Bohmian dwell time
eXPIession Tp,,.

In chapter [7] the problem of current uncertainty due to the intrinsic stochas-
tic process of the quantum measurement of the electrical current is discussed.
From an engineering point of view, this quantum uncertainty becomes an unde-

sired quantum noise that makes the discrimination of the final state in classical or
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quantum gates more difficult. I have therefore presented a protocol that modifies
the original quantum electron device to accommodate a larger number of electrons
inside, so that the total electrical current of the modified device (when normalized
to the number of electrons inside) gives the value of the output current without
quantum uncertainty. I provide numerical examples for classical and quantum
computing, with an RTD and MZI, respectively. It has been demonstrated that
the many-particle wavefunction associated with the modified device is, in fact,
an eigenstate of the many-particle electrical current operator. The similitude and
differences of this protocol with the collective measurements is mentioned in the
text. The results of this protocol can be alternatively understood as a conse-
quence of the central limit theorem. Although the assumption of non-interacting
quasi-particles can seem reasonable in nanoscale electron devices, further work
is needed to check whether or not the presence of strong Coulomb and exchange
correlations among electrons located inside the device can affect the present pre-
dictions. In addition, the discussion on the advantages of the protocol presented
here needs to be explored for the quantum measurements of transient currents

and delay time of nanoscale quantum devices for classical and quantum gates.
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Appendix A

The von-Neumann measurement

protocol

In this Appendix I describe the Von-Neumann measurement protocol the results
of which are utilized in chapter 2l In this protocol a measurement requires an
entanglement between the system and the ancilla. Such entanglement can be
obtained through a unitary interaction of the ancilla with the system given by
the Von Neumann time-evolution operator exp(%’)\g ® Pa) where $ is the system
operator (the observable we want to measure), P, is the momentum operator
for the ancilla and A is the effective coupling constant quantifying the coupling
strength between the system and ancilla. An additional unitary entanglement
between the ancilla and the pointer will be required which is given by exp(%f’y?@
P,) where Y is the ancilla operator (observable that we effectively measure), P, is
the momentum operator associated to the pointer and ~ is the effective coupling
constant quantifying the coupling between the ancilla and the pointer . I assume

the full state of the system-ancilla-pointer to be initially described by a separable
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state vector:

Z@ )lsi) / 0)ly)dy @ [ f(z,0)|z)dz, (A.1)

where the system state vector [1(0)) = . ¢;(0)|s;) has been defined using the
eigenstates |s;) of the operator S of interest, with S|s;) = s;]s;). Without the loss
of generality, T chose here a discrete and nondegenerate spectrum {si, so, s3....}
of the operator 5. The (ancilla) state vector |y (0)) = fa( ,0)|y)dy interacts
with the system and also with the (pointer) state vector [¢p(0)) = [ f(z,0)]

Noticing that the ancilla and the pointer wave functions are represented in the
position representation, the process of the pre-measurement described in the text

can be mathematically described as follows,
U (t)) = exp (%’w ® Pp) . exp (%)\S ® Pa) (0)). (A.2)

when applying the first operator exp(= l)\S ® P,) on the initial state |¥(0)) given
by Eq. we get:

wie) = e (G7 02,) Yals) @ faty — As)lidy o [0t

(A.3)

90



where I have used,

exp (%AS ® I5G> Y als)® /a(y,0)|y>dy

i

=Selse [ [ W)wlessrslolaty. 0y
=2 als)® /eXP <—A8ia%) a(y, 0)ly)dy

2

= Zcz|81> ®/ (1 - AS"B% + )\ZS?aa_yg - ) a(y,0)|y)dy
= Y cls) @ faly ~ As)lu)dy. (A4)

The second operator exp( %”yff ® pp) on the state given by Eq. can be finally

written as:

we) = e (G070 B) Sels) @ faty = As)lady o [ 1.0

= Y als) @ faly — As)luddy (1~ )|2)dz, (A5)

i

where, as done in the previous step, I have used

o (FV 08, fatu-rsilidy [16:.01e)a:

= /a(y — As)|y)dy @ /eXp (—WJ%) f(z,0)|z)dz

2
228

_ /a(y _ )\si)|y>dy®/ <1 - yy% PP - ) F(2,0)|2)d=
(A.6)
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Since, the ancilla and pointer is supposed to have a strong coupling the coupling

constant v = 1. Therefore

i
e (F7 08 fatw-rsoliaye [5.0)02)dz = [atw-rsolsldys] sl
(A7)
That is what is used to arrive at Eq. 2.2
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Appendix B

Two-time correlation functions

for an ideally-weak measurement

This Appendix provides a derivation to arrive to the result in Eq. in the
thesis. For scenarios where the ancilla wave packet has a support much more
larger than support of the system wave packet, y > As, one can consider a first

order Taylor’s expansion of the ancilla wavefunction a(y; — As) around y giving,

8a(yk)s'

oo (B.1)

a(ye — As) = a(yr) — A

The evaluation of the main result in Eq. for the ideal weak measurements

used here, requires the evaluation of the integral [ dyx yra(yr — As;)a(ys — Asy)*,
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which can be evaluated when Eq. is considered as:

/dyk Uk a(yp — Asi)a*(yp — Asyr)

_ da(y) . Oa” (y)
- / Yk yk( A Ay, S’) (a (o) = oy
oo 0
— /dyk yra(y Yr) — )\Si/ dyeyea”(ye) C(‘;(yk)
0a*(yr) | \o / da* (yx) Oa(y)
sy / dyryra(yr) Dun +Asisu [ dyryr Oy, Oy
= )\%(Si+8i')~ o

In the evaluation of Eq. [B.2] T have considered that ancilla wavefunction is real

(not complex), a(yy — As;) = a*(yr — As;). I have also used the identity:

da(y)
d =—1/2 B.3
/ yya(y) By /2, (B.3)
because when integrating by parts, we get: [ dy y a(y)aa(y) = — [dya(y)a(y) —
[ dy y 2aw) ( ). Identically, in the evaluation of Eq. |B.2, I have used:
da(y) da(y) /
= = 0. B.4
/ dyy Zg 2 0. and [ dyyalwals) =0 (B4

Finally, putting Eq. into the integral Eq. 2.11], we get:

2 2

l)y(r)) = 5 (UE)TGTSIY(0)) + 5 (U0 ST GT]w (1)
— ARe[(W(t1)| 0GOS (1)) (.5)

where I have used the identities S = > silsi)(si| and G = >-;9ilg;)(g;], and
= 3. |si)(si| and G = >~;195)(g;]. This last result reproduces Eq. [2.12]in the

main text.
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Appendix C

The perturbed state for an

ideally weak measurement

This Appendix is dedicated to understand if the result Eq. is contaminated
by the measurement or not. For this it is relevant to first rewrite the general state
in the system space in Eq. according to the Taylor series used in Appendix

for the ancilla wavefunction in the ideally weak regime I get:

Uk w(ta)) = Z 1950 (Y — Ag;) (951U si)alyr — Asi) (silt(tr))

_ VCatn ) -2 29) N ey (w3908 Y
_;|gy>( (%) = A Bu g,) (g;|U| z>( () — A By, 1><Z|¢(t1)>,

(C.1)
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which can be easily expanded to read:

[Vkw(ta)) = a(yw)a(yk)z|gj><gj|U|S¢><8iW(t1)>

aa(yw)

Y 0. a(yk)z!9j><9jfmsi>3i<5i|¢(t1)>
_ Aag{y ZL% 9;(91Us:) (s (1)
)\286‘% gJ|U|sZ i(8ilY(t1)). (C.2)

Yo

Using now S = 3, si]s;) (s;] and G = 32, g4]s:) (s:] Eq. reduces to:

ate)) = (a0 + X2 D) Girg 2P o6
AT a0 oo

This is the result found in Eq. in the main text.
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Appendix D

The weak measurement as a

displacement operator

In this Appendix I consider a quantum system defined by the wavefunction solu-
tion of the Schrodinger equation with a harmonic potential V(z) = (1/2) m Q2 22
with m the mass of the particle and €2 the oscillatory frequency of the oscillator
[14, 16]. In particular, I consider that the initial state is the ground state at time
t1 =0:

Yo, t) = (2| U(h)) = (”;—722)1/4 exp(;Tx;)exp(—iQt) (D.1)

S

where the spatial dispersion of ground state og is defined as:

h
=4/ — D.2
s ms) (D-2)

I am interested in the measurement of the position x. Therefore, the discrete
eigenstates |sx) described in chapter [2 are substituted here by a continuous set
of eigenstates |z). For the Positive Operator Valued Measure describing the

interaction of the ancilla with the system, I use a Gaussian Krauss operator,
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whose representation in position is given by:

aly —7) = (m; )1/4 exp (_(“230—_2?’)2) (D.3)

M M

where different types of measurements can be assigned to different values of o),
defined as the spatial dispersion of ancilla wavepacket (o3, — 0 corresponds to a
strong measurement, while o), — 0o to an ideal weak measurement). Trivially,
the operator in Eq. accomplishes the conditions imposed on the ancilla
wavepacket in section [2.1]

After the first measurement at time ¢; obtaining the measurement outcome

yr, the system wavepacket in Eq. is perturbed giving the new state as:

2
M 207,

1/4 v — )
i) = atu = ot t) = () e (—M> v(e.h) (D)

which is just the product of Eq. and Eq. [D.3] The parameter X is not needed
here (we use A = 1) because y and z are both position eigenvalues.

Let me consider the ideally weak measurement case as discussed theoretically
in section 2.2.2] To realize that I assume oy > og. Then, in the development
of (x —yp)” = 2% — 2xy, + Y2, we get yp > x so that 2zy;, > —2? for positive =

2

when y; > 0, or for negative z when y; < 0. Then, neglecting the term in z* we

can rewrite Eq. [D.4] as:

1/4 2 _ 9.
Ui (z, 1) =~ ( 12 ) exp (—yk—ka) W(x,ty) (D.5)

2
TOoYy, 20%,

The perturbed wavefunction i (z, ;) in Eq. can be related, in fact, to a

coherent state of the harmonic oscillator ¥&(x,¢;). Such state is defined at time
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t; = 0 as [14], [15):

$e(z,0) = (z]a) = <”7:—§)1/4 exp (_’Z}?x?) exp <—a2 + \/@am) (D.6)

where « is the eigenvalue associated to a|a) = a|a) with a defined as the annihi-

lation operator. Using Eq. and Eq. I can rewrite Eq. as:

m\ z’ osa)’ aog)x
s = () ezp( _2Aosa)? | 2V s>>

h B 20?9 20?9 20%

— eap (—O‘_—M) ¥(z,0) (D.7)

2
20%

where o/ is defined as:

o =V 2050 (D.8)

Apart from an irrelevant (position independent) normalization constant. The

resemblance between the perturbed sate 1 (z,0) in Eq. and the coherent

state ¥ (x,0) in Eq. just requires the definition of the measured value y; as:
ool aod,

= = D.9
Yk 0_% og ( )
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System and meter wavefunctions (a.u.)

a=.01
10'] vixt) /N
1\ / V)
1 Negligible component / o \
5; of POVM / \\
10° " T —L— . . :
-100 -50 0 50 100

X (nm)

Figure D.1: Figure depicting the wavefunction perturbation in the ideally weak mea-
surement regime. The figure shows a logarithmic plot of the x- dependence of ground
state of the harmonic oscillator ¥ (z,¢;) (solid black line) and of the Gaussian Positive
Operator Valued Measure a(y) (ancilla) for different values of positive y related to dif-
ferent values of o = yog/ 012\4 quantifying the range of eigenvalues of the ancilla. Black
dahed-doted line corresponds to a o = 0.01 (very less values of y) with a slope so small
that the initial state has (almost) no variation after being multiplied by it. The solid
red line corresponds to av = 3 (very large values of y) where the slope induces a displace-
ment of the initial ground state by an amount of o/ = v/20ga resulting in a ¥ (z, to)
which demonstrates a very large perturbation shown in dashed blue line, which is now a
coherent state (see Appendix @ for details). The pink line corresponds to the irrelevant
term exp(—x?/(203%,)) ~ 0 in the ancilla. I have used o5 = \/h/(mQ) = 4.8106 nm
and oy = 2 um.

The previous demonstration that the Gaussian kraus operator in Eq.
acting on the ground state produces a coherent state 1o (z) can be alternatively

demonstrated as follows. Let us define an operator D(a/) such that D(o/)y(x) =
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(x — o). Using the taylor’s expansion for the term on the right we get,

ba—a) = () —a'5u(n)+ (o))" (3>2 D) — ...

_ (1 ol ) (%) - ) e

- (-d%) ¥(z) (D.10)

On the other hand, from textbooks [129], the coherent state is alternatively de-
fined as Yo (z) = (z|D()]0) = (z|a) with:

—a?

D(a) = exp <T) exp (aa' — a*a) (D.11)

now for real o where a' and @ are creation and annihilation operator respectively,

we get:

D(a) = exp (_TO‘Z) exp (—%) (D.12)

where we have used 4=
24 2hmw

with the momentum operator, in the position

representation, is given by p = —ihd/0x. Finally, we get:

Yolw) = (2] D(@)[0) = eap (=5°) exp (7222 ) (@10) = D{a)ie(x)(D13)

Here we compare the Eq. and Eq. to see that, since the condition
a = yog /o3, is met because it implies the previous identities o/ = % = V2aosg,
both expressions are identical. This result demonstrate again that Gaussian
Kraus operator acting on the ground state is like a translation operator which
converts the ground state 1(z) into a coherent state 1)c(x). The reason why the

ancilla wavepacket in Eq. with o); — oo implies such a large perturbation

on the ground state wavefunction, converting the measured state into a coherent
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state, can be found in Eq. and in the logarithmic plot in Figure [D.1] Most of
the measured Figure values of y;, corresponds to small « (see a = 0.01 in Fig-
ure where the measured and initial ground states are (almost) identical(solid
black line in Figure . However, because of o); — 0o we also have a small
(but not zero) probability to get y, — oo which implies large « ( see, for example,
a = 3 in Figure . The slope of the line @ = 3 (solid red line) in the support
of the ground state v (z, ;) is so large that the product of both terms leads to a
non-negligible perturbation of the initial state, resulting in the displacement of

the ground state (dashed red line) giving ¢ (x,t5) which is a coherent state [15].
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Appendix E

Two-time correlations for special

operators

Since in general scenarios I was not able to find the unperturbed two-time correla-
tion function in this Appendix I try to impose some restrictions on the operators
and see if I can obtain some relevant result. Let me assume a particular operator
and Hamiltonian that satisfy (sy|UTGU|s;) = go% where g, is a constant
and I consider n as an arbitrary positive integer. Then, I can rewrite Eq.

as:

(y(t2)y(t1)) = )‘Z/dyk Yk a(ye — Asi)a™ (ye — Asi ) (W (t1)]sir)...

3”5(317 — 51')

m
0s;;

wGo (si|v(t1))

(E.1)
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By properly applying the derivative of a delta function ) _, ¥ (s})a* (yx—Asy)
(— eIl with ( ]s) = 0% (s) and (s = d(si), T get:

Si

m
0s’;

O" (¥ (s:)a™ (yx — Asi))
osm

7

W) = (00 / dyi e aly — As)o(s:)

(E.2)

As we can see, the multiple derivatives in the ancilla wavepacket gives rise to
values of (y(t2)y(t1)) where the meter dependence persists on. There are, however,
two particular values of n where such dependence disappears.

When n = 0, I find (s;|UTGU|s;) = g,0(s# — s;) which means that the evolved
state Uls;) is an eigenstate of Gi. So its easy to see from Eq. that,

(Y(E2)y(t1))noo = Ao (¥ (t1)[S|Y(t1)) = MG (£2))(S(t1)) (E.3)

This case is different from the condition in that deals with an initial (not
final) eigenstate even though the final result in both the cases are identical.

For n = 1 it would seem that since the state |s;) is not the eigenstate of the
operator, the meter dependence will persist, but when considering this case in
Eq. one can see that the two conditions imposed on the ancilla wavepacket as
introduced in the previous discussion will be required to compute the correlation

which is given as,

Wyt = A2 (1 + Zwsi)a@;ff)) (£.4)

Clearly the dependence of a(y — As) on the correlations (y(t2)y(t1)) has been
eliminated and so the correlation is meter independent (see Figure [E.I|(b)). For
an analytical result of this case in a harmonic oscillator see Appendix [E.1l Only

when n > 1 in the computation of Eq. the explicit meter dependence cannot

104

O"0(s;1—s;)



E.1 Two-time correlation for position operator

be removed as clearly demonstrated in the analytical result in Appendix
where the case of n = 2 is used for demonstration (see Figure [E.1]).

E.1 Two-time correlation for position operator

This example represents the case n = 1 described above. Using Eq.(34) in the
position basis with the operator S=X1 get;

Wit)y(t) = / dy / Ay i P (3 1)

—A/dz/dw/dykykayk—m (g — M) ap(tr) ')
(@ |UF X0 ) (1)

—)\/dx/d%‘/dykykayk—)\x) “(ye — A" ) (2")

(2| X (t1) cos(Qty) + I;ig) sin(Qt2))|x) Y (z). (E.5)

Here I have used the time evolution operator of the position in harmonic oscillator
as, X(ty) = UNX ()T = X(t1) cos(Qy) + Pn%) sin(Qt3)). I decompose Eq. [E.5
in two terms (y(t2)y(t1)) = I + I defined below. The first term [; gives:

L o= / da / iz’ / i i alys — Ae)a (g, — MY (@) (2| X (1) cos(Qtz) [)p(x).

Since (/| X (t))|x) = z0(z’ — z)
= )\/dw/dx /dyk yr a(yr — Ax)a* (yr, — A" )™ (2")x cos(Q)d (2" — x)(x).
- /\cos(Qtz)/dx/dyk vk la(us — A2) 2z |() 2 (E.6)
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E.1 Two-time correlation for position operator

Using the identity [ dyy yx la(yx — Az)]* = Az, I arrive to,

I, =X\ cos(QtQ)/dm:ZW( )? = A2 cos(Qa) (X2(ty)) (E.7)

The second term I, using (/| P(t)|z) = EM gives:

I, = /\/da:/dx /dyk yr a(yr — Ax)a*(yr, — A" )™ (2")) (x ]P(tQ) sin(Qty)|x)(z).

— ni?;\ sin(Qt2) /daﬁ/dx//dyk i aly, — Az)a* (y, — )\33/) «

v (a!) Lo’ — ().

- _WZ:;))\ sin(Qts) /d.rw(x) /dyk Yr alyp — Ax) /dm'a*(yk — ) x
v (z )%5@ — )

Applying integration by parts to the last term of Eq. [E.§|T get,

L =P ) [ dote) [ oty — o) 2N
= %Slﬂ(@tg)/d w( )a¢£ )/dyk n |a(yk—>\x)|2+
Z—gsin(ﬁtg)/dﬁh/)(x”z/dyk Yk a(yp — )\x)w (E.9)

Now, to provide a compact expression I use the ground state of the harmonic

oscillator in the position basis defined in Eq.(49). I decompose now I, = I} + II
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E.1 Two-time correlation for position operator

into the two terms present in last line of Eq. [E.9

1 :%sm(mg) / dzip() 2@ / Ay oy — Ao)?

m 9
_ ZZ?; Sin(Qt) / dx:mﬂ(x)awgéx)
N ‘%ZAQ sin(Q2)(X”) = —;zj; sin(Q26)(X?) (E.10)

2
95

where I use (X?(t;)) = %. For the term I3 I have:

7 ZhA . 3@* —>\Jf
B = 2 sin@n) [adol? [ ol — a2 =2
: 2
_ Y not) (E.11)

2ms)

where I have used [ dyx yx, a(yx — Ax)w = 2. Finally I get the real value:

(y(t2)y(t)) =L+ T = L+ I, + Iy = X cos(Qa) (X3(1))
= cos(Qs)(X2(t1)), when A =1 (E.12)
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E.2 Two-time correlation for position squared operator

E.2 Two-time correlation for position squared
operator

This example is the representative of the case n = 2 described above. Rewriting

a part of Eq.(34) in the position basis and using S = X2(t;) ,

(&[0 X> (1)) = (@/| X*(t2) ) A
Zg;2 sin?(Qty) + 2@.)&(1&0 cos(Qty) sin(Qts)

= (2| X?(t1) cos®(Qty) + —

—~

ih .
+m cos(Qt) sin(Qts)|x)

(E.13)

where T have used U X2(t,)U = (Ut X (t,)U)? = X2(t,) and reminding ourselves
that UTU = I, where I is an identity matrix and finally using the commutation

relation of position and momentum which lets us to write XP=PX+ih

DA . I 0?0(z — x)
N7t v 2 — 2 2 r_ o 2 U\
(' |UTX=(t1)U|x) x” cos”(Qt2)d(z" — x) ()2 sin“(Qty) 52
WZ—Z cos(Qs) sin(Qts) (-%% + o2’ — x))
(E.14)

Where I have used (z/|X (t))]x) = 26(z' — ) , (/| P(t1)|z) = —ih%;_x)
and (z/|P2(t,)|x) = —hQ%. At this point I would like to use a specific

function for the ancilla, as a Gaussian kraus operator, which can be written as,

a(ye — \?) = ( L )1/4 exp (M) (E.15)

2
TOY, 20%,

Let (y(to)y(t1)) = Iy — I — I3 , where Iy, I5, I3 represents the first second
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E.2 Two-time correlation for position squared operator

and the third term of the correlation obtained when introducing Eq. into
Eq.(34). For the first term:

Il = /\2 COSQ(Qt2><X4(t1)>

2

(mS2)?

n?(62ts) [ de(o) [ g ot -yt AT

_[2 - >\
(E.16)

where I use the identity [dyr yr |a(yx — Az?)|* = Aa? where A is just a con-
P = re2 W (@) _

stant for satisfying the dimensional arguments. I also use

Oz2
[ da’(a* (g — ") (/) 222 22) T develop
0*(a* (yr — A2?)Y*(x)) 0*a(yr — A\v?) 2, Y (2 ),
52 =¥@) 5 taly - Ao?) = 92
28a(yk — \z?) O ()
Ox ox
(E.17)
and
?aly, — \a? AN 2 (\a? — )2 4N 2
( 512 ) — (O-?LV[ k) a(yk . )\.TQ) . JM (yk . AI’ )
2A(\x? —y
%a(yk — Az?) (E.18)
M

I define Iy = I, + I, + I, as the first, second and third term of I; when using

Eq. [ET7in Eq. [ET0)

/ 2 “alye — Az’
L =Mogpsn (QtQ)/dw(x)/dyk Y alye — /\J;Z’)l/f(l’)%

(mS
& 2N
= )\(mQ) sin?(Qt,) (%(X (t1)) +)\>

(E.19)
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E.2 Two-time correlation for position squared operator

Using Eq. and Eq. in Eq. [E.I6]T get

2

. A A e
g @) (S0 - ()

1"

I, =\

I3 = )\ﬂi—% cos(Qty) sin(Qts) (/ dx (2z) Y(z) /dyk yr a(yx — /\x2)ag—§j) + A<X2>)

= )\wi_% cos(Qtq) sin(2t2) (3)\<X2(t1)> — &2&1»> =0 (E.20)

where T use (X2(t)) = % and (X*(t;)) = %. Finally I sum up the terms such
that <y(t2)y(t1)> = Il — [2 — [3

(y(ta)y(t)) = N cos® () (X* (1)) + (rﬁiﬂj? sin®(Ot) (%Ué " Z)
(E.21)
When t; =0 and to = T/2 1 get,
(y(ta)y(t) = N cos®(Q)(X*) (E.22)
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E.2 Two-time correlation for position squared operator
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Figure E.1: (a) Ensemble values of the correlation between y(¢;) and y(t2) for the ob-
servable 22 in a harmonic oscillator (representative of case n = 2 given by Eq.
at t = T'/4 as a function of the apparatus dispersion o/, certifying that this observ-
able (measured property) is not universal and depends on (is contaminated by) the
measurement. For large o), the correlation approaches to the Heisenberg computation
(dashed line) given by Eq. I have used A = 10'2 to get y =~ 100um (b) Plot of the
correlations with respect to time, for observable 22 using Eq. (black solid lines,
left y-axis, with A\ = 10'2) and z using Eq. (which is the representative of the
case n = 1) in red dashed line (right y-axis, with A = 1) for different values of o ;.
The correlations for observable z are meter independent, while for the observable 22 a
strong dependence on o, is obtained.

111

Two time correlation (10'17 m2)



Appendix F

Derivation of AAV weak value

Let us assume that the coupling constant A as described in Appendix [A] is much
smaller signifying a weak coupling of the system and the ancilla. In this case
exp (%)\5’ ® lf’a> ~1-— }%)\S @ P,. Now the weak value implies a post-selection
with respect to the state |g,) which results in the final state after postselection

as follows (assuming the instantaneous projection),
—i o oA i .
ott) =exp (F97 @ ) (1= A ) aadvten) @ faly s [16:. 01

(T i {glSlen) -
= exp < - 7Y®Pp> (gu|t(t1)) (1 h/\ ol Pa> ® ...

Jatdye [fE0ld: @)

i . . —q . .
= exp (vK ® Pp) (gu|¥(t1))exp (7A gw<S>¢(t1)Pa) R ...

.../a<y>|y>dy® f(z0))dz (F2)
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where gw(,§>¢(t1) = % is the AAV weak value. Now, using the same

arguments as used in the set of equations in Eq. [A.6 I obtain,

[9(t1)) = (gulto(tr)) /a (y - A 9w<5>¢<t1>> Wdy @[ f(z—y)|2)dz  (F.3)

From Eq. it is clear that the AAV weak value is defined in a single experi-
ment unlike the operationalist weak values that are defined from an ensemble of

experiments.
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Appendix G

Bohmian trajectories of a

Harmonic Oscillator

In this Appendix I provide the intrinsic and measured Bohmian trajectories for

a particle in the ground state of harmonic oscillator.

G.1 Intrinsic Bohmian trajectories

One can calculate the intrinsic Bohmian trajectory in the ground state of the
harmonic oscillator by first computing the velocity of the trajectory of a particle
when its not measured. The time dependent state of the ground state of the

harmonic oscillator is given by Eq. as:

Y1) = (2T (8) = (2—2)/ exp (—%) exp(—i0)  (G.1)

S

with Q related to the eigenenergy of the ground state. The Bohmian veloc-

ity is given by vp(z,t) = LZarctan (%) where (z,t); and ¥(x,t), are

the real and imaginary parts in Eq. [21]. In our particular case, I get
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G.2 Measured Bohmian trajectories

¢($7t)i
(x,t)r

Since the velocity of the bohmian particle is zero, its position will be constant

arctan( ) = —0t. Thus the resulting Bohmian velocity is, vg(z,t) = 0.

with time.

G.2 Measured Bohmian trajectories

In this section first I will try to describe the measured Bohmian trajectories and
their ensemble value. The bohmian trajectories of the harmonic oscillator system
measured at time ¢; with a Gaussian Kraus operator centred at y; such that the
measurement perturb the system strongly transform it into a coherent state as has
already been discussed in Appendix [D] Now, I will evaluate the Bohmian velocity
in such a scenario where the trajectories are influenced by the measurement. To
discuss the velocity I would need the time evolution of the coherent state which
is given by |a(t)) = |ae **) where |a) is the coherent state at time ¢ = 0. So now
in order to compute the measured Bohmian trajectories I will have to evaluate
time dependent coherent state. But before that I must prove that the coherent
state at time ¢ given by |a(t)) remains to be the eigen state of the annihilation
operator which will facilitate the position representation of the time dependent

coherent state. I start by writing the time development of the coherent state

la(t)) = exp(—iHt/h)|a(0)) and trying to simplify the eigen value equation
ala(t)) = aexp(—iHt/h)|a(0)) (G.2)

multiplying the right side of the equation with exp(—iHt/h)exp(iHt/h) and using

the Heisenberg representation of the annihilation opeartor given by

a(t) = exp(iHt/h)aexp(—iHt/h) = aexp(—iQdt) (G.3)
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G.2 Measured Bohmian trajectories

I get,

ala(t)y = exp(—iHt/h)exp(—iQt)ala(0))
= aexp(—iQdt)exp(—iHt//h)|a(0))
= a(t)|a(t)) (G4)

Now I proceed to deduce the time dependent coherent state, by starting with

(zlala(t)) = a(t){z]a(t)) (G.5)

Writing the annihilation operators in the standard form as follows

. fm, ./ 1 =

Putting Eq. in Eq. and using (z|X|a(t)) = z(z|a(t) and (z|Pla(t)) =
—ihZ (z|a(t)) T get

. ”;—,gw@»m/ﬁ(%) (ela(t) = a(O)(elal)  (G.7)

I know that (z|a(t)) = ¢c(z,t) I put this into Eq. [G.7] Now I use the variable

separable method to arrive at

Ow(r.t) _ () [202_ m2Y
) PR

Intergrating both sides in Eq. its easy to see that,

Yo(x,t) = Agexp <_ng$ ) exp ( 2Tnga(t)) (G.9)
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G.2 Measured Bohmian trajectories

Subjecting this equation to the normalization condition [ |¢c(z,t)?de = 11

get the time dependent coherent state given by

Vol(n.t) = (“;—2)1/4 exp (‘”52”’”2) exp (—a2(t) + 2”;%@(7:)) (G.10)

Measuring the system state wavefunction giving the output y transform the
ground state into a coherent state with o = yog/o3,. Since |a(t)) remains to be
an eigen state of the annihilation operator for all times its easy to see that the
time evolution of the coherent state in the position representation can be given
as below. Writing the Eq. in the polar from ¥¢(z,t) = R(x,t)exp (%9) I
find that

Yo(z,t) = Y(x)exp (—a2) exp <M> exrp [—i (ﬁaxsin9t>

(G.11)

gs gs

where T have used the fact that a(t) = ae ™ and a(t)? = o? and Y(z) =

()
h

—mQa?

exp (T) is the ground state of harmonic oscillator. From Eq. |G.11

I can find the argument of the complex wavefunction ¢ (z,t) as

S =—h (ﬂaxsinﬁt) (G.12)

gs

Now I can find the bohmian velocity [21] as follows,

195 __nyia

m Ox m og

sin$t (G.13)

vp(z,t) =

It can be clearly seen that the Bohmian velocity depends linearly on the amount
of perturbation quantified by «a and it has a sinusoidal dependence on time. Now

since I have the expression for the Bohmian velocity its easy to evaluate the
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G.2 Measured Bohmian trajectories

position of the bohmian particle at time ¢; perturbed by the measurement.

x(ty) = V2aogcosQt; + C = V2aoscosQt, + C (G.14)

By using the initial condition I find the constant C' = 2(0) — v/2aog . Using this
value in the above equation and using o/ = v2aog in Eq. I get

2 2
Yo Yko
S cosQty + 2(0) + =2

Om Om

z(ty), = 'cosQity + 2(0) — o’ = (G.15)

Where Eq. is the Bohmian trajectory of the harmonic oscillator system
measured at time ¢; with a Gaussian Kraus operator centred at y;. Computing
the ensemble of Bohmian trajectories over all initial positions, with (2(0)) 5, = o/,

I get

(x(t1)) g, = (a'costy +2(0) — o)

= d'cost — o' + (x(0)) = /cosQt — o + (G.16)

2

(x(t1)) ), = &/cosQty = ykgs cos§ity (G.17)

Om
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Appendix H

Examples of utility of intrinsic

properties

In this Appendix apart from the high frequency quantum noise, I discuss the other
two paradigmatic examples of utility of intrinsic properties viz. the quantum

thermodynamic work and the dwell time.

H.1 The quantum work distribution

Quantum work is the basic ingredient in the development of quantum thermo-
dynamics which is one of the most important topics in the field of open quan-
tum systems. Quantum thermodynamics is essential in developing new quantum
technologies such as quantum heat engines. It also plays a fundamental role in
the consistency of the second law of thermodynamics in the quantum regime.
However, there are many issues that are still being investigated, most notably
related to the definition of work and heat. The problem is that these thermody-
namic variables are not observables related to Hermitian (super)operators, but

are trajectory (history) dependent [I30HI32]. This has culminated in the so-called
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H.1 The quantum work distribution

"no-go” theorem that states that in fact there cannot exist a (super)operator for
work that simultaneously satisfies all the physical properties required from it
[133]. This conclusion is based on three requirements to be fulfilled by what Acin
et al. [133] define to be a properly defined positive definite work distribution.
Namely:

1. The work distribution is described by a positive operator valued measure-

ment (POVM).

2. For initial states that commute with the initial Hamiltonian the work dis-

tribution reduces to the two-point measurement (TPM) work distribution.

3. The work distribution respects the change in the Hamiltonian expectation

value.

Now, evaluating quantum work by means of a TMP measurement protocol of
the energy will imply that the first measurement projects the initial state into
an energy eigenstate, hence preventing the possibility of capturing any coherent
evolution of the state. The alternative Orthodox protocols for the evaluation
of the quantum work such as Gaussian measurements [134] [135], weak measure-
ments [136], 137], collective measurements [133], etc. all suffer from quantum
contextuality, which provides as many different work definitions as measurement
schemes exist. The problem appears due to the requirement of the Orthodox
theory to include a measuring apparatus that in practice does not exist which I
have already discussed at length in the main text of the thesis. Now by using the
intrinsic properties we are not interested in the explicit measurement of work, but
on using dynamical information of the quantum (sub)system in conjunction with
quantum thermodynamic equations to compute, e.g., the temperature variation
of a larger system involving a macroscopic thermodynamic environment.We are

thus seeking for an unperturbed value of work.
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H.1 The quantum work distribution

To define an unperturbed work distribution, I here follow similar steps as in
Refs. [138, 139], where a detailed derivation of quantum work based on Bohmian
mechanics can be found. Here, I will quickly move to the definition of intrinsic
work to discuss in detail how this definition solves the above described puzzling
situation. I thus start by defining a single particld'] wavefunction solution of the

following Schrédinger equation:

_O(7 1) ((—mﬁ — gA(7, 1))
ih =
ot om

+qV (7, t)) (T, ). (H.1)

where 7 is defined as a vector in the ordinary three dimensional space, V is the
gradient operator and —ihV — q/T(F, t) is the canonical momentum with A(7, )
the electromagnetic vector potential. When the wavefunction is written in polar

form as (7,t) = R(7,t)exp (@) where R(7,t) and 8(7,t) are the modulus
and phase, respectively, the real part of Eq. evaluated along the Bohmian
trajectory 7 = 7 (t) for the i*® experiment, gives us the following equation for the

unperturbed power:

(H.2)

Here &(7(t), t) is the unperturbed energy of the system, v(7(¢),t) is the Bohmian
velocity, Q(7(t),t) is the quantum potential and E(7(t),t) is the electric field

E|. While I have considered an external electromagnetic field interacting with the

LA many-body treatment will not add any new insight on the discussion.

2Notice that this electric field E(7,t) in Eq. is different from the electric field E'(,t)
in Eq. used in the section There, the electron located at 7= 7(¢) generates an electric
field E_'i(f"7 t) which leads to a density current everywhere inside the device. In Eq. on the

other hand, E (7, t) is an external electric field without self-consistency with the electric charge
of the electron considered.
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H.1 The quantum work distribution

quantum system, no measuring apparatus is accounted for in Eq. [H.2l Thus,
from Eq. [H.2] T can describe the unperturbed work represented by the wave-
function (7, t) and the trajectory 7(t), during the time interval t, — t; by just
subtracting the initial energy &(r*(t1),¢;) from the final one &(7(t3),t2). As I
have already mentioned, this result corresponds to the single experiment labelled
by the superscript . Getting ensemble values of the work just requires repeating
the previous procedure for different initial positions of the particles, according to
the quantum equilibrium hypothesis [21].

As stressed along the thesis, the very crucial aspect of this unperturbed work
is its measurability in the laboratory using the local-in-position weak values. So
subsequently it will be demonstrated how does the intrinsic value of the work
is equivalent to the local-in-position weak value of the energy operator. The

local-in-position weak value of the work can be given as follows,,

R%m@m@=M<%%%%?> (13)

Now using the Hamiltonian from Eq. in Eq. and writing the wavefunction
in the polar form to evaluate (7 (t)|H|(t)), I can rewrite Eq. as:

Re (F‘i(t)<é>w(t)> =

= QF(t),t) + —mu(F(t),1)% (H.4)

where V2 is the Laplacian operator and R and 8 are the modulus and phase of
the wavefunction. Now comparing, Eq. and Eq. , it is straightforward

to see that,

Re () (&)a ) = €7 (1), ). (1L.5)
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H.1 The quantum work distribution

I thus conclude that the intrinsic Bohmian energy is equal to the local-in-position
weak value of the energy and hence that it can be, in principle, measured exper-
imentally. Given a collection of weak values of the energy at times t; and t5, one

can then easily evaluate the quantum work in the i*" experiment as,

W(t2,1) = Re () (Ehuten ) = Re (s ) (H.6)

The work distribution on the other hand can be given as follows,
M
Plw, ty, t1) :A}EHOOMZMQU—WZ(Q,M)). (H.7)

From the work distribution in Eq. [H.7]1 can now evaluate the corresponding

expectation value:

M—oco M

<W(t2,t1)> == /dww fP(w t27t1 = lim —ZWZ tQ,tl (H8)

where M is the total number of experiments considered 1 = 1,2, .., M.

The above Bohmian approach circumvents the conceptual problem of the un-
avoidable contextuality of quantum work in the Orthodox theory. The unper-
turbed ”Bohmian work” fulfills the aforementioned last two requirements (ii and
iii) for a properly defined work distribution and reduces to the known definitions
in the appropriate limits. Furthermore, it also circumvents the no-go theorem
in [I33] because it cannot be associated with a POVM and hence also alleviates
the practical problem of mandating to define a POVM in the Orthodox theory.
In Bohmian approach on the other hand work is always defined as a positive
value for the work probability distribution and, moreover, describes a property
that is non-contextual (as it does not depend on the back-action of the measuring

apparatus). These are new conditions that should, in our opinion substitute (i)
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H.2 The quantum dwell time

in [133)], i.e.:

(i.1) The work definition must always lead to a positive-valued probability dis-

tribution

(i.2) The work distribution should not be contextual, i.e., it should not depend

on the back-action of the measurement.

H.2 The quantum dwell time

Measuring the time spent by a particle within a particular region @ < 7 < b
requires measuring the time ¢; at which the particle enters that region and later,
the time ty at which the particle leaves it. As we have already seen, the mea-
surement of the position of the particle implies the perturbation of the state of
the system in most general circumstances. Thus, any subsequent measurement
of the position is generally influenced by the first measurement. In spite of its
controversial definition in Orthodox quantum theory, the concept of dwell time
is necessary, for example, to evaluate the maximum working frequency of state-
of-the-art transistors and hence the performance of modern computers [76] as I
had already discussed in chapter |1l In this respect, it is important to notice that
when using the information of the dwell time in the evaluation of the performance
of computers, there are no position detectors at the two ends (d@ and E) of the
active region of the transistors. A valid question is then which of the two dwell
times, the measured or the unperturbed one, provide a better estimation of the
maximum working frequency of transistors. Anyhow, what is definitely true is
that to estimate the maximum working frequency of transistors nobody evaluates
dwell times by means of projective measurements [128], [140)].

The unperturbed value of the dwell time can be easily computed from intrin-

sic Bohmian trajectories 7*(t). Again, for simplicity, I only consider one electron
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H.2 The quantum dwell time

inside the active region in each experiment. The expectation value of the unper-

turbed dwell time can be defined as:

| M
D = Nl{linoo i z; T, (H.9)
where 7 is defined as the time spent by the (intrinsic) i*® Bohmian trajectory

inside the region d < 7 < l;, ie.
i / dtO[F (1) — O[5 — 7 (1)), (HL.10)
0

where © is the unit step function. The above expression can be rewritten as

M o b
7p = lim iz/ dt/ S[F — 7 (b)) dF. (H.11)
— Jo a

M—oco M -
1=

Using (3.16) and Eq. 7(t) can be defined in terms of weak values as:

t

. ) 1 A
FL(t) = 7:%(0) + — dt'Re |:F"~'(t’)<P:E>¢(t’)} s (H12)

m Jo

with 7(0) as the initial position of the trajectory in i-th experiment. Making
use of the quantum equilibrium condition [21] in Eq. [H.11] T get the well-know

expression )
[e%S) b

- / dt / (7, £)[2dF, (HL.13)
0 a

which is certainly an unperturbed property of the quantum system as there is
no contamination from the measuring apparatus. Notice that the experimental
validation of the above arguments requires the intrinsic Bohmian trajectories that
can be reconstructed from the intrinsic Bohmian velocity field understood as a

local-in-position weak value of the momentum [52]. Eq. gives a way to
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H.2 The quantum dwell time

compute the intrinsic value of dwell time from the local-in-position weak value
of the momentum operator, P but I can alternatively compute this time from a

definition of the dwell time operator D as follows,

TD:/ dt/ |¢rt|dr—/ dt/ ) | A | () dF (H.14)

Defining the operator A = fab |7™) (7], Eq. [H.14] can be written as

w= [ awolie) = (vo)| [ atio \ b)) (1.15)

where I have defined [ (t)) = U|[(0)). Now I define the tunnelling time operator
D= fooo dtUT AU which allows us to write Eq. as follows,

= (¥(0)| D (0)) (F.16)

Subsequently I can easily represent the above expression in terms of weak value
of the tunnelling time operator D with post-selected state |7) and the initial state

14)(0)) by a simple transformation as follows,

— / F(0) | ) (7 | D](0)) = / 07 |7, 0)2 D)y

! (H.17)

= lim —
M—>oo

Mz

=1

where I have used the quantum equilibrium expression

(7, 0)]* = limar oo &5 S0, 8(7 — 7(0)) in the last identity of Eq. [H.17 By
comparing Eq. and Eq. [H.I7] it is easy to obtain the relation between the
Bohmian intrinsic tunnelling time and the weak value of the tunnelling time as

follows,

T = o) (D)yo) (H.18)
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H.2 The quantum dwell time

which says that the Bohmian dwell time of the i-th particle is exactly equal to
the weak value of the dwell time operator associated to the i-th particle defined
as the one whose initial position is 7*(0). Once more, Eq. shows a deep
connection between weak values and intrinsic dynamic properties.

Certainly, there exist many Orthodox protocols to compute either the dwell
time or the tunneling [T4TH146]. For example, one can make use of a physical
clock to measure the time elapsed during the tunneling [143-146]. Larmor pre-
cession was precisely introduced to measure the time associated with scattering
events [144), [146]. Anyhow, what is essential here is that the scientific community
has been persistent in looking for observables of dynamical properties whose ex-
pectation value is free from any contamination from the (physically nonexistent)
measuring apparatus. This is exactly what intrinsic properties discussed in this

thesis are meant for.
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Abstract

We propose a protocol that allows to assess the precise correspondence between thought and
practical experiments, a critical point for addressing experimental clumsiness in a test of macro- or
micro-realism. Two-time generalized von Neumann measurements of properties A and I3 are
shown to obey the so-called no-signaling in time condition for initial states defined as an
incoherent sum of eigenstates of A. An experiment for witnessing the use of this type of
measurements in the laboratory is then devised by proving the existence of five conditions that
have to be fulfilled by any generalized von Neumann measurement. Ensuring the use of this type of
measurements and then testing the no-signaling in time condition for a range of system-meter
coupling strengths allows to test realism in a highly reproducible manner and to critically narrow
the so-called clumsiness loophole. The resulting protocol is applicable to general (not only
dichotomic) variables, and it is employed to show, both analytically for general systems and
numerically for a collection of harmonic oscillators, that quantum systems made of a large number
of uncorrelated particles are genuinely macrorealist, i.e., realistic with respect to all intensive
properties at any time.

1. Introduction

The concept of realism, viz, objects have well defined properties independently of whether they are
measured, has been an unquestioned pillar in the development of many physical theories. The advent of
quantum mechanics, however, shook up those foundations from the bottom up [1, 2]. Today, despite the
overwhelming success of the quantum theory to reproduce many types of experiments, the reality of
quantum objects is still a lively topic of debate [3, 4].

Based on the measurements of a property A of a quantum object at a spatial position and of another
property B of another quantum object (entangled with the first one) at another distant location, John Bell
derived an inequality for the probabilities of the measurements of A and 3 assuming spatial independence
between the two measurements [5—7]. Such spatial independence is named locality in the literature.
Inspired on Bell’s test of locality, Leggett and Garg [8] derived an inequality for the probabilities of the
consecutive measurement of properties A and 3 of a quantum object when temporal independence
between the two measurements is assumed. Such temporal independence is understood as the
non-invasiveness of the first measurement. In the literature, historically, the invasiveness of a measurement
has been linked to the definition of quantum reality. The orthodox eigenstate—eigenvalue link ensures that
whenever a quantum object is described by an eigensate of the property .4, it can be measured in a
non-invasive way, and thus, one can assume that the property A ‘was there’ before the measurement (and
hence that it is a ‘real’ property) [9-11].

© 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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Notwithstanding the recent surge of interest in the Leggett—Garg inequalities [12—15], controversy
remains on what precise reality is shown by its violation [16, 17]. The confusion arises because while
general definitions of locality or non-invasiveness are applicable to any ontic model, a general definition of
reality, valid for all ontic models, does not exist. For example, the reality in orthodox quantum mechanics is
different from the reality in Bohmian mechanics, and both are different from the reality invoked by
stochastic collapse theories. The controversy disappears when it is recognized that either Leggett—Garg
inequalities can be used only as a test of non-invasive measurability (valid for any ontic model), or as a test
of the reality of orthodox quantum mechanics [16, 17]. In this paper, as mostly assumed in the literature,
we will adopt this second viewpoint.

It is the goal of this work to address the so-called clumsiness loophole in a test of realism. Before we get
to that point, however, and to avoid any possible semantics conflict, let us carefully introduce the concept of
microrealism in contrast to the concept of macrorealism®.

1.1. Macrorealism versus microrealism
First of all let us notice that macrorealism cannot be proven true once and for all, viz, for any property at
any time. If a test of macrorealism aims at evaluating our notion of classical realism, then a quantum object
should satisfy the Leggett—Garg inequalities for any property at any time. However, even if an object were to
pass a number of tests for different properties at different times, one never knows whether another property
or lapse of time exists which the corresponding inequality would fail to pass. It is thus not a coincidence
that most of experimental works testing Leggett and Garg inequalities in the laboratory are focused on
ordinary quantum systems rather than on the type of ‘macroscopically distinct states’ invoked by Leggett
and Garg [19]. That is, existing tests only investigate a particular observable of interest A of a microscopic
object (expected to behave quantum mechanically) at a given time [12, 20, 21]. All this amounts to the
relaxation of what Leggett and Garg called macrorealism into a definition of realism that is based on the
so-called ‘eigenstate—eigenvalue link’, i.e., the assumption that a system only has a determinate value for a
particular observable when its state is an eigenstate of the corresponding operator [17, 22].

We define microrealism or realism with respect to a property A when the following two conditions are
fulfilled:

o (R1) Realism of an object with respect to a property A at a given time: given a property A associated to
an operator A which has available to it two or more distinct eigenvalues (and eigenstates), a realistic
object with respect to property A is, at a given time, in a definite one of these eigenstates.

o (R2) Discernibility between coherent and incoherent sums of eigenstates of A: it is possible, in principle,
to determine experimentally whether an object is a coherent sum of eigenstates of A or it is an
incoherent sum of eigenstates of A.

Condition (R1) defines the reality of a property of an object according to orthodox quantum mechanics.
Alternatively, (R2) forces the ontological definition of realism to be, in principle, empirically testable. The
correspondence between thought (i.e., in principle) and practical experiments is at the heart of the so-called
‘clumsiness loophole’” and will be the subject of discussion in section 1.2.

In this paper, we will use the term “incoherent sum of eigenstates” to refer to proper mixtures [59], i.e.,
those mixed states for which it can be given an ignorance interpretation and hence that obey a unitary
evolution®. In this respect, the need of condition (R2) can be justified as follows. One may think that by
simply comparing the outcome of an ensemble of projective measurements of .A, microrealism could be
already confirmed or ruled out. That is, the system is in an eigenstate of A if the same outcome is obtained
over and over again and it is in a superposition state of A otherwise. Unfortunately, in the presence of a
certain degree of uncertainty in the preparation of the system due to technological limitations, this
procedure might lead to erroneously concluding that property A of such system is non-microrealistic when
it is actually microrealistic. Another reason why condition (R2) is better formulated in terms of an
incoherent sum of eigenstates because we could be explicitly interested in testing the reality of a property of
a system that is naturally defined as a proper mixture of eigenstates of A.

Following the original idea of Leggett and Garg, and with the same spirit of Bell’s theorem without
inequalities [23, 24], two recent works by Kofler and Brukner [16] and independently by Li et al [25] have
proposed an alternative to the Leggett—Garg inequalities. Solely based on comparing the probability
distribution for a property at some time for the cases where previously a measurement has or has not been
performed, the conditions derived in references [16, 25], commonly called ‘no-signaling in time’ (NSIT),

* Note that the concept of microrealism was introduced much before the word macrorealism was coined by Leggett and Garg. See, for
example, the work by Maxwell [18].

> Note that this is in contrast to improper mixtures, for which the density operator arises from tracing out a certain number of degrees
of freedom and hence its evolution is generally nonunitary.
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can be violated according to quantum mechanical predictions. As it will be shown later, in this work we will
adopt the NSIT condition as a statistical realization of (R2).

1.2. The clumsiness loophole
Either tests of microrealism, based on the Leggett—Garg inequalities or on the NSIT condition, suffer from a
serious vulnerability. While Leggett—Garg inequalities and the NSIT conditions may serve well conceptually
to define (R2), they do not assert that it is impossible to affect a realistic object by a clumsy measurement.
Take a classical system for example. If the first measurement of A at time ¢ induces a strong enough
perturbation on the system, then both Leggett—Garg inequalities and the NSIT condition could be easily
violated and one would erroneously conclude that the classical system is not realistic. In other words, the
violation of Leggett—Garg inequalities or the NSIT condition can only be a proof that the property A of the
system is either (i) non-realistic or (ii) realistic but subjected to a clumsy measurement technique [26].

This problem can be summarized as the impossibility of assessing the fulfillment of the following
condition:

o (R3) Correspondence between thought (in principle) and practical (implemented) measuring apparatus: it
is possible to ensure that the measurement scheme that has been designed at the theoretical level to
test realism corresponds exactly to the experimental set-up that has been implemented in the
laboratory.

That is, an hypothesis such as (R3) can be easily falsified but cannot be proven true once and for all.
Even if the measurement set-up were to pass a number of tests for non-invasiveness, one never knows
whether some test exists which the measurement scheme would fail. This problem is known as the
‘clumsiness loophole’ [26], and such loophole can always be exploited to refute the implications of a
Leggett—Garg or NSIT test of realism.

There are experiments, however, where it is more difficult to accept that a bad-functioning apparatus
yielded erroneous conclusions. Leggett and Garg themselves [8] acknowledged the existence of such a
loophole, but maintained that clever measurement schemes might be designed to minimize it. A number of
works have thus addressed the clumsiness loophole by relying on the so called ideal negative measurements,
where information is obtained from the lack of response of a detector [12—15]. However, even this type of
measurements should pass a number of tests to address a possible lack of correspondence between thought
and practical experiment. Since the apparatuses for measuring properties A and B are located in the same
lab, as part of the same experimental setup, it is not obvious how to discard (uncontrolled) variables with
spurious effects on the measurement of A that may imply a non-negligible effect on the measurement of 5.
Thus the clumsiness loophole remains a topic of debate®.

1.3. The objective of this paper

In the above context, the best one can do is to address the clumsiness loophole by making the ‘violation’ of
(R3) so contrived as to be doubtful. Following this consideration, the notion of ‘adroit measurement’ has
been introduced in reference [26]. By witnessing first the use of adroit measurements in the laboratory
using projective measurements, the authors were able to conclude that a system violating the Leggett—Garg
inequalities was either (i) non-realistic or (ii) realistic but with the property that two adroit measurements
can somehow collude to cheat the experimentalists. In the same line of thought but using a different
strategy, in this work we propose a protocol that allows to address the precise correspondence between
thought and practical experiments and hence to cope with the clumsiness loophole.

In section 2 we will first frame the notion of ‘two-time generalized von Neumann’ measurements as a
sub-class of positive-operator valued measure. The von Neumann model, originally developed for projective
measurements, is generalized by introducing an ancilla that interacts with the system. The ancilla is then
strongly measured and provides more or less precise information of the system depending on the their
mutual coupling strength. According to recent literature [19, 32], we will define strong, semi-weak and weak
measurements depending on the system-meter coupling strength, while we will use the notion of
generalized von Neumann measurements to refer indistinctly to these three measurement regimes.

Generalized von Neumann measurements are not the focus of our work, but in section 3 will be proven
to be good candidates for testing microrealism as they fulfill the NSIT condition for quantum objects with
well defined properties. Therefore, an experiment for witnessing the use of this type of measurements in the

© In a Bell test of local realism, special relativity can be used to close the so-called ‘communication loophole’ between bad measur-
ing apparatus at both labs separated by a large distance [27-30]. One could still argue, however, the existence of two ‘conspiratorial
demons’ inside the measuring apparatus of such labs that, without communicating among them, have decided, in advance, what
type of output data will be provided to cheat the experimentalists [31]. It is generally accepted that such type of hypothesis are ‘too
conspiratorial’ to be taken seriously, so that recent tests of Bell inequalities are, for most of the scientific community, considered to be
free from this type of ‘loophole’. Unfortunately, no such clear defense exists for the clumsiness loophole affecting a test of realism.
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laboratory will be devised by proving the existence of five conditions that have to be fulfilled by these type
of measurements. Explaining the violation of NSIT under the fulfillment of these five conditions in terms of
experimental clumsiness, while possible, will be ruled out as wildly implausible (or too conspiratorial). The
clumsiness loophole will be thus critically narrowed, and only a considerably smaller conspiracy loophole
remains because the use of generalized von Neumann measurements can be highly promoted but not
completely ensured.

In section 4, we will address the question of whether microrealism can help to understand the
quantum-to-classical transition. We will define genuine macrorealism as the status of a quantum object that
is microrealistic with respect to all intensive (non-additive) properties at any time. In this respect, we will show
(both analytically and numerically for a case example) that weakly-correlated quantum systems with a large
number of particles satisty (R1) for any intensive property at any time. These results suggest the viewpoint
where what we call classical objects are, in fact, quantum objects that are realistic at the macroscopic level
with respect to some (not all) properties’. We will conclude in section 5.

2. Two-time generalized von Neumann weak measurements

Consider that we want to test the reality of an object with respect to a property A (associated to an operator
A). Consider also that the object of interest is a quantum many-body system described by a (non-separable)
pure state at time f,

(1) = cilt)]ai), (1)

where ¢;() = (a;]1)(t)), and |a;) are the eigenstates of the operator 4, i.e., A|a;) = a;|a;) with a; the
corresponding eigenvalues. Note that, without the loss of generality, we have assumed that the spectral
decomposition of A is non-degenerate and hence that it can be written using Dirac’s bra-ket
formalism.

The expectation value of .4 can be then evaluated by repeatedly reading-out the pointer position of the
corresponding measuring apparatus over a large ensemble of identically prepared experiments. In a
generalized von Neumann measurement [33—35], each experiment in the ensemble can be described as
follows. The read-out of the property A is obtained through the pointer position y4(#) of the measuring
apparatus, which we consider to be initially described by the state [¢(1)) = [ Q,(1)]y)dy. A
pre-measurement first entangles the ancilla and the system and yields:

() = > c()a) @ / Qo (D) dy, )

where €, () is the displaced wavefunction of the ancilla by an amount ;. Subsequently, the read-out
process consists on strongly measuring the ancilla, which provides a definite value of the meter position
y.4.% This step is described by the action of the non-unitary operator Is® ]f"y , on the wavefunction in
equation (2), where I is the many-body identity operator and ]f”y . = |74) (74| causes the collapse of the
ancilla wavefunction into a given read-out value y 4, i.e.:

|W () = Zci(t)\@ ® Qy—a,()ya) (3)

According to equation (3), the above (two-step) measurement process can be effectively described in the
subspace of the system by introducing the (non-normalized) state:

[0a() =D Qo (B)ci(B)]as), (4)

where the ability of the generalized von Neumann measurement to provide the information y, without
collapsing the system state is highlighted. To avoid unnecessary complexity, hereafter we will refer to both
the ancilla interacting with the system and the pointer measuring the ancilla as the meter or measuring
apparatus.

7 For example, the center-of-mass of the Sun follows a classical trajectory, but this well-defined (center-of-mass) position is fully com-
patible with a pure quantum nuclear fusion of hydrogen nuclei into helium inside it. In this respect, what we call genuine macrorealism
could be also referred to as anthropomorphic macrorealism.

8 For simplicity, we assume along the paper that the variables y and a; are both microscopic variables. If this were not the case, then an
irrelevant multiplicative (macroscopic) factor would be needed.
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2.1. One-time probabilities
Following Born’s rule, the probability of finding a value y 4 of the pointer position at time t can be
equivalently expressed either as P(y4) = (W 4(t)|W 4(t)) or as P(y4) = (Ya()|ta(1)):

P(ya) = |9, a®)[ci(t)]. (5)

At this point, a degree of mixedness on the definition of the initial state in equation (1) can be easily
introduced through a (proper) density matrix,

ﬁ = ZPSW)SMQZ)S‘) (6)

where p, is the fraction of the ensemble that is represented by the pure state [¢,). Each state [¢,)
corresponds to one possible s-definition of the initial state |¢)) in equation (1). Note that we are considering
proper mixtures of pure states that are only due to our ignorance about the initial conditions.

A mixed initial state can be thus accounted for in the probability distribution of equation (5) by simply
summing over p, as:

Pya) = D> psPilya), (7)

where we have identified Pi(y.4) = >;|Qy ,—a, (1) [*|cS(£)|* and &(¢) = (a;]1)s). The above result tells us that,
for generalized von Neumann measurements, one time probabilities do always depend on the measuring
apparatus. In particular, the probability distribution in equation (7) depends on the wavefunction of the
measuring apparatus, and it is so even if the system happens to be defined as an incoherent sum of
eigenstates of A. In such a case, [¢),) = |a;) in equation (6) and hence Py(y4) = |y, (¢)|?, which still
depends on the meter wavefunction.

The unavoidable dependence of the probability distribution in equation (7) on the measuring apparatus
is a trivial but significant result that can be used to define a first condition to be fulfilled by any generalized
von Neumann measurement, i.e.:

Cl: iP()/A) #0 Vi, (8)
doy

where we have introduced o 4 as the inverse of the system-meter coupling strength or, equivalently, the
support (or dispersion) of the meter wavefunction €2, _, (). Note that 7 4 is directly related to the
resolution of the measuring apparatus [36—39]. In reference [14], for example, the coupling of the system to
an auxiliary qubit essentially provides the measurement with an adjustable strength o 4 that can be
experimentally modified. While not necessary, the meter wavefunction could be approximated to have a
Gaussian form with a standard deviation o 4 [40—43]. This type of meter wavepackets are known as
Gaussian (Kraus) operators [36, 44].

Hereafter we will distinguish between three measurements regimes, viz, strong, weak and semi-weak.
For that, we define the effective dimension of the system with respect to a property A as degr:= max({AA}),
where {AA} is a list of distances between occupied eigenvalues of A, and thus max({AA}) refers to the
distance between the two eigenvalues that correspond to the highest and lowest occupied eigenstates of A.
Note that the effective dimension of the system is only zero, i.e., der = 0, for microrealistic properties of
pure states as only one eigenstate of A is occupied. Either for incoherent sums of eigenstates or coherent
states der # 0. Accordingly, we can define the following three measurement regimes:

e Projective (or strong) measurement: it is the regime where 04 < der. In this regime each output value
y.4 is linked to a single eigenvalue a;, and hence it is a precise measurement.
e Semi-weak measurements: it is the regime where o 4 ~ dg. In this regime each output values y 4 can
be linked to a number of eigenvalues a; of A, and hence it is an imprecise measurement.
e Weak measurement: it is the regime where o 4 > dg. In this regime each output values y 4 is linked to
all occupied eigenvalues a; of A, and hence it is the least precise measurement.
Interestingly, we will see that certain relevant quantities that involve two-time measurements become
independent of o 4 in the weak measurement regime. Hereafter, we will use the acronym WM to refer only
to the weak measurement regime defined above.

2.2. One-time expectation values
In order to ensure that the probability distribution in equation (7) provides the correct expectation value of
A at any time ¢, i.e.:
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(ra®) =Y _p, / dyayaP(ya) =Y _ps(ilAls) = (A®), 9)
it is enough to make the pointer wavefunction to be well normalized, viz, | dy|Q,,|* = 1, and obeying:

/ dJ’AJ’A|QyA—a,-\2 = 4a Vt. (10)

This property is again consistent with the idea that it is more probable that an actual eigenvalue of A lies
close to the measured value y 4 and that the probability to be the actual value then decreases smoothly by
growth of [y4 — a;.

Note that while each outcome probability distribution Ps(y4) depends on the meter wavefunction
through |2, ,_,,|?, the expectation value in equation (9) does not. Therefore, provided that the condition in
equation (10) is fulfilled, one should always obtain the same expectation value in equation (9)
independently of the specific system-meter interaction strength o 4, i.e.:

C2: d (ya(t)) =0, Vr (11)

dog

This result should be understood as a second, unarguable, condition to be fulfilled by a generalized von
Neumann measurement.

2.3. Two-time (joint) probabilities

A subsequent measurement of a second property B, associated to the operator B = 3", b;|b;) (b|, with b;
and |b;) the corresponding eigenvalues and eigenstates, can be easily introduced in the above scheme by
simply reading-out the pointer position of a second measuring apparatus at time 7 > t. For that, we first let
the state in equation (4) to evolve freely from ¢ until 7. Using the identity operator I = 3~ /|b;) (bj|, the state
of the system right before the second pre-measurement can be written as:

[ha(r)) = ZQyA—u,-(t)ci(t)ci,j(7)|bj>) (12)
bj

where we have defined the coefficients ¢;;(7) = (bj| U, |a;), and U, = exp(ifr /1) is the (free)
time-evolution operator of the system between f and 7. We then let the system and the measuring apparatus
to get entangled, so that at time 7 the full system-meter wavefunction reads:

W) = 0wl © [ ) by (13)
bf
Reading-out the pointer position yz at time 7 yields:
W 45(7)) = ZQyA_u,-(t)ci(t)ci,j(T)\bj> ® Qg1 (T)|yB)- (14)
bf

Again, the state of the system after the two-time measurement process can be effectively written in the
Hilbert space of the system as:

[WaB(T) =D Q4 (1), 0 (Dci(t)cij(7)|b), (15)
irj
and therefore, according to Born’s law, the joint probability of measuring y 4 at time ¢ and y at time 7 can
be written either as P(y.4, y5) = (U 45(7)|V 45(7)) oras P(y 4, y8) = (Yap(T)|Yas(T)), i.e.:

P(ya,y8) = > _|Q 1, (D)2 CLy (1, 0) L34 (9, (1), (16)
j i,i
where we have defined the coefficients C{)i, = (t)C;)j(T)Ci)j(T)Ci(t), and a function of the first meter
wavefunction £;; = Q}’j oy ()82 g, ().

A (proper) mixedness can be added to the result in equation (16) through the density matrix in
equation (6). This yields:

P(yasys) = 3 Py Qs (DY Ch (6 7) L3 (2, (1), (17)

J ii!

6
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where now CJ5 = ¢ (£)c}(7)es; ()c5 (1)

The explicit dependence of equation (17) on the wavefunction of the first measuring apparatus tells us
that the joint probability of subsequently reading-out the values y 4 and yz will be, in most general
conditions, a function of the system-meter coupling strength of the first measurement. As it will be evident
later, the fact that equation (17) depends on the second measuring apparatus is irrelevant for the purposes
of this work.

Note that, when the state of the system prior to the measurement of A can be defined as an incoherent
sum of eigenstates of A, equation (17) reduces to (see appendix A),

Plyays) = > pil2a (DD | 4(M Pl (18)
s j

where ¢(7) = (bj| U.|as). Equation (18) can be equivalently written as,

P(ya,y8) = Y _psPya)Pi(ys), (19)

where we have identified P(y.4) = |, ,—4,(1)|* and Py(yz) = Zj\QyB,bj(T)\2|c;(T)|2. Therefore, even if the
two-time measurement process becomes two independent (single-time) measurement processes, the result
in equation (19) still depends on the wavefunction of the first measuring apparatus through P(y 4). This
can be expressed more succinctly as:

d
C3: d—P(yA,yB) #0, (20)
o

which represents a third condition for witnessing the use of generalized von Neumann measurements in the
laboratory.

As the reader may have noticed, there is only one escape to the condition in equation (20), viz, that the
classical distribution of pure states p, in equation (6) is such that the sum in equations (17) or (19) leads to
%P(y 4> yB) = 0. This situation, however, could be understood only under a ‘conspiratorial action. To see
that, note that the classical distribution p, that makes %P(y 4, y8) = 0 depends on the number of different
o 4 considered to experimentally evaluate equation (20). That is, the violation of equation (20) requires the
design of p, as well as the number of pure states involved in the initial mixed state of equation (6) to be in
accordance with the specific experimental receipt that is later used to evaluate the derivative d/do 4.

Let us finally note that there is some confusion in the literature with respect to the WM regime. It is not
uncommon to find works where it is stated that a WM is one for which it is always possible to extract
information of a system and at the same time reduce the backaction on the system to an arbitrary small
amount by adjusting the strength of the coupling between system and measuring apparatus. Such a
conclusion is wrong. Even the so-called ‘ideal negative result measurements’ [12—15] may not change the
properties of objects themselves, but they alter their subsequent time evolution due to an instant (nonlocal)
change of the quantum wave function, thus violating the result in equation (19) [16]. This consideration
will bring us later in section 3.2 to introduce one of the main results of our work: even if the quantum
backaction of the measuring apparatus cannot be eliminated, and hence two-time probabilities depend on
0 4, this backaction can be minimized to the level where marginal probabilities are independent of the
coupling strength between system and measuring apparatus.

2.4. Two-time expectation values

Starting from the general result in equation (17) it is easy to evaluate the expectation value of the two-time
correlation function (y4(t)ys(7)) = [[ dya dysyaysP(ya,ys) as:

i’

0ays(r)) = e [ dreye SIS CE 0T [ drayalie @, (21)
; j

Using the center-of-mass property of the meter wavefunction, f dyByB\QyB,bj(T) |? = bj, the above
equation reduces to:

ays() = p> by Cht7) / dyayaliy (Q, (1)) (22)
s j i,/

In general equation (22) depends on the wavefunction of the measuring apparatus of the property A.
However, the result in equation (22) can be simplified when the initial state is an incoherent sum of
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eigenstates of A. Specifically, the joint probability can be then written as in equation (19) and consequently
the two-time correlation function in equation (22) reduces to:

0ats() = 3 pe [ dranina) [ oy = Ypded A0l (Bl 23

where we have introduced the definition of the Heisenberg operators, B(r) = UIB U, and A(r) = A.
Therefore, for incoherent sums of eigenstates of A, two-time expectation values do not depend on the
measuring apparatus of the first measurement of A.

Note that, except for initial pure states, the equality in equation (23) cannot be assessed experimentally
because the terms (t,|A(£)|1),) and (1| B(7)|1),) cannot be practically evaluated (since p, expresses our
ignorance about the initial state).

3. Testing realism with generalized von Neumann measurements

We now want to show that the two-time generalized von Neumann measurements described above are good
candidates for testing microrealism. As it will be shown in section 3.1, two-time generalized von Neumann
measurements fulfill the so-called NSIT condition for systems with a property A fulfilling (R1). Therefore
testing the NSIT condition using two-time generalized von Neumann measurements can be used to
accomplish (R2) and hence to design a thought experiment to distinguish between coherent and incoherent
sum of eigenstates of a property A. Later in section 3.2 we will conceive a protocol that allows to address
(R3) by witnessing the proper implementation of generalized von Neumann measurements in the lab.

3.1. No-signalingin time

To see that generalized von Neumann measurements fulfill the NSIT condition for realistic properties we
simply need to evaluate the marginal probability of the joint probability P(y 4, y5) for mixed states of the
form p = )" ps|as)(as|. Using the joint probability in equation (19) we can already write,

NSIT: [ dpaPluam) = [ drad pPyPdye) = S ppye) = PO, (24)

where we have used [ dy4Ps(y4) = 1. For initial states described by an incoherent sum of eigenstates of A,
we have thus trivially recovered the NSIT condition of references [16, 25, 45]. On the contrary, for initial
states where [1)s) = >_.ci(f)|a;) are not eigenstates of A, equation (17) does not simplify to equation (19)
and thus the NSIT condition in equation (24) cannot be reached except for a very particular system-meter
coupling regime (as it will be shown below). Therefore two-time generalized von Neumann measurements
in combination with the NSIT condition are hereby proven to be ‘good’ measurements for testing the
realism of a quantum object with respect to a property .4 and hence can be thought of as a realization of
(R2).

3.2. The weak measurement regime: addressing (R3)

If one could witness the proper implementation of generalized von Neumann measurements in the
laboratory, and thus ensure (R3), then the fulfillment of the NSIT condition in equation (24) would readily
imply that the property A is microrealistic (and that it is non-microrealistic otherwise). If, on the contrary,
we cannot assert the use of generalized von Neumann measurements in the laboratory, then, based on the
violation of equation (24) one can only conclude that the property A of a system is either (i)
non-microrealistic or (ii) microrealistic but subjected to a measurement technique that happens to be
invasive.

We thus need to conceive an experiment that allows us to enforce the correspondence between thought
and practical experiments. In other words, we need to make sure that the implementation of the two-time
generalized von Neumann measurements in the lab has been done correctly. In this respect, in section 2 we
have already derived three preliminary conditions (C1)—(C3), viz equations (8), (11) and (20), that have to
be fulfilled by any generalized von Neumann measurement. Unfortunately, these conditions have been
proven to be necessary but not sufficient for an experimental setup to be representative of a two-time
generalized von Neumann measurement. In order to make the validation of the use of this type of
measurements in the laboratory more convincing and hence minimize a hypothetical experimental
clumsiness, we here introduce two more necessary conditions. These two additional conditions will be
based on the WM regime defined in section 2.1, under which two-time correlation functions and marginal
probabilities will be proven to be independent of the system-meter coupling strength of first measurement
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apparatus. As it will be evident later, the existence of the WM regime will also facilitate the reproducibility
of tests of realism based on generalized von Neumann measurements.

In the WM regime, where 04 > d.f, the meter wavefunction of the measuring apparatus of .4 can be
approximated using a Taylor series up to first order around y 4 and thus the last addend in equation (17)
can be written as:

- ‘,s o, (1) o8y, (1)
Cr(t,T)Liy (Qy, (1) = Cy (1, 7) (Qm(t) - 82/2 1> ( Q,, (1) - # 1) : (25)

Introducing the above expansion in equation (17) and integrating over y 4, the marginal of the joint
probability P(y 4, y5) can be written as:

Q 2
[ rapar) = ORI Y <1+aﬂai / dyA(%) ) 26)

where we have used the normalization condition | dy.4|€,,|* = 1 and also that (integrating by parts)
[ dyaQ,, 0(;2, il Q, P17 - [ dy A%Qy . = 0 for well normalized wavefunctions that fulfill
192 ,]* = 0 when y.4 — —00, c0.

Next we evaluate the integral in equation (26) by parts, i.e.:

o9, ()\ 99,1 . 92, (1)
[ on(F52) - BB e - [ angmBa, 0 @

The first term on the r.h.s of Equation (27) is zero because €2, , — 0 when y4 — —o0, 00. The second term
in Equation (27) can also be equated to zero when multiplied by aya; and the corresponding coefficients
C;, if we notice that in Equation (25) we already considered terms containing higher order derivatives to be
neghglble under the WM regime. We then conclude that:

/ dyaP(yays) = > ped Qi (2D _Cli(t,7) = P(yp), (28)
s j i’

where we have used that ) I,C{f,(t, T) = |c}?(7')|2 and that P(yg) = > pPs(yg) = Zspszj|Q}’B—bj(T)|2
(P

The result in (28) has a clear cut meaning. In the WM regime where o4 >> d.i the NSIT condition in
(24) is fulfilled either for initial states described by a coherent or an incoherent sum of eigenstates of A. In
other words:

C4: /dyAP(}/A,)/B) = P(yp) Voa> deg (29)

Note that the above result can be equivalently stated as d [ dy4P(y4,yp)/do4 = 0 for any 0.4 > degp, as
P(yg) is independent of 0 4. That is, in the WM regime the marginal probability of the joint probability
describing a two-time generalized von Neumann measurement is independent of the system-meter coupling
of the first measurement.

The WM regime has also implications on the two-time correlation function (y4(#)ys(7)) of
equation (22). Specifically, it can be shown (see appendix B) that two-time correlation functions are also
independent of the coupling parameter o4 when this parameter is much larger than the effective dimension
of the system, i.e.:

d d A
C5: o ratys(r) = ijpsHRews(t)\B(r)A(t>|ws(t>> =0 Vou> de, (30)

where we have used again the definition of the Heisenberg operators, B(r) = UiBUT andA(r) = A

Note that since ds is not known in practice, assessing the WM regime (by evaluating equations (29) and
(30)) requires the design of a number of measurement set-ups with different system-meter coupling
strengths o 4. The larger the number of measurement set-ups that are compared one against each other the
more trustworthy the assessment of the WM regime will be. Put differently, the probability that (C4) and
(C5) are fulfilled simultaneously by a number of measurement apparatuses different from the generalized
von Neumann measurements described here is expected to decrease with the number of experimental
set-ups used to validate these two conditions.




10P Publishing

New J. Phys. 22 (2020) 073047 D Pandey et al

3.3. Proposal for a test of realism
We are now in a position to propose a test of microrealism. This test is based on the following two steps:

(S1) Make sure that the measurement of .4 at time  is carried out using a generalized von Neumann
measurement. This can be done by assessing conditions (C1)—(C5).

(S2) Test the NSIT condition for a range of system-meter couplings (0 < 04 < 00). A property A is
realistic if the NSIT condition is satisfied for all o 4 and non-realistic otherwise.

Note that for a system consisting of a coherent sum of eigenstates of A at time ¢, the NSIT condition is
tulfilled only for a certain range of o 4, which defines the WM regime. Therefore, whenever the NSIT
condition is violated, having proven the validity of conditions (C1)—(C5) will be the only guarantee that the
actual experimental set-up represents a generalized von Neumann measurement. Alternatively, for a system
consisting of an incoherent sum of eigenstates at time f, the NSIT condition is fulfilled independently of 7 4,
which means that any generalized von Neumann measurement is, by construction, carried out in the WM
regime.

Also important is the fact that the proposed test in (S1) and (S2) is highly reproducible. Reproducibility
is certainly a delicate issue in quantum mechanics. Measuring an observable A at time t and correlating the
outcome, y 4(t), with the measured value of 3, y(7), at a later time 7 > t, represents an unequivocal way of
representing the dynamics of classical systems in terms of joint probabilities, i.e.,

P(y4,yB) > system dynamics. In quantum mechanics, however, the unavoidable backaction of the
measurement process [46, 47] precludes such a clear-cut connection. Even using the best technological
means, different measurement schemes, can yield different probability distributions, i.e.,

P(y4,yB) <+ system + apparatus dynamics. Potentially, this property of quantum mechanics could result in
contradictions among different tests of realism that are based on different experimental set-ups. In this
respect, testing the NSIT condition for a previously validated, through conditions (C1)—(C5), experimental
set-up makes the results of different experiments easy to compare one to each other.

Let us note that the use of two operators A and B that commute with the Hamiltonian has to be
excluded from our test. This is because for this type of properties the time order of the measurements is
irrelevant and the two-time measurements can be understood as a single measurement at a particular time
with two different ancillas. In this circumstance, it is impossible to discern between a coherent and
incoherent sum of states by simply analysing the statistics of a single measurement, and hence our test
would not work. However, since we are only interested in knowing the nature of a property with respect to
the initial state (prior to the first measurement), it is enough to ensure that the second measured property B
does not commute with the Hamiltonian. Therefore, the property B must be always chosen such that its
corresponding operator B does not commute with A. This makes our test robust against any type of
property.

Let us finally mention that the test defined by steps (S1) and (S2) is based on the NSIT condition and
hence it allows to witness the nature of very general type of properties, i.e., not only of (bounded)
dichotomic variables as it happens in tests based on the Leggett—Garg inequalities.

3.4. Collusion loopholes

The reader can still mention an unavoidable loophole the existence of which is sustained on the ability of,
for example, classical simulations to reproduce any quantum measurement statistics. Certainly, classical
simulations of quantum measurement statistics can be always thought of as alternative descriptions of
Leggett—Garg’s (but also Bell’s) inequalities that are simply possible at the conceptual level. Following this
line of thought, a sufficiently adroit ‘demon’ could always introduce a classical computer within our
measuring instruments to falsify the output statistics. This type of loophole is indeed inherent to the
consideration of any no-go theorem from the conceptual point of view, and hence it could invalidate not
only any existing test of micro- or macrorealism (e.g., [12, 48] or [49]), but achingly, also any test of local
realism reported to date (e.g., [50, 51], or [52]). In the practical context, however, while possible, loopholes
based on, e.g., superluminal causes, super-determinism or acyclic retro-causation are commonly ruled out
as wildly implausible. Examples of thorough philosophical accounts on conspiratorial loopholes can be
found in references [31, 53, 54].

But, moreover, let us notice that one of the main virtues of the proposed protocol, (S1) and (S2), is that,
due to its intrinsic (possibly collaborative) nature involving a number of different experimental set-ups for
assessing the WM regime, it can be also utilized to unveil a hypothetical conspiracy. Testing the WM
conditions (C4) and (C5) as well as conditions (C1)—(C3) should allow us to confine the type of
measurements used in the lab to the class of generalized von Neumann measurements described in
section 2.

10



10P Publishing

New J. Phys. 22 (2020) 073047 D Pandey et al

4. When to expect genuine macrorealism?

The protocol described in (S1) and (S2) only assesses realism for a quantum object at a given time ¢ and
with respect to a property A. As we indicated in the introduction, in a test of macrorealism where our
classical intuition about physical objects is at stake, the validity of the NSIT condition in equation (24)
should be proven for all observables at any time. In this respect, it is well-known that the
Bell-Kochen—Specker theorems [7, 55] puts important restrictions on how such macrorealism can be made
compatible with quantum mechanics. Here we argue that what Leggett and Garg called macrorealism
should be expected only with respect to observables representing intensive (non-additive) properties of
systems with a (very) large number of particles. More precisely, we define genuine macrorealism as follows:

e A quantum object is genuinely macrorealistic when it is microrealistic with respect to all intensive

(non-additive) properties at any time.

For pure states, the concept of genuine macrorealism can be understood as follows. Let us consider an

intensive property .4 associated to the N-particle operator:

LN
A=) A (31)
=1
where Ac =[® - @4 ® - - ® I, and the index ¢ denotes the degree of freedom that the single-particle
operator, d, acts on. We then define the states |a; , ..., a;,) = |a;,) ® - - - ® |a;,) to be the eigenstates of A,
ie, Alai,...,aiy) = ailai,...,ai,), where
LN
G =) i (32)
=1

are the corresponding eigenvalues, with ala;.) = a;|a;, ).

Given the above definition, we now want to determine in what circumstances the general state in
equation (1) becomes an eigenstate of the intensive operator A in equation (31), i.e.,
Al (1) = (A(1))](1). For that, we will look for the identity (A*(f)) = (A(f))? which is satisfied only for
quantum systems whose property A is at any time ¢ coincident with the expectation value (A(f)). At this
point we will consider only pure many-particle states, as the addition of a classical degree of uncertainty in
the form of a mixed state will only require a post-processing (without any conceptual implication).

We start by writing the expectation value (A(z)) as:

N
Am) = Y ailey, (O] = Z > e v (O ai, (33)

150l il,...,iNg:l

where we have introduced the coefficients ¢;,_;, () = (a;,| ® - - - @ (aiy [¢(¢)) and we have used that

<ai1, e ,a,—N |A§‘ai/1, e ,a,—;\]> = aié(sil)ill e 61‘N>i;\1' ThuS,
(AW = 5 Z Z i, iy (D[, (D) aiaz - (34)
..... 1N 1N
Tl
On the other hand, by writing
] N N N
- - SR
A= AT+ D A4, |, (35)
=1 =1 vie

we can easily evaluate (A°(f)) as

<A2(t)> = % Z Z |C11, ,1N(t)|2a + Z ZZ ‘Cll, ,1N(t)| i i, | - (36)

i]5e0iN E=1 i 0N §=1 VFEE

To make the comparison between equations (34) and (36) simpler, we rewrite the above expression as:

(A%(1)) = N Z Z\Czl, i OPler g O aiai,, (37)

11, ,zN 1N
i
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where we have introduced the identity Z | Cr, (t) |> = 1. The dispersion of the intensive property A,

.....

defined as Var(A(t)) = (A(t)> (Az(t)>, can be ﬁnally written as:

Var(A(t)) = Z Z [Civsin OP ez (O Pai (az —a;,) (38)

which is in general different from zero.

4.1. Genuine macrorealistic many-particle systems

Examples of genuine macrorealism, far from being atypical, can be common for large systems made of
weakly-correlated particles. Assume that a many particle quantum system can be well approximated by a
separable state:

V(1) = [i(1) @ - - @ |Pn (D)), (39)

where [1),(1)) are arbitrary time-dependent single-particle states. Introducing equation (39) into
equation (34) one gets:

N

N N
AW) = 3 3 o) + 153 (@) 3 {a (1) (40)

=1 =1 VAL

,,,,,

for any £. On the other hand, introducing equation (39) into equation (36) we get:

where (a¢(1)) = 3, \c,ﬁ(t)|2alf and we have used that ¢;,, (1) = ¢;, (£) - - - ¢y, (¢) and that 3~ |¢; ()| =

N

N N
Z (a2 (1) + Z (ag()>  (a, (1), (41)

=1 =1 vEE

(A%(1)) =

Z[= |

where (af(t)) = Zi\cié(t)|2ai. We can now write Var(A(t)) = <A(t)2> - (A(t))z using equations (40) and

(41) as:
N

Var(A(t)) = Z (ag(t)) — (ac(1))?) sz Var(ag(t)). (42)

In view of equation (42), the identity (A*) = (A)? is not valid in general because

Var(ag(t)) = <a§(t)> — (ae(1))* # 0, which means that the state in (39) is not an eigenstate of the operator
A in equation (31). However, as N — oo, Var(A(t)) — 0 because, even though equation (42) involves N
finite addends, it is divided by N?. Then, the many particle quantum state in equation (39) meets the
condition (A*) = (A)?, and hence we conclude that A|t) (1)) = (A)])(#)) in the limit N — oo.

This result means that, even if individually [1),(#)) are not eigenstates of 4, in the limit N — oo the many
particle quantum state in (39) is an eigenstate of A. We emphasize that the reason why the many-particle
state in (39) becomes an eigenstate of A is not because of the specific nature of the single particle states
|¢ (1)) or the operator d, but because of the limit N — oo that we have taken into account to evaluate
equation (42). Note that this result might have been explained also using the central limit theorem. For the
type of state in equation (39) we know that there is no correlation between the distribution of
single-particle eigenvalues {a¢} and {a,} that define the distribution of many-particle eigenvalues {a} in
(32). Then, {a} can be understood as a normalized sum of independent random variables whose
distribution tends towards a normal distribution with a standard deviation given in (42) that goes to zero
when N — oo. This is true for any initial probability distributions of {a¢} and {a, }, as far as they are
uncorrelated. Thus, according to our previous definitions, we could argue that the many particle quantum
state in (39) satisfies genuine macrorealism. This is in contrast with the quantumness of each individual
degree of freedom of the quantum system itself, which, being preserved, would prevent us to talk about
realism at the microscopic level.

This result can be understood in the context of the quantum-to-classical transition, as it indicates that
what we call classical objects are in fact quantum objects with many degrees of freedom that, obeying the
laws of quantum mechanics at the microscopic level, do not show quantum uncertainty for non-additive
properties. According to the Ehrenfest theorem, an intensive property A that fulfills Var(A(¢)) = 0 at any
time ¢ seems to imply that its dynamics is compatible with Newton dynamics. This conclusion, which is in
accordance with previous works [56—58], can be understood from a pure operational point of view and
hence it does not depend on the different interpretations of quantum mechanics.
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Finally, let us note that the above exercise based on the evaluation of Var(.A), while valid for pure states,
cannot be used in practice for general mixed states. Alternatively, the test in (S1) and (S2), based on the
NSIT condition and the use of generalized von Neumann measurements, should be applied.

4.2. Non-macrorealistic many-particle systems

We now seek for quantum systems with a large number N of particles that do not satisfy genuine
macrorealism because of the strong correlations among different particles. One can think, for example, of a
non-separable quantum state with probabilities |¢;,, _;, (1)|* = 0.5 when a; = o, V¢ and |¢;,, i, (H)[* = 0.5
when a¢ = 3, V€. The resulting state,

1B(1)) = V0.5|a,...,a) +V0.5/8,...,5), (43)

is the superposition of two states with different values of the property linked to the single-particle operator
4, so that the mean value of A in (33) can be written as:

N N

(A) = Z F e =t h) (44)

which tells that there is a 50% probability of measuring all N particles with a well-defined value « of the
property a, and another 50% probability of measuring all N particles with a well-defined value 3 of the
property a. Introducing the state in equation (43) into (36) we also get:

(A%(0) = NZZ + ZNZZﬂZ S0+ ). (45)

We can now write Var(A(t)) = (A(£))2 — (A2(t)) = (o — B)?/4. Clearly, (A°(1)) # (A(1))? even when
N — oo. This means that the state defined in (43) will never be an eigensate of A, and hence the interference
effects between the state |, . .., «) and the state |3, . .., 8) will prevail at the macroscopic (N — oo) level’.

4.3. Numerical example: center-of-mass position of N uncoupled harmonic oscillators

To illustrate the proposed test of microrealism, we consider a simple numerical experiment. For a simple
analytical example, the reader can take a look at the results in appendix C for a spin qubit. Alternatively,
here we will evaluate the autocorrelation function of the center-of-mass position operator, X = Z?:l X¢/N
(where the index ¢ denotes the degree of freedom that the single-particle operator X¢ acts on for a number
N of uncoupled one-dimensional double-well oscillator (see figure 1). Hereafter we use atomic units,

h = m = 1, and define the single-particle oscillator Hamiltonian as:

N
H= Z P{/2 + wiXZ/2 + cosh™*(aXe), (46)
=1

where Pg is the £th momentum operator and the natural frequency of the underlying harmonic oscillator is
wo = 4.3 x 1072 a.u. The characteristic width of the barrier between the two wells is set to o« = 5 x 1072
a.u and we choose t = 0 such that the only relevant time in the discussion is 7 > 0.

We consider an initial pure state which consists of all the oscillators being prepared in the ground state,
Le, |¥(t) = Wzig)(t)) @@ [WE (1)), where |’(/)i(g)(t)> represents the ground state of the i-th harmonic
oscillator. For pure states, assessing the NSIT condition is equivalent to checking equation (23), i.e.:

NSIT < (ya(t)ys(7)) = (ya(8)){ys(7)) V purestate. (47)

Note that for initial mixed states the equivalence in equation (47) cannot be attained due to the (classical)
ignorance associated to the result in equation (23), i.., (ya4(£)ys(7)) = 32 ps (s Alths) (5| Bleps) #
(y4(1)){yp(7)). This explains why, for general mixed states, a test of realism must be based on the NSIT
condition in equation (24) instead.

By assuming at this point a Gaussian-type meter wavefunction of the form
Qo = ﬁ exp [—(y — 4j)*/40?], and taking the non-interacting limit of equation (22) we obtain (see
appendix D):

? A relevant question is which type of state, equation (39) or equation (43), is more common in nature as N — oo. Although such dis-
cussion is far from the scope of this work, we believe that entropic arguments can be invoked to justify that genuine macrorealism is
more and more common as the number of particles grows. By far, the state (43) requires much more order than the state in (39).

13



10P Publishing

New J. Phys. 22 (2020) 073047 D Pandey et al

X X
min max

Figure 1. Schematic picture of the double-well oscillator. The potential energy curve is plot in solid black line. The initial state of
the system (area in green) is taken to be the ground state of the system. Two main frequencies are involved in the dynamics of the
system, viz, wo and 1.28wy, related respectively with the inter-well and intra-well dynamics. The relevant upper and lower bounds
of the spectrum of X are denoted DY Xmax and X, respectively, and the exponential function defined in equation (49b) is
depicted for a particular value of oy in dashed blue line.

Daltlys(r)) = 35 &8 (o + (N = D(AW)) + e (48)
bj

where we have defined the coefficients:

By, iy = (aj,,...,aj \B(T)\ail, ce iy ) (49a)

N

SVa - a,)

* v alV - a]u

N =C i exp | —————"| ¢
g g 2 N2

J1reN SUAN

(49b)
Note that in the limit of N — oo equation (48) trivially reduces to (y4(¢)){(y5(7)). The result in

equation (48) generally depends on the system-meter coupling o 4, and only in the limit where the
measuring apparatus for measuring the property A has a dispersion o4 much larger than the effective
dimension of the system deg:= Zle max({AA,})/N, where max({AA,}) is the distance between the
highest and lowest occupied eigenstates of the spectrum of A,, then equation (48) reduces to:

WM < (ya(t)ys(r)) = Re (<¢(t)\B(T)A(t)\w(t)>) V pure state. (50)

The dynamics of a single oscillator for different values of ox is shown in figure 2. For a projective
measurement, i.e., ox — 0, the dynamics presents a central resonance peak at wy (in dashed red line). This
is due to the strong perturbation induced by the projective measurement at r = 0, which yields a
subsequent dynamics characterized by a large amplitude (over-the-barrier) oscillation. Contrarily, in the
limit ox — oo the measurement produces only a small perturbation to the initial state and yields an ensuing
dynamics confined in the wells with a characteristic frequency w = 1.28wy (in dashed blue line). In between
these two regimes, an infinite number of dynamics can be inferred depending on the system-meter coupling
ox (in black solid lines).

To conclude whether the position of a single oscillator is microrealistic in a reproducible manner, we
need to ensure that the measurement of X is carried out using a generalized von Neumann measurement,
and then compare the expectation values (y(0)y(7)) and (y(0))(y(7)). Steps (S1) and (S2), or equivalently
equations (47) and (50), can be assessed in a compact way through the quantity:

d{yx(0)yx(1))

A(ox,N) = dox

dO’X - AQC (51)
where Aqc = (yx(0)yy (7)) — (y4(0))(yy(7)). This can be seen as follows. Consider first the WM regime
where (C4) and (C5) are fulfilled. Then equation (51) reduces to A(ox, N) = —Aqc = fAN), where f{N) is
a function only of N (not of ox). This can be seen by noticing that equation (50) does not depend on oy
(see also the condition (C5) in equation (30)) and thus the first term in equation (51) is zero. Also,
according to (C2) in equation (11) the term Aqc does not depend on oy and thus A(oy, N) is a function
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Figure 2. Semi-log plot of the Fourier transform of the autocorrelation function in equation (48) as a function of ox and 7
(solid black lines). The limits of cx — 0 and oy — 0o are shown respectively in dashed red and blue lines. In the inset: the same
results but for the autocorrelation function.

=Macrorealism
=Non-macrorealism

0 o 1 10
1
% 10 10 0

Figure3. A(oyx,N) as a function of ox and the number N of oscillators for 7 = 33.37. Results for the strong, semi-weak and
weak measurement regimes, depending on the system-meter coupling parameter o, have different underlying colors associated.
Non-realistic and realistic results are shown in black and blue respectively.

only of N. Thus, the fulfillment of (S1) implies, in particular, the existence of a plateau of A(ox, N) for large
enough o 4.

Step (S2) is as follows. If the NSIT condition in equation (47) is fulfilled then
rx(0)yy (1)) = (y5(0))(yy(7)) and hence Aqc = 0. If this holds for any o4 and not only in the WM
regime, then the property is realist. Alternatively, if the NSIT condition in equation (47) is not fulfilled or
fulfilled only in the WM regime, then the property is non-realist.

In figure 3 we plot the quantity A(ox, N) as a function of ox and the number N of oscillators. Whenever
A(ox, N) becomes constant, equation (50) is fulfilled, and whether the center-of-mass position is realistic
or not can be checked by simply evaluating A(ox, N) in the asymptotic region, i.e., X is realistic if A(ox, N)
vanishes in the asymptotic region and non-realistic otherwise. A single oscillator is non-microrealistic with
respect to X because A(oy, 1) changes with o4 and furthermore it converges to a non-zero value in the
WM regime (i.e., for 04 — 00). For N > 1, the N oscillators become entangled right after the first
measurement process. This yields a smooth transition (exponential decay with N) between the
non-microrealistic (in black) and macrorealistic (in blue) results (for N < 30 and N 2 30 respectively).
That is, for a large enough number of double well oscillators, the dynamics of X becomes entirely
independent of ox, which is a clear-cut signature of genuine macrorealism.

5. Conclusions

Testing the reality of an object according to orthodox quantum mechanics requires a strict control of the
correspondence between thought and real (implemented) experiments. This is crucial, e.g., to avoid the
so-called ‘clumsiness loophole’. In this work we have proposed a test of realism that is based on witnessing
the use of generalized von Neumann measurements in the lab. Assessing conditions (C1)—(C3), respectively
in equations (8), (11) and (20), and conditions (C4) and (C5), in equations (29) and (30), allows to
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critically narrow experimental clumsiness and thereafter testing the NSIT condition in equation (24) for a
range of system-meter couplings o 4 allows to determine, unequivocally, whether a property A is realistic or
not.

Importantly, the resulting protocol, i.e., (S1) and (S2), is robust for any type of property. This includes
tests in situations where Leggett—Garg inequalities and ideal negative measurement cannot be used at all,
e.g., unbounded and non-dichotomic properties. Furthermore, the fact that the proposed test involves the
validation of the measurement apparatus in the WM regime makes its conclusions independent of the
system-meter coupling of the first measurement and thus also highly reproducible.

We have also showed that any intensive property A of a quantum system made of a large enough
number of weakly-correlated particles is microrealistic at any time. Only rather exotic quantum systems,
with a very high degree of order, do not satisty this property. This result has been used to define genuine
macrorealistic objects as quantum objects that are microrealistic with respect to all intensive properties at
any time. Noticeably, genuine macrorealism is compatible with the existence of non-microrealistic
properties of the quantum object at the microscopic level (when, for example, only a fraction of the total
number of the degrees of freedom is considered).

The above conclusions have been numerically exemplified by testing the nature of the center-of-mass
position of a number N of one-dimensional double-well oscillators. In general, the N oscillators become
entangled right after the first measurement and this allows a smooth transition between the
non-microrealistic and microrealistic results. For a large enough number N of oscillators, the dynamics of
the center-of-mass position becomes completely independent of the system-meter coupling strength of the
first measurement, a clear signature of genuine macrorealism.

Our results, in accordance with previous works, indicate that what we call classical objects are in fact
quantum objects with many degrees of freedom that, obeying the laws of quantum mechanics, satisfy
microrealism for all intensive properties at any time.
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Appendix A. Derivation of joint probability in equation (18)
We start with the general expression for the two-time joint probability in equation (17),

P(yasys) = 3 Py Qs 5, (MY Ch(67) L3 (D, (1)). (A1)
s j i

By rewriting the coefficients Cff/ (t,7) as:

clit,m) =" (05 (1) (T)ei (1) = (b0 ]ar) (ar | UL[by) (b U i) (il (1)), (A.2)

and using |©,) = |a;) we get, ‘
C{:zs’ = 5,1-/<a1-/‘Ui‘bj><bj‘if¢‘ai>5i,5. (A3)

Introducing equation (A.3) back into equation (A.1) we already get equation (18) of the main text:

P(yasys) = Y _pilQ, 0O |61 (0], (A4)
s j

where (1) = (b;| U, |as). By identifying P(y.4) = | ,_a,(t)|? and Py(y5) = oGP (,
equation (A.4) can be finally written as in equation (19), i.e.:

P(ya,y8) = Y _pPya)Pilys). (A.5)
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Appendix B. Derivation of equation (30)

Using equation (25) and the center-of-mass property of the meter wavefunction [ dys|€Qy;-, > =0
equation (22) reads:

s o0 o0
Gattys(r) = [ dyAyAZpst SOC () (%(t) - (.;;ff”ai) (%(t) - aﬁ”aﬂ). (B.1)

i,i’

: 2
Now, using the following three equalities, | dyAyAQyA dyA =—1/2, [ dyaya (da—%ff-) =0, and
Ik dyAyAQyA = 0, equation (B.1) can be written as:

(ya()ys()) Zpst ZC{ (1, 7) er ). (B.2)

Using then the explicit form of the coefficients,
C(6,7) = (W(0)]ar) (ar | ULy} (b5 U i) il (), (B.3)

and the spectral decomposition of the operators A and B, equation (B.2) finally simplifies to:

(rays(r)) = > _ps Re (LOIBOAD[D)) (B4)

where we have introduced the definition of the Heisenberg operators, B(r) = UiB U, and A(1) = A. The
above result is independent of the wavefunction of the meter of .4, and hence we conclude that in the WM
regime the following equation must be fulfilled:

C5: di(yA(t)yB(T» =0 Voa> de (B.5)
oA

Appendix C. Test of microrealism for a single qubit state

Consider a spin qubit represented by the state:

[U(1)) = colsxo) + c1]sx1) (C.1)

1
&x. The evolution of the state in equation (C.1) is dictated by the following Hamiltonian,

1 1 . . .
where || + |c1]> = 1, and [s,) = % ( 1) and [sy) = % ( B ) are the eigenstates of the Pauli matrix

h
2

=8 =6, (C2)
where . is the spin operator in the z direction and &, is the z Pauli matrix.

Whether the initial state in equation (C.1) is an eigenstate of the spin operator S = Jx can be tested
using our protocol in (S1) and (S2). In a real experiment we should first address (Sl) however, in this
thought experiment we can presuppose (S1) and move directly to step (S2). For that, we only need to test
the NSIT condition in equation (24). This can be done by comparing the probability distribution of
measuring S, only at time 7, i.e., Ply,,) = Zle 1y, _sj(T)|2|Cj(T) |2, with the result in equation (16), which
here reads:

/ dys, P(ys> ys.) = Z ‘stT —SJ(T)‘ZZ le/(T’ t)/ dy,, (2 7si/(t)st, —5;(1), (C3)
i’ =1

where y,, and y,_ are the outcomes of the first (at time ) and second (at time 7) measurement of Sy
respectively. Now, for superposition states where both ¢y and ¢, are different from zero, it is easy to realize
that:

/ dys P(ys,» ys,) # P(ys,)s (C.4)

except for the case where the measurement of S, is carried out in the WM regime, where
[ dy, . 75/(t)QyS _;;(t) = 1 and thus we can use Z”/ 1CH (7, 1) = [{s| Ur |90 (1)) |* = |j(7)|*. Therefore,
for general system-meter coupling strengths the NSIT condition (see equation (24)) is not fulfilled, and thus
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the property S, of the system is non-microrealistic. Alternatively, if the initial state in equation (C.1)is an
eigenstate of Sy, then either ¢, or ¢ is zero, and according to the definition of the coefficients C,, it is easy
to see that (C.3) always reduces to:

/ dyStP(ysnysT) = P(ysT)r (C.5)

independently of the system-meter coupling strength. Therefore, we can conclude that the system is
microrealistic with respect to ;.

C.1. Alternative test based on two-time time-correlation functions

Since in our example we considered a pure initial state, we also could have used two-time correlation
functions instead of joint probabilities to arrive to the same conclusions. To see that, let us first consider
equation (22), which here reads:

2
D) = 3 67 (s S:0lss)es [ gy, (0,400, (C6)
ii=1

where we have defined S,(7) = Uigx(t) U,. In our particular example the operator
Se(1) = |5:0)50 (sx0| + |sx1)51(sx1| where sy = +1 and s; = —1 are the eigenvalues corresponding to the
eigenstates |s,o) and |sy; ) respectively. We can alternately define S,(t) = |s,0)s0(s.1| — |5.1)s1 (0] in the basis
of our Hamiltonian S, just to facilitate the derivation. The evolution of S.(#) in the Heisenberg picture can
be then written as: X

Se(T) = €™|s20)s0(s21| — €77 [s21)s1 (520, (C.7)

where we have defined w = (E, — E;)/h. Introducing equation (C.7) into equation (C.6) we obtain,

2
Gy = 3 (€l sabafsalss) — € s, sabailsalss) [ @, (00, 0. (€8

#,i=1

We now switch back to the S basis, i.e., |s,0) = %|5x0> + %\&1) and |s,1) = %|5x0> — %\sxl), and note
that for a real ancilla wavepacket f dJ’s:J’SIQ;S,—so(t)st,—sl (1) = f dystyer}*,St_s1 ()82, —5, (t). Furthermore
since sy = —s;, then equation (C.8) can be finally written as:

(Vs ys.) = (sg\c0|2 + sﬂcl\z) cos(wT) + (251 Im (cocl*) / dys(t)ys(,)Q}Z(t)_so(t)stmSl(t)> sin(wr). (C.9)

Arrived at this point, it is easy to test whether our initial state is an eigenstate of S, or not. We only need
to compare the result in equation (C.9) with the product of single-time expectation values <§x(t)> <§X(T)>.
When the initial state in equation (C.1) is an eigenstate of S, then either ¢; or ¢, is zero and thus
equation (C.9) reduces to:

Wsys,) = 5(2) COS W, (C.10)

in the case where |co|*> = 1 or to (y;,ys.) = 57 cos wr in the case where |c;|* = 1. For the particular case
where |¢y|* = 1, we also know that (S,(t)) = (y,,) = so and that (S.(7)) = (ys.) = (s20|Sx(7)|sx0) which
using equation (C.7) yields <§x(7)> = socos wT. Therefore, we can write:

Wsys:) = Ws) s s (C.11)

and hence conclude that the system is microrealistic with respect to S,. Note that the same conclusion is
reached if we consider |c;|> = 1 and ¢y = 0. Alternatively, for general superposition states where ¢y and ¢,
are both different from zero, equation (C.9) cannot be written as the product of two single-time mean
values, i.e.:

Wsys:) 7 Ysi) s s (C.12)

and hence we have to conclude that the system is non-microrealistic with respect to S,.

Appendix D. Two-time correlation function for Gaussian meters and separable
many-body states: derivation of expression equation (48)

For pure initial states and, equation (22) reduces to:

Gays(r) = 33 Cl (07) [ drayalin @, (D.1)

j i’
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Assuming at this point a Gaussian-type meter wavefunction of the form
Q)4 = ﬁ exp [—(y — 4))*/40%], then we can use the property:

_ (aj— ﬂ/)z

[ a9 09,000 = S+ ane (D2)
to rewrite (D.1) as: ,
(ﬂ,'*ﬂ,-/)

ra)ys(r)) = Zb Zc] (t,7)(a; +ap)e 4, (D.3)

where C’{)i,(t, T) = C;(t)C;’j(T)Ci,j(T)Ci(t).

Now, for A being an intensive property as defined in equation (31), the coefficients ¢;(t)
and ¢;j(7) read ¢i(t) = (aj,, . .., a;, [¥(¢)) and Cl](T) = (bj,...» ij|UT|ail, .. .» iy ), Where
i ai) = |ai) @ -+ @ |aiy) and |bj,, ..., bjy) = |bj,) ® - - - ® |bj, ). Considering a separable state
[(1) = |1, () @ - - ® |¢n(1)) and the deﬁnition of the eigenvalues in equation (32), then equation (D.3)
can be rewritten as:

2
(Zf " ai;// )

yat)ys(r)) = NZZ Z bjﬁ Z (a,g, + a/ e 8”34N2

&E i i

x ((wr(0lag) {ayg O1163) (0310 o, [ 1)
x (i (0)lag ) ag |01} (i O i iy L () (D)

Now, by separating equation (D.4) into £ = ¢" and £ # &' terms we can write:
i —ay)?
(%5 1/5)

(rat)ys(r)) = 2NZZ Z(a,5+a/)e N (walay ) {ay |UIBU: |aig) (a |1oc)

5 1;’:1

N 2
(Zf// “iiﬁ - 15”

30D Gy agde I (i Olay){ag lai ) (an [n (0) (e(D]ay)

X {ay | UIBU, |ai.) (@i, [1b¢ (1)) (e (Dlay, )y, lai ) aig [V (0) (n(0)]ay ) ay |aiy)
X {aiy[Un(0)))], (D.5)

which, in turn, by using (a; \ai5,> = 0y,; Vk can be simplified as:
{/

(u,ﬁfu/)
(ya(t)ys(r)) = NZZ > aie (elay ) {ay |UIBU: |ai )y |tbc)
lél
zé '11-5()2
+ ZZe 8% (ve(1)|ay ) {a; |UIBU |aic) (i, [e () (e (D|A[per (D) + c.c. (D.6)
&£ 151

By rearranging terms we can re-express (D.6) as:

(

—ay )2

“t,’: {

N
(ya(t)ys(r)) = WZZ (elay ) {ay [B(r)lai) (aic [be) | ai + D (e DIAD[e (1) | + c.c.
151 k¢!

(D.7)
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Finally, by assuming [¢)(#)) = [1(t)) Vk we obtain:
(ﬂi*ﬂi/)z

(ya(t)ys(r)) = %Ze AN (3l [BOT) i) (@il (a5 + (N = D(A®)) + e, (D.8)

i

which, using the definitions in equations (49a) and (49b), can be rewritten as in equation (48) of the main
text:

<)/A(t)y3(7')> = %Zfl%l (ﬂi + (N — 1)<A(t)>) + c.c. (D.9)
ij
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Abstract: A prominent tool to study the dynamics of open quantum systems is the reduced density
matrix. Yet, approaching open quantum systems by means of state vectors has well known computational
advantages. In this respect, the physical meaning of the so-called conditional states in Markovian and
non-Markovian scenarios has been a topic of recent debate in the construction of stochastic Schrodinger
equations. We shed light on this discussion by acknowledging the Bohmian conditional wavefunction
(linked to the corresponding Bohmian trajectory) as the proper mathematical object to represent, in terms
of state vectors, an arbitrary subset of degrees of freedom. As an example of the practical utility of these
states, we present a time-dependent quantum Monte Carlo algorithm to describe electron transport in
open quantum systems under general (Markovian or non-Markovian) conditions. By making the most of
trajectory-based and wavefunction methods, the resulting simulation technique extends to the quantum
regime, the computational capabilities that the Monte Carlo solution of the Boltzmann transport equation
offers for semi-classical electron devices.

Keywords: conditional states; conditional wavefunction; Markovian and Non-Markovian dynamics;
stochastic Schrodinger equation; quantum electron transport

1. Introduction

Thanks to its accuracy and versatility, the Monte Carlo solution of the Boltzmann transport
equation has been, for decades, the preferred computational tool to predict the DC, AC, transient,
and noise performances of semi-classical electron devices [1]. In the past decade, however, due to the
miniaturization of electronic devices (with active regions approaching the de Broglie wavelength of the
transport electrons), a majority of the device modeling community has migrated from semi-classical
to fully quantum simulation tools, marking the onset of a revolution in the community devoted
to semiconductor device simulation. Today, a number of quantum electron transport simulators
are available to the scientific community [2-4]. The amount of information that these simulators
can provide, however, is mainly restricted to the stationary regime and therefore their predicting
capabilities are still far from those of the traditional Monte Carlo solution of the semi-classical
Boltzmann transport equation [1]. This limitation poses a serious problem in the near future as electron
devices are foreseen to operate at the Terahertz (THz) regime. At these frequencies, the discrete nature
of electrons in the active region is expected to generate unavoidable fluctuations of the current that
could interfere with the correct operation of such devices both for analog and digital applications [5].

A formally correct approach to electron transport beyond the quasi-stationary regime lies on the
description of the active region of an electron device as an open quantum system [6,7]. As such, one can
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then borrow any state-of-the-art mathematical tool developed to study open quantum systems [8,9].
A preferred technique has been the stochastic Schrodinger equation (SSE) approach [10-17]. Instead
of directly solving equations of motion for the reduced density matrix, the SSE approach exploits
the state vector nature of the so-called conditional states to alleviate some computational burden
(and ensure a complete positive map by construction [18]). Even if this technique allows to always
reconstruct the full density matrix, a discussion on whether dynamical information can be directly
extracted from such conditional states in non-Markovian scenarios has appeared recently in the
literature [19,20]. This debate is very relevant to us as we are interested in computing not only one-time
expectation values (i.e., DC performance) but also dynamical properties (i.e., AC, transient, and noise),
such as multi-time correlation functions, at THz frequencies. At these frequencies the environment
correlations are expected to decay on a time-scale comparable to the time-scale relevant for the system
evolution [21]. Furthermore, the displacement current becomes important at very high frequencies and
a self-consistent solution of the Maxwell equations and the Schrédinger equation is necessary [21,22].

Some light on how to utilize the SSE technique to access dynamical information without the need
of reconstructing the reduced density matrix has already been shed by Wiseman and Gambetta by
acknowledging the Bohmian conditional wavefunction as the proper mathematical tool to describe
general open quantum systems in non-Markovian scenarios [23,24]. In this work we reinforce this idea
by showing that the Bohmian conditional wavefunction, together with the corresponding Bohmian
trajectory, is an exact decomposition and recasting of the unitary time-evolution of a closed quantum
system that yields a set of coupled, non-Hermitian, equations of motion that allows to describe the
evolution of arbitrary subsets of the degrees of freedom on a formally exact level. Furthermore,
since the measurement process is defined as a routine interaction between subsystems in Bohmian
mechanics, conditional states can be used to describe either the measured or unmeasured dynamics of
an open quantum system. As an example of the practical utility of the conditional wavefunctions, we
present here a Monte Carlo simulation scheme to describe quantum electron transport in open systems
that is valid both for Markovian or non-Markovian regimes and that guarantees a dynamical map that
preserves complete positivity [25-29].

This paper is structured as follows. In Section 2 we provide a brief account on the SSE approach
and on how nanoscale electron devices can be understood as open quantum systems. Section 3 focuses
on the physical interpretation of the conditional states (i.e., system states conditioned on a particular
value of the environment) in the contexts of the orthodox and Bohmian quantum mechanical theories.
Section 4 provides an overall perspective on the points raised in the previous sections and puts into
practice the conditional wavefunction concept to build a general purpose electron transport simulator,
called BITLLES, beyond the steady state (Markovian) regime. As an example of the use of conditional
states, numerical simulations of the THz current in a graphene electron device are presented in
Section 5. Final comments and conclusions can be found in Section 6.

2. Electron Devices as Open Quantum Systems

In this section we introduce the SSE approach to open quantum systems and discuss how it can
be used to reconstruct the reduced density matrix. We then explain how a nanoscale electron device
can be understood as an open quantum system and how the SSE approach can be applied to predict
its performance.

2.1. Open Quantum Systems

As usual, we start with a closed quantum system (see Figure 1a). This system is represented by a
pure state, |'¥(¢)), which evolves unitarily according to the time-dependent Schrodinger equation:

JO[E(E))
S 2k = A (1)), (1)
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Finding a solution to Equation (1) is inaccessible for most practical scenarios due to the large
number of degrees of freedom involved. Therefore, it is a common practice to partition the system into
two subsets of degrees of freedom, viz., open system and environment [6]. The open system can be
described by a reduced density matrix:

Psys(t) = Treny [[¥ (1)) (¥ (D)]], (2)

where Treny denotes the trace over the environment degrees of freedom. The reduced density matrix
Psys can be shown to obey, in most general circumstances, a non-Markovian master equation [30,31]:

00sys (¢ N b
Poell) A1), s8] + [ Kt g0, ®)
t to

where Hiy(t) is a system Hamiltonian operator in some interaction picture and K(t,s) is the “memory
kernel” superoperator, which operates on the reduced state psys () and represents how the environment
affects the system. If the solution to Equation (3) is known then the expectation value of any observable
A of the system can be evaluated as:

~

(A1) = TrsysmsyS(t)A]‘ (4)

Unfortunately, solving Equation (3) is not an easy task. The effect of K'(t,s) on psys(t) cannot be
explicitly evaluated in general circumstances. Moreover, even if the explicit form of K(t,s) is known,
the solution to Equation (3) is very demanding as the density matrix psys(t) scales very poorly with the
number of degrees of freedom of the open system. Finally, if one is aiming at computing multi-time
correlations functions, then it is necessary to incorporate the effect (backaction) of the successive
measurements on the evolution of the reduced density matrix, which is, in general non-Markovian
regimes, a very complicated task both from the practical and conceptual points of view.

2.2. Stochastic Schrodinger Equations

A breakthrough in the computation of the reduced density matrix in Equation (2) came from the
advent of the SSE approach [32]. The main advantage behind the SSE approach is that the unknown to
be evaluated is in the form of a state vector (of Nsys degrees of freedom) rather than a matrix (of size
stys) and thus there is an important reduction of the associated computational cost. In addition,
it provides equations of motion that, by construction, ensure a complete positive map [18] so that
the SSE approach guarantees that the density matrix always yields a positive probability density,
a requirement that is not generally satisfied by other approaches that are based on directly solving
Equation (3) [33].

The central mathematical object in the SSE approach to open quantum systems is the conditional
state of the system:

CEISI0)
(1) = SRR, ®

where P(q,t) = (pg(t)[9g(1)) = (¥(1)|Lsys ® |q)(q] ® Lsys[¥(t)) and |g) are the eigenstates of the
so-called unraveling observable Q belonging to the Hilbert space of the environment. To simplify the
discussion, and unless indicated, g represents the collection of degrees of freedom of the environment.
Using the eigenstates |g) as a basis for the environment degrees of freedom, it is then easy to rewrite

the full state |'¥(¢)) as:
(1)) = [ day/Plg,0la) @ Ly (1), ©

which can be simply understood as a Schmidt decomposition of a bipartite (open system plus

environment) state. Thus, a complete set of conditional states can be always used to reproduce
the reduced density matrix at any time as:
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Boys(t) = [ daP(a, )194(5) 9y (1)1 7)

Let us note that no specific (Markovian or non-Markovian) assumption was required to write
Equation (7). In fact, the above definition of the reduced density matrix simply responds to the
global unitary evolution in Equation (1), which (as depicted in Figure 1a) does not include the effect of
any measuring apparatus.

2.3. Nanoscale Electron Devices as Open Quantum Systems

At first sight, one could be inclined to say that a nanoscale electron device perfectly fits into
the above definition of open quantum system. The open system would then be the device’s active
region and the environment (including the contacts, the cables, ammeter, etc.) the so called reservoirs
or contacts (see Figure 1a). In addition, the observable of interest Ain Equation (4) would be, most
probably, the current operator [. As long as we are interested only in single-time expectation values, i.e.,
static or stationary properties, this picture (and the picture in Figure 1a) is perfectly valid. Therefore,
the SSE approach introduced in Equations (5)—(7) can be easily adopted to simulate electron devices
and hence to predict their static performance.

Environment
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Figure 1. Panel (a): Schematic representation of an open quantum system, which can be partitioned
into active region and environment. The evolution of the entire device is described by the state [¥())
that evolves unitarily according to the time-dependent Schrodinger equation. Panel (b): Schematic
representation of a measured open quantum system, which can be partitioned into meter, active region,
and environment. The evolution of the device plus environment wavefunction is no longer unitary
due to the (backaction) effect of the measuring apparatus.

However, if one aims at computing dynamical properties such as time-correlation functions,
e.g., (I(t+ 7)I(t)), then a valid question is whether such an expectation value is expected to be
measurable at the laboratory. If so, what would then be the effect of the measurement of I at time f on
the measurement of I at a later time ¢ + 7?. Figure 1b schematically depicts this question by drawing
explicitly the measuring apparatus (or meter). As it is well known, the action of measuring in quantum
mechanics is not innocuous. It is quite the opposite: in many relevant situations, extracting information
from a system at time t has a non-negligible effect on the subsequent evolution of the system and hence
also on what is measured at a later time ¢ + 7. Therefore, as soon as we are concerned about dynamic
information (i.e., time-correlation functions), we need to ask ourselves whether an approach to open
quantum systems such as the SSE approach can be of any help. In the next section we will answer this
question and understand whether the conditional states |¢;(t)) defined in Equation (5) do include the
backaction of the measuring apparatus depicted in Figure 1b.

3. Interpretation of Conditional States in Open Quantum Systems

The conditional states in Equation (5) were first interpreted as a simple numerical tool [32], that is,
exploiting the result in Equation (7) as a numerical recipe to evaluate any expectation value of interest.
This interpretation is linked to the assumption that the operator A in Equation (4) is the physically
relevant operator (associated to a real measuring apparatus), while the operator Q associated to the
definition of the conditional state in Equation (5) is only a mathematical object with no attached
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physical reality, i.e., it merely represents a basis. In more recent times, however, it has been generally
accepted that the conditional states in Equation (5) can be interpreted as the states of the system
conditioned on a type of sequential (sometimes referred to as continuous) measurement [34] of the
operator Q of the environment (now representing a physical measuring apparatus that substitutes
the no longer needed operator A) [6,12,35]. From a practical point of view, this last interpretation
is very attractive as it would allow to link the conditional states, [¢;(t)), at different times and thus
compute time-correlation functions without the need of introducing the measuring apparatus or of
reconstructing the full density matrix. Whether or not this later interpretation is physically sound in
general circumstances is the focus of our discussion in the next subsections.

3.1. The Orthodox Interpretation of Conditional States

Let us start by discussing, in the orthodox quantum mechanics theory, what is the physical
meaning of the conditional states that appear in Equation (5). When the full closed system follows the
unitary evolution of Figure 1a, the conditional state |¢f,;(t)) can be understood as the (renormalized)
state that the system is left in after projectively measuring the property Q of the environment (with
outcome g). This can be easily seen by noting that the superposition in Equation (6) is, after a projective
measurement of Q, reduced (or collapsed) to the product state

[¥q(t)) = /P, )|9) @ [1py(1))- ®)

It is important to notice that the conditional state [¢(#')) at a later time, t' > t, can be equivalently
defined as the state of the system when the superposition in Equation (6) is measured at time '
and yields the outcome ¢’. This interpretation, however, is only valid if no previous measurement
(in particular at t) has been performed, as depicted in Figure 2a. Otherwise, the collapse of the
wavefunction at time ¢, yielding the state \/P(q,t)|q) ® |4(t)), should be taken into account in the
future evolution of the system, which would not be the same as if the measurement had not been
performed at the previous time. Therefore, the equation of motion of the conditional states, as defined
in Equation (5), cannot be, in general, the result of a sequential measurement protocol such as the one
depicted in Figures 1b or 2b. This conclusion seems obvious if one recalls that our starting point was
Figure 1a, where there is no measurement.

3.1.1. Orthodox Conditional States in Markovian Scenarios

Even if the conditional states solution of the SSE cannot be generally interpreted as the result of
a sequential measurement, such an interpretation has been proven to be very useful in practice for
scenarios that fulfill some specific type of Markovian conditions. We are aware that there is still some
controversy on how to properly define Markovianity in the quantum regime (see, e.g., Ref. [18]), so it
is our goal here only to acknowledge the existence of some regimes (i.e., particular observation time
intervals) of interest where the role of the measurement of the environment has no observable effects.
In this regime, Figure 1a,b as well as Figure 2a,b can be thought to be equivalent.
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Figure 2. Panel (a): Schematic representation of the SSE approach. The states of the system conditioned
on a particular value of the environment at time ¢, |{4(t)), can be given a physical meaning only if
no measurement has been performed at a previous time #' < t. This approach can be always used to
reconstruct the correct reduced density matrix of the system at any time but cannot be used to link
in time the conditional states for non-Markovian scenarios. Panel (b): Schematic representation of a
sequential measurement. The wavefunction of the system plus environment is measured sequentially.
In this picture, the link between the states of the full system plus environment at different times is

physically motivated.

In our pragmatical definition of Markovianity the entanglement between system and environment
decays in a time scale fp that is much smaller than the observation time interval 7, i.e., tp < 7. In this
regime, the environment itself can be thought of as a type of measuring operator (as appears in
generalized quantum measurement theory [36]) that keeps the open system in a pure state after the
measurement. The open system can be then seen as an SSE in which the stochastic variable g; (sampled
from the distribution P(gy, t)) is directly the output of a sequential measurement of the environment.
The stochastic trajectory of this conditioned system state generated by the (Markovian) SSE is often
referred to as a quantum trajectory [6,12,35] and can be used, for example, to evaluate time-correlation
functions of the environment as:

(QNQU+7) =" [ [ P )P(quiet+ Dguscdadgie = Q) QU+T). )

Let us emphasize that the stochastic variables g; and ;4 in Equation (9) are sampled, separately,
from the probability distributions P(qy,t) = (¢4 (t)[1p4(t)) and P(gsrr, t + T) = (Pg(t 4+ T)[1pg(t + T)).
Therefore, as we have schematically depicted in Figure 3, no matter how the trajectories {g;} are
connected in time, one always obtains the correct time-correlation function (Q(#)Q(t + 7)).
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Figure 3. Schematic representation of the combined system plus environment wavefunction (blue
Gaussians) measured at different times that result in a state of the system |¢;(t)) conditioned to the
set of environment values {g;} shown in dark blue circles. In the Markovian regime there exists no
specific recipe about how the different 4;’s must be connected in time (colored solid lines). No matter
how these points are connected in time, one always gets the right expectation value in Equation (9).

It is important to realize that we started our discussion on the physical meaning of the Markovian
SSE with an open system whose environment is not being measured (see Figures 1a and 2a). Noticeably,
we have ended up discussing an environment that is being measured at every time interval T (see
Figure 2b). How is that possible? Well, the reason is that measuring the environment at time ¢ does not
affect the system conditional states at a later time T when the built-in correlations in the environment
due to the measurement at time ¢ decay in a time interval {p much smaller than the time interval
between measurements 7. In other words, Figure 1a,b as well as Figure 2a,b are not distinguishable
when tp < 7. In this sense, the Markovian regime has some similarities with a classical system, where
it is accepted that information can be extracted without perturbation.

3.1.2. Orthodox Conditional States in Non-Markovian Scenarios

For nanoscale devices operating at very high (THz) frequencies, the relevant dynamics and
hence the observation time interval T are both below the picoseconds time-scale and the previous
assumption of Markovianity, i.e.,, f{p < T, starts to break down. Under the condition tp ~ T,
non-Markovian SSE have been proposed which allow an alternative procedure for solving the reduced
state [y, (t)) [17,33,37-41]. However, non-Markovian SSEs constructed from Equation (5), unlike the
Markovian SSEs, suffer from interpretation issues [17]. In the non-Markovian regime, the perturbation
of the environment due to the quantum backaction of a measurement at time ¢ would not be washed
out in the time lapse T ~ tp and hence the joint probability distribution would not become separable,
ie., P(qt,qi+7)) # P(q:)P(gt+<). As a direct consequence, connecting in time the different solutions
gt and gt (sampled independently from the probability distributions P(q;,t) and P(qs4,t + T) as
in Figure 3 to make a trajectory “would be a fiction” [17,19,20]. Here, the word “fiction” means that
the time-correlations computed in Equation (9) are wrong, i.e., the expectation value in Equation (9)
would simply be different from the experimental result.
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According to D’Espagnat the above discussion can be rephrased in terms of the so-called
proper and improper mixtures [42]. Following D’Espagnat arguments, the reduced density matrix
in Equation (7) is an improper mixture because it has been constructed by tracing out the degrees of
freedom of the environment. On the contrary, a proper mixture is a density matrix constructed to
simultaneously define several experiments where a closed system is described, at each experiment,
by different pure states. Due to our ignorance, we do not know which pure state corresponds to which
experiment, so we only know the probabilities of finding a given pure state. D’Espagnat argues that the
ignorance interpretation of the proper density matrix, cannot be applied in the improper density matrix
discussed here (See Appendix A). To understand why under a Markovian regime open systems can be
described by pure states (using a proper mixture), we remind that Markovianity implies conditions on
the observation time. For a given correlation time ¢p, a given open system can be in the Markovian or
non-Markovian regimes depending on the time of observation 7. That is, for small enough observation
times all open systems are non-Markovian and hence must be understood as an improper mixture.
On the contrary, for large enough observation times, open systems can behave as closed systems (with
a negligible entanglement with the environment) and be effectively represented by pure states.

3.2. The Bohmian Interpretation of Conditional States

So, under non-Markovian (i.e., the most general) conditions, the conditional states |¢,(t)) can
be used to reconstruct the reduced density matrix as in Equation (7) but cannot be used to provide
further information on its own. This interpretation problem is rooted in the fact that orthodox
quantum mechanics only provides reality to objects whose properties (such as g) are being directly
measured. However, as explained in the previous subsection, it is precisely the fact of introducing
the measurement of g (without including the pertinent backaction on the system evolution) which
prevents the conditional states [¢;(t)) of the non-Markovian SSE from being connected in time for
tp ~ . In this context, a valid question regarding the interpretation of |¢;(t)) is whether or not we can
obtain information of, e.g., the observable Q without perturbing the state of the system. The answer
given by orthodox quantum mechanics is crystal clear: this is not possible (except for Markovian
conditions) because information requires a measurement, and the measurement induces a perturbation.
Notice, however, that the assumption that only measured properties are real is not something forced
on us by experimental facts, but it is a deliberate choice of the orthodox quantum theory. Therefore,
we here turn to a nonorthodox approach: the Bohmian interpretation of quantum mechanics [43-48].

A fundamental aspect of the Bohmian theory is that reality (of the properties) of quantum
objects does not depend on the measurement. That is, the values of some observables, e.g., the
value of the positions of the particles of the environment, exist independently of the measurement.
If g is the collective degree of freedom of the position of the particles of the environment and x
is the collective degree of freedom of the position of particles of the system; then, the Bohmian
theory defines an experiment in the laboratory by means of two basic elements: (i) the wavefunction
(q,x|¥(t)) = ¥(x,q,t) and (ii) an ensemble of trajectories Q'(t), X'(t) of the environment and of
the system. We use a superindex i to denote that each time an experiment is repeated, with the
same preparation for the wavefunction ¥ (x, g, t), the initial positions of the environment and system
particles can be different. They are selected according to the probability distribution [¥ (X?, Q,0)|? [44].
The equation of motion for the wavefunction ¥(x, g, t) is the time-dependent Schrédinger equation in
Equation (1), while the equations of motion for the environment and system trajectories Q'(t), X'(t)
are obtained by time-integrating the velocity fields vq(x,¢,t) = J;(x,,t)/[¥(x,4,t)|* and v (x,q,t) =
Jx(x,q,t)/ ¥ (x,q,t)|? respectively. Here, Jq(x,q,t) and Jx(x, q, t) are the standard current densities of
the environment and the system respectively. We highlight the (nonlocal) dependence of the Bohmian
velocities of the particles of the environment on the particles of the system, and vice-versa. This shows
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just the entanglement between environment and system at the level of the Bohmian trajectories.
According to the continuity equation

d|¥ (x,q,1)*

S+ Va0 (6,4, DY (x,0,1)%) + Vg (0q(x, 4, H[¥ (x,9,1)%) =0, (10)

the ensemble of trajectories {Q(t), X(t)} = {Q(t), X' (t), Q*(t), X*(t)....QM(t), XM (t)} with M — oo
can be used to reproduce the probability distribution [¥(x, g, t)|? at any time. Thus, by construction,
the computation of ensemble values from the orthodox and Bohmian theories are fully equivalent,
at the empirical level.

From the full wavefunction (x, g|¥(t)) = ¥(x, g,t) (solution of Equation (1)) and the trajectories
Qi(t), Xi(t), one can then easily construct the Bohmian conditional wavefunction of the system and
environment as i, (1, t) = ¥(x, Qi(t),t), and Pxir(a,1) = Y (Xi(t),q,t) respectively. Notice that
this Bohmian definition of conditional states does not require to specify if the system is measured or not
because the ontological nature of the trajectories {Q(t), X(t)} does not depend on the measurement.
Consequently, the conditional wavefunctions lﬁQ,-(t) (x,t), with the corresponding Bohmian trajectories,
contain all the required information to evaluate dynamical properties of the system no matter whether
Markovian or non-Markovian conditions are being considered. This can be seen by noticing that the
velocity of the trajectory X' (t) given by v,(X'(t), Q(t)) can be equivalently computed either from (the
x—spatial derivatives of) the global wavefunction ¥ (x, Q, t) evaluated at X' (t) and Q' (¢) or from (the
x-spatial derivative of) the conditional wavefunction l/NJQi(t) (x,t) evaluated at X'(t). In other words,
the Bohmian velocities computed from ¥ (x, Q,t) or lﬁQi(t) (x,t) are identical. Thus, in a particular
experiment i and for a given time t, the dynamics of the Bohmian trajectory X' (t) can be computed
either from liJQi(t) (x,t) or from ¥(x,q,t).

The Bohmian conditional wavefunction of the system can now be connected to the orthodox
conditional wavefunction in Equation (5) by imposing Q’(t) = g;. Then one can readily write:

[$q, () = P(qr, )[g, (1)) (11)

At first sight, one can think that the difference between the Bohmian and orthodox conditional states is
just a simple renormalization constant P(qy, f) (see Appendix B for a more detailed explanation of the
role of this renormalization constant). However, the identity in Equation (11) has to be understood as
to be satisfied at any time f, which implies that the following identity should prevail:

Q'(t) = qu, vt (12)

We emphasize the importance of Equation (12) in ensuring the accomplishment of Equation (11). If we
consider another experiment Q/(t) = ¢}, we have to define another conditional state |1,Eq; (t)). It can
happen that, at a particular time ¢ = t;, both conditional states become identical i.e., [{g, (t1)) =
|1/3q;1 (t1)). However, this does not imply that both conditional wavefunctions can identically be used

in the computation of time-correlations. This is because every Bohmian trajectory has a fundamental
role in describing the history of the Bohmian conditional state for one particular experiment. Therefore,
the trajectory Q'(t) uniquely describes the evolution of the conditional wavefunction ¢, (t)) for
one experiment (labeled by the index 7 in the Bohmian language) the same way as the trajectory
Q/(t) and the conditional wave function |1I)q; (t)) describes the experiment labeled by j. As we said,
[$q,, (1)) = \1/7‘7;1 (t1)) are the same orthodox conditional states, but do not necessarily represent
the same Bohmian conditional wavefunction. This subtle difference explains why SSEs cannot be
connected in time and used to study the time-correlation of non-Markovian open system whereas the
same can be done through the Bohmian conditional states, without any ambiguity.

The mathematical definition of the measurement process in Bohmian mechanics and in the
orthodox quantum mechanics differs substantially [44]. In the orthodox theory a collapse (or reduction)
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law, different from the Schrodinger equation, is necessary to describe the measurement process [45].
Contrarily, in Bohmian mechanics the measurement is treated as any other interaction as far as the
degrees of freedom of the measuring apparatus are taken into account [44]. Therefore, while in the
orthodox theory the conditional states |1,,()) cannot be understood without the perturbation of the
full wavefunction ¥ (x, g, t), in Bohmian mechanics the states [, (t)) do have a physical meaning even
when the full wavefunction ¥(x,q,t) is unaffected by the measurement of the environment [23].
Interestingly, this introduces the possibility of defining what we call “unmeasured (Bohmian)
conditional states” when it is assumed that there is no measurement or that the measurement of
q: at time t has a negligible influence on the subsequent evolution of the conditional state.

Importantly, the Bohmian conditional states and the corresponding Bohmian trajectories can
be used not only to reconstruct the reduced density matrix in Equation (7) at any time but the
environment trajectories {Q(#)} allow us to correctly predict any dynamic property of interest
including time-correlation functions, e.g.,

(QHQ(t+1)) Z (HQ'(t+1) //P qt, Gt+7)qeqt+7Aqedqe 47, (13)

where M — oo is the number of experiments (Bohmian trajectories) considered in the ensemble and
we have defined P(q:, gi+c) = 1 LM, 0(qr — Q'(£))6(qer — Q'(t + T)). As it is shown in Figure 4,
the evaluation of Equation (13) and any other dynamic property when tp ~ T can be done only by
connecting the (Bohmian) trajectories at different times in accordance with the continuity equation in
Equation (10). This is in contrast with the evaluation of the dynamics in the Markovian regime where
any position of the environment at time #; can be connected to another position of the environment at
time f; (see Figure 3) and hence we can write (Q(¢)Q(t + 7)) st ﬁ Zf\;{ Q(t)Q/(t + 7). This very
relevant point was first explained by Gambetta and Wiseman [23,24].

A
|W(t2))

tl A |\I/(t5
A v

ts|

Y

~
z

|1hq(t1)) 1hq(t2)) Wq(ﬂs)) o ()

{0, X0} A, Xo} Ass, Xes} -+ - ey, Xy}

Figure 4. Schematic representation of the combined system+environment wavefunction (blue
Gaussians) that is measured at different times and results in a Bohmian conditional state |, (t))
conditioned to the set of environment values {q;} shown in dark blue circles. In the non-Markovian
regime only those values from the set of values satisfying the continuity equation in Equation (10)
can be linked in time to form a trajectory (shown as connected red circles). Dashed lines represent
connections that do not follow the continuity equation and hence cannot be used to evaluate any
dynamic property.
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Although the Bohmian theory can also provide measured properties of the system that coincide
with the orthodox results in Figure 2b, let us emphasize once more the merit of the unmeasured
properties provided by the Bohmian theory, which remains mainly unnoticed in the literature. As it
has been already explained, in the orthodox theory, measuring a particular value of the environment
property g at time ¢ cannot be conceived without the accompanying perturbation of the wavefunction
¥ (x,q,t). Under non-Markovian conditions, it is precisely this perturbation that prevents the
conditional states of the system |, (t)) from being connected in time to form a trajectory. Contrarily,
in Bohmian mechanics, the existence of the environment trajectories {Q(t) }, even in the absence of any
measurement, allows the possibility of connecting in time the conditional states ¢, (t)) even when
Ip ~ T.

Note that in the Bohmian framework, where the measurement apparatus is simply represented
by an additional number of degrees of freedom interacting with the system (i.e., without requiring
any additional collapse law), a discussion about measured and unmeasured properties of quantum
systems is pertinent [49]. At a practical level, the measurement of many classical systems implies
non-negligible perturbations. In particular, electronic devices at high frequencies are paradigmatic
examples where such perturbations occur. It is well-known that the experimental setup (for e.g.,
a coaxial cable) connecting the electronic device to the meter induces dramatic perturbations in
high-frequency measurements. An important task for device engineers is to determine what part of
the measured signal is due to the intrinsic behaviour of the electron device and what part is due to rest
of the experimental setup. When trying to predict the “intrinsic” behaviour of the electronic devices,
the coaxial cables are modelled by “parasitic” capacitors or inductors to account for their “spurious”
effect. Even the measurement of the whole experimental setup is repeated twice, with and without the
“intrinsic” device under test (DUT), to subtract the results and determine experimentally the “intrinsic”
properties of the electronic device alone. Such “intrinsic” properties of the electronic devices are what
we define in this manuscript as the unmeasured properties of quantum systems.

4. Bohmian Conditional Wavefunction Approach to Quantum Electron Transport

The different notions of reality invoked by the orthodox quantum theory and Bohmian mechanics
lead to practical differences in the abilities that these theories can offer to provide information about
quantum dynamics. Specifically, we have shown that contrarily to orthodox quantum mechanics,
Bohmian mechanics allows to physically interpret (i.e., link in time) the conditional states of the SSE
approach in general non-Markovian scenarios. The reason is that whereas in the Bohmian theory the
reality of the current is independent of any measurement, the orthodox theory gives reality to the
electrical current only when it is being measured (this is the so-called eigenstate—eigenvalue link).
From the practical point of view, this has a remarkable consequence. In the Bohmain approach the total
current can be defined in terms of the dynamics of the electrons (Bohmian) trajectories without the
need to define a measurement operator. As it will be shown in this section, the possibility of computing
the total current at high frequencies without specifying the measurement operator is certainly a great
advantage of the Bohmian approach in front of the orthodox one [44]. In particular, one can then
avoid cumbersome questions like, is the measurement operator of the electrical current strong or
weak? If weak, how weak? How often do such operator acts on the system? Every picosecond, every
femtosecond? At high frequencies, how we introduce the contribution of the displacement current in
the electrical current operator?

In this section we provide a brief summary of the path that the authors of this work followed
for developing an electron transport simulator based on the use of Bohmian conditional states.
The resulting computational tool is called BITLLES [28,29,50-56]. Let us start by considering an
arbitrary quantum system. The whole system, including the open system, the environment, and the
measuring apparatus, is described by a Hilbert space H that can be decomposed as H = Hy ® H,
where H, is the Hilbert space of the open system and #, the Hilbert space of the environment.
If needed, the Hamiltonian H, can include also the degrees of freedom of the measuring apparatus as
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explained in Section 3.2. We define x = {x1, x3...x, } as the degrees of freedom of n electrons in the
open system, while g collectively defines the degrees of freedom of the environment (and possibly the
measuring apparatus). The open system plus environment Hamiltonian can then be written as:

where Hy is the Hamiltonian of the system, Hq is the Hamiltonian of the environment (including the
apparatus if required), and V is the interaction Hamiltonian between the system and the environment.
We note at this point that the number of electrons # in the open system can change in time and so the
size of the Hilbert spaces H, and H,; can depend on time too.

The equation of motion for the Bohmian conditional states (x|¢g, (t)) = g, (x, t) in the position
representation of the system can be derived by projecting the many-body (system-environment)
Schrodinger equation into a particular trajectory of the environment g; = Q(t), i.e., [26,57]:

LAy, (x,t) " . dq:
ih—To= = (i ® (x| H[¥ (1)) + ihV (g @ (¥ (1)), = (15)
Equation (15) can be rewritten as:
L dfg, (x,1) n* ’
zhtdit = —ﬂV,ZC + U;{f(x, t) | Pg, (x, 1), (16)
where
fl;{f(x,t) =U(x,t) + V(x,qe,t) + A(x, ge, t) + iB(x, qe, t). (17)

In Equation (17), U(x,t) is an external potential acting only on the system degrees of freedom,
V(x,q¢,t) is the Coulomb potential between particles of the system and the environment evaluated
at a given trajectory of the environment, A(x, g¢,t) = E—fiV%‘F(x, q,5)/¥(x,q,t) ’17=17r and B(x,q;,t) =
WV ¥ (x,q,t)/¥(x,q,t) |q:qtqt (with §; = dq;/dt) are responsible for mediating the so-called kinetic
and advective correlations between system and environment [26,57]. Equation (16) is non-linear and
describes a non-unitary evolution.

In summary, Bohmian conditional states can be used to exactly decompose the unitary
time-evolution of a closed quantum system in terms of a set of coupled, non-Hermitian, equations of
motion [26,57-59]. An approximate solution of Equation (16) can always be achieved by making an
educated guess for the terms A and B according to the problem at hand. Specifically, in the BITLLES
simulator the first and second terms in Equation (17) are evaluated through the solution of the Poisson
equation [29]. The third and fourth terms are modeled by a proper injection model [60] as well as
proper boundary conditions [56,61] that include the correlations between active region and reservoirs.
Electron-phonon decoherence effects can be also effectively included in Equation (16) [25].

In an electron device, the number of electrons contributing to the electrical current are mainly those
in the active region of the device. This number fluctuates as there are electrons entering and leaving
the active region. This creation and destruction of electrons leads to an abrupt change in the degrees of
freedom of the many body wavefunction which cannot be treated with a Schrodinger-like equation for
1Pg, (x, t) with a fixed number of degrees of freedom. In the Bohmian conditional approach, this problem
can be circumvented by decomposing the system conditional wavefunction ¢, (x, t) into a set of
conditional wavefunctions for each electron. More specifically, for each electron x;, we define a single
particle conditional wavefunction 1/7% (x;, X;(t),t), where X;(t) = {X1(t), .., x;i_1(t), xi11,.., Xn(t) } are
the Bohmian positions of all electrons in the active region except x;, and the second tilde denotes
the single-electron conditional decomposition that we have considered on top of the conditional
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decomposition of the system-environment wavefunction. The set of equations of motion of the
resulting n(t) single-electron conditional wavefunctions inside the active region can be written as:

= > r 2 . B
ihd‘b"f(“fl(”’” = fz’lmvgﬁag{f (xl,)_(1(t),t)] P, (1, K (1), 1) (18)
b X0 | g gy <xn,>'<n<t>,t>] N AOW RO

That is, the first conditional process is over the environment degrees of freedom and the second
conditional process is over the rest of electrons within the (open) system.

We remind here that, as shown in Figure 2b, the active region of an electron device (acting as the
open system) is connected to the ammeter (that acts as the measuring apparatus) by a macroscopic
cable (that represents the environment). The electrical current provided by the ammeter is then the
relevant observable that we are interested in. Thus, the evaluation of the electrical current seems to
require keeping track of all the degrees of freedom, i.e., of the system and the environment, which is of
course a formidable computational task (see (d) Table 1). At THz frequencies, however, the electrical
current is not only the particle current but also the displacement current. It is well-known that the total
current defined as the particle current plus the displacement current is a divergence-less vector [21,22].
Consequently, the total current evaluated at the end of the active region is equal to the total current
evaluated at the cables. So the variable of the environment associated to the total current, q; = I(t),
can be equivalently computed at the borders of the open system. The reader is referred to Ref. [62] for
a discussion on how I(t) can be defined in terms of Bohmian trajectories with the help of a quantum
version of the Ramo-Schokley—Pellegrini theorem [63]. In particular, it can be shown that the total
(particle plus displacement) current in a two-terminal devices can be written as [63]:

e ) e ') <Vx g, (xi, X; (t),t))
- X Xl t ’ - = I . d
T P M O P ATy

, (20)
x=X;(t)

where L is the distance between the two (metallic) contacts, e is the electron charge, and
vy, (X;(t), X;(t),t) is the Bohmian velocity of the i-th electron inside the active region. Let us note
that I(t) is the electrical current given by the ammeter (although computed by the electrons inside
the open system). Since the cable has macroscopic dimensions, it can be shown that the measured
current at the cables is just equal to the unmeasured current (taking into account only the simulation
of electrons inside the active region) plus a source of (nearly white) noise which is only relevant at
very high frequencies [62]. The basic argument is that the (non-simulated) electrons in the metallic
cables have a very short screening time. In other words, the electric field generated by an electron in
the cable spatially decreases very rapidly due to the presence of many other mobile charge carriers in
the cable that screen it out. Thus, the contribution of this outer electron to the displacement current at
the border of the active region is negligible [64].

Summarizing, for the computation of the current at THz frequencies, the degrees of freedom
of the environment can be neglected without any appreciable deviation from the correct current
value [62]. This introduces an enormous computational simplification as shown (e) in Table 1. This is,
for the specific scenarios that we are interested in, the computation cost of the Bohmian conditional
wavefunction approach has the same computational cost as the orthodox SSE approach (see Table 1).
Yet, in contrast to the orthodox conditional states, which can be used only to evaluate the dynamics of
quantum systems in the Markovian regime, the Bohmian conditional states provide direct information
on the dynamics of both Markovian or non-Markovian systems.
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Table 1. An estimation of the computational cost (in memory) of different approaches mentioned in
the text. Here Nsys and Ny, are the number of degrees of freedom of the system and the environment
while M denotes the number of elements required.

Computational N° of NP° of Degrees of Computational
Element Trajectories Freedom Cost
(a) Full wave function lF(JC, q, t) - Nsys ;Ngr/v Nsys X NL’I‘IU
(b) Density Matrix p(x,x") - Nays NZs
Orthodox Conditional
© state (SSE) Yo, (1) ;¢ M Nsys M(Nsys + 1)
Bohmian Conditonal = =
(d) state l/qu(x,t) SUx, (,8) 5 qe 5% M Nsys ; Neno M(Nsys + Newo +2)
@ Bohmian Conditonal J’qt (x,1) ;% M Neys M(Neys +1)

state (used in Section 5)

5. Numerical Results

In this section we present numerical results obtained with the BITLLES simulator (see Section 4)
that demonstrate the ability of the Bohmian conditional wavefunction approach to provide dynamics
information for both Markovian and non-Markovian scenarios. We simulate a two-terminal electron
device whose active region is a graphene sheet contacted to the outer by two (ohmic) contacts.
Graphene is a 2D material that has attracted a lot of attention recently because of its high electron
mobility. It is a gapless material with linear energy band, which differs from the parabolic energy
bands of traditional semiconductors. In graphene, the conduction and valence bands coincide at
an energy point known as the Dirac point. Thus, the dynamics of electrons is no longer governed
by an (effective mass) Schrodinger equation but by the Dirac equation, allowing transport from the
valence to the conduction band (and vice versa) through Klein tunneling. A Bohmian conditional
bispinor (instead of a conditional scalar wavefunction) is used to describe electrons inside the device.
The change from a wavefunction to a bispinor does not imply any conceptual difficulty but just a mere
increment of the computational cost. More details can be found in Appendix C.

In particular, we want to simulate electron transport in graphene at very high frequencies (THz)
taking into account the electromagnetic environment of the electron device. Typically, nanoscale
devices are small enough to assume that, even at THz frequencies, the electric field is much more
relevant than the magnetic field. Therefore, only the Gauss law (first Maxwell’s equations) is enforced
to be fulfilled in a self-consistent way (i.e., taking into account the actual charge distribution in the
active region). However, the environment of nanoscale devices is commonly a metallic element of
macroscopic dimensions. In there, the magnetic and electric fields become both relevant, acting as
active (detecting or emitting) THz antennas. For the typical electromagnetic modes propagating in
the metals, the magnetic and electric fields are translated into the language of currents and voltages
and the whole antenna is modeled as a part of an electric circuit. In this work, the graphene device
interacts with an environment that is modeled by a Resistor (R) and a capacitor (C) connected in series
through ideal cables (see the schematic plots in Figure 5a—).

The active region of the graphene device is simulated with the Bohmian conditional wavefunction
approach explained in the previous section, while the RC circuit is simulated using a time-dependent
finite-difference method. We consider the system plus environment to be in equilibrium. Specifically,
the self-consistent procedure to get the current is as follows: an initial (at time f = 0) zero voltage
is applied at the source (V5(0) = 0) and drain (Vp(0) = 0) contacts of the graphene active region.
At room temperature this situation yields a non-zero current from Equation (20) (i.e., I(0) # 0) because
of thermal noise. Such current I(0) enters the RC circuit and leads to a new voltage Vs(dt) # 0 at the
next time step dt (where dt represents the time step that defines the interaction between the RC circuit
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and the quantum device which was set to dt = 0.5fs). The new source Vs(dt) # 0 and fixed drain
Vp(dt) = 0 voltages now lead to a new value of the current I(dt) # 0 in (20) which is different from
zero not only because of thermal noise but also because there is now a net bias (Vp (dt) — Vs (dt) # 0).
This new current I(dt) is used (in the RC circuit) to get a new Vg(2dt) that is introduced back in the
device to obtain I(2dt) and so on. Importantly, as the system and environment are in equilibrium,
the expectation value of I(t) is zero at any time, i.e., (I(t)) =0 Vt.

We consider three different environments (with different values of the capacitance). In Figure 5a
we plot the total (particle plus displacement) electrical current at the end of the active region when
R = 0 and C = co. The same information is shown in Figure 5b,c for two different values of the
capacitance C = 2.6 x 107 Fand C = 1.3 x 1077 F. In all cases the value of the resistance is
R =187 ), and we assumed the current I() to be positive when it goes from drain to source.

The effect of the RC circuit is, mainly, to attenuate the current fluctuations, which are originated
due to thermal noise. This can be seen by comparing Figure 5a with Figure 5b,c. The smaller the
capacitance the smaller the current fluctuations. This can be explained as follows: when the net current
is positive, the capacitor in the source starts to be charged and so the voltage at the source increases
trying to counteract the initially positive current. Therefore, the smaller the capacitance the faster the
RC circuit reacts to a charge imbalance.
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Figure 5. Total (particle plus displacement) electrical current I(¢) evaluated at the ammeter as a function
of time for a graphene device connected to three different RC circuits with R = 187 Q). The values of
the capacitances are: (a) C = oo, (b) C =2.6 x 10717 Fand (¢) C =13 x 10~ E

In Figure 6 we plot the total (particle plus displacement) current—current correlations as a function
of the observation time 7 for the three scenarios in Figure 5. Correlations at very small observation
times provide information of the variance of the current, which, as explained above, is reduced as the
value of the capacitance is increased. Numerical simulations (not shown here) exhibit that the role of the
resistor R is less evident because the active region itself has a much larger (than R = 187 (}) associated
resistance. Numerically the distinction between Markovian and non-Markovian dynamics boils down
to the comparison of time correlations as defined in Equations (9) and (13). Since there is no net bias
applied to the graphene device (i.e., it is in equilibrium), an ensemble average of the current (over
an infinite set of trajectories like the one depicted in Figure 5) yields (I(¢)) = 0 Vt. Time correlation
functions computed in Equation (9) are thus zero by construction, i.e., (I(t))(I(t+71)) =0 Vt, 1.
Therefore, the non-Markovian dynamics occurring at very high-frequencies (below the ps time-scale in
Figure 6 expressly shows) fixes the correlation time of the environment at tp ~ ps. Although all three
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values of the capacitance C in Figure 6 yield the same order of magnitude for fp ~ ps, it seems also
true that the smaller the value of the capacitance, the smaller ¢p.

Current-current correlations shown in Figure 6 can be better understood by assessing the transit
time of electrons. For a velocity of roughly 10® m/s inside an active region of L = 40 nm length is
roughly 77 = L/v, = 0.04 ps. Positive correlations correspond to transmitted electrons traveling from
drain to source (as well as electrons traversing the device from source to drain). While 0 < t < 7r
electrons are transiting inside the active region, such electrons provide always a positive (or negative)
current as seen in expression (20). In other words, if we have a positive current at time ¢ because
electrons are traveling from drain to source, we can expect also a positive current at times #' satisfying
t < t' < t+ 1r. The negative correlations belong to electrons that are being reflected. They enter
in the active region with a positive (negative) velocity and, after some time tg inside the device,
they are reflected and have negative (positive) velocities until they leave the device after spending
roughly 271 in the active region. Thus, during the time g < t < 2tg which will be different for
each electron depending on the time when they are reflected, we can expect negative correlations.
Interestingly, during the 4 ps simulation the number of Bohmian trajectories reflected are double in the
black (C = o) simulation than in the red one (C = 1.3 x 10!7 F). This can be explained in a similar
way as we explained the reduction of the current fluctuations. The fluctuations of the electrical
current imply also fluctuations of the charge inside the active region, which are translated (through
the Gauss law) into fluctuations of the potential profile. Thus, the larger the noisy current, the larger
the noisy internal potential profile. This implies a larger probability of being reflected by the Klein
tunneling phenomenon. Therefore, if one aims at describing the dynamics of nanoscale devices with
a time-resolution T that is comparable to (or goes beyond) the electron transit time 77, a non-Markovian
approach is necessary. This is so because the total current I(t) (which has contributions from the
displacement and the particle currents) shows correlations at times that are smaller than the electron
transit time.
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Figure 6. Total current—current correlation as a function of time for the three different experiments in
Figure 5. The zero is indicated by a dashed line to show the tendency of the total current, understood as
a property of the environment, to vanish at long times 7. Zero autocorrrelation implies an independence
between I(t) and I(t + T) which is typical for Markovian scenarios. This is not true for the short T
considered here which are the representatives of the non-Markovian dynamics.
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6. Conclusions and Final Remarks

Theoretical approaches to open quantum systems that rely on the manipulation of state vectors
instead of a reduced density matrix have well known computational advantages. Two major benefits
are the substantial reduction of the dimensionality of the involved mathematical objects and the
preservation of complete positivity [18]. However, substituting density matrices by state vectors
constitutes also an attempt to achieve a more detailed description of the dynamics of open quantum
systems [6,19]. It is well recognized, for example, that the continuous measurement of an open
quantum system with associated Markovian dynamics can be described by means of a SSE (see Table 2
O4). The conditional state solution to such an equation over some time interval can be linked to
a “quantum trajectory” [12,19] of one property of the environment. Thus, the conditional state can
be interpreted as the state of the open system evolving while its environment is under continuous
monitoring. This is true in general for Markovian systems, no matter whether or not the environment
is being actually measured (i.e., it is valid for both Figure 1a,b). This fact is of great importance for
designing and experimentally implementing feedback control in open quantum systems [35]. If this
interpretation could also be applied to non-Markovian SSEs [33,37], then this would be very significant
for quantum technologies, especially in condensed matter environments (e.g., electron devices), which
are typically non-Markovian [6].

Table 2. Validity of Bohmian vs. orthodox conditional states to provide dynamic information of open
quantum system depending on the relation between the environment decoherence time ¢p and the
observation period 7. Here (un)measured refers to unmeasured and measured indistinctively.

Validity of Conditional ~Non-Markovian Non-Markovian Non-Markovian Markovian
States to Provide -Measured- -Unmeasured- -(Un)measured- -(Un)measured-
Dynamic Information tp >1t=0 tp >1t=0 tp~T1>0 tp LT
Orthodox o1 v (02) x (03) X 04) v
Bohmian (Bl) v (B2) v (B3) v (B4) v

Unfortunately, for non-Markovian conditions, the above interpretation is only possible for the
rather exotic scenario where the environment is being continuously monitored and the system is
strongly coupled to it. As no correlation between the system and the environment can build up,
the evolved system is kept in a pure state. This is the well-known quantum Zeno regime [65,66],
under which conditional states can be trivially used to describe the frozen properties of the system
(see Table 2 O1). Without the explicit consideration of the measurement process (as in Figure 1a),
however, the postulates of the orthodox theory restrict the amount of dynamical information that
can be extracted from state vectors (see Table 2 O2). In most general conditions, for T > 0 and
non-Markovian dynamics, while conditional states can be used to reconstruct the reduced density
matrix, they cannot be used to evaluate time-correlations (see Table 2 O3) [20,23]. This is not only true
when the environment is being measured (as in Figure 1b), but also when it is not measured (as in
Figure 1a).

Therefore, we turned to a nonorthodox approach: the Bohmian interpretation of quantum
mechanics. The basic element of the Bohmian theory (as in other quantum theories without observers)
is that the intrinsic properties of quantum systems do not depend on whether the system is being
measured or not. Such ontological change is, nevertheless, fully compatible with the predictions of
orthodox quantum mechanics because a measurement-independent reality of quantum objects is not
in contradiction with non-local and contextual quantum phenomena. Yet, the ontological nature of the
trajectories in Bohmian mechanics introduces the possibility of evaluating dynamic properties in terms
of conditional wavefunctions for Markovian and non-Markovian dynamics, no matter whether the
environment is being actually measured or not (see Table 2, B1-B4 and Figure 7a,b).



Entropy 2019, 21, 1148 18 of 25

In summary, the Bohmian conditional states lend themselves as a rigorous theoretical tool to
evaluate static and dynamic properties of open quantum systems in terms of state vectors without the
need of reconstructing a reduced density matrix. Formally, the price to be paid is that for developing
a SSE-like approach based on Bohmian mechanics one needs to evaluate both the trajectories of
the environment and of the system see (d) Table 1. Nonetheless, we have seen that this additional
computational cost can be substantially reduced in practical situations. For THz electron devices (see
Section 5), for example, we showed that invoking current and charge conservation one can easily get
rid of the evaluation of the environment trajectories. This reduces substantially the computational
cost associated to the Bohmian conditional wave function approach (as shown (e) in Table 1). Let us
also notice that here we have always assumed that the positions of the environment are the variables
that the states of the system are conditioned to. However, it can be shown that the mathematical
equivalence of the SSEs with state vectors conditioned to other “beables” of the environment (different
from the positions) is also possible. It requires using a generalized modal interpretation of quantum
phenomena, instead of the Bohmian theory. A review on the modal interpretation can be found
in [67,68].

Unmeasured Bohmian Approach
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Figure 7. (a) Figure depicting the Unmeasured Bohmian approach in which the computation of any
property (electric current in an electron device) is independent of the measuring apparatus. (b) The
continuous measurement of the electric current through an ammeter (measuring apparatus) can be
also described in Bohmian mechanics by including the degrees of freedom of the measuring apparatus.

As an example of the practical utility of the Bohmian conditional states, we have introduced
a time-dependent quantum Monte Carlo algorithm, called BITLLES, to describe electron transport
in open quantum systems. We have simulated a graphene electron device coupled to an RC circuit
and computed its current-current correlations up to the THz regime where non-Markovian effects
are relevant. The resulting simulation technique allows to describe not only DC and AC device’s
characteristics but also noise and fluctuations. Therefore, BITLLES extends to the quantum regime
the computational capabilities that the Monte Carlo solution of the Boltzmann transport equation has
been offering for decades for semi-classical devices.
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Appendix A. D’Espagnat Distinction between “Proper” and “Improper” Mixtures

An alternative explanation on the difficulties of state vectors in describing open quantum system
comes from the distinction between “proper” and “improper” mixtures by D’Espagnat.

o  The “proper” mixture is simply a mixture of different pure states of a closed system. We define
such pure states as [¢;) with g = 1,.., N. We know that each of these states represent the closed
system in one of the repeated experiments, but we ignore which state corresponds to each
experiment. We only know the probability P(q) that one experiment is represented by the pure
state [¢p;). Then, if we are interested in computing some ensemble value of the system, over
all experiments, von Neumann introduced the mixture p = [ P(q)|yq) (4]dq. It is important to
notice that we are discussing here human ignorance (not quantum uncertainty). The system is
always in a well-defined state (for all physical computations), but we (the humans) ignore what
the state is in each experiment.

e  The “improper” mixture refers to the density matrix that results from a trace reduction of a pure
sate (or statistical operator) of a whole system that includes the system and the environment.
The reduced density of the system alone is given by tracing out the degrees of freedom of the
environment, giving the result in Equation (7), which is mathematically (but not physically)
equivalent to the results of the "proper" mixture constructed from our “ignorance” of which state
represents the system.

D’Espagnat claims that the ignorance interpretation of the “proper” mixture cannot be given to
the “improper” mixture. The D’Espagnat’s argument is as follows. Let us assume a pure global system
(inclding the open system and the environment) described by Equation (1). Then, if we accept that the
physical state of the system is given by |¢,(t)), we have to accept that the system-plus-environment
is in the physical state |q) ® |, (t)) with probability P(q). The ignorance interpretation will then
erroneously conclude that the the global system is in a mixed state, not in a pure state as assumed in
Equation (1). The error is assuming that the system is in a well-defined state that we (the humans)
ignore it. This is simply not true. D’Espagnat results shows that a conditional state cannot be
a description of an open system with all the static and dynamic information that we can get from the
open system.

In addition, let us notice that the conclusion of D’Espagnat applies to any open quantum system
without distinguishing between Markovian or non-Markovian scenarios. However, indeed, there
is no contradiction between the D’Espagnat conclusion and the attempt of the SSE of using pure
states to describe Markovian open quantum systems for static and dynamic properties. Both are
right. D’Espagnat discussion is a formal (fundamental) discussion about conditional states, while the
discussion about Markovian scenarios is a practical discussion about simplifying approximation when
extracting information of the system at large 7.
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Finally, let us notice that the D’Espagnat conclusions do not apply to Bohmian mechanics because
the Bohmian definition of a quantum system involves a wave function plus trajectories. The conditional
state I,Z’Qi(t)(X, t) = ¥(x,Qi(t),t), together with the environment and system trajectory Q'(t) and
X'(t), contains all the (static and dynamic) information of the open system in this i-th experiment.
An ensemble over all experiments prepared with the same global wavefunction ¥(x, g, t) requires
an ensemble of different environment and system trajectories Q'(t) and X'(t) fori = 1,2,..., M with
M — co.

Appendix B. Orthodox and Bohmian Reduced Density Matrices

The orthodox and Bohmian definitions of a quantum state are different. The first uses only a wave
function, while the second uses the same wave function plus trajectories. It is well known that both
reproduce the same ensemble values by construction. Here, we want to discuss how the orthodox
density matrix (without trajectories) can be described by the Bohmian theory with trajectories.

We consider a system plus environment defined by a Hilbert space H that can be decomposed as
H = Hyx ® Hy where x is the collective positions of particles of the system while g are the collective
positions of the particles of the environment.The expectation value of any observable Oy of the
system can be computed as (Oy) = (¥|Oy ® [;|¥) with [, the identity operator for the environment.
We describe the typical orthodox procedure to define the orthodox reduced density matrix by tracing
out all degrees of freedom of the environment:

pl /) = [ dg¥*(x',q, ¥ (x,q,1 (A1)

From Equation (A1) the mean value of the observable O, can be computed as,

= /dx (Oxp (2, %", )| 1—y) (A2)

In this appendix, we want to describe Equations (A1) and (A2) in terms of the Bohmian conditional
wavefunctions and trajectories described in the text. The conditonal wavefunction associated to the
system during the i-th experiment conditioned on a particular value of the environment Q' (¢) is defined
as P (v, t) = ¥(x, Qi(t),t), being ¥(x,q,t) = (x,q|'F) the position representation of the global state.
We start from the general expression for the ensemble value in the position representation as,

) = /dx/dq ¥ (x,q,t)0x¥(x,q,t) (A3)

Multiplying and dividing by ¥*(x, g, t) we get,
_ (x,q,1)POx¥(x,q,1)
(Oy) = /dx/d T*xq,)

_ (B)]6(g — Q' ()]0 ¥ (x4, t)
- /dx/d Y*(x,q,t)

- ik [ st xiw) (a9
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where we have used the quantum equilibrium condition |‘I’(x 7,0)> = 4 M 6[(x — X (£)]6[(q —
Qi(t)] with M — co. Now, we multiply and divide by ¥*(x, Q'(t), ) to get,

M * i ! .
(0 = &gi/dxoxqj (x|TQ(x( )Ql()t\;(7§|2Q() )§(X—Xl(t))

- fax

where P; = 1/ M can be interpreted as the probability associated to each i = 1,2, ..., M experiment and

we have defined: ( 0,0
i o Y(x, QH 1), t
PN = i), @i, 0 (A0

Now, once we arrive at Equation (A5), one can be tempted to define a type of Bohmian reduced density

M . .
Ox ) P (', )¢ (x, 1) (A5)

=1 ¥ =x=Xi(t)

matrix in terms of the conditional wavefunctions for i = 1,2, ..., M experiments as,

NP RS SCIN ORI (CACIGN))
ol 2 ) = LR OF ) = LR gnas o, n v, A

Il
—

where we have arbitrarily eliminated the role of the trajectories. However, strictly speaking
Equation (A1) is not equal to Equation (A7). If we include all i = 1,2,..., M experiments in
the computation of (A7), there are trajectories Q'(t) and Q/(t) that at the particular time ¢ can
be represented by the same conditional wavefunction ¢ (x,t) = ¢/ (x,t) if Q/(t) = Q/(t). Such
over-summation due to the repetition of the same trajectories is not present in (Al).

To simplify the subsequent discussion, let us assume that g is one degree of freedom in a 1D space.
Let us cut such 1D space into small intervals of length Ag. Each interval is defined as j Ag < g <
(j+1) Ag and it is labelled by the index j. Then, we can define G/(t) as the number of positions Q' (t)
that are inside the j-interval at time ¢ as:

.
G =3 [ oty @)y (a9

i=17i0q

With this definition, assuming that Ag is so small that all Q(t) inside the interval and all the
corresponding Bohmian conditional wave functions ¥(x, Q/(t),t), system positions Xi(t), and
probabilities P; are almost equivalent, and given by ¢/, ¥(x,¢/,t), x/ and P; respectively, we can
change the sum over i = 1, ..., M experiments into a sum over j = ..., —1,0, 1, ... spatial intervals to
rewrite Equation (A7) as:

j=+o0 , j t X, j t . . .
pu(x',x,t) =Y G/(tP; ‘I’*((x] 3] t)) ((xf Z]] ) /dq]N] HY* (x', ¢/, t)¥(x, ¢, t) (A9)
j=—c0

where Ni(t) = G/ (£)P; / (¥~ (x/, ¢/, t)¥(x,q/,1)). So, finally, a proper normalization of the Bohmian
conditional states allows us to arrive to Equation (A1) from Equation (A7). Such normalization is
already discussed in quation (11) in the text. The moral of the mathematical developments of this
appendix is that open systems are more naturally described in terms of density matrix than in terms
of conditional states when using the orthodox theory, while the contrary happens when using the
Bohmian theory. Because of the additional variables of the Bohmian theory, the conditional states are
a natural Bohmian tool to describe open systems.
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Appendix C. Equations of Motion for Single-Electron Conditional States in Graphene

As said in the text, graphene dynamics are given by the Dirac equation and not by the usual
Schrodinger one. The presence of the Dirac equation on the description of the dynamics of electrons in
graphene is not due to any relativistic correction but to the presence of a linear energy-momentum
dispersion (in fact, the graphene Fermi velocity vy = 10 m/s is faster than the electron velocity in
typical parabolic band materials but still some orders of magnitude slower than the speed of light).
Thus, the conditional wavefunction associated to the electron is no longer a scalar but a bispinor.
In particular, the initial bispinor is defined (located outside of the active region) as:

pi(x,zt)\ [ 1
(l/Jz(x, z,t)) - (selel?c> Ye(x,z,t), (AL0)

where ¥¢(x,z,t) is a Gaussian function with central momentum k. = (kxe kze), s =1(s = —1)if
the electron is in the conduction band (valence band) and le = atan (ks /ky.). The wave packet
can be considered as a Bohmian conditional wavefunction for the electron, a unique tool of Bohmian
mechanics that allows to tackle the many-body and measurement problems in a computationally
efficient way [25,62]. The two components are solution of the mentioned Dirac equation:

20 (1) _ V(x,z,t) fihvf%—hvfa% AN | "
en <¢2>_<—ihvfaax+hvfaaz V(x,z,t) ) ’f”’f<” V+V) o ) (A11)

where vy = 10° m /s is the mentioned Fermi velocity and V(x, z, t) is the electrostatic potential. & are

r=we=((70) (0 7)) (a12)

Usually, in the literature, one finds 0 as 0;, however, since we defined the graphene plane as the XZ
one, the notation here is different. Then, we can obtain a continuity equation for the Dirac equation
and then we can easily identify the Bohmian velocities of electrons as [44]

the Pauli matrices:

_ opp(7, 1) Gy (7, t) (A13)
[p(7

p(F B[

By time integrating (A13) we can obtain the quantum Bohmian trajectories. The initial positions of
the trajectories must be distributed according to the modulus square of the initial wavefunction, i.e.,
satisfying the quantum equilibrium hypothesis and thus certifying the same empirical results as the
orthodox theory [44]. All this formalism was introduced in the BITLLES simulator in order to correctly
model graphene and other linear band structure materials.

(7, 1)
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Abstract: The so-called Born-Huang ansatz is a fundamental tool in the context of ab-initio molecular
dynamics, viz., it allows effectively separating fast and slow degrees of freedom and thus treating
electrons and nuclei with different mathematical footings. Here, we consider the use of a Born-Huang-like
expansion of the three-dimensional time-dependent Schrodinger equation to separate transport and
confinement degrees of freedom in electron transport problems that involve geometrical constrictions.
The resulting scheme consists of an eigenstate problem for the confinement degrees of freedom
(in the transverse direction) whose solution constitutes the input for the propagation of a set of
coupled one-dimensional equations of motion for the transport degree of freedom (in the longitudinal
direction). This technique achieves quantitative accuracy using an order less computational resources
than the full dimensional simulation for a typical two-dimensional geometrical constriction and upto
three orders for three-dimensional constriction.

Keywords: nanojunction; constriction; quantum electron transport; quantum confinement; dimensionality
reduction; stochastic Schrodinger equations; geometric correlations

1. Introduction

Nanoscale constrictions (sometimes referred to as point contacts or nanojunctions) are unique
objects for the generation and investigation of ballistic electron transport in solids. Studies of such
systems have been inspired by the pioneering investigations of Sharvin in the mid-1960s [1]. Today,
advances in fabrication techniques like direct growth of branched nanostructures [2], electron beam
irradiation [3], thermal and electrical welding [4], or atomic force microscope [5] have allowed
controlling the size and composition of nanojunctions for creating devices with desired functionalities.
In this respect, a number of nanodevices based on nanojunctions like single electron transistors [6,7],
field effect transistors [8,9], and heterostructure nanowires [10,11] have been recently reported,
which promise great performance in terms of miniaturization and power consumption.

In the design of these nanostructures, simulation tools constitute a valuable alternative to the
expensive and time-consuming test-and-error experimental procedure. A number of quantum electron
transport simulators are available to the scientific community [12-16]. The amount of information that
these simulators can provide, however, is mainly restricted to the stationary regime, and therefore,
their predicting capabilities are still far from those of the traditional Monte Carlo solution of the
semi-classical Boltzmann transport equation [17]. This limitation poses a serious problem in the near
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future as electron devices are foreseen to operate in the terahertz (THz) regime. At these frequencies,
the discrete nature of electrons in the active region is expected to generate unavoidable fluctuations of
the current that could interfere with the correct operation of such devices both for analog and digital
applications [18].

A formally exact approach to electron transport beyond the quasi-stationary regime relies in the
modeling of the active region of electron devices as an open quantum system [19,20]. As such, one can
then borrow any state-of-the-art mathematical tool developed to study open quantum systems [21,22].
A preferred technique has been the stochastic Schrodinger equation (SSE) approach [23-30]. Instead of
directly solving equations of motion for the reduced density matrix, the SSE approach exploits the
state vector nature of the so-called conditional states to alleviate some computational burden [31].

As an example of the practical utility of the SSE, a Monte Carlo simulation scheme to describe
quantum electron transport in open systems that is valid both for Markovian or non-Markovian regimes
guaranteeing a dynamical map that preserves complete positivity has been recently proposed [32].
The resulting algorithm for quantum transport simulations reformulates the traditional “curse
of dimensionality” that plagues all state-of-the-art techniques for solving the time-dependent
Schrodinger equation (TDSE). Specifically, the algorithm consists of the solution of an ensemble of
single-particle SSEs that are coupled, one to each other, through effective Coulombic potentials [33-35].
Furthermore, the simulation technique accounts for dissipation [36] and guarantees charge and current
conservation through the use of self-consistent time-dependent boundary conditions [37-39] that
partially incorporate exchange correlation [39,40]. Solving a large number of three-dimensional
(3D) single-particle TDSEs, however, may still be a very time-consuming task. Therefore, the above
technique would greatly benefit from the possibility of further reducing the dimensionality of the
associated numerical problem.

It is the purpose of this work to derive and discuss a method that allows solving the 3D TDSE
in terms of an ensemble of one-dimensional (1D) TDSEs. The technique is inspired by the so-called
Born-Huang ansatz [41], which is a fundamental tool in the context of ab-initio molecular dynamics
that allows separating fast and slow degrees of freedom in an effective way [42]. Here, we consider an
analogous ansatz to separate transport and confinement directions. As it will be shown, the resulting
technique allows to describe arbitrary geometric correlations in terms of a coupled set of 1D TDSEs.
Therefore, while we have motivated the development of this method in the context of the simulation of
(non-Markovian) quantum transport in open systems, the method presented here could be of great utility
in many research fields where the reduction of the computational cost associated with the solution
of an ensemble of SSEs may be advantageous. This includes, for example, the description of spin
thermal transport [43,44], thermal relaxation dynamics [19,45], ionic motion [46,47], or Bose-Einstein
condensates [48-50] in terms of SSEs.

The manuscript is structured as follows. In Section 2, we introduce a Born—-Huang-like ansatz that
allows expanding the 3D single-particle TDSE in terms of an infinite set of (transverse) eigenstates
weighted by (longitudinal) complex coefficients. The equations of motion for the coefficients are found
to be coupled and obey a non-unitary partial differential equation. In Section 3, we apply the method
to a typical 2D constriction. Section 3.1 is devoted to finding analytical expressions for the effective
potentials that appear in the equation of motion of the coefficients. A discussion on the geometrical
dependence of these effective potentials is provided. In Section 3.2, we illustrate the performance of
the method to describe the dynamics of an electron across a 2D nanojunction. In Section 4, we provide
a thorough discussion on the advantages and potential drawbacks of the method. We conclude in
Section 5.
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2. Single-Electron Time-Dependent Schréodinger Equation in a Born—-Huang-Like Basis Expansion

As we explained in the Introduction, it is our goal to reduce the computational burden associated
with the solution of an ensemble of effective single-electron 3D SSE [32]. We consider our starting
point to be the 3D TDSE of a single (spin-less) electron in the position basis, i.e.,

i%‘l’(x, v,z t) = H(x,y,2)¥(x,y,zt), W

where we have used atomic units, x, y, and z represent the three spatial coordinates, and Y(x,y,z1)is
a well normalized wavefunction, i.e., [[[dx dy dz [¥(x,y,zt)[*> =1 Vt. In Equation (1), H(x,y,z) is
the full Hamiltonian of the system:

H(x,y,z) = Ti+T,+T.+V(x)+W(xy,z), ()

which has been assumed to be time-independent for simplicity. The time-dependence of the scalar
potentials V(x) and W(x, y, z) will be discussed in later sections. In Equation (2), Ty = —3 % and V(x)
are, respectively, the kinetic energy and the scalar potential associated with the longitudinal degree of
freedom x, while T, = — % % and T, = — % % are the kinetic energies associated with the transversal
degrees of freedom y and z. The scalar potential W(x,y, z) includes any other scalar potential that is
not purely longitudinal, which is responsible for making the solution of Equation (1) non-separable.

It is convenient at this point to rewrite the Hamiltonian in Equation (2) in terms of longitudinal
and transverse components as:

H(x,y,z) = T + V(x) + Hy (y,2), ®)
where Hy (v, z) is the transverse Hamiltonian defined as:
H,J; (y,z) = T, + T. + W(x,y,z). 4)

An eigenvalue equation associated with the transverse Hamiltonian can now be introduced
as follows:

Hi (v, 2)9k (y,2) = EXd(y,2), (5)

where £f and ¢X(y, z) are the corresponding eigenvalues and eigenstates respectively, and k € Z.
The eigenstates ¢X(y,z) form a complete orthonormal basis in which to expand the Hilbert space
spanned by the variables x, y, and z. Therefore, the 3D wavefunction in Equation (1) can be expressed
in terms of transverse eigenstates 4)’; (y,z) as:

Y(xyzt) = ) X (0 0)¢5(,2), ©6)
k=1

where x*(x,t) = [[ dydz¢X(y,z)¥(x,y, z, t) are complex longitudinal coefficients associated with the
transverse eigenstate ¢X(y,z). Unless otherwise stated, all integrals are evaluated from —oco to oo.
It is important to note that since the longitudinal variable x appears as a parameter in Equation (5),
the transverse eigenstates obey the following normalization condition:

[ avizekv, 265w, 2) = o, . )
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In addition, since the full wavefunction ¥(x,y, z, t) is well normalized, then the longitudinal
complex coefficients xF(x,t) in Equation (6) fulfill the condition:

Y [ dxlxt P =1 ®
k=1

The wavefunction expansion in Equation (6) can now be introduced into Equation (1) to obtain an
equation of motion for the coefficients x*(x, t) (see Appendix A):

aat (x,t) = (Tx+€)’§+V(X))X"(x,f>—li1

(S"’<x) - F"%x)fx) X' (x1), )

where EF are effective potential energies (that correspond to the eigenvalues in Equation (5)) and F¥ (x)
and S¥ (x) are geometric (first and second order) coupling terms, which read:

Px) = [[ ayazid.2) 20k ,2), (102)

$4() = 1 [ dydzgs!(0,2) 20,2, (10b)

Since the transverse eigenstates ¢X (1, z) are the energy eigenstates of a bounded system and can
always be chosen to be real, the term F* is zero by construction. The other terms in Equation (10)
dictate the transfer of the probability presence between different longitudinal coefficients x*(x, t) and,
therefore, will be called geometric non-adiabatic couplings (GNACs). Accordingly, one can distinguish
between two different dynamic regimes in Equation (9):

(i) Geometric adiabatic regime: This is the regime where F¥ and S¥ are both negligible. Thus, the solution
of Equation (9) can be greatly simplified because it involves only one transverse eigenstate.

(i) Geometric non-adiabatic regime: This is the regime where either or both F¥ and S¥ are important.
Thus, the solution of Equation (9) involves the coupling between different longitudinal coefficients
and hence more than one transverse eigenstate.

Interestingly, the prevalence of either the regimes (i) or (ii) can be estimated by rewriting the first
order coupling terms F¥(x) as (see Appendix B for an explicit derivation):

o Sy [z z) (FWy2) ¢h(,2)
= el &f

Vk # 1. (11)

That is, the importance of non-adiabatic transitions between transverse eigenstates depends
on the interplay between the transverse potential-energy differences £. — £X and the magnitude of
the classical force field, which is proportional toaa—xW(x, ¥,z). The geometric adiabatic regime (i) is
reached either when the classical force field is very small or the energy differences £, — £F are large
enough. In the adiabatic regime, only the diagonal terms, St
shift of the potential-energies EX felt by the longitudinal coefficients x*(x, t). In this approximation,
the longitudinal degree of freedom moves in the potential-energy of a single transverse state, i.e., EX.
This regime is analogous to the so-called Born—-Oppenheimer approximation in the context of molecular
dynamics [51], where the term S* is often called the Born-Oppenheimer diagonal correction [52].
As will be shown in our numerical example, the evolution of the system can be governed either by
the geometric adiabatic or nonadiabatic regime depending on the particular spatial region where the
dynamics occurs.

Let us notice at this point that the time-dependence of the Hamiltonian in Equation (2) may
arise either due to a purely longitudinal time-dependent scalar potential V(x,t) or through the time-
dependence of the non-separable potential W(x, y, z, t). If the time-dependence is added only through

, are retained, which induce a global
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V(x,t), then nothing changes in the above development. On the contrary, if a time-dependence is
included in W(x, y, z, t), then the eigenstate problem in Equation (5) changes with time and so do the
effective potential-energies £X and the first and second order GNACs F¥ (x, t) and S¥(x, t). As it will
be shown later, in this circumstance, Equation (5) should be solved self-consistently with Equation (9).

Before we move to a practical example implementing the above reformulation of the 3D TDSE,
let us emphasize that it is the main goal of the set of coupled equations in Equation (9) to allow the
evaluation of relevant observables in terms of 1D wavefunctions only. In this respect, let us take,
for example, the case of the reduced probability density p(x,t) = [[dydz¥*(x,y,z,t)¥(x,y,z,t).
Using the basis expansion in Equation (6), p(x, ) can be written as:

o t) = Lx (v X (o) [ [ dydzgd (v,2)95 v, 2), (12)
k,l

and using the condition in Equation (7), the above expression reduces to:

o)

plxt) =3 X (x D). (13)

k=1

Therefore, according to Equation (13), the reduced (longitudinal) density is simply the sum
of the absolute squared value of the longitudinal coefficients x*(x, t), which is in accordance with
Equation (8), i.e., [ dxp(x,t) = Y52 [ dx|x*(x,)|?> = 1. Similarly, other relevant observables, such as
the energy can easily be derived using the expansion in Equation (6) (see Appendix C).

3. Application of the Method to a Typical Constriction

The above formulation can be cast in the form of a numerical scheme to solve the 3D TDSE,
which we will call, hereafter, geometrically correlated 1D TDSE (GC-TDSE). The scheme can be
divided into two different parts corresponding to their distinct mathematical nature. The first part
involves the solution of the eigenvalue problem in Equation (5), which allows evaluating the transverse
eigenstates ¢X (1, z) and eigenvalues £X, as well as geometric non-adiabatic couplings F¥ (x) and ¥ (x)
in Equation (10). These quantities are required in the second part of the algorithm to solve the equation
of motion of the longitudinal coefficients x*(x, t) in Equation (9), which ultimately allow us to evaluate
the observables of interest.

In what follows, we discuss these two aspects of the algorithm for a typical 2D geometric constriction
whose geometry does not change in time. We consider one degree of freedom in the transport direction
and one degree of freedom in the transverse (or confinement) direction. The generalization to a 3D
system, i.e., with two transverse degrees of freedom, is straightforward and does not add any physical
insight with respect to the 2D case. As will be shown, the transverse eigenstates and eigenvalues, as well
as the geometric non-adiabatic couplings are, for a time-independent constriction, functions that are
computed only once. That is, the effective potential-energies £X and the non-adiabatic couplings F¥ and
Sk are computed only at the very beginning of the GC-TDSE propagation scheme. For more general
time-dependent constrictions, possibly with no analytical form of W(x, y, z, t), the only change in the
algorithm is that Equation (5) has to be solved, self-consistently, together with Equation (9) at each
time step.

3.1. Evaluation of Transverse Eigenstates (and Values) and Geometric Non-Adiabatic Couplings

Let us consider the case of a 2D nanojunction represented by the scalar potential:

0, if Ly(x) <y < Lqi(x)

(14)
0o, otherwise

V(x,y) = {



Materials 2020, 13, 3033 6 of 16

where L1 (x) and Ly (x) define the shape of the constriction. The corresponding 2D Hamiltonian reads
H(x,y) = Te + V(x) + Hy (y), (15)

where Hi (y) = T, + W(x,y). The wavefunction for a 2D constriction in terms of the Born-Huang
expansion can be written as ¥ (x,y,t) = Y x*(x, )¢k (y), and the transverse states ¢X () are solutions
of a free particle in a 1D box whose width depends on the longitudinal variable x, i.e.,

i(y) = riin <%) , if Lp(x) <y < Li(x)

(16)
0, otherwise.

The associated eigenvalues are given by:

K k2 7.[2

gx - m/ (17)
where we have defined L(x) = Lq(x) — Lp(x). These energies, parametrically dependent on the
longitudinal variable x, define the effective potential-energies on which the coefficients x*(x, t) evolve.
To evaluate the first and second order coupling terms F¥(x) and S¥(x), we need to rely on a particular
form of the constriction. Depending on the specific form of L (x) and Ly(x), different constrictions can be
conceived (see for example panels (a) and (c) of Figure 1). Given the states in Equation (16) and a particular
shape of the constriction (defined in Equation (A18a,b) of Appendix D), it is then easy to evaluate the

non-adiabatic coupling terms FK and SK (see panels (b) and (d) of Figure 1).

0.16

400
(C)] 40.1

200+ = 0.084

y(a.u)

600 800 1000
x (a.u.)

400
(c)

y(a.u.)
Ski (a.u.)

600 800 1000
x (a.u.) x (a.u.)

Figure 1. Two different nanojunctions, viz., (a,c), defined by Equation (A18a,b) in Appendix D and using
A =180, B = 220, a1 = 630, a, = 870, with y = 10in (a) and v = 20 in (c). Panels (b,d) show the associated
second order (non-adiabatic) couplings Sk (solid blue lines) and the associated potential-energies £ ,’(‘ (solid
black lines) for the geometries in (a,c), respectively. Note that, due to the symmetry of the states defined in
Equation (16), the coupling between odd and even states is zero, i.e., FH (x) = Skl (x) =0, Vk+1 = odd.

The two different constrictions in Figure 1 serve well to gain some insight into the general form
and dependence of the effective potential-energies ¥, as well as of the GNACs in Equation (10).
Geometries changing more abruptly lead to sharper effective potential-energies £X and more peaked
non-adiabatic coupling terms F¥(x) and S¥(x). Sharper constrictions are thus expected to cause larger
non-adiabatic transitions and hence to involve a larger number of transverse eigenstates requiring a
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larger number of longitudinal coefficients in order to reconstruct the reduced (longitudinal) density in
Equation (12). On the contrary, smoother constrictions should yield softer non-adiabatic transitions
and hence involve a smaller number of transverse eigenstates.

3.2. Time-Dependent Propagation of the Longitudinal Coefficients

Given the effective potential-energies £¥ and the non-adiabatic couplings F¥(x) and S¥(x),
one can then easily find a solution for the longitudinal coefficients in Equation (9). Here, we consider
the dynamics of an electron that impinges upon a constriction defined by Equations (14) and (A18a,b)
in Appendix D using the particular set of parameters, { A, B,ay,a,,v} = {180,220,630,870,20},
which corresponds to panel (c) of Figure 1. Due to the symmetry of the states defined in Equation (16),
transitions between odd and even states are forbidden, i.e.,

F¥(x) =M (x) =0 Vk+1=odd. (18)

We will consider two different initial states. On the one hand, the initial wavefunction ¥(x, y, 0)
will be described by:

¥(xy,0) = g2 (1) (x), (19)
where ¢1(y) is the transverse ground state defined in Equation (16), and 9 (x) = A exp (iko(x —
xo)) exp (%ﬁ) is a minimum uncertainty (Gaussian) wave packet with initial momentum and

dispersion kg = 0.086 a.u. and oy = 80 a.u., respectively, and centered at xo = 300 a.u. (while N is a
normalization constant). On the other hand, we will consider the initial state to be defined by:

(%, y,0) = Sy (x), (20)

where now both ¢(y) and ¢(x) (defined above) are Gaussian wave packets. In particular, ¢(y) =
Mexp (7(]"2%2%)3 with yo = 200 a.u., 0, = 20 a.u. (and M a normalization constant). The probability
densities [¥(x, y,0)|? associated with the above two initial states can be seen, respectively, in panels (a) and
(b) of Figure 2. Given the initial states in Equations (19) and (20), we can then evaluate the corresponding

longitudinal coefficients as follows:

Xi(x,0) = [ dygh(y)¥ (x,,0). e

While the initial state in Equation (19) corresponds to x*(x,0) = d31¢(x), the state in Equation (20)
involves a number of transverse eigenstates. Note that this second initial condition may be more
realistic in practical situations, as large enough reservoirs may imply a quasi-continuum of transverse
states according to Equation (17).

Starting either from Equation (19) or (20), we then propagate the resulting longitudinal coefficients
at the initial time according to Equation (9). Specifically, we used a fourth order Runge-Kutta method
with a time-step size of At = 0.1 a.u. and a spatial grid of 1500 points with a grid spacing Ax = 1 a.u.
In the left panels of Figures 3 and 4, we show the time-dependent reduced density of Equation (13)
evaluated from the full 2D wavefunction (dashed green line), as well as the reduced density p(x, t)
evaluated using the GC-TDSE scheme for a finite number of transversal states N,, i.e.,

N,
p(x,t) =Y X (x, 1) % (22)
k=1
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In addition, we also show the absolute squared value of the longitudinal coefficients, i.e., | x(x,
evaluated using the GC-TDSE. Alternatively, in the right panels of Figures 3 and 4, we plot the population

of each transverse state,
PH(E) =[xl (1), 3)

as a function of time using the GC-TDSE.
400

=
S 200
=~

(a) (b)

0 500 1000 1500 2000 O 500 1000 1500 2000
X (a.u.) x (a.u.)

0

Figure 2. Panels (a,b) represent the probability density [¥(x,y,0)|? associated with the wavefunctions
in Equations (19) and (20) respectively. Red regions in the plots correspond to higher probability

densities, while blue regions correspond to lower probabilities.

0.010 1.0
t=0au. Eq. (13)
7\ —Eq. (22)
0.005 /\
\ Ne =11
0.000 // A L @)
2 "% 500 7,000 1,500
2 0.010
2 =
N
2 o005] 1=3010au M ~‘<Q~ 0.5+
= /
% 0.000 / ®)
= 10 1
& o010 500 000 500
0.005] 1=9.000au.
00005 500 1,000 1,500 o 6.000 ' 12.000
x(a.u.) t(a.u.)

Figure 3. Time-evolution of the initial wavefunction in Equation (19). The reduced density in Equation (13)
(dashed green line), as well as the reduced density in Equation (22) for N, = 11 (solid dark blue) are
shown at times t = 300 a.u., t = 5010 a.u., and t = 9000 a.u. in panels (a), (b), and (c), respectively.
The rest of the lines correspond to the absolute squared value of the longitudinal coefficients x*(x, t).
The evolution of the adiabatic populations in Equation (23) can be found in panel (d), using the same
color code as in panels (a—c).

The initial state in Equation (19) yields P¥(0) = &y;. This can be seen in the right-hand panel of
Figure 3. This value stays constant until the wave packet hits the constriction at around ¢ = 2500 a.u.
At this moment, non-adiabatic transitions between different transverse states start to occur that lead to
complicated interference patterns at later times (see, e.g., the reduced density p(x, t) at t = 5010 a.u.).
The number of significantly populated transverse states increases up to six (while up to eleven states
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are required to reproduce the exact reduced density up to a 0.1% error). Among these states, only odd
transverse states are accessible due to the symmetry of the initial state (as we noted in Equation (18)). Since
the mean energy of the initial state in Equation (19) ((§) = 0.0037 a.u.) is higher than the barrier height
of the first effective potential-energy in Figure 1d (max(&}) = 0.0028 a.u.), one could naively expect
a complete transmission of the wave packet x!(x,t). However, due to the effect of the non-adiabatic
coupling terms F¥ (x) and S¥(x), x!(x, t) loses a major part of its population in favor of higher energy
transverse components that are reflected by much higher effective potential-energy barriers.

Starting with the second initial state in Equation (20), there are up to seven transverse states
populated at the initial time, all of which are again odd states due to the symmetry of the initial
conditions (see Figure 4d). Once the wave packet hits the constriction at + = 3000 a.u, States 3, 7,
and 9 become more dominant than the previously dominant States 1, 3, and 5. Overall, up to 15 states
become important to reproduce the exact reduced longitudinal density within a 0.1% error. Given the
above two examples, it seems clear that the specific form of the impinging wavefunction does play
a significant role in the scaling of the number of relevant transverse states N, required to evaluate
Equation (9) numerically.

0.010 0.4
t=0a.u. Eq. (13)
/ —Eq. (22)
0.0051 [\
I\ Ne=15 — _ply P
ﬂ (a) 3() 7()
0.0007 ) \5&) 1,000 1,500 ny ho
9 11
_.0.010 ’ ’ — P ——"r"0
? 1=4,620au. S 0 P™(1)
o =~
8 0.005 I 2, 0.2
= fin’
5 {g&"&(\ (b)
g 0-0005 500 1,000 1,500
£ 0.010
t=7,320a.u.
0.0051
AN (©) ﬁ
0.000 == N S OO - | .
0 500 1,000 1,500 0 6,000 12,000

Figure 4. Time-evolution of the initial wavefunction in Equation (20). The reduced density in Equation (13)
(dashed green line), as well as the reduced density in Equation (22) for N, = 15 (solid dark blue line)
are shown at times ¢t = 0 a.u., t = 4620 a.u., and t = 7320 a.u. in panels (a), (b), and (c), respectively.
The rest of the lines correspond to the absolute squared value of the longitudinal coefficients A (x, b).
The evolution of the adiabatic populations in Equation (23) can be found in panel (d), using the same

color code as in panels (a—c).

Let us finally consider the effect that an external bias along the longitudinal direction might have on the
number N, of transverse eigenstates required to reproduce the solution of the full 2D TDSE. For that, starting
with the state in Equation (20), we consider the transmission coefficient T = [~ _dy |. xoz dx|¥ (x,y, te)|?
for different values of the external potential V., = V(x) in Equation (15). Written in terms of the
Born-Huang expansion in Equation (6), the transmission coefficient T reads:

Ne (oo
T=Y / dx|x* (%, )%, (24)
k=1"%m
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where x, is the center of the nanojunction in the longitudinal direction (i.e., with numerical value 750 a.u.)
and ¢ is the time at which no probability density (i.e., less than 0.1%) remains inside the constriction.
In Figure 5, we show results for applied bias 0.0075 a.u. < V,y; < 0.045 a.u. and two different number
of states N, = 15 and N, = 25. As expected, a higher applied bias leads to a more vigorous collision of
the wave packet against the constriction due to a higher longitudinal momentum/energy, which allows
higher energy transverse states to be populated.

0.175

—&— N, 15
—A— N =25

0.150- Exact /./\.\'

0.125+

0.100 +—— . . . . :
0.01 0.02 0.03 0.04

v _. (a.u.)

Figure 5. Figure depicting the transmission coefficient, T, under different bias voltages applied along
the longitudinal direction. This plot provides a comparison for T between the exact 2D simulation
(shown in dashed green line) and the 1D simulation (shown in solid red line for N, = 15 states and in
the solid blue line for N, = 25 states). For a voltage range of 0.0075 a.u. < V,y < 0.045 a.u., N, = 25
states are enough to capture the exact 2D case. For max[Vey¢| = 0.027 a.u., N, = 15 states sufficiently
capture the exact 2D case.

4. General Discussion

The GC-TDSE algorithm discussed in the previous sections has a clear computational advantage
over the solution of the full 2D TDSE. This is particularly so when the quantities £X, F¥(x), and S¥ (x),
involved in the equation of motion of the longitudinal coefficients Xk(x, t), are time-independent
functions. For a time-independent transverse Hamiltonian, the quantities £, F¥ (x), and S¥ (x) are
computed only once before the propagation of the longitudinal coefficients, and thus, the computational
cost of the GC-TDSE resides, mainly, on the propagation of the 1D longitudinal coefficients.

Let us provide some numbers to estimate the numerical efficiency of the GC-TDSE algorithm.
Consider the numerical solution of the full 2D TDSE in a grid. For a number of grid points {rn,,n,} =
{1500,400}, the resulting Hamiltonian has a dimension (ny x 1,)?. Alternatively, the size of the
Hamiltonian involved in the propagation of the longitudinal coefficients of the GC-TDSE algorithm is
(ny x Ne)z, where N, is the number of transverse eigenstates. One can then estimate the numerical
efficiency of one method over the other by simply evaluating the ratio (1, x 1,)?/(nx x N,)2. Thus,
for time-independent transverse potentials W(x, y, z), the computational reduction associated with
the GC-TDSE is nﬁ /N2. Note that the benefits of the GC-TDSE would be even more noticeable when

applied to a 3D problem, for which the above ratio would become (nﬁ x n2)/NZ.
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As we have seen in the above section, the number of required transverse states N, is a function of
the abruptness/smoothness of the constriction, but also of the energy of the impinging wave packet.
Therefore, the computational advantage of the GC-TDSE method over the full dimensional TDSE is
clearly system-dependent. Slow wave packets impinging upon smooth constrictions would maximize
the benefits of the GC-TDSE. Contrarily, very energetic electrons colliding against abrupt constrictions
would certainly minimize its benefits. In this respect, we must note that the GNACs have a clear
dependence on the profile of the constriction. In particular, the second order coupling terms S¥(x)
will be sharply peaked for very abrupt constrictions (see the important differences in the size and
sharpness of the S (x) in Figure 1 for two different constrictions). Therefore, due to the non-unitary
character of the equations of motion of the longitudinal coefficients, very abrupt constrictions may
demand very fine grids in practice.

Finally, let us mention that whenever the transverse Hamiltonian in Equation (4) is time-dependent,
the advantage of the GC-TDSE method compared to the solution of the full dimensional TDSE is
not so obvious. As we have already noticed, for a time-dependent transverse potential W(x,y,z,t),
the eigenvalue problem in Equation (5) must be solved self-consistently with Equation (9), i.e., at each
time step. Then, a comparison of the GC-TDSE and the full dimensional TDSE in terms of numerical
efficiency will depend on the specific performance of the eigensolver utilized to evaluate the transverse
eigenvalues, £X, and eigenstates ¢X(y, ).

5. Conclusions

In this work, we proposed a new method, named GC-TDSE, that allows including arbitrary
3D geometric correlations between traversal and longitudinal degrees of freedom into a coupled
set of 1D TDSE. Our motivation for the development of this method was, initially, the reduction
of the dimensionality of the 3D Schrodinger-like equations that result from an SSE (Monte Carlo)
approach to quantum electron transport in open systems (valid for Markovian and non-Markovian
regimes) that we recently proposed [32]. Nevertheless, the method presented here is general and
allows reducing the dimensionality of quantum systems with geometrical correlations among different
degrees of freedom, which could be of utility also in different research fields such as for example spin
thermal transport [43,44], thermal relaxation dynamics [19,45], ionic motion [46,47], or Bose-Einstein
condensates [48-50].

For smooth time-independent constriction profiles under low applied bias, our GC-TDSE method
implies up to three orders of magnitude less computational resources than solving the full 3D TDSE
directly. For very high applied bias or time-dependent constriction profiles, the GC-TDSE may still
be significantly less expensive than the solution of the full 3D TDSE, but would require introducing
approximations to the solution of the potential-energies £X and the GNACs (F¥ (x,t) and S¥ (x, t)).
We thus expect the GC-TDSE presented here to trigger future investigation for making it robust against
stronger geometrical correlations among different spatial directions.
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Appendix A. Derivation of Equation (9)

In order to derive Equation (9), we start by introducing Equation (6) into Equation (1) to get:

Zxxtquy, —Txe )¢k (y,z) + H(y, z Zx )¢k (y,2) Zx )¢k (y,2). (A1)

Making use of Equation (5), the above equation can be written as:

Zx (x, )i (y, z —Txe X)pk(y,z) +5kZX )iy, z) + (x);xk(xw,’g(y,z). (A2)

By simply realizing that Ty = — % 68722 is the kinetic energy operator in the position basis, we expand

the term Ty Y x*(x)¢% (v, 2) as

T (2200 (y,2) + 1 (x, ) 9 (v, 2)

35T (e ngkz) =
k(;—im >>¢x<yz)+zaxx (6 ) & W, 2) + 1 (0, ) 2k (y,2)),  (AD)

N—= N\»—-

gl w\w

which can be written in a more compact way as:

T T (x, )95 (1,2) = T [ (Tex ()9 (v, 2) = 350 ) 29k (0,2) — (e ) &gk, 2)] . (A%)

Now, introducing Equation (A4) back into Equation (A2), we get:

izi)t;?fk(xff)%’i(%@ = Z{Tx+5§<y,z>+v<x>} X (3 0k (v, 2)

k
o Z L) 220 Ly, (A5)
x2 T 'z ox 75 9y TN
Multiplyingboth sides of Equation (A5) by [ dy [ dz¢} (y,z) and using the orthogonality condition,
[ dy [ dz¢3 (y,z)¢k(y,z) = 6, we finally obtain:
2740 t) = (Tet 54 V() i t) - (Skl(x) + Fkl(x)a> X (.8, (A6)
"tk = ox

where we have defined S¥ = § [ dy [ dz¢}’ (y,z)aa—;4>’;(y, )and F¥' = [dy [ dz¢i'(y,z) 2 ¢k(y, z) as
the first and second order coupling terms, respectively.

Appendix B. Derivation of Equation (11)

Let us define the wavefunctions |¢;) and |¢;). Now, evaluate the derivative of their inner product
as follows,

(rlge) = (@1lde) + {Prlgi) = 01k = 0, k #1 (A7)
This implies,
(@11¢i) = —(¢rl %) (A8)
Evaluating the expression given below,

(1| H" ) = (o) H i) + (pul (H) | i) + (pu| H |¢y) (A9)

where we have used the chain rule of differentiation. Using the eigenstate-eigenvalue relation from
Equation (5), we get,

(il H i) = 5@l pi) + (@il (H) | i) + E () (A10)
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Using the relation in Equation (A8) in Equation (A10), we get,

(P1IHE ) = ("= Y (nlop) + (Pl (HE) | = 0 (A11)

In the above equation, we have made use of the fact that (¢;|H*|px)’ = (EX(¢1ldx)) = O,
when k # [ Therefore,

(@il (H)' | )
= (¢ul(ex)" = o gl (A12)
which can be written in the position representation and using the same nomenclature as used in the
main text as follows,

[y [ dz¢i (y,2) ( FHy (v,2) ) ¢ (v, 2)
) = [y [ dz(y,2) 50k (0,2) = g,<i o ) (A13)

Using Equation (4), it is easy to see that only the potential function W(x, y, z) will survive after the
partial derivative with respect to the variable x. Therefore, we can equivalently write Equation (A13) as,

Jdy [ dzg3(y,2) (%W (x,y,2)) (v, 2)
£l — &k

FM(x) = (A14)

Appendix C. Mean Energy in a Born—-Huang-Like Basis

The mean energy of a 3D system with a Hamiltonian H(x, y, z) is given by,

:// dxdydz¥* (x,y,z)H(x,y,2)¥(x,y,2), (A15)

which in terms of the Hamiltonian in Equation (3) and the wavefunction expansion in Equation (6) can
be written as:

(&) dxy** (x,t) [ dy dch y,z)(Ty + V(x))4)i(y,z)xl(x,t)
L[t [av |
+ 2 [kt [dy [ dzpn,2)H,2)9k 22 (1), (A16)
Introducing now Equation (5) and Equation (A2) into Equation (A16), we finally get:
© . . 2
@ = L[ dacton [ay [t (7' 00k 0.9) = 50 1) 5002
XD ) + VR (09w ) ) + K [ e ek
= 3 [ a0t ) + X [ doct o0k 2t (o) + 1 [ (e 0V x e
k- k k-
0 2
o gt dz¢;k(y,z>§’?¢;(y,z)
M [y [ dpn) Sk g | e
00 2
= L [t )| (Tor R Ve + 3 (- 3 [ [0 ek
- fay /dzqzt*(y,z)iqsi(y,z)i)x’(x,t)}
_ Z/dx)( x,t) {(TY+5"+V( )) X i (sk’ x) + F¥(x )i);(’(x,t)]. (A17)

I=1



Materials 2020, 13, 3033 14 of 16

Appendix D. Definition of the Nano-Constriction in Figure 1

For our numerical simulations in Section 3, we considered a typical constriction where L (x) and

Ly(x) in Equation (14) are defined as:

-1

Li(x)=A _<1 +exp (T)) + (1 +exp (—xry—i—az))_l- + B, (Al8a)

Ly(x)=A <1+exp (_{Y—m))_l—i— (1+exp(x;a2>>_l —A, (A18b)

where < defines the sharpness of the constriction, A and B define the maximum and the minimum
width of the constriction, respectively max|[L(x)] = B+ A and min[L(x)] = B — A, and a; and 4
define the length of the constriction £, = ap — 4.
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25 dwell time is roughly equal to the barrier distance divided by the Fermi velocity. For electrons incident with

26 a non-zero angle smaller than the critical anglejythe transmission/coefficient decreases and dwell time can

27 still be easily predicted in the Bohmian framework.»The main conclusion of this work is that, contrary to

28 tunneling devices with parabolic bands, the high graphene mobility is roughly independent of the presence

29 of Klein tunneling phenomena in the active device region.
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1. Introduction

Because of its extraordinary properties, graphene has
been studied as a new and promising material for
electronics during the last fifteen years [1]. Although
the lack of bandgap makes its use difficult for
digital applications, its high mobility is expected to
provide very well suited devices for (small signal)
radio frequency applications [2]. For electrons in
graphene, modeled by the Dirac equation (with linear
bands), an exotic tunneling phenomena, known as
Klein tunneling [3, 4], is predicted resulting in a
perfect transmission of electrons perpendicular to a
potential barrier.  This result is in contradiction
with traditional semiconductors with parabolic bands
where the transmission strongly depends on the height
and width of the barrier. Several prototypes have
already been studied in the literature for developing
graphene field effect transistors for high-frequency
applications based on Klein tunneling phenomena
[5-8]. The natural question arises: what is the
mobility of electrons in graphene when undergoing
Klein tunneling? This question is directly related to
the time spent by the electrons in the region where
they suffer Klein tunneling. For the sake of simplicity,
hereafter, we assume the device active region to be
equal to the potential barrier in graphene, meaning
that transit and tunneling times are equivalent. The
mobility determines the electron transit time that, in
turn, determines the cut-off frequency which is_an
important figure of merit of high-frequency electron
devices [9].  Surprisingly, the connection between
these Klein tunneling times and cut-off frequencies
of graphene devices remains mainly unstudied,in the
literature.

The accurate prediction of tunneling times has
been a fascinating problem for the scientific community
during the last century. In (non-relativistic) quantuim
mechanics, time enters as a parameter rather than an
observable. Thus, there is no direct way to calculate
tunneling times in the orthodox quantum mechanics,
where measurements are directly linked.to operators of
the measured property [10]. /The tunneling times can
be indirectly determined by.measuring other operators.
In the literature, there exists at least three different
orthodox protocols tosecompute the tunneling time
[11]. First, one studies the eyolution of the wave
packets through the barrier and gets the phase time
which involves the phase sensitivity of the tunneling
amplitude to the energy of the incident particle [12].
The second approach makes use of a physical clock to
measure thefime elapsed during the tunneling [13-17].
Larmor precession, ‘as one of physical clocks, was
first introduced long time ago to measure the time
agsociated with seattering events [14, 16]. Recently,
tunnelingtimes of 2D massless pseudo-spin Dirac
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particles have been analyzed, mainly within the second
protocol [18-25]. Finally, the third definition of tunnel
time is based on the determination of a set of dynamic
paths. We will refer to such type of tunneling time
as the dwell time. However, a dynamic pathfisian ill-
defined concept in orthodox quantum mechanics [26]:

In this paper, we will show that the Bohmian
explanation of quantum phenoména provides a very
appropriate formalism for discussing tunneling times
that are later linked to cut-off frequencies. The
Bohmian theory allows an acéurate definition of
dynamic paths (in terms of Bohmian trajectories) and
the third alternative mentioned abovesfor computing
tunneling times becomes very natural. The most
important advantage of the Bohmian{ecomputation of
the dwell time for high-freqiency electronics is its
ability to distinguishs, not only between transmitted
and reflected electrons in_thesbarrier [27], but also
between those reflected particles that spend some time
in the barrier and other reflected particles that do not
spend time indthe barrier:

The structure ofsthe paper is the following. In
section 2 we present how the transit (tunneling) time
is related'to the cut-off frequency of an electron device,
specifically in grapheéne devices. In section 3 we define
the dwell time from an orthodox perspective and from
the Bohmian theory. In section 4, we explain how
the different dwell times can be computed. For that
purpose;nthe Klein tunneling effect is presented and
analyzed. "Numerical results are shown and discussed
insection 5. Finally, we conclude in section 6.

2. Cut-off frequency and tunneling times

Along the paper we will consider a graphene two-
dimensional (2D) sheet, with = as the transport
direction, from the left contact to the right contact,
and z as the direction perpendicular to the transport
direction. The y direction contains the thickness of the
graphene sheet (plus top and bottom dielectric layers).
We discuss in this section how the high mobility of
graphene devices can be determined from the transit
times. To simplify the discussion, we focus on a two
terminal device. The length of the device active region
is L, = b—a with x = a the position of the left metallic
contact and x = b the right metallic contact.

At very high frequencies, not only the particle
current due to movements of particles is relevant,
but also the displacement current given by the time-
derivative of the electric field generated by electrons
moving inside the device region becomes important. If
we consider that the lateral surfaces of the metallic
contacts (L, x L,) are much larger than the length of
the device, L, << Ly, L., then, the Ramo-Shockley-
Pellegrini theorem [28-30], allows us to write the total

Page 2 of 12
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(particle plus displacement) current at each time ¢ as:

Lin; [@'() —alolb—a'(t)] (1)

x

where N, is the number of electrons inside the active
region at time ¢, q is the electron charge and vi (¢) the
i — th electron instantaneous velocity in the transport
direction z. Finally, O[z] is the Heaviside function.
Notice that the trajectories in the metals are not
included in (1). This result assumes that the density
of electrons in the metal and their mobility are so
high that the electrical field generated by one moving
electron in the metal (outside the active region) is
rapidly screened by the other (free) electrons in the
metal.

Now, we consider the transient of the current
I(t) defined in (1) after a sudden perturbation of
the external bias in the contacts. We assume that
before t = 0, the device has fixed external voltages
in the contacts (Vg in the left and Vg in the right)
with a stationary current value I. Then, we apply
a new (small signal) external bias Vg + AV at time
t = 0 at the right contacts of the device. This new
external voltage generates a new internal potential in
the graphene sheet V (x, z) which perturbs the current
given by (1) because the dynamics of the electrons
traversing the device need to be adapted to the new
scenario. After some time, the current reaches a new
stationary value when all electrons inside the system
have already moved along the active region a < = <'b,
all the time, with the new internal potential profile
associated to Vg + AV. This transient tilme can be
related to the dynamics of electrons. Let us consider
one electron, labeled by 4, that has entefed inside
the active region just before ¢ = 0. The electron
gives a current I(t) = ¢ vi(t)/L, during the time
7= [;° dt ©[z'(t) — a]©[b — 2" (t)] that it spent in‘the
active region. After this time interval, we are sure that
a new electron (with identicaleproperties. except the
entering time) entering inside the region a <z < b at
time ¢t > 7; will be only influencedsby the néw scenario
created by the external biag Vi + AV. Notice that
the time 7; we have to waitris not related to the fact
that the electron is transmitted of reflected. The only
relevant point is that the electron spends some time in
the active region a < x < bt

In a real devicegthere are more than one electron
with some uncertainties in, their properties. We only
have access to the probability distribution of these
uncertainties.mTherefore, we compute an average
value of the time spent by electrons over all these
uncertainties\to get the (average) transit time 7. In

1 We neglect the fluctuations of the stationary value of the
current' because they are not relevant in our discussion.

e

%Es@%%qgﬁghmian trajectories 3

NS e
this work, as already indicated, we will simplify our
discussion by considering an active region built from
a graphene potential barrier between two ‘metallic
contacts. Then, the transit time along theldevice
and the tunneling time can be considered equivalent.
Finally, the previous relationship between transient, of
the current and dynamics of electrons can be formally
established in the following expression between the
ensemble transit (tunneling) time 7 and the cut=off
frequency of the device fr as§:

= o 2
fr= @)
The language used above.initerms of trajectories,
which is natural for classical systems, can also be
rigorously extended to quantum 'systems by using
Bohmian trajectories{[35]-

3. Definition of'dwell times in graphene

The dynamics of ‘electrons in graphene devices (as
well as for other linearsband structures materials) are
given by the Dirac equation, and not by the usual
Schrodinger equation for parabolic bands. The wave
function associated to the electron is no longer a scalar,
but a bispinor:

g - (21224

The \two components are solution of the mentioned
Dirac equation:

(7, 1)

ih
o

= —ihv (G- V+ V@)Yt (4)
where 7 = {z,2} and V =
matrices || are:

N (G )

We remind that vy = 10%m/s is the graphene Fermi
velocity and V(7) = V(«, z) the electrostatic potential.

As discussed in the introduction, from the different
orthodox definitions of the tunneling times, we will
use in this paper the third definition related to
dynamic paths [31]. It is the most accepted one,
usually referred to as the dwell time, and it is not
contaminated by the measurement procedure. By
writing the modulus of the bispinor as |¥(x, z,t)|? =
[V1(z, 2,1)|? + |12z, 2,t)|?, the typical expression for
the orthodox dwell time to quantify how much time

(Z,2) and the Pauli

§ Typically, the clock frequency of a real CPU is usually 1/3 of
the cut-off frequency. In any case, such factor is not relevant at
all in the discussion presented here.

|| In the literature, usually, our Pauli matrix o in (5) is defined
as the 0. However, since in this discussion the sheet of graphene
is defined in the plane X Z, our notation is different.
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a particle spends in a 2D spatial region limited by
the boundaries ¢ < z < b and —o0 < 2z < o0 is
traditionally given by,

oo b ©
D :/ dt/ dx/ dz|¥(z, ,1)|? (6)
0 a —oo

At this point, let us briefly mention what is the
tunneling time problem. A classical measurement
of the dwell time can be simply defined from the
measurement of the time when the particle reaches
the position z = a, plus a final measurement of the
time when the particle reaches x = b. The time spent
between the initial and final detection of the particle
position will quantify the dwell time. However, since
quantum mechanics is a contextual theory, the first
(strong) measurement of the position will transform
the initial wave function into an eigenstate of the
position measurement. Then, the posterior evolution
of such delta function can be quite different from the
unmeasured function used in (6). The tunneling time
problem is related with the difficulties of computing the
dwell time without paying the price of dealing with a
perturbed wave function because of the measurement.
In the orthodox theory, such attempt is quite difficult
because only measured properties can be obtained from
the theory.

However, there are other quantum theories which
can tackle such problem in a different way. By
construction, the Bohmian theory [32] has the ability
of providing measured and unmeasured properties (for
example, particle positions) for a quantum system
If we know how to relate measured and unmeasured
properties in one experimental set-up (for example,
a high-frequency measurement set-up defined inn[33])
then the computation of the unmeasured properties of
the Bohmian trajectories can be very useful. In this
work, we will use unmeasured Bohmiantrajeetories to
discuss Klein tunneling times. As discussed in [33],
the measured Bohmian trajectories will.only provide a
noisier description of the total current (associated with
a weak measurement process).

In the Bohmian theory for the Dirac equation
[34], each electron has a well-defined ‘position at any
time that is guided by the same orthodox bispinor
given by (3). Each experiment labeled by the super
index ¢ = 1, .., N uses the same bispinor, but different
trajectories 2% (t) and 2%(¢)4 Such/ Bohmian trajectories
are computed by time-integrating the velocity given by
the bispinor:

v W(F, 1) 150 (F, 1)
GOl @)

(7 ) =

where & is defined dn (5) and vy = 105m/s is the
graphene Fermi welocity. See Appendix A for the
éxplicit computation of (7). The initial position of such
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trajectories at time ¢ are empirically inaccessible and
given by the probability distribution [35]:

|U(x,2,t)]* = lim

N—><>o

Sz — ' (1)]6[z — 24t)] (8)

HMZ

where N is the number of experiments that we assume
infinite (or large enough to correctly get the ensemble
values). In fact, due to equivariant property of the
bispinor and the associated trajectories, if Eq.(8) is
satisfied at the initial time, then it'is true at any other
time. For a review on Bohmian mechanics, you can
see [32-36].

Rewriting the orthodox expression of the dwell
time in Eq.(6) within theBohmianlanguage provide us
more insights into the dwell.time and its unmeasured

definition [35]. Using/(8) in (6) we get:
=t [ a0~ ol ')

(9)
Now, we canrewrite Eq.(9) as an average over Bohmian
dwell times.7% associated to the different trajectories:

4

D = ngnoo—ZT (10)

where 7h.is defined as:

o0
T = / dtO[z'(t) — a]O[b — z*(t)) (11)
0

This is the dwell time associated to the i-th Bohmian
trajectory inside the region a < x < b. Notice that
the spatial integral in the z direction from —oo to oo
in (6) implies that we do not care about which is the z
position of the particle.

Up to now, our Bohmian discussion is just another
way to exactly compute the orthodox dwell time in (6).
We can now further develop the Bohmian expression to
realize about its ability to discuss the high-frequency
performance of electron devices discussed in section 2.
We divide the trajectories appearing in 7p in Eq.(10)
into the three types of trajectories:

e (T-trajectories) Those Bohmian trajectories that
enter into the barrier region through x = a and
leave through x = b being finally transmitted. We
define N7 as the number of such trajectories. By
construction, their 7% is different from zero.

e (R-trajectories) Those Bohmian trajectories that
enter into the barrier region through x = a and
leave through the same point = a because they
are finally reflected. We define Ng as the number
of such trajectories. Again, their 7¢ is different
from zero.

Page 4 of 12
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e (R*-trajectories) Those Bohmian trajectories that
do not enter into the barrier region at any time.
We define Ng~+ as the number of such trajectories.
These trajectories are reflected trajectories, but
different from the R-trajectories. Here, by
construction, we have 7% = 0.

By construction, with the new definitions, we have
N = Np + Nr + Ng+. Then, the dwell time 7p in
Eq.(10) can be rewritten as:

AL Ngr
- 1 - l m
= m=

From the above equation we can define the transmis-
sion time, 71 and the reflection time, 7 as follows:

(12)

1 M L
l m
= E d = — E 13
T S 7' and 7R Ny T (13)

m=1

So the overall expression of the dwell time can be
written as follows,

™ = Pr 70+ Pr TR (14)
where we have defined the probabilities:
_ 5 . Nr
T=Fbr=fm =

The computation of the transmission coefficient<I" do
not require the distinction between Ng and Nj sinee
only the transmitted trajectories N are relevant here.
Identically,

(16)

Notice that the reflected probability Pg _is different
from the reflection coefficient R, Pr #(R, because the
reflection coefficient requires including Npfand &V, in
the numerator of (16).

We further discuss the role of the R*-trajectories.
Because of these trajectories the previous probability
definitions give Pr + Pr </{ 1. We require to add
the additional probability ,Pr« = Npgx/N to satisfy
Pr + Pr + Pr- = 1. _Haowever, if we remember
that the R*-trajectories have a transit time equal to
zero, 7; = 0, then, the transit’ (tummeling) time of
expression (6) can be'extremely misleading. If we
get a scenario where Ng« & N then we get the
unphysical result 7p =~ 04n (12), that implies a cut-
off frequency going'to infinite from (2). This result is
unphysical. /The mistake appears because we have to
eliminate the trajectories Ng+ from the computations
of the dwell times when such times want to be related
to.predict the “high-frequency behavior of electron
devices asndiscussed in section 2. The fundamental
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problem is that the identification of the particles Nr,
Ngr and Ng+« is not possible within the orthodox
theory. This is just a different way of realizing,about
the controversial tunneling time in orthodox quantum
mechanics. On the contrary, the Bohmian theory
provides a transparent procedure to eliminate Npg«
from the computations. Thus, the Bohmian dwell time
(for deducing properly high-frequency performancés)
needs to be defined as:
: 1 ik I & m

TDp = N};lgooj\TB (;T +mz—:1T ) (17)
where Ng = Npr + Ngi are the.number of trajectories
entering into the barrier. Notice Qat now the scenario
Npg- ~ N does not imply the unphysical result 7p, ~ 0
in (17) because the particles Ng- have no role. We will

elaborate this point inthe subséquent sections where
numerical results are shown.

4. Klein tunneling and the simulation set-up

Now we detail the quantum simulation of dwell times in
graphené devices.hAll simulation results are done with
the BITLLES simulator [37]. For the simulation, we
consider a two terminal device whose band structure
(energy of the Dirac point as a function of the z
position) is plotted in figure 1. We consider that the
active region of the device is formed by the region with
a barrier of Vi = 0.15 eV that starts at the position
x'=ya = 150 nm and ends at * = b = 304 nm. The
simulation box in the x direction is enlarged to be able
toraccommodate the central position of the initial wave
packet at £ = 0 nm. The total simulation box in the
x direction is 1pm, while, the one in the z direction
is 600 nm. The spatial step for the computation of
Dirac equation are Ax = Az = 1 nm, while the time
step is At = 107° ps. To simplify the discussion,
the contact is assumed to have the same properties as
the graphene channel, but with a very fast screening
time so that the only electron relevant for the total
current in (1) are the ones inside the box a < = < b.
This scenario corresponds to the idealized two-terminal
device described in section 2.

As we mentioned, the wave nature of the
electronsq is given by the Dirac equation using the
bispinor in (3). The initial electron wave function is
a Gaussian bispinor wave packet:

1(x, 2, t) 1 v
= 0 - z,z,1
<7/12(9U7Zat) Sewkc g( T )
€ The time-evolution of this wave packet can be considered as
a Bohmian conditional wave function for the electron. The
conditional wave packet is a unique tool of Bohmian mechanics

that allows to tackle the many-body and measurement problems
in a computationally very efficient way [38,39].

(18)
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where W,(xz,2,t) is a Gaussian function with central
momentum kz = (kg,c,kzc). We consider s = 1 for
wave functions with positive kinetic energies (conduc-
tion band) and s = —1 for negatives kinetic energies
(valence band). We define 0,- = arctan(k. ./ke ) as
the incident angle. The wavepacket spatial dispersions
along the z and z directions are equal to ¢ = 40 nm.
Unless we indicate the contrary, the central energy of
the electron will be 0.1 eV above the Fermi point in
the left contact.

We are interested in computing the time spent
by an electron while traversing the potential barrier
depicted in figure 1 by Klein tunneling [40]. For
this purpose we simulated different scenarios where an
electron (represented by its conditional wave function)
impinges a barrier. In figure 2, we see two different
examples of such conditional wave function and its
associated trajectoriest. Let us notice that, in our
opinion, the word tunneling is misleading here. As
plotted in the cones of figure 1(a), electrons in the
contact have kinetic energies available above and
below the Dirac point. Identically, electrons inside
the potential barrier have energies available above
and below the new Dirac point. Therefore, strictly
speaking, even if we consider an electron with an
incident kinetic energy below the potential energy in
the barrier, F < Vj, the electron will not find a region
of forbidden energies as it happens in typical tunneling
barriers built from materials with parabolic bands
and with an energy gap. In this sense, the electron
transport in the graphene linear band structure s
quite unusual and unique. Rather than a tunneling
phenomena is a interference phenomena. We will see
these differences in next section and we will ecomment
their implications in the conclusions.

We deduce here some features of the dynamies
of the electrons traversing the barrier.szegion. By
construction, the total energy of the/wave packet is
conserved. Such energy can be divided between kinetic
and potential energy. If we locate the zero of petential
energy at the Dirac point in thenleft contact, then
the electron has a positive kinetic energy of E. Once
inside the barrier, the potential energy V|, is higher
than the total energy F, sowthat the kinetic energy in
the barrier is negative E.—Vf. These/negative kinetic
energies are unproblematic and perfectly well defined
in the linear band structureé of graphene. If the initial
kinetic energy of thesincident electron is E = Vj, then,
a quite exotic situation appears because there is almost
no energy eigenstates available in the barrier region
to accommodate the, energy eigenestates that build

+ We observe in figure 2(b) trajectories which are crossing in
the {z, z} spaces, We remind that different Bohmian trajectories
cannot cross at. the space {z,z,t} at the same time. The
trajectories plotted here satisfy this requirement.

e

%Es@%%qgﬁghmian trajectories 6

NIbRRe e
the wave packet outside the barrier. See figure 1(b).
The previous arguments are strictly valid for wave
functions that contain just one energy eigenstate, for
wave packets built from a set of energies around the
central value, as in our case, the time evolutien iSimore
complex.

When electrons are incident at ‘@  particular
angle 6’k~c = arctan(k;,/ky,.) with’ momentum k:; =
(kz,c,kz,c), due to the translational invariance of the
potential V(z,z) in the z direction, the ‘mementum
in that direction should be conserved. This means
that, for example, the transport process depicted in
figure 3(a) is not possible because the 'k, . is not
conserved. The k, in the left \contact is much larger
than the ki, value atf the barrier region. The
argument of conservation offz-momentum leads to
scenarios where electrons change/its direction in the
interfaces contact-barrierrand barrier-contact resulting
in a Snell’s law-like expression [4]:

Esin(0,) = (£ — Vo)sin(0;) (19)
where 0 4is the angle’ before the barrier (incident
angle) and ¢ the angle in the barrier (refracted angle).
See figure 3()b) forga definition of the angles in the
contact-barrier interface. In the barrier region, we have
E — Vy < 0 so/that the angle of transmission of the
trajectory ismegative. From (19), we conclude [4] that
the angle of incidence 0~ in graphene has to satisfy
0~ > 0c to have a completely reflected wavefunction,

Where BV
R | — Vo
fc = sin ( i >

is the critical angle. Again, the previous arguments
are strictly valid for just one energy eigenstate. For
wave packets built from a set of energies around the
central value, as in our case, there can also be a small
transmission above the critical angle.

The most surprising result for the dynamics of
electrons in graphene, as already indicated, appears
when considering an incident angle 6,- = 0 meaning
that the momentum in the z direction is zero, k, . = 0.
Then, the conservation of the z momentum does not
provide any restriction on the dynamics of the electron
and, in fact, the transmission coefficient is equal to
one (T = 1) for any positive or negative kinetic energy
of the electron incident on the barrier with 9,9: = 0.
This is known as the Klein tunneling paradox [3, 40]
because it is surprising for typical tunneling (parabolic
band) scenarios with forbidden energy regions. But,
this is not the case in graphene, and the paradox
just disappears. In our study, since the injected wave
function is a wave packet, it will have some wave
vectors with some dispersion in the injecting angle
around 91«2 = 0, and therefore T < 1.

(20)
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Figure 1: (a) Klein tunneling barrier region where the electron, which impinges perpendicularly to,the barrier,
has an energy E lower than the barrier height V;,. The cones represents the linear energy momentum dispersion
at different positions. The electron has available states in the valence band of the barrier region which allows
them to tunnel freely. The transmission coefficient in such cases is close to unity. (b)-Fhesame plot for an
electron with energy similar to the barrier height £ = Vj. In this case the electron has4o occupy the Dirac point
in the barrier region which has almost no available energy states. In these scenarios the transmission probability
almost vanishes. This decrease can also be explained through a momentum conversation argument, as depicted
in figure 3.
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Figure 2: (a) Conditional wavefunction of/the electron that impinges perpendicularly (9k~c = 0 degrees) to a
barrier (in the shaded orange region) in the initial (#*= 0 ps) and final (t; = 0.746 ps) times. A set of the
associated Bohmian trajectories are alsorplotted. As it can be seen, from both the wave packet and the set of
trajectories, the electron exhibits Klein tunneling and all trajectories traverse the barrier. (b) The same plot for
an electron that does not impinge perpendicular to the barrier (0k~c = 15 degrees). Now, there is no complete
Klein tunneling and part of thexwave packet and some trajectories are reflected. The transmitted part of the

wave packet and transmitted trajectories suffered refraction according to Snell’s law-like expression (19).

5. Numerical results and discussion

We consider here a waye packet in (18) with a kinetic
energy given by E = 0.1 eVlocated initially at the left
side, x = 0 nm, far.from the barrier region. We will
consider different/ incident angles 9k~c that determine
different propagation directions, meaning different x
and z momenta, {kz.c, k.}. The time evolution of
such bispinor, while_ traversing the barrier, is given
by (4). From the knowledge of the bispinor at any
time and position, swe compute the velocity of the
Bohmian trajectories from (7). By time integrating

these velocities, we compute the Bohmian trajectories
{x(t), 2%(t)} where the super index i specifies different
experiments that imply different initial positions of the
particles selected according to (8).

First, we discuss the transmission coefficient that
can be computed from the bispinor easily as:

T:/ dz/ dz|V(z, 2, t5)[? (21)
b —0

where t; is a time large enough so that there is no
probability presence in the barrier region. Identically,
by putting (8) into (21), the transmission coefficient
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Figure 3: (a) Scheme of an electron that cannot tunnel
through the barrier region because of conservation of
the total energy and the z momentum forbids it. The
electron is reflected before entering into the barrier,
contributing to the Nj particles, because there are
no available z-momentum for the the corresponding
kinetic energy in the barrier region. (b) Scheme
depicting the three possible types of trajectories
considered in this work: transmitted particles, Nrp,
particles entering into the barrier but eventually
reflected, N and particles that are reflected before
entering the barrier Np.

-
o

\—— T (Bohmian
i= = = T(Orthodox)

o o o
£ (o] [od]
1 1 1

o
N
1

Transmission coefficient (7)

o
o

Incident angle,B; (degrees)

Figure 4: Transmissioncoefficient as a function of the
incident angle computed from the square modulus of
the wave fungtion in (21) and the Bohmian trajectories
in (15). Bohmiantand orthodox computations show an
excellent.agreement.
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Figure 5: Number of \transmitted particles, Nrp,

particles entering into, the barrier but eventually
reflected, Nr and particles. that are reflected before
entering the barrier. Ni« as a function of the incident
angle.

can be computed from the Bohmian trajectories as
in (15)¢ The plot in figure 4 confirms that the
results computed ffom the Bohmian trajectories in
(15) (with N=>500 experiments) reproduce accurately
the orthodoxyresults in (21). Following the discussion
aboutithe Klein tunneling in section 4, for 9k~c =0 we
get\T' ~ 1, while T tends to zero as we increase the

angle. We have a small transmission probability for
0 =6c.

As we discussed in section 3, the correct
computation of the dwell time requires the distinction
among Ny, Nr and Np. With Bohmian mechanics
it is possible to distinguish among the transmitted
trajectories, Ny , reflected after entering in the barrier,
Npr and those that are reflected before entering the
barrier, N3. The schematic representation of these
trajectories is plotted in figure 3(b). In Figure 5
we show how the number of these trajectories vary
with the angle of incidence 0;-. The simulations
show that for 9156 = 0 almost all the particles are
transmitted. Increasing 915@ leads to an increase in
the reflected particles. By construction, the behavior
of Nr in figure 5 just reproduces the transmission
coefficient T in figure 4. We divide these reflected
Bohmian trajectories into two sets: Ng and Ng-.
The estimation of the current delay in (1) does only
take into account particles entering in the barrier,
either Ny or Ngr. In the orthodox computation,
just with the bispinor (without trajectories), Nr, Nt
and Npg- cannot be treated separately. This fact
represents an important limitation of the orthodox
theory in the proper description of tunneling times and,
subsequently, high-frequency response of graphene

Page 8 of 12
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Figure 6: Dwell time as a function of the incident angle
computed from Eq.(6) (black dashed line), Eq.(12)
(blue dotted line), Eq.(17) (red solid line) and Eq.(23)
(black solid line with square symbols).

devices.
In figure 6, we plot with dashed lines the orthodox
dwell time 7p given by (6). We find that it decreases
monotonically with the increase of the incidence angle
94 These results are compatible with the decrease
of ‘the transmission coefficient 7' in figure 4 because
particles have less and less probability to enter into
the barrier region and, therefore, 7p decreases. For an
incident angle larger than the critical angle, 0, > 0g;
we expect T — 0 and 7p — 0. Then, usmg (2)
for the computation of the cut-off frequency, we get
an unphysical result of an infinite cut-off frequency
fr — oo. This unphysical result is also present in
(9) computed with trajectories. The problem appears
because of the large number of Ng« while Np, Np — 0,
at high incident angles (see figure 4)«mnA physical
computation of the dwell time can be obtained using
the Bohmian trajectories in (17), that ignores Ng., as
seen in figure 6 with solid line. ‘Fhis is one.of thie main
results of this work.
For - = 0, the situationtis,much, niore simple
because N r« — 0 and then the dwell time (either with
the orthodox or Bohmian expression) is roughly equal
to: d
D= TDB ~ = (22)

|
Numerically, we get'in'figure,6.the value 7p, ~ 0.17 ps
for 0> = 0. The/expectedévalue would be 7p, ~ 0.15
ps with vy = 105'my/s and d = 154 nm. The difference
occurs sincesthere are electrons described by the wave
packet with a velocity slower than the Fermi velocity.

The Bohmian dwell time 7p, increases with the
increase in the angle of incidence until the critical angle
0. Thisyoccurs because when increasing the incident

Energy, £ (V)

~
Figure 7: Dwell time ‘as. a function of the positive
and negative energyn.of electrons that impinge
perpendicularly to the barrier computed from Eq.(6)
(black dashed lin€)y, Eq.(12) (blue dotted line), Eq.(17)
(red solid line) and Eq:(23) (black solid line with square
symbols).

angle, the angle at which the trajectory enters into
the belrrier @lso iicfeases following the condition (19).
The effective distance that the electron has to traverse
under the barrier is dcyy = d/ cos(0; ). See figure 3(b)
for a definition of such a distance. The Bohmian dwell
time can be written as:

d\/E2+V? - 2WWE
Thp = + 0 0 (23)

vf \/E2 cos?(0:) + Vg — 2 E

We notice that (23) reproduces (22) for 6. = 0.
For the critical angle 0 = 60c, the value ‘of ( 3)
gives infinite which means that the electron travels in
the perpendicular direction z inside the barrier, never
reaching x = b. On the other hand, when 9156 > 0 the
number of transmitted electrons decreases, so most of
the trajectories are either reflected from the barrier
boundary, x = a, or are reflected after spending some
time in the barrier and the estimation of the tunneling
time then is more complex. In any case, there are very
few electrons with - > fc.

Once we have analyzed the dependence of the
orthodox and Bohmian dwell times on the incident
angle, 9k~c , let us discuss its dependence on the positive
or negative kinetic energy E for a zero incident angle
;- = 0. The main feature present in figure 7 is that
all electrons have similar Bohmian dwell time, roughly
given by (22), meaning that all electrons are moving
with the Fermi velocity, vy = 10° m/s.

These results of the Klein tunneling in figure 7
are in a great contradiction with what is usually
found in semiconductor structures with parabolic band
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energies, where the dwell times strongly depends on
the difference between the barrier and the electron
energies, Vo — E. Here, even for negative kinetic
energies, for example £ = —0.1 eV, or positive
energies above the barrier, for example, £ = 0.2 eV,
the predicted value of the dwell time given by the
Fermi velocity is not greatly modified. In figure 8
we have plotted the transmission coefficient given by
(21) (dashed line) and by (15) (solid line), with great
agreement. In figure 9 we plot the number of particles
Nr, Nr and Ng, discussed in section 4. The low
number of reflected particles without even reaching
the barrier region, Ng. ~ 0, explains why the dwell
times in figure 7 are all almost identical. Only, small
deviations are seen around E ~ V;; = 0.15 eV and
around E =~ 0. The first deviations around F =
Vo = 0.15 eV are explained by the effects of the
conservation of the z momentum shown in figure 3(a).
The later deviations in both figures around FE ~ 0 are
mainly related to the difficulties of defining an initial
wave packet around the Dirac Point. Because of the
momentum uncertainty, such initial wave packet have
positive and negative energies simultaneously.

1.0 T—=
1S
= 0.8
c
0
é —— T'(Bohmian)
® 0.6 - « - 7(Orthodox)
8
5
8941 %0
€
2
® 0.2
= Vo
0.01— T T / T T
-0.1 0.0 0.1 0.2 0.3

Energy, E (eV)

Figure 8: Transmission coefficient for “electrons that
impinge perpendicularly to the barrier as a function of
their initial energy.

6. Conclusion

Motivated by the expected /ability of graphene
transistors to work at THz frequencies and the
development of [prototypés of graphene field effect
transistors for high-frequency applications based on
Klein tunneling phenoniena [5-8], an analysis on the
Klein tunneling times in graphene structures has been
presented in this work. In particular, we study dwell
times for electrons in a two-terminal graphene barrier
using the,BITLLES simulator [37]. We show that

SST-105029

Tap §1Ce ! -crl vices using ﬁghmz’an trajectories 10

Number of trajectories

0.1 0.0 01 02 0.3
Energy, E (eV)
~
Figure 9: Number of trajectories belonging to each of
the three cases (N7, Ng and Ng,) for electrons that
impinge perpendicularly torthe barrier as a function of
their initial energy:

Bohmian trajectories are well suited formalism to
discuss transiti(tunneling) times and its relation to the
cut-off frequenciesiof electron devices.

We have shown that Klein tunneling time (in
gapless graphene with linear band structure) is not
like the typical tunneling time (in materials with
parabolic bands and with an energy gap). Such
differences,directly imply completely opposite features
in the transit (tunneling) times of graphene structures
in comparison to what is expected from traditional
semiconductor structures with parabolic bands.

The main conclusions plotted in the figures of the
text are next summarized. Because of the well known
Klein paradox [3,40], for an incident angle equal to
zero, 9~ = 0, the transmission coefficient is roughly
equal to the unity, T'= 1, with Ng =~ 0 and Nr~ =~ 0.
Then, the velocity of particles in the barrier region and
outside is roughly equal to the Fermi velocity, vy = 106
m/s. This is true for all incident kinetic energy (with
positive or negative kinetic energy). Then, the dwell
time in the barrier region can be identically computed
from the orthodox expression 7p or the Bohmian one
Tpy, roughly estimated as 7p ~ Tp, =~ d/vy.

For incident angles different from zero and smaller
than the critical angle, 0 < 9155 < 6¢, the transmission
coefficient decreases because Ng+ > 0, but Ny ~ 0.
Under these scenarios, the dwell time of the electrons
has to be estimated only for the trajectories that spend
some time in the barrier (what we name Np and Ng
in the text) but not by the trajectories Ng- that do
not spend time in the barrier. Then, the orthodox
expression 7p in (6) is not adequate and it has to
be substituted by the Bohmian dwell time expression
Tpg. The dwell time can be roughly estimated as

Page 10 of 12
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~ d/cos(0 ) /vy where d/cos(0:) is the distance  frequency applications of electronic devices. ~ The

1 traversed by an ‘electron in the barrier because of the BITLLES simulator used in this work is a clear
2 Snell’s law-like equation in (19). Notice that 7p, isnot  example of this computing strategy.
3 a transmitted time, because it is not related with the
4 transmitted particles Np only, but with Ny and Ng, Acknowledgment
5 excluding Np-.
6 Finally, for incident angles larger than the critical =~ We are grateful to Dmitry Sokolovski for enlighten-
U angle, 0 < 0, > 0c, the Bohmian dwell time can be ing discussions on tunneling timés. We acknowledge
8 computed numerlcaﬂy from 7p,, but there is no simple  funding from Fondo Europeo de Desartollo Regional
9 expression for its evaluation because Ngp > Nr anditis (FEDER), the “Ministerio de Cieficia e Tnhovacion”
10 ot obvious what is the dwell time for the N particles. through the Spanish Project TEC2015-67462-C2-1-R,
n Again, the Bohmian dwell time is different from the the Generalitat de Catalunya (2014 SGR=384), the Eu-
12 orthodox 7p because the latter includes particles that ropean Union’s Horizon 2020  researchand innovation
13 do not enter into the barrier region (Nr= >0). Inany  programme under grant agreement No Graphene Core2
14 case, there are few electrons traversing the barrier with 785219 and under the Marie Skodowska-Curie grant
15 such angles. agreement No 765426 (Tear Apps).
16 The main conclusion of this work, regarding the
17 high-frequency capabilities of graphene devices based Appendix A. Graphene eléétron trajectories
18 on Klein tunneling is that the high graphene mobility is '
19 roughly independent of the presence of Klein tunneling  Here we demonstrateéhow the Bohmian velocity (7) can
20 phenomena in the active device region. The reasonis a  be obtained frfomithe Dirse equation (4). The typical
21 direct consequence of the graphene band structure. All  procedure to deduce the Bohmian velocity from the
22 electrons, at all positive or negative kinetic energies,  Schrodinger equation gives:
23 move roughly with the Fermi velocity above or below
24 the potential barrier. Sl &dr EI V(1) Al
25 At this point we want to notice that the relation 4R of it~ m o ¥(r) (A1)
26 between cut-off frequencies and tunneling time has
27 been analyzed in section 2 for an idealized two terminal  WVe ac%apt here‘ the prcyious proccdu.rc to dCdPCC the
28 device under the assumption that L, < L,,L,. In Bohmian velocity associated to the Dirac equation (for
29 more general scenarios, for example in a three terminal details see’[43]). To .obt.ain the c.urrent density,. we
30 device, like a graphene transistor, the expression (1) for find ‘out first the continuity equation from the Dirac
31 the current is no longer valid. This means that the cuteiy, eduation (4) rewritten here as:
32 off frequencies cannot be directly linked toshe inverse 8 '
33 of the transit (tunneling) time. Further discugsion of wrY) _ = —ihvs (G - V)(7,t) (A.2)
34 this issue can be found in [41]. ot
35 Apart from the previous conclusions devoted with # = {x,2}. Now, multiply the Hamiltonian by
36 to graphene devices for high-frequency applications, the conjugated wave function:
37  we have a final remark on the typé of sithulators -
38  required for predicting high-frequency Adeatutes of Op(r,t
39 nanoelectronic devices. There, are several quantum UL v ot = (" t)fhvf( V(1) (A3)
40 theories empirically equivalent to discuss the'quantum ) )
41 behavior ofpnanoei,ec‘?ronic devices at high—froéquency. and conjugate and transpose the above equation (A.3):
42 By construction, the Bohmian theery [42] has the o (7, )1
43 ability to provide measuredand unmeasured properties (7 t) e = —ah(F, s (- D)p(F,t) T (A4)
44 . N, ot

(for example, particle positions or the total current)
45 for quantum systems. Such ability is very convenient The above expression (A.4) implies that the Pauli
46 because it allows to get information of the system that — matrices are hermitian. If we now add (A.3) and (A.4)
47  are not contaminated by the measurement. This is  we get:
48  specially relevantdn the two consecutive measurements OY(7, 1) G
49 required to get transit (funneling) times. Later, if (7, t) =22 + (7, t) — (A.5)
50  we know how-to" relate aneasured and unmeasured _;(% C e ey e ot . L v
51 properties in one experimental set-up (such as the - [w(r,t) i (@ V)Y(T ) + (T t)vp (0 - V)Y (7 8) ]
52 high-frequency measurement set-up defined in [33]),  which leads directly to the continuity equation:
53 the unmeasured, properties provided by the Bohmian Ol (F 1112
gg theory become very useful for computations of high- WJ((;’ t)] LT (de}(ﬁ t)f&/}(ﬁ t)) _ (A.6)
56
57
58
59
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where we can easily identify the probability current
density (of the Dirac equation) as:

J(7,t) = vp(F 1) TGy (7, )

From here, we can also identify the Bohmian velocities

(A7)

by using the general expression .J| (r,_;f) = pv =
[4(7,t)|?7 in (A.6) so that ,

J(Ft) (P )TGe(F, )
(1) [y ()]

And from the above equation the bohmian velocity in
the  and z directions can be given as :

u(rt) = (A.8)

N . Jx('ﬁt) 7Uf¢(F>t)T0—$w(777t)
W) = o T T P (4.9)
and,
Lo LY vpp(F ) o (L)
U R v ) [E AR T T (4.10)

Since (A.9) and (A.10) are independent of s (see (18) in
the text), it is evident that independently of whether
the electrons are in the conduction or valence band,
they move in the same direction. It is important to
emphasize that the identity J(r, ) = pi = [t)(F, )7 in
(A.6) used above guarantees the empirical equivalence
between orthodox and Bohmian mechanics.
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Abstract: Measuring properties of quantum systems is governed by a stochastic (collapse
or state-reduction) law that unavoidably yields an uncertainty (variance) associated with the
corresponding mean values. This non-classical source of uncertainty is known to be manifested
as noise in the electrical current of nanoscale electron devices, and hence it can flaw the good
performance of more complex quantum gates. We propose a protocol to alleviate this quantum
uncertainty that consists of (i) redesigning the device to accommodate a large number of electrons
inside the active region, either by enlarging the lateral or longitudinal areas of the device and
(i) re-normalizing the total current to the number of electrons. How the above two steps can be
accommodated using the present semiconductor technology has been discussed and numerically
studied for a resonant tunneling diode and a Mach-Zehnder interferometer, for classical and quantum
computations, respectively. It is shown that the resulting protocol formally resembles the so-called
collective measurements, although, its practical implementation is substantially different.

Keywords: quantum computing; classical computing; Mach-Zehnder Interferometer; resonant
tunneling diode; quantum uncertainty; measurement

1. Introduction

Assessing the future of emergent technologies is not an easy task. Today there is a lively debate in
the scientific community about whether classical or quantum computing will offer better performance
in the coming future. At present, the field effect transistor is still the most efficient device to perform
classical computations. The electronic industry is able to fit 10! transistors all together in a single chip,
working at frequencies of a few GHz [1]. State-of-the-art transistors, with nanoscale dimensions, are
quantum devices in the sense that their ability to convert the input into output information is based on
quantum laws governing electron transport [2]. In digital binary classical computing, the logical state
‘1" is encoded into a value of a well-defined measurable physical property of the transistor, while the
logic state ‘0’ corresponds to a different value of such property. Usually the physical properties used in

Appl. Sci. 2019, 9, 2300; doi:10.3390/app9112300 www.mdpi.com/journal/applsci
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electron devices for classical computing are the electrical current or the voltage in different (input and
output) terminals. It is important to notice that although the transistor is a quantum device whose
performance is determined by the evolution of quantum states, these quantum states are not directly
used to encode information in classical computing.

In quantum computing [3], contrarily, the logical state ‘1" is directly encoded in a quantum state
of the physical system, namely |1) — 11 (7, t) where 7 represents the degrees of freedom of the system.
Similarly, the logical state ‘0" corresponds to another quantum state |0) — (7, t). Because of the
quantum superposition principle, a sum of the two physical states, a|1) + b|0) where a and b are
complex numbers, is also a valid physical state of the system. As a consequence, quantum mechanics
offers the possibility of operating simultaneously on the logical states ‘1" and ‘0". This opens classically
inaccessible computing possibilities.

Many companies and researchers are advocating for quantum computing. Among many others,
for example, Google has said that its state-of-the-art quantum chip will be the first to perform
calculations beyond the best existing classical supercomputers [4]. Other companies and researchers,
on the contrary, understand quantum computing as an exciting discipline, with an unquestionable
scientific interest, but argue that quantum technologies will not substitute our classical computing
machines at home (because quantum computers are complex, expensive and built using a more
immature technology) [5,6]. In any case, without making any risky prediction, what seems clear today
is that classical and quantum computing are both valuable research avenues.

Any classical or quantum computation using quantum devices is implemented following three
main steps: (i) initial preparation of the quantum state, (ii) unitary evolution of the state and (iii) the
final measurement of the state. In this paper, we will focus on the last step for both classical and
quantum computations. The measurement step is linked to the quantum uncertainty [7] that implies a
practical inconvenience since it gives rise to quantum noise at the output of the device (The reader
can argue that the uncertainty disappears when the quantum state is prepared as an eignestate of the
projective (measuring) operator. However, typically, the preparation of the state of an electron being
injected into the active device region from the contact (reservoir) is done by the contacts itself, which
do not provide such eigenstates). Solid-sate quantum electron devices are unquestionably the best
technology to implement classical computing. It is, however, not clear today which will be the best
technology for quantum computing. In any case, it seems clear that the possibility of implementing
quantum computing algorithms with solid-sate devices would benefit from the maturity of the existing
technology and offers the possibility of making quantum computing platforms compatible with
classical ones.

The paper is structured as follows. In Section 2, we will propose a simple protocol that allows
evading the quantum uncertainty associated with the measurement process in quantum electron
devices, for either classical or quantum computing applications. This is the main result of this
work. In Section 3, we will first investigate the measurement of the electrical current under this
protocol for a resonant tunneling diode (RTD) understood as a quantum electron device useful for
classical computing. Later, in Section 4, we will analyze the measurement of the electrical current
in a Mach-Zehnder interferometer (MZI) which is tailored to design the logic gates suitable for
implementing quantum computing. We will conclude in Section 5. More technical details are presented
in the appendices.

2. Quantum Uncertainty: The Problem and the Solution

In this section, in order to simplify the discussion and better understand the problem and the
solution explained here, we made the following simplifying assumptions. First, we will focus on
a quantum electron device with just one degree of freedom indicated by 7. The consideration of
more realistic situations, with many degrees of freedom in a quantum device, would not modify the
conclusions drawn here and would only complicate the notations and understanding of the results.
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See Appendix A for the straightforward generalization of the present results to an unmodified (original)
quantum device with many degrees of freedom in the active region.

Second, we will assume that the measurement of the electrical current of the quantum electron
device is done through a projective (strong) operator and that the state of the system after the
measurement is just an eigenstate of this operator. In other words, we will assume that the measurement
process is done with a projective value measure (PVM), while it has been argued that the realistic type
of measurement of the electrical current is better described by a positive operator valued measure
(POVM) [8,9]. In any case, the explicit consideration of a POVM to describe the measurement process
will not add any relevant point in the discussion. In Appendix C, we explain with more detail the
measurement of the electrical current in a realistic quantum electron device as a POVM.

2.1. The Problem

The first step to implement a classical or quantum computing algorithm using quantum devices
is the initial preparation of the quantum state associated with the quantum electron device ¥;, (7,0).
In quantum computing, the initial state is directly linked to a combination of two states, ¢ (7,0) and
Po(7,0), respectively associated with the logical values ‘1" and ‘0’, whereas in classical computing,
the link between logical information and initial quantum state is not direct. Typically, a quantum
device for classical computation is connected to the external world through the contacts (also know
as reservoirs) that determine the electron wave function depending on temperature and doping
conditions. The input logical information is then linked to a value of an observable I, not directly to
the quantum state. We have used the symbol I to remind readers that hereafter, we will consider the
electrical current as the physical magnitude where information is encoded.

The second step is the manipulation of the initial quantum state through the quantum electron
device (also known as gate in the literature). Typically, such manipulation, whether in classical or
quantum computing is done through a (usually unitary) operator U(t,0). In quantum computing,
the final state (7, ) = U(t,0)¢;, (7,0) is directly linked to the output logical information, while in
classical computing the output logical information is linked to an observable I associated with this
final state through a measurement process that we describe below. See Figure 1a where different gates
of an RTD which are connected to exemplify a classical computation gate connected through output
values of the electrical current (or voltage), while the connection among different gates of the quantum
computing device is done through the wave function itself as depicted in Figure 1b.

The third and last step, both in classical or quantum computing algorithms, is the measurement
step. To get the final observable value I in classical computing, the quantum electron device has to
be measured through a (non-unitary) process. Such non-unitary process is depicted as an ammeter
in Figure 1. The evolution from the final state to the measured state, ou(7,t) — ¢;(7, 1), is called
collapse or reduction of the wave function. The subindex I here refers to the measured state of the
current which corresponds to an eigenvalue I of the eigenfunction (7, t) associated with the operator
I. In quantum computing, the final wave function ,,; (7, t) is not directly measurable in a single shot
measurement. Instead, the logical information assigned to this final quantum state has to be indirectly
deduced from the measurement of an observable assigned to such final state. See Figure 1b. Notice that
the measurement in quantum computing has to be done only once, at the end of the gate, because each
measurement collapses the wave function, destroying the required superpositions of different states in
the quantum computing algorithms.

The process of measurement involves a quantum uncertainty which is a consequence of the fact
that each time a quantum measurement is done, the wave function collapses into an eigenstate of the
operator [ associated with the measuring apparatus. The observable output Iy is a random value
equal to the eigenvalue associated with the mentioned eigenstate. In general, and this is true for the
measurement of the electrical current, the final state before measurement 9, (7, t) is not an eigenstate
of the current (7, t) # Pout(7,t). In fact, the final state can be written as a superposition of many
different current eigenstates. Thus, each time we repeat an experiment to obtain information about
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the output current, we get different values. This randomness in the output values can be quantified
through the probability distribution P(I) = |{1;(7)|pout(7,1))|? given by Born’s law. From a quantum
engineering point of view, this quantum uncertainty (seen as noise in the current) is inconvenient for
efficiently processing logical (either classical or quantum) information.

4 N\
/_\}Unitary Evolution ‘/_\

|1/)> Resonant Tunneling Diode |1/}>

v T

(a)

mnitary Evolution

/)= d|0) + 1) ") =d'|0) + b"|1)

Mach-Zehnder Interferometer

N (b) ' Y,

Figure 1. (a) Schematic of classical computing exemplified with RTD where only the active device is
governed by unitary quantum evolutions (enclosed in the cyan color dashed line), while the contacts
and the cable leads to quantum decoherence which provides a fixed value of the current obtained in
the measuring apparatus (shown at the right end). (b) Schematic of quantum computing exemplified
with an MZI where the quantum wholeness require that a coherent unitary evolution appears in all the
gates (enclosed in the cyan color dashed line). Only at the end, when the wave function is measured,
decoherence can be accepted.

In classical computations, the uncertainty on the electrical current can be eliminated by using
the ensemble value of the current (I) computed from a large number of identical experiments, each
one giving I', with the subindex i identifying the experiment. The ensemble value is defined as
(I) = (Z?g” I/ Nexp, where Neyp — o0 is the number of experiments. In principle, this ensemble
value would require repeating the same experiment for a large set of Ny, identical quantum electron
devices. In practice, by invoking ergodic arguments, the repetition of the experiment is substituted
by measuring at different times in the same quantum electron device. Thus, instead of defining the
signal of the output logical value as the instantaneous current I' (which has noise) one defines it
as the DC value of the electrical current (I) computed during a large time interval (which has no
noise). This solution is efficient for reducing the noise, but it requires a large measuring time. (In our
simulation example with an RTD with a device active region length of 10 nm, the injection time of
0.05 ps and the velocity of electrons as 10* m/s, the time after which we get the non-fluctuating value
of the current is around 50 ps. In any case, the measuring time is again a parameter that depends on
many factors, like injection time, velocity of electrons, electron density, level of tolerable uncertainty.
etc., and that can be enlarged or reduced as desired by manipulating these parameters.)

The quantum uncertainty described above represents also a problem for quantum computing.
In fact, although the logical output information in quantum computing is encoded in the final wave
function 9, (7, t) (not in an observable I 1, the quantum state o, (7, t) is not itself an observable



Appl. Sci. 2019, 9, 2300 50f 21

(i-e., it cannot be measured in a single shot measurement). Thus, the quantum state of the system needs
to be deduced from the expectation value (I). Again, the measurement process of such observable
(I) has the same inconveniences mentioned above for classical computing, due to the quantum
uncertainty. We notice that in a quantum computing algorithm, with many interconnected quantum
gates, the measurement of the observable is done only at the last gate. In fact, trying to measure at an
intermediate gate would be understood as a type of decoherent phenomena that would dramatically
perturb the unitary evolution required in typical quantum algorithms. In Figure 1 we encircle the
regions of the connected gates where the dynamics of electrons are supposed to be governed by unitary
quantum evolutions. From Figure 1, one can understand why decoherence is a serious problem
for quantum computing, but not for classical computing. In an array of interconnected classical
computing devices, the decoherence that can appear at the output of each particular device due to the
measurement does not affect the performance of the algorithm because the interconnection between
devices is done in terms of observables (not in terms of wave functions).

In summary, the electrical current in nanoscale devices, for classical or quantum computing,
has an inherent quantum uncertainty, seen as noise in the measured value of the electrical current.
Since the information is usually encoded in the average value (I) of the electrical current, we require
an effort to wash out the noise from the measured current to get valid information. The typical solution
in the literature to wash out the noise is repeating the experiment many times (or using the ergodic
theorem to get (I) after a large time).

2.2. The Solution

In this work, we explain a novel solution to the problem discussed above about reducing the
quantum noise induced by the measurement process. We argue in this paper that such noise can
be eliminated by modifying the quantum device to accommodate N — oo electrons, simultaneously.
We will show that the dispersion of a random distribution of the (normalized) electrical current of
N — co electrons tends to zero, which implies eliminating the quantum noise.

Let us consider an original or unmodified quantum electron device (before applying our protocol)
that has only one transport electron, at each time, responsible for the measured current. Such electron
at time t;,, is described by a single particle quantum state |!(t;,)) where the superindex 1 refers
to this first electron. We are measuring the current through a single particle operator [!. If the state
|1 (t;,)) is not an eigenstate of the operator I, then, the measurement of the I gives rise to the quantum
noise discussed in the previous subsection (we notice again that the generalization to more electrons is
done in Appendix A).

The solution that we propose to minimize the quantum noise requires designing a new quantum
device (that we will refer to as the modified quantum device or just the quantum device) so that this
new device satisfies the following two conditions:

e Condition 1: We enlarge the original quantum electron device in order to accommodate a large
number of electrons N — oo simultaneously. Then, the many-particle wave function ¥r(t;,) that
defines this N electrons at time ¢;;, is:

¥ (tin)) = [9! (tin)) @ [$?(tin)) @ oo @ [N (i), (1)

where the wave function |¢/(t;,)) is the single electron wave function that corresponds to the i-th
electron prepared under the same conditions that we have used to prepare the wave function
|1 (tin)) in the original quantum electron device.

Strictly speaking, the condition N — oo is inaccessible in a practical scenario. We will see
numerically in the following sections that a finite number of electrons is enough to drastically
reduce the quantum noise. Identically, if the number of transport electrons in the original
(unmodified) quantum electron device is already larger than one, the solution proposed here is
still perfectly valid. See Appendix A for a generalization of the present protocol to more than one
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electron in the unmodified electron device. Finally, as can be seen in Equation (1), we assume a
many-particle wave function of non-interacting electrons. This is obviously an approximation in
realistic quantum devices since these electrons will suffer exchange and Coulomb interactions.
In Appendix D, we test our protocol under the exchange symmetry for two electrons. Under the
assumption of an initial negligible overlap of the wavepackets our protocol does not deviate from
the actual result. These issues will be further elaborated in the practical implementation of this
protocol in next two section.

We mention that some (small) variation in the preparation of the state [ (;,)), [$?(t;,)),... forming
¥r(ti,) is allowed. For example, the time delay between the injection of different single electron
wave packets can vary. Also the central position of the wave packets along the lateral dimension
of the device can be different. Similarities between different wave packets have to be enough to
justify that the probability distribution of the values of the current is identical for all single electron
wave packets.

e Condition 2: We substitute the measuring apparatus associated with the single particle operator
' with a new measuring apparatus whose associated many-body operator I is:

V4724 4 IN
T — N ’

()

where 7/ = 1® ... ® ' @ ... @ I acts only on the quantum state |¢/(t;,)) and I is the identity
operator in the small Hilbert space of each degree of freedom. Notice the presence of the factor
N — o in the denominator of the operator Ir.

In next section, we will show the physical soundness of the many-particle operator in Equation (2)
for typical semiconductor electron device technology.

Now let us formally demonstrate that the dispersion of the electrical current of the modified
quantum device (satisfying condition 1 and condition 2) is zero. For the operator [t defined in
Equation (2), we calculate the variance of the (I2) as the mean square value of the operator I7 as:

N . . C s .
(¥r|(Ir)*|¥r) = Z Ty + g N2 W' ") (| |g). ®)
i i,j#i

By construction of the wave function in Equation (1), we know that the mean values (y/|/|/) are
all identical for any j. Therefore, we can consider (y/|I/|y/) = (p!|I'|y!) because all electrons are
described by the same wave function and we can rewrite Equation (3) as follows,

A N & N(N -1 ~ o
(e = 12l + N gt g, @
Therefore, when N — oo, we get:
(B) = (o7l (r)2I%r) = P! (! P 1) = ()2 6

Now, we have to demonstrate that the logical information provided by the modified quantum
device dealing with It is the same as the one that one gets from the original quantum device. As we
discussed, the logical information of the original quantum device was represented by the mean value
of the current (') and not by the instantaneous value I' (which was too noisy due to quantum
uncertainty). It is quite simple to demonstrate that I = (I) for N — co. By construction, we know
(1Y = (17, from Equation (2) we get (I7) = N(I')/N = (I') and with Equation (5), we conclude that
the dispersion 07, of the distribution of the total current I is zero:

ot = (I3) = (Ir)? = 0. 6)
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The result ¢, = 0 in Equation (6) implies that the distribution of I7 is a delta function around (.
This implies that in every measurement one gets the mean value of the single particle average current
It = (IY).

It can be easily checked that the state in Equation (1) in the limit N — oo is, in fact, an eigenstate
of any operator of the type of Equation (2) at any time. This state, with this unusual property, has been
used by one of the co-authors to study the quantum-to-classical transition [10]. In addition, a similar
state and operator as the ones invoked in our condition 1 and condition 2 has been used to develop
the new concept of collective measurements [11,12]. Such collective measurements do really invoke
multiple physical repetitions of the quantum system, while in our paper we make use of this idea in
the same many-particle state and operator and in a single (modified) quantum device. In other words,
the demonstration provided above is mathematically equivalent to the one that appears in the theory
of collective measurements, but their physical implementation in the laboratory is radically different.
In the rest of the paper, we will show how these two conditions can be effectively implemented with
the semiconductor electron device technology in a single device for classical and quantum computing.

3. Application to Classical Computing Device: Resonant Tunneling Diode

As an example for the application of the discussed protocol in a classical computing device, we
consider the computation of the electrical current in an RTD. This type of electron device is a pure
quantum device, whose performance is based on tunneling, and has been successfully implemented
in some particular high frequency applications particularly to explore the missing THz gap for
various analog and digital applications [13-16]. The main element that defines an RTD is a double
barrier potential created, for example, by alternating Gallium Arsenide (GaAs) and Aluminum
Gallium Arsenide (AlGaAs) III-V semiconductors with different energy gaps, as shown in Figure 2.
The combination of low band gap and high band gap semiconductors leads to the formation of a
well in the potential energy profile, which gives rise to discrete set of energies inside, known as
resonant energies.

As depicted in Figure 2, two reservoirs or contacts emit or collect the electrons through the RTD
structure. We name the left contact as source (also known as emitter in the literature) and the right
contact as drain (also known as collector in the literature). These contacts are responsible for the first
step of classical computing algorithm: the preparation of the initial quantum states. The energy of the
injected electrons is determined by the Fermi-Dirac statistics (depending on the doping conditions of
the contacts). A regular injection of electrons is assumed according to the discussion of the Appendix B.
The second step of the classical computing algorithm is carried out by the barrier structure that
determines whether the injected electrons are effectively transmitted or not. An electron incident on
the double barrier with an energy equal to one of the resonant energies tunnels through the barrier,
being transmitted with a transmission coefficient T close to one, while electrons with other energies
have a transmission coefficient close to zero. An external potential between the drain and source
potentials, modifies the double barrier potential energy profile, controlling the ON and OFF currents.
One value of the current can be assigned to the logical output information "1” and the other to the "0’

The last step of the classical computing algorithm is the measurement of the ON or OFF current
which implies the measurements (collapse) of the quantum wave function assigned to electrons inside
the RTD, which provides the undesired quantum uncertainty in the output values of the current.
We discuss next how the conditions of Section 2.2 can be implemented.

3.1. Implementation of Condition 1 and Condition 2

We consider that the RTD depicted in Figure 2 corresponds to the modified design of the device
that accommodates a large number of N electrons simultaneously inside. In this particular device,
enlarging the lateral area A is enough to enlarge the number of electrons inside the RTD. We can
reasonable assume that the contact prepares the wave packets of each electron in a similar way so
that the condition 1 of our protocol in Equation (1) is easily satisfied. Certainly, a point that requires
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further discussion is how to ensure that the many-body wave function of electrons in the active region
of this modified device can be approximated by the non-interacting wave function in Equation (1).
In the Appendices A and B some qualitative indications are mentioned. A different solution for
minimizing the undesired Coulomb and exchange interactions will be discussed in next section,
for quantum computing.

To satisfy the second condition we have to ensure that all electrons inside the device contribute
equivalently to the measured value of the electrical current. A detailed discussion of the conditions
that have to be satisfied by the quantum device to ensure this point is provided in the Appendix C.
We anticipate here that such discussion is greatly simplified by associating to each electrons a
quantum (Bohmian) trajectories, whose positions and velocities are well-defined even in absence
of a measurement, in addition to the orthodox wave function. Then, the electrical current due to the
simultaneous contribution of all electron leads to the following expression,

N N iy
Lep(£) = ) I'(t) = q”"L( ) )
i=1 i=1

As discussed in the Appendix C the above expression assumes that the lateral dimensions of the (two
terminal) electron device are much larger than the longitudinal one, and that the contacts are formed by
metals with a fast screening time in comparison with that on the active region. The condition 2 of our
protocol to define the current operator as in Equation (2), requires to define the output instantaneous

value of the current as,

(o) = 22, ®

The value of N(t) ~ N can be assumed to be proportional to the enlarged lateral area, and the value
IT(t) computed from L., (t) after knowing the ratio of the modified /unmodified areas. The detailed
discussion on the definition of the current and the implications of condition 2 is given in Appendix C.

3.2. Numerical Results

In this subsection, to show how the quantum uncertainty of the values of the measured electrical
currents can be controlled, we compute the autocorrelation function of the current It defined as:

(Ir(t)Ir(h) = [ atf [ aig (s, 1), ©)

where P(I¥, I¢) is the probability associated with the subsequent measurement of the multiparticle
state |¥1) at two times #; and t, > t;, with I and I§ defined as the output values of the current at
times ¢; and tp, respectively.

As indicated in the previous section, for practical reasons in the computation of the particle and
displacement components of the current, we will use a wave function plus a Bohmian trajectory for
each electron in the computation of the dispersion of I7 in the modified quantum device through
expressions in Equations (7) and (8). The measurement of the current in an electrical device is a
weak measurement process [8] in the sense that the perturbation of the wave function due to the
measurement process is not very dramatic. This type of measurement is mathematically represented
by three subsystems: the quantum system, the measuring apparatus plus an intermediate system or
ancilla. In fact, the system interacts with the ancilla during the measurement (not with the apparatus)
and the apparatus measures the ancilla (not the system). This indirect way of getting information of
the system by measuring the ancilla implying that the output value of the total current has the quantum
noise of the system plus the quantum noise of the ancilla. In our particular example, the ancilla is just
the cable (in fact there are a very large number of electrons) connecting the RTD with the ammeter [8].
As indicated in the previous section, for practical reasons in the computation of the particle and
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displacement components, in addition to the wave function, each electron will be described by a
Bohmian trajectory.

AlGaAs

Figure 2. A 3D schematic of the RTD where the green material represents GaAs while the red represents
AlGaAs. The alternating AlGaAs-GaAs-AlGaAs structure results in a potential well with discrete
resonant energies.

As we have mentioned, the elimination of the quantum uncertainty in the measured current
implies that the total wave function in Equation (1) is an eigenstate of the many-particle operator
in Equation (2). Then, the first measured value of the current I (#;) at time #; has no influence
on the output of a second measurement I7(t;) at time tp, and it can be shown [17] that the two
time probability of the autocorrelation given in Equation (9) can be written as the product of two
independent probabilities, which leads to the following expression of the two time correlation in
Equation (9),

(Ir(t)Ir(t)) = [ dif [ g Gagp()p(s)
_ /dl%l%P(Ié)/dl%’l%’ (1%) (10)
= (Ir(t2)){Ir(t)) (11)

The condition in Equation (11) is a test of the fact that the quantum uncertainty has disappeared in the
measurement process of the modified device. Please note that from a pure engineering point of view,
the autocorrelation mentioned above contains rich information on the high frequency response of the
quantum device. In order to get the frequency response of the device we compute the power spectral
density which is just the Fourier transform of the autocorrelation function (since the current signal
has a constant mean, it is in a wide sense a stationary process, hence the auto-correlation depends
only on the time difference t = t, — t;. Therefore the auto-correlation function and the PSD form
a Fourier transform pair). We therefore define the power spectral density due to the unmodified
system, i.e., the system where the protocol is not applied, as Py,modified = F1{(Ir(t2)Ir(t1))} while
Puodifiea = F{(IT(t2))(Ir(t1))} for the modified system where the protocol is implemented. Here F
represents the Fourier transform operator. Finally we can define the relative error (RE) as:

IEDrrzodified - IEDu'rlmodified
7

RE =
Priodi fied

(12)

which is plotted in Figure 3. The RE in Equation (12) contains quantum noise at all frequencies. Since
all electrical devices are, in fact, a low pass filter, it is interesting for engineering purposes to quantify
the error as a function of the frequency. A value of the RE equal to zero indicates that the quantum
uncertainty (of the system and ancilla) has been eliminated which has a direct correspondence with the
increase in the transport electrons in the device that can be further attributed to a large transmission or
a large average current. Besides this it is also easy to see that to arrive at a zero quantum uncertainty
we do not need an infinite number of electrons.
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In our simulation the total number of electrons injected is given by N = t/1;,, where t is the total

simulation time (the time after which the mean current reaches a constant value) and T;,, is the injection

— qTfe

time of electrons. Now we know that (It) = “=-¢ where T is the transmission coefficient and f, is the

Fermi function which we assume to be unity. So it is straightforward to see that N = % We used

the total time of simulation as 50 ps,, T = 0.7, f, = 1 and (I7) = 5 pA . These values correspond to a
point in graph where the uncertainty starts to disappear which gives us the value of N ~ 2232. Which
is a large value but not infinite.

Relative Error Relative Error
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Figure 3. (a) Plot between the relative error, the transmission coefficient and the average current with
the Fermi function fixed to unity. The relative error which is an indicator of quantum randomness,
goes to zero, when the number of electrons in the device quantified by transmission coefficient and the
mean current becomes very large (blue shaded region) while the relative probability of error is greater
(in the red region) when the number of particles in the device is very small. In the green region the
uncertainty already starts to disappear. (b) The same plot but with a constant transmission probability
as unity and varying Fermi function also demonstrate the same outcome.

4. Application to Quantum Computing Devices: Mach-Zehnder Interferometer

We provide now an example of our protocol for reducing the quantum uncertainty in a quantum
computing device. Quantum computing algorithms require a suitable set of quantum gates to
reproduce logical operations [18-20]. With respect to most recent implementations, mainly based on
superconducting [21] or single-ion qubits [22], solid-state devices are promising candidates because of
their scalability and potential to be integrated into classical circuitry. In this section we will study how
the quantum uncertainty can be eliminated in a solid-state MZI acting as quantum gate.

It is important to notice that any practical implementation of a quantum gate tends to have a
non-negligible interaction between the quantum system and the environment (in terms of scattering
with photons, background charges, impurities etc.) even when no measurement is designed.
This interaction affects the expected unitary evolution of the state of the quantum system and produces
loss of the logical information encoded in the state (decoherence). In solid-state MZI proposal,
decoherence can be successfully minimized by injected electrons in edge states, chiral conductive
channels generated in the Integer Quantum Hall regime [23]. Then, a strong enough magnetic field
B is applied perpendicularly to a 2DEG, so that the band structure is discretized into Landau levels.
In proximity to the confining potential of the device, the system eigenstates form chiral channels
where an electron propagates coherently for large distances [24]. The chirality of such edge states
prevents the electron to be back-reflected by eventual impurities on its path, unless it is scattered to
the counterpropagating edge channel by a narrow quantum point contact [25,26]. Coherent transport
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of electrons in edge states has been tested in a large variety of semiconductor devices, as Fabry-Perot
interferometers [27], Hanbury-Brown-Twiss [28] and Hong-Ou-Mandel interferometers [29], thus
validating the Integer Quantum Hall regime as an ideal framework to implement solid-state quantum
logic gates [30].

Our MZI is schematically depicted in Figure 4. To simplify the discussion, as done along the
whole paper, only one degree of freedom (one qubit) is considered for the unmodified quantum device.
The generalization of the present protocol to a realistic quantum computing gate with more qubits,
is explained in Appendix A. We consider that a contact or reservoir (as elaborated in Appendix B)
is connected to the source contact (S1) in Figure 4a filling only one Landau level and all injected
electrons have the same wave function |0), but displaced in time by the distance 7;,vy, as depicted
in Figure 4b. At this point, we have not yet constructed the superposition of states to get our initial
qubit. In our device setup, a potential dip or a quantum point contact acts as a half-reflecting beam
splitter by randomly scattering the electron in one of the two available edge channels [31-33] so that
the description of the quantum electron in the central region of our MZI is given by the quantum
bit a|0) + b|1). This conclude the first step of the preparation of the quantum state. Then, a tunable
potential mesa generated by top gates further separates the two quantum rails, so that the traveling
electron accumulates a different phase according to its path [34] as shown in Figure 4a. The two
electron beams are then recollected at the second beam splitter to produce the electron interference
which is the second step in a quantum device for the (unitary) manipulation of our initial quantum
logical information. The final step is the measuring of the observable associated with the final qubit
a’|0) + b'|1) by the detectors D1 and D2 in Figure 4. As in the case of the RTD, typically the electrical
current (which is proportional to the transmission probability from source i = 1 to detector j = 1,2) is
used to indirectly identify the final qubit [35].

-
|
a’|0) +0'[1))
|

SR o B
|
|0) I
al0)y + b|1) I
Source |
L] :
| ‘ -
[ [1) 1
1

TinUy Beam Splitter

(@) (b)

Figure 4. (a) 3D view of the potential landscape felt by the electrons in the MZI at bulk filling factor 2
in the Integer Quantum Hall regime, in presence of a perpendicular magnetic field [34]. Electrons are
injected in the first edge channel by the source S1, and collected at the end of the device by the drain
D1 (D). The paths of the electrons in the interferometer is defined by the red (blue) line for the first
(second) Landau level. (b) Schematic diagram and functioning of the MZI. Electron injection with
non-interacting and non-overlapping wavepackets is shown in gray, while the region encapsulated by
the cyan color dashed line box defines the region where the unitary evolution of the quantum states
is preserved.

The magnetically dependent transmission probability T»1(B) for an electron in the input channel
S1 to be detected at D2 can be analytically computed by means of a simplified 1D model based on the
scattering matrix approach, as in Ref. [34] and reads:

Tp1(B) = 2T(1 — T)(1 + cos(®)), (13)
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where T is the transmission coefficient of the single beam splitter and ® is the total phase difference
accumulated in the MZI:
_ qBA

=" 4. (14)

Aharonov-Bohm oscillations in the transmission amplitude [36] are then driven by a variation of the
magnetic field B or the loop area A, affecting the phase ®. This platform can be used to implement
other electron interferometry schemes for single electrons, e.g., Fabry-Perot geometries [27], or two
interacting electrons [31,37,38]. Let us notice that the consideration of more qubits in the unmodified
quantum device will just require occupying different Landau levels, but the basic understanding of
how the uncertainty in the measurement can be controlled will not be modified by the presence of
more qubits.

4.1. Implementation of Condition 1 and Condition 2

As with Section 3, here too we ensure that our modified quantum device satisfies the conditions
mentioned in Section 2.2. Here condition 1 can be obtained with a different strategy than the one used
for the RTD since electrons are entering in the MZI one by one (as in a quantum wire). The strategy
is enlarging the length L of the arms of the active region of the device (between S1 and D1, D2) to
increase the number of simultaneous single particle wave packets that fit inside the device. We argue
in the Appendix B that a natural way in the injection of electrons from the contacts in the device is
at time intervals T;,, as defined in Equation (A8) in Appendix B. Neglecting the thermal noise of the
contacts the spatial separation between electrons is therefore given by t;,v, as plotted in Figure 4.
Notice that such spatial separation ensures that the consideration of non-interacting electrons required
in Equation (1) is more accurate for our modified MZI than for the RTD mentioned before.

As indicated in Appendix C, the consideration of metallic contacts with a lateral area A satisfying
VA > L is necessary condition to be able to successfully use Equation (7) in the computation of the
experimental current. Notice that enlarging the lateral area A does not imply an increment of the
number N of electrons here since electrons can only enter inside the device, one by one, in the 1D edge
channels. Besides this condition 2 can again be obtained by post-processing the experimental current
Lexp as indicated in Section 3, by fixing the total time T that we allow the electrons to enter inside the
enlarged active device region, N = T/ Tj,,.

4.2. Numerical Results

To prove the discussions in the previous sections numerically we implemented the Mach-Zehnder
like behaviour in the simulations. We were able to attain the Aharonov-Bohm oscillations where the
maximum and the minimum value of the current obtained in one of the drains of the MZI oscillates
with the change in the magnetic field (see Figure 5a). These oscillations are a signature of the correct
working of our simulations. As expected, we observe that the instantaneous current It (t) computed
in the quantum device with a large number of electrons is much less noisy than the ones with fewer
electrons, as plotted in Figure 5b. The noise in the current value due to fewer electrons results in very
high fluctuations in the instantaneous value (black line in Figure 5b) which forces the experimenter
to record the values in several experiments to finally get an ensemble value which is non-fluctuating.
However, with the successful application of our protocol the fluctuation of the instantaneous value
of the current almost disappears (cyan line in Figure 5b) as a result one needs to make just one
measurement to get the correct value of the current. The final step of this protocol is determining the
value of N which as discussed above can be givenby N = T/ 1;,.
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Figure 5. (a) The Aharonov-Bohm oscillations of the mean current resulting due to the interference of
the wavepackets at the output of the Detector 2 oscillating between the maximum and minimum limit
of the mean current. (b) The instantaneous current normalized to the number of particles is plotted
at the output of the detector 2 of the MZI with respect to the simulation time, for different number of
electrons N. As expected, the noise in the current reduces with the increase in the number of transport
electrons due to the elimination of quantum uncertainty demonstrating the successful implementation
of the protocol discussed in the text.

5. Conclusions

The measured current associated with a quantum device with few electrons has a quantum
uncertainty due to the intrinsic stochastic process of the quantum measurement of the electrical current.
From an engineering point of view, this quantum uncertainty becomes an undesired quantum noise
that makes the discrimination of the final state in classical or quantum gates more difficult. To avoid
the quantum uncertainty in the evaluation of the output value, one usually repeats the measurement
at different time (using ergodic arguments) to compute a time-averaged value free from uncertainties.
We have presented in this paper a new protocol that modifies the original quantum electron device to
accommodate a larger number of electrons inside, so that the total electrical current of the modified
device (when normalized to the number of electrons inside) gives the value of the output current
without quantum uncertainty. We provide numerical examples for classical and quantum computing,
with an RTD and MZI, respectively. We demonstrate that the many-particle wave function associated
with the modified device is, in fact, an eigenstate of the many-particle electrical current operator.
The similitude and differences of our protocol with the collective measurements is mentioned in the
text. The results of our protocol can be alternatively understood as a consequence of the central limit
theorem (see Appendix E). Although the assumption of non-interacting quasi-particles can seem
reasonable in nanoscale electron devices, further work is needed to check whether or not the presence
of strong Coulomb and exchange correlations among electrons located inside the device can affect the
present predictions. In addition, the discussion on the advantages of the protocol presented here needs
to be explored for the quantum measurements of transient currents and delay time of classical and
quantum gates.
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Appendix A. Generalization to an Unmodified Quantum Device with Many Electrons

In the text, to simplify the notation and the discussion of our protocol, we have assumed that
the unmodified (original) quantum device has only one electron in the active region.This assumption
is obviously unrealistic in many scenarios for either classical or quantum computing. For example,
in quantum computing, we need a nanoscale devices with, at least, the number of electrons equal to
the number of qubits we want to deal with. We show in this appendix that the very same protocol
described in the text for one electron can be straightforwardly generalized to deal with an unmodified
(original) quantum device with many electrons present in the active region of the nanoscale device.

We consider an unmodified (original) quantum device with M electrons in the active region.
To simplify the discussion, we will write the quantum state in the position representation. Then, each
electron is described by the degree of freedom Xj with j =1,2,..., M. Such quantum system is described
by the M-particle wave function:

P(x1, X2, .0 X0, Ein) (AT)

Notice that we do not assume any particular shape of this M-particle wave function so that exchange
and Coulomb interaction among the M electrons is taken into account in the definition of this M-particle
system (without any restriction).

Now, we consider N set of M electrons which are prepared under the same conditions as the
ones in Equation (Al). In other words, the quantum dynamics of each set of these M electrons
can be described by the same wave function in Equation (A1). Thus, we define N x M degrees
of freedom for the modified quantum device as x’ with i = 1,2,..., N counting the repetitions and
j =1,2,..., M counting the number of electrons in each repetition. We define N wave function identical
to Equation (A1), but with a superindex i = 1,2, ..., N indicating which is the repetition we are
dealing with:

l[Ji (xﬁ, xé, s x;/l, tin) (A2)
Introducing the wave function in Equation (A2) into the quantum state of the modified quantum
device written in Equation (1), in the position representation, we have:

‘I’T(x%, ...x]IQ],I, tin) = l[Jl(x%,..., x}w, tin) ~1/J2(x%,..., x%A, i) * et le(xll\],..., x%, tin) (A3)

Clearly, we have assumed in our definition of ‘I’T(x%, ...xﬁ, tiy) in Equation (A3) that there is no
Coulomb or exchange interaction between the subset of electrons {x¥, ..., xk } (for a treatment of the
effect of exchange interaction see Appendix D) and the subset of electrons {x!, ..., x};} for any j # k,
but no restriction is imposed on the interaction among the M electrons of each subset. The rest of the
demonstration till the final result in Equation (6) with 0'12T = 0 are basically the same that we wrote in
Equations (3)—(5) for the evaluation of mean values.

A relevant point in our discussion is that even with our best technological means to exactly
reproduce the same wave function in Equation (A1) with another set of M electrons, the quantum
dynamics of these new set of electrons is not exactly identical to the previous one because of the
inherent quantum uncertainty. The key element in our demonstration is that all these N different
uncertainties of the set of M electrons have to follow an identical probability distribution given by the
same wave function ¥ in Equation (A1).
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We notice that we have discussed in this appendix that if a system of N x M electrons are described
by Equation (A3) (what we call condition 1 in the text) and if we use a (center-of-mass-type) operator
in Equation (2) (what we called condition 2 in the text), then, the uncertainty in the measurement
disappears in the lim N — co. A different question is how to ensure that a modified quantum device is
effectively described by Equation (A3) and the measurement by the operator in Equation (2). This last
point is what we discussed in detail in the implementations of our protocol with a RTD and a MZI in
the text.

Finally, let us notice that the results in this appendix can be understood in a quite different
way. It can be used to justify that some amount of Coulomb interaction (between nearest neighbors)
can be accepted between the different N subsets. Let us consider again an unmodified system
with only one electron described by the wave function ¢(x1, t;,,). Let us consider that some of the
electrons of the N subsets (not all) do have interaction among them. We define M as the number of
electrons that have interaction among them (for example we can consider two-electron interaction,
but neglect three-electron interaction). Then, the wave function that define these interacting electrons
is l/)i(xé, xé, vy xﬁw tin). If we assume that the (normalized to the number of electrons) probability
distribution of the electrical current assigned to zpi(xi, xé, . xﬁw, tin) is not much different than the
probability distribution of the electrical current assigned to 1(x1, t;,), then, the demonstration in this
appendix can be used to justify that our protocol can be reasonably valid when some interaction is
accepted between nearest neighbors {x£, ..., x,} and {x], ..., x}}.

Appendix B. The Injection Time

The phase space density of electrons in a reservoir can be anticipated by assuming that each degree
of freedom of an electron needs a phase space area equal to 27t, which is usually derived by using the
single particle wavefunction of electrons as the Bloch states and then introducing the Born-von Karman
boundary conditions. The interpretation of this result for two wave packets with spatial dispersion oy
and wave vector dispersion o3 = 1/0y, center positions xg; and x(y, and center wave packets kg; and
kop is simple. When they are far away from each other in the phase space, i.e., |xy1 — Xp2| >> 0y or
|ko1 — ko2| >> 0%, the norm of the two-electron wave function is equal to the unity. However, when
the wave packets are approaching each other, the probability decreases. In particular, for x,; = x,»
and k,; = ky, we get ¢ (x) = 1/)2(x) and CD(X1,X2) = 1 (Xl)lpl (xz) — 1p1(x2)1p1 (xl) = 0. This is
the time-dependent wave packet version of the Pauli exclusion principle (or exchange interaction)
mentioned for time-independent Hamiltonian eigenstates.

For example, for electrons in a 2D space (with the position 7 = {x,y} and wave vector
k= {kx,ky}), we consider a volume of the phase space equal to AxAzAk,Ak;, with the degrees
of freedom {x, zo, ky, k; } satisfying xo < x < xo + Ax, zg < z < 2o + Az, kyy < ky < kyo + Aky and
k.o < k; < ky9 + Ak;. The total number of electrons in this phase space cell taking into account the

properties of a fermion are,
_ AxAzAky Ak,

" eme (A

where (277)? is the volume occupied by a single electron in the 2D phase space. Then, the time of
injection of an electrons in the x direction from this volume of the phase space will be given by:
Ax

Ty = = (2m)?
"= o = 270

1
vy AzAk Ak,

(A5)

where v, is the electron velocity in the phase space volume. It can be demonstrated [39] that
interpretation of Ax and Ak, in terms of the wave packets mentioned above implies:

Ax = o,V2m, (A6)
Aky = oV 271 (A7)
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We notice that the condition oy - 03 = 1 implies the desired condition Ax - Ak, = 27. Then, the injection
time in Equation (A5) is just:
Ty = 2, (A8)

Oy

which only depends on the properties of the reservoir.

Appendix C. Description of the Current Signal and Condition 2

We discuss here which are the necessary considerations to design the modified (new) quantum
device that allows us to assume that all electrons inside it have identical simultaneous contribution to
the total current I7.

The first step is identifying the proper single particle operator I'. Then, once we identify ',
we can compute the eigenstates [¢! (t;,)) and the eigenvalues I' that will correspond to the measured
output results. However, identifying the electrical current operator is not so simple for several reasons.
First, the measured current in an ammeter at time t;,, is not just the particle current, defined as the
number of particles crossing a particular surface of the device, but it also includes the displacement
current. The latter component of the electrical current is proportional to the time-dependent variations
of the electric field on a particular surface of the device. Typically, such component is not relevant
at low frequencies, but at larger frequencies no instantaneous current conservation at time ¢;,, can be
guaranteed without it. What is the operator associated with the measurement of the total, particle
plus displacement, current? The answer is not trivial at all. In fact, the measurement of the electrical
current in quantum electron devices has an additional difficulty. The measurement of the electrical
current corresponds to a generalized or weak measurement, which are mathematically described by a
POVM. So, the proper question is even more complicated now: What is the POVM associated with the
measurement of the total, particle plus displacement, current ?

Fortunately, we can describe the measurement of the total electrical current in a quantum electron
device without having to anticipate the POVM. We will use in this appendix an explanation of the
measurement process of the total electrical current using the Bohmian quantum theory. Such theory is
formally equivalent to the orthodox quantum theory, it gives the same empirical results, but it does
not require to identify a priori the measurement operator. Such theory defines a quantum system
assigned to one electron by the orthodox wave function ! (7,¢) plus a quantum trajectory 7' (t) =
{x1(t),y' (t),z' (t)} constructed from a velocity field given by the wave function itself. Such trajectory
allows the definition of the properties of a quantum system, like the instantaneous electrical current
I'(t), independently of the fact of being measured or not. An identically prepared state for a second
experiment will be described by the same wave function $2(7,t) = '(7,t), but with a different
trajectory 72 (t) = {x2(t),y*(t),z%(t)}. The quantum uncertainty in the output value of the electrical
current is due to the different initial positions of the trajectories, which describe an ensemble of
identical experiments. The selection of the initial positions of the i-th trajectories is selected according
to the quantum equilibrium [40].

According to the Bohmian theory, for the electron with trajectory 7! (t) = {x!(¢),y'(t),z'(t)} and
velocity 7' () = {vl(t), v]l/(t), vl(t)}, the electrical (particle plus displacement) current I'(t) generated
in a surface of the quantum device is given by the Ramo-Shockley-Pellegrini theorem [41]. If we
assume that each dimension of the lateral contact area A of the quantum device is much larger than
the length L between contacts (from source to drain), i.e., V/A > L, and this contacts are ideal metals
(with an instantaneous screening time), then the total current generated by an electron crossing the
device between the metals is given by the expression:

o) = 12D fe( - o, - 1), (19)

where O(t) is the Heaviside function representing the time dependence of the single electron current

pulse with t] and #!

i L4 = th +t, being the entering and leaving times, respectively, and ¢, is the
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electron transit time. The pulse starts when the electron enters the device and ends when the electron
leaves it. We notice that the integration in time of Equation (A9), during the time interval L/vy, gives

1
the fundamental electron charge | fout (t)dt = q.

tl
As discussed in the Appendi,x B, we do not have a perfect control on the preparation of the
electrons leaving the contacts and entering inside the device but, assuming the contact to be in
(quasi) thermodynamic equilibrium we can anticipate the energy distribution of the injected electrons
(Fermi-Dirac distribution) and the interval time between consecutive injection of electrons. The total
(particle plus displacement) instantaneous current Iy of the device is then given by:

N(t) N(t

Lxp(t) = Y I'(t) = qv"L(t), (A10)
i=1 1

—~
=

where N(t) is the number of electrons inside the device at time t. Expression (A10) has the desired
property that the current due to all electrons inside the device is just the sum of currents due to
individual electrons. Notice, however, that Iy, in terms of Bohmian currents is not exactly equal to
the I defined in Equation (2) reinterpreted in terms of Bohmian currents, because a factor N in the
denominator of Equation (2) is missing in Equation (A10).

Finally, we emphasize that the Bohmian trajectories have been introduced in this last part just
to simplify our practical discussion about the measurement of the total (particle plus displacement)
current in quantum electron devices, but it has no fundamental role in the demonstration of the
proposed protocol. In other words, the validity of the main result in Equation (6) can be equivalently
demonstrated with orthodox quantum mechanics (as we have done) or with Bohmian quantum
mechanics. The knowledge that we gain from the Bohmian development done here is that the total
(particle plus displacement) current measured in experiments do satisfy the required superposition
of currents associated with individual electrons and that a factor N(¢) has to be added into the

experimentally measured current of the modified quantum device I, to properly define I7 as I (t) =

I‘;}’ES) where two proper ways of computing N(t) are explained in the RTD and MZI applications

mentioned in th text.

Appendix C.1. On the Assumption of a Large Lateral Area in the Active Region

The size of the lateral area A is a very important point in our protocol since we want that each
electron inside the device active region contribute to the measured electrical current. If the electrical
current were only due to the particle (conduction) current component, then, only the electrons crossing
the drain (or source) surface, would have contributed to the current. However, it is well known that
the electrical current is due to both particle and displacement currents. In fact, an electron far from
the drain surface can still affect the current if its dynamics generates a significant perturbation in the
electric field. If the lateral area is large compared to the longitudinal onesi.e., v/A > L, then, effectively
all electrons inside the active device region can contribute to the measured current, as required by the
operator in Equation (2). The formal derivation of this issue is presented in Ref. [8]. Thus, the large
lateral area is an important point of our protocol.

Only when L < W, H, then, one can ensure that all electrons are equally contributing (through
the displacement current) to the total current and hence condition 2 in the main text is satisfied.

Appendix C.2. On the Assumption of an Instantaneous Screening Time in the Metallic Contacts

Next we discuss the motivation behind approximating the screening time in the metalic contacts
to be instantaneous. The fact that we assume a screening time in the contacts (metals) much smaller
than in the active region is something usual in electron semiconductor devices. Typically, the screening
time in metals is considered to be negligible in comparison with the screening time in a semiconductor.
The implications of this condition is that we do not need to simulate the electrons deep inside
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the source/drain contact (without entering in the device) generating displacement current in the
drain (or source) contact. This is possible only if we assume the screening time in the metals to be
(almost) instantaneous.

Appendix D. Effects of Exchange Symmetry on the Total Current Many Body Operator

In the text, we have assumed that the many-particle wave function in Equation (1) has no exchange
symmetry. Here, we discuss the physical soundness of such approximation. Let us evaluate the effects
of exchange symmetry on the squared total current of Equation (2) for two particle case, which can be

rewritten as:
U 1 &
(I7) = 3 LALL) + 7 ) (L), (A11)

i=1 i=1,j#i

where indexes i, j refers to the particle with coordinate x' in the phase space. We assume the system
wave function described by the two-fermion state with exchange symmetry

¥ (x1,x2) = —= (9" () () — ()9 (x%)), (A12)

where the superindex k of the state ¢ refers to the injection time (e.g., ¢! is injected at t;,, while ? is
injected at t;, + T;;). Within this definition of the state, the diagonal average values of the first value in
Equation (A11) read:

1
(M) = 2 2t @ 9?) + (@) (| (1))
(D) ") = 2l (g 1y?), (A13)
for i = 1,2. We reasonably assume an initial negligible overlap of the wave packets,
(P[9P = by p, (A14)

which is conserved during the evolution of the two electrons, carrying out the same procedure for the
second diagonal element we get:

1
() + (P12) = S (! [()2[g) + (92 1(1)[9h)), (A15)
as for distinguishable particles. Similarly, the first non-diagonal term of Equation (A11) is computed:
1
() = (") 22 ]g?) + @ 1 y?) (9! Py
U I ) = W21 D) oI ?), (A16)

Computing the same for the second non-diagonal element we get,

(I'P) + (1Y) = S (! [ IMg") (92| ] g?). (A17)

N —

So using Equations (A15) and (A17) in Equation (A11) we get,

B = Tyl ¥
' 41:1 41:1,];&1
13 1 & o
= XYY+ 5 X @Iy I), (A18)

I\
_

i=1,ji
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The mean value of the squared of the total current for distinguishable particles is therefore
recovered by assuming (| I|y/) d; j- This constraint is fulfilled by Equation (A14), together with the
definition of the current operator, which is related to momentum (proportional to a spatial derivative
in the real space) and position operators. Indeed, we expect that for a weak measurement of the current
discussed in the text, the state |¢/)’ produced by its application to a wave packet (/) = I|y/)) is
characterized by a spatial localization that does not significantly differ from the unperturbed state |y/),
so that ('|I|y/) = 0 is valid.

Appendix E. The Ontological Meaning of the Total Measured Current [ and the Classical
Central Limit Theorem

We discuss here a simple interpretation of the main result given in Section 2.2. The ammeter
mentioned in the text does only measure the value of the total current [r. Therefore, strictly
speaking, the currents fl, fz/ etc. contributed by the single electrons, have not been measured,
so the electrons have no (orthodox) definite value of their current. We are invoking here the well
known eigenvalue-eigenstate link. The i-th electron has a well-defined value of the current when
its wavefunction is an eigenstate of the single particle current operator Zi. However as explained in
Section 2.1, the single particle state describing the i-th electron is not a current eigenstate. Therefore
there is no orthodox value for the current assigned to the i-th electron.

In any case, let us assume that we can assign (unmeasured) values of the current of each electron
(fori = 1,.,,N) at any time (The physical correctness of this assumption will be provided below).
Thus, the definition of the total current in Equation (2) in terms of operators can be translated into an
expression in terms of variables which takes well-defined values:

'+ 7244+ IN
= N )

It (A19)
We eliminate the “hat” in Equation (A19) to clarify that now Z' is not an operator, but a variable. Then,
assuming again the independence among the variables Z' and that the total current can be given by
the above sum, the simple application of the classical central limit theorem will be enough to certify
that the variance of I goes to zero when N is large enough.

However, the reader can argue that such simple understanding is not appropriate because, as we
emphasized at the beginning of this appendix, the current of each electron has no well-defined value.
Such values are not measured by the ammeter and, strictly speaking, the values associated with the
current operators 71, 72 are undefined in the orthodox theory.

In any case, the simple understanding based on the central limit theorem, can be invoked by
using a quantum theory with a definition of the reality of the properties of electrons independent of
the measurement process. This understanding is supported for example from modal interpretation of
the quantum world where the reality of some properties of electrons (like its electrical current) has a
well-defined value independently of the fact that they are measured or not. This understanding
is consistent with our paper where the Bohmian theory [40], which is the most famous modal
interpretation today, is invoked for the computation of the currents. At the end of the day, the discussion
about the (hidden) reality of the values of the current of each electron are not relevant for the
empirical results presented along the work. Bohmian and orthodox theories are empirically equivalent
for all known experiments. The above discussion provides a simple and intuitive understanding
of the physical soundness of providing a many-body quantum state in Equation (1) with no
quantum uncertainty.
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