
High-Performance and Energy-Efficient
Irregular Graph Processing on GPU

architectures

Albert Segura Salvador

Doctor of Philosophy
Department of Computer Architecture
Universitat Politècnica de Catalunya

Advisors:
Jose-Maria Arnau
Antonio González

July, 2020

2

Abstract
Graph processing is an established and prominent domain that is the foundation of new

emerging applications in areas such as Data Analytics, Big Data and Machine Learning. Appli-
cations such as road navigational systems, recommendation systems, social networks, Automatic
Speech Recognition (ASR) and many others are illustrative cases of graph-based datasets and
workloads. Demand for higher processing of large graph-based workloads is expected to rise due
to nowadays trends towards increased data generation and gathering, higher inter-connectivity
and inter-linkage, and in general a further knowledge-based society. An increased demand that
poses challenges to current and future graph processing architectures.

To effectively perform graph processing, the large amount of data employed in these domains
requires high throughput architectures such as GPGPU. Although the processing of large
graph-based workloads exhibits a high degree of parallelism, the memory access patterns tend
to be highly irregular, leading to poor GPGPU efficiency due to memory divergence. Graph
datasets are sparse, highly unpredictable and unstructured which causes the irregular access
patterns and low computation per data ratio, further lowering GPU utilization. The purpose
of this thesis is to characterize the bottlenecks and limitations of irregular graph processing
on GPGPU architectures in order to propose architectural improvements and extensions that
deliver improved performance, energy efficiency and overall increased GPGPU efficiency and
utilization.

In order to ameliorate these issues, GPGPU graph applications perform stream compaction
operations which process the subset of active nodes/edges so subsequent steps work on compacted
dataset. Although this optimization is effective, we show that GPGPU architectures are inefficient
at performing stream compaction due to the data movements it entails, and end up representing
a significant part of the execution time. After identifying these issues, we propose to offload this
task to a programmable Stream Compaction Unit (SCU) hardware extension tailored to the
requirements of these operations, while the remaining steps of the graph-based algorithm are
efficiently executed on the GPU cores. The SCU is a small unit tightly integrated in the GPU
that efficiently gathers the active nodes/edges into a compacted array in memory. We further
extend the SCU to perform pre-processing of the data by filtering and reordering elements
processed. Besides the benefits achieved with offloading, this pre-processed SCU-prepared data
improves GPU efficiency by reducing workload and achieving larger memory coalescing. We
evaluate our SCU design with a wide variety of state-of-the-art graph applications and extended
GPGPU architectures. The results show that for High-Performance and for Low-Power GPU
systems the SCU achieves speedups of 1.37x and 2.32x, 84.7% and 69% energy savings, at the
cost of a small area increase of 3.3% and 4.1% respectively.

Memory divergence remains an important downside for irregular applications which struggle
to fully exploit GPGPU performance. Although memory divergence can be improved by carefully
considering architecture features and devoting significant programmer effort to modify algorithms
with complex optimization techniques, it is far from an ideal solution which in the end shifts

3

programmers priorities. We show that in graph-based GPGPU irregular applications these
inefficiencies prevail, yet we find that it is possible to relax the strict relationship between
thread and data processed to empower new optimizations. Based on this key idea, we propose
the Irregular accesses Reorder Unit (IRU). The IRU is a novel hardware extension tightly
integrated in the GPGPU pipeline that reorders data processed by the threads on irregular
accesses which significantly improves memory coalescing. Additionally, the IRU is capable of
filtering and merging duplicated irregular accesses which reduces the application workload. These
optimizations improve overall memory hierarchy and deliver increased performance and energy
efficiency. Programmers can easily utilize the IRU with a simple API, or compiler optimized
generated code with the extended ISA instructions provided. We evaluate our proposal for a
wide variety of state-of-the-art graph-based algorithms. The IRU achieves a memory coalescing
improvement of 1.32x and a 46% reduction in the overall traffic in the memory hierarchy, which
results in 1.33x and 13% improvement in performance and energy consumption respectively,
while incurring in a 5.6% area overhead.

The increased need for greater data processing efficiency establishes high-throughput ar-
chitectures, such as GPGPUs, as crucial devices in order enable efficient graph processing.
Although efficient GPGPU graph processing faces many challenges, in our previous contributions
we separately explore stream compaction offloading and improved coalescing of irregular access
to ameliorate graph-based workload efficiency. While the SCU achieves significant speedups
and large energy savings, it incurs in high contention in the Network-on-Chip (NoC). On the
other hand, the IRU achieves more modest energy savings, but its optimizations are highly
efficient at reducing contention in the NoC, showing up to a factor of 46% lower NoC traffic.
We find that it is possible to leverage the strengths of both approaches to achieve synergistic
performance improvements and higher graph processing efficiency. We do so by proposing a new
unit, the IRU-enhanced SCU (ISCU). The ISCU employs the efficient mechanisms of the IRU to
improve SCU stream compaction efficiency and throughput limitations. We first characterize the
bottlenecks of our SCU contribution concluding that its major limitation is the large NoC traffic
due to the pre-processing operations, i.e. filtering and grouping. With this insight we realize we
can leverage the IRU hardware utilizing its strengths to efficiently perform the pre-processing.
Consequently, the ISCU leverages both the powerful stream compaction offloading achieved by
the SCU and the efficient filtering mechanism of the IRU employed to deliver pre-processing
optimizations. We evaluate the ISCU for a wide variety of state-of-the-art graph-based algorithms
and applications. Our final proposal achieves a 2.2x performance improvement and 90% energy
savings which enable a 10x increase in energy-efficiency, improvements derived from a high
reduction of 78% memory accesses, while incurring in 8.5% area overhead.

4

Keywords

GPGPU, GPU, Graph Processing, Graph Exploration, Graph Applications, Data Analyt-
ics, Stream Compaction, Stream Compaction Unit, SCU, Energy-Efficient, High-Performance,
Irregular Applications, Irregular Accesses, Irregular Graph Processing, GPGPU Graph Pro-
cessing, Irregular accesses Reorder Unit, IRU, ISCU, IRU-Enhanced SCU, Workload Filtering,
Reordering, Accelerator, Hardware Accelerator, Custom Hardware, Tailored Hardware, Pro-
grammability, Memory Divergence, Memory Coalescing, Memory Contention, Sparse Accesses,
Branch Divergence, Control-Flow Divergence, Graphics Processing Unit, Computer Architecture.

5

Acknowledgements

First and foremost, I would like to thank my advisors Professor Antonio González and Dr.
Jose-Maria Arnau for their invaluable guidance through out my PhD study and research, their
patience, motivation and many teachings. I would like to recognize their invaluable assistance,
feedback and their involvement in my day-to-day work, for which I feel very grateful.

I would like to thank my defense committee; Tor M. Aamodt, Jordi Tubella Murgadas and
Julio Sahuquillo Borrás, for their valuable feedback and comments. It is an honor to have such
prestigious committee.

I wish to thank all the members and lab-mates of ARCO (the “The D6ers”) which I was
lucky enough to share many moments during my PhD and be part of this amazing group of
people. Special thanks to Gem Dot, Enrique de Lucas, Martí Torrents, Josue Quiroga with
whom I shared the beggining of my PhD. I was lucky to share the majority of my stay at ARCO
with Hamid Tabani, Reza Yazdani, Martí Anglada, Marc Riera, Franyell Silfa and Syeda Azmath
thank you for all the good moments that we shared at UPC. Finally, I would like to wish good
luck to the newcomers Dennis Pinto, Diya Joseph, Pedro Exenberger, Jorge Sierra, Raúl Taranco
and Mehdi Hassanpour, I am sure will do an amazing work.

I would also like to thank university colleagues, campus mates and friends with whom I
shared many years, projects, difficulties and successes over the course of my stay in the University.
Special thanks to Pedro Benedicte, Constantino Gomez, Cristóbal Ortega and David Trilla (the
“Cache Miss” group) for the many experiences shared. And thanks to the many others with
which I have cross path during this endeavor.

Finally, I would like to thank close friends and my family for their unconditional support and
encouragement. To my parents for their love and support enabling me from the very beginning
to pursue my passion for computers, electronics and education. To my brother and sister for the
encouragement and for enduring me. And to my grandparents and extended family for their
love, support and endorsement that has undoubtedly led me to where I am today. Finally, the
last words I have saved for my partner with whom I closely shared many joys over the duration
of this thesis, but also without doubt her love, encouragement and support have helped me
overcome the inescapable periods of hardship that a PhD thesis entails.

6

Declaration

I declare that the work contained in this thesis has not been submitted for any other degree
or professional qualification except as specified. Some of the proposed techniques and results
presented in this thesis has been published in the following papers:

• "SCU: A GPU Stream Compaction Unit for Graph Processing".
Albert Segura, Jose-Maria Arnau, and Antonio González.
International Symposium on Computer Architecture, June 2019 (ISCA ’19).
DOI: https://doi.org/10.1145/3307650.3322254

• "Irregular Accesses Reorder Unit: Improving GPGPU Memory Coalescing for Graph-Based
Workloads".
Albert Segura, Jose-Maria Arnau, and Antonio González.
This work has been submitted for publication.

• "Energy-Efficient Stream Compaction Through Filtering and Coalescing Accesses in
GPGPU Memory Partitions".
Albert Segura, Jose-Maria Arnau, and Antonio González.
This work has been submitted for publication.

Albert Segura Salvador

7

https://doi.org/10.1145/3307650.3322254

8

Contents

1 Introduction 21

1.1 Current Trends . 21

1.1.1 GPGPU Popularization . 25

1.1.2 GPGPU Graph Processing . 26

1.2 Problem Statement . 28

1.2.1 Memory Divergence . 28

1.2.2 Workload Duplication . 30

1.3 State-of-the-art in GPGPU Irregular and Graph workloads 31

1.3.1 Memory Divergence . 32

1.3.2 Memory Contention . 32

1.3.3 Stream Compaction . 33

1.3.4 Graph Processing . 34

1.4 Thesis Overview and Contributions . 36

1.4.1 Energy-Efficient Graph Processing by Boosting Stream Compaction . . . 37

1.4.2 Improving Graph Processing Divergence-Induced Memory Contention . . 38

1.4.3 Combining Strengths of SCU and IRU . 41

1.5 Thesis Organization . 42

2 Background 45

2.1 GPGPU Architecture . 45

2.1.1 Overview . 45

2.1.2 Streaming Multiprocessor (SM) . 46

9

CONTENTS

2.1.3 Caches and Memory Hierarchy . 48

2.1.4 Programmability . 49

2.2 High Performance GPGPU Code and Common Bottlenecks 52

2.2.1 High Performance GPGPU Code . 52

2.2.2 GPGPU Bottlenecks . 52

2.2.3 Ameliorating Performance Inefficiencies 53

2.3 Graph processing algorithms on GPGPU architectures 54

2.3.1 Breadth First Search (BFS) . 56

2.3.2 Single Source Shortest Path (SSSP) . 57

2.3.3 PageRank (PR) . 58

3 Experimental Methodology 61

3.1 Simulation Systems Integration . 61

3.1.1 Stream Compaction Unit (SCU) . 62

3.1.2 Irregular accesses Reorder Unit (IRU) . 63

3.1.3 IRU-enhanced SCU (ISCU) . 64

3.2 Hardware Modeling and Evaluation . 64

3.2.1 Stream Compaction Unit (SCU) . 64

3.2.2 Irregular accesses Reorder Unit (IRU) . 66

3.2.3 IRU-enhanced SCU (ISCU) . 66

3.3 Graph Processing Datasets . 67

3.3.1 Graph Processing Algorithms . 67

3.3.2 Graph Datasets . 67

4 Energy-Efficient Graph Processing by Boosting Stream Compaction 69

4.1 Introduction . 69

4.2 Stream Compaction Unit . 71

4.2.1 SCU Compaction Operations . 72

4.2.2 Hardware Pipeline . 73

10

CONTENTS

4.2.3 Breadth-First Search with the SCU . 74

4.2.4 Single-Source Shortest Paths with the SCU 75

4.2.5 PageRank with the SCU . 76

4.3 Filtering and Grouping . 77

4.3.1 Filtering/Grouping Unit . 77

4.3.2 Filtering Operation . 78

4.3.3 Grouping Operation . 79

4.3.4 Breadth-First Search with the Enhanced SCU 79

4.3.5 Single-Source Shortest Paths with the Enhanced SCU 80

4.3.6 PageRank with the Enhanced SCU . 81

4.4 Experimental Results . 82

4.4.1 Energy Evaluation . 82

4.4.2 Performance Evaluation . 82

4.4.3 Enhanced SCU Results . 84

4.4.4 Area Evaluation . 86

4.5 Conclusions . 86

5 Improving Graph Processing Divergence-Induced Memory Contention 89

5.1 Introduction . 89

5.2 Irregular accesses Reorder Unit . 91

5.2.1 GPU Integration . 92

5.2.2 Hardware Overview and Processing . 94

5.2.3 Reordering Hash . 97

5.3 IRU Programmability . 98

5.3.1 IRU enabled Graph Applications . 99

5.4 Experimental Results . 102

5.4.1 Memory Pressure Reduction . 102

5.4.2 Filtering Effectiveness . 104

11

CONTENTS

5.4.3 Performance Evaluation . 105

5.4.4 Energy Evaluation . 105

5.4.5 Area Evaluation . 106

5.5 Conclusions . 106

6 Combining Strengths of the SCU and IRU 109

6.1 Introduction . 109

6.2 IRU-enhanced SCU (ISCU) . 111

6.2.1 Hardware Modifications . 113

6.2.2 Detailed Processing . 114

6.3 ISCU Programmability . 115

6.3.1 Graph Processing Instrumentation . 116

6.4 Experimental Results . 117

6.4.1 Energy Evaluation . 117

6.4.2 Performance Evaluation . 118

6.4.3 Comparison with SCU and IRU . 119

6.4.4 Memory Improvements Evaluation . 121

6.4.5 Area Overhead Evaluation . 121

6.5 Conclusions . 121

7 Conclusions and Future Work 123

7.1 Conclusions . 123

7.2 Contributions . 125

7.3 Open-Research Areas . 126

12

List of Figures

1.1 Trends in Microprocessor characteristics over the last decades [131]. Until the
2000s decade microprocessors transistors, single-thread performance (SpecINT),
frequency and power increased steadily following Moore’s Law and Dennard
Scaling. Mid 2000s decade sees a clear shift in trends as increasing instruction-
level parallelism (ILP) gets diminishing returns; frequency and power increase is
halted while the increasing transistors numbers is dedicated to increase number
of cores. Single-thread performance increase is reduced while systems provide
higher performance by leveraging multi-threading. 22

1.2 Maximum achievable performance speedup of a parallel application in increasingly
parallel systems dictated by Amdahl’s law [3, 59]. To achieve high speedup by
means of parallel execution, a very high percentage of a program has to be parallel:
even a high 95% parallel application maximum speedup does not exceed 20x. This
clearly showcases the limitations of improving architecture performance by means
of increased number of processors. 24

1.3 Global worldwide growth of data predicted by the IDC over the next years [124].
The depicted trend indicates that the increase in worldwide data is exponential,
consequently as capacity increases we will need higher performance systems to be
able to use the data to process and analyze it. 27

1.4 Memory coalescing over different benchmarks and applications for the Baseline
and an Oracle. The memory coalescing is measured as the number of L1 cache
accesses per warp-level memory instruction, the higher this value the worse the
memory coalescing an application has. It ranges from 32 accesses to 1 access per
warp instruction. The measured coalescing is represented by the Baseline, while
the Oracle shows potential memory coalescing. 29

1.5 Frontier workload duplication and software filtering efficiency for BFS algorithm.
The frontier duplication indicates the amount of duplicated elements within the
frontiers, averaging a 89% for BFS. Meanwhile the filtering efficiency, which
averages 92% for BFS, indicates the percentage of workload eliminated either
because of detected duplication within the frontier, or due to elements that
had already been processed previously. Filtering efficiency is higher due to this
suppression of workload across frontiers (i.e. already processed elements). 31

13

LIST OF FIGURES

2.1 Diagram of the transistor area distribution of a CPU versus a GPU architecture,
showcasing the design principles of each architecture. CPU designs dedicate
comparatively more area to improved control logic and caching, whereas GPUs
rely on simpler control logic and caches while featuring much more execution
units [76]. 46

2.2 Overview of a GPGPU architecture showing the GPU die with 16 Streaming
Multiprocessors (SM) interconnected with 4 Memory Partitions (MP) and the
main memory located outside of the die. The most relevant internal components
are showcased, for the SM are the Execution Units (EUs), L1 data cache and
shared memory, whereas for the MP is the L2 data cache. 47

2.3 Simplified compilation diagram showcasing the process to generate and integrate
a GPU kernel with a CPU application with a CUDA toolkit. The CUDA code
is compiled with the nvcc into generic Parallel Thread Execution (PTX) [118]
assembler code, that is later processed into GPU binary Streaming Assembler
(SASS) assembler code. The same process compiles the regular CPU code and
integrates both binaries in a final FAT binary that can contain multiple SASS
versions to execute on different GPU architectures. 50

2.4 Interaction between a Host (CPU) and the Device (GPU). The CPU is responsible
to perform data movements to the GPU memory, configure the parameters and
initiate the launch of the GPU Kernel. 51

2.5 Graph example (a) with its corresponding CSR representation (b) and the ex-
ploration results (i.e. computation result per node) when using BFS and SSSP
on the starting node A (c). Graph (a) shows each node inside a circle with its
corresponding label and each edge (arrow) with their corresponding weight. The
CSR representation (b) contains the nodes and edges arrays, while it indicates
with the adjacency offsets for each node the corresponding edges (with their
corresponding weight value). 55

2.6 Example of a graph application processing an edge frontier and its irregular
accesses generated when accessing the nodes in the graph. A pseudo-code example
showcases the particular irregular access performed. 55

2.7 Execution of a given iteration of BFS on the graph in Figure 2.5a. The input
node frontier generates an edge frontier which is evaluated and creates the next
node frontier to process. 56

2.8 Execution of a given iteration of SSSP with a threshold=3 on the graph in
Figure 2.5a. The input node frontier generates an edges/weight frontier which is
broken down based on the threshold into two structures: the Far Pile and the
next node frontier to process. This distinction improves SSSP performance on
GPU architectures. 57

14

LIST OF FIGURES

3.1 SCU complete simulation system comprising GPU simulation and SCU simulation
to obtain performance, energy and area of the entire system. The darker color
shows our contributions to the simulation system. 62

3.2 IRU simulation system extending the GPGPU-Sim simulator to obtain perfor-
mance, energy and area of the IRU contribution. The darker color shows our
contributions to the simulation system. 63

3.3 ISCU complete simulation system comprising IRU-extended GPU simulation and
SCU simulation to obtain performance, energy and area of the entire system. The
darker color shows our contributions to the simulation system. 64

3.4 Sparsity plots showcasing inter-connections between the nodes of the graphs
introduced in Table 3.5 and gathered from the graph repository [30]. The gray-
scale indicates the degree of connectivity of each of the nodes on the graph. The
sparsity plots help to understand the high diversity in locality and structure of
the graphs. 68

4.1 Breakdown of the average execution time for several applications (Table 3.5) and
three graph primitives (BFS, SSSP and PR). Measured on an NVIDIA GTX 980
and NVIDIA Tegra X1. Darker color indicates execution time spent on graph
processing, while lighter color highlights time performing stream compaction
operations. 70

4.2 Overview of a GPGPU architecture featuring a SCU attached to the interconnec-
tion. The depicted GPU shows 2 SM similar to an NVIDIA Tegra X1. 72

4.3 SCU operations required to implement stream compaction capabilities, illustrated
with the data that each operation uses and generates. Arrow direction indicates
flow of data. 72

4.4 Overview of the baseline pipelined architecture of the Stream Compaction Unit
with the connection of the different components as well as its interconnection
to the main memory. The rightmost column shows the data used for the SCU
operations allocated in Main Memory. 73

4.5 Pseudo-code of GPGPU BFS program modified to use the SCU to offload stream
compaction operations. 74

4.6 Pseudo-code of GPGPU SSSP program modified to use the SCU to offload stream
compaction operations. 75

4.7 Pseudo-code of GPGPU PR program modified to use the SCU to offload stream
compaction operations. 76

15

LIST OF FIGURES

4.8 Improved pipelined architecture of the SCU. The darker color highlights the exten-
sion additions of the filtering and grouping hardware enabling their corresponding
operations, as well as an extra coalescing unit. The rightmost column includes
the additional data which is allocated in Main Memory and is required for the
SCU pre-processing operations featuring the filtering/grouping vectors and the
in-memory hash. 77

4.9 Pseudo-code of the additional operations for a GPGPU BFS program to use the
enhanced SCU. 80

4.10 Pseudo-code of the additional operations for a GPGPU SSSP program to use the
enhanced SCU. 81

4.11 Normalized energy for BFS, SSSP and PR primitives on several datasets and
in our two GPU systems using the proposed SCU. Baseline configuration is the
corresponding GPU system (GTX980 or TX1) without the SCU. The figure also
shows the split between GPU and SCU energy consumption. 83

4.12 Normalized execution time for BFS, SSSP and PR primitives on several datasets
and in our two GPU systems using the proposed SCU. Baseline configuration is
the corresponding GPU system (GTX980 or TX1) without the SCU. The figure
also shows the split between GPU and SCU execution time. 83

4.13 Speedup and Energy Reduction breakdown, showing separately the improvements
due to the Basic SCU and the Enhanced SCU in both GTX980 and TX1 architec-
tures. The Enhanced SCU achieves important energy reductions on the GTX980,
whereas it delivers higher speedups on the TX1. 84

4.14 Improvement of the memory coalescing when using the grouping operation, for
the SSSP algorithm on the TX1 GPU. The baseline configuration is SCU using
only the filtering operations. 85

4.15 Memory bandwidth utilization for the graph applications running on a Baseline
GPU system and on a GPU system incorporating the SCU. Note that each GPU
system has a different bandwidth and the figure indicates utilization of peak
bandwidth. 86

5.1 Memory Coalescing improvement achieved by employing the IRU (5.1b) to reorder
data elements that generate irregular accesses versus a Baseline GPU (5.1a)
execution. 90

5.2 Warp average normalized execution with and without IRU. The dark bar indicates
execution time until the target load is serviced, and the light bar from service to
finalization. The IRU achieves speedups despite the overhead introduced. 92

5.3 IRU integration with the GPU at different levels: architectural (a), program
model (b) and execution (c,d,e). The execution showcases how the program (b)
works on the Baseline and the IRU, operating with the two warps and data from
Figure 5.1. 93

16

LIST OF FIGURES

5.4 Architecture and the internal processing performed by the IRU. The indices in
memory (from Figure 5.1) are processed by two IRU partitions (IRU 0 shown),
which is later replied to a request coming from Warp 0 in SM 0. 95

5.5 Hash insertion diagram showcasing how an element is used for the hashing function
and how it is stored in the hash data of the Reordering Hash. 97

5.6 IRU processing of two arrays with filtering enabled. The ”edges” is the indexing
array, while the ”weight” is the secondary array. The filtering operation is an
addition. 99

5.7 API additional functions. Multiple definitions used due to optional parameters. . 100

5.8 Simple instrumentation of the BFS algorithm Kernel using the API of the IRU. . 100

5.9 Simple instrumentation of the SSSP algorithm Kernel using the API of the IRU.
The load_iru operation is using all the parameters. The variables edge and weight
are reordered together while pos retrieves their original position in the array which
is later used. 101

5.10 Simple instrumentation of the PR algorithm Kernel using the API of the IRU.
The load_iru operation is used with all parameters, and additionally, filtering
deactivates threads with is noted by the active_thread variable. 101

5.11 Normalized accesses to L1 and L2 caches of the IRU enabled GPU system against
the Baseline GPU system. Significant reductions are achieved across BFS, SSSP
and PR graph algorithms and every dataset. 102

5.12 Normalized interconnection traffic between SM and MP of the IRU enabled GPU
system against the Baseline GPU system. Significant reductions are achieved
across BFS, SSSP and PR graph algorithms and every dataset. 103

5.13 Improvement in memory coalescing achieved with the IRU over the Baseline GPU
system. Vertical axis shows the number of memory requests sent to the L1 cache
on average per each memory instruction, i.e. how many memory requests are
required to serve the 32 threads in a warp. 104

5.14 Filtered percentage of elements processed by the IRU in our IRU enabled GPU
system. The IRU achieves significant filtering effectiveness for different graph
algorithms. 105

5.15 Normalized execution time and normalized energy consumption achieved by the
IRU enabled GPU with respect to the baseline GPU system. The IRU shows
consistent speedups and energy savings achieved across BFS, SSSP and PR graph
algorithms and all the different datasets. 106

6.1 Overview of a GPGPU architecture featuring the ISCU attached to the intercon-
nection as well as the IRU located in the Memory Partitions. 112

17

LIST OF FIGURES

6.2 Utilization of the SCU pre-processing component (i.e. filtering/grouping unit)
and the percentage of NoC traffic devoted to filtering/grouping operations. The
utilization is the percentage of cycles that the filtering/grouping unit is active over
total execution. The SCU invests a large number of cycles and NoC transactions
in the data pre-processing operations. 113

6.3 Overview of the behavior and data-flow for the different ISCU operations per-
formed on the ISCU hardware extension together with its interactions with the
IRU extension. 115

6.4 Pseudo-code of the additional operations for a GPGPU PR program to use the
ISCU. 117

6.5 Normalized energy consumption of the ISCU enabled GPU with respect to the
baseline GPU system (GTX 980), showing the split between GPU and ISCU
energy consumption. Significant energy savings are achieved across BFS, SSSP
and PR graph algorithms and every dataset. 118

6.6 Normalized execution time of the ISCU enabled GPU with respect to the baseline
GPU system, showing the split between GPU and ISCU execution time. Significant
speedups are achieved across BFS, SSSP and PR graph algorithms and the majority
of the datasets. 118

6.7 Energy savings of the SCU, IRU and ISCU with respect to the baseline GPU
system. The ISCU synergetically improves energy savings achieved with SCU and
IRU. 119

6.8 Speedup of the SCU, IRU and ISCU with respect to the baseline GPU system.
The ISCU synergetically improves speedups achieved with SCU and IRU. The
ISCU is able to overcome the SCU overheads which slowed down PR, delivering
significant speedups. 120

6.9 Normalized memory accesses of the SCU, IRU and ISCU with respect to the
baseline GPU system. The ISCU synergetically improves the memory reduction
achieved with SCU and IRU due to the optimizations which significantly reduce
memory traffic. 120

18

List of Tables

3.1 GPGPU-Sim and GPUWattch configuration parameters to model the High-
Performance GTX980 and Low-Power Tegra X1 GPU systems. 62

3.2 SCU hardware parameters. 65

3.3 SCU scalability parameters selection for the GTX980 and TX1 GPU. 65

3.4 IRU hardware requirements per partition. 66

3.5 Benchmark graph datasets collected from well-known research repositories [30, 33]. 67

6.1 Comparison between SCU, IRU and ISCU hardware extensions for Graph Process-
ing on GPGPU architectures, showcasing their main functionality and performance
metrics. 111

19

20

1
Introduction

This chapter reviews GPU architectures strengths and introduces current trends and chal-
lenges of graph processing on modern GPU architectures, thus establishing the motivation
behind this work. It also explores the specific problems addressed in this thesis, reviews how
they are approached by state-of-the-art works and finally introduces the novel proposals and
contributions of this work.

1.1 Current Trends

Over the last decade, Graphic Processing Units (GPU) have produced a dramatic change
in computer systems steaming from the increased demand for higher performance. Current
GPU prevalence is mainly fueled by emerging workloads that exhibit high data parallelism.
Big Data analytics [129], Neural Networks [57] and Deep Learning [82, 135, 168] are clear
examples of extremely popular applications that benefit from the high degree of parallelism
offered by GPUs. Other applications include the adoption of newer, more demanding video
decoding and multimedia standards (i.e 4K and 8K resolutions [156]), the increased demand for
graphics fidelity coming from the gaming industry as seen for Virtual Reality systems (VR) [158]
and image detection [78], speech recognition [22] and, finally, the automotive industry with
self-driving cars [16, 71]. These examples, among many other applications, have hugely increased
the demand for high processing throughput and huge amounts of parallelism, both of which
GPU systems have been able to provide by leveraging many simpler and lower frequency core
counts, in contrast with single or few high performance core counts of traditional CPU systems.
This approach has established GPUs as an essential and very successful component of modern
computing systems.

21

CHAPTER 1. INTRODUCTION

1970 1980 1990 2000 2010 2020

100

101

102

103

104

105

106

107

108

Single-core era Multi-core era

Data up to year 2010 collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten.
Data spanning 2010-2017 collected by K. Rupp. Data spanning 2017-2020 collected by A. Segura.

Microprocessor Trends

Transistors (103)
Single-Thread Perf.
(SpecINT x 103)
Frequency (Mhz)
Typical Power (W)
Logical Cores

Figure 1.1: Trends in Microprocessor characteristics over the last decades [131]. Until the
2000s decade microprocessors transistors, single-thread performance (SpecINT), frequency and
power increased steadily following Moore’s Law and Dennard Scaling. Mid 2000s decade sees a
clear shift in trends as increasing instruction-level parallelism (ILP) gets diminishing returns;
frequency and power increase is halted while the increasing transistors numbers is dedicated to
increase number of cores. Single-thread performance increase is reduced while systems provide
higher performance by leveraging multi-threading.

Up to the 2000 decade, shrinking transistor technology nodes was a big contribution to
delivering new computer systems with increased single core performance. Moore’s Law, formalized
by 1965 [101] and reformulated by 1975 [102], predicted the doubling of transistor density in
new semiconductor systems every two years. Meanwhile, Dennard scaling [32], formulated by
1974, predicted power density to stay constant with new transistor nodes: by halving area,
every new iteration would allow for 30% reduced circuit delays and reduced voltages, which
would result in equal power dissipation with double the number of transistors yet allowing a 1.4x
increase in frequency. Combined, Moore’s Law and Dennard scaling would doubled computer
chip performance every 18 months, a rule which drove industry forward for many decades.

In practice, many factors limited the scaling down of area, circuit delays and voltages.
Area reductions where constrained due to issue logic and caches not scaling linearly with area
in addition to the increase number of wires of newer computer designs [49]. Circuit delays
reductions were not as aggressive as predicted by Dennard scaling, in part due to the increased
number of wires [60]. Finally, voltages did not scale accordingly to Dennard scaling instead

22

1.1. CURRENT TRENDS

decreasing by 15% every two years [49], consequently increasing power density. Overall, the
performance increase observed up to the 2000 decade as seen in Figure 1.1 was not solely
achieved by technology node scaling but in addition to computer architecture innovations. Novel
innovations such as new deeper pipelines, improved branch predictors, out-of-order execution,
new instruction set architecture (ISA), and improved memory organizations among many others
were a huge contribution in performance improvements by reducing latency and improving
instruction-level parallelism (ILP). Meanwhile, many new power-aware techniques such as clock
gating [163], power gating [65] and the inclusion of dark silicon [36] reduced the amount of
switching transistors which kept power density constrained [49].

By mid 2000’s decade, architectural improvements reached a point of diminishing returns
as increased frequencies drove power leakage up, thus increasing overall power dissipation.
Consequently, the steady frequency increase on newer systems was halted, yet transistor counts
kept increasing every year, as it can be seen in Figure 1.1. This meant that computer architects
had at their hands more transistors without any way to fully utilize them all on single core
systems. This disparity prompted the exploitation of thread-level parallelism (TLP) techniques,
driving industry to design multi-core and multi-threaded systems with increasing CPU core
and thread counts, while relying on parallelization to deliver performance improvements [150].
Nonetheless, parallelization is a complex problem. Amdahl’s law [3, 59] dictates the maximum
performance speedup achievable in relation with the parallelizable section of a program, thus
revealing that to achieve significant speedups a large portion of the application has to be
parallelizable, as depicted in Figure 1.2. Additionally, CPUs were not primarily optimized for
parallelization. CPU systems were mainly optimized for single thread performance with complex
execution units and pipeline optimizations, and low latency execution thanks to an extensive
cache hierarchy. The end of single thread performance ILP scaling ushered in the popularization
of programmable GPU architectures, or General Purpose GPU (GPGPU) [46], which in contrast
to CPUs heavily focused on parallelization by providing huge core counts with lower performance,
leveraging aggressive multi-threading (i.e. TLP) to tolerate main memory latency.

Meanwhile, the memory system had a different evolution. Technology improvements brought
higher DRAM density thus facilitating capacity increases at a similar pace to Moore’s Law [143],
nonetheless memory performance did not scale accordingly. Despite technology scaling facilitating
frequency increases, DRAM memory latency was largely dominated by wire delays; as such
latency reductions depend on scaling down circuit delays, reductions which felt short on the
Dennard scaling predictions, as discussed previously. Consequently, an increasing disparity
emerged between computing and memory performance scaling, this disparity lead to the increased
relevance of memory latency as the principal system performance limitation which had computers
hitting the Memory Wall [165]. Over the years, architectural and technological innovations have
persistently attempted to close this disparity and thus push the memory wall further into the
future, despite the fundamental technology scaling limitations. More sophisticated caches and
prefetchers, latency hiding techniques, deeper memory hierarchies, improved memory controllers,
and 3D stacking [123] together with processing in memory [103] are among the constant stream
of architectural innovations limiting memory latency negative performance impact. While
multi-core CPU designs have invested significantly on these increasingly sophisticated memory
improvements, GPGPU architectures leverage their vast core counts and unparalleled TLP to
hide memory latency, thus pushing forward the memory wall performance limitations.

23

CHAPTER 1. INTRODUCTION

1 2 4 8 16 32 64 128 256 512
1024

2048
4096

8192
16384

Processors

0

2

4

6

8

10

12

14

16

18

20

Sp
ee

du
p

Amdahl's Law

Parallel portion
95%
90%
75%
50%

Figure 1.2: Maximum achievable performance speedup of a parallel application in increasingly
parallel systems dictated by Amdahl’s law [3, 59]. To achieve high speedup by means of parallel
execution, a very high percentage of a program has to be parallel: even a high 95% parallel
application maximum speedup does not exceed 20x. This clearly showcases the limitations of
improving architecture performance by means of increased number of processors.

Over the last decade Moore’s Law has started to slow down [155, 31]; industry manufacturers
have been experiencing recurrent delays [64] of their production of newer technology nodes due
to complexity, unreliability and overall increased cost of already few atoms-wide transistors.
Further increased costs and complexity required to improve performance by shrinking the
technology will put further pressure on computer architects to come up with new architectures
and increasingly specialized hardware [31] as means to deliver performance improvements. The
multi-core era and the GPGPU specialization ended up being very effective to drive further
computer system performance increases; many GPGPU parallel applications [97] significantly
outperform counterpart applications in traditional CPU systems which has facilitated new
research domains and applications such as Deep Learning [100] and Autonomous Driving [15].
The prevalence of GPGPU has transformed traditional systems in more heterogeneous and
specialized computing systems. A shift, which GPGPU architectures started, that has paved the
way towards more diverse and specialized hardware, with the current inclusion of accelerators
for specific applications and future widespread specialized hardware.

24

1.1. CURRENT TRENDS

1.1.1 GPGPU Popularization

GPGPU architectures have managed to achieve broad adoption in the last decade despite
being novel architectures which require considerable knowledge of the underlying hardware and
new programming models to achieve high performance. It is interesting to take a look at their
evolution over the years to understand the design choices and trade-offs that led to current
GPGPU architectures.

Early GPU or video cards go way back in time to the beginning of the computer architecture,
with contemporary designs first appearing in the 1990 decade. Early GPUs consisted of fixed
function units for graphic operations which provided hardware acceleration to render 2D and 3D
graphics for games and graphical tools. Prominent examples can be found in the console gaming
industry, such as the Reality Coprocessor (RCP) of the Nintendo 64 [104] and the Sony GPU
for the PlayStation [120], which first coined the term. On the other hand, the 3dfx Voodoo
video card [1] is an example of early GPU in the PC market. The beginning of the 2000 decade
saw the appearance of programmable GPUs together with graphical pipeline toolkits such as
OpenGL [114] and DirectX [34]. In turn, this enabled the GPU to perform linear algebra,
crudely implemented before by mapping data into textures and applying shader programs [79].
At the time, GPUs featured hardware acceleration closely correlated with the different stages
of the rendering pipeline with the notable addition of programmable pixel and vertex shader
units first introduced by the NVIDIA GeForce 3 NV20 [43]. This early programmability allowed
simple pre-processing of pixels and vertices, but computer architects had to carefully balance
the execution time and bottlenecks of the different stages of the graphics pipeline. The inclusion
of newer stages in the DirectX and OpenGL pipelines marked a dead end of this fixed-function
pipeline approach [133].

NVIDIA released its first contemporary GPGPU system by late 2006 with the Tesla
microarchitecture, the first release of their programmable unified shader architecture [153]. It
was first featured in the NVIDIA 8800 GTX (Tesla G80) [44] which introduced a redesigned SIMT
pipeline which is the base design of today NVIDIA GPGPU architectures. Similar unified shader
architecture was promptly adopted by competitors such as the ATI Radeon HD 2000 [122] by
2007. This programmable unified shader replaced previous stages as it was capable of processing
vertex, fragments and geometry kernels alike. Additionally, the first release of the Compute
Unified Device Architecture (CUDA) [25] toolkit facilitated programmability for general purpose
applications, enabling computing on an impressive 96 unified shader (Executing Units or Cores
in NVIDIA terminology), specially compared to poor parallelism of CPUs at the time.

NVIDIA SIMT architecture consists of a number of Streaming Multiprocessors (SM) with a
private L1 data cache and a scratchpad memory (Shared Memory), while the SMs in a GPU
share an L2 cache. Each SM includes a number of cores (i.e. execution units), typically in
multiples of 32, and execute instructions in lock-step in groups of 32 threads, i.e. a warp in
NVIDIA terminology. GPGPU SM are typically clocked at a lower frequency and are less
complex than counterpart CPU designs since they are designed with simpler in-order instruction
execution pipeline. GPGPU architectures leverage thread-level parallelism (TLP) and memory-
level parallelism (MLP) which are provided by the cores and the huge memory bandwidth of the
architecture and the memory respectively, and counter the lower performing cores and higher
memory latency.

25

CHAPTER 1. INTRODUCTION

GPGPU architectures specific design choices and reliance on thread and memory level
parallelism limits the set of applications fit for GPGPU acceleration and reveal some inefficiencies
of the architecture in particular scenarios. Since warp’s threads are executed in lock-step, they
progress simultaneously through the pipeline and execution units. Consequently to implement
branch behaviour, threads in a warp can be activated and deactivated with the use of predication
registers and a divergence SIMT stack. Thread deactivation becomes an important source
of inefficiencies referenced as branch divergence issues which limits the TLP . Divergence
on performing memory accesses are another major source of inefficiencies that arise as the
consequence of un-collocated memory accesses performed by the threads in a warp which limits
both thread and memory level parallelism.

Over the 2010 decade GPGPU architectures have increased performance and energy efficiency
without deviating significantly from the SIMT unified shader pipeline, while incrementally
incorporating new features in each new architecture. One of the initial additions was the upgrade
to 32-bit executing units from previous 24-bit ones, a relic of a past as 24-bit were enough
to process RGB pixels. Over time, half, single and double floating point made its way into
the cores, as well as improved atomic operations with the aim to support more complex and
general purpose applications. More recently, the addition of Tensor Cores have allowed fast
Matrix Multiply and Accumulate operations for Neural Network applications. Overall, each
new architecture has brought improved performance and energy efficiency while accommodating
higher number of cores and parallelism, reaching 4608 CUDA cores for the NVIDIA Titan
RTX [42] released late 2018.

GPGPU adoption has been very broad from personal computers, to gaming consoles, data
centers, high-performance computing (HPC), supercomputers, as well as mobile platforms and
self-driving cars. Functionality additions such as floating point operations allowed GPGPUs
to be used for algebra computations and science field computations such as fluid dynamics[55],
particle docking [97] and others [10, 87]. By November 2019, nearly 40% of the total compute
performance of the TOP500 supercomputers list (626 petaflops) came from GPU-accelerated
systems [72]. The high parallelism delivered has improved processing of Big Data applications,
data base operations[7], and large graph processing[161] as well as Neural Networks [57] and
Deep Learning models [82, 135]. The latter addition of Tensor Cores greatly improves training
and inference of deep learning applications and neural networks, in turn improving image, vision
and speech recognition [125], for applications such as image classification [35], automatic speech
recognition (ASR) [136] or audio de-noising [110]. Finally GPGPU architectures have also found
a place in mobile systems such as the Nintendo Switch [105] with a NVIDIA Tegra X1 [111] or
in self-driving cars such as the NVIDIA Tegra X2 [111] and Pascal GPGPU found, up to 2014,
in Model S cars[108, 154] from the Tesla manufacturer.

1.1.2 GPGPU Graph Processing

World data generation and total global data size is increasing exponentially. The International
Data Group (IDG) [66] predicts a total of 175 ZB for 2025, an increase of 3.5x in five years [124],
which is likely to continue in the future. In today’s and future knowledge-based and highly
interconnected society, a huge range of devices and new technologies are likely to generate this
data. The advent of Internet-of-Things (IoT) [5], and the new implementation of 5G mobile

26

1.1. CURRENT TRENDS

175
ZB

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
0

20

40

60

80

100

120

140

160

180

Z
e
t
a
b

y
t
e
s
 (

1
0

²
¹
)

Figure 1.3: Global worldwide growth of data predicted by the IDC over the next years [124].
The depicted trend indicates that the increase in worldwide data is exponential, consequently as
capacity increases we will need higher performance systems to be able to use the data to process
and analyze it.

networks will bring huge amounts of interconnected smart devices generating real-time data
to be processed and analyzed. New applications such as small sensor devices collecting health
data, monitorization of smart home appliances, streaming-focused applications such as streaming
gaming platforms, smart city devices and autonomous interconnected cars are some examples
among many new devices and applications yet to come.

Large graph processing is crucial for data analytics as graph datasets allow for efficient
data and relationship representation and facilitate many analytics applications. Graph datasets
are employed in a broad set of applications, including social networks, Big Data analytics, web
classification and ranking, recommendation systems, real-world navigation and pathfinding,
elements in unstructured meshes, biologic and genetics sequencing and control of viral disease
spreading.

GPGPU architectures allow for fast data processing and data analytics in graph datasets since
they are capable of processing in parallel huge amounts of data as well as train deep learning
models efficiently. Due to graph datasets large amount of independent element processing,
GPGPU architectures allow for fast processing due to their high amount of parallelization
and throughput in contrast to regular CPU architectures. Graph data representation tends
to be irregular and unstructured and so efficient resource utilization on GPGPU architectures
is not trivial, which has led to the introduction of graph parallelization frameworks such as
NVIDIA nvGRAPH [107] and Gunrock [161], which facilitate programming efficient graph-based
applications for GPUs.

Efficient Graph Processing and Analytics remains a hot topic in the research community
and industry due to GPUs many inefficiencies at processing graph-based applications, and will
likely continue to do so as our world generates increasing amounts of data, requiring improved
data processing capabilities. Despite GPGPU architectures shortcomings, their throughput and
parallelization capabilities enable fast data processing for graph applications and will continue
to do so in the foreseeable future.

27

CHAPTER 1. INTRODUCTION

1.2 Problem Statement

GPGPU architectures provide high performance for highly parallel applications. Applications
showing regular execution and regular memory access patterns are able to efficiently utilize
GPGPU architectures, whereas more irregular applications that benefit from high parallelization
struggle to achieve high efficiency and utilization. Graph-based applications can easily benefit
from parallel exploration of graph datasets, but experience irregular execution due to the
characteristics of both graph datasets and graph algorithms: low computation to memory access
ratio [9], data-driven workloads, unstructured and irregular datasets and poor data locality.
This section explores the consequences of the irregular execution of graph-based applications
on GPGPU architectures, which defines the problem statement and optimization targets of
this thesis. We explore in detail two main issues: Memory Divergence 1.2.1 and Workload
Duplication 1.2.2.

1.2.1 Memory Divergence

Graph-based applications experience significant memory divergence on GPGPU architectures.
High memory divergence occurs when the threads in a wave-front or warp have un-collocated
memory accesses, i.e. individual threads within a warp access different cache lines, which
negatively impacts performance. On the contrary, if all memory accesses are collocated, i.e. they
access the same cache line, minimal divergence is achieved and the application experiences high
memory coalescing. Graph applications notoriously experience significant memory divergence,
due to characteristics of both graph datasets and algorithms. First, parallel graph traversal
requires threads to traverse the graph data structures and, consequently, many irregular accesses
are performed due to the unstructured and irregular nature of the data represented in a graph,
which identifies relationships between elements. Second, graph exploration shows poor data
locality for several reasons. First, the amount of data represented by graph datasets largely
exceeds the capacity in the caches. Second, due to connectivity of the graph, node connections
might not be visited again, leading to poor temporal locality. Third, neighbor nodes in the graph
can be stored at large distances in memory, leading to poor spatial locality. Figure 1.4 explores
the memory coalescing on several datasets and graph algorithms. On average, the memory
coalescing achieved is of 4 accesses per warp. As stated earlier, the dataset characteristics greatly
influence the memory coalescing experienced.

Memory divergence has important performance implications for GPGPU systems and
applications. First, memory divergence increases the saturation of the memory hierarchy
architectural resources, increasing the utilization of the Load/Store (LD/ST) unit and the
latency to issue all memory accesses of a warp instruction. Additionally, the increased accesses
per warp instruction increase pressure on resources to handle misses on caches, such as miss
status holding registers (MSHRs) and entries in the miss queue. This problem is aggravated by
the fact that GPU L1 ratio of cache entries per thread is significantly lower, putting even more
pressure on the caches which negatively impacts data locality, increasing contention and miss
ratio. Aside from increased pressure to the data caches, the elevated miss ratio leads to increased
use and contention of the Network-on-Chip (NoC), negatively impacting latency to access L2
cache. Second, high bandwidth is required to provide enough data to feed the functional units.

28

1.2. PROBLEM STATEMENT

0 0

2 2

4 4

6 6

8 8

M
em

or
y

Di
ve

rg
en

ce

cacond

delaunay
human

kro
n

msdoor cacond

delaunay
human

kro
n

msdoor cacond

delaunay
human

kro
n

msdoor
total

BFS SSSP PR AVG

Baseline Oracle

Figure 1.4: Memory coalescing over different benchmarks and applications for the Baseline and
an Oracle. The memory coalescing is measured as the number of L1 cache accesses per warp-level
memory instruction, the higher this value the worse the memory coalescing an application has. It
ranges from 32 accesses to 1 access per warp instruction. The measured coalescing is represented
by the Baseline, while the Oracle shows potential memory coalescing.

High memory divergence reduces the memory hierarchy capacity to deliver enough data to the
functional units, which then are under utilized due to the pipeline stalls awaiting data. An
increase of memory divergence from 1 to 2 accesses to service a warp doubles the memory
pressure. In the worst case, no memory access is collocated, which requires an access per
each thread in the warp (typically 32 threads). Consequently, memory divergence significantly
increases memory contention compared to an application with regular access patterns. Finally,
the above mentioned problems translate to higher energy cost. On one hand, the slowdown of
the application increases static energy consumption while, on the other hand, more dynamic
energy is required due to the increased activity throughout the memory hierarchy.

Graph-based applications are negatively impacted by the consequences of high memory
divergence. Memory coalescing that results from the graph dataset and algorithm characteristics
previously reviewed reaches 4 accesses per warp on average. Consequently, the high memory
divergence has a negative impact on the memory hierarchy: an L1 data miss ratio of 83% on
average, as well as a 64% L2 data miss ratio. The performance implications also translate outside
of the memory hierarchy. The increased memory hierarchy congestion due to the divergence
aggravated by the low computation to data ratio of the graph-based application results in
significant stalls in the functional units leading to low issue rate efficiency of 14% and 228.8 out
of a maximum of 2048 Instructions per Cycle (IPC).

Data compaction algorithms are employed by graph-based applications to reduce and limit
the amount of memory divergence when traversing a graph dataset. The use of data compaction
involves adding a previous step to the graph exploration in which the data to be accessed is
previously read and written to a single compacted data array, then subsequent accesses on the
compacted dataset exhibit a more regular memory access pattern with improved data locality

29

CHAPTER 1. INTRODUCTION

and increasing bandwidth utilization. This additional step has a significant execution time
overhead, yet overall results in a positive effect due to the improvement of memory accesses.
Nonetheless, GPU architectures are not well suited for data compaction for several reasons. First,
data compaction consists of sparse memory accesses with poor locality that fetch the elements
to be compacted. Sparse memory accesses result in very low memory coalescing, producing
intra-warp memory divergence and reducing GPU efficiency by a large extent. Second, data
compaction has an extremely low computation to memory access ratio, as it primarily consists
of load and store instructions to move data around in main memory, consequently the functional
units are underutilized during data compaction operations. Finally, the parallelization of data
compaction algorithms incurs in costly synchronization overheads. These reasons lead us to
propose hardware techniques to perform data compaction operations instead of performing them
by software on GPU architectures.

Finally, although memory divergence is high on graph-based applications, we observe
potential to improve the memory coalescing. Figure 1.4 shows baseline memory coalescing
against potential evaluated memory coalescing. The potential memory coalescing is measured
with a simple oracle which sorts in increasing order the addresses generated and computes the
resulting memory coalescing. This approach is not optimal but provides a good approximation.
Figure 1.4 indicates that memory coalescing can improve on average from 4 to 1.25 accesses per
warp which would alleviate the memory hierarchy congestion.

1.2.2 Workload Duplication

GPGPU graph-based applications leverage the parallelism available to process in parallel sev-
eral elements of the graph. Graph exploration on GPGPU architectures is typically implemented
with frontiers (i.e nodes or edges frontiers), which are elements that are active or to be processed
on a given iteration of the algorithm, after they have been processed their adjacent elements are
inserted in the new frontier to be processed. The parallel nature of graph processing allows for
duplicated workload to occur. Several threads might be processing edges which lead to the same
adjacent node, or they might be processing duplicated elements in a frontier. This work might
often be benign, thus not altering the final computation, but might incur in significant workload
overheads: a given duplicated element explored might generate duplicated workload itself, which
can quickly increase the application workload exponentially. Many factors contribute to increase
the potential of workload duplication, such as the connectivity of the elements in the graph,
the specific graph dataset characteristics and the properties of the graph exploration algorithm
evaluated.

In order to achieve efficient GPGPU performance and avoid to exponentially increase the
workload, a mechanism to detect and suppress this workload duplication has to be employed.
Nonetheless, to properly detect and eliminate workload duplication is a non-trivial task on
parallel architectures. Either costly synchronization mechanisms have to be used which add
significant overheads to the execution, as every thread is required to evaluate its data uniqueness
or, otherwise, imprecise best-effort mechanisms are used which avoid synchronization overheads
while providing partial detection and elimination of duplicated elements. Each of these software
mechanisms has its own trade-offs that the application has to carefully balance in order to
execute efficiently. Additionally, elimination of duplicated elements has an impact on branch

30

1.3. STATE-OF-THE-ART IN GPGPU IRREGULAR AND GRAPH WORKLOADS

0 0
20 20
40 40
60 60
80 80

100 100
Pe

rc
en

ta
ge

 (%
)

ca cond

delaunay
human

kro
n

msdoor
Avg

Frontier Duplication Filter Efficiency

Figure 1.5: Frontier workload duplication and software filtering efficiency for BFS algorithm. The
frontier duplication indicates the amount of duplicated elements within the frontiers, averaging
a 89% for BFS. Meanwhile the filtering efficiency, which averages 92% for BFS, indicates the
percentage of workload eliminated either because of detected duplication within the frontier, or
due to elements that had already been processed previously. Filtering efficiency is higher due to
this suppression of workload across frontiers (i.e. already processed elements).

divergence as some of the threads in a warp might be disabled due to their data being duplicated
or their work being superfluous, thus under-utilizing the functional units of the GPU.

The overheads of software approaches are significant, either in synchronization or in missed
duplicated workload. Figure 1.5 shows for the BFS algorithm the percentage of frontier duplicated
elements, which averages 89%, and the effectiveness of its best-effort workload filtering approach,
averaging a 92%, while on algorithms using precise synchronization it reaches 100%. We identify
that on average, for several graph datasets and algorithms, as much as 94% of elements are
duplicated and need to be eliminated by costly software mechanisms. We identify this duplication
detection mechanism as a potential optimization factor with the objective to either entirely
avoid or reduce the overheads observed while reducing the amount of duplicated workload, thus
improving efficiency and utilization of graph processing on GPGPU architectures.

1.3 State-of-the-art in GPGPU Irregular and Graph workloads

Graph-based and Irregular programs on GPGPU architectures face many challenges that
often result in low GPU utilization and poor performance. Several previous works have thoroughly
analyzed the causes of these inefficiencies, that boil down to memory accesses divergence and
irregularity [18, 112, 94, 166, 20]. Nonetheless, if these issues are overcome, irregular applications
can greatly benefit of the high parallelism that GPU architectures offer. Consequently, improving
GPGPU architecture limitations such as memory divergence and memory contention has attracted
the attention of the research community during the last few years. In the same way, many
research works have focused on improving GPGPU graph processing proposing many software,
microarchitectural and newer architectures solutions.

31

CHAPTER 1. INTRODUCTION

1.3.1 Memory Divergence

The occurrence of thread divergence when performing memory accesses can significantly
impact performance, as well as reduce data locality and increase memory contention. Is for this
reason that several works have profoundly explored this topic seeking deeper understanding and
better performing GPGPU architectures.

A straight-forward approach to handle memory divergence that has been explored by several
works is to directly modify by software the programs’ data structures with the intent to minimize
diverging accesses [48, 106, 161], whereas other works such as HALO [47] propose instead to
modify the program input data to improve data locality, in this particular case to provide a static
offline reordering of a graph dataset. In a similar line, several works propose software frameworks
for programmers to do memory divergence optimization to realize performance improvements [173,
157]: either offline by analyzing and performing source-level restructuring to obtain GPU kernels
with varying thread granularity [157], or online by analyzing dynamic irregularities in GPU
computing and performing data reordering and thread remapping improvements [173].

Specialized approaches instead focus on a selected application and exploit the characteristics
of it. Works on Non-deterministic finite automaton (NFA) propose to dynamically employ
the GPU shared memory to store frequently used sizable lookup tables [91]. Many specialized
works have focused on GPU execution of irregular Sparse Matrix Vector Multiplication (SpMV)
and Matrix Matrix Multiplication (GEMM) by proposing software approaches that reorder the
matrices dataset [119], algorithms tailored for specific data characteristics of the matrices [127],
and row reordering techniques [69] to improve data locality among processed rows. Finally, other
works propose approaches to realize the best data layout possible to minimize divergence and
set to prove the NP-completeness of a process to find, through data repositioning, that data
layout concluding with software algorithms to attain it [162].

Despite the extensive literature on memory divergence, the current solutions do not appear
very straight-forward and require important involvement of the programmer to build their
application around this problem through hardware conscious decisions, use of frameworks and
analysis tools, or specific solution for specific applications. Consequently, memory divergence
remains one of the key challenging aspects for applications to achieve efficient GPGPU execution.
In this work, we propose novel solutions to improve memory coalescing for data compaction
workloads in graph processing (SCU) and in irregular access workloads (IRU). We develop
efficient offloading of data compaction that in turn brings memory coalescing improvements on
graph-based workloads and we facilitate simple and efficient memory coalescing improvements of
irregular accesses.

1.3.2 Memory Contention

Memory divergence has bast consequences on the overall efficiency of GPGPU architecture,
negatively impacting data locality and in turn memory contention. MLP is a key aspect for
efficient GPGPU applications and thus memory contention, i.e. penalties caused by memory
accesses, impedes high bandwidth exploitation and reduces overall performance.

32

1.3. STATE-OF-THE-ART IN GPGPU IRREGULAR AND GRAPH WORKLOADS

Several works have explored memory contention improvements that propose microarchitec-
tural improvements transparent to the programmer, whereas a few other works propose some
involvement of the programmer to achieve the desired result. Extensive research has been done
on flexible cache solutions [80, 85, 51] which realize the different accesses granularity of irregular
memory accesses and propose dynamic cache organizations that adapt for fine-grained and
coarse-grained accesses, with the objective of improving L1 cache utilization and finally reducing
memory contention. Other works pursue memory contention improvements by resorting to cache
bypassing mechanisms [21, 86]. More microarchitectural approaches have also been explored
in works that leverage the warp scheduler to modify caches entries lifetime based on the warp
scheduler prioritization [160], or entirely adapt the warp scheduling to minimize cycles data
reuse, and thus potentially reduce the cache capacity required. Additionally, works such as
LAMAR [126] explore sizable GPU architecture and memory hierarchy modifications to detect
and provide fine and coarse grained accesses throughout the memory system.

Other solutions to memory contention propose improving data dependency with hybrid
software and hardware approaches that enable data dependent aware dynamic scheduling [167]
or provide prefetching of irregular accesses [81] to registers to avoid early data eviction. Finally,
works such as D2MA [67] and Stash [77] set to provide mechanisms to manage global data
allocation to shared memory with the objective to increase capacity close to the cores and
improve memory hierarchy and overall performance.

High memory bandwidth is key for high performance GPGPU application, memory contention
derived from memory divergence is a very limiting factor to achieve efficient applications. Many
works have proposed a wide selection of approaches; many at the architectural level and a
few with hybrid software approaches, that deal with memory contention and its consequences.
Instead, in this work we approach the memory contention problem with novel proposals that deal
with the cause, not the consequence of memory contention which is the high memory divergence.
Our works provide effective means to improve memory coalescing which in turn bring important
reductions in the overall contention of the memory hierarchy.

1.3.3 Stream Compaction

Stream compaction is an algorithm used to allocate data in compact and contiguous memory
space from memory accessed in sparse, disperse and irregular way. Stream compaction is an
efficient algorithm used as a primitive building operation to implement many algorithms and
programs, consequently it has attracted a lot of attention over the last decade to optimize its
performance on GPGPU architectures.

Many of the works on stream compaction are based on the parallel prefix-sum algorithm [14]
for parallel architectures, prior to the popularization of GPGPU architectures. Initial work on
parallel prefix sum algorithms [63, 142, 128, 56, 141] propose GPGPU adapted software optimized
implementations which focus on depth-optimal and work efficient algorithms. Following works
on this area propose further optimized software implementation which focus on maximizing
concurrent execution and minimizing synchronization [13, 169], avoiding divergent execution [61],
bandwidth efficient implementations [52], single-pass methods [98] and non-order preserving
methods [8].

33

CHAPTER 1. INTRODUCTION

Many works have approached stream compaction from a software optimization perspective
with the aim to improve aspects of the algorithm which make it inefficient in GPGPU architectures
such as excessive synchronization overheads. In this work we realize that stream compaction
is an big part of graph processing and consequently we propose a novel and efficient GPGPU
hardware extension to perform stream compaction operations without the overheads of GPGPU
architectures.

1.3.4 Graph Processing

Graph processing is an important and ascendant area, and using GPUs for it is challenging as
traditionally GPUs have been designed for throughput-oriented applications featuring streaming
and regular memory accesses. Unlike these applications, graph processing algorithms are highly
irregular and input dependent parallelism that makes it challenging to run efficiently, particularly
irregular memory accesses present a major challenge. High performance and energy efficient
graph processing has attracted the attention of the architectural community in recent years.
Several papers have studied their limitations and constrains on GPGPU architectures [20,
166, 164, 144], and many more have proposed solutions from different software, hardware and
standalone accelerator approaches.

Software Solutions

An approach thoroughly explored is the proposal of graph processing frameworks for
GPGPU architectures which aim to facilitate the use of certain programming models and deliver
optimizations and efficient execution. Medusa [175] enables the use of sequential C++ to
program graph processing for GPU architectures with the use of a runtime. TOTEM [48] allows
graph partitioning schemes, while GasCL [19] provides an API to program graph applications
in a Gather-Apply-Scatter (GAS) programming model. Goffish [148] framework integrates
shared memory usage, and MapGraph [37] dynamically chooses different scheduling strategies
based on frontier sizes. GraphReduce [140] adopts a combination of edge and vertex-centric
implementations of the GAS programming model, while HPGA [170] provides abstractions
used to map vertex programs to generalized sparse matrix operations. Finally, the popular
Gunrock [161] implements as well a data-centric abstraction centered on operations on the vertex
or the edge frontier.

Multiple works propose solutions to specific graph processing shortcomings such as low
utilization or data locality and memory bandwidth. Garaph [95] proposes a vertex replication
scheme that tries to maximize GPU utilization and provide work balanced edge-based partitions.
Handling of memory overflows from GPU is also explored with a MapReduce-based out-of-
core GPU memory management technique [147] for processing large-scale graph applications,
overlapping CPU-GPU data transfers and computation. Finally, Subway [132] proposes to only
load active edges of the graph to the GPU memory to improve the efficiency of the memory
bandwidth used.

34

1.3. STATE-OF-THE-ART IN GPGPU IRREGULAR AND GRAPH WORKLOADS

Interesting adaptive solutions which modify the graph data representation to improve
fitness for the GPGPU architecture have also been explored. CuSha [74] proposes two different
graph dataset representations: G-Shards and Concatenated Windows, with the aim to improve
utilization and memory coalescing, and follow works which propose formats such as Warp
Segmentation [73]. Similarly, Tigr [106] transforms the graph representation offline to generate
a more regular dataset, making it more amenable for GPGPU architectures.

Graph algorithm specific solutions are similarly an interesting performance improvement
direction. Among the graph algorithms explored we can find traversal algorithms such as
Breadth-First Search (BFS) [99] implemented with fine-grained task management with efficient
prefix-sum, parallel-friendly and work-efficient methods to solve Single-Source Shortest Paths
(SSSP) [29] and recommendations using PageRank (PR) [45] on graph datasets. Additionally,
works such as Frog [145] and others [88] explore GPGPU graph coloring algorithm, i.e. assignment
of colors to elements of a graph based on constrains such as dependency updates.

Finally, big graph datasets require large quantity of memory to process the data efficiently and
so, multi-GPU graph processing solutions have been proposed. Lux [68] proposes a distributed
multi-GPU locality-aware system that exploits the aggregate memory bandwidth to process
large graph datasets, while mGPU [117] puts forward a graph processing library that enables to
extend single GPU graph algorithms.

Overall, the large quantity of works over the last decade on GPU accelerated graph processing
clearly indicate the increase popularity and relevance of graph processing on GPGPU architectures.
Several approaches are explored at the software level solution; graph processing frameworks,
schemes to deal with specific shortcomings such as low utilization or data locality, improved data
representation formats, algorithm specific implementation and finally multi-GPU proposals. In
this work we realize that GPU architectures, although highly effective, have inherent difficulties
for efficient graph processing. Consequently, we propose the SCU a novel hardware GPGPU
extension which efficiently performs the inefficient aspects of GPGPU graph processing. On top
of it, we also propose the IRU, a novel hardware solution able to improve the memory coalescing
shortcoming of irregular applications in general and graph processing in particular.

Microarchitectural Solutions

A few works on graph processing propose GPGPU microarchitectural solutions. Some
previous works address the low utilization problem for graph processing by focusing on microar-
chitectural details of GPGPU architectures such as branch divergence [54] proposing to delay
diverging threads in branches until later iterations of a loop. Other works [62] point to warp size
and warp-centric programming to improve utilization. The work in [146] presents mechanisms
to reduce address translation overheads for irregular applications such as graph processing.

Register prefetching [81] is exploited to improve memory access latency tolerance for graph
applications, done with additional hardware that detects load pairs common in graph algorithms
and injects instructions to prefetch the corresponding data. Other works propose a work
redistribution hardware scheme to improve load balancing [75] for graph algorithms. Finally,
GraphOps [113] proposed a modular hardware library for quickly and easily constructing energy-
efficient accelerators for graph analytics algorithms, specially targeting FPGA architectures.

35

CHAPTER 1. INTRODUCTION

Overall, most previous works are not specifically targeting graph processing but more broad
irregular applications or targeting specific problems such as branch divergence which are relevant
as well for graph processing. Some interesting architectural solutions are proposed such as
prefetching and workload redistribution. In our work, we propose novel hardware solutions both
specifically for graph processing with the SCU and more broad irregular applications with the
IRU.

Accelerators Solutions

There is a plethora of works that propose to replace entirely the GPU with special purpose
accelerators custom-made for graph processing, which set aside the GPU due to fundamental
limitations of GPU irregular program execution. The main approach of these works focus
on exploiting deep knowledge of graphs data structures. This insight into the graph data
organization is exploited by accelerators closely integrated with memory, using new memory
technologies or near data processing approaches.

Proposals include standalone accelerator approaches such as SGMF [159], TuNao [177],
AccuGraph [171] and others [115]. A different approach is the exploration of accelerators for
specific memory technologies such as dram-based Graphicionado [53], ReRAM memory based
GraphR [149], SOT-MRAM based accelerator GraphS [4], SSD-based GraphSSD [96], and
flash-based GraFBoost [70]. Meanwhile, the popularization of near-data-processing and new
3D-stack memory technologies has ushered in many processing-in-memory (PIM) graph specific
solutions: GraphH [28], GraphQ [178], Tesseract [2], ExtraV [83], G2 [176] and in-memory and
cloud proposal.

Due to the GPU original design that aims at throughput-oriented applications with regular
memory patterns, achieving efficient graph processing is challenging. This challenges have
prompted a wide variety of custom accelerators purpose-made for graph processing. In our
work, we realize that although GPU architectures are not very efficient for specific parts of
graph applications, they are indeed well suited for graph processing enabling high parallelism.
Consequently, in our work we set to improve the suitability of GPGPU architectures for graph
processing instead of entirely replacing them. In this way we propose to offload inefficient stream
compaction operations to tailor made hardware additions to the GPU, as well as improve the
GPU capabilities of processing irregular accesses present on graph applications.

1.4 Thesis Overview and Contributions

The goal of this thesis is to propose novel and effective techniques to improve performance
and energy efficiency of graph processing and irregular applications in GPGPU architectures.
Graph processing on GPGPU systems faces control flow and memory divergence obstacles which
impede full utilization of the parallelism and system resources available. Our main contributions
are the Stream Compaction Unit (SCU), Irregular accesses Reorder Unit (IRU) and the improved
graph processing GPGPU architecture that results of the integration of both previous hardware
proposals. We evaluate all our proposals for graph processing algorithms on a high performance

36

1.4. THESIS OVERVIEW AND CONTRIBUTIONS

GPGPU system, as well as on a low-power GPGPU system. The following sections outline
the description of the problems approached, the proposed solutions which comprise this thesis
contributions and finally their comparison with related work.

1.4.1 Energy-Efficient Graph Processing by Boosting Stream Compaction

Graph processing algorithms are key in many emerging applications in areas such as machine
learning and data analytics. Although the processing of large scale graphs exhibits a high degree
of parallelism, the memory access pattern tend to be highly irregular, leading to poor GPGPU
efficiency due to memory divergence. To ameliorate this issue, GPGPU applications perform
stream compaction operations on each iteration of the algorithm to extract the subset of active
nodes/edges, so subsequent steps work on compacted dataset. Our numbers indicate that stream
compaction operations represent between 25% to 55% of the total execution time, but GPGPU
architectures are not efficient for stream compaction workloads.

Contribution

In first place, we analyze and characterize the performance and energy consumption of
stream compaction operations of graph processing applications on GPGPU architectures. We
conclude that it can surpass 50% of the execution time and it performs poorly due several reasons.
First, it consist of sparse memory accesses with poor locality that fetch elements (nodes/edges)
to be compacted, consequently it results in very low memory coalescing that produces intra-warp
memory divergence and reduces GPU efficiency by a large extent. Second, stream compaction
has an extremely low computation to memory access ratio, as it primarily consists of load and
store instructions to move data around in main memory. Since GPGPU SMs are optimized
for compute-intensive workloads, the functional units remain largely underutilized during the
stream compaction stage.

In second place, we propose the SCU, a novel hardware unit tailored to the requirements of
stream compaction operations which integrated with existing GPGPU architectures is able to
provide 2x energy reduction and 1.5x speedup for graph applications on both high-performance
and low-power GPUs. The SCU features a set of fundamental stream compaction operations
which enable to offload compaction operations from the GPU to the SCU. This allows to modify
existing graph processing algorithm to offload the stream compaction efforts to the SCU while
leveraging the high parallelism of the GPU to perform the graph exploration computation.

In third place, we extend the proposed SCU with additional pre-processing to the compacted
data so that the GPU can process it in a more efficient way. We propose two extensions with this
goal: filtering and grouping. Filtering detects duplicated elements which can be discarded. This
elements can be removed due to the nature of the graph exploration with parallel algorithms,
which sees multiples edges explored simultaneously with the possibility of repeated elements.
Filtering is a very effective technique which manages to remove 75% of the original GPU workload.
Additionally, grouping reorders data to maximize the effectiveness of memory coalescing.

37

CHAPTER 1. INTRODUCTION

Finally, we evaluate the final SCU system with the proposed filtering and grouping pre-
processing functionality which improve its energy efficiency and performance significantly. Overall,
the high-performance and low-power GPU designs including our SCU unit achieve speedups
of 1.37x and 2.32x, and 84.7% and 69% energy savings respectively on average for several
graph-based applications. This work has been published in the proceedings of the International
Symposium on Computer Architecture (ISCA ’19) [139].

Related work

The related research proposals that tackle memory divergence do so in a direct way by
means of providing load balancing mechanism [99], changing the microarchitecture [39] and
scheduler [17] to modify individual thread execution paths or directly modifying the program
data structures [48, 106, 161]. In contrast, the SCU main aim is to offload stream compaction
operations, yet it also manages to improve GPGPU control and memory divergence in a less
intrusive way. It indirectly improves divergence with the pre-processing filtering and grouping.
GPGPU utilization is improved by eliminating duplicated elements that would cause warps to
underutilize the execution units and more memory accesses.

The majority of the works on graph processing focus on a software perspective with the aim
to provide new frameworks [175, 19, 161] to facilitate programming efficient graph applications
or provide new data representation formats [95, 147, 132]. Among the proposals that explore
hardware solutions we can find register prefetching [81] and load balancing [75], yet the majority
of the works directly propose an standalone accelerator solution [177, 53, 2, 4]. Additionally,
many of the works on GPGPU stream compaction require solutions to problems arising from
the parallelization of the scan algorithm such as increased space constrains or synchronization
overheads [13, 169].

Our SCU solution is different from previous proposals since we extend the GPU with a small
programmable unit that boosts GPU performance and energy-efficiency for graph processing
algorithms. We observe that, although the GPU is inefficient for some parts of graph processing
(e.g. stream compaction), the phases that work on the compacted dataset can be efficiently
executed on the GPU cores. Therefore, we only offload stream compaction operations to the SCU,
meanwhile we leverage the streaming multiprocessors for parallel processing of the compacted
data arrays. Finally, unlike previous hardware-based solutions, our SCU has a very low cost in
area for high-performance and low-power GPU respectively, and it does not require any changes
in the architecture of the streaming multiprocessors.

1.4.2 Improving Graph Processing Divergence-Induced Memory Contention

GPGPU architectures are the preferred system to achieve performance by means of paral-
lelization, which allows performance improvements of orders of magnitude. However, irregular
applications struggle to fully realize GPGPU performance as a result of control flow divergence
and memory divergence due to irregular memory access patterns. To ameliorate these issues,

38

1.4. THESIS OVERVIEW AND CONTRIBUTIONS

programmers are forced to carefully consider architecture features and devote significant efforts
to modify the algorithms with complex optimization techniques, which shifts programmers
priorities yet struggle to quell the shortcomings. We show that in graph-based GPGPU irreg-
ular applications these inefficiencies remain, yet we find that it is possible to relax the strict
relationship between thread and data processed to empower new optimizations.

Contribution

We first characterize the degree of memory coalescing and GPU utilization of irregular
applications, specifically modern graph-based applications. Our analysis shows that memory
coalescing can be as high as 4 accesses per warp and GPU utilization as low as 13.5%. We conclude
that GPGPU programming models impose restrictions that hinder full resource utilization of
irregular applications for several reasons. First, irregular programs such as graph processing
algorithms consist of sparse and irregular memory accesses which have poor data locality and
result in bad memory coalescing, producing intra-warp memory divergence and reducing GPU
efficiency significantly. Second, these issues are, in the best of cases, hard to improve without
significant programmer effort to modify algorithms and data structures in order to better utilize
the underlying hardware. Ultimately the programmer has to take into consideration ways to
rearrange the data or change the mapping of data elements to threads to achieve better memory
coalescing and higher GPU utilization, even if the relation of which threads process what data
might not even be a restriction imposed by the algorithm, since the threads are primarily the
means to expose parallelism.

Then, we propose the IRU, a novel hardware unit integrated in the GPGPU architecture
which enables improved performance of sparse and irregular accesses achieving 1.33x speedup
and 1.13x energy reduction for graph-based processing applications. IRU’s key idea is to relax
the strict relation between a thread and the data that it processes. This allows the IRU to
reorder the data serviced to the threads, i.e. to decide at run-time the mapping between
threads and data elements to greatly improve memory coalescing. The IRU mapping improves
the effectiveness of the memory coalescing hardware resulting in better coalescing and cache
data locality, with subsequent improvements in the entire memory hierarchy and higher GPU
utilization for irregular applications. In addition, the IRU performs simple pre-processing on
the data (i.e filtering repeated data), which reduces useless resource utilization of the GPU and
allows for better utilization and further performance and energy improvements.

We also propose an ISA extension and high-level API for the IRU, and we show how
modern graph-based applications can easily leverage the IRU hardware. Efficient irregular
GPGPU programs require complex thread to data assignment or additional pre-processing
(e.g. reordering) to be performed by the programmer. Unfortunately, at the cost of additional
algorithm complexity and computational cost. Most importantly, this is a complex burden
for the programmer which usually are not willing or able to handle as it clearly shifts the
programmers effort from the algorithm to a hardware conscious programming, requiring sound
knowledge of it and hampering code portability. Instead, programmers can easily utilize the
IRU to achieve efficient execution of irregular programs with our proposed simple API, or with
compiler optimized generated code with the extended ISA instructions provided.

39

CHAPTER 1. INTRODUCTION

In conclusion, the IRU delivers efficient execution of irregular programs on modern GPGPU
architectures. It achieves a memory coalescing improvement of 1.32x and a 46% reduction in the
overall traffic in the memory hierarchy, which results in 1.33x speedup and 1.13x energy reduction
for graph-based processing applications. The IRU optimizes irregular accesses while requiring
minimal support from programmers. This work has been submitted for publication [137].

Related work

The majority of the related works that tackle memory divergence propose software meth-
ods that require extensive programming effort to change algorithm behavior [73, 99], data
structures [48, 106, 161], and require profound hardware knowledge and compiler assistance to
properly achieve reordered and optimized efficient solutions [157]. Other works propose solutions
that rely on the specific characteristics of the irregular applications targeted such as the Sparse
Matrix Multiplication [119, 127].

Related to our solution some works propose to perform thread remapping approaches.
Software approaches propose to perform reordering with label-assign-move (LAM) with CPU-
assisted analysis and remapping frameworks [174, 173]. Thread remapping microarchitectural
approaches propose changes to the SIMT stack [39], reconstructing warps at divergent points [38]
and support extension of warp schedulers [17].

In contrast, our IRU solution requires very lightweight changes of the algorithms and
does not require profound knowledge of the inner working of the GPU memory hierarchy nor
is targeting specific characteristics of algorithms to improve memory coalescing and resolve
contention issues. Of the thread remapping approaches explored, the majority specifically target
branch divergence and utilization improvements while overlooking the effects of remapping on
memory divergence. The software remapping framework [173] does target memory divergence
but it requires complex algorithm changes. Our proposal is a hardware method which performs
the reordering optimization specifically targeting the improvement of memory divergence and
it does so in a close to transparent way without the requirements of CPU assisted analysis or
frameworks nor complex extensions to the GPGPU microarchitecture.

Related works approach memory contention by proposing flexible cache solutions [80, 85, 51],
cache bypassing mechanisms [21, 86] and data reuse latency by means of warp prioritization with
the warp scheduler [160]. The aforementioned related works leverage hardware solutions that
work around or ameliorate the consequences of low memory coalescing by providing mechanisms
to lower memory contention. In contrast, our IRU work provides tools to amend the cause, not
the consequence, of the high memory contention which is poor memory coalescing that leads
to high memory contention, and our IRU significantly improves the memory contention of the
GPGPU with irregular workloads.

Finally, in contrast to graph accelerators which require systems to add special custom
hardware, the IRU leverages the popularity of GPU architectures and provides enhancements and
a generic solutions that bring performance and efficiency improvements of the GPU architecture
for irregular programs.

40

1.4. THESIS OVERVIEW AND CONTRIBUTIONS

1.4.3 Combining Strengths of SCU and IRU

Current and future data gathering requirements in our knowledge-based society demand
great data processing efficiency, essential for emerging domains such as data analytics or machine
learning. High-throughput GPGPU architectures are key to enable efficient graph processing.
Nonetheless, GPGPU are afflicted by poor efficiency caused by high memory divergence and
contention, which arise from graph-based applications irregular and sparse memory access
patterns. In our previous work, we point to stream compaction and irregular access divergence
to improve GPGPU graph processing efficiency and performance. We find that it is possible to
leverage the strengths of both approaches to achieve synergistic performance improvements and
higher graph processing efficiency.

Contribution

We first characterize the limitations and bottlenecks of our initial work on the SCU. We
observe that its major limiting factor is the large amount of data movement between the L2
cache. This high movement is caused by the SCU pre-processing operations and its accesses to
an in-memory hash, which contribute to 57% of Network-on-Chip (NoC) traffic. The in-memory
hash enables the pre-processing of filtering and grouping operations, delivering massive filtering
percentages of duplicated elements. After the pre-processing, the majority of accesses performed
are limited to the in-memory hash, and so, they represent an important performance and energy
bottleneck.

Afterwards, we identify synergies between the SCU and the IRU and show that they perfectly
complement each other. While the SCU achieves significant speedups and large energy savings,
it produces high contention in the NoC. On the other hand, the IRU achieves more modest
energy savings, but its optimizations are highly efficient at largely reducing contention in the
NoC to a factor of 46% lower NoC traffic.

Based on this observation, we propose the ISCU, a novel GPU unit that combines both
system strengths. The ISCU leverages the powerful stream compaction offloading achieved by
the SCU and the efficient filtering mechanism of the IRU employed to deliver pre-processing
optimizations. The proposed system improves overall graph processing efficiency.

Finally, we evaluate our proposal to improve graph processing on top of a modern GPU
architecture and for a diverse set of graph-based applications. Our experimental results show
that the ISCU delivers a high reduction of 78% memory accesses, which result in a reduction of
90% in energy consumption and 2.2x speedup on average. Compared to the SCU, our ISCU
improves performance by 63%, while achieving 66% energy savings.

In conclusion, the ISCU leverages the strengths of our previous work on improved graph
processing by offloading stream compaction operations, and our work on improved irregular
accesses on GPGPU architectures which deliver synergistic improvements in efficient graph
processing. This work has been submitted for publication [138].

41

CHAPTER 1. INTRODUCTION

Related work

The majority of the hardware proposals for graph processing propose custom build accel-
erators [177, 171, 53] with many of them closely exploring memory technology synergies to
improve graph processing [4, 28, 2]. In contrast, we propose extensions to the already popular
and ubiquitous GPGPU architectures which make them more versatile to support graph-based
workloads for which they face many challenges. Our complete solution leverages the strengths
of our earlier works on stream compaction offloading and irregular accesses reordering which
results in a high energy efficiency, increased performance and flexibility for graph processing on
GPGPU architectures.

1.5 Thesis Organization

The reminder of this document is organized as follows:

Chapter 2 describes the relevant background on GPGPU architectures, as well as concepts
of Irregular Applications and Graph Processing Algorithms on this architecture. We describe
the characteristics of Irregular Applications and a detailed explanation of the Graph Algorithms
explored on this thesis.

Chapter 3 goes through the experimental methodology. First, we describe the different
tools and the parameters used in our evaluation of performance, energy and area. Second, we
introduce the hardware systems and simulators we employ, including our own simulator and the
configuration parameters utilized. Finally, we describe the graph processing datasets used in our
evaluation.

Chapter 4 proposes a programmable GPGPU hardware extension Stream Compaction Unit
(SCU). We first characterize the performance and energy of stream compaction operations on
modern GPU architectures and then we propose the SCU as an efficient hardware unit tailored
for the requirements stream compaction. We show how it can be integrated with existing graph
applications and demonstrate the efficiency of the SCU to filter duplicates and improve overall
memory coalescing.

Chapter 5 presents the Irregular accesses Reorder Unit (IRU), which improves irregular
accesses on GPGPU architectures. We first characterize the degree of memory coalescing and
GPU utilization of modern irregular graph-based applications. We then propose the IRU, a novel
hardware unit integrated in the GPGPU architecture that enables improved performance of
sparse and irregular accesses by reordering data serviced to each thread and allowing duplicated
data filtering. Finally, we describe its API which enables seamless integration with existing
graph applications.

Chapter 6 describes the synergistic integration of our previous hardware extension proposals
into a final improved graph processing GPGPU system, the IRU-enhances SCU (ISCU). We first
characterize the limitations of our initial SCU design, identifying the main bottlenecks. We then
propose the adaptation of the IRU hardware extension with the SCU which improves execution
of stream compaction operations addressing the bottlenecks identified. Finally, we conclude

42

1.5. THESIS ORGANIZATION

our work by achieving synergistic improvements in energy-efficiency and performance for graph
processing on GPGPU architectures.

Chapter 7 summarizes the main conclusion of this thesis, lists the contributions achieved
and outlines some open research work areas.

43

44

2
Background

This chapter reviews the relevant background that serves as the foundation to contextualize
and understand the work presented throughout this thesis. This chapter first explores the
architecture of a GPGPU and showcases its programmability. Afterwards, potential sources
of inefficiency in GPGPU architectures are discussed, with special attention on execution of
irregular applications. Finally, the chapter explores algorithms for graph processing on GPGPU
architectures.

2.1 GPGPU Architecture

The specific characteristics of GPGPU architectures are worth exploring to better understand
their strengths, competences and limitations. This section describes the GPGPU philosophy and
its main components, from execution units to the memory hierarchy, and concludes by detailing
GPGPU programmability to properly utilize hardware resources.

2.1.1 Overview

GPGPU architectures are tailored for massively parallel, compute intensive applications.
To support high thread counts, a GPGPU devotes higher die area to replicate Execution Units
(EU) while fewer area is dedicated to complex control and caches, compared to traditional CPU
designs and seen in Figure 2.1. This fundamental decision defines GPGPU approach and trade-
offs to deliver performance; hugely increased counts of significantly less efficient threads. The
more characteristic trade-offs required to support as many threads without in turn significantly
increasing control area are: an in-order pipeline with a back-end executing threads in lock-step,
and the reduced decoding complexity per thread as a consequence of the SIMT approach that

45

CHAPTER 2. BACKGROUND

CONTROL
EU

CACHE

EU

EU

EU

CPU GPU
EU EU EU EUEU EU EU EU

Control

Cache

Figure 2.1: Diagram of the transistor area distribution of a CPU versus a GPU architecture,
showcasing the design principles of each architecture. CPU designs dedicate comparatively more
area to improved control logic and caching, whereas GPUs rely on simpler control logic and
caches while featuring much more execution units [76].

decodes a single instruction for multiple threads. The resulting increased thread latency is
hidden with the increased throughput and parallelism, consequently GPGPU excels at running
applications with high Instruction-Level Parallelism (ILP) and Memory-Level Parallelism (MLP).
Many scientific, calculus and visualization applications fit these characteristics which allow to
maximize the utilization of the EUs and hide the increased latency.

The overview of the components of a GPGPU architecture is shown in Figure 2.2. A
single GPU contains multiple cores or Streaming Multiprocessors (SM) with the characteristics
previously mentioned. The GPU die contains a number of SM and Memory Partitions (MP),
which are connected with an interconnection Network-on-Chip (NoC), such as a crossbar or a
butterfly network, and the Memory Partitions (MP) contain a partition of the shared last-level
cache and provide accesses to multiple off-chip main memory channels.

2.1.2 Streaming Multiprocessor (SM)

The general architecture of a GPGPU core is similar to the architecture of a regular CPU
multiprocessor with some additions and specializations. GPGPU architectures feature SIMT
in-order pipelines where the front-end is capable of scheduling and issuing multiple SIMT
instructions per cycle (e.g. typically 2 or 4), while the back-end is specialized and pipelined
in different functions; arithmetic or special function (ALU), memory (LD/ST), and the newly
added tensor operations (Tensor units). The pipelines are warp-wide (typically 32 thread-wide)
with predicated execution managed with masking registers, enabling or disabling the execution
of threads in a warp.

Since the pipeline is SIMT, a single instruction operates on multiple data effectively doing
the work of multiple instructions on a regular pipeline, and being equivalent to the execution
of a thread per data. This approach benefits from requiring simpler instruction decoding logic
per regular instruction executed and consequently achieves reduced energy decoding cost per

46

2.1. GPGPU ARCHITECTURE

L2

GPU die

Mem Partition Mem Partition Mem Partition Mem Partition

L1 & Shrd

EUs
SM

Interconnection

Main Memory

L2 L2 L2

Figure 2.2: Overview of a GPGPU architecture showing the GPU die with 16 Streaming
Multiprocessors (SM) interconnected with 4 Memory Partitions (MP) and the main memory
located outside of the die. The most relevant internal components are showcased, for the SM
are the Execution Units (EUs), L1 data cache and shared memory, whereas for the MP is the
L2 data cache.

instruction executed. The decoding logic resulting from an instruction governs the threads in a
warp, which are executed in lock-step being effectively scheduled, issued, executed and retired
from the pipeline jointly.

A SIMT instruction operates on the same register for each thread but with different data
per thread and as such, a register entry in a GPGPU architecture is several times larger than a
regular register. Consequently, in order to fully utilize the multiple pipelines, the register file
(RF) has to be able to provide much more data for the operands of the multiple threads in a
scheduled warp. The increased RF’s data throughput can be delivered with a multi-ported RF
or specialized hardware such as an operand collector [92] which uses an arbiter and multiple
single-ported RF to provide the desired throughput with fewer area and energy overheads.

Additional hardware resources are required to manage branch divergence, typically resolved
with the use of a SIMT stack. On a GPGPU architecture, branch divergence occurs when a
branching instruction generates different control flow paths for the threads in a warp. This
diverging control flow is specified with the use of predication register serving as an active
mask. The SIMT stack is used for each warp to keep track of the control flow information
such as the next program counter (PC), the active threads mask and reconvergence PC. At a
divergent instruction, this information is pushed into the stack with the new active mask and
reconvergence PC, whereas upon reconvergence the information is poped effectively managing
branch divergence. The threads issued to the back-end and their assigned functional units are
deactivated with the corresponding active mask in the stack for that warp. Notice that, unlike
traditional architectures, potentially both taken and not-taken paths instructions are executed
based on the warp active mask.

47

CHAPTER 2. BACKGROUND

2.1.3 Caches and Memory Hierarchy

The memory hierarchy of a GPGPU system is critical to achieve high performance. Significant
memory bandwidth is required in order to maintain the huge parallelism of GPGPUs. The
thousands of threads occupying the functional units require to read and write data to maintain
high utilization. As explored earlier, the RF is provisioned to sustain the high performance,
but the whole memory hierarchy needs to be sized accordingly as to provide the cores with
enough data as well. The SM houses several memory components worth exploring featuring
several caches, memories and specialized hardware. Similar to a traditional architecture, the SM
features an instruction cache and a data cache with the addition of a memory accesses coalescer
to reduce memory contention. Additionally, two other caches are present: the constant cache,
employed for parameters and program constant values, and the texture cache specialized for
holding data of texture mappings. Finally, an scratchpad memory local to the SM is used to
facilitate in-core memory communication between threads.

Streaming Multiprocessor Caches and Memory Resources

Data cache size for the SM are characteristically small compared to traditional computer
architectures, and the ratio of cache entries per thread is even smaller. This design choice guides
which kind of application can effectively use the architecture, e.g. streaming (read, process, and
output) and high computation applications, and limit the data reuse possibilities for applications
processing many data and irregular patterns. A warp processing a memory instruction requires
to read or write significant amounts of data from or to the caches, consequently several techniques
and hardware are used to improve performance and reduce contention. First, cache entries have
bigger granularity which allows to service a complete warp for word-sized memory instructions
(i.e. a total of 128 bytes assuming a warp size of 32 threads). Second, cache policies are
typically set to evict data on a write with no write allocation, since they most benefit streaming
applications. Third, processing of misses with additional hardware resources such as the Miss
Status Holding Registers (MSHRs) used to store information of processing misses and merge new
misses to the same entries, and Miss Queues to avoid blocking new accesses when outputting
misses. Finally, coalescing hardware is used to further reduce contention by merging multiple
memory requests within a warp.

The accesses coalescing hardware is a significantly important addition to the GPGPU
memory hierarchy. Its purpose is to reduce memory accesses to the L1 data cache, improve
utilization and consequently effectively reduce accesses to the entire memory system. Every
memory request that originates from a warp memory instructions is processed by the coalescing
hardware before being issued to the L1 data cache. The accesses coalescer merges accesses that
correspond to the same memory block and keeps track of the data that each individual access
(i.e. thread) requested in it. Given multiple accesses performed by the warp that target the
same memory block, the coalescing is capable to merge them to a single access to the L1 data
cache, whereas if they access different memory blocks the coalescing hardware is of no benefit
as each one has to be performed individually. Consequently, the accesses coalescing hardware
provides a large reduction in the accesses to the L1 cache, up to 32x reduction if the 32 threads
within a warp target the same cache line.

48

2.1. GPGPU ARCHITECTURE

The last relevant component inside the SM architecture is the scratchpad memory. The
scratchpad or shared memory is a randomly addressable memory which has very low latency
compared to main memory. Its main purpose is to facilitate communication of data and
synchronization execution between threads located to that particular SM. The scratchpad
accesses are not coalesced, instead the scratchpad is banked which allows divergent accesses to
be performed simultaneously on to the separate banks. The data allocated to the scratchpad
memory is managed directly by the application, as it is a separate address space from the main
memory space.

Memory Partitions and Out-of-Chip Memory

Contrary to CPU architectures, the SM itself does not include a private L2 cache as GPGPU
architectures are not as concerned to reduce latency to memory and increase data reuse. Instead
the L2 data cache is the last level cache (LLC) and is shared, banked, partitioned and located
close to the memory controllers, in the memory partitions of the GPGPU architecture. Accesses
from the SM are directed to the corresponding L2 partition by means of the interconnection
NoC which can feature designs such as a Crossbar or a Butterfly network depending on the
latency, area and energy constrains of the system. The L2 features the same hardware contention
resources such as MSHRs and miss queues, but no accesses coalescing, as the warp accesses
are already coalesced before accessing the L1 data cache. Contrary to the L1, the L2 uses
write-allocate as the write allocation policy.

The GPGPU architecture does not feature any memory coherence protocol for the L1 data
caches. To correctly access data, synchronization mechanisms such as atomic operations are
supported by the architecture. The memory partitions include the corresponding functional
units to perform the atomic operations and guarantee atomicity.

Finally, the main memory is located off-chip and it typically features technologies such as
Graphics DDR (GDDR 5/6) [40, 41] and High Bandwidth Memory (HBM 1/2) [58], which stand
out for their characteristics and trade-offs: very high bandwidth, high parallelism MLP, and less
optimized higher latency and energy overheads.

2.1.4 Programmability

Efficient hardware is of no use if it cannot be easily programmed and used by programmers
and applications, consequently powerful and easy to use programming languages and toolkits are
of high importance. Over the years, product vendors have had in their own interest to provide
accessible and easy to use tools to promote their platforms, offering tools such as debuggers,
profilers and highly optimized libraries for relevant application domains like machine learning
or scientific computing. GPGPU main programming languages and toolkits are CUDA and
OpenCL, which are extensions of C/C++ with added functionalities to interface and program
GPGPU architectures.

These toolkits provide a way to program GPGPU architectures as well as mechanisms to
compile and integrate it with regular CPU applications. Figure 2.3 gives an overview of the nvcc

49

CHAPTER 2. BACKGROUND

Host (CPU) Device (GPU)

C/C++
Code

PTX
Code

GPU
Binary

ptxas

Linker

CPU-GPU
Binary

CPU
Binary

gcc PTX

Nvidia CUDA Compiler (nvcc)

CUDA
Code

Vi
rtu

al
Ar

ch
ite

ct
ur

e
R

ea
l

Ar
ch

ite
ct

ur
e

Figure 2.3: Simplified compilation diagram showcasing the process to generate and integrate a
GPU kernel with a CPU application with a CUDA toolkit. The CUDA code is compiled with the
nvcc into generic Parallel Thread Execution (PTX) [118] assembler code, that is later processed
into GPU binary Streaming Assembler (SASS) assembler code. The same process compiles the
regular CPU code and integrates both binaries in a final FAT binary that can contain multiple
SASS versions to execute on different GPU architectures.

compilation of CUDA code. Similar to a regular computer system, a GPGPU executes assembly
code, consequently the high level code has to be translated to assembly. High level CUDA code
is translated to Parallel Thread Execution (PTX) [118] assembly, which is a generic system
independent assembly language. PTX code is further translated to architecture dependent
assembly code Streaming Assembler (SASS). This process is automated by the toolkits which
compile and link the code for several GPU architectures creating a final binary where GPGPU
machine code is integrated into a regular host or CPU binaries programs. With the use of drivers
and the toolkit libraries provided, upon execution of the binary, the program running on the
host platform, i.e. CPU, is able to configure, prepare the input data and ultimately launch the
execution of the GPGPU program, i.e. execution of a kernel function on the GPU.

The configuration of a kernel is done before launch from the host code. Figure 2.4 gives an
overview of the interaction between the Host (CPU) and the Device (GPU). At configuration,
the host specifies the amount of threads to use and the size of thread block (i.e size of a group of
threads allocated to an SM). Note that the thread block is independent from the architectural
concept of a warp; the concept of a warp (i.e. group of lock-step executing threads) is not a
concept of the programming language but a specific detail of the architecture. The launch of a
kernel is done with a function call to a specially marked function that contains the GPGPU
code, additionally, parameters can be provided to this function with constant values and pointers
to input data to process. In the case of discrete GPUs, host and device memory spaces are

50

2.1. GPGPU ARCHITECTURE

Kernel A

Host (CPU) Device (GPU)

Kernel B

TB #0 TB #1 TB #2

TB #3 TB #4 TB #5

Th
#0

Th
#1

Th
#2

Th
#3

Th
#4

Th
#5

Th
#6

Th
#7

Th
#8

Th
#9

Th
#10

Th
#11

Th
#12

Th
#13

Th
#14

Th
#15

Mem Copy Mem Copy

Figure 2.4: Interaction between a Host (CPU) and the Device (GPU). The CPU is responsible
to perform data movements to the GPU memory, configure the parameters and initiate the
launch of the GPU Kernel.

separated and data movements have to be handled manually with specific memory operations
between CPU and GPU as shown in Figure 2.4. In case of an integrated GPU, host and device
can share the same address space and, hence, memory copies are avoided reducing the overhead
of offloading code to the GPU.

GPGPU programs are specified with kernel functions which are regular functions specially
marked for GPGPU execution. These functions are programmed with either CUDA or OpenCL
which provide keywords and additional values such as the thread id and size of the thread
block of the instantiated kernel, which are used to distribute the work among threads. The
parallelism is implicit as the code that is programmed in regular C/C++ runs on all the threads
of the instantiated kernel, but with different variables per each thread. The toolkits provide
synchronization barriers and atomic functions to manage and implement parallel algorithms
efficiently. Finally, the different keywords provided allow the programmer to use and manage the
different address spaces of the shared memory and the caches such as the constant and texture
caches, while regular data is implicitly allocated on the GPU main memory.

Finally, efficient GPGPU programming requires deep understanding of the underlying archi-
tecture. For this reason, to facilitate GPGPU programmers to develop fully fledged applications,
many vendors and researchers develop additional toolkits and libraries. These toolkits provide
additional functionality, primitives and qualified algorithms that are highly optimized and
tuned to execute efficiently on several GPGPUs without requiring extra optimization effort
by the programmers, which aids in the integration, improvement and development of GPGPU
accelerated applications. Examples of such toolkits and applications cover many different areas:

51

CHAPTER 2. BACKGROUND

cuBLAS [24] for Linear Algebra, cuFFT [26] for Fast Fourier Transform, cuSPARSE [27] for
processing sparse matrices, nvGRAPH [107] or Gunrock [161] to perform graph analytics and
PyTorch [121] or TensorFlow [152] for machine learning and deep learning applications.

2.2 High Performance GPGPU Code and Common Bottlenecks

GPGPU systems are complex architectures which require thoughtful programming and deep
understanding of the underlying architecture to achieve high performance. This section gives an
overview of the aspects which positively and negatively impact performance.

2.2.1 High Performance GPGPU Code

The first aspect to achieve high performance GPGPU applications is to maintain high
utilization of the functional units, which results in high IPC. The threads in a warp execute
in a lock-step manner and with predication, and so to completely utilize the functional units
it is necessary to minimize non-diverging path. Divergent control flow disables the functional
units of the divergent threads, which underutilizes the functional units of the GPGPU. Regular
applications which have regular control flow contribute to maximize gains resulting from ar-
chitectural decisions such as savings in decoding and control logic that result from decoding a
single instruction per multiple treads.

In order to sustain the high utilization of the functional units, enough data has to be
provided by the memory system, thus requiring significant memory bandwidth. Applications
that maximize memory bandwidth show more regular memory access patterns which enable
high MLP and facilitate the memory system to provide high bandwidth. Additionally, regular
access at the warp level significantly reduce the LD/ST pipeline latency and minimize accesses
and contention to the data cache. Additionally, applications have available the shared memory
which alleviates the pressure on the memory system for high reuse data which is accessed with
low latency.

Overall, applications which achieved the highest performance on GPGPU architectures show
regular control flow and memory access patterns and maximize coalescing. Contention of the
memory hierarchy is highly important to maintain high utilization and consequently achieve
high performance, such as streaming applications which have low reuse of data or applications
that exhibit high computation to memory access ratio.

2.2.2 GPGPU Bottlenecks

Many choices constrain the efficient use of GPGPU architectures. Applications that show
irregular behavior with unpredictable and irregular memory access patterns are likely to un-
derachieve in a particular aspect which can in turn severely effect the performance. For these
applications GPGPU architectures are unable to provide enough memory bandwidth due to
a huge portion of the threads generating uncoalesced memory accesses, while performance

52

2.2. HIGH PERFORMANCE GPGPU CODE AND COMMON BOTTLENECKS

is additionally hampered when all functional units are not utilized due to divergent thread
execution. Nonetheless, irregular applications can still benefit from the high parallel processing
of data.

A warp processing a memory instruction that has irregular accesses is likely to achieve poor
memory coalescing, since the accesses performed by the threads in that warp will likely not be
collocated into the same memory block. In this case, an individual memory request will have to
be issued for every uncoalesced thread, one per thread in the worse case. Hence, the overhead
for irregular applications represents up to 32x more memory requests (assuming a typical warp
size of 32 threads), which increases both utilization of the LD/ST unit and instruction latency
and puts higher pressure on the L1 and the whole memory hierarchy. In addition, every warp
instruction requires more resources to handle misses on L1, such as miss status holding registers
(MSHRs) and entries in the miss queue, a problem aggravated by the fact that GPU L1 capacity
is typically smaller than that of CPUs and the ratio of cache lines per thread is significantly
lower as well. All these factors combined increase significantly the contention on the L1 and its
miss ratio due to conflict and capacity misses. Finally, the interconnection traffic congestion
increases, L2 observes similar problems to the ones described for L1, and main memory accesses
increase as a consequence of increased L2 misses.

On the other hand, the SIMT architecture of GPGPUs enables savings in hardware costs
and energy but also constrains the flexibility of the program. Irregular applications that have
divergent control flow within the warps end up under utilizing the functional units in the pipeline.
Upon executing a branch divergent operation, the architecture has to handle the control logic
to create reconvergence points and manage the disabling of divergent executing threads. The
potential under-utilization of the functional units can be as high as a factor of 32x, when only one
functional unit in the pipeline is utilized, severely lowering the performance of the architecture.
Additionally, the decoding trade-off is negatively impacted as well since the energy used by the
decoding of a warp instruction is serving less threads and achieving less performance. Finally,
branch divergence requires both divergent execution paths to be evaluated, resulting in slower
overall performance.

Overall, irregular applications can and do benefit from the high performance delivered by
the huge parallelism of GPU architectures, but the architecture has many pitfalls when it comes
to enabling high performance and utilization of irregular algorithms.

2.2.3 Ameliorating Performance Inefficiencies

Irregular applications attempt to mitigate the aforementioned performance bottlenecks by
using different techniques. Note that significant changes have to be applied to the algorithm
and its data structures to utilize more efficiently the GPU resources. Possible approaches to
optimize performance include the following. First, the use of the shared memory present in
the SM of the GPU which provides reduced latency and allows banked accesses of uncoalesced
accesses. Second, merging kernels to reuse memory requests while increasing use of registers
and contention on register files. Third, modifying program data structures in a more compact
way in order to improve memory access patterns, i.e. graphs use of Compressed Sparse Row
(CSR) [11] format. Fourth, data compaction mechanism such as scan algorithms which reduce

53

CHAPTER 2. BACKGROUND

sparse accesses and improve locality by gathering sparse data in a compacted data array. Finally,
approaches to improve branch divergence that favour using load balancing techniques employed
to leverage the threads in warps and thread blocks to cooperatively process data elements.

Overall, while many techniques enable more efficient GPGPU irregular execution, a signifi-
cant effort is required to implement these optimizations and reduce the GPGPU architecture
shortcomings for irregular applications.

2.3 Graph processing algorithms on GPGPU architectures

Graphs are a fundamental data structure in mathematics that contain a set of objects in
which some of them are connected or related in some manner. The objects represented are
called vertices or nodes and the connections links or edges. Figure 2.5a shows the graphical
representation of a Graph in which the nodes are labeled with letters and the edges between
nodes are indicated with the arrows. Note that the graph represented is a directed graph, since
the edges are represented with arrows thus the relationship between nodes only stands in the
direction depicted. On the contrary, for an undirected graph the edges would connect a pair of
nodes in both directions. Since graphs represent relationships between data, the interconnection
and properties of graphs can vary wildly, it is specially relevant the connectivity of the edges in
a graph. In particular the out degree of a node is the number of adjacent nodes (i.e. edges) to it.

Graphs are used to represent many different datasets specially representing topology or
knowledge systems, such as: road networks, social networks, language syntax and grammar, DNA
sequences, web-pages linking, and many more. Once data is represented in a graph, many graph
algorithms can be utilized to analyze the data. Many problems in Machine Learning [93, 134],
data analytics [172] and more areas can be described and solved using graph algorithms. These
algorithms employ graphs that describe the relationships between elements on a given dataset
of interest, and explore them in a specific manner to extract the desired information. GPGPU
architectures can be used to accelerate graph processing by exploring in parallel multiple nodes
and their connections (i.e. edges) of the graph.

The graph exploration on a typical GPGPU graph processing algorithm starts in a given
node and moves to adjacent nodes by processing and traversing that node’s edges. At this point, a
new frontier (i.e. set of nodes or edges) is ready to be explored continuing this process iteratively
until the whole connected graph is explored, or until the algorithm dictates it. Figure 2.6
shows how this process unfolds in a given iteration. Each element of the edge frontier array
(i.e. indices) points to the position to access in the nodes array to fetch for the next frontier
data and continue the graph exploration. The pseudo-code shows the type of irregular access
performed on the nodes array, which is an intrinsic part of graph exploration algorithms and a
cause of inefficiencies in GPGPU architectures. Additionally, graph-based algorithms exhibit
further characteristics that are not amenable for GPGPU such as: low computation to memory
access ratio [9], and irregular memory access patterns and poor data locality [94, 166] due to
the unpredictable and irregular nature of the relationships expressed in a graph. Consequently,
proper GPGPU resource utilization for graph exploration is hard to achieve.

To ameliorate the issues previously mentioned, CUDA/OpenCL implementations of graph

54

2.3. GRAPH PROCESSING ALGORITHMS ON GPGPU ARCHITECTURES

C

G

F

E

D

B

A

2

1 1

3

1

2

1

2

(a) Reference Graph

Nodes: A B C D E F G

0 3 5 6 8 8 8Adjacency
Offsets:

Edges: B C D E F F C G

Weights: 2 3 1 1 1 2 1 2

(b) CSR Representation

BFS Nodes: A B C D E F G

0 1 1 1 2 2 2BFS Distances:
(start node = A)

0 2 3 1 3 3 3SSSP Distances:
(start node = A)

SSSP Nodes: A B C D E F G

(c) Graph Exploration

Figure 2.5: Graph example (a) with its corresponding CSR representation (b) and the exploration
results (i.e. computation result per node) when using BFS and SSSP on the starting node A (c).
Graph (a) shows each node inside a circle with its corresponding label and each edge (arrow)
with their corresponding weight. The CSR representation (b) contains the nodes and edges
arrays, while it indicates with the adjacency offsets for each node the corresponding edges (with
their corresponding weight value).

Edges
Frontier

Nodes
Graph A B C D

1 4 2 0

E

for i in range(0, N):
idx = edge_front [i]
out[i] = nodes[idx]

Figure 2.6: Example of a graph application processing an edge frontier and its irregular accesses
generated when accessing the nodes in the graph. A pseudo-code example showcases the
particular irregular access performed.

algorithms leverage several solutions. First, graph applications employ compact and efficient
representation of the graph data structure, Compressed Sparse Row (CSR) [11] being one of
the most popular formats. Figure 2.5 shows a reference graph with its corresponding CSR
representation. This format consists of an array with all the nodes in the graph, two arrays
containing all the edges and their corresponding weights respectively, and an array with the
adjacency offsets. CSR enables efficient representation of the graph element relationships
without incurring in large memory footprint and sparse representation which negatively impact
performance. Second, GPGPU-based graph algorithms employ different approaches to avoid
expanding duplicated nodes, loosely approaches or precise ones by using atomic operations. For
example, the parallel processing of nodes A and D in the graph of Figure 2.5a would generate
two copies of the same node C in a graph traversal kernel, since all the nodes in the frontier are

55

CHAPTER 2. BACKGROUND

processed in parallel. GPGPU implementations eliminate/reduce the amount of duplicated nodes
by loosely or accurately tracking already visited nodes. Finally, to deal with sparse and irregular
memory accesses, GPGPU graph processing leverages stream compaction techniques [12] to
gather the sparse data in contiguous memory locations, improving memory coalescing. The
compacted array of nodes/edges is typically referred as the frontier, which is a contiguous
space in memory containing the nodes/edges that are being explored in a given iteration of the
algorithm.

In this thesis we focus on common graph algorithms, in particular Breadth-First Search
(BFS) [99], Single-Source Shortest Paths (SSSP) [29] and PageRank (PR) [45], which are among
the most widely used primitives for graph processing.

2.3.1 Breadth First Search (BFS)

Breadth-First Search (BFS) is one of the most important graph traversal algorithms that
computes the minimum distance, in terms of traversed edges, from a given node to all the
nodes in a graph (see Figure 2.5c). We use the state-of-the-art CUDA implementation of
BFS proposed in [99], that includes several techniques to mitigate issues of GPU-based graph
processing mentioned in Section 2.2. The exploration of a graph starts in a given node and an
iterative process is done until all nodes are visited, the exploration advances as a wave-front
from the starting node. Each iteration consists of an expansion phase and a contraction phase
(see Figure 2.7).

B
C
D

E
F
F
C
G

E
F
G

i
Node
Frontier

Iteration i

i
Edge
Frontier

i+1
Node
Frontier

Figure 2.7: Execution of a given iteration of BFS on the graph in Figure 2.5a. The input node
frontier generates an edge frontier which is evaluated and creates the next node frontier to
process.

Expansion phase

It consumes the node frontier and generates the new edge frontier. Every node in the frontier
is processed by an single thread, consequently the total amount of threads instantiated depends
on the data to process. The first section of Figure 2.7 shows the data processed and generated
when performing expansion on the graph 2.5a. The main challenge of this kernel is workload
balancing, a direct approach to generate the edge frontier would be for each thread to create

56

2.3. GRAPH PROCESSING ALGORITHMS ON GPGPU ARCHITECTURES

the edges of their node, but different nodes exhibit largely different number of outgoing edges
negatively effecting performance. Several mechanisms are used in [99] to cooperatively expand
the edges of a node or several nodes between threads in a warp and threads in a thread block,
this mechanism increases warp-level synchronizations but improves workload balance by a large
extent.

Contraction phase

It consumes the edge frontier to create the new node frontier, while updating the information
of different nodes during this process to keep track of the distance to the source node. Every
edge in the frontier is processed by a single thread. The second section of Figure 2.7 shows the
data processed and generated when performing the contraction phase on the graph 2.5a. The
main challenge is detecting duplicated elements in the frontier, caused by the parallel nature of
the algorithm and elements already visited in previous iterations. A straightforward approach
would be to use atomic to update a tracking structure and then disable the duplicated threads,
but the large amount of threads results in large overheads and make this approach unfeasible. A
state-of-the-art solution proposed in [99] is to use a “best-effort” bitmask, i.e. updated without
using atomic operations, which may yield false negatives due to race conditions but removes
overheads of atomic operations.

2.3.2 Single Source Shortest Path (SSSP)

Single-Source Shortest Path (SSSP) computes the minimum cost from a source node to
all the nodes in a graph, where the cost is the addition of the weights of the traversed edges
(see Figure 2.5c). We use the CUDA implementation presented in [29], which is similar to BFS.
However, the edge frontier is split into the “near” and “far” frontiers for paths with low and
high cost respectively, based on a dynamically adjusted threshold. The most promising paths in
the “near” frontier, with the lowest cost of traversal, are expanded first in order to reduce the
cost of revisiting and updating nodes in following iterations of the algorithm.

B
C
D

E
F
F
C
G C

i
Node
Frontier

Iteration i, threshold=3

i
Edge/Weight
Frontier

i+1
Node
Frontier

3
3
5
2
3

E
F
F
G

Far
Pile

3
3
5
3

Figure 2.8: Execution of a given iteration of SSSP with a threshold=3 on the graph in Figure 2.5a.
The input node frontier generates an edges/weight frontier which is broken down based on the
threshold into two structures: the Far Pile and the next node frontier to process. This distinction
improves SSSP performance on GPU architectures.

57

CHAPTER 2. BACKGROUND

On each iteration, the expansion phase consumes the node frontier to generate the edge
and weight frontiers. Next, the contraction phase stores high cost nodes into the “far” pile (see
Figure 2.8), whereas low cost nodes are used to create the new node frontier. This process is
repeated until the node frontier becomes empty. At this point, the threshold is updated and the
contract phase starts consuming nodes from the “far” pile.

Expansion phase

It generates the new edge and weight frontiers, using the same mechanisms for workload
balancing as described in Section 2.3.1 for BFS, but at the same time generating and additional
frontier, i.e. the weight frontier. Every node in the frontier is processed by an individual
thread. The first section of Figure 2.8 shows the data processed and generated when performing
expansion on the graph 2.5a.

Contraction phases

It consumes the edge and weight frontiers and decides based on the threshold which nodes
are to be processed on the Near frontier and which are to be deferred for later in the Far Pile.
Every edge in the frontier is processed by a single thread. The second section of Figure 2.8 shows
the data processed and generated when performing the contraction phase on the graph 2.5a.
The main challenge is the detection and filtering of duplicated and visited edges. The simpler
approach proposed for BFS does not suffice due to the necessity to process the additional weight
frontier. The implementation proposed in [29] employs a lookup table with one entry per node
in the graph. Each thread writes its ID to the corresponding lookup table entry and, after
synchronization, only threads whose ID is stored in the lookup table are allowed to modify the
new node frontier. This approach does not require atomic operation to access the lookup table,
but it does to update the cost of the nodes (SSSP Distances in Figure 2.5c) with atomicMin to
guarantee it is the shortest path.

2.3.3 PageRank (PR)

PageRank (PR) is a well-known graph primitive used in search engines [116] and recom-
mendation systems first proposed by Google. PR initializes the graph with equal score to each
node and then proceeds to iteratively compute the updated scores of all the graph nodes based
on the following equation until the algorithm converges. Similar to SSSP, every node gets a
weight (or rank), and each phase processes this information in a weight frontier. In the formula,
α is a constant (i.e. dampening factor) and Udeg is the out degree of a node U (i.e. number of
outgoing adjacent nodes):

Vscore = α+ (1− α)
∑ Uscore

Udeg

We borrow the CUDA implementation of PR for a recommendation system proposed in [45].

58

2.3. GRAPH PROCESSING ALGORITHMS ON GPGPU ARCHITECTURES

Each iteration of the algorithm consists of four phases: Expansion, Rank Update, Dampening
and Convergence Check.

Expansion phase

It consumes the node frontier and generates the edge frontier and weight (i.e. rank) frontier,
using several workload balance mechanisms (see Section 2.3.1). The rank of each node is divided
by its out degree.

Rank Update phase

It computes the new ranks using atomic addition operations. An atomic operation is issued
for every edge in the graph since, unlike BFS or SSSP, all the nodes are considered active on
every iteration of the algorithm.

Dampening phase

The dampening factor is applied to the rank of each node. This phase is well suited for
execution on the GPU.

Convergence check phase

The ranks for the current iteration are compared with the ranks from the previous iteration,
and the algorithm finishes if the maximum node-wise difference is smaller than a given epsilon
value. As the dampening phase, convergence check phase is GPU-friendly.

59

60

3
Experimental Methodology

This chapter reviews the methodology, simulators, tools, programs and datasets used
throughout the thesis to perform the evaluation of the different contributions presented. This
chapter first reviews the complete simulation environment and tools used to evaluate metrics
such as performance, energy consumption and area for our works. Afterwards, the chapter
explores in detail the simulators developed and hardware modeling done for our works. Finally,
attention is brought to the benchmark graph algorithms and graph datasets used throughout
the thesis and the evaluation of our contributions.

3.1 Simulation Systems Integration

In the work presented in this thesis we evaluate the effect of our proposals in the performance
of a GPGPU architecture. To do so we rely on the well-known and extensively used GPGPU-Sim
3.2.2 [6] simulator. GPGPU-Sim is a cycle-accurate simulator of GPGPU systems which allows
to easily evaluate CUDA and OpenCL workloads while allowing to configure architectural
parameters and extract relevant performance metrics to use for our research. In addition,
GPGPU-Sim is integrated with GPUWattch [84], a validated energy model based upon McPAT
which allows to obtain the area and energy requirements of the architectures and workloads
evaluated.

We use GPGPU-Sim and GPUWattch in all our works by integrating either with our custom
simulators or extending them with our techniques. We configure these simulators to match
the characteristics of contemporary GPU architectures: a High-Performance NVIDIA GTX
980 [50] and a Low-Power NVIDIA Jetson TX1 [109]. The relevant configuration parameters
and characteristics used to model this GPUs on GPGPU-Sim and GPUWattch are listed in
Table 3.1.

61

CHAPTER 3. EXPERIMENTAL METHODOLOGY

Table 3.1: GPGPU-Sim and GPUWattch configuration parameters to model the High-
Performance GTX980 and Low-Power Tegra X1 GPU systems.

Characteristic GTX980 TX1
GPU & Architecture NVIDIA GTX 980, Maxwell NVIDIA Tegra X1, Maxwell

Frequency & Technology 1.27GHz, 28nm 1GHz, 28nm
Streaming Multiprocessor 16 SM, (total 2048 threads) 2 SM, (total 256 threads)

SM Shader Registers 64 K per core 64 K per core
SM Functional Units 128 EUs, 1 LD/ST per SM 128 EUs, 1 LD/ST per SM
SM Issue Schedulers 4 Warp Schedulers per SM 4 Warp Schedulers per SM

L1 data cache 32 KB, 4-assoc, 128 B lines 32 KB, 4-assoc, 128 B lines
L2 data cache 2 MB, 8-assoc, 128 B lines 256 KB, 8-assoc, 128 B lines
L1, L2 MSHRs 32/32 assoc, 8/4-merge 32/32 assoc, 8/4-merge
Shared Memory 64 KB standalone 64 KB standalone

Memory Partitions 4 (4 GDDR5 channels) 2 (2 LPDDR4 channels)
Main Memory Technology 4 GB GDDR5 4 GB LPDDR4
Main Memory Bandwidth 224 GB/s 25.6 GB/s

3.1.1 Stream Compaction Unit (SCU)

To evaluate our SCU we use the simulation systems depicted in Figure 3.1. The two main
components we require to evaluate are the GPU and the SCU. The GPU performance is evaluated
with GPGPU-Sim while power, energy and area measurements are obtained with GPUWattch.
Both GPU simulators are configured to model an NVIDIA GTX 980 with 4GB GDDR5 and an
NVIDIA Tegra X1 with 4GB LPDDR4 with the parameters listed in Table 3.1. Main memory
power measurements for GDDR5 are obtained from GPUWattch’s own power model while we
use the Micron power model for LPDDR4 [151].

GPGPU-Sim

GPUWattch

SCU-sim

DRAMSim2

HDL (SCU)

performance

energy
area

performance energy
area

performance
energy

GPU SCU

Figure 3.1: SCU complete simulation system comprising GPU simulation and SCU simulation
to obtain performance, energy and area of the entire system. The darker color shows our
contributions to the simulation system.

To evaluate the performance of the stream compaction operations we implement our own
cycle-accurate simulator; the SCU-sim. The SCU-sim performs the workloads described by
our proposed SCU API carrying out stream compaction operations consisting of efficient data

62

3.1. SIMULATION SYSTEMS INTEGRATION

movements in the pipelined architecture we propose. The SCU architecture and simulator are
scalable, as described in Section 3.2.1, to match the system performance and energy constrains of
the different GPU architectures we evaluate. While the SCU-sim simulator enables performance
evaluation, in order to obtain power, energy and area measurements of the SCU architecture,
we implement it in Verilog Hardware description language (HDL) and synthesize it using the
Synopsis Design Compiler [23] and the technology library of 32nm from Synopsys with low
power configured at 0.78V. Additionally, we use CACTI [90] to characterize the cache and
interconnection.

Finally, we integrate SCU-sim with the main memory simulator DramSim2 [130] to properly
model main memory accesses, and we modified it to simulate a 4GB GDDR5 and a 4GB
LPDDR4. With DramSim2 we are able to model the performance effect of main memory accesses
and their energy requirements.

3.1.2 Irregular accesses Reorder Unit (IRU)

To evaluate our IRU contribution we use the simulation systems depicted in Figure 3.2.
Since the IRU is an architectural extension of the GPU we directly extend the cycle-accurate
GPGPU-Sim simulator with our proposal. Performance is obtained directly with the IRU
extended GPGPU-Sim. Meanwhile, GPU power, energy and area is obtained with GPUWattch
while IRU additional power, energy and area overheads are obtained by modeling hardware
requirements with CACTI [90]. Both GPU simulators are configured with the parameters shown
in Table 3.1 to model the NVIDIA GTX 980 target GPU.

GPGPU-Sim

GPUWattch

performance

energy
area

GPU

IRU

CACTI (IRU)

performance

energy
area

Figure 3.2: IRU simulation system extending the GPGPU-Sim simulator to obtain performance,
energy and area of the IRU contribution. The darker color shows our contributions to the
simulation system.

In order to implement our proposed IRU GPU operations, further changes are performed to
the GPGPU-Sim binary parser component and to the control logic with the objective to support
and integrate our IRU proposed operations and achieve seamless execution of IRU-enhanced
workloads.

63

CHAPTER 3. EXPERIMENTAL METHODOLOGY

3.1.3 IRU-enhanced SCU (ISCU)

To evaluate our ISCU contribution we use the simulation system depicted in Figure 3.3. We
combine both SCU and IRU simulation systems while performing the additions and modifications
described in Chapter 6 to both the SCU and IRU hardware to utilize them together in the
ISCU system. Similarly, GPU performance is evaluated with the IRU-extended GPGPU-Sim
and power, energy and area measurements are obtained with GPUWattch, while IRU related
overheads are accounted with CACTI. At the same time, we use SCU-sim to model performance
and the Verilog implementation to obtain power, energy and area overheads. We evaluate our
proposal on top of an NVIDIA GTX 980 GPU system with the parameters listed in Table 3.1.

GPGPU-Sim

GPUWattch

performance

energy
area

GPU

IRU

CACTI (IRU)

performance

energy
area

SCU-sim

DRAMSim3

HDL (SCU)

performance energy
area

performance
energy

ISCU

Figure 3.3: ISCU complete simulation system comprising IRU-extended GPU simulation and
SCU simulation to obtain performance, energy and area of the entire system. The darker color
shows our contributions to the simulation system.

Finally, to complete the SCU simulation system we update the main memory system to
use the recent DRAMSim3 [89], which provides improved and more accurate evaluation of
main memory and allows us to evaluate a GDDR5 configured with 4 channels and 224 GB/s of
bandwidth.

3.2 Hardware Modeling and Evaluation

In this section we review the hardware modeling of our contributions. We have developed
the SCU, an architecture for efficiently performing stream compaction operations, the IRU, an
architectural extension of the GPU to improve irregular accesses, and we have leveraged them
together to improve overall GPU graph processing. While in-depth details about the architecture
of each contribution are presented in their respective chapter in this thesis, this section reviews
the configuration and characterization of the architectures.

3.2.1 Stream Compaction Unit (SCU)

To model the SCU architecture described in Chapter 4 we have developed the SCU-sim
cycle-accurate simulator. The configuration of the main components is shown in Table 3.2,

64

3.2. HARDWARE MODELING AND EVALUATION

whereas some additional parameters are included in Table 3.3. We match the SCU frequency to
the clock rate of the target GPU, being 1.27GHz and 1 GHz for GTX980 and TX1 respectively.
We use a 5 KB FIFO to buffer the vector parameters of the SCU operations, while the Data
Fetch component includes a 38 KB FIFO requests buffer. The filtering and grouping operations
use a flexible and re-configurable in-memory hash table detailed in Table 3.3, in addition to a 18
KB request buffer. Finally, the coalescing units hold up to 32 in-flights requests with a merge
window of 4 elements.

Table 3.2: SCU hardware parameters.

Component Requirements
Frequency 1.27GHz / 1GHz
Technology 32 nm

Vector Buffering 5 KB
FIFO Requests Buffer 38 KB
Hash Request Buffer 18 KB

Coalescing Unit 32 assoc, 4-merge

The SCU architecture and their components are implemented in Verilog. In order to obtain
area and energy consumption we synthesize it using the Synopsis Design Compiler [23] and the
technology library of 32nm from Synopsys with low power configured at 0.78V. Additionally, we
use CACTI [90] to characterize the cache and interconnection.

SCU Scalability

The large variability of High-Performance GPUs optimized for performance at the expense
of power dissipation, compared to Low-Power GPUs that provide more modest performance
while keeping energy consumption extremely low require an adaptable SCU architecture. A
fixed design of the SCU will be undersized or oversized in some circumstances, hence the need
to resize the SCU architecture in order to adjust its performance, area and energy consumption
to the requirements of the target segment.

Table 3.3: SCU scalability parameters selection for the GTX980 and TX1 GPU.

Component GTX980 TX1
Pipeline Width 4 elements/cycle 1 elements/cycle

Filtering BFS Hash 1 MB, 16-way, 4 bytes/line 132 KB, 16-way, 4 bytes/line
Filtering SSSP Hash 1.5 MB, 16-way, 8 bytes/line 192 KB, 16-way, 8 bytes/line
Grouping SSSP Hash 1.2 MB, 16-way, 32 bytes/line 144 KB, 16-way, 32 bytes/line

To satisfy this re-configurable objective, we facilitate two configuration parameters in our
design. The first one is the pipeline width of the SCU, i.e. the number of elements (nodes/edges)
that can be processed per cycle. This parameter is included in the RTL code and the user can set
an appropriate value before synthesizing the SCU. We found that a pipeline width of 1 provides
a good trade-off between area and performance for the low-power TX1 GPU, whereas a pipeline
width of 4 is required to outperform a high-performance GPU such as the GTX980. The second

65

CHAPTER 3. EXPERIMENTAL METHODOLOGY

parameter to achieve scalability is the size of the hash tables employed for filtering and grouping
operations. Larger sizes potentially provide a more effective filtering and grouping, but may
have a negative impact on performance if the L2 cache is too small. These parameters can be
set by the user at runtime. Finally, Table 3.3 shows the parameters used for each GPU system.

3.2.2 Irregular accesses Reorder Unit (IRU)

To model the IRU architecture described in Chapter 5 we have extended the architecture
of the GPGPU-Sim simulator. Additionally to the introduced IRU hardware, to properly
integrate the IRU into the GPGPU simulator we modified the GPU decoding to add our new
instructions to the ISA, extended the control logic to support them, as well as incorporating
small modifications to the LD/ST unit to handle the new instructions.

Table 3.4: IRU hardware requirements per partition.

Component Requirements
Requests Buffer 2 KB

Prefetcher Buffer 1.7 KB
Classifier Buffer 1.2 KB

Ring Buffer 2.8 KB
Hash Data 80 KB

The main configurable components of an IRU partition are summarized in Table 3.4
together with the configuration values used in our evaluation set to maximize performance while
constraining energy and area overheads and general architectural overheads. Each partition of
the IRU uses a 2 KB FIFO to buffer warp requests, 1.7 KB buffering of prefetching data for 8
on-the-fly simultaneous prefetches, prefetching limit set to avoid saturating memory bandwidth
and degrading performance. A buffer of 1.2 KB is used internally in the Classifier block to
determine the data destination. The Ring interconnection requires a total of 2.8 KB space for
buffering. The main component of the IRU is the Reordering Hash, which is a direct mapping
hash table with 1024 sets, split in 4 physical partitions. Each IRU partition is 2-way banked
and holds 256 sets which amount to a total of 80 KB, significantly smaller than the 512 KB
of the L2 partition. Since the IRU is mostly comprised of SRAM elements without complex
logic or execution unit we model area and energy consumption using CACTI [90] with a node
technology of 32 nm.

3.2.3 IRU-enhanced SCU (ISCU)

To model the ISCU system described in Chapter 6 we incorporate both previously described
architectures; the SCU architecture and the IRU GPU architecture extension. Some small
changes described in Section 6.2 are performed to the previous architectures to enable the SCU
to perform pre-processing optimizations utilizing the IRU. In addition, further modifications are
done to the IRU to disable the prefetching and allowing the SCU to operate it directly. The
configuration of different architectural components is shown in Table 3.2 and Table 3.4, while
the in-memory hashing mechanisms described in Table 3.3 are no longer required.

66

3.3. GRAPH PROCESSING DATASETS

3.3 Graph Processing Datasets

This section reviews the graph processing algorithms and graph datasets used in the
evaluations of the contributions presented in this thesis.

3.3.1 Graph Processing Algorithms

To evaluate our contributions we have used state-of-the-art GPGPU implementations
of BFS [99], SSSP [29], and PageRank [45] graph algorithms used in frameworks such as
Gunrock [161]. Our implementations are push algorithms (i.e. data transmitted from source
to destinations elements) instead of pull algorithms (i.e. data retrieved by destination from
sources). Section 2.3 thoroughly describes the details and inner working of the implementations.
We select these graph algorithms due to their vast use in applications and in academia as well
as being graph primitives that serve as core components of larger graph processing applications.

We have implemented and evaluated the implementations using CUDA 7.5 toolkit on a
system with an Intel Core i7 6700K and a NVIDIA GTX 980 GPU (i.e. physical, not simulated).
For the evaluation of our contributions we have instead used CUDA 4.2 since it is the latest
version supported by GPGPU-Sim 3.2.2. Version 4.2 of CUDA does support fewer atomic
operations which we have had to overcome with clever approaches to achieve the same behaviour
without penalizing performance.

3.3.2 Graph Datasets

Graph datasets and algorithm are very diverse and their characteristics largely affect the
performance of graph exploration. We have evaluated our graph algorithms with the benchmarks
datasets shown in Table 3.5, collected from well-known repositories of research graph datasets [30,
33]. Figure 3.4 shows the sparsity plots of the graph indicating their inter-connections. These
graphs are representative of different application domains with varied sizes, characteristics and
degrees of connectivity which in total represent 18 different combinations of graph algorithms
and datasets. Finally, graph exploration algorithms generate and process large amounts of data
throughout their execution, this factor together with simulation performance (up to a week) and
limited GPU memory size (4GB to allocate data and generation of traces) imposed a limit in
the size of graphs we were capable of evaluating.

Table 3.5: Benchmark graph datasets collected from well-known research repositories [30, 33].

Graph Description Nodes(103) Edges(106) Avg.Degree
ca [30] California road network 710 3.48 9.8
cond [30] Collaboration network, arxiv.org 40 0.35 17.4
delaunay [33] Delaunay triangulation 524 3.4 12
human [30] Human gene regulatory network 22 24.6 2214
kron [33] Graph500, Synthetic Graph 262 21 156
msdoor [30] Mesh of 3D object 415 20.2 97.3

67

CHAPTER 3. EXPERIMENTAL METHODOLOGY

(a) California Road Network (ca). (b) Collaboration Network, arxiv.org (cond).

(c) Delaunay Triangulation (delaunay). (d) Human Gene Regulatory Network (human).

(e) Graph500, Synthetic Graph (kron). (f) Mesh of 3D Object (msdoor).

Figure 3.4: Sparsity plots showcasing inter-connections between the nodes of the graphs intro-
duced in Table 3.5 and gathered from the graph repository [30]. The gray-scale indicates the
degree of connectivity of each of the nodes on the graph. The sparsity plots help to understand
the high diversity in locality and structure of the graphs.

68

4
Energy-Efficient Graph Processing by Boosting

Stream Compaction

This chapter comprehensively describes the concepts and details of the Stream Compaction
Unit (SCU) contribution introduced in Section 1.4.1. The chapter is organized as follows. First,
Section 4.1 reviews and expands the motivation of our SCU proposal. Section 4.2 presents the
basic architecture of the SCU and gives an overview of the main functionality and inner working.
Afterwards, Section 4.3 describes the important SCU extensions for filtering duplicated elements
and improving memory coalescing. Section 4.4 presents the experimental results obtained.
Finally, Section 4.5 sums up the main conclusions of this work.

4.1 Introduction

Graph processing algorithms are key in many emerging applications in areas such as
machine learning and data analytics. As reviewed in Section 1.2, the processing of large scale
graphs exhibits a high degree of parallelism, but the irregular memory access pattern and low
computation to memory access ratio lead to poor GPGPU efficiency due to memory divergence,
as GPGPU architectures are optimized for compute-intensive workloads with regular memory
access patterns. To ameliorate these issues, GPGPU applications perform stream compaction
operations to extract the subset of active elements (i.e. nodes/edges) and perform subsequent
steps on the compacted dataset. The end result is that subsequent graph processing on the
compacted data exhibits more regular memory access patterns.

Stream Compaction is a common primitive used to filter out unwanted elements in sparse
data, with the aim of improving the performance of parallel algorithms that work best on the
compacted dataset. Figure 4.1 shows the average percentage of time spent on stream compaction

69

CHAPTER 4. ENERGY-EFFICIENT GRAPH PROCESSING BY BOOSTING STREAM
COMPACTION

0
20
40
60
80

100
Pe

rc
en

ta
ge

 o
f T

im
e

GTX980 TX1
GTX980 TX1

GTX980 TX1

BFS SSSP PR

Rest of graph processing Stream compaction

Figure 4.1: Breakdown of the average execution time for several applications (Table 3.5) and
three graph primitives (BFS, SSSP and PR). Measured on an NVIDIA GTX 980 and NVIDIA
Tegra X1. Darker color indicates execution time spent on graph processing, while lighter color
highlights time performing stream compaction operations.

for three commonly used graph kernels: Breadth First Search (BFS), Single Source Shortest
Path (SSSP) and PageRank (PR). As it can be seen, stream compaction represents between
25% to 55% of the total execution time. Although state-of-the-art CUDA implementations of
BFS [99] and SSSP [29] mix compaction and processing, we split them just for the purpose of
making Figure 4.1, as our best effort to quantify the cost of compaction.

In this work we claim that GPGPU architectures are not efficient for stream compaction
workloads for several reasons, as summarized in Section 1.4.1. First, stream compaction consists
of sparse memory accesses with poor locality that fetch the elements (nodes/edges) to be
compacted, resulting in very low memory coalescing and reducing GPU efficiency by a large
extent. Second, stream compaction has an extremely low computation to memory access ratio,
as it primarily consists of load and store instructions to move data around in main memory.
Streaming Multiprocessors (SMs) are optimized for compute-intensive workloads, including
hundreds of functional units that are largely underutilized during the stream compaction stage.

Since GPU architectures are not designed to efficiently support compaction operations, we
propose to extend the GPU with a novel unit tailored to the requirements of stream compaction.
We term this hardware as the Stream Compaction Unit (SCU), which is a small unit tightly
integrated in the GPU that efficiently gathers the active elements into a compacted array in
memory. By providing such integration and a simple API, we offload compaction operations to
the SCU to achieve higher performance and energy efficiency for this compaction phase, while
maximizing the effectiveness of the streaming multiprocessors for the phases of the algorithm
that work on the compacted dataset. Additionally, the SCU performs filtering of repeated and
visited nodes during the compaction process, significantly reducing GPU workload, and writes
the compacted elements in an order that improves memory coalescing and reduces memory
divergence.

Finally, we evaluate the performance of a state-of-the-art GPGPU architecture extended
with our SCU for a wide variety of applications. Results show that for high-performance and for

70

4.2. STREAM COMPACTION UNIT

low-power GPU systems the SCU achieves speedups of 1.37x and 2.32x, 84.7% and 69% energy
savings, and an area increase of 3.3% and 4.1% respectively.

To summarize, the main contributions presented in this chapter are the following:

• We characterize the performance and energy consumption of the stream compaction
operation on a modern GPU architecture, showing that it takes more than 50% of the
execution time and more than 45% of the energy consumption for graph processing
applications.

• We propose the SCU, a novel unit that is tailored to the requirements of stream compaction,
and describe how this unit can be integrated in existing GPGPU architectures.

• We extend the SCU to perform filtering of duplicated nodes, which removes 75% of GPU
workload on average, and to rearrange the compacted data to reduce memory divergence,
which improves memory coalescing by 27%.

• Overall, the high-performance and low-power GPU designs including our SCU unit achieve
speedups of 1.37x and 2.32x, and 84.7% and 69% energy savings respectively on average
for several graph-based applications. The SCU represents a small area overhead of 3.3%
and 4.1% respectively.

4.2 Stream Compaction Unit

In this section, we propose a Stream Compaction Unit (SCU) tailored to the requirements
of graph applications. Compacting the active nodes/edges in consecutive memory locations is
key for achieving high utilization of GPU resources. However, the GPU is inefficient performing
stream compaction operations, as it only requires data movements with no computation on the
data, but GPU architectures are optimized for compute intensive workloads. Furthermore, the
memory accesses for compacting the data are typically sparse and highly irregular, leading to
poor memory coalescing. As shown in Figure 4.1, the stream compaction operation takes more
than 40% of GPU time in several graph applications.

We propose to offload the stream compaction operations to a specialized unit, the SCU.
The SCU is an efficient, compact and small footprint unit that is attached to the streaming
multiprocessor interconnection network as shown in Figure 4.2. The SCU performs data
compaction in a sequential manner, avoiding synchronization and work distribution overheads,
and operates with just the minimum hardware requirements to perform data movement operations
for stream compaction workloads.

Our proposed graph processing approach exploits the parallelism of the GPU to explore
a graph while making use of the SCU to perform the data compaction operations. Once the
compaction phase of the algorithm starts, SCU operations are issued, and the data compaction
is performed on the sparse data in memory and compacted into a destination array. Once the
operation concludes, the compacted data is available to the GPU which resumes execution
continuing the graph exploration.

71

CHAPTER 4. ENERGY-EFFICIENT GRAPH PROCESSING BY BOOSTING STREAM
COMPACTION

L2

GPU die

Mem Partition Mem Partition

L1 & Shrd

EUs
SM

Interconnection

Main Memory

L2

L1 & Shrd

SM
EUs

SCU

Figure 4.2: Overview of a GPGPU architecture featuring a SCU attached to the interconnection.
The depicted GPU shows 2 SM similar to an NVIDIA Tegra X1.

4.2.1 SCU Compaction Operations

The SCU is a programmable unit which includes a number of generic data compaction
operations that allow a complete implementation of stream compaction. Figure 4.3 shows the
operations supported by the SCU. All SCU operations have some parameters which are omitted
from the figure for the sake of simplicity: the size of the data and the number of elements on
which to operate. The SCU implements the following operations:

Index

Count

Bitmask ✓ ✗ ✓ ···

Compacted

Data

Source

Data

Bitmask

Constructor

A B C ··· A B C ···

B C ···

Access

Compaction

1 7 2 ···

✓✗ ✓ ···

A B C ···

B B ···

Replication

Compaction

4 2 1 ···

C

A B C ···

A B ···

Access Expansion

Compaction

3 2 1 ···

C

5 0 2 ···

✓ ✗ ✓ ···

Data

Compaction

A B C ···

A C ···

Comparison

against value

✓ ✗ ✓ ✓✗ ✓ ······

Figure 4.3: SCU operations required to implement stream compaction capabilities, illustrated
with the data that each operation uses and generates. Arrow direction indicates flow of data.

• Bitmask Constructor: Generates a bitmask vector used by other operations. It requires
a reference value and a comparison operation. It creates a bitmask vector for which each

72

4.2. STREAM COMPACTION UNIT

bit set to 1 if the element in the input data evaluates to true using the comparison operator
and the reference value, and to 0 otherwise.

• Data Compaction: Accesses sparse data sequentially and filters out the unwanted
elements using the bitmask vector. The output at the destination contains only valid
elements preserving the original order.

• Access Compaction: Accesses a sparse index vector sequentially and filters out the
unwanted elements using the bitmask vector. The output at the destination contains only
valid elements preserving the original order.

• Replication Compaction: An extension of the Data Compaction operation, which
operates with the count vector. This vector is used to indicate how many times each
element in the sparse data will be replicated in the output destination. The output
destination contains only the valid elements, but each element is replicated by the amount
of times indicated by its corresponding counter.

• Access Expansion Compaction: Uses both the indexes and count vectors. It is an
extension of the Access Compaction operation that copies a number of consecutive elements
instead of only one element from the sparse data indicated by the corresponding indexes
vector entry. The number of elements to gather is determined by corresponding entry in
the count vector.

4.2.2 Hardware Pipeline

Data
Fetch

Bitmask
Contructor

Address
Generator

Data
Store

Coalescing
Unit

I
n
t
e
r
c
o
n
n
e
c
t
i
o
n

Main Memory
Stream
Compaction
Unit

Compacted
Data

Bitmask

Indexes

Count

Sparse
Data

Figure 4.4: Overview of the baseline pipelined architecture of the Stream Compaction Unit with
the connection of the different components as well as its interconnection to the main memory.
The rightmost column shows the data used for the SCU operations allocated in Main Memory.

The SCU implements the operations previously described with the hardware illustrated
in Figure 4.4. The SCU consists of five different functional units. An operation begins by
configuring the main component, the Address Generator.

73

CHAPTER 4. ENERGY-EFFICIENT GRAPH PROCESSING BY BOOSTING STREAM
COMPACTION

• Address Generator: It is configured at the beginning of each operation with the
corresponding parameters, and begins execution of the operation by generating the addresses
of the data to be compacted, as well as, if needed, the other vector parameters: bitmask,
indexes and count. The generated addresses are stored on a small buffer to avoid stalls.

• Data Fetch: This is a straightforward component which generates memory requests to
the addresses generated by the Address Generation component. The requests are sent to
the Coalescing Unit and the order of requests is preserved. When the data is received, it is
forwarded to either the Bitmask Constructor or the Data Store component, respecting the
FIFO order. For this purpose, it uses a FIFO queue that stores the data until it can be
forwarded to the consumer component.

• Coalescing Unit: This unit coalesces read memory requests to the same cache memory
block in order to reduce congestion of the interconnection and memory requests to upper
levels of the memory hierarchy, which reduces energy consumption.

• Bitmask Constructor: It is the specialized component used by the bitmask constructor
operation to generate the bitmask vector that is used by other operations. Contains logic
to perform comparison operations of a reference value against each of the elements that it
receives.

• Data Store: It is the component that receives the data generated by the other components
and generates the consequent write memory requests. Since data is stored in consecutive
memory addresses, this unit includes a simple coalescing of write operations to minimize
requests and interconnection network traffic.

4.2.3 Breadth-First Search with the SCU

Section 2.3.1 describes the state-of-the-art implementation of BFS for GPU architectures,
that consists of two phases: expansion and contraction. Both phases of BFS include compaction
operations that can be offloaded to the SCU. Figure 4.5 summarizes the modifications.

1 void BFS_Expand (node_frontier) {
2 indexes , count = preparationGPU (node_frontier);
3 edge_frontier = accessExpansionCompactionSCU (edges , indexes ,

count);
4 return edge_frontier ;
5 }
6
7 void BFS_Contract (edge_frontier) {
8 bitmask = BFS_contractionGPU (edge_frontier);
9 node_frontier = dataCompactionSCU (edge_frontier , bitmask);

10 return node_frontier ;
11 }

Figure 4.5: Pseudo-code of GPGPU BFS program modified to use the SCU to offload stream
compaction operations.

74

4.2. STREAM COMPACTION UNIT

Expansion phase:

The main workload of this phase is offloaded to the SCU using the Access Expansion
Compaction operation. The indexes and count vectors are efficiently prepared by the GPU as
it requires contiguous memory accesses. Each entry in the indexes vector represents the offset
in the edges vector where the first edge of the corresponding node is stored. The count vector
stores for a node its number of edges.

Contraction phase:

This phase takes as an input the edge frontier generated by the expansion phase and generates
the new node frontier. It filters out duplicated edges and already visited nodes. The GPU is
responsible for generating the mask that will be used for the filtering. Then, the compaction
of valid nodes is offloaded to the SCU, by using Data Compaction operation that has the edge
frontier and the bitmask vector as inputs.

4.2.4 Single-Source Shortest Paths with the SCU

Section 2.3.2 reviews the optimized implementation of SSSP used in this thesis. Similar to
BFS, expansion and the two contraction phases of the algorithm include stream compaction
operations that can be offloaded to the SCU. Figure 4.6 summarizes the modifications.

1 void SSSP_Expand (node_frontier) {
2 indexes , count = preparationGPU (node_frontier);
3 edge_frontier =
4 accessExpansionCompactionSCU (edges , indexes , count);
5 weight_frontier =
6 accessExpansionCompactionSCU (weights , indexes , count);
7 weight_frontier += replicationCompactionSCU (weights , count);
8 return edge_frontier , weight_frontier ;
9 }

10
11 void SSSP_Contract (edge_frontier , weight_frontier , threshold) {
12 bitmask_near , bitmask_far =
13 SSSP_contractionGPU (edge_frontier , weight_frontier , threshold);
14 node_frontier = dataCompactionSCU (edge_frontier , bitmask_near);
15 farPileEdges = dataCompactionSCU (edge_frontier , bitmask_far);
16 farPileWeights = dataCompactionSCU (weight_frontier , bitmask_far);
17 return node_frontier ;
18 }

Figure 4.6: Pseudo-code of GPGPU SSSP program modified to use the SCU to offload stream
compaction operations.

75

CHAPTER 4. ENERGY-EFFICIENT GRAPH PROCESSING BY BOOSTING STREAM
COMPACTION

Expansion phase:

The GPU generates the indexes and count vectors, then the SCU generates the edge frontier.
Next, the SCU has to generate the weights vector corresponding to the edge frontier. This
vector contains the costs associated with the edges which are obtained using two operations: an
Access Expansion Compaction and a Replication Compaction operation. The former operation
generates the weights associated to each edge, and the latter adds its accumulated cost.

Contraction phases:

This phase takes as an input the edge frontier and filters out duplicated edges and already
visited nodes, updates the node’s information, and compacts valid nodes of the next frontier.
Edges with accumulated cost higher than the current iteration threshold are pushed to the back
of the “far” pile. The operations that are offloaded to the SCU are the compaction of valid
nodes and the compaction of high cost edges in the “far” pile. In both cases, a Data Compaction
operation is used. The GPU is responsible for computing the bitmask, both for low-cost and
high-cost edges (near and far respectively) that the SCU will use for filtering.

4.2.5 PageRank with the SCU

The state-of-the-art GPU implementation of Pagerank (PR) is described in Section 2.3.3.
In this case, only the expansion phase of PR performs stream compaction operations. PR does
not operate with a node frontier, since it explores all the nodes and edges on every iteration of
the algorithm. Figure 4.7 summarizes the modifications.

1 void PR_Expand (nodes) {
2 indexes , count = preparationGPU (nodes);
3 edge_frontier =
4 accessExpansionCompactionSCU (edges , indexes , count);
5 weight_frontier = replicationCompactionSCU (weights , count);
6 return edge_frontier , weight_frontier ;
7 }

Figure 4.7: Pseudo-code of GPGPU PR program modified to use the SCU to offload stream
compaction operations.

Expansion phase:

The GPU creates the indexes, count and weight vectors. Afterwards the SCU generates the
edge frontier, in the same way as it is done for BFS. Finally, the weight frontier is generated
using the pre-processed weight vector that contains the original weight of each node, but divided
by the output degree of the node, so that the SCU can replicate this value for each edge with a
Replication Compaction operation.

76

4.3. FILTERING AND GROUPING

Data
Fetch

Bitmask
Contructor

Address
Generator

Data
Store

Coalescing
Unit

I
n
t
e
r
c
o
n
n
e
c
t
i
o
n

Main Memory
Stream
Compaction
Unit

Compacted
Data

Bitmask

Indexes

Count

Sparse
Data

Filtering
Grouping

Coalescing
Unit Filtering

Grouping

Hash

Figure 4.8: Improved pipelined architecture of the SCU. The darker color highlights the extension
additions of the filtering and grouping hardware enabling their corresponding operations, as
well as an extra coalescing unit. The rightmost column includes the additional data which is
allocated in Main Memory and is required for the SCU pre-processing operations featuring the
filtering/grouping vectors and the in-memory hash.

4.3 Filtering and Grouping

The Stream Compaction Unit (SCU) presented in Section 4.2 efficiently performs data
compaction operations, while the remaining graph processing is performed by the GPU. The GPU
graph processing has an important overhead due to nodes/edges duplication. Duplicated elements
are a byproduct of parallel graph exploration on GPU architectures. Removing duplicates in the
GPU requires costly mechanisms such as large lookup tables or atomic operations. Furthermore,
GPU processing is very sensitive to the effectiveness of memory coalescing.

We propose to improve the SCU with the capability of further processing and delivering
the compacted data in a more GPU-friendly manner. More specifically, we extend the SCU to
remove duplicates and reorder compacted data elements to make them more effective for memory
coalescing. We refer to this reorder step as grouping, since it is not a complete order but an
order that tries to maximize the effectiveness of memory coalescing by grouping, i.e. storing
together, edges whose destination nodes are in the same cache line. To this end, we incorporate
a Filtering/Grouping unit and an additional coalescing unit as depicted in Figure 4.8.

4.3.1 Filtering/Grouping Unit

The Filtering/Grouping unit operates by storing each graph element (i.e. edge or node) into
a hash table resident in main memory and cached in the L2. By placing the hash in memory we
are able to reconfigure the hash organization to target Filtering or Grouping operations, since the
requirements for both may be different. In addition, using existing memory does not require any

77

CHAPTER 4. ENERGY-EFFICIENT GRAPH PROCESSING BY BOOSTING STREAM
COMPACTION

additional hardware. For the filtering operation, the hash table provides a low-cost mechanism
to loosely remove duplicates. Each new edge/node probes the hash table and is discarded if a
previous occurrence of the same node/edge is found. To simplify the implementation, in case of
collisions the corresponding hash table entry is overwritten. This means that false negatives
are possible, but it largely simplifies the cost of the implementation while removing most of
the duplicates with relatively small hash table sizes as shown in Section 4.4. For the grouping
operation, the hash table is used to create groups of edges whose destination node lies in the
same cache line, in order to store them together in the compacted array.

The filtering and grouping of compacted data is done by the SCU in a two step process. In
the first step, the SCU performs a compaction operation and identifies the duplicated elements
(i.e. generates a bitmask vector indicating the filtered elements) and the reordering required
for the grouping (i.e. a reordering vector with indexes indicating the new order of the data).
In the second step, the SCU uses the generated data to perform filtering and grouping on the
compacted data. All compaction operations shown in Figure 4.3 can generate and operate with
filtering and grouping data.

As an example, the compaction operation could be performing the expansion of the node
frontier to generate the new edge frontier. The first step creates filtering and reordering
information for each of the elements on the edge frontier. Note that the first operation does
not generate the new edge frontier but the filtering or grouping information instead. Next,
the second step employs the previously generated information and creates the edge frontier
compacted, reordered and without the duplicated elements.

4.3.2 Filtering Operation

We use two filtering schemes: filtering by unique element (useful for BFS), filtering by
unique-best cost (useful for SSSP). The hash table is configured with 4 bytes per block for BFS
and or 8 bytes per block for SSSP. Further details are listed in Table 3.2.

The filtering operation generates a bitmask vector which contains a bit for every output
data element. Each bit is set to one if the element is to be kept, or zero otherwise. The filtering
operation works as follows. For each element (node or edge) to be compacted, the SCU computes
its hash table entry by applying a hash function to its ID. If the corresponding hash table entry
is empty, the element ID is stored in the hash table and the corresponding bitmask entry is
set to one. If the same element ID is found in the hash table entry a duplicated node/edge is
detected and, hence, the element is discarded (bitmask entry for that element is set to zero).
In case a different element ID is found, the older element is evicted and the new element ID is
stored in the hash table. Note that since we overwrite some elements in case of collisions the
removal of duplicates is not complete. However, this implementation provides a good trade-off
between complexity and effectiveness in removing duplicates.

The above process describes the filtering scheme of unique elements. In the case of unique-
best cost filtering, an additional cost value is stored in the hash table. On a hit, further processing
is done: if the element has a better cost, it overwrites the cost in the hash table entry.

78

4.3. FILTERING AND GROUPING

4.3.3 Grouping Operation

Grouping is achieved using the same hash table with a different configuration. We use a
hash table entry to store a number of elements that access the same memory block, which in
our system shown in Table 3.2 can hold up to 32 elements of 4 bytes (line size of L2 cache). In
our hashing scheme, however, each hash table entry is limited to grouping 8 elements of 4 bytes
(i.e. it creates groups of 8 elements at most). We have experimentally observed that it is better
to reduce the number of elements per group to 8, since more elements would imply to reduce
the number of sets kept in the hash table for the same total capacity. Furthermore, in sparse
datasets, increasing the number of elements per group to 32 provides negligible benefits even if
storage was unbounded, as it is quite hard to fill them up.

The output of the grouping operation is a vector that indicates for each input element which
order (i.e. position) it will occupy in the compacted array. The grouping process works as follows.
For each element, the SCU computes the memory block (i.e. cache line) of the node/edge being
processed. Next, a hash function is applied to the memory block number to group together
elements that require the same memory block, with the aim of improving memory coalescing
on the GPU. If the corresponding memory block is found in the hash table, the new element is
added to the hash table entry. If the entry is occupied by a different memory block, the older
block is evicted and the elements it contains are written in the output vector to guarantee that
they will be stored together in the compacted array. Again, this scheme does not guarantee
that all the elements that require the same memory block are stored together, but it is highly
effective in practice while being amenable for hardware implementation.

4.3.4 Breadth-First Search with the Enhanced SCU

Filtering out duplicated elements is beneficial for both the expansion and contraction phases
of the BFS algorithm. Grouping is also applicable, but interferes with the warp culling filtering
efforts done in the GPU processing, which lowers its effectiveness and results in increased
workload, largely reducing the performance benefits due to the improved memory coalescing.
Filtering reduces the GPU workload, in terms of edges and nodes, to 14% of the original workload
on average. Shown on Figure 4.9, the required changes are the following:

Expansion phase:

Performs the filtering directly when processing the data generating the filtered edge frontier.
It does not require the use of the filtering vector which would be used to apply the filtering
detected to multiple compaction operations.

Contraction phase:

Performs the filtering directly when processing the data and generates the final filtered node
frontier. Note that this filtering is applied because the filtering done by BFS is not complete (as

79

CHAPTER 4. ENERGY-EFFICIENT GRAPH PROCESSING BY BOOSTING STREAM
COMPACTION

1 void BFS_Expand (node_frontier) {
2 indexes ,count = BFS_preparationGPU (node_frontier);
3 edge_frontier = accessExpansionCompactionSCU
4 (edges , indexes , count , do_filter);
5 return edge_frontier ;
6 }
7
8 void BFS_Contract (edge_frontier) {
9 bitmask = BFS_contractionGPU (edge_frontier);

10 node_frontier = dataCompactionSCU
11 (edge_frontier , bitmask , do_filter);
12 return node_frontier ;
13 }

Figure 4.9: Pseudo-code of the additional operations for a GPGPU BFS program to use the
enhanced SCU.

in SSSP). Otherwise, the filtering of the edge frontier would be done on the GPU when doing
the graph exploration and further filtering at the SCU would not provide any benefit aside from
atomic synchronization overheads reduction.

4.3.5 Single-Source Shortest Paths with the Enhanced SCU

Filtering out of duplicated elements is beneficial for both the expansion and contraction
phases of the SSSP algorithm. Additionally, unlike BFS, the grouping does not interfere with the
GPU filtering, and the coalescing improvement results in a net gain in performance. The SCU
reduces the GPU workload (i.e. nodes and edges) to 22% of the original workload on average,
and improves the coalescing effectiveness by a factor of 27%. Shown on Figure 4.10, the required
changes are the following:

Expansion phase:

Two additional Access Expansion Compaction are required. One operation is responsible for
constructing the filtering vector and the other for generating the grouping vector. The following
operations use the previously generated vectors to filter and group the compacted data of the
new edge frontier.

Contraction phases:

The first contraction phase operates on the “near” elements at each iteration of the algorithm.
For this phase, only grouping is applicable, since the filtering done on the GPU is complete, and
doing SCU filtering would result in no benefit. The grouping information is only used by the
subsequent operation that processes “near” elements, which result in the new grouped node
frontier.

80

4.3. FILTERING AND GROUPING

1 void SSSP_Expand (node_frontier) {
2 indexes ,count = preparationGPU (node_frontier);
3
4 // Addition
5 filtering = accessExpansionCompactionSCU
6 (edges , indexes , count , do_filter);
7 grouping = accessExpansionCompactionSCU
8 (edges , indexes , count , do_grouping);
9

10 edge_frontier = accessExpansionCompactionSCU
11 (edges , indexes , count , filtering , grouping);
12 weight_frontier = accessExpansionCompactionSCU
13 (weights , indexes , count , filtering , grouping);
14 weight_frontier += replicationCompactionSCU
15 (weights , count , filtering , grouping);
16 return edge_frontier , weight_frontier ;
17 }
18
19 void SSSP_Contract (edge_frontier , weight_frontier , threshold) {
20 bitmask_near , bitmask_far =
21 SSSP_contractionGPU (edge_frontier , weight_frontier , threshold);
22
23 // Addition
24 grouping = dataCompactionSCU (edge_frontier , bitmaskNear);
25
26 node_frontier = dataCompactionSCU
27 (edge_frontier , bitmask_near , grouping);
28 farPileEdges = dataCompactionSCU
29 (edge_frontier , bitmask_far , grouping);
30 farPileWeights = dataCompactionSCU
31 (weight_frontier , bitmask_far , grouping);
32 return node_frontier ;
33 }

Figure 4.10: Pseudo-code of the additional operations for a GPGPU SSSP program to use the
enhanced SCU.

The second contraction phase operates on the “far” elements when there are no more “near”
elements. For this phase both grouping and filtering are beneficial, since elements on the “far”
pile are not filtered beforehand. Two additional Data Compaction operations are used to create
the filtering and the grouping information for the “far” elements, which will be used by the
subsequent operation that operates on “far” elements and generate the new filtered and grouped
node frontier.

4.3.6 PageRank with the Enhanced SCU

Removing duplicated or already visited nodes is not an option for PR, since it considers all
the nodes on every iteration of the algorithm. Furthermore, since the application accesses the

81

CHAPTER 4. ENERGY-EFFICIENT GRAPH PROCESSING BY BOOSTING STREAM
COMPACTION

entire set of edges and nodes the memory access pattern is less irregular, hence, grouping the
nodes provides little memory coalescing improvement. Therefore, the enhanced functionalities of
the SCU are not used when running PR.

4.4 Experimental Results

In this section, we evaluate the performance improvement and energy reduction of the SCU.
Figure 4.11 shows normalized energy consumption for BFS, SSSP and PR primitives on several
graphs on our high-performance (GTX980) and low-power (TX1) GPU systems enhanced with
the SCU, whereas Figure 4.12 shows the normalized execution time. The baseline configuration
for both is the respective GPU system without our SCU.

4.4.1 Energy Evaluation

Figure 4.11 shows that the SCU provides consistent energy reduction, including both dynamic
and static energy, across all graphs, all GPU systems and all graphs primitives. On average, the
SCU provides a reduction in energy consumption of 6.55x for GTX980 and 3.24x for TX1 (an
84.7% and 69% of energy reduction respectively). The GTX980 is optimized for high performance
at the expense of increased power dissipation, whereas the TX1 keeps energy consumption lower.
For this reason, the energy savings are more significant on the GTX980, where we obtain
reductions of 12.3x, 11x and 4.65x for BFS, SSSP and PR respectively. Nonetheless, the energy
savings are also important for the TX1, achieving reductions of 5.35x, 4.54x and 1.5x for BFS,
SSSP and PR respectively.

The energy savings obtained come from several sources. First, the SCU pipeline is specialized
and tailored for stream compaction operations, thus being more efficient than the streaming
multiprocessors’ pipeline from an energy point of view. Second, the filtering operation reduces
GPU workload, which further reduces dynamic energy consumption. Third, the grouping opera-
tion increases the degree of memory coalescing, which reduces the overall energy consumption
of the memory hierarchy. Finally, the speedups reported in Figure 4.12 provide a reduction in
static energy. All these factors combined allow the SCU to provide a large reduction in energy
consumption.

4.4.2 Performance Evaluation

Figure 4.12 shows that the SCU provides performance improvements across all graphs and
GPU systems for both BFS and SSSP graph primitives, and for PR only on the TX1. On average,
we achieve speedups of 1.37x and 2.32x for the GTX980 and TX1 respectively. Performance
improvement is more significant on the TX1, as it is already designed for maximum energy
efficiency. We observe a speedup of 3.83x, 3.24x and 1.05x for BFS, SSSP and PR respectively.
We also achieve significant speedups for the GTX980 of 1.41x and 1.65x for BFS and SSSP,
although PR incurs a small slowdown. In PR all the nodes are considered active on every

82

4.4. EXPERIMENTAL RESULTS

0.0 0.0
0.2 0.2
0.4 0.4
0.6 0.6
0.8 0.8
1.0 1.0

No
rm

al
ize

d
En

er
gy

cacond

delaunay
human

kro
n

msdoor cacond

delaunay
human

kro
n

msdoor cacond

delaunay
human

kro
n

msdoor cacond

delaunay
human

kro
n

msdoor cacond

delaunay
human

kro
n

msdoor cacond

delaunay
human

kro
n

msdoor
GTX980 TX1

GTX980 TX1 GTX980 TX1 GTX980 TX1 AVG
BFS SSSP PR

GPU SCU

Figure 4.11: Normalized energy for BFS, SSSP and PR primitives on several datasets and in our
two GPU systems using the proposed SCU. Baseline configuration is the corresponding GPU
system (GTX980 or TX1) without the SCU. The figure also shows the split between GPU and
SCU energy consumption.

0.0 0.0
0.2 0.2
0.4 0.4
0.6 0.6
0.8 0.8
1.0 1.0
1.2 1.2

No
rm

al
ize

d
Ti

m
e

cacond

delaunay
human

kro
n

msdoor cacond

delaunay
human

kro
n

msdoor cacond

delaunay
human

kro
n

msdoor cacond

delaunay
human

kro
n

msdoor cacond

delaunay
human

kro
n

msdoor cacond

delaunay
human

kro
n

msdoor
GTX980 TX1

GTX980 TX1 GTX980 TX1 GTX980 TX1 AVGBFS SSSP PR

GPU SCU

Figure 4.12: Normalized execution time for BFS, SSSP and PR primitives on several datasets and
in our two GPU systems using the proposed SCU. Baseline configuration is the corresponding
GPU system (GTX980 or TX1) without the SCU. The figure also shows the split between GPU
and SCU execution time.

iteration of the algorithm, unlike BFS and SSSP. Therefore, memory accesses are less sparse and
irregular, and the potential benefit of the SCU is lower.

Performance benefits come from three sources. First, the SCU performs compaction oper-
ations more efficiently than the GPU, as it includes a hardware pipeline specifically designed
for this task. Second, the SCU is very effective at filtering duplicated and already visited
nodes, thus largely reducing the workload. Third, the grouping operation increases the degree
of memory coalescing, which reduces memory accesses and subsequently the pressure on the
memory hierarchy.

83

CHAPTER 4. ENERGY-EFFICIENT GRAPH PROCESSING BY BOOSTING STREAM
COMPACTION

0
4
8

12
16

Im
pr

ov
em

en
t f

ac
to

r

1.4x 1.6x

Speedup
Energy
Reduction

Speedup
Energy
Reduction

Speedup
Energy
Reduction

Speedup
Energy
Reduction

GTX980 TX1 GTX980 TX1
BFS SSSP

SCU Basic SCU Filtering+Grouping

Figure 4.13: Speedup and Energy Reduction breakdown, showing separately the improvements
due to the Basic SCU and the Enhanced SCU in both GTX980 and TX1 architectures. The
Enhanced SCU achieves important energy reductions on the GTX980, whereas it delivers higher
speedups on the TX1.

4.4.3 Enhanced SCU Results

In Figure 4.13 we analyze the performance and energy benefits that result from the basic
SCU design presented in Section 4.2 and the additional benefits provided by the filtering and
grouping operations described in Section 4.3 which are part of the enhanced SCU design. PR is
not shown as it does not use the enhanced SCU capabilities.

The basic SCU design, which is restricted to offloading compaction operations of sparse data
accesses from a large graph, provides around 2x energy reduction and 1.5x speedup for both
BFS and SSSP on high-performance and low-power GPUs. The enhanced SCU design makes use
of filtering and grouping operations that reduce GPU workload and improve memory coalescing,
which leads to a reduction of memory hierarchy activity and a significant improvement over
the basic SCU design. The enhanced SCU achieves large energy reductions for the GTX980
of 12.3x and 11x for BFS and SSSP respectively. For the TX1, although being already more
energy-efficient, we obtain important energy reductions of 5.35x and 4.54x for BFS and SSSP.
We also achieve significant performance improvements of 3.83x and 3.24x for BFS and SSSP for
the TX1, whereas the improvement is lower in the GTX980 achieving a speedup of 1.4x and
1.6x for BFS and SSSP.

In BFS, the SCU is highly effective at filtering duplicated nodes, which reduces GPU
workload by a large extent, improving performance and reducing GPU dynamic and static
energy. For SSSP, filtering keeps only the elements with the best cost and grouping prepares
the compacted data in a way that improves memory coalescing for the code executed on the
streaming multiprocessors, which improves performance and reduces energy consumption on
the memory hierarchy. Finally, in PR the stream compaction efforts are offloaded to the SCU
without performing further processing, which already improves performance and provides energy
reduction.

84

4.4. EXPERIMENTAL RESULTS

0
10
20
30
40
50
60

Pe
rc

en
ta

ge
 (%

)

ca cond

delaunay
human

kro
n

msdoor
AVG

Improvement in memory coalescing

Figure 4.14: Improvement of the memory coalescing when using the grouping operation, for the
SSSP algorithm on the TX1 GPU. The baseline configuration is SCU using only the filtering
operations.

The filtering operation described in Section 4.3 removes the duplicated and visited nodes
processed during the compaction with the goal to reduce the workload of the GPU by further
reducing the size of the compacted array. On average, the filtering operation reduces the GPU
instructions by 71% in BFS and 76% in SSSP for the TX1, with similar results for GTX980.
Although the filtering operation increases the workload of the SCU, it reduces the workload of
the GPU, resulting in important net savings in execution time and energy consumption for the
overall system.

We have evaluated the efficiency of the grouping operation performed in the SCU to improve
memory coalescing (see Section 4.3). The results for the TX1 are shown in Figure 4.14, where
grouping improves the memory coalescing effectiveness in all the datasets, achieving an average
improvement of 27%. When the required edges are being compacted, the SCU tries to write
in consecutive memory locations edges whose destination nodes lie in the same cache line. By
doing so, the subsequent processing of the compacted edges achieves higher GPU efficiency
by reducing memory divergence. Furthermore, better memory coalescing also means that less
memory requests are sent to the memory subsystem, reducing contention and overall memory
traffic.

Finally, we analyze memory bandwidth usage as main memory is a constraining factor of
graph applications. Graph-based algorithms expose a large amount of data parallelism, but
they typically exhibit low data locality and irregular memory access patterns that prevent an
effective saturation of memory bandwidth. Figure 4.15 shows how graph applications come
short from saturating memory bandwidth. PR achieves higher memory bandwidth usage due to
its higher regularity and data locality. Note that each GPU system has a different bandwidth
and the figure indicates utilization of peak bandwidth. When comparing the GPU and SCU
memory bandwidth utilization of a particular algorithm two factors come into play: performance
speedup and memory accesses reduction. The high-end GTX980 system with the SCU exhibits a
lower bandwidth utilization than the GPU system due to achieving higher reductions in memory

85

CHAPTER 4. ENERGY-EFFICIENT GRAPH PROCESSING BY BOOSTING STREAM
COMPACTION

0
20
40
60
80

100
Ba

nd
wi

dt
h

ut
iliz

at
io

n
(%

)

GTX980 TX1 GTX980 TX1 GTX980 TX1
BFS SSSP PR

GPU SCU

Figure 4.15: Memory bandwidth utilization for the graph applications running on a Baseline
GPU system and on a GPU system incorporating the SCU. Note that each GPU system has a
different bandwidth and the figure indicates utilization of peak bandwidth.

accesses than in performance, whereas we see the opposite for the low power TX1 system. The
TX1 system with the SCU obtains higher speedups than memory accesses reduction and, as a
consequence, we see an increase in memory bandwidth utilization in BFS and SSSP.

4.4.4 Area Evaluation

Our results show that the SCU requires a small area of 13.27 mm2 for the GTX980 system
and 3.65 mm2 for the TX1, including the hardware required for filtering and grouping operations.
Considering the overall GPU system, the SCU represents 3.3% and 4.1% of the total area for the
GTX980 and the TX1 respectively. The SCU is tightly integrated in the GPU and has access to
the L2 cache which is used to store the hash table used for filtering and grouping operations, so
it does not require any additional storage.

4.5 Conclusions

In this chapter we have presented our proposal to extend the GPU with a Stream Compaction
Unit (SCU) to improve performance and energy-efficiency for graph processing. The SCU is
tailored to the requirements of the stream compaction operation, that is fundamental for parallel
graph processing as it represents up to 55% of the execution time on average. The rest of the
graph processing algorithm is executed on the streaming multiprocessors achieving high GPU
efficiency, since it works on the SCU-preprocessed compacted data.

The SCU not only compacts but also filters out duplicated and already visited nodes during
the compaction process, reducing the number of GPU instructions by more than 70% on average.
In addition, it implements a grouping operation that writes together in the compacted array
edges whose destination nodes are in the same cache line, improving memory coalescing by 27%
for the remaining GPU workload. The resulting high-performance and low-power GPU designs

86

4.5. CONCLUSIONS

including our SCU unit achieve significant average speedups of 1.37x and 2.32x, and 84.7% and
69% energy savings respectively for several graph-based applications, with a small 3.3% and
4.1% increase in overall area respectively.

87

88

5
Improving Graph Processing Divergence-Induced

Memory Contention

This chapter provides the details of the Irregular accesses Reorder Unit (IRU) introduced
in Section 1.4.2. The chapter is organized as follows. First, Section 5.1 reviews and expands
the motivation of our IRU proposal. Section 5.2 introduces the IRU architecture, its inner
working and integration into the GPU. Afterwards, Section 5.3 describes the API and its main
functionalities. Section 5.4 explores the improvements in performance and energy consumption
achieved by our proposal. Finally, Section 5.5 sums up the main conclusions of this work.

5.1 Introduction

GPGPU architectures have become established as the dominant parallelization and perfor-
mance platform achieving exceptional popularization and empowering domains such as linear
algebra, Big Data analytics, machine learning, image detection and self-driving cars. As intro-
duced in Section 1.2, GPGPU architectures excel at processing highly-parallelizable throughput
oriented applications, which exhibit regular execution and memory access patterns. However,
irregular applications struggle to fully exploit GPGPU performance and efficiency as a result
of control flow divergence and memory divergence, due to irregular memory access patterns
resulting from processing unstructured data.

As explored in Section 2.2, in order to ameliorate these issues, programmers are obligated
to carefully consider architecture features and devote significant efforts to modify the algorithms
with complex optimization techniques, which shift programmers priorities yet struggle to quell
the shortcomings and harm code development and portability.

GPGPU programming models such as CUDA employ threads to exploit parallelism, each

89

CHAPTER 5. IMPROVING GRAPH PROCESSING DIVERGENCE-INDUCED
MEMORY CONTENTION

WARP 0 WARP 1

Direct Mapping

A A B B A C B A

A A B B A C B A
Edge Frontier

2 accesses 3 accesses

(a) Baseline GPU

WARP 0 WARP 1
A A A A BB B B C

Edge Frontier

1 access 2 accesses

A A B B A C B A

IRU

(b) GPU with IRU

Figure 5.1: Memory Coalescing improvement achieved by employing the IRU (5.1b) to reorder
data elements that generate irregular accesses versus a Baseline GPU (5.1a) execution.

processing its own set of data while synchronizing with the rest to perform complex behaviors
determined by the algorithm. The number of threads and the ability to coalesce the memory
accesses within a warp are some of the key factors that determine the utilization of the GPU
resources as explored in Section 1.2. The simplest way to exploit GPGPU parallelism is to
instantiate as many threads as data elements to process and directly assign each element to a
given thread, which shows effective for regular application yet causes degradation in utilization
and memory coalescing for irregular applications. As explored in Section 2.2, more complex
thread to data assignment or additional preprocessing (e.g. reordering) can be performed by the
programmer, but at the cost of additional algorithm complexity and computational cost.

We show that in graph-based GPGPU irregular applications these inefficiencies prevail
as GPGPU programming models impose restrictions that hinder full resource utilization and
since GPGPU architectures are not designed to efficiently support sparse irregular programs.
Nonetheless, we find that it is possible to relax the strict relationship between thread and data
processed to empower new optimizations as introduced in Section 1.4.2.

Based on this key idea, we propose the Irregular accesses Reorder Unit (IRU), a novel
hardware extension tightly integrated in the GPGPU pipeline. The IRU reorders data processed
by the threads on irregular accesses which significantly improves memory coalescing, and allows
increased performance and energy efficiency. Relaxing the thread-data strict relationship enables
the IRU reordering of data serviced to the threads, i.e. deciding at run-time the mapping between
threads and data elements leading to greatly improved memory coalescing. Figure 5.1 shows
conceptually how the IRU is used to assign data to the threads and achieves an improvement on
memory coalescing against the baseline GPU mapping. Programmers can easily utilize the IRU
with a simple API, or use compiler optimized code using extended ISA instructions. Additionally,
the IRU is capable of filtering and merging duplicated irregular access which further improves
graph-based irregular applications by reducing useless resource utilization of the GPU.

Finally, we evaluate our proposal for state-of-the-art graph-based algorithms and a wide
selection of applications. Results show that the IRU achieves a memory coalescing improvement
of 1.32x and a 46% reduction in the overall traffic in the memory hierarchy, which results in

90

5.2. IRREGULAR ACCESSES REORDER UNIT

1.33x and 13% improvement in performance and energy savings respectively, while incurring in
a small 5.6% area overhead.

This chapter focuses on improving the performance of irregular applications, such as graph
processing, on GPGPU architectures. The main contributions explored are the following:

• We characterize the degree of memory coalescing and GPU utilization of modern graph-
based applications. Our analysis shows that memory coalescing can be as high as 4 accesses
per warp and GPU utilization as low as 13.5%.

• We propose the IRU, a novel hardware unit integrated in the GPGPU architecture which
enables improved performance of sparse and irregular accesses by reordering data serviced
to each thread. We further extend the IRU to filter repeated elements in graph-based
applications, largely reducing GPU redundant workload.

• We propose an ISA extension and high-level API and show how modern graph-based
applications can easily leverage the IRU hardware.

• Overall the GPU architecture with our IRU improves memory coalescing by a factor of
1.32x and reduces the overall memory hierarchy traffic by 46%, resulting in 1.33x and 13%
speedup and energy savings respectively for a diverse set of graph-based applications. The
IRU represents a small area overhead of 5.6%.

5.2 Irregular accesses Reorder Unit

In this section, we introduce the Irregular accesses Reorder Unit (IRU), which improves
performance of irregular workloads such as graph applications on GPGPU architectures. High
GPGPU performance is achieved with regular execution and predictable memory access patterns.
As outlined previously in Section 1.2, irregular graph applications do not meet these characteristics
which significantly lowers their GPU performance and efficiency. Irregular application achieve
poor memory coalescing which puts higher pressure on the resources of all components of
the memory hierarchy. GPGPU resources utilization remains low even-though many non-
trivial techniques are used to reduce overheads, in turn hindering application development and
performance.

We propose to extend the GPGPU with the IRU to reduce the overheads caused by irregular
accesses. The IRU is a compact and efficient hardware unit integrated into the Memory Partition
(MP) of the GPU architecture as seen in Figure 5.3a, which incurs in very small energy and area
overheads. The IRU leverages the observation that GPU programs employ threads as a mean
to convey parallelism; they are in many occasions independent of the data that they process.
The main goal of the IRU is to process the indices used to perform irregular accesses, reorder
and redistribute them. The reordering aggregates indices that access the same memory block
and services them to a requesting warp, improving the collocation of irregular accesses and thus
increasing memory coalescing. In turn, the improved memory coalescing reduces congestion
of the resources of the LD/ST unit, L1, interconnection, L2 and main memory. In addition,
the reordering is performed across all the indices accessed by all the SMs, and so, collocating

91

CHAPTER 5. IMPROVING GRAPH PROCESSING DIVERGENCE-INDUCED
MEMORY CONTENTION

0.0 0.2 0.4 0.6 0.8 1.0
Normalized execution time

IRU

Baseline

start-to-target-load target-load-to-end

Figure 5.2: Warp average normalized execution with and without IRU. The dark bar indicates
execution time until the target load is serviced, and the light bar from service to finalization.
The IRU achieves speedups despite the overhead introduced.

irregular accesses potentially gathers data obtained by irregular accesses in a single or fewer
SMs, thus further reducing interconnection traffic and L1 data thrashing. Figure 5.2 shows
the average normalized execution of a warp of a baseline GPU against one with the IRU. The
dark bar indicates the execution time until the load processed and reordered by the IRU is
serviced, while the light bar shows the normalized time until finalization. The overhead incurred
by the IRU servicing the load is more than offset by the additional performance gained from the
reduction of the overheads due to improved memory coalescing of the targeted irregular access.

The IRU processes the indices of a target irregular instruction, with the objective to optimize
its coalescing. Additionally, the elements processed contain more data than just the indices,
as mandated by the API described in Section 5.3. While these data are not used for the IRU
coalescing logic, since the indices remain the information that the IRU utilizes to improve
memory coalescing, it is responsible to fetch, generate and reply to the SM the additional data.

5.2.1 GPU Integration

The IRU integration into the GPU is covered in Figure 5.3, showing architectural 5.3a,
programming 5.3b and execution 5.3c-5.3e integration. The execution shows how the Baseline
and the IRU modified GPU programs in Figure 5.3b operate with the two warps and data from
Figure 5.1.

The Baseline program performs a regular access À to gather indices that are then used for
an irregular access. The IRU modified code performs the same operation but using the IRU
hardware with the load_iru operation Á, which is a simple modification explored in Section 5.3.
The baseline code is executed by the GPU as follows. First, the two warps retrieve the indices
performing regular accesses to the L1, as seen in Figure 5.3d. Afterwards, Figure 5.3e shows
how they perform irregular accesses to the L1 with the retrieved indices which. Due to the high
divergence, they result in many L1 accesses Â.

92

5.2. IRREGULAR ACCESSES REORDER UNIT

L2

GPU die

IRU
Mem Partition Mem Partition

L1 & Shrd

EUs
SM

Interconnection

Main Memory

L2

IRU

L1 & Shrd

SM
EUs

(a) GPU architecture with IRU.

 Kernel (...):

 edge = frontier[tidx]
 node = nodes[edge]

 Kernel (...):

 load_iru(edge)
 node = nodes[edge]

GPU Code GPU Code

 /* data setup */
 Kernel (...)

 /* data setup */
 configure_iru (...)
 Kernel (...)

Host Code Host Code

Baseline IRU

À
Â

Á
Ã

(b) Irregular access code modifications.

GPU

 /* data setup */
 configure_iru (...)
 Kernel (...)

HOST

IRU IRU

Prefetch

Main Memory

A C B AA A B B

(c) IRU Configuration and Initialization.

MP MP

Warp0 / SM0 Warp1 / SM1

L2

IRU

L1

EUs

L1

EUs

L2

IRU

edge = frontier[tidx] / load_iru(edge)

IRU
Baseline

IRU
Baseline

À Á

(d) Irregular accesses indices retrieval.

Warp0 / SM0

L1

Coalescing

Warp1 / SM1

L1

Coalescing

Baseline (node = nodes[edge]) IRU (node = nodes[edge])

A A B B

A B

A C B A

A B C
Divergent accesses

Warp0 / SM0

L1

Coalescing

A

A A A A
Warp1 / SM1

L1

Coalescing

B C

B B CB

Reduced Divergece

Â Ã

(e) Divergence improvement of irregular accesses executed with the IRU reordered indices
compared to the Baseline.

Figure 5.3: IRU integration with the GPU at different levels: architectural (a), program model
(b) and execution (c,d,e). The execution showcases how the program (b) works on the Baseline
and the IRU, operating with the two warps and data from Figure 5.1.

In contrast, the IRU program first introduces a configuration step performed on the host,
shown in Figure 5.3c, that provides data of the irregular accesses to optimize. The configuration
required for this program consists of the base address and data type of the irregular accessed

93

CHAPTER 5. IMPROVING GRAPH PROCESSING DIVERGENCE-INDUCED
MEMORY CONTENTION

data, and the indices array and total number of irregular access. Further IRU capabilities are
enabled and used with optional parameters on overloaded functions, reviewed in Section 5.3.
Afterwards, when the kernel execution starts, the IRU triggers the prefetching of the indices
from L2 and memory, which are then autonomously reordered in the IRU hash. The IRU activity
is overlapped with the execution of the kernel, and disabled when all the data is processed or if
not used for the kernel in execution.

Regular execution proceeds until encountering the load_iru operation, at which point the
warps retrieve the indices performing requests directly to the IRU bypassing the L1, as seen
in Figure 5.3d. The IRU replies with reordered indices either instantly, if they are ready, or
otherwise after a timeout to avoid starvation. Finally, the warps perform the irregular access
that was the target of the optimization Ã. This access is performed with the IRU reordered
indices which achieve reduced divergence performing less accesses than the baseline program, as
depicted in Figure 5.3e.

5.2.2 Hardware Overview and Processing

The internal pipelined hardware of the IRU is shown in Figure 5.4a. It is composed of
a number of blocks each with specific purpose, simple logic and buffering of data. The main
purpose of the IRU, which is to reorder indices to improve memory coalescing, is accomplished
with the use of a hash located inside the Reordering Hash block. Instead of multiple private
hashes, there is a single logical hash partitioned among the IRUs. This motivates the inclusion
of a ring interconnection between the IRUs to forward the data to the corresponding partition of
the logical hash. We have observed that the degree of memory coalescing is significantly affected
if each IRU hash is private and separated; which would constrain IRUs reordering scope to data
from a single memory partition. Finally, requests are issued to the L2 to exploit data locality
among kernel executions. Alternatively, requests can be configured to bypass L2, which could
become beneficial for streaming kernels that do not reuse the data.

As seen in Figure 5.4a, the IRU’s different blocks functionality is as follows:

• IRU Controller: Control logic that holds the configuration and general signals for other
blocks.

• Prefetcher: Configured at kernel launch, it is the block responsible to fetch the data to
be reordered.

• Classifier: Fetches the data retrieved by the Prefetcher, stores it in different buffers based
on whether it has to be locally processed or sent to the ring interconnection.

• Data Processing: Retrieves data from the internal buffers or the ring and outputs it to
the hash, or to the ring.

• Reordering Hash: Contains a partition of the hash. The data is inserted so that data
placed on the same hash entry result in indices that point to the same memory block,
increasing memory coalescing.

94

5.2. IRREGULAR ACCESSES REORDER UNIT

Memory Partition

 IRU
to icnt

 to L2

 to neighbor

Main Memory (GDDR5)

L2 Cache Memory Controller

Prefetcher Classifier

Ring Interconnect

Data
Processing

Data
Replier

Reordering
HashIRU

Controller

Edge
Frontier A A B B A C B A

(a) Overview of the IRU internal pipeline.

IRU #0

R. Hash

IRU
Controller

Prefetcher
@ frontier

D. Replier

Ring

Config from Host

Prefetch
indices
from L2

Ê

Ë

(b) Configuration and Prefetch.

IRU #0

R. Hash
A A

IRU
Controller

Prefetcher
@ frontier
@ frontier+32

D. Replier
Warp0 / SM0

Ring
A A B B

Request from SM

Reply
from L2 Ì

Í

Î

(c) Data and Request retrieval.

IRU #0

R. Hash
A A

IRU
Controller

Prefetcher
@ frontier
@ frontier+32

D. Replier
Warp0 / SM0

Ring
A A B B B B

A C A

Ï

Ð

(d) Ring interconnection.

IRU #0

R. Hash
A A A A
C

IRU
Controller

Prefetcher
@ frontier+32
@ frontier+64

D. Replier
Warp0 / SM0

Ring
B B
A C A

Reply Reordered
 Indices

A A A A

Ñ

(e) Requests reply.

Figure 5.4: Architecture and the internal processing performed by the IRU. The indices in
memory (from Figure 5.1) are processed by two IRU partitions (IRU 0 shown), which is later
replied to a request coming from Warp 0 in SM 0.

• Data Replier: Prepares reordered data that achieve improved memory coalescing and
forwards them to the requesting load from the SM.

• Ring Interconnect: Forwards data from a given IRU in a memory partition to another.

95

CHAPTER 5. IMPROVING GRAPH PROCESSING DIVERGENCE-INDUCED
MEMORY CONTENTION

The overall internal processing of the IRU is described in Figure 5.4. The figure covers a
general overview of the internal IRU architecture and the detailed step by step working of the
most relevant components of the IRU covering: configuration and prefetching (5.4b), data and
requests retrieval (5.4c), ring interconnection interaction (5.4d) and requests reply (5.4e).

Prefetching and Data Processing

The IRU Controller is first initialized from the Host by executing the configure_iru func-
tion with the corresponding data Ê. The Prefetcher later uses this information to determine
the addresses to prefetch when the GPU kernel starts executing Ë, then it begins issuing a
limited number of on-the-fly prefetches to avoid saturating memory bandwidth and degrading
performance. Each IRU only prefetches information from its corresponding memory partition.
In Figure 5.4, the first four elements from main memory are fetched by IRU 0, while the next
four by IRU 1. When a reply comes back, the retrieved data is stored in a FIFO queue to be
later processed.

Afterwards, the Classifier block processes the prefetched data Ì by splitting it into several
smaller FIFO queues, an element per cycle per queue. The smaller FIFO queues contain the
elements that will be inserted in the hash or forwarded through the interconnection. A hashing
function of the element is used to determine which hash entry it is mapped to and, therefore,
if it will access a local bank or must be sent through the interconnection. Finally, the Data
Processing block retrieves elements from both the smaller FIFO queues and the ring, prioritizing
the latter, and forwards it to the ring or inserts it to the local hash Í. On Figure 5.4e, the
elements labeled A are inserted into the local hash to the same entry, as they are determined to
target the same memory block.

Meanwhile, requests from the SMs can be received at any time which are then processed by
the Data Replier Î. This request originates directly from the SM (i.e. bypassing the L1) and
are generated by the extended ISA load_iru operations, that are responsible to retrieve the IRU
processed data. Their information is stored until enough data is available to satisfy the request
or until a timeout is reached.

Ring and Data Reply

Due to the partition of the reordering hash, the hash function of the elements fetched from
a memory partition can require that element to be inserted in another IRU partition. The Ring
Interconnection allows to receive and send elements to the neighbor partitions at every cycle. In
Figure 5.4d, the elements labeled B are determined to correspond to another IRU partition and
so are inserted in the ring Ï. Meanwhile, data from the neighbor partition is received (indices A
and C are determined to correspond to IRU 0) Ð.

Lastly, the elements corresponding to this IRU partition are gathered from the ring and
inserted into the reordering hash. When the Data Replier detects a hash entry that is complete,
or enough data is available to reply a request, the oldest request is replied back to the SMs with
that entry reordered elements Ñ, and the data is evicted from the hash. The data used for the

96

5.2. IRREGULAR ACCESSES REORDER UNIT

Hashing
Function

Hash Data
Index

address

insert

Figure 5.5: Hash insertion diagram showcasing how an element is used for the hashing function
and how it is stored in the hash data of the Reordering Hash.

reply (four A) are the indices used for the irregular access being optimized, but additionally
more data might be processed per element, in which case multiple replies would be issued, at
most two additional replies.

Additionally, a timeout is employed to avoid excessively delaying a request. Once the
timeout is reached, it then fetches data from the hash with the best coalesced data entry present,
and replies once enough data is retrieved, effectively trading-off coalescing for lower latency.
Furthermore, simple control logic is added to the SM and IRU partitions to handle balancing
issues (i.e between request and entries ready), each SM distributes the requests evenly across
the different IRU in the memory partitions, and requests can be replied by IRU partitions other
than the original. Finally, when no more data is left to be inserted into the IRU, the Data
Replier replies to the SM by merging the remaining hash entries which might not be full. These
merging tries to avoid splitting a hash entry between two replies, which would consequently
impact memory coalescing.

5.2.3 Reordering Hash

The Reordering Hash drives the IRU, it contains a physical partition of the global logical
hash, which is direct mapped and multi-banked. Each entry holds up to 32 elements that are
inserted into the entry in subsequent locations at every hash insertion as depicted in Figure 5.5.
Furthermore, the hash function key that points to an entry is generated from the value being
inserted into the hash entry. The computation of the hash function collocates in a single hash
entry the elements that will generate memory fetches that target the same memory block, which
provides the memory coalescing improvement achieved with the IRU.

Unlike a regular hash, an insertion allows to append elements into a hash entry even if
the tag does not match. The inherent drawback of this decision is that the elements that a
hash entry collocates might actually not access the same memory block, and thus the memory
coalescing that it can achieve will not be optimal. Nonetheless, this design decision largely
reduces hardware complexity and avoids handling the conflicting elements gathered and replied
back to the SM without achieving any improved coalescing. Furthermore, a good dispersion
hash function and properly sized hash tables limits the amount of conflicts and ameliorates
the negative impact on memory coalescing. Ultimately, when an entry is completely filled with

97

CHAPTER 5. IMPROVING GRAPH PROCESSING DIVERGENCE-INDUCED
MEMORY CONTENTION

32 elements, no more data can be inserted to it. At this point, it has 32 collocated elements
that potentially will access the same memory block when the program uses them to perform an
irregular access, unless there were conflicts. Note that some of these conflicting elements might
collocate among themselves, thus not impairing memory coalescing so severely.

Some API operations described in Section 5.3 require additional comparators or adders to
be used in a hash insertion. The additional data that the elements might have is processed by
this hardware, which effectively merges or filters an element present in the hash with the one
being inserted. Since this operations will filter out elements, some threads that requested data
will not receive any, which is handled by the Data Replier and exposed to the programmer with
the API.

5.3 IRU Programmability

Ease of programability is an important aspect when it comes to writing efficient parallel
programs, reason for which toolkits such as CUDA are very successful. Efficient irregular
programs require complex optimization techniques. The IRU has been designed to be easily
integrated and programmable. The IRU extends the GPGPU ISA to support memory load
operations that fetch data from the IRU, which require small changes to the pipeline to decode
these instructions and changes to the LD/ST unit to route these requests to the IRU. To avoid
directly using ISA instructions we provide a simple API easily integrated in CUDA kernels.
Furthermore, since the changes to the code are minimal, a compiler that supports the ISA
extensions can generate the instrumented code, freeing the programmer from performing the
optimization effort and delivering a more efficient GPGPU architecture for irregular applications.

IRU’s main optimization is the reordering of indices fetched from memory that are used
for irregular accesses. This optimization is based on the premise that the data assigned to the
threads is independent of what thread is processing it. Consequently, to be able to correctly
utilize the IRU for this optimization, the programmer has to guarantee that the reordering can
be applied correctly as other data or accesses might have to be done with the new order achieved.
The API provides additional functionality to facilitate this guarantee.

The baseline functionality provided by the API and IRU hardware supports reorder of an
array of 24-bit indices. Additionally, a secondary 32-bit array can be processed simultaneously,
yet the reordering is based on the indices array as to improve the coalescing achieved when
performing an irregular access. The data (i.e. index and entry in the secondary array) provided
to the threads is reordered applying the same reordering to both indices and secondary array,
maintaining the original pair of index and secondary data. Figure 5.6 shows how the input data,
first two rows, is reordered in the output data, last two rows. The reordering is based on the
array of indices, the edge frontier, and every edge is kept with its corresponding weight. This
secondary array can be used to process attributes or extra data of the elements being processed.
It might be the case that more than a single additional array has to be processed. In this case,
the reordering operation can return in which position in the original array the reordered element
was located. This is indicated in Figure 5.6 by the sub-index of the edge frontier, showing the
position in the original array. This position value can be used to fetch any additional attributes
required.

98

5.3. IRU PROGRAMMABILITY

Edges
Frontier

Weight
Frontier

1 4 0 4

8 5 3 2

0 1 2 3

Reordered
Edges

Reordered
Weights

0 1 4

3 8 7

3 0 1

merge

IR
U

 IN
PU

T

IR
U

 O
U

TP
U

T

Figure 5.6: IRU processing of two arrays with filtering enabled. The ”edges” is the indexing
array, while the ”weight” is the secondary array. The filtering operation is an addition.

Graph-based algorithms process several nodes and edges simultaneously. For this reason,
it is common that several edges lead to the same destination node which causes redundant
work. This additional work is usually benign as the program implements filtering techniques,
which are effective yet computationally costly due to synchronization requirements. To aid the
program with this additional workload, the IRU is extended to provide filtering or merging of
elements (i.e. pair of index and attribute). The IRU can easily detect duplicated indices that are
processed simultaneously and so it can remove them or might perform some operation to merge
both elements. The operations supported by the IRU are integer comparison and floating point
addition. Figure 5.6 shows the merging of two indices into one on the output data by adding
their attributes in the secondary array. Filtering out elements causes some threads to not receive
data, and so we extend the API to indicate if a given thread data has been filtered out. IRU
groups the disabled threads in warps rather than preparing replies to warps with reordered data
and disabled threads, this approach allows to minimize branch divergence, remove redundant
work and improve IPC.

The API seen in Figure 5.7 provides two main functions: configure_iru, used from the
host to configure the IRU, and load_iru, used inside the CUDA kernel to retrieve reordered
data from the IRU. At the start of kernel execution, the configure function is called to provide
all the parameters of the data that will be processed. The required parameters are: target array
base address and data type width, both parameters used to configure the offset to be applied
to the indices as to compute the coalescing required. The indices array is required too, which
is the main data reordered. Finally, the number of elements in the indices array. Optional
parameters include the additional secondary array, reordered together with the indices array,
and the optional filtering operation performed.

5.3.1 IRU enabled Graph Applications

All the previously described functionalities enable the instrumentation of state-of-the-art
implementation of graph-based algorithms such as BFS, SSSP and PR. Although we use push
graph implementations, the IRU is not specifically targeting push or pull. The ease of use of
our API allows very simple instrumentation an minimal code changes while providing efficient

99

CHAPTER 5. IMPROVING GRAPH PROCESSING DIVERGENCE-INDUCED
MEMORY CONTENTION

1 void configure_iru (
2 addr_t target_array ,
3 size_t target_array_data_type_size ,
4 addr_t indices_array ,
5 addr_t secondary_array ,
6 size_t number_elements ,
7 filter_op_t filter_op);
8
9 __device__ bool load_iru (

10 addr_t & indices_array ,
11 addr_t & secondary_array ,
12 uint32_t & position);

Figure 5.7: API additional functions. Multiple definitions used due to optional parameters.

memory coalescing improvements. The following examples show how the load_iru can be used
from within GPGPU kernels easily replacing existing code.

The basic functionality of the IRU is a good fit for the BFS algorithm as illustrated in
Figure 5.8. The indices found in the edge_frontier array are used to access the label array,
resulting in irregular memory accesses and poor memory coalescing. The programmer can easily
replace the previous instruction with the load_iru operation to obtain the indices in such a way
that memory coalescing is improved and thus overall performance improves.

1 __global__ void BFS_Contract (...) {
2 int pos = blockDim .x * blockIdx .x +
3 threadIdx .x;
4 if (pos < number_elements) {
5 int edge;
6
7 #ifdef NOT_INSTRUMENTED
8 edge = edge_frontier [pos];
9 #elif USE_IRU

10 load_iru (edge);
11 #endif
12
13 // more computation ...
14 label[edge] = distance ;
15 }
16 }

Figure 5.8: Simple instrumentation of the BFS algorithm Kernel using the API of the IRU.

The SSSP algorithm processes additional data per element, since each edge has an associated
weight value. Figure 5.9 shows how load_iru can handle the use of an additional array, while
also retrieving the original position of the reordered element in the pos variable. Note that the
algorithm requires the pos variable to be correctly updated with the reordered element in line
17, which is easily accomplished with our API extension.

100

5.3. IRU PROGRAMMABILITY

1 __global__ void SSSP_Compaction (...) {
2 int pos = blockDim .x * blockIdx .x +
3 threadIdx .x;
4 if (pos < number_elements) {
5 int edge , weight ;
6
7 #ifdef NOT_INSTRUMENTED
8 edge = edge_frontier [pos];
9 weight = weight_frontier [pos];

10 #elif USE_IRU
11 load_iru (edge , weight , pos);
12 #endif
13
14 int previous =
15 atomicMin (& label[edge], weight);
16 if (previous > weight)
17 lookup [edge] = pos;
18 }
19 }

Figure 5.9: Simple instrumentation of the SSSP algorithm Kernel using the API of the IRU.
The load_iru operation is using all the parameters. The variables edge and weight are reordered
together while pos retrieves their original position in the array which is later used.

1 __global__ void PR_Contract (...) {
2 int pos = blockDim .x * blockIdx .x +
3 threadIdx .x;
4 if (pos < number_elements) {
5 int edge;
6 float weight ;
7 bool active_thread = true;
8
9 #ifdef NOT_INSTRUMENTED

10 edge = edge_frontier [pos];
11 weight = weight_frontier [pos];
12 #elif USE_IRU
13 active_thread = load_iru (edge , weight);
14 #endif
15
16 if (active_thread)
17 atomicAdd (& label[edge], weight);
18 }
19 }

Figure 5.10: Simple instrumentation of the PR algorithm Kernel using the API of the IRU. The
load_iru operation is used with all parameters, and additionally, filtering deactivates threads
with is noted by the active_thread variable.

101

CHAPTER 5. IMPROVING GRAPH PROCESSING DIVERGENCE-INDUCED
MEMORY CONTENTION

0.0 0.0
0.2 0.2
0.4 0.4
0.6 0.6
0.8 0.8
1.0 1.0

No
rm

al
ize

d
Ac

ce
ss

es

ca cond

delaunay
human

kro
n
msdoor ca cond

delaunay
human

kro
n
msdoor ca cond

delaunay
human

kro
n
msdoor L1 L2

BFS SSSP PR AVG

L1 L2

Figure 5.11: Normalized accesses to L1 and L2 caches of the IRU enabled GPU system against
the Baseline GPU system. Significant reductions are achieved across BFS, SSSP and PR graph
algorithms and every dataset.

Finally, the PageRank kernel shown in Figure 5.10 performs additions of the elements’
weights into the label array. Utilizing the filtering/merge functionality of the IRU, an initial
addition can be performed while the elements are being processed in the IRU, which allows
to disable merged out threads. The load_iru function returns whether or not the thread has
a valid element or it has been merged out; the value in a retrieved element’s weight has the
sum of those weight of the same edge. Note that the filtering is not complete as it merges
only elements found concurrently on the IRU, yet it manages to filter a significant amount
of duplicated elements. Overall, this extension allows reducing the workload of the kernel by
removing a large number of atomicAdd operations.

5.4 Experimental Results

In this section, we analyze how the memory hierarchy contention is reduced, the reduction
of interconnection traffic, the improvement on memory coalescing, the IRU filtering capabilities,
and the overall performance and energy improvement of our proposed GPU system with the
IRU with respect to the baseline GPU. Our workloads are the graph algorithms BFS, SSSP and
PR, that are run for a set of diverse graphs shown in Table 3.5.

5.4.1 Memory Pressure Reduction

IRU’s main functionality is to reorder irregular accesses improving their memory coalescing
and, as a consequence, reducing the overall contention in the memory hierarchy. Figure 5.11
shows how the IRU consistently reduces accesses and contention on both L1 and L2 across all
graph algorithms and datasets. Accesses to L1 and L2 are reduced to as low as 35% and 36%
for the cond benchmark on BFS and PR respectively, and overall accesses are reduced to 67%
and 56% of the original L1 and L2 accesses on average.

102

5.4. EXPERIMENTAL RESULTS

0.0 0.0
0.2 0.2
0.4 0.4
0.6 0.6
0.8 0.8
1.0 1.0

No
rm

al
ize

d
IC

NT

ca cond

delaunay
human

kro
n
msdoor ca cond

delaunay
human

kro
n
msdoor ca cond

delaunay
human

kro
n
msdoor

total

BFS SSSP PR AVG

Figure 5.12: Normalized interconnection traffic between SM and MP of the IRU enabled GPU
system against the Baseline GPU system. Significant reductions are achieved across BFS, SSSP
and PR graph algorithms and every dataset.

This important reduction comes from several factors. First, the IRU reordering of irregular
accesses improves coalescing which reduces the accesses to L1. Second, IRU reorders requests
across SMs so it helps to collocate accesses of a particular memory block to a single SM, avoiding
data replication across L1 data caches, resulting in improved hit ratios. Third, overall reduced
accesses to L1 reduce capacity and conflict misses improving data thrashing and consequently
reducing L2 accesses. Finally, IRU filtering further reduces accesses by removing or merging
duplicated elements already processed, reducing additional accesses performed in the baseline.

L2 accesses reduction is greater than in L1 in some benchmarks for SSSP and PR graph
algorithms. A significant amount of the indices reordered by the IRU on SSSP and PR are
used for irregular accesses performed by atomic instructions. In GPGPU-Sim atomic operations
bypass the L1 and are handled at the L2 on the corresponding memory partition. IRU coalescing
and filtering improvement for these operations does not reduce L1 accesses but L2 accesses,
explaining the larger reduction in L2 accesses compared to L1 for SSSP and PR. Note that
atomic operations within a warp are coalesced as long as different threads in it access different
parts of the cache line.

We have also analyzed the impact of the IRU in the Network-on-Chip (NoC) that intercon-
nects the Streaming Multiprocessors (SM) with the Memory Partitions (MP). Figure 5.12 shows
the normalized traffic in the NoC. As it can be seen, the IRU consistently reduces interconnection
traffic across all graph algorithms and datasets. Traffic between SM and MP is reduced to as low
as 23% for the human benchmark on PR, overall achieving a reduction to 54% of the original
interconnection traffic. This reduction is due to several factors. First, the improved memory
coalescing results in a more efficient use of the L1 data cache, significantly reducing the number
of misses. Second, filtering also contributes to lower L2 accesses which reduces interconnection
contention. Finally, the extended ISA instructions used on a load_iru operation allow reduced
traffic by issuing a single request to the IRU that receives two replies (up to three replies),
whereas the baseline GPU would have issued two requests and two replies in order to gather
data in different frontiers.

103

CHAPTER 5. IMPROVING GRAPH PROCESSING DIVERGENCE-INDUCED
MEMORY CONTENTION

0 0
1 1
2 2
3 3
4 4
5 5
6 6

M
em

or
y

Co
al

es
cin

g

BFS SSSP PR AVG

Baseline IRU

Figure 5.13: Improvement in memory coalescing achieved with the IRU over the Baseline GPU
system. Vertical axis shows the number of memory requests sent to the L1 cache on average per
each memory instruction, i.e. how many memory requests are required to serve the 32 threads
in a warp.

Figure 5.13 shows the improvement in memory coalescing delivered by the IRU. A higher
coalescing number indicates that more accesses are needed to serve each warp memory request,
with a maximum of 32 accesses per request, and a minimum of 1 access in the best scenario.
The IRU improves the overall memory coalescing for every graph algorithm from 4 to 3 accesses
per memory requests on average, requiring one fewer access per request. Note that the filtering
schemes that some of the algorithms employ, combined with the filtering applied by the IRU,
reduce the potential of coalescing, since filtering removes duplicated elements whose access
could be coalesced. However, overall memory coalescing is significantly improved, reducing the
pressure on the memory hierarchy.

Finally, main memory accesses are reduced by 4% due to reduced L2 misses. Overall,
reordering and filtering techniques allow the IRU to deliver significant improvements in memory
coalescing and reduce contention in every level of the memory hierarchy.

5.4.2 Filtering Effectiveness

The IRU hardware provides filtering capabilities without complex additional hardware.
Figure 5.14 shows the percentage of elements (i.e. indices with their adjacent data) processed by
the IRU which are filtered out or merged. We apply the filtering to both SSSP and PR. On
average, 48.5% of the elements are filtered by the IRU. This rather high percentage does not
directly indicate that a similar amount of accesses to memory are discarded, yet it contributes
on top of the IRU reordering improvement. This situation is explained due to its interaction
with software graph filtering schemes. Some of the kernels instrumented already employ filtering
schemes in their code, typical in graph-based applications, thus the filtering does not always
contribute significantly in memory accesses reduction. However, it efficiently filters elements
avoiding evaluating the more costly software filtering schemes of graph algorithms, which
improves overall performance.

104

5.4. EXPERIMENTAL RESULTS

0 0
20 20
40 40
60 60
80 80

100 100
Fi

lte
rin

g
Pe

rc
en

ta
ge

SSSP PR AVG

Figure 5.14: Filtered percentage of elements processed by the IRU in our IRU enabled GPU
system. The IRU achieves significant filtering effectiveness for different graph algorithms.

5.4.3 Performance Evaluation

IRU provides performance improvement across all algorithms and benchmarks, as seen
in Figure 5.15. On average the IRU achieves a speedup of 1.33x, with average speedups of
1.16x, 1.14x and 1.40x for BFS, SSSP and PR respectively. PR experiences higher speedups
due to significantly larger reduction of L2 accesses due to the IRU filtering, which merges data
and avoids costly atomic L2 accesses. SSSP achieves the lowest speedup due to lower filtering
effectiveness.

Overall the performance improvements come from two sources. First, the improved memory
coalescing due to the IRU reordering of indices used for irregular accesses, this reordering reduces
contention on the memory hierarchy. Second, the IRU filtering and merging that enables further
reduction of accesses, interconnection NoC traffic and redundant use of the Execution Units of
the GPU.

5.4.4 Energy Evaluation

Figure 5.15 also shows the energy savings achieved with the IRU, which are significant
across all graphs and datasets. On average, the IRU achieves an energy reduction of 13%, with
reductions of 17%, 5% and 15% for BFS, SSSP and PR respectively. Energy savings are more
limited than performance improvements since the IRU greatly reduces L1 and L2 accesses but
achieves a more modest reduction of main memory accesses, main memory representing a very
significant portion of the total energy consumed. The IRU energy overhead represents a small
0.5% of the final energy.

Overall, energy savings are obtained from several sources. First, the reduced accesses to
L1 and L2 and contention to the memory hierarchy. Second, the reduced execution time cuts
down on the static power and thus, the overall energy consumption of the GPU system. Third,
the energy efficient IRU which enables the reduction in accesses and contention, and allows
more efficient filtering than the costly filtering employed by the graph applications. Finally, the

105

CHAPTER 5. IMPROVING GRAPH PROCESSING DIVERGENCE-INDUCED
MEMORY CONTENTION

0.0 0.0
0.2 0.2
0.4 0.4
0.6 0.6
0.8 0.8
1.0 1.0

No
rm

al
ize

d
Ti

m
e/

En
er

gy

ca cond

delaunay
human

kro
n
msdoor ca cond

delaunay
human

kro
n
msdoor ca cond

delaunay
human

kro
n
msdoor

E. Time
Energy

BFS SSSP PR AVG

E. Time Energy

Figure 5.15: Normalized execution time and normalized energy consumption achieved by the
IRU enabled GPU with respect to the baseline GPU system. The IRU shows consistent speedups
and energy savings achieved across BFS, SSSP and PR graph algorithms and all the different
datasets.

IRU reordering leads to a reduction in main memory accesses which contributes to the achieved
energy reduction.

5.4.5 Area Evaluation

Our evaluation of the IRU energy and area estimations indicate that the IRU requires a
total of 23.9 mm2 when adding up all the 4 partitions of our GPU system with a GTX980, each
partition being 5.98 mm2. The entire IRU represents 5.6% of the total GPU area. Overall, the
IRU is a very compact and efficient hardware which manages to deliver significant performance
and energy savings with minimal area requirements.

5.5 Conclusions

In this chapter we propose the Irregular accesses Reorder Unit (IRU), a GPU extension
that improves performance and energy efficiency of irregular applications. Efficient execution of
irregular applications on GPU architectures is challenging due to low utilization and poor memory
coalescing, which force programmers to carry out complex code optimization techniques to
achieve high performance. The IRU is a novel hardware unit that delivers improved performance
and overall memory traffic of irregular applications by reordering data serviced to the threads.
This reordering is made possible by relaxing the strict relationship between threads and data
processed.

We extend the IRU to filter out repeated elements while performing the reordering, this
results in increased performance by greatly reducing redundant GPU activity. The IRU reordering
and filtering optimization delivers 1.32x improved memory coalescing, significantly reducing the

106

5.5. CONCLUSIONS

traffic in the memory hierarchy by 46%. Our IRU augmented GPU system achieves on average
1.33x speedup and 13% energy savings for a diverse set of graph-based applications and datasets,
while incurring in a 5.6% area overhead.

107

108

6
Combining Strengths of the SCU and IRU

This chapter provides details of the IRU-enhanced SCU (ISCU) first introduced in Sec-
tion 1.4.3. The chapter is organized as follows. First, Section 6.1 reviews the strengths of
SCU and IRU for graph processing, motivating our ISCU proposal. Section 6.2 presents the
architecture of the ISCU and reviews its processing. Afterwards, Section 6.3 describes its
programmability, showcasing the instrumentation of graph applications. Section 6.4 presents the
experimental results obtained. Finally, Section 6.5 sums up the main conclusions of this work.

6.1 Introduction

Graph-based applications are ubiquitous in important domains such as data analytics, ma-
chine learning and many other examples. Road navigation and self-driving cars, recommendation
systems and speech recognition are paradigmatic examples of graph processing workloads. As
explored in Section 1.1, current trends towards increased data gathering and knowledge-based
society and applications result in increased importance of graph-based applications and, at the
same time, a demand for higher data processing capabilities, which motivates high-throughput
graph processing on GPGPU architectures.

As reviewed in Section 2.2, GPGPUs achieve high performance for regular programs showing
low branch and memory divergence. Unfortunately, graph algorithms exhibit sparse memory
accesses, as they traverse unstructured and irregular data with unpredictable patterns. Hence,
GPGPU implementations of graph algorithms show significant memory divergence, which leads to
high contention in the memory hierarchy and poor utilization of the functional units, limitations
discussed in Section 1.2. Not surprisingly, recent work has focused on improving graph processing
on GPGPUs through software-level optimizations as seen in Section 1.3.4, while graph frameworks
such as Gunrock [161], nvGRAPH [107], HPGA [170] or MapGraph [37] have been introduced

109

CHAPTER 6. COMBINING STRENGTHS OF THE SCU AND IRU

in recent years. Despite all these efforts, we found that state-of-the-art CUDA implementations
still suffer from high contention in the memory hierarchy and low utilization of the functional
units, as low as 13.5% on average in our graph datasets as determined in Section 1.4.2.

Chapter 4 explores one of the most effective optimizations for GPGPU graph processing,
which is stream compaction. Stream compaction gathers data compacting graph datasets in
contiguous memory, resulting in much more regular memory access patterns. However, the GPU
inefficiency at performing stream compaction leads to it representing a large fraction of execution
time as shown previously in Figure 4.1. Consequently, recognizing the importance of stream
compaction in graph processing we proposed the Stream Compaction Unit (SCU) hardware
extension in Chapter 4. The SCU is tailored to perform stream compaction operations efficiently
while the remaining graph-based algorithm steps are executed on the SMs. As such, graph
exploration benefits from both parallelism and operating with SCU-prepared data, improving
efficiency.

The SCU pre-processing improves memory coalescing and, in addition, it performs filtering of
repeated and already visited nodes during the compaction process, significantly reducing GPGPU
workload. As explored in Section 4.3, filtering duplicated and already visited elements is key for
high-performance graph processing, as software based solutions require either expensive atomic
synchronization solutions or imprecise filtering approaches. Our SCU employs a hash table,
stored in the L2 cache, to track already processed nodes/edges. According to our measurements,
a large amount of data is moved between the SCU and the L2 partitions just for the filtering.
More specifically, we have measured that 57% of the traffic in the NoC is due to the filtering
operations of the SCU. We claim this is an important limitation and we improve the SCU design
to avoid this bottleneck.

As previously introduced in Chapter 5, our Irregular accesses Reordering Unit (IRU) shows
a more efficient design for filtering. Instead of offloading the entire stream compaction, the IRU
improves coalescing of irregular memory accesses by reordering the node/edge frontier on-the-fly,
so threads within the same warp receive nodes/edges stored in the same cache line. During this
reordering, the IRU filters duplicated elements but, unlike the SCU, it is located inside the GPU
memory partitions and it performs the filtering directly in the L2, reducing traffic in the NoC
by a large extent.

Table 6.1 summarizes both approaches, SCU and IRU. The SCU achieves significant speedups
and large energy savings, but it produces high contention in the NoC since a lot of data is moved
between the L2 and the SCU for the filtering operation. On the other hand, the IRU achieves
more modest energy savings, since it focuses on irregular load operations while most of the
stream compaction still runs on the GPU, but its filtering operation is highly efficient as it is
done inside the memory partitions, largely reducing contention in the NoC and resulting in 46%
lower traffic compared to the SCU.

In this chapter we show that the IRU and the SCU have interesting synergies and we propose
a novel GPU design that effectively combines both techniques and leverages the strengths of
both approaches. We do so by exploiting the SCU to offload the stream compaction operation.
However, we modify the behavior of the filtering operation. Instead of fetching data from L2
and performing the filtering in the SCU, our SCU issues requests to the IRU to filter repeated
elements in the memory partitions. In this manner, the IRU ameliorates the main bottleneck of

110

6.2. IRU-ENHANCED SCU (ISCU)

Table 6.1: Comparison between SCU, IRU and ISCU hardware extensions for Graph Processing
on GPGPU architectures, showcasing their main functionality and performance metrics.

GPU GPU+SCU GPU+IRU GPU+ISCU
Offloaded task Nothing Stream Compaction Irregular Loads Stream Compaction

Speedup - 1.37x 1.33x 2.2x
Energy savings - 84.7% 13% 90%
Area overheads - 3.3% 5.6% 8.5%
NoC contention High High Low Low

Node/Edge
filtering

In software
(expensive)

In SCU
(data in L2) In L2 In L2

the SCU, achieving the benefits of both solutions: large energy savings due to offloading stream
compaction to a specialized unit and low contention in the NoC since filtering of duplicated
elements is done inside the memory partitions. We call this system the IRU-enhanced SCU
(ISCU).

Finally, we evaluate the ISCU for a wide variety of state-of-the-art graph-based algorithms
and applications. Results show that the ISCU obtains a speedup of 2.2x and 90% energy savings
derived from a high reduction of 78% in memory accesses, while incurring in 8.5% area overhead.

This chapter focuses on improving the performance of graph processing on GPGPU archi-
tectures. The main contributions are the following:

• We characterize the bottlenecks of the SCU. We observe that the main limiting factor is
the large amount of data movement between the L2 cache and the SCU for the filtering
operation, which represents 57% of NoC traffic.

• We identify the synergies between the SCU and the IRU, and show that they perfectly
complement each other. Based on this observation, we propose the ISCU, a novel GPU
extension that combines both the efficient SCU and the filtering mechanism of the IRU to
improve overall graph processing efficiency.

• We evaluate our proposal on top of a modern GPU architecture. Our experimental results
show that the ISCU improves performance by 2.2x and delivers 90% energy savings for a
diverse set of graph-based applications over a GTX 980 GPU. Compared to the GPU+SCU,
our ISCU improves performance by 63%, while achieving 66% energy savings.

6.2 IRU-enhanced SCU (ISCU)

In this section we present the IRU-enhanced SCU (ISCU), a GPGPU hardware extension
targeting graph processing applications. The ISCU improves the SCU by utilizing the IRU
hardware extension to perform pre-processing operations, in particular the filtering of duplicated
nodes/edges. The ISCU combines the powerful SCU optimizations obtained by offloading
stream compaction operations with the efficient hashing mechanism used in the IRU. Figure 6.1
showcases a GPGPU architecture featuring the ISCU and IRU partitions located in the GPGPU

111

CHAPTER 6. COMBINING STRENGTHS OF THE SCU AND IRU

L2

GPU die

IRU
Mem Partition Mem Partition

L1 & Shrd

EUs
SM

Interconnection

Main Memory

L2

IRU

L1 & Shrd

SM
EUs

ISCU

Figure 6.1: Overview of a GPGPU architecture featuring the ISCU attached to the interconnection
as well as the IRU located in the Memory Partitions.

Memory Partitions (MP). The ISCU hardware extension is motivated by SCU’s bottleneck
experienced when performing pre-processing filtering and grouping optimizations for graph
processing applications.

SCU’s main bottleneck arises from the limited interconnection throughput to the L2 and due
to the memory accesses required to perform filtering/grouping operations through the in-memory
hash table. Figure 6.2 shows the utilization of the filtering/grouping unit, measured as the
percentage of cycles this data pre-processing unit is being utilized over the total execution, and
the percentage of Network-on-Chip (NoC) traffic generated by it. As it can be seen, utilization of
this component is high during the execution of the compaction operations, reaching 92% of the
execution for BFS and an average of 51% for the different graph algorithms. Furthermore, it is
responsible for a significant amount of traffic and accesses to the interconnection, as much as 80%
for BFS and an average of 58% for the different graph algorithms. Consequently, this component’s
high utilization of the pipeline and NoC limits performance and provides an opportunity for
optimization.

The memory accesses that saturate NoC throughput come from several sources. First, from
fetching the sparse data and then writing the elements in the compacted array. Second, from
the parameters used in the operations. Finally, when doing pre-processing, several accesses
are required to retrieve and operate with the in-memory hash table. Nonetheless, the high
filtering efficiency achieved, reaching up to 76% of the workload, reduces significantly the accesses
required for the data compaction operations themselves, consequently accesses to the in-memory
hash table represent a larger split and become a significant bottleneck.

Insertion of elements to the in-memory hash table requires several accesses. For filtering,
first it requires fetching the tag entry, and performing the corresponding comparison. In case of
a miss, tag and data entries have to be updated. Consequently, processing an element (edge or

112

6.2. IRU-ENHANCED SCU (ISCU)

0.0
0.2
0.4
0.6
0.8
1.0

Pe
rc

en
ta

ge
 (%

)

BFS SSSP PR AVG

Utilitzation NoC

Figure 6.2: Utilization of the SCU pre-processing component (i.e. filtering/grouping unit) and
the percentage of NoC traffic devoted to filtering/grouping operations. The utilization is the
percentage of cycles that the filtering/grouping unit is active over total execution. The SCU
invests a large number of cycles and NoC transactions in the data pre-processing operations.

node) incurs in multiple accesses to the L2. Although the SCU in-memory hash table design is
multi-banked, the throughput to L2 is limited to a single access from the Filtering/Grouping
component per cycle, severely affecting the performance of hash insertions.

We propose to use the IRU efficient distributed hash table as a replacement of the in-memory
hash used for the SCU pre-processing, additionally increasing the throughput of requests to the
IRU. The resulting system that we term ISCU contains both SCU and IRU hardware extensions
with our modifications to fit the requirements of the end system.

6.2.1 Hardware Modifications

The main changes in the SCU are modifications to the Data Fetch and Filtering/Grouping
component shown in Figure 4.8. Due to the data path changes reviewed in Section 6.2.2, Data
Fetch is only required to issue the fetch operation, yet the IRU is the hardware receiving that
data, avoiding unnecessary data movements. Similarly, the Filtering/Grouping component logic
is largely removed since it was responsible to manage request to the in-memory hash table.
Additionally, the coalescing unit attached to this component is no longer required as it was used
to merge requests to tag and data entries.

Similarly, adapting the IRU requires minor hardware changes. Additional control logic is
required to support configuring the IRU to perform SCU pre-processing. This control logic
modifies the data-path, so compaction operations are performed at different locations in the
system: the SCU will initiate the requests to the data, but the replies from the memory controller
will be directly passed to the IRU, that is located inside the L2 partition. In this manner, data
can be filtered and reordered in the IRU without being transferred to the SCU through the NoC,
saving NoC bandwidth by a large extent. In our system, the IRU does not use the prefetcher to
gather data, since the SCU is in charge of orchestrating the stream compaction operation and
it takes care of generating the read requests to the memory controller. Additionally, the Data

113

CHAPTER 6. COMBINING STRENGTHS OF THE SCU AND IRU

Replier does no longer require to gather requests, and can send replies back directly when data
from the Reordering Hash is ready. Although the Prefetcher is not utilized for the ISCU, this
structure is maintained to provide the IRU main functionality for other CUDA kernels.

The hash table mechanism of the original SCU is not bound by on-chip memory size as
it is stored in main memory and cached in the L2. In comparison, the IRU includes limited
on-chip storage for the hash table. This reduces memory bandwidth usage at the cost of less
accurate filtering of duplicated nodes, since in case of conflicts in the hash table the old data is
evicted. We have observed that with a modest size of 80KB per memory partition the filtering
mechanism is highly effective, as it is able to avoid the vast majority of duplicated elements.

6.2.2 Detailed Processing

The ISCU has two main internal processing data-flows which are represented in Figure 6.3a
for regular operations, and in Figure 6.3b for data pre-processing, both corresponding to the
SCU operations listed in Section 4.2.1. Note that the Data Processing ISCU component listed
in Figure 6.3 is in fact a simplification of Figure 4.8 containing both the Bitmask Constructor
and the Filtering/Grouping components.

Regular ISCU operations

The internal processing and data-flow of regular ISCU operations is shown in Figure 6.3a.
Initially, an operation is issued from the host which configures the ISCU with the required param-
eters and starts the execution Ê. This initializes the Address Generator to fetch parameters and
start fetching from L2 the sparse data to compact Ë. Afterwards, according to the corresponding
operation, some processing is applied to the data, such as replication or indirection Ì. Finally,
the sparsely gathered data is compacted and written directly to main memory Í.

Pre-processing ISCU operations

The behavior and data-flow of pre-processing ISCU operations is shown in Figure 6.3b. The
initial configuration Ê and fetching of the sparse data Ë is done the same way as regular ISCU
operations. Additionally, the ISCU pre-processing operation configures the IRU Controller to
receive and process data from the ISCU.

The processing and data-flow changes with respect to the SCU start in the Data Fetch
component. The data fetched by the ISCU is directly sent to the IRU Ì. In this manner,
duplicated and already visited nodes/edges are not transferred to the ISCU since they are
removed in the memory partition, saving NoC bandwidth by a large extent. The elements used
for pre-processing are then forwarded to the corresponding IRU through the Ring, if the hashing
function dictates it. Afterwards, these elements are inserted into the hash table performing the
corresponding filtering or reordering operation Í. When a hash entry is ready or no more data
is to be inserted, the pre-processed data is forwarded to the Data Replier Î, which sends a
reply to the ISCU. Since the resulting pre-processed data has to be written to main memory, it

114

6.3. ISCU PROGRAMMABILITY

 IRU #0

Prefetcher

Reordering
Hash

Ring

Data
Replier

IRU
Controller

ISCU

L2 Cache Mem. Controller

Data
Processing

Data
Store

 MP
 #0

Address
Generator

Data
Fetch

Ê

Ë

Ì

Í

(a) Behavior and data-flow for a regular ISCU oper-
ation, i.e. compaction operations.

 IRU #0

Prefetcher

Ring

ISCU

L2 Cache Mem. Controller

IRU
Controller

Reordering
Hash

Data
Replier

Data
Store

Data
Processing

 MP
 #0

Address
Generator

Data
Fetch

Ê

Ë

Ì

Í
Î

Ï Ð

(b) Behavior and data-flow for a pre-processing ISCU
operation, i.e. filtering/grouping.

Figure 6.3: Overview of the behavior and data-flow for the different ISCU operations performed
on the ISCU hardware extension together with its interactions with the IRU extension.

might be destined to a different memory partition and so the ISCU handles the final writing.
Finally, the ISCU creates the corresponding filtering/grouping vectors Ï which are then written
in memory directly by the Data Store Ð.

IRU operations

Finally, the ISCU also allows to perform IRU operations onto the IRU hardware as detailed
in Section 5.2.2 and Figure 5.4. The ISCU performs stream compaction operations without the
use of the GPU hardware, while the IRU extension is available to optimize irregular accesses
issued by the GPU.

6.3 ISCU Programmability

This section provides an overview of the complete ISCU programming model as well as how
an ISCU instrumented graph application operates with its different components. Note that,
since the modifications introduced in the ISCU extension are architectural, the programming

115

CHAPTER 6. COMBINING STRENGTHS OF THE SCU AND IRU

model remains largely unaffected. Finally, as an illustrative example, an instrumentation of the
Pagerank is with pre-processing is reviewed.

Our system performs stream compaction with the SCU operations which are described
in Section 4.2.1. These operations are performed by issuing them from the Host (CPU) and
execute on the ISCU, without involving the GPU in the process. Additionally, the pre-processing
operations described in Section 4.3 which perform filtering or grouping execute utilizing both
ISCU and IRU hardware extensions and similarly do not utilize the SMs of the GPU.

Furthermore, our system allows to perform the irregular access optimizations described in
Chapter 5 by utilizing the IRU independently from the ISCU hardware extension. The IRU
optimizations are achieved by using the programming model described in Section 5.3 which
involves both the SMs of the GPU and the IRU hardware to deliver irregular access coalescing
improvements.

6.3.1 Graph Processing Instrumentation

We instrument state-of-the-art implementations of BFS, SSSP and PR to utilize both
stream compaction and irregular accesses optimizations offered by the ISCU. We use the stream
compaction instrumentation described in Section 4.3 for both BFS and SSSP. We provide a new
version of PR that performs filtering, which does not improve performance for the regular SCU
due to the previously mentioned bottlenecks.

After the SCU offloading, the GPU is still responsible for the processing of the graph
exploration, as only the data compaction efforts are offloaded. The contractionGPU kernels
present in all graph algorithms, which are show in Figure 4.9 and Figure 4.10, are still executed
in the GPU. For these kernels, the IRU is used to improve memory coalescing as described in
Section 5.3 and following the changes performed in Figure 5.8 for BFS, Figure 5.9 for SSSP and
Figure 5.10 for PR.

PageRank ISCU instrumentation

With the ISCU we manage to remove the bottlenecks of the SCU extension, which allows us
to utilize filtering pre-processing operations for PR.

Removing duplicated or already visited nodes is not an option for PR since it requires to
consider all the nodes’ ranks on every iteration of the algorithm. The Update phase of the
PR requires the use of atomic operations to correctly add the weights, a mechanism that is
very costly, especially in large graphs. The filtering operation of the ISCU can be employed to
compute the new ranks instead of using a large number of expensive atomic operations in the
GPU. In other words, the filtering hardware in the IRU can be used to perform a reduction
operation, adding the weights of duplicated nodes. Shown on Figure 6.4, the required changes are
the following. For the expansion phase we include an additional ISCU operation with the filtering
mechanism that generates the filtering vector. Furthermore, as described earlier, the IRU is
used to provide irregular accesses improvement to other PR kernels. This IRU optimization is

116

6.4. EXPERIMENTAL RESULTS

described in Figure 5.10 in which the workload of the Contract kernel of the PR is optimized
achieving significant performance and energy improvements covered in Section 5.4.

1 void PR_Expand (nodes) {
2 indexes , count = preparationGPU (nodes);
3 filtering = accessExpansionCompactionSCU (edges , indexes , count);
4
5 edge_frontier = accessExpansionCompactionSCU
6 (edges , indexes , count , filtering);
7 weight_frontier = replicationCompactionSCU
8 (weights , count , filtering);
9 return edge_frontier , weight_frontier ;

10 }

Figure 6.4: Pseudo-code of the additional operations for a GPGPU PR program to use the
ISCU.

6.4 Experimental Results

In this section, we evaluate the improvements in performance and energy consumption
achieved by our ISCU scheme. We evaluate four different configurations. Configuration labeled
as GPU represents a pure software-based CUDA implementation of the graph algorithms running
on an NVIDIA GTX 980. Configuration labeled as SCU is the system presented in Chapter 4
that combines the GPU and the SCU. The system labeled as IRU is the GPU extended with
the IRU hardware as described in Chapter 5. Finally, configuration labeled as ISCU represents
our scheme as described in Section 6.2.

We first evaluate the energy consumption and performance of the ISCU in sections 6.4.1
and 6.4.2 respectively, using as the baseline the NVIDIA GTX 980. Afterwards, we compare the
performance and energy of the ISCU with the SCU and the IRU in Section 6.4.3. Finally, we
analyze the memory improvements of the ISCU in Section 6.4.4 and discuss its area requirements
in Section 6.4.5.

6.4.1 Energy Evaluation

Offloading compaction operations to our ISCU provides consistent and large energy savings.
Figure 6.5 shows the normalized energy consumption achieved by the ISCU over the baseline GPU
system for all graphs and datasets. Additionally, the figure indicates the source of the remaining
energy consumption distinguishing between the GPU, the majority, and the ISCU. On average,
the ISCU delivers a reduction of 90% in energy consumption, achieving an energy reduction of
92%, 91% and 85% for BFS, SSSP and PR respectively. Overall, energy savings are obtained
from several sources. First, stream compaction offloading to a more efficient ISCU hardware
reduces static and dynamic energy consumption required to perform compaction operations.
Second, the workload filtering and memory coalescing provided by the ISCU improves GPGPU

117

CHAPTER 6. COMBINING STRENGTHS OF THE SCU AND IRU

0.0 0.0
0.2 0.2
0.4 0.4
0.6 0.6
0.8 0.8
1.0 1.0

No
rm

al
ize

d
En

er
gy

ca cond

delaunay
human

kro
n
msdoor ca cond

delaunay
human

kro
n
msdoor ca cond

delaunay
human

kro
n
msdoor

total

BFS SSSP PR AVG

GPU ISCU

Figure 6.5: Normalized energy consumption of the ISCU enabled GPU with respect to the
baseline GPU system (GTX 980), showing the split between GPU and ISCU energy consumption.
Significant energy savings are achieved across BFS, SSSP and PR graph algorithms and every
dataset.

0.0 0.0
0.2 0.2
0.4 0.4
0.6 0.6
0.8 0.8
1.0 1.0

No
rm

al
ize

d
Ti

m
e

ca cond

delaunay
human

kro
n
msdoor ca cond

delaunay
human

kro
n
msdoor ca cond

delaunay
human

kro
n
msdoor

total

1.33 1.12

BFS SSSP PR AVG

GPU ISCU

Figure 6.6: Normalized execution time of the ISCU enabled GPU with respect to the baseline
GPU system, showing the split between GPU and ISCU execution time. Significant speedups
are achieved across BFS, SSSP and PR graph algorithms and the majority of the datasets.

resources utilization, which lowers overall GPGPU energy consumption. Third, irregular access
optimization enabled by the IRU further reduces memory contention. Finally, performance
speedup further reduces static energy consumption of the system. Note that graph datasets
with higher inter-connectivity see more energy savings due to higher computation offloading and
increased workload filtering.

6.4.2 Performance Evaluation

The ISCU delivers significant speedups across different graph algorithms and datasets as
seen in Figure 6.6, which shows normalized execution time using the ISCU over the baseline

118

6.4. EXPERIMENTAL RESULTS

0
2
4
6
8

10
12
14

En
er

gy
 S

av
in

gs

BFS SSSP PR AVG

SCU IRU ISCU

Figure 6.7: Energy savings of the SCU, IRU and ISCU with respect to the baseline GPU system.
The ISCU synergetically improves energy savings achieved with SCU and IRU.

GPU system. Additionally, the figure indicates the split of the execution time between the GPU
and the ISCU, highlighting the high performance improvements over GPU execution of the
higher inter-connectivity graphs. On average, the ISCU achieves a speedup of 2.2x with average
speedups of 2.8x, 2.56x and 1.44x for BFS, SSSP and PR respectively. The efficiency of the
ISCU is not as high for PR which in some cases incurs in overheads, a consequence of the large
frontiers due to PR exploring the entire graph at every iteration. For PR, since every element is
accessed on each iteration, all the data in the graph dataset is accessed incurring in less sparse
accesses and higher locality. Nonetheless, the overheads observed are compensated by the high
reduction in energy achieved due to the offloading of the compaction operations.

Overall, performance improvements are obtained from several sources. First, the efficient
execution on hardware tailor-made for stream compaction operations delivers better performance
than GPU architectures. Second, the ISCU pre-processing reduces GPGPU workload, additionally
reducing GPGPU atomic synchronization overheads and improving memory coalescing. Third,
the irregular accesses optimization enabled by the IRU further improves GPGPU performance
by increasing memory coalescing.

6.4.3 Comparison with SCU and IRU

We compare the energy savings and speedups achieved with the ISCU against previous
GPGPU architectural extensions for graph processing. Figure 6.7 shows how by combining
in the ISCU the strengths of the SCU and IRU we are able to achieve a synergistic energy
improvement, reaching on average a huge 10x improvement in energy consumption compared to
the GPU baseline, even though the SCU and IRU achieved on average 6x and 1.13x respectively.
The big factor contributing to energy savings is delegating stream compaction operations to our
specialized compaction hardware, as such the IRU optimizations do not deliver such huge energy
savings. Note that the less sparse exploration performed by PR reduces its the energy savings.
Furthermore, the ISCU avoids a large percentage of NoC transactions compared to the SCU, as
the filtering is performed directly in the memory partitions.

119

CHAPTER 6. COMBINING STRENGTHS OF THE SCU AND IRU

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Sp
ee

du
p

BFS SSSP PR AVG

SCU IRU ISCU

Figure 6.8: Speedup of the SCU, IRU and ISCU with respect to the baseline GPU system.
The ISCU synergetically improves speedups achieved with SCU and IRU. The ISCU is able to
overcome the SCU overheads which slowed down PR, delivering significant speedups.

0.0
0.2
0.4
0.6
0.8
1.0
1.2

No
rm

al
ize

d
M

em
. A

cc
es

se
s

BFS SSSP PR AVG

SCU IRU ISCU

Figure 6.9: Normalized memory accesses of the SCU, IRU and ISCU with respect to the baseline
GPU system. The ISCU synergetically improves the memory reduction achieved with SCU and
IRU due to the optimizations which significantly reduce memory traffic.

Performance improvements are also synergistic as seen in Figure 6.8, where the ISCU achieves
on average a significant 2.2x speedup compared to the baseline GPU, while the SCU and IRU
deliver on average 1.37x and 1.33x speedups respectively. The ISCU manages to overcome the
overheads that impact the PR filtering enhanced SCU instrumentation, which enable higher
performance and energy savings. Although the IRU achieves a better speedup for PR than the
ISCU, the minimal performance difference is more than made up by the significant difference in
energy efficiency reaching 6.66x for ISCU against a 1.08x for the IRU.

120

6.5. CONCLUSIONS

6.4.4 Memory Improvements Evaluation

The ISCU significantly contributes to reduce memory accesses performed by graph processing
applications as seen in Figure 6.9. The ISCU achieves on average a reduction of 78% in the total
memory accesses performed by the baseline GPU, while the SCU and IRU achieve a reduction
of 58% and 1% respectively. Although IRU memory accesses reduction is low, it significantly
contributes to reduce intra-GPU memory resource utilization and interconnection traffic.

6.4.5 Area Overhead Evaluation

We evaluate the overhead of the complete ISCU extension which contains the improved
SCU and the IRU hardware extensions. We do so by synthesizing and characterizing the
different components, which require a total of 37.17 mm2 additional area for the proposed system.
Considering the overall GPU system, the ISCU represents a 8.5% of the total GPU area. The
ISCU area overhead is very low given the high energy savings and speedups achieved. In terms
of both performance/area and energy, the ISCU results in very high benefits compared with the
baseline and the SCU and IRU solutions.

6.5 Conclusions

In this chapter we propose the IRU-enhanced SCU (ISCU), a GPGPU hardware exten-
sion that efficiently performs stream compaction operations commonly used by graph-based
applications. The ISCU combines the strengths of the SCU and IRU hardware extensions
to synergistically achieve high performance and energy-efficiency for GPGPU graph-based
applications.

The ISCU solves the bottlenecks caused by the in-memory hash table used in the SCU
to filter duplicated elements, that requires a large amount of traffic in the NoC. We propose
to leverage the efficient IRU hash mechanism to perform filtering operations in the memory
partitions, saving NoC traffic by a large extent and achieving significant speedups and energy
savings.

The ISCU optimizations for graph processing operations deliver on average a 2.2x speedup
and a reduction of 90% in energy consumption for a diverse set of graph-based applications and
datasets, while achieving a high reduction of 78% in memory accesses, at the expense of a 8.5%
GPU area overhead.

121

122

7
Conclusions and Future Work

This last chapter presents the main conclusions of the thesis, summarizes the contributions
and finally closes with possible open-research areas for future work.

7.1 Conclusions

This dissertation has analyzed the performance of state-of-the-art irregular graph processing
in GPGPU architectures. Our evaluations have led us to several contributions in the form of
hardware extensions and deeper understanding of challenges of graph processing in GPGPU
architectures, resulting in the following main conclusions.

In first place, we characterize state-of-the-art graph applications on GPGPU architectures.
We observe that up to 55% of the execution time is dominated by stream compaction operations,
while the remaining time is dedicated to graph exploration execution. We observe that even
though GPU stream compaction takes a significant amount of time, it is executed inefficiently
due to their low-computation, data-movement type of operation. With these observations we
come up with a proposal to extend the GPU architecture with a Stream Compaction Unit (SCU)
to improve performance and energy-efficiency for graph processing. The SCU is tailored to
the requirements of the stream compaction operation, while the rest of the graph processing
algorithm is executed on the streaming multiprocessors achieving high GPU efficiency.

We extend the SCU hardware to pre-process the data serviced to the GPU with the objective
to improve the GPU efficiency as it will process SCU-prepared compacted data. We achieve
this through two approaches. First, filtering out duplicated and already visited nodes during
the compaction process, which reduces the number of GPU instructions by more than 70% on
average. Additionally, we implement a grouping operation that writes together in the compacted

123

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

array edges whose destination nodes are in the same cache line, improving memory coalescing by
27% for the remaining GPU workload. Overall, the resulting High-Performance and Low-Power
GPU system including our SCU unit achieves significant speedups of 1.37x and 2.32x, and 84.7%
and 69% energy savings respectively on average for several graph-based applications, with a
small 3.3% and 4.1% increase in overall area respectively.

In second place, we characterize the degree of memory coalescing and GPU utilization
of modern graph-based applications. Our analysis shows poor memory coalescing poor (four
accesses per warp) and low GPU utilization (13.5% on average). Current techniques to improve
this negative aspects of graph-based applications are complex and require extensive hardware
knowledge from programmers, while at the same time they impose strict constraints. Based
on this analysis, we propose the Irregular accesses Reorder Unit (IRU), a GPU extension that
improves performance and energy efficiency of irregular applications. The IRU is a novel hardware
unit that delivers improved performance and overall memory traffic of irregular applications
by reordering data serviced to the threads. The reordering is facilitated by relaxing the strict
relationship between threads and data processed.

We extend the IRU to filter out and merge repeated elements while performing the reordering,
achieving performance improvements by greatly reducing redundant GPU workload with minimal
cost. Overall, the IRU reordering and filtering optimization delivers 1.32x improvement in
memory coalescing, significantly reducing by 46% the traffic in the memory hierarchy. Our IRU
augmented GPU system achieves on average 1.33x speedup and 13% energy savings for a diverse
set of graph-based applications and datasets, while incurring in a 5.6% area overhead.

Finally, we characterize the limitations of the SCU concluding that its major bottleneck
is the large amount of data movement between itself and the L2 cache. These data transfers
between the SCU and the L2 are caused by the pre-processing operation with an in-memory
hash, which contributes to 57% of Network-on-Chip (NoC) traffic. With this insight we realize
we can leverage the IRU hardware strengths as its optimizations are highly effective at reducing
contention in the NoC. Based on this observation, we propose the ISCU, a novel GPU extension
that combines both systems, SCU and IRU. The ISCU leverages the powerful stream compaction
offloading achieved by the SCU and the efficient filtering mechanism of the IRU. In other
words, the SCU employs the IRU to filter duplicated nodes/edges directly in the GPU memory
partitions, reducing NoC traffic by a large extent.

The proposed ISCU system improves overall graph processing efficiency by combining the
strengths of SCU and IRU. When implemented on top of an NVIDIA GTX 980, the ISCU
achieves a reduction of 78% in memory accesses, reduces energy consumption by 90% and
provides 2.2x speedup on average for a diverse set of graph-based workloads, while incurring in
a 8.5% area overhead.

In summary, the experimental results presented in this dissertation show that GPU graph
processing incurs in many inefficiencies such as requiring stream compaction operations, ex-
periencing high memory divergence, increasing memory hierarchy traffic and achieving low
GPU resource utilization. We propose several solutions to improve GPU graph processing.
First, offloading stream compaction operations to specialized SCU hardware. Second, deliver-
ing improved coalescing, memory traffic reduction and performance improvement by reducing
irregular accesses divergence with the IRU hardware. Finally, we attain an overall improved

124

7.2. CONTRIBUTIONS

graph performance and energy-efficient GPU architecture with the ISCU which synergistically
combines the strengths of both our previous SCU and IRU contributions.

7.2 Contributions

In this dissertation different techniques have been proposed to improve irregular graph
processing performance on GPGPU architectures. We have explored the different challenges and
limitations of the memory hierarchy of GPGPU architectures, and as a result, we have come up
with multiple GPGPU hardware extensions improving overall performance, energy efficiency and
memory contention of graph processing. The contributions of this dissertation are summarized
as follows.

In first place, we propose and design the Stream Compaction Unit (SCU), a GPGPU
architecture extension capable of efficiently processing stream compaction operations required
for graph processing. Our design leverages hardware offloading and data pre-processing which
provide powerful improvements for stream compaction operations. The hardware offloading
enables significant energy savings while the data preprocessing improves performance by reducing
workload and increasing overall memory coalescing. Finally, by providing hardware scalability
characteristics we evaluate our proposal for both High-Performance and Low-Power GPUs,
achieving huge energy savings and important speedups for both GPU designs as evaluated in
Chapter 4. This work has been published in the 46th International Symposium on Computer
Architecture (ISCA) [139]:

• "SCU: A GPU Stream Compaction Unit for Graph Processing".
Albert Segura, Jose-Maria Arnau, and Antonio González.
International Symposium on Computer Architecture, June 2019 (ISCA ’19).
DOI: https://doi.org/10.1145/3307650.3322254

We explore further improvement of irregular applications with our second contribution
where we propose the Irregular accesses Reorder Unit (IRU), a GPGPU architecture exten-
sion targeting the reduction of memory divergence in irregular accesses performed by graph
processing. Our design relaxes programming model restrictions which enables hardware-driven
remapping optimizations of data processed by threads, leading to improved memory coalescing
and overall memory hierarchy improvements. Our design improves the memory coalescing of
graph applications while at the same time halving memory hierarchy traffic. The memory
hierarchy improvements lead to significant performance and energy improvements for irregular
graph processing GPGPU applications as detailed in Chapter 5. This work has been submitted
for publication [137].

• "Irregular Accesses Reorder Unit: Improving GPGPU Memory Coalescing for Graph-Based
Workloads".
Albert Segura, Jose-Maria Arnau, and Antonio González.

125

https://doi.org/10.1145/3307650.3322254

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Finally, in our last contribution we combine the strengths of our previous techniques in a
new GPGPU architecture extension which efficiently performs graph processing applications.
This design combines the offloading and processing capabilities of the SCU, with the efficient
filtering and reordering of irregular accesses of the IRU in a synergistic manner, which enables
higher efficiency of graph processing in GPGPU systems and overcomes limitations of our
previous contributions. Our design achieves high energy savings and important speedups for
graph processing in modern GPGPU architectures as explored in Chapter 6. This work has been
submitted for publication [138].

• "Energy-Efficient Stream Compaction Through Filtering and Coalescing Accesses in
GPGPU Memory Partitions".
Albert Segura, Jose-Maria Arnau, and Antonio González.

7.3 Open-Research Areas

Graph processing is a research field which has seen increased interest over the last years
motivated by the growing importance of data analytics in today’s knowledge-based society.
Previous introduction of technologies such as social networks and smartphones and future
introduction of new technologies such as Internet of Things (IoT) and 5G mobile networks
underpins the importance of graph processing research. The literature on GPU graph processing
is not extensive, yet efficiency of graph-based workloads on GPGPU architectures has ample
room for improvement.

A compelling extension of the contributions proposed in this dissertation would be to explore
synergies with processing in memory and newer 3D stacking memories. Data movement across
the memory hierarchy comes at a cost in both energy and performance due to latency and
resources utilization. This reason motivates processing data close to memory, specially operations
such as stream compaction operations, remapping and other kinds of pre-processing of data.
The data processed by such operations is brought into the GPU to be either processed by it
or by our proposals (i.e. SCU or IRU), just to be sent back to memory and finally be brought
back later in order to be processed by the program. Instead, avoiding this data movement
operations and performing the computations close to memory could deliver huge improvements
in energy consumption as well a performance and resource utilization, motivating the exploration
of synergies between our SCU and IRU contributions and processing in memory approaches.
Nonetheless, many processing in memory computation offloading approaches have been proposed
over the last years with varying degree of success, often times with increased complexity in
programmability of the proposed solutions.

Synergies with other improvements in the memory hierarchy are also worth exploring.
Several proposals in the literature, such as Elastic-cache [85] or DyCache [51], have explored to
deliver more flexible GPU cache solutions with finer grain caches allocation. Additionally, recent
GPGPU architectures introduce new coalescing hardware and Streaming Throughput-oriented
caches which facilitate more in-flight misses. One of the main motivations of these solutions is
the ratio between the data brought to caches and the actual amount of data used: for sparse

126

7.3. OPEN-RESEARCH AREAS

and irregular accesses it is low, and thus potential for energy efficiency and performance arises.
Synergies could be exploited between these approaches and our SCU and IRU contributions to
further reduce data movement and deliver more energy efficient solutions. On the other hand,
further granularity of the cache allocation of data could be achieved with approaches exploiting
the graph topology with prefetching or prediction approaches, although at a cost of reduced
general use.

Similarly, many works have explored standalone accelerator approaches, specially exploring
synergies with varied memory technologies. These accelerators have the benefit that they can
more easily exploit graph data structures and topology to significantly improve performance.
Similar approaches leveraging these technologies in GPU architectures might also deliver large
improvements in performance and energy efficiency, yet might incur in high area overheads and
low generic use of the added hardware.

A more far-fetched idea could be to leverage DNNs to improve the existing GPU hardware,
i.e. use machine learning techniques to improve memory coalescing and reduce data movements.
This DNN would be trained to learn the topology of several graphs and predict the memory
access patterns. At runtime, the DNN information generated by the GPU could be used by
software or hardware to inform prefetching mechanisms, perform remapping to collocate data or
inform cache data allocation. This approach could deliver improvements in performance and
efficiency leveraging the computational power already present in the GPU, which is inefficiently
used by irregular graph-based workloads.

127

128

Bibliography

[1] 3dfx Interactive:Voodoo Graphics PCI. url: https://en.wikipedia.org/wiki/3dfx_
Interactive#Voodoo_Graphics_PCI (visited on 04/2020).

[2] Junwhan Ahn et al. “A scalable processing-in-memory accelerator for parallel graph
processing”. In: Proceedings of the 42nd Annual International Symposium on Computer
Architecture. 2015, pp. 105–117.

[3] Gene M Amdahl. “Validity of the single processor approach to achieving large scale
computing capabilities”. In: Proceedings of the April 18-20, 1967, spring joint computer
conference. 1967, pp. 483–485.

[4] Shaahin Angizi et al. “GraphS: A graph processing accelerator leveraging SOT-MRAM”.
In: 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE.
2019, pp. 378–383.

[5] Luigi Atzori, Antonio Iera, and Giacomo Morabito. “The internet of things: A survey”.
In: Computer networks 54.15 (2010), pp. 2787–2805.

[6] Ali Bakhoda et al. “Analyzing CUDA workloads using a detailed GPU simulator”. In:
Performance Analysis of Systems and Software, 2009. ISPASS 2009. IEEE International
Symposium on. IEEE. 2009, pp. 163–174.

[7] Peter Bakkum and Kevin Skadron. “Accelerating SQL database operations on a GPU
with CUDA”. In: Proceedings of the 3rd Workshop on General-Purpose Computation on
Graphics Processing Units. 2010, pp. 94–103.

[8] Darius Bakunas-Milanowski et al. “Efficient algorithms for stream compaction on GPUs”.
In: International Journal of Networking and Computing 7.2 (2017), pp. 208–226.

[9] Scott Beamer. “Understanding and improving graph algorithm performance”. PhD thesis.
UC Berkeley, 2016.

[10] Nathan Bell and Michael Garland. Efficient sparse matrix-vector multiplication on CUDA.
Tech. rep. Nvidia Technical Report NVR-2008-004, Nvidia Corporation, 2008.

[11] Nathan Bell and Michael Garland. “Implementing sparse matrix-vector multiplication on
throughput-oriented processors”. In: Proceedings of the conference on high performance
computing networking, storage and analysis. ACM. 2009, p. 18.

[12] Nathan Bell and Jared Hoberock. “Thrust: A productivity-oriented library for CUDA”.
In: GPU computing gems Jade edition. Elsevier, 2011, pp. 359–371.

[13] Markus Billeter, Ola Olsson, and Ulf Assarsson. “Efficient stream compaction on wide
SIMD many-core architectures”. In: Proceedings of the conference on high performance
graphics 2009. 2009, pp. 159–166.

129

https://en.wikipedia.org/wiki/3dfx_Interactive#Voodoo_Graphics_PCI
https://en.wikipedia.org/wiki/3dfx_Interactive#Voodoo_Graphics_PCI

BIBLIOGRAPHY

[14] Guy E. Blelloch. Prefix Sums and Their Applications. Tech. rep. CMU-CS-90-190. School
of Computer Science, Carnegie Mellon University, Nov. 1990.

[15] Mariusz Bojarski et al. “End to end learning for self-driving cars”. In: arXiv preprint
arXiv:1604.07316 (2016).

[16] Mariusz Bojarski et al. “Explaining how a deep neural network trained with end-to-end
learning steers a car”. In: arXiv preprint arXiv:1704.07911 (2017).

[17] Nicolas Brunie, Sylvain Collange, and Gregory Diamos. “Simultaneous branch and
warp interweaving for sustained GPU performance”. In: 2012 39th Annual International
Symposium on Computer Architecture (ISCA). IEEE. 2012, pp. 49–60.

[18] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. “A quantitative study of irregular
programs on GPUs”. In: 2012 IEEE International Symposium on Workload Characteriza-
tion (IISWC). IEEE. 2012, pp. 141–151.

[19] Shuai Che. “GasCL: A vertex-centric graph model for GPUs”. In: 2014 IEEE High
Performance Extreme Computing Conference (HPEC). IEEE. 2014, pp. 1–6.

[20] Shuai Che et al. “Pannotia: Understanding irregular GPGPU graph applications”. In:
2013 IEEE International Symposium on Workload Characterization (IISWC). IEEE. 2013,
pp. 185–195.

[21] Xuhao Chen et al. “Adaptive cache management for energy-efficient gpu computing”.
In: 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE.
2014, pp. 343–355.

[22] Jike Chong, Ekaterina Gonina, and Kurt Keutzer. “Efficient automatic speech recognition
on the gpu”. In: GPU Computing Gems Emerald Edition. Elsevier, 2011, pp. 601–618.

[23] Design Compiler. Synopsys inc. 2000.
[24] cuBLAS. url: https://docs.nvidia.com/cuda/cublas/index.html (visited on

04/2020).
[25] CUDA (Compute Unified Device Architecture). url: https://en.wikipedia.org/wiki/

CUDA (visited on 04/2016).
[26] cuFFT. url: https://docs.nvidia.com/cuda/cufft/index.html (visited on 04/2020).
[27] cuSPARSE. url: https://docs.nvidia.com/cuda/cusparse/index.html (visited on

04/2020).
[28] Guohao Dai et al. “Graphh: A processing-in-memory architecture for large-scale graph

processing”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 38.4 (2018), pp. 640–653.

[29] Andrew Davidson et al. “Work-efficient parallel GPU methods for single-source shortest
paths”. In: Parallel and Distributed Processing Symposium, 2014 IEEE 28th International.
IEEE. 2014, pp. 349–359.

[30] Timothy A Davis and Yifan Hu. “The University of Florida sparse matrix collection”. In:
ACM Transactions on Mathematical Software (TOMS) 38.1 (2011), p. 1.

[31] Jeff Dean, David Patterson, and Cliff Young. “A new golden age in computer architecture:
Empowering the machine-learning revolution”. In: IEEE Micro 38.2 (2018), pp. 21–29.

130

https://docs.nvidia.com/cuda/cublas/index.html
https://en.wikipedia.org/wiki/CUDA
https://en.wikipedia.org/wiki/CUDA
https://docs.nvidia.com/cuda/cufft/index.html
https://docs.nvidia.com/cuda/cusparse/index.html

BIBLIOGRAPHY

[32] Robert H Dennard et al. “Design of ion-implanted MOSFET’s with very small physical
dimensions”. In: IEEE Journal of Solid-State Circuits 9.5 (1974), pp. 256–268.

[33] DIMACS. 10th DIMACS Implementation Challenge - Graph Partitioning and Graph
Clustering. 2010. url: https://www.cc.gatech.edu/dimacs10/ (visited on 2017).

[34] DirectX. url: https://en.wikipedia.org/wiki/DirectX (visited on 04/2020).
[35] Jeffrey Donahue et al. “Long-term recurrent convolutional networks for visual recognition

and description”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2015, pp. 2625–2634.

[36] Hadi Esmaeilzadeh et al. “Dark silicon and the end of multicore scaling”. In: 2011 38th
Annual international symposium on computer architecture (ISCA). IEEE. 2011, pp. 365–
376.

[37] Zhisong Fu, Michael Personick, and Bryan Thompson. “Mapgraph: A high level api
for fast development of high performance graph analytics on gpus”. In: Proceedings of
Workshop on GRAph Data management Experiences and Systems. 2014, pp. 1–6.

[38] Wilson WL Fung and Tor M Aamodt. “Thread block compaction for efficient SIMT control
flow”. In: 2011 IEEE 17th International Symposium on High Performance Computer
Architecture. IEEE. 2011, pp. 25–36.

[39] Wilson WL Fung et al. “Dynamic warp formation and scheduling for efficient GPU
control flow”. In: 40th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO 2007). IEEE. 2007, pp. 407–420.

[40] GDDR5 SDRAM. url: https://en.wikipedia.org/wiki/GDDR5_SDRAM (visited on
04/2020).

[41] GDDR6 SDRAM. url: https://en.wikipedia.org/wiki/GDDR6_SDRAM (visited on
04/2020).

[42] GeForce 20 series. url: https://en.wikipedia.org/wiki/GeForce_20_series (visited
on 04/2020).

[43] GeForce 3 series. url: https://en.wikipedia.org/wiki/GeForce_3_series (visited
on 04/2020).

[44] GeForce 8 series: GeForce 8800 Series. url: https : / / en . wikipedia . org / wiki /
GeForce_8_series#GeForce_8800_Series (visited on 04/2020).

[45] Afton Geil, Yangzihao Wang, and John D Owens. “WTF, GPU! computing twitter’s
who-to-follow on the GPU”. In: Proceedings of the second ACM conference on Online
social networks. ACM. 2014, pp. 63–68.

[46] General-purpose computing on graphics processing units. url: https://en.wikipedia.
org/wiki/General-purpose_computing_on_graphics_processing_units (visited on
04/2020).

[47] Prasun Gera et al. “Traversing large graphs on GPUs with unified memory”. In: Proceed-
ings of the VLDB Endowment 13.7 (2020), pp. 1119–1133.

[48] Abdullah Gharaibeh et al. “Efficient large-scale graph processing on hybrid CPU and
GPU systems”. In: arXiv preprint arXiv:1312.3018 (2013).

131

https://www.cc.gatech.edu/dimacs10/
https://en.wikipedia.org/wiki/DirectX
https://en.wikipedia.org/wiki/GDDR5_SDRAM
https://en.wikipedia.org/wiki/GDDR6_SDRAM
https://en.wikipedia.org/wiki/GeForce_20_series
https://en.wikipedia.org/wiki/GeForce_3_series
https://en.wikipedia.org/wiki/GeForce_8_series#GeForce_8800_Series
https://en.wikipedia.org/wiki/GeForce_8_series#GeForce_8800_Series
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units

BIBLIOGRAPHY

[49] Antonio González. “Trends in Processor Architecture”. In: Harnessing Performance
Variability in Embedded and High-performance Many/Multi-core Platforms. Springer,
2019, pp. 23–42.

[50] NVIDIA GeForce GTX. “980 Whitepaper”. In: NVIDIA Corporation (2014).
[51] Hui Guo et al. “DyCache: Dynamic multi-grain cache management for irregular memory

accesses on GPU”. In: IEEE Access 6 (2018), pp. 38881–38891.
[52] Sang-Won Ha and Tack-Don Han. “A scalable work-efficient and depth-optimal parallel

scan for the GPGPU environment”. In: IEEE Transactions on Parallel and Distributed
Systems 24.12 (2012), pp. 2324–2333.

[53] Tae Jun Ham et al. “Graphicionado: A high-performance and energy-efficient accelerator
for graph analytics”. In: 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE. 2016, pp. 1–13.

[54] Tianyi David Han and Tarek S Abdelrahman. “Reducing branch divergence in GPU
programs”. In: Proceedings of the Fourth Workshop on General Purpose Processing on
Graphics Processing Units. ACM. 2011, p. 3.

[55] Mark J Harris. “Fast fluid dynamics simulation on the GPU.” In: SIGGRAPH Courses
220.10.1145 (2005), pp. 1198555–1198790.

[56] Mark Harris, Shubhabrata Sengupta, and John D Owens. “Parallel prefix sum (scan)
with CUDA”. In: GPU gems 3.39 (2007), pp. 851–876.

[57] Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.
[58] High Bandwidth Memory. url: https://en.wikipedia.org/wiki/High_Bandwidth_

Memory (visited on 04/2020).
[59] Mark D Hill and Michael R Marty. “Amdahl’s law in the multicore era”. In: Computer

41.7 (2008), pp. 33–38.
[60] Ron Ho, Kenneth W Mai, and Mark A Horowitz. “The future of wires”. In: Proceedings

of the IEEE 89.4 (2001), pp. 490–504.
[61] Jared Hoberock et al. “Stream compaction for deferred shading”. In: Proceedings of the

Conference on High Performance Graphics 2009. 2009, pp. 173–180.
[62] Sungpack Hong et al. “Accelerating CUDA graph algorithms at maximum warp”. In:

ACM SIGPLAN Notices. Vol. 46. ACM. 2011, pp. 267–276.
[63] Daniel Horn. “Stream reduction operations for GPGPU applications”. In: Gpu gems 2.36

(2005), pp. 573–589.
[64] Joel Hruska. Intel Acknowledges It Was ‘Too Aggressive’ With Its 10nm Plans. 2019. url:

https://www.extremetech.com/computing/295159-intel-acknowledges-its-long-
10nm-delay-caused-by-being-too-aggressive (visited on 04/2019).

[65] Zhigang Hu et al. “Microarchitectural techniques for power gating of execution units”. In:
Proceedings of the 2004 international symposium on Low power electronics and design.
2004, pp. 32–37.

[66] International Data Group (IDG). url: https://www.idg.com/ (visited on 04/2020).

132

https://en.wikipedia.org/wiki/High_Bandwidth_Memory
https://en.wikipedia.org/wiki/High_Bandwidth_Memory
https://www.extremetech.com/computing/295159-intel-acknowledges-its-long-10nm-delay-caused-by-being-too-aggressive
https://www.extremetech.com/computing/295159-intel-acknowledges-its-long-10nm-delay-caused-by-being-too-aggressive
https://www.idg.com/

BIBLIOGRAPHY

[67] D Anoushe Jamshidi, Mehrzad Samadi, and Scott Mahlke. “D2MA: Accelerating coarse-
grained data transfer for GPUs”. In: Proceedings of the 23rd international conference on
Parallel architectures and compilation. 2014, pp. 431–442.

[68] Zhihao Jia et al. “A distributed multi-gpu system for fast graph processing”. In: Proceedings
of the VLDB Endowment 11.3 (2017), pp. 297–310.

[69] Peng Jiang, Changwan Hong, and Gagan Agrawal. “A novel data transformation and exe-
cution strategy for accelerating sparse matrix multiplication on GPUs”. In: Proceedings of
the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
2020, pp. 376–388.

[70] S. Jun et al. “GraFBoost: Using Accelerated Flash Storage for External Graph Analytics”.
In: 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA). June 2018, pp. 411–424. doi: 10.1109/ISCA.2018.00042.

[71] Shinpei Kato et al. “Autoware on board: Enabling autonomous vehicles with embedded
systems”. In: 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems
(ICCPS). IEEE. 2018, pp. 287–296.

[72] Paresh Kharya. Record 136 NVIDIA GPU-Accelerated Supercomputers Feature in TOP500
Ranking. 2019. url: https://blogs.nvidia.com/blog/2019/11/19/record-gpu-
accelerated-supercomputers-top500/ (visited on 04/2020).

[73] Farzad Khorasani, Rajiv Gupta, and Laxmi N Bhuyan. “Scalable simd-efficient graph
processing on gpus”. In: 2015 International Conference on Parallel Architecture and
Compilation (PACT). IEEE. 2015, pp. 39–50.

[74] Farzad Khorasani et al. “CuSha: vertex-centric graph processing on GPUs”. In: Proceed-
ings of the 23rd international symposium on High-performance parallel and distributed
computing. ACM. 2014, pp. 239–252.

[75] Ji Yun Kim and Christopher Batten. “Accelerating irregular algorithms on gpgpus
using fine-grain hardware worklists”. In: 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE. 2014, pp. 75–87.

[76] David B Kirk and W Hwu Wen-Mei. Programming massively parallel processors: a
hands-on approach. Morgan kaufmann, 2016.

[77] Rakesh Komuravelli et al. “Stash: Have your scratchpad and cache it too”. In: ACM
SIGARCH Computer Architecture News 43.3S (2015), pp. 707–719.

[78] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Advances in neural information processing
systems. 2012, pp. 1097–1105.

[79] Jens Krüger and Rüdiger Westermann. “Linear algebra operators for GPU implementation
of numerical algorithms”. In: ACM SIGGRAPH 2005 Courses. 2005, 234–es.

[80] Snehasish Kumar et al. “Amoeba-cache: Adaptive blocks for eliminating waste in the
memory hierarchy”. In: 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE. 2012, pp. 376–388.

[81] Nagesh B Lakshminarayana and Hyesoon Kim. “Spare register aware prefetching for
graph algorithms on GPUs”. In: 2014 IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA). IEEE. 2014, pp. 614–625.

133

https://doi.org/10.1109/ISCA.2018.00042
https://blogs.nvidia.com/blog/2019/11/19/record-gpu-accelerated-supercomputers-top500/
https://blogs.nvidia.com/blog/2019/11/19/record-gpu-accelerated-supercomputers-top500/

BIBLIOGRAPHY

[82] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature 521.7553
(2015), pp. 436–444.

[83] Jinho Lee et al. “ExtraV: Boosting graph processing near storage with a coherent
accelerator”. In: Proceedings of the VLDB Endowment 10.12 (2017), pp. 1706–1717.

[84] Jingwen Leng et al. “GPUWattch: enabling energy optimizations in GPGPUs”. In: ACM
SIGARCH Computer Architecture News. Vol. 41. ACM. 2013, pp. 487–498.

[85] Bingchao Li et al. “Elastic-cache: GPU cache architecture for efficient fine-and coarse-
grained cache-line management”. In: 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE. 2017, pp. 82–91.

[86] Chao Li et al. “Locality-driven dynamic GPU cache bypassing”. In: Proceedings of the
29th ACM on International Conference on Supercomputing. 2015, pp. 67–77.

[87] Junjie Li, Sanjay Ranka, and Sartaj Sahni. “Strassen’s matrix multiplication on GPUs”.
In: 2011 IEEE 17th International Conference on Parallel and Distributed Systems. IEEE.
2011, pp. 157–164.

[88] Pingfan Li et al. “High performance parallel graph coloring on GPGPUs”. In: 2016 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE. 2016, pp. 845–854.

[89] Shang Li et al. “DRAMsim3: a Cycle-accurate, Thermal-Capable DRAM Simulator”. In:
IEEE Computer Architecture Letters (2020).

[90] Sheng Li et al. “McPAT: an integrated power, area, and timing modeling framework for
multicore and manycore architectures”. In: Microarchitecture, 2009. MICRO-42. 42nd
Annual IEEE/ACM International Symposium on. IEEE. 2009, pp. 469–480.

[91] Hongyuan Liu, Sreepathi Pai, and Adwait Jog. “Why GPUs are Slow at Executing
NFAs and How to Make them Faster”. In: Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating Systems.
2020, pp. 251–265.

[92] Samuel Liu et al. Operand collector architecture. US Patent 7,834,881. Nov. 2010.
[93] Yucheng Low et al. “Graphlab: A new framework for parallel machine learning”. In: arXiv

preprint arXiv:1408.2041 (2014).
[94] Andrew Lumsdaine et al. “Challenges in parallel graph processing”. In: Parallel Processing

Letters 17.01 (2007), pp. 5–20.
[95] Lingxiao Ma et al. “Garaph: Efficient GPU-accelerated graph processing on a single

machine with balanced replication”. In: 2017 {USENIX} Annual Technical Conference
({USENIX}{ATC} 17). 2017, pp. 195–207.

[96] Kiran Kumar Matam et al. “GraphSSD: graph semantics aware SSD”. In: Proceedings of
the 46th International Symposium on Computer Architecture. 2019, pp. 116–128.

[97] Simon McIntosh-Smith. “The gpu computing revolution”. In: (2011).
[98] Duane Merrill and Michael Garland. “Single-pass parallel prefix scan with decoupled

look-back”. In: NVIDIA, Tech. Rep. NVR-2016-002 (2016).
[99] Duane Merrill, Michael Garland, and Andrew Grimshaw. “High-performance and scalable

GPU graph traversal”. In: ACM Transactions on Parallel Computing (TOPC) 1.2 (2015),
pp. 1–30.

134

BIBLIOGRAPHY

[100] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In:
Nature 518.7540 (2015), pp. 529–533.

[101] Gordon E Moore et al. Cramming more components onto integrated circuits. 1965.
[102] Gordon E Moore et al. “Progress in digital integrated electronics”. In: Electron devices

meeting. Vol. 21. 1975, pp. 11–13.
[103] Onur Mutlu et al. “Processing data where it makes sense: Enabling in-memory computa-

tion”. In: Microprocessors and Microsystems 67 (2019), pp. 28–41.
[104] Nintendo 64 technical specifications: Reality Coprocessor. url: https://en.wikipedia.

org/wiki/Nintendo_64_technical_specifications#Reality_Coprocessor (visited
on 04/2020).

[105] Nintendo Switch: Hardware. url: https : / / en . wikipedia . org / wiki / Nintendo _
Switch#Hardware (visited on 04/2020).

[106] Amir Hossein Nodehi Sabet, Junqiao Qiu, and Zhijia Zhao. “Tigr: Transforming irregular
graphs for gpu-friendly graph processing”. In: ACM SIGPLAN Notices 53.2 (2018),
pp. 622–636.

[107] NVIDIA. nvGRAPH. url: https : / / developer . nvidia . com / nvgraph (visited on
04/2020).

[108] Nvidia Drive. url: https://en.wikipedia.org/wiki/Nvidia_Drive (visited on
04/2020).

[109] NVIDIA Jetson TX1. url: https://en.wikipedia.org/wiki/Tegra#Tegra_X1 (visited
on 04/2017).

[110] NVIDIA RTX Voice. 2020. url: https://www.nvidia.com/en-us/geforce/guides/
nvidia-rtx-voice-setup-guide/ (visited on 04/2020).

[111] NVIDIA Tegra. url: https://en.wikipedia.org/wiki/Tegra (visited on 04/2020).
[112] Molly A O’Neil and Martin Burtscher. “Microarchitectural performance characteriza-

tion of irregular GPU kernels”. In: 2014 IEEE International Symposium on Workload
Characterization (IISWC). IEEE. 2014, pp. 130–139.

[113] Tayo Oguntebi and Kunle Olukotun. “Graphops: A dataflow library for graph analytics
acceleration”. In: Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. 2016, pp. 111–117.

[114] OpenGL. url: https://en.wikipedia.org/wiki/OpenGL (visited on 04/2020).
[115] Muhammet Mustafa Ozdal et al. “Energy Efficient Architecture for Graph Analytics Accel-

erators”. In: Proceedings of the 43rd International Symposium on Computer Architecture.
ISCA ’16. Seoul, Republic of Korea: IEEE Press, 2016, pp. 166–177. isbn: 9781467389471.
doi: 10.1109/ISCA.2016.24. url: https://doi.org/10.1109/ISCA.2016.24.

[116] Lawrence Page et al. The PageRank citation ranking: Bringing order to the web. Tech. rep.
Stanford InfoLab, 1999.

[117] Yuechao Pan et al. “Multi-GPU graph analytics”. In: 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE. 2017, pp. 479–490.

[118] Parallel Thread Execution ISA. url: https://docs.nvidia.com/cuda/parallel-
thread-execution/index.html (visited on 04/2020).

135

https://en.wikipedia.org/wiki/Nintendo_64_technical_specifications#Reality_Coprocessor
https://en.wikipedia.org/wiki/Nintendo_64_technical_specifications#Reality_Coprocessor
https://en.wikipedia.org/wiki/Nintendo_Switch#Hardware
https://en.wikipedia.org/wiki/Nintendo_Switch#Hardware
https://developer.nvidia.com/nvgraph
https://en.wikipedia.org/wiki/Nvidia_Drive
https://en.wikipedia.org/wiki/Tegra#Tegra_X1
https://www.nvidia.com/en-us/geforce/guides/nvidia-rtx-voice-setup-guide/
https://www.nvidia.com/en-us/geforce/guides/nvidia-rtx-voice-setup-guide/
https://en.wikipedia.org/wiki/Tegra
https://en.wikipedia.org/wiki/OpenGL
https://doi.org/10.1109/ISCA.2016.24
https://doi.org/10.1109/ISCA.2016.24
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html

BIBLIOGRAPHY

[119] Juan C Pichel et al. “Optimization of sparse matrix–vector multiplication using reordering
techniques on GPUs”. In: Microprocessors and Microsystems 36.2 (2012), pp. 65–77.

[120] PlayStation technical specifications: Graphics processing unit (GPU). url: https://
en . wikipedia . org / wiki / PlayStation _ technical _ specifications # Graphics _
processing_unit_(GPU) (visited on 04/2020).

[121] PyTorch. url: https://pytorch.org/ (visited on 04/2020).
[122] Radeon HD 2000 series. url: https://en.wikipedia.org/wiki/Radeon_HD_2000_

series (visited on 04/2020).
[123] Milan Radulovic et al. “Another trip to the wall: How much will stacked dram benefit

hpc?” In: Proceedings of the 2015 International Symposium on Memory Systems. 2015,
pp. 31–36.

[124] David Reinsel, John Gantz, and John Rydning. “The digitization of the world from edge
to core”. In: IDC White Paper (2018).

[125] Shaoqing Ren et al. “Faster r-cnn: Towards real-time object detection with region proposal
networks”. In: Advances in neural information processing systems. 2015, pp. 91–99.

[126] Minsoo Rhu et al. “A locality-aware memory hierarchy for energy-efficient GPU architec-
tures”. In: 2013 46th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE. 2013, pp. 86–98.

[127] Cody Rivera et al. “ISM2: Optimizing Irregular-Shaped Matrix-Matrix Multiplication on
GPUs”. In: arXiv preprint arXiv:2002.03258 (2020).

[128] David Roger, Ulf Assarsson, and Nicolas Holzschuch. “Efficient stream reduction on the
GPU”. In: 2007.

[129] Christopher Root and Todd Mostak. “MapD: a GPU-powered big data analytics and
visualization platform”. In: ACM SIGGRAPH 2016 Talks. 2016, pp. 1–2.

[130] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. “DRAMSim2: A cycle accurate
memory system simulator”. In: IEEE Computer Architecture Letters 10.1 (2011), pp. 16–
19.

[131] Karl Rupp. Years of Microprocessor Trend Data, 2018. 2018. url: https : / / www .
karlrupp.net/2018/02/42- years- of- microprocessor- trend- data/ (visited on
04/2020).

[132] Amir Hossein Nodehi Sabet, Zhijia Zhao, and Rajiv Gupta. “Subway: minimizing data
transfer during out-of-GPU-memory graph processing”. In: Proceedings of the Fifteenth
European Conference on Computer Systems. 2020, pp. 1–16.

[133] Fabien Sanglard. A history of NVidia Stream Multiprocessor. 2020. url: https://
fabiensanglard.net/cuda/index.html (visited on 06/2020).

[134] Franco Scarselli et al. “The graph neural network model”. In: IEEE Transactions on
Neural Networks 20.1 (2008), pp. 61–80.

[135] Jürgen Schmidhuber. “Deep learning in neural networks: An overview”. In: Neural
networks 61 (2015), pp. 85–117.

[136] Albert Segura Salvador. “Characterization of Speech Recognition Systems on GPU
Architectures”. MA thesis. Universitat Politècnica de Catalunya, 2016.

136

https://en.wikipedia.org/wiki/PlayStation_technical_specifications#Graphics_processing_unit_(GPU)
https://en.wikipedia.org/wiki/PlayStation_technical_specifications#Graphics_processing_unit_(GPU)
https://en.wikipedia.org/wiki/PlayStation_technical_specifications#Graphics_processing_unit_(GPU)
https://pytorch.org/
https://en.wikipedia.org/wiki/Radeon_HD_2000_series
https://en.wikipedia.org/wiki/Radeon_HD_2000_series
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://fabiensanglard.net/cuda/index.html
https://fabiensanglard.net/cuda/index.html

BIBLIOGRAPHY

[137] Albert Segura, Jose-Maria Arnau, and Antonio Gonzalez. Irregular Accesses Reorder
Unit: Improving GPGPU Memory Coalescing for Graph-Based Workloads. 2020. arXiv:
2007.07131 [cs.AR].

[138] Albert Segura, Jose-Maria Arnau, and Antonio González. “Energy-Efficient Stream
Compaction Through Filtering and Coalescing Accesses in GPGPU Memory Partitions”.
In: Submitted and under reviewing process (2020).

[139] Albert Segura, Jose-Maria Arnau, and Antonio González. “SCU: A GPU Stream Com-
paction Unit for Graph Processing”. In: Proceedings of the 46th International Symposium
on Computer Architecture. ISCA ’19. Phoenix, Arizona: Association for Computing Ma-
chinery, 2019, pp. 424–435. isbn: 9781450366694. doi: 10.1145/3307650.3322254. url:
https://doi.org/10.1145/3307650.3322254.

[140] Dipanjan Sengupta et al. “GraphReduce: processing large-scale graphs on accelerator-
based systems”. In: SC’15: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. IEEE. 2015, pp. 1–12.

[141] Shubhabrata Sengupta, Mark Harris, and Michael Garland. “Efficient parallel scan
algorithms for GPUs”. In: NVIDIA, Santa Clara, CA, Tech. Rep. NVR-2008-003 1.1
(2008), pp. 1–17.

[142] Shubhabrata Sengupta et al. “Scan primitives for GPU computing”. In: (2007).
[143] John Paul Shen and Mikko H Lipasti. Modern processor design: fundamentals of super-

scalar processors. Waveland Press, 2013.
[144] Xuanhua Shi et al. “Graph processing on GPUs: A survey”. In: ACM Computing Surveys

(CSUR) 50.6 (2018), pp. 1–35.
[145] Xuanhua Shi et al. “Optimization of asynchronous graph processing on GPU with hybrid

coloring model”. In: ACM SIGPLAN Notices 50.8 (2015), pp. 271–272.
[146] Seunghee Shin et al. “Neighborhood-aware address translation for irregular GPU applica-

tions”. In: 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE. 2018, pp. 352–363.

[147] Koichi Shirahata, Hitoshi Sato, and Satoshi Matsuoka. “Out-of-core GPU memory man-
agement for MapReduce-based large-scale graph processing”. In: 2014 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE. 2014, pp. 221–229.

[148] Yogesh Simmhan et al. “Goffish: A sub-graph centric framework for large-scale graph
analytics”. In: European Conference on Parallel Processing. Springer. 2014, pp. 451–462.

[149] L. Song et al. “GraphR: Accelerating Graph Processing Using ReRAM”. In: 2018 IEEE
International Symposium on High Performance Computer Architecture (HPCA). Feb.
2018, pp. 531–543. doi: 10.1109/HPCA.2018.00052.

[150] Herb Sutter. “The free lunch is over: A fundamental turn toward concurrency in software”.
In: Dr. Dobb’s journal 30.3 (2005), pp. 202–210.

[151] Micron Technology. TN-53-01. LPDDR4 Power Calculator. Technical Report, 2016.
[152] TensorFlow. url: https://www.tensorflow.org/ (visited on 04/2020).
[153] Tesla (microarchitecture). url: https://en.wikipedia.org/wiki/Tesla_(microarchitecture)

(visited on 04/2020).

137

https://arxiv.org/abs/2007.07131
https://doi.org/10.1145/3307650.3322254
https://doi.org/10.1145/3307650.3322254
https://doi.org/10.1109/HPCA.2018.00052
https://www.tensorflow.org/
https://en.wikipedia.org/wiki/Tesla_(microarchitecture)

BIBLIOGRAPHY

[154] Tesla Model S. url: https://en.wikipedia.org/wiki/Tesla_Model_S (visited on
04/2020).

[155] Thomas N Theis and H-S Philip Wong. “The end of moore’s law: A new beginning for
information technology”. In: Computing in Science & Engineering 19.2 (2017), pp. 41–50.

[156] Ultra-high-definition television. url: https://en.wikipedia.org/wiki/Ultra-high-
definition_television (visited on 04/2020).

[157] Swapneela Unkule, Christopher Shaltz, and Apan Qasem. “Automatic restructuring of
GPU kernels for exploiting inter-thread data locality”. In: International Conference on
Compiler Construction. Springer. 2012, pp. 21–40.

[158] Virtual reality. url: https://en.wikipedia.org/wiki/Virtual_reality (visited on
04/2020).

[159] Dani Voitsechov and Yoav Etsion. “Single-Graph Multiple Flows: Energy Efficient Design
Alternative for GPGPUs”. In: Proceeding of the 41st Annual International Symposium
on Computer Architecuture. ISCA ’14. Minneapolis, Minnesota, USA: IEEE Press, 2014,
pp. 205–216. isbn: 9781479943944.

[160] Bin Wang et al. “Dacache: Memory divergence-aware gpu cache management”. In: Pro-
ceedings of the 29th ACM on International Conference on Supercomputing. 2015, pp. 89–
98.

[161] Yangzihao Wang et al. “Gunrock: A high-performance graph processing library on the
GPU”. In: Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. 2016, pp. 1–12.

[162] Bo Wu et al. “Complexity analysis and algorithm design for reorganizing data to minimize
non-coalesced memory accesses on gpu”. In: ACM SIGPLAN Notices 48.8 (2013), pp. 57–
68.

[163] Qing Wu, Massound Pedram, and Xunwei Wu. “Clock-gating and its application to low
power design of sequential circuits”. In: IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications 47.3 (2000), pp. 415–420.

[164] Yuduo Wu et al. “Performance characterization of high-level programming models for GPU
graph analytics”. In: 2015 IEEE International Symposium on Workload Characterization.
IEEE. 2015, pp. 66–75.

[165] Wm A Wulf and Sally A McKee. “Hitting the memory wall: implications of the obvious”.
In: ACM SIGARCH computer architecture news 23.1 (1995), pp. 20–24.

[166] Qiumin Xu, Hyeran Jeon, and Murali Annavaram. “Graph processing on GPUs: Where are
the bottlenecks?” In: 2014 IEEE International Symposium on Workload Characterization
(IISWC). IEEE. 2014, pp. 140–149.

[167] Mingyu Yan et al. “Alleviating Irregularity in Graph Analytics Acceleration: a Hard-
ware/Software Co-Design Approach”. In: Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture. 2019, pp. 615–628.

[168] Mingyu Yan et al. “Characterizing and Understanding GCNs on GPU”. In: IEEE
Computer Architecture Letters 19.1 (2020), pp. 22–25.

138

https://en.wikipedia.org/wiki/Tesla_Model_S
https://en.wikipedia.org/wiki/Ultra-high-definition_television
https://en.wikipedia.org/wiki/Ultra-high-definition_television
https://en.wikipedia.org/wiki/Virtual_reality

BIBLIOGRAPHY

[169] Shengen Yan, Guoping Long, and Yunquan Zhang. “StreamScan: fast scan algorithms
for GPUs without global barrier synchronization”. In: Proceedings of the 18th ACM
SIGPLAN symposium on Principles and practice of parallel programming. 2013, pp. 229–
238.

[170] Haoduo Yang et al. “HPGA: A High-Performance Graph Analytics Framework on the
GPU”. In: 2018 International Conference on Information Systems and Computer Aided
Education (ICISCAE). IEEE. 2018, pp. 488–492.

[171] Pengcheng Yao et al. “An efficient graph accelerator with parallel data conflict manage-
ment”. In: Proceedings of the 27th International Conference on Parallel Architectures and
Compilation Techniques. 2018, pp. 1–12.

[172] Matei Zaharia et al. “Apache spark: a unified engine for big data processing”. In: Com-
munications of the ACM 59.11 (2016), pp. 56–65.

[173] Eddy Z Zhang et al. “On-the-fly elimination of dynamic irregularities for GPU computing”.
In: ACM SIGPLAN Notices 46.3 (2011), pp. 369–380.

[174] Eddy Z Zhang et al. “Streamlining GPU applications on the fly: thread divergence
elimination through runtime thread-data remapping”. In: Proceedings of the 24th ACM
International Conference on Supercomputing. 2010, pp. 115–126.

[175] Jianlong Zhong and Bingsheng He. “Medusa: Simplified graph processing on GPUs”. In:
IEEE Transactions on Parallel and Distributed Systems 25.6 (2013), pp. 1543–1552.

[176] Jianlong Zhong and Bingsheng He. “Towards GPU-accelerated large-scale graph processing
in the cloud”. In: 2013 IEEE 5th International Conference on Cloud Computing Technology
and Science. Vol. 1. IEEE. 2013, pp. 9–16.

[177] Jinhong Zhou et al. “Tunao: A high-performance and energy-efficient reconfigurable
accelerator for graph processing”. In: 2017 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID). IEEE. 2017, pp. 731–734.

[178] Youwei Zhuo et al. “GraphQ: Scalable PIM-Based Graph Processing”. In: Proceedings
of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. 2019,
pp. 712–725.

139

	Introduction
	Current Trends
	GPGPU Popularization
	GPGPU Graph Processing

	Problem Statement
	Memory Divergence
	Workload Duplication

	State-of-the-art in GPGPU Irregular and Graph workloads
	Memory Divergence
	Memory Contention
	Stream Compaction
	Graph Processing

	Thesis Overview and Contributions
	Energy-Efficient Graph Processing by Boosting Stream Compaction
	Improving Graph Processing Divergence-Induced Memory Contention
	Combining Strengths of SCU and IRU

	Thesis Organization

	Background
	GPGPU Architecture
	Overview
	Streaming Multiprocessor (SM)
	Caches and Memory Hierarchy
	Programmability

	High Performance GPGPU Code and Common Bottlenecks
	High Performance GPGPU Code
	GPGPU Bottlenecks
	Ameliorating Performance Inefficiencies

	Graph processing algorithms on GPGPU architectures
	Breadth First Search (BFS)
	Single Source Shortest Path (SSSP)
	PageRank (PR)

	Experimental Methodology
	Simulation Systems Integration
	Stream Compaction Unit (SCU)
	Irregular accesses Reorder Unit (IRU)
	IRU-enhanced SCU (ISCU)

	Hardware Modeling and Evaluation
	Stream Compaction Unit (SCU)
	Irregular accesses Reorder Unit (IRU)
	IRU-enhanced SCU (ISCU)

	Graph Processing Datasets
	Graph Processing Algorithms
	Graph Datasets

	Energy-Efficient Graph Processing by Boosting Stream Compaction
	Introduction
	Stream Compaction Unit
	SCU Compaction Operations
	Hardware Pipeline
	Breadth-First Search with the SCU
	Single-Source Shortest Paths with the SCU
	PageRank with the SCU

	Filtering and Grouping
	Filtering/Grouping Unit
	Filtering Operation
	Grouping Operation
	Breadth-First Search with the Enhanced SCU
	Single-Source Shortest Paths with the Enhanced SCU
	PageRank with the Enhanced SCU

	Experimental Results
	Energy Evaluation
	Performance Evaluation
	Enhanced SCU Results
	Area Evaluation

	Conclusions

	Improving Graph Processing Divergence-Induced Memory Contention
	Introduction
	Irregular accesses Reorder Unit
	GPU Integration
	Hardware Overview and Processing
	Reordering Hash

	IRU Programmability
	IRU enabled Graph Applications

	Experimental Results
	Memory Pressure Reduction
	Filtering Effectiveness
	Performance Evaluation
	Energy Evaluation
	Area Evaluation

	Conclusions

	Combining Strengths of the SCU and IRU
	Introduction
	IRU-enhanced SCU (ISCU)
	Hardware Modifications
	Detailed Processing

	ISCU Programmability
	Graph Processing Instrumentation

	Experimental Results
	Energy Evaluation
	Performance Evaluation
	Comparison with SCU and IRU
	Memory Improvements Evaluation
	Area Overhead Evaluation

	Conclusions

	Conclusions and Future Work
	Conclusions
	Contributions
	Open-Research Areas

