
 
 
 

Solving large-scale two-stage 
stochastic optimization 
problems by specialized 
interior point methods  

 
Paula de la Lama Zubirán 

 
 
ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents 
condicions d'ús: La difusió d’aquesta tesi per mitjà del repositori institucional UPCommons       
(http://upcommons.upc.edu/tesis)  i el repositori  cooperatiu TDX   ( h t t p : / / w w w . t d x . c a t / ) ha 
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats  
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats 
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei UPCommons o TDX. 
No s’autoritza la presentació del seu contingut en una finestra o marc aliè a UPCommons 
(framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus 
continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. 
  
 
ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes 
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons 
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale- 
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual 
únicamente para usos privados enmarcados en actividades de investigación y docencia. No  
se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde  
un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una 
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al 
resumen de presentación de la tesis como a sus  contenidos. En la utilización o cita de partes     
de la tesis  es obligado  indicar  el nombre de la persona autora.  
 
 
WARNING On having consulted this thesis you’re accepting the following use conditions: 
Spreading this thesis by the institutional repository UPCommons (http://upcommons.upc.edu/tesis) 
and the cooperative repository TDX (http://www.tdx.cat/?locale- attribute=en) has been authorized 
by the titular of the intellectual property rights only for private uses placed in investigation and 
teaching activities. Reproduction with lucrative aims is not authorized neither its spreading nor 
availability from a site foreign to the UPCommons service. Introducing its content in a window or 
frame foreign to the UPCommons service is not authorized (framing). These rights affect to the 
presentation summary of the thesis as well as to its contents. In the using or citation of parts of the 
thesis it’s obliged to indicate the name of the author. 
 

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://upcommons.upc.edu/tesis)
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en


Solving Large-Scale Two-Stage
Stochastic Optimization Problems by

Specialized Interior Point Method

Author:
Paula de la Lama Zubirán

A thesis presented for the degree of
Doctor of Philosophy

Supervisor: Dr. Jordi Castro Pérez

Department of Statistics and Operations Research
Universitat Politècnica de Catalunya - BarcelonaTech

Barcelona
2020



I



I dedicate this thesis to my parents,
to my husband, and my little fairy Laila

II



III



Contents

1 Introduction 1
1.1 Motivation and objectives . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Article and presentation . . . . . . . . . . . . . . . . . . . . 4

2 State of the art 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Large-Scale Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Two-Stage Stochastic Optimization Model . . . . . . . . . . . . . . 6

2.3.1 Extensive form . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Solution methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Review of different approaches . . . . . . . . . . . . . . . . . 10
2.4.2 Interior-point method . . . . . . . . . . . . . . . . . . . . . . 11

2.5 IPM for Stochastic Optimization . . . . . . . . . . . . . . . . . . . 17
2.5.1 Splitting formulation . . . . . . . . . . . . . . . . . . . . . . 19

3 Specialized interior point 24
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 The primal block angular problem . . . . . . . . . . . . . . . . . . . 24
3.3 Solving the normal equations with BlockIP . . . . . . . . . . . . . 26

3.3.1 The spectral radius . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Tolerance reduction factors . . . . . . . . . . . . . . . . . . . 28
3.3.3 Dual constraint matrix of the quadratic model . . . . . . . . 29

3.4 Two-Stage Stochastic Optimization with Full Splitting in BlockIP . 29
3.4.1 Structure of E for formulation (2.25) . . . . . . . . . . . . . 30
3.4.2 Structure of E for formulation (2.27) . . . . . . . . . . . . . 31

4 Results 32
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Applications with a small number of first-stage variables . . . . . . 33

4.2.1 Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.2 readSto application . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.3 Stochastic Modeling Interface . . . . . . . . . . . . . . . . . 39
4.2.4 CPLEX Barrier vs BlockIP . . . . . . . . . . . . . . . . . . 40

IV



PAULA DE LA LAMA ZUBIRÁN

4.2.5 Quadratic benchmark for the small first-stage instances . . . 43
4.2.6 Comparison with other specialized solvers for stochastic op-

timization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.7 Comparison with other IPMs that solve the augmented system 47

4.3 Computational results for two particular applications . . . . . . . . 48
4.3.1 The stochastic supply chain problem . . . . . . . . . . . . . 49
4.3.2 The stochastic power generation problem . . . . . . . . . . . 52
4.3.3 Results for linear instances . . . . . . . . . . . . . . . . . . 54
4.3.4 Results for quadratic instances . . . . . . . . . . . . . . . . . 58

5 Conclusions 62
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Accomplishments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A 2-stoch-prog-IPM 64

B General Implementations of BlockIP 68

C MPS Format 72

V



List of Figures

2.1 Structure of Large-Scale Problems [14] . . . . . . . . . . . . . . . . 6
2.2 Multiplication of AΘT T [59] . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Interior-point method [17] . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Multiplication of AΘT T with splitting [59] . . . . . . . . . . . . . . 20

3.1 Problem with nx = 50 first-stage variables and k = 4 scenarios: a)
Structure of (3.15) for formulation (2.25); b) Structure of (3.16) for
formulation (2.27) . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 LandS.time file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Event tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 LandS.stoch. file (scenario) . . . . . . . . . . . . . . . . . . . . . . 37
4.4 LandS.stoch (indep) . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 LandS.stoch (Blocks) . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6 LandS.annot file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.7 The network of the wine company [5] . . . . . . . . . . . . . . . . . 51
4.8 BlockIP vs CPLEX for linear supply chain problem (CPLEX with-

out splitting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.9 BlockIP vs CPLEX for linear power generation problem (CPLEX

with splitting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.10 BlockIP vs CPLEX for quadratic supply chain problems (CPLEX

without splitting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.11 BlockIP vs CPLEX for quadratic power generation problem (CPLEX

with splitting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B.1 Code from BlockIP callable library . . . . . . . . . . . . . . . . . . 69
B.2 BlockIP file format generated by writeBlockIPformat (Matlab) . . . 70

C.1 LandS.core file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

VI



VII



List of Tables

4.1 Family of problems collection . . . . . . . . . . . . . . . . . . . . . 35
4.2 Results of linear instances with BlockIP and CPLEX barrier . . . . 42
4.3 Performance of the benchmark set of instances with CPLEX Dual

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Results of quadratic instances with BlockIP and CPLEX barrier . . 45
4.5 Results of linear instances with BlockIP and DSP . . . . . . . . . 47
4.6 Results of linear instances with Ipopt, and CPU time per iteration

for BlockIP, CPLEX and Ipopt . . . . . . . . . . . . . . . . . . . . 48
4.7 Increasing the first-stage variables in Power Generation Problem . . 53
4.8 Results for supply chain problem up to 1000 scenarios . . . . . . . 54
4.9 Results for supply chain problem up to 5000 scenarios . . . . . . . 55
4.10 Increasing the number of the first-stage variables in power genera-

tion problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.11 Results for power generation problem up to 1000 scenarios . . . . . 56
4.12 Results for power generation problem up to 5000 scenarios . . . . . 57
4.13 Results for supply chain and electricity generation instances with

200 and 400 scenarios with Ipopt, and CPU time per iteration for
BlockIP, CPLEX and Ipopt . . . . . . . . . . . . . . . . . . . . . . 58

4.14 Results for supply chain problem up to 1000 scenarios . . . . . . . 59
4.15 Results for supply chain problem up to 5000 scenarios . . . . . . . . 59
4.16 Results for power generation problem up to 10000 scenarios . . . . 60

VIII



IX



Acknowledgments

First I would like to thank my thesis director, Dr. Jordi Castro. Our path toward
this dissertation was, not only about research, but it was also about personal
and cultural learning. He teaches by example (always working in his office or at
home); he shared his work without restrictions and his guidance helped me find
good results in our experiments. On a personal level, communication was not
always easy, but in the end, we even laughed together. Thank you very much.

There are not enough words to thank my parents. Thanks, Dad for being a tireless
worker in this academic world. Your motivation towards life makes me always keep
working. Mom, it is indescribable how you have guided us all on the path to success
–millions of thanks. I admire and love you very much.

I thank my husband Daniel, together we achieved this thesis. From the beginning,
your unconditional help and support have been the foundation for this achieve-
ment. Many more triumphs await us.

I would also want to thank my brother, even at a distance, and with little com-
munication, I will always count on your love and support. You showed me that
mathematics is not so difficult.

I am grateful to my colleagues and friends in office C201. Dani, for the healthy
fun. Diana, for her support in the programming section, it was a privilege to have
you as a partner and teacher. Gloria, for her wise company and the hiking trips.
Jeaneth, Carlos, Xavi, and Vicky, thank you for your advice and good gossip. I
love you all.

Finally, this research would not have been possible without the assistance of
CONACyT and the UAM-I (Universidad Autónoma Metropolitana-Iztapalapa)
for the support all this time.

X



XI



Abstract

Two-stage stochastic optimization models give rise to very large linear problems
(LP). Several approaches have been devised for efficiently solving them, among
which are interior-point methods (IPM). However, using IPM, the linking columns
that are associated with first-stage decisions cause excessive fill-ins for the solutions
of the normal equations, thus making the procedure computationally expensive.
We have taken a step forward on the road to a better solution by reformulating
the LP through a variable splitting technique which has significantly reduced the
solution time.

This work presents a specialized IPM that first applies variable splitting, then
exploits the structure of the deterministic equivalent formulation of the stochastic
problem. The specialized IPM works with an algorithm that combines Cholesky
factorization and preconditioned conjugate gradients for solving the normal equa-
tions when computing the Newton direction for stochastic optimization problems
in which the first-stages variables are large enough. Our specialized approach
outperforms standard IPM.

This work provides the computational results of two stochastic problems from
the literature: (1) a supply chain system and (2) capacity expansion in an electric
system. Both linear and quadratic formulations were used to obtain instances of up
to 39 million variables and six million constraints. When used in these applications,
the computational results show that our procedure is more efficient than alternative
state-of-the-art IP implementations (e.g., CPLEX) and other specialized methods
for stochastic optimization.

XII



XIII



Chapter 1

Introduction

1.1 Motivation and objectives

Nowadays, technology and the ability to generate and store large information has
grown significantly. The necessity for analyzing all this data in a short amount
of time for making important decisions is an indispensable tool for companies to
survive in this competitive and globalized world. The discipline dealing with the
application of advanced analytical methods for making those better decisions is
called Operations Research. For many years, an increasing number of companies
around the world have applied this kind of tool. Besides, science continuously
improves the way to solve these problems, and models resemble more and more to
real situations.

Stochastic optimization is a branch of Operations Research that deals with op-
timization problems that involve uncertainty. These models can describe a wide
range of applications in real-life situations. Some examples include sales projec-
tions, prices or any unknown random element (usually, but not necessarily, in the
future). If a decision-maker wishes to take into account a large number of possibil-
ities situations, the model will be very extensive. Every possible situation is called
a scenario, and the likelihood of each scenario is considered known in advance [13].

An excellent example of these problems is the classical newsvendor (or newsboy)
problem, general class, found in two-stage stochastic linear programs with recourse
literature [11]. In this problem, a news vendor goes to a publisher every morning
and buys x number of newspapers at a price of c per paper. He can only carry
u number of papers. The vendor then has to walk along the streets to sell as
many newspapers as possible. Any unsold newspaper can then be returned to the
publisher at a return price of r. The model helps the newsvendor decide how many
newspapers to buy every morning. Given that the demand for newspapers varies
over days, it is described by a random variable demand (ξ).

1



CHAPTER 1. INTRODUCTION

This problem illustrates the two-stage stochastic model, which encloses two types
of variables. First-stage variables, which are the decisions made before the outcome
of the random events, when the period begins; in the newsvendor problem is the
buying decision x. This decision is made before any information is given about the
demand. Then there are second-stage variables that are decided after the outcome
of uncertain events are known, in the example out the demand [13]. When the
demand is known in advance, then profit, or the so-called second-stage problem,
represented at the end of the sales period of a given edition, can be computed.

One way to work with these problems is the extensive form of the model, where
all scenarios are incorporated explicitly. This approach entails a vast number of
constraints and/or variables. Also, they have a special structure with separable
blocks. When the problem challenges the current state-of-the-art implementation
of optimization methods and has a special structure is called a Large scale prob-
lem. These instances enable the uses of a reformulation technique combined with
specialized methods, algorithms, and advanced computing power that allows us to
find the solution in a reasonable amount of time.

The implementation of optimization methods with large scale problems has a few
remaining challenges, most of them because of the amount rounding 25 million
variables and 300 thousand constraints [18]. Problems that previously were con-
sidered intractable, from a computational point of view, now become amenable to
practical mathematical-programming solutions.

Furthermore, the two most typical structures on a large scale problems are “linking
variables” (dual angular block structure) or “linking constraints” (primal angular
block structure) [14]. One classical methods of resolution is Benders decomposition
for dual block angular [7]. Other methodology, the interior-point method (IPM),
has also proved to be useful for working with these kinds of problems [43], [80].

A specialized interior-point algorithm (implemented in the BlockIP package) solves
the normal equations using a method that combines Cholesky factorizations for
the diagonal blocks and preconditioned conjugate gradient (PCG) for the linking
constraints [18]. The idea for an applied a preconditioned conjugate gradient for
this kind of model was presented by Gondzio [39] with some problems in the
fast convergence. Our preconditioned conjugate has proved to be efficient when
the linking constraints are sparse [15]. Moreover, a reformulation technique from
[59], which is called splitting formulation makes the linking constraints simple and
sparse.

The approach we propose, in this study, aims to solve efficiently two-stage stochas-
tic problems. The BlockIP solver and the splitting formulation technique were
used for making the linkings constraints very sparse. Although the solution does
not work efficiently for every problem, this study demonstrates that in problems
with large enough first-stage variables, this procedure outperforms the alternative
state-of-the-art IPM implementations. The comparative was made for two kinds

2



PAULA DE LA LAMA ZUBIRÁN

of problems with different instances, and the performances were measured in terms
of CPU times.

The focus of this thesis is the efficient solution of large scale two-stage stochas-
tic problems containing primal block angular structure, using the BlockIP solver
and the splitting formulation technique for making the linkings constraints really
sparse. As for the case of numerical experiments, publicly available instances were
used to compare the performance against recent results already presented in the
literature. This solution does not work efficiently for every problem. However, two
examples (namely, a supply chain system and capacity expansion in an electric sys-
tem) to demonstrate that in problems with large enough first-stages variables, this
procedure outperforms the alternative state-of-the-art IPM implementations. The
comparative was made in two kinds of problems with different instances, and the
performances were measured in terms of CPU times.

The remainder of this document is organized as follows. In Chapter 2, the state
of the art is divided into four parts. The first describes large-scale problems with
their different structures (Section 2.2). In the second place, Section 2.3, the for-
mulation of the Two-Stage Stochastic model (TSSP), with its extensive form is ex-
plained (Primal and Dual structure). Third, in Section 2.4 some solution methods
are mentioned; focusing on the Interior-Point method Primal-Dual path-following
algorithm. Finally, the last part Section 2.5, discusses difficulties with the interior-
point method for stochastic optimization with two-stages problems.

The next Chapter 3, a specialized primal-dual path-following algorithm adapted
for primal block-angular problems called BlockIP is presented. BlockIP works
with a primal angular problem described in Section 3.2. Then, Section 3.3 ex-
plains how it solves the normal equations with a combination of Cholesky and
Preconditioned Conjugate Gradient (PCG) for computing directions in an inter-
active optimization process when it searches for the next point. Also, in Section
B, the general implementation of BIP shows how it can be used and, in the end
in Section 3.4, the integration of BlockIP with the splitting formulation in TSSP,
showing the structure of the resulting E matrix.

Chapter 4 for Results, discusses briefly the stochastic instances, that are available
in the literature 4.2 —moreover, details of the applications that help us man-
age their information and applied BlockIP. Then, the results of the performances
in comparison with the CPLEX barrier algorithm, as well as the results of the
quadratic version of these problems (Subsection 4.2.4 and 4.2.5) are presented,
Also, other specialized solvers were tested in Subsection 4.2.6. Following the in-
stances that can be found in the literature, the creation of two new instances is
carried out in Section 4.3 with large first-stage variables. Next, their outcomes
of the performance against the CPLEX barrier algorithm, in linear and quadratic
versions (Subsection 4.3.3 and 4.3.4) are shown. Finally, the conclusions of this
research can be found at Chapter 5.

3



CHAPTER 1. INTRODUCTION

1.2 Contributions

As a part of the contributions of this study, a new methodology for solving Large-
scale two-stage stochastic problems with a full splitting technique from Lustig et
al. [58], and using the solver BlockIP from Castro [18] where the advantage of
Preconditioned Conjugate Gradient (PCG) is derived by combining Cholesky’s
approach for computing directions. Therefore the new structure of the normal
equations is considered as an advantage for computing the solution.

Here, the solution of both linear and quadratic formulations up to 39 million
variables and six million constraints were solved more efficient than alternative
state-of-the-art IP implementations.

1.2.1 Article and presentation

This research was presented in the 30th European Conference on Operational
Research (EURO 2019), in Dublin, Ireland from the 23rd to the 26th of June,
2019, co-authored with Prof. Jordi Castro, with the name of A new interior-point
approach for large two-stage stochastic problems.

Later, a paper was accepted for publication in Optimization Methods and Software,
titled “A new interior-point approach for large separable convex quadratic two-
stage stochastic problems”.

4



Chapter 2

State of the art

2.1 Introduction

In this chapter, a research map to place this thesis in the field of mathematical
optimization and computer science is presented. This chapter starts by explain-
ing large scale concepts for establishing the relevance of this work. Second, the
mathematical model of two-stage stochastic optimization is described. This model
manages decisions in the present (before a random event), taking into consid-
eration possible situations after the random event, which helps decision-makers.
Additionally, within this topic, the matrix constraint structure of the model was
analyzed, which is an essential part of this research.

Next, we follow with an overview of the bases of different methods used to solve
these kinds of problems and the preliminaries of the actual method used in this
work, i.e., the interior-point method (IPM). As part of this section, a description
of the implementation of IPM with a primal-dual path-following algorithm is in-
cluded. Moreover, to close the section, some ideas of how IPM deals with the
structure of the constraint matrix of stochastic problems.

2.2 Large-Scale Problems

Large-scale problems generally contain a special structure of the pattern of zero
and nonzero coefficients in the constraints. This feature then derived in efficient
specialized algorithms [14]. When some variables do not appear in common con-
straints, these variables are independent, so the problem can be separated into
smaller or independent subproblems. Hence, the subproblems can be gathered,
analyzed, stored, and solve separately and simultaneously. Other cases are the
nearly independent subsystems as illustrated by the next three structures in Fig-
ure 2.1.

5



CHAPTER 2. STATE OF THE ART

Figure 2.1: Structure of Large-Scale Problems [14]

In the primal block angular structure, subsystem variables that are sharing com-
mon resources are linkings constraints because they interact with all the con-
straints. The dual block angular structure has variables that have common ac-
tivities. The bordered angular system generalizes these models by combining the
linking constraints and the common variables. For multistage optimization, the
staircases and block triangular structures of Figure 2.1 are frequent. In staircases,
some activities are linked by two periods. Finally, in the block triangular case, the
decisions in each period affect resource allocation in future periods.

2.3 Two-Stage Stochastic Optimization Model

The general idea behind a stochastic formulation is to choose some initial decisions
that want to be optimized, taking into account the expected value of future re-
course actions. The problem can be expressed as a two-stage or multistage model.

This research focuses on the two-stage stochastic problems (TSSP) with either
linear or convex quadratic objective functions. This formulation computes some
initial (first-stage) decisions that must be made before the occurrence of uncer-
tainty, taking into account the expected value of future recourse (second-stage)

6



PAULA DE LA LAMA ZUBIRÁN

actions.

The first-stage problem refers to so-called “here-and-now” decisions, and the second-
stage problem has the “wait-and-see” decisions, which represent the recourse ac-
tions. It deals with the uncertainty by analyzing possible outcomes (different
scenarios that consider random events –more than one–) [11].

The convex quadratic two-stage stochastic problem can be formulated in standard
form as

min
x

c>x+ 1
2
x>Fx+Q(x)

s. to Mx = b
ux ≥ x ≥ 0,

(2.1)

where

Q(x) = Eξ[Q(x, ξ)] and

Q(x, ξ) = min
y

q>ξ y + 1
2
y>Gξy

s. to Wy = hξ − Tξx
uy ≥ y ≥ 0.

(2.2)

The variables x ∈ IRnx and y ∈ IRny are, respectively, the first- and second-stage
decisions. The number of first- and second-stage constraints are, respectively,
mx and my. The first-stage vectors and matrices are c ∈ IRnx , F ∈ IRnx×nx ,
b ∈ IRmx , M ∈ IRmx×nx , where F is symmetric and positive definite. Q(x), known
as the recourse function, is the future average cost of our second-stage decisions,
for all scenarios (i.e., for all realizations of ξ). In the second-stage, qξ ∈ IRny ,
Gξ ∈ IRny×ny , W ∈ IRmy×ny , Tξ ∈ IRmy×nx , and hξ ∈ IRmy ; Gξ is symmetric and
positive definite. The stochastic random vector is comprised of qξ, Gξ, hξ and Tξ.
From now on, the notation will be simplified by eliminating the subscript ξ.

2.3.1 Extensive form

For some particular problems, a closed-form solution can be obtained for Q(x, ξ) =
q>y∗+ 1

2
y∗>Gy∗, where y∗ is the optimum of the second-stage future decisions. In

these cases, it is possible to compute Q(x) = Eξ[Q(x, ξ)], which allows for the
solution of (2.1) only in terms of the first-stage decisions.

In general, however, no closed-form exists for Q(x, ξ), which forces us to use the
extensive form of the stochastic problem. For this purpose, let us consider that ξ is
a discrete random variable of k values ξ1, . . . , ξk with probabilities p1, . . . , pk (if ξ is
continuous, it must be previously discretized). Each particular value ξi, i = 1, . . . , k
is usually known as a scenario. Next, second-stage variables and constraints are

7



CHAPTER 2. STATE OF THE ART

replicated for each scenario (i.e., yi, i = 1, . . . , k for variables), combining problems
(2.1) and (2.2) into a single one, as follows:

min
x,yi

c>x+
1

2
x>Fx+

k∑
i=1

pi

(
q>i yi +

1

2
y>i Giyi

)
s. to Mx = b

0 ≤ x ≤ u

Tix+Wyi = hi

0 ≤ yi ≤ ui

}
i = 1, . . . , k.

(2.3)

The dual formulation of this problem would be:

max
zi,µ,x

b>λ+
k∑
i=1

hTi λi −
1

2

(
xTFx+

k∑
i=1

piy
>
i Giyi

)
− uTµu −

k∑
i=1

uTi µui

s. to M>λ+
∑k

i=1 T
>
i λi − Fx+ µ− µu = c i = 1, . . . , k.

W>λi − piGyi + µi − µui = piqi

µ, µi, µu, µui ≥ 0

}
i = 1, . . . , k,

(2.4)

where λ ∈ IRmx and λi ∈ IRmy are the Lagrange multipliers of the equality con-
straints, µ and µi are the multipliers of the lower bounds of x and yi, and µu and
µui are the multipliers of the upper bounds. F and Gi are symmetric and positive
semidefinite [26] [71].

For real problems, (2.3) and (2.4) can be very large and needs to be solved by
specialized procedures that exploit the particular problem structure [11, Ch. 5–8],
[54, 72].

2.3.1.1 The constraint structure of the two-stage problem

Good matrix management is essential for making efficient procedures for solving
two-stage stochastic problems [57]. Particularly, the constraints matrix in (2.3)
shows the following dual block-angular structure:

A =

x y1 y2 · · · yk
M
T1 W
T2 W
...

. . .

Tk W

 ,
(2.5)

8



PAULA DE LA LAMA ZUBIRÁN

Figure 2.2: Multiplication of AΘT T [59]

where Tξi in (2.3) has been renamed as Ti to simplify the notation.

The dual problem of the TSSP in the extensive form (2.4) has a constraint matrix
(2.6) that can be classified as a primal block angular structure. For matching with
Figure 2.1, the linkings constraints must move to the uppermost of the constraints.

A =

z z1 z2 · · · zk
W T

W T

W T

...
. . .

M T1 T2 . . . Tk

 ,
(2.6)

where every block contains all corresponding variables per block.

The advantage of the dual block-angular structure (2.5) is the reduction of the
fill-in matrices in an IPM. As shown in Figure 2.2, the linking columns associated
with the first-stage variables gives rise to large fill-in when computing the Cholesky
factorization of the normal equations PAΘA>P> in an IPM—with Θ being a
positive diagonal matrix and P a row permutation matrix. We note that F and Gξ

in (2.3) must be diagonal matrices if Θ is assumed to be diagonal; indeed, F and Gξ

are considered diagonal in the specialized IPM of Chapter 3 for reasons of efficiency.
Solving the normal equations system constitutes the main computational burden
on any IPM. The solution time critically depends upon preserving the sparsity in
matrix A [59] [71].

2.4 Solution methods

Several algorithms have been developed for solving optimization problems that
take advantage of the special structure. One classical method of solution is from

9



CHAPTER 2. STATE OF THE ART

Benders [7] for dual block angular, then extended to stochastic optimization as
L-shaped method by Van Slyke and Wets [77] and explained in [11]. Later, many
techniques were developed looking for an efficient and fast solution. This challeng-
ing area now include the large-scale data.

Our technique use an interior-point method based in [51]. It has been discussed for
stochastic optimization by Birge and Qi [12] and Lustig et al. [59], among others.

In this section, the author presents the general idea about the L-shaped method
and others examples of the currents techniques. Next, for our research, the interior-
point method is described with the Primal-Dual version with the path-following
algorithm, mostly from [69], [50], and [38]. The last part, this study worked based
on the interior-point methods in stochastic optimization by Andrzej Ruszczynski
[72] and Birge and Holmes [10].

2.4.1 Review of different approaches

The L-shaped is a well-known method in which the basic idea is to approximate
the nonlinear term in the objective function Q (the recourse function) by using an
outer linearisation. This term involves a solution of all second-stage recourse linear
programs. This approach creates a master problem with this term in x (first-stage
variables), but the recourse function is only evaluated as a subproblem [11]. For
this approach, the deterministic equivalent problem or extensive form (Subsection
2.3.1), and the structure in Figure 2.1 (Dual block angular) is used.

Another technique is the Lagrangean Decomposition (LD) that solves two-stage
problems. It focuses on using Lagrangian relaxation to obtain good bounds. A
solution for problems with integer variables could be found in [29]. Here, Escudero
et al. solve the optimization instances with a splitting variable in the Deterministic
Equivalent Model 2.3.1. More implementations can be found in [28] for multistage
problems.

Regularization is another technique that can be implemented. FortSP is a com-
mercial solver that implements variants of Benders decomposition with different
kinds of regularization methods applied in the expected resource, the trust-region
or feasibility issues reported by Zverovich et al. [81]. For example, one of these
approaches (expected resources) is called Level Method by Lemaréchal et al. [55].
It is an iterative method that uses level sets for model function for regularization.
When the two-stage stochastic problems have a network recourse the method im-
proves considerably. For every n (number of variables) steps add a new accurate
digit in the estimate of the optimum [21]. For more details refer to [27].

The Primal-Dual column generation technique (PDCGM) is implemented by Gondzio
et al. [41] [40]. This method finds a suboptimal well-centered dual solution. As-
sisted by a primal-dual IPM and adjusting dynamically the tolerance to solve the

10



PAULA DE LA LAMA ZUBIRÁN

restricted master problems. The PDCGM was tested in large-scale instances as
two-stage stochastic optimization problems with a good solution (number of iter-
ations and CPU times). For the results of the applications with a small number
of first-stage variables [40].

Another software package, called DSP, is an algorithm that follows the dual de-
composition method with cuts to tighten Lagrangian subproblems for problems
with not necessarily have relatively complete recourse [53]. It can deal with in-
teger variables and is applied in two-stage stochastic programs. This technique
includes an interior-point cutting-plane method for solving the Lagrangian master
problem. Some results can be seen in Section 4.2.6 through Neos Server [67].

Furthermore, there is another branch of optimization methods that work with
heuristic algorithms to reach a good solution in a short time.

2.4.2 Interior-point method

The approach that is presented in this research uses an interior-point method
(IPM) with a primal-dual path-following algorithm. To achieve a better under-
standing of the methodology, the IPM is formally described.

The name IPM is based precisely on the points that are generated by these algo-
rithms are inside the feasible region (Figure 2.3). With these methods, we could

Figure 2.3: Interior-point method [17]

find the solution by a Linear search. Here the algorithms started with either fea-
sible or infeasible, interior-point x0 ∈ Rn. Then generate an iterative sequence of
points until reach or converge to the optimal (meets the conditions of optimal).
In this way, we would obtain each new point from the previous one with the next
process;

xk+1 = xk + αk∆xk, αk ≥ 0 (2.7)

where ∆xk ∈ Rn and represents the movement direction, while αk is the step
length.

11



CHAPTER 2. STATE OF THE ART

There has been a substantial number of contributions since Karmarkar’s method
[51]. These variants can be divided into four general methods [24] such as:

1. Projective. A projective transformation in a new space of variables proposed
by Karmarkar [51].

2. Affine scaling. In this method, a transformation of the original problem by
a similar scaling of the variables was created by Dikin in 1967 [25].

3. Path-following. Consisting of small-step methods such as one accomplished
by Gill et al. [36]

4. Affine potential reduction. This procedure search for the reduction of a
potential function. Proposed by Anstreicher and Bosch [1].

These methods can be applied to the primal, dual, or both approaches. The primal
algorithm maintains primal feasibility while iterating toward dual feasibility and
reducing the duality gap. Conversely, in the dual algorithm, the dual feasibility
is maintained and then iterate toward primal feasibility. The primal-dual algo-
rithm, in the theoretical versions, maintains both primal and dual feasibility while
iterating to reduce the duality gap [3] [57].

The primal-dual has been used very efficiently on large problems. Hence these
methods are the focus of this section with a description of the primal-dual Path-
following algorithm. It must be recalled that the practical implementations have an
infeasible starting point and infeasible iterations [69] as BlockIP that is explained
in Chapter 3.

2.4.2.1 Primal-Dual Methods

In this section, we will examine a general primal-dual convex quadratic program-
ming method with the primal (P ) representation as:

(P ) min cTx+
1

2
xTQx

so t. Ax = b,

0 ≤ x ≤ u

Where A is an m × n full row rank matrix, Q is an n × n positive semidefinite
matrix, c, x, and u are vectors in Rn and b, is a vector in Rm. When Q = 0, the
problem becomes lineal. The solution associated with both problems P and D
must satisfy the Karush-Kuhn-Tucker conditions (KKT) that are associated with

12



PAULA DE LA LAMA ZUBIRÁN

the following equations:

ATλ+ z − v −Qx = c, (2.8a)

Ax = b, (2.8b)

XZe = µe, (2.8c)

SV e = µe, (2.8d)

(x, s, z, v) ≥ 0 (2.8e)

Where λ ∈ Rm are the Lagrange multipliers of the equality constraints, z and
v ∈ Rn are the Lagrange multipliers for the lower and upper bounds; X, Z, S, and
V are diagonal matrices in Rn of their respective vectors when s = u− x and e is
the vector of ones. µ is the current duality measure.

The parameter µ is gradually driven to zero throughout the iterations. A family
of solutions for each µ is known as a central path and when µ → 0 the solution
converges to the optimum. The algorithm terminates when µ ≤ ε for some ε. This
procedure is called a primal-dual path-following interior-point method.

In the case of path-following primal-dual interior-point methods, the KKT equa-
tions (2.8) can be considered as a mapping H.

H(x, λ, z, v;µ) =


−Qx+ ATλ+ z − v − c

Ax− b
XSe− µe
SV e− µe

 = 0,

(x, z, v) ≥ 0,

(2.9)

With (x, z, v) ≥ 0, however, (xk, λk, zk, vk) are strictly greater than zero at every
iteration, hence the name Interior-Points Methods and usually apply the Newton
method to solve the KKT equations (2.8). Therefore, compute the Newton di-
rection and make one step in this direction before reducing the barrier parameter
µ.

For finding the search direction (∆x,∆λ,∆z,∆v) the following system can be
solved with Newton’s method for non-linear problems.

J(x, λ, s)


∆x
∆λ
∆z
∆v

 = −H(x, λ, s) (2.10)

13



CHAPTER 2. STATE OF THE ART

Where J is the Jacobian of H. So is computed by solving the following system of
linear equations:


A 0 0 0
−Q AT In −In
Z 0 X 0
−V 0 0 S




∆x
∆λ
∆z
∆v

 =


b− Ax

c+Qx− ATλ− z + v
σµe−XZe
σµe− SV e

 (2.11)

Where In denotes an identity matrix of dimension n, and σ is a centering param-
eter.

The next iteration will be:

(x, λ, z, v) + α(∆x,∆λ,∆z,∆v) (2.12)

Where α is called the Step Length and is conveniently chosen to keep the interior
point condition (x, λ, z, v) > 0.

The choices of the centering parameter σ and the step length α are crucial to
the performance of the method. Different techniques give rise to a wide variety
of algorithms. In the primal-dual path-following interior-point algorithm, the µ
parameter is reduced at each iteration.

2.4.2.2 Primal-Dual path-following algorithm

The general framework for such methods is as follows:

step 0. Find (x0, λ0, z0, v0) interior point with (X0, Z0, V 0) > 0;
Let k := 0

step 1. Choose σk ∈ [0, 1] and solve for the direction. (normally σ = .01)


A 0 0 0
−Q AT In −In
Z 0 X 0
−V 0 0 S




∆x
∆λ
∆z
∆v

 =


b− Ax

c+Qx− ATλ− z + v
σµe−XZe
σµe− SV e


where µk = σ duality gap

n
; (gap dual, distance to the current point between primal

and dual functions)

14



PAULA DE LA LAMA ZUBIRÁN

step 2. Set

(xk+1, λk+1, zk+1, vk+1) = (xk, λk, zk, vk) + αk(∆x
k,∆λk,∆zk,∆vk), (2.13)

choosing αk so that (xk+1, zk+1, vk+1) > 0

If
||ξkp ||

1+||b|| ≤ εp,
||ξkd ||

1+||c|| ≤ εd and (xk)T sk/n
1+|cT xk+1/2(xk)TQxk| ≤ εo,

stop; else return to step 1 with k := k + 1.

εp, εd, εo primal feasibility, dual feasibility and optimality tolerance

Step Lengths

One aspect for knowing how to move from one point to the next one is the step
lengths α as in (2.12), There are two general methods for calculating this step.
One is the Short-step that iterates in a narrow neighborhood of central path. The
second is called the Long-Step and iterate in a wide neighborhood of central path.
In practice, the second one is more efficient and of more frequent use.

The general idea for the Long-Step is to move the maximum movement possible
in x, z, and v variables without violating nonnegativity. To ensure this condition,
a step length of slightly less than this maximum (not greater than 1).

One approach for choosing α is α = min(αpriτ , αdualτ ), where

αpriτ = max{α ∈ (0, 1] : x+ α∆x ≥ (1− τ)x}, (2.14a)

αdualτ = max{α ∈ (0, 1] : (z, v) + α(∆z,∆v) ≥ (1− τ)(z, v)} (2.14b)

The parameter τ ∈ (0, 1) controls how far from the maximum step it can moves.

Another approach used is the maximum step length such that (x, z, v) ≥ 0, and
later it is reduced by parameter ρ ∈ [0.95; 0.99995].

Computing the direction

To get an efficient method, the system (2.11) for the search direction must solve
efficiently in every iteration, since it is the most expensive computational step.
Typically, in most applications, this coefficient matrix is large, sparse, and has a
special structure, thence a compact system could be reformulated with symmetric
nonsingular coefficient matrices.

15



CHAPTER 2. STATE OF THE ART

Let us rewrite the system (2.11) with rb, rc and rxs notation:


A 0 0 0
−Q AT In −In
Z 0 X 0
−V 0 0 S




∆x
∆λ
∆z
∆v

 =


−rb
−rc
−rxs
−rsv

 (2.15)

Where rb = Ax − b, rc = −Qx + ATλ + z − v − c, rxs = XSe − σµe and rsv =
SV e − σµe. Moreover, in practical implementations, rxs and rsv may enclose a
predictor, corrector, and centering contribution that has a significant effect on the
performance. When no much progress can be made along one direction, σ is the
centering parameter; a larger value of σ will ensure that the next iterate is more
centered, so in the next point, a long step will be possible. Further details can be
observed in [61].

The reformulation creates a more compact system. Since x, z, and v are strictly
positive, the diagonal matrices X, Z, and V are nonsingular. The first step is to
isolate ∆z and ∆v (2.16). Then replaced them in the second block of equations in
(2.15).

∆z = X−1rxz −X−1Z∆x

∆v = S−1rsv + S−1V∆x
(2.16)

The result is known as the augmented system (2.17)

[
−Θ−1 AT

A 0

] [
∆x
∆λ

]
=

[
−rc + S−1rsv −X−1rxz

−rb

]
(2.17)

Where θ = (Q+ZX−1 + V S−1)−1. The next step solves (2.17), First ∆x is found
in the first block of the augmented system (2.18b). Then replace it in the second
block of equations (2.18a). Hence the normal equations (2.18) are obtained.

(AΘAT )∆λ = rb + AΘr, (2.18a)

∆x = Θ(AT∆λ− r) (2.18b)

where r = rc + S−1rsv −X−1rxz

For the factorization of AΘAT in (2.18a), usually, the Cholesky algorithm is im-
plemented. Then perform a triangular substitution to solve the resulting sparse
factors and obtain ∆λ in (2.18a). ∆x is recovered from (2.18b) and go on to

16



PAULA DE LA LAMA ZUBIRÁN

the equations before (2.16) accordingly. In cases when AΘAT is ill-conditioned of
singular, some modifications to the Cholesky algorithm are needed.

Nevertheless, if normal-equations (2.18) contain A matrix with any dense columns,
the factorization of AΘAT will be dense; as a result, the implementation may
be complicated and slower. Therefore, the fill-in columns are usually avoided.
Unfortunately, the structure of stochastic linear models can lead to quite dense
systems, limiting the use of the interior-points method for the solution. On account
of that situation, some methods for improving the efficiency of solving the linear
system associated with (two-stage) stochastic problems have been developed [10].

2.5 IPM for Stochastic Optimization

The optimization problems of the two-stage extensive form has a dual block angular
structure (2.5) that potentially has many dense columns. Also, the density of the
matrix (AΘAT ) largely depends on the number of dense columns contained in
this original matrix A [10]. To see this, let Θk ∈ Rmk×mk be defined by Θk,
s = 0, . . . , K. Suppose further that TK = T . Then solving the system requires a
factorization of

AΘAT =


M
T W
...

. . .

T W




Θ0

Θ1

. . .

ΘK



MT TT . . . TT

WT

. . .

WT



=


MΘ0MT MΘ0TT MΘ0TT . . . MΘ0TT

TΘ0MT TΘ0TT +WΘ1WT TΘ0TT . . . TΘ0TT

TΘ0MT TΘ0TT TΘ0TT +WΘ2WT . . . TΘ0TT

..

.
..
.

..

.
. . .

...
TΘ0MT TΘ0TT TΘ0TT . . . TΘ0TT +WΘKW

T

 (2.19)

Noticeably, the first-stage variables (T columns) creates a dense matrix to factorize.
There are many ways to reduce fill-in and improve solutions times. Of some of the
methods proposed for finding a solution, four of them will be mentioned in these
sections, but the focus will be on the first one, the splitting formulation because
it is one of the main ideas in this research.

Thus, the first method is called splitting formulation or Reformulation of the pro-
gram. It is created by Lustig et al. [59]. Here, the dense column associated with
the first-stage decisions x is replicated. This means that x = xi or xi = xi+1,
i = 1, ..., k constraints are added (partial or full splitting respectively). These
constraints satisfy the nonanticipativity requirement (invariant across scenarios).

17



CHAPTER 2. STATE OF THE ART

Although, the problem increases its size, the performance can be faster. Fur-
thermore, the effectiveness of this method depends on the size and forms of the
first-stage coefficient matrices. For more details, please refer to Subsection 2.5.1.

The second method generated by Arantes and Birge [2] proposes a reformulation
of the primal problem in the polyhedral inequality form. This method, consider
that ATΘA is sparser than AΘAT , therefore, it has a more efficient performance.
It is later proved in [9] that both matrices could be interchangeable. Also, it is
showed that solving the dual of the extensive form approach with a matrix B of
the form (2.6), may be larger than the coefficient matrix of the primal, the matrix
BΘBT enables an efficient Cholesky factorization. However, if W is very large or
dense, solving BΘBT may not be as efficient.

BΘBT =


MT Θ0M +

∑K
k=1 T

T ΘsT TT Θ1W . . . TT ΘKW
WT Θ1T WΘ1W

T 0 0
... 0

. . . 0
WT ΘKT 0 0 WΘKWT

 (2.20)

Another method is called the Schur complement described in [59] where the matrix
A is partitioned into a sparse part and a dense part as follows:

A = [Ad|Ak] (2.21)

In the two-stage stochastic programs are:

Ad =


M
T1

...
TK

 , Ak =

 W
. . .

W

 (2.22)

which involves solving a small, dense matrix derived from a larger sparse matrix.
In the case of a two-stage dual block angular program, Ad contains the first-stage
variables, and Ak is the columns of the second-stage. So AΘAT = AkΘkA

T
k +

AdΘdA
T
d . In general, for the sparse part, Cholesky’s method is used, and for the

dense part, the Schur’s complement is applied. When AdΘdA
T
d remains sparse, and

the numbers of the dense columns are small; this method could be efficient. The
downside is that as the number of dense columns grows large, the effort needed to
solve the Schur complement drastically increases.

Another approach is an explicit factorization of the dual block angular programs
proposed by Birge and Qi ([12]). Here the matrix AΘAT may be written as the

18



PAULA DE LA LAMA ZUBIRÁN

sum of a block diagonal matrix Θ and the product of two similar matrices U and
V Sherman-Morrison-Woodbury formula may be used to find the inverse of the
matrix.

U =


M I
T1 0
...

...
TK 0

 , V =


M −I
T1 0
...

...
TK 0

 (2.23)

The last method described in this section is the augmented system (2.17), that
solves ∆x and ∆λ together by computing a sparse factorization for the entire
coefficient matrix. This technique allows more freedom in the pivot sequence.
In the case of two-stage stochastic problems the cost of factoring the indefinite
matrix could be lower than the cost of factoring the positive semi-definite matrix
in the normal equations (2.18a) [22]. This is because that A allows the following
partition:

A =

[
A1 A2

A3 A4

]
(2.24)

Where A1 is sparse with no dense columns or rows, represent by the second-stage
decision variables, A2 are the first-stage decision variables with more density of
A1, and A3 is empty [62] [60] (details in Symmetric quasi-definite matrices [78]).
One variant proposes by Mészáros is a dynamical factorization on the augmented
system with 1 × 1 pivots and without requiring the quasi-definite property. This
attempt proves that the pivot sequence is stable and very competitive.

2.5.1 Splitting formulation

This method [59] split up the first-stage decisions x for reducing the fill-in created
by the dense column associated with them. Therefore, The linking columns ensure
that these x variables are feasible under each future scenario, so the second-stage
decisions yi, i = 1, . . . , k, are depending on both the first-stage variables and the
realization of stochastic events.This technique has been tested in general interior-
point methods with good results [22].

Two variants were attempted: full and partial splitting. The full version split all
first-stage variables across all scenarios, creating a staircase structure of all the
linking constraints inside BlockIP. While in partial splitting only the dense first-
stage variables were replicated. Thus, we will make use of full splitting, which is
more appropriate than partial splitting for the specialized interior-point algorithm

19



CHAPTER 2. STATE OF THE ART

in this work because the structure of the linking constraints causes more highly
sparse (but also much larger) matrices. This is different from general interior-point
solvers, where partial splitting was shown to be superior in [59]. Figure 2.4 shows
the effect of splitting on the normal equations matrix. We can compare the effects
without splitting in Figure 2.2

Figure 2.4: Multiplication of AΘT T with splitting [59]

Replicating the first-stage variables for each scenario one obtains the following
equivalent extensive form formulation:

min
xi,yi

c>x1 +
1

2
x>1 Fx1 +

k∑
i=1

pi

(
q>ξiyi +

1

2
y>i Gξiyi

)
s. to Mx1 = b

ux ≥ x1 ≥ 0

Tξixi +Wyi = hξi

uy ≥ yi ≥ 0

}
i = 1, . . . , k

x1 − xi = 0

ux ≥ xi ≥ 0

}
i = 2, . . . , k.

(2.25)

Reordering columns by the number of scenarios, the constraint matrix in (2.25)
can be written as:

x1 y1 x2 y2 · · · xk yk

A(2.25) =



M
T1 W

T2 W
. . .

Tk W
I −I
...

. . .

I −I


.

(2.26)

20



PAULA DE LA LAMA ZUBIRÁN

Alternative formulations can be obtained by different linking constraints that force
the same values for copies of the first-stage variables. For instance, another equiv-
alent problem is obtained by replacing the last group of constraints in (2.25) with
xi = xi+1, i = 1, . . . , k − 1, thus obtaining

min
xi,yi

c>x1 +
1

2
x>1 Fx1 +

k∑
i=1

pi

(
q>ξiyi +

1

2
y>i Gξiyi

)
s. to Mx1 = b

ux ≥ x1 ≥ 0

Tξixi +Wyi = hξi

uy ≥ yi ≥ 0

}
i = 1, . . . , k

xi − xi+1 = 0

ux ≥ xi ≥ 0

}
i = 1, . . . , k − 1.

(2.27)

The constraints matrix of formulation (2.27) is

x1 y1 x2 y2 x3 y3 · · · xk−1 yk−1 xk yk

A(2.27) =



M
T1 W

T2 W
T3 W

. . .

Tk−1 W
Tk W

I −I
I −I

. . .

I −I



.
(2.28)

Although (2.25) and (2.27) are equivalent, the latter is computationally more ef-
ficient for the specialized IPM that will be used, as will be shown in Subsection
3.4.2.

Both constraint matrices (2.26) and (2.28) have a primal block-angular structure
with (k − 1)nx very sparse linking constraints. The linear optimization problems

21



CHAPTER 2. STATE OF THE ART

(2.25) and (2.27) match the following general block-angular formulation:

min
x1,...,xk

k∑
i=1

(
ci
>
xi +

1

2
xi
>
Qixi

)

s. to


N1

N2

. . .

Nk

R1 R2 . . . Rk I




x1

x2

...
xk

x0

 =


b1

b2

...
bk

b0


0 ≤ xi ≤ ui i = 1, . . . , k

0 ≤ x0 ≤ b0.

(2.29)

For both formulations (2.25) and (2.27) xi, ui ∈ IRnx+ny are, respectively, (x>i y>i )>

and (u>x u>y )> i = 1, . . . , k; x0 are the slacks of the linking constraints (they are
zero since linking constraints are equalities in the splitting formulation of two-
stage stochastic problems). The linear cost vectors ci ∈ IRnx+ny are defined as
c1 = (c> p1q

>
ξ1

)>, whereas ci = (0 piq
>
ξi

)> for i = 2, . . . , k. The quadratic

cost matrices Qi ∈ IR(nx+ny)×(nx+ny) are Q1 =

[
F

Gξ1

]
, and Qi =

[
0

Gξi

]
for

i = 2, . . . , k; we assume Qi are diagonal matrices. The right-hand-side terms
are b1 ∈ IRmx+my = (b> h>ξ1)

>, while bi ∈ IRmy = hξi i = 2, . . . , k, and b0 ∈

IR(k−1)nx = 0. As for the diagonal blocks, N1 ∈ IR(mx+my)×(nx+ny) is

[
M
T1 W

]
,

and Ni ∈ IRmy×(nx+ny), are [Ti W ] , i = 2, . . . , k.

Linking constraints for (2.25) are defined by

R1 =

 I1 0y1
...

...
Ik−1 0yk−1

 Ri =



0x1 0y1
...

...
0xi−2 0yi−2

−Ii−1 0yi−1

0xi 0yi
...

...
0xk−1 0yk−1


i = 2, . . . , k, (2.30)

where 0xi , Ii ∈ IRnx×nx , 0yi ∈ IRnx×ny , and the subindex denotes the block row
position.

22



PAULA DE LA LAMA ZUBIRÁN

For (2.27) the linking constraints are defined by

R1 =


I1 0y1
0x2 0y2
...

...
0xk−1 0yk−1


Ri =



0x1 0y1
...

...
0xi−2 0yi−2

−Ii−1 0yi−1

Ii 0yi

0xi+1 0yi+1
...

...
0xk−1 0yk−1


i = 2, . . . , k − 1,

Rk =


0x1 0y1
...

...
0xk−2 0yk−2

−Ik−1 0yk−1

 ,

(2.31)

where Ii, 0xi and 0yi have the same dimensions as above. We will denote as mi

and ni the number of rows and columns of each diagonal block Ni, and by l the
number of linking constraints. The next section outlines the specialized interior-
point approach for the efficient solution of (2.29).

23



Chapter 3

Specialized interior point

3.1 Introduction

In this chapter, we sketch the specialized IPM, implemented in the BlockIP pack-
age used in this research. It is based on a primal-dual path-following algorithm
[80]. It is written in C++ in about 17000 lines of code, created by Castro [18].
This procedure was initially suggested for multicommodity flow problems [15] and
later extended to primal block-angular problems [16]. For this research, the exten-
sive form 2.3.1 with the splitting technique 2.5.1 was used. This formulation has a
primal block angular structure illustrated in Section3.2. This the format required
by BlockIP.

Then, the matrix for AΘA> factorization that is key in the performance of BlockIP
is described. Also, in Section 3.3, the solution of the normal equations in the
BlockIP package is illustrated by a sensible combination of Cholesky factorizations
[68] and an iterative preconditioned conjugate gradient (PCG). Besides, some de-
tails of how the solver works are added. Along with the dual constraint matrix of
the quadratic models because we will need it to compare the performances between
the splitting idea or without it in that kind of problem.

Finally in Section 3.4, the structure of the E matrix inside the AΘA> factorization
created by using the splitting technique (partial and Full) with the TSSPs shows
how the efficient solutions are reached with the specialized interior point method,
BlockIP. In Appendix B, general features of BlockIP are explained.

3.2 The primal block angular problem

The problems in our work have a primal block angular structure, as Figure 2.1.
However, the linking constraints are arranged below, like the constraint matrices

24



PAULA DE LA LAMA ZUBIRÁN

(2.26) and (2.28). BlockIP utilizes this structure as an input. Hence the model
that is needed has the next form:

min
k∑
i=0

fi(x
i)

s. to


N1

. . .

Nk

L1 . . . Lk I



x1

...
xk

x0

 =


b1

...
bk

b0


0 ≤ xi ≤ ui i = 0, . . . , k.

(3.1)

Matrices Ni ∈ Rmi×ni and Li ∈ Rl×ni , i = 1, . . . , k respectively define the block
and linking constraints, k being the number of blocks. xi ∈ Rni , i = 1, . . . , k, are
vectors of the variables for each block. Whereas x0 ∈ Rl are the slacks of the
linking constraints. Vector bi ∈ Rmi , i = 1, . . . , k is the right-hand-side for each
block of constraints and b0 ∈ Rl is for the linking constraints. The upper bounds
for each block of variables are defined by ui, i = 0, . . . , k. These are of the form
b0 − u0 ≤

∑k
i=1 Lix

i ≤ b0. Equality linking constraints can be defined by setting
u0 ≈ 0.

Functions fi : Rni → R, i = 0, . . . , k, are assumed to be convex. Although the
specialized IPM to be described is valid for any fi, here the quadratic function is
considered (Linear when Q = 0), that is fi(x

i) = ci
T
xi + 1

2
xi

T
Qix

i Where ci ∈ Rni

and Fi ∈ Rni×ni , i = 1, . . . , k, are the linear and quadratic cost for each group of
variables. For the slacks, ck ∈ Rl and Qk ∈ Rl×l are considered. Also, it has been
restricted to the separable cases where Qi, i = 0, . . . , k are positive semidefinite
diagonal matrices.

The standard problem (3.1) is an optimization problem with m =
∑k

i=1mi + l

constraints and n =
∑k

i=1 ni + l variables.

Considering the problem (3.1) with a quadratic objective function fi(x
i) and the

upper bounds ui where the inequality x ≤ u then w ∈ Rn its the vector of Lagrange
multiplier, z = u − x. W and Z ∈ Rn×n the diagonal matrix created with w and
z. Hence Θ becomes. (details from 2.4.2.2)

Θ = (Q+ ZX−1 +WS−1)−1 (3.2)

Since the objective function is separable, Θ is an easily computable diagonal ma-
trix. Exploiting the structure of the constraint matrix A from (3.1), and appro-

25



CHAPTER 3. SPECIALIZED INTERIOR POINT

priately partitioning Θ, as follows

A =


N1

. . .

Nk

L1 . . . Lk I

 Θ =


Θ1

. . .

Θk

Θ0

 ,
the matrix of system (2.18a) can be rewrite as

AΘA> =



N1Θ1N
>
1 N1Θ1L

>
1

. . .
...

NkΘkN
>
k NkΘkL

>
k

L1Θ1N
>
1 . . . LkΘkN

>
k Θ0 +

∑k
i=1 LiΘiL

>
i


=

[
B C
C> E

]
,

(3.3)

B ∈ Rñ×ñ where ñ =
∑k

i=1 ni, C ∈ Rñ×l and E ∈ Rs×s being the blocks of AΘA>,
and Θi, i = 0, . . . , k, the submatrices of Θ associated with the k + 1 groups of
variables in (3.1). Denoting by g the properly right-hand-side of (2.18a), and
appropriately partitioning g and ∆λ, the normal equations (2.18a) can be written
as [

B C
CT E

] [
∆λ1

∆λ2

]
=

[
g1

g2

]
. (3.4)

3.3 Solving the normal equations with BlockIP

Solving the system (3.4), ∆λ1 can be isolated from the first group of equations
(3.5). Then substituting it in the second set of equations, (3.6) is obtained.

B∆λ1 = (g1 − C∆λ2). (3.5)

(E − CTB−1C)∆λ2 = (g2 − CTB−1g1) (3.6)

In BlockIP, the system (3.5) is solved by Cholesky factorization for each diagonal
blockNiΘ

iNT
i , i = 1, . . . , k ofB. The next system (3.6) with the Schur complement

S = E − CTB−1C, (3.7)

of dimension l (number of linking constraints) is calculated by a preconditioned
conjugate gradient (PCG). A good preconditioner is essential for the efficient so-
lution of (3.6). The preconditioner obtained in [15] can be applied to any primal

26



PAULA DE LA LAMA ZUBIRÁN

block-angular problem [16] and relies on the Schur complement (S = E−CTB−1C)
is a P-regular splitting where S is symmetric and positive definite, E is nonsingu-
lar and E + CTB−1C is positive definite (more details in [8]). Therefore (3.8) is
guarantees

ρ(E−1(C>B−1C)) < 1, (3.8)

To simplify the notation, ρ(E−1(C>B−1C) will be referred to as ρ and denotes the
spectral radius of a matrix (i.e., the maximum absolute eigenvalue). The inverse
of the Schur complement E − C>B−1C can be computed as the following infinite
power series

(E − CTB−1C)−1 =

(
∞∑
i=0

(E−1(CTB−1C))i

)
E−1. (3.9)

This inverse (3.9) is based in the Neuman’s series preconditioner (see [15] for a
proof)

The preconditioner, an approximation of (E − CTB−1C)−1, is thus obtained by
truncating the infinite power series (3.9) at some term φ. The larger φ, the better
the approximation of the inverse. For example

M−1 = E−1 if φ = 0,
M−1 = (I + E−1(CTB−1C))E−1 if φ = 1.

(3.10)

In addition, any extra term in the series means an additional linear system solu-
tion with matrix B. Efficient implementations of this matrix-vector (CTB−1C)
products for particular Ni and Li, i = 1, . . . , k, matrices can significantly speed
the computational efficiency.

When ρ is not too close to 1, the contribution of higher-order terms of the Neumann
series can be neglected, and just a few terms (i.e., a small φ) are enough for a good
preconditioner (explained in the next Subsection 3.3.1). In our problems, φ = 0
has been used for all the computational results. However, note that even for φ = 0,
one system with matrix E needs to be solved at each PCG iteration. Therefore,
the efficient solution to systems with E is indispensable for the performance of
the method. In Subsections 3.4.1 and 3.4.2 we analyze the structure and efficient
factorization of E for both formulations (2.25) and (2.27).

27



CHAPTER 3. SPECIALIZED INTERIOR POINT

3.3.1 The spectral radius

From (3.9), the quality of the preconditioner depends on the spectral radius ρ [15].
A suitable preconditioner is given by ρ ∈ [0, 1). The farther from 1, the closer
to (E − CTB−1C)−1. In practice, ρ comes closer to 1 as the solution is close to
the optimum, this means that it needs more iterations. An improvement of the
preconditioner by a quadratic regularization (can be seen in [20] and [18]). The
BlockIP solver implements two types of regularization. The proximal point and
a quadratic regularization. Both add a different term in the standard logarithmic
barrier function of the problem (3.11)

B(x, µ) , f(x) + µ

(
−

n∑
i=1

lnxi −
n∑
i=1

ln(ui − xi)

)
(3.11)

The proximal point adds 1
2
(x−x)TQP (x−x). Where QP is a diagonal positive def-

inite matrix, and x the current point. The quadratic regularization adds 1
2
xTQRx ;

where QR is a diagonal positive semidefinite matrix. This term is controlled by µ
that tend to zero (more details in [18]).

Those terms make changes in the dual feasibility of KKT conditions and matrix
Theta. In practice, the quadratic regularization preferred because it gives a better
approximation to the original Θ.

Since the preconditioner is used at each iteration of PCG for the solution of system
(E−C>B−1C)z = r (for some vectors z and r), increasing φ by one means solving
an additional system with matrices B and E at each PCG iteration. Therefore,
even though it is problem-dependent, we can consider as a rule of thumb φ = 0 or
φ = 1 are reasonable choices.

3.3.2 Tolerance reduction factors

One of the important parameters for the efficient solution of (3.6) is the tolerance
requested to the PCG solution. This tolerance is dynamically updated at each
interior-point iteration i as εi = max{βεi−1,minε}, where ε0 is the initial tolerance
(by default 10−2 for linear problems, and 10−3 for quadratic ones), minε is the
minimum allowed tolerance (by default is 10−8), and β is a tolerance reduction
factor at each interior-point iteration (by default 0.95). Unless otherwise stated,
the above default values were used in the computational results of Chapter 4

28



PAULA DE LA LAMA ZUBIRÁN

3.3.3 Dual constraint matrix of the quadratic model

Consider the following general primal and dual quadratic optimization models
based in [6] and [38]:

Primal
min cTx+ 1

2
xTQx

s.to Ax = b
x ≥ 0 ≡ −x ≤ 0,

Dual
max
y,µ,x

bTy − 1
2
xTQx

ATy −Qx+ µ = c
y free, µ ≥ 0

(3.12)

Here, A ∈ Rm×n has full row rank m ≤ n,Q ∈ Rn×n is symmetric and positive
semidefinite matrix, x, µ, c ∈ Rn and y, b ∈ Rm. Therefore, the objective function
is still convex.

The constraints matrix for the dual stochastic quadratic problem ATλ−Qx+µ = c
in (3.12) has to be reordered, for our purposes, to suit according to the formulation
in blocks.

We consider the variable vector as xi = (xi, µi). Then, the dual variables are
(y1, y2, . . . , yk, y0, x0, x1, x2, . . . , xk). Here x0 was for the variables of first-stage.
The next step is to rearrange the vector as: (y1, x1y2, x2, . . . , yk, xk, y0, x0). The
Qi i = 0, . . . k is the corresponding scenario-related matrices in Q. Therefore, the
new constraint matrix is as follows:

ATnew =



WT
1 y1 −Q1x

1

WT
2 y2 −Q2x

2

. . .

WT
k yk −Qkx

k

MTLT
1 y

1 LT
2 y

2 . . . LT
k y

k −Q0x
0

 (3.13)

3.4 Two-Stage Stochastic Optimization with Full

Splitting in BlockIP

For working with BlockIP the problem has to be formulated as a standard form
(3.1) with a primal block angular structure (2.6), explained before in Subsection
(2.3.1.1). The two-stage stochastic problems have a dual block angular structure
(2.5), however, for avoiding the dense column, the full splitting formulation is
needed (2.5.1) giving us a matrix of primal block angular structure (2.28) that is

29



CHAPTER 3. SPECIALIZED INTERIOR POINT

just as our software required. For computing, easily, the linking constraints (2.31),
a new function splitting was incorporated in BlockIP.

To find the solution for our stochastic problem with BlockIP (3), the normal
equations (2.18) has to be solved (explained in Section 3.3). Taking back the
structure of AΘAT (matrix 3.3 in Section 3.2) with an appropriate partition on
Θ, the matrix may be written as:

AΘAT =

[
B C
C> E

]
(3.14)

Now, the linking constraints in E have a special structure.

3.4.1 Structure of E for formulation (2.25)

Θi is made of two diagonal submatrices, Θx
i and Θy

i , which are, respectively, related
to first- and second-stage variables xi and yi. Since E = Θ0 +

∑k
i=1RiΘiR

>
i , and

using (2.30), the structure of E is given by

E = Θ0 +


Θx

1 + Θx
2 Θx

1 . . . Θx
1 Θx

1

Θx
1 Θx

1 + Θx
3 . . . Θx

1 Θx
1

...
...

. . .
...

...
Θx

1 Θx
1 . . . Θx

1 + Θx
k−1 Θx

1

Θx
1 Θx

1 . . . Θx
1 Θx

1 + Θx
k

 . (3.15)

E in (3.15) is a symmetric positive definite matrix and it is also partially banded,
with only 2(k − 2) + 1 non-zero diagonals: Eij > 0 if |i − j| is a multiple of nx
and Eij = 0 elsewhere. This is a particular case of the general band matrix (see,
e.g., [37, Ch. 4]). Figure 3.1.a shows the structure of (3.15) for a problem with
nx = 50 first-stage variables and k = 4 scenarios, as well as 2(k − 2) + 1 = 5
non-zero diagonals and 450 non-zero elements.

It is not difficult to prove that either the LDL> or Cholesky factorizations pre-
serve the sparsity (zero fill-in) of (3.15); this guarantees an efficient factorization.
However, we will omit such details. Instead, our focus in the next subsection will
be on the E matrix of formulation (2.27), which is a more efficient alternative.

30



PAULA DE LA LAMA ZUBIRÁN

0 50 100 150

0

50

100

150

nz = 450
0 50 100 150

0

50

100

150

nz = 350

a b

Figure 3.1: Problem with nx = 50 first-stage variables and k = 4 scenarios: a)
Structure of (3.15) for formulation (2.25); b) Structure of (3.16) for formulation
(2.27)

3.4.2 Structure of E for formulation (2.27)

From the definition of E in (3.3) and those of Li in (2.31), and considering as
above that Θi is made of Θx

s and Θy
i , by block multiplication we get

E =


Θx

1 + Θx
2 −Θx

2

−Θx
2 Θx

2 + Θx
3 −Θx

3
. . . . . . . . .

−Θx
k−2 Θx

k−2 + Θx
k−1 −Θx

k−1

−Θx
k−1 Θx

k−1 + Θx
k

 . (3.16)

Figure 3.1.b shows the structure of (3.16) for the same problem in Subsection 3.4.1,
reformulated as in (2.27). The fundamental difference between (3.15) and (3.16)
is that the latter has only three non-zero diagonals, independently of the number
of scenarios. In practice, this leads to the efficient solution of systems Ez = r (for
some z and r).

Matrix (3.16) is a symmetric positive definite “nx-shifted tridiagonal matrix”, a
generalization of a tridiagonal matrix where the superdiagonal (nonzero diago-
nal above the main diagonal) and subdiagonal (nonzero diagonal below the main
nonzero diagonal) are shifted nx positions from the main diagonal, i.e., elements
(i, j) are non-zero only if |i−j| is either 0 or nx. Matrices with such a structure can
be efficiently factorized with zero fill-in by extending a standard factorization for
tridiagonal matrices. This particular factorization has been added to the BlockIP

solver.

31



Chapter 4

Results

4.1 Introduction

In this chapter, the problem formulation (2.27) was implemented and solved using
the BlockIP package [16, 18], which is based on the specialized IPM of Chapter 3.

The results are divided into two groups. The first one are the instances proposed
in [4], [44] and [34]. They are publicly available in SMPS format [35] and have been
used to measure performance in several solvers, such as in [40] and [81]. They are
up to 2,400,000 restrictions and 8,000,000 variables (instance 4nodeBase32768).
Also, The first-stage only reaches to 144 variables (instance pltexpA2). The out-
comes that came out of these problems gave us the guidelines of the second group.

In Section 4.2, the first group is explained. We describe the SMPS format, includ-
ing its different varieties. Also, we implemented an application, called readSTO,
which brings these files into the same style SCENARIO (4.2.1.3). Then with the
aid of Stochastic Modeling Interface (SMI), we convert them into the equivalent
deterministic form (2.3.1).

The second group (4.3) is composed of two available problems: (1) Supply Chain
Problem and (2) Power generation problem. They were modified according to the
preliminary results. These problems were programmed to be able to change the
amount of input data and thus create different instances by increasing the number
of variables. The experiments reached up to 6,000,000 restrictions and 38,000,000
variables

One way to evaluate the efficiency of an algorithm is through the comparison of the
computing time. This is a term used in the complexity theory for quantifying the
performance of an interactive algorithm [57]. We used this measure to compare the
performance with the CPLEX barrier algorithm mainly, which is an optimization
commercial software package by IBM.

32



PAULA DE LA LAMA ZUBIRÁN

4.2 Applications with a small number of first-

stage variables

For this research, we chose Two-Stage Stochastic problems (TSSP) from the lit-
erature. Most of the problems in this study came from [4], and their data can be
download from [30]; as for the rest, they can be found at [44].

These problems were developed in a real context. However, they were adapted for
research purposes. This collection is used to compare the efficiency of algorithms
between scientists. A general description for the family of the problems is as follows

1. A Network model for asset or liability management, Mulvey and
Vladimirou (1991) [66] and Mulvey and Ruszczynski (1995) [65]. (linear
stochastic problem)
Description: The management of assets/liabilities can be treated as a net-
work problem, where asset categories are represented by nodes, and transac-
tions are represented by arcs. The purchase or sale of an asset usually is fixed
and associated with deterministic costs, while the return on investment from
one stage to the next is usually unknown. There are five nodes in each stage:
checking, savings, certificate of deposit, cash, and loans. Random coefficients
are found in the objective, left, and right-hand-side of the second-stage.

2. Electrical investment planning, Louveaux and Smeers (1988) [56] (linear
stochastic problem)
Description: Consider the challenge of planning investments in the electric-
ity generation industry. While the model is generally multistage, the specific
example given is a two-stage model, with three random realizations for a
random variable in the right-hand-side of stage two.

3. Cargo network scheduling, Mulvey and Ruszczynski (1995) [65] (mixed-
integer linear or nonlinear stochastic problem)
Description: This problem is about scheduling cargo transportation. The
flight schedule is completely determined in stage one, and the amount of
cargo to be shipped is uncertain. In this case, the recourse actions are used
to determine which cargo is to be put in which flight. In transshipment,
getting cargo from node m to node n using more than one flight or more
than one route is allowed. When making a transshipment, cargo must be
unloaded at some intermediate node, so then it may be loaded onto a different
ship (route) going through the same node. Any undelivered cargo results in a
penalty, increasing the costs of the operations. In this case, random variables
appear on the right-hand side only. All flights have two tracks, that is, the
airport of origin and the three airports in each flight.

4. Telecommunication network planning, Sen, Doverspike, and Cosares
(1994) [74] (mixed-integer linear stochastic problem)

33



CHAPTER 4. RESULTS

Description: Providing private lines of telecommunication to customers.
Large corporations used such service between its business locations for high
speed and secure data transmission. Private lines are generally used for a
much longer duration than public ones, and they generally can carry more
volume per connection. A manager of such a network must be continually
making predictions in which to base decisions on where and how much to
increase capacity. For this problem formulation, the “how much” is decided
beforehand within budget limits. In this way, data expansion is not penal-
ized. The goal here is to minimize unserved requests while staying within
budget. These networks are usually very interconnected so that for any
point-to-point demand pair, there is usually more than one route that may
service the demand. Each route is made of one or more direct links. The
resulting model is a two-stage network model with a stochastic (right-hand-
side) demand variable in the second-stage.

5. Airlift operations scheduling, Midler and Wollmer (1969) [63] (mixed-
integer linear stochastic problem)
Description: In scheduling monthly airlift operations, we can predict the
demand for specific routes. A random variable can represent the actual re-
quirements. Aircraft of several different types are available for service. Each
of these types of aircraft has its restriction on the number of flight hours
available during the month. The recourse actions available include allowing
available flight time to go unused, switching aircraft from one route to an-
other, and buying commercial flights. Each of these has its associated cost,
depending on the type of aircraft involved.

6. Forest planning, H. Gassmann (1989) [33] (multistage, linear stochastic
problem)
Description: This involves the decision about choosing the sections and
time to harvest the forest. The requirements are linked to the age of the trees
and the likelihood of the remaining trees to be destroyed by a fire. The forest
is divided into groups, depending on those features. Depending on whether
one tree survives from fire or it is harvested, it will then be incorporated
into another group. The burned areas will be immediately replanted. This
objective function maximizes the value of timber, both cut and remaining.

7. Design if batch chemical plants, Subrahmanyam, Pekny, and Reklaitis
(1994) [76] (multistage, mixed linear stochastic problem)
Description: Design of a chemical plant that wants to satisfy future de-
mand. Decisions are how many plants to build, when what type, and how
to operate. Every plant might have different tasks, one or more tasks at the
same time. Material constraints include inventory, production, consumption,
sales, and purchasing effects.

8. Energy and environmental planning, Fragnière (1995) [32] (multistage,

34



PAULA DE LA LAMA ZUBIRÁN

linear stochastic problem)
Description: Assistance in planning energy supply infrastructure and poli-
cies. The problem considers emissions of greenhouse gases, capacity expan-
sion, demand, and production. Many different technologies supply energy.
The capacity of each technology was installed before or after the beginning of
the optimization. The objective is to minimize capital and operating costs.

Some of these problems are mixed; that is, they have also integer variables. In this
investigation, these kinds of problems are relaxed because BlockIP uses only real
numbers. The next Table 4.1 summarizes the family problems displaying the size
of the first-stage, second-stage variables, and the maximum number of scenarios
in the instances.

Family Original Source 1st
Stage

2st
Stage

Scenarios
(up to)

Assets Mulvey and Ruszcznski (1995) 13 13 32,768
Electricity Louveaux and Smeers (1988) 4 12 3
Cargo Mulvey and Ruszcznski (1995) 52 202 32,768
Phone Sen et al. (1994) 8 84 32,768
Airlift Midler and Wollmer (1969) 4 8 676
Forest Gassmann (1989) 15 96 64
Chem Pekny and Reklaitis (1994) 39 41 4
Environ Fragnière (1995) 49 49 5

Table 4.1: Family of problems collection

4.2.1 Format

In the literature, this kind of instance is found in the SMPS format, which makes
use of three text files: core, time, and stochastic. These files are column-oriented,
and everything (variables, constraints, and others) gets a name [35] and its value.
In the next subsections (4.2.1.1, 4.2.1.2, and 4.2.1.3), examples of the different files
are given based on the Electrical investment planning problem from [4]. The name
of the files (instance) is LandS each.

4.2.1.1 Core file

The core file defines the deterministic model created by the first-stage problem
and the first scenario of the second-stage. The core file may be in the usual MPS
format [46]. An example of the power generation problem (LandS.core) can be
found in Appendix C.

35



CHAPTER 4. RESULTS

4.2.1.2 Time file

The time file describes the structure of the problem specifying the number of
stages. The file records include the first row and column of each stage. For this
research, only two-stage problems were analyzed. Therefore, as in the example
LandS.time that is given in Figure 4.1, we can read that the first variable of the
first-stage X1 and the first variable of the second-stage Y 11. To carry out a correct
reading of both files, variables inside the core file must be ordered. In this file, the
first label is TIME. Then, the name of the instance (LandS). It terminates with
the ENDATA too.

Figure 4.1: LandS.time file

4.2.1.3 Stochastic file

Finally, the stochastic (stoch, sto) file gives the stochastic data. There are many
different ways to present this information, such as Scenarios, Node, INDEP (inde-
pendent discrete distribution or by Blocks) or Networks. The ultimate goal is to
produce an event tree, as is shown in Figure 4.2. In this work, all the instances
were INDEP (both cases).

Stage1

Stage2
Scenario3

0.3

Stage2
Scenario2

0.4

Stage2
Scenario1

0.3

Figure 4.2: Event tree

The file has first the word STOCH that refers to a stochastic file, then the name of
the instance problem (LandS). In the next line, it has an identifier to explain which

36



PAULA DE LA LAMA ZUBIRÁN

kind of file is and the probability distribution, DISCRETE or CONTINUOUS. The
discrete distribution was the only type found for this work. To describe the dif-
ferent kinds of files, we also use the example problem (Lands). Other features of
the stoch file include linear and quadratic penalties for violating a stochastic con-
straint, probabilistic constraints and objectives, and integrated chance constraints.

For using BlockIP, we need the format of the deterministic equivalent (extensive
form), that is, a plain MPS file where all the data is included in the same file.
For expanding the problem from the three files into this unique MPS file the
SMI package (Stochastic Modeling Interface) [75] was used. This solver needs
the Scenario file as an input for the stoch file, so other kinds of stoch files must
transform into Scenarios files (explained later in Section 4.2.3).

SCENARIO

The example below (Figure 4.3) defines a SCENARIO file with three scenarios. Here,
each record marked ‘SC’ denotes the start of a new scenario, its probability, and
the stage the branch occurs (second-stage). The following data are the information
on that scenario, which is different from the other scenarios. For instance, in the
example file, all the data are the same for all scenarios except for the only stochastic
data: the parameter in the right-hand side of the constraint DEMAND1 ‘RIGHT
DEMAND1’. For scenario, ‘SCENO1’ has 0.3 probability of occurring with the
value 3. In the next scenario, ‘SCENO2’ has 0.4 probability, and the possible value
will be 5. The last ‘SCENO3’ has the 0.3 probability with the value 7. Note that
the sum of the probability of all scenarios must be one.

Figure 4.3: LandS.stoch. file (scenario)

INDEP

For these files the ID word is INDEP and has all the information by line, i.e. each
stochastic element which differs from the rest of second-stage comes with their

37



CHAPTER 4. RESULTS

identifiers (first two columns), the different values (third column), the correspond-
ing branch for the stage, and their probability. Figure 4.4 shows an example file.

Figure 4.4: LandS.stoch (indep)

BLOCKS

The last kind of file used in this research is BLOCKS, which has independent dis-
tribution ordered by blocks. Each block marked ‘BL’ denotes a different scenario
with the assigned probability and the branch. Data below the blocks came with
the identifier and the values that will be changed. The file example is illustrated
in Figure 4.5.

Figure 4.5: LandS.stoch (Blocks)

In some cases, the file can combine INDEP and BLOCKS style; the first incoming is
the INDEP data, and later comes the information by the BLOCKS. Not all software,
that reads SMPS can manage all kinds of stochastic files. In this research, all
the instances are INDEP, BLOCKS, and a combination of both, so a program was
created in C++ to read those files and elaborate a new SCENARIO-style file. The
program is named readSto. The SCENARIO file can be used in the interface SMI
(see below in Section 4.2.3) to expand the problem into a big MPS format.

4.2.2 readSto application

This program was created to receive the stoch file that can be written as INDEP,
BLOCKS or a mix of both. The output is to create a SCENARIO style, that is, the

38



PAULA DE LA LAMA ZUBIRÁN

input file that is needed for the SMI package (described in Section 4.2.3). First,
readSto reads all the data classifying the parameters and probabilities. Then, it
calculates the probability for each scenario and reorders all the parameters, which
are going to change in the expansive form. The following algorithm summarizes
it:

Input= INDEP,BLOCKS;
Ouput= SCENARIO:
if INDEP

calculate probability
else

copy probability
reorder;
list parameters

(4.1)

After applying all instances thought readSto application, they are ready for SMI
software. The next step is to execute the SMI that helps us creating the deter-
ministic equivalent in a plain MPS format for BlockIP.

4.2.3 Stochastic Modeling Interface

For this research, the SMI software was used with some modifications. SMI stands
for Stochastic Modeling Interface [75] is a project from the Computational Infras-
tructure for Operations Research (COIN-OR), which is an open-source software
published by IBM and writing in C++ [52]. Currently, SMI supports the imple-
mentation of a Stochastic MPS (SMPS) reader. Here, the three SMPS files (core,
time, stoch) are scanned. However, it only considers a SCENARIO-style file with
discrete random variables. Then it generates the deterministic equivalent problem
(Section 2.3.1) in a file with the format of MPS.

The program was tailored by the professor Antonio Frangioni from the Opera-
tions Research Group at the Universitá di Pisa, (Italy) in 2005. Therefore, we
have to updated and reinstate his changes. This hacked version has a function
setAnnotStream that makes an annotation file that identifies the first-stage and
every scenario of the deterministic equivalent MPS format. Figure 4.6 illustrated
the LandS.annot file.

39



CHAPTER 4. RESULTS

Figure 4.6: LandS.annot file

Thus, SMI creates an extensive form in a new MPS file and the annotation file.

4.2.4 CPLEX Barrier vs BlockIP

For testing the performance of the proposed specialized interior-point method,
an initial comparison was made using the state-of-the-art IBM ILOG CPLEX
(v.12.7) barrier optimizer [47]. This decision was made based on the fact that
both algorithms are IPM.

Unlike BlockIP, CPLEX computes directions by Cholesky factorizations, instead
of a combination of Cholesky and PCG. After finding a solution in the interior
point space with a tolerance of ε, by default, the process called a crossover method
which moves from an optimal point to an optimal vertex. This process uses the
simplex method to find a basic solution [57].

In this work, CPLEX executions were made without crossover for a fair comparison
with BlockIP. Also, the setting of a standard barrier algorithm was chosen and the
same tolerance was used in both solvers. As we already mentioned in Subsection
4.2.4.1, CPLEX also was used with one thread for all the performances and we
executed it in the same server.

In these experiments, for BlockIP the problems were modeled using the full split-
ting formulation (2.27), whereas for CPLEX the dual of the extensive form (2.4)
was formulated, in an attempt to avoid dense columns due to the first-stage vari-
ables.

To get the solution, we solve all the instances with the linear objective function,
as we found in the literature. Besides, we create a new version for each instance
by adding quadratic terms in all the variables. We measured the performance also
in theses problems. All the experiments were carried out on a Fujitsu Primergy
RX2540 M1 4X server with two 2.6 GHz Intel Xeon E5-2690v3 CPUs (48 cores)
and 192 Gigabytes of RAM, under a GNU/Linux operating system (OpenSuse
13.2), without the exploitation of multithreading capabilities.

40



PAULA DE LA LAMA ZUBIRÁN

4.2.4.1 MPS2BIP application

For working with BlockIP the MPS2BIP application was created for suiting the
MPS file form the deterministic equivalent into the input data of BlockIP. Also,
adding the Full Splitting formulation (illustrated in Section 2.5.1).

MPS2BIP has as inputs the expanded MPS file, which includes the first-stage and
all the scenarios of the second-stage, and the annot file with the information of
where every scenario starts.

After taking into account all the information, the constraint matrix was reordered
(2.27) considering the full splitting constraints (2.31); this means, that now the
problem has a primal block-angular structure (3.2) with (S − 1)nx very sparse
linking constraints with only identity and minus identity matrices.

4.2.4.2 Results for instances with small first-stage variables

The measure used to compare the performance of the proposed specialized interior-
point method with CPLEX (barrier optimizer) was the time computed for solving
each instance, without the time of reading the problem.

Sometimes the PCG could fail when the matrix is detected positive semidefinite.
In this case, BlockIP may switch to Cholesky factorization. From our initial 74 in-
stances, mention at the beginning of the section, 16 cases were detected like this. In
our experiments, we decided to stop the execution when this happened, otherwise,
for these large-scale instances the solution by Cholesky could be computationally
expensive. One thing that helped us manage these problems was replacing very
large values (1.0e128) with a smaller exact ”infinity” where BlockIP might handle
better.

Table 4.2 shows a sample of the results with the instances referred to above. The
first column indicates the name of each instance; next, the number of variables
in the first-stage (named 1st); columns k, m, and n refer to, respectively the
number of scenarios, constraints, and variables. Then, the number of interior-
point iterations and CPU time (seconds) for both solvers are shown. In the case
of BlockIP, the PCG iterations are also reported. The last column refers to the
rate between the time of CPLEX barrier and BlockIP (cb/BIP). We considered
an initial tolerance of ε0 = 10−2 for the PCG solutions (which is the default in
BlockIP for linear problems). The optimality tolerances for BlockIP and CPLEX
were set to 10−3 (smaller values could be difficult to achieve by BlockIP due to the
approximate solution of the Newton direction by PCG). The results of Table 4.2
indicate that BlockIP is slower in these kinds of instances where, although with
a large number of scenarios, the number of first-stage variables is small. In two
cases, CPLEX sends us a message: Out of memory.

41



CHAPTER 4. RESULTS

BlockIP CPLEX
Instance 1st k m n Iter CPU PCG Iter CPU cb/BIP

4node2 52 2 162 508 24 0.00 126 12 0.00 0.00
4node4 52 4 310 1008 27 0.01 241 16 0.01 1
4node8 52 8 606 2008 32 0.04 450 13 0.02 0.5
4node16 52 16 1198 4008 35 0.14 785 13 0.06 0.43
4node16old 52 32 2382 8008 43 0.33 1313 17 0.31 0.94
4node128 52 128 9486 32008 35 0.97 1167 25 0.30 0.31
4node256 52 256 18958 64008 38 1.69 1074 25 0.48 0.28
4node512 52 512 37902 128008 43 3.18 1068 29 1.13 0.36
4node1024 52 1024 75790 256008 43 6.65 1094 30 2.57 0.39
4node2048 52 2048 151566 512008 52 46.44 3908 36 6.56 0.14
4node4096 52 4096 303118 1024008 49 76.06 2938 45 17.30 0.23
4node16384 52 16384 1212430 4096008 59 522.10 5131 43 57.89 0.11
4node32768 52 32768 2424846 8192008 69 1470.91 7194 43 120.19 0.08
4nodeBase2 52 2 164 508 21 0.00 120 10 0.00 0.00
4nodeBase4 52 4 312 1008 25 0.02 195 13 0.02 1
4nodeBase8 52 8 608 2008 28 0.02 238 11 0.02 1
4nodeBase16 52 16 1200 4008 37 0.05 424 14 0.07 1.4
4nodeBase16old 52 32 2384 8008 29 0.12 313 12 0.26 2.17
4nodeBase128 52 128 9488 32008 40 0.84 861 15 0.17 0.20
4nodeBase256 52 256 18960 64008 43 1.67 1071 22 0.43 0.26
4nodeBase512 52 512 37904 128008 52 3.63 1104 24 0.97 0.27
4nodeBase1024 52 1024 75792 256008 62 9.99 1662 25 2.25 0.23
4nodeBase2048 52 2048 151568 512008 72 26.62 1893 31 5.90 0.22
4nodeBase4096 52 4096 303120 1024008 70 62.13 2132 34 14.32 0.23
4nodeBase16384 52 16384 1212432 4096008 110 570.13 5274 46 59.55 0.10
4nodeBase32768 52 32768 2424848 8192008 103 785.99 3354 31 88.51 0.11
AIRL first 4 25 152 402 12 0.00 121 7 0.00 0.00
AIRL second 4 25 152 402 11 0.00 89 5 0.00 0.00
AIRL randgen 4 676 4058 10818 17 0.09 120 11 0.04 0.44
assets 100 13 100 505 2600 50 0.05 602 0 0.01 0.2
assets 37500 13 37500 187505 975000 32 17.39 461 17 2.70 0.16
chemBase 39 2 118 226 29 0.00 272 11 0.00 0.00
chem 39 2 130 238 15 0.00 118 10 0.00 0.00
env 15 49 15 768 2046 21 0.02 78 14 0.01 0.5
env 1200 49 1200 57648 160836 51 4.22 749 0 0.56 0.13
env 1875 49 1875 90048 251286 64 9.09 1096 0 1.17 0.13
env 3780 49 3780 181488 506556 75 24.45 1237 0 2.70 0.11
env 5292 49 5292 254064 709164 92 43.23 1541 0 4.80 0.11
env 8232 49 8232 395184 1103124 125 99.47 2316 0 10.06 0.10
env 32928 49 32928 1580592 4412388 155 804.61 3753 Out of memory
env aggr 49 5 288 706 16 0.00 44 11 0.00 0.00
env first 49 5 288 706 18 0.00 45 10 0.00 0.00
env loose 49 5 288 706 13 0.00 43 10 0.00 0.00
envDiss15 49 15 768 2046 26 0.03 150 12 0.01 0.33
envDiss1200 49 1200 57648 160836 66 7.67 1689 40 0.91 0.12
envDiss1875 49 1875 90048 251286 78 14.13 1928 42 1.63 0.12
envDiss3780 49 3780 181488 506556 104 50.15 2985 44 4.36 0.09
envDiss5292 49 5292 254064 709164 130 92.52 3786 54 7.62 0.08
envDiss8232 49 8232 395184 1103124 135 154.36 4066 62 15.02 0.10
envDiss32928 49 32928 1580592 4412388 200 1580.19 10897 Out of memory
envDiss aggr 49 5 288 706 17 0.01 67 8 0.00 0.00
envDiss loose 49 5 288 706 18 0.00 60 8 0.00 0.00
LandS 4 3 23 62 9 0.00 41 6 0.00 0.00
pltexpA2 6 188 6 686 2760 60 0.05 492 10 0.01 0.2
phone 8 32768 753665 3309569 21 38.02 255 23 26.00 0.68

Table 4.2: Results of linear instances with BlockIP and CPLEX barrier

For the sake of completeness, the dual simplex method in CPLEX [48] was tested.
It was run in the same conditions as the CPLEX Barrier. In Table 4.3, the results
of the performance of this algorithm are presented with a 5 · 10−2 optimality gap.

42



PAULA DE LA LAMA ZUBIRÁN

This table shows, the name of each instance, the number of iteration, and the
CPU time in seconds; at the last column, the rate of time, CPLEX Dual over
BlockIP (from Table 4.2). In these results, it can be appreciated that BlockIP is,
in general, faster than CPLEX Dual. Also, it can be noticed that for these kinds
of problems CPLEX Barrier is more competitive.

In addition, the primal simplex algorithm from CPLEX was also executed; how-
ever, it was too slow in the medium and large instances. As a result, the CPU
times were omitted in the results.

4.2.5 Quadratic benchmark for the small first-stage in-
stances

From the above linear instances, we created a set of quadratic stochastic problems
by adding convex separable quadratic costs to the first- and second-stage vari-
ables; these quadratic terms were synthetic and of the same order as the linear
costs. Table 4.4 reports the characteristics of these quadratic instances and the
results obtained with BlockIP and CPLEX with the algorithm Barrier. In these
executions, the initial PCG tolerance was set to ε0 = 10−3 (the default value in
BlockIP for quadratic problems). The optimality tolerances used for BlockIP and
CPLEX were 5·10−2. The specialized IPM in BlockIP is known to be more efficient
for quadratic than for linear instances [20]. Then, as expected, the performance
of BlockIP improved in these quadratic stochastic instances. However, it was still
outperformed by CPLEX.

43



CHAPTER 4. RESULTS

CPLEX Dual
Instance Iter CPU cd/BIP

4node2 197 0.00 0.00
4node4 394 0.01 1.00
4node8 764 0.02 0.50
4node16 1514 0.08 0.57
4node16old 3409 0.13 0.39
4node128 12847 1.47 1.52
4node256 25547 3.94 2.33
4node512 62970 25.99 8.17
4node1024 112829 70.50 10.60
4node2048 250327 395.93 8.53
4node4096 444252 1637.46 21.53
4node16384 2435581 31776.71 60.86
4node32768 4045956 164203.33 111.63
4nodeBase2 208 0.01 1.11
4nodeBase4 431 0.01 0.50
4nodeBase8 840 0.02 1.00
4nodeBase16 1743 0.06 1.20
4nodeBase16old 3325 0.09 0.75
4nodeBase128 16432 0.91 1.08
4nodeBase256 36462 2.85 1.71
4nodeBase512 78874 10.62 2.93
4nodeBase1024 177091 52.15 5.22
4nodeBase2048 348293 175.67 6.60
4nodeBase4096 706291 983.03 15.82
4nodeBase16384 2951060 30222.37 53.01
4nodeBase32768 5831983 219262.22 278.96
AIRL first 162-75 0.00 0.00
AIRL second 145-75 0.00 0.00
AIRL randgen 4497-2028 0.12 1.33
assets 100 224 0.00 0.00
assets 37500 43749 31.36 1.80
chemBase 31 0.00 0.00
chem 29 0.00 0.00
env 15 321-16 0.01 0.50
env 1200 23557 0.72 0.17
env 1875 36567 1.29 0.14
env 3780 73421 4.92 0.20
env 5292 102673 7.73 0.18
env 8232 158775 18.41 0.19
env 32928 1260613 202.78 0.25
env aggr 117-6 0.00 0.00
env first 112-6 0.00 0.00
env loose 112-6 0.00 0.00
envDiss15 356 0.00 0.00
envDiss1200 26063 0.95 0.12
envDiss1875 41203 1.94 0.14
envDiss3780 83491 7.88 0.16
envDiss5292 117359 13.89 0.15
envDiss8232 178885 25.80 0.17
envDiss32928 1289763 268.37 0.17
envDiss aggr 131 0.00 0.00
envDiss loose 122 0.00 0.00
LandS 21 0.00 0.00
pltexpA2 6 no conv
phone 972239 7495.43 197.14

Table 4.3: Performance of the benchmark set of instances with CPLEX Dual
algorithm

44



PAULA DE LA LAMA ZUBIRÁN

BlockIP CPLEX
Instance 1st k m n Iter CPU PCG Iter CPU cb/BIP

4node2 52 2 162 508 20 0.00 139 8 0.00 0.00
4node4 52 4 310 1008 22 0.00 199 7 0.01 1.00
4node8 52 8 606 2008 24 0.03 251 7 0.02 0.54
4node16 52 16 1198 4008 25 0.08 302 7 0.05 0.63
4node16old 52 32 2382 8008 19 0.15 480 17 0.31 2.07
4node128 52 128 9486 32008 29 0.61 534 7 0.12 0.20
4node256 52 256 18958 64008 31 1.25 583 7 0.22 0.18
4node512 52 512 37902 128008 31 2.99 754 7 0.44 0.15
4node1024 52 1024 75790 256008 33 6.36 859 7 1.12 0.18
4node2048 52 2048 151566 512008 33 15.51 894 7 3.98 0.26
4node4096 52 4096 303118 1024008 31 36.60 984 7 6.81 0.19
4node16384 52 16384 1212430 4096008 31 137.87 1219 8 14.29 0.10
4node32768 52 32768 2424846 8192008 32 300.99 1305 Out of memory
4nodeBase2 52 2 164 508 20 0.00 151 8 0.00 0.00
4nodeBase4 52 4 312 1008 22 0.01 202 9 0.01 1.00
4nodeBase8 52 8 608 2008 24 0.04 294 7 0.02 0.50
4nodeBase16 52 16 1200 4008 27 0.09 370 7 0.06 0.67
4nodeBase16old 52 32 2384 8008 18 0.14 370 18 0.33 2.36
4nodeBase128 52 128 9488 32008 31 0.85 817 11 0.14 0.16
4nodeBase256 52 256 18960 64008 32 1.50 833 11 0.29 0.19
4nodeBase512 52 512 37904 128008 31 3.10 924 11 0.65 0.21
4nodeBase1024 52 1024 75792 256008 30 6.75 1012 12 1.22 0.18
4nodeBase2048 52 2048 151568 512008 31 19.49 1277 12 3.01 0.15
4nodeBase4096 52 4096 303120 1024008 33 46.44 1459 12 8.09 0.17
4nodeBase16384 52 16384 1212432 4096008 35 213.29 1979 Out of memory
4nodeBase32768 52 32768 2424848 8192008 37 472.27 2168 Out of memory
AIRL first 4 25 152 402 11 0.00 173 10 0.00 0.00
AIRL second 4 25 152 402 11 0.00 210 11 0.00 0.00
AIRL randgen 4 676 4058 10818 17 1.09 3512 16 0.05 0.05
assets 100 13 100 505 2600 31 0.05 327 4 0.00 0.00
assets 37500 13 37500 187505 975000 34 30.08 881 14 1.75 0.06
chemBase 39 2 118 226 13 0.00 67 9 0.00 0.00
chem 39 2 130 238 8 0.00 49 5 0.00 0.00
env 15 49 15 768 2046 14 0.01 46 13 0.02 2.00
env 1200 49 1200 57648 160836 14 1.52 209 18 0.66 0.43
env 1875 49 1875 90048 251286 15 2.24 261 17 1.11 0.50
env 3780 49 3780 181488 506556 17 8.50 357 18 2.62 0.31
env 5292 49 5292 254064 709164 17 11.54 355 20 3.16 0.27
env 8232 49 8232 395184 1103124 17 19.21 388 18 4.62 0.24
env 32928 49 32928 1580592 4412388 20 91.85 568 19 17.59 0.19
env aggr 49 5 288 706 11 0.00 27 8 0.00 0.00
env first 49 5 288 706 12 0.00 33 7 0.00 0.00
env loose 49 5 288 706 10 0.00 30 6 0.00 0.00
envDiss15 49 15 768 2046 14 0.01 46 13 0.02 2.00
envDiss1200 49 1200 57648 160836 14 1.44 209 18 0.66 0.46
envDiss1875 49 1875 90048 251286 15 2.72 261 17 1.10 0.40
envDiss3780 49 3780 181488 506556 17 7.90 331 18 2.84 0.36
envDiss5292 49 5292 254064 709164 17 11.25 346 20 3.26 0.29
envDiss8232 49 8232 395184 1103124 17 19.44 393 18 4.60 0.24
envDiss32928 49 32928 1580592 4412388 20 100.45 638 19 18.16 0.18
envDiss aggr 49 5 288 706 11 0.00 28 8 0.00 0.00
envDiss first 49 5 288 706 12 0.00 33 7 0.01 1.00
envDiss loose 49 5 288 706 10 0.00 29 9 0.00 0.00
fxm2 16 114 16 3900 9045 200 0.73 311 10 0.07 0.10
LandS 4 3 23 62 9 0.00 48 6 0.00 0.00
pltexpA2 16 188 16 1726 7360 45 0.13 303 10 0.08 0.62
pltexpA2 6 188 6 686 2760 54 0.03 241 10 0.02 0.67
stocfor2 15 64 6543 10182 12 0.26 452 13 0.10 0.38
LandS 4 3 23 62 9 0.00 48 6 0.00 0.00
phone 8 32768 753665 3309569 13 21.95 169 18 12.88 0.59

Table 4.4: Results of quadratic instances with BlockIP and CPLEX barrier

45



CHAPTER 4. RESULTS

4.2.6 Comparison with other specialized solvers for stochas-
tic optimization

In addition to the CPLEX general-purpose solver, we explored other specialized
methods for two-stage stochastic problems, namely: Benders decomposition, and
Benders decomposition with regularization by the level set method, as imple-
mented in the FortSP stochastic solver [81]; the primal-dual column generation
approach of [40]; and the dual decomposition approach (with an interior-point
cutting-plane generator) implemented in the DSP (Decomposition for Structured
Programming) stochastic solver [53]. Comparing BlockIP with these other ap-
proaches is not straightforward since the solvers of [81] and [40] are not freely
available; the DSP solver had to be used remotely from the Neos Server [23] (we
did not succeed in installing it locally due to its many dependencies with third-
party software); and the four hardware (i.e., those of [81], [40], the Neos Server,
and our work) were different, so only an indirect comparison can be performed.

Table 4.5 shows the results obtained with BlockIP and two of the algorithms in
the DSP package (namely, a Benders decomposition and a dual decomposition)
for a subset of the instances of Table 4.2. CPU times for DSP were provided by
the Neos Server [67], so the comparison between our approach and DSP should be
done with caution. When the instance exceeded the maximum memory allotted
by the Neos Server to a job, the solution was not found; this is marked with “—”
in Table 4.5. From the times reported, DSP seems not to be competitive with our
approach, especially for the largest instances. A possible explanation might be
that DSP was mainly designed for mixed-integer stochastic problems.

Concerning the other two specialized methods, and according to the information
provided by their authors, the processors used in [40] and [81] were, in single-
thread mode, respectively a 27% and an 11% faster (in terms of Mflops, millions
of floating-point operations per second) than the one used in our work.

The approach of [40] outperformed in general all the methods tested in [81], from
the results in those papers. Therefore we will focus on the primal-dual column
generation method of [40]. This approach required (in the hardware used in [40])
for the 10 instances of Table 4.2, respectively, 0.03, 0.03, 0.11, 0.56, 10.83, 37.97,
0.05, 0.68, 5.86 and 0.76 CPU seconds. Using the 27% correction factor between
processors, if we had run the approach of [40] in our hardware, the CPU times
would have been, approximately, 0.04, 0.04, 0.15, 0.76, 14.77, 51.78, 0.07, 0.93,
7.99 and 1.03. We observe from Table 4.2 that the performance of CPLEX was
very similar in those instances (excluding the last two, where the approach of
[40] was significantly faster—especially for the last instance). Therefore, although
being a general-purpose solver, CPLEX can be considered a good candidate for
benchmarking (this is also consistent with the results of [81], where the CPLEX
barrier ranked among the best three algorithms for stochastic optimization). Also,
CPLEX can solve quadratic instances, while the approaches of [40] and [81] dealt

46



PAULA DE LA LAMA ZUBIRÁN

BlockIP DSP
Instance 1st k m n Iter CPU PCG Algorithm CPU

AIRL first 4 25 152 402 12 0.00 121
Benders 0.8

Dual 6.6

pltexpA2 188 6 686 2760 60 0.05 492
Benders 0.1

Dual 0.1

LandS 4 3 23 62 9 0.00 41
Benders 0

Dual 0.3

4node128 52 128 9486 32008 35 0.97 1167
Benders 3.7

Dual 16529.1

4node4096 52 4096 303118 1024008 49 76.06 2938
Benders 1535.1

Dual —

env 1200 49 1200 57648 160836 51 4.22 749
Benders —

Dual —

env 32928 49 32928 1580592 4412388 155 804.61 3753
Benders —

Dual —

phone 8 32768 753665 3309569 21 38.02 255
Benders —

Dual —

Table 4.5: Results of linear instances with BlockIP and DSP

only with linear problems. CPLEX will thus be the solver used to test our approach
in the next Section 4.3, for the solution of more difficult instances provided by two
particular applications.

4.2.7 Comparison with other IPMs that solve the aug-
mented system

From the outputs provided by the barrier CPLEX algorithm, it apparently solves,
as BlockIP, the normal equations, which may suffer of fill-in. Therefore, for a fair
comparison, an IPM solving the symmetric indefinite augmented system (2.17)
—whose LDL> factorization is less affected by fill-in—should also be considered.
In addition, nowadays there are available some very efficient sparse LDL> solvers,
such as the MA57 routine of the Harwell Subroutine Library (HSL) [45].

Table 4.6 provides the number of iterations and CPU time with the package Ipopt
(v. 3.9.3) [79], which solves the augmented system using MA57, for the same
instances used in previous Table 4.5. Optimality tolerances for Ipopt were adjusted
to mimic as much as possible those of BlockIP and CPLEX (since Ipopt can deal
with nonlinear problems, the potential number of tolerances to tune is much larger
than for BlockIP and CPLEX). The average CPU times per iteration for BlockIP,
CPLEX and Ipopt are also reported in Table 4.6. These ratios are more informative
than the total CPU time, since Ipopt is not tailored for linear problems and then it
might require more IPM iterations. We remind that the CPU time is dominated by

47



CHAPTER 4. RESULTS

Ipopt CPU/Iter
Instance 1st k m n Iter CPU BlockIP CPLEX Ipopt

LandS 4 3 23 62 16 0.01 0.00 0.00 0.00
AIRL first 4 25 152 402 64 0.06 0.00 0.00 0.00
pltexpA2 188 6 686 2760 33 0.12 0.00 0.00 0.00
4node128 52 128 9486 32008 27 1.51 0.03 0.01 0.06
4node4096 52 4096 303118 1024008 52 213.78 1.55 0.38 4.11
4node16384 52 16384 1212430 4096008 44 1867.92 8.85 1.35 42.45
env 15 49 15 768 2046 99 0.20 0.00 0.00 0.00
env 1875 49 1875 90048 251286 140 19.15 0.14 0.05 0.14
envDiss8232 49 8232 395184 1103124 171 135.93 1.14 0.24 0.79
phone 8 32768 753665 3309569 19 166.58 1.81 1.13 8.77

Table 4.6: Results of linear instances with Ipopt, and CPU time per iteration for
BlockIP, CPLEX and Ipopt

the solution of either the normal equations (in BlockIP and CPLEX) or augmented
system (in Ipopt). We clearly observe that in these instances with only a few first-
stage variables, CPLEX is the fastest per iteration, followed by BlockIP, and the
solution of the augmented system appears as the less competitive option. The
results of the below Section 4.3.3.3 will show that, for larger and more difficult
instances (in particular, for instances of the two particular applications), Ipopt
may be more efficient than CPLEX (in terms of time per iteration), but it is never
competitive against our specialized approach.

4.3 Computational results for two particular ap-

plications

The instances of Tables 4.2 and 4.4 have a small number of first-stage linking
variables, so they are loosely coupled among the different scenarios. For this reason,
they can be considered “not too difficult”, and specially tailored for decomposition
algorithms. In order to get more difficult instances, we modified two problems
from the literature: (1) a stochastic supply chain problem based on [5], which will
be described in Subsection 4.3.1; (2) and instance LandS of Section 4.2, which
corresponds to a stochastic electricity generation problem [4] and it is explained
below in Subsection 4.3.2. The implementations developed for these two problems
allowed us to manage the number of scenarios and the number of first- (mainly) and
second-stage variables. Both problems were solved with CPLEX and BlockIP. For
the solution with BlockIP, they were modeled with the splitting formulation (2.27),
thus obtaining the structure of the constraints (2.28). For CPLEX we considered
two formulations: the full splitting formulation (2.27) (as for BlockIP); and the
dual of the original extensive form (2.4) (whose constraints matrix is (2.6), which is

48



PAULA DE LA LAMA ZUBIRÁN

the transpose of (2.5) for linear problems), such that linking variables are converted
into linking constraints which, in principle, avoid the presence of dense columns,
thus potentially increasing the performance of the CPLEX barrier algorithm.

4.3.1 The stochastic supply chain problem

This problem was created from the models in [5] and [73]. The original model
considered a supply chain network G = (N ,A), where N is the set of nodes and A
is the set of arcs. The set N consists of suppliers S, potential processing facilities
P and customer centers C, i.e., N = S ∪ P ∪ C. The decisions for first-stage are
associated with a binary variable xi, such that xi = 1 if processing facility i is
built, and 0 otherwise. The second-stage refers to tactical decisions on routing the
flow of some product from suppliers to customers. Variable yij denotes the flow
of the products from a node i to a node j in the network, where (ij) ∈ A, and zj
denotes a shortfall of the product at customer j, meaning that it is impossible to
meet the demand. The random vector ξ includes the demands, supplies, and costs
(of processing, transportation, and shortage).

In our model, modifications were made to expand the problem, especially the
first-stage variables. First, the number of nodes for each set could be chosen (this
is provided as input data), thus allowing to increase the number of first-decision
variables as well as the number of scenarios for expanding the problem as much
as is necessary. Also, the capacity decision uij for arcs (ij) ∈ A was included,
where uij cannot be greater than M . This capacity could not be exceeded during
transportation operations. Finally, we added the nodes of suppliers S to the
decision on whether or not to build the facility. Furthermore, all binary variables
xi were relaxed, i.e., 0 ≤ xi ≤ 1.

The resulting stochastic supply chain design problem is formulated as follows:

min
x,u

∑
i∈S∪P

cixi +
∑

(ij)∈A

fijuij +Q(x, u)

s. to 0 ≤ xi ≤ 1 ∀i ∈ S ∪ P
0 ≤ uij ≤M ∀(ij) ∈ A

and Q(x, u) = Eξ[Q(x, u, ξ)],

(4.2)

where Q(x, u, ξ) is the optimal value of the following problem:

49



CHAPTER 4. RESULTS

Q(x, u, ξ) = min
y,z

∑
(ij)∈A

qijyij +
∑
j∈C

hjzj (4.3a)

s. to
∑
i∈S

yij −
∑
l∈C

yjl = 0 ∀j ∈ P (4.3b)∑
i∈P

yij + zj ≥ dj ∀j ∈ C (4.3c)∑
j∈P

yij ≤ sixi ∀i ∈ S (4.3d)∑
i∈S

yij ≤ mjxj ∀j ∈ P (4.3e)

0 ≤ yij ≤ uij ∀(ij) ∈ A (4.3f)

zj ≥ 0 ∀j ∈ C, (4.3g)

whose parameters are:

• ci is the investment cost for supply and building facility i.

• fij is the cost-per-unit of capacity on the arc ij.

• qij represents the per-unit cost of transporting the product on arc ij.

• hj is the per-unit penalty incurred for failing to meet the demand of the
product at the customer center j.

• M denotes the maximum capacity per arc.

• dj is the demand of customer j.

• si is the maximum supply capacity of supplier i.

• mj is the maximum processing capacity of processing plant j.

The first-stage problem (4.2) consists of choosing the design variables xi and uij.
The objective function minimizes the total investment for nodes S and P , arc
capacities uij, and the expected value of the second-stage. Binary variables xi are
relaxed, and the upper bound M is set for all arc capacities.

The second-stage problem (4.3) involves the processing and the transportation of
the product, where the objective function (4.3a) minimizes the transportation and
shortage costs. The first set of constraints (4.3b) enforces the flow conservation
across each processing node j. The next group of constraints (4.3c) requires that
the total flow for the customer j plus its shortfall should be at least the demand
dj. Constraints (4.3d) ensure that the total flow from a supplier node i should
not exceed the supply capacity si at that node if it is built. The set of constraints
(4.3e) establishes that the number of units to the process should not be greater

50



PAULA DE LA LAMA ZUBIRÁN

than the capacity mj of facility j if it is built. If facility i ∈ S is not built, the
above two groups of constraint will force all flow variables yij = 0 for all i ∈ S.
Finally, constraints (4.3f) and (4.3g) are the upper and lower bounds.

4.3.1.1 Test instances

The original model in [5] considered a supply chain with four suppliers (A, B, C,
and D), four possible processing facilities (E, F, G, and H), and three customer
centers (L, M, and N). This supply network is depicted in Figure 4.7. The product
considered in [5] was uniform-quality wine in bulk (raw material). Four scenarios
were considered (boom, good, fair and poor), with different probabilities associated
with each one. It should be stressed that in [5] the supplies, transportation costs,
and shortage costs were considered as deterministic parameters for the extensive
form (or deterministic equivalent) formulation.

Figure 4.7: The network of the wine company [5]

We extended the original model in [5] in several ways. First, all the parameters
of the problem were created utilizing a random generator considering different
ranges of values. For instance, the range of investment costs for building each
processing (bottling) plant was between 250,000 and 350,000. The costs per unit
of arc capacities were between 1000 and 1,000,000. The unit production costs
and market demands under each scenario were in the range of 500–750 and 550–
800, respectively. The costs of transporting bulk wine from the suppliers to the
processing facilities, and bottled wine from the processing facilities to the clients
were, respectively, around 150 and 450. The unit storage costs at each distribution
center were in the range of 10–16 thousand units. Furthermore, the maximum
amount of bulk wine that can be shipped from the suppliers was between 250 and
350 units.

Next, we increased the number of first-stage variables by considering 10 suppliers,

51



CHAPTER 4. RESULTS

10 processing facilities and 50 customers. This resulted in a problem with 620 first-
stage variables, used as the base case from which the several instances in below
Sections 4.3.3.1 and 4.3.4.1 are obtained by replicating the number of scenarios.

4.3.2 The stochastic power generation problem

This problem (based on [56]) consists of finding the optimal investment over various
types of power plants to satisfy uncertain electricity demand. A two-period model
with a set ofM operating modes and a set of T different technologies is considered.
The modes are a discrete representation of the true load-duration demand curve,
where each mode is a rectangular approximation of a part of this curve. It is
necessary to consider a large number of modes for a good approximation to reality.
Several power plants use one of the available technologies. See [4, 11] for more
details.

Technology i ∈ T has an associated investment cost ci (a multiple of e/Mw), and
a production cost qi (a multiple of e/Mwh). Operating modes are defined by its
duration tj (hours) and demand dj (Mw), for j ∈ M; the demand d1 = ξ of the
first mode is the stochastic parameter of this problem. First-stage decisions are the
capacities xi (Mw) invested in each technology i ∈ T . Second-stage variables are
the capacities yij effectively operated in each mode j ∈ M, for each technology
i ∈ T . We assume technologies are always available, so they can be operated
full-time.

The model formulation is the following:

min
x

∑
i∈T

cixi +Q(x)

s. to
∑
i∈T

xi ≥ C∑
i∈T

cixi ≤ B

xi ≥ 0 i ∈ T

and Q(x) = Eξ[Q(x, ξ)], (4.4)

where

Q(x, ξ) = min
y

∑
i∈T

∑
j∈M

qitjyij (4.5a)

s. to
∑
j∈M

yij ≤ xi i ∈ T (4.5b)∑
i∈T

yij = ξ j ∈ {1} (4.5c)∑
i∈T

yij = dj j ∈M \ {1} (4.5d)

yij ≥ 0 i ∈ T , j ∈M, (4.5e)

52



PAULA DE LA LAMA ZUBIRÁN

B and C are, respectively, a budget limit and a minimum capacity to be provided
in the first-stage.

The first-stage problem (4.4) considers the investment cost for each technology,
subject to a minimum total capacity and maximum budget constraints. The ob-
jective function (4.5a) of the second-stage problem consists of minimizing the op-
erational costs for each technology effectively used in every mode. The constraints
(4.5b) impose that available capacities cannot be exceeded, for each technology.
The other two sets of constraints (4.5c)–(4.5d) impose demand satisfaction for
every mode; the first constraint is for the first mode, whose demand is stochastic.

4.3.2.1 Test instances

The instance presented in [4] and [11], considered m = 3 operating modes and n =
4 available technologies, along with demands d = (ξ, 2, 3) (that is, the demand of
the first operating mode is stochastic) and load durations t = (10, 6, 1). The three
scenarios had the values of ξ = (3, 5, 7) and (0.3, 0.4, 0.3) probabilities, respectively.
The investment costs were c = (10, 7, 16, 6) for each technology, with production
costs q = (4, 4.5, 3.2, 5.5). The budget keeps all investments below B = 120 and
minimum capacity is C = 12.

The previous basic instance was extended by increasing the number of technologies
available (which is the same as the number of first-stage constraints), existing
operating modes and scenarios for every instance. The rest of the parameters
were randomly generated from the values of the basic instance. For instance, the
budget and minimum capacity varied according to the number of technologies.
The random demand took values between 2 and 10, the investment costs c in the
range 2–20, q between 2 and 6, and t went up to 10.

Next, we began to increase the number of technologies (that is, first-stage deci-
sions) until finding a considerable number of first-stage variables, as is shown in
the Table 4.7. In these instances, parameters in BlockIP are default values.

BlockIP CPLEX barrier
No Splitting

1st m n Iter CPU PCG Iter CPU cb/BIP

4 31 70 26 0.00 87 14 0.00 0
9 56 155 43 0.00 223 19 0.00 0
20 111 342 26 0.00 74 20 0.01 2.97
100 511 1702 38 0.02 94 23 0.03 1.34
200 1011 3402 37 0.04 88 26 0.07 1.71
300 1511 5102 60 0.08 140 29 0.10 1.20

Table 4.7: Increasing the first-stage variables in Power Generation Problem

53



CHAPTER 4. RESULTS

BlockIP CPLEX barrier CPLEX barrier
no splitting with splitting

k m n Iter CPU PCG Iter CPU Iter CPU

200 259380 511380 140 28.18 2747 19 149.76 21 109.34
400 519380 1023380 174 59.36 2504 25 424.54 30 262.32
600 779380 1535380 155 77.32 2076 32 616.63 29 250.59
800 1039380 2047380 192 128.81 2565 19 566.50 31 342.79

1000 1299380 2559380 200 312.07 6295 23 843.60 32 428.56

Table 4.8: Results for supply chain problem up to 1000 scenarios

The advantage of BlockIP can be appreciated since early performances (e.g., 20
variables in the first-stage). We decided to increase up to 600 (as it will be seen
in below sections of results); in this case, rather than technologies, first-stage
decisions could be considered as different power plants.

4.3.3 Results for linear instances

Next two subsections present results for the linear instances of the supply chain
and power generation problem. Those instances were obtained by increasing the
number of first-stage variables and/or scenarios in the base instances described
in previous sections. In these runs, the optimality gap was set to 10−6 for both
BlockIP and CPLEX, unless otherwise stated. For BlockIP, the initial tolerance
and the tolerance reduction factor of the PCG were, respectively, ε0 = 10−2 and
β = 0.95 (which are BlockIP default values), unless otherwise stated.

4.3.3.1 Linear instances of the stochastic supply chain problem

From the base instance of 10 suppliers, 10 processing facilities and 50 customers—
with a total of 620 first-stage variables—described in above Section 4.3.1.1, we
generated a first set of stochastic instances with 200, 400, 600, 8000 and 1000 sce-
narios. Table 4.8 shows the results obtained with BlockIP (splitting formulation),
and CPLEX (for both the with and without splitting formulations). The meaning
of the columns is the same as in previous tables. These instances resulted to be dif-
ficult for BlockIP, as the spectral radius ρ was close to one in the early iterations.
Therefore, the optimality gap was set to 10−5 for both BlockIP and CPLEX. The
PCG tolerance reduction factor in BlockIP was also set to β = 1 (that is, the
PCG tolerance was not reduced at each interior-point iteration). From Table 4.8
it is clearly observed that BlockIP was more efficient than CPLEX either with or
without full splitting.

Table 4.9 reports results for a second set of larger instances with some scenar-

54



PAULA DE LA LAMA ZUBIRÁN

BlockIP CPLEX barrier CPLEX barrier
no splitting with splitting

k m n Iter CPU PCG Iter CPU Iter CPU

2000 2599380 5119380 48 48.34 204 11 647.42 20 627.82
3000 3899380 7679380 43 67.41 197 10 916.60 18 1208.98
4000 5199380 10239380 86 159.94 275 10 1242.50 18 2112.53
5000 6499380 12799380 81 214.08 379 10 1572.92 19 3678.25

Table 4.9: Results for supply chain problem up to 5000 scenarios

ios between 2000 and 5000; the largest instance has 6.4M constraints and 12.8M
variables. The optimality tolerance was increased to 10−3 for both BlockIP and
CPLEX barrier, which can be considered a reasonable choice for stochastic models
with a large number of scenarios, and at the same time, it allowed us to avoid the
last interior-point iterations where the spectral radius ρ usually tends to one. From
Table 4.9 we see that BlockIP clearly outperformed both CPLEX variants(with
or without full splitting). It is also worth noting that, unlike in Table 4.8, the
CPLEX runs for the model with splitting were much slower than those without
full splitting. This fact will be even more evident in Table 4.14 for the quadratic
instances of the supply chain problem. This is due to the aggressive preprocessing
applied by CPLEX to the splitting model, which removes a significant number of
constraints and variables at the expense of modifying the matrix structure and sig-
nificantly increasing the fill-in of the factorizations (some numbers will be provided
below for the results of Table 4.14 for quadratic instances).

As summarized in Figure 4.8 (which plots the solution time against the number of
scenarios for the instances of Tables 4.8 and 4.9), BlockIP always outperformed
CPLEX, and one could infer that the difference between them will increase if the
number of scenarios grows higher.

0

200

400

600

800

1,000

1,200

1,400

1,600

0 1000 2000 3000 4000 5000

Ti
m

e 
(s

ec
on

ds
)

Scenarios

BlockIP Cplex

Figure 4.8: BlockIP vs CPLEX for linear supply chain problem (CPLEX without
splitting)

55



CHAPTER 4. RESULTS

4.3.3.2 Linear instances of the stochastic power generation problem

We generated a preliminary set of instances where the first-stage variables (the
number of available technologies) were increased up to 600, the number of modes
of electricity demand was set at 10, and the number of scenarios at 100. The
default tolerances were used (i.e., optimality tolerance was 10−6, ε0 = 10−2 and
β = 0.95). The performance of BlockIP was very promising, as it is shown in
Table 4.10.

BlockIP CPLEX barrier
No Splitting

1st m n Iter CPU PCG Iter CPU cp/bip

400 80602 519602 83 7.14 559 23 87.50 12.25
450 90552 584552 85 8.20 533 20 86.42 10.52
500 100502 649502 81 9.02 470 23 110.02 12.18
550 110452 714452 90 12.45 714 28 139.01 11.16
600 120402 779402 85 12.00 491 19 108.76 9.05

Table 4.10: Increasing the number of the first-stage variables in power generation
problem

Encouraged by the previous results, we worked on the 600 first-stage variables
instance while increasing the number of scenarios to 1000. Default tolerances were
also used. The results are given in Table 4.11, which shows that the performance
of BlockIP is much better than the one of CPLEX either with or without full
splitting. It is seen that CPLEX with either model required large executions in
those instances. For this reason, the second set of even larger instances obtained
by considering some scenarios between 2000 and 5000 only ran with BlockIP. The
results are provided in Table 4.12. BlockIP was very efficient, being able to solve
the largest case of 6M constraints and 39M variables in less than 18 minutes. It is
also worth remarking that in those largest instances CPLEX ran out of memory
(it exhausted the available 192 Gigabytes of RAM).

BlockIP CPLEX barrier CPLEX barrier
no splitting with splitting

k m n Iter CPU PCG Iter CPU Iter CPU

200 241402 1559402 89 30.07 703 22 589.79 33 1309.60
400 483402 3119402 107 66.73 790 126 17633.54 40 10547.41
600 725402 4679402 79 81.93 691 87 54178.15 41 33770.16
800 967402 6239402 106 145.09 1036 20 45467.37 40 73447.25

1000 1209402 7799402 84 145.06 761 117 309381.56 44 167873.29

Table 4.11: Results for power generation problem up to 1000 scenarios

56



PAULA DE LA LAMA ZUBIRÁN

BlockIP

k m n Iter CPU PCG

2000 2419402 15599402 101 359.41 1074
3000 3629402 23399402 116 660.73 1204
4000 4839402 31199402 108 825.09 1193
5000 6049402 38999402 107 1027.31 1199

Table 4.12: Results for power generation problem up to 5000 scenarios

The plot in Figure 4.9 (which reports the solution time against the number of
scenarios) helps better appreciate that BlockIP is by far faster than CPLEX in
those instances.

0

10000

20000

30000

40000

50000

200 300 400 500 600 700 800 900 1000

Ti
m

e 
(s

ec
on

ds
)

Scenarios

BIP CPLEX

Figure 4.9: BlockIP vs CPLEX for linear power generation problem (CPLEX with
splitting)

4.3.3.3 Normal equations vs augmented system

As it was advanced in previous Section 4.2.7, Table 4.13 reports the results with
Ipopt (which solves the augmented system using the direct solver implemented in
the HSL routine MA57), for the supply chain and electricity generation instances
of 200 and 400 scenarios (that is, the first two and last two rows of Table 4.13
correspond, respectively, to the first two instances of Tables 4.8 and 4.11). These
results show that Ipopt was outperformed by both CPLEX and BlockIP in the
supply chain instances, but it was more efficient than CPLEX for the electricity
generation problems. In some instances, however, Ipopt provided a suboptimal
solution, unlike BlockIP and CPLEX which converged to the same optimal solu-
tion; a possible explanation is that Ipopt is tailored for nonlinear problems. Table
4.13 also provides the CPU time per iteration, which is more informative in order
to compare how efficient is the computation of the direction with either the aug-
mented system with a direct solver (Ipopt), normal equations with a direct solver
(CPLEX), or normal equations combining direct and PCG solvers (BlockIP). The

57



CHAPTER 4. RESULTS

Ipopt Ipopt CPU/Iter
no splitting with splitting BlockIP CPLEX Ipopt

Problem k Iter CPU Iter CPU no with no with

Sup. Chain 200 107 212.2 84 3477.4 0.2 7.9 5.2 1.9 41.4
400 121 789.0 85 20546.2 0.3 17.0 8.7 6.5 241.7

Elect. Gen. 200 36 121.7 57 627.8 0.3 26.8 39.6 3.4 11.0
400 29 211.2 35 2050.2 0.6 139.9 263.6 7.3 58.6

Table 4.13: Results for supply chain and electricity generation instances with 200
and 400 scenarios with Ipopt, and CPU time per iteration for BlockIP, CPLEX
and Ipopt

conclusions obtained from these results are: (i) if the augmented system is solved
by a direct solver (Ipopt), the formulation without splitting should always be used;
(ii) if normal equations are solved by a direct solver (CPLEX), the best formulation
(either with or without splitting) depends of the problem structure; (iii) solving
the normal equations by the specialized approach (that is, combining Cholesky
and PCG) is the best option.

4.3.4 Results for quadratic instances

From the previous linear instances, we created a set of quadratic cases by adding
convex separable quadratic costs to the first- and second-stage variables. The
quadratic terms were synthetic and of the same order as the linear costs. The
interest of testing quadratic instances relies on the fact that BlockIP is known
to be faster for quadratic problems than for linear ones since quadratic terms
tend to reduce the spectral radius ρ (see [20] for details). In all the runs, the
optimality tolerance for BlockIP and CPLEX was 10−6. For BlockIP the initial
PCG tolerance and reduction factors were ε0 = 10−3 and β = 0.95, which are its
default values for quadratic problems. As for the linear instances, the results with
BlockIP were computed with the splitting formulation (2.27), while for CPLEX
both the splitting formulation (2.27) and the (no splitting) dual of the extensive
form (2.3) were considered (note that in the latter case the constraints matrix
contains both the transpose of (2.5) and the terms associated to quadratic costs).

4.3.4.1 Quadratic instances of the stochastic supply chain problem

As for the linear instances, we considered the base case of 620 first-stage variables
and increased the number of scenarios up to 1000. The results can be seen in
Table 4.14. Clearly, BlockIP outperformed both CPLEX runs (with and without
full splitting). It is also observed that CPLEX is much less efficient with splitting
in those instances.

58



PAULA DE LA LAMA ZUBIRÁN

BlockIP CPLEX barrier CPLEX barrier
no splitting with splitting

k m n Iter CPU PCG Iter CPU Iter CPU

200 259380 511380 89 26.08 2774 17 132.12 15 1299.24
400 519380 1023380 146 78.34 3952 18 338.61 16 10960.21
600 779380 1535380 112 108.95 3703 20 403.64 15 36211.61
800 1039380 2047380 126 210.26 5661 19 548.12 16 102556.88

1000 1299380 2559380 129 289.83 6048 21 788.77 14 173633.19

Table 4.14: Results for supply chain problem up to 1000 scenarios

After analyzing the CPLEX outputs, we concluded this is due to the large fill-
in created to the reduced problem after the aggressive preprocessing applied by
CPLEX.

For example, for the 1000 scenarios case of Table 4.14, CPLEX without splitting
has after preprocessing a reduced problem with 650620 rows, 1331240 columns,
and 3621240 nonzeros, but the number of nonzeros in the lower triangle of AA> is
22100000, and the number of nonzeros in the factor (after reordering) is 346453439.
For the splitting model of the same instance, these numbers are 680000 rows,
650620 columns, and 2970000 nonzeros (then same order as for the no-splitting
case), but the number of nonzeros in the lower triangle of AA> is 312500000
(14 times higher), and the number of nonzeros in the factor (after reordering) is
10855849207 (31 times higher). This explains the poor performance of the splitting
model in some cases.

Next, we raised the number of scenarios up to 5000. The results are shown in Table
4.15. CPLEX was not executed with the splitting model for these instances to avoid
large CPU times. BlockIP is also faster than CPLEX. In short, the differences in
this quadratic problem can also be seen in Figure 4.10, where BlockIP remains
always below the time of CPLEX, even in small instances.

BlockIP CPLEX barrier
no splitting

k m n Iter CPU PCG Iter CPU

2000 2599380 5119380 170 889.21 9538 22 1199.15
3000 3899380 7679380 193 1052.82 6834 21 1701.36
4000 5199380 10239380 147 1054.70 5206 20 2307.52
5000 6499380 12799380 149 1701.24 5282 19 2680.00

Table 4.15: Results for supply chain problem up to 5000 scenarios

59



CHAPTER 4. RESULTS

BlockIP CPLEX barrier CPLEX barrier
no splitting with splitting

k m n Iter CPU PCG Iter CPU Iter CPU

200 41902 259902 43 5.45 1760 71 336.45 65 10.02
400 83902 519902 42 11.19 1911 66 652.94 61 18.13
600 125902 779902 43 14.77 1471 67 996.91 69 37.18
800 167902 1039902 46 22.42 1575 73 1447.08 62 48.01

1000 209902 1299902 56 191.98 13604 72 1784.58 62 63.80
2000 419902 2599902 58 258.42 9037 73 3610.31 64 138.01
3000 629902 3899902 60 153.12 3205 74 5544.63 67 211.03
4000 839902 5199902 59 219.14 3493 78 7714.95 67 282.93
5000 1049902 6499902 61 227.20 2738 77 9599.25 67 363.00

10000 2099902 12999902 59 457.10 2509 75 19681.28 70 764.49

Table 4.16: Results for power generation problem up to 10000 scenarios

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000

Ti
m

e 
(s

ec
on

ds
)

Scenarios

BlockIP

Cplex

Figure 4.10: BlockIP vs CPLEX for quadratic supply chain problems (CPLEX
without splitting)

4.3.4.2 Quadratic instances of the stochastic power generation problem

We considered as the base case the instance with 100 first-stage variables, such
that the number of scenarios can be largely increased without obtaining an out-
of-memory error by CPLEX (like it happened for linear instances and the 600
first-stage variables base case). Table 4.16 presents the results for up to 10000
scenarios (BlockIP vs CPLEX barrier with or without full splitting).

In these executions the model with full splitting was the most efficient variant for
CPLEX; anyway, it was still outperformed by BlockIP except for the instances
with 1000 and 2000 scenarios. In those two instances, BlockIP required many
PCG iterations and this explains its poor behavior. The good results obtained in
most cases with BlockIP are evident in Figure 4.11.

60



PAULA DE LA LAMA ZUBIRÁN

0

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ti
m

e 
(s

ec
on

ds
)

Scenarios

BlockIP CPLEX

Figure 4.11: BlockIP vs CPLEX for quadratic power generation problem (CPLEX
with splitting)

61



Chapter 5

Conclusions

5.1 Conclusion

In this research, we explored the performance of a specialized interior-point al-
gorithm for block-angular problems (implemented in the BlockIP package) for
two-stage stochastic optimization while using a splitting technique. The compu-
tational experiments used small- and large-scale instances to test both linear and
quadratic objective functions. The performance of BlockIP was compared against
alternative state-of-the-art interior-point (CPLEX barrier) and other specialized
solvers for stochastic optimization.

The achievements are the following:

• The contribution applied a new method for solving the two-stage stochastic
optimization models with the splitting technique using BlockIP. Where new
functions were added to the BlockIP optimization package (Splitting).

• The results proved that BlockIP is competitive, mainly when the instances
have a large number of first-stage variables.

• However, for the list of (small to medium) problems in [4], BlockIP was
outperformed by the other approaches. These instances has few variables in
the first-stage and the large-scale comes increasing the number of scenarios.

This Ph.D. thesis has potential in areas like computing efficient algorithms, and
in a socio-economic environment helping the decision-makers who need to ana-
lyze many first-stage variables (present decisions), with a large number of future
scenarios, and in a very short time. This gives them and their organization an
advantage to survive the wild and competitive world. Besides, it should open up a
new frontier in the knowledge of optimization techniques with efficient algorithms.
Since solves large-scale difficult instances mean more realistic problems and better
projections for the future.

62



PAULA DE LA LAMA ZUBIRÁN

5.2 Accomplishments

As a result of this thesis, an article was submitted to Optimization Methods and
Software, titled A new interior-point approach for large two-stage stochastic prob-
lems (GOMS-2020-0067), currently under review.

Besides, this work was presented in the 30th European Conference on Operational
Research (EURO 2019), in Dublin, Ireland from the 23rd to the 26th of June,
2019, co-authored with Prof. Jordi Castro, with the name of A new interior-point
approach for large two-stage stochastic problems.

5.3 Future directions

Although the technique shows a big difference in the performance in terms of the
CPU times for some problems, it was not enough for all the cases. Therefore future
work should include:

• Testing our new instances in specialized solvers with the same computer for
a better comparison.

• Create new instances for different applications to spread the potential of
these results. The generator GENSLP could be used [49] and some others
could include existing problems with the relaxation of integer variables.

• Testing multi-stage problems, which have a primal block-angular structure
in each block with BlockIP and the splitting technique.

• The applications could include integer variables

63



Appendix A

2-stoch-prog-IPM

Download

The 2-stoch-prog-IPM.zip is available in Jordi Castro’s web page http://www-eio.
upc.es/~jcastro/. Section Data

Requirement

For making the comparison you will need the CPLEX software application.

Installation

The application runs on Linux. The 2-stoch-prog-IPM.zip file must be unzip. For
unzip the file from the terminal, the command used is:

> unzip 2-stoch-prog-IPM.zip

The next step is to compile BlockIP, from the terminal, inside the directory 2-
stoch-prog-IPM, the commands are:

> make clean

> make

In this step BlockIP will be ready to work, with all the associated problems.

Content

2-stoch-prog-IPM application has all the folders of the two general instances that
are created to measure the performance of BlockIP and CPLEX with large vari-
ables in the first-stage. Also, the BlockIP library.

• Supply Chain

64

http://www-eio.upc.es/~jcastro/
http://www-eio.upc.es/~jcastro/


PAULA DE LA LAMA ZUBIRÁN

• Electric

The directories can be divided into executable folders and the ones for the results.

In the first group, we can find two subgroups, one for each type of problem:

• Supply Chain

– SCPrimal. It is the primal linear version.

– SCDual. It is the linear dual version of the problem.

– SCPQuad for the primal quadratic version.

– SCDQuad for the dual quadratic version

And the second subgroup is:

• power generation

– ElPrimal. It is the primal linear version of this problem (Electric)

– ElDual, with the linear dual version of the problem (ElectricDual)

– ElPQuad for the primal Quadratic version

– ElDQuad for the dual Quadratic version

Inside each folder, we can find a namefile.C file with the code in C++ that generate
and solve the problem with BlockIP. Each problem required some input data, which
generate a specific instance. These values can be given directly or using the Comp

script (explained later) from the Results folders. Beside, each folder contains the
Makefile file.

Executing directly

After compiling BlockIP, you need to be inside the directory that you want to
run. For example

> cd SCPrimal

Then, execute with some parameters: <number of Supplies> <number Pfailities>
<number of clients> and <number of blocks>. Before this data you need the
-SupplyChainEsc flag. For example to run an instance with 4 suppliers, 3 pro-
cessing facilities, 3 Clients and 3 scenarios you need the following command:

> ./SCPrimal -SupplyChainEsc 4 3 3 3

For the group of Electric (power generation problem), the -ElectricEsc flag is
need, for example:

> cd ElPrimal

> ./Electric -ElectricEsc 2 20 10 10

65



APPENDIX A. 2-STOCH-PROG-IPM

This command runs the instance with 2 stages, 20 number of technologies, 10
different modes, and 10 scenarios. The problems must have more than 2 scenarios.
(more details below)

The second group, Results, are folders to manage the outcomes. Here, each folder
organizes the results with the aid of a scripts file for each problem:

• Supply Chain

– SCResults, for the linear performances.

– SCQResults, for the quadratics problems.

• Electric

– ElResults, for linear experiments.

– ElQResults, for quadratic instances.

Inside each one of those folders, we can find the script with all the commands that
help you to create new instances and make the comparison with CPLEX. Also,
the folders with the outcomes.

For example, in SCResults we can find the next folders:

• ResultsPrimal. For the outcomes of BlockIP.

• ResultDual. For generate the problem dual and create the MPS file for
CPLEX.

• ResultsMPS. For storage the MPS file resulting from BlockIP and then read
it by CPLEX.

• ResultsCplexBarrier. Here we save all the results of the CPLEX barrier
algorithm.

• ResultsCplexDual. Only store files if comparisons with dual CPLEX are
activated.

The scripts inside SCResults are:

• Comp. Create different instances and help you to make a comparison be-
tween BlockIP and CPLEX. Then, send the outcomes to the corresponding
folder of results.

• ScriptCplexBarrier.txt with the commands to runs CPLEX with the barrier
algorithm (baropt).

• ScriptCplexDual.txt with the commands to runs CPLEX with the Dual al-
gorithm.

66



PAULA DE LA LAMA ZUBIRÁN

Modifying the size of the instances

The instances can be manipulated in order to increase, mainly, the first-stage
variables.

For creating the Supply Chain instances, you must edit the Comp script. Here, we
have four variables.

• S1. It is the number of suppliers that we what to consider

• P1. It is the number of process facilities

• C1. The number of clients and

• B1. The number of scenarios.

For the power generation problem, we have four variables too.

• S1. The number of stages, always 2.

• P1. The number of technologies

• C1. The different modes

• B1. The number of scenarios.

How to generate and solve new instances

For creating a new set of instances, for example, of Supply Chain with various
scenarios.

• Step 1. Go inside SCResults folder

• Step 2. Open the Comp script

• Step 3. Check the files and directions for the outcomes files: ResultPri-
mal, ResultsMPS, and ResultsCplexBarrier (ResultsCplexDual, only if is
activated)

• Step 4. Edit the variables (S1, P1, C1) for creating the specific instance. For
B1 variable, that refers to the number of scenarios, you can use the for loop
with the different numbers.

• Step 5. Execute the Comp file from SCResults.

• Step 6. Look for the outcomes inside their corresponding directories.

67



Appendix B

General Implementations of
BlockIP

General Implementation

The solver BlockIP has been implemented in C++. It is around 17000 lines of
source code, aside from the external package for Cholesky factorization [68], The
BlockIP can be obtained for research purposes from http://www-eio.upc.edu/

~jcastro/BlockIP.html. The distribution contains a reference manual and a
small example [18].

Additional features of the package BlockIP are described more exhaustive in [20]
and [18] :

• BlockIP may solve linear, quadratic and convex linearly constrained block
angular optimization problems.

• Problems can be read in four different formats:

1. BlockIP callable library, which create matrices and vectors as is shown
in Figure B.1.

2. BlockIP file, which has the matrices and vector in a format of sparse
matrices (i, j, aij). (i, j), denotes the rows, and the columns and Aij
value (Figure B.2).

3. The MPS format explained in Chapter 4, and

4. SML (structure conveying modeling language) from AMPL [31].

• It implements two types of directions: The standard Newton direction and
the second-order heuristic direction.

• If the system (3.6) becomes more ill-conditioned closer to the optimal, and
PCG gives inaccurate solutions, BlockIP switches to Cholesky for (3.4).

68

http://www-eio.upc.edu/~jcastro/BlockIP.html
http://www-eio.upc.edu/~jcastro/BlockIP.html


PAULA DE LA LAMA ZUBIRÁN

• The solver has four different preconditioners for increasing efficiency.

• BlockIP can remove inactive mutual capacity constraints to reduce the di-
mension of the Schur complement, thus lowering the computational effort.
In this regard a linking constraint i (≤) could be removed using the com-
plementary condition λisi = 0, the following conditions are satisfied [15]
[42]:

1. The optimality gap is small.

2. Its primal linking slack si is far enough from 0 (si � 0).

3. Its Lagrange multiplier λi is close to 0.

• The stopping criteria are based in [70], which one guarantees better ∆λ2

directions as we get closer to the solution. By default, BlockIP uses a tol-
erance of ε = 10−2 for lineal problems and ε = 10−3 for quadratic instances.
(it is proven that the preconditioner is more effective in the last instances
[19])

Figure B.1: Code from BlockIP callable library

69



APPENDIX B. GENERAL IMPLEMENTATIONS OF BLOCKIP

Figure B.2: BlockIP file format generated by writeBlockIPformat (Matlab)

Details of BlockIP -Stored sparse matrices-

This kind of algorithms, large scale, handle the sparse matrices with the column-
wise and row-wise method. This storage the nonzero values of the sparse matrix in
one-dimensional three arrays and they do not store any unnecessary zero elements.

For example, in the column-wise matrix inicola is the index to the first element
of each column and is of length n + 1 where n is the number of columns, irowa
denotes the row position for each element and a is its value.


0 a 0 0
b c 0 0
0 0 d 0
0 e 0 f

⇒ inicola = (0, 1, 4, 5, 6)
irowa = (1, 0, 1, 3, 2, 3)

a = (b, a, c, e, d, f)

On the other hand, the row-wise matrix is stored by inirowa for the index to the
first element of each row, and with the length of m+ 1 where m is the number of
rows, icola denotes the column position for each element.

70



PAULA DE LA LAMA ZUBIRÁN


0 a 0 0
b c 0 0
0 0 d 0
0 e 0 f

⇒ inirowa = (0, 1, 3, 4, 5)
icola = (1, 0, 1, 2, 1, 3)

a = (a, b, c, d, e, f)

71



Appendix C

MPS Format

For a better understanding of the MPS format, here is an example of the power
generation problem (LandS.core) written first in lp-format (C.1), this format is
most commonly used in optimization models:

min 10X1 + 7X2 + 16X3 + 6X4

+ 40Y11 + 24Y12 + 4Y13 + 45Y21 + 27Y22 + 4.5Y23

+ 32Y31 + 19.2Y32 + 3.2Y33 + 55Y41 + 33Y42 + 5.5Y43

subject to:

X1 +X2 +X3 +X4 >= 12

10X1 + 7X2 + 16X3 + 6X4 <= 120

−X1 + Y 11 + Y 12 + Y 13 <= 0

−X2 + Y 21 + Y 22 + Y 23 <= 0

−X3 + Y 31 + Y 32 + Y 33 <= 0

−X4 + Y 41 + Y 42 + Y 43 <= 0

Y 11 + Y 21 + Y 31 + Y 41 = 1

Y 12 + Y 22 + Y 32 + Y 42 = 3

Y 13 + Y 23 + Y 33 + Y 43 = 2

Xi ≥ 0 i = 1, ..., 4

Y ij ≥ 0 i = 1, ..., 4 j = 1, ..., 3

(C.1)

Now, a file with the MPS format of the same problem is shown in Figure C.1.

72



PAULA DE LA LAMA ZUBIRÁN

Figure C.1: LandS.core file

73



APPENDIX C. MPS FORMAT

The MPS format was initially introduced by IBM [46] to express linear and integer
programs in a standard way. The format is a fixed column format where the files
must be separated by white space (blank, tab, etc.). This file has different sections
explained below [64].

The first label that can find in the file is NAME. Then, it has the specific name
of the instance problem (LandS). The ROWS set defines the names of all the
constraints, comes with an identifier: E for equality rows, L for less-than ( <= )
rows, G for greater-than ( >= ) rows, and N for the objective function.

The COLUMNS section has the coefficients of A-matrix. All entries for a given
column must be placed consecutively. The rows not mentioned are implied to have
a coefficient of zero.

The RHS section allows right-hand-side vectors to be defined. In cases when this
value is zero, the number is omitted.

The optional BOUNDS section allows placing upper and lower bounds. Variables
not mentioned in the set are taken to be non-negative. A type UP bound of
means an upper bound and LO are for the lower bound. An FX (”fixed”) bound
type represents the variable with upper and lower bounds equal to a single value.
An FR (”free”) bound type defines the variable that has neither lower nor upper
bounds. MI means minus infinity (lower bound = −∞). PL Plus infinity (upper
bound =∞).

There is another optional section called RANGES. It denotes the limits for the
constraints that are between two values. The final card must be ENDATA, and it
is the last entry of the file.

74



Bibliography

[1] K.M. Anstreicher and R.A. Bosch. “Long steps in an O (n3L) algorithm for
linear programming”. Mathematical Programming 54.1-3 (1992), pp. 251–
265.

[2] J. Arantes and J.R. Birge. “Matrix structure and interior point methods in
stochastic programming”. Presentation at Fifth Int. Stochastic Programming
Conf., Ann Arbor, MI (1989).

[3] A. Arbel. Exploring Interior-Point Linear Programming: Algorithms and
Software. mit Press, (1993).

[4] K.A. Ariyawansa and A.J. Felt. “On a new collection of stochastic linear
programming test problems”. INFORMS Journal on Computing 16.3 (2004),
pp. 291–299.

[5] A. Azaron et al. “A multi-objective stochastic programming approach for
supply chain design considering risk”. International Journal of Production
Economics 116.1 (2008), pp. 129–138.

[6] M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear programming: the-
ory and algorithms. John Wiley & Sons, (2013).

[7] J.F. Benders. “Partitioning procedures for solving mixed-variables program-
ming problems”. Numerische mathematik 4.1 (1962), pp. 238–252.

[8] M. Benzi. “Splittings of symmetric matrices and a question of Ortega”. Lin-
ear Algebra and its Applications 429.10 (2008), pp. 2340–2343.

[9] J.R. Birge, R.M. Freund, and R. Vanderbei. “Prior reduced fill-in in solving
equations in interior point algorithms”. Operations Research Letters 11.4
(1992), pp. 195–198.

[10] J.R. Birge and D.F. Holmes. “Efficient solution of two-stage stochastic linear
programs using interior point methods”. Computational Optimization and
Applications 1.3 (1992), pp. 245–276.

[11] J.R. Birge and F. Louveaux. “Introduction to stochastic programming”.
Springer Science & Business Media (2011).

[12] J.R. Birge and L. Qi. “Computing block-angular Karmarkar projections with
applications to stochastic programming”. Management Science 34.12 (1988),
pp. 1472–1479.

75



BIBLIOGRAPHY

[13] J. Bisschop. AIMMS optimization modeling. Paragon Decision Technology
B.V, (2006).

[14] S.P. Bradley, A.C. Hax, and T.L. Magnanti. “Applied mathematical pro-
gramming”. Addison Wesley (1977).

[15] J. Castro. “A specialized interior-point algorithm for multicommodity net-
work flows”. SIAM journal on Optimization 10.3 (2000), pp. 852–877.

[16] J. Castro. “An interior-point approach for primal block-angular problems”.
Computational optimization and Applications 36.2-3 (2007), pp. 195–219.

[17] J. Castro. An introduction to the affine scaling algorithm for linear program-
ming. Research Report DR 2000/02. (2000).

[18] J. Castro. “Interior-point solver for convex separable block-angular prob-
lems”. Optimization Methods and Software 31.1 (2016), pp. 88–109.

[19] J. Castro. “Solving quadratic multicommodity problems through an interior-
point algorithm”. IFIP Conference on System Modeling and Optimization.
Springer. (2001), pp. 199–212.

[20] J. Castro and J. Cuesta. “Quadratic regularizations in an interior-point
method for primal block-angular problems”. Mathematical programming 130.2
(2011), pp. 415–445.

[21] I.F. Csaba and S Zoltán. “Solving two-stage stochastic programming prob-
lems with level decomposition”. Computational Management Science 4.4
(2007), pp. 313–353.

[22] J. Czyzyk, R. Fourer, and S. Mehrotra. “A study of the augmented system
and column-splitting approaches for solving two-stage stochastic linear pro-
grams by interior-point methods”. ORSA Journal on Computing 7.4 (1995),
pp. 474–490.

[23] J. Czyzyk, M.P. Mesnier, and J.J. Moré. “The NEOS server”. IEEE Com-
putational Science and Engineering 5.3 (1998), pp. 68–75.

[24] D. Den Hertog and C. Roos. “A survey of search directions in interior point
methods for linear programming”. Mathematical Programming 52.1-3 (1991),
pp. 481–509.

[25] I.I. Dikin. “Iterative solution of problems of linear and quadratic program-
ming”. Doklady Akademii Nauk. Vol. 174. 4. Russian Academy of Sciences.
(1967), pp. 747–748.

[26] W.S. Dorn. “Duality in quadratic programming”. Quarterly of Applied Math-
ematics 18.2 (1960), pp. 155–162.

[27] E.F.D. Elison, G. Miltra, and V Zverovich. FortSP: a stochastic programming
solver. OptiRisk Systems. Available in: https://optirisk-systems.com/
wp-content/uploads/2018/05/FortspManual.pdf. [Accessed on 2020-06-
22].

76

https://optirisk-systems.com/wp-content/uploads/2018/05/FortspManual.pdf
https://optirisk-systems.com/wp-content/uploads/2018/05/FortspManual.pdf


PAULA DE LA LAMA ZUBIRÁN

[28] L.F. Escudero, M.A. Gaŕın, and A. Unzueta. “Scenario cluster Lagrangean
decomposition for risk averse in multistage stochastic optimization”. Com-
puters & Operations Research 85 (2017), pp. 154–171.

[29] L.F. Escudero et al. “Lagrangian decomposition for large-scale two-stage
stochastic mixed 0-1 problems”. Top 20.2 (2012), pp. 347–374.

[30] A.J. Felt. Test-Problem Collection for Stochastic Linear Programming. Avail-
able in: https://www4.uwsp.edu/math/afelt/slptestset/download.
html. [Accessed on 2019-03-16].

[31] R. Fourer, D.M. Gay, and B.W. Kernighan. AMPL: a modeling language for
mathematical programming. Vol. 1. Scientific Press San Francisco, (1993).

[32] E. Fragniere. “Choix énergétiques et environnementaux pour le Canton de
Genève”. No. 412. PhD thesis. Universitè de Genève, (1995).

[33] H.I. Gassmann. “Optimal harvest of a forest in the presence of uncertainty”.
Canadian Journal of Forest Research 19.10 (1989), pp. 1267–1274.

[34] H.I. Gassmann. stocfor1, stocfor2, stocfor3. Available in: http : / / www .

netlib.org/lp/data/. [Accessed on 2018-11-15].

[35] H.I. Gassmann and B. Kristjánsson. “The SMPS format explained”. IMA
Journal of Management Mathematics 19.4 (2008), pp. 347–377.

[36] P.E. Gill et al. “On projected Newton barrier methods for linear program-
ming and an equivalence to Karmarkar’s projective method”. Mathematical
programming 36.2 (1986), pp. 183–209.

[37] G.H Golub and C.F. Van Loan. Matrix computations. Johns Hopkins Uni-
versity press, (2012).

[38] J. Gondzio. “Interior point methods 25 years later”. European Journal of
Operational Research 218.3 (2012), pp. 587–601.

[39] J. Gondzio. ”Preconditioned conjugate gradients in an interior point method
for two-stage stochastic programming”. Working Paper WP-94-130, IIASA
International Institute for Applied Systems Analysis, Laxemburg, Austria.(1994).

[40] J. Gondzio, P. González-Brevis, and P. Munari. “Large-scale optimization
with the primal-dual column generation method”. Mathematical Program-
ming Computation 8.1 (2016), pp. 47–82.

[41] J. Gondzio, P. González-Brevis, and P. Munari. “New developments in the
primal–dual column generation technique”. European Journal of Operational
Research 224.1 (2013), pp. 41–51.

[42] J. Gondzio and A. Grothey. “Exploiting structure in parallel implementa-
tion of interior point methods for optimization”. Computational Management
Science 6.2 (2009), pp. 135–160.

[43] J. Gondzio and A. Grothey. “Solving non-linear portfolio optimization prob-
lems with the primal-dual interior point method”. European Journal of Op-
erational Research 181.3 (2007), pp. 1019–1029.

77

https://www4.uwsp.edu/math/afelt/slptestset/download.html
https://www4.uwsp.edu/math/afelt/slptestset/download.html
http://www.netlib.org/lp/data/
http://www.netlib.org/lp/data/


BIBLIOGRAPHY

[44] D. Holmes. A (PO)rtable (S)tochastic programming (T)est (S)et (POSTS).
Available in: http://users.iems.northwestern.edu/~jrbirge/html/
dholmes/post.html. (1995) [Accessed on 2019-03-16].

[45] HSL. A collection of Fortran codes for large scale scientific computation.
Available in: http://www.hsl.rl.ac.uk. [Accessed 2020-10-06].

[46] IBM, ILOG S.A. ILOG CPLEX 10.0 file formats. Available in: https://
www.lix.polytechnique.fr/.../cplex/reffileformatscplex.pdf.
[Accessed on 2019-06-07].

[47] IBM Knowledge Center. Barrier optimizer. Available in: https://www.

ibm.com/support/knowledgecenter/SSSA5P_12.6.2/ilog.odms.cplex.

help/CPLEX/UsrMan/topics/cont_optim/qp/10_change_terms.html.
[Accessed on 2018-02-22].

[48] IBM Knowledge Center. Dual simplex optimizer. Available in: https://

www.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.

cplex.help/CPLEX/UsrMan/topics/cont_optim/simplex/06_simplex_

dual.html. [Accessed on 2019-06-17].

[49] P. Kall and J Mayer. “On testing SLP codes with SLP-IOR”. New trends in
mathematical programming. Vol. 13. (1998). Springer Boston. MA, pp. 115–
135.

[50] P. Kall, J. Mayer, et al. Stochastic linear programming. Vol. 7. Springer,
(1976).

[51] N. Karmarkar. “A new polynomial-time algorithm for linear programming”.
Proceedings of the sixteenth annual ACM symposium on Theory of comput-
ing. ACM. (1984), pp. 302–311.

[52] M. Kaut and M. Kopa. “COIN-OR tools for stochastic programming”. On
Selected Software for Stochastic Programming (2008), pp. 88–116.

[53] K. Kibaek and V.M. Zavala. “Algorithmic innovations and software for the
dual decomposition method applied to stochastic mixed-integer programs”.
Mathematical Programming Computation 10.2 (2018), pp. 225–266.

[54] W.K. Klein Haneveld and M.H. Van der Vlerk. “Stochastic integer program-
ming: General models and algorithms”. Annals of Operations Research 85
(1999), pp. 39–57.

[55] C. Lemaréchal, A. Nemirovskii, and Y. Nesterov. “New variants of bundle
methods”. Mathematical programming 69.1-3 (1995), pp. 111–147.

[56] F.V. Louveaux and Y. Smeers. “Optimal Investments for Electricity Gener-
ateion: A Stochastic Model and A Test Problem”. Numerical Techniques for
Stochastic Optimization (1988), pp. 445–453.

[57] D.G. Luenberger and Y Ye. Linear and nonlinear programming. Springer,
(2008).

78

http://users.iems.northwestern.edu/~jrbirge/html/dholmes/post.html
http://users.iems.northwestern.edu/~jrbirge/html/dholmes/post.html
http://www.hsl.rl.ac.uk
https://www.lix.polytechnique.fr/.../cplex/reffileformatscplex.pdf
https://www.lix.polytechnique.fr/.../cplex/reffileformatscplex.pdf
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.2/ilog.odms.cplex.help/CPLEX/UsrMan/topics/cont_optim/qp/10_change_terms.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.2/ilog.odms.cplex.help/CPLEX/UsrMan/topics/cont_optim/qp/10_change_terms.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.2/ilog.odms.cplex.help/CPLEX/UsrMan/topics/cont_optim/qp/10_change_terms.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/cont_optim/simplex/06_simplex_dual.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/cont_optim/simplex/06_simplex_dual.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/cont_optim/simplex/06_simplex_dual.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/cont_optim/simplex/06_simplex_dual.html


PAULA DE LA LAMA ZUBIRÁN

[58] I.J. Lustig, R.E. Marsten, and D.F. Shanno. “Interior point methods for
linear programming: Computational state of the art”. ORSA Journal on
Computing 6.1 (1994), pp. 1–14.

[59] I.J Lustig, J.M. Mulvey, and T.J. Carpenter. “Formulating two-stage stochas-
tic programs for interior point methods”. Operations Research 39.5 (1991),
pp. 757–770.

[60] I. Maros and C. Mészáros. “The role of the augmented system in interior
point methods”. European Journal of Operational Research 107.3 (1998),
pp. 720–736.

[61] S. Mehrotra. “On the implementation of a primal-dual interior point method”.
SIAM Journal on optimization 2.4 (1992), pp. 575–601.

[62] C. Mészáros. “The augmented system variant of IPMs in two-stage stochastic
linear programming computation”. European journal of operational research
101.2 (1997), pp. 317–327.

[63] J.L. Midler and R.D. Wollmer. “Stochastic programming models for schedul-
ing airlift operations”. Naval Research Logistics Quarterly 16.3 (1969), pp. 315–
330.

[64] MPS file format. Available in: http://lpsolve.sourceforge.net/5.5/
mps-format.htm. [Accessed on 2017-06-09].

[65] J.M. Mulvey and A. Ruszczyński. “A new scenario decomposition method
for large-scale stochastic optimization”. Operations research 43.3 (1995),
pp. 477–490.

[66] J.M. Mulvey and H. Vladimirou. “Applying the progressive hedging algo-
rithm to stochastic generalized networks”. Annals of Operations Research
31.1 (1991), pp. 399–424.

[67] NEOS Server: State-of-the-Art Solvers for Numerical Optimization. Wiscon-
sin Institute for Discovery. Available in: https://neos-server.org/neos/.
[Accessed on 2019-06-17].

[68] E.G. Ng and B.W. Peyton. “Block sparse Cholesky algorithms on advanced
uniprocessor computers”. SIAM Journal on Scientific Computing 14.5 (1993),
pp. 1034–1056.

[69] J. Nocedal and S.J. Wright. Numerical optimization. Springer Science &
Business Media, (2006).

[70] M. Resende and G. Veiga. “An implementation of the dual affine scaling al-
gorithm for minimum-cost flow on bipartite uncapacitated networks”. SIAM
Journal on Optimization 3.3 (1993), pp. 516–537.

[71] R.T. Rockafellar and R.J.-B Wets. “A Lagrangian finite generation technique
for solving linear-quadratic problems in stochastic programming”. Stochastic
Programming 84 Part II. Springer, 1986, pp. 63–93.

79

http://lpsolve.sourceforge.net/5.5/mps-format.htm
http://lpsolve.sourceforge.net/5.5/mps-format.htm
https://neos-server.org/neos/


BIBLIOGRAPHY

[72] A. Ruszczynski. “Interior point methods in stochastic programming”. Inter-
national Institute of Applied Systems analysis (1993).

[73] T. Santoso et al. “A stochastic programming approach for supply chain net-
work design under uncertainty”. European Journal of Operational Research
167.1 (2005), pp. 96–115.

[74] S. Sen, R.D. Doverspike, and S. Cosares. “Network planning with random
demand”. Telecommunication systems 3.1 (1994), pp. 11–30.

[75] SMI coingor.org. Stochastic Modeling Interface. Available in: https : / /

projects.coin-or.org/Smi. [Accessed on 2019-06-06].

[76] S. Subrahmanyam, J.F. Pekny, and G.V. Reklaitis. “Design of batch chem-
ical plants under market uncertainty”. Industrial & Engineering Chemistry
Research 33.11 (1994), pp. 2688–2701.

[77] R. Van Slyke and R. Wets. “L-shaped linear programs with applications
to optimal control and stochastic programming”. SIAM Journal on Applied
Mathematics 17.4 (1969), pp. 638–663.

[78] R.J. Vanderbei. “Symmetric quasidefinite matrices”. SIAM Journal on Op-
timization 5.1 (1995), pp. 100–113.

[79] A. Wächter and L.T. Biegler. “On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming”. Mathe-
matical programming 106.1 (2006), pp. 25–57.

[80] S.J. Wright. Primal-dual interior-point methods. Vol. 54. Siam, (1997).

[81] V. Zverovich et al. “A computational study of a solver system for processing
two-stage stochastic LPs with enhanced Benders decomposition”. Mathemat-
ical Programming Computation 4.3 (2012), pp. 211–238.

80

https://projects.coin-or.org/Smi
https://projects.coin-or.org/Smi

	Introduction
	Motivation and objectives
	Contributions
	Article and presentation 


	State of the art
	Introduction
	Large-Scale Problems
	Two-Stage Stochastic Optimization Model
	Extensive form

	Solution methods
	Review of different approaches
	Interior-point method

	IPM for Stochastic Optimization
	Splitting formulation


	Specialized interior point
	Introduction
	The primal block angular problem
	Solving the normal equations with BlockIP
	The spectral radius
	Tolerance reduction factors
	Dual constraint matrix of the quadratic model

	Two-Stage Stochastic Optimization with Full Splitting in BlockIP
	Structure of E for formulation (2.25)
	Structure of E for formulation (2.27)


	Results
	Introduction
	Applications with a small number of first-stage variables
	Format
	readSto application
	Stochastic Modeling Interface
	CPLEX Barrier vs BlockIP
	Quadratic benchmark for the small first-stage instances
	Comparison with other specialized solvers for stochastic optimization
	Comparison with other IPMs that solve the augmented system

	Computational results for two particular applications
	The stochastic supply chain problem
	The stochastic power generation problem
	Results for linear instances 
	Results for quadratic instances


	Conclusions
	Conclusion
	Accomplishments
	Future directions

	2-stoch-prog-IPM
	General Implementations of BlockIP
	MPS Format

