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Supervised by: Enrique S. Quintana Ort́ı
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Summary

H-Matrices were born as a powerful numerical tool to tackle applications whose data generates
structures that end laying in between dense and sparse scenarios. The key benefit that makes
H-Matrices valuable is the savings that offer both in terms of storage and computations, in such a
way that they are reduced to log-linear costs.

The key behind the success of H-Matrices is the controllable compression they offer: by choosing
the appropriate admissibility condition to discern important versus dispensable data and designing
good partitioning algorithms, one can choose the accuracy loss that wants to assume in exchange for
computations acceleration and memory consumption reduction. This is the reason why H-Matrices
are specially suitable for boundary element and finite element methods where the pursued result
does not need to be totally accurate, but it is important to have it ready as fast as possible, as it
can determine, for example, whether an engineering design is ready to be produced or needs to be
improved.

On their side, task-parallelism has proved sufficiently its benefits when being employed to optimize
the parallel execution when solving linear systems of equations. Particularly, tiled or block algo-
rithms combined with this parallelism strategy have widely been (and are still) employed to provide
the scientific community with powerful and efficient parallel solutions for multicore architectures.

The main objective of this thesis is designing, implementing and evaluating parallel algorithms to
operate efficiently with H-Matrices in multicore architectures. To this end, the first contribution
we describe is a study in which we prove that task-parallelism is suitable for operating with H-
Matrices, by simplifying as much as possible the H-Arithmetic scenario. Next, we describe in
detail the difficulties that need to be addressed when parallelizing the complex implementations
that operate with this type of matrices. Afterwards, we explain how the new features included in
OmpSs-2 programming model helped us avoiding the majority of the described issues and thus we
were able to attain a fair efficiency when executing a task-parallel H-LU. Lastly, we illustrate how
we explored a regularized version ofH-Matrices, which we call TileH-Matrices, in which we are able
to maintain competitive-with-pure-H-Matrices precision and compression ratios, while leveraging
the well known benefits of tile algorithms applied to matrices provided with (regular) tiles (this is,
mostly homogeneous block dimensions).
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Resumen

Las H-Matrices nacen como una potente herramienta numérica para abordar aplicaciones cuyos
datos generan estructuras que se sitúan entre los escenarios densos y dispersos. El beneficio clave
por el que las H-Matrices son valiosas es el ahorro tanto en términos de almacenamiento como de
cómputo, de un modo tal que llegan a reducirse hasta un coste logaŕıtmico-lineal.

La clave del éxito de las H-Matrices reside en la compresión controlable que ofrecen: eligiendo la
condición de admisibilidad adecuada para separar los datos importantes de los prescindibles, aśı
como un buen algoritmo de particionado, puede controlarse la pérdida de precisión que se quiere
asumir, a cambio de acelerar los cálculos y reducir el consumo de memoria. Esta es la razón por
la que las H-Matrices son especialmente apropiadas para métodos de elementos de contorno y
elementos finitos, donde el resultado que se persigue no es necesario que sea totalmente preciso,
pero śı importa disponer del mismo cuanto antes, dado que puede determinar, por ejemplo, si un
diseño de ingenieŕıa está listo para ser producido o necesita ser mejorado.

Por su parte, el paralelismo de tareas ha demostrado con creces sus beneficios cuando se utiliza para
optimizar las ejecuciones paralelas al resolver sistemas de ecuaciones lineales. Particularmente, los
algoritmos por bloques o tiles, combinados con esta estrategia de paralelismo, han sido ampliamente
utilizados (y lo siguen siendo) para proveer a la comunidad cient́ıfica de soluciones paralelas potentes
y eficientes en arquitecturas multinúcleo.

El objetivo principal de esta tesis es diseñar, implementar y evaluar algoritmos paralelos para operar
de un modo eficiente con H-Matrices en arquitecturas multinúcleo. Con este objetivo en mente,
la primera contribución que describimos es un estudio en el que demostramos que el paralelismo
de tareas es apropiado para operar con H-Matrices, simplificando para ello, tanto como nos es
posible, la Aritmética con H-Matrices. A continuación, describimos en detalle las dificultades a
las que se debe hacer frente cuando se paralelizan las complejas implementaciones que sirven para
operar con estas matrices. Tras esto, explicamos cómo nos ayudaron las nuevas funcionalidades
del modelo de programación OmpSs-2 a sortear la mayoŕıa de dichas cuestiones, para aśı llegar a
alcanzar una buena eficiencia al ejecutar nuestra implementación de la H-LU basada en paralelismo
de tareas. Finalmente, explicamos cómo hemos explorado el diseño e implementación de una
versión regularizada de las H-Matrices, a la que denominamos Tile H-Matrices, en la que somos
capaces de mantener un ratio de precisión y compresión competitivo con el proporcionado por H-
Matrices puras, a la vez que aprovechamos los beneficios de los algoritmos por bloques, ampliamente
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conocidos y utilizados en matrices particionadas en bloques (regulares), es decir, que presentan
tamaños de bloque bastante homogéneos.
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especialment a J. M., Vicenç Beltrán, i Xavi Teruel pel temps invertit a ajudar-me a entendre
OmpSs-2 i com utilitzar-lo.

Once more between the professional and the friendship environment, thanks to everyone I met
at Inria - Bordeaux. HiePACS team always made me feel at home, so thanks to Abdou, Alena,
Esragul, Giles, Lionel, Luc, Mathieu V., Nic, Olivier, Pierre, Romain, and Tony. Emmanuel,
thanks for saying “yes” to my first visit, and for always having your smile ready. Guillaume,
understanding Hmat/Hmat-oss would not have been possible without you. Grégoire, your help,
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podries comptar amb mi a l’últim sospir de la nit, que jo t’espantaria els malsons fins que se’t
curaren les ales. Fins sempre, ha sigut un plaer, espere haver-te fet tan feliç com tu a mi.
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1.1 Motivation

“Okay, Houston, we’ve had a problem here.”

(Apollo 13 Command Module Pilot John L. “Jack” Swigert)

That one is possibly one of the most known, reused, and translated quotes from last century.
Swigert pronounced those words [16] when he noticed warning lights alerting a drop in voltage of
one of the electrical buses supplying power to the Command and Service Module. Thankfully, what
could have been a disaster had a happy ending.

However, that is not the only case in which the Apollo expeditions suffered emergency situations.
A year earlier, in 1969, Apollo 11 [15] was launched into space; the first expedition that landed
humans on the Moon. During the trip, a Gimbal Lock occured [14, 65]. The Apollo spacecraft was
provided with an inertial guidance system named Apollo primary guidance, navigation, and control
system (PGNCS), and one of its components was an Inertial Measurement Unit (IMU) gimbaled
on three axes. The Gimbal Lock phenomena is caused by the superposition of two of the three
axes that are employed in a gyroscope system (such as the IMU) to represent the orientation of an
object as the combination three axial rotations with Euler Angles (see Figure 1.1). For example, if
the axis associated to rotations with respect to the z-axis and the x-axis overlap, then the object is
told to move in opposite ways along the same direction, and thus behaves unpredictably, causing
it to lurch.

The Apollo 11 Gimbal Lock situation forced the pilot to manually control the whole movement of
the aircraft, yet fortunately he did it successfully. In any case, it was definitely a hard situation that
could have been avoided (and was in fact solved for posterior Apollo expeditions). The solution
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Figure 1.1: Apollo IMU. Source: https://apollo11space.com/apollo-and-gimbal-lock/.

to avoid this issue is simple: by adding a fourth gimbal, the redundancy that derives serves to
prevent the system from entering in a Gimbal Lock situation. Although the engineers in charge
of the Apollo 11 design knew the existence of this phenomena, they considered that there was no
need to include redundancy, as mathematically it is enough to employ three gimbals to cover the
three degrees of freedom that define the domain in which the object develops its movements, and
they underestimated the probabilities of suffering a Gimbal Lock.

The lessons learnt from these and other human mistakes, miscalculations, and real-life situations
underestimations justify by far the need of simulating as much as possible every situation and
phenomena one can think of before building a true system. As a result, computer simulations,
together with the numerical methods that support them, have become essential in most engineering
applications.

This thesis puts the focus on offering competitive open source algorithms to operate with H-
Matrices, where the relevance of this special type of matrices comes from two numerical methods
in which they are employed: Boundary Element Methods (BEM) [72] and Finite Element Methods
(FEM) [23]. In brief, BEM and FEM serve to solve linear partial differential equations formulated as
integral equations. Particularly, FEM is employed when modeling the impact of physical elements,
such as temperature or pressure, and thus utilized in fields such as structural analysis, as well as heat
transfer and fluid flow, among others. BEM is employed in a wide range of Physics-related fields,
such as fluid mechanics, acoustics, and electromagnetism, for example. Usually, BEM and FEM
results are employed to stress the systems in the simulations, this is, to take different components
to the limit and see how they behave, with the aim of performing all the necessary adjustments
and tests before building the actual system.

As it will be properly explained in later chapters, H-Matrices allow to speed up computations, as
well as save memory, in exchange for a controlled loss of accuracy. Computationally, this means that
the results from the operations are obtained earlier, at a smaller memory cost, while guaranteeing a
certain (acceptable) fixed precision. This is the reason why, although mathematically young (they
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were first defined in late 90s by Prof. Wolfgang Hackbusch), they are nowadays widely employed
in BEM and FEM related computations. There is a large variety of applications in which H-
Matrices are employed to simulate different physical phenomena: elasticity [24, 119], geodesy [107],
geostatistics [108], wave propagation [67, 82, 83], neural networks [44], acoustics [85], electronics
and electromagnetics [73, 77, 106, 118], earthquake studies [97], etc. In addition, H-Matrices are
also leveraged to fasten the computation of certain mathematical operations, such as likelihood
functions [47, 84], preconditioning [25, 26, 70], or randomization and stochastic problems [8, 18, 19,
75]. Moreover, some companies posses their own proprietary packages to operate with H-Matrices,
such as Airbus does with Hmat/Hmat-oss [64, 86], a software which will be later described in this
document.

Prior to this thesis, there existed packages (see Section 1.2) that offered some degree of parallelism,
but either their efficiency was limited, or they were proprietary and thus they could not be em-
ployed by the general scientific community. H-Matrices present particular characteristics, such as a
nested structure of blocks and the combination of dense and low-rank blocks. These features (and
additional ones that will be properly detailed later in the document) pose certain programming
difficulties, such as special data layout needs and data size variations during the solution of certain
operations. Precisely, these difficulties limit the degree of parallelism that can be extracted by
employing classic parallelism strategies and programming models.

In this PhD dissertation we study how to overcome the mentioned difficulties analysing two dif-
ferent perspectives: 1) the usage of alternative programming models that include special features
(particularly OmpSs-2, which provides the option of defining weak task dependencies as well as an
early release of tasks); and 2) a re-definition of the Hierarchical Matrix (H-Matrix) classic structure
to build Tile H-Matrices, by means of which we leverage both the benefits of regular tiling benefits
when employing classic parallel strategies, and the storage/computations savings that characterize
H-Matrices.

1.2 State-of-the-Art

In Chapter 2 we present several matrix classifications according to their dimension or data distribu-
tion, as well as all the necessary linear algebra background. However, to analyse the state-of-the-art
for H-Matrices, in this section we first provide a revision of the different matrix formats that can
be used to store the data in a compressed form, in addition to H-Matrices. Moreover, we also offer
a summary of the main linear algebra software leveraging these matrix representations.

All the linear algebra terms employed in this section (LU/Cholesky Decomposition, block of a
matrix, admissibility, etc.) are defined in Chapter 2 and can be consulted there if necessary.

1.2.1 Compressed representation of matrices

The main types of matrices which represent the data in a compressed form can be classified into
three main groups, according to the cost of computing an LU (or Cholesky) decomposition [49, 56,
59, 89]:

• Quadratic cost: Block Low-Rank (BLR) and Block Separable (BS) matrices.
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• Log-linear cost: Hierarchical Matrices (H-Matrices ) and Hierarchical Off-Diagonal Low-Rank
(HODLR) matrices.

• Linear cost: H2-Matrices, Hierarchically Semiseparable (HSS) matrices, and Hierarchically
BS (HBS) matrices.

The definition 2.34 in Chapter 2 introduces the term low-rank matrix. The BLR format [10] can
be viewed as a simplified version of H-Matrices, in the sense that a BLR matrix is partitioned into
regular blocks (that is, blocks of the same size) which can be either low-rank or full-rank, according
to a fixed admissibility condition. The BS format [42, 49, 50] can be viewed as a particular case of
BLR in which a weak admissibility condition (see Definition 2.49 in Chapter 2) is chosen, and thus
all the off-diagonal blocks are compressed as low-rank blocks. Matrix factorizations such as the LU
or Cholesky decompositions can be performed over BLR/BS matrices with a complexity of O(n2)
(quadratic) floating point operations (flops), instead of O(n3) (cubic) flops as is the case for dense
matrices.

As it will be exposed in definition 2.52 in Chapter 2, H-Matrices [28, 53, 55, 56] present a consid-
erably more complex structure than BLR matrices. If a strong admissibility condition (see Defini-
tion 2.48 in Chapter 2) is utilized, the recursive partition of the blocks that conform H-Matrices
is kept until the refinement is sufficiently small to compress the data (forming low-rank blocks) or
the inadmissible data can be kept in the original format (this is, constituting a dense block). When
a weak-admissibility condition is employed, equivalent to BS formats, the off-diagonal blocks are
directly compressed and the derived matrix follows the HODLR format [12], which can be regarded
as the counterpart of H-Matrices. In these scenarios, the LU or Cholesky decompositions are com-
puted with a near-linear complexity, concretely O(n k logq n) flops, where q is a small integer which
depends on the particular factorization that is computed, and k can be tuned to configure the local
rank of H-Matrices blocks and thus control the accuracy of the approximation.

H2-Matrices are more complex structures and remain out of the scope for this thesis. Their purpose
is to remove the logarithmic factor in the complexity costs of H-Matrices and HODLR formats
by using a nested-basis structure. Again, the type of admissibility condition determines which
structure is obtained: a strong admissibility criteria yieldsH2-Matrices, while the weak admissibility
conditions generate HSS [39, 115] or HBS [50] matrices. By exploiting nested basis structures, the
factorizations can be performed with a linear complexity, this is O(n) flops.

Newer structures, such as Multilevel BLR (MBLR) [11] or Lattice H-Matrices [68, 116], leverage
the best features of BLR and H-Matrices formats to achieve a close-to-linear complexity (as H-
Matrices do), while simplifying the matrix structure by employing a more regular format and less
levels in the hierarchy, as the one presented with BLR. However, there are still no software packages
that provide efficient implementations of these formats.

1.2.2 Linear algebra software for compressed matrices

A wide variety of linear algebra software is available to compute operations over the compressed
formats introduced in the previous section, as described in this section.

The following are some of the most relevant packages available to solve linear algebra operations
involving BLR matrices:
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1.2. STATE-OF-THE-ART

• CHOLMOD [41] offers rank-structured algorithms to solve positive definite linear systems
arising from discretized partial differential equations. Particularly, it is a supernodal solver
which uses randomization with fixed rank.

• MUMPS-BLR [89] employs low-rank approximations to reduce the cost of sparse direct mul-
tifrontal solvers. The implementations included in MUMPS-BLR can be also efficiently exe-
cuted in shared and distributed memory systems.

• PaStiX BLR [102, 103] provides BLR compression techniques to compute the sparse su-
pernodal solver PaStiX, either as a direct solver operating at a lower precision or as a
preconditioner. The implementations included in PaStiX BLR can be executed in shared
memory parallel platforms.

The following list includes the most important packages targeting linear algebra operations involving
H-Matrices:

• H2Lib Package [54] (and the former one HLib Package [63]) provides a whole set of routines
written in C for H-Matrices and H2-matrices operations, including application modules for
FEM and BEM in 2D and 3D. This package is based on OpenMP and can exploit a limited
degree of shared memory (i.e. multithreaded) parallelism.

• H-Libpro [91] is a C++ software library that implements algorithms for H-Matrices operations.
The binaries are available for free only for academic purposes. It leverages Intel Thread
Building Blocks (TBB) and Message Passing Interface (MPI) to exploit multithreaded servers
and distributed memory parallelism.

• HACApK [69] is a software mainly written in Fortran that comprises routines to solve H-
Matrices operations, especially optimized for Graphics Processing Units (GPUs).

• HMAT and HMAT-oss [64, 86] correspond to the Airbus proprietary C/C++ library for H-
Matrices, and the subset of its sequential routines, respectively. The proprietary version
of this software can efficiently compute H-Matrices operations in multithreaded servers and
distributed memory platforms.

• Hierarchical Computations on Manycore Architectures (HiCMA) [60] focuses on the under-
lying tile low-rank data format of H-Matrices to provide efficient implementations of the
matrix product and Cholesly Factoriztion of H-Matrices, as well as the LU factorization in
tile low-rank format, both in multithreaded servers and distributed memory environments
using StarPU and MPI.

• Accelerated Cyclic Reduction (ACR) [40] is a software to realise a distributed-memory fast
solver for rank-compressible block tridiagonal systems arising from the discretization of elliptic
operators. It combines cyclic reduction with hierarchical matrices.

• Another software library on Hierarchical Matrices for Elliptic Differential equations (AHMED)
[13] is a C++ software library that implements H-Matrices for the efficient treatment of dis-
crete solution operators for elliptic boundary value problems.

Even though they are not directly related to the work presented in this thesis, there are also
other software packages to operate over matrices in HODLR and HSS formats, such as Hierarchical
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matrix toolbox (hm-toolbox) [90] in MATLAB, STRUctured Matrix PACKage (STRUMPACK) [48],
and HODLRlib [9]. Moreover, the main software packages to treat H2-Matrices are H2Lib, High
Performance H2-Matrix Package (H2Pack) [61], and LoRaSp [87].

1.3 Objectives

The main goal set for this thesis was the design, implementation and evaluation of realizations
of H-Arithmetic operations capable of being efficiently executed in multithreaded architectures by
leveraging task-based parallelism strategies.

These are the main (sub-)objectives pursued to achieve the main objective:

• Study and analyze H-Matrices and the associated H-Arithmetic. H-Matrices lay in between
the dense and sparse scenarii, due to their combination of dense and low-rank blocks. For
this reason, we will study them, as well as the main H-Arithmetic operations and existing
implementations, with the purpose of identifying the features that condition the parallel
strategies that can be employed.

• Test the suitability of task-parallelism for the H-LU. Task-based parallelism is gaining im-
portance and recognition, as it usually helps to decouple the mathematical details of the
algorithms from the effective collections of (sub-)operations that conform larger ones with
their own identities. Moreover, task-parallelism strategies allow to easily specify/capture
data dependencies between tasks in such a way that this job can be off-loaded to a runtime,
which performs it transparently for the programmer. One can imagine that task-parallelism
is also suitable for operations with H-Matrices, but that assumption needs to be evaluated
and proved, and we need to demonstrate this by defining prototype H-LU and H-Cholesky
operations and parallelizing them using OpenMP/OmpSs tasks.

• Design, develop, and test an efficient task-parallel H-LU. Once we can ensure that task-
parallelism is suitable in this context, we will parallelize the H-LU in H2Lib to validate the
task-parallelism benefits for this operation.

• Design, develop and test an efficient task-parallel open source H-Package. The epitome of
this thesis will be the assembly of an open source package capable of (parallel) efficiently
operating with H-Matrices. To this end, we will present H-Chameleon, which is based on the
Chameleon [2, 3, 38] and Hmat-oss[64, 86] existing packages, as well as the StarPU runtime
system [17, 110], together with a special data structure named Tile H-Matrix that combines
the benefits from H-Matrices and also from regular tiles partitionings.

1.4 Related work

In this section, we provide a brief summary of the main works related to the objectives of this thesis.
The connection of each work with the two data structures mostly employed in this dissertation (H-
Matrices or Tile H-Matrices) is exposed, as well as the similarities and/or differences in terms of
the parallelization strategy.

Along this dissertation, different parallelization strategies for H-Matrix factorizations are pre-
sented. The packages whose factorizations have been parallelised are H2Lib [54] and H-Chameleon.
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The first one is an open-source library that implements the original H-Arithmetic defined in [55].
The later one is a combination of two existing packages: Chameleon [2, 3, 38] and Hmat-oss [64,
86]. Moreover, the programming models utilized for the task-based parallelization are OpenMP,
OmpSs/OmpSs-2, and StarPU. Intel Math Kernel Library (MKL) is also used in this disserta-
tion, but mainly for some efficiency comparisons that always offer higher performance when using
task-parallelism based approaches.

Prior to this dissertation, the H2Lib package already provided some limited degree of parallelism,
thanks to the use of OpenMP simple parallel structures, such as parallel loops. With the work
presented in this dissertation, the parallel performance achieved by the originally parallelised H-
LU in H2Lib is overcome, thanks to leveraging a task-based parallel implementation that utilizes
special features from the OmpSs-2 programming model to expose a higher degree of concurrency.

Chameleon [2, 3, 38] is originally a dense linear algebra package, and this dissertation enhances it
with an extension that allows operating with hierarchical structures (particularly, Tile H-Matrices),
thanks to including low-rank arithmetic from the Hmat-oss package. This package utilizes StarPU [17,
110] to offer task-based parallelism based on the Sequential-Task-Flow (STF) model, which decou-
ples the task submission step from the parallel task execution [109]. Hmat-oss is the collection of
open-source sequential routines to operate with low-rank structures and H-Matrices that conform
the Hmat package [36, 37, 86]. This is a proprietary library from Airbus that is also based in the
original H-Arithmetic defined in [55]. The closed-source Hmat package offers a fair task-based par-
allel efficiency, leveraging a fine grain dependency management on top of StarPU. TheH-Chameleon
package proposed in this thesis combines Chameleon and Hmat-oss kernels, and utilizes StarPU
for the parallelism. Thus, as Chameleon originally also follows a parallelization strategy similar to
that in Hmat, the comparison between H-Chameleon and Hmat performance is fair. As shown in
Chapter 6, with H-Chameleon we manage to offer a simpler (and open-source) implementation of
the H-Arithmetic that is competitive with Hmat.

Prior to the development of this thesis, there already existed parallel implementations of some of
the operations in the H-Arithmetic. Kriemann proposed some parallel H-Matrices arithmetics on
shared memory systems [78] via POSIX-threads [32]. This included the H-Matrix construction,
H-Matrix-Vector product, H-Matrix-H-Matrix product, and the H-Matrix inverse. Some time
later, Kriemann describes in [79] a task-based parallel implementation of the H-LU based on Intel
TBB [105], which is used in H-Libpro to accomodate an efficient scheduling on parallel systems. The
tasks descriptions in this dissertation when parallelising the H-LU in H2Lib are similar to those
presented by Kriemann. The main difference is that the OmpSs-2 programming model is equipped
with special features that allow us to anticipate the execution of tasks belonging to different levels
in the H-Matrix hierarchy. As a result, a fair parallel efficiency is reached. Moreover, H2Lib is
fully open-source, while H-Libpro is not.

More recent works [21] rely on alternative programming models (particularly, Cilk [45] and Tas-
cell [62]). In case those programming models are employed to parallelize the H-LU, it would be
worth it to compare its efficiency with the one achieved by the parallel H-LU from H2Lib or
H-Chameleon proposed in this dissertation.

Some of the authors of the work mentioned in the previous paragraph have already explored devel-
oping a hybrid MPI+OpenMP version to improve the parallel scalability of the construction and
the H-Matrix-vector product [69] in the HACApK package. A hybrid approach with MPI+OmpSs-
2 and H2Lib is interesting and is in fact one of the open research lines of this dissertation. In case
HACApK and H2Lib offers an MPI-based implementation of the H-LU at some point, it could be
interesting to analyze their differences and similarities.
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As part of the future work with H-Chameleon (already in process), there exists the plan to offer a
distributed-memory parallelization based on MPI. In [68, 116] the authors present their own version
of the lattice H-Matrices, which are conceptually equivalent to our Tile H-Matrix approach, though
the data structures and kernels that conform their approach are different to those in H-Chameleon.
The simplicity in terms of leveraging existing packages is the main difference between H-Chameleon
and the mentioned works. Moreover, the high efficiency reflected by the evaluation of H-Chameleon
converts it into the first open-source package to offer TileH-Matrices based parallel implementations
for shared memory systems. Once the MPI-based implementation of H-Chameleon is ready, it will
be interesting to compare its distributed parallel performance not only with Hmat, but also with
the implementations of the mentioned works.

1.5 Structure of the document

This thesis is structured in seven chapters. We provide next a brief description of the six that
follow the present introductory chapter:

• In Chapter 2 we provide a summary of the linear algebra terms and propositions that are
necessary to establish the mathematical basis for H-Matrices.

• In Chapter 3 we present an overview of the matrix computations and parallelization tools and
strategies which constitute the fundamentals for the algorithms that perform H-Arithmetic
operations.

• In Chapter 4 we describe the first contribution developed in the context of this thesis: a
limited implementation of the H-LU and H-Cholesky algorithms (thus, prototypes) with the
only purpose of testing task-parallelism in the context of H-Matrices.

• In Chapter 5 we review the efforts made to parallelize the H-LU in the H2Lib package,
emphasizing the difficulties of the process and how the OmpSs-2 programming model helped
us to overcome them.

• In Chapter 6 we present this thesis’ last contribution: H-Chameleon. This is an extension
of the Chameleon package that operates with Tile H-Matrices leveraging Hmat-oss package
kernels.

• Lastly, in Chapter 7 we summarize the conclusions extracted from the PhD dissertation, as
well as the (in)directly related publications. We conclude by describing some open research
lines. Chapter 8 is equivalent to Chapter 7 but written in Spanish.
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Chapter 2

Linear algebra background

Contents of the chapter

2.1 General vectors and matrices definitions and properties . . . . . . . . . 9

2.2 Classification of matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Matrix types according to their dimension . . . . . . . . . . . . . . . . . . . 11

2.2.2 Matrix types according to their data distribution . . . . . . . . . . . . . . . 12

2.3 Main vector and matrix operations . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Basic vectors and matrix operations . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Matrix decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Systems of equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Compressed matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 The basics: low-rank matrices, admissibility and partitions . . . . . . . . . 17

2.4.2 H-Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A matrix is a functional representation of the data, traditionally organized along two dimensions
in computer science. By employing dense and sparse structures, a wide range of the data that
needs to be represented with two dimensions is covered. However, recent advances in engineering
simulations and computations require a gray perspective in what used to be regarded as black and
white. This is the reason for the introduction of new matrix structures, as well as matrices with
three or more dimensions. H-Matrices lie in that “gray scale of approaches”, providing a powerful
numerical tool to tackle scenarios in between the dense and sparse data configurations, offering a
trade-off between accuracy and performance/storage gains.

A background in general linear algebra is required in order to construct and parallelize algorithms
that perform operations over H-Matrices. For this reason, in this chapter we introduce several
general linear algebra definitions, properties and operations, before presenting the mathematical
foundations of H-Matrices. Mathematical proofs will not be detailed, but can be consulted in the
referenced literature [31, 43, 56].

2.1 General vectors and matrices definitions and properties

This work follows the computer science convention to view vectors and matrices as sets of elements
organized along one or more dimensions, respectively. The mathematical definitions underlying
that idea are presented next.
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Definition 2.1. (Vector) Let R be the finite set of ordered real numbers, and Rn the vector space
of real n-vectors. Then, x = (x1, x2, . . . , xn) defines a vector in Rn if xi ∈ R, with 1 ≤ i ≤ n, i ∈ N.

Definition 2.2. (Matrix) The structure A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 ∈ Rm×n is a matrix if

aij ∈ R, with 1 ≤ i ≤ m, 1 ≤ j ≤ n, i,j ∈ N. When indexing a matrix element aij , i and j will
respectively index the row and column in which the specific element can be found.

Notation 2.1. Each of the values of a vector or a matrix is called an entry, coefficient , or element.

Notation 2.2. Let x ∈ Rn, and A ∈ Rm×n. Then, the i-th component of x can be denoted as xi,
but also as x(i) or x[i]; and the (i,j)-th entry aij ∈ A can also be indexed as A(i,j) or A[i,j]. Due
to the computer science perspective adopted in this work, when indexing vector or matrix elements
in later chapters, the first element will have index 0; for example, for a vector x, the top entry is
x0, and the top-left entry of a matrix A is a00.

To be able to measure vectors and matrices, there exists the term dimension.

Definition 2.3. (Dimension) The term dimension refers to the topological size of the covering
properties of an object, that is, the number of coordinates required to determine a point in the
object.

The dimensions of vectors and matrices in the context of this work will be equivalent to the number
of elements that form the specific structure. This means that, given a vector v ∈ Rn, then n (amount
of elements that form the vector) will specify the dimension of the vector v. Furthermore, given a
matrix A ∈ Rm×n, its dimension will be m× n (number of rows times number of columns).

Notation 2.3. The dimension of a vector or a matrix will also be referred to as its size in this
document. Moreover, the dimension of a vector is equivalent to its length and the dimension of a
matrix can also be referred to as its order.

Remark 2.1. A vector can also be viewed as a matrix with either m = 1 or n = 1, respectively
corresponding to a row vector or a column vector.

A concept that will gain importance along this document is the rank.

Definition 2.4. (Full vs. rank-deficient matrices) Let A ∈ Rm×n. Then its rank, denoted as
rank(A) or rk(A), is defined as 1) the maximum number of linearly independent column vectors in
the matrix if m ≥ n; or 2) the maximum number of linearly independent row vectors in the matrix
if n ≥ m (both definitions are equivalent if m = n). A matrix whose rank is equal to the largest
possible according to its dimension (i.e., the minimum between its number of rows and columns)
is said to be full rank; otherwise, it is called rank-deficient or low-rank.

Definition 2.5. (Rank deficiency) Let A ∈ Rm×n be a low-rank matrix, then its rank deficiency
is equivalent to min(m,n)− rank(A).

10



2.2. CLASSIFICATION OF MATRICES

Lastly, it is important to define the concept of (matrix) norm as it will be employed, among other
purposes, to verify certain matrix computations.

Definition 2.6. (Norm) Let A ∈ Rm×n. Then, a norm of that matrix is provided by any function
|| · || : Rm×n → R which verifies:

1) ||A|| ≥ 0 with ||A|| = 0 if and only if A = 0 (positivity);

2) ∀ α ∈ R, ||αA|| = |α|||A|| (homogeneity or scaling); and

3) ∀ B ∈ Rm×n, ||A+B|| ≤ ||A||+ ||B||, and ||A|| − ||B|| ≤ ||A−B|| (triangle inequality).

2.2 Classification of matrices

There exist plenty of different schemes to classify matrices. For example, classifications can be
made taking into account the matrix dimension, the existence and location of null entries, the
partitioned or structured form they present, etc. The most utilized matrix types in the context of
this thesis are defined in the following subsections.

2.2.1 Matrix types according to their dimension

Regarding their dimension, there exist rectangular and square matrices. These concepts are pre-
sented in this subsection, together with the concept of submatrix, and a few additional terms related
to square matrices: determinant, eigenvalues, eigenvectors, singular values, and singular vectors.

Definition 2.7. (Rectangular and square matrices) Let A ∈ Rm×n. If m < n or n < m, then
A is said to be a rectangular matrix, particularly a wide or a tall matrix, respectively; if m = n,
then A is square.

Remark 2.2. As stated before, a rectangular matrix where m = 1 < n or n = 1 < m is equivalent
to a row vector or a column vector, respectively.

It is important to note that this document focuses on bidimensional matrices. Higher dimensioned
matrices such as, for example, tensors, are out of the scope of this thesis.

A particularly important definition for future chapters, presented next, introduces submatrix. Its
value comes from the fact that partitioning a matrix into submatrices (or blocks) is essential to
achieve high parallel efficiency when executing algorithms that perform matrix computations. In
computer science, there are many different ways of performing this partition, and some of them
will be exposed in future chapters.

Definition 2.8. (Block) Let A ∈ Rm×n, and let I, J be the non-empty finite sets of indices that
respectively correspond to the row and column indices of A. Then, a submatrix or block B ⊂ A
is determined by two subsets or clusters τ ∈ I, σ ∈ J , expressed by τ × σ, whose elements are
B = (aij)i∈τ,j∈σ. The size of a block is determined by the number of elements that form each of its
indices sets; this is, size(B) = length(I)× length(J).

The terms determinant, eigenvalues, eigenvectors, singular values, and singular vectors will be
employed in this work when constructing matrices or evaluating matrix computations to verify
that the desired results have been attained.
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Definition 2.9. (Determinant) Let A ∈ Rn×n. Then, its determinant, denoted as det(A) or |A|,
is given by det(A) = |A| =

∑n
i=1 aija

ij , with 1 ≤ i,j ≤ n, i,j ∈ N, where aij is the cofactor of aij
defined by aij = (−1)i+jMij . In this last expression, Mij denotes the (i,j) minor of the matrix,
that is, the determinant of the submatrix of A obtained by eliminating the i-th row and j-th column
of the matrix.

Notation 2.4. In case det(A) = 0, the matrix is said to be singular; if det(A) = 1, then the matrix
is said to be unimodular.

The eigenvectors, eigenvalues, singular values, and singular vectors are crucial to evaluate the
importance of certain entries of a matrix with respect to others, and are frequently exploited when
compressing the matrix information.

Definition 2.10. (Eigenvalues and eigenvectors) Let A ∈ Rn×n. Then λ ∈ R is an eigenvalue
of A if and only if Av = λv for some nonzero column vector v ∈ Rn. Each vector v that satisfies
this equation is an eigenvector associated with the eigenvalue λ.

Definition 2.11. (Singular values and singular vectors) Let A ∈ Rm×n. Then, the nonneg-
ative scalar σ is a singular value of A if A · v = σ · u and AT · u = σ · v, for a certain pair of real
vectors u ∈ Rm, v ∈ Rn, which are referred to as left and right singular vectors, respectively.

Proposition 2.1. Let A ∈ Rm×n. Then, the number of nonzero singular values of A is equal to
rank(A).

2.2.2 Matrix types according to their data distribution

Another interesting criterion to classify matrices is based on their data distribution, this is, the way
their entries are spread along the structure, or the particularities of some (of all) of their values.
In this subsection, the terms dense matrix, sparse matrix, diagonal matrix, identity matrix, band
matrix, triangular matrix, and symmetric matrix are defined.

Definition 2.12. (Dense matrix) Let A ∈ Rm×n. Then, if a representative amount of its elements
are not zero, the matrix is considered to be dense.

In certain fields, for example due to the geometry of the problem where the data arises from, the
values represented by matrices are repeated as if they were reflected in a mirror, constituting what
is known as symmetric matrices.

Definition 2.13. (Symmetric matrix) LetA ∈ Rn×n. Then, A is symmetric if aij = aji, with 1 ≤
i,j ≤ n, i,j ∈ N.

In contrast to dense matrices, sparse matrices are mostly populated with zero elements. The
distribution of the non-zero entries along the matrix gives room to special cases that are detailed
next.

Definition 2.14. (Sparse matrix) Let A ∈ Rm×n. Then, if the majority of its entries are zero,
it is called a sparse matrix. The measure of zero elements with respect to non-zero ones is referred
to as the matrix sparsity.
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The extreme case of a sparse matrix is the null matrix, defined next.

Definition 2.15. (Null matrix) Let A ∈ Rm×n. Then, A is a null matrix if and only if aij =
0, with 1 ≤ i ≤ m, 1 ≤ j ≤ n, i,j ∈ N; this is, all the matrix entries are zero.

Besides containing a remarkable amount of null entries, if the non-zero elements of a sparse matrix
are located following a regular pattern, or contain certain values, the matrix can be classified as
diagonal, identity, null, band, or triangular.

Definition 2.16. (Diagonal matrix) Let A ∈ Rn×n. Then, A is a diagonal matrix if and only
if aij = 0, with 1 ≤ i,j ≤ n, i 6= j, i,j ∈ N; this is, all the non-zero entries of A are placed on its
diagonal.

Definition 2.17. (Identity matrix) Let A ∈ Rn×n. Then, A is the identity matrix if and only if
aii = 1 with 1 ≤ i ≤ n, i ∈ N; this is, all its diagonal values equal one, and all the other elements
are zero.

Notation 2.5. The identity matrices of a certain size n will be denoted as In.

In the previous section, the eigenvalues of a square matrix were defined. The set of eigenvalues can
be expressed as stated in the following proposition, by referencing the identity matrix.

Proposition 2.2. For every square matrix A ∈ Rn×n, the set of its eigenvalues is denoted by
λ(A) = {λ : det(A− λIn) = 0}. Concretely, det(A− λIn) = 0 is called the characteristic equation
or characteristic polynomial of A, and because this equation does not have more than n solutions,
A does not have more than n eigenvalues.

If the non-zero entries of the matrix are not limited to the diagonal, but stay close to it in what
can be seen as parallel diagonals, we obtain a band matrix, defined next.

Definition 2.18. (Upper/lower diagonal) Let A ∈ Rm×n. Then, the k-th upper diagonal of A
is composed by all aij ∈ A : i = j − k, with 1 ≤ i ≤ m− k, 1 ≤ k < j ≤ n, i,j ∈ N, and accordingly
the k-th lower diagonal of A is composed by all aij ∈ A : j = i− k, with 1 ≤ j ≤ n− k, 1 ≤ k < i ≤
m, i,j ∈ N.

Definition 2.19. (Band matrix) Let A ∈ Rm×n. Then, A is a band matrix with distances p,
q ∈ N if and only if ∀ aij > 0, aij ∈ A, that entry either belongs to the diagonal, any of the k-th
lower diagonals with k ≤ p, or the k-th upper diagonals with k ≤ q, and aij = 0 for all entries
outside that (sub)diagonals.

Lastly, triangular matrices are presented. As it will be justified later in this document, they
constitute the clue for the efficient solution of systems of linear equations.

Definition 2.20. (Triangular matrix) Let A ∈ Rm×n. Then A is an upper triangular matrix if
1) ∀ aij ∈ A : aij 6= 0→ i ≤ j, and ∀ aij ∈ A : i > j → aij = 0, with 1 ≤ i ≤ m, 1 ≤ j ≤ n, i,j ∈ N,
or 2) lower triangular matrix if ∀aij 6= 0→ i ≥ j, and ∀ aij ∈ A : i < j → aij = 0, with 1 ≤ i ≤ m,
1 ≤ j ≤ n, i,j ∈ N.
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2.3 Main vector and matrix operations

The algorithms presented in future chapters, which constitute the core of this dissertation, will
address several matrix operations. These operations will mainly be applied to the resolution of
systems of linear equations. This subsection provides a brief linear algebra background on these
operations, as it constitutes the basis for the mentioned algorithms.

2.3.1 Basic vectors and matrix operations

First, basic operations involving addition and/or product of vectors and/or matrices need to be
defined, prior to more complex ones.

Definition 2.21. (Vector-vector addition) Let v,w ∈ Rm. Then, their addition, denoted by
v+w, gives a vector u ∈ Rm, defined by ui = vi+wi ∈ R, ∀ui ∈ u, vi ∈ v, wi ∈ w, 1 ≤ i ≤ m, i ∈ N.

Definition 2.22. (Matrix-matrix addition) Let A,B ∈ Rm×n. Then, their addition, denoted
by A + B, results into a matrix C ∈ Rm×n whose entries are defined by cij = aij + bij , ∀ cij ∈
C, aij ∈ A, bij ∈ B, 1 ≤ i ≤ m, 1 ≤ j ≤ n, i,j ∈ N.

Remark 2.3. To be able to perform the addition of two vectors, it is mandatory that they have
the same length. In the case of adding two matrices, both need to have the same dimensions.

Definition 2.23. (Scalar-vector product) Let v ∈ Rm and α ∈ R. Then, their scalar-vector
product, denoted by α · v, results in a vector w ∈ Rm, defined by wi = α · vi ∈ Rm, with wi ∈
w, vi ∈ v, 1 ≤ i ≤ m.

Definition 2.24. (Scalar-matrix product) Let A ∈ Rm×n and α ∈ R. Then, their scalar-matrix
product, denoted by α ·A, results in a matrix B ∈ Rm×n, defined by bij = α ·aij , with bij ∈ B, aij ∈
A, 1 ≤ i ≤ m, 1 ≤ j ≤ n, i,j ∈ N.

Definition 2.25. (Dot product) Let v,w ∈ Rm. Then, their dot product, denoted by v ·w, results
into a scalar value α ∈ R defined by α =

∑m
i=1 ai · bi, with ai ∈ a, bi ∈ b, 1 ≤ i ≤ m, i ∈ N.

Definition 2.26. (Vector-matrix product) Let A ∈ Rm×n and v ∈ Rm be a row vector. Then,
their vector-matrix product, denoted by v · A, results in a row vector w ∈ Rn, and its entries are
defined as follows: wj =

∑m
i=1 vi · aij , ∀wj ∈ w, aij ∈ A, vj ∈ v, 1 ≤ i ≤ m, 1 ≤ j ≤ n, i,j ∈ N.

Equivalently, if u ∈ Rn is a column vector, then the matrix-vector product A·u gives a column vector
w ∈ Rm, defined by wi =

∑n
j=1 aij · uj∀wi ∈ w, aij ∈ A, uj ∈ u, 1 ≤ i ≤ m, 1 ≤ j ≤ n, i,j ∈ N.

Definition 2.27. (Matrix-matrix product) Let A ∈ Rm×n and B ∈ Rn×p. Then, their matrix-
matrix product, denoted by A ·B, results into a matrix C ∈ Rm×p, where its entries are defined as
follows: cij =

∑n
k=1 aik · bkj ,∀ cij ∈ C, aik ∈ A, bkj ∈ B, 1 ≤ i ≤ m, 1 ≤ j,k ≤ p, i,j,k ∈ N.

Remark 2.4. To be able to perform the product of two matrices, it is necessary that the number
of columns of first matrix and the number of rows of the second one are the same.
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2.3.2 Matrix decompositions

Now that the basic operations have been defined, it is the moment to present the main decompo-
sitions that will be employed along this document: Singular Value Decomposition (SVD), LU, and
Cholesky.

Prior to the definition of the SVD, it is necessary to define the terms transposed, inverse, and
orthogonal matrix, as the SVD will generates orthogonal matrices though a process where the other
two are utilized.

Definition 2.28. (Transposed matrix) Let A ∈ Rm×n. Then the transposed matrix of A is
denoted by AT with each of the entries following that A(i,j) = AT (j,i), with 1 ≤ i ≤ m, 1 ≤ j ≤
n, i,j ∈ N; this is, the i-th row and j-th column of A become the j-th row and i-th column entry of
AT .

Definition 2.29. (Inverse matrix) Let A ∈ Rn×n. Then A is invertible if there exists the inverse
matrix of A, denoted by A−1, which verifies that A ·A−1 = A−1 ·A = In.

Notation 2.6. An invertible matrix is also called nonsingular or nondegenerate.

Definition 2.30. (Orthogonal matrix) Let A ∈ Rn×n. Then, A is an orthogonal matrix if and
only if A · AT = In. Particularly, A−1 = AT for orthogonal matrices, with the entries verifying
âij = aji, ∀âij ∈ A−1, aji ∈ AT , 1 ≤ i,j ≤ n, i,j ∈ N.

The following theorem defines the Singular Value Decomposition. It is crucial for building and
operating with H-Matrices because, as it will be properly exposed later, it is the key tool to isolate
the less representative values in a structure, which will be removed to allow compressing them.

Theorem 2.3.1. (Singular Value Decomposition - SVD) Let A ∈ Rm×n. Then there exist
orthogonal matrices U ∈ Rm×m and V ∈ Rn×n, such that UT · A · V = Σ, with Σ ∈ Rm×n being
a diagonal matrix with the (scalar) singular values σ1,σ2 . . . σn on its diagonal, ordered from the
largest (first entry) to the smallest (last entry) value, such that 0 < Σii = σi ≤ σi+1 = Σi+1,i+1, 1 ≤
i ≤ n, i ∈ N.

Remark 2.5. As stated in a previous proposition, the rank of a matrix is equal to the number of
its nonzero singular values. Thus, the SVD exposes the rank of a matrix.

If the SVD offers a powerful numerical tool to attain a proper compression of the information,
the LU factorization is needed to efficiently solve systems of equations, thanks to the reduction
of the problem to the solution of triangular systems of equations that result from employing this
decomposition. (Note that an SVD could also be employed to solve linear systems, but it would be
much more costly than the LU in terms of computations.)

Notation 2.7. Let A ∈ Rm×n, then the subset of entries of A located from the row ra to the row
rb, and from the column ca to the column cb is denoted by Ara:rb,ca:cb = A[ra : rb,ca : cb] = A(ra :
rb,ca : cb). Equivalently, let v ∈ Rn be a real vector, then the subset of elements of v from the a-th
element to the b-th one is denoted by va:b = v[a : b] = v(a : b).
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Theorem 2.3.2. (LU decomposition) Let A ∈ Rn×n, and consider det(A[1 : k,1 : k]) 6= 0,
with 1 ≤ k ≤ n, k ∈ N. Then there exist a unit lower triangular matrix L ∈ Rn×n and an upper
triangular matrix U ∈ Rn×n, such that A = L · U . Moreover, the LU factorization is unique and
det(A) = u11 · u22 . . . unn.

An additional important decomposition is the Cholesky factorization. This matrix operation is
particularly efficient for certain types of systems of equations, as explained next.

Definition 2.31. (Positive definite matrix) Let A ∈ Rn×n. Then A is a positive definite matrix
if xTAx > 0 for any real vector x ∈ Rn that is not null. Equivalently, A is a positive definite matrix
if all the eigenvalues of A are positive.

Theorem 2.3.3. (Cholesky decomposition) Let A ∈ Rn×n be a symmetric positive definite
matrix. Then, there exists a unique real square lower triangular matrix G ∈ Rn×n, with positive
diagonal entries, such that A = GGT .

2.3.3 Systems of equations

A considerable number of scientific applications involve systems of linear equations. Thus, the
computer science community has put a considerable effort on optimizing the calculus related to
this problem. This section presents the associated basic mathematical concepts definitions.

Definition 2.32. (Equation) An equation is a statement that equals two algebraic expressions
that have the same value. The variables x, y, z, . . . that conform the equation are named unknowns,
the scalars that multiply the unknowns are named coefficients, and the scalar values added to the
(multiplied) unknowns are named constants.

Notation 2.8. An equation is linear if both sides of it are a sum of (constant) multiples of x,y,z...
plus an optional constant.

Definition 2.33. (System of linear equations) A system of linear equations is a collection of
at least two equations with unknowns x,y,z, . . . The set of values (each of them associated to each
of the unknowns) that make all the equations true simultaneously conform the system solution. If
there exists such a solution, then the system is consistent; otherwise, it is inconsistent.

Solving systems of linear equations is commonly done by converting the problem into a triangular
system that has the same solution as the original one. Future chapters will describe forward and
back substitution methods (employed to this end), together with different computational strategies
to optimize the process of solving them.

2.4 Compressed matrices

As it was highlighted earlier in this document, the interest on utilizing H-Matrices in computer
science is the storage savings and performance gains that can be attained in exchange for a certain
accuracy loss. This accuracy reduction is due to the compression performed on the original data,
which dismisses the less representative elements to build a compressed structure.
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This subsection will introduce H-Matrices. To this end, the basis of H-Matrices are presented, in-
cluding different low-rank related concepts, partitioning criteria and rules, and different compressed
structures.

2.4.1 The basics: low-rank matrices, admissibility and partitions

A rough definition of H-Matrices can describe them as matrices that have been recursively par-
titioned into submatrices which are either subdivided into more submatrices, or converted into a
low-rank format (unless that certain submatrix cannot be compressed and, therefore, is kept in a
dense format).

In the process of building H-Matrices, a procedure to perform the partition into submatrices is
needed, together with a criterion to determine whether a certain submatrix or block can be com-
pressed (admissible) or not (inadmissible). For this reason, this introductory part defines the terms
low-rank matrix, admissibility, and partition, as well as other related concepts necessary to finally
construct H-Matrices.

Definition 2.34. (Low-rank matrix) Let A ∈ Rm×n with r = rank(A) = min(m,n). Also, let
the SVD be given by A = Um×r · Σr×r · V T

r×n, which can be expressed:

A = [u1u2 · · ·ur]


σ1 0

σ2

. . .

0 σr



vT1
vT2
...
vTr


with u1,u1, . . . ,ur denoting the columns of Um×r and v1,v2, . . . ,vr the rows of Vn×r. This SVD
can be employed to convert A into a low-rank matrix, with rank k < r ∈ N, by annihilating the
r − k trailing singular values of A; this is Ak = Um×k · (Σk)k×k · V T

k×n =
∑k

i=1 σi · ui · vTi , where
Σk = diag(σ1,σ2, . . . σk), Um×k = [u1,u1, . . . ,uk], and Vk×n = [v1,v2, · · · ,vk].

When reducing the information originally contained in the matrices to generate a compressed
structure, it is crucial to set a criteria to isolate the less representative elements that will be
removed. Concretely, the process of buildingH-Matrices will determine whether certain submatrices
can be converted into low-rank submatrices (or blocks). This decision of whether keeping/removing
elements is now explained in detail, from admissibility conditions to partitioning processes, being
the former ones the criteria to refine or stop the division performed by the later ones.

Definition 2.35. (η-admissibility) Let A ∈ Rm×n, with m = |I|, n = |J |, I,J non-empty finite
sets representing the rows and columns indices of A1. Let b be a block of A such that b = τ×σ ⊆ A,
with τ ⊆ I, σ ⊆ J , and let 0 < η ∈ R. Then, the block b is η-admissible if

min{diam(τ),diam(σ)} ≤ η dist(τ, σ) (2.1)

with diam and dist defined via the Euclidean norm, as:

diam(τ) := max{||x1 − x2|| : x1,x2 ∈ Xτ},
1Hereafter, this will be denoted by A ∈ RI×J .
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diam(σ) := max{||x1 − x2|| : x1,x2 ∈ Xτ},

dist(τ,σ) := min{||x1 − x2|| : x1 ∈ Xτ ,x2 ∈ Xσ},

where Xτ and Xσ correspond to the subsets of τ and σ where the function that generates the data
in that block is not zero (namely, the supports of τ and σ).

Proposition 2.4.1. The η-admissibility condition ensures that

min{diam(Xτ ), diam(Xσ)} ≤ η dist(Xτ ,Xσ).

While this allows that the matrix data are properly evaluated, it is important to remark that this
classical admissibility definition can be very costly to calculate. Consequently, the η-admissibility
it is not usually calculated with respect to supports, but to bounding boxes.

Definition 2.36. (Bounding box) Let A ∈ RI×J , and assume τ ⊆ I is a cluster whose support
is defined as Xτ . Then, the he smallest axis-parallel cuboid B containing τ , denoted by Bτ , is called
bounding box.

Figure 2.1 illustrates graphically what the supports and bounding boxes represent, as well as the
diam and dist in definition 2.36.

Figure 2.1: Sample of supports (Xτ , Xσ) and bounding boxes (Bτ , Bσ) for the domains τ and σ.

Definition 2.37. (η-admissibility with respect to bounding boxes) Let A ∈ RI×J , assume
b is a block of A such that b = τ × σ ⊆ A, with τ ⊆ I, σ ⊆ J . Let 0 < η ∈ R, and let Bτ and Bσ be
the bounding boxes of the supports Xτ and Xσ, respectively. Then, the η-admissibility condition
expressed in (2.35) is redefined by

min{diam(Bτ ),diam(Bσ)} ≤ η dist(Bτ ,Bσ). (2.2)

In the context of this work, the admissibility criteria will be employed to determine whether a
certain matrix block is admissible and, consequently, it can be compressed and stored in a low-rank
format or, contrarily, it should be divided into smaller blocks (which will be re-evaluated to check if
the admissibility condition is then fulfilled). In case the subdivision of an inadmissible block yields
a block of dimension that is too small, it is kept in a dense format.

The process of generating a partition of a matrix implicitly involves the creation of a tree whose
hierarchy of nodes dictates the subdivisions applied to the matrix blocks. For this reason, basic
definitions and properties of trees are presented next, before detailing the partitioning methods.
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Definition 2.38. (Graph) Let V,E be non-empty, finite sets respectively named vertex set and
edges set . Then, the pair set (V,E) is called a graph with vertices v ∈ V and edges e ∈ E, if it
fulfills the property E ⊂ V × V , with each pair e = (v,w) denoting an edge from v to w, with
v,w ∈ V .

Notation 2.9. In case all the edges of a graph are directed from one vertex to another, it is a
directed graph.

Notation 2.10. A graph G is said to be connected if there is a path between any pair of vertices;
otherwise, it is called disconnected.

Definition 2.39. (Graph cycle) Let G = (V,E) be a graph. Then a graph cycle is a subset of
the edge set E′ ⊂ E that forms a path such that the last node corresponds to the first node.

In a graph, certain relationships between specific vertices are highlighted, and the son-father relation
is widely employed.

Notation 2.11. A graph G is said to be acyclic if graph cycles are not possible.

Definition 2.40. (Son mapping) Let G be a graph with a non-empty, finite vertex set V of
size n ∈ N. Then, S : V → P(V ) is a mapping from V into the power set P(V ) (with power set
meaning the set of all index subsets) called son mapping verifying the following statements:

1. Given two vertices v,w ∈ V , then w is a son of v if w ∈ S(V ), and accordingly v is the father
of w.

2. Any sequence of vertices (v1,v2 . . . vk) ∈ V with 1 ≤ k ≤ n, k ∈ N is called a path if
vi+1 ∈ S(vi), with 1 ≤ i < k, k ∈ N, and k is equivalent to the path length.

3. Given two vertices v,w ∈ V , if there exists a path from v to w, then w is called successor of
v and w is the predecessor of v.

Definition 2.41. (Matrix graph) Let A be a matrix whose index sets are respectively given by I
(rows indices) and J (columns indices); this is, A ∈ RI×J . Then, the matrix graph G(A) associated
with A is defined by V = I ∪ J , E = {(i,j) ∈ I × J : Aij 6= 0}.

Trees are specific types of graphs which constitute, as stated earlier, one of the H-Matrices foun-
dations since they allow to form the partitioning of the structure.

Definition 2.42. (Tree) Let G be a graph with a non-empty, finite vertex set V of size n ∈ N,
and let S(V ) denote its son mapping. Then, the structure formed by the vertex set together with
the son mapping is called a tree, denoted by T = (V,S), if it is a connected and acyclic graph, and
the following properties are fulfilled:

1. T has exactly n− 1 edges. This is equivalent to state that there is exactly one vertex r ∈ V
such that ∪v∈V S(v) = V \{r}, which means that r is not a son of any other vertex. The
vertex r is called the tree root, denoted by root(V ). Moreover, all v ∈ V are successors of
r = root(V ).
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2. Any two vertices in T are connected exclusively by one path, and this implies that any
v ∈ V \{r} has exactly one father.

3. For any new edge, T contains exactly one cycle.

4. Every edge is a cut-edge; this is, if that edge is deleted, then the graph becomes disconnected.

Definition 2.43. (Tree leaf) Let T be a tree with a vertex set V and a son mapping S. Each
vertex v ∈ V such that S(v) = ∅ (i.e., does not have any son) is called a leaf, and the set of leaves
of T is denoted by L(T ).

Definition 2.44. (Vertex level) Let T be a tree with a vertex set V and a son mapping S.
Then, the level of a vertex v ∈ V is defined as level(v) = length(path r(T ) − v), this is, the
amount of vertices forming that path. Accordingly, the depth of the tree is defined as depth(T :=
max{level(v) : v ∈ V }, in other words, the maximum depth of its vertices.

Definition 2.45. (Vertex degree) Let T be a tree with a vertex set V and a son mapping
S. Then, the degree of a vertex v ∈ V is defined as degree(v) = #S(v), this is, the amount
of sons and successors that v has. Moreover, the degree of the tree corresponds to degree(T ) =
maxv∈V degree(v).

A special type of trees named Cluster Tree (CT) is presented next.

Definition 2.46. (Cluster Tree - CT) Let I be a set of indices. Then, TI is a Cluster Tree
(CT) formed with the elements of I as vertices and S(V ) = S(I) (the son mapping), if all these
conditions are verified:

1. I is the root of TI .

2. ∪σ∈S(τ)σ = τ ∀ τ ∈ TI\L(T (I)), this is, each node which is not a leaf is equivalent to the
disjoint union of its sons.

3. TI ⊂ P(I) \ {∅}, this is, each node of TI is a subset of the index set I.

In a CT, the term “cluster” derives from the fact that each of its vertices is constituted by a subset
of an index set (which is the root of the tree), instead of being formed by only an individual element.
Consequently, it is logical to think of employing a CT to define a block partition of a vector, with
the set of indices of the CT being the indices that correspond to the vector entries. Thus, as we
pursue a block partition of a matrix, it seems natural to extend this concept from one dimension
(vector) to two dimensions (matrix) which, in turn, seems possible by combining two CTs, formed
by the indices associated either to the rows or the columns of the matrix. This is how the concept
Block Cluster Tree (BCT) becomes tangible.

Definition 2.47. (Block Cluster Tree - BCT) Let I, J be sets of indices, and let TI and TJ be
the CTs respectively generated from them. Then, TI×J is a Block Cluster Tree (BCT) generated
from TI and TJ with S = STI×J

defining the set of sons, fulfilling the following statements:

1. I × J is the root of the tree TI×J .
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2. For each possible block in the BCT (this is, for each of its vertices) b ∈ TI×J , b = ∪b′∈S(b)b
′∀ b ∈

TI×J\L(T (I × J)). In other words, each node which is not a leaf is equivalent to the disjoint
union of its sons.

3. Each block (or vertex) of the CT b ∈ TI×J can be denoted by b = τ × σ with τ ∈ TI , σ ∈ TJ .

4. Each sub-block of a certain block in the BCT b′ = τ ′ × σ′ ∈ S(b) ∈ TI×J , with b = τ × σ ∈
TI×J\L(T (I × J)) verifies that τ ′ = τ or τ ′ ∈ STI (τ), and σ′ = σ or σ′ ∈ STJ (σ); this is, the
sub-block is formed by either a subset of indices (or the subset itself) or each of the indices
subsets defining b.

Prior to explaining the process of building an H-Matrix, it is necessary to extend the definition
of the term η-admissibility provided in definition 2.35. That definition provides a general view of
the standard admissibility criteria; however, sometimes it is still too costly to compute, even when
utilizing bounding boxes instead of raw data directly. This is the reason to employ weak admissibility
conditions [58] in contrast to strong admissibility criteria (based on the standard admissibility
described in Definition 2.35). Both conditions are next presented to clarify the differences.

Definition 2.48. (Strong admissibility) Let A ∈ RI×J , with I, J non-empty, finite sets repre-
senting its row and column indices, let b be a block of A such that b = τ × σ ⊆ A, with τ ⊆ I,
σ ⊆ J ; and let 0 < η ∈ R. Assume η-admissibility (as defined in definition 2.35) is the criteria
utilized. Then, the strong admissibility condition is as follows:

b is admissible ⇐⇒

1) b is a leaf of the BCT that defines the partition of A; or

2) b is η-admissible, this is, min{diam(σ), diam(τ)} ≤ η dist(σ,τ)

Definition 2.49. (Weak admissibility) Let A ∈ RI×J , with I,J non-empty, finite sets repre-
senting its row and column indices, let b be a block of A such that b = τ × σ ⊆ A, with τ ⊆ I,
σ ⊆ J , and let 0 < η ∈ R. Then, the weak admissibility condition is as follows:

b is admissible ⇐⇒

1) b is a leaf of the BCT that defines the partition of A; or

2) σ 6= τ

Having defined the weak/strong admissibility criterion and the BCT, it is the moment to define a
matrix partition.

Definition 2.50. (Matrix partition) Let A ∈ Rm×n be a real matrix whose row and column
indices are respectively defined by the sets I and J , and let T (I × J) be a BCT. Then, P is called
a partition of I × J if the following statements are true:

1. P ⊂ T (I × J) (consistency with respect to T (I × J)).

2. b,b′ ∈ P → (b = b′ or b ∩ b′ = ∅) (disjointedness).

3. ∪̇b∈Pb = I × J (disjoint covering property).
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At this point, all the necessary terms which conform the basis or foundations of H-Matrices have
been introduced. It only remains to put them all together to form an admissible matrix partition,
which will actually define the hierarchy of nested blocks that conforms an H-Matrix.

Definition 2.51. (Admissible matrix partition) Let A ∈ RI×J be a real matrix whose row and
column indices are respectively defined by the sets I and J , and let P ⊂ T (I × J) be a partition of
I×J . Let also adm : b ∈ P → {admissible,inadmissible} be the function that determines whether
a given block b of the partition is admissible or not. Then, P is an admissible matrix partition if
either adm(b) = admissible or b ∈ L(T (I × J)) for all b ∈ P.

2.4.2 H-Matrices

After having defined low-rank matrices, admissibility conditions and partitioning through BCTs, it
is the moment to define the H-Matrices, followed by some interesting properties that characterize
them.

Definition 2.52. (Hierarchical matrix, H-Matrix ) Let A ∈ RI×J be a real matrix whose
row and column indices are respectively defined by the sets I and J , and let P ⊂ T (I × J) be an
admissible matrix partition of I×J . Let r : P → N0 be the local rank distribution function. Then,
all matrices M ∈ RI×J with rank(M |b) ≤ r(b) for all b ∈ P conform the set H(r,P) ⊂ RI×J , with
each of them being hierarchical matrices (H-Matrices).

Definition 2.53. (Restriction) Let H(r,P) ∈ RI×J be the set of H-Matrices with respect to the
partition P ⊂ T (I × J) and the rank distribution r. Let also I ′ × J ′ ⊂ I × J . Then, the partition
P|I′×J ′ := {b ∩ (I ′ × J ′) : b ∈ P}\{∅} of I ′ × J ′ is called restriction of P to T (I ′ × J ′), and the
following properties are verified:

1. The partition P|I′×J ′ of I ′ × J ′ is admissible if P is an admissible partition.

2. The restriction of an H-Matrix M ∈ H(r,P) leads to a hierarchical submatrix M |I′×J ′ ∈
H(r,P|I′×J ′).

3. If I ′ × J ′ ∈ T (I × J,P), then the restricted partition P|I′×J ′ is a subset of P.

Proposition 2.3. (Diagonal invariance) Let H(r,P) ∈ RI×J be the set of H-Matrices with
respect to the partition P ⊂ T (I×J) and the rank distribution r, and M ∈ H(r,P) ∈ RI×J . Then,
for all diagonal matrices D1 ∈ RI×I and D2 ∈ RJ×J , the products D1 ·M,M·D2, and D1 ·M·D2

are also H-Matrices which belong to H(r,P) ∈ RI×J .

Proposition 2.4. (Invariance with respect to transposition) Let H(r,P) ∈ RI×J be the
set of H-Matrices with respect to the partition P ⊂ T (I × J) and the rank distribution r, and
M ∈ H(r,P). Assume that, for all the subsets τ ∈ I, σ ∈ J , adm(τ × σ) ↔ adm(σ × τ) and
also that (τ × σ) ∈ L(T (I × J)) ↔ (σ × τ) ∈ L(T (I × J)). Then, MT ∈ H(r′,P ′) with the rank
distribution r′ defined by r′(σ × τ) := r(τ × σ).

Prior to closing this section, it is important to remark a negative property which impedes employing
pivoting techniques in H-Arithmetic.
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Proposition 2.5. (Prevention from pivoting) Let H(r,P) ∈ RI×J be the set of H-Matrices
with respect to the partition P ⊂ T (I × J) and the rank distribution r, and M ∈ H(r,P). The
application of any general permutation matrices

∏
I and

∏
J destroys the hierarchical structure of

M , which means that M ·
∏
J ,
∏T
I ·M or

∏T
I ·M ·

∏
J do not belong to H(r,P). The only exception

is applying block-diagonal permutations, which would modify the ordering inside the blocks of P
but keep the resulting matrix in H(r,P), as the block partition is given by L(T (I)) for

∏
I , and by

L(T (J)) for
∏
J .
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“A series of mathematical steps, especially in a computer program, which will give you the answer
to a particular kind of problem or question”. That is the definition given by Collins dictionary1 to
the term “algorithm”.

In computer science, and particularly in the context of this thesis, algorithms are equivalent to sets
of instructions that, performed by the computer, provide an answer to the target problem. However,
providing an answer is not enough, and different algorithms could reach the proper answer, whereas
not all of them are interesting or appropriate from a computational point of view. Efficiency is the
key to figure out how valuable is a certain algorithm and evaluate its suitability.

In this chapter, we briefly review the basics to achieve efficient algorithms and evaluate them,
followed by an introduction to the block-based algorithms for the operations shown in the Chapter 2.
Afterwards, we present some tools and keys to reach good parallel efficiency.

More detailed descriptions of linear algebra algorithms, and particularly matrix computations al-
gorithms, can be found in [51, 76].

1https://www.collinsdictionary.com/
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3.1 The basics to implement efficient algorithms

When considering different approaches to implement specific algorithms to perform linear algebra
operations, some of the most important factors which determine their efficiency are:

1. Data layout: storage and access.

2. Optimized formulation of the algorithms.

3. Precision and accuracy.

These items are described in detail in the following sections.

3.1.1 Data layout: storage and access

One of the most important aspects when designing a code pursuing high efficiency is the way data
is stored and accessed. On the one hand, the original features of the data should be taken into
account to design the layout of the data in memory. For instance, in the case of a symmetric
matrix, it is not necessary to store all the elements, but only about half of them (concretely, the
main diagonal plus either the entries in the strictly upper or lower triangular part of the matrix);
other specialized layouts are possible for band or triangular matrices. Sparse matrices are usually
stored in such a way that only the non-zero elements are stored.

Table 3.1 summarizes the memory cost (in terms of the amount of elements that should be stored)
when considering the different matrix types in Chapter 2.

Matrix type Dimension #Elements to store

Dense m× n m× n
Symmetric n× n n(n+1)

2

Diagonal n× n n

Band n× n, with bandwidth p,q n+ p(2n−p−1)
2 + q(2n−q−1)

2

Triangular n× n n(n+1)
2

Sparse m×n, with k nonzero entries

For example, in CSR format2: 3 vec-
tors R,C, V to respectively store the
row and column indices of the nonzero
entries, and the associated values. The
total number of elements that are stored
is 2k + n+ 1.

Low-rank matrix m× n, rank k
2 rectangular matrices Um×k, Vk×n :
m× k + k × n

Table 3.1: Amount of elements that should be stored according to the matrix type.

When storing the elements that form a vector or a matrix, the common strategy is to maintain all
the elements in memory in a “contiguous” (linearised) array vectorized form. This implies that a
matrix of dimension m× n will be stored as if it was a long vector of length equal to m× n.

2Sparse matrices are out of the scope of this thesis. There exist many alternative representations to the Compressed
Sparse Row (CSR) format.
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In addition to maintaining only the necessary information according to the specific matrix structure,
when choosing how to “arrange” the linearised array, it is important to properly choose the storage
ordering. To this end, the Column Major Order (CMO) and the Row Major Order (RMO) are
the two common options. When mapping the entries of a matrix into consecutive addresses of the
memory, the former one implies that the elements will be stored by columns, and the later one by
rows, as defined next.

Definition 3.1. (CMO and RMO) Let A be a matrix of dimension m×n, and consider a vector
v of length l = m · n representing the linearised storage of A. Then:

1. A is stored in CMO if:
A(i,j) = v(i+ j ·m), ∀ 0 ≤ i < m, 0 ≤ j < n.

2. A is stored in RMO if:
A(i,j) = v(i · n+ j), ∀ 0 ≤ i < m, 0 ≤ j < n.

It is also important to note that accessing the data in memory should be done consistently with
the way it is stored to reduce the cache misses that slow down performance. Let’s discuss this in
some detail.

The memory is organized hierarchically. On the bottom there is the disk; followed bottom-up by the
main memory; and the cache memory between this and the functional units (where the arithmetic
is performed). Taking into account that the cache is a high-speed but relatively small memory, and
also that moving data between two levels of the hierarchy introduces a certain overhead, memory
movements should be thought carefully and minimized as much as possible, so that the number of
times the needed information is not found in cache memory is reduced (and, therefore, the number
of cache misses is minimized).

The best way to access data while reducing cache misses is via utilizing logical (this is, not existent
in the actual structure) blocks when implementing data accesses in the code. By logical blocks we
mean that the matrix data is accessed as if it was partitioned into (and stored by) blocks (see
definition 2.8). Deciding the optimal block size is complex and depends on the structure size and
typology, problem to be solved, transfer rates between different memory levels, and CMO vs. RMO
storage, among others. However, the unconditional principle that governs the block size selection
is the goal to maximize the amount of arithmetic operations that can be done without needing to
perform a new memory transfer; that is, maximizing the re-utilization of the data present in cache
by introducing regular memory access patterns through blocking the algorithms.

Details about block-based algorithms will be provided in Section 3.2.

3.1.2 Libraries for mathematical computations

Highly optimized implementations of the algorithms for fundamental linear algebra operations are
provided by instances of the Basic Linear Algebra Subprograms (BLAS) [29, 81] and the Linear
Algebra PACKage (LAPACK) [80] such as that in Intel’s MKL [93]. Instead of reinventing the
wheel, it is convenient to use these existing libraries in order to ensure fair performance.

BLAS is a software package/interface that provides routines for basic vector and matrix operations.
The BLAS definition is split into three levels: the Level 1 BLAS is focused on vector and vector-
vector operations; the Level 2 BLAS is dedicated to matrix-vector operations; and the Level 3
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BLAS comprises matrix-matrix operations. LAPACK is a software package which offers routines
for solving systems of linear equations, least-squares solutions of problems, eigenvalue problems,
and singular value problems; as well as perform matrix decompositions and related computations.

MKL provides a whole set of implementations of the routines specified in the BLAS and LAPACK
optimized for Intel processors. It is important to note that MKL adheres to the interfaces defined
by BLAS and LAPACK, so consequently no code changes are needed.

3.1.3 Precision and accuracy

The Institute of Electrical and Electronics Engineers (IEEE) defines computer floating point arith-
metic in the 754 standard [71]; concretely, the IEEE 754-2019 [1] is the current active version. This
standard covers, among other terms, three floating point precision types:

• Half precision (half), which employs 16 bits per value.

• Single precision (float), which employs 32 bits per value.

• Double precision (double), which employs 64 bits per value.

These precisions are respectively named as binary16, binary32 and binary64 in the standard.

The range of values that each floating point precision can cover is very different and increases when
using more bits per value. The same applies to the precision, and thus the accuracy of the values.
However, obviously, numbers represented with larger amounts of bits also consume more memory
space and require more computational time when involved in arithmetic operations. The selected
precision should be chosen carefully, according to the specific application requirements, and it has
a far from despicable effect on performance.

3.2 Basic block algorithms

We next present a key tool to attain high performance, in the form of block-based algorithms for
the basic operations described in Chapter 2.

There are two basic (non-blocked) algorithms: SAXPY and GAXPY, that need to be defined, as
they will be recurrently employed when constructing block-based algorithms involving vectors and
matrix operations.

Algorithm 3.1. (SAXPY Algorithm) Let x,y ∈ Rn be two vectors and α ∈ R a scalar value.
The procedure of updating x with αy, this is x := x+ αy, is called SAXPY and the corresponding
algorithm is as follows:

SAXPY algorithm: x := x+ αy
for 0 ≤ i < n do

x(i) = x(i) + αy(i)
end for

Algorithm 3.2. (GAXPY Algorithm) Let x ∈ Rm and y ∈ Rn be two vectors, and A ∈ Rm×n
a real matrix. Then, the procedure of updating x with Ay, this is x := x+ Ay, is called GAXPY,
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and can be expressed as a sequence of SAXPYs, as detailed in the following algorithm:

GAXPY algorithm (row-oriented): x := x+Ay
for 0 ≤ i < m do

for 0 ≤ j < n do
x(i) = x(i) +A(i,j)y(j)

end for
end for

Note that this algorithm can be reformulated to proceed by columns instead of rows:

GAXPY algorithm (column-oriented): x := x+Ay
for 0 ≤ j < n do

for 0 ≤ i < m do
x(i) = x(i) +A(i,j)y(j)

end for
end for

Depending on how the data is stored (CMO or RMO), it is better to choose a row-oriented or a
column-oriented approach, in order to minimize cache misses and avoid harming performance with
memory transfer overhead.

Besides, this GAXPY algorithm can be readjusted when A presents a special structure, such as
being a symmetric matrix.

Algorithm 3.3. (GAXPY Algorithm with a symmetric matrix) Let x,y ∈ Rn be two vec-
tors, and A ∈ Rn×n a symmetric matrix. Then, the GAXPY procedure for updating x with Ay,
this is x := x+Ay, can be reformulated as:

GAXPY algorithm (with A symmetric matrix): x := x+Ay
for 0 ≤ j < n do

for 0 ≤ i < j − 1 do
x(i) = x(i) +A(in− (i+ 1)i/2 + j)y(j)

end for
for j ≤ i < n do

x(i) = x(i) +A(jn− (j + 1)j/2 + i)y(j)
end for

end for

Analogous to the vector updates, the matrix updates can also be expressed by employing SAX-
PY/GAXPY operations.

Algorithm 3.4. (SAXPY and GAXPY based Matrix-Matrix Product Algorithm) Let
A ∈ Rm×r, B ∈ Rr×n, and C ∈ Rm×n be three real matrices. Then, the procedure for updating
C with the result of multiplying A · B, this is C := C + A · B, based on a sequence of SAXPY
operations, is called SAXPY Matrix-Matrix Product, and the corresponding algorithm is as follows:
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SAXPY Matrix-Matrix Product algorithm: C := C +A ·B
for 0 ≤ j < n do

for 0 ≤ k < r do
C(: ,j) = C(: ,j) +A(: ,k) ·B(k,j)

end for
end for

This operation can also be cast in terms of GAXPY operations, as:

GAXPY Matrix-Matrix Product algorithm: C := C +A ·B
for 0 ≤ j < n do

C(: ,j) = C(: ,j) +A ·B(: ,j)
end for

Now that these two basic computational algorithms have been defined as a composition of some
basic linear algebra operations involving vectors and matrices, it is the moment to introduce block-
based algorithms.

Notation 3.1. (Matrix Block Notation) Let A ∈ Rm×n be a real matrix. Then, the block
or submatrix which comprises from the elements in row ip to row iq, and column jp′ to column
jq′ is represented as A(ip : iq,jp′ : jq′), and equivalently as A(α,β) with the matrix index subsets
α = (ip : iq), β = (jp′ : jq′), where 0 ≤ ip, iq < m, 0 ≤ jp′ , jq′ < n.

Theorem 3.2.1. (Matrix Block Product Consistency) Let A ∈ Rm×r, B ∈ Rr×n, C ∈ Rm×n
be three real matrices. Then, if two blocks A(α, βA) and B(βB, γ) are taken (note that βA and βB
should present the same size, let’s say k), then it is verified that Cα,γ =

∑k
i=1A(α,βAi)B(βBi ,γ).

Thanks to this consistency, it is possible to define the blocked GAXPY algorithm that is now
presented.

Algorithm 3.5. (Blocked GAXPY Algorithm) Let A ∈ Rm×n be a real matrix, and x ∈ Rn,
y ∈ Rm be two real vectors. Then, the block-based GAXPY procedure x := x + Ay can be per-
formed following any of the following two algorithms, according to a row-blocked perspective or a
column-blocked perspective, relatively:

Row-Blocked GAXPY Algorithm: x := x+Ay
α = 0
for i = 0 : q − 1 do

idx = α : α+mi − 1
x(idx) = x(idx) +A(idx, :) · y
α = α+mi

end for

where x(idx) corresponds to xi := xi + Aiy, with Ai denoting the i-th block row of A, and q
corresponding to the number of block rows of A. This is mathematically equivalent to: x0

...
xq−1

 =

 x0
...

xq−1

+

 A0
...

Aq−1

 y, with the block rows Ai =

 Aα,0 . . . Aα,n−1
...

. . .
...

Aα+mi−1,0 . . . Aα+mi−1,n−1

,
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where α =
∑i

k=0mk, mi is the row-length of the i-th block row, and i = 0 : q − 1.

Column-Blocked GAXPY Algorithm: x := x+Ay
β = 0
for j = 0 : r − 1 do

jdx = β : β + nj − 1
x = x+A(: ,jdx) · y(jdx)
β = β + nj

end for

where x corresponds to x := x + Ajyj , Aj denotes the j-th block column of A, and r corresponds
to the number of block columns of A. This is mathematically equivalent to:

x = x+ (A0 . . . Ar−1)

 y0
...

yr−1

, with the block columns Aj =

 A0,β . . . A0,β+nj−1
...

. . .
...

Am−1,β . . . Am−1,β+nj−1

,

when β =
∑j

k=0 nk, nj is the column-length of the j-th block column, and j = 0 : r − 1.

In the Row-Blocked GAXPY Algorithm, the q GAXPYs that are performed are thinner, while in
the Column-Blocked GAXPY Algorithm, the r GAXPYs are thinner. Depending on the specific
application and data distribution, a careful selection must be made.

Algorithm 3.6. (Blocked Matrix-Matrix Product Algorithm) Let A,B,C ∈ Rn×n be three
square real matrices (the procedure is similar for rectangular ones). Then, the procedure for up-
dating C with the result of multiplying A · B, this is C := C + A · B, can be performed via the
block algorithm that follows, where the square algorithmic block size is l:

Block Matrix-Matrix Product Algorithm: C := C +AB
for α = 0 : NB − 1 do

i = αl : (α+ 1)l − 1
for β = 0 : NB − 1 do

j = βl : (β + 1)l − 1
for γ = 0 : NB − 1 do

k = γl : (γ + 1)l − 1
C(i,j) = C(i,j) +A(i,k) ·B(k,j)

end for
end for

end for

This can be expressed mathematically as: C0,0 . . . C0,NB−1
...

. . .
...

CNB−1,0 . . . CNB−1,NB−1

 =

 C0,0 . . . C0,NB−1
...

. . .
...

CNB−1,0 . . . CNB−1,NB−1

+

 A0
...

ANB−1

 (B0 . . . BNB−1),

with Ai ∈ Rl×n, Bj ∈ Rn×l, and NB denoting the amount of blocks, this is, NB = n/l.
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3.3 Parallelising algorithms: tools and keys

In April 2020 it was the 55th anniversary of the origin of one of the most important assertions in
computer science: Moore’s Law [94]. According to Moore’s statement in [95], which polished the
original formulation, this Law states that “the number of transistors in a dense integrated circuit
doubles about every two years”.

This could initially be understood as a synonym for “doubling processing speed every two years”;
and in some sense this was true for many years, as transistor size was approximately halved every
two years. Consequently a greater amount of transistors fit into a chip, whose computational
power increased accordingly. For example, Intel’s first microprocessor, which was launched in 1971
under the name 40043, could ran at 740 kHz, contained 2,300 transistors and its size was 10,000
nm (nanometers); in contrast, the IBM Power10 processor, announced in the 2020 Hot Chips
International Conference4, will be equipped with transistors of 7 nm (this is, less than 1000 times
the size of the transistors employed in 1971). Moreover, there exist public announcements regarding
3nm transistors being developed by Taiwan Semiconductor Manufacturing Company (TSMC) as
well as by Samsung.

However, as transistors shrinking advanced, the physical limitations and issues gained importance
so that it has become extremely costly (both in terms of economy and research) to maintain Moore’s
Law. This is the reason why, in current systems, the strategies which are applied to attain high
efficiency cannot only depend on transistor size shrinking, but in other features. Figure 3.1 reflects
an analysis of the microprocessor trend in the past 48 years regarding transistors growth, single
thread performance, frequency, power consumption, and number of cores. In the context of this
thesis, software tools are analysed and employed, but it is important to remark that most of them
are useful thanks to the increment in the number of processor cores (parallelism) to perform the
computations.

The following sections present some of the software tools and keys that can be utilized to improve
the scalability of parallel codes.

3.3.1 Tools

The software tools employed in this thesis are mainly threaded parallel MKL Library function calls;
parallel programming models (and runtime systems) utilized in shared memory parallelizations,
such as OpenMP and OmpSs (on top of the Nanos++ runtime system in the case of the second);
and StarPU. These tools are next presented in short detail.

3.3.1.1 Threaded Intel MKL

Apart from the sequential version of the Intel MKL, Intel also offers a multithreaded version of this
library. When an application is enhanced with MKL calls, it only needs to be properly linked with
the multithreaded version of the library, and set the necessary environment parameters to enable
the parallel execution of the called functions.

3https://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html
4https://www.anandtech.com/show/15806/hot-chips-32-2020-schedule-tiger-lake-xe-power10-xbox-series-x-

tpuv3-jim-keller
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Figure 3.1: Analysis of trends in the past 48 years regarding transistors growth, single thread
performance, frequency, power consumption, and number of logical cores. The original
data, collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L.
Hammond, and C. Batten (until 2010), and H. Rupp (afterwards), and the figure are
available at: https://github.com/karlrupp/microprocessor-trend-data.

3.3.1.2 OpenMP Application Programming Interface (OpenMP API)

As described in the official specifications, the OpenMP Application Programming Interface (API) [99]
is the “de facto standard for shared-memory on-node programming of systems from embedded sys-
tems to largest supercomputers that are equipped with accelerator devices”. This API allows to
utilize the cores of a shared memory environment by adding simple directives to codes written in
C, C++, or Fortran.

In general, all OpenMP directives begin with #pragma omp. These are the most important ones
employed or referenced in this thesis, together with their purpose:

• #pragma omp parallel [clause] serves to define a parallel region.

• #pragma omp single specifies that a certain region will only be executed by one thread.

• #pragma omp parallel for annotates that the specific for loop iterations should be spread
along the available threads to execute them in parallel.

• #pragma omp barrier forces a synchronization point, this is, all the threads should reach
that directive before any of them progresses in the execution.

• #pragma omp task [clause] specifies a collection of instructions coupled under a unique
job to be executed by one thread, and (possibly) in parallel with other tasks.

• #pragma omp taskwait is equivalent to a barrier in the context of parallel tasks being exe-
cuted.

• #pragma omp atomic ensures that the access performed to a specific data location is atomic,
avoiding simultaneous accesses from diverse threads, which could cause inconsistencies (in
case they all updated the data location).
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Also, the environment variable OMP NUM THREADS can be used to fix the amount of threads to be
utilized by OpenMP, as with omp set num threads().

Moreover, in order to enable OpenMP, either the flag -fopenmp (for GNU compilers) or -qopenmp
(for Intel compilers) should be included when compiling; otherwise, the compiler will ignore the
OpenMP directives, as if they were simple comments.

3.3.1.3 OmpSs

OmpSs [98] is a parallel programming model developed at and maintained by the Barcelona Su-
percomputing Center (BSC) [22] to exploit parallelism in shared memory environments, including
asynchronous parallelism and heterogeneity on devices such as GPUs and FPGAs.

As it will be detailed in a later chapter, in the context of this thesis, the main interest on utilizing
OmpSs in contrast to OpenMP is to leverage its novel features (such as weak dependencies and early
release), which permit to extract additional task-level concurrency when traversing the H-Matrix
hierarchy.

The OmpSs directives are very similar to those in OpenMP, with the exception that they begin
with pragma oss instead of pragma omp. When compiling a code enriched with OmpSs directives
(which can be either written in C or C++), the Mercurium compiler (mcc) [92] needs to be employed
to utilize the runtime Nanos++ [96], and also the --ompss-2 flag (otherwise, the compiler will
disregard OmpSs directives as if they were mere comments).

3.3.1.4 StarPU

StarPU is an open source library written in C, targeting heterogeneous architectures with Processing
Units, such as Central Processing Units (CPUs), GPUs, Synergistic Processing Unit (SPU), etc.
Particularly, StarPU views an application as a task graph, and the runtime is in charge of handling
its parallel execution following a Sequential Task Flow (STF), based on the application-provided
tasks. The runtime schedules the tasks efficiently according to a given scheduling policy (different
options can be chosen by the user), and also performs the data transfer between CPUs/GPUs.

In StarPU submitting tasks requires to define 1) specific data structures, named codelets, which
describe the computational kernel to whom they are associated; and 2) a collection of tasks aug-
mented with a description of the employed codelets, which and how (read/write/both) data are
accessed, optionally a callback function to be called when the task is completed (this is necessary
because submitting a task to StarPU is a non-blocking operation), and (if necessary) extra infor-
mation such as priority. Generally, codelets can be viewed as a set of pointers to the alternative
implementations of the same theoretical function, and tasks as their scheduled execution on some
data handlers.

Different StarPU scheduling policies are employed in the context of this thesis, particularly prio,
because, as it will be exposed in later chapters, it is the option that offered the best results. Selecting
a scheduling policy for StarPU is done trhough the environment variable STARPU SCHED, and the
following (non performance modelling) options are available:

• eager: the scheduler uses a single central task queue, from which the workers concurrently
draw tasks. A task whose priority is different from zero is put at the front of the queue.
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• random: the scheduler uses a task queue per worker, and assigns the tasks randomly according
to the worker’s overall performance.

• ws (work stealing): the scheduler uses a task queue per worker, and assigns each task to
certain workers, by default. Afterwards, a worker that becomes idle steals a tasks from the
most loaded worker.

• lsw (locality work stealing): this is equivalent to ws, but the task robbery is performed from
a neighbour worker instead, and priorities are taken into account.

• prio (priorities): the scheduler uses a single central task queue, from which the workers
concurrently draw tasks, but those are sorted according to their programmer-specified priority
(with values between -5 and +5).

• heteroprio: the scheduler uses different priorities for the different processing units, so it
must be properly configured.

The most important StarPU functions are:

• starpu init() to initialize StarPU.

• starpu task create() to allocate and fill (but not submit) the task structure with the default
settings.

• starpu task submit(struct starpu task *task) to submit a specific task to StarPU. It
must be noted that, in case a blocking call is desired, either 1) the synchronous parameter
of the task is set to 1, or 2) starpu task wait() is called after submitting the task, to force
a synchronization barrier.

• starpu shutdown() to terminate StarPU.

Moreover, MPI transfers can be easily integrated in a code which uses StarPU by employing the
library libstarpumpi, which basically converts MPI * functions to StarPU equivalents.

More details about StarPU can be found in its Handbook5. It only remains to add that, when
compiling codes that employ StarPU directives, the flags $(pkg-config --cflags starpu-1.3)

and $(pkg-config --libs starpu-1.3) are required.

3.3.2 Keys for parallelism success

The keys that need to be properly addressed in order to extract parallelism that derives in high
performance (in the context of this thesis) are:

1. Parallel programming model selection.

2. Synchronization.

3. Load balancing.

5https://files.inria.fr/starpu/doc/starpu.pdf
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4. Data motion overheads.

Regarding the parallel programming model and/or implementation selection, it is very important
to know the target application. In general, the most standardised model could be thought to be the
most efficient one; however, as it happened in the context of this thesis and will be described in later
chapters, certain features offered by more specific programming models (such as OmpSs or StarPU)
can be more beneficial due to the application particularities, but may not be available (yet) in
standards like OpenMP. At the end, the programmer needs to choose carefully between standardised
and stable but (possibly) more inflexible models versus less established options enhanced with
newer/under development beneficial features.

Synchronization and load balancing are usually two issues that generate significant bottlenecks,
overhead, and wasted processor cycles. In many applications there exist difficulties derived from a
wide variety of issues such as the existence of data dependencies between different tasks, massive
message exchanges between processes, coarse-grain tasks, remarkable differences between the iter-
ations that form a loop that is parallelised, etc. All these scenarios complicate the load balancing
when different threads are executed concurrently and need to be analysed in detail, in order to
check if a different parallel approach could reach a more equitable workload distribution among
processors. Besides, aspects such as the block size (when operating with block-based algorithms),
the order in which certain tasks are executed (in task-based parallel implementations), or joining/s-
plitting certain tasks can also contribute to yield higher parallel performance by reducing not only
the workload unbalance but also the need to synchronise the threads.

Many parallel programming models provide support for performance tools that allow to visualize
traces, which help the user to monitor the (parallel) executions. For instance, StarPU can generate
traces using FxT [46], which can be viewed with Visual Trace Explorer (ViTE) [114]; and OmpSs
also provides support for Paraver [100], whose purpose is similar. These tools can be very helpful
when detecting idle periods due to synchronization issues (which could be redundant or avoidable
after a deeper analysis) as well as performance deteriorations due to imbalanced workloads.

Lastly, it is also very important to control the amount of data that is moved between the different
processes, and also the dependencies annotated when employing task-based approaches. Unneces-
sary data movements or data dependencies could generate insurmountable overheads that critically
damage performance. Tools to analyse traces can also be very helpful when trying to solve those
issues, together with a good understanding of the graph that defines the task dependencies (with
the purpose of limiting the edges to the essential ones) in the applicable cases.

3.4 Measuring performance

To evaluate the performance of the algorithm’s implementations, one of the common measures
to take into account is the total execution time. Another interesting metric is the floating point
operations per second (FLOPS). This section introduces some details regarding time- and FLOPS-
based performance evaluations.

3.4.1 Execution time and speedup, efficiency, and scalability

If a certain code can be executed faster while keeping the quality of the desired results (such as
accuracy), then it is better than any of the slower ones. Thus, the elapsed time between the
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start and the end of its execution is one of the measures that will be used in this thesis to reflect
performance improvements.

Moreover, part of the execution time analysis will be based on comparisons between different ver-
sions of the same algorithm implementation, such as, for example, sequential vs. parallel execution,
or MKL vs. non-MKL based codes. In this context, the speedup will be a metric that is leveraged
for time comparisons, as defined next.

Definition 3.2. (Speedup) Let t1, t2 ∈ R be two time measurements. Then, the speedup or ratio
of t1 with respect to t2 is computed as S = t1/t2.

Particularly, when measuring the benefits from parallelizing an algorithm, the efficiency is partic-
ularly valuable to evaluate the benefits of the applied parallelization.

Definition 3.3. (Efficiency) Let ts, tp ∈ R be two time measurements, respectively corresponding
to the sequential and parallel execution times. Also, let p ∈ N be the number of processors employed
in the parallel execution. Then, the efficiency of the parallel algorithm is defined as the fraction of
time during which a processor is usefully utilized, this is: E = ts

ptp
= S/p.

Typically, the efficiency decays as the number of processes involved in the execution is increased.
This maintenance or decay of the efficiency is referred to as scalability. In other words, the scalability
of a parallel implementation is the measure of its capacity to increase the speedup in proportion
to the number of processors. The maximum speedup attainable for a given number of processors
is presented in the next theorem.

Theorem 3.4.1. (Amdahl’s Law) Let 0 ≤ f ≤ 1, f ∈ R be the ratio of the total execution time
which can be parallelized, and p ∈ N the number of processors involved in the parallel execution.
Then, the maximum speedup attainable is Smax = 1

(1−f)+ f
p

.

If the efficiency remains constant as the number of processors that take part in a parallel execution
is increased, then the implementation is said to be scalable. Particularly, the scalability is said to be
linear if the observed speedup is equal to the maximum value defined by Amdahl’s Law; sublinear
when it is fewer than that; and superlinear when it is greater than that.

3.4.2 Floating point operations (flops) and flops per second (FLOPS)

The term FLOPS is the metric that counts the number of effectively executed flops in one second,
and it is typically employed to evaluate the performance: more FLOPS implies higher performance.

Table 3.2 comprises the amount of flops for the operations described in Chapter 2, considering
matrices of size m × n (also a second matrix of size n × p in the matrix-matrix case; n × n if a
square matrix is involved in the operation), and vectors of length n.

It is important to note that, in Table 3.2, floating point operation (flop) counts are based on general
cases in which dense matrices are considered. If other types of matrices were employed, the flops
may vary. For example, in the case of the matrix-matrix product:

• For a square diagonal matrix, the flops count is n.
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• For a square lower triangular matrix, the flops count is n(n+ 1).

• For a square k-band matrix, the flops count is 2nk.

• For a sparse matrix, the flops count is 2s (worst case: all the non-zero elements are in the
same row) or less, with s being the number of non-zero elements.

• For a low-rank matrix of rank k, the flops count is 2k(m+ n).

Operation flops

Vector-vector addition n

Scalar-vector product n

Scalar-matrix product mn

Dot vector product 2n

Matrix-vector product 2mn

Matrix-matrix product 2mnp

SVD
O(km2n+ k′n3)
with k, k’ constants that depend on the SVD algorithm (see [51])

LU Decomposition 2
3n

3

Cholesky decomposition 1
3n

3

Table 3.2: flops corresponding to the vector and matrix operations described in Chapter 2.

Strictly calculating, flops count would be extended: for instance, matrix-vector product flops would
precisely be (2n − 1)m. However, “Big − O” criteria prevails when counting flops, which means
that they will only contemplate the biggest order number in the total flops count. These numbers
will be the most costly ones and, thus, the ones in which attention is focused on. This principle
could be seen as if flops were equivalent to polynomials in which lower-order terms are ignored.

Usually, millions and billions of flops are executed per second and, as a consequence, the pre-
fixes mega- (MFLOPS) and giga- (GFLOPS) are employed to specify this when reporting actual
measurements.
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Chapter 4

It all began with prototypes
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4.1 Introduction

The first objective we set in the context of this work was determining whether task-based parallel
programming models were appropriate forH-Matrices algorithms. In other words, we wanted to test
the efficiency of such programming models when dealing with a hierarchically partitioned matrix
in which leaf blocks (blocks that constitute leaves in the BCT, so that they are not partitioned
into smaller ones) are imbalanced, both in terms of the size and the data distribution (dense versus
sparse blocks).

To this end, we developed prototypes of the H-LU [6] and the H-Cholesky [7] factorizations, written
in C language. Instead of reproducing pure H-Matrices and operating with them, the implementa-
tions we designed calculated the LU and Cholesky decomposition of matrices whose structure was
actually defined by a hierarchy of nested blocks, with the leaves presenting different block sizes, and
being either dense or null-blocks instead of dense or low-rank blocks. For this reason we refer to
them as prototypes. At that time, we did not intend to reinvent the wheel, as there already existed
libraries which provided a whole set of implementations to operate over pure H-Matrices, but our
purpose was to simulate the data imbalance and hierarchical structure in a simplified scenario. By
substituting low-rank blocks by null-blocks, we saved ourselves from implementing all the low-rank
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algebra operations needed in H-Matrices operations, such as, for example, compression, and were
also able to accelerate the testing process.

Thus, our objective of evaluating the efficiency of task-based programming models in this simplified
scenario was set with the purpose of determining whether if it was worth it to invest the effort
of parallelising the already existing H-Matrices libraries with this approach. Even though the
prototypes did not consider low-rank blocks, we could still take into consideration the insights
obtained from experimenting with these prototypes, because we were still performing a number of
tasks which was similar to those in pure H-LU and H-Cholesky scenarios, as well as reproducing
the different workloads associated to tasks involving blocks with different ranks.

In the next sections, we will first describe the prototype structures we designed for H-Matrices,
including the storage layout chosen; then the prototype H-LU and H-Cholesky algorithms will be
presented, remarking the differences with respect to pure H-LU and H-Cholesky algorithms; after
that, we will introduce the parallelization performed over the prototypes; and we will finalize by
presenting a performance analysis, and the conclusions obtained from it.

4.2 The prototype H-Matrix structure

One of the most delicate aspects of implementing algorithms to treat with H-Matrices is the storage
layout. The structure to represent an H-Matrix needs to be able to cover, at least:

• The hierarchy of the H-Matrix blocks in such a way that it is easy and fast to determine the
parent/descendant blocks (if any) of a specific block.

• The blocks which are not leaves in the hierarchy, this is, those that are partitioned into
sub-blocks.

• The dense blocks, which require to store the associated dimension (m, n) and the entries.

• The low-rank blocks, which require to store the rank and the entries in the corresponding V
and U vectors (see Definition 2.34).

More details about the necessities of the structure to store a pure H-Matrix will be provided in
future chapters. Since in this chapter we are only referring to the prototype previously described,
the structure to represent the prototype H-Matrix will be simpler, and will only need to cover:

• The hierarchy of the prototype H-Matrix blocks. It is still needed to properly refer to the
parent/descendant blocks (if any) of a specific block.

• The blocks which are not leaves in the hierarchy, this is, these that are partitioned into sub-
blocks. In contrast to the available software implementations for true H-Matrices, where
different partitioning algorithms and admissibility criteria can be employed, and so the hier-
archy description needs to cover a wide scope of variations, in our case, when partitioning a
block, it will always be split into regular (this is, same dimension) sub-blocks, and we will
also utilize the weak admissibility condition (see Definition 2.49).

• The dense blocks, storing the associated dimension (m, n) and entries.
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• The null blocks (instead of low-rank), which only require to store the block dimension (m,
n).

To store the described structure, we defined the following items:

• An array of double *values comprising all the matrix entries stored in CMO by blocks
(more details about this will be presented in Section 4.2.1).

• A set of integers and arrays to store the prototype H-Matrix hierarchy information, which
include:

– int n levels: an integer to store the number of levels of the hierarchy.

– int total blocks: an integer to store the number of blocks in the matrix (all of them,
not only the leaves).

– int *levels sizes: an array of integers to store the different block dimensions, from
the smallest to the biggest one.

– int *chldtab: an array of integers to store, for the i-th element, the index of the head
of the list of the sub-blocks of the i-th node.

– int *nmchtab: an array of integers to store, for the i-th element, the number of sub-
blocks of the i-th node.

– int *brthtab: an array of integers to store, for the i-th element, the index of the block
which is the left brother (null for the root node), this is, it is either in the same row
but in the left column of the i-th block, or in the previous row and right column of it (in
short, this is the block that is exactly before in the list of sub-blocks of the i-th block
parent block).

– int *rbrthtab: an array of integers to store, for the i-th element, the same as int

*brthtab but referring to the right brother. Note that now the last node stores null

value.

– int *hgthtab: an array of integers to store, for the i-th element, the level it belongs
to in the hierarchy (with 1 associated to the root, this is, the highest dimension block,
which is equivalent to the whole matrix, and whose size is the last one stored in the
levels sizes array).

• An array struct Mtx Obj *Matrix blocks, composed of all the structures of type Mtx Obj

employed to store each block information, which are as follows:

struct Mtx_Obj

{

int struct_vec_index;

int son_index;

int i;

int j;

int m;

int n;

int lda;

int parent;
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int isNull;

int isLeaf;

union

{

int v_values_index;

struct Mtx_Obj *sons;

};

};

where each of the elements represents, for a sample block struct Mtx Obj my block:

– int struct vec index: the index of the specific Mtx Obj in the Matrix blocks array.

– int son index: the index of the specific block (Mtx Obj) in the array of sons of its
parent block.

– int i, int j: the coordinates (i,j) in which the first value of the block is stored in the
array values.

– int m, int n: the block dimension (m× n).

– int lda: the leading dimension of the specific block, which specifies the distance between
two consecutive elements in the same row.

– int parent: the index of the parent block in the Matrix blocks array.

– int isNull, int isLeaf: respectively store value 1 in case the block is null/leaf, or 0

otherwise.

– union { int v values index, struct Mtx Obj * sons }: either the index in the ar-
ray values in which this block’s first element is stored (in case it is a leaf), or an array
of pointers to the sub-blocks (Mtx Obj) of the specific block (if it is not a leaf).

Figure 4.1 shows a simple example of a prototype H-Matrix of dimension 8 × 8, and the contents
of the corresponding structures are represented in Table 4.1. Moreover, Table 4.2 shows a sample
of the structures corresponding to four of the thirteen blocks that belong to the example matrix in
Figure 4.1.

4.2.1 Storage layout

CMO and RMO (see definition 3.1) are the storage formats that have been traditionally employed
for dense matrices. H-Matrices require a special storage layout design, as they lay in between the
dense and sparse scenarios. For this reason we present an alternative to CMO/RMO format, that
we name CMO by Blocks or Block Data Layout (BDL). This alternative approach follows the same
ordering as CMO, but instead of directly applying it to the whole matrix entries, it follows the
hierarchy block pattern. Figure 4.2 shows the difference between the CMO storage format (left)
and BDL (right). We have chosen BDL based on CMO instead of RMO because the computational
kernels from BLAS and LAPACK that we will use to perform linear algebra operations adhere to
the Fortran convention, which requires matrix operands to be in CMO.

When operating with H-Matrices (also with our prototype), various leaves are sometimes involved
in an operation with bigger leaf blocks, and thus there are two ways of proceeding: 1) treat the
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8.15 0.27 0 0 0.12 0.47 0.22 0.96 

0.34 8.65 0 0 0.69 0.85 0.15 0.47 

0.32 0.68 8.14 0.54 0.74 0.68 0.97 0.91 

0.24 0.57 0.33 8.86 0.68 0.54 0.35 0.82 

0 0 0 0 8.85 0.52 0.85 0.63 

0 0 0 0 0.74 8.14 0.24 0.91 

0 0 0 0 0.74 0.75 8.83 0.85 

0 0 0 0 0.59 0.24 0.74 8.57 

12

4

0 1 2 3

5 6 11

7 8 9 10

Figure 4.1: Example of a simple 8 × 8 prototype H-Matrix (above) and its corresponding tree
representing the parent/child relationships between all the matrix blocks (below). The
leaf blocks are coloured and the non-leaf ones are left white. Each matrix block index
is written inside the tree nodes, and it specifies to the index of its associated block
structure (of type Mtx Obj) in the Matrix blocks array.

Element Value

values {8.15, 0.34, 0.27, 8.65, 0.32, 0.24, 0.68, 0.57, 8.14, 0.33,

0.54, 8.86, 0.12, 0.69, 0.74, 0.68, 0.47, 0.85, 0.68, 0.54,

0.22, 0.15, 0.97, 0.35, 0.96, 0.47, 0.91, 0.82, 8.85, 0.74,

0.52, 8.14, 0.74, 0.59, 0.75, 0.24, 0.85, 0.24, 0.63, 0.91,

8.63, 0.74, 0.85, 8.57}
n levels 3

total blocks 13

levels sizes {2,4,8}
chldtab {-1, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, 10, 11}
nmchtab {0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 4}
brthtab {-1, 0, 1, 2, -1, 4, 5, -1, 7, 8, 9, 6, -1}
rbrthtab {1, 2, 3, -1, 5, 6, 11, 8, 9, 10, -1, -1, -1}
hgthtab {3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 2, 1}

Table 4.1: Values associated with the matrix in Figure 4.1 as well as all the elements needed to
define its hierarchy. The zeros belonging to the null blocks are not included in the
values array.
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Block 0 Block 4 Block 5 Block 12
struct vec index=0 struct vec index=4 struct vec index=5 struct vec index=12

son index=0 son index=0 son index=1 son index=-1

i=0, j=0 i=0, j=0 i=4, j=0 i=0, j=0
m=2, n=2, lda=2 m=4, n=4, lda=8 m=4, n=4, lda=4 m=8, n=8, lda=8
parent=4 parent=12 parent=12 parent=-1

isNull=0, isLeaf=1 isNull=0, isLeaf=0 isNull=1, isLeaf=1 isNull=0, isLeaf=0
v values index=0 v values index=0 v values index=16 v values index=0

Table 4.2: Sample of the structures (detailing their associated element values) corresponding to
four of the thirteen blocks that form the example matrix in Figure 4.1.

0 8 16 24 32 40 48 56

1 9 17 25 33 41 49 57

2 10 18 26 34 42 50 58

3 11 19 27 35 43 51 59

4 12 20 28 36 44 52 60

5 13 21 29 37 45 53 61

6 14 22 30 38 46 54 62

7 15 23 31 39 47 55 63

0 2 8 10 32 36 40 44

1 3 9 11 33 37 41 45

4 6 12 14 34 38 42 46

5 7 13 15 35 39 43 47

16 20 24 28 48 50 56 58

17 21 25 29 49 51 57 59

18 22 26 30 52 54 60 62

19 23 27 31 53 55 61 63

Figure 4.2: Indices representing the ordering in which the elements of the example matrix in Fig-
ure 4.1 are stored, according to CMO (left) and CMO by Block/Block Data Layout
(right) storage formats.

smaller leaves as if they form a single bigger block of the same size as the bigger leaf block involved in
the operation; or 2) perform a partitioning of the bigger leaf block into sub-blocks of size equivalent
to the dimension of the smaller leaves size. For example, continuing with the example in Figure 4.1,
in case blocks 0 to 3 need to operate with block 5, the mentioned issue will appear. These situations
are particularly frequent when operating with H-Matrices, and they force us to choose carefully
the storage layout, and also to adapt the algorithms to it. These will be analyzed in Section 4.4.

4.3 The prototype-based algorithms

In H-Arithmetic, the algorithms to solve the LU and Cholesky decomposition essentially follow the
same approaches as if the matrices were dense, which implies that theH-Matrix algorithms designed
for parallel performance will operate over blocks. However, H-Matrices already include a hierarchy
of blocks of different sizes, and this fact will need to be taken into account when implementing
these block-based implementations.

Particularly for the H-LU, a description of how the Block Right-Looking (BRL) algorithm (de-
scribed next in the Subsection 4.3.1) to solve the LU decomposition of dense matrices is adjusted
and applied in scenarios involving H-Matrices can be found in the literature [79]. The main adap-
tation consists in modifying the progress of the operations to follow the hierarchy and consider
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irregular block sizes. Equivalently, in [27] there is a description of how to perform the H-Cholesky,
which follows the same strategy as the one described for the H-LU.

In our case of study, we will employ the same algorithms as if pure H-Matrices were being used,
but simplifying the (sub)operations that operate with low-rank blocks, as we will instead have null
blocks. This will be exposed in detail in the following sections.

4.3.1 H-LU and Prototype H-LU

Algorithm 1 shows the BRL procedure to compute the LU factorization of a square matrix of
dimension n. In the algorithm, the main operations that correspond to three basic linear algebra
building blocks (or computational kernels) are highlighted. Particularly, the orange operation
corresponds to the LU factorization; the blue ones involve solving triangular systems of equations
(with unit lower triangular factor in line 4, and upper triangular factor in line 7); and the purple
one is a matrix-matrix multiplication.

Algorithm 1 BRL algorithm for the LU factorization.

Require: A ∈ Rn×n

1: for k = 0,1,2, . . . ,nt − 1 do
2: Akk = LkkUkk

3: for j = k + 1,k + 2, . . . ,nt − 1 do

4: Ukj := L−1
kkAkj

5: end for
6: for i = k + 1,k + 2, . . . ,nt − 1 do

7: Lik := AikU
−1
kk

8: end for
9: for i = k + 1,k + 2, . . . ,nt − 1 do

10: for j = k + 1,k + 2, . . . ,nt − 1 do
11: Aij := Aij − Lik · Ukj

12: end for
13: end for
14: end for

As it was explained in Chapter 3, LAPACK and BLAS routines will be invoked to perform the
linear algebra operations. The ones associated with these three operations are:

• Routine GETRF from LAPACK to perform the LU factorization (highlighted in orange in
Algorithm 1).

• Routine TRSM from BLAS to solve the triangular systems of equations (highlighted in blue
in Algorithm 1).

• Routine GEMM from BLAS to perform the matrix-matrix multiplications (highlighted in purple
in Algorithm 1).

The adaptation of that algorithm to compute the LU decomposition of H-Matrices is presented in
Figure 4.4 for an H-Matrix with the same hierarchy of blocks as that in Figure 4.1, with the blocks
indices as in Figure 4.3. In that figure, the colors associated to each operation in Algorithm 1 are
equivalently employed to indicate the corresponding operation that is being performed over each
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block: light gray-colored blocks already have the final result; and the blocks filled in dark gray
are the ones whose values are being used in the particular operation. Note that only the main
operations included in the BRL algorithm are represented, while complementary ones due to the
presence of low-rank blocks, such as SVD for re-compressing data, are not included.

A1,1 A1,2

A1:2,3:4

A2,1 A2,2

A3:4,1:2

A3,3 A3,4

A4,3 A4,4

Figure 4.3: Example of an 8× 8 H-Matrix with the same block structure as that in Figure 4.1.

In the case of our prototype H-Matrix, having null blocks implies that: 1) the corresponding data
(zeros) is not stored in memory; and 2) some operations do not need to be performed, as they
would return a null block. However, at certain points of the computation, it can occur that a null
block becomes not null. For example, if the block A3,4 in Figure 4.3 is null, but A1:2,3:4 and A3:4,1:2

are not, then after the GEMM operation A3:4,3:4 = A3:4,3:4 − L3:4,1:2U1:2,3:4, the block A1:2,3:4 will
fill in. Our implementation of the prototype H-LU performs a pre-processing of the matrix in
order to identify in advance which null blocks will fill in during the computations. When detecting
these situations, the pre-processing inserts zeros in the array storing the values of the matrix to
accommodate the space as if the null block was stored. The objective of this preprocessing is
ensuring that there already exist sufficient storage space in memory to store its values when the
block becomes not null.

4.3.2 H-Cholesky and Prototype H-Cholesky

The block-based algorithm to perform the H-Cholesky decomposition is, analogously to the H-LU,
an adaptation of the BRL algorithm for the Cholesky factorization shown in Algorithm 2, and is
commonly employed to operate with dense matrices.

The LAPACK and BLAS routines that are called to perform the three main operations of this
algorithm are:

• Routine POTRF from LAPACK to perform the Cholesky factorization (highlighted in orange
in Algorithm 2).

• Routine TRSM from BLAS to solve the triangular system of equations (highlighted in blue in
Algorithm 2).

• Routine SYRK from BLAS to perform the symmetric matrix-matrix multiplication (high-
lighted in purple in Algorithm 2).
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Figure 4.4: Graphical representation of the steps to compute the H-LU of the sample H-Matrix
in Figure 4.3 following an adapted version of the BRL LU decomposition algorithm.

47



CHAPTER 4. IT ALL BEGAN WITH PROTOTYPES

Algorithm 2 BRL algorithm for the Cholesky factorization.

Require: A ∈ Rn×n

1: for k = 0,1,2, . . . ,nt − 1 do

2: Akk = LkkL
T
kk

3: for i = k + 1,k + 2, . . . ,nt − 1 do

4: Lik := AikL
−T
kk

5: end for
6: for i = k + 1,k + 2, . . . ,nt − 1 do
7: for j = k + 1,k + 2, . . . ,i do

8: Aij := Aij − LikL
T
jk

9: end for
10: end for
11: end for

Again, as with the H-LU, the adaptation of this algorithm to compute the H-Cholesky simply
considers the hierarchy and different block sizes when traversing the blocks. Figure 4.5 reflects
these adjustments graphically. The color correspondence is the same already described for the
H-LU. Also note that only the main operations are represented, while the auxiliary ones related to
low-rank arithmetic, such as re-compressing, are omitted.

Analogously to the H-LU, the presence of null blocks in our prototype H-Matrix does not require
storing part of the data; however, we perform a preprocessing of the matrix information to allocate
space in memory for those block entries that are initially null, but fill in during the execution after
a SYRK operation.

4.4 All this seems correct... but there are hidden issues

When studied separately, the storage layout based on the BDL format described in Section 4.2,
and the adapted BRL algorithms for the H-LU and the H-Cholesky presented in Section 4.3 seem
correct and, generally, they are. However, there are some hidden issues that need to be analyzed
in more detail, and will force us to either refine the storage layout or the algorithms’ flow. Let’s
illustrate this with an example.

Consider the H-Matrix we have used for the examples (Figure 4.1) with the entries stored as
shown in the right-hand side scheme in Figure 4.2, and block indices annotated as in Figure 4.3.
In addition, let’s pay detailed attention to the TRSM operation of the H-LU factorization located
in the sixth step in Figure 4.4, this is, computing U1:2,3:4 = L−1

1:2,1:2A1:2,3:4. To facilitate the
abstraction, Figure 4.6 summarizes all the necessary information. Note that this situation also
occurs when computing the H-Cholesky factorization, in an equivalent manner, as well as for some
GEMM operations.

If the steps listed in Section 4.3 are strictly followed, then the TASK TRSM that computes U1:2,3:4 =
L−1

1:2,1:2A1:2,3:4 will group blocks A1,1, A1,2, A2,1, and A2,2 (let’s say forming A1:2,1:2) and use this

union to directly operate over A1:2,3:4, as it will present the same size as L−1
1:2,1:2 and, therefore,

BLAS/LAPACK routines can be employed. However, A1:2,1:2 will not have its entries in CMO but
in BDL storage format, and this will cause problems when interacting with the entries in A1:2,3:4,
which are stored in CMO because that is a leaf block; for example the first element of the third
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Figure 4.5: Graphical representation of the steps to compute the H-Cholesky of the sample H-
Matrix in Figure 4.3 following an adapted version of the BRL Cholesky decomposition
algorithm.
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A1,1 A1,2 

A1:2,3:4 

 0 2 8 10 32 36 40 44 

 1 3 9 11 33 37 41 45 

A2,1 A2,2 

 4 6 12 14 34 38 42 46 

 5 7 13 15 35 39 43 47 

A3:4,1:2 

A3,3 A3,4 

 16 20 24 28 48 50 56 58 

 17 21 25 29 49 51 57 59 

A4,3 A4,4 

 18 22 26 30 52 54 60 62 

 19 23 27 31 53 55 61 63 

Figure 4.6: Summary of the needed data from previous examples to analyse the possible storage
layout and adapted BRL algorithms steps issues, including the matrix sub-blocks in-
dices (left), and the TRSM operation (right). Note that the storage ordering is shown,
and the colors previously associated to each of the operations are maintained.

row is actually stored in the fifth position of the values array, instead of occupying the third one,
as is required to correctly call the TRSM routine.

To avoid these conflicts, there are only two options: 1) re-formulate the storage layout; or 2) sub-
partition the leaf blocks into the smallest sub-block size participating in each specific step of the
algorithm, in such a way that using the leading dimension of the big leaf block permits to properly
indicate the elements that operate with each of the smallest sub-blocks.

We considered the first option, but soon discarded it for several reasons: first, existing software
packages and libraries that operate over H-Matrices utilize similar data representations (of course
with an extra of complexity due to the presence of low-rank blocks); second, it is not natural to
store an H-Matrix (even if it is a prototype one) repudiating the hierarchy that characterizes it.

Thus, we opted for the second option: refining the adapted BRL H-LU and H-Cholesky algorithms
to perform partitions in all the steps where different block sizes are used. In this way, any leaf block
that is bigger than the smallest one intervening in the operation is partitioned into blocks whose
dimension is equal to the particular smallest leaf size that forms part of the specific operation. This
can seem artificial, but there is a positive side effect: finer grain tasks are identified, and a higher
concurrency degree can be exploited when using task-based parallel approaches if the sub-operations
are annotated as tasks, instead of the original operations defined by the algorithm. Figure 4.7
illustrates the sub-operations and sub-blocks generated as a consequence of the refinement of the
adapted BRL H-LU and H-Cholesky factorization algorithms for the particular TRSM chosen.

4.5 Parallelization of the algorithms

As exposed earlier, the aim of parallelising this prototype was to evaluate the efficiency of task-based
parallel approaches. They usually imply utilizing a runtime that orchestrates the task scheduling
by analysing the data dependencies between different tasks. Our proposal decouples the numerical
aspects of the linear algebra operation, which are left in the hands of the expert mathematician,
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Figure 4.7: Graphical representation of the decomposition into sub-operations of the TASK TRSM

that computes U1:2,3:4 = L−1
1:2,1:2A1:2,3:4, employing the sample matrix in Figure 4.1,

and the adapted H-LU algorithm represented in Figure 4.4.

physicist or computational scientist, from the difficulties associated with HPC, which are more
naturally addressed by computer scientists and engineers.

Both in the H-LU and H-Cholesky, each of the main operations of the algorithm compounds a task,
whose dependencies are shown in Table 4.3 for the k-th iteration of Algorithms 1 and 2. Moreover,
Figure 4.8 shows the Directed Acyclic Graph (DAG) representing the task dependencies for the
H-LU (left) and H-Cholesky (right) algorithms.

Algorithm Task Data Type of dependencies

H-LU

TASK GETRF Akk input/output (overwritten with Lkk and Ukk)

TASK TRSM (unit lower factor)
Akk input (L−1

kk entries are read)
Aik input/output (overwritten with Lik)

TASK TRSM (upper factor)
Akk input (U−1

kk entries are read)
Akj input/output (overwritten with Ukj)

TASK GEMM

Aik input (Lik entries are read)
Akj input (Ukj entries are read)
Aij input/output (overwritten with its updated entries)

H-Cholesky

TASK POTRF Akk input/output (overwritten with Lkk and LT
kk)

TASK TRSM (unit lower factor)
Akk input (L−T

kk entries are read)
Aik input/output (overwritten with Lik)

TASK SYRK

Aik input (Lik entries are read)
Akj input (LT

jk entries are read)
Aij input/output (overwritten with its updated entries)

Table 4.3: Collection of task dependencies for the k-th iteration of the H-LU and H-Cholesky
algorithms. Input and output dependencies respectively indicate that the specified
entries are read and written.
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k=0

k=1

k=2

k=3

Figure 4.8: DAGs representing the task dependencies associated to the H-LU (left) and H-
Cholesky (right) algorithms performed over the sample matrix in Figure 4.3. Colors
match those employed in Algorithms 1 and 2, as well as Figures 4.4 and 4.5. Dif-
ferent node sizes illustrate the block size with which each calculation operates. Each
k-iteration is separated by dashed lines and labeled.

From the DAGs in Figure 4.8, one could think that there is a low level of concurrency and, conse-
quently, task-based parallel approaches using tools such as OpenMP or OmpSs will not offer any
benefit with respect to an execution that simply leverages multithreaded linear algebra packages,
such as MKL, neither loop-based parallelism. In fact, in a scenario as simple as that featured by
the examples, these strategies would certainly offer lower performance than calling multithreaded
kernels. However, when the partitioning does not yield 2 × 2 sub-blocks, but presents a higher
granularity, the number of TRSM and GEMM operations per level is increased, and so is the number
of tasks that can be executed concurrently. Concretely, for a p× p sub-block partitioning, 2(p− 1)
TRSM tasks and (p − 1)2 GEMM tasks will be performed. Therefore, higher p values imply more
abundant opportunities to exploit task parallelism (and, thus, to attain higher performance), and
also a greater difference between the efficiency of task-based strategies efficiency and multithreaded
kernels based approaches, in favour of the former one. Moreover, with some extra sub-partitionings
(as detailed in the Section 4.4) taking place in order to be able to call BLAS/LAPACK routines,
an even higher concurrency degree can be exposed.

In OpenMP and OmpSs, the specification of the tasks in the code is simply done by including
pragma directives which are interpreted by the corresponding scheduler to automatically create the
DAG to follow in order to schedule the tasks. These directives encompass all the lines associated
with the specific operation that is going to be performed, and are provided with the dependencies
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specified in Table 4.3. Thus, the tasks annotations are as follows (note that, when using OmpSs,
#pragma oss is employed instead of #pragma omp):

• TASK GETRF:

#pragma omp task inout( A[0;M*N] ) {

void task_getrf( int M, int N, double *A, int LDA, int *IPIV ) {

int INFO = 0;

DGETRF( &M, &N, A, &LDA, IPIV, &INFO );

}

}

• TASK POTRF:

#pragma omp task inout( A[0;M*N] ) {

void task_potrf( int M, int N, double *A, int LDA ) {

char UPLO = ’L’; int INFO = 0;

DPOTRF( &UPLO, &N, A, &LDA, &INFO );

}

}

• TASK TRSM (the one with unit lower factor is shown; the counterpart with upper triangular
factor is analogous):

#pragma omp task in( T[0;M*M] ) inout( B[0;M*N] ) {

void task_utrsm( int M, int N, double *T, int LDT,

double *B, int LDB ) {

char SIDE = ’L’, UPLO = ’L’, TRANST = ’N’, DIAG = ’U’;

double ALPHA = 1.0;

DTRSM( &SIDE, &UPLO, &TRANST, &DIAG, &M, &N,

&ALPHA, T, &LDT, B, &LDB );

}

}

• TASK GEMM (the symmetric case TASK SYRK is analogous):

#pragma omp task in( A[0;M*K], B[0;K*N] ), inout( C[0;M*N] ) {

void task_gemm( int M, int N, int K, double *A, int LDA,

double *B, int LDB,

double *C, int LDC ) {

char TRANSA = ’N’, TRANSB = ’N’;

double ALPHA = -1.0, BETA = 1.0;

DGEMM( &TRANSA, &TRANSB, &M, &N, &K,

&ALPHA, A, &LDA, B, &LDB, &BETA, C, &LDC );

}

}
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The consideration of the OmpSs programming model, in addition to OpenMP, is because the former
one is capable of treating nested data dependency regions, which allows to annotate dependencies
taking into account the different block sizes. This capability is useful but not essential for the
experiments performed in this chapter, as representants of the different blocks (no matter their
size) can be used, instead of the whole data region. This is possible thanks to the special scenario
in which we are operating now, particularly: 1) there are no low-rank blocks, so there is no block
size variation during the computations; 2) the prototype matrix structure is simple (only diagonal
blocks are re-partitioned); and 3) a pre-processing to make room for blocks data that fill in during
the computations, so all the elements are stored in contiguous positions of memory, as if it was a
dense matrix. By representant, we mean that the first element of the block is taken as the element
with respect to which the dependencies are annotated, instead of specifying the whole data region.
In contrast with this idyllic and simplified situation, in the next chapter the usage of OmpSs with
pure H-Matrices will be essential to attain high parallel performance, impossible to reach with
current OpenMP capabilities, as will be properly exposed.

4.6 Performance analysis

In this section, we present the tests conducted to elaborate a performance analysis that allows us to
discern whether the effort to implement task-based parallel versions of algorithms operating over H-
Matrices is worth it. All the experiments were performed using IEEE double precision arithmetic,
on a server equipped with two Intel E5-2603v3 sockets, each with a 6-core processor (1.6 GHz),
and 32 Gbytes of DDR3 RAM. Our codes were linked with Intel MKL (composer xe 2011 sp1) for
the BLAS kernels and the LU/Cholesky factorizations, and OmpSs (version 16.06).

4.6.1 Performance of the MKL kernels

The performance of the presented task-parallel factorizations depends on that of the building blocks,
which are computed in our implementation via calls to tuned routines in Intel MKL for this purpose.
Note that, as parallelism is extracted by the runtime, we do not link with the multi-threaded
implementation of these building blocks in order to avoid oversubscription issues.

Figure 4.9 reports the GFLOPS (billions of flops per second) attained by the four building blocks
(LU factorization, upper and lower triangular solve, and matrix-matrix multiplication) using a
single core of the target platform. We used square operands of dimension ts (problem dimension in
the plot). As could be expected, the highest performance rates are attained by the matrix-matrix
multiplication kernel (DGEMM). The reason is that this operation makes a quasi-optimal use of the
memory subsystem and presents few control dependencies.

Figure 4.9 also reveals that the asymptotic performance for DGEMM is around 12.1 GFLOPS. This
value is relevant because the DGEMM kernel dominates the cost of the factorizations by a large margin.
Furthermore, the problem size ts in the experiment in this figure is related with that of the leaf
blocks of the BCT. For example, for an H-Matrix with leaf blocks of dimension ts = 1,000, we
can expect that an execution of any of the factorizations, using a single core, proceeds at the rate
reported for DGEMM and that problem size in the plot. The multiplication of the asymptotic rate
with the number of cores employed for a task-parallel execution of the factorizations thus offers an
upper bound on the highest performance rate that we can observe in a parallel execution.
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Figure 4.9: Performance of the linear algebra basic building blocks on a single core of the Intel
E5-2603v3 server.

It is important to realize that the evaluation of the building blocks was performed using data already
stored in the processor cache. For the smallest problems, the GFLOPS rate is much lower if the
data has to be fetched from the main memory as part of the execution. However, in the scenario
occurring during the factorizations, the operands to a task are the results from a previous task and,
therefore, are likely to reside in the higher levels of the memory hierarchy. Thus, the GFLOPS rates
in Figure 4.9 are those that we can expect in a practical execution of the factorizations routines.

4.6.2 Performance of our prototype H-LU and H-Cholesky

For the evaluation of the task-parallel prototype H-LU and H-Cholesky, we respectively generated
square and symmetric square prototype H-Matrices of dimensions n = 5,000 and 10,000, whose
entries follow a random normal distribution in (0,1). To avoid numerical difficulties, the matrices
were enforced to be diagonally dominant. For each case, we varied the number of levels (nl) and the
granularity of the blocks in each level as displayed in Table 4.4. Moreover, the matrices employed
in the experiments present different ratios of null blocks (dispersion): 0% (full matrix), 25%, 50%,
and 75%. This ratio specifies the number of blocks that are null compared with the total amount
of blocks. Note that the actual volume of entries that are zero will depend on the dimensions of
the blocks which are randomly selected to be null; thus, a higher ratio of null blocks does not
necessarily represent a sparser matrix.

n nl Block granularity in each level

5,000
2 5,000, 100
3 5,000, 500, 100
4 5,000, 2,500, 1,250, 250

10,000
2 10,000, 500
3 10,000, 500, 100
4 10,000, 1,000, 500, 100

Table 4.4: Configurations for the experimental evaluation of the prototype H-LU and H-Cholesky
factorizations.
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Figures 4.10, 4.11, and 4.12 report the GFLOPS rates attained by the OmpSs version of the H-LU
(former one) and H-Cholesky (last two) factorizations routines on the Intel server using 4, 8 and 12
threads/cores, comparing them to other parallel strategies. These performance rates are obtained
by calculating the actual flops necessary to factorize each matrix, taking into account that some of
its blocks may be null.

Regarding the H-LU, the top of the performance line (upper limit for the y-axis) in all plots is set at
144 GFLOPS, which roughly corresponds to the highest practical performance that we could expect
using 12 cores, each delivering about 12 GFLOPS for DGEMM (see Figure 4.9). In this factorization,
parallelism is extracted 1) from the loop operating on the blocks containing the actual values
(represented in the plots under the name “OpenMP”), by including a #pragma omp parallel for

directive in lines 3, 6, and 9 of the Algorithm 1; and 2) by defining the tasks detailed as in the
previous section (named as “OmpSs” in the plots). OpenMP task-based tests instead of OmpSs
tasks were also performed, but no remarkable differences were observed. Note that this prototype
avoids the problems due to nested dependencies, compared with a pure H-Matrices scenario, where
there is an unavoidable need to exploit nested parallelism, as different blocks entries do not lie in
contiguous positions of memory (this will be discussed in detail in future chapters).

With respect to the H-Cholesky, a deeper analysis was performed [7] and the associated results are
also presented in this dissertation. The parallel variants we evaluated there include:

• MKL Multithread: Parallel algorithm that exploits parallelism inside the BLAS kernels invoked
during the execution of the BRL variant of the H-Cholesky factorization.

• OpenMP - Simple: Loop-parallel algorithm that exploits the loop-parallelism present in the
BRL variant of the H-Cholesky factorization by including a #pragma omp parallel for

directive in lines 3 and 6 of Algorithm 2.

• OmpSs and OpenMP - Tasks: Task-parallel algorithms that exploit the parallelism defined by
the Task Dependency Graph (TDG) associated with the H-Cholesky factorization.

4.6.3 Conclusions from the experiments

The results of the evaluation in the previous section offer some general conclusions:

• The GFLOPS rates grow with the number of cores in most cases for all the parallelization
alternatives and all tested configurations: problem size, number of levels of the hierarchical
matrix, and sparsity (dispersion); however, there are notable differences depending on the
specific approach.

• In general, the task-parallel versions outperform the loop parallel-based versions and MKL
multithread variants. Moreover, the performance differences between the parallelization alter-
natives tends to become larger, in favor of task-based ones, when the concurrency is reduced.
This occurs when the ratio between the factorization cost and number of cores is small,
taking into account the rate of nonzeros. A clear example of this can be observed for the
10K-dimension problem with 2 levels in Figure 4.10, where the performance of the OpenMP
version shows a significant drop when the dispersion is increased from 25% to 50%.

• The multithreaded MKL version delivers the worse results (in Figures 4.11 and 4.12). An
exception to this is the computation of the H-Cholesky with matrices partitioned into 2 levels,
where the OpenMP-Simple solution generally provides smaller GFLOPS rates than MKL.
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• When the number of tasks is small, the OpenMP task-parallel implementation offers higher
parallel performance than the task-parallel version that relies on OmpSs. For larger matrices,
when the number of tasks grows, the difference between the two task-parallel solutions is
generally reduced. This is especially visible in Figure 4.10.

• In most cases, the parallel performance is slightly reduced as the amount of null blocks is
increased, in comparison to denser configurations.
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Figure 4.10: Performance of the task-parallel H-LU factorization using OpenMP and OmpSs in
the Intel E5-2603v3 server using 4, 8 and 12 threads/cores.
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Figure 4.11: Performance of the MKL multithreaded-based version, loop-parallel, and task-parallel
H-Cholesky factorization of a matrix of order 5,000 using OpenMP and OmpSs in
the Intel E5-2603v3 server using 4, 8 and 12 threads/cores.
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Figure 4.12: Performance of the MKL multithreaded-based version, loop-parallel, and task-parallel
H-Cholesky factorization of a matrix of order 10,000 using OpenMP and OmpSs in
the Intel E5-2603v3 server using 4, 8 and 12 threads/cores.
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4.7 Concluding remarks

We have developed and evaluated several parallel algorithms for the solution of Symmetric Positive
Definite (SPD) hierarchical linear systems, via the H-LU and H-Cholesky factorizations on multi-
core architectures. In particular, our algorithms investigate the benefits of extracting concurrency
from within a multi-threaded implementation of the BLAS; from the loops present in the BRL vari-
ant of the Cholesky factorization; or from the tasks that appear when decomposing this operation
via a task-parallel implementation with the support of a parallel programming model and runtime
as those behind OmpSs and OpenMP. Our results clearly demonstrate that this third option, when
combined with the runtimes underlying OmpSs/OpenMP, outperforms the approaches that exploit
multi-threaded BLAS and loop-parallelism.

Our design of a task-parallel version of these factorizations using OmpSs had to meet several
requirements from three perspectives that guided our implementation, yielding some insights that
can be expected to carry over to other linear algebra operations for H-Matrices:

• Storage: The data layout has to be efficient, avoiding the storage of zeros (and being pre-
pared to store low-rank blocks in pure H-Matrices scenarios), as well as flexible in order
to accommodate variations in the dimensions of the low-rank blocks. These two principles,
efficiency and flexibility, led us to select BDL for the problem data.

• Performance: For the sake of rapid development and performance portability, the operations
on dense blocks (and, to some extent also on low-rank ones) have to rely on routines from
LAPACK and BLAS. This moved us to select CMO to store the data inside the blocks.
Furthermore, in combination with BDL for the leaf blocks, we have the intuition that, in pure
H-Matrices scenarios, certain operations on non-leaf blocks will need to be further decomposed
not only to expose a higher concurrency degree, but also to be able to deal with the different
leaf block operands sizes.

• Task-parallelism: OmpSs provides a powerful tool to exploit task-parallelism.

To conclude, our performance experiments on a server equipped with 12 Intel cores reveal that
extracting task-parallelism via OmpSs/OpenMP delivers fair performance and scalability for the
task-parallel H-LU and H-Cholesky factorizations.

60



Chapter 5

Parallelizing the H-LU in H2Lib
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5.1 Introduction

As stated in the conclusions of the previous chapter, the results observed in the evaluation of
the H-LU and H-Cholesky prototypes exposed that task-based parallelism is suitable for parallel
implementations of algorithms involving H-Matrices. However, our intention was never to reinvent
the wheel, and for this reason we opted for implementing parallel versions of existing packages.
Concretely, in this chapter we present the strategy followed to parallelize the H-LU operation
included in the H2Lib [54] library. The main objective of the work in this chapter is, thus, to attain
fair parallel performance by employing task-based programming models and strategies.

When we developed the implementations that will be shown in this chapter, the H2Lib [54] package
offered a limited parallel efficiency, as it was based on basic OpenMP parallel structures (such as
sections and loops) but did not exploit tasks. The objective we set ourselves was, consequently,
leveraging tasks to attain a higher parallel performance limited only by the data layout and tasks
dependencies, but not by the hierarchy levels and nested structures that characterize H-Matrices.

By parallelising the H-LU of H2Lib, the main issues that are addressed are:
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• The prototype implementations in Chapter 4 assumed that the blocks of the H-Matrices were
either dense or null, and no specialized data structures (neither H-Arithmetic) for low-rank
blocks were included. In contrast, H2Lib operates over pure H-Matrices, and thus involves
low-rank blocks, low-rank storage, and true H-Arithmetic.

• As a consequence of the previous difference, there is the need to accommodate low-rank data
structures that can vary their dimensions at execution time. This is particularly challenging
for a runtime-based parallelization because task dependencies are detected via an analysis of
the memory addresses of the tasks’ operands.

• When utilizing OpenMP/OmpSs tasks as described in the previous chapter, we are forced to
operate on fine-grain tasks with operands that were stored in contiguous regions of memory.
As it was explained, the practical consequence of this constraint is that it is not possible to
exploit the nested task-parallelism intrinsic to theH-LU factorization, both for the prototypes
and the true H-LU in H2Lib.

This chapter is structured as follows: we first provide some details about H2Lib, and particularly its
H-LU implementation; next we describe the difficulties when parallelizing it, and the new features of
the OmpSs-2 programming model that allow us to tackle them; and lastly we show the performance
analysis we conducted to evaluate the efficiency of our OmpSs-2 based parallel implementation. At
the end of the chapter, we briefly summarize the conclusions extracted from the work described.

5.2 H2Lib

H2Lib [54] (the successor of the HLib package, which is no longer maintained) is an open source
library written in C language and maintained by a research group which is part of the Department
of Mathematics of the Christian-Albrechts-Universität zu Kiel (Germany), leaded by Prof. Steffen
Börm. It offers a state-of-the-art implementation of H-Matrix techniques, including sophisticated
data structures and support for H-Arithmetic operations.

In the next sections, we will describe the construction of H-Matrices and their storage layout in
H2Lib, and explain its sequential H-LU algorithm implementation.

5.2.1 H-Matrices in H2Lib: Construction and Storage layout

The main idea behind H-Matrices is to find a partition of a matrix into blocks which are either
small in dimension (and dense) or admissible in the sense that they can be stored efficiently using
low-rank data structures instead of dense ones. As it was described in Chapter 2, utilizing low-
rank matrices is a prerequisite for reducing the storage and computational costs down to log-linear
functions on the number of elements and flops, respectively.

To be able to properly address the H-Matrix storage layout in H2Lib, it is crucial to understand
the steps that form the construction of H-Matrices in that library:

1. The first step consists in “organising” the Degrees of Freedom (DoFs) into sets, which can be
handled efficiently via CTs.

2. Secondly, an axis-parallel bounding box Bt is generated. This contains the union of all extents
corresponding to the cluster t.
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3. The bounding box is then split into two parts along some geometrical dimension. This yields
two disjoint boxes Bt1 ,Bt2 . From there, H2Lib offers the possibility of classifying each DoF
into one of these boxes according to their position in space.

4. Next, both boxes are recursively processed until the number of DoFs located in a box falls
below a prescribed constant, which is denoted by leafsize (Clf ). In order to handle all these
boxes efficiently, these clusters are organised into a tree structure expressed by sons(t) =
{t1, t2}.

Algorithm 3 summarizes the construction of the CT, and Listing 5.1 displays the structure (cluster)
designed to represent a CT in the library.

Algorithm 3 Clustertree construction

Require: Geometric information about the degrees of freedom is stored within an array dofs of
length size.

Ensure: A hierarchical partition of the DoFs is returned via the CT t.
1: procedure setup clustertree(dofs, size)
2: if size > Clf then
3: d← find splitting dimension(dofs, size)
4: sons ← 2
5: t← new cluster(dofs, size, sons)
6: {dofs1, dofs2, size1, size2} ← sort dofs(dofs, size, d)
7: t1 ← setup clustertree(dofs1, size1)
8: t2 ← setup clustertree(dofs2, size2)
9: sons(t) ← {t1, t2}

10: else
11: t← new leaf cluster(dofs, size)
12: end if
13: return t
14: end procedure

1 s t ruc t cluster {

2 uint size ;

3 uint * dofs

4 uint * bbox_min ;

5 uint * bbox_max ;

6 cluster * son ;

7 uint sons ;

8 }

Listing 5.1: C structure for CTs in H2Lib

In Listing 5.1, size is the number of elements associated with this cluster and dofs is an array
specifying the DoFs. The bounding box Bt for a cluster t is stored within the arrays bbox min and
bbox max, respectively. In addition, son and sons represent the tree structure of the clusters.

Once the necessary CTs are built (one for the rows and a second one for the columns), the setup
of the H-Matrix is performed recursively as stated in Algorithm 4, returning a tree-like block
structure. Listing 5.2 describes the structure to hold the generated H-Matrices in H2Lib.
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Algorithm 4 Blocktree construction

Require: row cluster t, column cluster s.
Ensure: A blocktree b is returned for the pair (t,s).
1: procedure setup blocktree(t, s)
2: if admissible(t, s) then
3: b ← new admissible block(t, s)
4: else
5: if sons(t) 6= ∅ ∧ sons(s) 6= ∅ then
6: b ← new partitioned block (t, s)
7: for all t’ ∈ sons(t), s’ ∈ sons(s) do
8: b[t’][s’] ← setup blocktree(t’, s’)
9: end for

10: return b
11: else
12: b ← new inadmissible block(t, s)
13: end if
14: end if
15: return b
16: end procedure

1 s t ruc t hmatrix {

2 cluster rc , cc;

3 rkmatrix r;

4 amatrix f;

5 hmatrix * son ;

6 uint rsons , csons ;

7 }

Listing 5.2: C structure for H-Matrices in H2Lib.

In Listing 5.2, rc and cc respectively correspond to the row cluster and column cluster of the
current matrix block. In agreement with the three cases occurring in Algorithm 4, the application
of that algorithm, at a given level of the recursion, can produce either a low-rank block (i.e., a
new admissible block), a new recursive partitioning (via the same algorithm), or a conventional
dense (inadmissible) block. Low-rank matrices are stored in the structure rkmatrix, whereas
dense matrices are stored in amatrix. Partitioned matrices are accommodated using the array
son, whose elements point to the corresponding sons. The structure also provides the amount of
sons per row and column, stored in rsons and csons, respectively. Note that, if a specific block is
partitioned, then rsons=rc→sons and csons=cc→sons; however, if it is a leaf block (e.g. because
it is admissible), then rsons=0 and csons=0. Moreover, as we will compute the H-LU for square
H-Matrices, then rsons = csons.

5.2.2 The algorithm for the H-LU in H2Lib

In Chapter 4 we described the recursive algorithm to compute the H-LU. The description there is
also applicable to the version of the H-LU implemented in H2Lib. However, in that chapter we
were operating with prototype H-Matrices, and that limited the complexity of the algorithm in two
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ways: 1) on the one hand, as we were not considering low-rank blocks at that moment, we omitted
the storage and low-rank/H-Arithmetic details regarding the operations that involve them; and
2) on the other hand, the H2Lib code covers all types oh H-Matrices, and so the algorithm needs
to be able explore much more complex hierarchies and, thus, more complex data structures. For
those reasons, the implementation of the H-LU in H2Lib is described in detail in this section. This
description will be especially convenient to expose the issues that difficult its parallelization.

5.2.2.1 Low-rank storage and low-rank/H-Arithmetic basis

Regarding the storage format, in typical H-matrix implementations, low-rank matrices are repre-
sented in the factorized form X = AB∗, where A and B have k columns only. Therefore, the rank
of X is bounded by k. In practice, k is significantly smaller than the dimensions of the original
matrix X. Particularly, the H2Lib package employs the data type in Listing 5.3 to store low-rank
matrices. In that structure, k represents the maximal rank of the block, and A, B are the left and
right factors, respectively.

1 typedef s t ru c t rkmatrix {

2 uint k; /* Maximal rank */

3 amatrix A; /* Left factor A */

4 amatrix B; /* Right factor B */

5 }

Listing 5.3: C structure for low-rank blocks in H2Lib.

With respect to the basic operations for low-rank matrices X ∈ Rn×m, we find:

• matrix-vector multiplication y := Xz, performed using y := Xz = A(B∗z);

• multiplication of X by an arbitrary matrix Z ∈ R`×n, using Y := ZX = (ZA)B∗;

• triangular system solve LY = X or Y U = X, by applying forward or backward substitution
to the k columns of A or the k rows of B, respectively.

Adding two low-rank matrices poses a challenge, since the sum of two matrices X1 = A1B
∗
1 and

X2 = A2B
∗
2 , of ranks k1 and k2, may have a rank k1 + k2. Fortunately, in typical applications a

low-rank approximation can be constructed by computing, e.g., an SVD of

X1 +X2 = A1B
∗
1 +A2B

∗
2 =

(
A1 A2

) (
B1 B2

)∗
and discarding the smallest singular values. The same approach can be employed to convert an
arbitrary matrix into a factorized low-rank matrix.

From the point of view of peak floating-point performance, working with factorized low-rank ma-
trices implies an additional challenge. Concretely, the multiplication of two n×n-matrices requires
2n3 operations, i.e., n operations for each coefficient transferred from main memory. In contrast,
only 2kn2 operations are required if one of the factors is a factorized low-rank matrix, i.e., only
k operations for each coefficient. Therefore, when optimizing the H-LU, we have to deal with the
fact that the speed of the operations involving low-rank matrices and, in consequence, H-matrices,
is generally limited by the memory bandwidth, instead of the floating-point throughput.
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5.2.2.2 Procedures that form the H-LU

In order to illustrate and analyse properly the issues that need to be tackled when computing the
H-LU, we will employ the two simple H-Matrices shown in Figure 5.1 (on the left, the H-Matrix A
utilised in the previous chapter; on the right, an H-Matrix B of the same size but with a different
partitioning).

A1,1 A1,2

A1:2,3:4

B1,1 B1,2 B1,3 B1,4

A2,1 A2,2 B2,1 B2,2 B2,3 B2,4

A3:4,1:2

A3,3 A3,4

B3:4,1:2

B3,3 B3,4

A4,3 A4,4 B4,3 B4,4

Figure 5.1: Two examples of 8× 8 H-Matrices, A and B, with different partitionings.

For the H-Matrix A in Figure5.1, the following sequence of operations computes its H-LU factor-
ization following the Algorithm 1 described in Chapter 4:

O1.1 : A1,1 = L1,1U1,1

O1.2 : U1,2 := L−1
1,1A1,2

O1.3 : L2,1 := A2,1U
−1
1,1

O1.4 : A2,2 := A2,2 − L2,1 · U1,2

O1.5 : A2,2 = L2,2U2,2

O2 : U1:2,3:4 := L−1
1:2,1:2A1:2,3:4

O3 : L3:4,1:2 := A3:4,1:2U
−1
1:2,1:2

O4 : A3:4,3:4 := A3:4,3:4 − L3:4,1:2 · U1:2,3:4

O5.1 : A3,3 = L3,3U3,3

O5.2 : U3,4 := L−1
3,3A3,4

O5.3 : L4,3 := A4,3U
−1
3,3

O5.4 : A4,4 := A4,4 − L4,3 · U3,4

O5.5 : A4,4 = L4,4U4,4

This is the natural extension of the BRL algorithm for the LU factorization, together with its
introduction; however, in Chapter 4 we already explained the need of partitioning certain leaf
blocks to be able to perform part of the operations. In fact, re-using the mentioned example, we
exposed that O2 is actually decomposed into the following six (sub-)operations:
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O2.1 : U1,3 = L−1
1,1A1,3

O2.2 : U1,4 = L−1
1,1A1,4

O2.3 : A2,3 := A2,3 − L2,1 · U1,3

O2.4 : A2,4 := A2,4 − L2,1 · U1,4

O2.5 : U2,3 = L−1
2,2A2,3

O2.6 : U2,4 = L−1
2,2A2,4

and the same applies to O3.

Additionally, O4 is decomposed into these eight (sub-)operations:

O4.1 : A3,3 := A3,3 − L3,1 · U1,3

O4.2 : A3,3 := A3,3 − L3,2 · U2,3

O4.3 : A3,4 := A3,4 − L3,1 · U1,4

O4.4 : A3,4 := A3,4 − L3,2 · U2,4

O4.5 : A4,3 := A4,3 − L4,1 · U1,3

O4.6 : A4,3 := A4,3 − L4,2 · U2,3

O4.7 : A4,4 := A4,4 − L4,1 · U1,4

O4.8 : A4,4 := A4,4 − L4,2 · U2,4

The analysis of these sequences of (sub-)operations and Figure 5.1 reveals that computing the H-
LU of A implies the same operations than doing it for B. The only difference is that the B1:2,3:4

block is already partitioned, and thus there is no need to force its division into sub-blocks as it is
done for that block in A. This variety of partitionings and decomposition of operations implies that
the algorithm to compute the H-LU needs to be able to detect the original H-Matrix partitioning
and follow its pattern, as well as to perform all the necessary subdivisions to ensure correct data
accesses. To sum up, the implementation of the H-LU needs to properly address the recursive
nature of the algorithm and also the nested (recursive) block structure imposed by the matrix
hierarchy.

Algorithm 5 summarizes all the steps to compute the LU factorization of an H-Matrix, and cor-
responds to the (graphically) exposition in Chapter 4: an extension for H-Matrices of the BRL
algorithm for the LU Factorization. The call to Compute HLU in line 7 is recursive (because the
block (i,j) is not a leaf of H); Algorithm 6 is called by Compute TRSM Right (the algorithm for
Compute TRSM Left is equivalent but solves U = L−1 · A instead of L = A · U−1); lastly, Al-
gorithm 7 is called by Compute GEMM. There are some considerations to take into account when
inspecting these three algorithms:

• If both rsons and csons of a certain H-Matrix are zero, then it has no sons, which in practice
means that the given H-Matrix is a leaf block.

• In H-Matrices, the diagonal blocks are always dense. Consequently, any diagonal block which
is also a leaf is stored as a dense matrix (amatrix), and the call to GETRF is a call to the
LAPACK function that computes its LU decomposition directly, overwriting the initial values
with the result. The same applies to the TRSM and GEMM calls, where U and L are always
dense if the input H-Matrix is a leaf.
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• We have not included all the parameters in the LAPACK calls. Auxiliary parameters such
as dimension (M, N), leading dimension (LDA), etc. are not indicated in the GETRF, TRSM or
GEMM calls to simplify them and ease the reading.

• The SVD operations have also been omitted, but should be performed each time a GEMM call
is given a C matrix that is originally low-rank, with A, B or both being also low-rank.

• H-Arithmetic related details, such as giving the rank instead of the full block dimension, have
also been omitted.

• The Subpartition function is in charge of partitioning the leaf blocks in such a way that
they have the same sub-blocks as the smallest block size involved in the operation (see the
decomposition of O2 of A into six (sub-)tasks, or the one for O4 expressed in the previous
paragraphs).

• Lastly, special structure configurations such as those in which two blocks are partitioned fol-
lowing a different pattern, are covered in H2Lib, but they are not addressed in Algorithms 5, 6
and 7 for simplicity.

Algorithm 5 LU Factorization of H-Matrices

Require: H ∈ H-Matrix
Ensure: The LU Decomposition of H (overwriting H)
1: procedure Compute HLU(H)
2: if H → rsons = 0 ∧H → csons = 0 then
3: GETRF(H → amatrix)
4: else
5: for k = 0 . . . H → rsons do
6: H → son(k,k) = Compute HLU(H → son(k,k))
7: for i = k + 1 . . . H → rsons do
8: H → son(i,k) = Compute TRSM Right(H → son(k,k), H → son(i,k))
9: end for

10: for j = k + 1 . . . H → csons do
11: H → son(k,j) = Compute TRSM Left(H → son(k,k), H → son(k,j))
12: end for
13: for i = k + 1 . . . H → rsons do
14: for j = k + 1 . . . H → csons do
15: H → son(i,j) = Compute GEMM(H → son(i,k), H → son(k,j), H → son(i,j))
16: end for
17: end for
18: end for
19: end if
20: return H
21: end procedure
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Algorithm 6 TRSM-Right involving H-Matrices

Require: A, U ∈ H-Matrix
Ensure: L = A · U−1 (overwriting A with L)
1: procedure Compute TRSM Left(H)
2: if A→ rsons = 0 ∧A→ csons = 0 ∧ U → rsons = 0 ∧ U → csons = 0 then
3: if A→ rkmatrix then
4: TRSM(A→ rkmatrix, U → amatrix)
5: else
6: TRSM(A→ amatrix, U → amatrix)
7: end if
8: else
9: for k = 0 . . . U → rsons do

10: for i = k . . . U → rsons do
11: if A→ rsons = 0 ∧A→ csons = 0 then
12: Aik = Subpartition(A, i, k)
13: Ukk = U → son(k,k)
14: else
15: Aik = A→ son(i,k)
16: if U → rsons = 0 ∧ U → csons = 0 then
17: Ukk = Subpartition(U , k, k)
18: else
19: Ukk = U → son(k,k)
20: end if
21: end if
22: Aik = Compute TRSM Left(Aik, Ukk)
23: for j = i+ 1 . . . U → csons do
24: if A→ rsons = 0 ∧A→ csons = 0 then
25: Aij = Subpartition(A, i, j)
26: Ukj = U → son(k,j)
27: else
28: Aij = A→ son(i,j)
29: if U → rsons = 0 ∧ U → csons = 0 then
30: Ukj = Subpartition(U , k, j)
31: else
32: Ukj = U → son(k,j)
33: end if
34: end if
35: Aij = Compute GEMM(Aik, Ukj , Aij , −1, 1)

36: end for
37: end for
38: end for
39: end if
40: return A
41: end procedure
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Algorithm 7 GEMM involving H-Matrices

Require: A, B, C ∈ H-Matrix; α, β ∈ R
Ensure: C = βC + αAB
1: procedure Compute GEMM(A, B, C, α, β)
2: if A → rsons = 0 ∧ A → csons = 0 ∧ B → rsons = 0 ∧ B → csons = 0 ∧ C → rsons =

0 ∧ C → csons = 0 then
3: if A→ amatrix then
4: Agemm = A→ amatrix
5: else
6: Agemm = A→ rkmatrix
7: end if
8: if B → amatrix then
9: Bgemm = B → amatrix

10: else
11: Bgemm = B → rkmatrix
12: end if
13: if C → amatrix then
14: Cgemm = C → amatrix
15: else
16: Cgemm = C → rkmatrix
17: end if
18: GEMM(α, Agemm, Bgemm, β, Cgemm)
19: else
20: for k = 0 . . . B → rsons do
21: for i = k . . . B → rsons do
22: for j = k . . . B → csons do
23: if A→ rsons = 0 ∧A→ csons = 0 then
24: Aik = Subpartition(A, i, k)
25: else
26: Aik = A→ son(i,k)
27: end if
28: if B → rsons = 0 ∧B → csons = 0 then
29: Bkj = Subpartition(B, k, j)
30: else
31: Bkj = B → son(k,j)
32: end if
33: if C → rsons = 0 ∧ C → csons = 0 then
34: Cij = Subpartition(C, i, j)
35: else
36: Cij = B → son(i,j)
37: end if
38: Compute GEMM(Agemm, Bgemm, Cgemm, α, β, )
39: end for
40: end for
41: end for
42: end if
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43: return A
44: end procedure

5.3 Parallel H-LU

When we implemented the parallel version of the H-LU included in H2Lib, there were already some
alternative libraries that exploited multi-threaded parallel algorithms, but those were mainly based
on OpenMP or Intel’s TBB (see Section 1.4), and most of the parallelism limitations exposed in
the previous chapter held. By parallelising H2Lib, as we describe next, we are able to explore a
new task-based multi-threaded parallel approach which allows to: 1) define nested tasks and, 2)
execute each of the tasks as soon as the data they depend on is ready. This second capability is
crucial to attain a fair parallel performance because, with this technique, the task-based parallelism
is not constrained by the hierarchy of nested levels. Thus, thanks to the competitiveness of the
sequential algorithms included in H2Lib, and the new task-parallel techniques that we describe in
this section, our parallel implementation is able to reach a good parallel efficiency.

Designing a task-based implementation requires a previous analysis of the dependencies among the
different operations (which will become tasks) involved in the specific algorithm. We want to note
that the only difference between tasks that involve low-rank blocks and those that do not, is the
fact that the internal operations are different, but the data dependencies remain the same. For
that reason, we do not specify the difference in the task description.

Particularly, for the sample matrices in Figure 5.1 (and, thus, the sequences of operations into
which O1 - O5 have been decomposed and analysed in the previous section), Figure 5.2 provides a
graphical representation of the dependencies among the operations (tasks), exposing the implicit
recursion in each of the operations. The factorization can be initially decomposed into 5 tasks: O1,
O2, O3, O4, and O5, with the dependencies among them displayed as shown in the figure. Moreover,
O1 and O5, which perform the factorizations of the diagonal blocks of A, are also decomposed into
5 (sub-)tasks each, reproducing the dependency pattern as that of the initial factorization. Besides,
O2 and O3 are decomposed each into six (sub-)tasks, and O4 into eight (sub-)tasks, no matter which
is the partition of the blocks they involve (A1:2,3:4, B1:2,3:4, A3:4,1:2, B3:4,1:2). These partitionings
are necessary for those operations involving the values from the diagonal blocks.

The sample matrix is simple yet useful to expose the existence of nested parallelism in the H-LU
factorization (and discuss how to tackle it next). However, it only has two levels in the hierarchy,
and the dependency graph in Figure 5.2 seems to show that there is little task-parallelism to be
exploited, as only these tasks can run in parallel:

• O1.2 with O1.3;

• O2 with O3 (and inside them, O2.1 with O2.2, and O3.1 with O3.2);

• O4.1 with O4.3, O4.5, and O4.7;

• O5.2 with O5.3.

A larger recursive division (this is, a hierarchy composed of more levels) yields a rapid explosion of
the degree of task-level parallelism, featuring a richer set of dependencies.

The first conclusion that can be extracted from this dependency analysis is that taking advantage
of the intrinsic parallelism of complex H-Matrix structures may require dealing with a considerable
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O1.1

O1.2 O1.3

O1.4

O1.5

O2.1 O2.2

O2.3 O2.4

O2.5 O2.6

O3.1 O3.2

O3.3 O3.4

O3.5 O3.6

O4.1 O4.3 O4.5 O4.7

O4.2 O4.4 O4.6 O4.8

O5.1

O5.2 O5.3

O5.4

O5.5

O1

O2 O3

O4

O5

Figure 5.2: DAGs representing the task dependencies associated to the H-LU algorithm performed
over the sample matrices in Figure 5.1. The colors match these employed in Algo-
rithms 1, 5, 6, and 7.

amount of nested partitionings. This in turn makes necessary to adapt the “granularity” of the
tasks, probably at execution time, in order to maintain performance. In particular, a fine granularity
yields more leaf tasks in the structure, but it could occur that it is more efficient to merge groups
of them into coarser-grain tasks to attain a better use of the memory cache. Also, a coarser-grain
task can be tackled by a group of threads, using for example a multi-threaded version of BLAS.
Selecting the optimal option is a difficult scheduling problem.

In addition, it is also natural to conclude that, even though they belong to different “parent”
tasks, some (sub-)tasks depend only on other parent (sub-)tasks, but not all of them. Looking at
a particular example to illustrate this, O2.1 only depends on O1.1; however, due to the recursion of
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the nested tasks, O2 will not begin its execution until O1 is fully computed, and consequently none
of the O2 (sub-)tasks will be initiated until all the five (sub-)tasks of O1 are complete.

The discussed limitations imply difficulties when trying to achieve a fair parallel performance em-
ploying the classical task-based approaches. In the next sections, we analyse in more detail the
difficulties of the parallel H-LU. Furthermore, we describe the features of the OmpSs-2 program-
ming model that allowed us to overcome these issues and expose a greater amount of concurrency,
which reflects more accurately the true data dependencies, and is less dependant on the nested
nature of the H-Matrices.

5.3.1 Difficulties observed in our analysis

5.3.1.1 Using representants

The OpenMP and OmpSs runtimes identify task dependencies, at runtime, via the analysis of the
memory addresses of the task operands (variables) and their directionality. In order to specify
the dependencies between tasks, in dense linear algebra operations we often use a “representant”
for each task operand, which is then passed to the runtime system in order to detect these de-
pendencies [20]. This representant is the memory address of the matrix block computed by the
corresponding operation; concretely, the top-left entry of the output matrix block. We next discuss
the problem with this approach in the context of H-Matrices.

Let us consider, for example, the dependency O1.1→O1.2, between the LU factorization

O1.1 : A1,1 = L1,1U1,1,

and the triangular system solve

O1.2 : U1,2 := L−1
1,1A1,2;

and the dependency O1→O2, between the LU factorization

O1 : A1:2,1:2 = L1:2,1:2U1:2,1:2,

and the triangular system solve

O2 : U1:2,3:4 := L−1
1:2,1:2A1:2,3:4.

For simplicity, let us assume that all the blocks involved in these operations are dense. (The analysis
of the dependencies for low-rank blocks is analogous.) The problem with the use of representants
is that it is not possible to distinguish a dependency with the input A1:2,1:2 from one that has its
origin in the input A1,1. In particular, since both A1:2,1:2 and A1,1 share the same representant,
with this technique it is not possible to know whether O1.2 and O2 depend either on O1.1 or O1. As
a consequence, when operating with H-Matrices we need to be able to annotate tasks with respect
to data regions, and not only employing “representants”.

5.3.1.2 Leveraging regions instead of representants

OpenMP and OmpSs offer enough flexibility to specify the shapes/dimensions of the input/output
operands passed to a task as regions, which can then be used to detect dependencies between the
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tasks. In principle, it might seem that this mechanism could be leveraged to avoid the ambiguity
due to the use of representants. However, the following discussion illustrates that this is still
insufficient for H2Lib.

To expose the problem, consider again the dependencies O1.1→O1.2 and O1→O2 where, for sim-
plicity, we still assume that all blocks involved in these operations are dense. To tackle this case, it
might seem that we could simply specify the dimensions of the operands. For example, in OmpSs,
the lower triangular system solves O1.2 and O2 could be annotated as

1 #pragma omp task in( L[0;M*M] ), inout( B[0;M*P] )

2 void t a s k _ t r s m _ l e f t ( i n t M , i n t P, double *L , i n t LDL ,

3 double *B , i n t LDB )

where L corresponds to the base memory address of the M×M lower triangular factor, and B is
the base memory address of the M×P right-hand side. The data indicated in the square brackets
means X[distance of the first element of the region of X to consider, with respect

to its the base address; number of elements that form the region to consider].

The problem with this solution is that, in H2Lib, the entries of a block which is further partitioned
into sub-blocks (as is the case for A1:2,1:2) are not stored contiguously in memory. Therefore, the
use of a region to specify the memory address of the contents of such block is useless.

Our workaround to this problem in the previous chapter was to divide all the necessary blocks into
the smallest block size in the matrix. Unfortunately, this solution implies the need to explicitly
decompose all tasks in the H-LU factorization to operate with blocks of the “base” granularity, so
that a region only spans data which is contiguous in memory. The practical consequence is that,
with that approach, it was not truly possible to exploit nested task parallelism. Furthermore, in
the case of small leaf blocks, the overhead introduced by the dependency-detection mechanism can
be considerable, reducing the performance of the solution.

5.3.1.3 Dealing with non-contiguous regions

This issue is difficult to address, as it is rooted on the hierarchical nature of the problem and the use
of H-Arithmetic, which derives in the need to embody a data structure that can vary at runtime.
Thus it becomes necessary to maintain a tree-like structure of the matrix contents, where only
the leaf blocks (either dense or low-rank) store their data contiguously in memory. As a result, we
cannot leverage this data structure to specify dependencies between tasks involving non-leaf blocks.

Our solution to this problem is application-specific (but can be leveraged in scenarios involving
dynamic and/or complex data structures [4]) and consists of an auxiliary skeleton data structure
that reflects the block structure of the H-Matrix. In particular, this data structure can be realized
using an array with one representative per leaf (i.e., non-partitioned) block in the original matrix,
where the representatives that pertain to the same block appear in contiguous positions of memory.
For the particular simple example H-Matrix A in Figure 5.1 this means that, in order to detect
dependencies, we use an additional array of representants to ensure the desired specific order:

A1,1 A2,1 A1,2 A2,2 A3:4,1:2A1:2,3:4A3,3 A4,3 A3,4 A4,4

Operating in this manner, we decouple the mechanism to detect the dependencies (based on the
previous array) from the actual layout of the data in memory, which can vary during the execution.
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With this solution, the ambiguity between O1.1 and O1 when dealing with the dependencies
O1.1→O1.2 and O1→O2 is easily tackled. Concretely, although both operands share the same
base address in memory (that of A1,1 in the skeleton array), the region for O1.1 comprises a single
representant while that of O1 comprises four representants in the skeleton array.

Following this approach, there is no longer the need to partition all the blocks in the H-Matrix
into the smallest block size. However, as we have described in previous sections, due to the need of
storing the data in contiguous positions of memory when calling the LAPACK functions, the need
to partition certain leaf blocks into the smallest block size intervening in a specific operation still
applies. Consequently, we will not only employ one representant per leaf block, but also include
extra representatives for the leaf blocks. The reason is that when they involve data coming from
diagonal blocks in a certain operation, they will be inevitable partitioned. Thus, for the examples
in Figure 5.1, we will actually use the following representants (note that BDL format is employed
to determine the way in which the representatives are stored):

A1,1 A2,1 A1,2 A2,2 A3,1 A4,1 A3,2 A4,2 A1,3 A2,3 A1,4 A2,4 A3,3 A4,3 A3,4 A4,4

We emphasize that these representants are stored contiguously in memory and this skeleton data
structure does not vary during the execution (in contrast with the structure storing the actual
data). Therefore, it can be built before the operations commence, and the cost of assembling it can
be amortized over enough computation thanks to the higher degree of concurrency it exposes.

5.3.2 OmpSs2-2 new features: weak dependencies and early release

The tasking model of OpenMP 4.5 supports both nesting and the definition of dependencies between
sibling tasks. Many operations with H-Matrices are recursive, so the natural strategy to parallelize
them is to leverage task nesting. However, this top-down approach has some drawbacks since
combining nesting with dependencies usually requires additional measures to enforce the correct
coordination of dependencies across nesting levels. For instance, most non-leaf tasks need to include
a taskwait construct at the end of their code. While this enforces the correct order of execution,
as a side effect, it also constrains both the generation and discovery of task parallelism. In this
paper we leverage the enhanced tasking model recently implemented in OmpSs-2 [101] to exploit
both nesting and fine-grained data-flow parallelism.

The OmpSs-2 tasking model introduces two major features: weak dependencies and early release
of dependencies. The dependencies due to task operands annotated as weak are ignored by the
runtime when determining whether a task is ready to be executed. This is possible because the
operands marked as weak can only be read or written by child tasks. Using weak dependencies,
subtasks can thus be instantiated earlier and in parallel. The early release of dependencies allows a
fine-grained release of dependencies to sibling tasks. Concretely, with this advanced release, when
a task ends, it immediately releases the dependencies that are not currently used by any of its child
tasks. Furthermore, as soon as the child tasks finish, they release the dependencies that are not
currently used by any of their sibling tasks.

To further clarify this, we remark that the correct use of task nesting and dependencies has to fulfil
the following rule to avoid data-races between tasks that are second (or above)-degree relative:
the dependency set of a child task has to be a subset of the dependency set of its parent task.
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Only those dependencies declared on data that is not available in the scope of the parent task,
such as data dynamically allocated when the body of the parent task is executed, are excluded
from this rule. Although this rule guarantees a correct execution, it usually introduces artificial
coarse-grained dependencies between sibling tasks, which are only required to enforce the proper
synchronization of their sibling tasks.

To address the previous issue, we can leverage weak dependencies because this type of dependencies
are just ignored by the runtime when determining whether a task is ready to be executed. This
is possible because operands marked as weak can only be read or written by child tasks. Using
weak dependencies, more tasks can be thus instantiated earlier and in parallel, and we can avoid
the insertion of a taskwait construct, at the end of each parent task, to enforce a barrier which
synchronizes all the child tasks before releasing all the dependencies. This means that, in Algo-
rithm 5 we would need to include a taskwait after the endfor in line 17 (this is, at the end of
each iteration of the k-loop); in Algorithm 6 after the line 38 (again, at the end of each iteration of
the k-loop, and analogously for the TRSM-Left); and in Algorithm 7 after the line 41 (once more,
at the end of each iteration of the k-loop). One can easily see that this substantially limits the
concurrency allowed in the parallel execution, as the k-loop is the one in charge of traversing the
hierarchy levels.

By combining these two contributions, dependencies can cross the boundaries initially set up by the
nesting contexts. The resulting behavior is equivalent to performing all the dependency analysis in a
single domain. Achieving a similar effect in OpenMP/OmpSs eliminated the possibility of nesting.
In addition, that approach also reduced the programmability and restricted the instantiation of
tasks to a single generator. In constrast, the dependency model of OmpSs-2 can extract the same
amount of task parallelism, without impairing programmability and without the loss of the parallel
generation of work that is possible through nesting.

In order to illustrate the implications of these two advanced features of OmpSs-2 on the H-LU
factorization, let us consider the partitioning of the sample matrices in Figure 5.1 and the associated
sequences of operations to perform the H-LU which have been already described. In the application
of nested parallelism to that scenarios, we assume that O1, O2, O3, O4, and O5 are each annotated as
a (coarse-grain) task, and they respectively produce the (sub-)operations in O1.1–O1.5, O2.1–O2.6,
O3.1–O3.6, O4.1–O4.8, O5.1–O5.5, each annotated as a (fine-grain) task.

A rapid analysis reveals that, for example, the coarse-grain dependency O1→O2 boils down (among
others) to the finer-grain cases O1.1→{O2.1, O2.2}, as the former operation (LU factorization)

O1.1 : A1,1 := L1,1U1,1

yields the unit lower triangular factor L1,1 required by the latter two operations (triangular solves)
O2.1, O2.2.

The problem with OmpSs and OpenMP 4.5 is that ensuring a correct result requires the introduction
of a taskwait at the end of the code for O1. In contrast, the support for weak dependencies and
early release in OmpSs-2 implies that (provided the operand L1:2,1:2 for O2 is annotated as weak),
the boundaries between the coarse-grain tasks O1 and O2 can be crossed and the execution of O2.1

and O2.2 can commence as soon as O1.1 is computed. In order to attain this effect, in OmpSs-2 we
should annotate O2 as a task with weak operands (via the corresponding representants):

1 #pragma oss task weakin( RepL [0;S] ), weakinout( RepB [0;S] )

2 void t a s k _ t r s m _ l e f t ( i n t M , i n t P, double *L , i n t LDL ,

3 double *B , i n t LDB )
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while O2.1, O2.2 are both specified as tasks with strong operands:

1 #pragma oss task in( L[0;M*M] ), inout( B[0;M*P] )

2 void t a s k _ t r s m _ l e f t ( i n t M , i n t P, double *L , i n t LDL ,

3 double *B , i n t LDB )

In general, if we go back to the Algorithms 5, 6, and 7, all the recursive calls are annotated as weak
tasks, and the tasks that actually update the data values (that is, the ones that call BLAS/LAPACK
functions) as regular (strong) tasks. This is a summary of the tasks annotations:

• For Algorithm 5 (H-LU factorization):

– Weak: Compute HLU (line 6), Compute TRSM Right (line 8), Compute TRSM Left (line
11), and Compute Gemm (line 15).

– Strong: GETRF (line 3).

• For Algorithm 6 (TRSM-Right) and analogously for the TRSM-Left:

– Weak: Compute TRSM Left (line 22), and Compute Gemm (line 35).

– Strong: TRSM (lines 4 and 6).

• For Algorithm 7 (GEMM):

– Weak: Compute Gemm (line 38).

– Strong: GEMM (line 18).

This simple example illustrates that the use of weak dependencies and early release can unleash
a higher degree of task-parallelism during the execution of the H-LU factorization. Figure 5.3
reflects the new dependency graph displaying the weak dependencies with dashed arrows, and
regular (strong) dependencies, which are the ones that actually orchestrate the parallelism, using
solid arrows. We have highlighted in colored arrows the new dependencies that can be exposed
thanks to the OmpSs-2 weak dependencies and early release of tasks; particularly, in blue the ones
from O1 to O2 and O3 (sub-)tasks; in green the ones from O2 to O4 (sub-)tasks; in orange the ones
from O3 to O4 (sub-)tasks; and in red the ones from O4 to O5 (sub-)tasks. As an example, after the
execution of O1.1, now not only O1.2 and O1.3, but also O2.1, O2.2, O3.1 and O3.2 can commence
their execution, without these last four needing to wait until O1.5 is completed, as it was the case
with OpenMP/OmpSs.
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Figure 5.3: DAG for the H-LU task dependencies over the sample matrices in Figure 5.1, when
using OmpSs-2. Dashed arrows symbolise weak dependencies, while solid arrows repre-
sent regular (strong) dependencies. Colored full arrows show the dependencies exposed
thanks to OmpSs-2 new features.
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5.4 Performance analysis

In this section we first describe the problem setup and target architecture employed in our exper-
iments. Next, we analyze the efficiency of the parallel implementations of the code for the H-LU
factorization in H2Lib.

5.4.1 Mathematical problems

The usage of H-matrices often appears in the context of BEM [72]. The reason is that the dis-
cretization of boundary integral equations often yields matrices that are densely populated and
have to be stored efficiently, where H-Matrices come in handy. There is also the need to construct
efficient preconditioners for this type of equations, which can be carried out in H-Arithmetic. In
particular, in the experiments in this section we consider integral equations of the form∫

Γ
g(x,y)u(y) dy = f(x), for almost all x ∈ Ω,

where Ω can be some d-dimensional bounded domain for d ∈ {1, 2,3}. By choosing suitable test-
and-trial spaces Uh and Vh, equipped with some bases (ϕi) , i ∈ I, and (ψj) , j ∈ J , we can apply
a Galerkin discretization and obtain a variational formulation of the type∫

Ω
vh(x)

∫
Γ
g(x,y)uh(y) dy dx =

∫
Ω
vh(x) f(x) dx , for all vh ∈ Vh.

Employing finite element basis functions for these spaces, we directly obtain a system of linear
equations

Gu = f,

where all the entries of the matrix

gij =

∫
Ω
ϕi(x)

∫
Γ
g(x,y)ψj(y) dy dx , for all i ∈ I, j ∈ J ,

are non-zero.

In particular, we consider the Laplace equation in d ∈ {1,2,3} dimensions. In these cases, the
underlying kernel functions are

g : Rd × Rd → R , g(x,y) =


− log |x− y| : d = 1,

− 1
2π log ‖x− y‖2 : d = 2,

1
4π‖x− y‖

−1
2 : d = 3.

For the construction of low-rank blocks in our experiments, we choose the analytical method of
tensor-interpolation [57], which is applicable in all dimensions. For the sake of lighter storage
requirements and faster setup times of the H-LU, we further re-compress all low-rank blocks using
a fast SVD [51].

5.4.2 Setup

All the experiments in this section were performed using IEEE 754 double-precision arithmetic,
on a single node of the MareNostrum 4 system at Barcelona Supercomputing Center [88]. The
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node contains two Intel Xeon Platinum 8160 sockets, with 24 cores per socket, and 96 Gbytes
per of DDR4 RAM. In Turbo frequency mode (3.7 GHz), the theoretical peak performance for a
single core is 59.2 GFLOPS (billions of flops per second) when using AVX2 instructions. This rate
is reduced to 33.6 GFLOPS when using a single core running at the base frequency (2.1 GHz).
At this point we note that the aggregated (theoretical) peak performance of this machine is a
linear function of the operation frequency which, in turn, depends on the specific type of vector
instructions that are executed (AVX, AVX2, AVX-512) and the number of active cores [52].

In the experiments we employed gcc 4.8.5, Intel MKL 2017.4 (with AVX2 instructions enabled),
and OmpSs-2 (mcxx 2.1.0).

5.4.3 Matrix-matrix multiplication

Our first experiment is designed to assess the performance of the implementation of the matrix-
matrix multiplication routine ( GEMM) in Intel MKL. This is relevant because it offers an upper
bound of the actual performance that can be obtained for the LU factorization of a hierarchical
matrix. This bound will be tight in case most of the blocks involved in the decomposition are dense
and the fragmentation of the blocks implicit to the matrix hierarchy is not too fine-grained.

Figure 5.4 reports the GFLOPS per core attained by Intel’s GEMM routine using 1, 8, 16,. . . , 48 cores
(of a single node with two sockets) and square operands all of the same dimension b. (Note that the
limit of the y-axis in this plot and all subsequent ones is fixed to 60, which basically corresponds
to the theoretical peak performance with 1 core.) This experiment reveals two important aspects.
First, the execution of the sequential instance of GEMM delivers 57.0 GFLOPS for a problem of
order b = 150, and 58.9 GFLOPS for the largest problem dimension, b = 1000. These values
represent 96.2% an 99.4% of the peak rate, respectively (when using AVX2 instructions). Thus,
even for problems that are rather small, it is already possible to attain a large fraction of the
peak performance when using a single thread. Second, as the number of threads/cores grows, the
multi-threaded instance of GEMM requires considerably larger problems to attain a relevant fraction
of the theoretical peak. (As argued earlier, the peak rate of this processor is “variable” because
it depends on the operation frequency and this parameter is constrained by the number of active
cores [52].)

5.4.4 Results

In this section, we first provide some references about the performance of the parallel H-LU imple-
mentation when using three simpler parallel strategies: 1) using the multithreaded version of MKL
(that is, extracting fine-grain parallelism from within BLAS kernels); 2) exploiting loop parallelism
targeting a coarser-grain layer using OpenMP; and 3) annotating tasks using OmpSs (without lever-
aging OmpSs-2 described features) and, hence, using taskwait directives. Secondly, we provide a
strong/weak scalability analysis to illustrate the performance gain when using OmpSs-2 including
weak dependencies and early release, in contrast to the same task-based parallel implementation
without leveraging the mentioned features (and consequently, incorporating the needed taskwait).
Lastly, we show the efficiency of our OmpSs-2 based parallel implementation of the H-LU in larger
test cases, in the execution of 1D, 2D, and 3D cases arising from BEM.
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Figure 5.4: Performance of the matrix-matrix multiplication routine in Intel MKL.

5.4.4.1 Basic parallel solutions

The following experiment exposes the drawback of a parallelization that simply relies on a multi-
threaded instance of the BLAS, providing initial evidence that a runtime-based approach can offer
higher performance. In order to do so, we compare three different parallelization strategies applied
to the H-LU factorization:

• MKL extracts fine-grain loop-parallelism from within the BLAS kernels only. As argued in
the introduction of this paper, this approach is rather appealing as it only requires a low
programming effort. In particular, provided the sequential routine for the H-LU factorization
already casts most of its operations in terms of BLAS, the code can be executed in parallel
by simply linking in a multi-threaded instance of this library such as that in Intel MKL. The
downside of this approach is that it constrains the parallelism that can be leveraged to that
inside individual kernels, which may be insufficient if the number of cores is large.

• OpenMP aims to exploit loop-parallelism (like MKL) but targets a coarser-grain layer, by
applying the parallelization to the loops present in the H-LU routine. To clarify this, consider
for example a single-level hierarchical matrix that is decomposed into 8 × 8 blocks. After
the factorization of the leading block of the matrix, this approach will compute in parallel
the remaining 7+7 triangular system solves in the same column+row of the matrix; and next
update the 7×7 blocks of the trailing submatrix in parallel. In summary, instead of extracting
the parallelism from within the individual BLAS kernels, this approach targets the parallelism
existing between the independent BLAS kernels (tasks) comprised by a loop.

• OmpSs discovers tasks dynamically and takes into account the dependencies among them
to schedule their execution when appropriate. (This version does not include the advanced
features supported by OmpSs-2.)

To simplify the following analysis, we will employ a hierarchical matrix with a 2 × 2 recursive
structure defined on the diagonal blocks. Concretely, starting with a hierarchical matrix of order
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n, we define a 2 × 2 partitioning, which is recursively applied to the inadmissible blocks until a
minimum leaf size is reached; see Figure 5.5. The admissibility condition we have employed in this
case is:

max{diam(Bt), diam(Bs)} ≤ η dist(Bt,Bs) where η ∈ R>0.

This type of data structure appears, for example, in BEM with d = 1, as those described in
subsection 5.4.1. For simplicity, we will also consider dense blocks only. With these considerations,
the cost of the LU factorization of a hierarchical matrix of order n is (approximately) the standard
2n3/3 flops.

Figure 5.5: Hierarchical structures of the H-Matrices employed in the evaluation of the paral-
lelization strategies (with, at most, r = 7, 6, 5 and 4 recursive partitionings of the
inadmissible blocks, corresponding respectively to the top-left, top-right, bottom-left
and bottom-right matrix representations; note that the colors indicate the amount of
levels defined in each structure).

Figure 5.6 reports the GFLOPS per core for the three different parallelization strategies described
above. The results there correspond to a square H-Matrix of dimension n = 10K with, at most,
r = 4, 5, 6 and 7 recursive partitionings applied to the inadmissible blocks until a minimum leaf size
is reached. This implies that the smallest blocks on the diagonal are of order bmin = 10K/2r ≈ 625,
312, 156 and 78, respectively. This experiment offers some interesting insights:
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• The performance of MKL greatly benefits from problems with large block sizes, which is
consistent with the trends in the GFLOPS rates observed for the multi-threaded instance of
Intel’s D GEMM in the previous experiment. This option is competitive with the task-parallel
OmpSs-based routine when the number of cores is reduced or the partitioning features large
diagonal blocks (r = 4, bmin = 625).

• The parallel performance of OpenMP is practically negligible as the GFLOPS per core de-
crease linearly with the number of cores. This is not a total surprise as, due to the 2 × 2
organization of the H-Matrix, the operations that can be performed independently are re-
duced to the two triangular system solves at each partitioning.

• When the number of cores is small, the OmpSs-based parallelization attains mild GFLOPS
rates. Here, the coarse-grain partitioning of the blocks and the existence of synchronization
points constrain the degree of parallelism that can be exploited and limit the performance of
this approach when the number of cores is large.

Figure 5.6: Performance of basic parallelization strategies applied to an H-Matrix of order n =
10K, with dense blocks, and a recursive 2× 2 hierarchical partitioning of the inadmis-
sible blocks; see Figure 5.5.

To complete the analysis of this experiment, we remark that a comparative analysis of the GFLOPS
observed in these executions with those of GEMM is delicate. In particular, the execution using a
single core can be expected to set the processor to operate at a higher frequency rate than a parallel
multi-threaded execution using several cores. Unfortunately, the exact frequency is difficult to
determine, as it depends on the number of cores as well as the arithmetic intensity of the operations
(and it can even vary at execution time).
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5.4.4.2 Scalability of task-parallel routines

Our next experiments aim to demonstrate the benefits that the WD+ER (weak dependency and
early release) mechanisms exert on the scalability of the task-parallel codes based on OmpSs-2. For
this purpose, we next conduct an analysis of the strong and weak scalabilities, using a complete
node (48 cores) and the same hierarchical matrix employed in the previous study, with a 2 × 2
recursive structure defined on the diagonal blocks and dense blocks only.

In the following analysis of strong scalability, we set the problem dimension to three different values,
n =10K, 15K and 30K, and progressively increase the amount of cores up to 48 while measuring
the GFLOPS per core. In this type of experiment, we can expect that the GFLOPS/core rates
eventually drop as the problem becomes too small for the volume of resources that are employed
to tackle it. Figure 5.7 confirms that this is the case for both implementations, which exploit/do
not exploit the new features in OmpSs-2 (lines labeled as with WD+ER and w/out WD+ER, re-
spectively). In addition, the results also show that the exploitation of WD+ER, made possible by
OmpSs-2, offers a GFLOPS/core rate that clearly outperforms that of the implementation that is
oblivious of these options.
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Figure 5.7: Strong scalability of the advanced parallelization strategies applied to H-Matrices of
order n = 10K, 15K and 30K (bmin =156, 234 and 234, respectively), with dense blocks,
and a recursive 2×2 hierarchical partitioning of the inadmissible blocks; see Figure 5.5.

For the analysis of weak scalability (see Figure 5.8), we utilize a problem of dimension n× n that
grows proportionally to the number of cores c, so that the ratio n2/c = 12K×12K holds while
c grows to 48. As the problem size per core is constant, we can expect that the GFLOPS/core
remains stable, showing the possibility of addressing larger problems by increasing proportionally
the amount of resources up to a certain point. (This is not totally exact, as the cost of the
factorization for dense matrices grows cubically with the problem dimension while, in the conditions
set for this experiment, the amount of resources only does so quadratically.) Unfortunately, the
results of this experiment reveal that the weak scalability of both algorithms suffers an important
drop as the number of cores is increased, though in the variant equipped with WD+ER this occurs
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in the transition from 8 to 12 cores while, in the implementation that does not exploit these
mechanisms, the gap is already visible in the increase from 4 to 8 cores.
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Figure 5.8: Weak scalability of the advanced parallelization strategies applied to an H-Matrix of
dimension n × n = 12K×12K per core (bmin =234 in all cases, except with 8 cores
where bmin =166), with dense blocks, and a recursive 2× 2 hierarchical partitioning of
the inadmissible blocks; see Figure 5.5.

There are two aspects to take into account when considering the GFLOPS/core rates observed
in the strong scaling analysis and, especially, the weak scaling counterpart. The first one refers
to the CPU frequency, which decreases with the number of cores that are active (see [52] and
Figure 5.4) and affects the performance of the task-parallel routines, reducing it with the number
of cores. The second one is a consideration of the structure of the hierarchical matrix employed in
these experiments (see Figure 5.5). In particular, when all the blocks are dense, and the matrix
is decomposed into a task per block in this partitioning, the result is a problem where a reduced
collection of coarse-grain tasks concentrate a large fraction of the flops. This effect is exacerbated
with the problem order (n) and its negative impact is more visible when the number of cores is
increased because the task-parallel algorithms confront then a suboptimal scenario consisting of a
very reduced number of tasks (low degree of task-parallelism) of (very) coarse-grain operations.

5.4.4.3 Parallelism of task-parallel routines with low-rank cases

Our final round of experiments assesses the performance of the WD+ER mechanism using several
BEM cases, of dimensions d =1, 2 and 3, involving low-rank blocks. The “sparsity” pattern of
these blocks is controlled via a parameter η that we set to four different values, 0.25, 0.5, 1.0 and
2.0. The structure of these cases is illustrated in Figure 5.9.

The bottom-left H-Matrix in Figure 5.9 is close to a dense one. Solving a dense problem with a
specialized version of our software is possible; however it should be more efficient to do so with a
solution that stores the matrix employing a regular column-major structure, and then use a general
runtime software specialized for dense matrices, for example, based on OpenMP. For this reason, a
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Figure 5.9: Hierarchical structure of the H-Matrix of dimension 30K employed in the evaluation
of the task-parallel routines. The red areas denote dense blocks and the number inside
the white blocks specifies the rank of the corresponding (low-rank) block. From top to
bottom: d =1, 2 and 3; and from left to right: η =0.25, 0.5, 1.0 in the first two rows,
and η =0.5, 1.0, 2.0 in the last one.

comparison of the timings and speed-up achieved in this scenario by using H-Arithmetic over full
arithmetic, as we consider that it would be out of the scope of this study.

Tables 5.1 and 5.2 report the acceleration factors (or speed-ups) attained by the task-parallel codes
with respect to the corresponding sequential code/case, using problems of order n ≈ 30K with up
to 24 cores and order n ≈ 42K with up to 48 cores, respectively.

These final experiments illustrate the performance advantage of exploiting the WD+ER also for
H-Matrices with low-rank blocks. In general, the speed-up increases with the ratio of dense blocks,
reporting notably high values for d = 3 (provided the number of cores is not too large compared
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Figure 5.10: Hierarchical structure of the H-Matrix of dimension 42K employed in the evaluation
of the task-parallel routines. The red areas denote dense blocks and the number inside
the white blocks specifies the rank of the corresponding (low-rank) block. From top
to bottom: d =1, 2 and 3; and from left to right: η =0.25, 0.5, 1.0 in the first two
rows, and η =0.5, 1.0, 2.0 in the last one.

with the problem dimension), and lower for those cases with d = 1,2. These differences in the
speed-up can be justified by analyzing the structure of the matrices. Concretely, for d = 3, the
recursive partitioning of the inadmissible blocks leads to leaf blocks which are quite balanced; this
entails more uniform task granularities than in d = 1,2 cases. Moreover, in the d = 3 case, there
exists a larger amount of blocks, which results into a larger number of tasks and helps to expose
a higher concurrence degree in that particular case. In some cases we even observe a super-linear
speed-up, due to cache effects.
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WD+ Seq. Speed-up with #cores
η d ER? time 4 8 12 16 20 24

0.25
1

No
89.2

3.51 5.24 5.58 5.70 5.70 5.69
Yes 4.05 7.82 11.56 14.62 17.37 19.04

2
No

118.9
3.70 6.12 7.28 7.79 7.88 8.02

Yes 3.96 7.64 10.99 13.55 17.36 18.49

0.50

1
No

38.1
2.60 2.74 2.73 2.71 2.71 2.70

Yes 3.92 7.45 9.57 9.74 9.69 9.45

2
No

37.0
3.04 3.68 3.82 3.90 5.74 3.92

Yes 3.96 6.87 8.81 9.68 10.18 10.44

3
No

1,099.2
4.00 7.83 13.48 14.44 16.88 18.71

Yes 4.00 7.99 11.85 15.63 19.13 21.57

1.00

1
No

12.6
1.55 1.58 1.57 1.57 1.56 1.57

Yes 2.50 2.46 2.48 2.46 2.44 2.43

2
No

12.0
1.92 1.99 2.00 2.00 1.99 2.00

Yes 3.31 4.22 4.38 4.50 4.44 4.36

3
No

1,049.8
3.96 7.54 10.84 13.28 15.64 17.63

Yes 4.03 7.91 14.32 15.55 18.99 21.73

2.00 3
No

204.1
3.59 5.78 7.39 7.88 8.26 8.44

Yes 4.99 7.87 11.27 14.65 17.33 17.83

Table 5.1: Execution time of the sequential algorithm in H2Lib (in sec.) and parallel speed-up
of the advanced parallelization strategies applied to an H-Matrix of order n ≈ 30K
(bmin =234), with dense and low-rank blocks; see Figure 5.9.

WD+ Seq. Speed-up with #cores
η d ER? time 8 16 24 32 40 48

0.25
1

No
57.5

4.64 5.18 5.17 5.16 5.04 5.20
Yes 7.93 14.51 16.89 18.26 18.28 17.56

2
No

300.8
6.04 7.68 7.82 7.95 7.97 7.93

Yes 7.81 14.32 15.52 16.81 17.45 17.91

0.50

1
No

21.7
2.81 2.96 3.01 2.96 2.96 2.95

Yes 6.82 8.11 8.22 7.93 7.96 7.91

2
No

102.4
3.79 4.07 4.10 4.08 4.08 4.10

Yes 6.95 9.18 9.63 9.84 9.89 9.95

3
No

3,819.8
7.78 14.73 19.82 25.32 29.36 31.99

Yes 7.92 15.82 22.05 29.23 36.33 42.05

1.00

1
No

10.9
1.89 1.91 1.91 1.89 1.90 1.90

Yes 4.98 5.01 4.89 4.80 4.75 4.76

2
No

34.5
1.76 1.77 1.76 1.76 1.76 1.76

Yes 3.27 3.37 3.35 3.32 3.30 3.34

3
No

1,332.8
7.38 12.82 16.41 18.83 20.53 21.44

Yes 7.91 15.54 21.79 28.69 35.19 40.26

2.00 3
No

291.1
5.73 7.43 8.03 8.13 8.30 8.31

Yes 7.86 14.89 19.73 24.03 26.87 27.87

Table 5.2: Execution time of the sequential algorithm in H2Lib (in sec.) and parallel speed-up
of the advanced parallelization strategies applied to an H-Matrix of order n ≈ 42K
(bmin ≈ 500), with dense and low-rank blocks; see Figure 5.10.
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5.5 Concluding remarks

In this chapter, we have demonstrated a fair parallel efficiency for the calculation of the H-LU
factorization on a state-of-the-art Intel Xeon socket with 24 cores. A key component to attain this
high performance is the exploitation of weak dependencies and early release introduced in OmpSs-2.
Armed with these mechanisms, the OmpSs-based parallel codes can cross the dependency domains,
discovering and exploiting a notably higher degree of task-parallelism, which results in higher
performance in the execution of 1D, 2D and 3D cases arising from BEM.
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Chapter 6

Moving further: H-Chameleon, a parallel H-library
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6.1 Introduction

The analysis in Chapter 4 confirmed that task-parallelism is a suitable approach to accelerate the
calculations with H-Matrices. In consequence, we opted for parallelising the implementation of
the H-LU in H2Lib employing OmpSs-2 as shown in Chapter 5, and we achieved a fair parallel
performance (concretely, a speedup of 42× when using up to 48 cores in the best case). However,
accomplishing that efficiency would have not been possible without using weak dependencies and
early release of tasks, together with a good annotation of tasks with regards to (nested) regions
instead of only representatives. This exposes two issues that should be emphasized: 1) weak
dependencies and early release are only available in OmpSs-2, while other widely used programming
models, such as OpenMP, do not include them and, thus, cannot be employed with the expectation
of reaching such performance; and 2) the complexity of pure H-Matrices implies dealing not only
with recursion and nesting (both in terms of algorithms and the data itself), but also with data
locality and re-sizing operations due to the re-compression of certain low-rank blocks.

With these lessons learnt, we decided to explore a strategy that allowed us to 1) leverage the task-
parallelism when applied to regular tiles in contrast to extracting parallelism over many different
block sizes and the nested structure; and, at the same time, 2) preserve the benefits of using
H-Matrices, that is, maintain a logarithmic cost both in terms of storage and execution time. In
summary, we wanted to identify more regular tasks (both in terms of size and desirably load), while
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leveraging the advantages that make an H-Matrix profitable in order to produce efficient solvers
for linear systems arising in BEM.

Thus, the main goal of the work presented in this chapter is to validate whether it is possible
to obtain an efficient open-source library for H-Matrices at a small development cost leveraging
existing libraries, software, programming models and runtime systems to scale H-Matrices solvers,
via the classic tile-based approach commonly used in dense linear algebra, in order to deliver good
parallel performance. The work that we will describe in this chapter summarizes the effort of
building H-Chameleon, an extension of the Chameleon library [2, 3, 38], so that combined with
Hmat-oss library [64, 86], this is capable of composing factorizations such as the H-LU over a
particular type of matrices that we named Tile H-Matrices. In short, these special structures
are matrices that have been subdivided into regular tiles in a first level, with each of those tiles
converted into an H-Matrix.

The rest of the chapter is structured as follows: we first describe the basics of H-Chameleon, that
is, the building blocks employed to form the new library, in particular the storage layout and
clustering algorithm, necessary for storing and building the Tile H-Matrices respectively, as well
as the kernels that operate over H-Matrices; next we analyse the performance analysis results we
have obtained from the experiments with H-Chameleon; and finally we highlight some remarks.

6.2 The basics of H-Chameleon

Improving the performance ofH-Arithmetic operations is an active area of research that has recently
produced a fair number of libraries, as well as many interesting algorithmic developments (see
Section 1.2). These research efforts are surely motivated by the relevance of the applications
that can be efficiently tackled with H-Matrices, but also because of the complexity and benefits
of H-Arithmetic. On the one hand, H-operations require dealing with both low-rank and dense
blocks – which often implies re-compressing some of the intermediate results – while following a
nested structure, and usually a recursive algorithm. On the other hand, in general, the definition
and storage of H-Matrices leads to complex data accesses. This fact promoted the appearance
of alternative structures, such as BLR [10, 89, 103] and lattice H-Matrices [68, 116], that trade
off slightly higher time and memory costs in exchange for superior simplicity. One asset of these
approaches it that they make it easier to exploit parallelism, as they present more regular structures.

In the work presented in this chapter, we combine existing efficient numerical kernels for hierarchi-
cal, low-rank and full-rank matrices, together with an efficient task-based implementation designed
to solve dense linear systems. As we will show, this allows us to leverage modern programming
models and runtime systems yielding to a single open-source solution that achieves fair parallel
performance, while avoiding re-implementing pure H-Arithmetic. Concretely, our work integrates
the following three components:

• For H-Arithmetic, we choose the Hmat [64, 86] kernels to operate with low-rank blocks, as
they have been proved to offer fair efficiency in industrial applications [86]. This is a library
for H-Matrices maintained by Airbus, whose public version (Hmat-oss) is sequential.

• In addition, for the task-based implementation of matrix operations, we leverage the Chameleon
library [2, 3, 38], a dense linear algebra package that relies on the sequential task flow pro-
gramming model to schedule tiled algorithms on top of runtime systems such as OpenMP [99],
PaRSEC [66], StarPU [17, 110], or Quark [117].
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• Finally, we focus on the specific StarPU runtime system [17] support of the Chameleon library
to exploit task-parallelism in our solution. StarPU is in charge of issuing the tasks to the
system cores while fulfilling inter-task dependencies.

Our strategy to re-utilize structures that are similar to H-Matrices while reducing their complexity
is close to what is referred to as “lattice H-Matrices” in [68, 116]. As opposed to those works,
in our case we need to split the initial matrix into regular tiles (i.e., tiles of the same size) to
meet Chameleon’s algorithmic requirements, and each of these tiles are individually turned into
H-Matrices. We will refer to our structure as a “Tile H-Matrix”.

In the next sections, we present details about the building blocks, the data layout, the clustering
algorithm implemented to build Tile H-Matrices, and the kernels from Hmat-oss that we invoke
from Chameleon.

6.2.1 The building blocks

H-Chameleon relies on three building blocks or components: the dense linear algebra library
Chameleon, the runtime system StarPU, and the H-Matrices library Hmat-oss.

Chameleon [2, 3] is an open source software for dense linear algebra written in C. It relies on the
sequential task flow programming model supported by runtime systems such as OpenMP, StarPU,
PaRSEC-DTD, and Quark. All dense linear algebra algorithms are expressed as tile algorithms with
sequential tasks that are submitted to the underlying runtime system. The runtime automatically
infers the data dependencies in these algorithms thanks to keywords that specify the data accesses.
Chameleon covers all BLAS, as well as one-sided factorizations (Cholesky, LU, QR), and supports
multiple runtime systems to schedule the tasks. StarPU is one of them, and the most integrated
one into Chameleon, besides being the second building brick of our proposal.

StarPU provides tools to describe the pieces of data, such that the data transfers from device
to device or node to node, are transparent to the algorithm developer. This is a key feature
when developing H-Matrices algorithms, as it will suffice to provide the runtime with pack/unpack
functions in order to transfer data (if needed).

Hmat-oss is the open source version of the Hmat library developed by Airbus. It is a sequential
library written in C++. This library provides up-to-date implementations of H-Matrix operations
and techniques, clustering algorithms and orderings, and real world applications examples. The
non-public Hmat library will be employed as a performance reference or baseline in the experiments
shown later in this chapter.

6.2.2 The storage layout for Tile H-Matrices

The baseline realization of Chameleon only supports dense matrices, which are stored employing a
descriptor that specifies, among other information, the matrix dimensions, number and size of the
tiles which define the matrix partitioning, pointers to data addresses in memory, and some control
parameters to test certain features (e.g., whether there is an overall data pointer).

In order to accommodate Tile-H Matrices in our hierarchical extension of Chameleon, we have
expanded the reference descriptor structure to accomodate a collection of tiles. Each of these tiles
is potentially an H-Matrix, a low-rank block, or a full-rank matrix. To do this change, we enriched
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the Chameleon matrix descriptor (Listing 6.1) with an array for the new tile structures, and a
helper function, get blktile, to extract the correct tile pointer from the tile indices in the matrix.

1 typedef s t ru c t c h a m e l e o n _ d e s c _ s {

2 ...

3 b l k t i l e _ f c t _ t g e t _ b l k t i l e ;

4 C H A M _ t i l e _ t * tiles ;

5 ...

6 } C H A M _ d e s c _ t ;

Listing 6.1: CHAM desc t datatype modifications to handle more generic tile formats.

In addition to the main data structure, the tile description was transformed from the simple data
pointer used in runtime systems, such as OpenMP or Quark, to handle the dependencies into a more
complex structure that was able to handle different data formats. The new datatype, CHAM tile t

(Listing 6.2), allows to simply store different matrix formats, defined by the format field, and a
pointer to the matrix, mat, which can be either a full-rank matrix, or a more complex datatype,
such as an H-Matrix coming from an external library. The data dependencies that were initially
tracked down using the pointer to the data in the full-rank matrix are thus now followed by the
pointer to this tile descriptor. This means that all the algorithms from the Chameleon library
could work out-of-the-box with an H-Matrix format, assuming that there exist kernels to handle
this type of matrices.

1 typedef s t ru c t c h a m e l e o n _ t i l e _ s {

2 int8_t format ;

3 i n t m, n , ld;

4 void * mat ;

5 } C H A M _ t i l e _ t ;

Listing 6.2: CHAM tile t data structure to accommodate any format of tiles in the Chameleon
library.

Finally, the global representation of the matrix that links a Chameleon descriptor (CHAM desc t)
with an Hmat-oss descriptor (hmat matrix t) in a unique element is done via an additional new
data structure (Listing 6.3).

1 s t ruc t H C H A M _ d e s c _ s {

2 C H A M _ d e s c _ t * super ;

3 h m a t _ c l u s t e r _ t r e e _ t ** clusters ;

4 h m a t _ a d m i s s i b i l i t y _ t * a d m i s s i b i l i t y C o n d i t i o n ;

5 h m a t _ i n t e r f a c e _ t * hi;

6 h m a t _ m a t r i x _ t * hmatrix ;

7 i n t * perm ;

8 };

Listing 6.3: HCHAM desc s structure created to handle the complexity of the Tile-H structure.

In this new datatype, super represents the Chameleon library tile descriptor; clusters stores
an array of the CTs created to partition the original data; admissibilityCondition contains
this parameter value, necessary to determine whether a certain block is already admissible (and
consequently converted to a low-rank block) or needs to be re-partitioned; hi is the interface defined
in the Hmat-oss library to deal with H-Matrices, which contains general information (for example,
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the clustering algorithm needed to construct the H-Matrix; and data precision format); hmatrix
contains the H-Matrix built employing Hmat-oss construction kernels (which is the descriptor of
the library whose content will be employed in the Hmat-oss kernels operations); and perm stores
the permutation array.

6.2.3 The clustering algorithm to build Tile H-Matrices

In order to use Tile-H matrices in the Chameleon library, we need an adapted clustering tree.
Indeed, the Chameleon library works exclusively on regular tile sizes, with the exceptions of the
padding row and column. Thus, it is not sufficient to flatten the first levels of the clustering tree
as it is done in [116]. We extended the Hmat-oss library with a recursive tile clustering algorithm,
named “NTilesRecursive”, that recursively divides a given CT into clusters that follow a regular
partitioning into tiles of size NB.

This process is illustrated in Algorithm 8, and the parameters and functions employed are described
next:

• CT is the CT to partition;

• axis is the main axis of the current slice, which is exploited by the geometric clustering
techniques to split along the largest dimension;

• NB is the desired tile size;

• offset represents the coordinates (values) of the first value in the current CT;

• size is the size of the current CT;

• the function slice returns a portion of the current cluster according to the given offset and
size;

• the function largestDimension returns the largest dimension in the current cluster; and

• the function sortByDimension orders the current cluster of unknowns according to the given
dimension;

At each level, this function performs a pseudo-bisection aligned with the tile size along the largest
dimension and returns the concatenation of the recursive call to each subset of unknowns. This
provides a regular clustering of the unknowns that matches both the constant size requirement of
the Chameleon library and the Tile-H format. A median bisection algorithm is then called within
each cluster to refine the clustering of each tile.

6.2.4 The Hmat-oss kernels

In order to implement a hierarchical LU factorization, we leveraged a number of sequential numerical
kernels from the Chameleon and Hmat-oss libraries, which provide the necessary operations to
factorize our Tile-H matrix. To this end, we modified the main kernels of the Chameleon library
because, like the data dependencies tracking system, they integrated pointers to full-rank matrices.
To limit the changes to the library, we just introduced an intermediate layer to enable the switch
between full-rank and H-kernels. Thus, the task insertion functions are not modified, and the
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Algorithm 8 NTilesRecursive clustering algorithm to build Tile H-Matrices

Ensure: A (sub)partitioned CT defining the Tile H-Matrix structure.
1: procedure NTilesRecursive(CT, NB, offset, size, axis)
2: nt = d size

NB e
3: if nt == 1 then return CT
4: end if
5: dim = getLargestDimension(CT, axis)
6: sortByDimension(CT,dim)
7: offsetL = offset
8: sizeL = NB ∗ dnt

2 e
9: offsetR = offset + sizeL

10: sizeR = size− sizeL
11: CTL = slice(CT, offset, offset + sizeL)
12: L = NTilesRecursive(CTL, NB, offsetL, sizeL, dim)
13: CTR = slice(CT, offset + sizeL, sizeR)
14: R = NTilesRecursive(CTR, NB, offsetR, sizeR,dim) return (L,R)
15: end procedure

CHAM tile t datatype helps us to switch from one kernel type to another, thanks to the format

field.

On the Hmat-oss library side, we provide a similar interface to BLAS for GETRF, TRSM, and GEMM

operations, and an intermediate internal layer which allows us to switch from thisH-Matrix interface
to the more classical BLAS interface.

6.3 Performance analysis

In this section, we first present the source environment for the data, and a description of the
PlaFRIM platform used for the experiments. Afterwards, we analyze the parallel performance of
H-Chameleon on a multicore system.

6.3.1 Experimental context

The test case used is the Test FEMBEM [111] application, which generates a real or complex
matrix, which has features similar to real industrial applications in aeronautics. For a number of
unknowns n, we create a cloud of points (xi)1≤i≤n located on the surface of a cylinder of chosen
height and width, as illustrated in Figure 6.1. These points are equally spaced in both directions on
the cylinder surface. Then, we define the interaction kernel between two points xi and xj separated
by a distance d = |xi − xj |, with K(d) = exp(ikd)/d in the complex case, and K(d) = 1/d in the
real one. In the complex case, k plays the role of a wave number, and it is chosen with the “rule
of thumb” of having 10 points per wavelength, which is commonly used in the wave propagation
community. The singularity at d = 0 is simply removed by setting d equal to half the mesh step in
that case.

In the real case, the rank of the H-Matrix blocks is mostly independent of their sizes, and therefore
most of the data (in terms of storage) is located near the diagonal of the matrix. In the complex
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Figure 6.1: Illustration of the test case used in the experiments. On the left, the mesh of the cylin-
der with the distribution of the unknowns on the surface for 10K points. In the middle,
the associated compressed real matrix in the HMAT format (classical H-Matrix). On
the right, the associated compressed real matrix in the proposed fixed-sized Lattice or
Tile-H based matrix format. In the matrices, low-rank blocks are represented in green
(with a number specifying the rank), while dense blocks are coloured in red.

case, the rank grows with the size of the blocks, and the data is much more evenly distributed in
the matrix. Hence, the amount of storage and work is far more important in the complex case, and
the work-load distribution is much more challenging too.

6.3.2 Experiments platform

All our experiments have been performed on the PlaFRIM [104] test bench, and more specifically
on the bora cluster. Each node is equipped with two Intel Xeon Skylake Gold 6240 processor
(with 18-cores per processor), running at 2.60 GHz, and equipped with 192 GB of memory. The
application is compiled with GCC 9.2.0, and Intel MKL 2019 is used for the BLAS and LAPACK
kernels. StarPU 1.3.0 is used, and our proposal is built on revisions 33aa719 of Hmat-oss [64, 86]
and 08cf0cd1 of Chameleon [2, 3, 38]. (Note that, when evaluating H-Chameleon, its performance
results are compared to the H-Mat proprietary library, and not to Hmat-oss.)

6.3.3 Experiments

Our first experiment aims to demonstrate that our implementation, though simpler than construct-
ing a classical H-Matrix, still enables a good compression ratio. To this end, Figure 6.2 shows a
comparison between the Hmat-oss (dashed lines) and H-Chameleon (full lines) compression ratios
for real (left plot) and double precision (right plot) precisions, employing different matrix dimen-
sions, from 10K to 200K, and various tile sizes, from 500 to 10K. The results show a negligible
difference in all cases, so that we can affirm that the clustering with fixed tile sizes does not impact
the compression ratio on the studied test case, and can even provide better results than the classical
median bisection used in Hmat(-oss).

Second, as precision is the bargaining chip in H-Scenarios to permit time and memory savings, it
is also necessary to control that the proposed clustering does not affect the numerical accuracy
of the H-Chameleon H-LU factorization operation. To prove this, Figure 6.3 presents forward
error measurements, defined as ||x − x0||f/||x||f , for different H-LU executions with the same
matrix configurations employed in the previous experiment on the compression ratio. Note that
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the accuracy parameter is set at 10−4, both in Hmat and H-Chameleon. The largest observable
differences are around 1.5 · 10−4, which means we stay within the same order of magnitude.

Figures 6.4 and 6.5 offer multicore parallel performance comparisons (employing up to 35 threads),
for various matrix dimensions, from 10K to 200K, both in real and complex double precision
scenarios. These figures study different scheduling strategies proposed by the StarPU runtime
system, while comparing their performance to that provided by the StarPU based implementation
of the (parallel closed-source) Hmat library that deals with all the fine grain dependencies.
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Figure 6.2: Comparison of the compression ratio between the Hmat-oss original clustering algo-
rithm (dashed line) and that obtained with H-Chameleon (full lines), as function of
the tile size, for real precision (left) and complex precision data (right).
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Figure 6.5: Comparison of the multicore parallel executions between H-Chameleon and Hmat-
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Three scheduling strategies are studied:

• The Work Stealing (WS) strategy uses a queue per worker and schedules the tasks on the
worker which released them by default. Whenever a worker becomes idle, it steals a task from
the most loaded worker.

• The Locality Work Stealing (LWS) strategy similarly uses a queue per worker that is now
sorted by the priorities assigned to the tasks. New ready tasks are scheduled on the worker
which released them by default. Whenever a worker becomes idle, it steals a task from
neighbor workers while respecting the priority order.

• The priority-based (prio) approach uses a central task queue in which ready tasks are sorted
by decreasing priority. All threads try to pull work out of this central queue.

Note that for our proposed implementation we never employ more than 35 worker threads to keep
a core dedicated to the task submission. The experiments have shown that this was more efficient
than oversubscribing the system with 36 worker threads plus the thread in charge of the task
submission.

In theH-Chameleon implementation, all tile sizes presented in the compression and accuracy curves
were tested and we chose the best one for each dimension and precision.

In most of the test cases, we observe that H-Chameleon presents slower execution times when using
1, 2 or 3 threads. As the tile size is optimized for the 35-thread case, this induces an overhead of
memory and required flops, which impacts the executions with a low number of threads. However,
when a larger number of threads is used, this is compensated by the higher degree of parallelism it
exposes, and so it enables a good scalability of the library. Hmat is not impacted by the tile size
and manages to deliver higher performance for the execution on the small numbers of threads.

The comparison of the real and complex double precision results shows that Hmat is superior in the
complex cases, while H-Chameleon shows a better scaling in the real ones. This can be explained
by the difference in the number of operations of the two test cases, due to the arithmetic and to
their configuration, as previously explained in Section 6.3.1. In the complex-arithmetic scenario,
the overhead of the kernels is high enough to amortize the overhead of handling the large number
of dependencies, which benefits Hmat. However, in the real case, the cost of handling all fine grain
dependencies becomes too high with respect to the cost of the computational tasks, and therefore
H-Chameleon outperforms Hmat.

The comparative study of the StarPU scheduling strategies in these figures reflects that, in general,
the three variants deliver similar execution times. However, the strategies based on priorities
provide higher performance, and the simple priority strategy turns to be the best option in most
of the cases, except for the smaller dimensions. In the real double precision cases with N = 10K
and N = 20K, the priority scheduler does not provide the fastest solution, as the computational
tasks are too small and the idle threads create a contention in the single global task queue of this
scheduler.

6.4 Concluding remarks

We have proposed an extension of the Chameleon library that takes advantage of H-Matrices
and H-Arithmetic to accelerate the execution time and reduce the memory footprint of the LU
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factorization. More precisely, our approach takes advantage of the sequential kernels in Hmat-oss
to perform H-Arithmetic, and the task-based approach of Chameleon to exploit parallelism. The
original large matrix is split into a set of tiles, where each tile can be represented either as a dense
or an H-Matrix. Then, a runtime system, as StarPU does in our experiments, schedules the tasks
on the system, following the approaches developed in Chameleon for the dense case.

We have conducted experiments on a multicore machine for a large real-life case, and our results
have demonstrated that this approach is competitive with the proprietary Hmat library. Thus, it
provides one of the first open-source library that is able to reach a good level of performance using
H-Matrices. A main asset of the approach is that it will directly benefit from all improvements on
the runtime side, as it is now integrated in the Chameleon library.
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Last remarks
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7.1 Concluding remarks and main contributions

The main goal of this thesis was designing, implementing and evaluating implementations for H-
Arithmetic operations capable of being efficiently executed in multicore architectures by leveraging
task-based parallelization strategies.

The lack of open source packages for solving H-Arithmetic operations efficiently in multicore ar-
chitectures, together with the increasing popularity of task-based parallel programming models to
target this type of platforms, motivated us to analyse whether task-based parallel strategies could
be an appropriate solution for the algorithms designed to operate with H-Matrices.

The following list summarizes the main contributions and associated conclusions that derive from
this dissertation:

• In the beginning, we implemented prototype versions of the H-LU and H-Cholesky opera-
tions with the purpose of evaluating (in a simplified scenario) whether task-based parallelism
was suitable for parallelising operations with H-Matrices. From the design of the mentioned
prototypes, we learnt that the packages to build, manipulate, and operate (in parallel) with
H-Matrices demand special considerations and requirements from three different perspec-
tives: storage, performance, and parallel strategies. The main reason behind these necessities
is the nested structure inherent to H-Matrices which, in turn, naturally leads to recursive
formulations of the algorithms to perform H-Arithmetic operations.

103



CHAPTER 7. LAST REMARKS

• From that initial work, we were able to confirm that task-based parallelism is suitable not
only for parallelising implementations of the H-Arithmetic operations, but also that it over-
comes the alternative classical parallel strategies (such as the utilization of multithreaded
implementations of BLAS, or loop-parallelism) when operating with H-Matrices.

• The next important contribution of this dissertation is the parallelization of the H-LU pro-
vided in H2Lib. The main conclusion from that work is that an approach that performs
a traditional annotation of dependencies supported by OpenMP and OmpSs presents some
limitations which force us to employ barriers that constrain the parallel efficiency. In con-
trast, the OmpSs-2 programming model provides new features that allow us to achieve a fair
parallel efficiency.

• The last contribution is the design and implementation of H-Chameleon. The associated key
conclusion is that it is possible to leverage the advantages of H-Matrices (in terms of storage
and computations savings) while simplifying/stabilising the construction of the associated
matrix structure. By using Tile H-Matrices, we were able to combine the functionalities in
the Chameleon and Hmat-oss packages functionalities to create H-Chameleon. This open-
source library is competitive with the proprietary Hmat library in multicore architectures,
providing a good parallel performance.

In the following subsections, we provide some additional remarks detailing these contributions and
conclusions.

7.1.1 The first prototypes: H-Matrices special requirements

As described in Chapter 4, the first objective of this thesis was to evaluate whether the task-parallel
strategies were suitable for algorithms that operate with H-Matrices. In order to discern that, we
designed and implemented prototype H-Matrices, in which we kept the nested structure of blocks
that characterizes H-Matrices partitionings, but avoided including low-rank blocks to simplify the
design and implementation of the H-LU and H-Cholesky operations. In order to reproduce the load
imbalance between operations that involve low-rank blocks and those which deal with dense blocks,
we included dense and null blocks in our prototype structure, and generated prototype H-Matrices
with different levels of dispersion (based on the amount of null blocks).

In the process of designing how to build, store, and update our prototype H-Matrices, we discovered
that the structure to store them introduces several requirements:

• The hierarchy of the matrix needs to be efficiently defined in such a way that it is easy and
fast to find parent/descendant blocks (if any) of each block.

• Leaf (not partitioned) vs. non-leaf blocks require different information to be stored. While
for the first ones, the dimension and entries are stored, the later ones need to have a list of
pointers to each of the sub-blocks.

• As a consequence of the previous requirements, the prototype storage definition needed to
include three different structures to respectively represent non-leaf blocks, null blocks, and
dense blocks. Moreover, auxiliary structures (such as arrays to point to the different paren-
t/descendant blocks) were also necessary to define the matrix hierarchy.
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• Thanks to our simplified version of H-Matrices, we stored all the entries in a pre-adjusted
array. The adjustment performed a preprocessing of the data solving a symbolic LU to
detect which null blocks would be filled in during the H-LU operation, with the purpose of
making room for the new values (this is, including all the needed zeros in the values array).
This adjustment eases the parallelization, as all the data is stored in contiguous positions of
memory. Nevertheless, when operating with pure H-Matrices this cannot be done, and we
realized that each leaf block would need to store its values independently from those of other
blocks, occupying non-contiguous positions of memory.

• We needed to define our own storage ordering: the BDL format, which can be understood as
a CMO storage ordering that takes into account the nested structure of blocks when ordering
data in memory.

Besides the mentioned data layout requirements, the algorithms to solve the H-LU and H-Cholesky
also showed some issues to consider. Theoretically, they are equivalent to the well-known tile-based
ones to compute the LU and Cholesky counterparts, and the only modifications that should be
applied are simple adjustments to take into account the presence of different block types and mixed
sizes. However, the prototype implementations of the H-LU and H-Cholesky revealed some issues
that increased the complexity of designing the algorithms:

• As there are different block sizes in the H-Matrix and the partitioning is not regular (that
is, not all the blocks are divided into the same number of levels), some of the leaf blocks
need to be treated as if they were sub-partitioned when performing operations that involve
smaller block sizes. As a consequence, each time an operation is performed, all the involved
leaf blocks need to be partitioned into blocks whose size is equivalent to the smallest block
size involved in the operation.

• An alternative to the additional partitioning, which may seem artificial, is re-formulating
the storage layout. However, similar data representations are defined when utilizing pure H-
Matrices, and changing the storage layout would mean neglecting the hierarchy that charac-
terizes H-Matrices, which is much more counter-productive than performing some additional
partitionings.

7.1.2 Task-parallelism offers a fair performance when applied to the H-LU

We chose the OpenMP and OmpSs programming models to evaluate the suitability of task-
parallelism in H-Matrices scenarios. Even with the limitations of our prototype H-LU and H-
Cholesky, we were able to attain a fair performance that provided initial evidence of the benefits
of this strategy in the context of H-Matrices. Moreover, compared to the classical alternative
approaches, such as loop-parallelism or the inclusion of Intel MKL multithreaded calls to BLAS
routines, task-parallelism was more efficient.

A remarkable side effect of the artificial sub-partitionings mentioned in the previous subsection is
the fact that finer grain tasks are identified, and a higher concurrency degree can be exposed when
using task-based parallel approaches if the sub-operations are annotated as tasks, instead of doing
so for the original operations defined by the algorithm. However, the fact that data regions of
different sizes are annotated in the tasks dependencies implies some additional issues to consider:
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• The Program Objects that are associated with each data portion when annotating depen-
dencies cannot be utilized for different lengths. If the prototypes were not simulating such a
simple scenario, this fact would have forced us to artificially partition even more leaf blocks,
not only to the smallest block size in each specific operation, but to the smallest block size
existing in the H-Matrix.

• The recursive nature of the (prototype) H-LU and H-Cholesky forces us to include barriers at
the end of each level of the hierarchy to ensure the proper fulfillment of the data dependencies
of nested tasks. This is a performance limitation that we detailed in Chapter 5 instead of
Chapter 4, because with our prototypes we were pursuing to simply test task-parallelism,
without going further in the optimization of the tasks’ execution flow. Nevertheless, this
issue was already observed in the design of the prototype H-LU and H-Cholesky and is worth
it mentioning as a detected issue.

7.1.3 Leveraging OmpSs-2 when parallelising the H-LU in H2Lib

Equipped with the lessons learnt from the prototype evaluations, we opted for parallelising the H-
LU in the H2Lib package. The initial analysis of the library storage layout and algorithms revealed
the following insights:

• The structures to store the H-Matrices in H2Lib were similar to our prototype ones, with the
main difference being the fact that matrix entries were stored in each of the structures defining
leaf blocks, which means that the values are not in contiguous positions of memory unless
they belong to the same not-partitioned block. Key structures such as arrays of pointers to
reference sub-blocks of non-leaf blocks are also used in the library, in a similar way to what
we did for our prototypes.

• The similarities with our prototype implementation made us infer that our task-parallelism
conclusions would probably apply to the H-LU in H2Lib.

• As low-rank blocks and the associated H-Arithmetic operations are indeed part of H2Lib,
compared to our prototypes, the algorithms’ complexity is higher in terms of the variety of
operations and combinations when performing the sub-operations that compute the H-LU.

• The recursive algorithm nature still applies, and consequently the basic task-parallelism of-
fered by OpenMP and OmpSs is limited to what can be concurrently executed at each level
in the hierarchy, due to the need of including barriers to ensure the correct treatment of data
dependencies.

The OmpSs-2 programming model gave us the possibility of leveraging novel task-parallelism fea-
tures that allowed us to avoid the need of including barriers at the end of each recursion level.
Particularly, we were able to execute tasks belonging to different levels thanks to the possibility of
annotating weak dependencies and through them informing the runtime that the associated task
does not effectively modify the data, but some of its sub-tasks do, together with the early release
of tasks. With the mentioned features we increased the concurrency degree thanks to anticipating
the execution of tasks that belong to different levels or different parent blocks, executing them as
soon as the required data is ready.
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The performance evaluation was conducted in the Marenostrum supercomputer at BSC, and we
employed data arising from BEM in 1D, 2D and 3D scenarios. We reached a maximum speedup of
42× when utilizing up to 48 cores.

7.1.4 H-Chameleon: combining Tile H-Matrices, Chameleon and Hmat-oss

We are satisfied with the performance offered by our parallel version of the H-LU included in the
H2Lib package. However, the features we need to be able to attain the mentioned efficiency are
only available in the OmpSs-2 programming model, and the complexity of properly annotating all
the task (weak/strong) dependencies and going through the pure H-Matrices hierarchy is high. For
this reason, we considered exploring an approach that simplified the data layout in such a way that
conventional tile approaches could be directly applied and thus the parallelization process could be
easier and faster, while still offering efficient results, competitive with the ones attained by pure
H-Matrices solutions. To this end, we designed Tile H-Matrices, which in essence are regular tiled
matrices in which each tile contains an H-Matrix; this is, matrices that are partitioned into regular
blocks (tiles) at the first level, and where each tile is then converted into an H-Matrix.

From the perspective of the design and implementation, we decided to leverage the Chameleon and
Hmat-oss packages to respectively tackle the tiled part of the new structure (this is, the first level
of the partitioning) and solve the H-Arithmetic operations. Chameleon is a dense linear algebra
software that has shown good efficiency when solving tiled implementations of dense factorizations.
Hmat-oss is the set of sequential routines in which Airbus’ Hmat proprietary library is based, which
is also highly efficient. H-Chameleon was created thanks to the definition of new data structures, the
inclusion of certain wrappers to communicate both libraries, and the definition of a new clustering
algorithm to define the partitioning to build Tile H-Matrices.

Our evaluation of H-Chameleon offers the following conclusions:

• The compression and precision rates offered by Tile H-Matrices are almost equivalent to the
ones that characterise pure H-Matrices.

• By leveraging the StarPU runtime to perform the parallel executions in multicore architec-
tures, we are able to offer an efficient solver for problems arising from BEM. We included
different priorities in the sub-operations that conform the H-LU and tested different schedul-
ing strategies in order to attain the best possible efficiency. The best strategy was the one
that takes priorities into account.

• The experiments conducted in a multicore machine, for a large real-life case, demonstrated
that H-Chameleon is competitive with the proprietary Hmat library. Thus, it provides one of
the first open-source library that is able to reach a good level of performance usingH-Matrices.

• Two non-despicable side effects of employing Chameleon and Hmat-oss libraries are that 1)
H-Chameleon will directly benefit from all improvements on the runtime side, as our library
is now integrated in the Chameleon library; and 2) any optimizations made in the H-Matrices
kernels will also improve the performance of H-Chameleon.
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7.2 Related publications

In this section, we list the publications associated to the contributions of this dissertation, which
include papers submitted to international conferences and indexed journals, all of them validated
through peer-review processes. First, we enumerate the scientific contributions directly related
to the dissertation. Afterwards, we list other works that have also been conducted and either
have a relationship with linear algebra and task parallelism, or reflect educational research efforts.
Together with the scientific research carried out to reach the objective of implementing efficient
parallel algorithms for H-Matrices, during the development of this thesis, 170 hours were taught in
bachelor degrees in Engineering, and this is the reason why Computer Science educational research
studies were also performed and are mentioned as indirectly related publications.

7.2.1 Directly related publications

Chapter 4. It all began with prototypes

The first prototype implemented in the context of this thesis was the one to solve the H-LU,
and afterwards we also implemented the prototype H-Cholesky. As mentioned in Chapter 4, the
purpose of these designs was not to create a whole new library to operate with H-Matrices, but to
test whether task parallelism is an appropriate option to tackle these special matrices. The three
scientific contributions listed next evidence that this parallelization strategy was suitable and, in
fact, more competitive than classical ones. Moreover, through these works we expose the difficulties
that need to be addressed when parallelising algorithms that involve H-Matrices.

Conference
Proceedings

[6]

Aliaga, José I., Carratalá-Sáez, Roćıo, Kriemann, Ronald and Quintana-Ort́ı, En-
rique S. Task-Parallel LU Factorization of Hierarchical Matrices using OmpSs. In IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshops (IPDPS) (2017), pp. 1148–1157.

In this paper we investigated the multithreaded parallelization of the prototype H-
LU described in Chapter 4, using the OpenMP and OmpSs task-parallel programming
models. The focus of that study was on the adoption of an efficient storage layout for
this type of matrices, and the analysis of the consequences that this decision exerts
on the detection of task dependencies, the programming effort, and the performance
of the solution. The performance evaluation showed that task-parallelism outperforms
loop-parallelism, as well as parallel executions based on multithreaded calls to BLAS
kernels.

Conference
Proceedings

[5]

Aliaga, José I., Barreda, Maria, Carratalá-Sáez, Roćıo, Catalán, Sandra and Quin-
tana-Ort́ı, Enrique S. A Unified Task-Parallel Approach for Dense, Hierarchical and Sparse
Linear Systems. In XXV Congreso de Ecuaciones Diferenciales y Aplicaciones + XV Congreso de
Matemática Aplicada (CEDYA+CMA17) (2017), pp. 152–159.

This work reflected a unified approach to solve systems of linear equations, offering three
different analysis that involve dense, hierarchical and sparse coefficient matrices of large
dimension, respectively. In all cases, the task-parallelism intrinsic to the algorithms was
exploited to reach an efficient execution on a multicore processor. OpenMP and OmpSs
were the employed programming models, and the emphasis was put on describing the
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task-strategy major advantage: adopting a parallelizing runtime system to decouple
the numerical aspects of the method and application (left in the hands of the expert
mathematicians, physicists or computational scientists), from the difficulties associated
with high performance computing (more naturally addressed by computer scientists and
engineers).

Journal
[7]

Aliaga, José I., Carratalá-Sáez, Roćıo and Quintana-Ort́ı, Enrique S. Parallel Solution
of Hierarchical Symmetric Positive Definite Linear Systems. In Applied Mathematics and Nonlinear
Sciences (AMNS) (2017), Vol. 2(1), pp. 201–212.

In this paper we presented the prototype H-Cholesky algorithm described in Chapter 4,
and the associated parallelization employing the OpenMP and OmpSs programming
models. Its performance efficiency was compared to that attained by alternative paral-
lelization approaches that exploit either multithreaded calls to BLAS kernels or loop-
parallelism via a runtime. As with the H-LU, we observed that task-parallelism offered
the best performance.

Chapter 5. Parallelizing the H-LU in H2Lib

Thanks to the lessons learnt from the three previously-mentioned works, we could confirm that
task parallelism was suitable for algorithms involving H-Matrices, but some special considerations
needed to be taken into account with respect to their recursive nature, as well as to the associated
nested structure that requires special storage and treatment. As we did not aim to reinvent the
wheel, we opted for parallelising the H-LU provided by the H2Lib package, and that is the work
reflected in the next publication.

Journal
[34]

Carratalá-Sáez, Roćıo, Christophersen, Sven, Aliaga, José I., Beltran, Vicenç,
Börm, Steffen and Quintana-Ort́ı, Enrique S. Exploiting Nested Task-Parallelism in the
H-LU Factorization. In Journal of Computational Science (2019), Vol. 33, pp. 20–33.

This work described the efforts conducted to implement the task-based parallel version
of the H-LU algorithm implemented in the H2Lib package. It included an exhaustive
description of the benefits that arise from using OmpSs-2 in contrast to OpenMP or
OmpSs, which have already been described in Chapter 5. The possibility of annotating
weak dependencies, together with the tasks early release, allowed us to reach a fair
parallel performance which reached an speedup of 42x when testing our parallel H-LU
with problems arising from BEM, and using 48 cores of the Marenostrum supercomputer
in the BSC.

Chapter 6. Moving further: H-Chameleon, a parallel H-library

High efficiency was reached when parallelising the H-LU implementation in H2Lib. Nevertheless,
this would have not been possible without leveraging several OmpSs-2 special features that are
not available in other programming models. The H-Matrices structure complexity is responsible
of the issues that make the mentioned features necessary, and this is the reason why we decided
to explore if we could design a custom version of the pure H-Matrices in order to reduce the
structure complexity. For this purpose we designed Tile H-Matrices, with the aim of incorporating
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more regular patterns at the highest level of the hierarchy (in terms of the blocks size), while
maintaining the storage and computational savings that characterise H-Matrices. We implemented
the H-Chameleon package to operate with Tile H-Matrices, whose details are described in the
following publication.

Conference
Proceedings

[35]

Carratalá-Sáez, Roćıo, Faverge, Mathieu, Pichon, Grégoire, Sylvand, Guillaume
and Quintana-Ort́ı, Enrique S. Tiled Algorithms for Efficient Task-Parallel H-Matrix Solvers.
In 2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
(2020), pp. 757–766.

Lastly, this paper provided a description of the H-Chameleon library, including the
changes needed to call the Hmat-oss kernels (to operate with H-Matrices) from the
Chameleon functions, as well as the new partitioning algorithm designed to build Tile
H-Matrices, and the new data structures created to store them. As a result, efficient
solvers for linear systems arising in BEM were created. One of the aspects to remark
of this work is the capability of maintaining the H-Matrix benefits (in terms of storage
and computations savings) while being able to leverage classical tiled algorithms that
allow to expose a higher concurrency degree. The performance evaluation demonstrated
a fair efficiency, and hence, we presented the (at the moment) most efficient fully open-
source software stack to solve dense compressible linear systems on shared memory
architectures.

7.2.2 Indirectly related publications

Research collaborations

Thanks to the lessons learnt during the evaluation of the different task-based programming mod-
els and strategies, as well as the SVD knowledge gained through the analysis of how to operate
with H-Matrices, an indirectly-related-to-the-thesis-objective research collaboration was conducted
resulting in the following publication.

Journal
[112]

Tomás, Andrés E., Rodŕıguez-Sánchez, Rafael, Catalán, Sandra, Carratalá-Sáez,
Roćıo and Quintana-Ort́ı, Enrique S. Dynamic look-ahead in the reduction to band form for
the singular value decomposition. In Parallel Computing (2019), Vol. 81, pp. 22–31.

This paper showed the benefits from an alternative reduction to a intermediate by-
product after the first stage in the two-stage algorithms for the SVD. In contrast with the
conventional approach, which produces an upper triangular-band matrix, the proposed
one consisted of a band matrix with the same upper and lower bandwidth. Thanks to it,
a look-ahead strategy could be easily applied with minor constraints on the relationship
between the algorithmic block size and the bandwidth, yielding a high-performance
implementation on servers equipped with multicore technology and graphics processors.

Publications related to educational research

The 170 hours of teaching in Engineering degrees during the time in which this thesis was conducted,
reflected there is a lack of High Performance Computing (HPC) related contents in the engineering
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syllabus. As a consequence, together with other researchers and professors, some non official courses
were offered to the undergraduate students in order to bridge the gap between HPC and the future
engineers. The following research publications were conducted thanks to the course success and
the attendees feedback.

Conference
Proceedings
[33]

Carratalá-Sáez, Roćıo, Catalán, Sandra and Iserte, Sergio. Teaching on Demand: an
HPC Experience. In 2019 IEEE/ACM Workshop on Education for High-Performance Computing
(EduHPC) (2017), pp. 32–41.

The course “Build your own supercomputer with Raspberry Pi” was offered as a non-
mandatory workshop with the purpose of introducing HPC to the bachelor students
of Universitat Jaume I (UJI). The educational research interest did not only lay in
the learning results, but also in the personalized experience offered to the students,
thanks to which each of them could fulfill his/her curiosity about specific topics either
presented and discussed in the class or not, independent of the other attendees. Two
surveys, respectively filled by the students at the beginning and the end of the course,
reflected that they acquired HPC knowledge while enjoying the course, especially the
hands-on part in which they build a supercomputer with Raspberry Pi devices, and the
on-demand section that allowed them to guide the learning process in a personalized
way that kept their motivation alive.

Journal
Catalán, Sandra, Carratalá-Sáez, Roćıo and Iserte, Sergio. Leveraging Teaching on
Demand: Approaching HPC to Undergrads. Submitted to Journal of Parallel and Distributed
Computing (2020).

This work is an extension of the previous one [33]. Thanks to the second edition of
the already described course, a deeper analysis of the learning results and process could
be performed. Moreover, additional learning objectives were covered, and the insights
and lessons learnt from the first experience were leveraged, so an enriched program was
offered.

7.3 Open research lines

The work described in this dissertation evidences that the initial goal of the thesis has been fulfilled.
Nevertheless, there are some issues that could be explored in order to extend certain aspects of the
described contributions:

• In our work we tackle multicore architectures. There exist recent research efforts to execute
H-Matrices operations in distributed systems [74, 116]. In fact, we have already developed a
distributed memory implementation of the H-Chameleon library. However, the particularities
of the nested H-Matrix structure, together with the high degree of data dependencies that
characterizes the H-LU, severely constrain the efficiency that can be attained. The improve-
ments that need to be done on this side to make the distributed memory implementation of
theH-Chameleon library competitive are part of future work. Possibly, the lessons learnt from
this dissertation and also the ones extracted from the distributed memory implementation
of the H-Chameleon library (when available with a good performance) could be leveraged to
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consider similar strategies to make the pure H-LU in H2Lib available for distributed memory
platforms. This is an open research line that would focus on finding a strategy that nowa-
days is unclear: how to efficiently compute distributed memory operations that deal with
H-Matrices.

• With respect to our parallel implementation of the H-LU in H2Lib, we observed that the
efficiency we could achieve in 1D and 2D scenarios was not as high as the one we reached in
3D cases. Analysing the reasons behind these differences is interesting not only for improving
the 1D and 2D performance, but also for learning how to better tackle 3D scenarios and
problems arising from alternative applications.

• Regarding the evaluations, we based our tests in operating with data arising from BEM and
we particularly considered the Laplace equation in 1D, 2D and 3D. Alternative contexts, such
as, for example, BEM for the Helmholtz equation, could also be explored. Moreover, in the
H-Chameleon evaluation, we utilized data chosen from the surface of a cylinder, and other
cylinder dimensions or different surfaces could expose new open research lines in the sense of
how to sort and compress the data to build H-Matrices.

• In relation to the employed programming models, OmpSs-2 and StarPU were the key in our
work to attain a good parallel efficiency. Alternative programming models and strategies
could also be explored to analyse if they present any feature that avoids the limitations that
still apply to our developments, or somehow improve the performance.

• There exist works [30, 113] that leverage the GPUs in the system to improve the performance
of H-Matrices operations. Exploring the integration of GPU support in H2Lib and/or H-
Chameleon would also be interesting.

112
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8.1 Conclusiones y contribuciones principales . . . . . . . . . . . . . . . . . . 113

8.1.1 Los primeros prototipos: requisitos especiales de las H-Matrices . . . . . . . 114

8.1.2 El paralelismo de tareas ofrece un buen rendimiento si se aplica a la H-LU 115

8.1.3 Aprovechando OmpSs-2 para paralelizar la H-LU de H2Lib . . . . . . . . . 116

8.1.4 H-Chameleon: combinando Tile H-Matrices, Chameleon y Hmat-oss . . . . 117

8.2 Publicaciones relacionadas . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.2.1 Publicaciones directamente relacionadas . . . . . . . . . . . . . . . . . . . . 118

8.2.2 Publicaciones indirectamente relacionadas . . . . . . . . . . . . . . . . . . . 121
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8.1 Conclusiones y contribuciones principales

El objetivo general de esta tesis era diseñar, implementar y evaluar implementaciones para opera-
ciones pertenecientes a la Aritmética con H-Matrices, capaces de ser ejecutadas en arquitecturas
multinúcleo aprovechando estrategias de paralelismo basadas en tareas.

La falta de bibliotecas de código abierto para resolver eficientemente operaciones de la Aritmética
con H-Matrices en arquitecturas multinúcleo, junto con la creciente popularidad de los modelos de
programación paralela basados en tareas enfocados a dichas plataformas, nos motivaron a analizar
si las estrategias de paralelismo basado en tareas pod́ıan ser una solución apropiada para paralelizar
algoritmos diseñados para operar con H-Matrices.

La lista que sigue resume las contribuciones principales que se han obtenido gracias a esta diserta-
ción, aśı como las conclusiones asociadas a las mismas:

• Inicialmente implementamos prototipos de las descomposiciones H-LU y H-Cholesky para
evaluar (en un escenario simplificado) si el paralelismo basado en tareas era apropiado para
paralelizar operaciones con H-Matrices. Mediante el diseño de los mencionados prototipos,
aprendimos que los paquetes de software diseñados para construir, manipular y operar (en
paralelo) con H-Matrices requieren consideraciones y requisitos particulares en lo relativo
a tres perspectivas: almacenamiento, rendimiento y estrategias de paralelismo. El motivo
principal detrás de estas necesidades es la estructura anidada inherente a las H-Matrices
que, a su vez, conlleva de una forma natural el diseño de implementaciones recursivas de los
algoritmos que realizan operaciones de la Aritmética con H-Matrices.
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• A partir de ese trabajo inicial, pudimos confirmar que el paralelismo basado en tareas no
solamente es apropiado para las implementaciones de las operaciones de la Aritmética con H-
Matrices, sino que, además, supera el rendimiento que las estrategias clásicas de paralelismo
(tales como el uso de implementaciones multihilo de BLAS, o el paralelismo a nivel de bucle)
cuando se opera con H-Matrices.

• La siguiente contribución importante es la paralelización de la factorización H-LU proporcio-
nada por la biblioteca H2Lib. La principal conclusión de dicho trabajo es que la anotación
de dependencias de un modo tradicional, tal como se plantea con OpenMP y OmpSs, pre-
senta algunas limitaciones que nos obligan a utilizar barreras, lo cual restringe la eficiencia
paralela. Sin embargo, el modelo de programación OmpSs-2 tiene algunas funcionalidades
o caracteŕısticas nuevas que permiten alcanzar una eficiencia paralela mayor, combatiendo
parte de dichas limitaciones.

• La última contribución se refiere al diseño e implementación de H-Chameleon. La conclusión
clave que se deriva de este trabajo es que es posible aprovechar conjuntamente las ventajas
de utilizar H-Matrices (tanto en términos de ahorro de almacenamiento como de cálculo) a
la vez que se simplifica o estabiliza la construcción de la estructura de la matriz asociada.
Utilizando Tile H-Matrices, fuimos capaces de combinar las bibliotecas Chameleon y Hmat-
oss para crear H-Chameleon, la cual presenta resultados competitivos (es decir, una buena
eficiencia) en arquitecturas multinúcleo, comparables a los de la libreŕıa privada Hmat.

En las subsecciones que siguen proporcionamos más detalles sobre las contribuciones y conclusiones
mencionadas.

8.1.1 Los primeros prototipos: requisitos especiales de las H-Matrices

Tal como se describe en el Caṕıtulo 4, el primer objetivo de esta tesis fue evaluar si las estrategias de
paralelismo basadas en tareas eran apropiadas para paralelizar aquellos algoritmos que operan con
H-Matrices. Con este objetivo, diseñamos e implementamos prototipos de H-Matrices, en los que
mantuvimos la estructura anidada de bloques caracteŕıstica de los particionados de las H-Matrices,
pero no incluimos bloques de rango bajo, con el fin de simplificar el diseño y la implementación. Con
el fin de reproducir el desbalanceo de carga que t́ıpicamente existe entre las distintas operaciones que
se realizan sobre las H-Matrices, según si operan sobre bloques de rango bajo o densos, incluimos
algunos bloques nulos en nuestra estructura, generando, gracias a esto, varias matices prototipo
con distintos niveles de dispersión (basada en la cantidad de bloques nulos).

Durante el proceso de diseño de cómo construir, almacenar y actualizar nuestras H-Matrices proto-
tipo, descubrimos que la estructura necesaria para almacenarlas presenta los siguientes requisitos:

• La jerarqúıa de la matriz debe estar definida de un modo eficiente para que sea sencillo
encontrar los bloques padres/descendientes (si los hay) de cada bloque.

• Los bloques hoja (es decir, los no particionados) requiren almacenar información diferente a
los densos. Mientras que los primeros guardan su dimensión y valores, los segundos tienen
que almacenar una lista de punteros relativos a cada uno de sus sub-bloques.

• Como consecuencia de los requisitos anteriores, para el almacenamiento del prototipo necesi-
tamos definir tres estructuras diferentes con las que representar respectivamente a los bloques
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no hoja, a los nulos y a los densos. Adicionalmente, también fueron necesarias algunas estruc-
turas auxiliares para definir la jerarqúıa de la matriz, tales como vectores de punteros para
representar las relaciones entre los distintos bloques de la estructura.

• Gracias a haber simplificado nuestra estructura de H-Matrices, almacenamos los valores de
la matriz en un vector pre-ajustado. El ajuste realizado consiste en preprocesar los datos
realizando una factorización simbólica (es decir, sin llegar a calcular las operaciones en śı)
para detectar qué bloques nulos se rellenarán durante el cálculo la H-LU, pasando a ser
densos, con el objetivo de hacer hueco a los valores correspondientes, almacenando para
ello tantos ceros como sean necesarios antes de iniciar el cálculo de dicha operación. Este
ajuste facilita la paralelización, dado que permite que todos los datos estén almacenados en
posiciones contiguas de memoria. No obstante, cuando se opera con H-Matrices puras, esto
no es posible hacerlo, lo cual hace necesario almacenar los valores de cada bloque hoja de un
modo independiente respecto al resto, ocupando posiciones de memoria no contiguas.

• Además, necesitamos definir nuestro propio criterio de ordenación: el formato BDL, que puede
entenderse como un almacenamiento en CMO que contempla la estructura anidada de bloques
a la hora de ordenar los datos en la memoria.

Además de los requisitos mencionados con respecto a la representación de los datos, los algorit-
mos que resuelven la H-LU y la H-Cholesky también mostraron algunos aspectos a considerar.
Teóricamente son equivalentes a sus homólogos para matrices densas a bloques que calculan dichas
descomposiciones, salvo por el hecho de que ahora deben tenerse en cuenta diferentes tipos de blo-
ques y dimensiones variadas. Sin embargo, las implementaciones prototipo de laH-LU yH-Cholesky
revelaron algunos aspectos que aumentan la complejidad de los algoritmos mencionados:

• Dado que hay diferentes tamaños de bloque en las H-Matrices y que los particionados no son
regulares (es decir, no todos los bloques están subdivididos en la misma cantidad de niveles),
cuando se opera con distintos tamaños de bloque, algunos de los bloques hoja necesitan ser
tratados como si estuvieran sub-particionados. Como consecuencia, cada vez que se realiza
una operación, todos los bloques sobre los que se opera deben particionarse tanto como sea
necesario hasta alcanzar el menor tamaño de bloque con el que se opere en ese caso concreto.

• Una alternativa al particionado adicional descrito es reformular el almacenamiento de los
datos, pero esto podŕıa parecer artificial. De hecho, las representaciones de los datos utilizadas
cuando se opera con H-Matrices reales son similares a las descritas para nuestro prototipo,
por lo que esta opción podŕıa conllevar descuidar o rechazar la jerarqúıa que caracteriza
a las H-Matrices, lo cual consideramos mucho más contraproducente que realizar algunos
particionados extra.

8.1.2 El paralelismo de tareas ofrece un buen rendimiento si se aplica a la H-LU

Elegimos los modelos de programación OpenMP y OmpSs para evaluar la adecuación del parale-
lismo basado en tareas a escenarios en los que se opera con H-Matrices. Pese a las limitaciones
de nuestros prototipos de H-LU y H-Cholesky, logramos una eficiencia adecuada que evidenció
los beneficios de aplicar esta estrategia en el mencionado contexto. Además, comparado con las
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alternativas clásicas tales como el paralelismo de bucles o la inclusión de las llamadas a las rutinas
de BLAS de Intel MKL, el paralelismo basado en tareas era mucho más eficiente.

Una consecuencia destacable de los sub-particionados artificiales detallados en la subsección previa
es el hecho de que se identifican tareas de grano más fino y, por tanto, se alcanza un mayor grado
de concurrencia al usar enfoques basados en paralelismo de tareas cuando se anotan como tareas
las suboperaciones, en lugar de las operaciones propias definidas por el algoritmo. Sin embargo, el
hecho de que existan diferentes tamaños de bloque implica contemplar algunos aspectos adicionales:

• Los Program Objects asociados a cada porción de datos cuando se indican las dependencias
no pueden utilizarse para diferentes tamaños. Si los prototipos no hubieran operado sobre
escenarios tan simples como los descritos, este hecho nos habŕıa obligado a particionar arti-
ficialmente todav́ıa más los bloques hoja, no solamente hasta alcanzar el menor tamaño de
bloque con el que se está operando en ese momento, sino hasta el menor tamaño de bloque
existente en la H-Matriz.

• La naturaleza recursiva de (los prototipos de) la H-LU y H-Cholesky nos obliga a incluir
barreras al final de cada nivel de la jerarqúıa para asegurar que se cumplen correctamente
las dependencias en las tareas anidadas. Esto limita el rendimiento, tal como se detalla en
el Caṕıtulo 5 pero no en el Caṕıtulo 4, dado que, con nuestros prototipos, únicamente per-
segúıamos evaluar de un modo simple el paralelismo basado en tareas, sin llegar a optimizar
el flujo de ejecución de las mismas. No obstante, este aspecto ya se observó en el diseño de
los prototipos para la H-LU y H-Cholesky, por lo que merece la pena mencionarlo como
detectado en este punto.

8.1.3 Aprovechando OmpSs-2 para paralelizar la H-LU de H2Lib

Provistos de lo aprendido gracias a la evaluación de los prototipos, optamos por paralelizar la H-
LU del software H2Lib. El análisis inicial de las estructuras de datos para el almacenamiento de
H-Matrices en la libreŕıa reveló lo siguiente:

• Las estructuras diseñadas para almacenar H-Matrices en H2Lib son similares a las utilizadas
para nuestros prototipos, siendo la principal diferencia el hecho de que los valores de la matriz
se almacenan en cada una de las estructuras definidas para los bloques hoja, lo cual significa
que los valores no ocupan posiciones contiguas de memoria, salvo que pertenezcan al mismo
bloque no particionado. Las estructuras clave tales como una lista de punteros para referenciar
a los distintos sub-bloques de los bloques no hoja también se usan en la libreŕıa, de un modo
similar a como hicimos con nuestros prototipos.

• Las similitudes con nuestra implementación prototipo nos llevaron a inferir que posiblemente
nuestras conclusiones sobre el paralelismo basado en tareas también eran de aplicación en la
H-LU de H2Lib.

• Dado que los bloques de rango bajo y las operaciones de la Aritmética con H-Matrices co-
rrespondientes śı se incluyen en H2Lib, comparado con nuestros prototipos, los algoritmos
presentan una complejidad mayor en términos de la variedad de operaciones y combinaciones
que puede darse cuando se llevan a cabo las operaciones que calculan la H-LU.
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• Se mantiene la naturaleza recursiva del algoritmo y, consecuentemente, el paralelismo de
tareas básico que ofrecen OpenMP y OmpSs está limitado a aquello que puede ejecutarse en
cada nivel de la jerarqúıa, debido a la necesidad de incluir barreras que garanticen el correcto
cumplimiento de las dependencias de datos.

El modelo de programación OmpSs-2 nos brindó la posibilidad de aprovechar caracteŕısticas no-
vedosas que permiten evitar el uso de barreras en cada nivel de la recursión. Particularmente,
pudimos ejecutar tareas pertenecientes a diferentes niveles gracias al early release y a la posibili-
dad de anotar dependencias weak y, su uso, nos permitió informar al runtime de que las tareas
asociadas a las mismas no van a modificar los datos, sino que lo hará alguna de sus sub-tareas.
Con dichas opciones, pudimos anticipar la ejecución de tareas pertenecientes a diferentes niveles
o bloques padre, lográndose aśı mejorar el grado de concurrencia y ejecutar cada tarea tan pronto
como se satisfacen sus dependencias.

La evaluación del rendimiento se llevó a cabo en el supercomputador Marenostrum del BSC, uti-
lizando datos que provienen de BEM en 1D, 2D y 3D. Alcanzamos un speedup máximo de 42×
usando hasta 48 núcleos.

8.1.4 H-Chameleon: combinando Tile H-Matrices, Chameleon y Hmat-oss

Estamos satisfechos con el rendimiento ofrecido por nuestra versión paralela de la H-LU de la
biblioteca H2Lib. Sin embargo, las funcionalidades que necesitamos para alcanzar la eficiencia
mencionada solamente están disponibles en el modelo de programación OmpSs-2, y la complejidad
asociada a anotar debidamente todas las dependencias (weak/strong) y recorrer la jerarqúıa de
H-Matrices puras es elevada. Por esta razón, consideramos explorar un enfoque que simplificara el
almacenamiento de tal modo que las estrategias tradicionales para matrices a bloques se pudieran
aplicar directamente y, aśı, el proceso de paralelización fuera más sencillo y rápido. Todo ello
manteniendo una buena eficiencia, competitiva con la propia de otras soluciones que operan con
H-Matrices puras. Con este propósito diseñamos Tile H-Matrices, que en esencia son matrices
particionadas en bloques regulares, cada uno de los cuales contiene una H-Matriz; es decir, matrices
que están particionadas en bloques regulares (tiles) en el primer nivel, y donde cada bloque se
convierte en una H-Matriz.

En lo referente al diseño de la solución, decidimos aprovechar las libreŕıas Chameleon y Hmat-
oss para, respectivamente, abordar la parte de nuestra estructura a bloques (es decir, el primer
nivel del particionado), y resolver las operaciones con H-Matrices. Chameleon es un software para
álgebra lineal densa que ha mostrado una alta eficiencia resolviendo problemas de aritmética densa
en implementaciones a bloques. Por su parte, Hmat-oss está formado por el conjunto de rutinas
secuenciales en las que se basa la biblioteca privada de Airbus Hmat, la cual es también altamente
eficiente. H-Chameleon se creó gracias a la definición de nuevas estructuras de datos, la inclusión de
ciertos wrappers para comunicar ambas libreŕıas y la definición de un nuevo algoritmo de clustering
para definir el particionado en base al cual construir Tile H-Matrices.

Nuestra evaluación de H-Chameleon arroja las siguientes conclusiones:

• El ratio de compresión y precisión ofrecidos por las Tile H-Matrices son prácticamente equi-
valentes a los propios de las H-Matrices puras.

• Aprovechando el runtime de StarPU para llevar a cabo las ejecuciones paralelas en arqui-
tecturas multinúcleo, pudimos ofrecer un resolutor eficiente para problemas que emergen de
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CAṔITULO 8. CONCLUSIONES

BEM. Incluimos diferentes prioridades en las sub-operaciones que conforman la H-LU y pro-
bamos diferentes modos de planificación para alcanzar la mejor eficiencia posible. La mejor
estrategia fue la que tiene en cuenta las prioridades fijadas para cada tarea.

• Los experimentos llevados a cabo en una máquina multinúcleo, con casos reales, demostraron
que H-Chameleon es competitivo con respecto a la libreŕıa Hmat. Aśı, provee una de las
primeras libreŕıas de código abierto que es capaz de alcanzar una buena eficiencia usando
H-Matrices.

• Dos consecuencias destacables de utilizar las libreŕıas Chameleon y Hmat-oss son que 1) H-
Chameleon se beneficiará directamente de todas las mejoras realizadas desde el punto de vista
del runtime, dado que está integrada en la libreŕıa Chameleon; y 2) cualquier optimización
llevada a cabo sobre los kernels para H-Matrices también mejorará el rendimiento de H-
Chameleon.

8.2 Publicaciones relacionadas

En esta sección listamos las publicaciones asociadas a las contribuciones de esta disertación, las
cuales incluyen art́ıculos enviados a conferencias internacionales y revistas indexadas, siendo valida-
das mediante procesos de revisión por pares. Inicialmente enumeramos las contribuciones cient́ıficas
directamente relacionadas con la tesis. A continuación, listamos otros trabajos que también se han
realizado durante el desarrollo de la misma, si bien guardan una relación indirecta con las H-
Matrices, más centrada en aspectos de álgebra lineal y paralelismo de tareas en general, o bien
reflejan resultados de investigación en educación. Junto con la investigación cient́ıfica llevada a
cabo con el objetivo de implementar algoritmos eficientes para operar con H-Matrices, durante el
desarrollo de la tesis se impartieron 170 horas en grados de ingenieŕıa, y esta es la razón por la que
se llevaron a cabo estudios relacionados con la investigación docente.

8.2.1 Publicaciones directamente relacionadas

Chapter 4. It all began with prototypes

(Caṕıtulo 4. Todo empezó con prototipos)

El primer prototipo implementado en el contexto de esta tesis fue el que calculaba la H-LU; pos-
teriormente se implementó también el de la H-Cholesky. Como se menciona en el Caṕıtulo 4, el
objetivo de estas implementaciones no era crear una nueva biblioteca para operar con H-Matrices,
sino evaluar si el paralelismo de tareas era apropiado para operar con este tipo de matrices tan
especial. Las tres contribuciones cient́ıficas listadas a continuación evidencian que lo es y, de he-
cho, llega a ser mejor que otros enfoques clásicos. Además, mediante estos trabajos expusimos las
dificultades que deben analizarse cuando se paralelizan algoritmos que operan con H-Matrices.

Actas de
conferencias

[6]

Aliaga, José I., Carratalá-Sáez, Roćıo, Kriemann, Ronald and Quintana-Ort́ı, Enri-
que S. Task-Parallel LU Factorization of Hierarchical Matrices using OmpSs. En IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshops (IPDPS) (2017), pp. 1148–1157.
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En este art́ıculo investigamos la paralelización multinúcleo del prototipo de H-LU des-
crito en el Caṕıtulo 4, utilizando los modelos de programación paralela basados en tareas
OpenMP y OmpSs. El estudio se centró en diseñar un modo de almacenamiento efi-
ciente para este tipo de matrices, aśı como analizar las consecuencias que esta decisión
implica respecto a la detección de dependencias de tareas, el esfuerzo de programación
y el rendimiento de la solución. La evaluación del rendimiento mostró que el paralelismo
de tareas es más eficiente que el de bucles o las llamadas a kernels multihilo de BLAS.

Actas de
conferencias
[5]

Aliaga, José I., Barreda, Maria, Carratalá-Sáez, Roćıo, Catalán, Sandra and Quin-
tana-Ort́ı, Enrique S. A Unified Task-Parallel Approach for Dense, Hierarchical and Sparse
Linear Systems. En XXV Congreso de Ecuaciones Diferenciales y Aplicaciones + XV Congreso de
Matemática Aplicada (CEDYA+CMA17) (2017), pp. 152–159.

Este trabajo reflejó un enfoque unificado para resolver sistemas de ecuaciones lineales,
ofreciendo tres análisis diferentes que respectivamente operan sobre matrices de coefi-
cientes densas, jerárquicas y densas. El paralelismo de tareas intŕınseco a los algoritmos
se explotó en todos los casos para alcanzar una ejecución eficiente en procesadores mul-
tinúcleo. OpenMP y OmpSs fueron los modelos de programación utilizados, y el énfasis
se puso en describir la mayor ventaja de las estrategias basadas en tareas: adoptar un
runtime para la ejecución en paralelo de modo que se desacoplen los aspectos numéri-
cos del método y de la aplicación (dejándolos en manos de los matemáticos expertos,
f́ısicos o cient́ıficos computacionales), de las dificultades asociadas con la computación
de alto rendimiento (abordado de un modo más natural por cient́ıficos e ingenieros
informáticos).

Revista
[7]

Aliaga, José I., Carratalá-Sáez, Roćıo and Quintana-Ort́ı, Enrique S. Parallel Solution
of Hierarchical Symmetric Positive Definite Linear Systems. En Applied Mathematics and Nonlinear
Sciences (AMNS) (2017), Vol. 2(1), pp. 201–212.

En este art́ıculo presentamos nuestro prototipo del algoritmo para la H-Cholesky des-
crito en el Caṕıtulo 4, aśı como la paralelización asociada utilizando los modelos de
programación OpenMP y OmpSs. Su eficiencia se comparó con la obtenida con otros
enfoques paralelos que explotan llamadas multihilo a kernels de BLAS o paralelismo de
bucle v́ıa un runtime. Del mismo modo que con la H-LU, observamos que el paralelismo
basado en tareas ofrece el mejor rendimiento.

Chapter 5. Parallelizing the H-LU in H2Lib

(Caṕıtulo 5. Paralelizando la H-LU de H2Lib)

Gracias a lo aprendido en los trabajos previamente mencionados, pudimos confirmar que el pa-
ralelismo de tareas era apropiado para los algoritmos que operan sobre H-Matrices, pero algunas
consideraciones especiales deb́ıan tenerse en cuenta con respecto a su naturaleza recursiva, aśı co-
mo a la estructura anidada asociada, que requiere un almacenamiento y trato particular. Dado
que nunca pretendimos reinventar la rueda, optamos por paralelizar la H-LU proporcionada por el
software H2Lib, y ese es justamente el trabajo que refleja la siguiente publicación.
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Revista
[34]

Carratalá-Sáez, Roćıo, Christophersen, Sven, Aliaga, José I., Beltran, Vicenç, Börm,
Steffen and Quintana-Ort́ı, Enrique S. Exploiting Nested Task-Parallelism in the H-LU Fac-
torization. En Journal of Computational Science (2019), Vol. 33, pp. 20–33.

En este trabajo describió se describieron los esfuerzos llevados a cabo para implemen-
tar una versión paralela basada en tareas del algoritmo para la H-LU incluido en la
biblioteca H2Lib. Comprende una exhaustiva descripción de los beneficios que surgen
de utilizar OmpSs-2 frente a OpenMP u OmpSs, los cuales hemos descrito en el Caṕıtu-
lo 5. La posibilidad de anotar dependencias weak, junto con la opción early release,
nos permitieron alcanzar un buen rendimiento paralelo que logró un speedup de 42× al
evaluar nuestra H-LU paralela con problemas que surgen de BEM, y utilizando hasta
48 núcleos del supercomputador Marenostrum del BSC.

Chapter 6. Moving further: H-Chameleon, a parallel H-library

(Capitulo 6. Un paso más allá: H-Chameleon, una H-biblioteca paralela)

Paralelizando la H-LU de H2Lib logramos una alta eficiencia. Sin embargo, esto no habŕıa sido
posible sin las funcionalidades especiales presentes en OmpSs-2, las cuales no están disponibles en
otros modelos de programación. La complejidad de la estructura de las H-Matrices es la responsable
de las dificultades que convierten dichas funcionalidades exclusivas en vitales, y es esa precisamente
la razón por la que decidimos explorar si pod́ıamos plantear un diseño de estructura alternativo al
de las H-Matrices puras que simplificara la complejidad. Con este objetivo diseñamos las Tile H-
Matrices, con el propósito de incorporar patrones más regulares en el nivel más alto de la jerarqúıa
(en términos de tamaño de bloque), manteniendo a la vez el ahorro de almacenamiento y cómputo
caracteŕıstico de las H-Matrices. Implementamos H-Chameleon para operar con Tile H-Matrices,
cuyos detalles se describen en la publicación que sigue.

Actas de
conferencias

[35]

Carratalá-Sáez, Roćıo, Faverge, Mathieu, Pichon, Grégoire, Sylvand, Guillaume
and Quintana-Ort́ı, Enrique S. Tiled Algorithms for Efficient Task-Parallel H-Matriz Solvers.
En 2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
(2020), pp. 757–766.

Por último, en este art́ıculo se proporcionó una descripción de la bibliotecaH-Chameleon,
incluyendo los cambios necesarios para llamar a los kernels de Hmat-oss (y aśı operar
con H-Matrices) desde las funciones disponibles en Chameleon, aśı como el algoritmo
de particionado nuevo diseñado para construir las Tile H-Matrices y las nuevas estruc-
turas para almacenar los datos correspondientes. Como resultado, creamos un resolutor
eficiente de sistemas lineales que surgen de BEM. Uno de los aspectos a destacar es
que se mantuvieron los beneficios del uso de H-Matrices (en términos tanto de almace-
namiento como de cómputo), a la vez que se alcanzaba un alto grado de concurrencia
gracias a aprovechar los algoritmos a bloques clásicos. La eficiencia mostrada en la eva-
luación fue alta y, de este modo, logramos presentar el software más eficiente (hasta
el momento) para resolver sistemas lineales densos comprimibles en arquitecturas de
memoria compartida.

120



8.2. PUBLICACIONES RELACIONADAS

8.2.2 Publicaciones indirectamente relacionadas

Colaboraciones en otras investigaciones

Gracias a lo aprendido durante la evaluación de los diferentes modelos y estrategias de programa-
ción basada en tareas, aśı como los conocimientos obtenidos sobre la SVD como consecuencia de
analizar cómo operar con H-Matrices, realicé una colaboración en una investigación indirectamente
relacionada con mi tesis, la cual dio lugar a la publicación que sigue.

Revista
[112]

Tomás, Andrés E., Rodŕıguez-Sánchez, Rafael, Catalán, Sandra, Carratalá-Sáez,
Roćıo and Quintana-Ort́ı, Enrique S. Dynamic look-ahead in the reduction to band form for
the singular value decomposition. En Parallel Computing (2019), Vol. 81, pp. 22–31.

Este art́ıculo ilustró los beneficios de una reducción alternativa a la basada en el sub-
producto intermedio tras el primer paso en el algoritmo de dos pasos para la SVD.
Contrariamente a la propuesta convencional, la cual produce una matriz banda trian-
gular superior, nuestra propuesta genera una matriz banda con el mismo ancho de
banda superior e inferior. Gracias a esto, se pudo aplicar una estrategia look-ahead con
pequeñas restricciones con respecto a la relación entre el tamaño de bloque y el ancho
de banda, lográndose una implementación de altas prestaciones en servidores equipados
con tecnoloǵıa multinúcleo y procesadores gráficos.

Publicaciones relacionadas con la investigación docente

Las 170 horas de docencia en diferentes grados de ingenieŕıa durante la realización de la tesis,
reflejaron la falta de contenido relacionado con la Computación de Altas Prestaciones (CAP, el
inglés HPC) en los curŕıculos de ingenieŕıa. Como consecuencia de ello, ofrećı junto con otros
investigadores y profesores algunos cursos no oficiales para estudiantes de grado, con el fin de
salvar la brecha existente entre el CAP y los futuros ingenieros. Las publicaciones que siguen se
realizaron gracias a los cursos mencionados y la retroalimentación proporcionada por los estudiantes
que asistieron.

Actas de
conferencias
[33]

Carratalá-Sáez, Roćıo, Catalán, Sandra and Iserte, Sergio. Teaching on Demand: an
HPC Experience. En 2019 IEEE/ACM Workshop on Education for High-Performance Computing
(EduHPC) (2017), pp. 32–41.

El curso “Construye tu propio supercomputador con Rasperry Pi” se ofreció como
un taller no obligatorio, con el objetivo de introducir a los alumnos de grado de la
Universitat Jaume I (UJI) en el CAP. El interés a nivel de investigación docente reside no
solamente en los resultados de aprendizaje, sino también en la experiencia de aprendizaje
personalizado innovador ofrecido a los estudiantes, gracias a la cual cada uno de ellos
pudo satisfacer su curiosidad con respecto a aquellos temas espećıficos (presentados
y comentados durante las sesiones del curso o no), con independencia del resto de
alumnos. Las dos encuestas rellenadas por los estudiantes al inicio y fin del taller,
respectivamente, reflejaron que los alumnos adquirieron conocimientos sobre CAP a la
vez que disfrutaban de la experiencia, y especialmente de la parte práctica en la que
construyeron el supercomputador con Rasperry Pi, aśı como de la sección bajo demanda,
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la cual les permitió guiar ellos mismos el aprendizaje de un modo personalizado según
aquello que les motivara en mayor medida.

Revista
Catalán, Sandra, Carratalá-Sáez, Roćıo and Iserte, Sergio. Leveraging Teaching on De-
mand: Approaching HPC to Undergrads. Enviado a Journal of Parallel and Distributed Computing
(2020).

Este trabajo es una extensión del anterior [33]. Gracias a la realización de una segunda
edición del curso, pudimos llevar a cabo un análisis más profundo de los resultados de
aprendizaje, aśı como del desarrollo del taller. Además, se cubrieron objetivos de apren-
dizaje adicionales, de modo que las conclusiones y lecciones aprendidas de la primera
edición sirvieron para enriquecer el programa ofrecido.

8.3 Ĺıneas de investigación abiertas

El trabajo descrito en esta disertación evidencia que el objetivo planteado al inicio de la tesis se
ha logrado. No obstante, existen algunos aspectos que pueden explorarse para mejorar o extender
ciertos aspectos de las contribuciones descritas:

• En nuestro trabajo abordamos ejecuciones paralelas en arquitecturas multinúcleo. Hay es-
tudios recientes que tratan de ejecutar operaciones sobre H-Matrices en sistemas distribui-
dos [74, 116]. De hecho, nosotros hemos desarrollado una implementación de la biblioteca
H-Chameleon para memoria distribuida. Sin embargo, las particularidades propias de la es-
tructura anidada que caracteriza a las H-Matrices, junto con el alto grado de dependencias de
datos entre las sub-operaciones de la H-LU, constriñen severamente la eficiencia que puede
alcanzarse. Las mejoras que deben aplicarse sobre la versión para memoria distribuida de
H-Chameleon forman parte del trabajo futuro. Posiblemente, combinando lo aprendido en
esta disertación y una implementación eficiente en los sistemas mencionados, podŕıa aprove-
charse también para considerar estrategias similares con las que diseñar una implementación
para memoria distribuida de la H-LU de H2Lib. Esta es una ĺınea de investigación abierta
que se centraŕıa en encontrar algo que a d́ıa de hoy es incierto: cómo calcular operaciones de
H-Matrices de un modo eficiente en sistemas distribuidos.

• En referencia a las implementaciones paralelas de la H-LU en H2Lib, observamos que la
eficiencia que pudimos alcanzar en 1D y 2D no es tan buena como la que se consigue en
los casos 3D. Con el objetivo de mejorar el rendimiento en los casos mencionados, podŕıan
analizarse las razones que se esconden tras esta diferencia, lo cual posiblemente también
ayudaŕıa a operar mejor sobre datos procedentes de entornos 3D e incluso sobre problemas
pertenecientes a aplicaciones diferentes.

• Con respecto a las evaluaciones, nosotros siempre hemos basado los tests en operar con datos
procedentes de BEM y, particularmente, hemos considerado la ecuación de Laplace en 1D,
2D y 3D. Podŕıan explorarse contextos alternativos, como por ejemplo aquellos basados en la
ecuación de Helmotz en BEM. Además, en la evaluación de H-Chameleon utilizamos datos
procedentes de la superficie de un cilindro cuyas dimensiones podŕıan modificarse (e incluso el
propio cilindro podŕıa sustituirse por otro cuerpo) para explorar el impacto de dichos cambios
sobre la manera en la que se comprimen los datos para construir las H-Matrices.
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8.3. ĹINEAS DE INVESTIGACIÓN ABIERTAS

• En relación a los modelos de programación empleados, OmpSs-2 y StarPU fueron la clave
para alcanzar una buena eficiencia paralela. Otros modelos de programación y estrategias
alternativas podŕıan explorarse con el fin de analizar si presentan alguna caracteŕıstica que
aborde las limitaciones que todav́ıa se mantienen en nuestros desarrollos, o si, de algún modo,
mejoran el rendimiento de los mismos.

• Existen trabajos [30, 113] que exploran el uso de GPUs para mejorar el rendimientos de
algunas operaciones con H-Matrices. Analizar la integración de soporte para GPUs en H2Lib
y/o H-Chameleon también podŕıa ser una ĺınea de investigación futura interesante.
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deaux, October 2017.

[4] Aliaga, J. I., Badia, R. M., Barreda, M., Bollhöfer, M., and Quintana-Ort́ı,
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