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Abstract

Sectors as fintech, legaltech or insurance process an inflow of million of forms,
invoices, id documents, claims or similar every day. The success in the automa-
tion of these transactions depends on the ability to correctly digitize the textual
content as well as to incorporate semantic understanding. This procedure, known
as information extraction (IE) comprises the steps of localizing and recognizing
text, identifying named entities contained in it and optionally finding relationships
among its elements. In this work we explore multi-task neural models at image
and graph level to solve all steps in a unified way. While doing so we find bene-
fits and limitations of these end-to-end approaches in comparison with sequential
separate methods.
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Resum

Sectors com la informació i tecnologia d’assegurances, finances i legal, processen
un continu de factures, justificants, reclamacions o similar diàriament. L’èxit
en l’automatització d’aquestes transaccions es basa en l’habilitat de digitalitzar
correctament el contingut textual així com incorporar la comprensió semàntica.
Aquest procés, conegut com Extracció d’Informació (EI) consisteix en diversos
passos que són, el reconeixement de el text, la identificació d’entitats nomenades i
en ocasions en reconèixer relacions entre aquestes entitats. En el nostre treball vam
explorar models neurals multi-tasca a nivell d’imatge i de graf per solucionar els
passos d’aquest procés de forma unificada. En el camí, vam estudiar els beneficis
i inconvenients d’aquests enfocaments en comparació amb mètodes que resolen les
tasques seqüencialment per separat.
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Resumen

Sectores como la información y tecnología de seguros, finanzas y legal, procesan un
continuo de facturas, justificantes, reclamaciones o similar diariamente. El éxito
en la automatización de estas transacciones se basa en la habilidad de digitalizar
correctamente el contenido textual asi como incorporar la comprensión semántica.
Este proceso, conococido como Extracción de Información (EI) consiste en varios
pasos que son, el reconocimiento del texto, la identificación de entidades nom-
bradas y en ocasiones en reconocer relaciones entre estas entidades. En nuestro
trabajo exploramos modelos neurales multi-tarea a nivel de imagen y de grafo para
solucionar los pasos de este proceso de forma unificada. En el camino, estudiamos
los beneficios e inconvenientes de estos enfoques en comparación con métodos que
resuelven las tareas secuencialmente por separado.
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Chapter 1

Introduction

1.1 Information extraction from semi structured
documents

As long as humans make use of documents to communicate and leave record of
bureaucratic information without a universally defined structure, there will be
benefits in using methods that learn to understand these documents and extract
their contained information in an automated way. The process of converting a
document image or digitized document into a labeled collection of values mean-
ingfully related is known as Information Extraction (IE). This process comprises
the steps of localizing and recognizing text, identify named entities contained in
it and relationships among them. Due to the increasing existence of software so-
lutions for all kinds of mail room applications, every day there is naturally less
amount of printed documents generated where the first two steps of this process
are required. Also, many cases in which automated IE from documents is cur-
rently used, it is due to incomplete database integration between departments of
companies or administration. For example, a person asking for a scholarship might
need to give address details in a form to the regional government despite that the
national government is already aware of this information. In such case it would be
a much better solution to simply ask for the person’s id and permission to access
this information, but in many cases the databases are not connected for no other
reason other than lack of software development. This type of situations will tend
to happen in lesser cases as time advances, reducing the amount of documents to
be processed. But still, there will always be situations in which this data integra-
tion is simply not possible. For example, a person might apply for a given type
of position in several different companies, and upload the CV to the recruiting
tool of each company, highlighting desired professional experience to be available.
Each company might want to have different information from the CV stored in

1



2 INTRODUCTION

their database, such as the candidate’s major, the last professional experience and
its time range, or personal information such as birth place and address. Being
so, either does the company read and understand the CV to manually extract the
desired values to introduce in the database or the candidate will manually fill the
form with the required information. There is no way in which this information was
already accessible from an integrated database, either because of the constantly
varying nature of the data or for privacy reasons. In the case of insurance there is
constant transfer of information in which one party (e.g. the insured client) has a
default format to store that information (e.g. an invoice) and the party that needs
to store the certain values (e.g. the insurance) receives them in very different ways
from each client. In this type of situations there are definitely going to be vast
amount of documents generated making it very useful any kind of improvement in
the methods for automated IE.

An example of document to be processed and the corresponding target struc-
tured information to be extracted can be found in figure 1.1. As shown in the
example a reasonable structure extracted from the given document should take in
account text properties such as font size, indentation, colons, tabs, and tabular
elements which define a hierarchical relation and grouping of textual elements.

As it is well known in the industry a big problem when trying to massively
extract data from documents is the continuously varying format, which prevents
to use template alignment methods with usable results. But this is not the only
issue, other challenges that make difficult to automate the IE process include the
presence of tables, charts, floating images, handwritten text, etc. These barriers
are reflected in companies in terms of high operational costs and completion time,
as well as low process efficiency and accuracy. The amount of difficulties and the
need to automate the process of extracting information varies depending on the
type of document. A good classification of the types of printed documents from
which automated IE is helpful can be found in [32].

Among these, due to the industry-tied nature of this work we chosen to use
forms. Examples of forms in which we apply proposed methods are industry
registers as the ones seen in figure 1.2. The document can be stored in many
different ways. Most commonly and in the recent years it consists of a digital pdf,
but there is also abundance of scanned images as well as mobile phone camera
captured in the context of insurance documents.
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Figure 1.2: Forms from the RVL-CDIP database.

Another type of documents that also demand IE automatizing are historical
manuscripts including birth, death or marriage records. For this work we used a
database of marriage records due to its exhaustive openly available ground truth for
the main tasks of IE. The additional difficulty in the case of historical documents
is the step of recognizing handwritten text in multiple different styles, in which
commercial OCR engines usually struggle to give a good performance. Several
different methods have been explored to automate the tasks involved in IE. Until
very recently a dominating approach in the industry for IE solutions consisted
of template alignment derived methods [71] or other rule-based systems as it is
reflected in the survey [13].

1.2 Neural Networks Breakthrough

As it happened in many other application scenarios of Machine Learning (ML),
best performing proposed methods for IE tasks shifted from variations of algo-
rithms such as Support Vector Machines (SVMs) [9], Hidden Markov Models
(HMMs) or bayesian networks [87, 69, 65] to the currently ubiquitous Deep Neural
Networks (DNN) also referred to as Deep Learning (DL) models.

One of the greatest strengths of DNNs is that in contrast with the previously
used methods in which features to find patterns on the data had to be hand
crafted, neural networks pioneered in showing the capacity to spontaneously learn
representations that discriminate and characterize properly elements contained in
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each example of a given dataset, as it was shown in the case of small images in [46].
This property was also applied with great success in other fields such as automatic
speech recognition (ASR), translation [22] or object detection [24].

The term end-to-end has been used in very different domains, including cryp-
tography, data corruption prevention or networking design. In general it refers to
a process that acts as a single module which includes all sub tasks necessary to
complete it in a unified way, receiving the input and directly giving the final result
instead of intermediate outputs. In the context of DL it has become increasingly
popular and considered a beneficial property of newly presented methods, never-
theless, it has been used with slightly different definitions in recently presented
works.

In this thesis we understand that a neural model is end-to-end if the input data
is fed a single time to the model and this one directly gives the final result, while
using the error of all tasks to simultaneously calculate some parameters shared for
all sub-tasks, instead of sequentially modifying the input data and feeding it to
smaller separate models for each step. This trend of creating increasingly larger
models to solve more complex tasks, despite being intuitively beneficial for the
advance in the path to emulate human intelligence needs a sound analysis in the
case of deep neural networks to ensure that it is reasonable to go for its use, and
that it is the cause of reported improvements when proposing new architectures.
In this work we focus on exploring benefits and limitations of such approaches in
the context of information extraction.

1.3 Motivation and research questions

The motivation behind this thesis is to get closer to a robust and generic solution
for automated IE from semi-structured documents, from Mail-Room applications
until historical ones. Based on the current existing work, a reasonable approach
for this purpose is to study how good does the unification of tasks in end-to-end
architectures perform to solve the whole process of IE, in real use case data. Also,
due to the success of Graph Neural Networks in many domains where arbitrary
relationships and patterns among the data can be found, it makes sense to ex-
plore their effectiveness in the context of named entity recognition and relation
extraction.

Our research questions are the following:

• Is it beneficial to share features of neural end-to-end models for subsequent
tasks in the context of IE from semi structured documents?

• How does the context affect in the categorization and relation extraction of
semi structured document textual elements?

• To which extent can GNNs be a suitable approach when recognizing entities
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and finding relationships among them in semi structured documents?

Motivated by these questions the research goals are the following

• Implement end-to-end models for task pairs in each of the steps of IE.

• Explore the benefits and limitations of these models in front of previous
existing sequential approaches.

• Explore the use promising architectures that succeeded in other fields of
pattern recognition such as Graph Neural Networks for the most challenging
tasks of IE.

1.4 Contributions

The contributions of this thesis are the following:

• A method for end-to-end recognition of text and named entities, while show-
ing that the neural model is capable to learn both visual as well as semantic
features when reading documents.

• A method for localizing and recognizing text in full handwritten pages that
can handle intermediate step error by performing recognition in pooled fea-
tures instead of the input image.

• A method to combine the tasks of text localization transcription and named
entity recognition in a unified neural model, together with an exhaustive
study of benefits and limitations in different scenarios.

• A method for recognizing entities and extracting relations in scanned forms
with Graph Neural Networks, with state of the art performance in a form
understanding benchmark.

1.5 Outline

This thesis contains six chapters which are listed below.

In the next chapter we mention some relevant existing work that constitutes
the context of this thesis, going from former popular ML methods for document
processing, to different branches of Neural Networks used in different steps of IE
from documents.

In the third chapter we explain the first proposed method to combine the
processes of recognizing text and named entities in weakly structured documents
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in which the data is organized in a sequential manner. We do this by applying a
multi-modal use of the CTC function.

In chapter four we propose a model that combines localization and recognition
of handwritten text in full pages while digging down into sequential task error.
The qualitative results show benefits in joining these two tasks in an end-to-end
model in contrast to separate approaches.

In chapter 5 we close the IE task cycle by proposing a simultaneously trained
triple task model for localization, transcription and named entity recognition. Be-
ing so, we explore benefits and limitations of the proposed approach and give
results in different use cases.

In the sixth chapter we investigate the use of GNN for named entity recognition
and relation extraction, while achieving successful results and state of the art per-
formance in a scanned form understanding benchmark for the relation extraction
task.

Finally, in the last chapter we extract the conclusions of this thesis and propose
possible continuation lines.



8 INTRODUCTION



Chapter 2

Related work

In this chapter we outline the some methodologies that have preceded and are
related to different parts of our work. These include relevant contributions of
deep neural network variations and other machine learning methods as their de-
scription, and some main applications in the field of information extraction from
semi-structured documents, considered in an image, layout and semantic scenario.

2.1 Deep Learning

As introduced before, the dominating approach for almost all of the pattern recog-
nition tasks consists of the DL family of algorithms, which constitutes the ground
of this thesis. In this section we briefly introduce the principles of this type of
algorithms and some of its variations, such as perceptrons, convolutional neural
networks and recurrent neural networks.

2.1.1 Perceptrons and convolutional neural networks

In this section we give brief introduction to Deep Learning models [48] as they
constitute the starting ground of this work. Let D = {X ,Y} a dataset containing
n input examples X = {x1, ..., xn}, xi ∈ Rs corresponding to n target values
Y = {y1, ..., yn} ∈ Rt

A Deep Neural Network is a function fθ : Rs −→ Rt which can learn some
parameters θ to approximate a function f∗ that maps values from X to their cor-
responding targets Y. The approximating function fθ consists of a composition
of functions, fθ = f1 ◦ f2 ◦ · · · ◦ fL−1 ◦ fL, which are usually called layers, the
first one input layer and the L-th one output layer. The fact that fθ is com-

9
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posed by a sequence of function compositions is the reason why they are called
deep neural networks. The term neural comes from the idea that the output val-
ues z of functions fi in the composition sequence emulate animal neurons which
transmit a sequence synapses. The calculation of an output fθ(x) = zL is known
as feedforward step. A typical example of layer is linear transformation, i.e. a
learnable weight matrix product with the layer input

fl(zl−1) =Wzl−1

where zl−1 is the output of previous layer fl−1. Another commonly used layer
which gives the name to a whole family of DNNs are convolutional layers

fl(zl−1) =
∑

i,j∈{0,...,Zl}

∑
u,v∈{0,...,Hl}

wuvzl−1i+u,j+v

where zli,j are the real values of layer l output, Zl is the vector size of layer l out-
put, Hl is the convolutional weight matrix size for layer l and wjk are the values
of the weight matrix. These layers are applied depending on the type of pattern
that needs to be identified. When it is assumed that there can be dependencies
between any of the input elements then fully connected layers (equivalently lin-
ear transformations) are used. When there is the assumption of prevalent local
relationships as it is for convolutions, which work very effectively on image data.
Neural networks that include this latter type of layer are called Convolutional
Neural Networks (CNNs).

To approximate the model parameters θ the commonly used method is Stochas-
tic Gradient Descent (SGD). This method consists of iteratively calculating the
gradient of the loss function C and subtract it from each weight matrix of fθ. That
is, if C(fθ, y) is a cost function that determines how much error is committed by
the network fθ approximating f∗, then at each SGD step t ∈ {1, ..., T} the gradi-
ent ∇C(fθ, y)t is calculated using backpropagation algorithm from the last layer of
the network. Then the weights at time step t+1 are updated with the previously
calculated gradient

θt+1 = θt − α∇C(fθt , y)t

An exhaustive description with details of how this is done can be found in [25].

2.1.2 Recurrent Neural Networks

Together with CNN architectures, a type of neural networks which also shown
to achieve great performance in a wide variety of problems are recurrent neural
networks (RNNs). The intuition behind building such model relies on the idea
that the mind has a certain ’state’ that continuously gets updated based on a
sequence of inputs, which can be sounds, images, characters etc. In this way, the
above described feedforward operation is repeated a certain number of time steps



2.1. Deep Learning 11

updating a state ht value which emulates the ’memory’ of that network and giving
a different output result at each time step t ∈ [1, ..., T ]

h(t) = fθ(h
(t−1), x(t))

To calculate the gradient for RNNs, the network is unfolded in the time di-
mension and error is calculated and backpropagated for all time steps in a similar
way as in feedforward networks.

An experimental limitation found with first proposed RNNs was that for longer
time sequences the dependencies seemed hard to be taken in account by the model.
To fix this the variant of RNN named Long Short-Term Memory networks were
proposed and increased substantially the performance on many sequential tasks.
The idea behind LSTMs is to enhance RNNs with additional ’cells’ (learnable
weight vectors) that emulate the process of adding new information to the memory,
updating it or forgetting it. This is modeled with the following equations. The
forget gate controls the self loop update

f (t) = σ

bfi +∑
j

Ufi,jx
(t)
j +

∑
j

W f
i,jh

(t−1)
j


where x(t) is the current step input vector, h(t) is the current hidden layer output
and bf ,Uf and W f are biases, input weights and recurrent weights for the forget
gates. The internal LSTM state is also calculated with a combination of linear
transformations with sigmoid activation as follows

s
(t)
i = f

(t)
i s

(t−1)
i + g

(
i t)σ

bi +∑
j

Ui,jx
(t)
j +

∑
j

Wi,jh
(t−1)
j


being b,U and W biases and weights of the LSTM cell. In a similar way the input
and output gates are calculated using previous input and hidden states

g
(t)
i = σ

bgi +∑
j

Ugi,jx
(t)
j +

∑
j

W g
i,jh

(t−1)
j


q
(t)
i = σ

boi +∑
j

Uoi,jx
(t)
j +

∑
j

W o
i,jh

(t−1)
j


and finally the LSTM cell output is calculated as

h
(t)
i = tanh(s(t)i )q

(t)
i

. LSTMs shown to give better performance in tasks that involve finding long range
dependencies, such as predicting the next word in a sentence, in which it can be
necessary to be aware of the subject’s genre given a few words earlier.
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2.2 End-to-end vs separate methods

As introduced earlier a rising trend in DL literature is to join models to form
end-to-end architectures with stacked layers that give the output of a complex
procedure instead of sequentially use separate step modules. A remarkable exam-
ple of this idea is YOLO [66]. Where earlier approaches such as [16] used separate
blocks to first tile a window over the image and scan the existence of certain fea-
tures in each location sequentially identifying the content to be detected, YOLO
uses a single CNN to directly infer all the contents in the image, implicitly solving
the intermediate task of scanning each location, with impressive performance. If
we look at ASR, state of the art evolved in a similar way. Until the beginning of
21st century handcrafted feature-based methods such as Mel Frequency Cepstral
Coefficients (MFCC) worked as a feature extraction from the audio spectrogram,
which combined with a HMM allowed to predict phonemes. This would later be
replaced by end-to-end neural methods that achieved state of the art performance
on larger pieces of raw audio without any preprocessing [29]. However, recent
attempts of solving much more complex tasks such as autonomous driving in an
end-to-end fashion highlighted several limitations of the approach and concluded
that further research is required so that such solutions can be used in a real-world
scenario [14]. This situation contrasts with market-ready solutions which make
use of modules that are separately being improved due to the difficulty of each
of the tasks involved in the main process, e.g. [12] despite having a modularized
solution working in the real world. These observations leave the path open to
explore whether the unification of IE tasks in end-to-end models will bring more
benefits or drawbacks when looking for a market-ready solution.

2.3 Transfer learning

The main prestige behind deep neural network relies on their capability of learn-
ing necessary features to discriminate the key properties of training examples for
classification or regression, in contrast with earlier used methods which needed
of handcrafted features. One of the most commonly reported weaknesses of this
family of methods is the need of large amounts of annotated data to achieve usable
results in almost any problem, which sometimes can be costly to produce. This
is usually solved with the use of transfer learning, by training the network for a
similar problem for which we do have large amount of annotated data, and then
fine-tune the model using learned features for the new task [91]. Regardless of their
limitations, deep neural networks constitute the main research path of artificial
intelligence and its related fields, including information extraction.
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2.4 Machine learning and information extraction

Before the beginning of the past decade methods in the academia for IE were
variate within a wide range of ML techniques other than DL. In this section we
mention some of them and several works that exploit them for IE or document
processing related tasks. A method that stood out for its simplicity and effective-
ness was Bag of Words (BoW) [77]. This NLP derived model consists in gathering
a representation of each image with handcrafted features such as Scale-Invariant
Feature Transform (SIFT) vectors [56] to later form ’visual words’ as combina-
tions of these features that allow classification or clustering of unseen examples.
Classification can be obtained with algorithms such as k-means [58], k-Nearest
Neighbors (k-NN) [15] or SVMs. An example of usage of BoW combined with
2-nearest neighbors for categorizing documents by logo spotting can be found in
[72]. When looking at cases in which local relationships within an example bring
meaningful patterns to identify and classify them, CRFs constituted a solid ap-
proach to treat such type of problem. A conditional random field is an undirected
graphical model whose nodes can be divided into exactly two disjoint sets which
are the observed and output variables X and Y respectively. Then the conditional
distribution p(Y |X) is modeled. When the graph is defined as sequence of hidden
states fulfilling the Markov property it is known as a Hidden Markov Model. As a
usage example for IE, in [34] a CRF model is used to extract structures in printed
newspaper documents. In the case of HMMs their arrival in the field of Hand-
written Text Recognition (HTR) was the dominating approach for a long period
of time despite their initial moderate success [47]. In some cases successful results
were achieved with the use of user interaction to correct machine predictions [82].

The main drawback of these methods is their limited performance, which in
most cases prevented that they were brought to production systems that automate
tasks solving them with better or comparable results as human performance. Later
on the majority of these methods used by the whole document analysis community
where to be outperformed by DL techniques, as in many other ML application
domains.

2.5 Neural network based information extraction

Coming up next we mention some methods that make use of DL in different steps
of the IE process.

The most common first step when receiving a document is to classify it in one
of the predefined categories such as the ones mentioned above. This allows later
application of the domain knowledge to extract the information in a structured
way. We specify that it is the most common first step since in some cases methods
can integrate this part with more generic models. To do this the widely chosen
approach is a simple CNN classifier from the document image. A most refined
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version of this with great performance is recently presented in [20]. Still, other
works shows that combination of Image data with processed layout and text data
helped achieve a better final performance [90].

The task of separating the document into different sections and types of con-
tents such as paragraphs, tables, lists, equations, figures etc. is known as layout
analysis. The capacity of CNN architectures to locally identify patterns in images
that gives top performance in object detection tasks [50] also happened to be suc-
cessful in this step of IE, as shown in [49], leaving it as the currently used method
for generic document layout analysis.

A necessary yet not trivial step to correctly extract information from documents
in case they are stored in images is to localize and recognize the text contained in
it and convert it to a sequence of machine readable characters. This is specially
notable in the scenario of handwritten documents, or hybrid documents in which
we find a combination of printed and handwritten text. Great progress has been
achieved recently thanks to the use of Deep Neural Architectures. For the localiza-
tion part most methods rely on state of the art object detection architectures, i.e.
variations of RetinaNet [51]. For the recognition part, the Connectionist Temporal
Classification loss which gave great performance in Automated Speech Recogni-
tion (ASR) also gave great success for recognizing handwritten when combining it
with Recurrent Neural Networks (RNNs) [27].

Wether we start from digital pdf documents or the previously mentioned tasks
have been solved, a crucial part of IE, is to identify and classify relevant entities
in the document to ease access when later browsing a given database. This step is
known as Named Entity Recognition (NER). The great majority of work in this
field is explored for large corpuses of natural language. A very popular benchmark
is the CoNLL2003 task [79], in which relevant entities consisting words or groups
of few words, are labeled with classes such as location, organization or person.
The state of the art for this task as in almost every NLP related task is a variation
of the Transformer [85], in this case the method consists two ’tower’ blocks of self
attention mechanisms that share input textual embeddings [2].

When it comes to find relationships among elements in a document the situ-
ation is similar as in NER, most of the existing work is done on plain corpus or
sentences instead of business or historical documents in which there is some kind
of underlying structure. Notable examples exploiting the patterns in the language
to find relationships are [52, 41]. This work leaves open a question of how could
a neural model work finding relationships among elements in a semi structured
document in which layout plays a relevant role.

If we focus on the case of IE from invoice documents, one of the a possible
approach to use is Cloudscan [62]. In their work, they extract the text with a
commercial OCR system and use an LSTMs model fed with text n-grams as well
as localization values as features to classify each element in the document and
parse it with rule based system. An overview can be seen in figure 2.1. Due to



2.5. Neural network based information extraction 15

Figure 2.1: An overview of the approach proposed in Cloudscan, extracted from
Palm et al [62].

Figure 2.2: The Representation Learning for IE model, extracted from [61].

the limited performance of the LSTM cell as a memory unit they later improved
this idea in [61] applying the Neural Turing Machine concept [30], to extend the
model with external memory and selectively attending to the document inputs
to compare it with the contents in the memory and correctly parse them. Later
on, the encoder-decoder architecture which gave great results on Neural Machine
Translation (NMT) [3] was applied on the extracted 2d grid of characters from
invoice documents [43]. Analogously to networks in which the input is a matrix
whose elements represent color pixel intensities, in this case the matrix elements
represent existence of a character in a given document position. Then after the
input layer a series of stacked convolutions encode the document information in a
hidden state vector which is fed to two decoder networks, one extracts the semantic
segmentation and the other the bounding box regression.

The reported results claim that this grid-like approach outperforms purely
sequential models, specially in fields where 2D text entities are important. This
idea is further extended with the application of the BERT model [18], instead of
the seq2seq, serializing the document grid and in a similar way, extracting the
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Figure 2.3: The BERTGrid invoice processing pipeline extracted from [17].

required information to define the so called BERTGrid model [17]. In this work
the performance overcomes previous approaches which is attributed among other
reasons to the success in dealing with out of vocabulary words. An overview of
this approach can be seen in figure 2.3.

In [80] a LSTM model is combined with a CNN to sequentially annotate images
of words exploiting the contextual information, achieving state of the art on the
solved task and leaving the path open for improve such approach to use it in a
segmentation-free scenario.

In the context of form-like documents, in a similar way as in [61] very re-
cently another neural approach generates candidates to fill fields in a previously
known target schema scoring each candidate by means of a model inspired in the
Transformer [85]. An overview of the approach can be seen in figure 2.2.

As it can be observed the main trend in the previously mentioned works consists
of applying architectures that give state of the art performance in more generic
NLP tasks that do not necessarily involve understanding a structure in a given
document and adapt them to different IE scenarios. This leaves open the path to
explore how each of the tasks interacts with each other in the whole IE pipeline
as well as the other previously stated questions.



Chapter 3

Joint transcription and named entity
recognition

When extracting information from handwritten documents, text transcription and
named entity recognition are usually faced as separate subsequent tasks. This has
the disadvantage that errors in the first module affect heavily the performance of
the second module. In this chapter we propose to do both tasks jointly, using a
single neural network with a common architecture used for plain text recognition.
Experimentally, the work has been tested on a collection of historical marriage
records. Results of experiments are presented to show the effect on the perfor-
mance for different configurations: different ways of encoding the information,
doing or not transfer learning and processing at text line or multi-line region
level. The results are comparable to state of the art reported in the ICDAR 2017
Information Extraction competition, even though the proposed technique does
not use any dictionaries, language modeling or post processing.

3.1 Introduction

As introduced in the previous chapter, the best existing methods for each of the
steps of IE consist of DNN-based architectures which, in the case of scanned doc-
ument images, include the processes of recognizing segmented text and annotate
named entities. Also we have seen that neural architectures tend to grow into
end-to-end models that solve several tasks in a unified way that usually would
be faced with separated modules, tackling this way the intermediate error accu-
mulation problem. Motivated by these observations, in this chapter we propose
a method to study the interplay between the text recognition and semantic seg-
mentation tasks by combining the visual-textual and semantic information in the

17
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Figure 3.1: An example of a document line annotation from [73].

Table 3.1: Semantic and person categories in the IEHHR competition

Semantic Person
Name Wife
Surname Husband
Occupation Wife’s father
Location Wife’s Mother
Civil State Husband’s father
Other Husband’s mother

Other person
None

ground truth. Results show that the model is able to internally learn both the
visual features required to differentiate the characters in the text as well as the
semantic ones to produce the named entity annotations.

The rest of the chapter is organized as follows: Next section explains the
task being considered. In 3.3 we explain our model architecture, ground truth
setup and training details. In Section 3.4 we analyze the results for the different
configurations and last in 3.5 we give the conclusions.

3.2 Information extraction in marriage records

The approach presented in this chapter is evaluated on the task of information
extraction in a system for the analysis of population records, in particular hand-
written marriage records. It consists of transcribing the text and assigning a
semantic and person category to each word, i.e. to know which kind of word has
been transcribed (name, surname, location, etc.) and to what person it refers to.
The dataset and evaluation protocol are exactly the same as the one proposed
in the ICDAR 2017 Information Extraction from Historical Handwritten Records
(IEHHR) competition [73]. The semantic and person categories to identify in the
IEHHR competition are listed in table 3.1.

Two tracks were proposed in the competition. In the basic track the goal is
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Table 3.2: Marriage Records dataset distribution

Train Validation Test
Pages 90 10 25
Records 872 96 253
Lines 2759 311 757
Words 28346 3155 8026
Out of vocabulary words: 5.57 %

to assign the semantic class to each word, whereas in the complete track it is also
necessary to identify the person. An example of both tracks is shown in Figure
3.1.

The dataset for this competition contains 125 pages with 1221 marriage records
(paragraphs), where each record contains several text lines giving information of
the wife, husband and their parents’ names, occupations, locations and civil states.
The text images are provided at word and line level, naturally having the increased
difficulty of word segmentation when choosing to work with line images. More
details of the dataset can be found in table 3.2.

3.3 Methodology

The main goal of this work is to explore a single end-to-end trainable DNN model
that receives as input text images and gives as output transcripts, already labeled
with their corresponding semantic information. One possibility to solve it could
be to propose a DNN with two sequence outputs, one for the transcript and the
other for the semantic labels. However, keeping an alignment between these two
independent outputs complicates a solution. An alternative is to have a single
sequence output that combines the transcript and semantic information, which is
the approach taken here. There are several ways in which this information can
be encoded such that a model learns to predict it. The next subsection describes
the different ways of encoding it that were tested in this work. Then there are
subsections describing the architecture chosen for the neural network, the image
input and characteristics of the learning.

3.3.1 Semantic encoding

The first method variation which we studied is the way in which ground truth
transcript and semantic labels are encoded so that the model learns to predict
them. To allow the model to recognize words not observed during training (out-
of-vocabulary) the symbols that the model learns are the individual characters
and a space to identify separation between words. For the semantic labels special
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tags are added to the list of symbols for the recognizer. The different possibilities
are explained below.

Open & close separate tags

In the first approach, the words are enclosed between opening and closing tags
that encode the semantic information. Both the category and the person have
independent tags. Thus, each word is encoded by starting with opening category
and person symbols, followed by a symbol for each character and ends by closing
person and category symbols. The “other” and “none” semantics are not encoded.
For example, the ground truth of the image shown in Figure 3.1 would be encoded
as:

h a b i t a t {space} e n {space} <location> <husband> B a r a
</husband> </location> {space} a b {space} <name> <wife> E l i s a

b e t h </wife> </name> ...

This kind of encoding is not expected to perform well in the IEHHR task, since
tags are assigned to only one word at a time, so it is redundant to have two tags
for each word. However, in other tasks it could make sense having opening and
closing tags and this is why it has been considered in this work.

Single separate tags

Similar to the previous approach, in this case both category and person tags are
independent symbols but there is only one for each word added before the word.
Thus, the ground truth of the previous example would be encoded as:

h a b i t a t {space} e n {space} <location/> <husband/> B a r a
{space} a b {space} <name/> <wife/> E l i s a b e t h {space} J u a

n a {space} <state/> <wife/> {space} d o n s e l l a ...

Change of person tag

In this variation of the semantic encoding the person label is only given if there
is a change of person, i.e. the person label indicates that all the upcoming
words refer to that person until another person label comes, in contrast to previous
approaches where we give the person label for each word. This approach is possible
due to the structured form of the sentences in the dataset. As we can see in Figure
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Figure 3.2: Reading the whole record makes it easier to transcribe as well as to
identify the semantic categories based on context information.

3.2 the marriage records give the information of all the family members without
mixing them.

<wife/> <name/> E l i s a b e t h {space} <name/> J u a n a {space}
<state/> d o n s e l l a ...

Single combined tags

The final possibility tested for encoding the named entity information is to com-
bine category and person labels into a single tag. So the example would be
as:

h a b i t a t {space} e n {space} <location_husband/> B a r a
{space} a b {space} <name_wife/> E l i s a b e t h {space}

<name_wife/> J u a n a {space} <state_wife/> d o n s e l l a ...

3.3.2 Level of input images: lines or records

The IEHHR competition dataset includes manually segmented images at word
level. But to lower ground truthing cost or avoid needing a word segmentator,
we will assume that only images at line level are available. Having text line
images then the obvious approach is to give the system individual line images for
recognition. However, there are semantic labels that would be very difficult to
predict if only a single line image is observed due to lack of context. For example,
it might be hard to know if the name of a person corresponds to the husband or the
father of the wife if the full record is not given. Because of this, in the experiments
we have explored having as input both text line images and full marriage record
images, concatenating all the lines of a record one after the other.
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Figure 3.3: Used model architecture

3.3.3 Transfer learning

The next variable we examined was the effect of the use of transfer learning from
a previously trained model for HTR. Transfer Learning consists of training for
the same or a similar task (HTR) using other datasets, and then fine tune it for
the current purpose, in this case HTR+NER. To perform transfer learning from
a generic HTR model, the softmax layer is removed and replaced with a softmax
that allows as an output the activations for the number of possible classes in the
fine tuning step. In this case, they will be all the characters in the alphabet
plus the semantic labels. In the experiments for transfer learning we have tested
only one HTR model that was trained with the following datasets: IAM [84],
Bentham [74], Bozen [75], and some datasets used by us internally: IntoThePast,
Wiensanktulrich, Wienvotivkirche and ITS.

3.3.4 Curriculum learning

The last variation that we propose is curriculum learning i.e. start with easier
demands to the model and then increase the difficulty. In this case this method
can be interpreted as starting by learning to transcribe single text lines, and when
the training is finished, continue with learning to transcribe images of a whole
marriage record.

3.3.5 Model architecture and training

In this work we use a CNN+BLSTM+CTC model, which is one of the most
common models for performing HTR exclusively, although other HTR models
could be used as well. In particular, the architecture consists of 4 convolutional
layers with max pooling followed by 3 stacked BLSTM layers. The detailed model
architecture is shown in Figure 3.3.

To train the model we use the Laia HTR toolkit [64] which uses Baidu’s parallel
CTC [28] implementation, which consists of minimizing the loss or “objective”
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function
OML(S,Nw) = −

∑
(x,z)∈S

ln(p(z|x)) (3.1)

where S is the training set, x is the input sequence (visual features), z is the
sequence labeling (transcription) for x and

Nw : (Rm)T 7→ (Rn)T (3.2)

is a recurrent neural network with m inputs, n outputs and weight vector w. The
probabilities of a labeling of an input sequence are calculated with a dynamic
programming algorithm called "forward-backward".

Some special features of the model are that the activation function for the
convolutional layers is leaky ReLu f(x) = x if x > 0.01, 0.01x otherwise.

We also use batch normalization due to its proven performance increase in
CNN architectures.

3.4 Results

We compare the performance of the proposed methods1 with the results of the
participants of the IEHHR competition in [73] thereby using the same metric, see
Table 3.3. The evaluation metric counts the words that were correctly transcribed
and annotated with their category and person label with respect to the total
amount of words in the ground truth. For those words that were not correctly
transcribed but the category and person labels match one or more words in the
ground truth, we add to the score 1 - CER (character error rate) on the best
matching word. This means that the named entity recognition part is vital for a
good score, since a perfect transcription will count as 0 in the score if its named
entity is incorrectly detected.

We can observe in the results that the best performance is reached when re-
ceiving the whole marriage record, which is probably due to the help of contextual
information. For example, it can benefit the detection of named entities composed
of several words when they are written in separate consecutive lines. Also we
observe that the best performing encoding of the semantic labels is the combined
tags setup. This can be due to the lower amount of symbols to predict, which
might require to store less long term dependencies in the network.

The most significant improvement was achieved when picking the best per-
forming configuration and running it with an alternative line extraction. In the
competition, the text lines were extracted by including all the bounding boxes
of the words within every line. As a result, when there are large ascenders and
descenders, the bounding box of the line is too wide, including sections of other

1Scripts used for the experiments available at http://doi.org/10.5281/zenodo.1174113
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Method Proc.
Level

Track
Basic

Track
Complete

IEHHR competition results

Baseline
GMM+HMM Register 80.24 63.08

Hitsz-ICRC-1
CNN HTR+NER Word 87.56 85.72

Hitsz-ICRC-2
ResNet HTR+NER Word 94.16 91.97

CITlab-ARGUS-1
LSTM+CTC+regex Line 89.53 89.16

CITlab-ARGUS-2
LSTM+CTC+OOV+regex Line 91.93 91.56

Results of the experiments

Separate-open tags Line 74.04 64.77

Separate-open-close tags Line 82.04 73.73

Separate-open tags
+ transfer learn. Line 88.47 82.99

Separate-open-close tags
+ transfer learn. Line 65.91 55.77

Change person tags
+ transfer learn. Reg. 84.41 80.51

Combined-open tags
+ transfer learn.
+ curriculum learn.

Reg. 90.32 89.08

Table 3.3: Average scores of the experiments compared with the IEHHR competi-
tion participants’ methods.
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Figure 3.4: Some of the errors committed in the predictions

text lines. In order to cope with this limitation, we used the XML containing the
exact location of the segmented words within a page, and for the y-coordinates,
we used a weighted (by the words widths) average of upper and lower limits of
the word bounding boxes. As expected, the performance highly improves because
the segmentation of the text lines is more accurate. However, this result is not
directly comparable to the other participants’s methods because the segmentation
is different.

In Figure 3.4 we show some examples of committed errors. We can see that
they consist of small typos that are understandable when looking at the text
images. It is definitely difficult to transcribe certain names that have never been
seen before. The proposed approach could be combined with a category-based
language model [68] which could potentially improve the results.

Our best performing model took 4 hours 38 to run 133 training epochs with
a NVIDIA GTX 1080 GPU. As training configuration we used an adversarial
regularizer [26] with weight 0.5, an initial learning rate of 5 · 10−4 with decay
factor of 0.99 per epoch and batch size 6.

3.5 Conclusion

In this chapter we have proposed the first contribution of the thesis. We have
proposed a method to solve a complex task (i.e. text recognition and named entity
recognition) with a single end-to-end neural model. The first conclusion is that, in
information extraction problems, a generic model for solving two subsequent tasks
can perform at least similarly as two separated models. This is true even if there
is less prepared data (record level images instead of a sequence of word images)
and we do not make use of task specific tools like dictionaries or language model.

By investigating different ways of encoding the image transcripts and semantic
labels we have shown that the recognition performance is highly affected, even
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though it is indeed representing the same information. Also, curriculum learn-
ing (first text lines and then records) can make the model reach a higher final
prediction accuracy.

Continuation of this work includes to explore the effect of text localization and
its interaction with the recognition and tagging named entities, as we study in the
upcoming chapters. Also, a possible extension is to evaluate the method in other
datasets.

In [88] continuation of this work has been done, by applying this idea to more
cases in which CTC can help predict different types of labels sequentially, such as
Chinese scripts or music sheet recognition.



Chapter 4

Joint text localization and
transcription

When transcribing handwritten document images, inaccuracies in the text seg-
mentation step often cause errors in the subsequent transcription step. For this
reason, some recent methods propose to perform the recognition at paragraph
level. But still, errors in the segmentation of paragraphs can affect the tran-
scription performance. In this work, we propose an end-to-end framework to
transcribe full pages. The joint text detection and transcription allows to remove
the layout analysis requirement at test time. The experimental results show that
our approach can achieve comparable results to models that assume segmented
paragraphs, and suggest that joining the two tasks brings an improvement over
doing the two tasks separately.

4.1 Introduction

As we introduced before, the performance of handwritten text recognition (HTR)
methods has significantly improved with the arrival of deep convolutional network
architectures and attention models [45], [6]. Nevertheless, when transcribing doc-
ument images, layout analysis (i.e. word, line or paragraph segmentation) is a
required previous task that usually supposes a source of error [31],[1]. Tradition-
ally, methods for transcription of handwritten documents rely on the output of
some post-processing steps to obtain the different segmented objects, i.e., lines
or words depending on the level of recognition that the method works [81, 42].
It is for sure known that the performance of such methods is conditioned by the
correctness of the output from the segmentation step. In the other way around,
to provide a good segmentation it would be beneficial to have the transcription

27
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of the word. This dilemma is defined by the well-known Sayre’s paradox: a good
segmentation is necessary for a good recognition and vice-versa.

Many HTR methods perform a joint segmentation and recognition at line level
to cope with the above mentioned paradox. In this way, they can avoid the seg-
mentation at character and word level. However, this is only partially solving the
segmentation problem, because lines that are not properly segmented obviously
affect the recognition at line level. For this reason, some recent approaches propose
to recognize text at paragraph level [6], [63]. But still, an inaccurate segmentation
into paragraphs will affect the HTR performance.

If we put the view into another domain such as the detection of text in the wild,
where we encounter text in cluttered images, the task is usually divided into first
localizing the text, and then recongizing the detected region [38]. Text localization,
which can be faced as an object detection problem, has been divided into two main
type of paradigms, one-stage and two-stage. In [83] a two stage method is proposed
by first generating a sparse set of candidate proposals followed by a second stage
that classifies the proposals into different classes and background. Regions with
CNN features (R-CNN) [24] replace the second stage with a CNN, improving
the previous methods. The next big improvement in terms of performance and
speed came with Faster-RCNN [24], where the concept of anchors was introduced.
When prioritizing speed in front of accuracy, we find one stage detection as the
best option. Concretely, SSD [53] and YOLO [66] have put one-stage methods
close to two-stage in precision but having much greater speed performance. The
decrease in precision of one-stage against two-stage methods is due to the class
imbalance in [51], so focal loss is introduced to cope with this problem and achieve
state of the art performance both in accuracy and speed.

Recent work in scene text detection [55] [10] [57] claimed that a single end-to-
end model to jointly localize and transcribe words can reduce intermediate step
error thereby leading to better detection results, and consequently, better tran-
scriptions. The intuition behind this phenomena would be that giving transcrip-
tion annotations gives additional valuable information to the detection model.

One may think that this principle applies in handwritten documents as well.
In the few last years some works have appeared in the domain of the document
transcription following an idea similar to the end-to-end models. However, in
[89] this statement is put under doubt, since the best transcription performance
is achieved by detecting the start of text line, segmenting it with a line follower
and then transcribing it with three separately trained networks. Nevertheless no
results are shown regarding the end-to-end trained model approach to come to a
definitive conclusion.

In [60] a method to join the two tasks is proposed by predicting the text line
beginning and letting the recognition network predict the characters till the end
of the line without having an explicit end of line segmentation. The drawback of
this method is that it does not attempt to backpropagate the recognition errors
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Figure 4.1: Overview of the proposed method. We extract convolutional features
using FPN. The classification and regression branches calculate the positive boxes
and the recognition branch predicts the transcription of the content of each box.
Binary cross entropy, squared-sum and CTC losses are backpropagated through
the whole model.

to the segmentation which might make it difficult to achieve a high performance
on difficult benchmark datasets. In [5] the results of transcribing full paragraphs
by implicitly segmenting lines with attention are comparable with the traditional
automatic line segmentation methods, but the lack of a comparison using the state
of the art neural segmentation separate system followed by the CRNN architec-
ture prevents from concluding whether performing both tasks jointly supposes an
advantage or not. In [78] a three-stage model is proposed by joining a two stage de-
tection network with large feature extractor such as ResNet-50 with a recognition
CNN.

In this chapter we propose a end-to-end model for text detection and recogni-
tion at page level. Our method jointly performs text localization and transcrip-
tion, and thus, the transcription network can exploit the shared features with the
detection branch. In addition, we evaluate our method with an ablation study
that suggests that there are benefits in the end-to-end approach over training two
models separately.

The rest of the chapter is organized as follows, first, in section 5.2 we describe
the proposed model architecture, including the feature extractor, detection and
recognition modules. In Section 4.3, we test the proposed method and perform an
ablation study to compare our approach with a traditional two-step method. In the
last section we draw the conclusions of the work and outline possible continuation
lines.
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4.2 Methodology

As explained in the previous section, most of the existing approaches for automatic
handwritten text recognition consist of separated models for localizing and tran-
scribing the text in the page image. Contrary, in this work we propose a method
to exploit the benefits of deep neural architectures for multitasking, and to eval-
uate its performance compared to traditional approaches. For this purpose, we
built a neural model to recognize the text from either a page or paragraph image,
by detecting each word and transcribing its content. The architecture consists of
four connected deep neural networks, one for extracting page or paragraph fea-
tures (ResNet18 + feature pyramid network), another for detecting the existence
of text in each part of the image (classification/objectness branch), another to
regress the bounding box of each one of the words in a image (regression branch),
and a recognition branch (conv+blstm). An overview of the whole model can be
seen in Figure 5.1.

4.2.1 Feature extractor

The first module of our model is a deep feature extractor, whose weights are shared
for the recognition and detection tasks. Taking into account that the localization
of text in a scanned document (where we are previously aware of its existence)
might be easier than detecting an object in the wild, we have chosen the ResNet18
[33], a light state-of-the-art architecture for object detection and classification.
This architecture consists of 5 convolutional residual blocks, i.e. 2 convolutions
with rectifier linear unit activation and a residual connection.The detailed list of
blocks and their configuration is shown in Table 4.1.

Table 4.1: ResNet18 architecture used for feature extraction.

Layer output shape kernel size # kernels
res-conv-block 1 H/2·W/2 3 x 3 64
res-conv-block 2 H/4·W/4 3 x 3 64
res-conv-block 3 H/8·W/8 3 x 3 128
res-conv-block 4 H/16·W/16 3 x 3 256
res-conv-block 5 H/32·W/32 3 x 3 512

We have tried other even lighter configurations, but when reducing the amount
of layers, we observed slower convergence and worse final results. This was most
probably caused by noisy detections and false positives, confusing text with non-
relevant text. For this reason we have chosen an intermediate depth architecture
that allowed regressing the characteristics of the text, and skipping the step of
separating the regions of interest (i.e. including the layout analysis step in the
whole process).
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Figure 4.2: Feature pyramid network. It consists of 5 ResNet18 convolutional
blocks followed by residual connections plus deconvolutions [50]. The input is an
image of shapeH ·W ·3, the output is 5 tensors of 256 channels with down sampling
factors of 4,8,16,32 and 64 respectively.

Based on recent work on object detection, we build a feature pyramid net-
work (FPN) [50] which combines the extracted deep features of different levels of
abstraction by means of deconvolutions. These type of layers consist of bilinear
interpolation to apply differentiable upscaling of the high level features, followed
by convolutions to reduce the number of channels, allowing to add them to lower
level features. A diagram of this module is shown in Figure 4.2. This approach
gave a boost in performance to detect objects at different scales, which is definitely
also a beneficial feature for localizing text in documents.

4.2.2 Classification and regression branches

For each one of the levels of the pyramid, the extracted features are fed to the
classification network, which after four convolutions will predict the probability of
the presence of a text object for each point of the image grid.

After predicting the probability of an existing text object pcl, the binary cross
entropy (CE) loss is calculated and backpropagated through the classification
branch and shared feature network. Formally, CE is computed as follows:

CE(pcl) = −(ycl · log(pcl) + (1− ycl) · log(1− pcl)) (4.1)

In this case pcl predicts the probability of the object of being text or not, i.e.
it is used as an "objectness" value but it could be replaced by a probability vector
to predict which kind of text it is, e.g. handwritten or printed or any other text
categorization. In a similar way, the regression network receives the whole page
image features and after four convolutions, it regresses the box coordinate offsets
from the predefined anchors. Formally:
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Figure 4.3: We used 9 predefined anchors, result of combining three ratios 1
2 ,1,2

and scales 1, 2
1
3 , 2

2
3 .

x = X + dx ·W
y = Y + dy ·H
w = edw ·W
h = edh ·H (4.2)

where (x, y, w, h) are the predicted box coordinates, dx, dy, dw, dh are the pre-
dicted offsets and X,Y,W,H are the predefined anchor box values. The anchors
are generated as the combination of the ratios 1

2 ,1,2 and the scales 1, 2
1
3 , 2

2
3 with

a base size of 32 (9 anchors) as shown in figure 4.3 . The offsets are regressed by
minimizing the mean square error shown in equation 4.3.

MSE(δ, δ′) =
1

n

n∑
i

(δi − δ′i)2 (4.3)

where δi is the vector of target offsets from the anchors for the i-th ground truth
box.

Once class probabilities and box offsets are predicted, the box sampler com-
putes the bounding box coordinates for those anchors in the image grid whose class
probability surpasses a given threshold. Once the box coordinates are calculated,
we apply non-maximal suppression based on the maximum class score of each box.
This will make that only a variable number of boxes with high confidence are going
to be fed to the recognition branch.

4.2.3 Recognition branch

This module takes as inputs the features extracted with the FPN network and the
corresponding regressed boxes and returns a probability tensor of variable width
per alphabet length corresponding to the possible transcriptions of the words.
Since the features are computed at page level we first need to apply some strategy
that crops these features to be the input of the different successive layers in the
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module. This crop could be done in different ways, such as Region of Interest
(ROI) pooling [24] strategies or affine transformation followed by Bilinear Sam-
pling [39]. Since words in handwritten documents are mostly horizontally oriented
and have no significant skew as it would happen in text in the wild data, for each
regressed box, we apply RoI pooling to the page image features. Equivalently, for
more complex distribution of documents with significant skew, or text orientation
variations, affine transformations would allow to predict text skew or vertical ori-
entation. The pooled features are rescaled to a fixed predefined height H ′ and
variable width W ′, followed by padding to allow later addition of fully connected
layers. For the recognition part we use a standard CRNN architecture containing
2 convolutional layers, 2 bidirectional long short-term memory layers[35], and a
fully connected layer. As done in the previous chapter, to optimize the model for
recognition we calculate the CTC loss.

To get the final full page transcription we concatenate the word predictions in
a rule based reading order calculation from the word box coordinates. It consists
of a projection of the word boxes to get text line continuation groups. To do so
we used the pagexml library, the source code is publicly available here 1.

4.3 Experiments

This section is devoted to the experimental evaluation. We describe the dataset
and the task to be realized, the different metrics and discuss the results.

4.3.1 Database and task description

We tested our method on the IAM [59] database, a multi-writer handwritten doc-
ument collection with ground-truth at page level. It consists of 1539 pages of
scanned text, written by 657 different writers, including a total of 13.353 anno-
tated text lines and 115.320 words. Pages were scanned at a resolution of 300dpi
(2479 × 3542) saved as PNG images with 256 gray levels. For our work, due to
the limited GPU space we rescale the images to 150dpi (1240 × 1753). In our
partition we use 1198 page images, 747 for training and 451 for validation/test.

4.3.2 Metrics

Two different metrics have been used in the experimental evaluation of the pro-
posed methodology. One to evaluate the performance of the text detection and
another for transcription.

1https://github.com/omni-us/pagexml
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To evaluate the performance in text localization, we used the mean Average
Precision (mAP), the standard metric in object detection. Let

p =
TP

TP + FP

be the precision metric, i.e. the number of true positives out of the total positive
detections;

r =
TP

TP + FN

be the recall metric, i.e. the number of true positives out of the total ground
truth positives, i.e. the true positives plus false negatives. We consider the recall-
precision map, p : [0, 1] 7→ [0, 1] which maps the recall value r to the precision p
that we would get if we had the detection threshold to get such a recall. Then,
the Average Precision is the value

∫ 1

0
p(r), i.e. the area under the precision-recall

graph.

As a transcription score we choose the character error rate (CER), i.e. the
number of insertions, deletions and substitutions to convert the output string into
the ground-truthed one, divided by the length of the string. Formally:

CER =
i+ s+ d

label length

4.3.3 End-to-end vs separate training

The performance of our method in terms of the CER and mAP is shown Table 4.2.
As stated in the introduction, we also include an ablation study to assess the model
visual capabilities when combining the text location and transcription annotations.
Concretely, we are interested in the interaction of the learning processes of text
localization and transcription. To evaluate the benefits of the intermediate error
reduction, we compare the end-to-end versus the two-step training, i.e. separating
localization and transcription. For the end-to-end training, approach we feed the
full page image as an input, pass the predicted bounding boxes to the RoI pooling
layer and back-propagate the 3 summed losses: CTC, classification and regression.
Since our end goal is to get the best possible transcription, we use the validation
character error rate as the early stop criterion. A main advantage in using end-
to-end with RoI pooling instead from page features instead of training separately
and cropping the predicted boxes directly from input image is that in the first
approach the features contain contextual information that allows some error in
the segmentation while still getting the correct transcription, as seen in figure 4.5

For the two-step training we first train the model by only back-propagating
the regression and classification losses, and use as a early stop criterion the mean
average precision of the validation detections (mAP). This means that we train
the whole model, ignoring the recognition branch, to get best possible detections
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Table 4.2: Comparison of methods for full page / paragraph recognition without
language model. *These results are not directly comparable to our work due to
segmentation level at test time and alphabet.

Val CER (%) Test CER (%) Det mAP Segmentation Resolution E2E
at test time feed forward

E2E 13.8 15.6 0.89 Full page 150dpi YES
Two-step 10.5 19.3 0.9 Full page 150dpi NO

With box GT - 15.5 - Word 150dpi NO
Bluche et al. [6] - 7.9 * - Paragraph 150dpi YES
Puigcerver [63] - 5.8* - Paragraph - YES

in the hypothetical case that we could not do the two tasks jointly. With this
approach the model finished the training stage with a mAP of 0.9. When the
detection training is finished, we train the whole model, but this time we ignore
the classification and regression branches. Here we only backpropagate the CTC
loss, using the ground truth word segmentation in the RoI pooling step, i.e. to
get the separate best possible transcription using the same architecture as in the
end-to-end approach.

Figure 4.6 presents a comparison of the behaviour (in CER) of both ap-
proaches: the separate recognition training and the end-to-end one, where we use
the predicted segmentations and backpropagate the classification and regression
losses. As expected the curve belonging to the separate is much smoother and de-
creases fast since there is no noise in the segmentation of the words. Nonetheless,
we can see that in general, the end-to-end method is not far away from the sepa-
rate one, and in the end, the difference in CER values is not significant. Looking
at test time, the performance of the CER in both methodologies is the reverse, the
end-to-end method is able to generalize better than the separate one, and gives a
lower CER as shown in Table 4.2.

In addition, we evaluate the separate trained approach using the ground truth
test word segmentation, to know which is the best transcription we could get
at test time by using our architecture. Surprisingly, the CER in this case is not
significantly lower than the end-to-end approach, which does not use segmentation
at all.

Finally, Table 4.2 compares our method to some existing methods in the liter-
ature. We have chosen two methods that work at paragraph level, as the closest
segmentation level to our work. Note that both approaches [6, 63] use the seg-
mented paragraph as input. Moreover, the method described in [63] also uses data
augmentation, which also brings a boost in performance. Also, we evaluate the
character error rate at full page instead of line level, ignoring special characters
and considering all characters lower case. Consequently, these results are not di-
rectly comparable to our work. In any case, we can observe that our method is
competitive, especially taking into account that it does not require any kind of
layout analysis.
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Some qualitative results are shown in Figures 4.4 and 4.5. As it can be observed,
most errors come from the miss-recognition of some characters. Looking in deep
at those errors, we realize that humans could make the same mistakes if they
only rely on the visual appearance of text. Of course, dictionaries and language
models could help to reduce this kind of errors. For example, the last predicted
word shown in Fig.4.5 would be correctly transcribed as "colleagues" instead of
"caleagues".

In summary, from the results we can conclude that our end-to-end approach is
a promising technique in segmentation-free text recognition scenarios, and it can
serve as a baseline for future works.

4.4 Conclusions

We have proposed an end-to-end method for text detection and recognition. It
addresses the potential improvements suggested in previous HTR works by recog-
nizing the text in a full page in a single feed forward end-to-end model. The model
successfully allows end-to-end training backpropagating output transcription er-
ror to segmentation layers. This brings a couple of benefits and limitations. First,
there is an intermediate step reduction with respect to the separate approach.
The improvement could be caused by multiple reasons. One is the intended effect
of backpropagating of the transcription (CTC) loss that leads to more adequate
segmentation (but not necessarily with a higher detection score) at test time. An-
other possible cause is the regularization effect of training the recognition with
more noisy segmentation, that prevents the model from overfit to the data. A
unquestionable improvement is that this approach brings an inference time reduc-
tion, so for transcribing a large dataset the total difference might be significant.
It would be interesting to perform some experiments in this direction and study
in depth the causes of the improvement when the training is end-to-end.

It is also noticeable the memory usage reduction at inference time by sharing
the model parameters for localization and transcription, and only seeing the page
image once to predict the transcriptions, instead of having to work with two sep-
arate models. However, at training time it is necessary a high capacity GPU (at
least 10GB) to load the recognition branch which increases the memory require-
ments significantly. To decode the output of our model we use a rule based reading
order extractor from the word boxes. A possible future improvement to handle
other arbitrary reading orders would be to add a sorting decoder RNN, inspired
by the attention layer in [6].

A possible continuation of this would be to concatenate the detected words in
lines before the RoI pooling. This would allow to train with documents where
the ground truth only includes part of the segmentation information. Also, in the
case of documents with text in different orientations, affine transformation with
bilinear sampling as in [39] could be used instead of the RoI pooling. Having these
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Figure 4.4: Example of Localized words in a page from the IAM dataset.
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Figure 4.5: Example predictions on unseen page. Note that by predicting the text
sequence from pooled regions instead of the input image in an end-to-end fashion,
the model is able to handle segmentation errors.

Figure 4.6: Character Error Rates for the Validation set. We compare the separate
recognition training vs the end-to-end training.
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observations, the presented method opens the door to combine more tasks coming
after localization and transcription in a unified model, such as the recognition of
named entities.
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Chapter 5

Joint text localization, transcription
and named entity recognition

In the last years, the consolidation of deep neural network architectures for in-
formation extraction in document images has brought big improvements in the
performance of each of the tasks involved in this process, consisting of text lo-
calization, transcription, and named entity recognition. However, this process is
traditionally performed with separate methods for each task. In this chapter we
propose an end-to-end model that combines a one stage object detection network
with branches for the recognition of text and named entities respectively in a
way that shared features can be learned simultaneously from the training error
of each of the tasks. By doing so the model jointly performs handwritten text
detection, transcription, and named entity recognition at page level with a single
feed forward step. We exhaustively evaluate our approach on different datasets,
discussing its advantages and limitations compared to sequential approaches. The
results show that the model is capable of benefiting from shared features for si-
multaneously solving interdependent tasks.

5.1 Introduction

Having explored end-to-end models that combine recognition of text with NER
and with localization, in this chapter we close the IE task interdependency loop
and explore the combination of localization and NER as well as the three tasks
(localization, HTR and NER) simultaneously unifying the whole process in a single
end-to-end architecture. We test our method on different scenarios, including data
sets in which there is bi-dimensional contextual relevant information for the named

41
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Figure 5.1: Overview of the proposed method. Convolutional features are ex-
tracted with ResNet18 and FPN. The classification and regression branches cal-
culate the positive boxes and the recognition branch predicts the transcription of
the content of each box. Cross entropy, squared-sum and CTC losses are back-
propagated through the whole model for training.

entity tag, or there is an inherent syntactic structure in the document.

We experimentally validate the different alternatives considering different kind
of documents, while studying properties such as geometric context relevance, lay-
out regularity or density of named entities in the text.

The resto of the chapter is organized as follows. In section 5.2 we describe our
joint model. In sections 5.4 and 5.5, we present the datasets, the experimental
results and discuss the advantages and limitations of our joint model. Finally, in
section 5.6 we draw the conclusions.

5.2 Methodology

This method follows the procedure explained in previous chapter, while extending
the model for the named entity recognition in different setups. As introduced be-
fore, our model extracts information in a unified way. First, convolutional features
are extracted from the page image, and then, different branches analyze these fea-
tures for the tasks of classification, localization, and named entity recognition,
respectively. An overview of the architecture is shown in Figure 5.1.

5.3 Shared features

Since the extracted features must be used for very different tasks, i.e. localization,
transcription and named entity recognition, we need a deeper architecture than
the one used for each isolated task. In a similar way as in previous chapter we
choose as a backpone architecture the ResNet18.

We chose an intermediate depth model which allows to tackle the tackled com-
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plex tasks at once. The output of the Feature Pyramid Network is a set of 5 down
sampled feature maps with scales 8,16,32,64,128. Each of these are forwarded to
the upcoming branches and their output is stacked in a single tensor, from which
we later select the most confident predictions.

5.3.1 Classification branch

For similar reasons as in previous chapter we have chosen the state of the art
one-stage object detection as our classification branch. The architecture of this
branch is shown in table 5.1.

Table 5.1: Classification and regression branch architectures, where downsampling
levels are dsli ∈ {8, 16, 32, 64, 128}.

Layer output shape kernel size | kers|
conv-block 1 H/dsli ·W/dsli 3 x 3 256
conv-block 2 H/dsli ·W/dsli 3 x 3 256
conv-block 3 H/dsli ·W/dsli 3 x 3 256
conv-block 4 H/dsli ·W/dsli 3 x 3 256
conv-block 5 nanchors · {nclasses, 4} 3 x 3 1

We also explored to use this branch as a named entity classifier. The motiva-
tion behind is to take context into account through the prediction of the presence
of certain features in a neighbourhood of a point of the convolutional grid. The dif-
ficult part comes when attempting to capture dependencies between distant parts
of the image, as it happens when a sequential approach is used. The classification
branch, or objectness loss in case of a pure text localizer classifier, is trained with
the cross-entropy loss as in the previous text localization loss equation 6.5.

5.3.2 Regression branch

To predict the coordinates of the box positives, the regression branch receives
the shared features and, in a similar way as the model presented in the previous
chapter the offset values are predicted from the predefined anchors.

Also in this case the offset of the predefined anchors is regressed by minimizing
the mean square error. Again the anchors are generated as the combination of the
ratios 1

2 ,1,2 and the scales 1, 2
1
3 , 2

2
3 with a base size of 32 (9 anchors).

5.3.3 Feature pooling

Once we have predicted the class probabilities and the coordinate offsets for each
anchor in each point of the ImH/8×ImW /8 convolutional grid, we select the boxes
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whose confidence score surpasses a given threshold, and remove the overlapping
ones applying a non-maximal suppression algorithm. With the given box coordi-
nates, we apply RoI pooling [24] to the convolutional features of the full page, but
saving the input to allow error backpropagation to further branches. We use the 5
levels of the feature pyramid to calculate the box anchor offsets and the objectness
values. For computational reasons, we only keep the least downsampled features
for the text recognition and named entity recognition branches, as we need the
highest possible resolution for those tasks.

5.3.4 Text recognition branch

As in the previous chapter, we build a recognition branch that will predict the
text contained in each box. The architecture of this branch, shown in Table 5.2,
consists of two convolutional blocks followed by a fully connected layer. The output
of this layer is the probability of a character for each column of each one of the
pooled features. From these predictions, we calculate the CTC loss as done with
the previously proposed models.

This loss is added to the classification and regression losses to backpropagate
them together for each gradient update.

Table 5.2: Recognition branch architecture.

Layer Output shape ker size | kers|
conv-block 1 pool H·pool W 3 x 3 256
conv-block 2 pool H·pool W 3 x 3 256
Fully connected pool W· |alphabet| - -

5.3.5 Semantic annotation branch

One possibility to assign a semantic tag to each word is to predict its class from the
classification branch for each anchor. However, this would not capture the context
as the activations only rely on the convolutional feature maps of a neighborhood
of each point. For this reason, we add this network branch to predict the semantic
tags as a sequence from the ordered pooled features of each box. For simple layouts,
such as single paragraph pages, the pooled features, which correspond to text boxes
in the page, are sorted in conventional reading order (i.e. left to right and top to
bottom) by projecting a continuation of the right side of the text box. Once we
have the ordered pooled features, we pad them and apply two convolutions followed
by a fully connected network as a standard named entity recognition architecture.
Then, we minimize the cross entropy loss shown in equation 6.5 for each of the
sequence values.
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5.3.6 Receptive field calculation

Our approach assumes that each activation of a neuron in the deepest layers of a
CNN depends on the values of a wide region of the input image, i.e. its receptive
field. Also it is important to notice that the closer a pixel is to the center of the
field, the more it contributes to the calculation of the output activation. This can
be a useful property for documents where the neighboring words determine the tag
of a given word, but it can also be a limitation when distant entities are related in a
document. To calculate how much context is taken in account for each unit of the
features that are fed to the RoI pooling layer, we must look at the convolutional
kernel sizes k and strides s of each layer. In this way, as in [19], we can calculate
the relation between the receptive field size of a feature map depending on the
previous layer’s feature map:

rout = rin + (k − 1) · jin (5.1)

where jin is the jump in the output feature map, which increases in every layer
by a factor of the stride

jout = jin ∗ s (5.2)

By using these expressions with our architecture (ResNet 18 + FPN), we obtain
a receptive field size of 1559 in the shared convolutional feature map. That means
that, since the input images are 1250×1760, the values predicted for each unit
mostly depend on the content of the whole page, giving more importance to the
corresponding location of the receptive field center.

5.4 Datasets

One of the limitations when exploring learning approaches for information extrac-
tion is the few publicly available annotated datasets, probably due to the confi-
dential nature of this kind of data. Nonetheless, we test our approach on three
data sets. The details of amount of pages, words, out of vocabulary (OOV) words
and partitions can be found in Table 5.3.

5.4.1 IEHHR

For this chapter we use the full page version of the IEHHR which contains 125
handwritten pages with 1221 marriage records (paragraphs). In a similar way as
before, for each record we find the information of the husband, wife and their
parents’ names, occupations, locations and civil states. On the sides of each para-
graph we find the husband’s family name and the fees paid for the marriage. An
example page is shown in Figure 5.6.
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Table 5.3: Characteristics of the datasets used in our experiments. Entities refer
to the amount of relevant words (i.e. they do not belong to the class "other").

Part IEHHR WR sGMB

Pages
train 79 994 490
valid 21 231 53
test 25 323 50

Words
train 2100 2837 7010
valid 878 731 1740
test 1020 1033 4085

‖OOV‖ all 387 853 1372
% OOV all 37 82 34
% entities all 52.5 100 17
‖entity tags‖ - 5 3 5

5.4.2 War Refugees

The War Refugees (WR) archives contain registration forms from refugee camps,
concentration camps, hospitals and other institutions, from the first half of 20th
century. We have manually annotated the bounding boxes, transcriptions and
entity tags of names, locations and dates. Due to data privacy we cannot share the
images, but instead we show in Figure 5.2 a plot of all annotated text normalized
bounding boxes, where the colors correspond to different tags. As we can observe,
there is a strong pattern relating the text location and its tag, although it is not
fixed enough for applying a template alignment method. The main difficulty of
this dataset is to distinguish relevant from non-relevant text, which in most cases
only differs by its location or by a nearby printed text key description. Another
challenge is the high amount (82%) of out of vocabulary words, together with the
high variability of the writing style and the mixture of printed and handwritten
text.

5.4.3 Synthetic GMB

We have generated a synthetic dataset (sGMB) to explore the limitations of our
model, concretely in a standard named entity recognition task, in which text is
unstructured and the amount of named entities within the text is low. For this
purpose, we have generated synthetic handwritten pages with the text of the GMB
dataset [8] by using synthetic handwritten fonts, applying random distortions and
noise to emulate realistic scanned documents. Although it is easier to recognize
synthetic documents than real ones, the difficulty here remains on the sequen-
tial named entity recognition task, especially because, contrary to the previous
datasets, here the text does not follow any structure. An example is shown in
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Figure 5.2: Normalized bounding boxes of the tagged text of all training images
in the WR dataset.

Figure 5.3. The dataset and ground truth are available here 1.

5.5 Experiments

In this section we describe the experiments performed for each data set. We
optimized our model with stochastic gradient descent on the three described losses
in section 5.2. When unifying tasks in a single model, the model becomes quite
memory expensive. To overcome this limitation, during the training, we had to
set our batch size to be 1 page. Based on previous object detection work we have
chosen the learning rate to 10−4, the non-maximum suppression threshold to 0.2
and the box sampling score threshold to 0.5. We have chosen a patience of 100

1https://github.com/omni-us/research-dataset-sGMB
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Figure 5.3: A generated page from the SynthGMB dataset. A major difficulty is
the sparsity of named entities with respect the other words.

epochs to trigger early stop.

5.5.1 Setup

In this section we explain the possible setups in which our proposed model can be
used. Our approach has been evaluated using the following different configurations:

• A: Triple task model. The first method variation consists in using our
proposed model to perform all tasks in a unified way using the objectness
branch for named entity classification as explained in section 5.3.1, with no
sequential layers but only convolutional ones.

• B: Triple task sequential model. The second variation also performs
the three tasks in a unified way, but by concatenating the pooled features
in reading order and predicting the labels sequentially with the semantic
annotation branch described in section 5.3.5.

• C: Detection + named entity recognition. In this case we consider to
face the extraction of the relevant named entities as a detection and classifi-
cation problem. Here, we ignore the recognition part and only backpropagate
the classification and regression losses from their respective branch outputs.
We also consider the sequential version of this approach using the semantic
annotation branch.

• D: Detection + transcription. Here we combine in a unified model
the tasks of localization and transcription, as our previous work explained
in chapter 4, in contrast to an approach in which the two tasks are faced
separately, where the recognition model would cope with inaccurate text
segmentations. Here we aim to observe how precisely we can obtain text
boxes and transcriptions in this context, so that named entity recognition
can be applied afterwards.

• CNN classifier. Finally, we evaluate the variability of the cropped words
among the different categories and the difficulty of annotating words sepa-
rately. Thus, we train a CNN network, similar to the classification branch
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from our proposed method, that classifies words without using any shared
features for recognition or localization. So, this network does not benefit
from context information.

Diagrams of each setup can be seen in Figure 5.4. The full source code for all
experiments is publicly available here 2.

5.5.2 Metrics

Different metrics have been used to evaluate the proposed methodology. One to
evaluate the performance of the text detection, one for named entity recognition,
and another for transcription. For text localization we used the the widely used
object detection metric, average precision. For named entity recognition, we used
the F1 score. Let p = TP

TP+FP be the precision metric, i.e. the number of true
positives out of the total positive detections; r = TP

TP+FN be the recall metric, i.e.
the number of true positives out of the total ground truth positives, i.e. the true
positives plus false negatives. We consider the recall-precision map, p : [0, 1] 7→
[0, 1] which maps the recall value r to the precision p that we obtain if we had the
detection threshold to get such a recall. Then, the Average Precision is the value∫ 1

0
p(r), i.e. the area under the precision-recall graph. The F1 score consists of

the harmonic mean between the precision and the recall:

F1 = 2 · precision · recall
precision+ recall

(5.3)

For text localization all the word bounding boxes are considered in the metric. In
contrast, for named entity recognition only the entity words count, as it is standard
in this kind of task. Also the recognized text is not used to match the entities,
only the location of the word within the page and the entity tag. This is so that
the metric only evaluates the prediction of entities completely decoupled from the
transcription performance.

For the transcription score we use the Character Error Rate (CER), i.e. the
number of insertions, deletions and substitutions to convert the output string into
the ground-truthed one, divided by the length of the string. Formally:

CER =
i+ s+ d

label length

5.5.3 Results

From the results shown in Table 6.1, we observe that the localization performance
is high in general being this one the less challenging task of all. Differences among
the different setups and datasets are not significant.

2https://github.com/omni-us/research-e2e-pagereader
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For text recognition all methods perform similarly except in WR dataset. Setup
A shows a slight better performance than B and D. This suggests that the eaves-
dropping effect mentioned in [70] might be taking place in this case. The outnum-
bering of non-labeled words vs labeled in WR dataset increases considerably the
difficulty of the recognition task for this dataset due to the same type of error ob-
served in figure 5.5. We cannot show images of this phenomena observable during
training due to the confidential nature of the documents. A possible solution to
this would be to also have annotated words which are not entities as it happens
in IEHHR and sGMB.

For the entity recognition part, we do not observe significant differences among
the end-to-end approaches in the IEHHR dataset. This suggests that the local
neighborhood information seems enough to give correct predictions. The high
named entity recognition performance using the triple task sequential approach
(case B) in WR dataset suggests that it is beneficial to combine the tasks of
named entity recognition and localization. To have a better idea of whether the
proposed method makes use of context or the sole content of the word is sufficient,
we compare its performance to the CNN classifier for segmented words. Since we
are facing a named entity recognition task, we only take into account the entities,
i.e. words labeled as ’other’ are not taken into account after the text localization
step. By doing so, in the IEHHR dataset we observe a greater performance for the
end-to-end models compared to the CNN. This is an evidence that context is being
used since in the CNN approach there is the advantage that an explicit perfect
segmentation is given. In the case of WR we observe an even greater boost of
performance when using the context, specially the bi-dimensional one (setup A).
We attribute this to the inherent layout pattern contained in the dataset as it can
be intuited observing Figure 5.2. We also assume that predictions were based on
the layout due to the large amount of out of vocabulary words, which would make
it difficult to predict the word category based on a known vocabulary. sGMB is
clearly the most difficult one since it has the sparsest distribution of entities as it
can be seen in Table 5.4. With this dataset we also see a very substantial increase
in performance when using the context, concretely, the sequential one (setups B
and C). This makes sense as the type of text is natural language, which means
that it has a sequential structure but lacks the bi-dimensional layout structure of
registration forms or marriage records. Consequently, sequential patterns existing
in natural language are more suitable to recognize entities.

5.6 Discussion and Conclusion

In this chapter we have presented a unified neural model to extract information
from semi-structured documents. The proposed method shows the strengths of the
pairwise interaction of some of the tasks, such as localization and transcription and
also for localization and named entity recognition when the spatial information
or the neighbourhood (geometric context) of a text entity influences the value
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Table 5.4: Performance of the different method variations on each dataset.

Method IEHHR WR sGMB
Text localization (AP)

A: triple task 0.97 0.976 0.994
B: triple task seq 0.972 0.973 0.994
C: Det+ner seq 0.969 0.975 0.997
D: det+htr 0.974 0.981 0.996

Text recognition CER (%)
A: Triple task 6.1 23.7 2.3
B: Triple task seq 6.3 28.7 2.6
D: Det+HTR 6.5 27.5 2.5

Named entity recognition (F1)
A: Triple task 0.797 0.975 0.347
B: Triple task seq 0.806 0.924 0.535
C: Det+NER seq 0.796 0.963 0.510
CNN classifier 0.700 0.821 0.382

to predict. Nevertheless observing the performance of triple task neural model
variations, it must be noted that a unified model can be limited in performance
in cases where one specific task is much harder and unrelated to the others. In
such a case, a separate approach would allow us to use specific techniques for
this difficult unrelated task. For example, named entity recognition performance
is limited by the fact that it is very difficult to generate semantically meaningful
word embedding vectors (e.g. word2vec, glove) when the model input is a page
image.

In summary, we conclude that a joint model is suitable for cases in which there
is a strong task interdependence, but not for documents where the main difficulty
is on one independent single task.

As we have seen the proposed approach can identify local spatial relationships,
due to the design of the receptive fields. However, unless we are working on
sequentially organized data this type of approach would struggle to capture longer
distance spatial relationships in a semi structured document. This leads us to
study models that solely focus on this more difficult task in an isolated way.
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Figure 5.4: Model setup variations, A-D. The differences rely on how the named
entities are recognized, and the optional integration of the recognition branch.
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Figure 5.5: (Top) Plot comparing the regression loss during training on the bench-
mark dataset IAM for ResNet18 (green) against a 2 convolutional block reduced
version (red). (Middle) Predictions on IAM with 2 convolutional block model.
(Bottom) Predictions on IAM with ResNet18 model. The model does not confuse
relevant with irrelevant text.
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Figure 5.6: Word localizations, transcriptions and semantic annotations on an
unseen page of the IEHHR dataset. The model learns to detect and classify words
based not only on its appearance but also on its context. The colors illustrate the
different type of named entities.



Chapter 6

Named Entity Recognition and
Relation Extraction with Graph
Neural Networks

Graph Neural Networks provide the proper methodology to learn relations among
the data elements in semi-structured bureaucratic documents. In this chapter we
study their use to tackle the problem of entity recognition and relation extraction.
Our approach achieves state of the art results in the three tasks involved in the
process. Additionally, the experimentation with two datasets of different nature
demonstrates the good generalization ability of our approach.

6.1 Introduction

When building a model to learn some pattern on the data, there are relational
assumptions implicitly made, such as assuming that the pattern is going to be
present in bidimensional neighborhoods in the case of convolutions on images, or
assuming that it is going to be present in a sequence as in the case of RNNs.
This idea is known as relational inductive bias [4]. In the context of IE the high
variability of the data in the task of finding layouts and relationships within doc-
ument elements suggests that other arbitrary inductive bias should be chosen.
In our previous work [11], and continuations of it [93] the mentioned tasks are
faced with architectures originally designed for vision, which have locality induc-
tive bias. These methods achieve acceptable results but also are not allowing the
mentioned arbitrary relational inductive bias assumptions among the document,
which motivates the use of Graph Neural Networks (GNNs). Several work has

55
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been done exploiting the combination of neural architectures with graph struc-
tured data with great success, extending their breakthrough on vision and natural
language to many other domains such as quantum chemistry, knowledge graphs,
or citation networks [76] [44] [23]. In the work of Velickovic et al.. [86] the idea of
attention is brought together with GNNs leveraging masked self attention layers,
having in this way a specially adequate architecture to efficiently solve not only
problems such as node classification with prior known graph structure but also
structure inferring problems such as link prediction. In this work we tackle the
problem of finding relationships between elements in a document, i.e. predict links
between entities by means of a Graph Neural Network model.

Liu et al. [54] proposed a GNN based approach for NER in visually rich docu-
ments that successfully classifies named entities suggesting its potential capability
of performing other tasks of information extraction. Recently, in the work of Riba
et al. [67] a Graph Neural Network is trained to detect tables in different types of
business documents, predicting relationships between table elements. Other no-
table contributions in the field are the LayoutLM model [90], and [92]. The first
one is based in the idea that BERT [18] derived architectures provide a powerful
resource to extract patterns in sequential data. Hence in their work they con-
vert the input data in a sequential format comprising embedded layout as well as
textual information to successfully classify entities. The latter one combines this
idea with the use of GNNs to jointly predict the contents of documents with a
predefined structure as in the case of the ICDAR 2019 Competition on Scanned
Receipt OCR and Information Extraction [36]. Conversely, in the case of this work
we further extend the previous method by giving to the model the possibility to
predict links between the entities whose type and amount might be unknown a
priory.

In this chapter, we propose a novel method to extract structured information
from semi structured documents by means of GNNs. Inspired by [67] we extend
this idea to a more generic context were also key-value pairs which are not strictly
table elements are predicted, and also entities are classified in different categories.
The whole system demonstrates the ability to solve the three tasks with state of
the art performance. Summarizing, the main contents of this chapter are:

• We cast the named entity recognition and relation extraction as a supervised
message passing task.

• We surpass state-of-the-art performance of the three tasks involved.

• Our model generalizes to weakly structured documents, as we show in the
experimental part validating it images of historical marriage licenses.

The rest of the chapter is organized as follows. Section 6.2 introduces the
proposed pipeline for named entity recognition and relation extraction, as well as
the specific GNN chosen architecture for our work. Next in section 6.3 we describe
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the datasets and metrics to test the approach, and we show the obtained results.
Finally, section 6.4 draws the conclusions extracted from the experiments.

6.2 Methodology

In this section, we introduce our approach for name entity recognition and relation
extraction. We focus on the steps of document understanding coming once the
OCR has been already performed. Therefore, we consider that the raw textual
content of the document is already available and to better isolate the problem we
make use of the ground-truth transcriptions as well as bounding boxes.

6.2.1 Problem formulation

Given an input document the model has to be able to (i) detect the document enti-
ties i.e. groups of words with a semantic meaning; (ii) classify the detected entities
into predefined categories and; (iii) discover the meaningful pairwise relationships
between entities. These tasks are named as word grouping, entity labeling and
entity linking respectively.

The proposed architecture is divided in several components. Each of them
is trained for a single task independently from the others. Thus, in total three
different GNN models, f1(·), f2(·) and f3(·), are considered. The document is
initially represented as a graph G1 whose nodes are the words detected in the OCR
process. Edges between words are created using k nearest neighbors (k-NN) based
on the distances of the top-left corner of the word bounding boxes. The GNN first
identifies groups of words corresponding to entities by doing edge classification.
Subsequently, the graph is contracted according to the detected groups (graph G2)
in order to perform the tasks of entity labeling as a node classification approach
and entity linking as link prediction pipeline. An overview of this approach is
introduced in figure 6.1 for the first task and in figure 6.2 for the other ones.

6.2.2 Word grouping

The first task towards a framework able to understand the complex structure of a
document is to group the words which belong to the same semantic entity. This
task requires to combine both sources of information, on the one hand, the textual
content and, on the other hand, the pairwise relationships with other words. Thus,
we consider the task of finding groups of words as a link prediction problem in the
graph of the document.

With this aim, the graph G1 = (V1, E1) is constructed by considering each de-
tected word as a node. To initialize the node features, we first calculate a fasttext
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Figure 6.1: Overview of the proposed word grouping approach. The text content
and location of the words in the input document is encoded in a word level k-NN
graph. This is fed into a GNN with L layers. The word grouping is formulated
in terms of a binary edge classification problem, that is, 1’s indicates that these
words belong to the same entity.

Figure 6.2: Given the discovered entities (see figure 6.1), a complete entity level
graph is generated and fed into L GNN layers. Thus, the tasks of entity labeling
and entity linking are formulated in terms of node and edge classification respec-
tively. The GNN is trained separately for each task.
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word embedding model [7] by linearizing the text of the training documents or-
dered as given by the OCR process. An important benefit of using fasttext is that
at prediction time it is possible to get meaningful embeddings for words not ob-
served in the training set, which is a rather common occurrence in administrative
documents.

Given a node vi ∈ V1, its initial hidden state vector h0i = [xi, yi, wi, hi, wembed]
is the concatenation of the word embedding with the corresponding bounding
box width, height, and top left corner position normalized with respect to the
page size. Having calculated h0 = {h01, . . . , h0n} we generate k-NN graph G1 with
k = 10 since the complete graph–all nodes connected with each other–makes the
problem computationally unfeasible. The number of neighbors for constructing
the graph has been chosen experimentally making sure the minimum number of
candidate edge between words is missing while keeping the number of edges low.
This hyper-parameter could be further tuned but it is beyond the main scope of
this work. The generated graph is going to be further processed by our L layer
GNN architecture s = f1(G1) where s are the final link predictions.

To get the word groups from the link predictions we keep the edges whose
predicted scores are greater than a threshold τ , and, by connected components,
we define the entities.

6.2.3 Entity labeling

Assuming that the previous word grouping task has been successfully solved, in this
step we want to classify each group of words or equivalently semantic entity with
its corresponding label. For this case, let us consider a graph G2 = (V2, E2) as the
entity graph, where each node represents an entity. For this module we considered
the complete graph since the number of nodes is drastically reduced. Then the
label for a given entity is calculated in terms of node classification. Thus, following
the notation mentioned above, c = f2(G2) where c are the predicted entity labels.

6.2.4 Entity linking

Similarly to the previous task, entity linking makes use of the complete graph
G2 as its input. However, this task is cast as an edge classification framework
following the same pipeline introduced for the word grouping task. Therefore, our
model binary classifies edges to predict the existence or absence of links between
nodes. Thus, s = f3(G2) where s are the predicted scores per each edge.

6.2.5 Architecture

Here we describe how our three graph models are built to solve the above described
problem. With our approach the model extracts structured information combining
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two types of processes: (i) given a set of node vectors, find the structure of graph,
i.e. predict the existing edges between them. This is used for the word grouping
part as well as for entity linking; (ii) given a set of nodes, classify each of them in
a predefined category. This is used for the entity labeling part.

The proposed tasks, do not only predict classes in the set of nodes, but also rela-
tionships among words and entities in a document. This second objective requires
to infer the meaningful structure given a set of node data and partially known
edge information rather than making use of static ground truth edge connectivity
to predict values for nodes. For this type of task GAT layers have shown to be
very adequate, therefore, we selected them as the base of our GNN architecture.

In the following lines, we describe the backbone of our architecture indepen-
dently to the final task. Let G = (V,E) be a graph where eij ∈ E denotes the
edge between nodes vi, vj ∈ V . Let n = |V | be the number of nodes in the input
graph then GAT layers receive a set of nodes features hl = {hli}i=0n ∈ RFl and
return an updated set of those nodes hl+1 = {hl+1

i }ni=0 ∈ RFl+1 according to the
pairwise relationships defined in E. GAT layers follow the idea of attention in
CNN’s to decide which are the important connections. Therefore, for each pair of
nodes (vi, vj) the attention coefficients αij are calculated:

αij =
exp(LeakyRelu(V [Whi||Whj ]))∑

k∈N (vi)
exp(LeakyRelu(V [Whi||Whk))

(6.1)

where N (vi) is the set of neighboring nodes of vi, W and V are weight matri-
ces with learnable parameters and || is the concatenation operator. Following the
Transformer architecture practices [85] we use K attention heads. Hence, K at-
tention coefficients are computed and aggregated in order to obtain the updated
node hidden state hl+1. Thus, a GAT layer is defined as:

hl+1
i = g(hi) =

∣∣∣∣∣∣∣∣K
k=1

σ

∑
j∈Ni

αkijW
khlj

 . (6.2)

In our experiments, we consider the backbone model of our functions f1(·),
f2(·) and f3(·) as L GAT layers.

The tasks that we are facing for document understanding can be summed up
in node classification and link prediction. The first one simply consists to assign
a label ci ∈ C to each node vi in the input graph G. The second one consists of
predicting the existance or absence of an edge between each pair of nodes. For the
first case we simply feed the hidden state node representation to a Multi Layer
Perceptron (MLP) with a sigmoid activation function, predicting this way each
class probability for node vi:

ci = σ(WhLi ), (6.3)

where W ∈ RFL×C is a learnable weight matrix, C is the number of classes and
hLi is the node hidden state at the last layer.
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In the case of link prediction we also use a MLP but in this case receiving a
list of all the candidate node pairs and returning their link likelihood score:

sij = σ(W (|hLi − hLj |)). (6.4)

Note that with this approach we are not predicting directed links as we take
the absolute value of the difference between hidden state vectors.

In all cases the GNN is trained with Stochastic Gradient Descent (SGD) on
the Cross Entropy (CE) loss for both problems, node or edge classification. CE
loss is defined as:

CE(y′) = −(y · log(y′) + (1− y) · log(1− y′)) (6.5)

where y are the ground-truth labels and y′ are the predicted scores.

6.3 Experiments

In this section we present the experiments for our method on the benchmark
datasets FUNSD [40] and IEHHR [21] for administrative and historical documents
respectively.

6.3.1 Datasets

FUNSD

As we introduced earlier, despite the abundance of research on extracting struc-
tured information from semi structured documents and the interest in the industry
for obtaining a robust solution for the problem there is no universally accepted
main benchmark for the task. An obstacle for the advance and refinement of a
solution in the field is the confidential nature of the data in which companies need
to run such algorithms. Jaume et al. [40] intend to unify efforts with a benchmark
on this popular problem, reducing it to the tasks of grouping, labeling and linking.
The dataset comprises 199 real, fully annotated, scanned forms extracted from the
Truth Tobacco Industry Document6 (TTID), and archive comprising scientific re-
search, marketing, and advertising documents of some of the largest US tobacco
firms.

IEHHR

Besides testing our approach on modern bureaucratic document dataset we also
want to investigate its versatility in even weaker structured documents, such the
ones containing in the IEHHR competition dataset [21]. In this chapter we use a
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modified version of the earlier used database. In this case the word groups are also
forming named entities, but restricted to information of members of the family in
which marriages are taking place -wife, husband, wife’s father, mother etc.- as well
as their related locations, occupations or civil states. All entities corresponding
to a family member are linked to the name of the corresponding members. Also
wife and husband names are linked for each record. An example page with labeled
entities can be seen in figure 6.3.

6.3.2 Metrics

The performance of the tasks faced in this work are measured with two different
metrics. For the grouping part, since it consists of clustering elements we calculate
the Adjusted Rand Index (ARI) [37]

For the tasks of entity labeling and link prediction we calculate the F1 score
in the traditional way, being the harmonic mean between precision P and recall
R.

F1 = 2 · P ·R
P +R

6.3.3 Results

Table 6.1 presents the quantitative evaluation on the three tasks. Note that our
model is not using any external data to train our architecture.

Concerning the grouping task in FUNSD, we see that the model is able to
correctly predict most links between words, despite the vast amount of edges in
the k-NN graph. Although it would be ideal, with this approach it is not intended
that every single edge is going to be correctly predicted, remind that we intend to
cluster the nodes based on densely connected regions with a semantic meaning. In
many cases the groups will be correctly predicted despite some of the links between
nodes in the are missing, i.e. a false negative link is likely to be harmless to the
performance on this step as the aggregation is still correct. On the other hand,
false positive links create a bigger problem. They may join two groups that should
be separated for a proper detection. Using the validation scores during training,
we set the threshold τ to the value above which an existing edge is considered a
link on the grouping step. Hence, τ has been set to 0.65, and 0.9 for FUNSD and
IEHHR respectively, avoiding as much false positives as possible. Predictions on
a k-NN graph from a page can be observed in figure 6.4.

Regarding the entity labeling task, we outperform the BERT + MLP approach
proposed in the FUNSD baseline [40]. The same task is performed at word level
by the pretrained LayoutLM [90]. Their reported results are convincing, however,
they are not directly comparable neither to the FUNSD approach [40] nor our
current work. Our results follow the original paper, therefore the F1 is calculated
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Figure 6.3: Entity label ground truth on a IEHHR page. The amount of words in
the groups vary greatly depending on the type of entity.
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(a) (b)

Figure 6.4: (a) Input k-NN graph fed to the GNN for word grouping on a FUNSD
page. (b) Word group predictions on the same document. Green edges are true
positives, red are false positives and blue false negatives. We do not plot true neg-
atives and the background to ease interpretation. Node positions are normalized
with respect to the page image size.

at entity level.

Concerning entity linking, the model performs significantly better than the pre-
viously proposed method [40] but with a moderated performance when considering
it in a generic context. We are convinced that this could be strongly improved
using a dataset with a significant higher amount of training samples.

When observing qualitative results on an unseen page (see figure 6.5) we notice
that the model does some wrong link predictions in which a rule restriction based
on the content of the entities could give better results. However the scope of this
work is to investigate how good a pure learned graph neural model could perform
in such a task of finding relationships within the document, without having to
classify a layout into a known one but learning to identify pairs of keys and values
and other relevant related entities instead.

Regarding IEHHR, the grouping model gives an acceptable performance, spe-
cially taking into account the strongly regular nature of the paragraphs in each
page. Despite this regularity, the difficulty in the labeling part becomes clear,
since we have to classify each entity in one of the predefined 20 categories with
only 80 pages for training, to which we attribute the low performance in this step.
Despite leaving room for improvement our model again gets to successfully solve
the linking of entities proving that the approach can also be suitable for this type
of task.

1Not directly comparable, evaluation at word level
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Figure 6.5: Entity linking and labeling predictions on FUNSD. Green and blue
lines show true positive and false negative links between entities. Keys, values,
headers and other are labeled with red, green, blue and turquoise boxes respec-
tively.
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Table 6.1: Results for the three document understanding tasks on FUNSD and
IEHHR datasets.

Word
Grouping
(ARI)

Entity
Labeling
(F1)

Entity
Linking
(F1)

External
data # Params

FUNSD [40]

[40] 0.41 0.57 0.04 X 340M
[90] - 0.791 - X 160M
Ours 0.65 0.64 0.39 - 201M

IEHHR [21]

Ours 0.65 0.53 0.67 - 201M

6.4 Conclusion

In this chapter we have presented a method to perform named entity recognition
and relation prediction in semi structured documents with Graph Neural Networks,
bringing promising results in the process of structured information extraction. Our
method has been initially designed for administrative document understandig,
but we have shown that it can be adapted to other domains, as for example
historical manuscripts. The experimental results show that there is still room for
improvements, probably due to the reduced size of the open available data sets.
For this reason, further research tuning the method and testing on larger data sets
could confirm the feasibility of the approach as a generic solution for extracting
structured information from semi-structured documents.



Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis we have studied several neural models pursuing to constitute an
optimal method for information extraction from semi-structured documents. We
investigated the behavior of these neural models when combining tasks in each of
the steps of information extraction. First the processes of recognizing text and
named entities, second localizing text and recognizing it, and third, doing all tasks
at once with a single neural model. We observed that the benefits and limitations
of joining tasks in end-to-end models depend on several factors. Analogously to
human learning, when two tasks are closely related or interdependent, excelling at
one might ease the learning on the other. Conversely, when two tasks are indepen-
dent, it might be optimal to focus only on one to achieve highest performance at
it. In the first case in which we studied the combination of named entity and text
recognition the performance was comparable to other separate approaches but in a
balanced situation, putting the two tasks together might make it difficult to isolate
the performance bottleneck leaving this way room for improvement. In the case of
localization and recognition, there were some qualitative result observations that
lead to think that it could be beneficial to join the tasks. This is due to the strong
task interdependence, as predicted in Sayre’s Paradox, and to the fact that pooling
features instead of the input image can be thought as a situation of postponing
the final decision until the whole process is finalized, having a broader view of the
picture. When joining the three tasks we saw that from start we were missing some
powerful task specific resources, such as word embeddings. Still since the visual
features are shared with the semantic ones the model can learn the equivalent to a
character embedding, but qualitative results were not as good as expected taking
in account the difficulty of the task. This lead us to think that for the under-
standing part, all the effort should be put in that task without mixing the features
with the visual part, or at least some kind of architecture improvement should be
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brought to achieve better performance. Regarding the last part of our work, we
explored GNN architectures for the last steps of the process achieving successful
results. Our proposed edge score MLP shown to be a plausible method for predict-
ing relationships among document elements allowing to extract the information in
a controlled way in contrast with previously explored black box methods in which
it is difficult to identify in which situations the algorithm succeeds and where it
fails.

7.2 Future Work

Having studied several end-to-end methods for each of the steps of IE from semi-
structured documents, a possible continuation line would be to further explore
variations of architectures based on multi-head attention as we have done in the
last chapter to achieve better performance. A reasonable approach would be to
combine to study the combination of multi-modal data, instead of starting from
a pure image or pure graph as we have done in our earlier works. Another major
barrier in the field is the lack of a solid benchmark dataset to compare different
proposed approaches for IE from semi-structured or bureaucratic documents. Due
to the legal and privacy issues there have been many similar works tested on differ-
ent datasets which were not made available to the research community preventing
the extraction of a common conclusion and consensus of optimal vs inefficient
practices in the field. A large and variate dataset with detailed annotations at
different levels of abstraction (word, entity, text region, semantic relationship etc.)
with example documents taken from an industrial scenario would quickly allow
the document IE field to at the level of other AI fields such as object detection
and recognition which are already extremely efficient, high-performing and thereby
useful for many real world applications.



List of Publications

Journals

• J. Ignacio Toledo, Manuel Carbonell, Alicia Fornés, Josep Lladós. (2019)
Information Extraction from Historical Handwritten Document Images with
a Context-aware Neural Model, Pattern Recognition.

• Manuel Carbonell, Alicia Fornés, Mauricio Villegas, Josep Lladós. (2020)
A Neural Model for Text Localization, Transcription, and Named Entity
Recognition in Full Pages. Pattern Recognition Letters.

International Conferences and Workshops

• Manuel Carbonell, Mauricio Villegas, Alicia Fornés, Josep Lladós (2018).
Joint Recognition of Handwritten Text and Named Entities With a Neural
End-to-end Model. International Workshop on Document Analysis Systems
(DAS).

• Manuel Carbonell, J. Mas Romeu, Mauricio Villegas, Alicia Fornés, Josep
Lladós (2019). End-to-End Handwritten Text Detection and Transcription
in Full Pages. ICDAR Workshop on Machine Learning.

• Manuel Carbonell, Pau Riba, Mauricio Villegas, Alicia Fornés, Josep Lladós
(2020). Named Entity Recognition and Relation Extraction from Semi-
structured Documents. International Conference on Pattern Recognition.

69



70 CONCLUSIONS AND FUTURE WORK



Code Available

• Transcription and Named Entity Recognition (Chapter 3):
http://doi.org/10.5281/zenodo.1174113

• Localization, transcription and Named Entity Recognition (Chap-
ters 4 and 5):
https://github.com/omni-us/research-e2e-pagereader

• Named Entity Recognition and Relation Extraction with graphs
(Chapter 6):
https://github.com/manucarbonell/gcn-form-understanding

71



72 CONCLUSIONS AND FUTURE WORK



Bibliography

[1] D. Aldavert and M. Rusiñol. Manuscript text line detection and segmen-
tation using second-order derivatives. In IAPR International Workshop on
Document Analysis Systems (DAS), pages 293–298, April 2018.

[2] Alexei Baevski, Sergey Edunov, Yinhan Liu, Luke Zettlemoyer, and M. Auli.
Cloze-driven pretraining of self-attention networks. In EMNLP/IJCNLP,
2019.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. In International Con-
ference on Learning Representations, 2015.

[4] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-
Gonzalez, Vinícius Flores Zambaldi, Mateusz Malinowski, Andrea Tacchetti,
et al. Relational inductive biases, deep learning, and graph networks. CoRR,
abs/1806.01261, 2018.

[5] Théodore Bluche. Joint line segmentation and transcription for end-to-end
handwritten paragraph recognition. CoRR, abs/1604.08352, 2016.

[6] Théodore Bluche, Jérôme Louradour, and Ronaldo O. Messina. Scan, attend
and read: End-to-end handwritten paragraph recognition with mdlstm atten-
tion. 2017 14th IAPR International Conference on Document Analysis and
Recognition (ICDAR), 01:1050–1055, 2017.

[7] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.
Enriching word vectors with subword information. arXiv preprint
arXiv:1607.04606, 2016.

[8] Johan Bos, Valerio Basile, Kilian Evang, Noortje Venhuizen, and Johannes
Bjerva. The groningen meaning bank. In Handbook of Linguistic Annotation.
Springer, 2017.

[9] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training
algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual

73



74 BIBLIOGRAPHY

Workshop on Computational Learning Theory, COLT ’92, page 144–152, New
York, NY, USA, 1992. Association for Computing Machinery.

[10] Michal Busta, Lukas Neumann, and Jiri Matas. Deep textspotter: An end-
to-end trainable scene text localization and recognition framework. IEEE In-
ternational Conference on Computer Vision (ICCV), pages 2223–2231, 2017.

[11] Manuel Carbonell, Alicia Fornés, Mauricio Villegas, and Josep Lladós. A
neural model for text localization, transcription and named entity recognition
in full pages. Pattern Recognition Letters, 136:219–227, 2020.

[12] Yuning Chai, Benjamin Sapp, Mayank Bansal, and Dragomir Anguelov. Mul-
tipath: Multiple probabilistic anchor trajectory hypotheses for behavior pre-
diction, 2019.

[13] Laura Chiticariu, Yunyao Li, and Frederick R. Reiss. Rule-based information
extraction is dead! long live rule-based information extraction systems! In
Proceedings of the 2013 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 827–832, Seattle, Washington, USA, October 2013.
Association for Computational Linguistics.

[14] Felipe Codevilla, Eder Santana, Antonio M. López, and Adrien Gaidon. Ex-
ploring the limitations of behavior cloning for autonomous driving. CoRR,
abs/1904.08980, 2019.

[15] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Trans-
actions on Information Theory, 13(1):21–27, 1967.

[16] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
In 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), volume 1, pages 886–893 vol. 1, 2005.

[17] Timo I. Denk and Christian Reisswig. Bertgrid: Contextualized embedding
for 2d document representation and understanding. ArXiv, abs/1909.04948,
2019.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding.
In Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, volume 1, pages 4171–
4186, 2019.

[19] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic
for deep learning. ArXiv, abs/1603.07285, 2016.

[20] Javier Ferrando, Juan Luis Domínguez, Jordi Torres, Raúl García, David
García, Daniel Garrido, Jordi Cortada, and Mateo Valero. Improving accu-
racy and speeding up document image classification through parallel systems.
In Valeria V. Krzhizhanovskaya, Gábor Závodszky, Michael H. Lees, Jack J.



BIBLIOGRAPHY 75

Dongarra, Peter M. A. Sloot, Sérgio Brissos, and João Teixeira, editors, Com-
putational Science – ICCS 2020, pages 387–400, Cham, 2020. Springer Inter-
national Publishing.

[21] A. Fornes, V. Romero, A. Baro, J. Toledo, J. Sanchez, E. Vidal, and J. Llados.
Icdar2017 competition on information extraction in historical handwritten
records. In International Conference on Document Analysis and Recognition,
pages 1389–1394, 2017.

[22] Jonas Gehring, M. Auli, David Grangier, Denis Yarats, and Yann Dauphin.
Convolutional sequence to sequence learning. In ICML, 2017.

[23] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and
George E. Dahl. Neural message passing for quantum chemistry. In Interna-
tional Conference on Machine Learning, volume 70, pages 1263–1272, 2017.

[24] Ross B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015.

[25] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[26] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples, 2014.

[27] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmid-
huber. A novel connectionist system for unconstrained handwriting recog-
nition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
31(5):855–868, 2009.

[28] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhu-
ber. Connectionist temporal classification: Labelling unsegmented sequence
data with recurrent neural networks. In Proceedings of the 23rd International
Conference on Machine Learning, ICML ’06, pages 369–376, New York, NY,
USA, 2006. ACM.

[29] Alex Graves and Navdeep Jaitly. Towards end-to-end speech recognition with
recurrent neural networks. volume 32 of Proceedings of Machine Learning
Research, pages 1764–1772, Bejing, China, 22–24 Jun 2014. PMLR.

[30] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. CoRR,
abs/1410.5401, 2014.

[31] Tobias Grüning, Gundram Leifert, Tobias Strauß, and Roger Labahn. A
two-stage method for text line detection in historical documents. CoRR,
abs/1802.03345, 2018.

[32] Adam W Harley, Alex Ufkes, and Konstantinos G Derpanis. Evaluation of
deep convolutional nets for document image classification and retrieval. In
International Conference on Document Analysis and Recognition (ICDAR).



76 BIBLIOGRAPHY

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. CoRR, abs/1512.03385, 2015.

[34] D. Hebert, T. Paquet, and S. Nicolas. Continuous crf with multi-scale quanti-
zation feature functions application to structure extraction in old newspaper.
In 2011 International Conference on Document Analysis and Recognition,
pages 493–497, 2011.

[35] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9:1735–1780, 1997.

[36] Z. Huang, K. Chen, J. He, X. Bai, D. Karatzas, S. Lu, and C. V. Jawahar.
Icdar2019 competition on scanned receipt ocr and information extraction.
In International Conference on Document Analysis and Recognition, pages
1516–1520, 2019.

[37] Laurence Hubert and Phipps Arabie. Comparing partitions. In Journal of
Classification, volume 2, pages 193–218, 1985.

[38] Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
Reading text in the wild with convolutional neural networks. Int. J. Comput.
Vision, 116(1):1–20, January 2016.

[39] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray
Kavukcuoglu. Spatial transformer networks. In NIPS, 2015.

[40] Guillaume Jaume, Hazim Kemal Ekenel, and Jean-Philippe Thiran. Funsd:
A dataset for form understanding in noisy scanned documents. In Inter-
national Conference on Document Analysis and Recognition Workshops, vol-
ume 2, pages 1–6, 2019.

[41] Guoliang Ji, Kang Liu, Shizhu He, and Jun Zhao. Distant supervision for
relation extraction with sentence-level attention and entity descriptions. In
AAAI, 2017.

[42] Lei Kang, J. Ignacio Toledo, Pau Riba, Mauricio Villegas, Alicia Fornés, and
Marçal Rusiñol. Convolve, attend and spell: An attention-based sequence-to-
sequence model for handwritten word recognition. In German Conference on
Pattern Recognition, pages 459–472. Springer, 2018.

[43] A. R. Katti, C. Reisswig, Cordula Guder, Sebastian Brarda, S. Bickel,
J. Höhne, and Jean Baptiste Faddoul. Chargrid: Towards understanding
2d documents. In EMNLP, 2018.

[44] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph
Convolutional Networks. In International Conference on Learning Represen-
tations, 2017.



BIBLIOGRAPHY 77

[45] Praveen Krishnan, Kartik Dutta, and C. V. Jawahar. Word spotting and
recognition using deep embedding. 2018 13th IAPR International Workshop
on Document Analysis Systems (DAS), pages 1–6, 2018.

[46] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifi-
cation with deep convolutional neural networks. Commun. ACM, 60:84–90,
2012.

[47] A. Kundu, Y. He, and P. Bahl. Recognition of handwritten word: first and
second order hidden markov model based approach. In Proceedings CVPR ’88:
The Computer Society Conference on Computer Vision and Pattern Recogni-
tion, pages 457–462, 1988.

[48] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature
Cell Biology, 521(7553):436–444, May 2015.

[49] Kai Li, Curtis Wigington, Chris Tensmeyer, Handong Zhao, Nikolaos Barm-
palios, Vlad I. Morariu, Varun Manjunatha, Tong Sun, and Yun Fu. Cross-
domain document object detection: Benchmark suite and method. In The
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.

[50] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariha-
ran, and Serge J. Belongie. Feature pyra mid networks for object detection.
CoRR, abs/1612.03144, 2016.

[51] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and P. Dollár.
Focal loss for dense object detection. 2017 IEEE International Conference on
Computer Vision (ICCV), pages 2999–3007, 2017.

[52] Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. Neural
relation extraction with selective attention over instances. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2124–2133, Berlin, Germany, August 2016.
Association for Computational Linguistics.

[53] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E.
Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: single shot multibox
detector. CoRR, abs/1512.02325, 2015.

[54] Xiaojing Liu, Feiyu Gao, Qiong Zhang, and Huasha Zhao. Graph convolution
for multimodal information extraction from visually rich documents. In Con-
ference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2019.

[55] Xuebo Liu, Ding Liang, Shi Yan, Dagui Chen, Yu Qiao, and Junjie
Yan. FOTS: fast oriented text spotting with a unified network. CoRR,
abs/1801.01671, 2018.



78 BIBLIOGRAPHY

[56] D. G. Lowe. Object recognition from local scale-invariant features. In Pro-
ceedings of the Seventh IEEE International Conference on Computer Vision,
volume 2, pages 1150–1157 vol.2, 1999.

[57] Pengyuan Lyu, Minghui Liao, Cong Yao, Wenhao Wu, and Xiang Bai. Mask
textspotter: An end-to-end trainable neural network for spotting text with
arbitrary shapes. In ECCV, 2018.

[58] J. MacQueen. Some methods for classification and analysis of multivariate
observations. In Proceedings of the Fifth Berkeley Symposium on Mathemat-
ical Statistics and Probability, Volume 1: Statistics, pages 281–297, Berkeley,
Calif., 1967. University of California Press.

[59] Urs-Viktor Marti and Horst Bunke. The iam-database: an english sentence
database for offline handwriting recognition. International Journal on Docu-
ment Analysis and Recognition, 5:39–46, 2002.

[60] Bastien Moysset, Christopher Kermorvant, and Christian Wolf. Full-page
text recognition: Learning where to start and when to stop. CoRR,
abs/1704.08628, 2017.

[61] R. B. Palm, F. Laws, and O. Winther. Attend, copy, parse end-to-end in-
formation extraction from documents. In 2019 International Conference on
Document Analysis and Recognition (ICDAR), pages 329–336, 2019.

[62] R. B. Palm, O. Winther, and F. Laws. Cloudscan - a configuration-free
invoice analysis system using recurrent neural networks. In 2017 14th IAPR
International Conference on Document Analysis and Recognition (ICDAR),
volume 01, pages 406–413, 2017.

[63] Joan Puigcerver. Are multidimensional recurrent layers really necessary for
handwritten text recognition? In 2017 14th IAPR International Conference
on Document Analysis and Recognition (ICDAR), volume 1, pages 67–72.
IEEE, 2017.

[64] Joan Puigcerver, Daniel Martin-Albo, and Mauricio Villegas. Laia: A deep
learning toolkit for htr. GitHub, 2016. GitHub repository.

[65] Mukta Puri, Sargur N. Srihari, and Yi Tang. Bayesian network structure
learning and inference methods for handwriting. In 12th International Con-
ference on Document Analysis and Recognition, ICDAR 2013, Washington,
DC, USA, August 25-28, 2013, pages 1320–1324, 2013.

[66] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali
Farhadi. You only look once: Unified, real-time object detection. CoRR,
abs/1506.02640, 2015.

[67] P. Riba, A. Dutta, L. Goldmann, A. Fornés, O. Ramos, and J. Lladós. Table
detection in invoice documents by graph neural networks. In International
Conference on Document Analysis and Recognition, pages 122–127, 2019.



BIBLIOGRAPHY 79

[68] Veronica Romero, Alicia Fornes, Enrique Vidal, and Joan Andreu Sanchez.
Using the mggi methodology for category-based language modeling in hand-
written marriage licenses books. In 15th international conference on Frontiers
in Handwriting Recognition, 2016.

[69] L. Rothacker, M. Rusiñol, and G. A. Fink. Bag-of-features hmms for
segmentation-free word spotting in handwritten documents. In 2013 12th
International Conference on Document Analysis and Recognition, pages 1305–
1309, 2013.

[70] Sebastian Ruder. An overview of multi-task learning in deep neural networks.
CoRR, abs/1706.05098, 2017.

[71] M. Rusiñol, T. Benkhelfallah, and V. P. dAndecy. Field extraction from
administrative documents by incremental structural templates. In 2013 12th
International Conference on Document Analysis and Recognition, pages 1100–
1104, 2013.

[72] M. Rusiñol and J. Lladós. Logo spotting by a bag-of-words approach for
document categorization. In 2009 10th International Conference on Document
Analysis and Recognition, pages 111–115, 2009.

[73] J. A. Sánchez, V. Romero, A. H. Toselli, and E. Vidal. Icfhr2014 competition
on handwritten text recognition on transcriptorium datasets (htrts). In 2014
14th International Conference on Frontiers in Handwriting Recognition, pages
785–790, Sept 2014.

[74] J. A. Sánchez, V. Romero, A. H. Toselli, and E. Vidal. Icfhr2014 competition
on handwritten text recognition on transcriptorium datasets (htrts). In 2014
14th International Conference on Frontiers in Handwriting Recognition, pages
785–790, Sept 2014.

[75] J.A. Sánchez, V. Romero, A.H. Toselli, and E. Vidal. ICFHR2016 competition
on handwritten text recognition on the READ dataset. In ICFHR, pages 630–
635. IEEE, 2016.

[76] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE Transactions
on Neural Networks, 20:61–80, 2009.

[77] J. Sivic and A. Zisserman. Efficient visual search of videos cast as text re-
trieval. IEEE Transactions on Pattern Analysis and Machine Intelligence,
31(4):591–606, 2009.

[78] W. Sui, Q. Zhang, J. Yang, and W. Chu. A novel integrated framework
for learning both text detection and recognition. In 2018 24th International
Conference on Pattern Recognition (ICPR), pages 2233–2238, 2018.



80 BIBLIOGRAPHY

[79] Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-
2003 shared task: Language-independent named entity recognition. In Pro-
ceedings of the Seventh Conference on Natural Language Learning at HLT-
NAACL 2003, pages 142–147, 2003.

[80] J. I. Toledo, Manuel Carbonell, A. Fornés, and J. Lladós. Information ex-
traction from historical handwritten document images with a context-aware
neural model. Pattern Recognit., 86:27–36, 2019.

[81] J. Ignacio Toledo, Sounak Dey, Alicia Fornés, and Josep Lladós. Handwriting
recognition by attribute embedding and recurrent neural networks. Interna-
tional Conference on Document Analysis and Recognition (ICDAR), 01:1038–
1043, 2017.

[82] A. Toselli, V. Romero, M. Pastor, and E. Vidal. Multimodal interactive
transcription of text images. Pattern Recognit., 43:1814–1825, 2010.

[83] J.R.R. Uijlings, K.E.A. van de Sande, T. Gevers, and A.W.M. Smeulders.
Selective search for object recognition. International Journal of Computer
Vision, 2013.

[84] U. v. Marti and H. Bunke. A full english sentence database for off-line hand-
writing recognition. In In Proc. Int. Conf. on Document Analysis and Recog-
nition, pages 705–708, 1999.

[85] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in Neural Information Processing Systems 30, pages 5998–
6008. 2017.

[86] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph attention networks. In International
Conference on Learning Representations, 2018.

[87] H. Wei, M. Baechler, F. Slimane, and R. Ingold. Evaluation of svm, mlp
and gmm classifiers for layout analysis of historical documents. In 2013 12th
International Conference on Document Analysis and Recognition, pages 1220–
1224, 2013.

[88] Curtis Wigington, Brian L. Price, and Scott Cohen. Multi-label connectionist
temporal classification. 2019 International Conference on Document Analysis
and Recognition (ICDAR), pages 979–986, 2019.

[89] Curtis Wigington, Chris Tensmeyer, Brian Davis, William Barrett, Brian
Price, and Scott Cohen. Start, follow, read: End-to-end full-page handwrit-
ing recognition. In The European Conference on Computer Vision (ECCV),
September 2018.



BIBLIOGRAPHY 81

[90] Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming Zhou.
Layoutlm: Pre-training of text and layout for document image understanding.
In The ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
2020.

[91] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transfer-
able are features in deep neural networks? In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems 27, pages 3320–3328. Curran Associates,
Inc., 2014.

[92] Wenwen Yu, Ning Lu, Xianbiao Qi, Ping Gong, and Rong Xiao. Pick: Pro-
cessing key information extraction from documents using improved graph
learning-convolutional networks. ArXiv, abs/2004.07464, 2020.

[93] Peng Zhang, Yunlu Xu, Zhanzhan Cheng, Shiliang Pu, Jing Lu, Liang Qiao,
Yi Niu, and Fei Wu. Trie: End-to-end text reading and information extraction
for document understanding, 2020.






	Títol de la tesi: Neural Information Extraction fromSemi-structured Documents
	Nom autor/a: Manuel Carbonell


