
 
 
 

Study and optimisation of 
copper bioleaching process 

for electronic waste 
valorisation 

 
Eva Benzal Montes 

 
 
ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents 
condicions d'ús: La difusió d’aquesta tesi per mitjà del repositori institucional UPCommons       
(http://upcommons.upc.edu/tesis)  i el repositori  cooperatiu TDX   ( h t t p : / / w w w . t d x . c a t / ) ha 
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats  
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats 
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei UPCommons o TDX. 
No s’autoritza la presentació del seu contingut en una finestra o marc aliè a UPCommons 
(framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus 
continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. 
  
 
ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes 
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons 
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale- 
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual 
únicamente para usos privados enmarcados en actividades de investigación y docencia. No  
se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde  
un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una 
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al 
resumen de presentación de la tesis como a sus  contenidos. En la utilización o cita de partes     
de la tesis  es obligado  indicar  el nombre de la persona autora.  
 
 
WARNING On having consulted this thesis you’re accepting the following use conditions: 
Spreading this thesis by the institutional repository UPCommons (http://upcommons.upc.edu/tesis) 
and the cooperative repository TDX (http://www.tdx.cat/?locale- attribute=en) has been authorized 
by the titular of the intellectual property rights only for private uses placed in investigation and 
teaching activities. Reproduction with lucrative aims is not authorized neither its spreading nor 
availability from a site foreign to the UPCommons service. Introducing its content in a window or 
frame foreign to the UPCommons service is not authorized (framing). These rights affect to the 
presentation summary of the thesis as well as to its contents. In the using or citation of parts of the 
thesis it’s obliged to indicate the name of the author. 
 

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://upcommons.upc.edu/tesis)
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en


Department of Mining, Industrial and ICT Engineering 

Natural Resources and Environment Doctoral Program 

Doctoral thesis 

STUDY AND OPTIMISATION OF COPPER 
BIOLEACHING PROCESS FOR ELECTRONIC 

WASTE VALORISATION 

Eva Benzal Montes 

A thesis submitted for the degree of Doctor of Philosophy 

at the Universitat Politècnica de Catalunya 

Supervised by: 

Dr. Xavier Gamisans Noguera 

Dr. Antonio D. Dorado Castaño 

Manresa, November 2020 



 
 

  



, no hay camino, 

se hace 

Antonio Machado



 
 

   

 

 



Agraïments / Acknowledgments 

Han passat gaire bé 5 anys des de que vaig iniciar el camí cap al doctorat. Tot i que 

no ha sigut un camí fàcil, estic molt contenta i orgullosa de poder arribar on he arribat. 

Cal dir, però, que si he arribat fins aquí és gràcies a moltes persones que han estat 

irecta han participat 

en 

En primer lloc, voldria agrair als meus directors, al Xavier i al Toni, per tot el que 

fiar en mi per portar a terme aquesta 

Encara que oficialment només he tingut dos directors, la meva sensació és que la tesi 

realment ha estat dirigida per dues persones més: la Conxita i la Montse. Moltes gràcies 

a les dues per tot el temps que heu dedicat a entendre els meus resultats, a ajudar-me 

en la redacció dels articles i a seguir tota la feina feta durant aquest temps. Em sento 

a de tots vosaltres 

durant els darrers anys. 

Voldria agrair també a la resta de membres del grup BIOGAP per les seves 

anat creuant durant la tesi per les bones estones que hem compartit junts. Al Xavi, 

gràcies per aixecar-me els ànims amb les teves bromes i abraçades quan tenia una dia 

una mica trist, per ajudar-me sempre que ho he necessitat i per cuidar-me com a una 

germaneta. escoltar-me i ajudar-me quan em sentia bloquejada, has 

queden curtes per agrair-te tot el que has fet i fas per mi. Gràcies per escoltar-me 

sempre, ajudar-me en tots els aspectes, per les estones tan divertides que hem 

compartit i per les no tan bones, per ser-hi sempre i per què encara hi ets tot i la distancia. 

gracias por ayudarme en el laboratorio, por quedarte conmigo a hacerme 

compañía cuando la jornada se alargaba mucho, por escucharme y darme consejos, 

pero sobretodo, gracias por tu alegría y por tu sonrisa y por tantos y tantos momentos 

de risas compartidas. Al Ramon, encara que no hem compartit gaires estones durant la 

tesi, gràcies per ajudar-me quan he necessitat fer experiments i per ajudar-me a divagar 

i buscar explicacions als resultats que no quadraven. També voldria agrair a tots aquells 

per ajudar-me a fer els experiments i els anàlisis, a interpretar resultats. Gràcies per la 

vostra dedicació i esforç. 

A tot el personal administratiu, en especial a la Llúcia, gràcies per la paciència i per 

respondre sempre als meus dubtes. Gràcies Xesca per totes les estones compartides, i 



 
 

 

 
 

per ajudar-

gràcies a tots els companys de la UPC per tots aquests anys que hem compartit. 

Als de la UAB, e

marxat una mica de la temàtica dels projectes comuns, gràcies per les vostres 

aportacions i per tots els moments de reunions, congressos i dinars compartits. 

Part of the research presented in this thesis has been developed in collaboration 

with the Environmental Microbiology research group from Technische University 

Bergakademie Freiberg in Germany. In particular, I would like to thank Prof. Schlöman 

for giving me the opportunity to make my stay in his group and for offering me the 

financing of the stay after the aid was denied in my country. Prof. Schlöemann, thank 

you for helping me before my arrival without hardly meeting us, for coming to pick me up 

at the station and take me to the airport, for all your dedication both at the university and 

outside of it, for opening the doors of your house and treating me always so good. I am 

very grateful to have met you. Fabian, thank you for all your dedication in the laboratory, 

for teaching me so many things and for always helping me. Gerardo, gracias por 

enseñarme la ciudad a mi llegada cuando no conocía a nadie, por ayudarme con las 

traducciones al alemán y por todos los ratos compartidos. Javier, gracias por las risas y 

por los ratos divertidos que pasamos juntos. 

Per últim, però no menys important, voldria agrair a la meva família tot el seu suport. 

Als meus pares i a la meva germana, gracias por confiar en mi cuando quise empezar 

a hacer el doctorado. Aún recuerdo la primera frase que me dijisteis cuando os dije que 

quería hacer el doctorado: , aunque no tardasteis ni 

un minuto en decirme que lo hiciera si es lo que yo quería. Gracias por dejarme ser 

quien soy y hacerme sentir orgullosa de mis logros. Al Jordi, gràcies infinites per tot. Has 

sigut un pilar fonamental en tot aquest període. Gràcies per la teva paciència i per 

esperar-me i donar-

per animar-me a seguir quan volia tirar la tovallola. Si he arribat on he arribat és, en gran 

part, gràcies a tu. I l meu petitó, encara que no en siguis conscient, vas arribar 

-lo en un període més alegre i 

distret

període. 

 En resum, gràcies a tots els que heu format part de la meva vida durant aquests 

que jo arribi fins aquí. La 

veritat és que mai hagués imaginat arribar on he arribat i si ho he fet, és gràcies a tot el 

supo .  



 

 

 

 

 

 

 

This thesis has been carried out thanks to the financial support provided by: 

 FPU doctoral grant (FPU14/03825) from Ministerio de Educación, Cultura y 

Deporte (Spain). 

  program from Universitat Politècnica de Catalunya (Spain). 

 Monitorización, modelización y control para la optimización de 

biofiltros percoladores de desulfuración anóxicos y aerobios -37927-

C03-02), financed by the Ministerio de Economía y Competitividad (Spain). 

 Research projects  

Optimization and validation of a bio-based prototype for 

valuable metals recovery from electronic wastes  

 Universitaris i de Recerca (Spain) and 

the European Union through the European Regional Development Fund. 

Additionally, part of the work developed in this thesis has been done in collaboration with 

Environmental Microbiology research group (Technische Universität Bergakademie 

Freiberg, Germany) financed by a mobility grant from the Technische Universität 

Bergakademie Freiberg within project 30110017 DAAD Young GEOMATENUM 

International.   

  



 



i 
 

CONTENTS 
 

ii 

Resumen  

 

CHAPTER 1. MOTIVATIONS AND THESIS OVERVIEW 

1.1.  

1.2.      4 

 

CHAPTER 2. INTRODUCTION 

2.1. MINERALS AND ELECTRONIC WASTES AS SOURCE OF VALUABLE       

METALS  9 

2.1.1. Electronic waste in the world  

2.1.2. Electronic waste composition  

2.1.3. Copper and its importance in the world  

2.1.4. Obtaining of metal-containing materials from their origin  

2.2. PHYSICO-CHEMICAL RECOVERY OF COPPER FROM ORES AND                          

E-WASTE 23 

2.2.1. Pyrometallurgy  

2.2.2. Hydrometallurgy  

2.3. BIOLOGICAL RECOVERY OF METALS FROM ORES AND E-     31 

2.3.1. Bioleaching mechanisms  

2.3.2. Microorganisms involved in bioleaching processes  

2.3.3. Bioleaching performance  

2.3.4. Factors influencing the bioleaching process 

2.4. RECOVERY OF COPPER FROM LEACHING SOLUTION 41 

 

CHAPTER 3. OBJECTIVES 

3.1. GENERAL AND SPECIFIC  

 

CHAPTER 4. GENERAL MATERIALS AND METHODS 

4.1. EXPERIMENTAL EQUIPMENT 9 

4.1.1. Microbial consortium cultivation 



ii 
 

4.1.2. Pure Acidithiobacillus ferrooxidans cultivation 

4.1.3. Acidithiobacillus ferrooxidans cultivation in a discontinuous stirred tank reactor 

(DSTR) 

4.1.4. Microscopy 

4.1.5. Size reduction equipment 

4.2.     56 

4.2.1. Multimeter for pH and oxidation-reduction potential (ORP) measurements 

4.2.2. Dissolved oxygen monitoring system 

4.2.3. Waste digestion by microwave apparatus 

4.2.4. Metals determination by atomic absorption spectroscopy (AAS) and inductively 

coupled plasma mass spectrometry (ICP-MS) 

4.2.5. Iron (II) and iron (III) determination by ultra-violet visible (UV-VIS) 

spectrophotometer 

4.2.6. Microplate reader for total fluorescence measurements 

4.2.7. DNA extraction  

 

CHAPTER 5. DEVELOPMENT OF A BATCH BIOLEACHING PROCESS TO 
RECOVER COPPER FROM CHALCOPYRITE USING A MIXED MICROBIAL 
CONSORTIUM 

    65 

5.1. INTRODUCTION  

5.2. MATERIALS AND METHODS     68 

5.2.1. Mineral samples 

5.2.2. Microorganisms 

5.2.3. Mineral media 

5.2.4. Bioleaching experiments 

5.3.     70 

5.3.1. Ores composition 

5.3.2. Influence of the mineral medium on copper recovery 

5.3.3. Effect of buffering the bioleaching media 

5.3.4. Effect of the ore grade on the bioleaching process 

5.3.5. Effect of the inoculum characteristics during bioleaching 

5.4. 79 

 

 



iii 
 

CHAPTER 6. ADAPTATION OF THE MINERAL BIOLEACHING PROCESS FOR 
METAL RECOVERY FROM E-WASTE 

    83 

6.1. INTRODUCTION ........................................................................................     85 

6.2. MATERIALS AND METHODS     87 

6.2.1. Mineral sample 

6.2.2. Electronic scrap 

6.2.3. Microorganisms and mineral medium 

6.2.4. Bioleaching experiments 

6.3. RESULTS AND DISCUSSION .    88 

6.3.1. Chalcopyrite and PCB metal composition 

6.3.2. Comparative study between mineral bioleaching and e-waste bioleaching 

6.3.3. Effect of e-waste concentration on bioleaching process 

6.3.4. Development a two-step bioleaching process: bio-oxidation of iron (II) 

6.3.5. Development a two-step bioleaching process: e-waste leaching 

6.3.6. Development a two-step bioleaching process: biomass separation 

6.4. CONCLUSIONS .    106 

 

CHAPTER 7. DEVELOPMENT OF A BIOLEACHING PROCESS IN A CONTINUOUS 
STIRRED-TANK REACTOR (CSTR) TO RECOVER METALS FROM E-WASTE 

    111 

7.1. INTRODUCTION 113 

7.2. MATERIALS AND METHODS 114 

7.2.1. Electronic scrap 

7.2.2. Microorganisms and mineral medium 

7.2.3. Cell number estimation by fluorometric measurements 

7.2.4. Experimental set-up 

7.2.5. Optical system for oxygen measurements 

7.3. RESULTS AND DISCUSSION 118 

7.3.1. PCB metal composition 

7.3.2. Growth of Acidithiobacillus ferrooxidans in the bioreactor 

7.3.3. Bio-recovery of metals with the two-bioreactor system 

7.3.4. Determination of microbial respiration rates with the optode system during the 

bioleaching process 

7.4. CONCLUSIONS .    128 



iv 
 

CHAPTER 8. RESISTANCE ASSESSMENT OF ACIDITHIOBACILLUS 
FERROOXIDANS TO HEAVY METALS BY MEANS OF TOXICITY ASSAYS 
THROUGH MICRORESPIROMETRIC MEASUREMENTS 

   133 

8.1.  

8.2. MATERIALS AND METHODS     137 

8.2.1. Microorganisms and mineral medium 

8.2.2. Toxicity tests development 

8.2.3. Optical system for oxygen measurements 

8.2.4. Cell counting 

8.3. RESULTS AND DISCUSSION     140 

8.3.1. Toxicity assays of heavy metals for Acidithiobacillus ferrooxidans by 

microrespirometries 

8.3.2. Study of inhibition by iron substrate for Acidithiobacillus ferrooxidans 

8.3.3. Effect of starvation and feeding resumption on Acidithiobacillus ferrooxidans 

culture 

8.4. .    151 
 

CHAPTER 9. COLUMN BIOLEACHING TO RECOVER COPPER FROM E-WASTE 

   155 

9.1.  

9.2. MATERIALS AND METHODS    158 

9.2.1. Electronic scrap 

9.2.2. Leaching solution 

9.2.3. Bioleaching experiments 

9.3. RESULTS AND DISCUSSION .    160 

9.3.1. PCB composition 

9.3.2. Effect of pH 

9.3.3. Evaluation of iron (II) chemical oxidation and its effect on copper extraction 

9.3.4. Improvement of solid-liquid contact 

9.3.5. Effect of the particle size 

9.3.6. Comparison of two different PCB concentrations 

9.3.7. Utilization of the plastic structure from mobile phones as packing material 

9.3.8. Effect of the contact time 

9.3.9. Improvement of bioleaching process to overcome previous limitations: cyclic 

operation 

9.4. .    181 



v 
 

CHAPTER 10. RECOVERY OF COPPER FROM LEACHING SOLUTIONS AND SEMI-
CONTINUOUS BIOLEACHING PILOT PLANT 

   187 

10.1. INTRODUCTION  

10.2. MATERIALS AND METHODS    190 

10.2.1. Scrap iron 

10.2.2. Cementation experiments 

10.3. RESULTS AND DISCUSSION     191 

10.3.1. Preliminary assays 

10.3.2. Closing the loop: copper recovery from PCB to copper powder 

10.3.3. Bioleaching pilot plant integration 

10.4. .    202 

 

CHAPTER 11. GENERAL CONCLUSIONS AND FUTURE WORK 

11.1.    207 

11.2.    210 

 

CHAPTER 12. REFERENCES 

References    215 

  



vi 
 

 

 



 
 

 

vii 
 

Summary 

In the current economical context, the use of waste material with economic potential 

should be a priority. In this sense, the increasing production of electrical and electronic 

equipment waste (WEEE) makes these materials a potential source for valuable and 

scarce metals. For this reason, it is important to develop new metal recovery 

methodologies economically that are more profitable, sustainable and environmentally 

friendly. A possible solution to this problem is to take advantage of the metabolic activity 

of certain microorganisms, mainly bacteria, to regenerate the responsible agents for the 

extraction of metals from the matrix in which they are contained once the useful life of 

them has ended. This process is known as bioleaching or biological leaching.  

In this thesis, a study of this biotechnological process for metal recovery from WEEE 

has been carried out. Firstly, bioleaching to recover copper from low-grade chalcopyrite 

was studied to establish the bases of the methodology, already applied in the biomining 

field, as well as to check the feasibility of the technique in this field. Subsequently, 

bioleaching was extended to be applied in the field of the electronic waste, thus 

recovering metals from printed circuit boards (PCB) based on their high metal content 

and the limited availability of metals in nature. Given the interest of this process, not very 

studied in the field of electronic waste, an adjustment of those parameters that allow 

optimizing the operation is necessary. For this reason, the effect of several parameters 

has been studied such as pH effect, PCB concentration or particle size, as well as the 

most appropriate system to perform the process (flasks, bioreactor or column). 

After bioleaching, the extracted metals remain in the leaching solution, so a last step 

to obtain the metals in their metallic state again and separated from the initial matrix 

should be performed which closes the recovery cycle. The study to recover the 

bioleached copper has been carried out more superficially in this thesis, focusing on 

cementation as a simple and cheaper alternative to other more complex processes such 

as electrowinning. 

In addition to the metal extraction through bioleaching, this thesis has been also 

focused on studying the limits of the technology due to the complex and varied 

composition of the waste, such as the toxic effects that bioleached metals could cause 

to the microorganisms involved in the process or the evaluation of possible substrate 

inhibition. The measurement of the biological activity may be the solution when there are 

limitations of quantifying biomass in systems where the formation of precipitates can be 

habitual, as in bioleaching. For this reason, a microrespirometry-based procedure has 

been developed that allows to directly measure the oxygen consumption and, thus, the 

microbial activity at real time. In microrespirometry, the formation of precipitates does not 
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interfere with the measurement, which allows obtaining a reliable result of the microbial 

activity. 

Thus, after affirming the feasibility of bioleaching as a simpler, cheaper and 

environmentally friendly alternative to traditional physical-chemical processes, this thesis 

establishes the most favourable conditions to obtain the greatest possible copper 

recovery through bioleaching. These bases are the previous phase to scale-up the 

technology to be implemented in an industrial environment. 
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Resumen 

En el actual contexto económico, el provecho de materiales residuales con 

potencial económico debería ser prioritario. En este sentido, la creciente producción de 

residuos eléctricos y electrónicos (REES) convierte estos materiales en una potencial 

fuente de metales muy valiosos y escasos. Por este motivo, es importante desarrollar 

nuevas tecnologías de valorización de metales que sean económicamente más 

rentables, sostenibles y respetuosas con el medio ambiente. Una posible solución para 

este problema consiste en aprovechar la actividad metabólica de determinados 

microrganismos, principalmente bacterias, para regenerar los agentes responsables de 

la extracción de metales de la matriz donde se encuentran inmovilizados una vez 

finalizada la vida útil del aparato eléctrico que los contiene. Este proceso es conocido 

como biolixiviación o lixiviación biológica.  

En esta tesis se ha llevado a cabo el estudio de este proceso biotecnológico para 

la recuperación de metales procedentes de REES. En primer lugar, se estudió la 

biolixiviación para recuperar cobre a partir de calcopirita de baja ley para establecer el 

procedimiento de la metodología, ya aplicada en el campo de la biominería, y comprobar 

la viabilidad de la técnica en este campo. Posteriormente, la biolixiviación fue aplicada 

al campo de los residuos electrónicos, realizando así la extracción de metales de placas 

de circuito impreso (PCB, del inglés, printed circuit boards), basándose en la gran 

cantidad de metales que éstos contienen y su limitada disponibilidad en la naturaleza. 

Ante el interés de este proceso, no muy estudiado en el campo de los residuos 

electrónicos, es necesario ajustar aquellos parámetros que permitan optimizar la 

operación. Por este motivo, se ha estudiado el efecto de varios parámetros que afectan 

al proceso como el pH, la concentración de residuo o el tamaño de partícula, así como 

también el sistema más adecuado para llevar a cabo el proceso (matraz, biorreactor o 

columna). 

Tras la biolixiviación, los metales extraídos permanecen en solución por lo que es 

necesario realizar una última etapa para llegar a obtener los metales en su estado 

metálico nuevamente, aunque separado de la matriz inicial en este caso, y cerrar así el 

ciclo de la recuperación. En esta tesis el estudio para recuperar el cobre lixiviado se ha 

realizado de forma más superficial, centrándose en la cementación como alternativa 

simple y económica a otros procesos más complejos como la electrólisis. 

Además de la extracción de metales mediante biolixiviación, esta tesis también se 

ha centrado en estudiar factores que limitan la tecnología debido a la compleja y variada 

composición de los residuos, como es el efecto tóxico que pueden provocar los metales 

biolixiviados sobre los microorganismos involucrados en el proceso, así como la 
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evaluación de la inhibición por sustrato. La medición de la actividad biológica puede ser 

la solución cuando haya limitaciones de cuantificar la biomasa en sistemas donde la 

formación de precipitados suele ser habitual, como es el caso de la biolixiviación. Por 

este motivo se ha desarrollado un procedimiento basado en la microrespirometría que 

permite obtener de forma directa el consumo de oxígeno y, por tanto, la actividad a 

tiempo real de una muestra biológica. En las microrespirometrías la formación de 

precipitados no interfiere en la medición por lo que permite obtener un resultado fiable 

de la concentración microbiana. 

Así pues, tras afirmarse la viabilidad de la biolixiviación como alternativa más 

simple, económica y medioambientalmente sostenible a los procesos físico-químicos 

tradicionales, esta tesis establece las condiciones más favorables para obtener la mayor 

recuperación de cobre posible mediante biolixiviación. Estas bases son la fase previa 

para escalar la tecnología a implementar en un entorno industrial.  
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1.1. Motivations 

The present thesis has been developed in the Department of Mining, Industrial and 

ICT Engineering of the UPC, in the research group of Biological Treatment of Odours 

and Gaseous Pollutants (BIOGAP). The thesis has been developed within the projects 

Monitorización, modelización y control para la optimización de biofiltros percoladores 

de desulfuración anóxicos y aerobios -37927-C03-02), Valorització 

econòmica i sostenible de residus electrònics

validation of a bio-based prototype for valuable  

(2018PROD00097). These projects have been funded by Ministerio de Ciencia, 

Innovación y Universidades the Spanish Government and co-funded, the Agència 

i de Recerca  and the European Union through the 

European Regional Development Fund. Whereas the first project (CTM2012-37927-

C03-02) has developed different techniques to monitor biomass at different conditions, 

the other projects propose the use of a biotechnological process for the valuation of 

electronic waste, as a more sustainable and profitable alternative for the recovery of 

valuable metals. Specifically, the second project (2016LLAV00034) proposes to enhance 

the basic research carried out in relation to the recovery of valuable metals from 

electronic waste using biotechnological techniques while the third project 

(2018PROD00097) is focused on the demonstration of the technical and economic 

viability of the biorecovery process previously developed. Moreover, it is noteworthy that 

part of the experiments carried out in this thesis (in particular part of the experiments 

performed in Chapter 7) have been developed in collaboration with the research group 

Environmental Microbiology from the Technische Universität Bergakademie Freiberg 

(Freiberg, Germany). This collaboration was carried out through a research stay of the 

thesis author, which was funded by the destination university within the project 30110017 

DAAD Young GEOMATENUM International. 

Following these projects, this thesis is developed to answer the research topics 

raised in them. Hence, the present thesis is focused on the development of a technology 

that allows recovering metals from wastes with low operation and investment costs 

besides being more environmentally friendly in comparison to the traditional methods. It 

must be pointed out that this thesis directly drives to a further knowledge and optimization 

of the bioleaching technology in order to establish the bases of the process and thus be 

able to be applied on an industrial scale in the future. It is noteworthy that the bioleaching 

process developed in this thesis have been registered in the patent P201830406 

Método para la recuperación biológica de metales en residuos eléctricos y electrónicos

obtainin

, but it 

is still under evaluation. 
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1.2. Thesis overview 

The thesis is organized into twelve chapters, each one focusing on specific aspects 

of bioleaching technique as explained below.  

In this first Chapter, the motivations and the thesis overview are presented. In 

Chapter 2, a general introduction describes the relevant background information about 

the extraction of metals from metal-containing materials. This information facilitates the 

understanding of the following chapters, since many basic topics and concepts are 

explained. In Chapter 3, the general and the specific objectives of the thesis are stated. 

In Chapter 4 all the general materials and methods employed during the experimental 

phase of the thesis are presented. In this chapter, the setups corresponding to 

suspended biomass cultivation, culture conditions, as well as the methodologies and the 

analytical techniques used during bioleaching experiments are described in detail.  

Chapters 5, 6, 7, 8, 9 and 10 contain the most relevant results and discussion 

obtained during the thesis. In Chapter 5, copper extraction from ores by means of 

bioleaching is presented, developing the methodology and testing its effectiveness in this 

field. Due to the growing production of electronic waste in the world and the large amount 

of discarded valuable metals that this implies, the methodology studied in the previous 

chapter is adapted in Chapter 6 to study the extraction of copper from this kind of wastes, 

specifically for end-of-life mobile phones. In particular, the bioleaching process is studied 

at different operational conditions to optimize the metal recovery in flasks. In Chapter 7, 

the process is developed on a larger scale, using a continuous stirred tank reactor 

(CSTR). The aim is to evaluate the effectiveness of bioleaching in a pilot plant in order 

to research how an increase of the volume in the system affects the process. In this 

chapter, fluorometric measurements are also done to observe biomass evolution during 

the process, since the biological activity is essential for the correct operation. Since the 

biomass can be exposed to other metals, apart from the target one, during the 

bioleaching, this fact could affect the microbial activity. Hence, in Chapter 8 a toxicity 

study is conducted to evaluate the effect of some bioleached metals to the 

, which is made by means of microrespirometry tests. In addition, 

the microrespirometry technique is also applied in this chapter to observe biomass 

growth and its evolution at different concentrations of iron (II) to assess whether there is 

substrate inhibition. Chapter 9 is focused on the development of the methodology to 

extract metals in continuous mode to improve the efficiency of the process. For this 

purpose, a column for continuous extraction is presented and different parameters such 

as pH, particle size, solid concentration and contact time, among others, and different 

strategies are studied in order to increase the metal extraction from the waste. Moreover, 

from all the previous knowledge obtained, in Chapter 10, a pilot plant to recover metals 

continuously by means of bioleaching is proposed as a previous step to their application 
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at industrial scale. This pilot plant includes all steps from the biological regeneration of 

the leaching agent to obtaining the metal powder, going through the separation of the 

biomass to avoid its inactivation as well as the continuous leaching of metals from the 

electronic waste. 

In Chapter 11 the conclusions extracted from the results obtained in previous 

chapters are exposed and future research topics are recommended.  Finally, Chapter 12 

contains the references used along the thesis. 
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2.1. Minerals and electronic wastes as source of valuable metals 

In human progress, metal extraction has been a fundamental activity since 

Bronze and Iron times. The global increase of human population and the development 

of several nations have increased the demand of all natural resources, including metals. 

The rapid advance of technology development causes a high mineral product 

consumption which eventually produces the reduction of high-grade ore reserves (Figure 

2.1). For this reason, in the last decades more attention has been paid to low-grade ores 

and industrial and mining wastes (Sajjad et al. 2018).  

Figure 2.1. Evolution of the ore grade of mines from 1840 to 2005 (Adapted from UNEP (2011). 

According to SNL Metals Economics Group (2013), ore head grades decline over 

time since companies initially mine high-grade zones to recoup capital costs and other 

early expenditures. In addition, significant deposits are found at greater depths or in more 

remote areas which also increases the cost of mineral exploitation. This fact combined 

with the increasing en

operating costs. For this reason, the European Copper Institute (2018) affirmed that it is 

possible to focus on obtaining copper from the huge amount that it is in use today. The 

main premise is that valuable materials can be recovered from waste in a way that is 

analogous to mining to produce high value and secondary raw material (Xavier et al. 

2019). In this sense, a profitable urban mining can result from the e-waste management. 

The urban mining concept was firstly used in a research publication in 1993 

(Savage, Golueke, and Stein 1993) and it describes a form of closed-loop supply chain 

management, offering a sustainable way to exploit mineral resources by reducing 
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primary material intake and stimulating the circularity in the supply chain (Xavier et al. 

2019). Hence, the urban mining concept is also related to the circular economy, since 

the basis of its concept is the reuse and recirculation of products and materials. In this 

regard, the circular model tries to integrate the finiteness of resources and proposes the 

reintroduction of materials from secondary sources in a regenerative system in line with 

the concept of the 3Rs which are reduce, reuse and recycle. An important advantage of 

urban mining is that it allows to recover up to ten times greater valuable metals in 

comparison to the amount extracted from primary mineral deposits (Xavier et al. 2019). 

What is more, the European Copper Institute (2019) affirms that more than 40% of the 

copper demand from the member countries of the European Union is covered with 

recycling. Therefore, the urban mining denotes the systematic reuse and recycling of 

anthropogenic resources from urban areas. Originally, this concept concentrates on 

waste electric and electronic equipment utilization as modern urban ore. However, 

currently urban mining also includes all kind of anthropogenic stocks like landfills, 

buildings, infrastructure and industries (Avarmaa et al. 2019). At the same time with the 

consumption of natural ore resources, the urban mines are storing significant and 

increasing amounts of valuable metals. Table 2.1 shows the amount of various metals 

found in nature as mineral deposits and the range in content of the same metals in e-

waste. It can be appreciated that the concentrations of copper, tin, nickel and lead found 

in the e-waste are higher than those in natural deposits. This fact demonstrates the 

importance of electronic waste as a possible source of raw material and the motivation 

to develop processes to recover these metals from it. 

 

Table 2.1. Metals content in ores and PCBs (adapted from Bizzo, Figueiredo, and De Andrade (2014)) 

Metal Ores (%) PCBs (%) 

Cu 0.5  3.0  12.0  29.0  

Fe 30.0  60.0   0.1  11.4  

Ni 0.7  2.0  0.3  1.6  

Zn 1.7  6.4  0.1  2.7  

Sn 0.2  0.9  1.1  4.8  

Pb 0.3  7.5  1.3  3.9  

Au 0.5·10-3  2.9·10-3  0.1  

Ag 0.5·10-3  0.1·10-1  0.5  
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2.1.1. Electronic waste in the world  

Waste electrical and electronic equipment (WEEE) and electronic waste (e-

waste) are the two more frequently used terms for discarded devices and appliances that 

use electricity. According to Robinson (2009), e-waste alludes to discarded electronic 

goods as computers or mobile phones, whereas WEEE also includes non-electronic 

appliances as refrigerators, air conditioning units or washing machines. Nowadays, this 

distinction is not clear due to the increasing use of electronics like microprocessors in 

electrical equipment. National e-waste policies and legislation play an important role to 

set standards and controls to govern the actions of the e-waste stakeholders in both 

public and private fields. Since these policies and legislation must be sustainable and 

function properly, it is crucial to establish a financial model including the collection sites 

and logistics along with the physical recycling itself. Nevertheless, the types of e-waste 

covered by legislation are different from one country to another, making the coordination 

to collect and recycle this kind of waste difficult. In particular, 67 countries have national 

e-waste management laws. This means that 66% of world population are covered by 

them (Figure 2.2) (Balde et al. 2017).  

 

Figure 2.2. Countries regulated by national environmental protection laws specifically designed for e-waste 
(Balde et al. 2017). 
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Additionally, the countries that already have e-waste policies should contribute to 

the development of circular economy models not only to favour collection and recycling, 

but also to change the direction of policy measures towards reusing, refurbishing and 

remanufacturing the end-of-life e-waste. It means that legislation on e-waste should 

encourage a better product design during their production. In this sense, the recycling 

and repair of e-waste might be easier or might make the products more durable. Most 

(EPR) which was firstly described in academic circles in 1990 (Balde et al. 2017). This 

principle requires manufacturers to accept responsibility for all the stages in the product 

lifecycle which is from their production to their end-of-life management (Figure 2.3). The 

EPR principle is implemented in several legislations and policies. 

 

Figure 2.3. Scheme of the primary objectives of the Extended Producer Responsibility (EPR) principle 
(Adapted from Balde et al. (2017)). 

 

In addition, in order to control the transboundary movements of hazardous wastes 

and their disposal, in which e-waste is included due to the hazardous elements it has, 

The Basel Convention was signed by 186 countries. It consists of a multilateral treaty to 

abolish the environmentally and socially detrimental hazardous waste trading patterns. 

The Convention affirms that hazardous waste should not be treated freely like ordinary 

waste and thus it establishes written notifications and approval for all the cross-border 

movements of hazardous wastes. Although the Convention does not include a regulation 

for the equipment destined to be reused, this statement is in accordance with its main 

environmental objective to prevent waste generation, since the reuse extends the 

lifecycle and thus reduces the generation of hazardous waste. Nevertheless, the 

distinction of whether something is waste or not is a long-standing discussion under the 

Basel Convention and the most recent Conference-of-Parties (COP13) could not reach 

a final consensus (Balde et al. 2017). Additionally, the lack of collection infrastructure 

that channels e-waste is usual in developing countries due to the difficulties to comply 

with international standards. Hence, it results in a lack of treatment facilities in these 
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places. Despite of that, according to Ogunseitan et al. (2009), since the mid-1990, e-

waste has been recognized as the fastest-growing component of the solid-waste 

streams. It has been calculated that more than 40 million tons of e-waste are generated 

each year (Figure 2.4) (Li et al. 2015; Zeng, Mathews, and Li 2018) and the United 

Nations Environmental Program estimated that the volume of e-waste increases by a 

minimum of 3-5% per year, which is nearly three times faster than the growth of municipal 

waste (Schwarzer et al. 2005). In this way, it is estimated to grow to 51 million tons by 

2021 (Hsu et al. 2019), while only 12.5% of e-waste in the world is recycled (The World 

Counts 2020). 

 

Figure 2.4. Estimation of the e-waste total generation per category (Adapted from Balde et al. (2017)). 

  

It is noteworthy that the distribution of the e-waste generation is quite different 

between regions (Table 2.2). Asia is the largest producer in the world, generating 40.7% 

of the total e-waste in the world. The main countries of Asia that contributes to this 

amount of e-waste generation are China and India (Figure 2.5). Nevertheless, only 

15.0% of the total e-waste generated in Asia are collected. The most efficient e-waste 

collector is Europe, collecting 35.0% of the total generation. Moreover, in Northern 

Europe the collection rate is 49.0%, the highest in the world. This high percentage of e-

waste collection in comparison to the rest of the regions is related to the strict legislation 

imposed by the European Union which requests its members to collect 45% of the 

amount placed on the market. On the contrary, Oceania is the lowest e-waste producer 

with 1.6% of the total e-waste in the world. It is noteworthy that Africa does not collect 

any of the e-waste generated, which is related to the fact of not having legislation on this 

type of waste in practically any of the countries (see Figure 2.2). In the special case of 

America, although the United States are one of the largest producers (Figure 2.5), this 
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region does not have the highest percentage of e-waste generation due to the relatively 

low amount of e-waste generated in the rest of the American region. According to Li et 

al. (2015), China and United States are the largest producers of e-waste in the world, 

generating more than 3 million tonnes per year each which is twice the level of production 

achieved by other industrialized countries.  

 

Table 2.2. Regional e-waste generation and collection rate (Adapted from Balde et al. (2017)). 

Region 
E-waste generation 

(Mt) 

E-waste generation 

in the world (%) 

Collection rate 

(%) 

Asia 18.2  40.7  15.0  

Europe 12.3  27.5  35.0  

America 11.3  25.3  17.0  

Africa 2.2  4.9  0.0  

Oceania 0.7  1.6  6.0  

 

  

Figure 2.5. E-waste production in the world by country (Li et al. 2015). 

 

 Despite the existence of the Basel Convention (UNEP 2018) on the control of the 

transboundary movements of hazardous wastes and their disposal and other 

conventions, the transfer of e-waste from one country to another remains relatively high 

(Iqbal et al. 2015). As shown in Figure 2.6, the major flow of e-waste enters into major 
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countries in Asia such as China, India and Pakistan. It has been reported that the e-

waste imported to China comes from the United States, the European Union, Japan, 

South Korea and several other countries in the world (Iqbal et al. 2015). The associated 

export of e-waste from developed to developing regions has been ongoing for years. 

Moreover, there is still very limited information about these exportations due to its illicit 

character, so hidden flows of them are estimated to be typically highly variable. 

 

 

Figure 2.6. Transboundary movements of e-waste from developed countries to developing Asian countries 
(Iqbal et al. 2015). 

 

2.1.2. Electronic waste composition 

 The main components of the electric and electronic equipment are the printed 

circuit boards (PCB), which are used to achieve mechanical and electrical connections. 

Electronic components in PCBs are assembled by conductive pathways etched on a 

non-conductive substrate laminating Cu sheets. However, the PCBs of different devices 

always have different structures, which makes the recycling of this kind of waste so 

complicated. The basic structure of the PCBs is -clad laminate  and its 

consists of an organic medium substrate and a number of metallic components to realize 

the electrical connections inside the board (Alwaidh, Sharp, and French 2014). 

Depending on the structure, PCBs can be divided into single-sided, double-sided, multi-

layer, rigid, flexible and flex-rigid. The application of each is described in Table 2.3.  
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Table 2.3. Classification of PCBs based on their structure and the main application of each one (Adapted 
from Hao et al. (2020)). 

Type of PCBs Main applications 

Single-sided Televisions and household appliances 

Double-sided Instrumentation, computers, LED lighting, etc. 

Multi-layer For complicated designs like medical equipment and satellite systems 

Rigid PCB With single, double or multi-layer application same as them 

Flexible PCB With single, double or multi-layer used for special requirements 

Flex-rigid PCB Using in the case when space or weight are prime concerns 

 

In general, PCBs contain more than 60 kinds of elements, consisting of 40% 

metals, 30% organic materials and 30% ceramics (Figure 2.7) (Ogunniyi, Vermaak, and 

Groot 2009). The main organics that are contained in the PCBs include acrylonitrile 

butadiene styrene (ABS), polycarbonate (PC), polyvinyl chloride (PVC), 

polytetrafluoroethylene (PTFE), polyethylene (PE), polypropylene (PP) and high impact 

polystyrene (HIPS) (Hsu et al. 2019). The ceramic components of PCBs generally 

consist of silica, titanates, alumina and alkaline oxides (Hsu et al. 2019). The metals 

include base and precious metals, such as copper, silver or gold, which could be 

retrieved to be used again (Fornalczyk et al. 2013), making waste PCBs an important 

metal resource. In addition, waste PCBs are also packed with toxic chemicals as arsenic, 

lead, mercury and poly-brominated flame retardants among others. Unfortunately these 

metals do not have as much economic value as the precious or basic metals. 

  

Figure 2.7. Composition of the electronic waste in general terms. Abreviations: PE (Polyethilene), PP 
(polypropylene), PVC (polyvinylchloride), PTFE (polytetrafluoroethylene), PPE (polyphenyl ether), BFR 
(brominated flame retardand), PBB (polybrominated biphenyl), PBDE (polybrominated diphenyl ethers), 
TBBPA (tetrabromobisphenol A) (Adapted from Chauhan et al. (2018)). 
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 Although 40% of PCBs are generally metals, the specific content of them 

depends on the type of device, the age of the equipment or the process of the 

manufacturer (Hao et al. 2020). As an example, Table 2.4 summarizes the composition 

of different PCBs from reported studies in which a large variation of metal composition 

can be observed among PCBs of several devices. It is noticed that the highest amount 

of precious metals (Ag, Au and Pd) are found in mobile phone PCBs whereas the PC 

board, the DVD board and the TV board have the highest concentration of Cu, Fe and 

Al, respectively.  

  

Table 2.4. Composition of PCBs from different electronic devices (Fornalczyk et al. 2013). 

Type of device  
Contents (%) Contents (ppm) 

Fe Al Cu Plastic Ag Au Pd 

TV board  30 15 10 28 280 20 10 

PC board  7 5 18 23 900 200 80 

Mobile phone  7 3 13 43 3000 320 120 

DVD  62 2 5 24 115 15 4 

Calculator  4 5 3 61 260 50 5 

 

As Hao et al. (2020) affirmed, the age of the device and the manufacturer also 

affect the metal concentration of PCBs even being the same device. This fact was 

corroborated by Chen et al. (2018a), who analysed the metal concentration of 36 

different mobile phones' PCB from different companies, models and years of production 

from 2002 to 2013. They found that, for instance, the copper concentration varies from 

20438 mg/kg to 37472 mg/kg or from 25 mg/kg to 4304 mg/kg in the case of silver. This 

fact, added to the inhomogeneous and composite nature of the materials of PCBs, 

makes it quite difficult to generalize a recycling process to recover metals from different 

e-waste devices (Khaliq et al. 2014). 

Nevertheless, according to the Environmental Protection Agency (2014), 

approximately more than 142000 computers and 416000 mobile phones are discarded 

every day. Moreover, from one million computers, it is possible to recover nearly 24 kg 

of gold, 250 kg of silver and more than 9000 kg of copper and every million mobile 

phones could contain 34 kg of gold, 350 kg of silver and 15875 kg of copper 

(Environmental Protection Agency 2020).  
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2.1.3. Copper and its importance in the world 

 Archaeological evidence demonstrates that copper was one of the first metals 

used by humans at least 10.000 years ago (International Copper Study Group 2019). 

From the end of the Stone Age it was present in inventions and is a key element for the 

future that remains to come. Its importance has been such that even historians have 

called the Copper Age and the Bronze Age two periods of yesteryear. Although its use 

decreased by the evolution of the steel industry, after 1831 when the electrical generator 

was discovered by Faraday, the use of copper increased, becoming a strategic metal 

again. This metal is the third most used metal in the world after iron and aluminum (Diaz 

2016) and its global demand continues to grow, tripling in the last 50 years the world 

refined usage (International Copper Study Group 2019). This is, in part, due to copper 

having established numerous important uses in almost all branches given its malleability, 

ductility, conductivity of both heat and electricity and its capacity to withstand corrosion 

(Radetzki 2009). Among the different uses of copper, the main usage was and is to 

produce electric and electronic equipment, whereas industrial application was the lowest 

copper user in 2018 (Figure 2.8). With respect to regions, Asia was the major user by 

using 68% of the total copper used in the word during 2018, followed by Europe (17%) 

and America (13%) (International Copper Study Group 2019). 

 

Figure 2.8. Usage of copper by end use sector in 2018 (Adapted from International Copper Study Group 
(2019)). 

 

 Copper occurs naturally in the can be found as a 

 copper, which is an uncombined form of copper that occurs as a natural 

mineral, but this mineral is found in much lower proportion than other ores which also 

contain copper. Hence, it is usually found in deposits of different minerals, such as 
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cuprite (Cu2O), malachite (Cu2CO3(OH)2), azurite (Cu3(CO3)2(OH)2), chalcopyrite 

(CuFeS2), bornite (Cu5FeS4) and chalcocite (Cu2S) (Figure 2.9).  

 

Figure 2.9. Pictures of the most common ores containing copper: a) cuprite; b) malachite; c) azurite; d) 
chalcopyrite; e) bornite; and, f) chalcocite (Fundación integra 2014; Mundo mineral 2013).  

 

As stated above, these minerals are found 

particular, it is calculated that the outer 67 parts per million 

of copper (European Copper Institute 2019). In some places, volcanic activity or 

hydrothermal processes, among others, deposited molten copper in specific locations 

millions of years ago. In these areas the deposits of copper are exploited since they 

contain medium-grade or high-grade ores, containing enough copper to obtain a 

profitable exploitation. The main natural deposits of copper are found in Chile, Peru, 

United States and Democratic Republic of the Congo (DRC) (Figure 2.10). However, the 

main companies that focus their activity on the exploitation of copper are Freeport in 

USA, Codelco and Minera Escondida Ltda. in Chile and BHP Billiton in Australia 

(Radetzki 2009).  

In terms of weight, copper is the third most important metal with a total refined 

consumption of 23.5 million tons in 2017, China being the country that consumes the 

most (11.8 million tons) followed by the United States (1.8 million tons) and Germany 

(1.2 million tons). In the same year copper production from mines was 20.2 million tons 

(Cochilco 2018) and during the period 2008-2018, 197 million tons of copper have been 

mined (International Copper Study Group 2019).  

another important source of raw material which is scrap, and the process classified as 

, 
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since this metal is one of the few raw materials that can be recycled repeatedly without 

any loss of its chemical or physical properties in the recycling process. Moreover, closing 

metal loops through increased reuse and recycling enhances the overall resource 

productivity. It is estimated that the recycling of copper from the old scrap provided the 

equivalent to 8% of apparent consumption (U.S. Geological Survey 2019). Taking into 

most widely used metals and it also plays 

a vital role in electronics, vehicles and electrical power generation, among many other 

applications (Mudd and Jowitt 2018), increasing recycling rates is a central strategy for 

dealing with the e-waste problem as well as for assuring the copper supply in the world. 

 

Figure 2.10. Location of the natural deposits of copper in the world (SNL Metals Economics Group 2013).  

  

Hence, it is important to increase the recovery and recycling levels in order to 

ensure that there is enough copper to respond to the future demands of society. One 

way that favors the reduction of the price and increases the recovery and recycling is to 

find cheaper extraction methods as an alternative to the traditional ones that allows to 

treat low-grade mineral or electronic waste. In this way, it will also reduce the amount of 

generated wastes. 

2.1.4. Obtaining of metal-containing materials from their origin 

 Before metals can be recovered from ores and PCBs, these must previously be 

extracted from the mining deposits or the electronic waste, respectively. The processes 

are completely different since their origins are also different.  
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2.1.4.1. Extraction of ores from mines 

 There are two basic ways to extract minerals from the ground which are 

underground mining and surface or open pit mining (Figure 2.11). The selection of the 

method depends on the location and shape of the deposit, strength of the rock, ore grade, 

mining costs and also the current market price of the commodity. 

 

Figure 2.11. Diagram of the surface and underground mining (Voolstra 2013). 

 

 Underground mining is used in high-grade metallic ores, since they are usually 

s to be 

more expensive, the exploitation results profitable due to the amount of metal that can 

be recovered. First, the rock is drilled and blasted, and then, the material is moved to the 

surface by truck, conveyor belt or elevator. Once on the surface, the material is sent to 

a crusher and then to a mill. After milling, a flotation or other benefication step are done 

to separate the ore from the waste rock. 

 Surface or open pit mining is used when the ores are found closer to the surface. 

This method can be used in lower grade metal ores, since it generally costs less than 

underground methods, resulting in a profitable mine. Many industrial minerals are mined 

surface. In surface mine, hard rock must be drilled and blasted as in underground mining, 

but sometimes in surface mining some minerals are soft enough to be mined without 

blasting. Although surface mining is used in low grade ores, there is a method included 

in this kind of mining, that is placer mining, which is used to recover valuable minerals, 

since it is usual to find this type of minerals in sediments from river channels, beach 

sands or ancient stream deposits which are found on the Earth  surface. In placer 

operations, the mined material is washed and purged to concentrate the heavier 
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minerals. This kind of process may be done by open-pit or by various surface excavating 

equipment or tunnelling equipment. 

2.1.4.2. Extraction of PCBs from e-waste 

 As it has been described before, PCBs are the main part of the e-waste and they 

contain around 40% of metals. Therefore, since the metals in the electronic scrap are 

mainly found on PCBs, proper separation of this part of the waste is essential to recover 

the metal of interest. The process basically consists of three stages: dismantling, 

crushing and mechanical separation treatment.  

 Dismantling consists of the separation of the motherboard from the rest of the 

components and, thus, makes a first differentiation of the elements that may be more 

conflicting such as capacitors or plastic covers. Sometimes, heat treatment at not very 

high temperature can be performed to separate the solder pond, also facilitating 

disassembly (Duan et al. 2011). But more recent studies incorporate bioprocesses for 

PCB dismantling (Monneron-Enaud et al. 2020). Elements extracted in this stage can 

then be reused for new uses or properly disposed (Ghosh et al. 2015). 

After the separation of the motherboard, the particle size has to be reduced. To 

do this, a wide variety of equipment can be used to crush, cut or pulverize PCBs. In 

general, metallic particles are different from the plastic or ceramic ones (Kaya 2016), so 

the crushed material is then subjected to a separation process that aims to separate the 

metallic fraction from the non-metallic one. This process can be performed using many 

different techniques that are classified intro three main groups according to the principle 

on which they are supported: magnetic, electrostatic and mechanical methods. 

Magnetic methods can be performed in dry or aqueous systems such as a 

vibratory table with magnetic separator or permanent magnet followed by the use of Eddy 

or Foucault currents. Electrostatic methods are based on high voltage systems as a 

rotating crown separator. When the process of separation starts from a fine powder, the 

electrostatic methods allow to obtain a powder with high metal content. Finally, the 

mechanical methods are based on particle differences as shape, size, mass or density. 

Some examples of this kind of separation would be flotation, which depends on the 

hydrophobicity, cyclones, vibratory sieves and so on. Nevertheless, the most common is 

to use more than one physical method to achieve better separation rates (Huang et al. 

2009). 
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2.2. Physico-chemical recovery of copper from ores and e-waste 

Once the ore has been extracted from the mine and/or the PCBs have been 

separated from the electronic devices, they have to be treated to recover the copper that 

they contain. The recovery of metals from ores has been done since many years and 

very similar processes have been adapted to recover metals from e-waste. The 

recovered metals are used as raw materials to produce different devices such as the 

electronic ones. In general, there are two strategies to recover copper from ores and 

PCBs which are named pyrometallurgy and hydrometallurgy. The first method is based 

on physico-chemical processes (pyrometallurgy), and the second, in contrast, on the use 

of chemical reagents (hydrometallurgy). Depending on the waste to treat (ores or PCBs), 

the steps in each method change a little, but they are based on the same principles.  

2.2.1. Pyrometallurgy 

Pyrometallurgical processing, including incineration, melting and gas-phase 

reactions at high temperatures, among others, is the most traditional method to recover 

metals from ores. Moreover, it has also become a traditional method to recover non-

ferrous metals as well as precious metals from e-waste in the past two decades. 

Although pyrometallurgical processing to recover metals is always based on the use of 

high temperature to smelt metals, the specific process used to treat ores and PCBs can 

vary since the chemical reactions that take place are quite different in each case. 

In the mining field, pyrometallurgy is performed in five different steps (Pascual 

and Nadal 2008). In the first one, the copper-bearing ores are crushed, milled and sieved 

to the desirable particle size and then the inert material (gangue) is removed by flotation. 

The second step consists on the roasting of the mineral at high temperatures (over 600 

ºC) using air. The purpose is that oxygen from the hot air is combined with sulphur and 

with metals from the mineral. In the case of treatment of chalcopyrite, one of the minerals 

mostly extracted for copper production, the chemical reaction that takes place is 

described in Eq. (2.1). 

  (2.1) 

After the roasting of the chalcopyrite, the concentrate is introduced into an oven 

at 1200 ºC to melt it. At this stage, two different layers are formed due to differences in 

the material densities. On the one hand cuprous sulphur is formed and, on the other 

hand, the ferrous silicate slag. Since the slag is not important for the final product, it is 

removed and the rest of the melted mineral is oxidized by air again, following Eq. (2.2). 
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     (2.2) 

The copper obtained from chalcopyrite with this method is called 

and its purity is around 98 and 99.5%. Moreover, a final step may be also performed in 

order to remove even more impurities or to recover other metals from the ore such as 

silver or gold. In general, for this purpose electrolytic methodologies are the most used. 

These methodologies include arranging at least one anode of copper material to be 

refined and one cathode, both in contact with the electrolyte solution. The anode and the 

cathode are connected electrically to an electrical source, which is operated under 

potential-controlled conditions. The electrical potential at the cathode causes the 

deposition of electrorefined copper on it. By this methodology it is possible to obtain 

copper with purities up to 99.98%. 

In the e-waste field, the crushed particles of PCB obtained after the pre-treatment 

are smelted in furnaces and coarse metal ingots can be obtained. For this purpose, three 

different pyrometallurgical processes have been developed: Noranda, Rönskar and 

Umicore (Cui and Zhang 2008).  

The Noranda process (Figure 2.12) consists of introducing the materials into a 

molten metal bath at 1250 ºC. Inside it, metals are mixed with supercharged air that 

contains up to 39% of oxygen. The energy cost of this process is reduced by the 

combustion of plastics and other flammable materials in the feeding. As a result of the 

mixture that takes place in the bath, impurities such as iron, lead or zinc are converted 

into oxides which become attached to a silica-based slag. The slag is then cooled and 

crushed to recover more metals before disposal. The copper matte obtained in this way 

still contains precious metals saturated to its surface, so it is transferred to the 

converters. After an upgrading in the converters, a liquid blister copper is obtained which 

is refined in anode furnaces and cast into anodes. The purity of the copper obtained at 

this step is 99.1%. The remaining 0.9% contain precious metals such as gold, silver, 

platinum and palladium along with other recoverable metals. Therefore, these 

marketable precious metals can be later recovered from the anodes with electrorefining. 

In the Noranda process, about 100.000 tons of e-waste can be treated per year, which 

represents 14% of total throughput (the balance being mostly mined copper 

concentrates) (Cui and Zhang 2008). 

The Rönnskar process (Figure 2.13) consists of the introduction of the electronic 

waste into different stages depending on its purity. Scrap with high copper content is 

introduced into the converting process directly, whereas scrap with low copper content 

is introduced into the Kaldo Furnace before going to the converter. In the Kaldo reactor 
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(patent US 4415360) blended feed material with e-waste and lead concentrates is 

charged by skip hoist. The oxygen needed for combustion to take place in the Kaldo 

furnace is provided by an oxygen lance and the off-gases derived from combustion are 

subjected to an additional combustion with air at 1200 ºC. In this reactor a mixed copper 

alloy is produced which is sent to the copper converting for recovery of metals such as 

silver, gold, palladium, nickel, or copper itself. In this stage, ash is also produced which 

is sent to other operations of the process in order to recover the metals it contains (e.g. 

lead, antimony, indium, and cadmium). This process can also treat up to 100000 tons of 

e-waste per year, as in the case of the Noranda process (Cui and Zhang 2008).  

 

Figure 2.12. Diagram of the Noranda process to recover copper from e-waste (Cui and Zhang 2008). 

 

The Umicore process (Figure 2.14) is focused on the recovery of precious metals 

although many other metals can be recovered. The e-waste is fed into an oven at 1200 

ºC in which it is dissolved under an oxygen-rich air atmosphere. Plastics or other organic 

substances in the feed are used as a source of energy when burned. In this process 

precious metals and copper remain in the metal phase, whereas lead and other metals 

are concentrated in the slag. The metal phase is treated, so that, the precious metals 

and copper are recovered by leaching and electrolysis. The purity of the copper obtained 

in this process is 91%. The gases produced in the process are cooled with the energy 

recovered from the process and they are cleaned using techniques such as filtration, 
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electrofiltration or scrubbing. The sulphide formed is converted to SO2, which is then 

transformed to sulphuric acid.  

 

Figure 2.13. Diagram of the Rönnskar process to recover copper from e-waste (Cui and Zhang 2008). 

  

 

Figure 2.14. Diagram of the Umicore process to recover metals from e-waste (Yu-Gong et al. 2016). 
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In all three cases, an oven at 1200 ºC approximately is used into which the 

electronic waste is introduced to be melted. Although the three methods are quite similar, 

the Umicore process is more complex than the others, since it also includes 

hydrometallurgical steps in the procedure. Nevertheless, the Noranda process allows to 

obtain a higher purity of copper (99.1%) in comparison to the purity obtain by the Umicore 

(91%). Despite availability of these methods, current research is aimed at 

pyrometallurgical processes utilizing thermal plasma in conjunction with the combustible 

organics contained in e-waste (Shuey and Taylor 2005). In particular, this process is 

performed in a plasma reactor (Figure 2.15) vertically located to allow a continuous direct 

contact of the samples with the plasma gas, which is a mixture of CH4 and CO2. The 

samples are fed from the opening at the top of the reactor, opposite the off-gas fume 

hood. At the bottom of the reactor the temperature varies from 385 to 570 ºC at the 

moment of charging and the highest recorded temperature is achieved when the material 

is treated (around 840 ºC). It is noticed that temperatures inside the reactor before 

feeding are contributed by plasma gas, whereas temperature increases after feeding are 

mainly due to degradation of the organic components of the PCBs. In this sense, the 

thermal plasma process to recover metals from e-waste minimizes the energy 

requirements at the same time that the complete destruction of organic compounds 

during the recovery of entrained metal values is assured (Shuey and Taylor 2005).  

 

Figure 2.15. Reactor used for the recovery of metals from e-waste by thermal plasma treatment (Mitrasinovic 
et al. 2011). 
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2.2.2. Hydrometallurgy 

Hydrometallurgical processing consists of the extraction and recovery of metals 

using different chemicals as strong acids or organic solutions. In any hydrometallurgical 

process two main steps are required. On the one hand, the leaching or lixiviation step in 

which the metals from the solid matrix are transferred into an aqueous phase. It is usually 

in this stage that not only the metals of interests are transferred into solution, but also 

some undesirable constituents present in the material. On the other hand, the separation 

step in which the metals of interests are separated from the undesirable elements 

presents in the solution. 

There are different hydrometallurgical techniques depending on the type of 

leachate used: chemical leaching and hydrometallurgical etching (Figure 2.16). 

 

Figure 2.16. Hydrometallurgical techniques used to recover metals from ores and e-waste. Abreviations: 
EDTA (Ethylene diamine tetraacetic acid), DTPA (diethylene triamine pentaacetic acid), NTA (nitrilotriacetic 
acid) (Adapted from Pant et al. (2012)). 

  

Currently, acid leaching is the most popular leaching method among 

hydrometallurgical processes. Although it is quite corrosive, the use of acids to leach 

metals from ores or e-waste allows high leaching rates and fast kinetics. On the contrary, 

methods like cyanide leaching for the standard gold recovery are being phased out due 

to their high toxicity. There are some other methodologies less hazardous than the 

previous ones such as thiourea and thiosulfate leaching, but they are not as economically 

feasible since both require considerable amounts of reagents due to the poor stability of 

the thiourea and the slow kinetics of the thiosulfate (Hsu et al. 2019).  

In the mining field, the most common methods are the leaching in place, the heap 

or dump leaching, the percolation or vat leaching, the agitation or pulp leaching and the 

high pressure leaching.  
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The leaching in place or in situ is used for very low grade ores for which the 

transport expenses are not reasonable (Watling 2015). Even so, this methodology is also 

carried out for higher ore grades due to the good results obtained. For its application, the 

ore body must be enclosed between impermeable strata and also permeable to the 

leaching solution. The process takes place at ambient temperature and pressure. Using 

this methodology to recover metals usually takes years to be completed (e.g. chemical 

in situ leaching of uranium).   

The heap or dump leaching is used for low grade ores because of its low cost 

and it is the mainly used hydrometallurgical process to recover metals at industrial scale 

(Ghorbani et al. 2015). The dump leaching consists of a dump between 10 and 15 m 

high formed by the ore, which is placed over a compacted soil that is leveled at a slight 

inclination. For preventing the liquid to go into the ground a liner can be also used. The 

dump is irrigated with a dilute leaching solution that percolates through the ore to dissolve 

valuables, collecting the solution at the base of the dump. Heap bioleaching is similar to 

dump leaching, but the main difference is that uncrushed material is used in dump leach 

whereas crushed and/or agglomerated material is used in heap leach (Ghorbani et al. 

2015) (Figure 2.17). This fact has the consequence that the dump leaching needs one 

to two years to extract 50% of the desirable metal due its slow kinetics. In the case of 

the heap leaching, since small particles are used, the kinetics can range from two months 

to two years depending on the leaching facility of the ore treated. Moreover, in heap 

bioleaching the extraction can also range from 30% to over 90% for the ores easiest to 

leach. As leaching in place method, the heap and dump leaching are performed at 

ambient temperature and pressure. However, it is noted that when sulphides are treated 

with this methodology for example, bioleaching of sulphides releases a lot of heat, so 

that within the heap there may be 60 or 70ºC. 

 

Figure 2.17. Diagram of (a) dump leaching and (b) heap leaching used in the mining field (Adapted from 
Abhilash and Pandey (2013)). 
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The percolation or vat leaching is suited for porous and sandy material and 

cannot be applicable to material which tends to pack into impermeable masses (Cope 

1999). The material is placed in a vat with a false bottom covered with a filtering medium 

and the leaching solution is added on the top of the vat. The solution percolates through 

the material, collecting the dissolved metals at the bottom. In this methodology the 

regularity of the particle size is important for the good percolation. This leads to slow 

extraction and channeling of solutions through the bed. The process takes place at 

ambient temperature and pressure.  

The agitation or pulp leaching consists of mixing the leaching solution with the 

finely ground raw material, forming a pulp which has to be continuously agitated in order 

to reduce the time required for the extraction (Gupta and Mukherjee 2000). This agitation 

can be mechanical like motor-driven impellers or pneumatic like compressed air. In this 

methodology the material treated must have moderate or high grade. 

The high pressure leaching is performed in closed tanks or autoclaves (Xu et al. 

2010). The process can take place in presence or absence of oxygen/air. In absence of 

oxygen/air, the rate of leaching is low whereas in the presence of oxygen, the oxygen 

partial pressure can control the leaching rate, increasing the rate with increasing partial 

pressure. The autoclave is the main part of the pressure leaching plant and when an 

autoclave is used, agitation is required. Autoclaves can be applied for continuous or 

batch leaching. 

When the PCBs have been crushed into small particles, they can be treated as 

fine ore particles. Therefore, all the leaching configurations applied in the mining field 

can be adapted for metal recovery from e-waste, excepting the leaching in situ 

configuration since the e-waste is not found underground as it occurs with ores.  

According to Tuncuk et al. (2012), hydrometallurgical processes offer relatively 

low capital cost, reduced environmental impact and high metal recoveries in comparison 

to the pyrometallurgical ones. This fact makes hydrometallurgical processes more 

suitable for small scale applications. Nevertheless, hydrometallurgical processes require 

the use of hazardous chemicals as strong acids which implies a high-cost process. 

Hence, to adopt effective and eco-friendly recycling technologies is essential to prevent 

environmental pollution, landfill disposal (in the case of e-waste) and to save energy and 

natural resources. For this reason, the main goal for metal recycling is to develop a 

proper technology to reduce the harmful environmental impact. This should also be 

economically attractive to compensate recycling cost and, thus, appealing to the interest 

of governments and private investors (Khaliq et al. 2014). In this sense, bio-
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hydrometallurgical processes have been developed as an alternative technology for 

recovering metals from ores and concentrates (Watling 2006; Zhang and Xu 2016).  

 

2.3. Biological recovery of metals from ores and e-waste 

Biological leaching, also called bioleaching, offers a promising technology to 

recover metals from metal ores or e-waste. It is defined as the extraction of metals by 

the metabolic activity of bacteria (or metabolic compounds), and it is applicable to 

recover metals from low-grade ores, to removal of toxic metals and to recovery of metals 

from waste materials as e-waste (Pollmann et al. 2018). According to Valix (2017), 

biologically assisted degradation of waste has a high potential as a recycling technology 

due to its low environmental impact, low operational cost and low energy requirements. 

Rawlings (2002) affirmed that, almost without exceptions, the procedures of microbial 

extractions are more environmentally friendly than the traditional physicochemical ones. 

This is because biological recovery is usually performed under ambient conditions which 

significantly reduced the required energy in comparison to the pyrometallurgical 

extraction, and also reduced the harmful gas emissions. Moreover, the metabolic 

products formed during bioleaching are not usually harmful, hence avoid expensive 

palliation to prevent environmental pollution and processing risks, so that the biological 

recovery results in a lower operating investments (Valix 2017).  

The first scientific evidence for the role of microorganisms in metal solubilisation 

was evident in the middle of 20th century when Thiobacillus ferrooxidans (later 

reclassified as Acidithiobacillus) was identified for the first time, being isolated from acid 

mine drainage by Colmer and Hinkle in 1947 (Dave et al. 2018). Since then, research 

activities on the use of such bacteria picked up and commercial application of bioleaching 

to recover metal from ores began to emerge (Natarajan 2018). In particular, the 

commercial application of bio-hydrometallurgy was initiated in 1980 for copper leaching 

from heaps and numerous copper heap bioleach operations have been set up since then 

(Mishra et al. 2005). Nevertheless, the recovery of metals by bioleaching is considered 

one of the most promising technologies tested in the last decades to obtain metals 

(Kasper et al. 2015). So many researchers are still focusing on improving and optimizing 

the technique today (Kaksonen et al. 2018; Sajjad et al. 2018; Zhao et al. 2019; Zhou et 

al. 2019). Due to the promising results obtained in the recovery of copper from ores by 

bioleaching throughout history, this technique has been adapted to be applied in the field 

of the e-waste. In this way, metals can be recycled from the scrap, thus reducing the 

environmental impact of its disposal, which is an emerging worldwide problem today.  
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Although several studies have been conducted in recent years to test the use of 

such technique to obtain metals from ores, there are still relatively few studies focused 

on the possibility of using this technique to recover metals from e-waste (Kasper et al. 

2015), thus, the research is still under development. Moreover, its practical application 

continues to face many challenges on a scale that allows to market the process and be 

competitive, such as the toxicity of the e-waste elements or the scaling of the process 

(Valix 2017). 

2.3.1. Bioleaching mechanisms 

The mechanism of the bioleaching process has been widely studied in the 

recovery of metals from minerals, whereas it has been little studied in the recovery of e-

wastes. Nevertheless, some authors affirmed that the mechanism of e-waste bioleaching 

is similar to the mineral one (Choi et al. 2004; Willner and Fornalczyk 2013).  

The mechanisms of the bioleaching technique can be classified in two different 

categories: the direct and the indirect leaching. In the first one, there is a physical contact 

between the microorganisms and the metal or the mineral by means of extracellular 

polymeric substance (EPS) synthesized by the microorganisms and the microorganisms 

are directly involved in redox processes of the metal or mineral (Fig. 2.18a). In the second 

one, the microorganisms do not necessarily act on the metal or mineral surface, but they 

regenerate the chemical agent that leaches the metal (Fig. 2.18b). In fact, the indirect 

leaching may take place in contact with the metal or the mineral, but it may also take 

place by planktonic cells.  

 

Figure 2.18. Diagram of bioleaching mechanisms for metals extraction: (a) direct mechanism and (b) indirect 
mechanism (adapted from Watling (2006)). 

 

In the direct leaching mechanism, the mineral is directly attacked by the 

microorganisms to oxidize the sulphidic sulphur to elementary sulphur, releasing the 

metal as a metal sulphate as it is shown in Eqs. (2.3) and (2.4) (Pant et al. 2012).  
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   (2.3) 

     (2.4) 

where M is the metal to be extracted from the metal ore or concentrate. 

There is some evidence explaining that intimate contact between the bacteria 

and the mineral surface is needed (Bosecker 1997). However, the mechanism of 

attachment and the initiation of metal solubilisation are not completely understood. Some 

authors affirmed that the bacteria do not attach to the whole mineral surface, but prefer 

specific sites of structure imperfections and the solubilisation of metals is produced by 

electrochemical interactions (Bennett and Tributsch 1978; Rodriguez-Leiva and 

Tributsch 1988).  

In the indirect mechanism, the bacteria generate a lixiviate which chemically 

oxidizes the metal-containing material. Hence, the microorganisms do not necessarily 

act on the mineral or metal surface, but they regenerate the chemical agent. In fact, 

during the indirect mechanism the bacteria may be in contact with the mineral. In acid 

solutions, the leaching agents are iron (III) cations, which are in turn reduced to iron (II). 

Therefore, the reaction depends on the metal and mineral extracted but, in general, it is 

based on a redox reaction in which the mineral is oxidized to its soluble form and the iron 

is reduced.  The role of the microorganisms is the oxidation of iron (II) to iron (III), to 

regenerate the leaching agent as it is shown in Eqs. (2.5) and (2.6) (Pant et al. 2012). 

     (2.5) 

    (2.6) 

where M is the metal to be extracted from the metal ore or concentrate. 

Depending on the intermediates formed in the process, the indirect mechanism 

is also divided in two different sub-mechanisms when metal sulphides are treated, which 

are the thiosulphate and the polysulphide mechanisms (Schippers and Sand 1999). As 

Figure 2.19 depicts, in the thiosulphate mechanism the oxidative attack is performed 

exclusively by the iron (III), whereas in the polysulphide mechanism the attack can be 

performed by the iron (III) and/or by protons.  

It is noteworthy to point out that these sub-mechanisms have been extensively 

described in the mining field. Depending on the ore treated, the indirect mechanism can 

be the thiosulphate or the polysulphide one (Crundwell 2003; Klaus 1997; Mishra et al. 

2005; Sand et al. 2001). For instance, the thiosulphate mechanism occurred when acid-

insoluble metal sulphides are treated like pyrite or molybdenite, whereas the 
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polysulphide mechanisms occurred when acid-soluble metal sulphides are treated like 

chalcopyrite or sphalerite.  

Despite the description of the direct and indirect mechanisms, a universal theory 

about the mechanism of metal leaching is still to be revealed. Nevertheless, most of the 

important contributors to the direct versus indirect leaching discussion agree that the 

mechanism of mineral solubilisation is the indirect one, taking into account the 

observation of kinetics, stoichiometry and other considerations (Crundwell 2003; 

Rawlings 2002). In the e-waste field, Lilova et al. (2006) affirmed that both direct and 

indirect mechanism can be performed, but the direct oxidation of the metal is relatively 

slow compared to the indirect mechanism. Therefore, the last one is the predominant 

one in e-waste bioleaching processes. Depending upon the special needs of particular 

bacteria, a large variety and types of culture media are employed in the isolation of 

bacteria according to their biochemical and physiological properties.  

 

Figure 2.19. Indirect bioleaching mechanisms proceed via (a) thiosulphate or (b) polysulphide mechanisms. 
Dashed lines indicate the presence of intermediate sulphur compounds (adapted from (Schippers and Sand 
1999)). 

 

2.3.2. Microorganisms involved in bioleaching processes  

Microorganisms and their metabolites play a pivotal role for the solubilisation of 

metals into an aqueous phase from ores, concentrates and e-waste (Dave et al. 2018). 

The main characteristic of the microorganisms used to recover metals is their capacity 

to grow in very aggressive environments. The major microorganisms involved in 
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bioleaching processes can be broadly grouped as iron and sulphur oxidizers, cyanogenic 

organisms and organic producers (Table 2.5). 

 

Table 2.5. Major microorganisms involved in bioleaching processes (Brandl 2001; Dave et al. 2018; Li et al. 
2020; Riveros et al. 1989;  Zhang et al. 2010a). 

 Name of organisms 
Optimal 

pH 

 

Temperature 

(ºC) 

Source of 

energy 

Metabolic 

product as 

lixiviant 

Metal 

extracted 

Ir
o

n
 o

xi
d

iz
er

s Acidithiobacillus 

ferrooxidans1 
2.0 28-35 

Ferrous 

sulphate 
Ferric sulphate 

Cu, Zn, Ni, 

Pb, Cd Leptospirillum ferrooxidans 1.8 30 

Leptospirillum ferriphilum 1.6 40 

S
u

lp
h

u
r 

o
xi

d
iz

er
s Acidithiobacillus 

thiooxidans 
2.0-3.5 10-37 Sulphur and 

reduced 

sulphur 

compounds 

Sulphuric acid 

or oxidized form 

of sulphur 

compound 

Cu, Zn, Ni, Al Sulfobacillus 

thermosulfidooxidans2 
1.7-2.4 40-55 

Sulfolobus spp. 2.0-3.0 55-85 

C
ya

n
o

g
en

ic
 o

rg
an

is
m

s Chromobacterium 

violaceum 
7 28 

Glycine HCN 
Au, Ag, Pd, 

Pt 
Pseudomonas aeruginosa 7 37 

Pseudomonas fluorescence 7 30 

O
rg

an
ic

 a
ci

d
s 

p
ro

d
u

ce
rs

 

Aspergillus niger 4.5 30 

Carbohydrate 

(Glucose or 

sucrose) 

Citric, oxalic, 

gluconic and 

malic acid 

Cu, Zn, Ni, 

Pb, V, Mo, 

Al, Co, Li 

Penicillium simplicissimum 5.5 22-30 

 

1Acidithiobacillus ferrooxidans can also oxidize sulphur compounds. 

2Sulfobacillus thermosulfidooxidans can also oxidize iron. 
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As shown in Table 2.5, the most commonly used microorganisms to bioleach 

metals are aerobic chemoautotrophic acidophiles. Moreover, the bacteria most active in 

bioleaching belong to the genus Leptospirillum and Acidithiobacillus. In particular, 

Acidithiobacillus ferrooxidans (Figure 2.20) is the most investigated organism, being 

present in more than 30% of bioleaching studies (BIOMOre 2018). They have been of 

particular interest since they belong to the few microorganisms known to obtain energy 

from iron oxidation in acidic environments (Zhan et al. 2019). In fact, this microorganism 

was first isolated from acid mine wastewater by Colmer and Hinkle (1947), although they 

can be found in different natural environments such as soil, sea and fresh water or 

volcanic ash (Zhan et al. 2019).  

 

Figure 2.20. Microscopic observation of Acidithiobacillus ferrooxidans cells through scanning electron 
microscope (SEM) (Díaz-Tena et al. 2013). 

 

Specifically, Acidithiobacillus ferrooxidans is an aerobic bacterium, gram-

negative and -proteobacterium (Barron and Luecking 1990; Valdés et al. 2008). As 

chemoautotrophic bacteria, they use carbon dioxide as a carbon source while they obtain 

energy from the oxidation of ferrous ions or of sulphur compounds using oxygen or ferric 

ions as final electron acceptor (Nemati et al. 1998). Ac. ferrooxidans are classified as 

acidophilic and mesophilic microrganisms, since their optimal growth is achieved at ca. 

pH = 2 and 30 ºC, although they can also grow at pH = 1 or lower (Valdés et al. 2008). 

They may not affect human health, since their properties do not allow them to colonize 

and harm the human body. Therefore, the Technical Rules for Biological Agents 

classified these microorganisms in the risk group 1, which comprises those 

microorganisms for which it is improbable that they cause an infectious disease in 

humans. With respect to their physical characteristics, Ac. ferrooxidans are rods which 

are up to 1.0 µm long and 0.5 µm wide (Johnson et al. 2007). 
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2.3.3. Bioleaching performance 

 The design of a bioleaching process depends on the microbial activity, and on 

the chemical or mineral composition of ores or solid wastes. For this reason, an 

optimization of the process conditions is needed prior to the technical application of the 

technology to recover metals from a particular solid matrix. 

2.3.3.1. Reactor configurations 

The first bioleaching experiments performed at laboratory scale were carried out 

in airlift percolators (Bosecker 1997). They consist of a glass tube with a sieve-plate at 

the bottom, which is filled with the particles of the metal ore or concentrate. The packing 

is irrigated by the leaching solution inoculated with bacteria and the liquid collected at 

the bottom is pumped to the top of the column to recirculate it again by compressed 

sterile air. In this sense, the air is also useful for the proper aeration of the system. The 

airlift percolator can take between 100 and 300 days to recover the metals, since the 

oxygen supply is often inadequate in this system and, moreover, the surface ratio 

unfavourable. For this reason, the airlift percolator has been replaced by the submerged 

bioleaching. 

The submerged bioleaching consists of placing the metal ore or concentrate as 

fine particles in the leaching solution in a container, which is kept stirring. The container 

can be an Erlenmeyer flask or even a bioreactor, which is more sophisticated. In this 

system, the more accurate control of the process as well as the improvement of the 

conditions to favour the microorganisms  growth allows to obtain higher metal recovery 

rates in considerably shortened times in comparison to those obtained with the airlift 

percolator. This technique is the most used bioleaching technique in laboratory 

investigations since 1990 (Kaksonen et al. 2018). Nevertheless, column bioleaching is 

also used at laboratory scale to simulate heap or dump leaching as previous experiments 

before the implementation of the process at industrial scale.  

The column leaching involves the percolation of the leaching solution through a 

solid stationary phase, which is placed inside the column by a support. Hence, it is quite 

similar to the airlift percolator, but in this case, the liquid is not pumped by compressed 

air but by a liquid pump itself. Depending on the size, the columns can be made of glass, 

plastic, lined concrete or steel and they can be used to treat from several kilograms to 

few tonnes (Bosecker 1997). Most column systems have devices to take samples or to 

measure parameters like temperature or pH. This gives information about what is to be 

expected in the dump or heap leaching and how it has to be optimized to increase the 

efficiency of the process.  
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2.3.3.2. Industrial bioleaching 

The most simple form to conduct a bioleaching to extract metals is to collect the 

material in heaps, irrigating the heap with the nutrient solution and the microorganisms 

and collecting the liquid (leachate) at the bottom of the heap (Bosecker 1997). The 

leachate is recirculated due to the slow velocity of the bacterial oxidation, although the 

recirculation of the leachate is usually subjected to solvent extraction and it is the 

reffinate from the solvent extraction which is put on the heap again. There are different 

methodologies to extract metals biologically from ores or solids at industrial scale, 

including dump and heap bioleaching, underground bioleaching and tank bioleaching.  

The dump and heap bioleaching are performed in the same way as in dump and 

heap leaching explained in section 2.2.2. The difference is that the leachate passes 

through an oxidation vessel in bioleaching process. In this vessel, the microorganisms 

regenerate the iron (II) ions of the leachate to iron (III) ions before being recirculated to 

the top of the heap or the dump again. It is also possible to install the aeration at the 

bottom of the heap avoiding the oxidation vessel, so the re-oxidation takes place in the 

heap itself. In both cases, the microorganisms regenerate the leaching agent unlike the 

chemical leaching in which the iron (III) is constantly added to the heap or the dump to 

extract metals. 

The underground leaching is used to recover metals in mines. It consists of the 

introduction of the liquid containing bacteria inside galleries or mine waste, which f ilters 

through the stratum and leaches the target metals. After a sufficient time for reaction, the 

solution is collected and pumped to another gallery or zone. This methodology is quite 

similar to in-situ leaching, but underground bioleaching is more appropriate in those 

cases in which the ores are too low-grade or the deposit too small. Nevertheless, as it 

occurred in in-situ leaching, the procedure requires sufficient permeability of the ore body 

and impermeability to the gangue in order to prevent any percolation of the bioleaching 

solution, although barriers have to be applied to not distributed the solution outside the 

intended area. 

Considering the high extraction rates obtained with the submerged bioleaching in 

laboratory investigations, these bioreactors were tested at industrial scale. Although this 

technique allows to have much higher reaction rates than heap, dump and underground 

bioleaching, tank bioleaching is more expensive to construct and to operate. Even so, 

this technique is used to treat refractory gold ores at industrial scale for instance 

(Bosecker 1997). In this sense, several bioreactor-based bio-hydrometallurgical 

technologies have been commercialised such as BIOX , the first and most widely used 

in commercial applications for the bio-oxidation of refractory sulphidic gold ores 

(Kaksonen et al. 2018). The BIOX  plant (Figure 2.21) consists of six reactors where 

three of them are configured in parallel whereas the rest are operated in series. The 
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process involves the continuous loading of a flotation concentrate slurry with the solid 

content usually at 20% (w/w), although some recent studies found that the solid content 

can be increased up to 30% without affecting the process efficiency (Mahmoud et al. 

2017). The reactor temperature is maintained around 40-45 ºC and the retention time 

inside them varies from 4 to 6 days. The operating pH is between 1.2 and 1.6 and 

dissolved oxygen concentration in the slurry is maintained over 2 mg/L (van Aswegen, 

van Niekerk, and Olivier 2007). 

 

Figure 2.21. (van Aswegen 
et al. 2007). 

 

2.3.4. Factors influencing the bioleaching process 

 The bioleaching effectiveness depends mainly on the microorganisms and the 

chemical composition of the metal containing material to be treated (ores, concentrate 

or e-waste). In this sense, in order to obtain the maximum yields of metal extraction it is 

important to achieve optimal conditions for the bacterial growth as well as a good contact 

between the leaching agent and the solid treated. Therefore, there are many biotic and 

abiotic factors that can influence on the bioleaching efficiency and on the activities of the 

microorganisms. The factors can be categorized as physicochemical parameters, 

microbiological parameters, properties of the metal-containing material and type of 

process or conditions. Most of these parameters have been studied by different authors 

in recent years, as shown below. 
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 The physicochemical parameters include pH (Dorado et al. 2012; Liang et al. 

2013; Mishra et al. 2008; Mousavi et al. 2008; Xiang et al. 2010; Yang et al. 2009), 

temperature (Hong and Valix 2014; Lambert et al. 2015), redox potential (Vilcáez, Suto, 

and Inoue 2008; Zhao et al. 2015) and oxygen content and its availability (Giebner et al. 

2016; Mazuelos et al. 2017; Thurston, Mandernack, and Shanks 2010), among others. 

Redox potential (ORP) is a very important physicochemical parameter in bioleaching 

processes. Similar to how the concentration of hydrogen ions determines pH, the 

tendency of electron transfer between chemical species and electrodes determines the 

ORP of an electrode couple. Therefore, ORP represents how easily electrons are 

transferred to or from species in the solution. In bioleaching reactions (see Eqs. 2.5 and 

2.6), the bio-oxidation of iron (II) to iron (III) changes the ORP. For this reason the activity 

of the microorganisms can be monitored by ORP, since the presence of oxidizing agents 

in the medium such as iron (III) or oxygen has a positive correlation (Jafari et al. 2018). 

This occurs because the more oxidized species in the medium, the higher the redox 

potential. Hence, biological activity increases the redox potential, which in turn favours 

the metals extraction from ores or solid wastes in general (Gu et al. 2018). 

 Microbiological parameters of bioleaching are also important, since they can 

highly affect the effectiveness of the process. This group of parameters includes 

microbial diversity (Brandl, Bosshard, and Wegmann 2001; Fu et al. 2008; Hallmann et 

al. 1992; Klink e , 

population density (Bas et al 2013; Third et al. 2000; Willner 2013; Willner and 

Fornalczyk 2013), microbial activity and oxidation ability of microorganisms (Esquivel-

Rios et al. 2014; Meruane and Vargas 2003; Nemati et al. 1998b; Owen and Laybourn-

Parry 1987; Sampson and Phillips 2001; Song et al. 2011), and metal tolerance (Benzal 

et al. 2020a; Cho, Ryu, and Choi 2008; Das et al.  1997; David et al.as 2008; Magnin et 

al. 1998).  

 Properties of the metal-containing material to be leached also influence the 

bioleaching effectiveness. Main factors are particle size (Adhapure et al. 2014; Joshi et 

al. 2017; Shah et al. 2015; Wang et al. 2009; Zhu et al. 2011) and metal composition or 

type of metal-containing material (Agate and Khinvasara 1986; Arshadi and Mousavi 

2015; W. a. Bizzo, Figueiredo, and De Andrade 2014; Dong et al. 2013; Madrigal-Arias 

et al. 2015; Wang et al. 2014). 

 Finally, the type of process or conditions may also influence the process. This 

group includes the effect of the leaching method used, for instance, performing the 

process in one or two steps (Benzal et al. 2020b; Fomchenko and Muravyov 2017; 

Heydarian et al. 2018; Isildar et al. 2016; Wang et al. 2017), the amount of solid treated 

(Brandl et al. 2001; Xiang et al. 2010; Yang et al. 2014; Zhu et al. 2011) and the mode 

of operation including heap, column or bioreactor operations (Benzal et al. 2020a; Chen 
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et al. 2015; Couillard and Mercier 1991; Ghorbani et al. 2015; Ilyas et al. 2010; Ilyas, 

Lee, and Kim 2014; Jujun et al. 2015; Qiu et al. 2011; Rivera-Santillán, Patricio-Ramírez, 

and Olvera-Pérez 2013; Rodrigues et al. 2015; Rossi, Trois, and Visca 1986; Silva et al. 

2015; Tipre and Dave 2004; Vakylabad et al. 2012).  

 All of these parameters can affect the process, so they have to be optimized in 

order to achieve the highest metal recovery. However, depending on the metal-

containing material as well as on the system used to bioleach, the operational conditions 

will vary which implies that the optimization has to be carried out for each waste and 

system. 

2.4. Recovery of copper from leaching solution 

 Once the copper has been bioleached from the ores or the electronic waste, it 

remains in solution, so it has to be separated from the aqueous phase. There are different 

methodologies to transform copper ions in aqueous solution to its metallic form as 

solvent extraction followed by stripping and electrowinning, ion exchange, electrolysis 

and cementation (Agrawal and Kapoor 1982; Benzal et al. 2020b; Khattab et al. 2013; 

Zhang et al. 2010b). Among these methodologies, one of the most simple and low-cost 

methods is cementation. Cementation is a process in which metal ions precipitate by a 

more reducing agent. Iron, zinc and aluminium are some choices which supply the 

electrons for copper ion reduction in the cementation process, but iron is considered to 

be the best for this purpose (Jhajharia et al. 2016) (Eq. 2.7).  

     (2.7) 

Thus, cementation allows to recover copper as a metallic particles with the 

physical characteristics that are necessary for metallurgical companies to take 

advantage of them (Stefanowicz et al. 1997). 

It is noteworthy that the cementing agent must have a more negative reduction 

potential than the metal to be cemented for cementation to take place. In the particular 

case of copper cementation, iron has a lower reduction potential than copper as it is 

shown in Eqs. (2.8) and (2.9).  

   (2.8) 

   (2.9) 

Thus, the standard reduction potential ( ) of the cementation reaction is 

positive (+0.78 V) and thus the standard free energy ( ) is negative ( ). 

This indicates that this process is favourable thermodynamically and, therefore, the 

cementation reaction of copper with iron is spontaneous. The cementation process ends 
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when the concentration of copper ions in solution is reduced to a certain value in which 

the electrode potential of copper is equal to the potential of the iron electrode. This 

moment occurs when the system reaches the equilibrium state.  
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3.1. General and specific objectives 

The main goal of this thesis was the study, characterization and technology 

application of autotrophic microbial populations as an alternative to the current 

procedures to extract valuable elements from metal-containing materials and thus 

explore optimal conditions of operation and limitations of applicability. 

For the achievement of this general goal it is essential to consider a number of 

specific objectives which are defined below: 

- To determine the procedure to implement the bioleaching process to extract 

valuable metals from metal-containing materials. 

 

- To study the bases of the process by determining the effectiveness of the 

bioleaching process to recover copper from low-grade mineral ores in batch 

conditions. 

 

- To characterize the potential toxicity of different bioleached metals to the 

microorganisms involved in the process by microrespirometric technique. 

 

- To elucidate and to assess the evolution of the biological activity in response 

to operational parameters during the bioleaching process by means of 

microrespirometries and fluorometric measurements. 

 

- To apply and to adapt the biorecovery process in the field of electronic waste 

to recover copper from printed circuit boards (PCB) in batch conditions. 

 

- To extend the methodology for extracting metals from PCB to a continuous 

stirred-tank reactor as well as to a column reactor in order to determine the 

capacity of bioleaching under these conditions for its application on an 

industrial scale. 

 

- To propose a new methodology based on the use of a leaching column to 

analyse key operational parameters to optimize the steps of the process 

reducing time consumption and keeping high recovery efficiencies.  
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4.1. Experimental equipment 

4.1.1. Microbial consortium cultivation  

 A mixed microbial consortium was initially used in the experiments (specifically in 

Chapter 5), which was obtained from a lab-scale gas-phase biotrickling filter (López et 

al. 2016). The biomass was cultivated in a fermenter (Figure 4.1) (Minifors, Infors HT, 

Switzerland). The microorganisms were cultivated under aerobic conditions using 3.5 g/L 

of sodium sulphide as substrate. Moreover, the dissolved oxygen (Oxyferm FDA 225, 

Hamilton, Switzerland), the pH (405-DPAS-SC-K8S, Mettler Toledo, Switzerland) and 

the temperature (Pt100, Infors, Switzerland) were controlled inside the tank. All these 

parameters were monitored and their data acquired using a specific software (Iris 6, 

EMPA, Switzerland). The pH was maintained at pH 7 by the addition of HCl 0.1 M or 

NaOH 0.1 M, the temperature was controlled at 30 ºC and the dissolved oxygen (DO) 

was checked to ensure it was not below to 7 ppm. Moreover, 70 rpm were fixed for the 

tank stirring. The mineral medium used for their growth are detailed in Table 4.1.  

 

Figure 4.1. Fermenter used for the cultivation of the mixed microbial consortium.  

 

The mixed consortium was previously characterized by Maestre et al. (2010) by 

cloning and sequencing 16S rRNA fragments. The most abundant species identified 

were Thiothrix spp, Sulfurimonas denitrificans, Halothiobacillus neapolitanus, 

Thiobacillus denitrificans and Thiomonas intermedia. Nevertheless, the mixed consortia 

also contain iron-oxidizing microorganisms since the packing material (steel) inside the 

biotrickling filter presented an advanced oxidation state that could be produced by the 

presence of this bacteria. Taking into account that iron-oxidizing microorganisms are one 

of the most effective microorganisms for bioleaching processes (Valix 2017), the use of 

the consortia for this purpose was tested. In addition, the culture was also adapted to 

bioleaching conditions (acidic medium, for instance) to evaluate the improvement on 

metal recovery. For this purpose, 100 mL of the mixed consortia suspension (500 mg of 
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biomass/L) from the fermenter was inoculated in a 500 mL Erlenmeyer flask with 100 mL 

of mineral medium (its composition is detailed in Table 4.2). Then, 10 g of chalcopyrite 

powder within 2 and 3 mm of particle diameter were added and the flask was incubated 

at 30 ºC and 130 rpm using orbital shaking (SI500, Stuart, United Kingdom) for 25 days. 

 

Table 4.1. Composition of the mineral medium used for the growth of the mixed microbial consortium. 

Inorganic salt Quantity (for 1 L) 

NH4Cl 1.000 g 

MgSO4 · 7 H2O 0.200 g 

KH2PO4 0.152 g 

CaCl2 · 2 H2O 0.032 g 

Trace 

solution 

(10 mL) 

Distilled H2O 1.000 L 

HCl 37% 11.270 mL 

FeCl2 · 3 H2O 2.500 g 

H3BO3 0.100 g 

MnCl2 · 4 H2O 0.170 g 

CaCl2 · 6 H2O 0.200 g 

 

Table 4.2. Composition of the 6K mineral medium used for the growth of Acidithiobacillus ferrooxidans. 

Inorganic salt Concentration (in g/L) 

Fe2SO4 · 7 H2O 30.000  

(NH4)2SO4 3.000  

K2HPO4 0.500  

MgSO4 · 7 H2O 0.500  

KCl 0.100  

Ca(NO3)2 · 4 H2O 0.014  

 

4.1.2. Pure Acidithiobacillus ferrooxidans cultivation  

 The bacterial strain Acidithiobacillus ferrooxidans (ATCC 23270) was also used 

in this thesis. It was kindly provided by the Department of Chemical Engineering from 

the University of País Basco (Spain). 10 mL of the original supplied sample was 

inoculated with 190 mL of mineral medium into a 500 mL Erlenmeyer flask. The mineral 

medium used was the 6K mineral medium (Table 4.2), according to the indications of the 

 (II) is the main energy source for the 

growth of Ac. ferrooxidans (6 g/L of iron(II) are used). After that, the flask was introduced 
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in an incubator at 30 ºC and 130 rpm (Figure 4.2). ORP was monitored and when it 

reached a value over 600 mV, it was considered that the iron (II) was almost oxidized 

(Diaz 2016).  

 

Figure 4.2. Incubator used for the cultivation of Acidithiobacillus ferrooxidans in batch conditions. 

 

4.1.3. Acidithiobacillus ferrooxidans cultivation in a discontinuous stirred tank 

reactor (DSTR) 

 To perform the experiment at larger scale and, thus, increase the volume and the 

concentration of the microorganisms, the strain Acidithiobacillus ferrooxidans, previously 

cultivated in an incubator, was used to inoculate a bioreactor. Therefore, their growth 

was conducted in 2 L jacketed discontinuous stirrer-tank reactor (DSTR) (Figure 4.3) 

(VFOC.77/2, Vidrafoc, Spain). In the inoculation, 600 mL of the inoculum and 1400 mL 

of 6K mineral medium was used (see the composition in Table 4.2). A thermostatic bath 

maintained the reactor at 30 ºC whereas a mechanical stirrer maintained an agitation at 

200 rpm. Because the microorganisms are aerobic, the reactor was aerated at 0.2 L/min 

by compressed air. The pH was controlled at 1.75 by the dropwise addition of 3 N H2SO4 

and the ORP was also measured to control when the reduced species (e.g. iron (II)) was 

completely bio-oxidized by the microorganisms. Hence, when the ORP exceed 600 mV 

the tank was fed with 200 mL of fresh 6K medium (every two days approximately). For 

that, 200 mL of the solution from the tank was removed, being replaced by 200 mL of 

fresh 6K mineral medium. After the medium addition, the pH was adjusted to pH 1.75 if 

necessary with 3 N H2SO4.  
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Figure 4.3. (a) Diagram and (b) picture of the discontinuous stirrer tank reactor in which the strain 
Acidithiobacillus ferroxidans were grown. 

 

 Although the biological sample was provided as a pure culture of Ac. 

ferrooxidans, a DNA extraction was performed in order to corroborate and to characterize 

the microorganisms that have been grown in the provided strain. For the DNA extraction, 

microorganisms withdrawn from the original inoculum were grown in a 4 L DSTR at the 

same conditions explained above and then the volume was centrifuged at 10000 rpm, 

finally obtaining 1 g of pellet. The extraction was carried out by the soil DNA isolation 

plus kit (in section 4.2.7 the protocol followed is described). The DNA metabarcoding 

analyses were carried out by AllGenetics & Biology SL. Results affirmed that all the 

sequences analysed were assigned to the genus Acidithiobacillus spp. Nevertheless, the 

analysis cannot confirmed that the strain provided for the experiments was a pure culture 

strain. It is noted that despite the continuous reinoculation of the culture during several 

months and their use in bioleaching experiments, the strain continues being a culture of 

Acidithiobacillus spp., which indicates that this strain is quite difficult to be contaminated 

by any other species of microorganisms. This is beneficial in bioleaching processes since 

it avoids having significant variations of the microbial population initially inoculated for 

this purpose. It is noteworthy that actually, bioleaching process does not usually works 

with pure cultures but mostly one organism dominate the process. Moreover, 

Acidithiobacillus spp., as autotroph microorganisms, present the advantage over 

heterotrophs that contaminations are very hard as there is no organic in the system. 
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4.1.4. Microscopy  

 For the observation of the microorganisms used in this work, an optical and a 

Scanning Electron Microscope (SEM) were used.  

The optical microscope (BA310LED, Motic, Germany) consists on a lens system 

that allows enlarging the image in order to visualize the microorganism present in a 

biological sample (Figure 4.4). The compound microscope has two system of lenses for 

greater magnification: the ocular and the objective lens. In particular, the four objectives 

lens of this microscope allow an increasing of x4, x10, x40, x100 although an increasing 

of x1000 was also possible with immersion oil.  

 

Figure 4.4. (a) Optical microscope used for the visualization of the microorganisms during this work and (b) 
detail of the objectives used. 

 

 The scanning electron microscopy (TS-1000, Hitachi, Japan) uses electrons 

instead of light beam (protons) to create a high-resolution image, allowing a deep 

approach to the atomic world or organic materials (Figure 4.5). Since the wavelength of 

electrons are much smaller than photons, the electron microscopes have a higher 

resolution that optical ones and the resolution of a microscope is inversely proportional 

to the wavelength used.  
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Figure 4.5. (a) The Scanning Electron Microscope (SEM) and (b) the Energy Dispersive X-Ray 
Spectroscopy analyser used in this work. 

 

In the case of SEM observation, the sample must be previously dried by a dryer 

(Conterm 150L, JP Selecta S.A., Spain) in order to remove all moisture, since the 

vacuum is made inside the SEM microscope to create the image and moisture can cause 

interference on it.  

4.1.5. Size reduction equipment 

In some experimental designs, a reduction of the particle size of the waste was 

required. For the experiments in which chalcopyrite (Figure 4.6a) was tested for copper 

recovery in Chapter 5 of this thesis, a roller crusher (Serie 24, Humboldt Wedag 

Española SA, Spain) was used. After the reduction by a roller crusher, the particles were 

sieved to collect the particles between 2 and 3 mm of diameter (Figure 4.6b).  

 

Figure 4.6. (a) Chalcopyrite used in the experiments before the particle reduction and (b) the sieves used 
for the selection of the desirable size. 

 

During the research performed in this thesis (in particular from Chapter 6 to 

Chapter 9) end-of-life mobile phones have been used as a source for valuable metals 

(Figure 4.7a). They were provided by the company Electrorecycling S.A. (El Pont de 
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Vilomara i Rocafort, Spain). The printed circuit boards (PCBs) were manually removed 

from their structure (Figure 4.7b) and the main components as resistors, capacitors and 

chips were also separated. The size of the PCB was firstly reduced with a shears to 1 

cm2 particles and then, these particles were crushed with a grinder (Figure 4.8a) (MF 10 

basic, IKA, Germany). The obtained particles were classified in different particle ranges: 

less than 0.2 mm of diameter, between 0.2 and 1.0 mm of diameter and higher than 1.0 

mm of diameter with sieves of different granulometry, according to the desirable sizes 

(Figure 4.8b). 

Both chalcopyrite and the different particle sizes of the PCB were digested and 

analysed to determine the copper content as well as to determine the concentration of 

other metals. The procedure followed for their digestion of samples is explained in detail 

in section 4.2.3. 

 

Figure 4.7. (a) End-of-life mobile phones used in the experiments of electronic waste bioleaching and (b) 
the printed circuit boards removed from them. 

   

 

Figure 4.8. (a) Grinder used for particle size reduction of the electronic waste and (b) particles size obtained 
after their crushing. 
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4.2. Analytical techniques 

4.2.1. Multimeter for pH and oxidation-reduction potential (ORP) measurements 

 A multimeter (Multi 3620IDS, WTW, Germany) was used to register and visualize 

the pH (SenTix 980, WTW, Germany) and the ORP (Electrode SenTix ORP-T900, WTW, 

Germany) in the leaching solutions as well as in the other liquid samples.  

 

4.2.2. Dissolved oxygen monitoring system 

 The activity of the microorganisms was measured by microrespirometry, which 

consists on the measurement of dissolved oxygen in a small liquid sample after the 

addition of a pulse of substrate (less than 2 mL). In this sense, the evaluation of 

microorganisms  activity is possible through the oxygen consumption (final electron 

acceptor in aerobic bacteria). The system consists on an optical oxygen measuring 

device (FireStingO2, PyroScience GmbH, Germany) (Figure 4.9a) composed by a 

combined excitation and detection module, which is connected to a sensor spot by a 

fibre-optic cable (Figure 4.9b). The sensor spot, coated with an oxygen-sensitive 

fluorophore, is located opposite to the fibre-optic at both sides of the glass (Figure 4.9c). 

The operating principle is based on the red light excited (REDFLASH indicators), which 

show luminescence in the near infrared (NIR). The light emitted depends on the oxygen 

concentration, being higher when there is less oxygen concentration detected (Figure 

4.9d). The optode signal was registered with a PC using the software Pyro Oxygen 

Logger v.3.213. An integrated temperature sensor from the optode system compensate 

automatically the temperature discrepancies (measurements are highly dependent). 

Even so, all the oxygen measurements were taken in a thermostat cabinet or 

thermostatic bath at 30 ºC to compensate temperature fluctuations. According to the 

-saturated water 

(100% O2) and 2% w/v sodium sulphite (0% O2) as references.   
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Figure 4.9. (a) Optical oxygen system used to perform microrespirometries in order to evaluate the activity 
of the microorganisms in a biological sample; (b) scheme of the oxygen sensor; (c) detail of the chambers 
of the system; and, (d) operating principle of the optode system ((b) and (d) were adapted from PyroScience 
2018). 

 

4.2.3. Waste digestion by microwave apparatus 

In order to determine the content of metals in the PCB and in the chalcopyrite 

samples an acid digestion was performed. For this purpose, approximately 0.1 g of the 

solid sample and 10 mL of HNO3:HCl (3:1) were introduced in the appropriate container 

(Figure 4.10a). Subsequently, samples were introduced in the microwave apparatus 

(4.10b) (Microwave System, Millestone, Italy) at 150 ºC during 15 min. Afterwards, the 

dissolution from the container was filtered at 0.45 µm to separate the liquid from the solid 

particles that could not be completely digested. Finally, an appropriate dilution was 

atomic absorption spectroscopy 

(AAS) or inductively coupled plasma mass spectrometry (ICP-MS) since the linearity of 

copper measurements by these equipments are between 0 and 10 ppm. The 

repeatability of the analysis was determined making between 3 and 6 measurements.  
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Figure 4.10. (a) Detail of the containers used for the microwave apparatus and (b) the microwave used in 
the experiments. 

 

4.2.4. Metals determination by atomic absorption spectroscopy (AAS) and 

inductively coupled plasma mass spectrometry (ICP-MS) 

Atomic absorption spectroscopy (Figure 4.11) is used to analyze metal elements 

that could be found in liquid samples. This technique is based on the radiation that can 

be absorbed at specific frequency when free atoms are generated in an atomizer. In 

particular, the amount of energy that is put in the flame is known and the remaining 

amount of energy on the other side can be measured by means of a detector. In this 

way, a calculation of how many of these transitions take place is possible, thus obtaining 

a signal which is proportional to the concentration of the element that is measured. 

During the experiments, an AAS (Solar S2, ThermoFisher Scientific, United States) was 

used to analyze copper and total iron concentration (when these two metals are found in 

high concentrations, ppm). On the contrary, when trace elements have to be analyzed, 

the ICP-MS (7500CX, Agilent Technologies, United States) was employed (ppb). ICP-

MS, as its name suggests, uses an inductively coupled plasma to ionize the sample. It 

atomizes the sample, creating atomic and small polyatomic ions, which are then 

detected. In addition, the ICP-MS allows the analysis of metals and several non-metal 

elements whereas the AAS can only measure metal elements. Samples were filtered 

previous to dilution (through a compact 0.45 µm filter) in order to avoid possible 

obstructions in both the AAS and ICP-MS tubes.  

4.2.5. Iron (II) and iron (III) determination by ultra-violet visible (UV-VIS) 

spectrophotometer 

 Since AAS can only measure total iron concentration, Ultra-violet visible (UV-Vis) 

spectrophotometer was carried out to discriminate iron (II) and iron (III) concentrations 

from measuring the intensity of a light that passes through the sample and comparing to 
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the light intensity without sample. The relation between both light intensities is called 

transmittance and it is related to the concentration of the analyte measured. Hence, in 

this work, the UV-Vis spectrophotometer (Figure 4.12) (Lambda 25, PerkinElmer, United 

States) was used to measure iron (II) and iron (III) concentrations from the colorimetric 

method with 1,10-phenantroline (Jeffery et al. 1989). Method consists on the reaction 

between the iron (II) and the o-phenantroline (C12H8N2) which formed a red-orange 

compound (Eq. 4.1).  

   (4.1) 

This compound only reacts with iron (II) ions, so if iron (III) want to be analyzed, 

the reduction of the iron (III) from the sample by its reaction with hydroxylamine is 

necessary (Eq. 4.2). In this way, the measurement of the iron (III) concentration is 

possible from the difference between the total iron and the iron (II) concentrations. 

 (4.2) 

4.2.6. Microplate reader for total fluorescence measurements  

 A microplate reader (Figure 4.13) is used to measure the total fluorescence and 

thus estimate the cell number in a biological sample. This technique is based on a 

physical phenomenon in which certain substances (fluorophores) absorb energy in the 

form of electromagnetic radiation and then emits it at greater wavelength in a very short 

period of time. Specifically, when the fluorophore absorbs light, one of its electrons enters 

to an excited state (of higher energy) that is unstable, so when it returns to its basal state, 

the excess energy is released in the form of light, which is in a longer wavelength (less 

energy) in comparison to the excitement energy. These differences on the energy are 

detected by the microplate reader (SpectraMax M2e, Molecular Devices, United States), 

giving a signal which is proportional to the concentration of the fluorophore. The 

fluorophore used in the measurement was the PicoGreen®, which becomes intensely 

fluorescent upon binding nucleic acids. Hence, the signal obtain by the microplate reader 

is proportional to the amount of PicoGreen® detected and thus, to the biological material 

of the sample which is, in turn, related to the cell concentration. Therefore, after 

performing a correlation between the microplate reader signal and the cell number, the 

total fluorescence measurements allow to determine the cell concentration in a biological 

sample. 
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Figure 4.11. (a) Atomic absorption spectroscopy for the analysis of metals in a liquid sample and (b) 
inductively coupled plasma mass spectrometry for the measurement of low metals concentration. 

 

 

Figure 4.12. UV-Vis spectrophotometry to analyse iron (II) and iron (III) in liquid samples. 

 

 

Figure 4.13. Microplate reader for total fluorescence measurements to determine cell number concentration 
in a biological sample. 
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4.2.7. DNA extraction   

 The microorganisms Acidithiobacillus ferrooxidans was the inoculum used in 

almost all the experiments performed in this work. Although they were provided as a pure 

culture, the purity of the biological sample was tested by the analysis of the DNA present 

in the sample after 2 months of inoculation. In order to obtain the DNA to analyze, an 

extraction of them is necessary. There are different methodologies to extract the genetic 

material. In this case, the soil DNA isolation plus kit from Norgen Biotek (product # 64000) 

was selected. The kit provides the protocol to follow with the chemical reagents needed. 

The detailed explanation of the protocol could be found in the website of the company 

but a schematic flow chart of the protocol is shown in Figure 4.14.   

 

Figure 4.14. Flow chart of the protocol followed to extract the DNA by the soil DNA isolation plus kit (from 
Norgen Bioteck 2016) 
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The main motivation of this chapter was to gain knowledge about the possibility 

to use mixed cultures instead of pure cultures in bioleaching processes, initiating the 

experiments with a well-documented mineral, the chalcopyrite. In this way, the possibility 

to apply this technique in the electronic waste field will be evaluated. The first approach 

was the development of the process to recover copper biologically, beginning with the 

recovery from chalcopyrite to test the technique in the mining field. After testing the 

bioleaching performance, the knowledge acquired was used in the following chapters in 

order to develop an alternative methodology to recover metals in a more sustainable way 

than the traditional, studying what is the best strategy to achieve the highest extraction.    

 

Abstract 

In this chapter, bioleaching was applied to recover copper from chalcopyrite. 

Specifically, the bioleaching was studied for a long-term operation, investigating key 

parameters in the process, such as the role of the biomass (origin and adaption), the 

composition of the mineral medium, the buffer capacity and the influence of different ore 

grades and their potential associated alkalinity. A mixed microbial consortium obtained 

from a gas-phase biotrickling filter treating high loads of H2S was used and showed 

significant copper extraction by biological leaching. Moreover, results revealed that the 

kinetics and efficiencies of copper extraction were determined by the mineral medium 

composition, the buffer capacity and the matrix and grade of the mineral used, allowing 

to set the limits of applicability due to the enhancement of ion precipitation at specific 

conditions. In addition, the influence of the buffer capacity of mineral medium on the 

global performance was underlined as critical as well as the chemical composition of the 

ore matrix where the mineral is contained. The study of this chapter constitutes an initial 

step in the bioleaching research, providing the methodologies, which can be used to 

extract metals from various metal containing materials by biotechnological process. 

  



Chapter 5: Development of a batch bioleaching process to recover copper from chalcopyrite 
using a mixed microbial consortium 

 

66 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A modified version of this chapter has been submitted for publication as: 

Benzal, E., Solé, M., Lao, C., Gamisans, X., Dorado, A.D., 2020. Influence of ore grade 

and mineral medium on chalcopyrite bioleaching with mixed microbial consortia. 

Environmental Progress & Sustainable Energy. 



Chapter 5: Development of a batch bioleaching process to recover copper from chalcopyrite 
using a mixed microbial consortium 

 

67 
 

5.1. Introduction 

Chalcopyrite (CuFeS2) is the most abundant ore of copper. It is estimated that 

80% of the copper reserves worldwide are formed by low-grade chalcopyrite deposits 

(Morin 2008). However, these ores are especially recalcitrant so that copper extraction 

by hydrometallurgical processes is complex and expensive, especially  from low-grade 

ores (Tanne and Schippers 2019). For this reason, most of the studies focused on metals 

extraction by bioleaching consider low-grade ores in their experiments (Saitoh et al. 

2017; Wang et al. 2014; Yaghobi Moghaddam et al. 2012; Yin et al. 2008).  

Microorganisms involved in bioleaching have an important role in the process. In 

this sense, it is well known that the use of pure cultures of Acidithiobacillus ferrooxidans 

or Acidithiobacillus thiooxidans in bioleaching results in high extraction yields of copper 

from minerals such as chalcopyrite (Wang et al. 2014). However, mixed consortiums, 

containing these types of microorganisms can also be used for this purpose (Dorado et 

al. 2012; Qin et al. 2013; Sajjad et al. 2018; Zhang et al. 2008). 

Bioleaching has been principally employed to extract metals such as copper, 

nickel, cobalt and zinc, among others (Martinez et al. 2015). Usually efforts have been 

placed on low-grade ores because biological leaching is more profitable than chemical 

leaching with these type of ores (Saitoh et al. 2017; Song et al. 2011). Nevertheless, 

some studies focused on biological leaching did not perform abiotic control experiments 

to consider the chemical processes that can also take place in the biological leaching 

(Dong et al. 2013b; Liang et al. 2013; Zhou et al. 2009). These chemical factors can 

supply information on what other factors are involved in metals extraction.   

The most commonly used mineral medium for microbial growth in bioleaching, 

named 9K, was described for the first time by Silverman and Lundgren (1959). 

Afterwards, some authors slightly modified its composition. In particular, Fu et al. (2008) 

and Zhang et al. (2008), added K2HPO4 instead of KH2PO4 as well as (NH4)2SO4 and 

Ca(NO3)2. Some authors modified the 9K composition by adding (NH4)2SO4 and K2HPO4 

instead of KH2PO4. Other authors modified the amount of iron, this is the case of Córdoba 

et al. (2008) or Fu et al. (2013) who added 22 g/L of ferrous sulphate instead of the 44,2 

g/L in the 9K. These changes in the mineral medium composition affected copper 

recovery, despite there are no specific studies focused on this bioleaching aspect.   

pH also plays an important role in bioleaching processes. Rohwerder et al. (2003) 

concluded that the bioleaching process only could take place at pH around 2 in order to 

avoid a significant abiotic oxidation of ferrous iron. However, Bosecker (1997) affirmed 
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that below pH 2, a considerable inhibition of the microorganisms occurs. For this reason, 

many authors agree that a maintained value of pH 2 along the whole bioleaching process 

leads to better metal recoveries (Dong et al. 2013b; Yin et al. 2008; Zhou et al. 2009). In 

order to keep acidic conditions, many authors add sulfuric acid to the medium along 

experiment (Khoshkhoo et al. 2014; Qin et al. 2013; Yaghobi Moghaddam et al. 2012; 

Zhang et al. 2008). Another way to maintain a constant pH value could be the use of 

appropriate buffer solutions in order to avoid the continuous acid addition.  

 The aim of the present chapter is to evaluate the effectiveness of copper 

bioleaching from chalcopyrite under different conditions using a mixed microbial 

consortium obtained from a gas-phase biotrickling filter operated at neutral pH and 

treating high loads of H2S. Both biotic and abiotic experiments were carried out in parallel 

under the same conditions in order to distinguish between chemical and biological 

processes. Besides, the influence of two different mineral media on the process was also 

tested. Additionally, the influence of the buffer capacity of the mineral medium in contact 

with the mineral ore and the effect of the purity grade of the ore were analysed in terms 

of metal recovery. Finally, a pure culture of Acidithiobacillus ferrooxidans was used to 

bioleach the mineral at the best conditions observed, comparing the results to those 

obtained with the mixed microbial consortia. 

 

5.2. Materials and methods 

5.2.1. Mineral samples 

The mineral 

(Querétaro, Mexico). Hereinafter, it will be called high-grade chalcopyrite. It was 

analysed by atomic absorption spectrometry (AAS) after acid digestion. For this purpose, 

0.15 g of ore (partic 3:HCl (3:1) at 

150 ºC for 15 minutes in a microwave apparatus (Microwave System, Millestone, Italy). 

The digestate was analysed with an atomic absorption spectrometer (Solar S2, Thermo 

Scientific, United States). The whole procedure was repeated 5 times to assess its 

repeatability. A second ore from the Misky deposit (Arequipa, Perú) was used to 

investigate the effect of the mineral range on the bioleaching process. Hereinafter, it will 

be called low-grade chalcopyrite. Moreover, X-ray diffraction analysis was performed 

-ray diffractometer to determine a semi-quantitative 

mineral phase analysis of the samples by the Rietveld method (Rietveld 1988). The 

particle size used in the bioleaching experiments was between 2 and 3 mm, according 
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to the recommendations of Dorado et al. (2012). To obtain this size, the mineral was 

grinded with a hammer mill and sieved to the desired diameter range. 

5.2.2. Microorganisms 

A mixed microbial consortium obtained from a lab-scale gas-phase biotrickling 

filter operated at neutral pH and treating high loads of H2S was used in this study. In 

particular, three pieces of packing material with biofilm attached were collected ans 

washed in 500 mL of mineral medium. Afterwards, the mineral medium with the 

suspended biomass was used to inoculate a sterilized reactor (2.8 L), which was 

operated as a continuous stirrer-tank reactor. This biomass was then culture in an 

Erlenmeyer flask at 30 ºC and 200 rpm before being used as an inoculum in bioleaching 

experiments. This was previously characterized by Maestre et al. (2010) by cloning and 

sequencing 16S rRNA fragments, identifying Thiothrix spp, Sulfurimonas denitrificans, 

Halothiobacillus neapolitanus, Thiobacillus denitrificans and Thiomonas intermedia as 

the most abundant species. In this work, the consortium was used with and without 

previous adaptation. To adapt the culture, an initial sample of the mixed microbial 

consortium was inoculated in a 500 mL Erlenmeyer flask which contained 100 mL of 

mineral medium and 10 g of chalcopyrite powder within 2-3 mm particle diameter. This 

flask was kept at 30 ºC and 130 rpm using orbital shaking for 25 days. 

Additionally, a pure culture of Acidithiobacillus ferroxidans (ATCC 23270) was 

used to compare the process with two different cultures. It was kindly provided by the 

Department of Chemical Engineering from the University of País Vasco (Spain).   

5.2.3. Mineral media 

Two different mineral media were tested in this study. Medium 1 is the one used 

in the lab-scale gas-phase biotrickling filter from which the consortium was obtained. Its 

composition was: 1.000 g/L NH4Cl, 0.200 g/L MgSO4·7H2O, 0.152 g/L KH2PO4, 0.032 

g/L CaCl2·2H2O and 10 mL of trace solution (11.27 mL/L HCl 37.5%, 2.500 g/L 

FeCl2·4H2O, 0.100 g/L H3BO3, 0.170 g/L MnCl2·4 H2O and 0.200 g/L CaCl2·6H2O). The 

non-adjusted pH of these medium was 7. Medium 2 was a modified 9K medium, which 

is the most widely employed in literature-based copper bioleaching studies. The 

composition was: 3.000 g/L (NH4)2SO4, 0.500 g/L KH2PO4, 0.500 g/L MgSO4·7 H2O, 

0.100 g/L KCl and 0.014 g/L Ca(NO3)2·4 H2O. The pH was adjusted with 3 N H2SO4 to 

pH 2. Regarding to the buffering agent influence study, buffer solutions HCl/KCl (0.10 

M/0.09 M) or Na2HPO4/KH2PO4 (0.065 M/0.025 M) were prepared before the salts of 

mineral medium were added. Finally, the pH was adjusted with either 37% HCl or 85% 

H3PO4 to pH 2.  
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5.2.4. Bioleaching experiments 

Bioleaching experiments were performed in 500 mL Erlenmeyer flasks containing 

100 mL of mineral medium, 10 g of chalcopyrite ore (sieved between 2 and 3 mm 

diameter) and 100 mL of inoculum (500 mg/L bacteria density). Abiotic experiments were 

carried out at the same conditions without inoculum. The flasks were kept at 30 ºC and 

shaken at 120 rpm, and samples were taken for pH measuring and to analyze copper 

concentration along time.  

 

5.3. Results and discussion 

5.3.1. Ores composition 

Semi-quantitative mineral phase analysis of the high-grade sample performed 

with the X-ray diffractometer showed a relation of chalcopyrite 68.0%, calcite 12%, 

sphalerite ferrous 5.0%, pyrite 5.0%, troilite 4.0%, pyrrhotite 3.0% and quartz 3.0%. The 

mineral composition of the low-grade chalcopyrite was quartz 98.0%, chalcopyrite 1.2% 

and malachite 0.5%, with minor content of other sulphite minerals. Hence, in terms of 

copper concentration, this was 26.4% for the high-grade chalcopyrite whereas it was 

0.62% for the low-grade one. 

5.3.2. Influence of the mineral medium on copper recovery 

The bioleaching process was studied using two different mineral media (medium 

1 and medium 2) with the high-grade chalcopyrite sample. Values of copper recovery 

and pH along time are plotted in Fig. 5.1. Results revealed that copper release was 

detected after 30 days of experimentation in the biotic sample with medium 2, being 

negligible in the rest of samples. This means that despite medium 1 was ideal for the 

growth of the consortium in the biotrickling filter (from where it was obtained) when it 

comes to bioleaching, medium 2 was more appropriate. In particular, the main difference 

between the composition of medium 1 and medium 2 is the amount of sulphate ions 

(0.078 g/L of SO4
2- and 6.055 g/L, respectively).   
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Figure 5.1.  Copper recovery and pH evolution along operating time in the study of the mineral medium 

influence. 

 It is also worth noticing that, although medium 2 was adjusted to pH 2 at the start-

up of the process, the pH increases up to 5 after 24 hours of contact with the ore in all 

biotic and abiotic experiments. This means that those differences observed in copper 

extraction between medium 1 and 2, cannot be attributed to the initial pH of mineral 

media, but to the medium composition itself. This alkalisation was also described by 

Rodríguez et al. (2003), who attributed it to the protonic attack onto chalcopyrite. 

However, this is not probably the cause of basification since it takes place very quickly 

during the first five days, long before the copper release began, in both, biotic and abiotic 

samples. In this work, it is assumed that the pH increase is likely due to the solubilisation 

of some components originally contained in the mineral matrix such as calcite. According 

to McGeouch et al. (2012), calcite can be dissolved by the action of protons, resulting in 

alkalisation of the mineral medium (Eqs. 5.1 and 5.2):  

   (5.1) 

  (5.2) 

Conversely, it can be also observed that protons concentration increases after 30 

days in biotic samples. This acidification could be associated to the oxidation of sulphide 

by the sulphur-oxidizing microorganisms in mixed microbial consortium (Sand et al. 

2001). Regarding abiotic samples, pH values keep quite constant corroborating that 
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activity. Although pH 

values decreased in both biotic samples, copper bioleaching is far higher in medium 2 

than in medium 1, which confirms that this behaviour is related to the composition of the 

medium. As commented above, medium 2 contains 75 times more sulphate ion 

concentration than medium 1. According to Tuovinen and Kelly (1973), sulphate is 

required by some microorganisms as a sulphur source for biosynthesis, but also for 

several other enzymatic functions. Thus, it seems that sulphate is a key parameter in the 

microorgan is the main reason for the differences in the 

recoveries of copper obtained from the different media. 

To ensure a proper operation over the entire bioleaching process, suspended 

biomass and acidic conditions have to be maintained. However, originally, in the 

biotrickling filter from which the biomass was obtained, the biomass was attached on a 

packed support and under neutral pH. These differences between biotrickling and 

bioleaching conditions could result in a poor efficiency of bioleaching process. Therefore, 

a study with a previous adapted biomass used was carried out (section 5.2.2). The 

evolution of pH and copper concentration in the bioleaching media from the adapted and 

the non-adapted cultures are shown in Figure 5.2.  

 

Figure 5.2. Copper recovery and pH evolution along operating time in the study of the effect of adapted and 

non-adapted microorganisms during chalcopyrite bioleaching. 

 

As can be observed, the adapted culture improves both kinetics and efficiency of 

copper extraction respect to the non-adapted one. Regarding kinetics, with the non-
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adapted biomass, copper bioleaching was detected after 25 days, whereas with the 

adapted biomass it began in 10 days (halving the start-up). On the other hand, when the 

adapted culture was used, the bioleaching effectiveness increased achieving a copper 

recovery of 3.64% in front of the 2.9% obtained with the non-adapted one. Nevertheless, 

it is noteworthy that the kinetic of copper recovery was different. The non-adapted culture 

began to recover copper after 30 days with a leaching rate of 11.66 mg/(L·day) whereas 

the adapted culture began before, but in this case, two velocities were observed. During 

the first 30 days, the copper leaching rate was 3.63 mg/(L·day), whereas from this time 

until 55 days the leaching rate was three times higher, achieving a rate of 12.13 

mg/(L·day). Regarding pH, this parameter increased at the beginning of the experiment 

in both, adapted and non-adapted microorganisms. However, during the first 30 days, 

there is a greater pH decline in the case of the adapted microorganisms, which indicates 

higher activity of the sulphur-oxidizing microorganism since the protons concentration in 

the medium increases by the sulphur oxidation (Eq. 5.3) (Pathak et al. 2019). 

    (5.3) 

Moreover, as can be seen in Figure 5.2, after 60 days of experimentation, 

depletion on copper concentration occurred in all biotic samples. It is not usual to found 

articles that perform bioleaching experiments for such long time to observe this 

behaviour, or in case to carried out for long periods of time did not remark this 

observation (Cancho et al. 2007; Thurston, Mandernack, and Shanks 2010; Wang et al. 

2014; Zhang et al. 2008; Zhao et al. 2013). The decrease of copper concentration 

coincided with an increase in pH values, which in turn can be related to a decrease on 

biological activity since biological activity produces protons to the medium.  

This suggest that reduction of copper concentration, at this time, could be likely 

due to copper ions precipitation through the formation of poor soluble species, given 

place to copper (II) hydroxide. Nevertheless, at the pH achieved at this time almost all 

the copper is found in its soluble form according to the copper speciation diagram (Figure 

5.3). Hence, the copper depletion could not be associated to its precipitation. It is noticed 

that when the decrease of copper concentration was detected, formation of an orange-

brown precipitate was observed. It is though that the precipitate could be jarosite 

(KFe3
+3(OH)6(SO4)2), which formation is favoured by the presence of potassium and 

ammonium cations brought by the mineral medium (Guezennec et al. 2015). 

Nevertheless, schwertmannite (Fe16
3+O16(OH)12(SO4)2) can be also formed in 

bioleaching environments (Liao et al. 2009). According to these authors, extremely high 

SO4
2- content (>8000 mg/L) and low pH in the system favored the existence of 
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schwertmannite, that are the conditions of the present experiment. It is well known that 

in chalcopyrite bioleaching process, the formation of iron precipitates is pH dependent 

(Daoud and Karamanev 2006). According to these authors, the most jarosite 

precipitation was observed after 46 hours at pH 2.96, which is the pH measured when 

the copper decreasing was observed (Figure 5.2). Accordingly, it was though that the 

reason why copper concentration decreased was related to the formation of jarosite 

or/and schwertmannite in the experiment since it has been reported that the formation of 

these minerals may lock some of the extracted copper, producing a decrease in copper 

concentration (Zhou et al. 2009).  

 

Figure 5.3. Theoretical copper speciation for hydroxo complexes. Adapted from Cuppett, Duncan, and 
Dietrich (2006). 

 

Copper precipitation has not been described before in chalcopyrite bioleaching 

studies found in the literature. Many bioleaching studies in batch conditions were 

performed during less than 60 days (Klink et al. 2016; Peng et al. 2016; Shabani et al. 

2019; Vilcáez, Yamada, and Inoue 2009) and the number of studies that experimented 

more days are scarce in the literature. The main interest of long-term experiments is to 

observe the behaviour of the system when not all copper has been extracted in a short 

time period.  In this sense, few long-term chalcopyrite bioleaching studies have been 

performed (Cancho et al. 2007; Thurston et al. 2010; Wang et al. 2014; Zhang et al. 

2008; Zhao et al. 2013) but they did not report a reduction in copper concentration. 

However, the conditions under which the experiments were performed in these studies 

differ from those of the present study (e.g. the pH maintained at very acidic values along 

all the duration of the experiments which reduces the formation of jarosite). Hence, based 
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on the results obtained it is noticed how important is to avoid the conditions that favours 

mineral precipitation as jarosite or schwertmannite in order to maintain the copper in 

solution. One of the main ways to reduce the formation of jarosite is to keep acid pH in 

the leaching solution either by the constant acid addition or by buffering the media used 

in the leaching experiment to avoid pH changes.  

5.3.3. Effect of buffering the bioleaching media 

 Most of microorganisms used in metals recovery by bioleaching grow at very 

acidic pH (below 2.5) (Rohwerder et al. 2003). However, the optimum pH value for 

bioleaching processes depends on the type of microorganisms (Plumb, Muddle, and 

Franzmann 2008). On the other hand, the release of gangue components from the ore 

can also affect the pH of the medium and, thus, have some influence on the efficiency in 

the bioleaching processes as seen in Figure 5.2. Despite the initial pH of the media was 

adjusted to pH 2, this value increased quickly during the first stage of the bioleaching 

experiments (Figure 5.2). This is associated to the protons consumption by the ore 

components solubilisation. This alkalisation has been observed in numerous studies 

and, generally, the maintenance of pH along the bioleaching process is accomplished 

by periodic addition of sulphuric acid (Akcil, Ciftci, and Deveci 2007; Cancho et al. 2007; 

Zhang et al. 2008; Zhao et al. 2015). 

 In order to avoid the constant acid addition, which raises the cost and makes the 

recovery process less sustainable, two different buffer solutions HCl/KCl (chloride buffer) 

and Na2HPO4/H3PO4 (phosphate buffer) were tested during chemical leaching of low-

grade chalcopyrite. Both buffer solutions are usually used in biological and chemical 

processes to keep pH at values of 2 (Ashour, Chehna, and Bayram 2006; Jiao et al. 

2008; Léonil and Mollé 1991; Sarafra- . However, in case that 

buffer solutions allow maintaining pH at constant acid value during the leaching 

experiment, it should be study the effect of Cl- and PO3
4- to the biological activity of the 

strain used in biological tests since these salts have been reported to be toxic depending 

on the concentration and the strain used (Huynh et al. 2019). Evolution of pH over time 

in buffered media is showed in Figure 5.4.  

Results revealed that while the phosphate buffer kept well the pH around 2, 

chloride buffer was not able to maintain the pH of the media at pH 2 when the ore was 

present in the bioleaching media. Nevertheless, although the phosphate buffer 

maintained the pH, the formation of a precipitate was observed which could be due to 

the reaction between phosphate anions and metallic cations present in the mineral 

medium, such as iron and calcium, which produces iron (III) phosphate (Kps = 9.9·10-16) 
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and calcium phosphate (Kps = 2.0·10-29). This can seriously affect the bioleaching 

process because of the decrease in concentration of essentials ions which are necessary 

for the biological process. Hence, none of the two buffers tested resulted totally effective 

to be applied during the bioleaching process without producing negative effects. Thus, 

the use of concentrated reagents can be one of the most suitable alternatives in order to 

maintain acid pH, at the same time that the consume of acid can be reduced in the 

process. 

 

Figure 5.4. pH -filled symbols 

represent samples without mineral and filled symbols represent samples with mineral. 

 

5.3.4. Effect of the ore grade on the bioleaching process 

 Bioleaching process can be applied to copper ores of different grades and 

compositions. This fact might influence the process because some components 

contained in the ore would be able to react with the mineral medium. For this reason, 

two different copper ores, which have different percentage of copper and mineral matrix, 

were investigated. Experiments were performed with the medium which presented 

higher recovery (medium 2), which composition is described in section 5.2.3. 

Copper concentration and pH evolution along time are shown in Figure 5.5. 

Results revealed that copper extraction occurred from both minerals. As can be seen, 

after 18 days, the amount of copper extracted was higher from high-grade chalcopyrite 

(47 mg/L) than from low-grade chalcopyrite (12 mg/L). It is noteworthy that the amount 
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of copper extracted from low-grade chalcopyrite was the same in biotic and abiotic 

samples. This suggest that copper obtained from the low-grade ore was leached 

chemically without the intervention of microorganisms. The inactivity of the biomass in 

this case could be caused by some components present in the mineral matrix capable 

of inhibit the metabolism of the microorganisms. Therefore, it confirms that the mineral 

composition is important and not all copper ores are suitable to be bioleached. On the 

contrary, there was a noticeable difference between biotic and abiotic samples from the 

high-grade chalcopyrite. Copper obtained from biotic sample was over 50 times greater 

than the copper obtained from the abiotic experiment. 

 

Figure 5.5. Copper concentration (filled symbols) and pH evolution (non-filled symbols) along time on 

bioleaching of two different copper ores. 

 

In terms of copper extraction, the amount of copper obtained with the high-grade 

chalcopyrite represents an extraction of 0.4% in weight. These results are in agreement 

with those obtained by Dong et al. (2013b), who also obtained less than 10% of copper 

from two samples of chalcopyrite with similar composition of the mineral used in the 

present work (24% Cu, 27% Fe and 30% S) during the same experimental time. The low 

copper recoveries achieved are related to the pH of the mineral medium, since pH over 

2 do not favour the process, despite this pH value is used in many of bioleaching studies 

(Dong et al. 2013b; Fu et al. 2008, 2013; Saitoh et al. 2017). 

Copper concentration obtained with the high-grade chalcopyrite is 5 times greater 

than that obtained with the low-grade chalcopyrite. However, in terms of copper recovery, 
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1.9% of copper from the low-grade ore was obtained whereas only 0.4% was obtained 

from the high-grade sample. These results might be related to the high quartz content in 

the low-grade chalcopyrite (98%). Dong et al. (2013c) demonstrated that copper 

bioleaching from chalcopyrite was improved by the addition of quartz in the bioleaching 

medium. According to these authors, the presence of fine particles of quartz could reduce 

the formation of a passivating jarosite layer on the mineral that negatively affects copper 

extraction. 

 It is noteworthy that pH values have a similar behaviour in all cases. After the first 

24 hours, the pH increases substantially and, then, the values were almost constant until 

the end of the experiment. The initial alkalisation was more pronounced in the high-grade 

chalcopyrite sample probably due to the matrix composition of the mineral, since one 

matrix component is calcite, which alkalinizes the medium (see Eq. 5.1 and 5.2). Despite 

the higher pH increasing, the amount of copper obtained was also higher in the high-

grade chalcopyrite. This means that the efficiency of copper extraction can be increased 

when a pH control is performed, even if the pH used is not low. 

5.3.5. Effect of the inoculum characteristics during bioleaching 

 Although some copper was recovered by bioleaching in the previous 

experiments, the percentage of copper recovered was quite low. Since the mixed culture 

used did not contained, one of the microorganism most used in bioleaching processes 

(Rawlings 2002), the next step was to consider the use of a pure culture. For this reason, 

the bioleaching of chalcopyrite with a pure culture of Acidithiobacillus ferrooxidans was 

compared to the bioleaching process with the microbial consortium of this work. As it is 

shown in Figure 5.6, the use of a pure culture of Acidithiobacillus ferrooxidans increased 

the efficiency of copper recovery since it recovered 30% of copper in 13 days whereas 

the mixed microbial consortium spent more time. For the latter, only 3% recovery was 

achieved after 50 days approximately (see Figure 5.2). Therefore, there was an 

important improvement when the specific strain was used.  

 Some authors affirmed that mixed cultures obtained better recoveries in copper 

bioleaching, however, they defined mixed culture for cultures composed by 

Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, basically (Fu et al. 2008; 

Qiu et al. 2005). In this work, the mixed culture was originally composed by Thiothrix spp, 

Sulfurimonas denitrificans, Halothiobacillus neapolitanus, Thiobacillus denitrificans and 

Thiomonas intermedia as the most abundant species, as stated previously. These 

microorganisms allowed to bioleach copper, especially when they have been previously 
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adapted. Nevertheless, the results were not as good as it was expected due to the pure 

culture allowed higher copper recoveries in less time than the mixed culture.        

   

Figure 5.6. Copper evolution along time when pure and mixed culture were used during the bioleaching 

process. 

 

5.4. Conclusions 

Bioleaching experiments performed with a mixed microbial consortium showed 

that it was possible to recover copper from chalcopyrite ore, but the rate achieved was 

quite low. Nevertheless, acclimation of the mixed culture to bioleaching conditions 

resulted in a copper recovery rate 40% higher than that of non-acclimated biomass. After 

60 days of experimentation, depletion of copper concentration occurred in all biotic 

samples coinciding with increase in pH values. This reduction of copper concentration is 

likely related to the formation of jarosite or schwertmannite that could lock some of the 

extracted copper. Moreover, the use of two different buffer solutions to maintain the pH 

at low values showed that both were unsuitable, since HCl/KCl buffer did not keep 

pH = 2, whereas the Na2HPO4/H3PO4 buffer maintained pH around 2, but caused the 

precipitation of some species needed for the bioleaching process such as iron or calcium. 

The type of ore where the metal is contained also affected the efficiency of retrieved 

copper by bioleaching. The amount of copper extracted from the high-grade chalcopyrite 

in biotic tests was nearly 50 times greater than under abiotic conditions. In contrast, the 

amount of copper extracted from the low-grade chalcopyrite was the same in both, biotic 

and abiotic tests. This was likely caused by the composition of the mineral matrix. In this 
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sense, this study confirmed that the presence of quartz in the mineral ore is beneficial 

for the copper extraction process by avoiding possible surface passivation. Regarding 

the culture used, notably better recovery of copper was achieved when a pure culture of 

Acidithiobacillus ferrooxidans was used. In particular, nearly 8 times the copper was 

recovered with the pure culture as compared to using the mixed microbial consortium 

obtained from a desulfurization biotrickling filter. Besides, the pure culture reached the 

maximum recovery in 13 days, whereas the mixed culture needed 54 days.   

Finally, the procedure developed in this chapter to bioleach metals was 

successfully applied, which established the foundations for the recovery of copper from 

metal containing material. Clearly, a pure culture of Acidithiobacillus ferrooxidans was 

necessary to improve the efficiency of the process. For this reason, all of the experiments 

of the following chapters were performed with pure cultures of Acidithiobacillus 

ferrooxidans. 
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The motivation of this chapter was to gain knowledge about the mechanisms of 

the bioleaching process using the procedure developed in the previous chapter and to 

apply it in the field of the electronic waste. The first approach was to evaluate the 

differences betweenf copper bioleaching from chalcopyrite and from electronic waste. 

Then, the bioleaching from e-waste was optimized by studying different parameters such 

as pH control and PCB dosage that could affect the efficiency of the process. In addition, 

the bioleaching process was also performed in two steps, in order to evaluate the benefit 

of separating the two main processes that take place in bioleaching to avoid possible 

toxic effects: the bio-oxidation and the leaching itself. 

 

Abstract 

In this chapter, bioleaching was applied to recover copper from electronic waste. In 

particular, the e-waste used came from PCBs of mobile phones. The process developed 

in the previous chapter with ores was applied to electronic scrap, analysing the 

differences between both cases. This chapter was focused on the suitability of applying 

the technology to the metal recovery from e-waste. In particular, the waste dosage and 

the pH control during the process were studied to understand some of the key 

parameters that could affect the efficiency of the process. New methodology based on 

the separation of the main processes that take place during the bioleaching was applied 

in order to increase the amount of copper recovered and to minimize the possible toxic 

effects of the bioleached metals. Thus, the bioleaching process was performed in two 

different steps, one for the biological oxidation of iron and the second for the leaching 

reaction to obtain copper from the scrap. Results demonstrated that more copper was 

bioleached within 13 days when e-waste (48.3%) was used instead of mineral ores 

(28.5%). This implied that it is more interesting to put efforts into the use of e-waste due 

to the huge amount and availability of raw materials. Moreover, when the process took 

place in two-step the recovery rate increased, achieving 90% of copper recovery in just 

24 hours at the best conditions found, whereas it took more than 20 days to obtain similar 

results in only one step.  

  



 
Chapter 6: Adaptation of the mineral bioleaching process for metal recovery from e-waste 

 

84 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A modified version of part of this chapter has been published as: 

Benzal, E., Solé, M., Lao, C., Gamisans, X., Dorado, A.D., 2020. Elemental copper 

recovery from e-wastes mediated with a two-step bioleaching process. Waste and 

Biomass Valorization, 11, 5457-5465.  
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6.1. Introduction 

Bioleaching process has been studied for many years in the mining field (Dong 

et al. 2013a; Olson, Brierley, and Brierley 2003; Rohwerder et al. 2003), especially when 

low-grade ores have to be treated due to the low cost of bioprocesses (Dorado et al. 

2012). The technique has proven to be effective in this field, so its use has been extended 

for the treatment of other materials (Klink et al. 2016; Qu and Lian 2013). The main trend 

is the application of bioleaching in the field of the electronic wastes because of the 

increasing generation of these products as in Chapter 2 was stated. Nevertheless, the 

structures and the compositions of the ores and e-waste are very different. On the one 

hand, a typical composition of PCB is 40% of metals that could include more than 10 

different metals, 30% of ceramics (SiO2 or Al2O3, among others) and 30% of plastics 

(Khaliq et al. 2014), although the composition varies depending on the age and the type 

of the discarded item (Chen et al. 2018a; Robinson 2009). On the other hand, ores such 

as chalcopyrite are mostly composed by CuFeS2, depending on its purity. In the case of 

low purity ores, normally the matrix is formed by other mineral phases instead of plastics 

and the amount of metals is very low compared to the amount of metals that can be 

found in PCBs (Valix 2017). Moreover, in e-waste copper is found as a metallic state in 

a simpler structure in relation to the structure of the chalcopyrite, in which copper is found 

inside a complex crystalline structure (Khaliq et al. 2014; Tao and Dongwei 2014).  

As a consequence of the complex composition of the e-waste (Baldé et al. 2015; 

Das and Ting 2017; Fornalczyk et al. 2013; Priya and Hait 2018), the amount of 

processed material is an important factor to take into account in bioleaching. In the case 

of e-waste bioleaching in one step, some authors have focused on this parameter 

(Adhapure et al. 2013; Zhu et al. 2011) as well as the authors who studied the bioleaching 

in two steps (Yang et al. 2014). All of them concluded that the best results are obtained 

when the concentration of e-waste treated is lower than 15 g/L. Yang et al. (2014) 

affirmed that concentrations above 15 g/L of e-waste contain alkaline substances that 

might lead to inhibitory effects on bacterial growth. In addition, Zhu et al. (2011) also 

attributed the toxicity of metals ions when powder dosage is beyond the inhibitory 

limitation of the bacteria in solution. Nevertheless, Brandl, Bosshard, and Wegmann 

(2001) observed higher recoveries when 5 and 10 g/L of e-waste were treated instead 

of 50 or 100 g/L. Therefore, clear results have not been already reported regarding the 

best waste dosage in bioleaching studies. Furthermore, none of these studies have taken 

into account the possible chemical leaching, because the authors have considered that 

the whole copper extraction was only produced by the biological activity. 
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 Moreover, another important factor influencing the leaching process is the 

medium pH as stated previously. The microorganisms involved in bioleaching typically 

grow in very acidic conditions (pH 1.5  3.0), so maintaining acid pH during the entire 

experimentation period would be important to ensure a proper biological performance. 

Despite this relevance in e-waste bioleaching, only few authors studied the pH influence 

on the process by performing experiments at different pH adjustments (Hong and Valix 

2014; Shah et al. 2015; Xiang et al. 2010), but they did not compare the process carried 

out under uncontrolled pH.  

So far, two different bioleaching methodologies (one-step and two-step) have 

been suggested by researchers based on the kind of biomass exposure to the waste 

(Baniasadi et al. 2019). In the one-step method, the e-waste is added immediately to the 

culture medium, so bacterial growth takes place in the presence of e-waste. Conversely, 

in the two-step method the e-waste is added after the microorganism reaches its 

logarithmic growth phase. To date, most of the bioleaching studies has been focused on 

the recovery of metals in one step (Bas, Deveci, and Yazici 2013; Ilyas et al. 2007; Liang 

et al. 2013) but it has been reported that the bacteria could be affected by the toxic 

compounds which could be released during the e-waste treatment (Isildar et al. 2016; 

Xia et al. 2017; Zhu et al. 2011). For this reason, Brandl, Bosshard, and Wegmann (2001) 

suggested to develop the bioleaching process in two steps to avoid the toxicity and to 

improve the efficiency of the technique. In this regard, these authors grew the 

microorganisms in the absence of electronic scrap and, then, the scrap was added to 

the culture to do the leaching process (Shah et al. 2015; Yang et al. 2014). Shah et al. 

(2014) concluded that biologically obtained iron (III) allows to leach higher concentration 

of waste by two-step method when a dominant culture of Leptospirillum ferriphilum was 

used in 15 days. In addition, another study concluded that the two steps methodology 

allows to treat higher amount of e-waste in the process (Shah et al. 2015). However, 

most of the two steps bioleaching experiments reported in the literature took from 3 to 

15 days (Brandl et al. 2001; Shah et al. 2015; Shah et al. 2014; Yang et al. 2014). This 

means quite long time for an economically viable application, especially to scale-up the 

technology as an alternative to conventional processes. 

The aim of the work presented in this chapter was to evaluate the suitability of 

applying the bioleaching to extract metals from e-waste using a pure culture of 

Acidithiobacillus ferroxidans. In this regard, the PCB dosage and the pH control in one-

step bioleaching have been studied. Moreover, the process in two-step was performed, 

testing the improvement of using two different techniques to separate the biomass from 

the bio-oxidation step.          
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6.2. Materials and methods 

6.2.1. Mineral sample 

The mineral used in these experiments was a chalcopyrite sample from La 

Querétaro, México). It is the same sample used in the previous chapter, 

so the mineral characteristics are explained in section 5.2.1.  The particle size used was 

between 0.2 and 1.0 mm of diameter, which was selected based on comparative 

purposes with the result of the e-waste pretreatment. To obtain this size, the mineral was 

grinded with a hammer mill and sieved to the desired diameter range.  

6.2.2. Electronic scrap 

 The PCBs used in this chapter and in the following chapters come from end-of-

life mobile phones. The PCB was removed manually from the phone structure and the 

main electronic components such as resistors, capacitors and chips, among others, were 

also separated manually. The particle size was reduced firstly with a shears, and then 

strips were crushed, collecting the particles between 0.2 and 1.0 mm of diameter through 

a sieve. According to Wang et al. (2009), metals solubilisation increased when 

decreasing the sieve fraction due to the superficial area increase, demonstrating that 

particles lower than 1.0 mm obtained higher metals extraction than particles over this 

size. 

6.2.3. Microorganisms and mineral medium 

The bacterial strain Acidithiobacillus ferroxidans (ATCC 23270) was used. It was 

kindly provided by the Department of Chemical Engineering from the University of País 

Vasco (Spain). The mineral medium used in the experiments, named 6K, was prepared 

as follows: (NH4)2SO4 3.00; K2HPO4 0.50; MgSO4 · 7 H2O 0.50; KCl 0.10; Ca(NO3)2 · 4 

H2O 0.014 grams were dissolved in 900 mL of distillate water. The pH was adjusted with 

3 N H2SO4 to 1.75. Then, 30 grams of FeSO4·7 H2O were dissolved in 100 mL of distillate 

water and the pH was also adjusted with 3 N H2SO4 to 1.75. After that, both solutions 

were mixed and the pH was readjusted again to 1.75 if necessary. 

6.2.4. Bioleaching experiments 

For the first experiments, the same methodology than the previous chapter was 

used. Hence, bioleaching experiments were performed in 500 mL baffled Erlenmeyer 

flasks containing 180 mL of mineral medium, 20 mL of the inoculum and different 

concentrations of either mineral or PCB (2.5  10.0 g/L). For the PCB bioleaching 

experiments, abiotic assays were carried out at the same conditions without inoculum. 
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The flasks were kept at 30 ºC and shaken by orbital agitation at 130 rpm in an incubator 

(SI500, Stuart, United Kingdom), measuring the pH and the ORP periodically. For iron 

and/or copper analysis samples were taken, which were filtered before their analysis.   

Moreover, in this chapter the two-step bioleaching methodology was used. The 

first step consists in the biological oxidation of iron (II), which was carried out in 500 mL 

baffled Erlenmeyer flasks. It was initially inoculated with 30% of fresh culture using the 

medium described in the above section, until a total volume of 350 mL. As in the previous 

methodology, the flask was stirred by orbital agitation at 130 rpm and kept at 30 ºC in an 

incubator. In addition, the pH and the ORP were measured periodically. When all the 

iron (II) was oxidized to iron (III) by the microorganisms, it was considered that the first 

step finished and, then, the next step consisting on putting in contact the solution 

containing this bio-generated iron (III) with the e-waste was performed. For this purpose, 

350 mL of the bio-generated iron solution was transferred to 500 mL baffled Erlenmeyer 

flasks and the PCB dosage (7.5 or 15 g/L) was added. In this work, when the effect of 

biomass separation between bio-oxidation and leaching steps was studied, the 

separation was performed by filtration and sedimentation, so in these cases, only the 

bio-generated iron (III) without biomass were transferred to the flasks for the leaching 

step. The leaching flasks were incubated at 30 ºC, stirring them by orbital agitation at 

130 rpm. Since the microorganisms were not used during the second step, abiotic 

experiments were carried out only during the first step. Samples taken every 2-3 hours, 

whenever possible during the two steps, were filtered before being analyzed to determine 

the iron and copper concentrations.       

 

6.3. Results and discussion 

6.3.1. Chalcopyrite and PCB metal composition 

On one hand, the analysis of the chalcopyrite used in this chapter, as the ore 

used in the previous chapter, reveal that the average content of Cu, Fe, S, Si and O in 

g/kg was 265, 272, 308, 14 and 73, respectively. On the other hand, the analysis of the 

PCB used in this chapter showed that the average content of Cu, Ni, Fe, Ag, Au, Al, Pd, 

In, Sn, Pb, Co and Mn in g/kg was 390.38, 11.51, 1.95, 0.19, 0.80, 1.33, 0.15, 0.12, 

28.92, 16.16, 0.14 and 0.58, respectively (Figure 6.1). From the data obtained, Cu was 

found as the major component, being the total metal content per kilogram in the PCB 

452.23 g. This means that PCB from mobile phones could be a good source of metals 

to take advantage of them in comparison to the metals found in the ore used and 
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according to some other currently exploited ores (Cancho et al. 2007; Third et al. 2000; 

Zhao et al. 2013). 

 

Figure 6.1. Metals composition and oxygen content of chalcopyrite and the e-waste used in the experiments. 

 

According to Hagelüken and Corti (2010) -waste is much 

different comparing to of the natural ores from metals refining. This is because the e-

waste contains up to 60 different elements that are closely interlinked with complex 

assemblies and sub-assemblies which physical and chemical properties are also much 

different. In addition, these authors also affirmed that the metals contained in the e-waste 

are often crosslinked to organic compounds which could be toxic for the microorganisms, 

for instance. Therefore, the composition of e-waste results much more complex than the 

natural mines, which makes recycling metals processes from the electronic scrap more 

complex. For this reason, e-waste recycling and management is not simple and 

straightforward (Lu and Xu 2016; Ylä-Mella et al. 2014), so their recycling and 

management requires special attention. Nevertheless, although the complexity of e-

waste may seem a limitation for recycling, biorecovery of metals has been effectively 

applied in this type of waste (Annamalai and Gurumurthy 2019). Hence, e-waste results 

a good source of metals for their recovery, since a lot of metals could be found in them.   
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6.3.2. Comparative study between mineral bioleaching and e-waste bioleaching 

Based on previous studies (Bosecker 1997; Dorado et al. 2012), bioleaching of 

e-waste was  investigated at the same operational conditions than chalcopyrite 

bioleaching. In this case, one-step bioleaching was performed. Thus, a solid-liquid ratio 

of 10 g/L with a particle size below 1.0 mm of diameter, initial pH=2, 30 ºC of temperature, 

120 rpm stirring and the same strain of Acidithiobacillus ferrooxidans were selected. 

Results of both processes are shown in Figure 6.2.  

 

Figure 6.2. Comparison between bioleaching of e-waste and bioleaching of chalcopyrite. 

 

Higher copper recovery from electronic waste than from chalcopyrite was 

observed. In particular, 48.3% of copper has been recovered from the PCB whereas 

28.5% has been recovered from the mineral in 13 days. This difference is mostly 

associated to the matrix that contains the copper because of the differences on their 

structures, as mentioned previously. Moreover, Figure 6.2 also shows that the kinetics 

of copper extraction in e-waste is higher than in the case of the ore, in which the 

recovering started 3 days later. This behaviour is also related to the structure of the 

material bioleached and the accessibility of microorganisms to copper. For instance, the 

machining of the electronic devices varies the copper distribution inside the e-waste, 

making it more inaccessible in comparison to the natural copper resource. Nevertheless, 

once the process has started, the trend is the same in both cases during the first 13 days. 

After this period, a copper depletion occurred when the ore was bioleached. As it was 

suggested in Chapter 5, reduction of copper could be likely due to the formation of 
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jarosite or/and schwertmannite, which may locked some of the extracted copper (Zhou 

et al. 2009). 

It is noticeable that iron concentration decreased during the experiment in both 

cases, although in the case of the e-waste all the iron precipitated in 13 days. This was 

related to pH changes (Fig. 6.3) since the pH gradually increased, rising pH values over 

4.5 after 13 days of experimentation, which produced iron hydroxide precipitation. This 

alkalisation was caused by the e-waste itself, since it has been reported to be alkaline in 

nature (Arshadi et al. . In the case of chalcopyrite bioleaching, 

the pH remained quite constant at pH 2 at the conditions tested and, as a consequence, 

not all the iron precipitated during the experiment. Although in Chapter 5 the pH 

increased during chalcopyrite bioleaching, the differences are associated to the changes 

in working conditions such as the use of a different culture, the particle size used or the 

amount of iron present in the culture medium.  

The iron precipitation observed also explained why no more copper was 

recovered after 13 days of experimentation in the case of the e-waste, since the leaching 

reaction was limited by the lacking iron, so no more copper could be extracted at this 

conditions. Similar limitation was observed in the case of chalcopyrite bioleaching, but 

taking into account that there was soluble iron in the leaching solution during all the 

experiment, this could not be the cause. It is suggested that the limitation in this case 

could be produced by the passivation of the ore, which difficult its dissolution and, thus, 

its metal recovery (Zhao et al. 2019).   

 

Figure 6.3. Evolution of pH in chalcopyrite and e-waste bioleaching. 
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6.3.3. Effect of e-waste concentration on bioleaching process 

 The influence of e-waste dosage in copper bioleaching has been investigated in 

previous works and diverse results were obtained without a global agreement about the 

optimal PCB dosage (Adhapure et al. 2013; Xiang et al. 2010; Yang et al. 2014; Zhu et 

al. 2011). Xiang et al. (2010) and Adhapure et al. (2013) studied the effect of e-waste 

dosage on PCBs bioleaching by a mixed bacteria consortium. They experimented with 

electronic waste concentrations from 10 to 50 g/L, both concluding that the maximum 

leaching for copper was obtained at 10 g/L in one-step bioleaching. They observed that 

copper extraction decreases with the increase of waste concentration in the range of 10 

and 50 g/L of PCB and they attributed this behaviour to the toxicity of the high 

concentration of copper extracted. Yang et al. (2014) obtained the maximum copper 

extraction at a waste dosage of 15 g/L, whereas no bioleaching was observed at 

concentrations of 25 and 35 g/L. According to these authors, metallic or plastic 

components in waste might lead to an inhibitory effect on biological process. 

 Taking into account the results observed when 10 g/L of e-waste was used in this 

work, a set of biotic experiments were carried out at lower waste concentrations (5.0 and 

2.5 g/L). Control test without biomass were also tested for all the three dosages. Results 

of the copper recovery along time are plotted in Figure 6.4. 

 

Figure 6.4. Copper recovery along time at different electronic waste concentrations performed in one step 

bioleaching process with biomass (black dots) and without it (white dots).  
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As can be seen, the less amount of e-waste, the more recovery of copper was 

obtained with respect to the amount of total metal content. In particular, recovery close 

to 100% was achieved using microorganisms in the tests with 2.5 g/L of PCB. In this 

case, the bioleached copper was nearly twice the amount of copper retrieved by 

chemical leaching. When 5.0 g/L of PCB were tested, the same behaviour was observed, 

but differences between the abiotic and biotic samples were less pronounced. For that, 

in this study, e-waste concentrations that allowed maximum copper bio-extraction were 

lower than those found in the literature during similar periods of time (Adhapure et al. 

2013; Xiang et al. 2010). The fact that the differences between biotic and abiotic assays 

were more pronounced at higher e-waste concentrations means that biological activity 

was significantly affected by the PCB dosage. This behaviour can be attributed to the 

fact that the higher the residue amount used, the higher concentration of inhibitory 

compounds. For this reason, the effect of these compounds on the biological activity will 

be studied in Chapter 8. Nevertheless, the extraction of copper, in terms of copper 

concentration along time, revealed that more copper was recovered at higher e-waste 

concentrations although the differences between biotic and abiotic assays were the 

same than those observed in terms of copper recovery. This behaviour could be also 

related to reagent shortage since the velocity of the biological oxidation of iron (II) is 

slower than the velocity of the copper oxidation (Nemati et al. 1998; Yazici and Deveci 

2014).  

Regarding to pH, and as can be observed in Figure 6.5, although the bioleaching 

media were initially adjusted to pH 2, this parameter increased in the three tests along 

the first 6 days of experimentation. It is noteworthy that the more amount of PCB was 

added, the more alkalization of the media was observed. It confirms that the alkalization 

observed in many studies (Adhapure et al. 2013; Brandl et al. 2001; Ilyas et al. 2013; 

Wang et al. 2009) is due to the consume of protons by reaction with the waste and it 

seems not be related to biological activity of iron (II) oxidation (there was no significant 

differences between biotic and abiotic experiments). In spite of this similar behaviour 

during the first days, after 10 days of experimentation the pH decreased to pH 2 in the 

tests with 2.5 g/L of e-waste (where the maximum recovery was achieved), whereas the 

pH scant increased to pH 4.5 in the tests with 10.0 g/L. In case of the tests with 5.0 g/L 

of PCB, they remained quite constant among pH 3  4. These pH changes could be 

related to the heterogeneity of the PCB sample (Villares et al. 2016). As a consequence, 

alkalizing compounds could be found in higher concentrations when higher scrap 

amounts were treated. For instance, this could explain why pH increased in tests with 

10.0 g/L but decreased with 2.5 g/L after 12 days. Wang et al. (2009) also observed a 
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depletion on pH when 8.0 g/L of PCB were treated. They assumed that this acidification 

is produced by the hydrolysis reaction of iron (III), producing protons as shown in Eq. 

(6.1), which results in pH decrease.  

     (6.1) 

 

Figure 6.5. Evolution of pH along time at different PCB dosages without pH control in one-step bioleaching. 

 

This alkalization could considerably reduce the biological activity since it is well 

established that Acidithiobacillus ferrooxidans growth and development take place at pH 

below 2.5 (Meruane and Vargas 2003). These authors related the inhibition of the 

biological activity to the formation of a ferric oxide layer on bacteria, hindering the protons 

diffusion. For this reason, we investigated the bioleaching process under controlled pH 

adjusting pH values over bioleaching process by addition of 3 N H2SO4 to keep pH 

between 2 and 2.5. Figure 6.6 illustrates how the control of pH can affect the operation 

by comparing experiments with and without pH control. 

As can be observed, in both dosages tested (2.5 and 5.0 g/L of PCB, respectively) 

copper recovery was faster when the pH was adjusted; in particular, the improvement 

was more noticeable during the first 10 days of experimentation. This fact means that, 

for example, when 2.5 g/L of PCB were treated, 80% of copper recovery was reached 4 

days before when the pH was controlled and up to 7 days before to achieve 65% of 

extraction when 5.0 g/L were treated. Hence, the bioleaching process were faster under 

pH control. However, after this period, no significant improvement was observed when 

the pH was adjusted, independently of the dosage treated. Despite the results obtained 
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in the second period, a pH control at acidic values improved the kinetic of the process, 

as it was also demonstrated by other authors (Yang et al. 2009; Zhu et al. 2011). 

 

Figure 6.6. Copper recovery along time in biotic samples with 2.5 and 5.0 g/L of PCB with and without pH 

control. 

 

It is noteworthy to point out that these experiments were performed using one-

step process. In this sense, the microorganisms could be affected by the toxicity of the 

bioleached metals or the kinetics of the leaching process could be limited by the slow 

kinetic of the biooxidation. In this sense, two-steps bioleaching might avoid these 

limitations.  

6.3.4. Development a two-step bioleaching process: bio-oxidation of iron (II) 

 Figure 6.4 allowed to corroborate that the e-waste could negatively affect the 

biological activity, depending on the e-waste dosage used. In order to avoid its negative 

effect, a novel methodology has been developed. It is based on the separation of the two 

main processes involved in the bioleaching global process which are the iron biological 

oxidation and the chemical leaching from scrap. In this way, it is possible to see the effect 

of each process separately and, therefore, assess whether the effectiveness of the 

overall process improves. Depending on the procedure, the two-step process could be 

performed by temporal-driven or spatial-driven steps. In temporal-driven procedure the 

two processes were carried out in the same flask but sequentially since the biomass was 

not separated, so after the iron oxidation the scrap is directly added. On the contrary, in 

spatial-driven procedure the two processes take place in two different flasks due to the 
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separation of the biomass makes it necessary to transfer the bio-generated iron from 

one container to another one. 

 In both procedures, the goal of the first step was to obtain the iron (III) 

concentration necessary in the second step to extract copper from the PCB waste. This 

iron is obtained from the biological oxidation of the iron (II) (Eq. (6.2).  

  (6.2) 

An effective transformation of iron (III) is absolutely necessary to assure a proper 

bioleaching process. Since iron may be found in different speciation forms depending on 

the pH media (Figure 6.7), it is important to maintain the properly conditions since the 

speciation form of iron is crucial for its solubility and bioavailability by microorganisms 

(Hogle et al. 2014). Hence, maintaining the pH solution as acidic as possible is important 

in order to achieve higher iron (III) availability.  

  

Figure 6.7. Diagram of the speciation of iron in front of pH.  

 

The microorganisms employed in this research grow in very acidic conditions (pH 

1.5  3.0), therefore, it would be very important to maintain acid pH over the whole 

experiment in order to assure a proper biological performance and to prevent iron 

precipitation. The effect of pH control during biological iron oxidation could be 

appreciated in Figure 6.8. Although the oxidation of iron was observed in both 

experiments, it is noticed that the total iron concentration remained constant only with 

pH adjustment, thus, avoiding iron precipitation. Otherwise, the total iron was reduced 

from 6000 mg/L to near 4000 mg/L in 45 hours without pH control. Hence, 28.4% of the 
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available iron (III) from the solution was lost due to its precipitation when the pH was not 

adjusted, resulting in a reduction of the reagent needed for the leaching stage. As stated 

before, this result remarks the importance of pH adjustment during the experiment to 

facilitate its solubility and bioavailability by microorganisms.  

 

Figure 6.8. Evolution of iron concentration during the bio-oxidation with pH adjustment in the two-step 

bioleaching. 

In spite of the results observed, abiotic control was necessary to validate the 

effective microbiological action and to discriminate the possible chemical oxidation of 

iron that may occur at the conditions tested. The biotic and abiotic comparison is showed 

in Figure 6.9. It can be seen that 96% of the iron (II) has been oxidized to iron (III) in 45 

hours in presence of microorganisms whereas in the abiotic test the iron (II) remains 

constant and around 6300 mg/L. This corroborates that iron is only oxidized by the 

microorganisms at the experimental conditions used in 45 hours. These results are in 

agree with Xiang et al. (2010) who also observed that the chemical oxidation of iron (II) 

was not produced at pH 1.5 even after 7 days.   

Regarding to the initial iron (II) concentration in the medium, Pina et al. (2010) 

reported that the higher the initial iron concentration, the higher the iron oxidation rate. 

Therefore, this study suggests a non-zero order kinetic. According to Pina et al. (2010), 

obtained similar effect was observed when the initial iron concentration was below 10 

g/L whereas at higher iron concentrations the oxidation rate did not improve. Although 

these authors carried out their experiments with Sulfobacillus thermosulfidooxidans, the 

results obtained were in agreement with Gómez et al. (1996) who performed similar 
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experiments using a pure culture of Acidithiobacillus ferroxidans (the microorganism 

used in the present thesis). On the contrary, a recent study of Hubau et al. (2018) stated 

that the bio-oxidation rate obtained with an influent concentration of 6 g/L of ferrous iron 

was higher than the rate obtained with an influent of 9 g/L of iron (II), although they 

observed substantial variations in these rates at the same conditions. Because of that, 

and taking into account that there are some studies using initial concentration of 9 g/L of 

iron (II) á et al. 2013; Nie et al. 2014; Willner 

and Fornalczyk 2013), a comparison of the evolution of iron concentration along time 

was performed with 6 and 9 g/L of iron (II) (Figure 6.10). 

 

Figure 6.9. Evolution of iron concentration along time during biotic and abiotic iron oxidation under pH 

control. 

Figure 6.10 shows that the complete iron (II) oxidation was achieved in 30 hours 

when the medium contained 6 g/L, whereas the medium with 9 g/L needed 48 hours to 

be completely oxidized. However, in both cases the iron oxidation ratio was very similar 

(152 mg/Lh for the medium with 6 g/L of iron (II) and 158 mg/Lh for the 9 g/L one). 

Moreover, the iron (II) concentrations at the beginning of the experiments were lower 

than the theoretical concentrations, especially, the medium with 9 g/L of iron. This might 

be caused by iron precipitation. In this regard, although the oxidation rate was very 

similar in both cases, the use of the medium with 6 g/L of iron (II) will reduce the amount 

of precipitates accumulated during the bio-oxidation. Therefore, from the results 

obtained, a concentration of 6 g/L of iron (II) was used for next experiments. Moreover, 

6 g/L of iron is the stoichiometric amount needed to recover all the copper from the scrap, 
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taking into account that maximum values of 3.4 g/L of copper is usually found after the 

e-waste bioleaching process. 

 

Figure 6.10. Evolution of iron (II), iron (III) and total iron concentration along time during the growth of 

Acidithiobacillus ferroxidans using 6 and 9 g/L of iron (II) in the mineral media. 

  

6.3.5. Development a two-step bioleaching process: e-waste leaching 

As explained at the beginning of the previous section, the methodology 

developed to achieve higher copper recovery rates consists on the biological oxidation 

of iron (II) (step one) and the leaching of PCB (step two). After testing the appropriate 

conditions for the biological action, the second step of the bioleaching was carried out.  

Since better results were obtained when the bio-oxidation of iron took place under 

pH adjustment, the same effect on the leaching phase was studied. For this, two sets of 

experiments were done, one with pH adjustment (pH 1.7  1.8) during the PCB leaching 

and the other without it.  

In Figure 6.11 shows that the main significant changes occurred during the first 

hours. In particular, iron (III) was consumed during the first 6 hours of experimentation 

whereas 37% of copper was recovered in this period. Then, the iron (III) concentration 

remained almost constant despite the total iron concentration as well as the iron (II) 

concentration decreased by 50%. The decreasing was associated to iron precipitation, 

which was also observed by Xiang et al. (2010) during their bioleaching experiments. 

They attribute this decrease to iron (III) precipitation as jarosite or other ferric hydroxides. 
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In the present experiment, at constant iron (III) concentration in the solution, it is 

assumed that iron (II) precipitates just after it has been previously oxidized. This 

behaviour is associated to the pH increase observed, since it raised up to pH 2.5 and 

remained constant at this value although the pH was adjusted initially at pH 1.75.  

 

Figure 6.11. (a) Copper and iron evolution and (b) pH evolution over time during the leaching step of PCB 
when the pH is not controlled in the two-step bioleaching process. 

 

The initial pH increase in the first hours has been associated to the e-waste 

nature itself, considering that the electronic scrap has been reported to be alkaline in 

nature (Brandl et al. 2001; Xiang et al. 2010). However, there are no previous study 

focusing on which component of e-waste produced the alkalinity observed. In addition, 

Xiang et al. (2010) also related the pH increase to the consumption of protons by other 

metals or metal oxides contained in e-waste (Eqs. 6.3 and 6.4). 

    (6.3) 

    (6.4) 

It is noteworthy to point out that despite not having a decrease on iron (III) 

concentration after 6 hours, copper recovery increased up to 60%. According to Torres 

and Lapidus (2015) this response is associated to the presence of oxygen in the acidic 

medium. They affirmed that the continuous stirring of the leaching solution improved the 

oxygen gas incorporation and its dissolution in the liquid, which produced the oxidation 

of metallic copper (Eq. 6.5). 

  (6.5) 
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This copper solubilisation by the action of oxygen was also described by Bas, 

Deveci, and Yazici (2013) who carried out their experiments at pH 1.7 and 35 ºC. Taking 

into account that the conditions in the present work were pH 1.75 and 30 ºC, it could be 

assumed that the oxygen is the responsible of the copper recovery observed in Figure 

6.11 during the last hours of the experiment. Nevertheless, if it occurred, the protons 

consumption should cause a pH increase, which was not observed. Moreover, the 

kinetics of this reaction is very slow in comparison to the iron oxidation since Bas et al. 

(2013) only recovered 18% of copper by the action of oxygen in acidic media after 90 

experimental hours, i.e. much more experimental time than in this work. However, this 

hypothesis was not completely rejected since other metals could be leached and many 

other chemical reactions could take place, modifying and also compensating pH changes 

in the solution. 

As it was observed in the experiment without pH control, in the case of pH 

adjustment, the main changes were obtained during the first three experimental hours 

(Figure 6.12). Iron (III) was consumed quickly in the first hour (68% of the initial iron (III)), 

and then, it was consumed slowly to achieve their complete reduction after 22 hours. In 

consequence, the iron (II) concentration increased along time. In contrast to the previous 

experiment, the total iron concentration remained almost constant during the entire 

experimentation period when the pH was adjusted, so it was possible to avoid its 

precipitation in the solution. In relation to metal extraction, higher amount of copper was 

retrieved under pH control, reaching 55% of copper recovery in 6 hours and 70% in 22 

hours.  

 

Figure 6.12. Copper and iron evolution along time during the PCB leaching step when the pH is controlled 
in the two-step bioleaching process.  
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Therefore, a pH control implies an improvement of the process since it results in 

superior copper recovery performance and in less iron precipitation. This improves the 

global process performance since if the total iron concentration remains constant in the 

solution, the microorganisms could oxidize it to regenerate the iron (II) again and to start 

the cyclic loop.  

6.3.6. Development a two-step bioleaching process: biomass separation 

A part from copper, some other metals could be also leached from the scrap, 

affecting the microorganisms activity due to the toxic composition of the e-waste (Akcil 

et al. 2015; Villares et al. 2016). In this regard, two different techniques were tested in 

order to separate the biomass from the soluble iron (III). Among the different processes 

for solid-liquid separation, filtration and sedimentation are usually found in literature 

(Holdich and Butt 1997). While filtration is a very effective separation process, 

sedimentation is characterized to be simpler, economic and easier to operate 

autonomously besides having lower maintenance costs in comparison to filtration 

processes. Therefore, the leaching of copper from PCB after the removal of the biomass 

by filtration and sedimentation were comparatively assessed after the bio-oxidation stage 

in two-step bioleaching. 

For the filtration method, the bio-generated iron (III) was obtained after the 

filtration of the solution through a 0.22 µm membrane filter. The clarification of the media 

was determined by optical density (OD) at 500 nm (Barron and Luecking 1990) before 

and after the filtration, revealing that the OD was 1.0307 and 0.1560, respectively. The 

iron concentration and copper recovery along time of the filtered solution during the 

leaching stage are shown in Figure 6.13. A fast extraction was observed at first, obtaining 

up to 50% of copper from PCB in 6 hours. This behaviour could be attributed to the 

quickly extraction from the most available sites on the waste particles. Then, a slower 

extraction occurred achieving a total copper recovery of 71% in 25 hours. Regarding iron 

concentration, iron (III) strongly decreased during the first 6 hours, which is directly 

associated to their reaction with copper. After 25 hours practically all the iron was 

reduced to iron (II).  

As mentioned before, the filtration for biomass removal was compared to the 

biomass removal by sedimentation. Hence, leaching of copper from PCB after the 

sedimentation was performed. As in the filtering case, the clarification of the media was 

monitoring by determining the optical density (OD) at 500 nm (Barron and Luecking 

1990) at different times. In Figure 6.14, results showed the OD dropped sharply from 

1.00 to 0.17 in two hours. After this period, the OD remained practically unchanged until 
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24 hours. It means that an important part of the biomass was deposited in just 2 hours. 

Hence, for practical considerations, the supernatant after two sedimentation hours was 

taken for leaching tests. In this sense, the solution was transferred to a beaker and after 

2 hours of settling, the solution was separated from the biomass by decantation.  

 

Figure 6.13. Concentration of iron and copper recovery during the bioleaching after filtration. 

 

 

Figure 6.14. Evolution of optical density during the sedimentation of the biomass. 

 

In Figure 6.15 copper recovery and iron evolution along time during the leaching 

of e-waste after the sedimentation of the bio-oxidation solution from the first step is 

shown. Iron (III) ions were consumed during the first 6 hours due to its reaction to the 

metallic copper from the PCB. In consequence, iron (II) concentration increased and 
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copper recovered was up to 55%. After this period, the copper recovery increased again 

achieving 90% after 25 hours although the iron (III) concentration increased. This is 

associated to the presence of microorganisms in the sample that have been grown, 

consuming iron (II) to produce iron (III). Although almost all biomass was deposited, a 

few amount of microorganisms could remain in solution (Figure 6.14). Therefore, the 

presence of microorganisms could appear as a result of the remaining microorganisms 

that could be in the supernatant after the sedimentation, which have been proliferated 

during the experimental time. Moreover, the total iron concentration was slightly reduced 

despite adjusting the pH throughout the experimental period at pH 1.75. Nevertheless, 

the decrease was not as significant as the iron precipitation observed when the pH was 

not controlled, as it was demonstrated in the previous experiments.  

 

Figure 6.15. Concentration of iron and copper recovery during the bioleaching after sedimentation. 

 

In order to facilitate the comparison between the no separation of the biomass 

and the use of filtration or sedimentation to separate it, the results of copper recovery in 

the three cases are depicted in Figure 6.16. Copper recovery was the same when the 

biomass was separated completely by filtration in comparison to the copper recovered 

when the biomass was not separated. However, the sedimentation process used for 

biomass removing increased the copper extraction up to 19%. It means that high 

concentrations of biomass or a complete removal of it did not improve the copper 

extraction but, on the contrary as it could be though, low concentrations of biomass did 

increase the efficiency of the process. Hence, low biomass concentrations allows to 

reoxidize the iron (II), making more iron (III) available for continuing metal extraction, 

however, high biomass concentrations are not possible to survive by the affection of the 
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possible toxic bioleached metals. In this sense, the separation of the biomass by 

sedimentation improved the process at the same time that allows their use to re-oxidize 

the iron (II) again separated from the PCB. Moreover, the simplicity of the sedimentation 

allows to be an easier methodology to adapt the bioleaching process performance to an 

industrial scale.    

These results are in agreement with Yang et al. (2014) who reported better results 

when the samples were not filtered before the leaching of PCB in the two-step process. 

In their case, they obtained 70% more copper recovery when they did not filtrate the 

sample after the bio-oxidation, attributing the improvement to the regeneration of the iron 

(III) leaching agent by the microorganisms. Although the enhancement observed in the 

present work was not so high between the techniques used, it is worth noting that the 

90% of copper extraction after sedimentation was obtained in just 25 hours, whereas 

Yang et al. (2014) spent 48 hours to achieve the same result. The difference is 

associated to the operational conditions, especially the pH, which was controlled under 

pH 2.25 by these authors whereas it was adjusted under pH 1.80 in the present study.  

 

Figure 6.16. Comparison of the copper recovery along time when the biomass was not separated and when 
it was separated by filtration and sedimentation.  

   

In the light of these results, although the difference on copper recovery was not 

so high between the techniques tested, in all cases the experimental time was clearly 

reduced in comparison to analogous experiments described in the literature, despite the 

use of a similar pH to this work (Shah et al. 2014; Xiang et al. 2010). 
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6.4. Conclusions 

Remarkable differences appeared when the e-waste and the chalcopyrite were 

bioleached under the same operational conditions. The main difference was the amount 

of copper extracted, since copper obtained from the e-waste was 70% higher than the 

amount obtained from the mineral sample. This could be related to the role of the redox 

potential in the process but also to the matrix in which copper is placed, because the e-

waste and the ore have quite different structures, affecting the accessibility and 

bioavailability of the copper to be retrieved.  

Regarding to chemical and biological leaching at 2.5, 5.0 and 10.0 g/L e-waste 

concentrations, an effect of the PCB dosage to the process was observed. In particular, 

differences between biotic and abiotic tests were more pronounced when less e-waste 

concentration was treated. This means that e-waste results to be toxic for the 

microorganisms when the amount of e-waste is too great because of its metal 

composition. Even so, the improvement observed when Acidithiobacillus ferroxidans are 

involved was noticeable, obtaining up to 30% more copper recovery when 2.5 g/L of e-

waste were treated biologically instead of chemically. An improvement of copper 

bioleaching was observed during the first 10 days of experimentation when controlling 

the pH in biotic samples of 2.5 and 5.0 g/L of PCB. This was attributed to overcoming 

the limitation of the alkalization process (caused by PCB decomposition) thanks to the 

pH adjustment. However, after this period, there was not a significant improvement on 

copper recovery between samples with adjusted pH and without it.  

The bioleaching performance in two steps obtained better results than those 

obtained in one step, since the time required to extract copper was reduced from 22 days 

to just 2 days (one for each step). However, although the pH control in one-step 

bioleaching did not improve the process significantly, when the two-step methodology 

was used, the pH control was needed to maintain the total iron concentration in both 

steps. Regarding to the bio-oxidation step, the implication of the microorganisms to 

oxidize the iron (II) efficiently was verified, since a chemical oxidation was not observed 

during the same period of time at the conditions tested (pH 1.7, 30 ºC and 130 rpm). In 

addition, the 6K medium resulted as efficient as 9K medium. However, 6K medium was 

selected for further experiments since 9K usage led to higher amount of iron (III) 

precipitation. 

In two-steps bioleaching, both filtration and sedimentation allowed to separate 

the biomass from the iron (III) solution. Though the biomass was not separated 

completely when sedimentation was used, copper recovery was higher (90%) than that 
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obtained after filtration (70%). Nevertheless, sedimentation process is more simple and 

cheaper. This led to the conclusion that sedimentation would be a better option for 

process scale-up purposes taking into account that not all biomass is effectively 

separated from the first step. 
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The next step in the bioleaching research performed in this thesis was to operate 

the developed process studied in the previous chapters at higher scale than laboratory 

using a system that allows an improvement on monitoring of key parameters. To that 

aim, in this chapter the biotechnological process to recover metals was carried out using 

a CSTR. Firstly, Acidithiobacillus ferrooxidans was cultivated in a bioreactor, monitoring 

its growth by fluorescence measurements. After the growth, cells were used in the 

bioleaching of PCBs. In this way, the process was tested in a bigger scale, so at this 

scale the process conditions were modified accordingly. Additionally, and to improve the 

monitoring of the process, in this chapter a methodology based on microrespirometric 

techniques was developed to monitor in a simple way the biological activity in a non-

invasive manner that allows corrective decisions to be made in a short time. The work 

presented in this chapter has been carried out in collaboration with the research group 

Environmental Microbiology from Technische Universität Bergakademie Freiberg in 

Freiberg (Germany) during a research stay in this university in September 2017.     

 

Abstract 

Following with the metal extraction from e-waste by bioleaching, the process was 

focused on both, increasing the scale and improving the monitoring of the system 

according to the parameters previously set. In this regard, bioleaching was tested in a 

two-bioreactor system. In order to obtain enough biomass concentration for the 

extraction process, Acidithiobacillus ferrooxidans was previously grown in the bioreactor. 

During the growth, the oxygen consumption of the culture was monitored along time by 

an microrespirometric technique using an optode. Simultaneously, biomass growth was 

followed by fluorometric measurements to estimate the cell number, thus correlating it to 

the oxygen consumption of the biomass. These techniques were implemented in the two-

bioreactor system in which the bioleaching of e-waste took place. After leaching, all the 

metals in the solution were analysed in order to evaluate the potential of the technology 

to recover valuable metals at the conditions tested. More than 10 valuable metals, such 

as tin, silver or gold, were extracted during the biological leaching. Control experiments 

without microorganisms were also carried out. Results demonstrated that more than 56% 

of copper was released biologically from the PCB by the two-bioreactor system. Although 

similar results were obtained in the abiotic mode (52%), more acid was consumed to 

maintain the pH at 1.75 in the abiotic case. The results demonstrate that the 



Chapter 7: Development of a bioleaching process in a continuous stirred-tank reactor (CSTR) to 
recover metals from e-waste 

 

112 
 

microrespirometric technique emerged as an efficient tool to monitor the activity of the 

microorganisms during the bioleaching process as well as during their growth in the 

bioreactor overcoming limitations of other monitoring techniques as those influenced by 

formation of precipitates. Moreover, this technique allows to minimize the sampling effect 

on the system due to the small volume necessary for the measurements.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A modified version of this chapter is being prepared for publication as: 

Benzal, E., Giebner, F., Gamisans, X., Schlömann, M., Dorado, A.D., 2021. Biorecovery 

of metals from printed circuit boards in a stirred-tank reactor. 
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7.1. Introduction 

Bioleaching has been largely studied in batch mode at laboratory scale as it has 

been detailed in previous chapters. Hence, after testing and verifying the potential of the 

technology, the process needs to be adapted to a new scale to work in similar conditions 

than those used at industrial level to assess if the potential as an alternative to the current 

industrial techniques used. The most common configurations 

bioleaching are stirrer-tank bioreactors (Couillard and Mercier 1991; Ilyas and Lee 2014; 

Jujun et al. 2015; Rivera-Santillán et al. 2013), heaps (Ghorbani et al. 2015; Pradhan et 

al. 2008) and column bioleaching (Benzal et al. 2020a; Chen et al. 2015; Ilyas et al. 2010; 

Qiu et al. 2011). These systems are devoted to bioleach higher volumes with an accurate 

control of the process conditions as temperature, stirring rate, pH, oxidation-reduction 

potential or dissolved oxygen concentration. Moreover, although the studies focused on 

the bioleaching performed in a bioreactor like CSTR are studied for metals extraction 

from ores, in the e-waste field this set-up is scarce in the literature (Ilyas and Lee 2014). 

For instance, Jujun et al. (2015) recovered copper and gold from e-waste by a CSTR 

using Pseudomonas chlororaphis, whereas Ilyas and Lee (2014) also recovered copper 

from e-waste using Sulphobacillus thermosulfidooxidans and Tipre and Dave (2004) 

using a consortium of acidophilic chemolitotrophic auto- and hetero- trophic iron and 

sulfur oxidizers. In particular, Jujun et al (2015) found that the stirring had the major 

influence in the process, followed by the pH and the temperature, obtaining 88% of 

copper and 76.6% of gold in 5 days at the best conditions tested (pH 7, 22.5 ºC and 80 

r/min). In the case of Ilyas and Lee (2014), they recovered copper (95%), aluminum 

(91%), zinc (96%) and nickel (94%) in 15 days. Tipre and Dave (2004) concluded that 

semi-continuous process obtain better results than batch one and, moreover, they 

suggest that continuous process can further improve the leaching rate although they 

cannot perform the continuous process to validate it due to the lack of a facility. 

Cell counting and biomass quantification become a challenge in bioleaching 

processes because of the formation of precipitates, which difficult the most convenient 

classical approaches of turbidimetry and colorimetric protein quantification (Redmile-

Gordon et al. 2013). In contrast, methods as fluorescence staining, microscopic 

documentation, computational image analysis and qPCR depict an important effort, 

besides its economic cost (Giebner et al. 2015). On the other hand, total fluorescence 

measurement appears to be an affordable technique for cell quantification during the 

biomass growth as well as their evolution along e-waste bioleaching (see section 4.2.6 

from Chapter 4 for more detail of the fluorescence measurements process).  
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Moreover, the methodology frequently used to determine metabolic cell activity 

in bioleaching process is based on the measurement of the ferrous iron oxidation rates 

(Lambert et al. 2015; Nemati et al. 1998; Pina et al. 2010; Third et al. 2000) as an indirect 

measure following the product of the reaction. For this purpose, o-phenantroline and 

ferrozine are the commonly applied colorimetric methods (Braunschweig et al. 2012). 

However, as stated above, colorimetric measurements could be affected by the 

precipitates formed during bioleaching process and moreover, it has to take into account 

that not only microorganisms can oxidize iron (II) but also other chemical reactions can 

concert iron (II). Giebner et al. (2015) suggested that another obvious approach is to 

quantify the consumption of the electron acceptor oxygen since the instant consumption 

of this electron acceptor can be only attributed to microorganisms activity. They affirmed 

that the application of a Clark electrode could be the easiest and cheapest technique for 

respirometry control but, taking into account that Atkinson and Smith (1973) observed 

that this kind of electrodes consume oxygen due to its operation, Giebner et al. (2016) 

adapted an optode-based technique of respirometry control. This technique was adapted 

to measure oxygen consumption of Acidithiobacillus ferroxidans and, thus, to determine 

its metabolic activity. 

The aim of the present chapter was to scale up the bioleaching process to recover 

metals from PCBs, performing the process in a more controlled bioreactor system to 

assess the potential for an industrial application. In this sense, the first approach was to 

grow the Acidithiobacillus ferroxidans in a bioreactor, conducting total fluorescence 

measurements to estimate the cell number and monitoring microbial activity by 

respirometric measurements by means of an optical oxygen sensor (optode-based 

system). Then, the bioleaching of e-waste was performed in two-bioreactor system 

comparing results with an abiotic control system. During the process, total fluorescence 

measurements were done as well as respirometric assays in order to monitor the activity 

of the microorganisms. Abiotic controls were carried out to discriminate contribution of 

biological in comparison to chemical conversion.  

 

7.2. Materials and methods 

7.2.1. Electronic scrap 

 The PCBs used were obtained from end-of-life mobile phones, as stated in the 

previous chapter. It is noted that all the phones used for the experiment were of the same 

model (Nokia 3510) in order to reduce the variability of the sample and, therefore, its 
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heterogeneity. After removing the PCB from the phone structure, the main electronic 

components (resistors, capacitors and chips, among others) were manually separated. 

Then, the particle size was reduced by shears, selecting the particles of approximately 

2.0 cm2.  

7.2.2. Microorganisms and mineral medium 

The bacterial strain Acidithiobacillus ferroxidans (ATCC 23270) was used. It was 

kindly provided by the Department of Chemical Engineering from the University of País 

Vasco (Spain). The mineral medium used in the experiments (named 6K) was prepared 

as follows: (NH4)2SO4 3.00; K2HPO4 0.50; MgSO4 · 7 H2O 0.50; KCl 0.10; Ca(NO3)2 · 4 

H2O 0.014 grams were dissolved in 900 mL of distilled water. The pH was adjusted with 

3 N H2SO4 to pH 1.75. Then, 30 grams of FeSO4·7 H2O were dissolved in 100 mL of 

distilled water and the pH was also adjusted with 3 N H2SO4 to pH 1.75. After that, both 

solutions were mixed and the pH was readjusted to pH 1.75 when necessary. 

7.2.3. Cell number estimation by fluorometric measurements 

The microplate reader (SpectraMax M2e, Molecular Devices, United States) used 

for the measurement of the total fluorescence and, thus, for the estimation of the cell 

number, is explained in detail in section 4.2.6. 

Prior to the measurement of total fluorescence to estimate the cell number, and 

following the instructions of Giebner et al. (2015), the samples were treated as explained 

below (Figure 7.1). Firstly, 2.0 mL of culture sample were transferred into an Eppendorf 

tube and centrifuged (15.000 g, 5 min). After discarding 1.0 mL of the supernatant, 0.1 

mL of 0.5 M oxalic acid was added. The mixture was vortexed 15 seconds and incubated 

for 5 minutes at room temperature to dissolve the precipitates. After centrifugation 

(15.000 g, 5 min), 0.1 mL of the supernatant was discarded and 0.1 mL of oxalic acid 

was added again. The process of oxalic acid addition was repeated twice in order to 

dissolve all the precipitates in the sample. After the last centrifugation, 1.0 mL of the 

supernatant was removed. The remaining sample of 0.1 mL was diluted with 0.5 mL of 

sterile 0.9% NaCl solution. The mixture was also centrifuged again (15.000 g, 5 min) and 

0.5 mL of clear supernatant was now removed. After repeating the last step twice, the 

remaining 0.1 mL cell-containing sample was re-suspended with 0.9 mL of 50 mM 

phosphate buffer and it was also vortexed to homogenise the mixture. Finally, 50 µL of 

PicoGreen© reagent was added to 0.25 mL of the pre-treated sample. The mixture was 

incubated for 1 hour at room temperature in the dark. The resulting fluorescence signal 

of the assay was measured as relative fluorescence units (RFU) in a black 96-well plate 

(0.3 mL well volume, Greiner bio-one) using a micro-plate reader (SpectraMax M2e, 
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Molecular Devices). Equipment settings selected were: excitation at 485 nm, emission 

at 525 nm, cut-off at 495 nm, 400 V PMT-gain and 10 flashes per read. All the samples 

were measured in triplicate.    

   

Figure 7.1. Diagram of the procedure followed to measure the total fluorescence in microbial samples. 
Abreviations: PPB (potassium phosphate buffer). 

 

7.2.4. Experimental set-up  

Bioleaching experiments were conducted in 1 L jacketed bioreactors (Labfors 5, 

Infors HT, Switzerland) equipped with baffles and a spiral propeller blade stirrer. 

Following the methodology used during the previous experiments in Chapter 6 in which 

the bioleaching was performed in a two-step process, the two steps of the bioleaching 

process were carried out separately. Hence, two bioreactors were used for the biotic 

experiment, as shown in Figure 7.2. The first one was used for the bio-oxidation of iron 

(II), whereas the second one was used for the leaching reaction. In this sense, bio-

oxidized iron (III) was pumped to the leaching reactor while the leaching solution, 

including reduced iron (II), was pumped to the bio-oxidation tank continuously.  

The bio-oxidation vessel was filled with 0.9 L of mineral medium and 0.1 L of 

inoculum, whereas the leaching tank was filled with 1.0 L of mineral medium. The pH 

was controlled at pH 1.75 by the dropwise addition of 3 N H2SO4 to the bio-oxidation 

tank, to keep the pH low for high Fe(III) solubility and still compatible with the growth of 

the microorganisms. Moreover, a thermostatic bath was used to maintain 30 ºC in both 

reactors, and they were stirred at 200 rpm (bio-oxidation reactor) or 300 rpm (leaching 

reactor), respectively. An increase in stirring in the leaching reactor was necessary in 
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order to avoid settling of the e-waste. Aeration was performed by injecting compressed 

air at 0.2 L/min in both vessels. When the solution turned red in the biotic tank and the 

ORP measurement was over 600 mV, the liquid from this tank was pumped to the other 

tank, considering that all iron (II) was biologically oxidized. In order to maintain a 

residence time of 24 hours in both bioreactors, the pumped flow was kept at 0.7 mL/min. 

A 16-days leaching test was performed with 15 g/L of PCB. An abiotic control was also 

carried out by using the mineral medium with iron (II) but without the presence of the 

microorganisms. In this case, only the leaching tank was used under the same 

conditions. Samples were taken daily and they were diluted before being analyzed to 

determine iron and copper concentrations. In addition, pH and ORP were also measured 

every day, whenever possible.     

 

Figure 7.2. Scheme of the experimental set-up used for the biotic experiment during the bioleaching of PCB 

in stirred-tank reactors. 

 

7.2.5. Optical system for oxygen measurements 

 The optical system (FireStingO2, PyroScience GmbH, Germany) used for the 

measurement of biological activity is explained in detail in section 4.2.2. 

 For a standard respirometric assay, the procedure explained by Giebner et al. 

(2015) was followed (Figure 7.3). For an assay, 2 mL of the biological sample was 

centrifuged (5000 rpm, 10 min). Then, the supernatant was removed and the pellet was 

re-suspended in the same volume of modified mineral medium, without ferrous ion (0K 
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medium). After the sample had been mixed by a vortex, it was transferred to a test tube. 

Afterwards, 2 mL of pre-tempered 6K mineral medium (pulse substrate) was added and 

the sample was mixed again. Just before the addition of 6K, the oxygen sensor was also 

introduced into the tube test to record the signal for 30 minutes. To express the 

respiration rates, the linear sections of the recorded oxygen decrease were used, 

defining the respiration rate in milligrams of oxygen consumed per litre in one hour. 

Respirometric measurements were made in triplicate. 

 

Figure 7.3. Diagram of the procedure followed to measure the biological activity with the optode. 

 

7.3. Results and discussion 

7.3.1. PCB metal composition 

The analysis of the PCB used in this chapter exposed that the average content 

of Cu, Ni, Fe, Ag, Au, Al, Pd, In, Sn, Pb, Co and Mn in g/kg was 390.38, 11.51, 1.95, 

0.19, 0.80, 1.33, 0.15, 0.12, 28.92, 16.16, 0.14 and 0.58, respectively. From the data 

obtained, Cu was found as the major component and the total metal content per kilogram 

in the PCB was 452.23 g, which means that PCB of mobile phones could be a good 

source of metals comparing with composition of metals found in the ore chalcopyrite and 

corresponding with composition of other ores reported (Cancho et al. 2007; Third et al. 

2000; Zhao et al. 2013). 

 7.3.2. Growth of Acidithiobacillus ferrooxidans in the bioreactor  

Acidithiobacillus ferrooxidans was cultivated in a bioreactor system in order to 

proliferate their growth. For that, 200 mL of fresh culture was added to the bioreactor, 
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which was filled with 6K mineral medium until 2 L. The pH was maintained at 1.8 by the 

dropwise addition of 3 N H2SO4. The solution was stirred at 200 rpm and aerated with 

compressed air at 0.2 L/min. During the growth process, the cell number was measured 

by fluorometric measurements while the oxygen consumption was determined by 

microrespirometries. For the conversion from the fluorescence signal intensity (RFU) to 

cell density in cell/mL, the correlation developed by Giebner et al. (2015) was used.  

It could be seen in Figure 7.4 that the cell density remained almost constant 

during the whole experiment. Even so, the concentration on the first day was 8.4·105 

cell/mL and after 48 hours it increased to 1.7·106 cell/mL. After this time, the cell density 

slightly increased until reaching 7.0·106 cell/mL in 11 days. Although the increase on cell 

concentration was significantly high, the oxygen consumption in this period was more 

noticeable. Regarding the oxygen consumed on the first day by the microorganisms, iron 

(II) oxidation from the pulse substrate was very low (0.13 mg/Lh), probably corresponding 

to the endogenous consumption. Nevertheless, on day 4, the consumption raised to 1.81 

mg/Lh of oxygen, which indicated that the cells increased their activity, reaching the 

maximum consumption on day 10 (5.94 mg/Lh).   

 

Figure 7.4. Cell density and oxygen consumption during the growth of Acidithiobacillus ferrooxidans in the 
bioreactor. 

 

A correlation between the cell concentration and the corresponding oxygen 

consumption was stablished (Figure 7.5). The best regression was obtained through a 

lineal trend line with a gradient of 1·106 respect the oxygen consumption (in mg/Lh). The 

variation coefficient (R2) of the potential correlation obtained was 0.9807. 
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Figure 7.5. Correlation between the cell number of Acidithiobacillus ferrooxidans and their oxygen 
consumption after each pulse of substrate of iron (II). 

 

7.3.3. Bio-recovery of metals with the two-bioreactor system 

 The bioleaching of copper from printed circuit boards was performed in a system 

consisting in two bioreactors, as mentioned in section 7.2.4. In Figure 7.6 the total iron 

concentration and the copper recovery along time are presented. 

 

Figure 7.6. Evolution of total iron concentration and copper recovery during the bioleaching performed in 
the bioreactor. 
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As can be observed, in the lab-scale batch reactor 56% of copper from the e-

waste was successfully oxidized in the biological experiment. Nevertheless, 52% of 

copper was also obtained in the abiotic experiment. Despite obtaining similar recoveries 

in 16 days of operation, it was noticed that the behavior was slightly different, since the 

biotic sample began the recovery earlier than the abiotic one. In particular, in the first 5 

days the velocity of copper extraction in the biotic assay doubled the one of the abiotic 

experiment, but in the following 3 days just the opposite happened, achieving similar 

recoveries in 16 days. Therefore, the results indicate that extending the duration of the 

experiment does not improve the biological metal recovery. Regarding total iron 

concentration, the differences between biotic and abiotic experiments were more 

pronounced. While the iron concentration remained constant in the chemical assay, the 

metal concentration decreased almost 1000 mg/L in the biological one. It means that iron 

precipitated when biomass was used to oxidize the iron (II), although the pH was 

maintained in the bioreactor at 1.75. This was associated to fact that pH was not adjusted 

in the leaching tank. Though the leaching tank communicated to the other tank, the pH 

increased slightly (see Figure 7.7b). However, the increase was enough to precipitate 

the iron by the formation of iron oxyhydroxides (Baniasadi et al. 2019).  

These differences in pH values are presented in Figure 7.7 for both the abiotic 

and the biotic experiment. As mentioned before, during the biotic experiment the pH was 

maintained at 1.75 in the bio-oxidation reactor whereas the pH in the leaching reactor 

was not controlled. Nevertheless, in the biotic experiment both reactors were 

communicated and the liquid was moved continuously from one tank to the other. In 

contrast, in the abiotic experiment the leaching reactor was pH-controlled, since the bio-

oxidation reactor was not used in this case.  

Figure 7.7a shows the pH evolution in the leaching tank as well as the cumulative 

acid volume added to maintain the pH during the abiotic experiment. As expected, in this 

case the pH was always controlled at pH 1.75, so no fluctuations on pH could be seen 

in this tank after the adjustment. Nevertheless, a total amount of 17.5 mL of 3 N H2SO4 

for the 2 L reactor was required to maintain the solution at pH 1.75.  

As observed in Figure 7.7b, the pH in the bio-oxidation reactor before the acid 

addition increased up to pH 2, especially in the first 7 days in which the acid addition was 

necessary to maintain the pH at 1.75. After this time, no more acid addition was needed, 

since the pH did practically not increase. Regarding the leaching tank, though the pH 

was not adjusted, the fluctuations in pH values was not as large as expected. During the 

whole experiment the pH variation in this reactor was between 1.82 and 2.02, although 

the pH was very close to pH 2 most days. For this reason, this fact was associated to 
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the iron precipitation observed in Figure 7.6, since, as mentioned before, at this pH iron 

(III) (jarosite or schwertmannite) could begin to precipitate (Baniasadi et al. 2019; Valix 

2017).  

 

Figure 7.7. Evolution of pH along time and cumulative acid addition in the (a) chemical leaching and (b) 
biological leaching of PCB carried out in reactor

 values after the adjustment, which is after the acid 
addition. The pH adjustment was performed with 3 N H2SO4. 

 

It is noteworthy that in the abiotic experiment a higher addition of acid was 

necessary to maintain the pH in comparis on to the biotic one. In particular, 14.5 mL of 

3 N H2SO4 was required in the biotic assay, whereas 17.5 mL were needed for the abiotic 

one, which correspond to approximately 21.8 and 26.2 mmol of H2SO4, respectively. 

Moreover, the acid addition in the abiotic assay was needed during the whole 

experiment, whereas in the biotic it was needed one only during the first days. It means 

that the biological activity brings about that the pH of the solution does not drastically 

increase so the consumption of acid required to maintain pH 1.75 in the leaching solution 

was reduced. This is related to the biological activity of Acidithiobacillus ferrooxidans. 

Though the bio-oxidation of iron (II) consumes protons of the medium which alkalinizes 

the solution, the population of bacteria also increases with the oxidation of iron (II) to iron 

(III), thus accumulating iron (III). When this fact occurs, hydrolysis reactions of iron (III) 

could also occur which tend to decrease the pH, for example by formation of 

ammoniojarosite (Eqs. 7.1) (Wang et al. 2009). 
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 (7.1) 

 During the experiment the ORP was also measured, which results are shown in 

Figure 7.8. Results from the abiotic test indicated that iron (II) was not completely 

oxidized during the experiment since at ORP between 350 and 400 mV the percentage 

of iron (II) oxidized is less than 10% (Ballor, Nesbitt, and Luecking 2006). According to 

these authors, iron (II) was completely oxidized at ORP above 500 mV. Therefore, iron 

was completely oxidized in the bio-oxidation reactor during the biotic experiment as well 

as in the leaching reactor after 2 days of experimentation, assuming that the oxidation of 

iron in the leaching tank was produced during the biotic assay due to the continuous 

transfer of the liquid between reactors.  For this reason, the ORP values in the two 

reactors used during the biological assay were quite similar since they were not isolated 

from each other. Nevertheless, these results indicated that in the biological leaching the 

iron (III) was the responsible of the copper solubilisation but not in the chemical leaching, 

although similar metal recovery was obtained after 16 days of experimentation (see 

Figure 7.6). Even so, it is noteworthy that the initial velocity of copper dissolution was 

higher in the biotic experiment, despite probably not maintaining the optimal conditions 

. As explained in the previous chapter, the leaching of 

copper in abiotic experiment was produced by the dissolved oxygen present in the liquid 

at very low pH since the reactor was aerated with 0.2 mL/min of oxygen to maintain the 

same conditions than the biotic experiment and the pH was controlled at 1.75. This 

behaviour was described by Torres and Lapidus (2015) and Bas et al. (2013). These 

authors affirmed that the oxygen produces the oxidation of metallic copper at acidic 

conditions (Eq. 7.3). In addition, Bas et al. (2013) demonstrates that this proton attack to 

copper occur after 90 hours and it represents 18 % of total copper extraction in their 

assays. 

  (7.3) 

In the case of the biotic experiment performed in the two-bioreactors system, the 

recovery of other metals a part of copper was also evaluated (Table 7.1). Despite other 

specific strains are required for the extraction of different metals than copper (e.g. 

cyanogenic bacteria for gold recovery), the possibility of other metals mobilization by 

Acidithiobacillus ferrooxidans was assessed (Awasthi and Li 2017; Baniasadi et al. 

2019). In this sense, 40 different metals were analysed despite only 11 of them were 

found in the leaching solution after 16 days of experimentation. Results on additional 

metals releasing are shown in Table 7.1. 
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Figure 7.8. Oxidation-reduction potential along time in chemical and biological leaching performed in 
reactors. 

 

Table 7.1. Metals bioleached after 16 days in the two-bioreactors system. 

Metal Concentration (in ppb) 

Ag 1840  

Al 1550  

Au 129  

Co 546  

Dy 3.6  

In 173  

Mn 2170  

Ni 27400  

Os 15.8  

Pd 43.2  

Sn 166000  

 

Although the concentrations obtained were in general not so high, in some cases, 

the presence of these metals allow to affirm that other metals a part of copper could be 

recovered by Acidithiobacillus ferrooxidans at the conditions tested. In particular, tin 

concentration was the highest one (166000 ppb) followed by nickel (27400 ppb). On the 

contrary, trace amount of dysprosium (3.6 ppb), osmium (15.8 ppb) and palladium (43.2 

ppb) were observed. It is noteworthy that 129 ppb of gold were recovered although this 

metal was usually retrieved by the activity of cyanogenic bacteria (Isildar et al. 2016; 
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Yuan et al. 2018). The extraction of these metals are related to their redox potential, 

since they could be oxidized by the iron in accordance to their standard redox potential 

reported (Eq. 7.4  7.15) (Vanýsek 2005). 

  (Eº = +0.77 V)  (7.4) 

  (Eº = +0.43 V)  (7.5) 

  (Eº = +0.80 V)  (7.6) 

  (Eº = -1.67 V)  (7.7) 

  (Eº = -0.34 V)  (7.8) 

  (Eº = -1.03 V)  (7.9) 

  (Eº = -0.24 V)  (7.10) 

  (Eº = -0.14 V)  (7.11) 

  (Eº = +1.69 V)  (7.12) 

  (Eº = -0.28 V)  (7.13) 

  (Eº = +0.92 V)  (7.14) 

  (Eº = -2.20 V)  (7.15) 

Nevertheless, there is an exception in the case of the precious metals analysed 

(gold, silver and palladium). Since the redox potential of the precious metals is higher 

than the redox potential of the iron, the extraction of these metals can not be produced 

by the action of iron. This means that their solubilisation had to be produced by some 

other metals or compounds from the leaching solution (Kaksonen et al. 2014).  

Additionally, a mass balance was carried out for the experiment, by measuring 

the weight of the PCB used in the experiment before and after the bioleaching. In 

particular, the loss of weigh of the PCB used in the experiment was 3.62 grams after 16 

days, since 15.34 grams of e-waste was initially added, while the weight of the PCB after 

16 days was 11.72 grams. Hence, 23.6% of the total weigh was reduced due to the metal 

extraction from which 21.3% is due to copper extraction whereas the remaining 2.3% is 

due to the set of the other extracted metals. This fact was corroborated by the total sum 

of the metals recovered, taking into account the concentration of the extracted metals 

and the experimental volume used. In this sense, according to the experimental 

measurements, 3.56 g of metals were extracted, which was quite similar to the mass of 
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PCB lost in the process (3.62 g). To that, the mass balance was verified since the 

experimental loss of weight of the PCB corresponds to the total mass of metals extracted. 

In addition, the difference in appearance of the waste before and after the process were 

also visible (see Figure 7.9). 

 

Figure 7.9. PCBs used for the bioleaching performed in bioreactor (a) before and (b) after the process. 

 

7.3.4. Determination of microbial respiration rates with the optode system during 

the bioleaching process 

  Microrespirometric tests were performed periodically during the bioleaching 

experiments to evaluate the activity of the Acidithiobacillus ferrooxidans (Figure 7.10).  

Figure 7.10 shows different respirometric tests performed after and during the 

bioreactor inoculation. As can be seen no oxygen was consumed in the abiotic test 

during the respirometric test. This fact corroborated that the oxygen consumed in 

biological samples was only produced by the action of the microorganisms, which 

consume oxygen to oxidize the iron (II) from the added pulse. Hence, chemical oxidation 

of the iron was avoided at these conditions, as Kim et al. (2008) also observed due to 

velocity of this process (much more lower than time of analysis). On day 0 the biomass 

was active, consuming 3.78 mg/Lh of oxygen. After 5 days, they increased their activity 

since an increased on the slope was observed (6.54 mg/Lh). It is noticed that two days 

later, the activity decreased and it decreased even more on day 13. Their inactivity could 

be related to the toxicity effect of bioleached metals, since at this time the amount of 

extracted metals could have reached inhibitory concentrations. In this regard, it has been 

reported that some metals such as nickel or silver, among others, could inactivate the 

cells, depending on the metals concentration (Cho et al. 2008; David et al. 2008). In this 
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sense, a complete study related to the toxic effect of leached metals (including copper) 

on the biological activity is needed (Chapter 8).  

 

Figure 7.10. Oxygen consumption along time at different days during bioleaching of PCBs in the bioreactor, 
indicating the oxygen uptake rate (OUR) in each case. 

 

After observing the oxygen consumption for some experimental days, the oxygen 

uptake rate for every sample taken during the bioleaching are presented in Figure 7.11 

to observe the tendencies along the experiment. In addition, the cell density measured 

for each sample is also shown. 

 

Figure 7.11. Evolution of cell density and oxygen consumption in bioleaching performed in two-bioreactors 
system.  
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According to Figure 7.11 cell density remained constant between 3.8·106 and 

6.6·106 cell/mL during the experiment. This means that the specific growth rate was 

0.0022 h-1 under these conditions, thus indicating that their growth was slow in 

comparison to reported values between 0.1 to 0.2 h-1 (Barron and Luecking 1990). The 

difference is associated to the conditions in which the microorganisms are found, since 

the reported values are measured during the growth of the biomass under optimal 

conditions, whereas the present value is measured during the bioleaching experiment. 

Hence, the bioleached metals as well as many other components that could be found in 

the solution affect the biomass activity and thus, its growth rate. This fact reinforced the 

need of a complete study related to the toxic effect of leached metals on the biological 

activity (Chapter 8). 

Nevertheless, important changes were observed in the oxygen consumption 

evolution. In particular, it increased during the first 5 days, as Figure 7.11 show, 

indicating that the microorganisms were gaining activity although the number of cells did 

not reflect this increasing. After this period, the cell activity significantly decreased since 

the oxygen consumption dropped from 6.5 mg/Lh to 4.3 mg/Lh. At this time, after 

, fresh medium was added to renew part of the 

medium from the bioreactor. Hence, 200 mL of the bioreactor was removed and the 

same volume of fresh 6K medium was added instead. Although the activity slightly 

decreased, it remained almost constant in the following days. It was thought that the 

renovation of the medium helped to maintain the activity of the microorganisms, bringing 

them fresh nutrients. Nevertheless, it is noticed that despite adding fresh medium, the 

cell density did not vary. Therefore, although the oxygen consumption began to decrease 

after 9 days, the cell density remained almost constant. This behaviour is associated with 

the difficulty of accessing copper, which implies a lack of iron (II) production, which in 

turn, it would imply a lack of the main nutrient that provides energy to microorganisms to 

grow.   

 

7.4. Conclusions 

During the growth of Acidithiobacillus ferrooxidans performed in the bioreactor, 

an increase of their activity was observed by microrespirometry. Although the cell density 

increased slightly in comparison to the oxygen consumption, a correlation between these 

two parameters was possible by a linear regression (R2= 0.9807).  

Regarding the bioleaching process, the study concluded that copper was 

recovered in the process, but similar extractions were obtained during the biotic (56%) 

and abiotic (52%) experiments after 16 days of operation. However, in the biological 
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assay the extraction started earlier. In relation to iron concentration, this was maintained 

constant in the abiotic test, whereas it decreased in the biotic one. This fact was related 

to the pH behaviour, since in the biotic experiment the pH was only adjusted in the bio-

oxidation tank, so that the pH in the leaching tank raised up to pH 2, which resulted in 

iron precipitation. However, the precipitation was not so noticeable, because both tanks 

were connected and the liquid was moved from one tank to the other, avoiding high 

increases of pH in the system. In the abiotic experiment, the iron did not precipitate due 

to the constant pH adjustment in the tank. It was noticed that more acid was needed to 

maintain pH 1.75 in the abiotic one, consuming 17.5 mL of 3 N H2SO4. In contrast, the 

biotic experiment consumed 14.5 mL of the same acid. The ORP revealed that the 

parameter remained constant over 500 mV, when biomass was used in the process, 

whereas it was maintained under 395 mV, when there was no biomass in the assay. This 

value increases when more oxidised species are in the solution. Hence, when biomass 

was used in the process, the ORP signal increased, since the iron (II) was biologically 

oxidised to iron (III) which increased the total concentration of oxidized species in the 

liquid. 

From the experiment, it was also concluded that some other metals could be 

recovered from the PCB by bioleaching using Acidithiobacillus ferrooxidans. In particular, 

the metals recovered were (from the highest to the lowest concentration): tin, nickel, 

manganese, silver, aluminium, cobalt, indium, gold, palladium, and osmium, apart from 

copper. As a consequence of these recoveries, a loss of 23.6% of PCB initial weight was 

observed, which corresponds to the total mass of metals extracted. 

During bioleaching in the two-bioreactor system, a microrespirometric technique 

allowed to observe that the activity increased for the first days, but it decreased after the 

fifth day. Avoiding the decrease was possible by replacing 200 mL of the medium with 

fresh one. Nevertheless, cell enumeration along the experiment revealed that the cell 

density remained almost constant in this period of time, despite the changes observed 

in oxygen consumption. Since the cell density was measured by means of fluorometric 

measurements, which does not distinguish between living and dead cells, the results do 

not only indicate a constant cell density. because of a compensation between living and 

dead cells, but an increase in the activity of the living cells. Finally, the results from this 

chapter allow to conclude that microrespirometry provides  an efficient methodology to 

monitor biomass activity when biotechnological process take place avoiding limitations 

of traditional methods, where the presence of precipitates may affect the measurement. 
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This chapter is focused on the possible negative effect on the activity of 

Acidithiobacillus ferrooxidans resulting from the complex composition of the e-waste. 

The presence of copper and of additionally leached heavy metals that could limit the 

biological process could affect the activity. Moreover, iron, which is the main energy 

source of these bacteria, could become inhibitory at high concentration. For this reason, 

the effect of concentration on the ty was evaluated to analyse the 

inhibition by the substrate iron(II) (FeSO4). Finally, the evolution of the biomass activity 

along time when there is a lack of feeding was evaluated in order to check the robustness 

of the system. This allows to have a better control when the process takes place in 

continuous mode and there is an unexpected or maintenance shutdown.  

 

Abstract 

The e-waste has a complex composition, including potentially toxic metals, which 

could be retrieved during the bioleaching, as a consequence of the process mechanism, 

and which could accumulate in the solution. This fact could affect the biological activity 

of the microorganisms, which are among the key parameters in the process. For this 

reason, the toxic effect on the activity of Acidithiobacillus ferrooxidans of the three metals 

obtained in greater quantity during the previous bioleaching experiments (copper, nickel, 

and aluminium) was studied. Besides, the inhibition by iron substrate was also evaluated 

to know the maximum iron concentration that the microorganisms are able to tolerate. In 

addition, without the addition of the mineral 

medium salts including iron was investigated in order to determine the limit time until the 

complete cell inactivation. In all cases, the activity was evaluated by microrespirometric 

measurements of the oxygen consumption after a substrate addition. Regarding toxicity 

tests, depending on the concentration and the time exposed, nickel, copper and 

aluminium affected the activity of the microorganisms. In particular, it was demonstrated 

that some metal concentrations were not completely innocuous for microorganisms 

when the contact with the solution was prolonged for several hours. It was found that, in 

general, aluminium was the most toxic metal studied, followed by copper, whereas nickel 

was the least toxic. With respect to iron inhibition, although low concentrations of iron 

, this substrate produced a total 

inactivation of the cells at a concentration over 0.75 M after 24 hours. Finally, some 

inactivation of the cells was also observed after 550 hours without iron addition, losing 
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82% of their initial activity at this time. This fact implies that the microorganisms are very 

resistant to long-time feeding shutdowns, which demonstrates the robustness of the 

system. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A modified version of part of this chapter has been published as: 

Benzal, E., Cano, A., Solé, M., Lao, C., Gamisans, X., Dorado, A.D., 2020. Copper 

recovery from PCBs by Acidithiobacillus ferrooxidans: Toxicity of bioleached metals on 

biological activity. Waste and Biomass Valorization, 11, 5483-5492. 
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8.1. Introduction 

In a common bioleaching operation, not only the metal of interest is extracted 

since many other metals could be also leached during the process, including potentially 

toxic metals. Moreover, their presence in the solution could affect the biological activity. 

In the case of Acidithiobacillus ferrooxidans, one of the most important microorganisms 

in bioleaching applications (Valdés et al. 2008), some studies have focused on their 

tolerances to different metals, evaluating its effect on the iron oxidation rate by measuring 

iron concentrations along time (Leduc et al. 1997). For this purpose, o-phenantroline and 

ferrozine are the commonly applied colorimetric methods (Braunschweig et al. 2012). 

However, the precipitates formed during the oxidation process could affect colorimetric 

measurements. According to Adhapure et al. (2014), in bioleaching processes the 

precipitate formation is common. This precipitation not only could affect the 

measurements of iron by colorimetric methodologies but it also affects the bioleaching 

recoveries due to the passivation of the waste (Zhu et al. 2011).   

As it was suggested by Giebner et al. (2015), another obvious approach for iron 

measurements was to quantify the consumption of the electron acceptor (oxygen) since 

the microorganisms used in the present study, Acidithiobacillus ferrooxidans, consumed 

this molecule in their metabolism to grew and to obtain energy (Eq. 8.1). 

  (8.1) 

Hence, to know when the microorganisms are active is possible by measuring 

their oxygen consumption after the addition of a pulse of substrate. In this regard, an 

optode-based technique can be used to measure oxygen consumption of 

Acidithiobacillus ferrooxidans to determine their metabolic activity. The optode-based 

technique is characterized by the fact to use small sample volumes (1 or 2 mL) without 

losing sensitivity in the oxygen measurements, which avoid great impacts on the system 

due to sampling along time. In addition, this technology is also characterized to be a 

direct measurement, allowing to determine if there is oxygen consumption, and, 

therefore, biological activity in a sample at a real time. Hence, changes could be made 

before major problems could appear in the system due to the lacking activity. 

As mentioned in the previous chapters, the e-waste has a complex metal 

composition in which it could be found more than 60 different elements (Hagelüken and 

Corti 2010). However, among these elements, some of them are valuable, some toxics 

or hazardous and some present both characteristics. Hence, some of these metals that 

are considered as valuable in the e-waste like silver are also used as biocides 



Chapter 8: Resistance assessment of Acidithiobacillus ferroxidans to heavy metals by means of 
toxicity assays through microrespirometric measurements 

 

136 
 

(Khaydarov et al. 2014). Thus, although the valuable metals are interesting elements to 

recover from the e-waste, the use of biological techniques to recover them could be 

affected by its toxicity, hindering the biotechnological processes with these purposes. 

For this, the application of the optode system could result an effective technology to study 

the possible toxic effect of metals in biological solutions since it allows evaluating both 

the toxic concentration and the time exposure effect to them. 

Iron is one of the main nutrients needed by Acidithiobacillus ferrooxidans, since 

these bacteria is one of the few microorganisms known which obtain their energy for 

bacterial growth by the oxidation of iron (II) to iron (III) (Zhan et al. 2019). It means that 

iron results essential for their metabolic processes, involving different enzymes and 

electron transfer proteins for this purpose (Valdés et al. 2008). In particular, the bacteria 

couples the energy derived from the oxidation to the production of the reducing agent  

NADPH and the synthesis of ATP for cellular materials construction (Nemati et al. 1998). 

Nevertheless, the higher the iron concentration, the more negative effect could have for 

their metabolism as it has been described that the inhibition of the microorganisms by 

the substrate could be occurred (Barron and Luecking 1990). Moreover, Valdés et al. 

(2008) affirmed that the abundance of soluble iron has the potential to pose sever 

oxidative stress to the Acidithiobacillus ferrooxidans, causing DNA and protein damage 

to them. So that, despite toxic metals could inactivate the microorganisms,  their 

metabolism can be also affected and/or inhibited by substrate itself (Reed et al. 2010). 

According to these authors, many enzymes are inhibited by their own substrates, 

reaching a maximum value in their velocity curves and descending as the substrate 

concentration increases. Hence, when substrate inhibition is produced, there is a 

progressive decrease in activity at high substrate concentrations. This fact was 

corroborated by Barron and Luecking (1990), who reported that the substrate inhibition 

of Acidithiobacillus ferrooxidans was produced at iron (II) concentration over 3.0 g/L, 

despite the culture media generally used in bioleaching experiments is the 9K medium 

(which contains 9 g/L of iron (II)) (Pagnanelli et al. 2007). Nevertheless, Barron and 

Luecking (1990) also affirmed that 20.0 g/L of iron (II) caused the maximal inhibition at 

30 ºC and pH 1.9. On the contrary, Okereket and Stevens (1991) demonstrated that the 

iron oxidation rate was almost constant from 2.0 to 6.3 g/L of iron (II) at 25 ºC and pH 

2.4. Kelly and Jones (1978) reported that the substrate inhibition was produced at higher 

concentrations, above 39.0 g/L of iron (II), but in this case, they carried out the 

experiments at pH 1.6 and 30 ºC. Nemati et al. (1998) attribute these differences to 

accuracy of the ferrous iron measurements and the different operating conditions such 

as pH and temperature, among others. In the same way, Barron and Luecking (1990) 
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also affirmed that the results are largely dependent of the conditions in which the 

experiments take place. Nevertheless, as it has been abovementioned, Pagnanelli et al. 

(2007) reported that the culture media generally used for research studies exceed the 

amount of ferrous ion concentrations previously cited, as 9K medium, firstly described 

by Silverman and Lundgren (1959). So that, there is no general agreement on how the 

iron (II) concentration affects the microorganisms. Thus, the results focused on the 

substrate inhibition are confusing and a specific range has not been defined yet. 

Moreover, it is noteworthy that the authors focused on the study of substrate inhibition 

usually measuring just the iron concentration without taking into account the time 

exposure to it, although the bioleaching experiments are characterized to produce long 

exposures of metals with biomass. 

The aim of the present chapter was focused on evaluating the potential toxicity 

of some metals and how they can affect the activity of Acidithiobacillus ferrooxidans by 

means of direct microrespirometric measurements as an improvement of previous 

methodologies overcoming their limitations. Thanks to this novel technology, the toxicity 

assays evaluated both the time exposed and the metal concentration of copper, nickel 

and aluminum, three of the main elements retrieved in the previous chapter during the 

e-waste bioleaching in bioreactor. Moreover, in this chapter the potential inhibition by 

iron substrate as well as the effect of long starvation over time on the  

activity was also evaluated. The latter effect was studied by means of cell enumeration, 

oxygen consumption and iron oxidation rate along time.       

 

8.2. Materials and methods 

8.2.1. Microorganisms and mineral medium 

The same bacterial strain used in Chapters 6 and 7 was employed 

(Acidithiobacillus ferroxidans, ATCC 23270). Hence, the same 6K mineral medium was 

prepared, which contained (in g/L): (NH4)2SO4 3.00; K2HPO4 0.50; MgSO4 · 7 H2O 0.50; 

KCl 0.10; Ca(NO3)2 · 4 H2O 0.014 grams. These salts were dissolved in 900 mL of 

distillate water and the pH was adjusted with 3 N H2SO4 to pH 1.75. Then, 30 grams of 

FeSO4·7 H2O were dissolved in 100 mL of distillate water, also adjusting the pH with 3 

N H2SO4 to pH 1.75. After that, both solutions were mixed and the pH was readjusted to 

pH 1.75 if it was necessary.  
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8.2.2. Toxicity tests development 

Toxicity tests were evaluated with three different metals: copper, nickel and 

aluminium at different concentrations. The metals to evaluate were added as NiSO4·7 

H2O, CuSO4·5 H2O and Al2(SO4)3·18 H2O for nickel, copper and aluminium, respectively. 

For each metal, six different concentrations between 0.0005 and 1.5 M were also 

evaluated, which molarity depends on the metal studied. Nevertheless, the selection of 

the concentrations studied were based on the literature, in which it was found that the 

natural and the limit tolerances are defined for some metals for the Acidithiobacillus 

ferrooxidans strain (Magnin et al. 1998). For this, the concentrations of these tolerances 

were selected as well as the concentration found in previous leaching solutions and two 

more concentrations in order to evaluate the effect of different concentrations along time. 

Additionally, a concentration over the tolerance limit was also tested for each metal, 

which are 1.2, 1.5 and 0.5 M for copper, nickel and aluminium, respectively. Experiments 

were performed with two 500 mL baffled Erlenmeyer flasks for each metal and each 

concentration (36 flasks in total). One of the flasks was used as control without the metal 

addition whereas in the other the potential toxic metal concentration was added. The loss 

of activity was measured by respirometric assays with the optode system (described in 

4.2.2 section). In particular, the relative loss of activity was calculated as a percentage 

between the sample with the toxic metal addition and its control (see Eq. 8.2). Samples 

for respirometric measurements were taken every two hours, whenever possible, during 

48 hours.  

    (8.2) 

Where: 

 Ac = activity of the control sample (mg O2/Lh) 

 At = activity of the sample with the toxic concentration (mg O2/Lh) 

8.2.3. Optical system for oxygen measurements 

 The optical system (FireStingO2, PyroScience GmbH, Germany) used for toxicity 

tests is explained in detail in section 4.2.2.  

 For respirometric measurements, two different methodologies were used 

depending on the presence or not of ferrous ion in the sample before the test. Hence, for 

the toxicity assays of heavy metals without ferrous ion in the solution, 2 mL of biological 

sample were taken and, after the addition of 2 mL of 6K medium, the mixture were 

vortexed. Then, the mixture was transferred to the cuvette of the optode system in which 
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the spot sensor had been previously incorporated (see Figure 8.1). On the contrary, the 

second methodology used (with ferrous ion in the solution), was carried out in the study 

of inhibition by iron substrate. In this case, the methodology was the same than the one 

used in Chapter 7. In this regard, 2 mL of the biological sample was centrifuged (5000 

rpm, 10 min) and, after removing the supernatant, 2 mL of modified mineral medium, 

lacking ferrous ion (0K medium) was added in order to re-suspend the pellet. Then, 2 

mL of 6K medium were added and the mixture, previously homogenate, were also 

transferred to the cuvette of the optode system. Once the 2 mL of 6K medium were 

added in both methodologies, the signal was recorded for 30 minutes. As in Chapter 7, 

to express the respiration activity, oxygen decrease rate was determined. 

 

Figure 8.1. Diagram of the procedure to perform microrespirometric measurements in toxic assays in 
samples without iron. 

 

8.2.4. Cell counting  

Cell concentration was determined by the cell enumeration observed by an 

optical microscope (BA310LED, Motic, Germany) using a Neubauer Chamber cell 

counting. This chamber consists on a glass thick plate of 30 mm width and 70 mm long 

in which there were 2 counting areas, both divided into nine 1 mm x 1 mm grids each 

(Figure 8.2). The central grid was also divided into 25 grids of which the ends and the 

central one were used for cell enumeration. Hence, after placing the coverslip over the 

counting area, 10 µL of sample were dispensed on the chamber. The optimal 

concentration for the correct counting is 106 cell/mL, so dilutions were needed when the 
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concentration was higher. In order to obtain the concentration in cell/mL after the cell 

counting, the Eq.8.3 was applied. 

    (8.3) 

Where: 

 Cells = cells counting (cells) 

DG = depth of the grid used in the camera (cm), which was 1·10-2 cm in this case 

 SG = surface of the grid (cm2), which was 2·10-3 cm2 in this case 

 DF = Dilution factor, which means the dilution of the sample used 

 

Figure 8.2. Neubauer Chamber cell counting: a) detail of the chamber used in the experiments and b) 

scheme of the grid observed through the microscope to perform the cell counting (adapted from Lara et al. 

(2016)).   

 

8.3. Results and discussion 

8.3.1. Toxicity assays of heavy metals for Acidithiobacillus ferrooxidans by 

microrespirometries 

Some authors have focused on the resistance of Acidithiobacillus ferrooxidans to 

high heavy metal concentrations. For instance, Cho et al. (2008) studied the maximum 

tolerance of these microorganisms to Cu (II), Cd (II), Zn (II), Ni (II), which were 142, 440, 

690 and 850 mM, respectively. In addition, David et al. (2008) found that the maximum 

tolerance of Acidithiobacillus ferrooxidans to Pb was 2.41 mM whereas 0.05 mM of Hg 

completely inhibited their activity. As it has been explained in the introduction, it has been 

reported that e-waste contain toxic materials that can affect biological activity in 
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bioleaching studies (Brandl, Bosshard, and Wegmann 2001). In the present work, the 

toxicity effect of three different metals (copper, nickel and aluminium) was studied at 

different concentrations each one, using the microrespirometric measurements, 

following the methodology described in section 8.2.3. The selection of the metals studied 

was based on the results obtained in the previous chapter, in which copper and nickel 

were two of the valuable bioleached metals in greater quantity. Moreover, aluminium was 

also selected since it has been also bioleached in the process but its toxicity has been 

scarce studied in the literature. 

Copper was the first metal evaluated in this work, since this is the metal found at 

higher concentrations in bioleaching solutions (Bas et al. 2013; Chen et al. 2018b; 

Rodrigues et al. 2015; Wu et al. 2018; Yang et al. 2009). In addition, there are a lot of 

bioleaching studies that performs the process in one step which means that the 

biooxidation of iron(II) and the leaching of metals takes place in the same flask/reactor 

. This fact leads 

to accumulate the solubilised copper in the liquid, which could affect the efficiency of the 

process and so limiting the recovery of the metal. In order to study the toxicity of copper 

six different concentrations of this metal were prepared (0.01, 0.05, 0.60, 0.80, 1.00 and 

1.20 M). The results shown in Figure 8.3 were expressed as a percentage of relative loss 

of activity, which means the activity loss by the microorganism in the presence of the 

copper in relation to their activity without the copper addition.  

 

Figure 8.3. Toxicity evaluation of copper on activity of Acidithiobacillus ferrooxidans at six different 

concentrations. The relative loss of activity is calculated as: ((Ac  AT) / AC) x 100; where AC means the 

activity of the control sample and AT the activity of the sample with the toxic concentration.  
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In general, an increasing on the relative loss of activity was observed when 

copper concentration increases. It means that the higher the copper concentration, the 

more toxic for microorganisms. This behaviour is reflected through the 48 hours of the 

experiment. Moreover, it is noteworthy that the toxic effect was immediate at metal 

concentrations over 0.60 M whereas at concentrations below 0.05 M there was no effect 

on biological activity. Taking into account that the lowest concentration tested (0.01 M) 

was the copper concentration obtained in the previous bioleaching experiments, it was 

confirmed that this concentration had no negative effect on microbial metabolism after 

48 hours. Nevertheless, it should be considered for those cases when the biological 

oxidation and the leaching steps are taking place in the same place, since in these cases 

the copper concentration will be continuously increased until reaching concentrations 

that affect negatively the microbial activity. For instance, in a bioleaching process in 

which 0.05 M of copper has been extracted, although this concentration was not toxic to 

the microorganisms, after 24 days the copper concentration reached could begin to be 

toxic to them, being able to be completely toxic after 48 days (considering steady-state 

copper extraction). However, the limiting time that a metal concentration becomes toxic 

will mostly depend on the metal extraction obtained in each case. Leduc et al. (1997) 

concluded that the inhibitory concentrations depend on the specific strain of 

Acidithiobacillus ferrooxidans. Despite of that, Cho et al. (2008), who based their study 

on the inhibition effect of copper on the rate of iron oxidation of Acidithiobacillus 

ferrooxidans, found that the maximum tolerance concentration for copper was 0.142 M 

due to concentrations over this one completely inhibited the biological iron oxidation 

during the 42 hours experimental hours. This result is in agreement with the results 

obtained herein, although the methodology used for the measurements of the loss of 

activity were completely different. Whereas Cho et al. (2008) evaluated the iron (II) 

concentrations along time to define the limits of tolerance, in this work the oxygen 

consumption was directly measured on the biological sample in order to observe the 

effect of excess iron to them.  

Similar assays were performed to evaluate the potential toxic effect of nickel on 

the activity of the iron-oxidizing microorganisms. In this case, six different concentrations 

of the metal were also prepared (0.0005, 0.05, 0.10, 0.30, 1.00 and 1.50 M). Figure 8.4 

showed that nickel was also toxic to microorganisms after 48 hours, especially at 

concentrations over 0.3 M in which the effect was immediate. Although in this case the 

experiment was extended until nearly 300 hours, the main changes and tendencies 

occurred during the first 48 hours, so this was the period showed to discus and to 

compare with the other toxicity assays in this section. In addition, it is noticed that the 
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relative loss of activity increased along time at concentrations over 0.3 M, which indicates 

that not only the metal concentration affects the biological activity since the time 

exposure also greatly affects the biological activity. Moreover, the results demonstrated 

that those concentrations of nickel described in the literature as natural tolerance, which 

is 0.30 M according to Magnin et al. (1998), were not completely innocuous for 

microorganism when the contact with the solution was prolonged for several hours. 

Although microorganism metabolism has not been disrupted after one cycle of leaching, 

operation strategies for reducing time on continuous mode, as the strategy developed in 

column experiments in Chapter 9, should take into account these evidences avoiding 

long contact times by previous separation operations. The toxicity effect of nickel 

observed was in agreement with Cho et al. (2008) who reported that the inhibitory effect 

of the metal was produced on concentration over 1.02 M, which is the concentration 

when the toxic effect was visible from the beginning herein. However, this work 

demonstrated that depending on the total time contact, the effect could be effective over 

0.30 M of nickel instead of 1.02 M as it was reported. 

 

Figure 8.4. Toxicity evaluation of nickel at six different concentrations on activity of Acidithiobacillus 

ferrooxidans. The relative loss of activity is calculated as: ((Ac  AT) / AC) x 100; where AC means the activity 

of the control sample and AT the activity of the sample with the toxic concentration. 

 

Finally, the toxic study was completed with the effect of aluminium ion. Hence, 

six different concentrations (0.001, 0.05, 0.10, 0.20, 0.35 and 0.50 M) were also 

prepared. As can be observed, aluminium resulted toxic at all the concentrations tested 

(Figure 8.5). However, this toxicity increased as the metal concentration also increased. 
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The toxicity was observed from the beginning of the experiments in all the assays, 

including the bioleaching concentration (0.001 M). After 4 hours, no loss of relative 

activity was observed in any case since it remained constant for the next 44 hours. This 

means that the toxic effect of this metal was practically instant whereas the other two 

previous metals studied showed an increase of their toxic effect over time. This revealed 

that aluminium was potentially toxic despite it has not been included in published toxicity 

studies (Cho et al. 2008; David et al. 2008), despite this was speculated by Brandl et al. 

(2001). Therefore, aluminium represents an important metal to take into account if it is 

bioleached from the scrap due to its toxic effect to microbial activity over 0.001 M, being 

more noticeable over 0.05 M. 

 

Figure 8.5. Toxicity evaluation of aluminium at six different metal concentrations on activity of 

Acidithiobacillus ferrooxidans. The relative loss of activity is calculated as: ((Ac  AT) / AC) x 100; where AC 

means the activity of the control sample and AT the activity of the sample with the toxic concentration. 

 

In order to compare the toxicity effect of the three metals studied, a comparison 

of them at three different ion concentrations was considered. On the one hand, the 

bioleaching concentration, which was the average concentration of the metal obtained 

after the bioleaching process, these being 0.05, 0.0005 and 0.001 M for Cu, Ni and Al, 

respectively. On the other hand, the concentration referring to the natural and limit 

tolerances, which tolerances were described by Magnin et al. (1998) for copper and 

nickel, whereas the resistance for aluminium was studied by Fischer et al. (2002). 

According to these Magnin et al. (1998), the natural tolerance represents the metal 

concentration not resulting in stunted growth, whereas the limit tolerance represents the 
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maximum metal concentration that does not inhibit bacterial growth. The comparison for 

the three metals is shown in Figure 8.6. 

There are noticeable differences between the three metals. Regarding the natural 

tolerances, although previous authors described that these concentrations did not affect 

the activity of the microorganisms, this work demonstrated that the concentrations 

reported as a natural tolerances produced a negative effect on the biomass in the case 

of nickel and aluminium, especially after 48 hours of contact when the microorganisms 

lost 43% and 19% of their activity, respectively. Nevertheless, copper natural tolerance 

concentration did not reduce their activity, which means that they can tolerate it during 

their growth. In the case of limit tolerances, they have a negative effect on the bacteria 

for all metals, losing 50, 57 and 93% of the activity for Cu, Al and Ni, respectively, after 

48 hours. It means that nickel was more toxic than aluminium to the microorganisms, 

which in turn was more toxic than copper at this concentration. However, it is noticeable 

that aluminium was the most toxic metal during the first 10 hours at the limit tolerance 

concentration, although negative effect of this metal was visible from the beginning of 

the experiment in all cases. Therefore, it can be affirmed that the contact time between 

the metals and the microorganisms was crucial during their growth. In this sense, the 

higher the exposure time, the more toxic the metal. For this reason, reducing the 

experimental time of the bioleaching process, as well as the development of the process 

in two different steps are very important to maintain the microorganisms at their optimal 

conditions. Regarding bioleaching concentrations, the results demonstrated that they 

were not toxic for the microorganisms, since the relative loss of activity was less than 

10% in 48 hours in all cases. However, as stated previously, metal accumulation could 

eventually cause inactivity to the microorganisms. Therefore, this aspect should be taken 

into account in these cases.  

Given that the average concentration obtained in previous bioleaching 

experiments was 0.05 M of copper in 48 hours, if this process is extended for more days 

it would be toxic for the microorganisms when bioleaching takes place in only one step. 

This occurs since a concentration of 0.60 M of copper (which begins to be toxic for the 

microorganisms), could be reached after 24 days, leading to their complete inactivation 

after 48 days when the copper concentrations could raise to 1.20 M, in accordance to 

the results obtained in the toxicity assays. In the case of nickel and aluminium, although 

they resulted toxic at certain concentrations (over 0.05 M for aluminium and 0.30 M for 

nickel), the concentrations obtained after bioleaching are too small (less than 0.001 M in 

both cases) to affect the microorganisms during the process. Nevertheless, it is important 

to control the concentration of the metals in the leaching solution in one-step bioleaching 
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as it is above mentioned, since an unexpected increased may imply the inactivation of 

the microorganisms and, eventually, the finish of the extraction process.   

Figure 8.6. Comparison of the toxicity measurements of copper, nickel and aluminium for Acidithiobacillus 

ferrooxidans. The natural tolerance represents the metal concentration not resulting in stunted growth, 

whereas the limit tolerance represents the maximum metal concentration that does not inhibit bacterial 

growth. 

 

8.3.2. Study of inhibition by iron substrate for Acidithiobacillus ferrooxidans  

In this section the inhibitory effect of iron (III) to the Acidithiobacillus ferrooxidans 

culture was studied. In order to perform the experiment, the methodology used was the 

same than the toxicity assays, but in this case, iron was considered the potential inhibitor. 

Hence, six different iron concentrations were prepared (0.10, 0.20, 0.35, 0.50, 0.75 and 

1.00 M) in which the metal was added as FeSO4·7 H2O. Results are showed in Figure 

8.7. As in previous toxicity tests (section 8.3.1), the results were expressed as a 

percentage of relative loss of activity which means the activity loss by the microorganism 

in the presence of the iron in relation to their activity without the iron addition. On the 

contrary, a negative value in the relative loss of activity indicates an increase of the 

ty. 

Figure 8.7 depicts that the iron presence can cause microorganisms to lose 

activity depending on the concentration in the solution, indicating that inhibition is 

produced. In particular, excepting the 0.35 M iron concentration, when iron concentration 

was over 0.20 M, 40% of the relative activity of the microorganisms was lost at the 

beginning of the experiment whereas 0.10 M increased the activity 6%. This indicates 
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that iron reduced the biological activity at high metal concentrations, inhibiting their 

metabolism. However, after 6 hours all the tendencies were changed. On one hand, the 

highest iron concentrations (0.75 and 1.00 M) produced a complete loss of activity, 

corroborating the inhibitory effect of the iron substrate. On the other hand, the lowest iron 

concentrations (0.10 and 0.20 M) steadily climbed to reach its highest increase of activity 

after 24 hours, being lower the increase achieved at greater iron concentrations. This 

activity enhancement could be associated to the acclimation of the microorganisms to 

the new conditions in which they were. This fact could imply an improvement on the iron 

(III) production which results interesting for bioleaching process. However, the oxidation 

rate should be studied in depth in these cases due to Barron and Luecking (1990) 

observation. They affirmed that the growth rate was not improved at concentrations over 

0.1 M of iron (II), which is also important to maintain the activity of the viable cells as well 

as to improve the iron oxidation rate along time. 

 

Figure 8.7. Relative loss of activity of Acidithiobacillus ferrooxidans at six different iron (III) concentrations.  

 

From the results obtained in the study of inhibition by iron, it was determined that 

the presence of iron at concentrations over 0.75 M negatively affects the activity of the 

microorganisms. On one hand these results are in agreement with Nemati et al. (1998) 

who affirmed that the ability of Acidithiobacillus ferrooxidans to oxidize ferrous iron is 

significantly influenced by the ferrous iron concentration. In the present study, inhibitory 

effect was observed at concentrations over 0.75 M of iron (II), in accordance to Kelly and 

Jones (1978) who also obtained substrate inhibition above 0.7 M of iron (II). 

Nevertheless, conversely to the observations of these authors, at concentrations in the 
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range of 0.35 and 0.75 M inhibitory effects were also observed but only during the first 6 

hours of contact. These differences are associated to the conditions and the 

methodologies used, since Kelly and Jones (1978) performed their experiments in a 

chemostat culture without taking into account the time exposure of the microorganisms 

to the inhibited agent. On the other hand, the results were also in agreement with 

Pagnanelli et al. (2007) due to below 0.16 M of iron (II) concentrations substrate inhibition 

was not produced, as it was reported by Barron and Luecking (1990), Kelly and Jones 

(1978), and Okereket and Stevens (1991). Nevertheless, Barron and Luecking (1990) 

found that the maximal inhibition of growth was produced at an iron (II) concentration of 

20 g/L (0.35 M). Their results differ from those obtained in the present work since at this 

iron concentration the growth of the cells still occurred. However, the authors did not 

evaluate how the presence of iron affect their activity along time, so at the beginning of 

the experiments carried out in this work 0.35 M of iron really inhibits the biological activity 

as Barron and Luecking (1990) affirmed. This fact implies that the time exposure results 

an important factor to take into account although most of the studies that focused their 

research on the effect of iron (II) concentration to Acidithiobacillus ferrooxidans did not 

pay attention to this parameter. In addition, it is noteworthy that the authors usually 

measured the effect of substrate inhibition by the evaluation of iron (II) concentration 

along time, assuming that low velocities implied substrate inhibition. However, in this 

work the evaluation was performed by the direct and instant measurement onto the 

biomass of their respiration rate. For this reason, the methodology introduced in this work 

for this kind of assays could supply more information than those techniques used in the 

studies mentioned above.  

 

8.3.3. Effect of starvation and feeding resumption on Acidithiobacillus 

ferrooxidans culture 

 The previous section showed that the microorganisms lose their activity 

depending on the iron concentration of the medium. However, the results were 

expressed as a relative loss of activity since the microorganisms lose activity during the 

experiment due to the lack of nutrients. Despite it could be interesting to know the limits 

of this biomass to be used in systems like bioleaching pilot plants at industrial scale, this 

aspect has not been studied before. For this reason, the effect of feed lacking (until 

observing a decrease greater than 90% in the biological activity) was evaluated along 

time in order to observe how long the Acidithiobacillus ferrooxidans can resist without 

the addition of energy source.  
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Therefore, a re-feeding sample after energy source shortage was studied in this 

experiment. This consisted on taking a sample once all iron (II) ions were biologically 

oxidized. Then, 6 g/L of iron (II) and the rest of salts composing 6K medium were added 

to the biological sample. The culture evolution after the preceding starvation period and 

the resumption phase were evaluated by the determination of the respiration rate and 

the concentration of viable cells along time (Figure 8.8). It is noteworthy that the 

concentration of viable cells was measured by cell counting with the Neubauer chamber 

due to it facilitates the observation of changes in cell concentration by this method in 

long-term experiments. 

 

Figure 8.8. Time evolution of cell concentration and respiration rate during the experiment of starvation and 

reactivation of Acidithiobacillus ferrooxidans. 

 

As can be observed in Figure 8.8, the respiration rate increased 15 mg/L h during 

the first 72 hours when the microorganisms were fed, which corresponds to the growth 

period. Consequently, the cell concentration also increased in this period from 104 to 106 

cells/mL. Then, on the starvation period it is noteworthy that the respiration rate of the 

sample obtained the lowest value at 550 h. In this case, this coincided with an important 

decrease of the cell concentration, which values remained low during the following 122 

hours. It means that the culture of Acidithiobacillus ferrooxidans, although being affected 

by the feed lacking along time, they could resist 550 h without the addition of the mineral 

medium salts. Park et al. (2005) reported that the cell concentration increased after 250 

h despite not having iron (II) in the medium to their growth. This also confirmed that the 

iron-oxidizing bacteria could resist periods without iron addition, maintaining their normal 

activity. In addition, despite the loss of 90% of the bacterial activity after 550 hours, the 
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concentration of cells increased again when new mineral medium salts were added. In 

particular, the concentration of viable cells increased from 105 to 107 in 48 hours. This 

increasing was also reflected in the respiration rate, since the bacteria doubled the 

oxygen consumption during this period of time. Hence, the results demonstrated that the 

microorganisms could resist until 550 hours without feeding but they could be quickly 

reactivated again if they are fed after this time.    

 In this experiment, the evolution of iron (II), iron (III) and total iron concentrations 

along time were also measured, as shown in Figure 8.9, in order to relate them with the 

oxygen consumption and the cell concentration. Total iron was only measured during the 

first 380 hours of the experiment due to the constant results obtained through more than 

300 hours. As it was expected, all iron (II) ions were consumed in the sample during the 

first 50 hours, indicating that the microorganisms oxidized them. This leads to an 

increase on cell activity and cell concentration (Figure 8.8). After this time, since there 

was no iron consumption, both the cell concentration and oxygen consumption did not 

increase. In fact, these two parameters remained constant until 380 hours. Moreover, 

the total iron concentration resulted in higher concentrations in comparison to the iron 

(II) concentration of the medium where they growth initially (around 6000 mg/L) due to 

the addition of more iron salt at the beginning of the experiment.  

 

 Figure 8.9. Iron concentrations during the starvation experiment of Acidithiobacillus ferrooxidans. 

According to Molchanov et al. (2007), most of the works published in relation to 

the growth kinetics of Acidithiobacillus ferrooxidans have reported competitive product 

inhibition based on the Monod model (Eq. 8.4). For this reason, from the data obtained 

in the experiment, in particular from the iron (II), iron (III) and biomass concentrations, 

the kinetic model was adjusted.  
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       (8.4) 

Thus, adjusting the experimental values to a Monod model with a competitive 

product inhibition, it is obtained that the µmax is 0.10 h-1 whereas the Ks is 95.2 mg/L of 

iron (II) and the Kp is 161 mg/L of iron (III). These values are consistent with other studies 

that also adjusted a competitive product inhibition for Acidithiobacillus ferrooxidans 

(Gómez et al. 1996; Liu et al. 1988). In particular, Gómez et al. (1996) obtained a µmax of 

0.14 h-1, and a Ks and Kp of 0.94 g/L for iron (II) and 0.31 g/L for iron (III), respectively. In 

the case of Liu et al. (1988), they obtained a µmax of 0.11 h-1, and a Ks and a Kp of 0.05 

g/L of iron (II) and 0.44 g/L of iron (III), respectively. Although both studies, as well as 

the present one, adjusted the same kinetic model for Acidithiobacillus ferrooxidans, the 

discrepancies in the results may be associated to the differences in cultivation conditions, 

despite not being very pronounced. Specifically, Liu et al. (1988) cultivated the strain at 

initial pH 1.8 and 35 ºC, whereas Gómez et al. (1996) cultivated it at initial pH 2.0 and 

30 ºC, and an initial pH of 1.75 and a temperature of 30 ºC were used in the present 

work.  

Regarding to the studies focused on the lack of feed, no more similar studies 

were found in the literature, may be since the authors, in general, did not focus on this 

aspect. Nevertheless, this is an important point to consider, if the process is intended to 

be performed at industrial scale, since maintenance procedures as cleaning tasks or 

plant breakdowns could cause the feed to lack during some periods. For these cases, 

results demonstrated that the strain ATCC 23270 Acidithiobacillus ferrooxidans 

responds well to short periods of feed lacking, being resistant up to 550 hours (more than 

20 days). In addition, if they are fed again after this time, they could be quickly reactivated 

without negative consequences to the system. 

 

8.4. Conclusions 

From the results obtained in the toxicity experiments, it was concluded that the 

presence of leached metals affects the activity of the microorganisms. In particular, the 

presence of copper, nickel and aluminium in the biological solution where the 

microorganisms were grown, affects their activity, depending on the concentration of 

those metals as well as on the time of contact. Among the metals studied, aluminium 

turned out to be the most toxic metal, since its effect on biological activity was higher in 

shorter time and at lower concentration than that of nickel or copper. Aluminium resulted 
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in the complete inactivation of the cells at 0.5 M of aluminium in just a few minutes of 

contact. In contrast, nickel was the least toxic metal in the present study, since the total 

inactivation was found at 1.5 M of nickel after 48 hours of contact. Copper also was toxic, 

but in this case, it took 27 hours of contact at a concentration of 1.2 M to inactivate the 

microorganisms. Hence, aluminium turned out to be more toxic than copper, which, in 

turn, was more toxic than nickel. In all cases their toxicity was clearly observed after 48 

hours, although the most toxic concentrations were noticed from the beginning, 

especially for aluminium of which all the concentrations turned out to be toxic from the 

first instant of contact. This aspect has an important effect in the bioleaching process, 

especially when the leaching solution needs to be recirculated as well as when the 

biological iron oxidation and the leaching reactions are carried out in the same place. 

Hence, the results of the toxicity assays reinforce the importance of separating the 

oxidation step from the leaching one during the bioleaching process.     

In the present work an inhibition of Acidithiobacillus ferrooxidans by the substrate 

Fe2+ at concentrations over 0.75 M was demonstrated. Moreover, the experimental data 

was adjusted to a Monod model for competitive product (iron (III)) inhibition, obtaining 

that µmax was 0.1 h-1, Ks was 9520 mg/L for iron (II) and Kp was 161 mg/L for iron (III). In 

detail, an iron (II) concentration over 0.75 M inhibited completely the activity of the 

microorganisms after 4 hours of contact and this lasted for the rest of the experiment. 

However, at lower iron concentrations the inhibitory effect suffered during the first contact 

hours was reversed, increasing the biological activity by the use of iron as an energy 

source for their growth. This means that the biomass showed a high adaptation capacity 

to changing conditions. Not only toxic metals could cause a decrease of the biological 

activity, since this work demonstrated that starvation would also produce this effect. From 

the results, it was also possible to conclude that Acidithiobacillus ferrooxidans could stay 

28 days (672 hours) without the addition of the mineral medium salts, including iron, 

without being completely inactivated and incapable to divide. This fact becomes relevant 

when the biological processes take place at industrial scale because maintenance 

procedures or technical problems could delay the process and the feeding for long 

periods of time. The results verified that the limit time for not producing a complete 

inactivation of the cells was 550 hours. However, despite of this loss of activity, the 

microorganisms could be reactivated in 24 hours, if they were fed again. 
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This chapter is clearly the most ambitious of this thesis, since all the knowledge 

learned in previous chapters was applied to develop a process based on bioleaching to 

recover copper from printed circuit boards by a column reactor. This kind of system is 

interesting since at industrial scale keeping the waste in suspension could be an 

operation limitation. The first approach was to study the effect of key parameters that 

can modify the efficiency of the metal recovery in the process such as pH control, the 

use of packing materials to improve mass transfer and a decrease of operation time. The 

main objective was to find the best operational conditions to obtain the maximum copper 

recovery in the minimum time possible performing the process in a column reactor. 

Moreover, this study will allow to get knowledge of the process for scaling-up purposes 

and, thus, assess the applicability for an industrial scale.  

 

Abstract 

In this chapter, a column reactor was investigated to recover copper from electronic 

waste by means of a bioleaching technique. In particular, key parameters were studied 

in order to optimize the process to obtain the maximum recovery rate at minimum time. 

For this purpose, the study was focused on the effect of pH control, the dosage of e-

waste treated, the particle size and the use of packing materials. In addition, two different 

supports for the waste inside the column were evaluated as well as different operating 

modes. The results demonstrated that it was possible to recover copper from the scrap 

using a column reactor, obtaining a significant amount of the metal in less than 48 hours. 

It was found that a particle size between 0.2 and 1.0 mm of diameter, with a dosage of 

7.5 g/L of PCB using a plastic packing material and a porous support for the waste 

allowed to recover 88% of copper in 48 hours when the pH was adjusted at 1.75. These 

results improved the efficiencies reported in the literature in column reactors, since the 

time required for extraction was drastically reduced without losing effectiveness. 

Additionally, a new strategy was developed to increase the reaction rate and to overcome 

transport limitations for the leaching solution, achieving copper recoveries of up to 80% 

in just 6 hours, which has never been reported previously. 
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A modified version of part of this chapter has been published as: 

Benzal, E., Cano, A., Solé, M., Lao, C., Gamisans, X., Dorado, A.D., 2020. Copper 

recovery from PCBs by Acidithiobacillus ferrooxidans: Toxicity of bioleached metals on 

biological activity. Waste and Biomass Valorization, 11, 5483-5492. 



 
Chapter 9: Column bioleaching to recover copper from e-waste 

 

157 
 

9.1. Introduction 

The rapid increase of the e-waste in the world makes necessary the use of an 

effective industrial methodology to treat them. The bio-heap leaching process is one of 

the most used in commercial applications, especially for the recovery of copper from low-

grade ores and mineral concentrates (Brierley 2001; Olson et al. 2003). Hence, bio-heap 

could be of a great alternative for the e-waste recycling at industrial scale. Column 

leaching is used to simulate heap or dumps leaching processes but with the advantage 

of giving information about what could be expect inside the dump or the heap, allowing 

the optimization of the process (Ilyas et al. 2013; Muñoz et al. 1995; Qiu et al. 2011). 

There is not much information on literature about column reactors in e-waste bioleaching 

studies since most of them are focused on the bioleaching in flasks, and those who 

focused on the column leaching have much longer operating times. Ilyas et al. (2013) 

carried out the leaching process in flasks and in column reactors in parallel, studying the 

best conditions to obtain the highest copper recovery. To achieve 85% of total copper 

recovery they spent 18 days using flasks and 165 days using the column. Hence, they 

did not observe any improvement when the column was used but they concluded that 

their work showed the practicability of biotic electronic scrap leaching using this kind of 

systems. In addition, Chen et al. (2015) also studied the column leaching process but, in 

this case, they needed 28 days to recover 95% of the total copper contained in the e-

waste treated. It is noteworthy that they carried out the experiments at initial pH 2 using 

50 g/L of e-waste and the leaching solution was pumped at the rate of 40 mL/min. 

However, Ilyas et al. (2013) worked at the same initial pH but with 5 kg/L of e-waste and 

the rate of the leaching solution was 50 mL/min. Nowadays, as it has been above 

mentioned, the column leaching is performed at industrial scale to retrieve metals from 

low-grade ores but the efficiency of the process is low and many days of operation are 

required (Gu et al. 2018; Pradhan et al. 2008). 

As in batch bioleaching, the process could be affected by some parameters when 

it is performed in column reactor. The main parameters that affects the process include 

the pH, the PCB dosage, the particle size of the PCB, the operating time as well as the 

solid-liquid contact system. It has been studied, and also demonstrated in Chapter 6, 

that the pH control allows a better process when it is carried out in batch conditions since 

the maintenance of the pH under 2.0 avoids iron precipitation (Baniasadi et al. 2019). In 

addition, the particle size is also relevant 

increase the specific contact surface, which improves the recovery yield, but very low 

particle size could negatively affect the process (Dorado et al. 2012). In this sense, very 
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low particle size could agglomerate and compact the column, hindering the percolation 

of the leaching solution through the e-waste. Moreover, crushing into small particles 

consumes energy which increased the cost of the process (Ahonen and Tuovinen 1995; 

Gu et al. 2018). There are studies demonstrating that some of the above-mentioned 

parameters could improve the process in batch conditions, however, in column reactor 

these factors have not been studied yet. Hence, deepen the effect of these parameters 

in column bioleaching field is necessary in order to step forward in the investigation.  

The aim of the tasks presented in this chapter was to evaluate the bioleaching 

process to recover copper from the e-waste by a column reactor. In this regard, different 

parameters were assessed as the effect of the pH control, the performance in a flooding 

column, the effect of the particle size, the PCB dosage and the use of structuring inside 

the column reactor. Finally, the best conditions found were implemented in the column 

reactor to achieve the maximum metal recovery, evaluating the time operation required 

for this purpose. Moreover, a new strategy overcoming limitations detected was 

developed in order to reduce the experimental time without losing the efficiency of the 

process. 

 

9.2. Materials and methods 

9.2.1. Electronic scrap 

 The PCB used for the column leaching experiments come from end-of-life mobile 

phones collected from the recycling plant Electrorecycling S.A. (El Pont de Vilomara, 

Spain). The plastic components were removed from the mobile phones and the main 

electronic components (resistors, capacitors, chips...) were separated. In order to obtain 

the desirable size, the PCBs were crushed and sieved in two different size ranges: 

particles between 0.2 and 1.0 mm of diameter and particles above 1.0 mm of diameter. 

As it was mentioned in Chapter 6, Wang et al. (2009) demonstrated that particles lower 

than 1.0 mm of diameter obtained higher metals extraction than particles over this size 

in batch bioleaching conditions. Hence, all the experiments were performed with the 

small particles (0.2  1.0 mm), in general, and the biggest ones were used to evaluate 

the effect of the particle size. In this way, the results will be comparable to those obtained 

in batch conditions. Moreover, Ahonen and Tuovinen (1995) found that working with a 

particle size between 1.68 and 5 mm of diameter in a column of 9 cm of diameter 

achieved the best metal efficiencies in ore bioleaching. Thus, a similar relation was used 

herein (0.2  1 mm of particle size in 3 cm diameter column).  
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9.2.2. Leaching solution 

The leaching solution used in the column experiments was obtained from the 

biological reactor in which Acidithiobacillus ferrooxidans were cultivated where 6K 

mineral medium was used for  growth (for detailed composition, see 

table 4.2 in section 4.1.1 in Chapter 4). This solution mainly contains bio-oxidized iron 

(III) among other inorganic salts. However, there were also some precipitates inside. For 

this reason, the leaching solution was always settled during 2 hours in a beaker before 

the experiment in order to reduce the interferences that the precipitates could cause.  

9.2.3. Bioleaching experiments 

All the experiments in this chapter were performed in a column reactor (Figure 

9.1). It consists of a PVC cylinder tube of 10 cm height with an internal diameter of 3 cm. 

The column was filled with the electronic scrap (7.5 or 15 g/L, depending on the 

experiment) mixed with plastic particles between 1 and 3 mm of diameter as structuring, 

also depending on the experiment. These plastic particles were obtained by crushing the 

plastic housing and structure of the mobile phone. In order to keep the scrap inside the 

column two different methods were used: a net support and a porous support. The net 

support consists on a mesh of cellulose in which the PCB were introduced. In this way, 

the leaching solution was forced to pass through the scrap retained in the net. The porous 

support consisted on a support of polyurethane foam located in the bottom of the column, 

placing the PCB over it. Hence, the scrap was located freely in the column whereas in 

the mesh support, the scrap was locked in the net.  Moreover, a reservoir was 

incorporated to facilitate the sampling and the measurements of pH and ORP during the 

experiments. Hence, the reservoir was filled with 400 mL of the leaching solution. As it 

was explained, the supernatant of the leaching solution containing the bio-oxidized iron 

(III), which was previously settled, was used. This solution was pumped inside the 

column using a spray nozzle (model EUSPRAY-I1MX3) at a rate of 54 mL/min by a 

peristaltic pump (model 77200-12, Masterflex), resulting in a leaching rate of 0.13 cm/s. 

Samples for iron and copper measurements were taken every hour from the reservoir, 

as well as pH and ORP measurements. Simultaneously, the pH was controlled at 1.75 

by the dropwise addition of 3 N H2SO4, excepting in the experiment carried out without 

pH control. 
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Figure 9.1. (a) Diagram of the column reactor and (b) the column reactor used in the experiments. 

 

9.3. Results and discussion 

9.3.1. PCB composition  

Chen et al. (2018a) demonstrated that the metal composition of PCBs is very 

diverse, depending on the device type and its year of construction. In particular, they 

carried out the characterization of the metals contained in 36 mobile phones from 

different year and manufacturer. makes the 

repeatability of experiments difficult. In addition, Khaliq et al. (2014) compared the metal 

composition of PCBs from different studies, observing, for instance, that the copper 

content varied from 6.9 to 20% or the nickel content varied from 0.28 to 2%. This fact 

implies that the composition of the e-waste could not be generalized, so a previous 

analysis is necessary before the bioleaching process. Therefore, an acid digestion of the 

PCB used herein and its metal analysis were performed by a microwave apparatus and 

atomic absorption spectroscopy, respectively (the description of both procedures are 

described in sections 4.2.3 and 4.2.4 in Chapter 4). The analysis was performed with 

particle size between 0.2 and 1.0 mm of diameter. With that, the PCB average content 

of Cu, Ni, Fe, Ag, Au, Al, Pd, In, Sn, Pb, Co and Mn in g/kg was 390.38, 11.51, 1.95, 

0.19, 0.80, 1.33, 0.15, 0.12, 28.92, 16.16, 0.14 and 0.58, respectively (Figure 9.2). The 

total metal content per kilogram in the PCB was 452.23 g and from the data obtained, 

Cu was found as the major component.  
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Figure 9.2. Metals composition of the PCB used in the experiments. 

 

Despite the heterogeneity of the PCBs mentioned above, Oliveira et al. (2010) 

demonstrated that the metal distribution also depends on the particle size fraction. In 

particular, they concluded that the major elements such as copper, tin and lead had 

higher concentrations in the particle size range of 0.3 and 1.5 mm and they substantially 

decrease in lower fractions. In the case of gold and silver, their distribution seems to 

decrease when increasing the particle size but they did not obtain clear results.   

However, the authors affirmed that in fine fractions (lower than 0.3 mm) a sort of fluffy 

material, which mainly contains organic resins, prevailed. In addition, Bizzo et al. (2014) 

demonstrated that the fraction with particle size below 1.18 mm had a higher inorganic 

material than the fraction over this size. Moreover, these authors also affirmed that the 

smaller fractions concentrate larger amount of metal. 

Given these results and taking into account the analysis of metal content, this 

work was performed with the particle size between 0.2 and 1.0 mm of diameter. It was 

also analysed the copper concentration in the PCB sample when the particle size was 

between 1.0 and 3.0 mm of diameter, as well as with the particles of 5.0 and 10.0 mm. 

In this case, only copper was analysed since it is the metal evaluated for extraction in 

the following experiments. Surprisingly, the results were quite different. Whereas the 

fraction between 0.2 and 1.0 mm of diameter obtained 39% of copper in their 

composition, the copper content in size 1.0 - 3.0 mm was only 7%. Nevertheless, the 

copper content of the particles of 5.0 and 10.0 mm were 19.3 and 29.7% of copper, 

respectively. These important differences are associated to the heterogeneity of the PCB 

sample, which indicated that the copper metal is easily crushed. Thus, most of the copper 

contained in the scrap was obtained in the range size under 1.0 mm. Oliveira et al. (2010) 
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found that the higher the particle size, the lower the copper concentration, but they 

performed the experiments until 3 mm. Therefore, the results found in this work are in 

accordance to Oliveira et al. (2010) in this range size but this work demonstrated that 

this affirmation was not correct when higher particle size are analysed. For this reason, 

it is important to analyse the copper content of the particle size used in each experiments 

for non-erroneous conclusions. As mentioned in section 9.2.1, all the experiments were 

performed with the particle size between 0.2 and 1.0 mm and just in case to study the 

effect of the particle size in column reactor, the particles above 1.0 mm were used.   

9.3.2. Effect of pH  

As it was observed in Chapter 6, pH resulted an important parameter in batch 

bioleaching experiments since a pH increase could produce the precipitation of metals 

like iron. Hence, the first approach was to evaluate the bio-extraction process performed 

in a column reactor, focusing on the effect of pH adjustment. To hold on the scrap inside 

the column, a mesh support was used. The experiment was performed with a PCB dose 

of 15 g/L at room temperature, using a particle size between 0.2 and 1.0 mm of diameter. 

The total iron concentrations are shown in Figure 9.3, as well as the copper recovery 

during the experiments. 

 

Figure 9.3. Iron and copper evolution in the column reactor when the pH was adjusted (AD) and not adjusted 
(NAD). 

 

Similar recoveries of copper were achieved after 29 experimental hours (about 

50%), although the metal was faster recovered when the pH was not adjusted in the first 

5 hours. Moreover, it is noteworthy that in both cases two different tendencies were 
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observed during copper extraction. In the first hours, copper was recovered faster than 

the following hours. In particular, about 30% of copper was recovered in just 6 hours 

whereas the remaining 20% of the recovery achieved was obtained after 23 hours of 

experimentation. In the case of the total iron concentration, the behaviour was quite 

different. When the pH was adjusted, the iron concentration remained constant whereas 

it significantly decreased when the pH was not adjusted. Given bioleaching mechanism, 

a decreasing on copper recovery when there was less iron in the solution was expected 

since the iron is the responsible of copper solubilisation. Nevertheless, the recovery of 

copper followed similar trends, despite observing a decrease in iron concentration in one 

of them. It is possible that the excess of iron at the beginning of the experiment 

contributed to, despite the amount of precipitated iron, keep enough iron in the solution 

to solubilise the copper from the scrap. Regarding iron decreasing, the iron concentration 

was reduced more than 2000 mg/L when the pH was not adjusted in the solution. This 

means that iron precipitated because of pH increasing, as it could be corroborated in 

Figure 9.4 where the pH values along time are represented.  

 

Figure 9.4. Evolution of pH in the column reactor when the pH was adjusted (AD), when it was not adjusted 
(NAD), and the volume of drop addition of 3 N H2SO4 in the case of adjusting pH. 

 

The pH rose up to pH 2.5, when it was not adjusted, producing the iron 

precipitation. Moreover, although the pH increase was not very high, it is noteworthy that 

this fact had an important effect on iron precipitation, since almost 40% of the initial iron 

concentration precipitated. According to Valix (2017) and Baniasadi et al. (2019), an 

increase of pH over 2.0 results in the formation of iron oxyhydroxides through ferric ion 

hydrolysis. Moreover, given that there is a lot of sulfate, iron precipitation can be also 
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caused by the formation of iron hydroxyl sulphates like jarosite or schwertmannite (Liao 

et al. 2009). As explained in Chapter 6, the pH increase was related to the electronic 

scrap, since it has been reported to be alkaline in nature although no previous studies 

have been focused on what component produced the alkalinity observed. Although the 

oxidative dissolution of elementary copper consume protons from the sulphuric acid, thus 

alkalinising the medium, this can not be the reason of the alkalisation observed since 

this oxidative reaction has a low kinetic, occurring after 90 hours of experiment (Bas et 

al. 2013). However, it was suggested that the depolymerisation of the plastic components 

of the e-waste could cause the alkalisation (Valix 2017).   

Regarding the acid addition when the pH was controlled, it is noteworthy that a 

total consumption of 0.075 moles of protons were needed to maintain pH below 1.8, 

which corresponds to a total volume of 2 mL of 3 N H2SO4 approximately. It is noted that 

the initial pH in the experiment when the pH was controlled was nearly 1.5 and despite 

the pH was increasing during the experiment, it did not rise pH 1.8 until day 22 when the 

acid addition was needed. Acid addition can contribute to improve the leaching efficiency 

indirectly by ensuring the iron cycle proceed well since it is important to maintain the iron 

concentration in solution during the experiment in order to avoid precipitates which 

decrease the availability of iron (III). Moreover, it also results important to maintain the 

highest possible iron concentration in solution to allow a cyclic process, which reuses 

the reduced iron (II) obtained after leaching as feed again for microorganisms, without 

the need of adding new iron (II) in the process. 

As found in batch bioleaching experiments, the pH adjustment results essential 

to avoid iron precipitation. Moreover, this precipitation was more pronounced when the 

pH was not adjusted in batch conditions since 23.6% more iron was precipitated in 

comparison to column experiments without pH control. This fact is associated to the 

process itself because of the disposition of the e-waste inside the column since the solid-

liquid contact is more limited in this case and, thus, the alkalization of the leaching 

medium by the scrap is also reduced, decreasing the amount of iron precipitated. 

Nevertheless, under pH control the precipitation of iron was significantly reduced in both 

cases, obtaining a maximum precipitation of 7.8% and 15.6% of the iron in flask and 

column bioleaching, respectively. In this sense, both experiments verified that the pH 

adjustment was necessary in bioleaching processes. Hence, given the reduction on iron 

precipitation and the fact that no high volumes of acid were needed to achieve a pH 
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below 1.8, the pH adjustment was applied in the following experiments performed in 

column reactor.  

9.3.3. Evaluation of iron (II) chemical oxidation and its effect on copper extraction 

 As it has observed in previous experiments, iron (III) is the main responsible of 

copper extraction in bioleaching processes. In these processes, iron (III) is provided by 

the biological oxidation of iron (II). However, it might occur that the microorganisms do 

not oxidize all the iron (II) due to a decrease on their activity or also a decrease on their 

concentration. This fact would cause the pumping of iron (II) to the column before being 

completely oxidized. For this reason, copper extraction was evaluated when mineral 

medium with iron (II) was used instead of mineral medium with only iron (III) as usual. In 

this way, chemical oxidation of iron (II) was evaluated at the conditions tested in the 

column reactor, which would imply the oxidation of the metallic copper from the e-waste. 

Hence, two experiments were carried out, one with mineral medium and iron (III) and the 

other replacing iron (III) by iron (II). In both cases, the pH was adjusted between 1.7 and 

1.8 by the dropwise addition of 3 N H2SO4 and the mesh support was used. As in 

previous experiments, 15 g/L of PCB was used with a particle size between 0.2 and 1.0 

mm. The evolution of iron (III) concentration and copper recovery along time are shown 

in Figure 9.5. 

 

Figure 9.5. Evolution of iron (III) concentration and copper recovery over time in the column reactor when 
bio-oxidized iron (III) was used in the leaching solution (BO) and iron (II) was used (NBO). 

 

When iron (II) was used instead of iron (III) in the leaching solution insignificant 

oxidation was produced because the concentration of the ferric ion did not practically 
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increase. Nevertheless, the copper recovery obtained in this case was 8.4%. On the 

contrary, when bio-oxidized iron was used, it was noticed that its concentration 

decreased, especially at the beginning of the experiment when the copper recovery was 

more pronounced. This experiment corroborated that iron (II) was not chemically 

oxidized at this pH in the column reactor and, in consequence, no copper was retrieved. 

The 10% of copper recovered in this experiment was associated to the remaining iron 

(III) present in the solution. Hence, it was considered that iron (III) was the main 

responsible of copper extraction in column bioleaching at the conditions tested. 

Regarding again the copper recovered when iron (II) was used, 8.4% of copper 

was extracted in 30 hours, which corresponds to a copper concentration of 455 mg/L. It 

is noteworthy that a maximum of 488 mg/L of iron (III) was oxidized during the experiment 

but this iron could only solubilise 277 mg/L of copper in accordance to the stoichiometry 

of the leaching reaction (Eq. 9.1). 

   (9.1) 

Hence, the oxidation of copper, and so its extraction, was produced by other 

factors apart of the iron (III). Torres and Lapidus (2015) affirmed that copper is solubilized 

by the presence of oxygen in the acidic medium. Moreover, Bas et al. (2013) also 

corroborated this effect in their experiments. Nevertheless, none of them performed the 

experiment in the absence of oxygen to proof this statement.  For this reason, 100 mL of 

mineral medium without iron at pH 1.75 and 0.75 g of e-waste were introduced in a glass 

vial and the oxygen was removed by sparging nitrogen gas into the vessel. In this way, 

the nitrogen gas allows to displace the oxygen found inside it. Then, the vessel, 

previously sealed, was incubated at 30 ºC for 30 days, analysing the copper 

concentration in the liquid after this time. Results showed that 0.44% of copper was 

extracted from the scrap in the experiment, which means that the acidic medium was not 

able to solubilise the copper without the oxygen presence. Thus, this experiment 

confirmed that the oxygen in acidic medium is the responsible of copper extraction when 

there is no iron (III) in the leaching solution. Nevertheless, Bas et al. (2013) observed 

that the kinetics of copper oxidation by this reaction are very slow since they recovered 

18% of copper in 90 hours at pH 1.75 and 30 ºC. Therefore, despite the presence of 

oxygen in acidic medium, copper will be firstly leached by the effect of iron (III) when the 

process takes place in short periods of time since this reaction will predominate at these 

conditions. 
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9.3.4. Improvement of solid-liquid contact 

 In batch conditions, it was possible to achieve around 90% of the total copper 

contained in the PCB whereas in the column reactor it did not exceed 51% of copper 

extraction. One of the main differences between these systems is the distribution of the 

e-waste and their contact with the leaching solution. Thus, it is possible that mass 

transfer limitations occurred in the column system used since the solid-liquid contact 

area in this case is less than in batch conditions using flasks in which the scrap is 

continuously submerged in the leaching solution. Assuming that there is a mass transfer 

limitation between solid-liquid contact due to the scrap disposition, the column reactor 

was evaluated in the conditions used in batch experiments. This means that the column 

was flooded with the mineral medium while the leaching of PCB takes place. So that, 15 

g/L of PCB (0.2  1.0 mm of diameter) were introduced in the column reactor using the 

mesh support to hold the scrap. In this case, the pH was also adjusted between 1.7 and 

1.8. Figure 9.6 gives information about copper recovery and iron (III) concentration along 

time during the experiment. 

 

Figure 9.6. Copper recovery and iron (III) concentration over time when the effect of flooding the column 
was investigated (NFC, not flooding column; FC, flooding column). 

 

 Figure 9.6 shows that copper recovery increased in both cases but the flooding 

column obtained less copper extraction from the beginning. In particular, 44% of copper 

was recovered in the usual column whereas 35% of copper was recovered in the flooding 

column in the same period time. On the contrary as it was though, flooding the column 

did not contribute to obtain better results. This means that the solid-liquid contact wat not 

enough and some parts of the scrap were still inaccessible for leaching solution, so not 
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all copper was extracted. This fact is related to the possible compaction of the e-waste 

inside the column since when the bioleaching takes place in flasks, they are continuously 

stirred during the whole process, making it impossible to compact the waste in this case. 

However, in column reactor the PCBs are immobilized in the mesh in which the scrap is 

hold. As it has observed, not all copper was extracted and this was also noticed on iron 

(III) evolution since it could be appreciated that it remained non-reacted iron (III) in the 

solution, indicating that there was a contact limitation between the iron and copper ions. 

Given that the process is based on a superficial phenomenon, the PCBs compaction 

would limit the contact between ions, thus the iron could not react with the copper found 

in the deepest parts of the treated waste. Additionally, the difference on the initial iron 

(III) concentration was associated to the use of biological leaching solution that come 

from the biological oxidation of iron. It is assumed that, despite the mineral medium to 

feed the microorganism contained 6 g/L of iron (II), not all the iron was oxidized when it 

was used. Nevertheless, the iron behavior during the experiment in both cases were 

quite similar and so the amount of iron (III) consumed. This fact would mean that similar 

copper extraction has to be obtained, however, more copper was extracted in the case 

of non-flooding column. From a stoichiometric point of view, the iron (III) consumed in 

both cases could extract 1600 mg/L of copper approximately, which corresponds to the 

total amount of copper recovered in the flooding column. On the contrary, in non-flooding 

conditions it was retrieved more copper than it should have been obtained by iron. It is 

assumed that, under non-flooding conditions, the mass transfer of oxygen to the medium 

easily occurred due to the movement of the leaching solution itself through the column. 

This incorporation of oxygen in the liquid favors the reaction between it and the copper 

because of the acidic conditions in which the process takes place (Bas et al. 2013; Torres 

and Lapidus 2015). 

 This experiment leads to continue improving the mass transfer limitations 

detected when a column system is used. For this reason, the experiments were focused 

on how to improve the holding system for the scrap inside the column. Until now the 

experiments in the column reactor were performed using the net support (Figure 9.7a). 

However, after observing that the extraction was not completed, even in the case of 

flooding the column, a new hold on system was evaluated. In this case, a porous support 

(polyurethane foam) was used (Figure 9.7b). In order to maintain the same conditions 

than the previous experiments, the pH was adjusted to pH 1.7  1.8 and 15 g/L of PCB 

with a particle size between 0.2 and 1.0 mm were treated. 
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Figure 9.7. Diagram of (a) the net support and (b) the porous support (b) used to hold the scrap inside the 
column reactor. 

 

 As Figure 9.8 depicts, better recovery was achieved when the porous support 

was used in just 6 hours. In a closer inspection, 37% of copper was obtained from the 

PCB when the porous support was used while 26% was achieved with the mesh one. 

Despite not having a big difference on metal recovery, it is noteworthy that all the iron 

(III) from the leaching solution reacted when the porous support was used, decreasing 

from 3585 mg/L to 280 mg/L in 6 hours. In the case of the mesh support, only 2250 mg/L 

of iron (III) reacted in this period of time. Hence, although the iron (III) was in solution 

when the net support was used, it did not completely react. This means that the contact 

between iron and copper was not enough and, thus, there was some internal points in 

the scrap in which iron could not access. The improvement in the contact between the 

leaching solution and the e-waste is related to the hold system itself. As shown in Figure 

9.7b, the porous support forces the leaching solution to pass through the bed of PCB 

whereas in the net support the leaching solution may pass around the bed, thus 

preventing the leaching agent from accessing all the particles treated.  Moreover, the 

fact that all the iron (III) has reacted with the copper contained in the PCB when the 

porous support was used means that no more copper could be recovered. Hence, the 

copper recovery using this support was the maximum that can be recovered at the 

conditions tested, since the reaction was chemically limited and, consequently, the 

complete extraction of copper was not achieved. Moreover, in this experiment the 

difference on the initial iron (III) concentration was more pronounced, but, as mentioned 

above, it is likely due to the use of the leaching solution before the complete biological 

oxidation of iron (II). It clearly demonstrated that the porous support allowed improving 

the contact between the leaching agent and the scrap, although further experiments are 

still necessary to achieve better recoveries. 



 
Chapter 9: Column bioleaching to recover copper from e-waste 

 

170 
 

 

Figure 9.8. Copper recovery and iron (III) concentration when two different supports for the e-waste were 
used in the column reactor: the mesh support (MS) and the porous support (PS). 

 

9.3.5. Effect of the particle size  

The porous support improved the contact between the iron and the copper 

contained in the scrap. However, the contact still was not enough since not all copper 

was retrieved. So that, the limitation of the extraction process is the contact between 

copper and iron ions. For this reason, it is necessary to focus on this aspect and 

investigate strategies to improve such contact. In batch bioleaching it has been observed 

that one factor that can influence the process is the particle size (Shah et al. 2015; Wang 

et al. 2009; Zhu et al. 2011). In general, the percentage of metals solubilized into leaching 

solution increases when the particle size is reduced due to the increase of the surface 

area per unit mass (Wang et al. 2009; Zhu et al. 2011). This implies that the mass transfer 

improves and, thus, the bioleaching rates are enhanced (Lotfalian et al. 2012). 

Nevertheless, when the particle size is too small, the metal extraction decrease due to 

the development of thick slurry, which increases the apparent viscosity of the medium 

created by the small particles (Shah et al. 2015). It has to take into account that the size 

reduction not only requires a great amount of energy for crushing process since it also 

depletes a considerable amount of steel due to the deterioration of grinding media and 

machine lines, which increases the cost of the process (Lotfalian et al. 2012; Zhou et al. 

2019). Hence, it is important to find the optimum grain size to improve the bioleaching 

recoveries but also considering the economic aspects. In addition, as mentioned in 

section 9.3.1, the copper content varies from one size to another. This could also affect 

the recovery of the metal, since not all the size fractions contain the same amount of 

copper. Therefore, this is another important factor when selecting a particle size. 
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In this sense, the use of particles between 1.0 and 3.0 mm of diameter as well as 

particles of 5.0 and 10.0 mm was evaluated, comparing the results to those obtained in 

previous experiments in which only particles between 0.2 and 1.0 mm of diameter were 

used. In order to test the use of big particles as a packing material to improve the solid-

liquid contact inside the column, the use of the PCB with a particle size between 0.2 and 

1.0 mm (50%) mixed with particles between 1.0 and 3.0 mm of diameter (50%) was also 

evaluated. Results of copper recoveries in these experiments are given in Figure 9.9. 

Copper was recovered in all the assays tested, although the extraction was 

produced mainly in the first two hours. This may be due to solid-liquid contact limitation. 

Despite of that, differences on copper recovery were observed when different particles 

sizes were used. In particular, more copper was obtained when particles between 0.2 

and 1.0 mm were used during 6 hours (37%) comparing to the recovery obtained with 

the other sizes. In these cases, particles between 1.0 and 3.0 mm obtained an extraction 

of 15.7%, particles of 5.0 mm extracted 14.4% of copper and particles of 10.0 mm 

obtained 8.3% of extraction during the same period of time. However, regarding the 

mixed particles, it means 50% particles between 0.2 and 1.0 mm and 50% particles 

above 1.0 mm, it could be observed that the copper recovery increased in comparison 

to use only the biggest ones. For this, mixed particles obtained higher recovery than the 

use of 100% of particle size between 1.0 and 3.0 mm but less than the use of 100% of 

particle size between 0.2 and 1.0 mm. This fact implies that the small particles are the 

ones that achieve higher recoveries. The results were in accordance to Shah et al. 

(2015), who reported that metal extraction increased when the particle size decreased. 

Nevertheless, as it was above-mentioned they found that the metal extraction was 

negatively affected when the particle size was too small since it creates an increase in 

the apparent viscosity of the medium which difficult metal solubilisation. Wang et al. 

(2009) also studied the particle size effect, concluding that particles between 0.5 and 1.0 

mm allowed recovering more copper than particles between 1.0 and 3.0 mm. Their 

results are in agreement with those obtained in the present research, in which better 

recovery was obtained with the smallest particles (0.2  1.0 mm). Zhu et al. (2011), who 

also observed this behaviour, affirmed that the surface are per unit mass of the scrap is 

increased by decreasing the particle size. Moreover, they justified that the differences on 

bioleaching efficiencies when different particle size are used occurred due to particles 

below the critical level may increase the extent of particle-particle collision, imposing 

severe attrition on the cells. Nevertheless, in the present study most of the cells have 

been previously separated from the leaching solution by sedimentation, thus this fact 

could not be associated to the differences observed in copper recovery with different 

particle sizes studied herein.  



 
Chapter 9: Column bioleaching to recover copper from e-waste 

 

172 
 

 

Figure 9.9. Copper recovery obtained when different particle sizes were used in the column leaching reactor. 

 

9.3.6. Comparison of two different PCB concentrations 

 According to Xiang et al. (2010), increasing the amount of e-waste treated in 

bioleaching processes hamper the rates of copper extraction. They affirmed that the 

limitation of air distribution and oxygen mass transfer are the reasons why high PCB 

dosage resulted in low copper extraction when the microorganisms and the PCB are in 

contact during the whole process. Moreover, although the leaching agent is regenerated 

to be used again for more copper extraction, the velocity of copper oxidation is higher 

than that for the iron bio-oxidation. Hence, when an important amount of PCB wants to 

be treat, it is important to take into account the stoichiometry of the leaching reaction in 

order to assure enough availability of soluble iron (III) to extract all the target metal. 

Almost all the studies focused on the PCB dosage have been carried out in batch 

conditions but this parameter has not been studied in column reactor. For this reason, 

two different PCB dosages were tested (7.5 and 15.0 g/L) in column reactor, based on 

the volume of the reservoir (see Figure 9.1). The experiments were performed at the best 

conditions found in the previous experiments that is adjusting the pH, small particle size 

(0.2  1.0 mm) and using a porous support, expecting the highest copper recovery 

possible. Iron (III) concentration and copper recovery at two different PCB dosages are 

shown in Figure 9.10. 
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Figure 9.10. Iron and copper recovery over time when 7.5 and 15.0 g/L of PCB were treated in the column 
leaching reactor. 

 

 The copper recovery increased along time in both PCB dosages studied. 

However, 10% more copper was obtained when 7.5 g/L of scrap was treated during the 

5 hours in which the experiment lasts. This behaviour was related to the iron (III) 

availability, since all the soluble iron (III) reacted before copper was completely removed 

from the e-waste when 15.0 g/L of PCB was treated. This means that in the case of a 

PCB dosage of 15.0 g/L the leaching reaction was chemically limited because the initial 

iron (III) was not enough to allow the total recovery of the copper contained in the scrap. 

Zhu et al. (2011) focused its study on the effect of the PCB concentration, testing 4, 8, 

12 and 16 g/L of PCB in batch bioleaching. They found that the highest recovery (97.5% 

in 8 days) was achieved using 4 g/L of PCB, whereas the lowest one (73.3% in 8 days) 

was obtained with 16 g/L. Nevertheless, Adhapure et al. (2013) found that 20 g/L of PCB 

was the highest concentration in biological leaching processes that can be used. On the 

contrary, Brandl, Bosshard, and Wegmann (2001) concluded that high PCB dosages 

could be used when the microorganisms have been previously adapted, reaching treated 

concentrations up to 100 g/L of e-waste.  

One must take into account that most of the microorganisms have been 

previously separated from the leaching solution used herein for copper extraction in the 

column reactor. Therefore, the iron (III) that allows oxidizing the copper from PCB was 

only that initially found in the leaching solution since iron could not be re-oxidized in this 

stage. For this reason, when the process takes place without the continuous entrance of 

fresh leaching solution, as in this study, the reaction will be chemically limited by the 

availability of iron (III). According to the stoichiometry of the leaching reaction between 
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copper and iron, when 6 g/L of iron (III) are used in the medium, no more than 3.4 g/L of 

copper could be extracted. Nevertheless, given the copper content in the PCB, when 7.5 

and 15 g/L are treated, the highest copper concentration that could be achieved in the 

solution are 3.3 and 6.6 g/L of copper, respectively. Therefore, it is not possible to exceed 

51% of copper extraction when 15 g/L of PCB are treated if a concentration of 6 g/L of 

iron (III) is used since it is consumed before all the copper was retrieved (Figure 9.10). 

For this reason, no more than 7.5 g/L of PCB could be treat using 6K mineral medium in 

the column reactor when it operates in a discontinuous mode. Therefore, a dosage of 

7.5 g/L of PCB was selected for the following experiments.  

9.3.7. Utilization of the plastic structure from mobile phones as packing material 

It has been demonstrated that packed columns increase the efficiency of different 

processes, so it is extensively used in industrial chemical process such as distillation or 

extraction, among others (Wang et al. 2005). Regarding to packing materials, these 

could be of natural or synthetic origin. For instance, natural packing materials are 

commonly used like compost or wood, but also synthetic ones as polyurethane foam 

(PUF) in biofiltration field (Dorado et al. 2010). For this, the use of packing material was 

evaluated in the column bioleaching reactor. Taking into account that the plastic structure 

of the cell phones must be previously separated from the PCB to recover the metals by 

bioleaching, the use of these plastics as a packing material inside the column was tested. 

The idea is to take advantage of part of the waste that has not been treated in the 

bioleaching process. This would have the benefit of avoiding to separate the plastic 

materials from the mobile phones treated by bioleaching, which would allow the use of 

the raw materials matrix itself as a packing material in the process.  

For the experiment, the plastic structure of the mobile phones was crushed and 

sieved, obtaining a particle size between 1 and 3 mm of diameter. Then, the plastic and 

the PCB particles were mixed before being introduced in the column reactor (Figure 

9.11). In this sense, copper recovery was compared with and without packing material 

introduction (Figure 9.12).  

Similar copper recovery and similar behaviour in both cases were observed, 

regardless of whether the packing material was used or not inside the column during the 

process. In particular, 50% of copper was extracted in 5 hours. Regarding to the iron (III) 

concentration, its value decreased as copper recovery increased in both cases, following 

the same behaviour. Nevertheless, 400 mg/L more iron (III) was consumed in the packed 

column although similar recoveries was achieved. Despite not having found studies 

focused on the use of packing material in column leaching reactors, it has been 

demonstrated that its use improves the contact between particles in other fields such as 

biofiltration or distillation (Cai 2018; La et al. 2018), as it has been mentioned at the 

beginning of this section. This improvement is based on the increase of the solid-liquid 
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contact, overcoming the mass transfer limitations that occur when no packing material is 

used. Moreover, the use of packing material facilitates the percolation of the leaching 

solution through the e-waste during the experiment, which corroborates the improvement 

of the solid-liquid contact and so the efficiency of the process expected. 

 

Figure 9.11. Packing material and PCB particles used in the experiment in which the plastic structure of the 
mobile phones was evaluated as a packing material in the column reactor. 

. 

 

Figure 9.12. Evolution of copper recovery and iron (III) concentration during the column bioleaching using a 
packed column (PC) and a column without packing material (UC). 

   

9.3.8. Effect of the contact time  

 An important factor in bioleaching processes is the experimental time. While its 

value should be reduced at industrial scale to increase the productivity, a minimum time 

is needed to complete the process. Until now, 6 hours has been usually tested since it 

has been observed in Chapter 6 that after this time lapse, no significant changes were 
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discerned in batch conditions. However, what happens in the process at higher times 

was tested in order to observe if there are any positive changes performing the 

bioleaching in the column reactor at the best conditions found. These conditions include 

pH control (between 1.7 and 1.8), the use of a porous support for the e-waste inside the 

column reactor as well as packing plastic material and a particle size between 0.2 and 

1.0 mm of diameter with a pulp density of 7.5 g/L of PCB. Copper and iron (III) 

concentration were measured during 48 hours, and the experiment was repeated twice 

to prove its repeatability (Figure 9.13). 

 

Figure 9.13. Evolution of copper recovery and iron (III) concentration in column reactor leaching with a 
particle size between 0.2 and 1.0 mm operated for 48 hours when the pH was controlled and packing material 
was used. 

 Almost all the copper contained in the e-waste was recovered in 48 hours. 

However, two clear tendencies were observed: in the first 6 hours 50% of copper was 

extracted at a rate of 258 mg/L of copper per hour, which extraction was quite similar 

than those found in previous experiments. Then, in order to reach 88% of copper 

recovery, 42 experimental hours were needed. In this case, the rate of copper extraction 

was only 29 mg/L of copper per hour. Hence, 50% of copper was recovered in 6 hours 

whereas it took 42 hours to recover 38% of the remaining copper from the scrap since 

the rate of copper extraction during the first hours was 8.9 times the rate after this time. 

Adhapure et al. (2013) also obtained similar copper recovery by bioleaching from printed 

circuit boards, requiring long time exposition. In particular, they spent 10 days to reach 

96% of extraction. This time was reduced by Nie et al. (2014) who obtained the complete 

extraction of copper in 7 days. Hence, as many other authors, they need some days to 

recover almost all the copper contained in the scrap (Awasthi et al. 2016; Liang et al. 

2013; Willner and Fornalczyk 2013). Nevertheless, Hong and Valix (2014) considerably 

reduced the experimental time, achieving high recoveries in 24 hours although they used 

high temperatures (90 ºC) and very low pH (1.0). It is worth noting that all these studies 
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have been bioleached in flasks which operational conditions are quite different from 

those used in the column reactor. Hence, present results demonstrate that column 

reactor achieved better results than those obtained in flasks, which is associating to the 

operation itself since in column reactor the liquid flows over a static surface, optimizing 

the contact between the waste and the leaching agent. The most similar study performed 

in column reactor with Acidithiobacillus ferrooxidans to recover copper from the e-waste 

was carried out by Chen et al. (2015), who spent 28 days to recover 94.8% of the metal. 

In this way, although the recovery of almost all the copper took 48 hours in the column 

reactor developed, the experimental time was significantly reduced more than 14 times. 

 Regarding iron (III) concentration, this decreased along time, being practically 

consumed in its entirely after 48 hours. Nevertheless, as for copper recovery, different 

tendencies on iron consumption were observed. In particular, three different trends were 

appreciated. The highest consumption rate was achieved during the first 6 hours of the 

process when it was consumed at a rate of 529 mg/L per hour. Then, the rate of 

consumption drastically decreased, being consumed at a rate of 61 mg/L per hour in the 

following 18 hours. After this time, the consumption was even slower since the rate was 

14 mg/L per hour until its total consumption. It is noteworthy that the highest the iron 

concentration, the higher the consumption rate. This fact also implies that the bioleaching 

process accelerates because the greater the iron consumption, the greater the extraction 

of copper. 

efficiency, it could result interesting to focus on when the iron concentration is high and 

thus, its consumption rate is also high.   

The variance of the experimental data observed in some points is associated to 

the inhomogeneity of the e-waste since, as discussed in section 9.3.1, the metal 

composition of PCB varies, making difficult the repeatability of the experiments. This fact 

was also observed in all the experiments performed previously. 

9.3.9. Improvement of bioleaching process to overcome previous limitations: 

cyclic operation 

 After different experimental tests, the best conditions were achieved since it was 

possible to recover almost all the copper contained in the PCB by the column reactor. 

Nevertheless, although the time was drastically reduced herein in comparison to the 

results reported in the literature (Awasthi et al. 2016), a new strategy was developed to 

try to further shorten the experimental time. In this sense, the study was focused on the 

bioleaching process in cycles based on the observation of two different kinetics in copper 

recovery. As mentioned above, half of the total copper recovered was obtained in 6 hours 

whereas the rest of the copper was extracted in 42 hours. Taking this into account, the 

new strategy consisted of doing the bioleaching in cycles of 6 hours. For each cycle, the 
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waste inside the column was stirred to avoid dead zones and stagnant regions and the 

leaching solution, containing iron (III), was renewed to avoid limiting reagent 

concentrations during the metal extraction. First, the process was performed in two 

cycles of 6 hours each and the experiment was done in duplicate. 

 As Figure 9.14 depicts, copper recovery increased to 48% in the first cycle 

whereas 40% of copper was recovered in the second one, achieving a total metal 

recovery of 88% in just 12 hours. This indicated that the waste stirring and the change 

of the leaching solution considerably reduced the experimental time, since the iron (III) 

could access to almost all the copper contained in the PCB. In addition, its concentration 

was always enough to oxidize the metal of interest. The iron (III) concentration decreased 

because of its reaction with copper, but when the next cycle started, the iron 

concentration was again the initial concentration of iron in the fresh leaching solution. In 

this sense, the iron concentration was always in excess during the leaching process. 

 

Figure 9.14. Evolution of copper recovery and iron (III) concentration during bioleaching in the column 
reactor performed in 2 cycles. A new cycle was started by stirring the material in the column and by using 
renewing the iron (III)-containing leaching solution. 

 

It is should be noticed that similar amount of copper was recovered in 1 cycle of 

48 hours (see Figure 9.13) in comparison to the copper retrieved in 2 cycles of 6 hours. 

However, when 2 cycles were done two different tendencies in copper recovery was also 

observed in each cycle as it was perceived in 1 cycle. In particular, an important part of 

the metal was extracted during the first 2 hours in comparison to the next 4 hours for 

each cycle. Therefore, the reduction of the cycle time to 2 hours instead of 6 hours was 

investigated. This meant that the waste was stirred and the leaching solution was 

renewed every 2 hours in order to observe, if the time required for this purpose could be 

reduced even more. 
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  Figure 9.15 shows that the copper recovery steadily climbed to reach 80% of 

their extraction in 6 hours. On the contrary, iron (III) concentration decreased in each 

cycle as it occurred in the previous experiment and their concentration raised to its 

highest value at the beginning of each cycle. These results demonstrated that the 

strategy developed to bioleach in cycles allow to bioleach an important part of the copper 

contained in the PCB in just 6 hours. As in the previous experiments, the initial iron (III) 

concentration was not 6 g/L, as it was expected. This means that despite the iron (II) 

added in the medium was 6 g/L, not all of this iron was biologically oxidized and, 

consequently, the concentration of the metal at the beginning of the process was under 

5 g/L. This fact could cause the chemical limitation of the reaction between iron and 

copper due to their stoichiometry (see Eq. 9.1). However, the leaching process 

performed in cycles avoid this limitation assuring the sufficient availability of the iron to 

recover all the copper. Therefore, this methodology allows high recoveries despite the 

fluctuations on iron (III) concentration in the leaching solution since it is maintained in 

excess during the whole process.   

 

Figure 9.15. Evolution of copper recovery and iron (III) concentration during bioleaching in the column 
reactor performed in 3 cycles. A new cycle was started by stirring the material in the column and by using 
renewing the iron (III)-containing leaching solution. 

 

In order to facilitate the comparison between the amount of copper obtained in 

the different bioleaching experiments performed in cycles, the copper recovery along 

time for each experiment has been represented in Figure 9.16. Despite similar 

extractions were obtained in all cases, the use of the new strategy developed allows to 

reduce the experimental time from several hours to just few ones. Nevertheless, it must 

be taken into account that the more number of cycles, the more dilution of the soluble 

copper since more leaching solution was used. This could be a handicap for the following 

processes where the metal has to be recovered from the solution. In the case of 
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electrolysis or cementation, the dilution of the metal does not difficult the metal recovery 

process but the use of high volumes may increase the time needed and the cost of the 

operation. Despite this fact, the new strategy developed is an important finding, since it 

allowed reaching attractive amounts of copper at competitive period time, being very 

promising the scale-up of the technology as an alternative to conventional processes. 

 

Figure 9.16. Comparison of the copper recovery over time in column leaching performed in one, two and 
three cycles. Data from Figures 9.13, 9.14 and 9.15 were replotted on the same timescale for comparison. 

 

Since two procedures were performed in each cycle (waste stirring and leaching 

liquid renewed) the main effect that increased copper recovery and reduced the 

experimental time was investigated. For this reason, the procedure to bioleach in 3 

cycles of 2 hours each was repeated, but in one case, the waste was not stirred, whereas 

in the other case, the leaching solution was not renewed. By comparing these two cases 

with the previous experiment in which both procedures were implemented, it should be 

possible to elucidate which methodology improved the metal recovery. Results of copper 

recoveries in this experiment are shown in Figure 9.17. 

 Despite having extracted copper in all cases, important differences on the metal 

recovery were observed. When only the leaching solution was renewed, without stirring 

the waste, the copper extraction rose to 49% in 6 hours. This result was quite similar to 

those obtained before the implementation of the new strategy consisting of bioleaching 

in cycles in which 50% of copper was obtained in the same time. Hence, no improvement 

on metal recovery was observed in the latter case. In contrast, when the waste was 

moved, although the medium was not renewed, the recovery of the metal increased, 

achieving 73% of the extraction during the same period of time. This fact indicated that 

the stirring of the waste improved the extraction, suggesting that the movement of the 
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waste allowed the leaching solution to access to all the dead zones or inaccessible parts 

of the scrap. From the results observed, it can be concluded that the application of the 

two procedures (renovation of the leaching solution and moving the waste) really 

improved the copper extraction since 80% of the copper contained in the PCB was 

retrieved in just 6 hours. Therefore, although the movement of the waste resulted more 

efficient than the renovation of the leaching solution in terms of copper extraction, the 

use of both procedures together had a better response in the process, increasing the 

recovery of copper over 80% in only 6 hours. The results obtained herein significantly 

improved the copper recovery and drastically reduced the time required for this purpose 

in comparison to the studies found in the literature focused on column bioleaching. For 

instance, Chen et al. (2015) spent 28 days to recover 94.8% of copper, Ilyas et al. (2013) 

needs 165 days to achieve 85% of copper recovery and Jagannath et al. (2017) 

recovered 63.5% of copper in 5 days. Nevertheless, it is noticed that all of them used 

different operational conditions than those applied in the present work, but no similar 

studies were found in the literature for a more detailed and comparative discussion.        

 

Figure 9.17. Effect of moving the waste and/or renewing the leaching solution during column bioleaching in 
3 cycles.  

 

9.4. Conclusions 

After testing different conditions and evaluating different parameters during the 

bioleaching of copper from printed circuit boards in a column reactor, it was concluded 

that the performance of this process is feasible and improves the copper extraction 
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obtained in batch experiments. However, in order to obtain the highest metal recovery, 

it is important to maintain specific operating conditions. 

Regarding the parameters studied, it was concluded that, despite not having 

better recoveries when the pH was adjusted, pH control is essential to assure the 

solubility of the leaching agent (iron). However, this work demonstrated that iron (II) was 

not oxidised at the conditions tested in the column, which means acid pH and room 

temperature, so only previously oxidized iron (III) could solubilise the copper contained 

in the PCB. The fact that in the first experiments performed in the column reactor copper 

recovery did not exceed 50% of extraction in 30 hours was mainly associated to the mass 

transfer limitation between the leaching solution and the e-waste. For this reason, 

different strategies were implemented in order to improve the contact between the 

leaching solution and the scrap placed inside the column.  

It was concluded that using a flooding column did not improve the process, since 

only 35% of cooper was obtained with this system. However, better hydrodynamic 

characteristics were observed when a porous support was used instead of a mesh 

support, achieving 11% more recovery with the former in only 6 hours. In addition, this 

work demonstrated that particles between 0.2 and 1.0 mm of diameter allowed higher 

recoveries than those over 1.0 mm of diameter, achieving 37% with the smallest size 

tested. The use of mixed particles (50% between 0.2 and 1.0 mm and 50% over 1.0 mm) 

was also tested with the purpose of using the large particles as a packing material, thus, 

facilitating the contact between the leaching solution and the e-waste. Unfortunately, the 

results did not show an improvement when the mixed particles were used (28% of copper 

recovery). This was associated to the different copper concentrations observed for the 

different sizes, the small particles having the size with the highest copper concentration 

(around 39% of copper).  

This chapter also demonstrated that the PCB dosage is an important factor for 

the process. Whereas 7.5 g/L of PCB allowed 50% of copper extraction in 5 hours, 15 

g/L of PCB only recovered 37% of the metal in the same period. In addition, it was 

concluded that concentrations over 7.5 g/L of PCB could not be used in column 

bioleaching when it operates in discontinuous mode, since the amount of iron contained 

in the leaching solution would not be enough to oxidize all the copper contained in the 

scrap. In the case of continuous operation, however, this impediment would be avoided 

by the constant entry of fresh leaching solution. Although no improvement was observed 

by the use of large particles as a packing material, the use of plastic particles was tested 

with the same aim. Similar recoveries were obtained regardless of using packing material 
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or not, but it was noticed that the use of packing material gives better percolation, thus 

avoiding the caking of the waste inside the column. This is an important finding, 

especially when the process is intended to be scale-up to treat high volumes of waste.  

Finally, after observing that the improvements observed did not achieve the 

complete extraction of copper, the operation over longer time was evaluated, since 

almost all the previous experiments had been carried out in 6 hours. Hence, it was 

concluded that 48 hours were required to recover 88% of the copper at the best 

conditions previously found. These conditions included pH control at 1.75, porous 

support to hold the PCB, particles between 0.2 and 1.0 mm, 7.5 g/L of PCB dosage, and 

plastic particles as a packing material. 

The new strategy developed in the present work to bioleach in cycles allows 

reaching attractive amounts of copper in less time. In particular, it was observed that 

88% of copper was recovered in 12 hours (2 cycles of 6 hours each). However, this result 

was even improved by reaching 80% of copper in only 6 hours (3 cycles of 2 hours each). 

However, in order to obtain the highest extraction, it was important to stir the waste as 

well as to renew the leaching solution between cycles, since the application of only one 

of these two procedures did not obtain such good results. This behaviour occurred since 

the particles of the e-waste treated inside the column are static while the leaching 

solution is irrigated. This makes it more difficult for the leaching agent to access the 

internal parts of the scrap. So moving the waste improves its accessibility. In addition, 

due to the medium renovation, the concentration of the leaching agent was also 

increased, thus accelerating the rate of metal recovery. 

This led us to the conclusion than the bioleaching process performed in the 

column reactor, especially when the strategy developed herein is used, makes this 

technology very promising as an alternative to conventional processes at industrial scale. 
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The main motivation of this chapter was to investigate a technique to recover 

leached copper from the solution and, thus, to close the global process of bioleaching, 

separating the metal from the matrix in which it is found initially. In this sense, the 

bioleaching process investigated in this thesis could be concluded by recovering metallic 

copper from the e-waste. This completes the study of copper recycling by recirculating 

the solution to close the overall process as a cyclic system without the need of constant 

reagents addition. The cementation process was the technique tested to recover the 

bioleached copper for its simplicity and its low-cost. In addition, based on the knowledge 

acquired, in this chapter a process diagram is proposed as basis for bioleaching of 

copper from e-waste, including all the steps to perform the recovery in an automated and 

semi-continuous-operation pilot plant.    

 

Abstract 

In this chapter, a cementation technique was investigated to recover copper from a 

solution in its metallic state. Preliminary assays were performed using a synthetic copper 

solution and scrap iron to test the efficiency of the process. Then, the technique was 

proved using leaching solution. The results revealed that the cementation procedure 

allows recovering 100% of the copper from the liquid solution as a metal in just 2 hours. 

In addition, these good results were also obtained when the leaching solution was used. 

It means that the other bioleached metals in the solution did not affect the efficiency of 

the process. Therefore, the cementation was considered a good process for its high 

velocity and its simplicity. However, the copper powder obtained after the cementation 

was not so pure (below 70%), which would reduce the number of possible applications 

of this material, though the main impurity obtained together with the copper powder was 

iron. To increase the purity other processes, such as solvent-extraction and 

electrowinning, should be carried out instead of cementation. Average values of 2.96 g 

of copper powder from one litre of bioleaching solution were obtained. Finally, in this 

chapter a pilot plant diagram is proposed to continuously recover copper from PCBs and 

convert it back to metallic copper. In this proposal, the global process of bioleaching was 

divided in four different steps: the biological oxidation of iron (II) by the microorganisms, 

the separation of the biomass from iron (III) solution by a settler, the extraction of copper 
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from e-waste using a column reactor and the recovery of metallic copper from the 

leaching solution by cementation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A modified version of part of this chapter has been published as: 

Benzal, E., Solé, M., Lao, C., Gamisans, X., Dorado, A.D., 2020. Elemental copper 

recovery from e-wastes mediated with a two-step bioleaching process. Waste and 

Biomass Valorization, 11, 5457-5465. 



 
Chapter 10: Recovery of copper from leaching solutions and semi-continuous bioleaching pilot 

plant proposal 
 

189 
 

10.1. Introduction 

After the leaching process, the metals are found in aqueous solution in their ionic 

forms. There are different methods to recover these metal ions in their metallic state 

(Agrawal and Kapoor 1982; Khattab et al. 2013; Zhang et al. 2010). Among the methods, 

one of the simplest and cheapest one is cementation, which consists of precipitating a 

metal ion from a liquid solution by a more reducing metal (Jhajharia et al. 2016). This 

metholology has been extensively used to remove toxic metallic ions from solutions and 

is still used in hydrometallurgy, surface waste treatment and electrolyte purification 

(Djoudi et al. 2007). Although the abovementioned advantages, some authors affirmed 

that the main disadvantage is excess sacrifical metal consumption (Agelidis et al. 1988). 

However, the cementation is commonly performed by using metals scrap (Tzaneva et 

al. 2016), which also reduces the amount of this kind of waste.  

According to Dib and Makhloufi (2004), cementation of copper is usually 

performed by iron. This affirmation was also supported by Stefanowicz et al. (1997) who 

affirmed that this fact ocurred due to the difference between the standard reduction 

potential of these metals (Eqs. (10.1) and (10.2)).  

  (Eº = +0.34 V)   (10.1) 

 (Eº = -0.44 V)   (10.2) 

Hence, iron reacts spontaneously with copper ions following Eq. (10.3) 

(Anastassakis et al. 2015). 

    (10.3) 

 Therefore, iron cementation could allow to close the process to recover copper 

from the bioleached solution. On one hand, several authors have studied the bioleaching 

process but avoiding the final metallic copper recovery step (Annamalai and Gurumurthy 

. On the other hand, there are other authors 

focused on the cementation process to recover copper, as it was abovementioned. 

Although few authors have been studied both processes together (Agate and Khinvasara 

1986; Rossi et al. 1986), no articles were found proposing laboratory or pilot plants 

operating in continuous or semi-continuous mode for this purpose. In general, these 

authors have been studied the process at laboratory scale using flasks.  

 The aim of the work presented in this chapter was to test the viability of 

cementation process to recover copper from the leaching solution. The first approach 

was performed by the study of copper cementation from a copper (II) sulphate dissolution 

to test the viability of the process. Then, the methodology was applied to recover metallic 
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copper from the leaching solution obtained in the previous experiments. In addition, the 

obtained copper powder was analysed to determine its purity as well as its morphology 

by a SEM microscope. Finally, in this chapter a possible diagram for a continuously 

operated pilot plant to recover copper by bioleaching process is proposed. The system 

includes from the biological oxidation of iron (II) to the cementation to obtain metallic 

copper, going through the leaching of the e-waste in a column reactor and the biomass 

recirculation. 

 

10.2. Materials and methods 

10.2.1. Scrap iron 

The scrap iron (actually steel was used) used for cementation tests was provided 

by the Mechanical Engineering Department from Universitat Politècnica de Catalunya. 

The iron scrap was obtained from the residues produced by a lathe machine. The 

composition of the iron used was 97.26% iron, 0.40% carbon, 0.32% silicon, 0.80% 

manganese, 1.03% chromium and 0.19% molybdenum (analysis performed by Centre 

Tecnològic de Manresa, Spain). The scrap iron was placed in contact with the leaching 

solution in small pieces of 10 mm length and 1 mm of diameter, approximately.  

10.2.2. Cementation experiments 

For the preliminary cementation assays the process was tested using a solution 

of CuSO4·5 H2O and scrap iron. In particular, a solution of 0.4 M of CuSO4·5 H2O was 

used, corresponding to a copper concentration of approximately 2500 mg/L and 1.0 g of 

scrap iron in pieces of 10 mm length and less than 2 mm of diameter. The experiments 

were performed in triplicate. 

For cementation experiments, 100 mL of the bioleaching solution were placed in 

a 250 mL flask with 4 g/L of scrap iron in small pieces. Considering that the average 

copper concentration obtained after bioleaching was 3000 mg/L, 4 g/L of iron filings were 

used since an amount greater than what is stoichiometrically needed improves the 

velocity of the process (Dib and Makhloufi 2004). The process was performed in an 

incubator (SI500, Stuart, United Kingdom) at 130 rpm by orbital agitation and at room 

temperature. Samples of the liquid were taken every hour for copper and iron analysis 

as well as for pH and ORP measurements. When the cementation process finished, the 

solution and the solid copper were separated by decantation, drying the solid copper by 
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a laboratory heater and analyzed for its composition by Energy-Disperse x-ray 

Spectroscopy (EDS) analysis and atomic absorption spectroscopy (performing a 

previous acid digestion of the powder sample). The experiments were performed in 

triplicate. 

 

10.3. Results and discussion 

10.3.1. Preliminary assays 

10.3.1.1 Copper recovery from synthetic solutions by cementation  

The suitability of the cementation process to recover metallic copper by the 

addition of iron has been investigated, according to Eq. (10.3). In this sense, the 

preliminary cementation experiments were done by using a solution of CuSO4·5 H2O and 

scrap iron. Results of iron and copper concentration evolution during the experiment are 

shown in Figure 10.1a. It was observed that that reaction between scrap iron and copper 

(II) was very fast since almost all the soluble copper was reduced to metallic copper in 

only one hour. As a consequence, iron (II) concentration increased but remained 

constant after 2 hours when all the copper has been reduced. It is noticed that iron was 

oxidized at this conditions after 4.5 hours, but the amount of iron oxidized after the first 

2 hours when the cementation process took place was insignificant. A pH increasing was 

also observed in the process (Figure 10.1b). In particular, the pH increased from 2 to 

almost 5, which could cause iron precipitation since no pH control was carried out. 

Nevertheless, the precipitation was not appreciated in the analysis since the 

concentration of iron (II) observed after 4.5 hours was the corresponding to the 

stoichiometry of the cementation reaction (Figure 10.1a). The cementation has the 

advantage that the solution obtained after the process contains high amount of iron (II), 

which could be used as an energy source for the microorganisms again (Xiang et al. 

2010). However, if the solution obtained after the cementation needs to be re-introduced 

in the bioreactor, it is important that the cementation solution maintain acidic pH values 

to reduce the interferences that this fact could cause to the bioreactor. Therefore, it is 

more interesting to stop the cementation process after 2 hours since the main reaction 

was completed at this time, avoiding pH increasing and also precipitation problems. 

Regarding ORP measurements, this parameter constantly decreased until reaching 

negative values (-85 mV). Then the signal slightly increased to 20 mV after 4.5 hours. 

This behaviour has not been observed before in the literature since the authors focusing 

on cementation studies did not measure this key parameter (Moradkhani et al. 2011; 
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Stefanowicz et al. 1997). Nevertheless, the decrease of ORP was associated to the 

increasing concentration of iron (II) and the low iron (III) concentration in the solution (the 

higher concentration of reduced species, the higher the signal of the ORP, Silva et al. 

2015) in leaching studies. Therefore, this parameter can be used to control de process. 

In this case, when the cementation process was completed and no more copper was in 

the solution, the iron (III) concentration slightly increased and so, the ratio between iron 

(II) and iron (III), which was also related to the increase observed in ORP measurements 

after the first 2 hours.    

 

Figure 10.1. (a) Evolution of iron and copper concentrations and (b) evolution of pH and ORP in the 
preliminary tests of cementation to recover metallic copper from copper sulphate solution. 

 

10.3.1.2. Copper recovery from bioleached solutions by cementation 

 The aim of the cementation process was to recover metallic copper from the 

leaching solution. However, this leaching solution did not only contain copper, since 

many other substances could be also found in the leachate as it was observed in Table 

7.1 (Chapter 7). Nevertheless, the analysis carried out in Chapter 7 was done after 16 

days of experimentation with a particle size of 0.5 cm2. Hence, after observing that the 

leaching was completed in less time when it was performed in the column reactor using 

a particle size between 0.2 and 1.0 mm of diameter, the leaching solution in that case 

was also analysed. The results were resumed in Table 10.1. 
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Table 10.1. Concentration of the metals analysed in the leaching solution after leaching of PCBs in the 
column reactor and before to be used in the cementation process. 

Metal Concentration (in mg/L) 

Al 3.00  

Pd < 0.01  

In < 0.01  

Sn 0.15  

Pb 2.25  

Ni 28.4  

Cu 3140  

Fe 4100  

 

 As can be observed, the leaching solution basically contains iron and copper, as 

it was expected, since the iron (III) generated by the Acidithiobacillus ferrooxidans is 

mainly used to extract copper at the conditions in which bioleaching takes place (Hubau 

et al. 2018). Also other metals were leached in the process such as nickel (28.4 mg/L) 

or aluminium (3.00 mg/L), although their concentrations were much lower than that of 

copper.  

 Although the same waste was treated in Chapters 7 and 10, different metal 

concentrations were obtained in the leaching solutions, which is related to the use of two 

different systems (CSTR and column) as well as the use of different particle size and 

different experimental time. The main difference was the amount of copper extracted 

since 1607 mg/L was obtained when the CSTR was used whereas the column reactor 

allowed extracting 3137 mg/L of copper. This fact implies that the column reactor 

extracted more copper than the CSTR but the difference on the efficiency was mainly 

related to the particle size. As in Chapter 9 was observed, when the effect of the particle 

size was studied, small particles have a greater surface area and thus, greater 

accessibility of the leaching agent to the e-waste, which increases the efficiency of the 

extraction. Nevertheless, regarding the other solubilized metals during the leaching 

process, similar concentrations were found in both analyses since all of them were found 

as trace elements at low concentrations. 

 The preliminary assays carried out with synthetic chemical solutions (section 

10.3.1.1) allowed to test the cementation technique and its efficiency. For this reason, 

further step consisted of using the solutions obtained from previous leaching 

experiments, which composition was described in the Table 10.1. This experiment was 

carried out in 2 hours according to the experiment described in 10.3.1.1. Copper and iron 
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concentrations along the experiment are presented in Figure 10.2a whereas the pH and 

ORP measurements are presented in Figure 10.2b.  

 

Figure 10.2. (a) Evolution of iron and copper concentrations and (b) evolution of pH and ORP measurements 
over time during the cementation of the leaching solution. 

 

 As it can be observed in Figure 10.2a, copper concentration decreased from 2000 

mg/L to 0 mg/L in only 2 hours. It means that all the soluble copper reacted with the scrap 

iron, obtaining metallic copper which is insoluble. As it was observed in the last 

cementation experiment, the iron (II) concentration increased as a consequence of the 

reaction between the scrap iron with copper (II), which produces the oxidation of the 

scrap. The iron (II) concentration was found to be 6300 mg/L after the cementation 

process. On one hand, 3000 mg/L were initially in solution and come from the bioleaching 

process in which the ferric ions were reduced to ferric ones by their reaction with the 

PCB. On the other hand, 3300 mg/L were obtained by the oxidation of the metallic iron. 

It is noteworthy that iron (II) was not practically oxidized at the conditions tested since 

the iron (III) concentration remained below 850 mg/L during the whole experiment. 

 Regarding pH measurements (Figure 10.2b), it was observed that it remained 

constant at pH 2 during the 2 experimental hours. It means that the cementation reaction 

did not alkalinize the solution in this period of time, unlike the previous experiment in 

which pH changes were observed after the first hour. This is mainly associated to the 

time contact since the main pH changes occurred after 2 hours in the preliminary assays. 

This fact favours the use of the solution obtained as a feed for the bioreactor due to its 

high iron (II) concentration, although the concentration of toxic metals has to be 

evaluated before its recirculation as it was explained in Chapter 8. In relation to ORP 

measurements, a similar behaviour to the preliminary cementation assays was 
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observed. The oxidation-reduction potential decreased from 400 mV to near -300 mV in 

the first hour whereas it remained constant at this negative value in the following hour, 

when the cementation reaction was almost completed and the iron (II) and iron (III) 

concentrations remained constant. As it was abovementioned, the ORP measurements 

were related to the oxidation and reduction species in the solution. Hence, its value 

decreased when the ratio between iron (II) and iron (III) also decreased (Silva et al. 

2015).    

 Comparing the preliminary results to these obtained when leaching solution was 

used, it could be observed similar behaviours since the chemical reaction between the 

scrap iron and the copper was achieved in the same period of time. It means that the 

rest of the chemical compounds that could be found in the leaching solution did not affect 

the cementation reaction and, as a consequence, the efficiency of the reaction was 

unchanged. In addition, stopping the process after 2 hours improve the process in 

relation to pH changes, because at this time the pH did not change significantly. Hence, 

the cementation resulted efficient to recover metallic copper from leaching solutions, 

allowing to recirculate and take advantage of the obtained iron (II), which is a key factor 

in the bioleaching process. 

10.3.2. Closing the loop: copper recovery from PCB to copper powder 

 Finally, the cementation process was tested with leaching solution but starting 

the monitoring of the process from the first step, that is, from the biological oxidation of 

iron by the microorganisms. Nevertheless, the steps before the cementation was not 

evaluated along time, but the solutions were analysed at the beginning and at the end of 

each stage. In addition, in this experiment the purity of the metallic copper obtained was 

evaluated and its morphology by SEM microscope was also observed. 

The first stage was the oxidation of the iron (II) from the 6K mineral medium by 

the activity of Acidithiobacillus ferrooxidans. In this case, the iron (II) and iron (III) 

concentrations were measured just before to take the solution to be used in the leaching 

stage. In particular, it was obtained that the average iron (II) and iron (III) concentrations 

after the biological oxidation were 61 and 5150 mg/L, respectively. Therefore, these were 

the initial iron concentration in the leaching step. After the biomass separation from the 

iron solution by sedimentation, it was put in contact with 15 g/L of PCB powder in a 500 

mL Erlenmeyer flasks. The initial pH of the solution was 1.76 and the ORP was 554 mV 

and the leaching experiment was performed in 6 flasks, in order to evaluate the 

repeatability of the process. The flasks were incubated at 30 ºC and 130 rpm during 6 

hours. Results demonstrated that 2871 mg/L of copper were recovered during the 

leaching step with a standard deviation of 54 mg/L. At this time, the solution also contains 
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4973 mg/L of iron (II) and 495 mg/L of iron (III). The pH was 2.14 and the ORP was 347 

mV. Finally, the cementation was carried out. In this case, results of the iron and copper 

concentrations along time are shown in Figure 10.3a whereas the pH and ORP 

measurements are shown in Figure 10.3b. 

As can be observed in Figure 10.3a, the behaviour of the iron and copper 

concentration was the same than the previous experiments. Nevertheless, it is noticed 

that the iron (II) concentration at the beginning was higher than the concentration 

observed in the earlier cementation. However, the increased was virtually the same since 

3000 mg/L of iron (II) was produced in the cementation reaction. It occurred because the 

initial copper concentration in both experiments was the same, so stoichiometry the 

same amount of iron (II) was obtained during the process. In addition, as it occurred 

before, the pH remained quite constant around pH 2 and the ORP measurements 

decreased until negative values. 

 

Figure 10.3. (a) Evolution of iron and copper concentration and (b) evolution of pH and ORP measurements 
over time in the cementation process after the development of all the bioleaching steps. 

 

As expected, the last two experiments obtained very similar results since, 

although the different steps of the global bioleaching process were performed at different 

times or sequentially, the metal concentrations at the beginning of the different stages 

were comparable.  

Despite not having detailed before, mechanical friction produced by the stirring 

between the copper powder and the metallic scrap iron, makes the copper to break off 

from the layer deposited on the iron metal. This fact was also observed by Stefanowicz 
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et al. (1997) who affirmed that the mechanical friction between plates results in scraping 

of the copper layer deposited on the iron plates. In addition, these authors suggested 

that this behaviour favour a continuous cementation route. 

For that, copper was obtained as a fine brown powder during the cementation 

(Figure 10.4). As it was above-mentioned at the beginning of this section, this powder 

was analysed by AAS after its acid digestion, revealing that the content of copper, nickel, 

iron, gold, silver, aluminium, palladium, indium, tin, lead, cobalt and manganese in mg/kg 

was 648000, 57, 208879, 11, 57, 33, 5, 5, 59, 150, 11 and 1414, respectively. As it was 

found in the original PCB used in bioleaching, the highest metal concentration was 

copper, followed by iron. It was assumed that the iron found in the copper powder was 

related to the iron scrap used during the cementation that could not be separated 

correctly from the metallic copper obtained. As a consequence, this iron could be mixed 

with the copper.   

 

Figure 10.4. Metallic copper obtained as a fine brown powder by cementation. 

 

After cementation, from a litre of bioleaching solution 2.96 g of metallic copper 

with a purity close to 70% were obtained, which means that other impurities have been 

also cemented, as it has been explained above. This fact could affect the final use of the 

copper as raw material (Alers et al. 2004). Nevertheless, cementation is a very low-cost 

and simple process to obtain metallic copper from a solution. Even though, if more purity 

is necessary for its application, other techniques after cementation could be applied such 

as solvent-extraction or electrolysis (Sinha et al. 2018; Zhang et al. 2010). 

In Figure 10.5, the morphology of the powder obtained by SEM microscope is 

observed. The images demonstrate that copper was crystallized as small spherical 

structures. In addition, the sample was also analysed by EDS (Figure 10.6). The EDS 

spectrum revealed the presence of copper and iron, essentially. These results are in 
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accordance to the results obtained with the acid digestion, in which copper and iron were 

the majority components. Hence, conducting a good separation of the remained scrap 

iron and the copper powder could improve the purity of the copper after the cementation.

Figure 10.5. SEM images of copper powder obtained by cementation at 2500x (left) and 1800x (right) 
magnification.

Figure 10.6. EDS analysis of the copper powder recovered by cementation. 

10.3.3. Bioleaching pilot plant integration
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10.4. Conclusions 

In this chapter, the efficiency of cementation to recover copper as a metal from 

copper solution has been tested. The preliminary assays revealed that the cementation 

was a very fast method to recover metallic copper, which needed only 2 hours for 3000 

mg/L of copper to react with the iron. However, these results were obtained using a 

synthetic solution of copper (II) sulphate. Hence, the same procedure was performed 

using the leaching solution from previous experiments. It was concluded that the process 

took place at the same velocity and with the same efficiency. Thus, the rest of the metals 

found in the leaching solution obviously did not interfere in the process. 

In the experiments on copper recovery from PCBs to copper powder, a similar 

behaviour was obtained as in the cementation in preliminary assays, since the iron and 

copper concentrations obtained after the leaching step were similar to those of the 

bioleached solution used in the preliminary cementation assays. This experiment 

demonstrated that the efficiency of the process is not affected by the fact the process 

took place sequentially or in different time intervals. In this experiment the copper powder 

obtained after cementation was also analysed by measuring the metal content of the 

digested copper powder. The major metal concentrations found in the digestate were 

copper and iron. This was explained by to an inadequate separation of the copper 

powder from the scrap iron used for cementation. In the current experiment, the purity of 

the copper powder was below 70%. However, if the separation between copper and iron 

could be improved, higher copper purities could be obtained with a cementation process. 

Hence, this technique could be an efficient technique to recover bioleached copper due 

to its simplicity and its low operational cost. At the same time cementation allows to 

recirculate the obtained iron (II) to be used again as an energy source for the biomass 

in the bioleaching process. 

Finally, in this chapter a scheme for a pilot plant is proposed, which allows metal 

recovery in semi-continuous mode from PCB. In this pilot plant it could be appreciated 

that the global bioleaching process has been separated in four different steps: the 

biological oxidation of the iron (II), the separation of the biomass from the iron (III) 

solution, the leaching of the PCBs and the recovery of metallic copper from the 

bioleached solution by cementation. By the proposed diagram, the intention is to propose 

a new methodology based on the experiments performed herein to recover copper or 

other metals from PCBs in a semi-continuous mode. From this point, the process could 
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be scale-up to take place in an industrial environment under semi-continuous and 

automatic control.   
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11.1. General conclusions 

This thesis is focused on the investigation of the bioleaching process to recover 

valuable metals, especially copper, from metal-containing materials. In order to achieve 

this objective, the basis of the methodology was established and different conditions and 

procedures were analysed and implemented. As a result, several experiments were 

performed under different conditions and in different bioleaching systems such as flasks, 

stirred-tank reactors and columns, thus allowing to find the highest copper recovery in 

the shortest period of time. Moreover, biological parameters were also studied such as 

the effect of some bioleached metals to the microorganisms involved in the process or 

the effect of substrate inhibition.  

In general, this thesis led to conclude that a bioleaching process performed in a 

column reactor, especially when the cyclic strategy developed is used, makes this 

technology very promising as an alternative to conventional processes at industrial scale. 

However, the presence of leached metals affects the activity of the microorganisms, 

depending on the concentration of those metals as well as the contact time. In this sense, 

microrespirometry turned out to be an efficient methodology to monitor biomass activity, 

especially when the biotechnological process takes place, avoiding a limitation of 

traditional methods such as precipitation effects. The optode methodology allows using 

a small sample volume (less than 2 mL) to obtain the oxygen consumption of the 

biological sample directly at real time. Finally, this thesis allowed to conclude that 

cementation is a very fast method to recover metallic copper from the leaching solution, 

since the rest of the bioleached metals do not interfere in the cementation process. 

More specifically, the conclusions derived from this thesis are listed below. 

 A mixed consortium of microorganisms obtained from a lab-scale gas-phase 

biotrickling filter treating high loads of H2S has proved efficient for copper bioleaching 

from chalcopyrite, although a previous adaption of the culture allowed to nearly 

double the amount of copper obtained. The medium used affects the recovery 

obtained, achieving greater recoveries (up to 25 times) with a medium with higher 

sulphate content. 

 

 High-grade ore allows to recover a greater amount of copper (47 mg/L) in 

comparison to a low-grade ore (11 mg/L) in the same period of time. This is likely 

caused by the matrix of the ore, which comprises some components capable of 

inhibiting the activity of the microorganisms. Therefore, there may be a limitation to 

the applicability of bioleaching for some copper ores due to the composition of the 

matrix where the metals are contained. 
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 After 60 days of experimentation of bioleaching of a chalcopyrite sample, an 

increase of the pH of the medium produced the formation of jarosite. This fact 

produced a reduction on copper recovery (from 3.6% to 0.5%), since the formation 

of jarosite may have locked some of the extracted copper. 

 

 Although a mixed consortium of microorganisms obtained from a lab-scale gas-

phase biotrickling filter allowed to bioleach ores, a pure culture of Acidithiobacillus 

ferrooxidans increased the recovery rate, reaching nearly 8 times the amount of 

copper recovered by the adapted mixed consortium. 

 

 A bioleaching process can be applied to recover copper from PCBs under batch 

conditions, but performing the process in two separate steps can reduce the time 

required to extract copper from several days (around 22 days) to just 48 hours. 

 

 In two-step bioleaching the separation of the biomass through sedimentation after 

the first step  may allow to obtain higher copper recovery in the second step (e.g. 

90%) in comparison to the copper recovery obtained when the separation is done 

through filtration (e.g. 70%). This is related to the biological oxidation of iron (II) 

resulting in the leaching step, since the sedimentation does not separate all the 

biomass and the remaining microorganisms oxidize again the resulting iron (II) from 

the leaching reaction, so more copper can be oxidized. 

 

 The performance of bioleaching in a stirred-tank bioreactor allows to recover copper 

from PCBs, but similar recoveries were obtained during the biotic (56%) and abiotic 

with iron (II) (52%) experiments after 16 days of experimentation. The similar results 

obtained are related to the methodology used in the biological assay, because the 

recirculation of the solution between the oxidation and the leaching reactors without 

biomass separation made the process act as a one-step process, resulting in a 

slower and less efficient process. Nevertheless, during the biotic experiment the 

copper extraction began earlier since the bio-oxidation of iron (II) is faster than the 

chemical oxidation. In this way, a higher concentration of the leaching agent is 

achieved earlier in the biological assay, which implies that the leaching of PCBs 

began earlier. 

 

 Apart from copper, the biological leaching performed in a CSTR also recovered 

many other metals such as tin, nickel, manganese, silver, aluminium, cobalt, indium, 

gold, palladium, and osmium. As a consequence of these recoveries, a loss of 

23.6% of the initial weight of the PCBs was observed. In particular, a loss of 21.3% 
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was due to the extraction of copper, whereas the remaining 2.3% were due to the 

set of the other extracted metals. 

 

 A column system to bioleach PCBs is feasible and improves the copper extraction 

obtained in batch experiments. The best conditions to obtain the highest copper 

recovery in column reactor were found to be: pH control at 1.75 to ensure the 

solubility of the leaching agent (iron); the use of a porous support for PCBs to 

improve hydrodynamic characteristics; the use of small particles (between 0.2 and 

1.0 mm of diameter); PCBs concentration not over 7.5 g/L when the column is 

operated in a discontinuous mode; and, the use of packing material to get better 

percolation. Under these conditions, 88% of copper was recovered in 48 hours. 

 

 A new strategy consisting of cyclic bioleaching allows reaching high amount of 

copper in less time (in comparison to the previous column system), e.g. recovering 

88% of copper in 12 hours (2 cycles of 6 hours each one) and up to 80% of copper 

in just 6 hours (3 cycles of 2 hours each one). However, stirring the waste as well 

as renewing the leaching solution at the beginning of each cycle are obviously 

needed to obtain the highest extraction. In this strategy, the leaching agent can 

access to more internal parts of the scrap, improving its accessibility and, moreover, 

the increase of the concentration of the leaching agent accelerates the rate of metal 

recovery. 

 

 Metal toxicity may have an important effect in the bioleaching process. Among the 

metals studied, aluminium turned out to be the most toxic one, producing the 

complete inactivation of the microorganisms at 0.5 M in just a few minutes of contact. 

Nickel, in contrast, was the least toxic one, bringing about a total inactivation after 

48 hours at 1.5 M of nickel. Copper, the metal with one of the highest concentrations 

in bioleaching solutions, is also toxic, but it took 27 hours of contact at a 

concentration of 1.2 M to inactivate the microorganisms.  

 

 The Acidithiobacillus ferrooxidans strain used during the experiments presented a 

substrate inhibition at iron (II) concentrations over 0.75 M. Nevertheless, at lower 

iron concentrations the inhibitory process is reversed and the biological activity 

increases by the use of iron as an energy source for their growth. Thus, the biomass 

shows a high adaptation capacity to changing conditions. Moreover, this strain could 

operate 550 hours (23 days) without nutrient addition, including iron, without 

complete inactivation, and they can be reactivated in 24 hours, if they are fed again, 

which reinforces their high adaptation capacity previously observed. 
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 Cementation is an efficient technique to recover bioleached metals due to its 

simplicity and low operational cost, but the purity of the copper obtained (as a fine 

powder) is only around 70%. Apart from copper, the major metal found in the 

resulting powder is iron, which is associated to the inadequate separation of the 

powdered copper from the scrap iron used for the cementation.  

 

11.2. Future work 

In this thesis, an extensive knowledge of bioleaching processes to recover copper 

has been acquired, especially oriented towards industrial application. However, further 

investigation is required in order to implement the methodology at industrial scale. 

Regarding the biological recovery of copper, the following considerations in the 

process should be performed in order to scale-up to an industrial environment: 

 The major part of the experiments in this thesis has been performed with PCBs from 

end-of-life mobile phones, but the technology could be applied to PCBs from other 

electronic devices to recover valuable metals from them. 

 

 A pre-treatment of the e-waste before the bioleaching process should be studied to 

evaluate if it increases the metal recovery. 

 

 Different metals apart from copper, especially rare earth metals and precious metals 

should be evaluated to be extracted through bioleaching of PCBs due to their high 

economic value and their increasingly high demand.  

 

 At industrial scale, it is proposed to use the continuous mode, so further experiments 

are required in column reactors when the leaching solution is continuously flowing 

down the column. In this sense, the best conditions found in this thesis have to be 

tested and adapted to the new operation mode. 

 

 Cementation turned out to be an efficient technique to recover the metal from the 

leaching solution, but the obtained purity is not high and, moreover, it results in a 

fine powder. Therefore, other techniques (e.g. solvent extraction plus 

electrowinning) should be evaluated to increase the purity of the metal obtained and 

to obtain the metal in other forms (e.g. metal foil) that could be interesting depending 

on the application for which it is intended. 
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 A bioleaching process presents many advantages over the traditional methods, 

especially in the environmental field. However, a thorough economic study is 

recommended before its implementation at industrial scale to verify the viability of 

this technology. 

 

With respect to the microorganisms involved in bioleaching and their activity during 

the process, the following considerations should be made in order to optimize the 

biological process: 

 After observing that some metals from the leaching solution affect the microbial 

activity, an extensive toxicity study should be performed with all the metals found in 

the leaching solution. 

 

 In this thesis, the microorganisms have been cultivated in suspension. However, 

their immobilization should be evaluated, since this may reduce biomass 

displacement along the different process steps and, thus, avoid the concentration 

loss when the biomass is inactivated by the contact to the toxic bioleached metals. 

 

 In order to reduce the precipitates during the biological oxidation of iron (II) without 

losing microbial activity, the mineral medium used in the process could be optimized, 

reformulating its composition. 
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