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INTRODUCTION

1. THE IMMUNE RESPONSE TO FUNGAL INFECTIONS

Fungi are ubiquitous environmental organisms with special
clinical relevance in immunocompromised individuals and hospitalized
patients. The spectrum of fungal diseases in humans ranges from mild
skin or mucosal infections to life-threatening invasive fungal infections
(IFIs) (Romani, 2011). Mortality and morbidity rates due to fungal
infections are still rising as a consequence of multiple factors,
comprising: (a) the increasing number of surgical procedures and
subsequent augment of intensive care units (ICU) admitted patients, (b)
the emergence of multidrug resistant (MDR) pathogens, (c) clinical
interventions triggering neutropenia, (d) the AIDS epidemics, and (e)
population aging (Nami et al, 2019). Current antifungal treatment
effectiveness depends on drug selection and diagnosis. In this context,
azoles, echinocandins and polyenes are the main antifungal agents used
for IFIs treatment. More specifically, ergosterol and 1,3-B-glucan
biosynthesis inhibitors, such as fluconazole and caspofungin,
respectively, are used as first-line therapeutic agents (Nami et al., 2019).
However, these compounds have multiple side effects including cross-

resistance, toxicity and drug interactions.

The integrity of the host’s immune system is critical in fungal
infections. The immune system is a combination of cells and soluble
components acting together to maintain host integrity and respond to
damage (exogenous or endogenous). These functions are achieved
through two lines of defence: the innate immunity and the adaptive
immunity. The innate immunity (also termed natural immunity) is the
first line of defence of the immune system. It has been classically

described as an unspecific system that responds quickly against
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INTRODUCTION

pathogens, with no need of previous instructive encounters and without
keeping memory of such encounters. The adaptive immunity (also
termed acquired immunity) stands as the second line of defence. It
specifically requires prior exposure to the pathogen. This response
increases with the successive encounters with the same pathogen,
generating specific immune memory which protects against such a
pathogen but no other even highly related pathogens. Both mechanisms

are in continuous interaction to enable a successful immune response.

1.1. INNATE IMMUNE RESPONSE TO FUNGAL PATHOGENS

The first line of defense against infections is provided by the skin
and the mucosal epithelial surfaces, which are constantly exposed to
environmental microorganisms. Different adhesins expressed by fungal
cells facilitate fungus and host’s cells interaction. Host cell invasion
involves two complementary mechanisms: fungal-induced endocytosis
and active penetration (Sheppard and Filler, 2014) (Figure IL.1).
Invasins Als3 and Ssal on Candida albicans surface, interact with E-
cadherin and the heterodimer EGFR-HER2 on epithelial cell surfaces.
Active penetration by C. albicans involves yeast germination forming
hyphae and hydrolases secretion. Other medically important fungi, such
as Aspergillus fumigatus and Cryptococcus neoformans, carry out similar
processes but host cell invasion by C. albicans has been the most widely
studied. Besides their role as physical barriers, the skin and the mucosal
epithelia also actively participate in the response against pathogens by
expressing a wide range of Pattern Recognition Receptors (PRRs).
Therefore, epithelial cells sense pathogens through PRRs (Wells et al,
2011; Zheng et al, 2015). This pathogen-PRR interaction triggers

antimicrobial peptide secretion and pro-inflammatory cytokines and
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INTRODUCTION

chemokines production, which promote immune cell activation (Naglik
and Moyes, 2011; Swidergall and Ernst, 2014). Following this
interaction, fungal bloodstream dissemination requires adhesion and
invasion of the endothelia. Fungus and N-cadherins interaction
promotes endocytosis by the endothelial cells (Phan et al, 2005). In
addition, different Toll-like receptors (TLRs) also recognise fungal
pathogens and produce immune mediators (Zheng et al., 2015).
Candida Gy Dl

Induced B-defensins
endocytosis °

Epithelial cell

T, 17 cell T, cell

Resident
macrophage

S
R

Lymph node

——
o O
Perforins

Elrdothelium

«

Figure L.1. Schematic representation of the antifungal immune response. Adopted from Netea

etal, 2015.

The main effector cells in innate immunity are those of
hematopoietic origin and include myeloid cells (e.g., neutrophils,
monocytes, macrophages, dendritic cells (DCs)) and innate-type
lymphoid cells (e.g., natural killer (NK) cells, NKT cells, y§ T cells and
innate lymphoid cells (ILCs)). Upon fungal recognition, PRRs on these
cells signal pathogen uptake and killing, and trigger immunomediators

production to modulate the immune response.
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Neutrophils are the most important effector cells for the control
of IFIs (Gazendam et al, 2016). Consequently, neutropenia is a major
risk factor in fungal infections (Gerson et al, 1984; Farah et al, 2001).
Neutrophils are recruited to the site of infection by chemokines such as
interleukin (IL)-8, chemokine (C-X-C motif) ligand 1 (CXCL1), CXCLZ2,
and CXCL5 produced by epithelial cells, tissue-resident macrophages,
monocytes and DCs (Netea et al, 2008; Gazendam et al, 2016).
Neutrophils’ fungicide function takes place via three different
mechanisms: oxidative mechanisms, non-oxidative mechanisms and
NETosis. The oxidative mechanism is based on reactive oxygen species
(ROS) production, which is mediated by NADPH oxidase and
myeloperoxidase (MPO) (Amulic et al,, 2012). Indeed, susceptibility to
[FIs in chronic granulomatous disease (CGD) results from NADPH
oxidase deficiency (Brown, 2011). The non-oxidative mechanism
consists on the release of granules containing antimicrobial peptides
and proteins that act directly on microbes. These granules contain
proteolytic enzymes (e.g. lysozymes, cathepsin-G, elastase), cationic
peptides and proteins (e.g. defensins, histones, LL-37) and metal
chelator proteins (e.g. lactoferrin, calprotectin) (Amulic et al, 2012).
Neutrophils also produce Neutrophil Extracellular Traps (NETs), which
are fibrillar structures containing DNA, histones and antimicrobial

proteins that directly interact with the pathogen (Amulic et al., 2012).

In addition to neutrophils, tissue-resident macrophages and
circulating monocytes are relevant effector cells in the anti-fungal
response as illustrated in macrophage-depleted mice, which show
increased susceptibility to invasive candidiasis (Qian et al, 1994). The
same effect was observed in mice deficient for CX3C-chemokine receptor

1 (CX3CR1), a receptor involved in the recruitment of monocyte-derived
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macrophages to the site of infection (Lionakis et al, 2013). Monocytes
differentiate into macrophages once in the tissues, but they also possess
antifungal activity. Monocyte-depleted mice, as well as C-C chemokine
receptor 2 (CCR2)-deficient mice, have increased susceptibility to IFls
(Ngo et al, 2014; Espinosa et al., 2014). IL-15 production by CCR2+Ly6hi
monocytes is necessary for efficient activation and Granulocyte
macrophage-colony stimulating factor (GM-CSF) release by NKs, and
subsequent neutrophils antifungal activity (Dominguez-Andrés et al.,
2017). Moreover, macrophages develop into pro-inflammatory (M1) or
anti-inflammatory (M2) macrophages, according to cytokine milieu,
which modulate the immune response to fungi in opposite directions.
For instance, increased susceptibility to C. neoformans infection has

been associated to M2 phenotype differentiation (Arora et al, 2011).

NK cells have been extensively studied in the context of tumours
and viral infections though they also participate against fungal infection.
NK cells release cytotoxic molecules, such as perforins and granzymes,
and produce pro-inflammatory cytokines, such as interferon (IFN)-y and
GM-CSF, which potentiate antifungal host response (Schmidt et al,
2017). Several receptors expressed by NK cells have been involved in
their antifungal activity. NKp30 is used by NK cells to bind to (-glucans
and directly kill C. albicans and C. neoformans (Li et al., 2018). NKp46
and CD56 have also been involved in antifungal activity of NK cells

(Vitenshtein et al, 2016; Ziegler et al., 2017).

Fungal recognition by DCs increases the expression of activation
markers (mainly CD80 and CD86) as well as the production of IL-8 and
[L-12p70 (Fidan et al, 2014). Type I IFN-B production by DCs is also
important for the host response against C. albicans (del Fresno et al,

2013). The main functions of DCs during fungal infection are the

-27 -




INTRODUCTION

activation and differentiation of naive T cells towards different effector
T cell subsets and tolerance induction. DCs also kill fungal pathogens
directly though with lower efficiency than neutrophils and macrophages

(Neteaetal, 2004).

In addition to the cellular component, the humoral arm of the
innate immunity has also been involved in the host’s defence against
fungus. Soluble proteins such as collectins, pentraxins, natural
antibodies or the complement system, among others, cooperate in the
antifungal response. These molecules can signal the presence of fungi
and consequently, regulate the cytokine secretion and expression of co-
stimulatory molecules by phagocytes (Romani, 2004). Furthermore,
protective effects have been observed after the administration of some
of such soluble proteins, which will be further discussed in this thesis
(Romani, 2004; Diniz et al., 2004; Gaziano et al.,, 2004; Farnworth et al.,
2008; Lo Giudice et al.,, 2010).

The immunological memory has been classically described as an
exclusive trait of the adaptive immune system. However, in the last
years, the existence of a similar phenomenon in the innate immune
system known as trained immunity has been proposed (Dominguez-
Andres and Netea, 2019). The encounter with certain inflammatory
stimuli promotes functional reprogramming of innate immune cells to
deliver a faster and enhanced immune response to future challenges.
This phenomenon is due to a long-term reprogramming at the
epigenetic, metabolic and transcriptional level. In this context,
modulation of hematopoietic stem and progenitor cells, and
consequently peripheral myeloid cells response, has been reported after
[B-glucan and Bacillus Calmette-Guérin (BCG) exposure (Kaufmann et al,,

2018; Mitroulis et al., 2018).
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1.2. ADAPTIVE IMMUNE RESPONSE TO FUNGAL PATHOGENS

The initial interaction between fungi and innate immune system
components allows the initiation of adaptive immune responses in
which T cells are an essential component. Antigen Presenting Cells
(APCs) cross-present fungal antigens to CD4+ and CD8* T cells via MHC-
I and MHC-I molecules, respectively. Due to the production of different
cytokine profiles, DCs subsets promote differentiation of naive CD8+and
CD4+T cells into T cytotoxic (Tc) and T helper (Th) subtypes (Figure
1.2). CD4+ T cells are the main players in the adaptive immune response
against fungal infections. Indeed, HIV patients, who have low CD4+ T cell
counts, are highly susceptible to these infections (Armstrong-James et

al, 2014).
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Figure I.2. Overview of adaptive immune T cell subsets involved in fungal infection.

DCs drive Th1l subset polarization through IL-12 and IL-18
production, whose response correlates with protective antifungal

immunity. Th1 cells are characterized by IFN-y production, an essential
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cytokine for phagocyte’s antifungal activity (Nathan et al., 1983; Shalaby
et al., 1985). Consequently, IFN-y, IL-18 or IL-12 deficiencies correlate
with an increased susceptibility to fungal infections (Balish et al., 1998;
Gwo-Hsiao Chen et al, 2005; Scheckelhoff and Deepe, 2005). For
instance, IL-18 and IL-12 deficient mice are susceptible to C. albicans
and C. neoformans infections, respectively (Decken et al., 1998; Netea et

al,, 2003).

The Th2 cell polarization is driven by IL-4 and IL-13, promoting
deleterious responses against fungal pathogens such as C. albicans, C.
neoformans and Histoplasma capsulatum, among others (Verma et al.,
2014). IL-13 and IL-4 promote alternative development of macrophages
to M2 phenotype, which trigger an uncontrolled fungal growth (Verma
et al, 2014). Indeed, IL-4 and IL-13 deficient mice are resistant to C.
neoformans infection (Decken et al., 1998; Miiller et al., 2007).

Whereas the role of Thl and Th2 cell responses has been well
understood in the context of fungal infections, the role of Th17 cells
remains controversial. The TGF-f, IL-6 and IL-23 secretion induce Th17
cell polarization. These cells are a CD4* T cell subset characterized by
the production of IL-174, IL-17F and IL-22, which promote neutrophil
mobilization, defensins production and enhancement of epithelial
barrier function (Zufiga et al, 2013). Several studies have shown an
increased susceptibility to oral and mucocutaneous C. albicans-
infections as a consequence of deficiencies in the Th17 pathway, both in
mice and humans (Verma et al.,, 2014). However, unfavourable effects of
Th17 response in fungal diseases have also been reported. For instance,
an exacerbated Th17 immune response against C. albicans and A.

fumigatus induced by IL-23 has been reported (Zelante et al., 2007). In
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turn, Th17 cells down-modulate Th1 responses that are essential to

clear the infection (Zelante et al., 2007).

Regulatory T cells (Tregs) play an important role in the down-
regulation of the pro-inflammatory immune response, thus limiting
host-collateral damage and restoring homeostasis. This CD4*T cell
subset controls different immunosuppressive mechanisms including the
production of anti-inflammatory cytokines, the suppression of IL-2
secretion and the inhibition of APCs function. Thus, Tregs are able to
promote either positive or negative responses, depending on the type or
the stage of the infection. On one hand, Tregs activity can promote an
increased susceptibility to fungal infection through the suppression of
protective pro-inflammatory responses. For instance, tir2-/- mice which
have impaired anti-inflammatory responses (decreased IL-10
production and CD4+CD25+ T cells percentage) are less susceptible to C.
albicans infection compared with their wild-type (WT) counterparts
(Netea et al, 2004).0n the other hand, Tregs may exert a protective
antifungal response by preventing excessive inflammation but enabling
fungal persistence at the mucosal sites (Luca et al, 2007). Likewise, A.
fumigatus conidia-activation of Tregs suppresses potential deleterious
effects of neutrophils and prevents allergic diseases (Montagnoli et al,

2006).

In addition to CD4+ T cells, CD8+ T cells are also involved in
antifungal immunity (Kumaresan et al.,, 2018). Cytokines and cytotoxic
factors such as perforins, granulysins and granzymes produced by this T
cell subset boost the innate and mucosal antifungal responses. It has
also been reported that CD8* T cells inhibit C. albicans hyphae growth
(Beno et al., 1995).
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1.3. FUNGAL RECOGNITION BY THE IMMUNE SYSTEM

Immune recognition of fungal pathogens relies on a limited
number of germ-line encoded receptors (termed PRRs) that recognise
conserved structures shared by different microbes. Such structures
(termed Pathogen-Associated Molecular Patterns, PAMPs) are essential
for the microorganism survival and are absent in the host. Additionally,
PRRs may also recognize endogenous structures released during cell
stress (named Damage-Associated Molecular Patterns, DAMPs) (Figure

1.3).
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Figure 1.3. Schematic representation of the PRRs involved in the anti-fungal immune

PR
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response.

PRRs are non-clonally distributed receptors belonging to
different structural families. They can be found as membrane-bound
(e.g., TLRs or C-type lectin receptors) or soluble receptors (e.g., NOD-
like, RIG-like or AIM2-like receptors) constitutively expressed by

hematopoietic and non-hematopoietic-derived immune cells. After
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binding to their respective ligands, PRRs trigger immediate pro-
inflammatory responses, which contribute to further activation and

ammunition of the innate and adaptive immune responses.

1.3.1 C-type lectin receptors (CLRs)

The most studied PRRs in antifungal immunity are CLRs, a
superfamily of soluble and membrane-bound proteins characterized by
the presence of at least one C-type lectin domain (Salazar and Brown,
2018). The best characterized CLR is Dectin-1, which is mainly
expressed by monocytes, macrophages, DCs and granulocytes (Brown,
2006). The interaction of fungal B-1,3-glucans with Dectin-1 induces
phagocytosis, respiratory burst and cytokine production by myeloid
cells, promotes autophagy and prevents NETosis (Salazar and Brown,
2018). Dectin-1 deficiency results in increased susceptibility to fungal
infection in different mouse models (Taylor et al, 2007; Werner et al.,
20009; Viriyakosol et al., 2013; Chen et al., 2017). In agreement with such
studies, Dectin-1 polymorphisms have been associated with increased
susceptibility to different fungal diseases in humans (Plantinga et al.,

2009; Ferwerda et al., 2009; Sainz et al., 2012; Skonieczna et al., 2017).

Dectin-2 and Mincle are CLRs expressed by DCs, macrophages
and neutrophils. Upon ligand recognition, both receptors associate with
the immunoreceptor tyrosine-based activation motif (ITAM) containing
the Fc receptor y-chain (FcRy)to induce intracellular signals (Ostrop and
Lang, 2017). Dectin-2 recognizes fungal a-mannans and O-linked
mannoproteins and induces cytokine and ROS production, phagocytosis
and Th17 responses. In mouse models, Dectin-2 deficiency results in
increased susceptibility to C. albicans infection (Saijo et al., 2010; Ifrim

et al, 2014; Ifrim et al, 2016). Furthermore, Dectin-2 gene
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polymorphisms have been associated with higher susceptibility to C.
neoformans and A. fumigatus infections in humans (Hu et al, 2015;
Skonieczna et al, 2017). Mincle is mainly involved in the immune
response against Malassezia, by inducing cytokine production
(Yamasaki et al., 2009). Mincle interaction with C. albicans has also been
reported, with Mincle deficient mice being more susceptible to

candidiasis (Wells et al., 2008).

The DC-specific ICAM-3 grabbingnon-integrin (DC-SIGN) and
mannose receptor (MR) are CLRs mainly expressed by myeloid cells,
including macrophages and DCs, which recognise fungal mannans (Patin
et al, 2019). DC-SIGN is not able to directly induce cellular responses,
but modulates signalling pathways induced by other receptors such as
TLRs (Gringhuis et al, 2007). It has been suggested that DC-SIGN
polymorphisms could be associated with increased risk of invasive
pulmonary aspergillosis but further analyses are required (Sainz et al.,
2012). The MR has been involved in IL-17 production from human APCs
after C. albicans recognition (van de Veerdonk et al, 2009).
Furthermore, it has been reported that MR-deficient mice are more
susceptible to cryptococcosis and blastomycosis (Dan et al.,, 2008; Wang

etal, 2016).

Collectins such as mannose binding lectin (MBL) and
surfactant proteins A (SP-A) and D (SP-D) have also been implicated in
the immune response against fungal pathogens. Complement activation
by MBL increases fungal opsonization whereas SP-A and SP-D promote
microbe agglutination in a complement-independent manner (Brummer

and Stevens, 2010).
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CD23 also plays a role in antifungal immunity by binding to a-
mannans and B-glucans. CD23 is expressed by B cells, eosinophils,
monocytes, activated macrophages, follicular DCs and keratinocytes
(Guo et al, 2018). Increased CD23 expression, in the absence of its
negative regulator c-Jun N-terminal Kinase 1 (JNK1), induces fungal
killing by ROS induction (Zhao et al., 2017). CD23 deficient mice are
more susceptible to fungal infection induced by C. albicans and A.
fumigatus, but not by C. neoformans as it cannot bind to
glucuronoxylomannans (GXM), one of the major capsular components of

Cryptococcus (Guo et al., 2018).

1.3.2. Toll-like receptors (TLRs)

TLRs are expressed by a wide range of immune and non-immune
cells, and recognise different fungal structures. TLRs form homo- or
hetero-dimers that signal intracellularly through different adaptor
proteins, mainly Myeloid Differentiation primary response 88 (MyD88)
and TIR-domain-containing adapter-inducing IFN-f (TRIF) (Patin et al.,
2019). The role of this family of receptors in fungal defence is complex
since it depends on the pathogen and on the interactions between them

as well as with other PRRs.

TLR2 is a cell surface receptor mainly expressed by myeloid
cells and mast cells that binds to phospholipomannans, 3-glucans and
zymosan (Bellocchio et al., 2004). There is some controversy on the role
of TLR2 in antifungal immunity. TLR2 deficient mice (tlr2-/-) were
reported to have increased susceptibility to disseminated candidiasis
(Villamoén et al., 2004),while tIr2-/- mice were also more resistant to C.
albicans infection (Netea et al., 2004). The use of different strains may

be behind this contradiction. In the first case, increased susceptibility
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was attributed to a decrease in tumour necrosis factor (TNF)-a and MIP-
2 production and to a decrease in neutrophils recruitment. In the second
case, the greater resistance was attributed to increased IL-10 release
and to the generation of Treg cells. Regarding other fungal pathogens,
tlr2-/- mice were not more susceptible to A. fumigatus infection
(Bellocchio et al., 2004). Moreover, polymorphisms of TLR1 and TLR6,
two TLRs forming heterodimers with TLR2, have been associated with
susceptibility to aspergillosis (Carvalho et al, 2010). Although TLR2
binds to GXM, this binding is not necessary for Cryptococcus serum

clearance in vivo (Campuzano and Wormley, 2018).

TLR4 is expressed at the cell surface and endosomal
compartments of myeloid cells, mast cells, neutrophils, B lymphocytes
and intestinal epithelium, and recognises O-linked mannosyl chains.
Interaction of TLR4 with fungal mannans from C. albicans induces
chemokine release and leukocyte recruitment (Netea et al, 2002),while
interaction with GXM promotes intracellular signalling but has no effect
on cytokine production (Shoham et al., 2001). TLR4 has been shown to
play a protective role in A. fumigatus and C. albicans infections (Netea et
al., 2002; Bellocchio et al, 2004). TLR4 gene polymorphism have been
associated with increased susceptibility to aspergillosis and candidiasis

in humans (Carvalho et al,, 2010).

TLR7 and TLR9 are endosomal receptors expressed by myeloid
cells and B lymphocytes that sense fungal RNA and DNA, respectively
(Ramaprakash et al, 2009; Biondo et al, 2012). Both receptors
cooperate in the activation of the transcription factor IRF1. TLR7 and
TLRO deficient mice show higher susceptibility to C. albicans (Biondo et
al., 2012) but not to A. fumigatus infection (Bellocchio et al., 2004). Gene
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polymorphisms of TLR7 and TLR9 have been associated with

aspergillosis in humans (Skonieczna et al., 2017).

Finally, specific TLRs seem to be dispensable to the antifungal
immune response against C. neoformans but this is not the case of the
adaptor molecule MyD88. It has been reported that MyD88 deficient
mice are highly susceptible to infections by different fungal pathogens
such as C. albicans, A. fumigatus, Coccidioides immitis, Paracoccidioides

brasiliensis or C. neoformans (Campuzano and Wormley, 2018).

1.3.3. NOD-like receptors (NLRs)

NLRs are a family of intracellular (cytoplasmic) receptors
extensively studied in the context of bacterial infections. In fungal
infections, the most important NLR is the NLRP3, an inflammasome
component expressed by myeloid, lymphoid and epithelial cells, which
recognise 3-glucans. Mouse models of fungal infection have shown that
NLRP3 plays an important role in the immune response against C.
albicans (Hise et al, 2009)and P. brasiliensis (Ketelut-Carneiro et al.,
2015). It has also been reported that this receptor is important in the
host response against A. fumigatus (Said-Sadier et al, 2010). NLRP3
polymorphisms in humans are also associated with higher susceptibility

to mucosal candidiasis (Lev-Sagie et al., 2009).

1.3.4. RIG-like receptors (RLRs)

RLRs are a family of cytoplasmic receptors traditionally
associated with antiviral immunity, but they also play a role in
antifungal immunity. RLRs are expressed by immune and non-immune
cells and sense foreign RNA. After ligand binding, these receptors

promote the production of type-I and type III IFNs (Brubaker et al.,
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2015). It has been reported that the melanoma differentiation-
associated protein 5 (MDAS5) plays an important role in the immune
response against C. albicans in humans and mice, and that MDA5 gene
polymorphisms are associated with increased susceptibility to this

pathogen (Jaeger et al., 2015).

1.3.5. Scavenger receptors (SR)

The SR constitute a structurally diverse superfamily of proteins
involved in the recognition of a wide range of endogenous and
exogenous structures (Pombinho et al.,, 2018). Several members of this
superfamily have been implicated in the recognition of fungi. The
scavenger receptor type F family member 1(SCARF1) and CD36 bind
to B-glucans and induce cytokine production. Indeed, CD36 deficient
mice show increased susceptibility to C. neoformans infection (Means et
al, 2009). The apoptosis inhibitor of macrophages (AIM), a
homologue of human Spa, binds to and aggregates pathogenic and
saprophytic fungal pathogens such as C. neoformans, C. albicans, S.
pombe and Saccharomyces. cerevisiae (Martinez et al., 2014). A role in
antifungal immunity for the macrophage receptor with collagenous
structure (MARCO) has been reported in a mouse model of
cryptococcosis. Indeed, MARCO deficient mice displayed higher fungal
growth accompanied by lower cell recruitment and pro-inflammatory
cytokine production to C. neoformans infection (Xu et al., 2017). Finally,
it has also been reported that the SR CD5 binds to and aggregates fungal
pathogens such as C. neoformans and C. albicans (Vera et al., 2009). The

role of CD5 in fungal infections will be further discussed in this thesis.
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1.3.6. Other fungal receptors

Other receptors involved in fungal PAMPs recognition include
the complement receptor 3 (CR3), a dimer consisting of the integrin
chains CD11b and CD18. CR3 is expressed by myeloid cells and binds to
B-glucans with high affinity, promoting fungal killing and phagocytosis
in a complement-dependent manner (Goodridge et al., 2009). It has also
been shown that CR3 has a role in driving Th1l and Th17 responses
during A. fumigatus infection (Gresnigt et al, 2013).CR3 deficiency
increases mortality rates in mouse models of infection induced by C.

albicans and Candida glabrata (Tsoni et al., 2009).

The epithelial receptor ephrin type-A receptor 2 (EphA2) also
recognize f-glucans and plays an important role in the immune
response against C. albicans in a oropharyngeal model of infection in

mice (Swidergall et al.,, 2018).

Galectins are additional mannose-binding lectins expressed by
myeloid, lymphoid and mast cells. Among them, Galectin-3(Gal-3) has
been involved in the immune response against C. albicans and C.
neoformans. (Becker et al, 2015; Almeida et al, 2017). Following (-
mannan recognition, Gal-3 collaborates with TLR2 for the secretion of
TNF-a inducing a protective response (Becker et al, 2015). Enhanced
neutrophils antifungal activity has been observed against C. albicans and
C. parapsilosis after incubation with recombinant Gal-3. Furthermore,
the effect was inhibited by the addition of anti-gal3 blocking mAb
(Linden et al, 2013). These results are in accordance with those
obtained in a mice model of S. pneumoniae where administration of
recombinant Gal-3 reduces lung injury and bacteremia by augmenting

neutrophils function (Farnworth et al, 2008). Moreover, increased
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susceptibility to candidiasis and cryptococcosis has been reported in

Gal-3 deficient mice (Becker et al, 2015; Almeida et al., 2017).

Recently, the NK cell receptor NKp30 has been identified as a 8-
glucan receptor (Li et al, 2018). NKp30 promotes Phosphoinositide 3-
kinase 3 (PI3K) and Erk 1/2 activation, perforin release, and fungal
cytotoxicity after C. albicans and C. neoformans recognition by NK cells
(Li et al,, 2013). NKp46, and its mouse orthologue NCR1, are also NK
cell receptors involved in fungal recognition through its interaction with
the Epal, Epa6, and Epa7 adhesins from C. glabrata. Thus, NKp46/NCR1
is essential for in vitro C. glabrata-killing and in vivo clearing systemic

infection (Vitenshtein et al., 2016).

Beneficial effects have been observed after the administration of
recombinant human Pexantrin-3 (rhPTX3)- a soluble PRR involved in
the immune response against fungi-in rat and mouse models of
aspergillosis (Diniz et al., 2004; Gaziano et al,, 2004; Lo Giudice et al.,
2010).

2. THE SCAVENGER RECEPTOR CD5

CD5 is a lymphocyte surface receptor belonging to the Scavenger
Receptor Cysteine-Rich superfamily (SRCR-SF), which is an ancient and
highly conserved group of protein receptors characterized by: 1) the
presence of one or several cysteine-rich domains called SRCR, and 2)
their involvement in the regulation of innate and adaptive immune
responses (Martinez et al, 2011).Consequently, CD5 has been involved
in the regulation of T and B cell development and function, as well as in
microbial recognition. From the historical point of view, CD5 (Lyt-1)

was one of the first lymphocyte receptors described in mice and humans
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thanks to the advent of the mAb technology (Ledbetter et al,
1980)(Boumsell et al., 1980), thus allowing the characterization of T cell
subpopulations and B-cell chronic lymphocytic leukemia (B-CLL) cells.

2.1. GENE AND PROTEIN STRUCTURE

The human CD5 gene maps to 11q12.2, telomeric to CD6 (a
highly related member of the SRCR -SF) and encompasses 24.5 kb. It
consists of 1lexons: exons 1 and 2 encode the signal peptide leader,
exons 3-6 the extracellular region, exon 7 the transmembrane region
and exons 8-10 the intracellular region (Padilla et al., 2000). The CD5
gene is conserved across species as evidenced by its orthologue on

mouse chromosome 19 (Lecomte et al., 1996; Padilla et al., 2000).

The CD5 gene codes for a type I trans-membrane glycoprotein of
67 kDa. The extracellular region is composed by three SRCR domains:
the most N-terminal domains (D1 and D2) are interspaced by a highly O-
glycosylated Proline-, Serine- and Threonine (PST)-rich region. The
most-membrane proximal domain (D3) is not glycosylated and directly
linked to D2 (Rodamilans et al, 2007; Garza-Garcia et al, 2008). The
cytoplasmic region is devoid of intrinsic catalytic activity but it has
several residues (11 Ser, 4 Tyr and 4 Thre) suitable for phosphorylation
by different Ser/Thre- (casein kinase 2, CK2; Protein Kinase C, PKC;
Ca?*/calmodulin-dependent kinase II, CaMK2) and Tyr- (Lck and Fyn)
kinases (Burgess et al., 1992; Gary-Gouy et al., 1997; Bauch et al,, 1998;
Calvo et al, 1998; Vila et al, 2001a; Vila et al., 2001b; Bamberger et al.,
2011). Furthermore, some Tyr are embedded into a pseudo-
immunoreceptor tyrosine-based inhibitory motif (pseudo-ITIM) or a
pseudo-ITAM that allows its interaction with signalling mediators (i.e.,

Lck, Fyn, Ras-GAP, c-Cbl or SHP-1) thus modifying downstream events
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of the T cell receptor (TCR) (Simarro et al, 1999; Vila et al, 2001a)
(Figure 1.4).

Genetic polymorphisms for CD5 have been reported in some
mammalian species (McKenzie and Potter, 1979; Howard et al, 1989;
Starling et al, 1997). In humans, a total of 27 single nucleotide
polymorphisms (SNPs) have reported, with two of them present at
relatively high frequencies in Caucasians: rs2241002 and rs2229177.
The SNP 1rs2229177 involves an Alanine (Ala) to Valine (Val)
substitution at the amino acidic position 471 (A471V), which is C-
terminal to a cytoplasmic ITAM-like motif. The SNP rs2241002 involves
a Proline (Pro) to Leucine (Leu) substitution at position 224 (P224L) in
the second SRCR extracellular (D2) domain (Moreno-Estrada et al.,
2009; Carnero-Montoro et al., 2012). The Ala to Val substitution has
been described as a gene signature for positive selection in East Asian
population, which would involve differential immune signalling of still

undefined nature (Carnero-Montoro et al., 2012).

2.2. EXPRESSION

CD5 is a lymphoid-specific marker mainly expressed on
thymocytes (from early maturational stages) and all mature T cells
(Reinherz et al, 1979; Ledbetter et al., 1980). In thymocytes, CD5 levels
correlate with TCR expression and avidity: lower levels are found on
double negative (DN, CD4-CD8-), increase on double positive (DP,
CD4+CD8+), and achieve the higher levels on simple positive (SP CD4+ or
SP CD8+) (Azzam et al., 1998). On the other hand, Treg cells (CD4+ CD25+
Foxp3*) show the highest expression levels (Ordofiez-Rueda et al,

2009).
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Figure 1.4. Schematic representation of the extracellular and intracellular interactions

mediated by CD5. Adapted from (Consuegra-Fernandez et al., 2015).

CD5 expression has been reported in B-CLL cells (Wang et al.,
1980) and the subpopulation of B cells named Bla cells (IgMhi, [gDlow,
CD23-, CD5+*), the main source of polyreactive natural IgM antibodies
(Berland and Wortis, 2002). High levels of CD5 are also expressed by
mouse regulatory B cells (Breg or B10 cells), an IL-10-producing
subpopulation involved in prevention of autoimmune diseases (Yanaba

etal, 2009)

CD5 is also expressed in extra-lymphoid cells, namely
macrophages and DCs. Thus, CD5 expression has been reported in a
mouse biphenotypic cell subset with normal B and macrophage
function, which could play a dual role in the adaptive and innate

immune response (Borrello et al., 2001). Furthermore, low CD5 levels
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have been reported in macrophages from Theileria annulata clinical
isolates (Moreau et al, 1999), in certain endothelial cells (Gogolin-
Ewens et al., 1989), in a subpopulation of vaginal DCs (De Bernardis et
al, 2006) and in a subpopulation of human skin DCs (Korenfeld et al.,
2017). The later would induce cytotoxic T cell and Th22 responses,
playing an important role in the development of psoriasis (Korenfeld et
al, 2017). Recently, it has been reported the expression of CD5 by
CD11c* DCs in lymphoid and non-lymphoid tissues from mice (Li et al,
2019).

In addition to membrane-bound CD5, the presence of a
circulating soluble form of CD5 has been reported in sera from healthy
individuals at pico/nanomolar range resulting from proteolytic cleavage
following lymphocyte activation (Calvo et al, 1999a). Moreover,
increased levels of soluble CD5 has also been detected in serum of
patients with lymphocyte hyperactivation diseases, such as the Sjogren
syndrome (Ramos-Casals et al, 2001) and the Systemic Inflammatory
Response Syndrome (SIRS) (Aibar et al, 2015). Although the biological
function of the soluble form of CD5 is still unknown, it has been
proposed that it could act as a competitor with the membrane-bound
CD5 for interaction with its ligands (Axtell et al, 2004; Simdes et al.,
2017).

2.3. LIGANDS

Despite the numerous studies published, the nature of the
endogenous CD5 ligand/s still remains controversial and elusive since
none of the different candidates proposed have been validated by
independent research groups. The long list of reported CD5 ligands
includes CD72 (de Velde et al, 1991), the framework region of IgVy
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(Pospisil et al.,, 2000), gp200 (Haas and Estes, 2001), gp40-80 (Biancone
et al., 1996; Bikah et al.,, 1996), the CD5 itself (Brown and Lacey, 2010),
gp150 (Calvo et al, 1999b), and IL-6 (Masuda and Kishimoto, 2016;
Zhang et al, 2016). Some of these interactions have been mapped: D1
for CD5, D2 for the framework region of IgVy, and D1-D2 for gp150
(Figure. 1.4).

Regarding the possibility that CD5 could interact with exogenous
ligands, our group has reported that the extracellular region of CD5
binds to (-glucans- a PAMP of fungal origin (Vera et al, 2009). The
affinity of this interaction (Kd =3.7 + 0.2 nM) is in the same range of that
reported for Dectin-1 -the main (-glucan receptor in myeloid
mammalian cells (Adams et al, 2008). Such interaction would be
relatively specific since no binding to other fungal (mannans) or
bacterial (lipopolysaccharide, LPS; lipotheichoid acid, LTA;
peptidoglycan, PNG) PAMPs was observed (Vera et al, 2009). Recently,
the recognition of PAMPs by CD5 has been extended to viral and
parasitic structures. It has been reported that CD5 facilitates Hepatitis C
Virus (HCV) entry into T cells, which could act as reservoir for its
persistence (Sarhanet al, 2012). Furthermore, the interaction of CD5
with tegumental components of the cestode parasite Echinococcus

granulosus has also been described (Mourglia-Ettlin et al., 2018).

2.4. FUNCTION

Thanks to its ability to negatively modulate the intracellular
signals delivered by the antigen receptor from T and B lymphocytes,
CD5 plays a relevant role on the regulation of immune responses in both

health and disease.
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2.4.1.CD5 in health
2.4.1.1. CD5 in cell activation

CD5 is physically associated with the antigen-specific clonotypic
receptor of T (TCR) and Bla (BCR) cells. In T cells, CD5 co-localizes with
the TCR at the centre of the supramolecular activation complex
(cSMAC), also named immunological synapsis (Beyers et al, 1992;
Gimferrer et al, 2003; Brossard et al, 2003). Thus, CD5 is well
positioned for modulating the activation or death cell signals generated
following antigen-specific recognition. By using anti-CD5 mAbs, alone or
in combination with anti-CD3, anti-CD4 or anti-CD28 mAbs, CD5 was
initially reported in the 1980s as a positive regulator (co-stimulator) of
TCR signalling (Ledbetter et al., 1985; Ceuppens and Baroja, 1986).
Later on, the characterization of the CD5-deficient mice positioned this
receptor as a negative modulator of activation and differentiation
signals from T and B cells. Accordingly, thymocytes from cd5/- mice
showed to be hyperresponsive to TCR/CD3 cross-linking, as deduced by
an enhanced proliferation, increased Ca?* mobilization as well as
phospholipase C (PLC)-yl, TCR{, LAT, and Vav phosphorylation
(Tarakhovsky et al., 1995). Furthermore, the analysis of TCR-transgenic
mice showed that CD5 negatively modulates the intensity of the TCR
signalling, thus influencing thymocyte selection (Tarakhovsky et al.,
1995; Azzam et al, 1998; Azzam et al, 2001). Mechanistically, an
increased phosphorylation of a negative regulatory tyrosine of Fyn after

CD5 stimulation has been reported (Bamberger et al., 2011).

Several works reported the ability of CD5 to generate TCR-
independent events. The anti-CD5 TS 43 mAb alone is able to increase T

cells proliferation as well as IL-2R expression, IL-2 production and Caz*
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mobilization (Spertini et al, 1991). Similarly, stimulation with the anti-
CD5 Cris-1 mAb alone also resulted in T lymphoblast proliferation
without triggering the canonical TCR signalling pathway (e.g., inositol
phosphate metabolism or Ca?* mobilization) but inducing
phosphatidylcholine-specific phospholipase C (PC-PLC)-dependent
activation of acidic sphingomyelinase (A-SMase) and protein kinase C
zeta (PKC-{) (Alberola-Ila et al, 1992; Simarro et al, 1999). In both
cases the presence of monocytes was necessary, so other co-stimulatory

effectors may be involved in these effects.

As in the case of T cells, cross-linking of the BCR with anti-IgM
antibodies showed enhanced B cells proliferation and an increase in
Ca?* mobilization in cd5/- mice (Bikah et al, 1996). BCR and CD5 co-
ligation also reduced Ca?* mobilization and ERK2 phosphorylation

(Gary-Gouy et al., 2000).

2.4.1.2. CD5 in cell survival

The first evidence that CD5 may regulate T and B-1a cell survival
was the induction of ERK phosphorylation in thymocytes after mAb-
induced CD3 and CD5 crosslinking, which resulted in the expression of
the anti-apoptotic molecule Bcl-2 (Zhou et al., 2000). The mechanism by
which CD5 increases T cell survival has not been fully elucidated.
Besides Bcl-2, the induction of CK2 and AKT as well as the inhibition of
pro-apoptotic mediators such as caspases, Bid and FasL by CD5 has also
been reported (Soldevila et al, 2011). Indeed, gene-targeted mice in
which the CK2-binding domain of CD5 was selectively ablated (CD5-
ACK2BD) showed increased apoptosis and pERK levels sin double
positive thymocytes, which resulted in altered positive and negative

selection processes (Mier-Aguilar et al., 2016). On the other hand, CD5-
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deficient mice show enhanced resistance to experimental autoimmune
encephalomyelitis (EAE) as a consequence of enhanced activation-

induced cell death (AICD) of T cells (Axtell et al., 2004).

With respect to B cells, it has been proposed that CD5 could play
a role by regulating IL-10 production. After stimulation, CD5* B cells are
less susceptible to apoptosis than CD5- B cells by producing higher
amounts of IL-10 and reducing Ca?* mobilization. Thus, CD5 could
prevent AICD events maintaining B-1a cell homeostasis and supporting
cell survival (Gary-Gouy et al., 2002). Moreover, PKC activation has been
reported in a subset of B-CLL cells after anti-CD5 cross-linking, being
correlated with the Mcl-1 pro-survival intermediate (Perez-Chacon et

al,, 2007).

2.4.1.3. CD5 in tolerance

The immune system has developed different mechanism to
avoid self-reactivity. One of these mechanisms is anergy induction. In
this context, over expression of CD5 correlates with anergy of CD8* T
cells chronically exposed to their cognate antigen, with CD5 levels
returning to normal following antigen removal (Stamou et al, 2003). By
using transgenic mice lacking the CD5-CK2 binding domain, it has been
shown that this interaction is important for tolerance induction. Mice
lacking the CD5-CK2 interaction showed a less severe and a delayed
onset in EAE mice model as a consequence of enhanced AICD of T cells

(Sestero et al., 2012).

On the other hand, Tregs are characterized by high CD5
expression levels (Kuniyasu et al, 2000; Ordofiez-Rueda et al, 2009).
cd5/- Treg cells express higher mRNA levels of Foxp3 and CD5 deficient

mice are less susceptible to dextran induced colitis (Dasu et al, 2008).
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Moreover, blocking of mTOR (mammalian target of rapamycin)-
dependent signalling has been reported as a mechanism for Treg cell

induction by CD5 (Henderson et al., 2015).

Modulation of regulatory B cell function by CD5 has also been
suggested. Indeed, increased Ca?* mobilization and hyper-proliferation
of anergic B cells from CD5 deficient mice has been reported (Hippen et
al, 2000). Moreover, transgenic mice overproducing a soluble form of
human CD5 showed a reduction in the number of IL-10-producing B
cells (also named B10) in spleen an peritoneal cavity (Fenutria et al,

2014).

2.4.2.CD5 in disease
2.4.2.1.CD5 in infection

As mentioned earlier, CD5 can recognize pathogen-related
structures of fungal, viral and parasitic origin. Though physiological
relevance of these interactions has not been fully elucidated, it has been
proposed that CD5 may help to prevent autoimmunity as well as to

optimize antimicrobial immune responses (Lenz, 2009).

It has been demonstrated that expression of membrane-bound
CD5 on 2G5 cells (a Jurkat T cell derivative) and HEK 293 (non-
lymphoid cells) transfectants induces signalling events (namely,
mitogen activated protein kinase (MAPK) phosphorylation) upon
exposure to zymosan, a (3- glucan-rich fungal particle (Vera et al., 2009).
This MAPK activation depends on the cytoplasmic tail integrity, as MEK
and ERK1/2 phosphorylation was not observed when a truncated form
of CD5 lacking the most C-terminal 88 amino acids of the protein was

transfected. In the same way, exposure of HEK 293 transfectants
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expressing the membrane form of CD5 to zymosan promotes a
significant induction in IL-8 release compared with un-transfected cells
or HEK 293 transfectants expressing the truncated form of CD5. Also, as
a result of the 3-glucan recognition, a recombinant soluble human form
of CD5 (rshCD5) induces fungal aggregation in a dose-dependent
manner avoiding pathogen dissemination and facilitating fungal

clearance (Vera et al, 2009).

Ex vivo assays challenging peritoneal cells from CD5-deficient
mice with PSEx (a fraction of tegumental antigens from E. granulosus)
induced increased TNF-q, but decreased IL-6 production compared with
their WT counterparts. On the other hand, peritoneal cells from WT
C57BL/6 (C57) mice stimulation with PSEx in the presence of increasing
amounts of rshCD5 increase PSEx-induced TNF-a and IL-6 production.
Thus, the absence of membrane-bound CD5 or the presence of soluble
CD5 modulates cytokine production upon PSEx exposure. Furthermore,
rshCD5 infusion reduced the proportion of infected mice, the number of
hydatid cysts per mouse and the total wet weight of hydatid cysts per
mouse (Mourglia-Ettlin et al., 2018).

Aside from the interaction between CD5 and HCV above
mentioned (Sarhan et al,, 2012), the possibility that CD5 could have a
role in other viral infections has been documented or Hepatitis B virus
(Sun et al,, 2013), Human Immunodeficiency Virus type 1 (Penney et al.,
2014), Equine Infectious Anemia (Tumas et al.,, 1994) and Eipstein-Barr
Virus-associated hemophagocytic lymphohistiocystosis (Karandikar et

al, 2004).

Finally, the fact that CD5 is expressed in some non-lymphoid cell

subsets could influence the innate immune response against infection.
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In this sense, a protective role of CD5+ vaginal DCs has been described in
a rat model of experimental C. albicans vaginitis (De Bernardis et al.,

2006).

2.4.2.2. CD5 in cancer

Several studies have positioned CD5, a negative modulator of T
cell activation and differentiation, as a target for the development of
anti-tumour immunotherapies. Positive results were early reported in
the treatment of mouse tumour models (leukemia and Lewis Lung
Carcinoma) by using the non-depleting anti-CD5 Lyt-1mAb (Hollander,
1984). Later, a phase I clinical trial was developed with an anti-CD5
T101 mAb in patients with B-CLL and cutaneous T-cell lymphomas
(Dillman et al, 1984). A second trial was performed with a
radioimmunoconjugate version of the same mAb (°0Y-T101) (Foss et al.,

1998) resulting both studies in partial but transient responses.

Recently, CD5 expression levels have been inversely correlated
with the anti-tumour activity of Tumour Infiltrating T lymphocytes
(TILs) (Dorothée et al., 2005). Indeed, low or undetectable CD5-levels
have been related with increased AICD of TILs (Friedlein et al., 2007).
Moreover, TILs from CD5 deficient mice s.c. challenged with B16.F10
melanoma cells displayed a more activated phenotype and showed
slower tumour growth (Tabbekh et al., 2011). These results are in line
with those reported for transgenic mice expressing a soluble form of
human CD5, which showed slower tumour growth in mouse models of
melanoma (B16.F0) and thymoma (EG7-OVA). The higher anti-tumour
response of such transgenic mice was associated with a lower
proportion of Treg and B10 cells, and a higher percentage of NKT cells

(Fenutria et al, 2014). Moreover, lower tumour growth was also
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observed after peritumoural injection of rshCD5 protein to WT mice s.c.
challenged with B16.FO melanoma cells. These results could be
correlated with NK cells cytotoxic activity, as lower intratumoural levels
of IL-6 were observed in the transgenic mice and rshCD5-treated mice,
and NK cell depletion with mAbs abrogated the anti-tumour effect
(Simdes et al, 2017).

On the other hand, it has been shown that carriage of certain CD5
gene variants may influence the outcome of cancer patients. Thus, the
SNP A471V seems to correlate with progression-free survival in patients
undergoing B-CLL (Sellick et al, 2007; Delgado et al, 2017) and with

improved survival in melanoma (Potrony et al., 2016).

2.4.2.3. CD5 in autoimmunity

Since both regulatory (T and B) cell subpopulations and
autoantibody-producing B cells express high levels of CD5, several

groups have investigated the role of this receptor in autoimmunity.

Controversy over the role of CD5 in Systemic lupus
erythematosus (SLE) has been raised. On one hand, a relationship
between CD5+ circulating B cells and secretion of autoantibodies has
been reported (Dauphinée et al., 1988; Markeljevi¢ et al., 1994; Bohm,
2004). This could be a consequence of uncontrolled Ig VD]
recombination resulting from the expression of recombination
activation genes (RAG 1 and 2) (Morbach et al, 2006; Hillion et al,
2007). On the other hand, CD5* B cells from SLE patients show reduced
levels of membrane-bound CD5 as a consequence of increased
expression of a truncated CD5 isoform (CD5-E1B) that remains retained
in the cytoplasm (Garaud et al., 2008). Expression of CD5-E1B is induced
by IL-6 (Garaud et al, 2009) and accordingly, the blockade of anti-IL-6
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receptor improves abnormal B and T cell homeostasis (Shirota et al.,
2013). In addition, another study demonstrated that CD5+ B cells seems
to be involved in IL-21 and granzyme B induction (Hagn et al, 2010).
Pilot studies treating SLE patients with a murine anti-CD5 mAb bound to
ricin toxin A chain (RTA) (zolimomabaritox) have been performed. This
immunoconjugate induces a persistent but modest T cell depletion and a
transient decrease in CD5+ B cells, in conjunction with high cytotoxic
effects and multiple adverse reactions (Wacholtz and Lipsky, 1992;
Stafford et al., 1994).

As for SLE, there is controversy over the role of CD5 in Multiple
Sclerosis (MS). In humans, a positive correlation between CD5* B cells
percentage and higher MS risk and early disease onset has been
reported (Correale et al, 1991; Hardy and Hayakawa, 2001; Villar et al.,
2011). CD5 expression levels in B cells have been associated with the
onset and duration of relapsing-remitting MS (Scott et al, 1994;
Bongioanni et al, 1996; Seidi et al, 2002). In contrast, another study
showed higher percentages of intrathecal CD5- B cells (Sellebjerg et al.,
2002), and decreased CD5 expression levels in B cells seems to be
associated with secondary progressive MS (Niino et al, 2012).
Experimental models of CD4+ T cell-mediated MS have been used to
study the role of CD5 in this disease. A protective role for CD5 or CD5+ B
cells has been reported in mice models of EAE (Hawiger et al., 2004;
Ochoa-Reparaz et al, 2010; Begum-Haque et al, 2011). However, the
induction of EAE in cd5/- deficient mice resulted in an increased
resistance to the disease (Axtell et al, 2004). Due to the interaction
between CD5 and CK2, the authors proposed that the delayed EAE onset
and decreased severity was a consequence of the pro-survival activity of

CD5 on T cells resulted from the binding of CK2 to this receptor. This
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was also supported by the results obtained from transgenic mice lacking
the CD5-CK2 binding interaction site, which also showed resistance to
EAE (Axtell et al,, 2006). The use of mAbD for the treatment of EAE has
been also explored. In this context, the administration of an anti-CD5
mAb (0X19, IgGi) at the immunization time partly prevents clinical
signs of Experimental Autoimmune/Allergic Neuritis (EAN), while its
administration shortly before the expected onset of the disease or
during its height promoted an exacerbation of the disease symptoms
(Strigard et al,, 1988). An enhancement of EAE severity has also been
observed in transgenic mice constitutively expressing a soluble form of
CD5 as well as in WT mice when rshCD5 was repeatedly injected from
the disease initiation (Fenutria et al, 2014). However, Axtell and
colleagues reported a recovery from EAE with the administration of
adenovirus expressing CD5-immunoglobuling fusion protein (CD5-Fc)

(Axtell et al., 2004).

The role of CD5 in Rheumatoid arthritis (RA) has been studied
for many years. Interestingly, the SNP rs229177 (Ala471Val) has been
included within 14 new susceptibility variants described for RA in
populations of European ancestry (Eyre et al, 2012). Increased
percentages and numbers of CD5* B cells have been reported in patients
with RA (Hara et al, 1988; Smith and Olson, 1990; Burastero et al.,
1993; Cantaert et al., 2012). In these studies, higher levels of these cells
have been correlated with increased amounts of polyreactive
antibodies, increased levels of rheumatoid factor and clinical features of
severe disease (Burastero et al., 1990). However, another study failed to
show such correlation (Sowden et al, 1987), and a negative role for Breg
populations has been reported in RA (Ma et al.,, 2014; Daien et al., 2014;
Cui et al, 2015). Clinical trials using an anti-CD5 mAb linked to ricin
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toxin A chain (RTA) resulted in an inhibition of the IL-2-induced
proliferation of synovial-fluid T cells in some RA patients (Verwilghen et
al, 1992; Olsen et al, 1993; Strand et al.,, 1993; Fishwild and Strand,
1994; Cannon et al, 1995). Although positive results were initially
observed, the use of depleting anti-CD5 mAbs was finally stopped as no
beneficial effects or significant differences between groups were
reported in a multicenter clinical trial (Olsen et al, 1996; Lorenz and
Kalden, 1998). In mouse models of collagen-induced arthritis (CIA), an
experimental mouse model for human RA, the use of non-depleting anti-
CD5 mAbs have resulted in a significant decrease in disease severity due
to T-cell mediated mechanisms, as anti-native collagen II circulating
levels were unaltered and the amelioration of disease severity appeared

six days after mAb treatment (Plater-Zyberk et al., 1994).

Increased proportions of CD5+ B cells have been reported in
early phases of Insulin-dependent diabetes mellitus (IDDM) (Lorini et
al, 1993; Mufioz et al.,, 2008). Two studies have shown the utility of anti-
CD5 mAbs in the treatment of IDDM although the mechanism
underlying the observed protective effects need to be further
investigated. A clinical trial was performed in patients with recent-onset
IDDM in which administration of the immunoconjugate CD5-Plus®
(anti-CD5 H65 mAb bound to RTA) resulted in reversible T-cell
depletion and preservation of B-cell function in a dose-dependent
manner (Skyler et al., 1993). In a mouse model of IDDM, treatment with
anti-Lyt-1 mAb linked to RTA promotes a dose-dependent protection

against diabetes onset (Vallera et al., 1992).

An inverse correlation has been reported between CD5* B cell
number and treatment response in autoimmune nephropathy (Wu et al,

2011; Kim et al, 2011; Nagatani et al, 2013; Wang et al, 2014).
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Furthermore, an anti-CD5 mAb (0X19) has been used as therapy in rats,
in which reduced proteinuria and glomerular lessons amelioration was
observed (Tipping et al, 1996; Huanget al., 1997; Ikezumi et al., 2000).
Infusion of CD5-Fc chimera in a mouse model of antibody-mediated
membranous glomerulonephritis also resulted in beneficial effects

(Biancone et al,, 1996).

Finally, the role of CD5 has been investigated in inflammatory
bowel disease (IBD). It has been reported that cd5/- mice are more
resistant to dextran sulphate sodium (DSS)-induced colitis than their
WT counterparts, (Dasu et al, 2008). The authors observed increased
levels of Foxp3 mRNA levels in colon an enhanced suppressive activity
of cd5/- Tregs. On the other hand, Yanaba and colleagues have shown
that cd19-/- mice are more susceptible to DSS-induced colitis and that
adoptive transfer of WT B10 cells (CD1dhCD5+IL-10+) to cd19-/- mice
induced a less severe intestinal injury in a IL-10-dependent manner

(Yanabaetal, 2011).

3. IMMUNOTHERAPY AGAINST FUNGAL INFECTIONS

Treatment of IFIs is a worldwide problem as the overall
mortality rates are still around 50%, despite advances in the
development of new antifungal drugs (Drgona et al.,, 2014; Bassetti et al.,
2014). This is due to the increasing number of immunocompromised
patients, the limited number of effective antifungal drugs, toxicity, drugs
interactions and the emergence of resistant strains (Nami et al, 2019).
These facts highlight the real need for the development of new
alternative therapies. In this sense, immunotherapy could act as an
alternative approach in the prevention and treatment of such infections,

by modulating the host immune response to fungal pathogens. Different
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immunotherapeutic strategies have been explored for the management

of fungal diseases, both at host and pathogen levels (Figure 1.5).

3.1. VACCINES

The development of antifungal vaccines has been an important
research area during the last years. However, immunocompromised
host failed in mounting a proper immune response so this approach
requires the use of immunoadjuvants. These patients are also at risk
from live attenuated formulations. This strategy could be an attractive
option in some particular situations, as is the case of immunocompetent
individuals that will undergo severe immunosuppression like those

waiting for solid organ transplantation.

VACCINES

*Conjugated formulations
+Live attenuated fungi
*Heat killed strains
*Recombinant proteins

CELLULAR
THERAPY
Granulocytes infusion
NK cells infusion
CARs

MONOCLONAL
ANTIBODIES

IMMUNOTHERAPY
AGAINST FUNGAL
INFECTIONS

(18B7, Mycograb)

CYTOKINES AND
GROW FACTORS

(IL-12, IL-17, IFN-y, CSF)

Figure L.5 Schematic representation of the immunotherapeutic strategies for the treatment
of IFIs.

Ideally, fungal vaccines targeting antigens shared by most of the

pathogenic fungi, such as the glycan -1,3-glucan are the most attractive.
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While this fungal cell wall component is poorly immunogenic, protective
effects have been reported in mice immunized with laminarin
conjugated to a diphtheria toxoid. This conjugate induces strong
antibody responses and protection in mice models of candidiasis and

aspergillosis (Torosantucci et al., 2005).

Promising results have been shown with vaccines containing live
attenuated fungi. An increased survival has been observed in a mice
model of pulmonary cryptococcosis, upon immunization with a modified
strain of C. neoformans (Wozniak et al, 2012). However, these strains
need to be sufficiently attenuated in order to avoid disease.
Immunization with heat killed strains could solve this problem acting as
panfungal vaccines. Protection against Aspergillus, Coccidioides and
Candida infection has been shown after vaccination with heat killed
Saccharomyces (Stevens et al., 2011). Development of subunit vaccines
has also been investigated. Vaccines containing recombinant proteins of
C. albicans were also found to confer protection in mice models of
infection and clinical trials (Lin et al., 2009; De Bernardis et al, 2012;

Schmidt et al,, 2012).

3.2. MONOCLONAL ANTIBODIES

Protection conferred by vaccination-elicited antibodies has led
to the development of therapeutic mAbs. Indeed, administration of
mAbs against cell surface components of C. albicans, A. fumigatus, C.
neoformans or H. capsulatum have shown protective effects in mouse
models of infection (Dromer and Charreire, 1991; Han and Cutler, 1995;

Chaturvedi et al., 2005; Guimaraes et al,, 2011).

Nevertheless, use of mAbs against fungal components is not a

developedfield. 18B7 and Mycograb are the only two mAbs that have
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been evaluated in clinical trials. 18B7 is a mAb with hydrolytic activity
directed against GXM, one of the main components of C. neoformans
capsule (Bowen et al, 2017). A phase I trial on HIV-patients with
cryptococcal meningitis has yielded positive results (Larsen et al,
2005). Mycograb is a mAb directed to the fungal shock protein HSP90.
Beneficial effects has been reported in patients with invasive candidiasis

in combination with amphotericin B (Pachl et al,, 2006).

3.3. CYTOKINES AND GROW FACTORS

The use of recombinant cytokines and grow factors with the aim
of modulating the host response against fungal pathogens has received
much attention during the last years. Numerous promising studies have
been developed based on the use of cytokines such as IL-12, IL-17, [FN-y
or Colony-Stimulating Factors (CSFs) in combination with classical

antifungal treatments.

Being neutropenia one of the main risk factors in the
development of [Fls, CSFs such as GM-CSF and granulocyte (G)-CSF were
among the first to be tested as antifungal immunotherapy. G-CSF
promotes antifungal activity of neutrophils as well as its proliferation
and differentiation (Bendall and Bradstock, 2014). G-CSF-deficient mice
are more susceptible to C. albicans infection than WT mice (Basu et al.,
2008). Furthermore, a protective effect of G-CSF administration in
animal models of fungal-induced infection has been reported (e.g., C.
albicans and A. fumigatus) (Polak-Wyss, n.d.; Lechner et al., 1994; Deepe
et al, 1999; Patera et al.,, 2004; Kasahara et al, 2016). GM-CSF plays an
important role in fungal infections by stimulating maturation, activation
and migration of a wide range of immune cells (Shi et al, 2006) and also

enhances the antifungal immune response by inducing phagocytosis and
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ROS production (Richardson et al, 1992). GM-CSF-deficient mice are
susceptible to different fungal pathogens including A. fumigatus and H.
capsulatum. In humans, the use of GM-CSF and G-CSF as adjunctive
therapies alongside conventional anti-fungal treatments have shown
beneficial effects in different IFIs (van de Veerdonk et al, 2012; Scriven

etal, 2017).

There is an important number of studies supporting the
increased susceptibility to fungal infections associated with IFN-y
deficiency (Balish et al.,, 1998a; Clemons et al.,, 2000; Chen et al., 2005b;
Vinh et al, 2009; Carreras et al, 2018). This cytokine promotes anti-
fungal response of macrophages and neutrophils (Schroder et al., 2004).
The administration of recombinant IFN-y improves the immune
response against C. albicans, C. neoformans and A. fumigatus among
others (Kullberg et al., 1993; Joly et al., 1994; Nagai et al., 1995; Carreras
et al, 2018). The use of this cytokine has been approved by the Food and
Drug Administration (FDA) for the treatment of infections in patients
with CGD. Several clinical trials have demonstrated the enhanced
immune response after IFN-y administration in patients infected by C.
albicans, C. neoformans and A. fumigatus (Delsing et al., 2014a; Coelho

and Casadevall, 2016).

3.4. CELL THERAPY

Therapy involving cell infusion could be an alternative approach
in the treatment of IFIs. Since the initial development of adoptive cell
transfer for the treatment of T cell malignancies, progress has been
made towards engineering T cells redirected to specific antigens. For the
same reason as GM-CSF and G-CSF where among the first candidates to

be tested, theoretically, granulocyte infusion should improve the host
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response against fungi. In a review of 97 case reports, overall response
rates between 50 and 100%were found (West et al,, 2017). Problems
such as their short lifespan or the low cell counts precluded obtaining
optimal and concluding results. However, the authors described an
improvement in the yield of this cell type after the availability of G-CSF
(Westetal, 2017).

NK cells do not induce graft-versus-host disease (GvHD), a fact
that makes them interesting candidates for adoptive cell transfer. In
mice models of infection by C. neoformans and A. fumigatus, NK cells
administration promotes fungal clearance, although this effect is IFN-y
dependent (Schmidt et al, 2017). Nowadays, the effect of NK cell
administration as immunotherapy is being investigated in cancer

clinical trials so further analysis is necessary regarding its use in IFIs.

Recently, a novel immunotherapeutic approach based on the
infusion of autologous cells expressing Chimeric Antigen Receptors
(CARs) has been proposed. These receptors have been mainly expressed
on T lymphocytes which can therefore overcome some limitations of
other T cell therapies as they act in a MHC-independent manner. These
receptors can be classified in three main generations depending on the
design. First generation CARs are constituted by a specific antigen-
binding domain (a single-chain variable fragment, scFv, resulting from
the fusion of the variable regions of the heavy (Vi) and light chains (VL)
of an specific antibody), a spacer region, a transmembrane domain and
an intracellular domain capable to trigger cell signalling. The initial
clinical trials using CAR-T cells for cancer treatment were disappointed
because of problems such as poor expression and persistence,
immunogenicity, toxicity or low efficacy. In an attempt to avoid T cell

anergy and increase T cell activation, second generation CARs have been
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designed by adding a co-stimulatory intracellular signalling domain. The
CD28 signalling domain initially, and tumour necrosis factor receptor-
members such as CD27, 4-1BB (CD137) or 0X40 (CD134) have been
used. Finally, third-generation CARs contains two co-stimulatory
domains have been described (Barrett et al, 2014; Chang and Chen,
2017). Nowadays, several clinical trials are on-going for testing second
and third-generation CARs (Kohn et al, 2011). In 2017, the first CAR-T
cell therapy was approved by the FDA for B-cell acute lymphoblastic
leukemia (B-ALL) (June et al., 2018).

Most studies involving CAR-T cells are related to cancer
immunotherapy, but some are now attempting to apply this strategy
against infection. For instance, an increase in [FN-y production in vitro
as well as virus clearance in vivo has been reported by CAR T cells
against the M2 membrane protein of the Influenza A virus (Talbot et al.,
2013). Another example is the development of CD4-based CARs for HIV-
1 infection treatment (Maldini et al, 2018). Regarding fungal infections,
human T cells expressing a modified version of prototypical CD19-CAR
accommodating the extracellular domain of human Dectin-1 (D-CAR)
exhibited specificity to the glucose polymer laminarin, and led to
damage and inhibition of A. fumigatus growth in vitro and in vivo

(Kumaresan et al., 2014).

Despite T cells constitute the main cell type chosen for the
expression of CARs, other cell types, such as NK cells, are under
evaluation for the expression of these chimeric receptors. Promising
results have been reported in preclinical studies in haematological and
solid cancer therapy (Fang et al, 2017). Furthermore, in contrast to
CAR-T cells, there are immortal NK cell lines available which possess

cytotoxic activity and cytokine-production capacity. Among them, the
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NK-92 cell line has been the most widely studied and its safety and
effectiveness is being investigated in clinical trials. NK-92 cells lack
almost all killer cell immunoglobulin-like receptors (KIRs), but express
activating NK-cell receptors which together with the in vitro expansion
possibilities, makes this cell line an attractive option for the
development of CAR-based immunotherapies (Zhang et al, 2017a; Liu et
al,, 2017).
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HYPOTHESIS AND OBJECTIVES

CD5 is a scavenger receptor mainly expressed on lymphoid (T
and B1la) cells but also on some minor myeloid (M¢ and DCs) cell
subsets. It is long known to negatively modulate differentiation and
activation signals mediated by the clonotypic antigen specific receptor
complexes of T (TCR) and Bla (BCR) lymphocytes, both being an
identity hallmark of the adaptive immune system (Burguefio-Bucio et
al, 2019). Recently, several reports have also shown its ability to
recognise and signal the presence of PAMPs of fungal, viral and parasitic
origin (Consuegra-Fernandez et al, 2015; Burgueio-Bucio et al, 2019),
which is a formal trait of PRRs expressed by the innate immune system’s
components (Salazar and Brown, 2018). In consequence, CD5 can be
considered as a relevant immunomodulatory receptor at the interphase

between the innate and adaptive immune responses.

IFIs have emerged in recent decades as a significant health
problem associated with high morbidity, mortality, and economic
burden (Klingspor et al.,, 2015). Nowadays, only a few antifungal drugs
are available and their use is limited by their associated side effects,
making necessary the development of new alternative or
complementary therapeutic strategies (Nami et al., 2019). The discovery
by our group that CD5 binds with relative high affinity to and signal the
presence of (-glucans (Vera et al, 2009) -a constitutive and highly
conserved component of fungal cell walls -motivated our interest on
exploring the CD5’s physiological function and/or therapeutic potential
in IFIs. In our view, the study of soluble and/or membrane-bound
immune receptors involved in antifungal immunity, as it may be the case
of CD5, could provide an important source of functional information to

be translated into such a novel therapeutic approaches.
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Based on the above mentioned premises, the specific objectives

of this thesis have been the following:

» To study the influence of the mouse genetic background on
fungal infection by analyzing the antifungal immune response of
the inbred (C57) and outbred (CD1) mouse strains most widely
used in basic and pharma-industry research.

» To study the influence of membrane-bound CD5 on fungal
infection by analyzing the antifungal immune response of mice
genetically deficient for CD5 (cd57/7).

» To study the therapeutic potential of soluble human CD5
administration (alone or in combination) in experimental
models of fungal infection.

» To study the therapeutic potential of CD5-based adoptive cell
transfer strategies by analysing the influence of immune cells
transduced with membrane-bound chimerical CD5 receptors in

pre-clinical models of fungal infection.
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1. MICE

Wild-type CD1, C57 and Balb/c mice were purchased from
Charles River Laboratories (France) and quarantined for one week prior
to experimental manipulation. Immunodeficient NSG (NOD/SCID IL-
2Rycnull) mice from Charles River Laboratories (France) were breeded
and kept in individual ventilated cages under specific pathogen-free
(SPF) conditions. CD5 deficient mice (cd5/) in C57 background
(Tarakhovsky et al, 1995), kindly provided by Dr Chander Raman
(Department of Medicine, University of Alabama at Birmingham), and
their WT counterparts were breeded and kept in individual cages under

SPF conditions.

Unless otherwise stated, animals of 8 to 12 weeks of age were
used in all experimental procedures, which were approved by the
Animal Experimentation Ethical Committee of the University of

Barcelona and Generalitat de Catalunya.

2. PRODUCTION AND PURIFICATION OF RECOMBINANT
PROTEINS

Production of purified rshCD5 (from R25 to D345; in phosphate-
buffered saline (PBS) plus 10% glycerol, pH 7.4) was performed as
previously described (Sarrias et al,, 2004) but using stably transfected
SURE CHO-M Cell line™ clones developed at Selexis (SUREtechnology
Platform™, Geneva, Switzerland). Serum-free culture supernatants were
further subjected to size-exclusion chromatography protocols

developed at PX'Therapeutics (Grenoble, France).
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Recombinant Human Serum Albumin (HSA) and murine IFN-y
(mIFN-y) were purchased from Sigma Aldrich (A9731), and Genscript
(Z02916), respectively.

3. CELL SUSPENSIONS

Spleen and peritoneal cells from euthanized CD1, C57 and Balb/c
mice were removed aseptically. Peritoneal cells were obtained by
peritoneal lavage with 3 mL of saline (B/Braun). Splenocytes were
incubated for 15 min at 37 °C in 4 mL of Hank's balanced salt solution
medium (HBSS; LabClinics), containing 1 mg/mL collagenase D
(11088866001; Roche) and 0.1 mg/mL DNAse [ (10104159001; Roche).
Following disaggregation through 40 um cell strainers (Biologix) with a
syringe plunger, the cells were washed with 10 mL of HBSS plus 10 %
fetal bovine serum (FBS; BioWest). After supernatant discard, the cells
were incubated at room temperature (RT) for 5 min with 3 mL of red
blood cell lysis solution buffer (RBC; 00-4333-57, eBioscience). After a
second wash, cells were counted and adjusted at the desired
concentration in RPMI 1640 medium with L-glutamine (R8758-
6X500ML; Sigma & Aldrich) plus FBS (10%), Hepes (10 mM; Life
technologies), sodium pyruvate (1 mM; Gibco), 2-Mercaptoethanol (50
uM; Merck), penicillin (100 U/mL; 6191309, Lab EBN) and streptomycin
(100 pg/mL; 624569, Lab Normon).

4. EX VIVO CELL STIMULATION ASSAYS AND MEASURE OF
CYTOKINE LEVELS

Spleen and peritoneal cells (5 x 106 and 2 x 106 cells/mL,
respectively) from CD1, C57 and Balb/c mice were plated in 48- or 96-
well plates in RPMI 1640 medium with L-glutamine (supplemented as
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described above). The cells were stimulated with zymosan (Zym; 0-75
ug/mL), anti-IL-12 antibody (1-5 pg/mL; C17.8, BD Biosciences),
isotype control mAb (5 pg/mL), LPS (1 pg/mL; L2630, Sigma Aldrich),
LTA (10 pg/mL; L2515, Sigma Aldrich), and anti-CD3 (0.1 pg/mlL;
70-0031-M001, TONBO), either alone or in combinations. Mouse IFN-y
and IL-17A cytokine levels in culture supernatants were determined by
ELISA (BD OptEIA-Mouse ELISA Sets, BD Biosciences Pharmingen)

following the manufacturer's instructions.

Spleen cells (5 x 10¢ cells/mL) from CD1 mice were plated in 96-
well plates in RPMI 1640 medium with L-glutamine plus FBS (10%) and
2-Mercaptoethanol (50 uM). Splenocytes were exposed to heat-killed C.
albicans (0.5 x 106 CFUs/mL) in the presence or absence of rshCD5 (1 to
10 pg/mL) or vehicle. Heat killed C. albicans was obtained by incubation
for 30 min at 100 2C. Mouse IFN-y, TNF-q, IL-1B and IL-10 inflammatory
cytokine levels were assessed in 24 h-culture supernatants were
determined by ELISA (BD OptEIA-Mouse ELISA Sets, BD Biosciences

Pharmingen) following the manufacturer's instructions.

Spleen cells (2 x 10> cells/well) from cd5/- and WT C57 mice
were plated in 96-well plates in RPMI 1640 medium (supplemented as
described above). IFN-y, TNF-q, IL-12 and IL-6 levels were determined
by ELISA in culture supernatants from splenocytes in basal conditions
or exposed to heat-killed C. albicans or C. neoformans (1 x 105

CFUs/well) for 24 h.

5.IN VITRO KILLING ASSAYS

Splenocytes (1 x 106 cells/mL) from CD1 mice were suspended

in RPMI 1640 medium with L-glutamine plus FBS (10%) and 2-
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Mercaptoethanol (50 pM), and co-cultured for 2 h at 37 2C and 5% CO-
in 96-well plates with C. albicans or C. neoformans (0.5 x 106 cells/mL) in
the presence of rshCD5 (1 to 10 ug/mL) or vehicle. Then, the cells were
lysed with water and the number of viable CFUs was assessed by
seeding and subsequent incubation for 48 h at 302C on sabouraud
dextrose agar plates. Killing activity was calculated as percentage of
non-viable CFUs in the presence of splenocytes compared with non-

viable CFUs in absence of cells.

6. FUNGAL VIABILITY ASSAYS

C. albicans and C. neoformans (0.5 x 106 /mL) were suspended in
RPMI 1640 medium (with L-glutamine plus FBS (10%) and 2-
Mercaptoethanol (50 puM)), and cultured for 2 h at 37 2C in 96-well
plates in the presence of vehicle or rshCD5 (1 to 10 pg/mL). Then,
fungal serial dilutions were seeded on Sabouraud dextrose agar plates
and incubated for 48 h at 30 °C for further viable CFUs determination.
Viability was calculated as percentage of viable CFUs in the presence of

rshCD5 compared with viable CFUs in absence of the protein.

7. EX VIVO LEUKOCYTE SUBPOPULATIONS ANALYSIS

7.1. ANALYSIS OF PRRS EXPRESSION ON MYELOID AND LYMPHOID
CELL SUBPOPULATIONS.

Spleen cells (1 x 107 cells/mL) from euthanized CD1 and C57
mice were characterized in basal conditions by using the fluorescent-
labelled mAbs listed in Table IL.1. Before staining, 1 x 10¢ cell
suspensions were incubated for 15 min at RT in blocking solution (PBS

plus 2 % FBS and anti-mouse CD16/CD32; Fc Shield, clone 2.4G2, Tonbo
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Bioscience). Mixes of mAbs were prepared in blocking solution and 50
ul of each mix was added to the cells. The samples were incubated for 20
min at 4 2C in dark, and then centrifuged at 1500 r.p.m., washed twice
with PBS and resuspended in fixing solution (PBS plus 1%
paraformaldehyde (PFA)). Labelled cells were analyzed with a BD
FACSCanto II flow cytometer (Becton Dickinson, US) and mean

fluorescence intensity (MFI) data analyzed using FlowJo software (Tree

Star, USA).

Table II1.1 Specificity of the mAbs used for the PRRs expression characterization on leukocyte

subpopulations by flow cytometry.

Specificity Conjugate Clone Source
CD45R (B220) violetFluor 450 RA3-6B2 | Tonbo
CD45R (B220) APC RA3-6B2 Biolegend
CD3 PE-Cy7 145-2C11 | Tonbo
CD11c Percp-Cy5.5 N418 Tonbo
CD11c eFluor 450 N418 eBioscience
F4/80 FITC BM8.1 Tonbo
CD282 (TLR2) PE CB225 Biolegend
CD284 (TLR4) APC SA15-21 Biolegend
CD119 (IFNgR1) PE 2E2 eBioscience
CD11b PE M1/70 Tonbo
Dectin-1 APC bg1fpj eBioscience
CD5 Percp-Cy5.5 53-7.3 Biolegend

7.2. ANALYSIS OF ACTIVATION AND APOPTOSIS T CELL MARKERS

Total splenocytes (2 x 105 cells/well) from cd57- and WT C57
mice were suspended in RPMI 1640 medium with L-glutamine plus FBS
(10%) and 2-Mercaptoethanol (50 uM), and co-cultured for 24 h at 37
2C and 5% CO; in 96-well plates with C. albicans or C. neoformans (1 x

105 CFUs/well). Then, the cell suspensions were incubated for 15 min at
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RT in blocking solution (PBS plus 2 % FBS and anti-mouse CD16/CD32).
T cell activation was determined by using the fluorescent-labelled mAbs
listed in Table IL.2. The cells were stained for the surface expression
markers for 20 min at 4 2C in dark. For intracellular IFN-y staining the
Fixation/Permeabilization Solution Kit (554714; BD Biosciences) was
used according to the manufacturer’s instructions. Finally, after the
appropriate washes, the cells were analyzed in a FACS Canto II flow

cytometer.

T cell apoptosis was measured with the Annexin/7AAD Kit
(Immunostep) following manufacturer’s indications. Once stained for
surface expression markers, the cells were resuspended in 400 pL of
Annexin buffer, 10 pL of Annexin and 10 pL of 7AAD. After incubating
for 15 min at RT they were analyzed in the flow cytometer. The
Annexin+/7AAD+ and Annexin+/7AAD- cells were considered as late
apoptotic and early apoptotic cells, respectively. The data analyzed with

Flow Jo software (Tree Star).

Table I1.2 Specificity of the mAbs used for CD4+ and CD8* T cells activation and apoptosis by flow

cytometry.
Specificity Conjugate Clone Source
CD4 FITC RM4-5 Tonbo
CD8 PE 53-6.7 Tonbo
CD69 APC H1.2F3 eBioscience
CD25 Percp-Cy5.5 |PC61.5 Tonbo
IFN eFluor 450 XMG1.2 Tonbo
PD1 FITC J43 eBioscience
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8. GENERATION AND FUNCTIONAL CHARACTERIZATION OF
HUMAN LYMPHOCYTES EXPRESSING A CD5-BASED CAR.

8.1. DESIGN AND CONSTRUCTION OF THE CD5-CAR LENTIVIRAL
VECTOR

The lentiviral vector for expression of the CD5CAR construct was
designed based on the pCCLsinPPT_EF1la_CART19 vector previously
described (Milone et al., 2009; Porter et al, 2011; Castella et al, 2019)
(Figure II.1A). Briefly, the coding sequence CD19-scFV sequence of
pCCLsinPPT_EF1a_CART19 was replaced by that of the whole
extracellular region of the human CD5 molecule (from R25 to D345),
which was then preceded by the EFla promoter and the CD8a signal
peptide sequences, and followed by the CD8a transmembrane region
and the cytoplasmic activating motifs of the 4-1BB/CD137 and CD3(
receptors (Figure I1.1B). The entire CD5CAR sequence (Annex I) was
gene synthesized and cloned as a Mlul-BspEIl fragment into the third
generation lentiviral vector pCCLsinPPT_EFla_CART19at GenScript
(USA).
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CD8a Extracellular Hinge & Cytoplasmic
Signal peptide domain Transmembrane  domain

| | |

|
hcos-caR [ Human cos 4-188]cD37 |

Figure 1IL.1. CD5-CAR |lentiviral vector design. A) Map of the lentiviral
pCCLsinPPT_EF1a_CART19 vector. B) Schematic representation of the CD5CAR construct.

8.2. LENTIVIRUS PRODUCTION

HEK 293T cells (9 x 106 cells) were plated into 10-cm culture
dishes 24 h before co-transfection with the CD5CAR-pCCL vector and
the packaging plasmids pRSV-Rev (Addgene, 12253), and pMDLg-
pRRE(Addgene, 12251) and the envelope plasmid pMD2-VSVG
(Addgene, USA). At the transfection time, 16 pg of total DNA (8 ug pCCL-
CD5CAR, 4 pg pMDLg/pRRE, 2 pg pRSV-Rev, and 2 ug pMD2.G) were
diluted in serum-free DMEM (41966-052; GIBCO) and then mixed with
40 pg of linear Polyethylenimine (PEI) (23966-1; Polysciences) for 20
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min at RT. Next, medium was replaced and DNA-PEI complexes were
added into the cells. At 4 h after transfection, medium was replaced
again. Complete lentiviral particles were collected from culture
supernatants 72h later, passed through 0.45 pm filters and concentrated
by centrifugation at 18000 rpm for 3h at 4°C. Lentivirus-containing
pellets were resuspended in DMEM and stored at -80°C until infection.
Whole lentiviral particles from packaging HEK 293T cells were used to
transduce previously activated primary human T cells or Cord blood
derived NK cells (CBNKs). which were then subjected to different in

vitro experimental procedures schematically shown in Figure IL2.

CD5-CAR Le.ntiviral transduct.i0n of
activated human peripheral
blood T cells or CBNKs

72h
CD5

ectodomain

CD5-CAR expression Co-culture
CD5-CAR cells
+

C. albicans
4-1BB
(CD137)
4h 24h
CD3¢
CFUs IFN-y (ELISA)

2nd generation CD5-CAR (D107 expression

3rd generation lentiviral
pCCL vector

Figure II.2 Schematic diagram summarizing the generation of CD5CAR-transduced human T

or CBNK cells for in vitro analyses.

8.3. CELL TRANSDUCTION AND CULTURE CONDITIONS

For isolation of human T cells, peripheral blood mononuclear

cells (PBMCs) were obtained by density centrifugation over Ficoll
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(10771-6X100ML; Sigma-Aldrich) from buffy coats of healthy donors
from Banc de Sang iTexits (BST) of Generalitat de Catalonia, upon
approval by the internal Ethical Committee. Monocytes were removed
by adherence to plastic for 2 h at 37 2C of PMBC cells suspended in RMPI
1640 medium with L-glutamine supplemented with 10% FBS, 100
Ul/mL penicillin (6191309; Lab EBN), and 100 pg/mL streptomycin
(624569; Lab Normon) and plated into 10-cm culture dishes. Non-
adherent cells (1 x 106 cells/mL) were then activated and expanded for
72 h with Dynabeads™ Human T-Activator CD3/CD28 (111-32D; GIBCO)
(at a bead to cell ratio of 1:1) in the same RPMI 1640 medium as above
and further supplemented with 50 pM B-mercaptoethanol (31350-010;
Thermo Fisher) and 30 [U/mL IL-2 (11011456001; Roche).

CBNKs from healthy donors, kindly provided by Dr. Alvaro
Urbano-Ispizua (Hematology Department, Hospital Clinic, Barcelona,
Spain), were isolated by magnetic depletion with the NK cell Isolation
Kit (MiltenyiBiotec, San Diego, CA) following the manufacturer's
instructions. Then, cells were expanded for 14 days by co-culture with
K562-based antigen presenting cells expressing membrane bound IL-21
(“Clone 9.mbIL21”) (Shah et al, 2013) in 45 % RPMI-1640 and 45 %
Click’s media (Irvine Scientific, Santa Ana, CA) supplemented with 10 %
human AB serum (Atlanta Biologicals, Lawrenceville, GA) plus IL-2 (400
IU/m; Proleukin; Chiron, Emeryville, CA) added every other day.

Lentiviral transduction of T or CBNK (1 x 106) cells was
performed by 5 h-incubation at 37 °C and 5 % CO: in the presence of 0.5
ul/mL of polybrene (TR-1003-G; Merck Millipore) and centrifugation
(2000 rpm) for 90 min at 32 °C RPMI 1640 medium with L-glutamine in
the case of T cells or 45 % RPMI-1640 and 45 % Click’s mediain the case
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of CBNK cells (supplemented as described above). Next, fresh medium

was added to avoid polybrene toxicity and left in culture for 72h.

For cell surface analysis of CD5CAR expression on T or CBNK
cells, both cell types as well as the untransduced controls were adjusted
to the desired concentration (1 x 106 cells/mL) in staining solution (PBS
plus 2% FBS) plus anti-human CD5 PercPCy5.5 (UCHTZ2; TONBO) and
incubated for 20 min at 4°C in dark. Next, cells were centrifuged at 1500
r.p.m., washed twice with PBS and resuspended in PBS plus 1% PFA.
Labelled cells were then analyzed with a BD FACSCanto II flow
cytometer and mean fluorescence intensity (MFI) or percentage of

positive cells was assessed using Flow]o software (Tree Star, USA).

8.4. IN VITRO ASSAYS OF ANTIFUNGAL ACTIVITY

All functional assays with CD5CAR-T or -CBNK cells were performed
at 72 h post-transduction. CD5CAR-T or -CBNK cells (and the
corresponding un-transfected cells) were incubated with alive C.
albicans at different effector: target (E:T) ratios (20:1, 10:1, 5:1 and 1:1),
at 37 °C and 5 % CO,. After 4 h of co-incubation, cells were stained with
PE-labeled anti-human CD107a/LAMP1 (H4A3, BD Pharmigen) and co-
culture supernatants collected and plated on Sabouraud dextrose agar
plates. The number of CFUs was determined after 48 h of incubation at
30 °C. In parallel experiments, the production of IFN-y after 24 h of co-
incubation was determined by ELISA (BD OptEIA-Human ELISA Set)

following the manufacturer's instructions.
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9. EXPERIMENTAL MOUSE MODELS OF DISEASE

9.1. MURINE MODEL OF ZYMOSAN-INDUCED GENERALIZED
INFLAMMATION (ZIGI).

The murine model of ZIGI was performed by intraperitoneal
(i.p.) injection of Zym (100-1000 mg/kg; Z450, Sigma Aldrich) to CD1
and C57 mice according to previous reports (Volman et al, 2005; Bian et
al, 2012; Jia et al, 2013). Buprenorphine (0.1 mg/kg; INDIVIOR) was

administered as analgesic every 12 h.

At the specified experiments, mIFN-y (0.2 pug/kg), rshCD5 (0.7
mg/kg) and HSA (0.7 mg/kg) were ip. administered alone or in
combination, 1 h post-ZIGI induction. Animals were monitored daily for

2 weeks, and survival, weight lost, and clinical score evaluated.

Survival and body weight loss were monitored overtime. The
clinical score was calculated as the mean of the individual scores
(lethargy, diarrhoea, conjunctivitis, and fur appearance), each of them

rated from 0 to 3.

9.1.1. Measurement of cytokine levels after ZIGI challenge.

Cytokine levels were determined in serum from CD1 and C57
mice ip. injected with Zym (700 mg/kg). At 18 h post- challenge, mice
were sacrificed and blood samples were obtained by cardiac puncture
and stored on ice until centrifugation (2000 rpm) for 10 min at 4 °C.
Serum was recovered and stored at -80 °C until used. Mouse IL-12
(p70), IL-6, TNF-a, IFN-y, IL-10, IL-4, GM-CSF, IL-18, IL-5, IL-2, and
IL-17A cytokine levels were determined by commercially available

ELISA kits (BD OptEIA-Mouse ELISA Sets, BD Biosciences Pharmingen)
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or Mouse cytokine magnetic 10-plex panel (Invitrogen) following the

manufacturer's instructions.
9.2. MURINE MODEL OF FUNGAL INFECTION BY C. albicans.

C. albicans (strain SC5314; ATCC MYA-2876), kindly provided by
Dr. Oscar Zaragoza (Instituto de Salud Carlos III, Madrid), was grown for
48 h at 30 °C on Sabouraud agar plates (01024_00; Conda). After that
period, an isolated colony was took and grown o/n at 37 °C in
Sabouraud liquid medium (CM0147; Oxoid) under horizontal shaking at
180 rpm. The culture was washed with PBS and serial dilutions were
done until achieving the desired concentration in saline for inoculum

preparation depending on the mouse weight and model lethality.

CD1 mice infection was performed by injecting intravenously
(iv.; tail vein) 2.86 x 104 - 2.86 x 102 colony forming units (CFUs) per
gram, in a final volume of 100pL. In the case of the fungal infection
model developed in C57 WT, C57 cd5/-, Balb/c and NSG mice, the
inoculums were the same as in the case of CD1 mice, but adjusted to the
animal’s weight (CFUs/gr). Survival and body weight loss were

monitored daily.

At the indicated experiments, C. albicans-infected CD1, C57 cd5/-,
Balb/c and NSG mice were treated with vehicle, HSA (1.25 mg/kg),
rshCD5 (0.625 to 2.5 mg/kg) or mIFN-y (0.2 or 10 pg/kg). The proteins

were injected i.v. or i.p at different time points post-infection (1-48 h).

At the specified experiments, fluconazole (0.1-10 mg/kg; B/
Braun) was ip. injected to CD1 mice according to previous reports
(MacCallum and Odds, 2004). The drug was daily administered for a
period of 7 days starting at 48 h post infection alone or in combination

with rshCD5 (1.25 mg/kg; + 18h; i.v.).
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9.2.1. Determination of fungal load in C. albicans infected mice.

CD1 mice were iv. infected by C. albicans (2.86 x 103 CFU/gr)
and iv. treated with HSA or rshCD5 (1.25 mg/kg; +18 h). C57 WT and
C57 cd5/- mice were Lv. infected by C. albicans (2.86 x 103 CFU/gr). At
the indicated times points post-infection, mice were euthanized, and
spleen and kidney were aseptically removed. The organs were weighed
and homogenized in sterile PBS using 40 pm cell strainers and a syringe
plunger. Fungal burden was determined by plating serial dilutions of the
homogenates on Sabouraud agar plates incubated for 48 h at 30 °C for

further CFUs/gr count.
9.2.2. Measurement of cytokine levels after C. albicans infection.

Cytokine levels were determined in serum and kidney from CD1
mice i.v. infected with C. albicans (2.86 x 103 CFU/gr) and treated via i.v.
with HSA or rshCD5 (1.25 mg/kg; +18 h). At 72 h post-infection, mice
were sacrificed and blood samples obtained by cardiac puncture and
stored on ice until centrifugation (2000 rpm) for 10 min at 4 °C. Serum
was recovered and stored at -80 °C until used. Kidney samples were
homogenised with a tissue disrupter in PBS with 1x protease inhibitors
cocktail (cOmplete™, 11697498001, Roche). After centrifugation at
12000 g for 10 min at 4 2C the supernatant was recovered and stored at
-80 °C until used. In both cases, mouse IL-6, IFN-y, TNF-q, IL-1 and IL-
10 cytokine levels were determined by commercially available ELISA

kits.
9.2.3. Leukocyte subpopulations analysis in C. albicans infected mice.

Spleen and kidney leukocyte subpopulations from CD1 mice iv.
infected by C. albicans (2.86 x 103 CFU/gr) and treated via i.v. with HSA
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or rshCD5 (1.25 mg/kg; +18 h) were analyzed at 72 h post-infection.
Spleen and Kkidney from euthanized animals were removed and
incubated for 20 min at 372C in PBS containing 0.5 (kidneys) to 1
(spleens) mg/mL collagenase D and 0.1mg/mL DNAse I. Following
disaggregation through 40 pm cell strainers, cell suspensions were
washed twice with PBS plus 2% FBS and erythrocytes lysed with 4 mL
of RBC for 4 min at RT. After a second wash, cells were counted and
adjusted to the desired concentration (1 x 107 cells/mL) in PBS plus FBS
(2%).

Kidney and spleen leukocyte subpopulations were characterized
using the fluorescent-labelled mAbs listed in Table I1.3. Before staining,
1 x 10¢ cell suspensions were incubated for 15 min at RT in blocking
solution (PBS plus 2 % FBS and anti-mouse CD16/CD32). Then the
samples were stained for 30 min at 4 °C in the dark with the appropriate
antibody mixes prepared in blocking solution. LIVE/DEAD Fixable Near-
IR Dead Cell Stain Kit (L34976; Invitrogen) was used to exclude dead
cells. After the appropriate washes cells were incubated o/n in fixing
solution (PBS plus PFA /1%). Finally, leukocyte subpopulations were
determined by a FACS Canto II flow cytometer and the data analyzed

with Flow Jo software.
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Table IL.3. Specificity of the mAbs used for leukocyte subpopulations characterization in C. albicans

infected CD1 mice.

Specificity Conjugate Clone Source
CD45 FITC 30-F11 Biolegend
CD3 APC 145-2C11 Tonbo
CD45R (B220) violetFluor 450 RA3-6B2 Tonbo
CD45R(B220) APC RA3-6B2 Biolegend
NK1.1 PE PK136 BD Biosciences
Gr-1 APC RB6-8C5 Tonbo
CD11b PE M1/70 Tonbo
CD11b APC M1/70 eBioscience
CD11c Percp-Cy5.5 N418 Tonbo
CD11c eFluor 450 N418 eBioscience

9.3. MURINE MODEL OF FUNGAL INFECTION BY C. neoformans.

C. neoformans, var grubii (serotype A; strain H99) (Perfect et al.,
1980), kindly provided by Dr. Oscar Zaragoza (Instituto de Salud Carlos
I1I, Madrid), was grown for 48 h at 302C on Sabouraud agar plates. After
that period, an isolated colony was took and grown in Sabouraud liquid
medium, o/n at 30°C under horizontal shaking at 180rpm. The culture
was washed with PBS and serial dilutions were done in saline until

achieving the desired concentration (3.3 x 107 CFUs/mL).

CD1, C57 WT and C57 cd5/- mice infection was performed by
intranasal (i.n.) administration of 2.86 x 104 CFUs/gr (in a final volume
of 30 pL) to mice ip. anesthetized with ketamine (Ketamidor; 100
mg/kg) and xilacine (Rompun; 10 mg/kg). At the specified experiments,
C. neoformans-infected CD1 mice were iv. treated with a single dose of
HSA (1.25 mg/kg) or rshCD5 (0.625 - 2.5 mg/kg) at different time points
post-infection (1-6 days). Survival and body weight loss were monitored

daily.
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9.3.1. Determination of fungal load in C. neoformans infected mice.

At the specified time point’s post-infection, CD1 mice i.n. infected
by C. neoformans (2.86 x 10* CFUs/gr) and treated with HSA or rshCD5
(1.25 mg/kg, + 3 days) were euthanized and lung and brain were
aseptically removed. The organs were weighed and homogenized in
sterile PBS using 40 um cell strainers and a syringe plunger. Fungal
burden was determined by plating serial dilutions of the homogenates
on Sabouraud agar plates incubated for 48 h at 30 °C for further
CFUs/gr count.

9.3.2. Measurement of cytokine levels after C. neoformans infection.

Cytokine levels were determined in serum from CD1 mice in.
infected by C. neoformans (2.86 x 104 CFUs/gr) and treated with HSA or
rshCD5 (1.25 mg/kg, + 3 days). At the indicated time points post-
infection, mice were sacrificed and blood samples obtained by cardiac
puncture and stored on ice until centrifugation (2000 rpm) for 10 min at
4 °C. Serum was recovered and stored at -80 °C until used. Serum was
recovered and stored at -80 °C until used. Mouse IFN-y levels were

determined by commercially available ELISA kits.
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1. ANALYSIS OF THE SUSCEPTIBILITY OF DIFFERENT MOUSE
STRAINS TO EXPERIMENTAL FUNGAL SEPSIS.

Besides the advances made last few years in the understanding
of the molecular and cellular basis of antifungal immunity, more efforts
are necessary since the incidence of IFIs still continues rising. Animal
models help in our understanding of fungal pathogenesis, host immune
responses, diagnosis and antifungal treatment (Capilla et al., 2007; Hohl,
2014). The septic shock-like syndrome induced by zymosan, also known
as zymosan-induced generalized inflammation (ZIGI), has been
extensively used as a model of fungal sepsis (Genovese et al., 2004;
Volman et al,, 2005). Zymosan is a $-glucan-rich particle derived from S.
cerevisiae, which induces inflammatory mediator release leading to
multiple organ dysfunction syndrome (MODS). The (-glucans are
conserved structural PAMPs of fungal cell walls, which are sensed by
PRRs (e.g, TLR2, Dectin-1, Langerin, CD23, CR3/CD11bCD18, CD36,
SCARF1, and CD5) expressed by host innate and adaptive immune cells
to mount protective responses (Vera et al, 2009; Levitz, 2010; Latgé,

2010; Salazar and Brown, 2018).

Inbred (homozygous) and outbred (heterozygous) mouse
strains commonly used in academic and industrial research have also
been used to model fungal infections (Hohl, 2014). Differences
regarding disease susceptibility/severity when inbred and outbred
mouse strains are challenged with the same fungal species (e.g., P.
brasiliensis or C. neoformans) have been reported (Calich et al., 1985;
Zaragoza et al., 2007; Garcia-Barbazan et al, 2016). Such differences
may provide insight into the genetic and mechanistic foundations, as

well as into possible therapeutic approaches to fungal infections (Capilla
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et al., 2007). C57 and CD1 are two of the most common mouse strains
used for academic and industrial purposes. C57 is an inbred
(homozygous) strain most commonly used for developing genetically
modified mice to model human diseases (e.g., the Knockout Mouse
Project initiative). CD1 is an outbred (heterozygous) strain (Aldinger et
al, 2009) commonly used in toxicology testing (safety and efficacy) by
the pharmaceutical and chemical industry. To explore possible
differences regarding susceptibility to ZIGI, mice from both strains were
i.p. injected with identical single doses of zymosan (ranging from 100 to
1,000 mg/kg). These dose-response experiments showed a trend to
higher susceptibility of C57 mice to ZIGI at all zymosan tested doses,
which reached statistical significance only at 700 mg/kg (p<0.05) likely
due to the low size (n) of most experimental groups analysed (Figure
IV.1).

CD1 C57
100 -~ 100 mg/kg (n=3) 100 o -® 100 mg/kg (n=4)
-k&- 300 mg/kg (n=3) -&- 300 mg/kg (n=6)
_ % ¥ 500 mg/kg (n=3) 80 % v -¥ 500 mglkg (n=12)
5 P g - 700 mg/kg (n=13) &0 4 4 700 mg/kg (n=64)
s <>~ 900 mg/kg (n=3) <>~ 900 mg/kg (n=10)
S s O 1000 mg/kg (n=3) 0 p -0 1000 mg/kg (n=4)
@ ”ﬁ
20 20
0 O y o v v S
0 5 10 15 0 5 10 15
Time (Days) Time (Days)

Figure IV.1 Dose-dependent survival of CD1 and C57 mice after zymosan challenge. Survival
percentage of CD1 (left) and C57 mice (right) i.p. injected with increasing doses of zymosan (100 to
1000 mg/kg).

In light of this data and according to previous reports (Volman et
al, 2005; Bian et al, 2012; Jia et al, 2013), further comparative
experiments were performed by using 700 mg/kg as the optimal
zymosan dose. As illustrated by Figure IV.2A, under those conditions
C57 mice underwent higher mortality, clinical score, and body weight

lost after ZIGI.
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Figure IV.2 CD1 and C57 mice differ in their susceptibility to ZIGI. A) CD1 (n = 25) and C57 (n =

69) mice were i.p. injected with zymosan (700 mg/kg). Survival percentage (left) overtime. **, p <

0.01 (Log-rank Mantel-Cox test). Body weight percentage (middle) and clinical score (right) at 1

day post-zymosan challenge. **, p < 0.01 and ***, p < 0.001 (Unpaired ¢ test). B) CD1 and C57 mice

i.p. challenged with zymosan (700 mg/kg) or saline, and bled 18 h later for assessment of cytokine

serum levels by ELISA or Multiplex. The number of mice from each strain goes from 3 to 11

depending on the cytokine. ***, p < 0.001 (Unpaired ¢ test).
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The higher ZIGI susceptibility of C57 versus CD1 mice was also
evidenced by significantly lower serum levels of the pro-inflammatory
[FN-y and IL-6 cytokines at 18 h post zymosan injection (Figure 1V.2B).
Non-significant differences were observed between the two mouse
strains regarding the GM-CSF, IL-1, IL-2, IL-4, IL-5, IL-10, IL-12, IL-17,

and TNF-a serum levels.

IFN-y is a prototypical Th1 cytokine produced by several innate
and adaptive immune cells (macrophages, DCs, CD4+ Th1 cells, CD8+ T
cells, Ty$ cells and NK cells) and plays a key role in the immune control
of fungal infections (Stevens et al, 2006; Gozalbo et al, 2014). Thus,
[FN-y levels were also measured in ex vivo cultures of C57 and CD1
splenocytes exposed to 75 pg/mL of zymosan (Zym), as determined by
previous dose-response assays (data not shown). As illustrated by
Figure IV.3A (left), lower IFN-y levels were detected in culture
supernatants from C57 versus CD1 splenocytes. Similar results were
observed when peritoneal cells were ex vivo exposed to the same Zym

dose (Figure IV.3A, right).

As IL-12 is an inducer of IFN-y production (Trinchieri, 1995),
their interdependence in response to zymosan was investigated. To this
end, zymosan -stimulated splenocytes from CD1 mice were cultured for
20 h in the presence of different doses of a blocking anti-IL-12 mAb
antibody or an isotype control. As shown in Figure IV.3B,
zymosan-induced IFN-y by CD1 splenocytes was only partly reduced by
IL-12 blockade, meaning that other IL-12-independent IFN-y-inducing
factors (e.g., IL-18) could be also operating upon zymosan challenge

(Fantuzzi et al., 1998).
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The lower in vivo and ex vivo IFN-y responses of C57 versus CD1
mice challenged the classical view of C57 as a prototypical Th1-biased
mouse strain (Watanabe et al, 2004). Thus, we decided to compare
zymosan-induced IFN-y production by splenocytes from C57 and CD1
mice with that of Balb/c - a prototypical Th2-biased mouse strain. As
expected, IFN-y levels achieved by C57 splenocytes were 10-fold higher
than those of Balb/c splenocytes (Figure IV.3C). In turn, CD1
splenocytes produced 10-fold higher IFN-y levels than C57 splenocytes
(Figure 1V.3C).
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Figure IV.3 Ex vivo stimulated CD1 and C57 splenocytes differ in their IFN-y response
following exposure to Zym. A) IFN-y levels measured by ELISA in supernatants from total
splenocytes (5 x 10¢ cells/mL; left) and peritoneal cells (2 x 10¢ cells/mL; right) of CD1 and C57
mice exposed to Zym (75 pg/mL) for 18 h. *¥, p < 0.01 and ***, p < 0.001 (Mann-Whitney test). B)
IFN-y levels determined by ELISA in supernatants from total splenocytes (5 x 106 cells/mL) of CD1
mice exposed for 18 h to isotype control monoclonal antibody (5 pg/mL), blocking anti-IL-12
antibody (1 or 5 pg/mL) or Zym (75 pg/mL) either alone or in combination. *, p< 0.05 (Student ¢
test). C) IFN-y concentration in supernatants from total splenocytes (5 x 10¢ cells/mL) of CD1,
C57and Balb/c mice exposed to Zym (75 pg/mL) for 18 h. *, p < 0.05 (Mann-Whitney test).
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It was further investigated whether the reduced IFN-y response
of C57 versus CD1 splenocytes was specific to Zym by using alternative
stimuli. As shown in Figure IV.4A, C57 splenocytes also produced lower
[FN-y levels than CD1 mice following stimulation with LTA (10 ug/mL)
or LPS (1 pg/mL), two bacterial PAMPs binding to TLR2 and TLR4,
respectively. In contrast, no differences were observed between C57 and
CD1 splenocytes when exposed to an anti-CD3 mAb (0.1 pg/mL; Figure

1V.4B), which excluded putative intrinsic ifn-y gene expression defects.

A)
1= co1 (n=3) 13 o1 (n=3) —
5 |WE C57 (n=3) * ~ oM C57(n=3)
g 604 £
g EE
S 401 o
2 g 20
o >
Z 204 7
: m
0 T T 0
0 10 0 H
LTA (ng/mL) LPS (ug/mL)
B
) 60 _ C) .
[ CD1 (n=3) . ——
= |l C57 (n=3) _ 12 cp1(n=3) o
£ 2 .M C57(=3) 0
D 404 £ =001
= [=N
3 EE
= 20 P
i S
- =
0 T T o
o1 Basal Zym o-CD3 ¢-CD3
a-CD3 mAb (ug/mL) + zym

Figure IV.4. CD1 and C57 splenocytes differ in their IFN-y and IL-17A responses following ex
vivo exposure to different stimulatory conditions. A) IFN-y levels in supernatants from total
splenocytes (5 x 10¢cells/mL) of CD1 (n = 3) and C57 (n = 3) mice exposed to LTA (10 pg/mL) or
LPS (1 ug/mL) for 18 h. B) IFN-y levels in supernatants from total splenocytes (5 x 10¢ cells/mL) of
CD1 (n = 3) and C57 (n = 3) mice exposed to anti-CD3 mAb (0.1 pg/mL) for 18 h. C) Splenocytes
from C57 and CD1 mice (5 x 10¢ cells/mL) exposed for 18 h either to Zym (75 pg/mL), anti-CD3
(0.1 pg/mL) or a combination of both. IL-17A cytokine levels in supernatants were determined by

ELISA* p <0.05and **, p < 0.01 (Student ¢ test).

In addition to IFN-y, IL-17A has also been involved in the
immune control of fungal infection, especially in epithelial and mucosal
surfaces (Jin and Dong, 2013). In light of this, IL-17A production by

splenocytes from both strains was assessed. As illustrated in Figure
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IV.4C, ex vivo exposure of splenocytes to Zym alone (75 pg/mL) led to
weak IL-17A production in both mouse strains. However, splenocytes
from C57 mice produced higher IL-17A levels than CD1 mice after
anti-CD3 mAb stimulation alone or in combination with Zym. This
relative lower IL-17A production might be indicative of likely intrinsic

defects in the il-17a gene expression pathway in CD1 mice.

It was further investigated whether C57 susceptibility to ZIGI
could be ameliorated by IFN-y replacement therapy. To this end, C57
mice were ip. injected 1h post ZIGI-challenge with 0.2 pg/kg IFN-y, a
dose intended to allow C57 mice achieving similar serum levels in
magnitude to those observed in CD1 mice (Figure IV.2B). As illustrated
by Figure IV.5A (left), IFN-y infusion increased C57 survival (from
x15% to =40%) and clinical score (Figure IV.5A; right) to values
paralleling those of CD1 mice at similar Zym (700 mg/kg) dose (Figure
IV.2A). No significant effects on mouse survival were observed when
CD1 mice were infused with identical IFN-y (0.2 pg/kg) amounts
(Figure IV.5B).

It was also investigated whether C57mice, either alone or in
combination with IFN-y, could benefit from the infusion of the f-glucan
interacting CD5 protein as previously reported in CD1 mice (Vera et al,
2009). As shown in Figure IV.5A (left), i.p. injection of rshCD5 protein
alone (0.7 mg/kg) 1h post ZIGI challenge did not significantly improve
C57mice survival (p < 0.06) or clinical score with regard to the control
protein (human seroalbumin; HSA). Simultaneous infusion of IFN-y and
rshCD5 showed not statistically significant additive effects regarding
survival rates (*70%) and clinical scores (Figure IV.5A left and right,

respectively).
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Figure IV.5 Effect of IFN-y and/or rshCD5 infusion in ZIGI-challenged C57 and CD1 mice. A)
Percentage of survival overtime and clinical score of C57 mice ip. challenged with Zym (700
mg/kg) and treated 1 h later with HSA (0.7 mg/kg), IFN-y (0.2 pg/kg) and rshCD5 (0.7 mg/kg)
alone or combined. *, p < 0.05; ***, p< 0.001 (Log-rank Mantel-Cox test). B) CD1 mice ip. challenged
with Zym (700 mg/kg) and infused 1 h later with vehicle (n=6) or IFN-y (0.2 pg/kg; n=6).

In an attempt to mimic the settings of a clinical infection, it was
further analysed whether susceptibility differences of CD1 and C57 mice
to ZIGI also applied to systemic fungal infection. To that end, both mouse
strains were i.v. infected with an identical lethal inoculum of C. albicans
(2.86 x 10 CFUs/gr). As shown in Figure IV.6A, mortality in CD1 mice
was delayed in relation to C57 mice. C57 infected mice also underwent
higher body weight lost (Figure IV.6B) compared with CD1 mice. In
accordance with the ZIGI model results, CD1 mice also secreted higher
IFN-y serum levels post C. albicans infection compared with C57 mice

(Figure IV.6C).
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Figure 1V.6 C57and CD1 mice differ in their susceptibility to fungal sepsis induced by C.
albicans. A) Percentage of survival overtime of CD1 (n = 13) and C57(n = 14) mice iv. infected with
C. albicans (2.86 x 10* CFUs/gr). ***, p < 0.001 (Log-rank Mantel-Cox test). B) Body weight loss of
CD1 (n = 13) and C57(n = 14) mice iv. infected with C. albicans (2.86 x 10* CFUs/gr). **** p <
0.0001; *** p < 0.001 (Mann-Whitney test). C) Serum IFN-y levels measured by ELISA from CD1 (n
=6) and C57(n = 7) mice infected with C. albicans (2.86 x 10* CFUs/gr) at day 2 post-infection. *, p <
0.05 (Mann-Whitney test).

This result prompted IFN-y replacement therapy experiments in
Candida-infected C57versus CD1 mice. As shown in Figure IV.7A and
7B, ip. IFN-y infusion (0.2 pg/kg) 18 h post C. albicans infection
significantly improved survival of C57but not CD1 mice. As shown in
Figure IV.7C, CD1 mice only benefited from IFN-y therapy when higher
IFN-y replacement doses (10 pg/kg) were infused. No significant
survival improvement of Candida-infected Balb/c mice treated with
[FN-y (0.2 pg/kg; Figure IV.7D). Contrary to what was observed in the
ZIGI model Figure IV.54, simultaneous infusion of IFN-y (10 pg/kg) and
rshCD5 (1.25 mg/kg) at 9 h and 18 h post Candida infection,
respectively, did not result in additive effects in CD1 mice survival after

C. albicans infection (Figure IV.7E).
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Figure IV.7. Effect of IFN-y infusion in C. albicans-infected mice. A) Survival percentage of C57
mice i.v. infected with C. albicans (2.86 x 10* CFUs/gr) and treated with IFN-y (0.2 pg/kg; n=7) or
vehicle (n = 8) at day 1 post infection. B) Survival percentage of CD1 mice iv. infected with C.
albicans (2.86 x 10* CFU/gr) and treated with IFN-y (0.2 ug/kg; n=7) or vehicle (n = 7) at day 1 post
infection. C) Survival percentage of CD1 mice iv. infected with C. albicans (2.86 x 10* CFUs/gr) and
treated with IFN-y (10pg/kg) or vehicle (n = 8) at 9h post infection (n = 8). D) Survival percentage
of Balb/c mice i.v. infected with C. albicans (2.86 x 10* CFUs/gr) and treated with IFN-y (0.2pg/kg)
or vehicle (n = 8) at day 1 post infection (n = 8). E) Survival percentage of CD1 mice iv. infected
with C. albicans (2.86 x 10* CFUs/gr) and treated with vehicle, rshCD5 (1.25 mg/kg; at +18 h) or
IFN-y (10 pg/kg; at +9 h) alone or in combination. The differences between groups were analyzed
by Log-rank (Mantel-Cox) Test (*, p< 0.05; **, p< 0.01).

In order to further understand the susceptibility differences of
C57and CD1 mouse strains to fungal infection, the surface expression of
some of the main leukocyte receptors involved in fungal recognition and
defence was analysed. To that end, surface expression levels of Dectin-1,
TLR2 and 4, CR3 (CD18/CD11b), IFNgR1 and CD5 on myeloid
(granulocytes, M@, DCs) and lymphoid (T and B) cell subsets from both

mouse strains were compared. Figure IV.8A shows the gating strategy
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based on the expression of F4/80+B220- (Macrophages), CD3*B220- (T
cells), B220+CD3- (B cells), CD11c* B220-(DCs).
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Figure IV.8. Differential expression of surface receptors between C57and CD1 mice.
Splenocytes from C57and CD1 mice (n=5/group) were surface stained and analysed by flow
cytometry. A) The gating strategy for analysing the different immune cell types studied is shown. B)
Mean (+SEM) values of geometric mean of fluorescence intensity for the indicated surface receptors
on different immune cell types. Dendritic cells, DC. Granulocytes, Gr. Macrophages, M. T, T cells. B,
B cells. *, p<0.05 ***, p<.001 (Student t-test).
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As illustrated in Figure IV.8B, the mean fluorescence intensity
(MFI) of Dectin-1, and TLR2 and 4 was significantly higher in DCs cells
from CD1 mice compared with C57 mice. A similar situation applied to
Dectin-1 and TLR4 for granulocytes and Md¢, respectively. No
differences were observed with regard to surface IFNgR1, CD11b and
CD5 expression. Taken together, the higher expression of certain fungal
PRRs by CD1 myeloid cells agrees with higher serum IFN-y levels and
survival observed for CD1 versus C57 mice upon zymosan challenge and

C. albicans infection.

Because the efficacy of host immunity may vary under particular
fungal scenarios (Netea et al,, 2015), it was further investigated whether
differences between CD1 and C57 mice remained steady when a less
lethal Candida-infection model was carried out. As illustrated in Figure
IV.9A and 9B, survival of C57 mice was unexpectedly higher than that
of CD1 mice when infected with 2.86 x 103 and, significantly, 2.86 x 102
C. albicans CFUs/gr, thus contradicting results obtained with the 1 or 2-
log higher inoculum, respectively, used in previous experiments (2.86 x
104 CFUs/gr). This indicates that mouse strain susceptibility to fungal
infection is not absolute and may be conditioned by different factors, as

here demonstrated for the inoculum magnitude.
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Figure IV.9 Inoculum-dependent susceptibility of C57 and CD1 mice to C. albicans infection.
A) Percentage of survival overtime of CD1 (n = 8) and C57 (n = 8) mice iv. infected with 2.86 x 103
CFUs/gr. B) Percentage of survival overtime of CD1 (n = 12) and C57(n = 16) mice i.v. infected with
2.86 x 102 CFUs/gr. ***, p < 0.001 (Log-rank (Mantel-Cox) Test).
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2. ROLE OF MEMBRANE-BOUND CD5 IN SYSTEMIC FUNGAL
INFECTION.

Previous studies demonstrated that membrane-bound CD5
binds to zymosan and promotes MAPK phosphorylation and IL-8
production (Vera et al, 2009). On this basis, we investigated whether
CD5 deficiency (cd5/-) influences mouse susceptibility to fungal
infection. To this end, cd5/- mice (available in C57 background) were
subjected to a sub-lethal model of systemic (i.v.) C. albicans infection
(2.86 x 103 CFU/gr). As illustrated in Figure IV.10A4, cd5/- mice showed
significantly higher mortality (left) and body weight lost (right) than
WT controls. When the effect CD5 deficiency on fungal burden was
analysed, cd5/-mice showed increased number of CFUs in both kidney
and spleen at 72h post-infection compared with wild-type controls
(Figure IV.10B). In order to ascertain whether CD5-deficiency confers
increased susceptibility not only to C. albicans infection but also to other
fungal pathogens, cd5/- and WT C57mice were in. infected with C.
neoformans (2.86 x 10* CFU/gr). As shown in Figure IV.10C, cd5/- mice
showed increased mortality and body weight lost than wild-type
controls, thus supporting the generalized susceptibility to fungal

infection associated with CD5-deficiency.

Furthermore, whether rshCD5 infusion to cd5/- mice could
restore the WT phenotype was next analysed. To this end, cd5/- and WT
C57 mice were iv. infected with C. albicans (2.86 x 103 CFU/gr), and
then only cd5/- mice were iLv. treated with rshCD5 (1.25 mg/kg) at 18 h
post-infection. As illustrated in Figure IV.10D, rshCD5 infusion to cd5/
mice abolished the significant differences found between WT and
untreated cd5~/- mice regarding the survival rates (left) and body weight
lost (right).
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Figure 1V.10 Effect of CD5 deficiency on fungal infection susceptibility. A) Wild-type (WT;
n=12) and CD5-deficient (cd57/-; n=15) C57mice were iv. infected with C. albicans (2.86 x 103
CFU/gr) and survival (left) and body weight lost (right) were monitored overtime. Body weight
lost differences were analyzed at 72 h post-infection. B) WT (n=5) and cd5/- (n=5) C57mice were
iv. infected with C. albicans (2.86 x 103 CFU/gr). Fungal burden in spleen and kidney was
determined at 72 h post-infection. C) Survival percentage overtime (left) and body weight lost
(right) of WT (n=6) and cd57/- (n=8) C57 mice i.n. infected with C. neoformans (2.86 x 10* CFU/gr).
Body weight lost differences were analyzed at 14 days post-infection. D) Survival percentage
overtime (left) and body weight lost (right) of C57mice iv. infected with C. albicans (2.86 x 103
CFU/gr) and treated with vehicle (WT, n=5; cd5/,, n=7) or rshCD5(cd5/-, n=6). Body weight lost
differences were analyzed at 72 h post-infection. Statistical differences between treated and control

groups were assessed by Log-rank (Mantel-Cox) Test or Mann Whitney test (*, p<0.05).

Further ex vivo experiments in which un-fractionated
splenocytes (2 x 105 cells/well) from cd5/- and WT C57mice were co-
cultured for 24 h with heat-killed C. albicans or C. neoformans (1 x 105
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CFUs/well) were carried out. Although not reaching statistical
significance, lower IFN-y, TNF-q, IL-12 and IL-6 levels were found in C.
albicans co-cultures supernatants from cd5/- versus WT C57mice
(Figure IV.11). In the case of heat-killed C. neoformans co-cultures,
splenocytes from both cd5/- and WT C57mice secreted low or

undetectable cytokine levels (Figure 1V.11).
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Figure IV.11 Ex vivo exposure of cd5/ and WT C57splenocytes to C. albicans and C.
neoformans. A)IFN-y, TNF-a, IL-12 and IL-6 cytokine levels measured by ELISA in supernatants
from total splenocytes (2 x 105cells/well) from cd57-(n=4) and WT (n=4) C57mice exposed to heat
killed C. albicans or C. neoformans (1 x 105 CFUs/well) for 24 h. Results are represented as fold

induction with respect to unstimulated cells.

As previously mentioned, the main immune cell subset
expressing CD5 is T cells in which this receptor displays down-
modulatory effects during T cell activation (Burguefio-Bucio et al,
2019). Thus, it was further investigated whether fungal exposure
differentially influenced activation and/or apoptosis events in wild-type
versus CD5-deficient T cells. To this end, splenocytes (2 x 105
cells/well) from cd5/- and WT mice were exposed to heat-killed C.
albicans or C. neoformans (1 x 105 CFUs/well) during 24 h for further

flow cytometry analysis of cell surface activation and death markers

-111-




RESULTS

expression. As illustrated by Figure IV.12A, the percentage of CD4+ and
CD8* T cells from both cd5/- and WT mice significantly decreased after
exposure to C. albicans or C. neoformans, though no differences between
the two experimental groups (cd57/-and WT) were observed. Regarding
CD69 expression, exposure of cd5/- and WT splenocytes to C. albicans
but not C. neoformans significantly increased the percentage of both
CD69+CD4+ and CD69+CD8+ T cells, though no differences between the

two experimental groups were observed (Figure IV.12B).

In the case of CD25 expression, no differences in the percentage
of CD25+CD4+ or CD25+CD8* T cells were observed in the presence or
absence of C. albicans or C. neoformans for both cd5/- and WT mice
(Figure 1V.12(C). Finally, the percentage of IFN-y*CD4+* T cells from both
cd5/- and WT mice similarly and significantly increased following
exposure to C. albicans but not C. neoformans (Figure 1V.12D), a fact

that could not be observed for IFN-y*CD8* T cells.
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Figure 1V.12 Expression of T cell activation markers in cd57- and WT C57splenocytes
following ex vivo exposure to C. albicans or C. neoformans. Total splenocytes (2 x 10° cells/well)
from cd57- (n=4) and WT (n=4) C57mice exposed to heat killed C. albicans or C. neoformans (1 x 10°
CFUs/well) for 24 h. Activation markers expression was analysed by flow cytometry. A) Percentage
of CD4+ and CD8* T cells. B) Percentage of CD69+ T cells from CD4* and CD8* gated T cells. C)
Percentage of CD25*T cells from CD4+ and CD8* gated T cells. D) Percentage of IFN-y* T cells from
CD4+ and CD8+* gated T cells. Statistical differences between groups were analyzed by Mann
Whitney test (*, p<0.05).

The analysis of the activation and apoptosis-inducing PD1 cell

surface marker revealed no significant differences between cd5-/- and
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WT mice regarding percentage of PD1+ cells in CD4+ or CD8+* gated T
cells (Figure 1V.13A). By contrast, CD4* and CD8+* T cells from cd5/-
splenocytes showed higher induction of early apoptosis than their WT
counterparts when exposed to C. albicans and C. neoformans, which
reached statistical significance only for the latter (Figure IV. 13B).
Regarding the analysis of late apoptosis, again a trend to higher
induction was observed for CD4+ and CD8+ T cells from cd5/- mice

compared with WT splenocytes (Figure IV. 13C).
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Figure 1V.13 Expression of apoptosis markers in cd5/- and WT C57splenocytes following ex
vivo exposure to C. albicans or C. neoformans. Cell death markers expression was analysed by
flow cytometry. A) Percentage of PD1+ cells in CD4+ and CD8* gated T cells. B) Percentage of early
apoptosis (annexin V+) in CD4+ and CD8* gated T cells. C) Percentage of late apoptosis (annexin V*
7AAD*) in CD4+ and CD8* gated T cells. Results are represented as fold induction with respect to
unstimulated cells. Statistical differences between groups were analyzed by Mann Whitney test (*,

p<0.05).
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Taken together, the results from cd5/- mice indicate that CD5-
deficiency makes T cells more prone to apoptosis when exposed to
fungal cells, thus resulting in lower cytokine production and further in

vivo survival.

3. EFFECT OF SOLUBLE HUMAN CD5 ADMINISTRATION IN
SYSTEMIC FUNGAL INFECTION INDUCED BY C. albicans.

Previous results from our group showed a beneficial effect of
rshCD5 administration in ZIGI-challenged CD1 mice (Vera et al., 2009).
Based on this fact and data presented in the above Result’s section, we
decided to get closer to the clinics by exploring the therapeutic use of
rshCD5 in a systemic fungal infection model induced by C. albicans. To
that end, we first infected CD1 mice via iv. with three different
inoculums (2.86 x 104, 2.86 x 103 or 2.86 x 102 CFU/gr) of C. albicans
according to previous reports for other mouse strains (Gow et al., 2000).
This resulted in dose-dependent decreases in CD1 mouse survival

(Figure IV.14A, left) and body weight lost (Figure IV.14A, right).

On this basis, 2.86 x 103 CFUs/gr was chosen for further
experiments as the minimal inoculum causing = 90% mortality by~10-
15 days post challenge. As illustrated by Figure IV.14B, iv.
administration of a single rshCD5 dose (1.25 mg/kg) rendered the
highest improvement on CD1 mouse survival (24.14 %; left graph) and
body weight lost (right graph) when therapeutically given at 18 h post
C. albicans infection (2.86 x 103 CFUs/gr). Parallel dose-dependent
experiments showed that iv. administration of a single rshCD5 dose
(1.25 mg/kg) at 18 h post C. albicans infection (2.86 x 103 CFUs/gr)

rendered the highest improvements on survival rate (33%) and body
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weight lost (Figure IV.14C). Doubling or reducing to the half such
rshCD5 dose resulted in less efficacy (Figure 1V.14C).
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Figure 1V.14. Time- and dose-dependent effects of rshCD5 infusion in C. albicans-infected
CD1 mice. A) Survival percentage and body weight lost overtime of CD1 mice i.v. infected with C.
albicans (2.86 x 10*- 2.86 x 103 CFUs/gr). B) Survival percentage and body weight lost overtime of
CD1 mice iv. infected with C. albicans (2.86 x 103 CFUs/gr) and treated with 1.25 mg/kg of HSA
(+18h, n=29) or rshCD5 (+9 h, n=15; +18 h, n=29; +24 h, n=21; +48 h, n=7). C) Survival percentage
and body weight loss overtime of CD1 mice iv. infected with C. albicans (2.86 x 103 CFUs/gr) and
treated via i.v. at +18 h post-infection with HSA (1.25 mg/kg, n=18) or rshCD5 (0.625 mg/kg, n=11;
1.25 mg/kg, n=6; 2.5 mg/kg, n=6). D) Survival percentage and body weight lost overtime of CD1
mice iv. infected with C. albicans (2.86 x 10* CFUs/gr) and treated via i.v. with 1.25 mg/kg of HSA or
rshCD5 at different times post-infection (+1 h, +6 h, +9 h, +18 h). The differences between groups
were analyzed by Log-rank (Mantel-Cox) Test or Mann-Whitney test (¥, p<0.05; **, p<0.01; ***,
p<0.001; **** p<0.0001).
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The beneficial effect of rshCD5 administration was maintained
when a more lethal C. albicans infection model was carried out (2.86 x
104 CFUs/gr). However, in this case the optimal survival rate and lower
body weight lost was observed when a single rshCD5 dose (1.25 mg/kg)
was administered at an earlier time point that is 9 h instead of 18-24 h

post-challenge (Figure 1V.14D).

To further analyze the effect on fungal burden, spleen and
kidney from CD1 mice infected with C. albicans (2.86 x 103 CFU/gr) and
treated 18 h later with a single-dose of rshCD5 (1.25 mg/kg) were
analyzed at different time points post-infection. As shown in Figure
IV.15, rshCD5 infusion promoted a significant reduction in the number
of CFUs in both spleen and kidney at 72 h post-infection compared with
the control HSA-treated group. Furthermore, while fungal burden
increases overtime in the control group, rshCD5 administration

promotes a decrease in spleen.
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Figure 1V.15 Effect of rshCD5 infusion on fungal burden in C. albicans-infected CD1 mice. CD1
mice were infected via iv. with C. albicans (2.86 x 103 CFU/gr) and treated via i.v. with 1.25 mg/kg
of HSA (n=7) or rshCD5 (n=7) at 18h post-infection. Fungal burden in spleen (left) and kidney
(right) was determined at 48h and 72h post-infection. Tissue homogenates were seeded on
Sabouraud dextrose agar plates, and incubated 48 h at 30 °C for further CFUs count. The differences

between groups were analyzed by Mann Whitney test. *, p<0.05.

In parallel experiments, rshCD5-treated CD1 mice (1.25 mg/kg,
at + 18 h) were euthanized 72 h after C. albicans infection (2.86 x 103
CFU/gr) for cytokine and spleen leukocyte infiltration levels analysis.
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Figure IV.16A shows no significant differences in serum between the
experimental groups for any of the pro- (IFN-y, TNF-q, IL-6, and IL-1f3)
and anti- (IL-10) inflammatory cytokines analysed. Spleen analyses
neither revealed significant differences for any of the lymphoid (T cells
(CD3+*B220-), B cells (B220+CD3-) and NK cells (NK1.1+*CD3-)) and
myeloid (macrophages (F4/80*B220-), cDCs (CD11c*B220-) and
granulocytes) subpopulations analysed (Figure IV. 16B).
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Figure 1V.16. Effect of rshCD5 infusion on serum cytokine levels and spleen leukocyte
infiltration from C. albicans-infected CD1 mice. CD1 mice were infected via iv. with C. albicans
(2.86 x 103 CFU/gr) and treated via i.v. with 1.25 mg/kg of HSA or rshCD5 at +18h post-infection. A)
Serum cytokine levels determined by ELISA at 72 h post-infection represented as fold induction
with respect to basal (non-infected mice). B) Total number of leukocytes (CD45+ cells), T and B cells
(left) and granulocytes, cDCs, macrophages and NKs and (right) determined in spleen by flow

cytometry.

Similar analyses were performed at the local level in kidney.
Again, not-significant differences regarding kidney cytokine levels were

observed (Figure IV.17A). However, the rshCD5-treated group revealed
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significantly increased total kidney leukocyte infiltration with regard to
the controls (HSA-treated mice), which involved most of the lymphoid
(B and NK) and myeloid (Gr, cDCs, and M) cell types analyzed, with the
exception of T cells (Figure IV.17B).
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Figure 1V.17. Effect of rshCD5 infusion on kidney cytokine and leukocyte infiltration levels of
C. albicans-infected CD1 mice. CD1 mice were infected via iv. with C. albicans (2.86 x 103
CFUs/gr) and treated via iv. with 1.25 mg/kg of HSA or rshCD5 at +18 h post-infection. A) Kidney
cytokine levels determined by ELISA at 72 h post-infection represented as fold induction with
respect to basal (non-infected mice). B) Total number of kidney leukocytes (CD45* cells), B cells, T
cells (left), granulocytes, dendritic cells (cDCs), macrophages and NKs (right) determined by flow
cytometry. The differences between treated and control groups were analysed by Mann Whitney

test. * p<0.05; **, p<0.01).

The ex vivo analysis of the rshCD5 effects was further performed
by exposing splenocytes (5 x 106 cells/mL) from CD1 mice to heat-killed
C. albicans (0.5 x 106 CFUs/mL) in the presence or absence of rshCD5 (1
to 10 pg/mL). Pro- (IFN-y, TNF-a and IL-1fB) and anti- (IL-10)
inflammatory cytokine levels were assessed in 24 h-culture
supernatants. As illustrated by Figure IV. 18A, C. albicans alone did not
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induce significant cytokine production by CD1 splenocytes with regard
to the negative control (un-stimulated splenocytes). However, the
presence of rshCD5 increased cytokine secretion in a dose-dependent
manner, reaching statistical significance only for IFN-y and TNF-a at the

highest rshCD5 dose used (10 pg/mL).
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Figure 1V.18. Ex vivo effect of rshCD5 on CD1 splenocytes exposed to either heat-killed or
alive C. albicans. A) IFN-y, TNF-a, IL-1f and IL-10 levels determined by ELISA in 24 h-cultured
supernatants from total CD1 splenocytes (5 x 106 cells/mL; n = 4) exposed to heat-killed C. albicans
(0.5 x 106 CFUs/mL). B) Killed C. albicans percentage following 2 h co-incubation of total CD1
splenocytes (1 x 106 cells/mL; n=5) with alive C. albicans conidia (0.5 x 10® CFUs/mL) in the
presence of vehicle or rshCD5 (1 to 10 pg/mL). C) Viable C. albicans percentage after 2 h-exposure
of alive C. albicans conidia (0.5 x 10¢ CFUs/mL) to vehicle or rshCD5 (1 to 10 pg/mL). In both B and
C, culture supernatants were seeded on Sabouraud dextrose agar plates and incubated 48 h at 30 °C
for further CFUs count. Differences between groups were analyzed by Mann Whitney test (¥,

p<0.05).

Fungal killing is a well established mechanism for pathogen
clearance following its recognition by PRRs (Salazar and Brown, 2018).
As shown in Figure IV. 18B, 2 h-co-culture of alive C. albicans conidia

with CD1 splenocytes (1 x 106 cells/mL) in the presence of vehicle
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resulted in *47% Candida killing. A dose-dependent increase in the
percentage of Candida killing was observed in the presence of rshCD5,
which reached statistical significance at the highest dose used (10
ug/mkL; from =47% to 64%). Next it was analysed whether the soluble
protein has direct microbial cytotoxic/cytostatic activity as it has been
reported for other PRRs (Ohnishi et al, 2010; Martinez-Florensa et al.,
2014). As illustrated by Figure IV. 18C, 2 h-culture of alive C. albicans
conidia (0.5 x 106 CFUs/mL) in the presence of rshCD5 resulted in dose-
dependent reduction of Candida viability, which reached statistical
significance at the highest dose used (10 pg/mL; 52% versus 100%
vehicle control). Taken together, the results indicate that rshCD5 has
direct killing activity on C. albicans, which is additive to the direct killing

activity of splenocytes.

To further assess whether the in vivo rshCD5 effects on fungal
infection were direct or immune cell-mediated, we tested its efficacy on
C. albicans-infected immunodeficient NSG (NOD scid gamma) mice,
which lack mature T, B, and NK cells together with defective DC and M
function. To that end, we first carried out a lethality curve by infecting
NSG mice with three different inoculums of C. albicans via i.v. (2.86 x 104,
2.86 x 103 or 2.86 x 102 CFU/gr) (Figure IV.19A). Based on these
results, we decided to infect NSG mice with the dose (2.86 x 102 CFU/gr)
most closely reproducing the lethality obtained in immunocompetent
CD1 mice (100% lethality between 8 to 12 days after Candida
challenge). As illustrated by Figure IV.19B, rshCD5-treatment
(1.25mg/kg) 18 h after Candida infection did not induce significant

survival improvement of NSG mice.
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Figure 1V.19. Effect of rshCD5 infusion in C. albicans-infected immunodeficient mice. A)
Survival percentage overtime of NSG mice iv. infected with C. albicans (2.86 x 10*- 2.86 x 103
CFUs/gr). B) Survival percentage overtime of NSG mice iv. infected with C. albicans (2.86 x 102) and
treated +18 h later with vehicle (PBS + glycerol 10%; n=7) or rshCD5 (1.25 mg/kg; n=7). Statistical

differences between treated and control groups were analyzed by Log-rank (Mantel-Cox) Test.

As it has been mentioned earlier, azoles, echinocandins and
polyenes are the first-line treatments for the management of fungal
infections. Azoles, such as fluconazole, are cytochrome demethylase
system inhibitors, which ultimately promote fungal cell death (Nami et
al, 2019). As the mechanism of action of these compounds did not
interfere with B-glucans biosynthesis, we hypothesized that benefit
effects could result from fluconazole and rshCD5 combined therapy.
Based on previous reports (MacCallum and Odds, 2004) and our own
fluconazole dose-response assays (Figure IV.20A), we treated C.
albicans-infected CD1 mice (2.86 x 103 CFUs/gr, iv.) with fluconazole
(FLC, 1 mg/kg) alone or in combination with rshCD5 (1.25 mg/kg). The
FLC treatment started at 48 h post-infection (as at this time point all
mice showed body weight lost) and was ip. administered daily for a
period of 7 days, while rshCD5 was administered as a single i.v. dose at

18 h post infection.

The results depicted in Figure IV.20B show additive effects of
FLC plus rshCD5 therapy on mouse survival (from 40% for FLC to 80%
for FLC+rshCD5), which did not reach statistical significance likely due

to the low size (n) of the experimental groups. Whatever the case, these
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results deserve further exploration since they open the possibility of
using combined therapies, which wouldd allow reducing side effects

associated to high fluconazol dosage while maintaining antifungal

efficacy.
A) - C. albicans + vehicle (n=4) B)
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Figure 1V.20. Effect of rshCD5 plus fluconazole combined therapy on systemic C. albicans-
infection in CD1 mice. A) Survival percentage of CD1 mice i.v. infected with C. albicans (2.86 x 104)
and i.p. treated for a period of 7 days with vehicle (n=4), fluconazole (10 mg/kg, n=4; 1 mg/kg, n=4;
0.1 mg/kg, n=4) starting at 48 h post infection. B) Survival percentage overtime of CD1 mice iv.
infected with C. albicans (2.86 x 10%) and treated with vehicle (n=8), fluconazole (FLC; 1 mg/kg,
n=10), rshCD5 (1.25 mg/kg; n=8), or a combination of the last two (rshCD5 + FLC; n=10). Statistical
differences between treated and control groups were analysed by Log-rank (Mantel-Cox) Test (¥,

p<0.05).

4. EFFECT OF SOLUBLE HUMAN CD5 ADMINISTRATION IN
SYSTEMIC FUNGAL INFECTION INDUCED BY C. neoformans.

Whether the beneficial effect of rshCD5 administration in C.
albicans infection could be extended to other fungal infection models
was next investigated. To this end, we carried out a previously reported
mouse model of cryptococcosis (Zaragoza et al., 2007; Garcia-Barbazan
et al, 2016), induced by intranasal (in.) inoculation of C. neoformans
(2.86 x 10% CFU/gr) to CD1 mice. As illustrated by Figure IV.21A, time-
course experiments showed that i.v. infusion of a single-dose of rshCD5

(1.25 mg/kg) increased mice survival at all the time points tested,
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reaching statistical significance at day 3 (63.2 %) and 6 (40%) post-

infection.
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Figure IV.21 Time- and dose-dependent effects of rshCD5 infusion in a mouse model of
infection by C. neoformans. A) Survival percentage of CD1 mice in. infected with C. neoformans
(2.86 x 10* CFU/gr) and treated via i.v. with 1.25mg/kg of HSA (+6 days, n=22) or rshCD5 (+1 day,
n=7; +3 days, n=19; +6 days, n=8). B) Survival percentage overtime of CD1 mice i.n. infected with C.
neoformans (2.86 x 10* CFU/gr) and treated via i.v. at +3 days post-infection with HSA (1.25 mg/kg,
n=4) or rshCD5 (0.625 mg/kg, n=6; 1.25 mg/kg, n=6; 2.5 mg/kg, n=5). C) CD1 mice were infected
via i.n. with C. neoformans (2.86 x 104 CFU/gr) and treated via iv. with 1.25 mg/kg of HSA (n=5) or
rshCD5 (n=5) at +3 days post-infection. Fungal burden determined in lung (left) and brain (right) at
days +7, +11 and + 14 post-infection. D) Serum IFN-ylevels determined by ELISA at days +7and
+14post-infection of CD1 mice in. infected with C. neoformans (2.86 x 10* CFU/gr) and treated via
iv. at +3 days post-infection with HSA (1.25 mg/kg, n=4) or rshCD5 (1.25 mg/kg, n=4). The
differences between the treatment groups compared to the control group were analyzed by Log-

rank (Mantel-Cox) Test or Mann Whitney test (*, p<0.05; **, p<0.01; ***, p<0.001).
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Next, dose-course assays performed at day 3 post-infection
showed maximal survival rates (66.67%) when a single 1.25 mg/kg
rshCD5 dose was administered (Figure IV.21B). Lower and non-
statistically significant survival rates were observed by doubling or

reducing to the half such arshCD5 dose (Figure 1V.21B).

Under these optimal experimental conditions (1.25mg/kg
rshCD5 administration at day 3 post-infection), significant reductions in
the number of CFUs in lung and brain - the main two organs targeted by
C. neoformans - were observed at days 11 and 14 after infection (Figure
IV.21C). Since resistance to C. neoformans infection is associated with
effective Th1 responses (Zaragoza et al.,, 2007), we monitored the serum
levels of IFN-y - the prototypical Th1 cytokine - in HSA- and rshCD5-
treated mice. Although differences did not reach statistical significance,
higher serum IFN-y levels were observed at days 7 and 14 post-infection
in rshCD5-treated mice compared to HSA-treated controls (Figure

IV.21D).

The direct or indirect effects of rshCD5 on C. neoformans viability
were next investigated ex vivo. To this end, we first co-cultured for 2 h
un-fractionated CD1 splenocytes (1 x 106 cells/mL) with alive C
neoformans (0.5 x 106 CFU/mL) in the presence or absence rshCD5 (1-
10 pg/mL). As shown by Figure IV.22A, the killing activity of CD1
splenocytes increased in the presence or rshCD5 in a dose-dependent

manner.

On the contrary, the 2h co-culture of alive C. neoformans (0.5 x
10¢ CFU/mL) in the presence or absence increasing rshCD5 doses (1-10
ug/mL) had no effect on fungal cell viability (Figure IV.22B). This
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indicates that rshCD5 has not significant direct killing activity on C.

neoformans but potentiate that of splenocytes.

30 p=0.06 120
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Figure IV.22 Ex vivo cryptococcicidal activity of rshCD5. A) Percent of Cryptococcus Killing
following 2 h co-incubation of total splenocytes (1 x 10¢ cells/mL) from CD1 mice (n=5) with alive
C. neoformans (0.5 x 106 CFUs/mL) in the presence of vehicle or rshCD5 (1 to 10 pg/mL). B) Percent
of viable C. neoformans after 2 h co-incubation with vehicle or rshCD5 (1-10 mg/mL). Culture
supernatants were seeded on Sabouraud dextrose agar plates and incubated during 48 h at 30 2C

for CFUs count. Statistical differences between groups were analysed by student t-test.

5. DEVELOPMENT OF CD5-BASED ADOPTIVE T/NK CELL
THERAPIES FOR SYSTEMIC FUNGAL INFECTION

With the aim of developing an alternative CD5-based therapeutic
strategy against fungal infections, we took advantage of the B-glucan-
binding properties of the CD5 receptor to generate T and NK cells
expressing an activating CD5 chimerical receptor (CD5CAR) for further
adoptive cell transfer therapeutic purposes. To this end, a second
generation CD5CAR construction was designed composed of the CD8a
signal peptide, the whole human CD5 extracellular ectodomain (from
Arg25 to Asp345), the CD8a transmembrane region and the cytoplasmic
activating domains of 4-1BB/CD137 and CD3( receptors (Figure I1.1B).
The CD5-CAR construct was cloned into a modified version of the third
generation lentiviral vector pCCL as a Mlul-BspEl fragment under the
transcriptional control of the EF-la promoter (Annex I). Whole

lentiviral particles from packaging HEK 293T cells were first used to
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transduce previously activated primary human T cells, which were then
subjected to different in vitro experimental procedures schematically

shown in Figure IL.2.

Transduced CD5CAR-T cells were first co-cultured for 4h with
alive C. albicans at different effector:target (E:T) ratios. As illustrated by
Figure 1V.23A, CD5CAR-T cells significantly reduced the number of
viable CFUs at all the E:T ratios tested. Moreover, the number of viable
CFUs was lower for CD5CAR-T cells compared to un-transduced T cells,
reaching statistical significance only at 10:1 E:T ratios. Furthermore, the
surface expression analysis of LAMP-1/CD107a (a degranulation
marker on cytotoxic T (CD8*) and NK lymphocytes) in the same co-
cultures, showed that CD5CAR-T cells presented significantly higher
(GeoMean) levels than un-transduced T cells (Figure 1V.23B).
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Figure 1V.23.Effect of CD5CAR receptor expression on T cell-mediated antifungal response ex
vivo. A) CD5CAR-transduced and un-transduced T cells were co-cultured at the indicated E:T ratios
with alive C. albicans for different periods. Supernatants from 4 h-co-cultures were seeded on
Sabouraud dextrose agar plates and incubated during 48 h at 30 °C for CFUs count. B) Cells from 4
h-co-cultures stained with anti-human CD107a for GeoMean determination by flow cytometry. C)
Supernatants from 24 h-co-cultures of C. albicans with CD5CAR-transduced and un-transduced
human T cells were analyzed for IFN-y levels by ELISA. D) Same co-cultures as in C) in the presence
or absence of rshCD5 (10 pg/mL). Statistical differences between groups were assessed by t-test. *,

p<0.05; **, p<0.01; ***, p<0.001.
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Finally, IFN-y levels were evaluated in supernatants from
CD5CAR-T cells co-cultured with alive C. albicans for 24 h. As illustrated
by Figure IV.23C, left CD5CAR-T cell produced significantly higher
levels than un-transduced T cells at all the E:T ratios tested. Importantly,
the differences between CD5CAR-T and un-transduced T cells regarding
[FN-y production were abolished by the addition of rshCD5 (10 pg/mL)
to the co-cultures (Figure IV.23C, right), thus confirming the CD5-

mediated specificity of the phenomenon.

The in vivo efficacy of adoptively transferred CD5CAR-T and un-
transduced human T cells to C. albicans-infected immunodeficient NSG
mice was next investigated. To that end, a C. albicans inoculum (8x103
CFU/mouse/gr) resulting in 100% lethality between 10 to 15 days after
iv. infection was used, as determined in previous dose-course
experiments. Then, NSG mice were adoptively transferred iv. with
CD5CAR-T or un-transduced human T cells (2 or 4 x 106 cells/mouse) at
24 h post-infection. As illustrated by Figure 1V.24A and B,CD5CAR-T
induced higher survival rates (left) and lower body weight lost (right)
than control groups (vehicle and un-transduced T cells), though it did
not reach statistical significance likely due to the low sample number
used per group (n = 4 to 5). Interestingly, when used the highest cell
dose (4 x 10¢ cells/mouse), the effect of un-transfected T cells
administration was lost (Figure 1V.24B) while that of CD5CAR-T cells

was maintained.
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Figure 1V.24 Effect of adoptive human CD5CAR-T cell transfer to immunodeficient mice
undergoing systemic C. albicans infection. A) Percent of survival overtime of NSG mice iv.
infected with C. albicans (8 x 103 CFU/mouse) and i.v. treated at 24 h post-infection with vehicle
(n=5), CD5CAR-transduced (n=5) or un-transduced (n=4) human T cells (2 x 10¢ cells/mouse). B)
Same as in A) treating NSG mice with vehicle (n=5), CD5CAR-transduced (n=4) or un-transduced
(n=5) human T cells (4 x106 cells/mouse). Statistical differences between groups were assessed by

Log-rank (Mantel-Cox) Test or Mann Whitney test.

Due to the important role of NK cells in antifungal immunity
(Schmidt et al., 2017) together their suitability as off-the-shelf allogeneic
cells for adoptive cell transfer therapies (Sam et al, 2018) we next
investigated whether they could also be used as antifungal agents upon
CD5CAR transduction. To that end, similar in vitro experimental
procedures to those above mentioned for T cells were performed with
activated primary human cord blood-derived NK (CBNK) cells (Figure
11.2).

The analysis of ex vivo C. albicans co-cultures showed that both
CD5CAR-CBNK-transduced and un-transduced human CBNK cells
reduced the number of viable CFUs, with CD5CAR-CBNK being more
effective at the lowest E:T ratio tested (1:1) (Figure IV.25A). CD5CAR-
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CBNK cells also induced higher IFN-y levels than un-transfected CDBNK

cells in co-culture supernatants at all E:T ratios tested (Figure IV.25B).

When C. albicans-infected NSG mice were adoptively transferred
with CD5CAR-CBNK or un-transduced CBNK cells, mouse survival
increased by using the higher (2 x 106 cells/mouse) but not the lower (1
x 106 cells/mouse) cell dose of only the former cells (Figure IV.25C). In
conclusion, the results provide first proof of concept on the feasibility of

CD5-based adoptive cell therapies in systemic fungal infection.
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Fig 1V.25 Effect of CD5CAR-transduction of CBNK cells on in vitro and ex vivo C. albicans
infection. A) CD5CAR-transduced and un-transduced CBNK cells were co-cultured for 4 h with
alive C. albicans at the indicated E:T ratios. Culture supernatants were seeded on Sabouraud
dextrose agar plates and incubated during 48 h at 30 °C for CFUs count. B) Supernatants from 24 h-
co-cultures of C. albicans with CD5CAR-transduced and un-transduced CBNK cells were analyzed
for IFN-y levels by ELISA. C) Percent of survival overtime of NSG mice iv. infected with C. albicans
(8 x 102 CFU/mouse) and i.v. treated at 24 h post-infection with vehicle (n=6), CD5CAR-transduced
(n=3) or un-transduced (n=3) CBNKs cells (1 x 10¢ cells/mouse). D) Same as in C) treating Candida-
infected NSG mice with vehicle (n=6), CD5CAR-transduced (n=5) or un-transduced (n=3) CBNKs
cells (2 x 106 cells/mouse). Statistical differences between groups were assessed by Log-rank

(Mantel-Cox) test or t-Test.*, p<0.05.
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The present thesis aims to deepen on the understanding of the
host-pathogen interactions occurring during systemic fungal infections.
More specifically, we have focused on the role played on antifungal
immunity by a newcomer host’s fungal receptor, the lymphocytic
scavenger receptor CD5. This is expected to help in the comprehension
of the interactions established between fungi and host cells and,
consequently, to develop new immunotherapeutic approaches for
fighting IFls. The currently available treatments against IFIs have not
yet been able to significantly reduce their high morbidity and mortality
rates. The population susceptible to fungal infections is increasing due
to the emergence of MDR fungal strains, together with other factors such
as population aging, AIDS epidemics, the steadily increasing number of
aggressive medical (e.g, corticosteroids or immunosuppressant
biologicals) and surgical (e.g., solid organ or hematopoietic cell
transplantation) procedures, and the consequent augment of the
proportion of ICU admitted patients. Moreover, most of the efforts to
combat systemic infections have been made on the bacterial field. These
facts highlight the need for further understanding of the relationship
between the immune system and pathogenic fungi in order to develop

alternative approaches to fighting IFIs.

During the last few decades an important number of works have
been published highlighting the relevance of fungal recognition by the
host’s immune system. Thus, defects in several PRRs function led to
increasing susceptibility to infection (Salazar and Brown, 2018). In this
context, our group reported some time ago the unprecedented
interaction of the lymphocytic scavenger receptor CD5 with -glucans,
one of the main constitutive components of the fugal walls (Vera et al,

2009). In that work it was described for the first time that /) membrane-
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bound CD5 may help immune cells to sense the presence of fungal
components, and ii) soluble CD5 may help to reduce mortality and
systemic inflammation of mice undergoing ZIGI (an experimental model
of fungal sepsis-like, in which there is no infection but overwhelming
inflammation). In the present thesis we have further explored whether
the CD5 receptor, either in soluble or membrane-bound form, has
indeed i) any role in the pathophysiology of fungal infections and ii) any
potential therapeutic value in vivo on infection models induced by
pathogenic fungal species, namely C. albicans and C. neoformans. These
species, together with A. fumigatus, are the main responsible for

clinically relevant fungal infections in humans.

1. GENETIC BACKGROUND-INFLUENCE ON THE IMMUNE
RESPONSE TO FUNGAL INFECTIONS.

Differences regarding individual susceptibility to fungal
infections are an important clinical issue to be considered for the right
management of these diseases. Laboratory animals differing in their
genetic backgrounds provide experimental models to explore host’s
immune response factors linked to fungal infection-susceptibility.
Previous works have reported strain-specific differences in
susceptibility to bacterial or fungal infection models (Zaragoza et al,
2007; De La Cruz Dominguez-Punaro et al, 2008; Mazur-Bialy et al,
2011). The present thesis reports the existing differences regarding
susceptibility to both ZIGI and systemic C. albicans infection models
between two of the most widely used mouse strains in basic research
and pharma-industry laboratories: the inbred strain C57and the
outbreed mice CD1, respectively (Figure IV.2A and Figure 1V.6A). Our
results show that the prototypical Th1-biased mouse strain C57presents

lower survival outcomes and produces lower IFN-y levels than CD1 mice
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following both ZIGI and systemic candidiasis. This observation is in
agreement with that reported by other authors in C. neoformans-
infected mice (Garcia-Barbazan et al, 2016). The authors disclosed a
higher proportion of titan cells (a virulence factor induced during C.
neoformans infection) in C. neoformans-infected C57mice compared with
CD1 ones. Moreover, C. neoformans-infected C57mice produced lower
levels of IFN-y, TNF-a and IL-17 (mounting a lowerTh1 response) with

regard to CD1 mice.

Our results also show that C57but neither CD1 nor Balb/c mice
benefit from low-dose IFN-y replacement therapy following ZIGI or C.
albicans challenge (Figure IV.5 and Figure IV.7). The protective role of
[FN-y in fungal infections has been established from experimental
mouse models of fungal infection as well as from clinical trials or case
series involving relative small patient samples (Balish et al, 1998a;
Souto et al., 2003; Zhou et al,, 2007; Baltazar et al, 2014; Delsing et al,,
2014b; Coelho and Casadevall, 2016). The IFN-y doses administered in
those clinical reports were ~0.05mg/m? that is 100 fold higher than in
our mouse experiments (0.0006 mg/m2, using a conversion factor of 1
mg/kg = 3 mg/m?2). This would indicate that while the low-IFN-y
responder C57mice benefit from low IFN-y doses, the high-IFN-y
responder CD1 mice (or the prototypical Th2-biased Balb/c mice)
would likely need higher ones. Indeed, we found that infusion of higher
IFN-y doses (10 pg/kg equivalent to 0.03 mg/m?) increased survival
rates of C. albicans-infected CD1 mice. In light of such observations, it
would be important to know whether fungal infected patients are
among the high or low IFN-y responders. This issue would be easily
testable by in vitro monitoring the IFN-y response of PBMC to zymosan.

Low IFN-y responder patients would benefit from lower IFN-y
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replacement regimes, and thus, minimizing cytokine adverse effects. By
contrast, intensive IFN-y regimes and/or alternative therapeutic
approaches would be more appropriated for high IFN-y (or Th2-biased)

responders.

Our results also allowed us to discard intrinsic ifn-y gene defects
as responsible of the IFN-y differences observed between C57and CD1
mice following in vitro and in vivo zymosan challenge, a well-known
TLR2 ligand (Bellocchio et al, 2004). Such evidence was achieved
through the observation that splenocytes from both mouse strains
produced similar IFN-y levels following mAb-induced TCR/CD3 cross-
linking (Figure IV.4). Differences regarding IFN-y responses were also
observed when CD1 and C57splenocytes were exposed to LTA and LPS,
two well-known bacterial ligands of the TLR2 and TLR4 receptors,
respectively. Both TLR2 and TLR4 share similar signalling (MyD88-
dependent) pathways (Kawasaki and Kawai, 2014). Thus, quantitative
or qualitative differences regarding to TLR2Z and TLR4 expression
and/or signalling could be behind the differences found between CD1
and C57mice regarding in vitro and in vivo IFN-y production. Indeed,
flow cytometry analyses showed significant lower surface levels (as
measured by MFI) for TLR2 and TLR4 but also for Dectin-1 (the main f3-
glucan receptor from myeloid cells) on DCs from C57mice compared
with CD1 mice (Figure 1V.9). In consequence, in the absence of intrinsic
ifn-y expression defects, lower surface expression of 3-glucan (TLR2 and
Dectin-1) and LPS (TLR4) receptors would be very likely responsible for
the lower IFN-y levels observed in C57versus CD1 mice upon both

fungal and bacterial challenge.

It is well documented that IFN-y and IL-17 exert a protective
role against fungal infections (van de Veerdonk et al., 2012; Dambuza et
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al, 2017). However, it is still a question of debate which Th1 or Th17
host response is more effective in particular fungal infection scenarios
(e.g, cutaneous versus systemic infections)(Netea et al, 2015).
Interestingly, we observed that CD1 splenocytes produced lower I[L-17A
levels than C57ones under the same in vitro stimulatory conditions
(anti-CD3 mAb exposure) (Figure 1V.4). This could be a consequence of
the known inhibitory effect of high IFN-y levels on Th17 responses via
STAT-1 induction (Hu and Ivashkiv, 2009), although intrinsic il-17a
gene defects cannot be excluded and should be further investigated.
Furthermore, this variability regarding the efficacy of the host’s
response under particular infections may be related to our observation
that the higher susceptibility of C57mice compared with CD1 mice
would not be absolute but dependent on other factors such as the
infection level: C57mice (IFN-ylow but IL-17Abigh responders) challenged
with a relatively high C. albicans inoculum (2.86 x 104 CFU/gr) present
lower survival rates than CD1 mice (IFN-yhish but IL-17Alew responders);
on the contrary, when a lower C. albicans inoculum is used (2.86 x 102
CFU/gr), CD1 mice show lower survival rates than C57mice (Figure
IV.9). In light of these findings, it could be hypothesized that Th1l
responses would be more efficient against high-burden fungal
infections, while Th17 would perform better against low-burden ones.
This also implies a further level of complexity to be taken into
consideration (fungal inoculum) when implementing similar infection

models in different mouse strains.

In conclusion, our results bring out the importance of keeping in
mind the peculiarities of both the mouse strain and the infection model
used when studying host’s immune responses to fungal infection for

further translation to clinical settings. Most of the reported studies
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regarding the mechanisms underlying the immune response against
fungal infections have been developed in C57 mice as it is one of the
most used genetic backgrounds for genetically modified mice
generation. As here in demonstrated, these mice show constitutive
differences with regard to other mouse strains (i.e.,, CD1) concerning 1)
the expression of well-established effector arms of the anti-fungal
immune response (i.e., Dectin-1, TLR2 and TLR4) (Salazar and Brown,
2018) and ii) the response to low- or high-burden fungal inoculum.The
use of inbred strains like C57has the advantage of reducing
experimental variability as a consequence of low/minimal inter-
individual heterogeneity. However, to avoid experimental biases and to
draw simplistic/mistaken conclusions with them it would be important
to get data from several inbred strains in parallel. The alternative would
be using outbreed strains like CD1 which genetically heterogeneous and

consequently more representative of the whole mouse population.

From the clinical point of view, our results also highlight the
importance of focusing more research on designing personalized
immune-based antifungal therapies. As proposed above, investigating
the patient’s IFN-y responder status could help to better adjust and

personalize current antifungal immunotherapies.

2. IMMUNOMODULATORY PROPERTIES OF CD5 IN
EXPERIMENTAL MOUSE MODELS OF INVASIVE FUNGAL
INFECTION

[FIs have a significant impact on morbidity, mortality, length of
hospital stay and health care costs in critically ill patients (Klingspor et
al, 2015), constituting a still unmet medical need. Despite the
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progresses made in antifungal therapy with the advent of azoles and
echinocandins, no significant reductions on the high mortality rates of
[FIs have been achieved, partly due to the emergence of drug resistances
and the potential toxicity risks of these treatments (Garey et al., 2006).
This denotes the importance of developing new therapeutic strategies
(either alternative or adjunctive) to improve the clinical outcome of
patients who develop candidiasis or other prevalent IFIs. In light of the
successful results obtained by the immunotherapy in cancer, efforts are
in progress to explore whether host own immune response components
would help to better fight IFIs (Posch et al, 2017). This is well
exemplified by the successful attempts reported with IFN-y
administration (Delsing et al, 2014a). Since the use of PRRs (e.g,, TLRs,
C-type lectins or pentraxins) has not been alien to those efforts (Posch et
al, 2017), we were propelled to further explore possible strategies
based on CD5, a lymphocyte-specific PRR with a still poorly understood
role in the anti-fungal immune response. A first step in this direction
was to analyse the consequences of CD5-deficiency in the context of

fungal infection.

2.1. ANALYSIS OF THE IMMUNOMODULATORY PROPERTIES OF
MEMBRANE-BOUND CD5 IN INVASIVE FUNGAL INFECTIONS

The host’s immune response to fungal infections relies on
PAMPs recognition by PRRs, expressed by immune and/or non-immune
cells (Salazar and Brown, 2018). While it is on innate immune cells
where PRRs are predominantly expressed and undergo their main role
regarding the immune response against pathogens, increasing evidence
demonstrate the relevance of its expression in lymphocytes. This is the

case of some TLRs, which are also expressed on T cells where they act as
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co-stimulatory molecules, modulating T and B cell responses triggered
following specific antigen recognition via TCR or BCR (Liu et al.,, 2006;
Kabelitz, 2007; Poovassery et al., 2009). As an illustrative example, it
has been shown that the bacterial lipoprotein Pam3Cys -a TLR2
agonist- promotes both effector (CD4+*CD25-) and regulatory
(CD4+CD25*) T cells expansion, though transiently attenuating the
suppressive activity of the later (Liu et al., 2006). In this way, the host's
adaptive immunity may rapidly increase effector cells expansion and,
when the infection has subsided, Tregs recover their suppressive
activity in time to limit potential autoimmunity that might result from
the over activated effectors. A similar immunomodulatory role could
apply to lymphocyte scavenger receptors like CD5 (and CD6), as it has been
hypothesized by Laurel L Lenz (Lenz, 2009).

Previous studies from our group demonstrated that membrane-
bound CD5 binds to the -glucan moiety of zymosan, and subsequently,
promotes early (MAPK cascade activation) and late (cytokine [IL-8]
production) intracellular signalling events (Vera et al, 2009). On this
basis, confirmation on the relevance of membrane-bound CD5 in anti-
fungal immune response came from the analysis of cd5/- mice.
Accordingly, cd5/- mice showed increased susceptibility not only to C.
albicans but also to C. neoformans infection in comparison with WT mice
(Fig IV.10A-C). Interestingly, these differences between cd5/- and WT
mice were abolished following therapeutic infusion of the soluble CD5

protein (rshCD5) (Fig IV.10D).

Ex vivo experiments allowed to objectify a trend to lower
cytokine (IFN-y, TNF-a, IL-12 and IL-6) production (Fig IV.11) in
conjunction with higher T-cell apoptosis (Fig IV.13) for cd5/- vs WT

splenocytes when exposed to heat-killed fungal (C. albicans) cells. These
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findings are in agreement with the pro-survival properties assigned to
the CK2-binding domain of CD5 (via AKT activation), which result in
increased AICD in case of CD5-defciency (Axtell et al, 2006; Sestero et
al, 2012; McGuire et al., 2014). Thus, membrane-bound CD5 expression
would protect against the deleterious effects of fungal infection by
making T-cells less prone to apoptosis and consequently raising more
sustained and potent Th1l and/or Th17 responses. Indeed, functional
CD5-dependent CK2 signalling seems to be necessary for efficient
differentiation of naive CD4* T cells into Th17 cells, but not Thl cells
(Sestero et al., 2012; McGuire et al., 2014).

The higher susceptibility to fungal infection here reported for
CD5-deficient mice recalls that reported for other membrane-bound
immune cell fungal receptors, such as Dectin-1 and Dectin-2. Deficient
mice for these receptors are more susceptible to C. albicans infection
showing enhanced fungal dissemination, lower cell recruitment and
decreased pro-inflammatory cytokines production as a consequence of
an impaired fungal recognition (Taylor et al, 2007; Ifrim et al., 2016).
All of this support a relevant role for CD5 in anti-fungal immune
response. However, further studies are necessary to fully understand
the mechanism/s behind the role of membrane-bound CD5 receptor in
fungal infection. This would include the putative role played by different
subsets of non-T (e.g, Breg) and/or non-lymphoid cells (e.g.,
macrophages and DCs) reported to express membrane-bound CD5
(Moreau et al., 1999)(Moreau et al., 1999; Borrello et al., 2001; Zhang et
al., 2017b; Korenfeld et al., 2017; Li et al., 2019).
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2.2. ANALYSIS OF THE IMMUNOMODULATORY PROPERTIES OF
SOLUBLE CD5 IN INVASIVE FUNGAL INFECTIONS

The in vivo relevance of soluble CD5 binding to a fungal PAMP
(namely b-glucans) was first demonstrated in a murine model of ZIGI,
where the infusion of rshCD5 had beneficial effects on survival and
serum cytokine levels production in CD1 mice (Vera et al, 2009). Our
present data show that such beneficial effects of rshCD5 infusion can be
extended to experimental fungal infection induced by C. albicans and C.
neoformans also in CD1 mice, thus indicating that they are not fungal
specie specific. Although further investigations are still due on other
clinical relevant fungal infections (e.g., A. fumigatus), the putative broad
anti-fungal spectrum of rshCD5 would represent a remarkable advance
as most of the conventional antifungal drugs are limited to certain

fungal pathogens (Nami et al., 2019).

In the two infection models here analyzed, the therapeutic
effects of rshCD5 infusion on mouse survival were time- and dose-
dependent (Figures IV.14 and IV.21), as it happens with many anti-
fungal agents (Garey et al., 2006). The lower mortality of rshCD5-treated
mice also went in accordance with lower fungal loads in the main target
organs (kidney for C. albicans; lung and brain for C. neoformans), as well
as with increased serum and/or tissue levels of protective cytokines
(namely IFN-y). Moreover, in the Candida-infection model, rshCD5-
treated mice showed increased kidney leukocyte infiltration at expenses
of innate immune cell types (NKs, cDCs, macrophages and granulocytes)

involved in fungal clearing (Erwig and Gow, 2016).

In agreement with our in vivo results, ex vivo assays showed that

addition of rshCD5 to CD1 splenocytes co-cultured with heat-killed C.
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albicans increased IFN-y and TNF-a production (Figure IV.18A), pro-
inflammatory cytokines involved in granulopoiesis and neutrophil
recruitment and activity during fungal infections (van de Veerdonk et
al, 2012). Further assays also showed that rshCD5 addition increased
fungal killing in co-cultures of CD1 splenocytes with viable C. albicans
and C. neoformans conidia in a dose-dependent manner (Figure 1V.18B
and Figure IV.22A). Such an increased fungal killing was shown to be
due to, at least in part, direct effects of rshCD5 on C. albicans viability
(not C. neoformans) (Figure IV. 18C) by mechanism/s still to be
disclosed. Accordingly, results obtained with C. albicans-infected
immunodeficient NSG mice support the notion that an intact immune
system is necessary to get optimal improvements of mouse survival

following rshCD5 infusion (Fig IV.19B).

In an attempt to explore possible adjunctive anti-fungal
therapies involving rshCD5 and currently available antimycotic drugs,
fluconazole was selected. Fluconazole belongs to the azole class of
antifungals, which do not interfere with -glucan biosynthesis, and are
used as first-line treatment of several fungal infections, including
invasive candidiasis (Nami et al, 2019). Although optimal dosing
regimens reported for fluconazole administration in C. albicans-infected
mice are 10 mg/kg/day for a period of 7 days (MacCallum and Odds,
2004) a 10-times lower dose was used in our combination studies with
rshCD5. Under these conditions, survival rates of C. albicans-infected
CD1 mice treated with fluconazole increased from 40% to 80% when
combined with a single dose of rshCD5 (FigIV.20B). These results
constitute first proof-of-concept data supporting the possibility of using

rshCD5 to develop combination therapies allowing reduction of side
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effects associated to high dosage of current antimycotic drugs without

lossing antifungal efficacy.

Taken together, the therapeutic effects here reported for soluble
CD5 in fungal infection recall those reported for other soluble PRRs,
such as Pentraxin 3 (PTX3) or Gal-3. PTX3 is a long pentraxin binding to
galactomannan and involved in anti-fungal innate immune response
(Garianda et al, 2002). Accordingly, it has been shown that
administration of a soluble rhPTX3 reduces mortality rates as well as
fungal burden in a rat model of aspergillosis (Lo Giudice et al., 2010).
Similar protective effects have also been reported for PTX3
administration (alone or in combination with conventional antimycotic
drugs) in a mice model of aspergillosis (Gaziano et al., 2004). Moreover,
macrophages from transgenic mice overexpressing PTX3 show
increased phagocytosis activity against P. brasiliensis, with comparable
results to those obtained after addition of rhPTX3, which acts as an
opsonin (Diniz et al., 2004). Likewise, Gal-3 is a soluble lectin known to
bind to galactomannans as well as to a- and B-mannans, and to be
involved in the immune response against C. albicans and C. neoformans
(Becker et al, 2015; Almeida et al, 2017). Neutrophils incubated with
recombinant Gal-3 show increased phagocytic activity against C
albicans and C. parapsilosis, an effect that is inhibited by the addition of a
blocking anti-Gal-3 mAb (Linden et al, 2013). In light of these data, it
would be interesting to test the putative efficacy of combination
immunotherapies involving rshCD5 in conjunction with rhPTX3 and/or

Gal-3.
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2.3. CHIMERIC ANTIGEN RECEPTORS IN FUNGAL INFECTION

Based on the broad fungal binding properties of the CD5
extracellular domain, we tested an alternative immunotherapeutic
approach for the treatment of IFls: adoptive transfer of immune cells
expressing a CD5-based chimerical antigen receptor (CD5-CAR). The
development of T cells engineered to express CARs with tumour-
specificity has revolutionized the field of cancer immunotherapy,
especially in the case of haematological malignancies (June et al., 2018).
In the field of infection, this strategy is still underdeveloped and has
been mainly focused in the treatment of viral diseases. Thus, adoptive
transfer of antigen-specific T cells has been assessed against
cytomegalovirus (CMV), Epstein-Barr virus (EBV) or Human adenovirus
(HAdV) infections after allogeneic-hematopoietic stem cell transplant
(allo-HSCT) (Feuchtinger et al., 2006; Comoli et al., 2007; Blyth et al.,
2013). To date, only one CAR has been developed against fungal
infection (Kumaresan et al, 2014). The authors transduced primary
human T cells with a Dectin-1-based CAR (D-CAR) and reported in vivo
beneficial effects in a cutaneous infection model induced by A.
fumigatus. The ex vivo co-culture of D-CAR T cells with A. fumigatus
resulted in fungal growth inhibition, as well as up-regulation of CD107a
and IFN-y expression by D-CAR T cells. By developing CD5-CAR T cells
we have obtained similar results following their co-cultivation with C.
albicans (Figure 1V.23): reduced number of CFUs as well as higher IFN-
y production and CD107a expression. The specificity of this
phenomenon was demonstrated by the significant reduction of CD5-CAR
T cell-mediated IFN-y release observed in the presence rshCD5.
Importantly, in vivo experiments showed higher survival rates of C.

albicans-infected immunodeficient NSG mice after iv. infusion of CD5-
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CAR T cells compared with un-transduced T cells or vehicle (Figure
1V.24), although differences did not reach statistical significance likely
due to the low number of animals used per experimental group (n = 3 to
5). In any case, these results constitute the first proof-of-concept data on
the feasibility of developing CD5-based CAR cells for adoptive cell

transfer therapies against IFIs.

The generation of autologous CAR T cells is time consuming and
may result in unavoidable delays in therapy, especially for patients with
rapidly advancing diseases like I[FIs (Rezvani, 2019). Although
allogeneic products have the potential to overcome these limitations,
allogeneic T-cells (even if HLA-matched) can mediate GvHD through
their native TCR. Therefore, efforts are underway to develop reliable off-
the-shelf cellular products with acceptable safety profiles for the
patient’s treatment. Allogeneic NK cells may provide an attractive and
safe source for off-the-shelf cellular immunotherapies with acceptable
safety profiles. In contrast to T cells, NK cells do not express rearranged
antigen-specific receptors and have shorter lifespan thus minimizing the
risk of both overexpansion in the patient and of inducing GvHD. Another
advantage of NK cells over T cells is the lower risk of inducing systemic
inflammatory response syndrome (SIRS), a life-threatening disorder
mainly caused by massive release of TNF-a and IL-6 (the principal pro-
inflammatory cytokines produced by NK cells are IFN-y and GM-CSF)
(Klingemann, 2014). Furthermore, NK cells have a constitutive and
potent cytotoxic activity, which include fungal cell killing (Schmidt et al.,
2017). However, primary NK cells are difficult to isolate, purify, and
transduce, resulting in a heterogeneous mixture of cells that often
expand poorly (Siegler et al, 2018). These obstacles limit its use in

cellular immunotherapy. Thus, efforts are in progress to improve
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currently available protocols for clinical applications (Shah et al.,, 2013;

Siegler et al., 2018; Hu et al,, 2019).

On this basis, we tested the in vitro and in vivo functionality of
CD5CAR-transduced CBNKs against fungal cells. As in the case of
CD5CAR-T cells, we observed increased in vitro antifungal cytotoxic
activity as well as IFN-y production after co-culture of CD5CAR-CBNKs
with C. albicans, at all E:T ratios tested (Figure IV.25A and B). Again,
when C. albicans-infected immunodeficient NSG mice were adoptively
transferred with CD5CAR-CBNK cells, mouse survival increased in a
dose-dependent manner, though differences with regard to control
groups (vehicle and un-transduced CBNK cells) did not reach statistical
significance due to the low sample size used (n = 3 to 5/group) (Figure
IV.25C and D). Though these results await further validation by using a
higher number of animals per group and other fungal infection models
(e.g, C. neoformans infection), they constitute first proof-of-concept
data supporting the feasibility of CD5- and allogeneic NK-based off-the-
shelf therapies for IFIs.
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CONCLUSIONS

1. The mouse strain selection needs to be taken into consideration
for properly understanding the factors involved in the host’s immune
response to fungal infections and for translating selected antifungal

therapies into the clinical practice.

2. Expression of membrane-bound CD5 constitutes an integral and
non-redundant component of the host’s antifungal immune response as
deduced by increased susceptibility of CD5-deficient mice to fungal

infection.

3. The beneficial therapeutic effects demonstrated for a soluble
form of the human CD5 receptor in different experimental models of
fungal infection open the possibility of developing novel adjunctive

therapies against IFIs easily translatable to the clinical practice.

4. The increased antifungal properties of immune cells expressing
CD5-based chimeric antigen receptors open the possibility of developing

novel off-the-shelf adoptive cellular immunotherapies against IFIs.
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ANNEX

CD5CAR sequence (Signal peptide/CD5/ CD8a/4-1BB/ CD3z7)

MIuIGCTAGCTCTAGAATGGCCTTACCAGTGACCGGCTTGCTCC

TGTCGCTGGGCTTGCTGCTCCACGCCGCCAGGCCGAGACTGAGTTGGTACG
ATCCCGACTTCCAGGCACGACTGACACGGAGTAATAGTAAATGCCAGGGGC
AGCTGGAGGTGTATCTGAAAGACGGATGGCACATGGTGTGCAGTCAGTCAT
GGGGCCGGAGCTCCAAGCAGTGGGAGGATCCTTCCCAGGCCTCTAAAGTGT
GCCAGAGACTGAACTGTGGAGTCCCTCTGTCCCTGGGCCCATTCCTGGTCA
CATACACTCCACAGTCTAGTATCATTTGCTATGGCCAGCTGGGGAGCTTTT
CCAACTGTTCTCACAGTAGGAATGACATGTGCCATTCTCTGGGGCTGACTT
GTCTGGAGCCCCAGAAGACCACACCACCTACTACCCGACCACCACCTACAA
CTACCCCTGAACCAACCGCTCCACCACGACTGCAGCTGGTGGCACAGAGCG
GAGGACAGCACTGTGCCGGAGTGGTCGAGTTCTACTCAGGCAGCCTGGGAG
GCACCATCAGCTATGAGGCCCAGGACAAGACACAGGATCTGGAAAACTTCC
TGTGCAACAATCTGCAGTGTGGCAGCTTTCTGAAACACCTGCCTGAGACAG
AAGCAGGGAGGGCACAGGACCCAGGAGAGCCACGAGAACATCAGCCCCTGC
CTATCCAGTGGAAAATTCAGAATTCAAGCTGCACTTCCCTGGAGCATTGTT
TCCGAAAGATCAAACCACAGAAGTCTGGACGGGTGCTGGCCCTGCTGTGCA
GCGGATTTCAGCCCAAAGTGCAGTCCAGGCTGGTCGGGGGATCCTCTATTT
GCGAGGGGACAGTGGAAGTCCGCCAGGGAGCTCAGTGGGCCGCCCTGTGCG
ATAGTTCAAGCGCACGGTCCTCTCTGAGATGGGAGGAAGTGTGCCGGGAAC
AGCAGTGTGGCAGTGTGAATTCATACAGAGTCCTGGACGCTGGCGATCCCA
CCTCTAGGGGGCTGTTTTGTCCTCATCAGAAGCTGAGTCAGTGTCACGAAC
TGTGGGAACGGAACTCATACTGTAAAAAGGTGTTTGTCACTTGCCAGGATA
CAACTACGCCGGCGCCGAGACCACCTACACCTGCACCAACTATTGCCTCTC
AGCCACTGAGTCTGCGCCCCGAGGCATGTCGACCTGCCGCTGGCGGGGLTG
TGCACACCAGGGGCCTAGACTTCGCCTGCGATATCTATATTTGGGCTCCAC

TGGCAGGAACCTGTGGCGTGCTGCTGCTGTCTCTGGTCATCACACTGTACT
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GCAAAAGAGGCAGGAAGAAACTGCTGTATATTTTCAAGCAGCCCTTTATGA
GACCTGTGCAGACAACTCAGGAGGAAGACGGGTGCAGCTGTAGGTTCCCTG
AGGAAGAGGAAGGAGGCTGTGAGCTGCGCGTGAAATTTTCTCGGAGTGCAG
ATGCCCCAGCTTACCAGCAGGGCCAGAACCAGCTGTATAACGAGCTGAATC
TGGGGCGGAGAGAGGAATACGACGTGCTGGATAAGAGGCGCGGGCGAGATC
CAGAAATGGGAGGAAAACCCCAGCGACGGAAGAACCCTCAGGAGGGACTGT
ACAATGAACTGCAGAAGGACAAAATGGCAGAGGCCTATTCCGAAATCGGGA
TGAAAGGAGAAAGAAGGCGCGGCAAGGGGCATGATGGCCTGTATCAGGGAC

TGTCAACCGCAACAAAAGATACTTATGATGCTCTGCACATGCAGGCTCTGC

CCCCGCGGTAABSPE I
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1 | INTRODUCTION

Abstract

Irdviduad sscepdbllty differences o fungal Infection following Invasive and/or
i ppressve medica interventions are an important dinical isose. In order to
explore Immrane reporse-mlated factors that may be linked to fungl infection
scepibility, we have compared ®he resporse of inbred CS78L/A) and owtbred
O] mous e strains to different exp arimental models of fungal sepss. The dallerge
of arierals with the oy Ircduced gareralised in: on madell revedled pocmr
sarvival mtes In CETELM), oorslstent with lower Thl cpioline Interfaron (IFM-y
serum levals, compamd with 001 mice. Likewise, & vivo exposare of C5TELA)
splenocytes D rymcsan bt dso bacterial lipopolisacdraride or Ipoteldhole add,
respited In hower IFN-y semetion companed with C01 mice. ©5 78104 ) sus cepiibility
could be mverted by resose infsion of miathve low PNy doses (02 pgicd either
alore: or In combination with the -gucan-bindrg C0S protein (0.7 mgig leading
o Improved post zymosaneinduced generallsed irdammation sorvisal. Similady, low
survival rates to sy temic Candids aflicans Infection (2,84 = 10° CFU /gr) wem amelo-
rated by how-dos e PN -y indusion I C57 BLAY bt mot C01 miloe. Owr resalts highlight
the Importance of stran dholee In experdmental fargal Infection modeks and provide 3
suscepibility ratiorale for maore speddc anifungl immunotherapy designs.

R WORDS
CETEL S mics, Conduls abiears, CI0 mice, fungal sapds, IR | By msan

g moadical devices, HIVBIDS epdanion and @i lating ath
Burigal redatanee (au¥ man @ o, J004; Martin, Mannine, Saes &

Opporunktc fungal species ane rsponsible for rycmsis tha mnge

Frovm akin lehos o e ing e nfec and spic
abuvecke Ire by furgal e o e s i i off M
i Aty manly in i isad patents, and thai
nacidience is on the rbe o 6 el of edede immunsuesive
rreecical i i i i iy and solid 'y ]

R

warsplntition, s gy (maink abdaning, incening ue of

Exsher Curersa sred M or s 'l e da 8n dres conr bused scuadyin shin sk

P, BOOE; Ramos eSiba, Lima, Schechiman, Trope, & Carneine,
FOOEE: Salarar & Brewn, J008)

Brimal medits help in oo undestnding of fungal pathigene
Frm? e diagrasis, and arfungal reament Cagla,
Cemns, & Shewns, J007; Hohl, J004) Aske from superdial or iy
rrni: i ctions induced by speciic funga ipecies, the septe shode
1o el eom i Bay Ty i d iradu o
il inflarnm aten (RGE-has been oty wed i a madd of
fungd sepsh (Denowese et al, J004 Volman, Hendrls, & Gors,

Cirffukor M) crobiod gry. A0 1% L9 P
ez Al g .10 L ered 120

wriberyes i sy corr joumd e

G20 Jobn Wileyh Somisd | 1of 9
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OS] Trptraccaars i3 a B ghocar o ich par i e derd wed bem Sl oo myes
coroada, whch infuos rlarmaedy medata rdeos lesdling
e muliph ogEn Sebation sndine Bguan e oondeted
st gathegen cdeiabed molacky pete of kgl el
i, Wi are b by palat i g, Tl il
recepter (VLR Z, Decdned, Langedn, CREAIDASODAE CDE,
SCARF, and ODE) opmemal ab bl imete and adative immue
il (Latgd, POA0 Lesly, SO0 Viern e al, 2005 Lo masrt. et
e

Inbrad (fomatgoas) and asbeed (aohorafas) moss M
ey s in academic and indesial Feerch haee o b Basm
ol b et Huigal b Sond [Hal, 2004 DNl aton, rgarding
el o gl e ity vebar inkr sl ard colinad mousks RN
are challerged wilh he dame gl spede (eg, Fomocesordoe
Erasiisa of Cryplacadus nagoimans) b B fepermnd (Calih,
Srger Meres, Soueie, & B gy, 1955, Tasggera, Sarer, Telrak
i a, & Capadsvill, 00T Suochy ofi By arvcass, maay provd die inaig e inte
hair geretic and mchanade fondafod, ok waill o e peddle
herapeuti appeace Capdl o o, J007) The prsert werk S
s ol th sl corrmen inbrad e cotred meues W (CSTELS
& and CI0, repa Syl o ogrion dsceE By Sl erercea e TG,
ok el ik s Candids afreors inbactien. CETEILS 3 an nlaad fomary
o) sEa Mo e by wad fer deaieei d by il
i i Fa i o, T Frah P Prejas i
Hamme) whereas 00 (4 an acteeed oo g ) raic Qldiger,
Sebed i, Recenberg, Palmer, & Millas, 2006) commonly wsad intad:
ooy Mg (b y ard o ¥ cacyp ) By the pramacatcd and chami
cal imdelre The mecls dhew a Bigher accepdbiny of CETELAE
i (0 mice o fugdl oaloge ekl o pora et
(P A and presdde a Faasale b moae specallie a mlongal
Trrmerederagy desiga

2 | RESULTS

21 | C57BL&) mice show higher susceptibility than
CD1 mice to ZIGI

T irezasigate CSTALAA and CD0 mice dscopdbiiy il awon 1e
gl indechen, et arand were Bl suljectad w ke 200 mald.
Tt e arimals b B b s i ware pinecal withan ks
el dirg e ditce ol By rrcean (P00 g, accerding i pRevisis mEsea
By, Ciss, Hay, Tory, & Lis, 2003 Fa ot al, 2013 Vielman o al, 2005)
ared S P i da ‘ (Fere 53] Al dl
oy Figgore: 1, CSPELED rricas el i susce it i oo TG, il rges
irg b mer ey, civil o, and Bedy we gt e Impesndy, &
e 1 Migher TIC) sscepisly of CETRLS mice was dbserval &
all Fprecars o welad (rnging Trem 300 te 1000 mgfkg, which
ekl addival dgeifore e erly @ T mgky daws (@< Q05
haly s Res Wt o b (5] o med expaimental oo aayaed
(Fgare 53]

g TGN s iy o CETEILALY wirsacas 00T Pl v e il ese
refiecied by serom kvl of pree and arthinda mmetery ¢ ytokines
A8k pear ryredaninpeton (0 mgtg pl fo ko e Rgene 3,
sigrifcrt Bar Py and 14 b vere chaerad i CSTELE)

companed with OD ot =184k post Fencdans dhellerge v cortrn,
ro sgnifcant dfeeroes were cbaerd betwien S Dwed Mo
araing regerdng B GMAGOSF, LR X B4, BL5, <10 B33,
W17, ad THIR & sfom el (R B and Rgome 520

232 | CS5TBLMA) splenocytes seomtbe lower IFN-y
levels than OD1 ones following in vitro stimulation with

Zymosan

FHyma I Thil ki i By davral irmats and
adapde immune ol inacophag e, dendide cdb, C04 Thi cdls,
(DS T ealls, ToE cdl, aned MY colls) and which dad a ey el in
e immuee cord of begdl infetie (Goralbe, Manas, & Gl
0, Meers, Bommed, L Chemem, 200§ 55 IRy levds wae
el i oapkrecde collied Fem STELE) and D mis
ex o expeiad e Paredas (T8 i, o determimed by predas
deigaruipons mdayy A lutrted by Fgoe 3 (al] s
Py lovel were detected in cullre supertanta frem CSTELSS
wersudh OO aplerceyel. Smilkr reds owee cbaermed whean
pariterid cdlh were aie ex We dimdael WS Fencdan
(Fgpere 2a, righaL

Ad AT oo induor o PNy palucta (Thnked, 3995,
et inGrdmEniemon it RSO 10 hmodn Wit eelgased
Te B ad, Fmcasaimeited sgesaryie frem OO0 mice W
cullided b 20k S een dodid of & Bleckdng sl 17 mone
el artibealy (AL of ot Rt ool A dhown i Fgue 2
b, Byrrccars itdocad Py by CD3 sdearynm wan oy parly
medeced by L-17 Biecads, miaing th oter L-1Zinfaperdng
P induring bacters eoud Be alie cpprating open Fanoan deak
lerigge (g, B35 Faliss, Puren, Hrdng, Livingtes, & Dirasels
1736

The levweer b wWvo and & vhe Py repenaes of CSTELE)
s 0 e ¢ hallergad S Wow of CETELE o & petetyEal
ThlHaeal mows drain (Walarabs Sunats S, Téag &
It ckawa, 200 Thos, wee decirlad b oonper e Fpn o rduoad
FHy predution by splemeode bem CSPELE]N and CD] mies
againat BAAVc-a powtymodl Thibaed mose @min A
wxpmrctnd, Fhly bvds ackiowed by CETELE] seeary s were 10
el higher Shan in 818 /e sgearyis (Fgre 2e) e e, (0
aplerecyiis Falvoed 30 (o kighe IFMy wls $an CETELS)
dpieriayted (Rgene 2l

23 | CS5TBLA) splenocybes produce lower |FN-y
levels than D1 splenocytes followding in vitro
stimuiation with baderial Igands of TLRs

Wit e madead Py megaras of CSTALE) s D
S w5 e B e Bt s, 10w horther s iga e Lsdirg
e v e el B i T Fig e Sa, CSTELIE) s arieayted a e
el v M p vl e 0D mice | dlewd g sSmulition with
i achsie aid (LTA; 10 i) o Tpcedwacchaids (LIPS 1 pfml)
=t Bt | pat hoge s mderiaed molecda pameria Bding o
TURE and TUR4, mapeedwdy e omrot roe dleemes wee
el Pl Bl iy 1T ST D e CIT0] sl ity i ol ikt i
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