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Aos meus pais, Alberto e Josefa, por quererme sempre de xeito incondicional.

“Tra bufalo e locomotiva la differenza salta agli occhi: la locomotiva ha la strada segnata, il
bufalo può scartare di lato e cadere.” Francesco De Gregori.
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9.3 Tra bufalo e locomotiva: una visió personal . . . . . . . . . . . . . . . . . . . . . . . 215



Abstract

In this thesis we study several applications of the theory of Euler systems and p-adic L-functions,
with an emphasis on special value formulas, exceptional zeros, and congruence relations.

The first chapters deal with different kinds of exceptional zero phenomena. The main result
we obtain is the proof of a conjecture of Darmon, Lauder and Rotger on special values of the
Hida–Rankin p-adic L-function, which may be regarded both as the proof of a Gross–Stark type
conjecture, or as the determination of the L-invariant corresponding to the adjoint representation
of a weight one modular form. The proof recasts to Hida theory and to the ideas developed by
Greenberg–Stevens, and makes use of the Galois deformation techniques introduced by Belläıche
and Dimitrov. We further discuss a similar exceptional zero phenomenon from the Euler system
side, leading us to the construction of derived Beilinson–Flach classes. This allows us to give a more
conceptual proof of the previous result, using the underlying properties of this Euler system. We
also discuss other instances of this formalism, studying exceptional zeros at the level of cohomology
classes both in the scenario of elliptic units and diagonal cycles.

The last part of the thesis aims to start a systematic study of the Artin formalism for Euler
systems. This relies on ideas regarding factorizations of p-adic L-functions, and also recasts to the
theory of Perrin-Riou maps and the study of canonical periods attached to weight two modular
forms. We hope that these results could be extended to different settings concerning the other
Euler systems studied in this memoir.

Keywords: exceptional zeros, Euler systems, p-adic L-functions, Elliptic Stark Conjecture,
Eisenstein congruences.

MSC2010: 11F67, 11F80, 11G40, 11F33.
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Resum

En aquesta tesi estudiem diverses aplicacions de la teoria dels sistemes d’Euler i les funcions L
p-àdiques, posant l’èmfasi en fórmules de valors especials, zeros excepcionals i relacions de con-
gruències entre formes modulars.

Als primers caṕıtols es consideren diferents fenòmens de zeros excepcionals. El primer resultat
que obtenim és la prova d’una conjectura de Darmon, Lauder i Rotger al voltant dels valors especials
de la funció L p-àdica de Hida–Rankin en el cas autoadjunt. Aquest teorema es pot veure, per una
banda, com un cas més de les conjectures de Gross–Stark, i per l’altra, com la determinació de
l’invariant L corresponent a la representació adjunta d’una forma modular de pes 1. La prova fa
servir teoria de Hida, aix́ı com algunes de les idees desenvolupades per Greenberg–Stevens i també
les tècniques de deformacions de Galois introdüıdes per Belläıche i Dimitrov. Discutim després un
fenomen semblant de zeros excepcionals des del punt de vista dels sistemes d’Euler, la qual cosa
ens porta a la construcció de classes de Beilinson–Flach derivades. Això ens permetrà donar una
prova més conceptual del resultat precedent, fent servir per a això les propietats d’aquest sistema
d’Euler derivat. Discutim per últim altres exemples on s’observen aquests fenòmens al nivell de
sistemes d’Euler, centrant-nos en els casos d’unitats el·ĺıptiques i cicles diagonals.

La darrera part de la tesi pretén començar un estudi sistemàtic del formalisme d’Artin pels
sistemes d’Euler. Aquesta teoria fa servir factoritzacions de les funcions L p-àdiques, i també
requereix un estudi de les aplicacions de Perrin-Riou i dels peŕıodes canònics associats a les formes
modulars de pes 2. Esperem que aquests resultats es puguin estendre a altres casos relatius als
sistemes d’Euler estudiats al llarg d’aquesta memòria.

Paraules claus: zeros excepcionals, sistemes d’Euler, funcions L p-àdiques, conjectures de
Stark, congruències d’Eisenstein.

MSC2010: 11F67, 11F80, 11G40, 11F33.
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Introduction

The Birch and Swinnerton-Dyer conjecture and beyond

The main objective of this dissertation is the exploration of certain arithmetic applications of the
Euler systems of Beilinson–Flach elements and diagonal cycles. Euler systems have been proved
to be a very powerful tool for the study of Iwasawa theory and Selmer groups. Roughly speaking,
they are collections of Galois cohomology classes satisfying certain compatibility relations, and are
typically constructed using the étale cohomology of algebraic varieties. The genesis of the concept
comes from Kolyvagin, who used them to fully prove the Birch and Swinnerton–Dyer conjecture
in analytic rank one, and also from Rubin, who proposed a systematic framework to understand
this cohomological tool. In the last years, many new constructions and results around these Euler
systems have been obtained, and the aim of this thesis is to look at some of their arithmetic
applications towards exceptional zeros, special value formulas, and Eisenstein congruences.

Any historical motivation of the problems studied in this monograph should necessarily begin
with the Birch and Swinnerton-Dyer conjecture. Let E be an elliptic curve defined over the field
of rational numbers, and consider its Hasse–Weil L-function, L(E, s), which is defined in terms of
an Euler product of local factors which converges for <(s) > 3/2. It is known that E is modular
over Q, and hence the L-function admits an analytic continuation to the whole complex plane and
a functional equation relating the values at s and 2− s. Hence, it makes sense to consider its order
of vanishing at s = 1, ords=1L(E, s).

The Birch and Swinnerton-Dyer conjecture (BSD for short), as stated by Tate, admits the
following formulation.

Conjecture 0.0.1 (Birch–Swinnerton-Dyer). Let E be an elliptic curve defined over Q, and let r
denote the rank of its rational points as a Z-module. Then, the following are true:

1. r = ords=1L(E, s).

2. The r-th term of the Taylor expansion, L(r)(E, 1), satisfies that

L(r)(E, 1)

r! · ΩE · RegE
=
|Sha(E)| ·

∏
p|N cp

|Etors|2
. (1)

Here, ΩE is the canonical period attached to the elliptic curve; RegE is the regulator of the
Néron–Tate height pairing on E; Sha(E), its Shafarevich group, which is conjectured to be
finite; and cp is the so-called local Tamagawa number at p, only depending on the behavior of
E over Qp. The cardinality of a finite group G has been denoted as |G|.

The Shafarevich group Sha(E) (sometimes called Tate–Shafarevich group) is, in rough terms,
the set of cohomology classes which are trivial at every local place, so it can be thought as a measure
of the failure of the Hasse–Minkowski principle for elliptic curves. Its finiteness is often stated as
part of the BSD conjecture.

11



12 INTRODUCTION

Recall that the L-function can be also understood in terms of compatible systems of Galois
representations. More precisely, for any prime `, we may introduce the Tate module V`(E) as

V`(E) =
(

lim
←
E[`n]

)
⊗Q`.

This gives rise to a Galois action of the absolute Galois group GQ, and yields a representation

%E,` : GQ −→ Aut(V`(E)) ' GL2(Q`).

The family {V`(E)}` is a compatible system of Galois representations, in the sense that for any
p 6= `, the characteristic polynomial of Frp, the Frobenius element at p, has coefficients over Z
which are independent of `. Any such system gives rise to an L-function L({V`(E)}`, s), defined as
the product of its local factors.

More generally, let H/Q be a finite Galois extension and let % : Gal (H/Q) → GLn(L) be an
Artin representation of degree n (here, L/Q is a finite extension). The L-function of E twisted by
% is

L(E, %, s) = L({V`(E)⊗ %}`, s).

Similarly, we may define the %-isotypic component of the Mordell–Weil group E(H) as

E(H)[%] = HomGQ(V%, E(H)⊗ L),

where V% is the underlying L-vector space associated to the representation %. Hence, it makes sense
to consider the following strengthened version of the BSD conjecture.

Conjecture 0.0.2 (Equivariant BSD). The L-function L(E, %, s) admits analytic continuation and
satisfies a functional equation relating L(E, %, s) to L(E, %∨, 2− s), and moreover

dimLE(H)[%] = ords=1L(E, %, s).

Here, %∨ stands for the dual representation of % (usually called contragradient representation).

As an extra piece of notation, we refer to the order of vanishing of L(E, %, s) at s = 1 as the
analytic rank, and write ran(E, %). Similarly, the value of dimLE(H)[%] is the so-called algebraic
rank, and we write ralg(E, %).

Of course these conjectures are instances of a more general program, generally due to Beilinson,
Bloch, and Kato. The general philosophy behind these predictions is that the vanishing of the
L-functions associated to certain algebraic motives provides us with a systematic supply of rational
cycles over the associated algebraic varieties. In the case of the BSD conjecture, we expect that
the larger the order of vanishing of the L-function, the more the number of rational points over the
elliptic curve.

Not many results are known about this conjecture. Coates and Wiles [CW77], in 1977, were
the first who derived some evidence in the case that E has complex multiplication by an imaginary
quadratic field and L(E, 1) 6= 0. The key point of their proof was the use of the system of elliptic
units, that we later subsume in the general theory of Euler systems. During the eighties, Gross and
Zagier [GZ86] envisaged a path to prove the conjecture when the analytic rank is 1, by establishing
a relation between the derivative L′(E, 1) and the height pairing of a Heegner point, which can
be understood in rough terms as the analogue of the elliptic unit when the elliptic curve does
not have complex multiplication. This result was used by Kolyvagin in [Kol88a] and [Kol88b] to
give a complete proof of the BSD conjecture when the analytic rank is at most one1, by showing

1The method of Kolyvagin establishes the first part of Conjecture 0.0.1. In the last years, there has been substantial
progress towards establishing the second part, by proving that the p-adic valuation of both sides in (1) agrees. We
refer the reader to the work of Jetchev, Skinner, and Wan [JSW17].
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that the existence of a systematic supply of cohomology classes (Heegner points varying over ring
class extensions of an imaginary quadratic field) also yields an upper bound on the size of the
Selmer group and consequently on the size of the Mordell–Weil group. The following result follows
after combining the Gross–Zagier formula with Kolyvagin’s result, stated here in the realm of the
equivariant BSD conjecture.

Theorem 0.0.3 (Gross–Zagier, Kolyvagin). Let K = Q(
√
−D) be an imaginary quadratic field,

and consider a character ψ : Gal (H/K) → L×, where H/K is abelian, and H/Q is Galois and
dihedral. Let

%ψ = Ind(ψ) : Gal (H/Q) −→ GL(Vψ) ' GL2(L).

Then, if ran(E, %ψ) = r ∈ {0, 1}, it holds that ralg(E, %ψ) = r.

It was essentially the aforementioned work of Kolyvagin that brought the interest to these
families of cohomology classes, commonly known under the name of Euler systems. The main
reason is that it suggests the possibility of extending those results to other Artin representations,
and also looking for possible generalizations to extend the methods to higher rank situations, where
Heegner points are futile.

One of the most important features of Euler systems is that they arise as a geometric realization
of a p-adic L-function. Of course this sentence needs further clarification, that will be provided
along the monograph. p-adic L-functions constitute one of the most important objects of this
dissertation, and can be seen as p-adic analogues of the classical (complex) L-functions, arising via
the p-adic interpolation of special values of these L-functions and constructed via very different
approaches (either with automorphic methods, with coherent cohomology, and even with Emerton’s
completed cohomology). Alternatively, and following the more classical vision of Iwasawa and
his school, they can arise from the arithmetic of cyclotomic fields, and this treatment is very
convenient towards studying the so-called Iwasawa main conjectures, of an outstanding importance
in number theory nowadays. These conjectures, that we later recall, also establish a link between
an analytic object (the p-adic L-function) and an algebraic one (the Selmer group). The deep fact
beyond all this comes from the interaction between Galois representations and geometry, which
leads to a strong connection between p-adic L-functions, encoding the local behavior at p of a
Galois representation, and Euler systems, which are some kind of geometric avatar of the analytic
objects.

The easiest examples of Euler systems come with circular and elliptic units. The latter already
arose when we recalled Coates–Wiles’ breakthrough on the Birch and Swinnerton–Dyer conjecture,
but their relevance goes beyond that fact. For example, circular units were the key tool in the
proof of the classical Iwasawa main conjecture, while elliptic units were crucial to generalize this
result to quadratic imaginary fields (this result is essentially due to Rubin [Rub92]). At this point
of the discussion, it seems evident that the construction of Euler systems is important in order to
study bounds on Selmer groups, applications to Iwasawa theory, BSD-type results and many other
arithmetical phenomena.

The Euler systems that appear in this thesis arise when trying to look at new instances of the
equivariant Birch and Swinnerton-Dyer conjecture. The genesis of some of the Euler systems that
are extensively discussed along this memoir goes back to Kato. He proved the following.

Theorem 0.0.4 (Kato). Let % : Gal (H/Q)→ L× be a Dirichlet character. If ran(E, %) = 0, then

HomGQ(V%, E(H)⊗ L) = 0.

The proof of this result relies on the construction of cohomology classes in the Galois cohomology
of the elliptic curve, varying as predicted by the theory of Euler systems. This idea was later
generalized to two other settings we would like to mention: the case where % is an odd, irreducible,
two-dimensional Artin representation satisfying some mild restrictions; and the case where % =
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%1 ⊗ %2, being %1 and %2 two odd, irreducible, two-dimensional Galois representations, which is
self-dual and satisfies some other restrictions.

We can work out these ideas on the realm of modular forms. For the former, let E be an elliptic
curve defined over Q, and let f ∈ S2(N) denote its associated newform. Let g ∈ S1(Ng, χ) be a
weight one modular form. The Rankin–Selberg L-function associated to the eigenforms (f, g) is

L(f, g, s) = L({V`(f)⊗ V`(g)}`, s).

The equivariant BSD conjecture is then expressed as follows.

Conjecture 0.0.5. We have that

ords=1L(f, g, s) = dimLE(H)[%g],

where %g : GQ → GL2(L) is the Artin representations attached to g, and H is the field cut out by
it.

Bertolini, Darmon and Rotger proved in [BDR15a] and [BDR15b] that when L(f, g, 1) 6= 0,
we have dimLE(H)[%g] = 0. The proof is based on the use of p-adic families of global Galois
cohomology classes arising from a new Euler system, that of Beilinson–Flach elements.

The second setting we want to explore is related with the so-called triple product L-functions.
Again, let E be an elliptic curve, and let f ∈ S2(Nf ) stand for its associated weight two modular
form. Let g ∈ S1(Ng, χ) and h ∈ S1(Nh, χ̄) be weight one modular forms. The triple product
L-function of eigenforms (f, g, h) of weights (2, 1, 1) is

L(f, g, h, s) = L({V`(f)⊗ V`(g)⊗ V`(h)}`, s).

Conjecture 0.0.6. We have that

ords=1L(f, g, h, s) = dimLE(H)[%g ⊗ %h],

where %g, %h : GQ → GL2(L) are the Artin representations attached to g and h, and H is the field
cut out by their tensor product.

Darmon and Rotger showed in [DR14] and [DR17] that in the rank zero situation where
L(f, g, h, 1) 6= 0, it happens that dimLE(H)[%] = 0, where % := %g ⊗ %h. However, they went
further by studying a higher rank situation, which sheds some light for the first time in the BSD
conjecture beyond ranks 0 and 1. In particular, let Selp(E, %) stand for the %-isotypic component
of the Bloch–Kato Selmer group of E(H), as defined in [DR17, equation (154)]. Then, they prove
that under the assumptions that L(E, %, 1) = 0 and Lp

gα(f, g, h) 6= 0, then dimLp Selp(E, %) ≥ 2.
Here, Lp

gα(f, g, h) is a special value of a p-adic L-function which may be understood as a p-adic
avatar of the second derivative of the classical L-function. Their strategy is based on the construc-
tion of two canonical classes in the corresponding Selmer group, which are proved to be linearly
independent assuming the non-vanishing of the p-adic L-value. The key tool for deriving these
results is the systematic study of p-adic families of global Galois cohomology classes arising from
Gross–Kudla–Schoen diagonal cycles in a tower of triple products of modular curves.

Further, the applications of these methods go beyond these results, and the program pioneered
by Darmon and Rotger has, as one of its ultimate goals, the proof of the rationality of Stark–Heegner
points (also known as Darmon points). These points are conjectural substitutes for Heegner points
when the imaginary quadratic field of the theory of complex multiplication is replaced by a real
quadratic field K, which can be seen as a piece of evidence towards the understanding of explicit
class field theory over real quadratic fields. Although they are constructed analytically as local
points on elliptic curves, they are conjectured to be rational over ring class fields of K. In particular,
Darmon conjectured in [Dar01] that any linear combination of Stark–Heegner points weighted by
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the values of a ring class character ψ of K belongs to the corresponding piece of the Mordell–Weil
group over the corresponding ring class field, being non-trivial when L′(E/K,ψ, 1) 6= 0. Darmon
and Rotger [DR20b], and also Bertolini, Seveso and Venerucci [BSV20a] with slightly different
methods, showed that these linear combinations arise from global classes in the appropriate pro-p
Selmer group, and are non-trivial when Lp(f/K,ψ) does not vanish at the point associated to
(E/K,ψ). Here, Lp(f/K,ψ) refers to the so-called Mazur–Kitagawa p-adic L-function attached
to the real quadratic field K, as introduced in [BD14]; we come back to this later on. This proof
requires the construction of a three-variable family κ(f ,g,h) of cohomology classes associated to a
triple of Hida families. In the same way that their work explores weight one specializations of the
families (g,h), the first chapters of the monograph will be concerned with the same phenomenon,
but now in the setting of Beilinson–Flach elements.

These Hida families, that will appear all along this dissertation and whose properties are crucial
to derive some of our main results, can be understood as families of modular forms continuously
varying over a rigid analytic space (the weight space). Their arithmetic applications date back
to the work of Greenberg–Stevens [GS94], who proved results around the p-adic BSD conjecture
in rank 0. p-adic analogues of the BSD conjecture had been introduced in 1986 by Mazur, Tate
and Teitelbaum [MTT86], who observed the presence of some phenomena that were absent in the
archimedean case. Among them, maybe the most interesting one was the so-called exceptional
zero phenomenon, suggesting an extra vanishing of the corresponding p-adic L-function associated
to some additional zeros introduced by Euler factors at the prime p. Similar situations were also
studied e.g. by Bertolini and Darmon in [BD07], with applications towards the arithmetic of elliptic
curves, and more recently by Venerucci [Ven16], proving under some mild assumptions a remarkable
conjecture formulated by Perrin-Riou.

We emphasize the point that the existence of Hida families is something intrinsically p-adic,
and in the complex world only Eisenstein series admit a parametrization by a weight variable,
which resembles the p-adic notion of family; this suggests that certain questions involving modular
forms are easier to study from a p-adic perspective, and this approach will be present all along this
memoir.

A taste of the main results: a p-adic Gross–Stark formula

We now give a brief summary of one of the main results discussed along this thesis. We do this
without properly introducing all the notations and definitions that this task would require, so we
refer to the introduction of Chapter 3 for a more detailed treatment.

The aforementioned article of Mazur, Tate and Teitelbaum [MTT86] can be seen as a founda-
tional work in the study of p-adic L-functions and exceptional zeros. As before, let E be an elliptic
curve defined over Q, with stable reduction modulo a prime p. The works of Mazur–Swinnerton-
Dyer [MSD74], Amice–Velu [AV75], Vishik [Vis14] and Mazur–Tate–Teitalbaum [MTT86] allow us
to associate a p-adic L-function to the elliptic curve, that we denote Lp(E, s). This function can
be defined in terms of a certain interpolation property of the corresponding complex values, and is
analytic for s ∈ Zp. In particular,

Lp(E, 1) = (1− α−1
p )(1− βpp−1) · L(E, 1)

ΩE
, (2)

where αp is the unit root of the p-th Hecke polynomial; βp = p/αp if E is ordinary and 0 in the
split multiplicative case; and ΩE is the canonical period attached to E. It may be tempting to
formulate a p-adic BSD conjecture claiming that the order of vanishing of the p-adic L-function at
s = 1 also agrees with the rank of E. Unfortunately, this is no longer true: when L(E, 1) 6= 0 and
αp = 1 (i.e., E has split multiplicative reduction), the above formula (2) shows that Lp(E, 1) = 0.
In this case, by Tate’s p-adic uniformization theory, there is a p-adic integer qE ∈ pZp and a p-adic
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analytic isomorphism
E(Q̄p) ' Q̄×p /q

Q
E

which is defined over Qp. Let logp be the usual p-adic logarithm on Z×p , extended to Q×p by setting
logp(p) = 0; and let ordp stand for the normalized valuation. Define the L-invariant of E by

Lp(E) :=
logp(qE)

ordp(qE)
.

Greenberg and Stevens [GS94] showed that for a prime p ≥ 5 satisfying that E has split multiplica-
tive reduction at p, then

L′p(E, 1) = Lp(E) · L(E, 1)

ΩE
.

In general, it has been conjectured in [MTT86] that under the split multiplicative condition,

ords=1Lp(E, s) = 1 + ords=1L(E, s).

There are other well-known instances where the vanishing of an Euler factor gives rise to in-
teresting arithmetic phenomena. Let η be a primitive Dirichlet character modulo N , taking values
in a number field L, and let p - N be a fixed prime. The p-adic L-function of Kubota–Leopoldt
Lp(ηω, s) satisfies the interpolation property

Lp(ηω, 1− j) = (1− (ηω1−j)(p)pj−1)L(ηω1−j , 1− j), j ≥ 1. (3)

Under the assumption that η(p) = 1 and η is odd, L(η, 0) 6= 0, but the factor 1 − (ηω1−j)(p)pj−1

vanishes at j = 1 and therefore Lp(ηω, s) has a trivial zero at s = 0. Write H for the field cut out
by η, seen as a Galois character. Fix a prime P of H above p and write Hp for the completion of
H at P; this determines two Z-module homomorphisms

ordP : OH [1/p]× −→ Z, LogP : OH [1/p]× −→ Zp,

where the latter is defined by
LogP(u) = logp(NHp/Qp(u)).

The presence of an exceptional zero is related with the fact that, under the assumption that
η(p) = 1, the group of p-units (OH [1/p]× ⊗ L)η

−1
is one-dimensional and we may fix a basis of it,

vη. Then, we may define

L(η) := −
LogP(vη)

ordP(vη)
,

and it holds that
L′p(ηω, 0) = L(η) · L(η, 0).

It may be instructive to compare the previous result with the more familiar situation where one
considers an even character χ. Then, one recovers the celebrated Leopoldt’s formula, which asserts
that for a primitive, non-trivial even Dirichlet character of conductor N ,

Lp(χ, 1) = −1− χ(p)p−1

g(χ̄)
logp(cχ), (4)

where Lp(χ, s) is the Kubota–Leopoldt p-adic L-function associated to the Dirichlet character χ;
g(χ̄) is the Gauss sum attached to a choice of primitive N -th root of unity ζN , and cχ is a certain
circular unit obtained as a weighted combination of cyclotomic units

g(χ̄) =

N−1∑
a=1

χ̄(a)ζaN , cχ =

N−1∏
a=1

(1− ζaN )χ̄(a).
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The situation of exceptional zeros we discuss in the first part of the thesis shares some common
features with the previous ones, as it is concerned with the convolution of two weight one modular
forms (g, h). The first main result we obtain, proved in Chapter 3, may be seen as a generalization of
the previous formulas, and as another instance of the Gross–Stark philosophy, which aims to relate
special values of the (p-adic) L-functions attached to Artin representations with the arithmetic of
number fields. More precisely, let g ∈ S1(N,χ) be a weight one modular form, and let g∗ ∈ S1(N, χ̄)
stand for the twist by the inverse of its nebentype (in terms of Fourier expansions, this corresponds
to the complex conjugation of the coefficients). Then, one may consider the Hida–Rankin p-adic
L-function Lp(g, g

∗, s), whose construction is indeed rather indirect, since it is based on the p-adic
interpolation of both g and g∗ along a Hida family (see [Hi85] and [Hi88]). This interpolation,
however, relies on the choice of a p-stabilization for g and g∗. The special value Lp(g, g

∗, 1) (or
alternatively Lp(g, g

∗, 0) since both are linked via a functional equation) does depend on the p-
stabilization of g (but does not depend on that of h). Hence, if we write

x2 − ap(g) + χ(p) = (x− α)(x− β),

we refer to the special value Lp(g, g
∗, 1) associated to the α p-stabilization of g as Lp

gα . In order
to describe it, we need to introduce certain units and p-units u and v. Let H stand for the field cut
out by the Artin representation attached to the adjoint representation of g, and let L denote the
field of coefficients of g; enlarging it if necessary, we assume that it contains both α and β. As an
extra piece of notation, let Vgg∗ = Vg ⊗Vg∗ denote the tensor product of the Galois representations
attached to the weight one modular forms g and g∗; similarly, let ad0(g) stand for the adjoint
representation of g, that is, the quotient of Vgg∗ by the trivial representation.

Under certain regularity assumptions that we later state in a precise way,

dimL(O×H ⊗ ad0(g))GQ = 1, dimL(OH [1/p]×/pZ ⊗ ad0(g))GQ = 2,

and we may fix a basis {u, v} of the latter, such that u ∈ (O×H ⊗ ad0(g))GQ . As a GQp-module,

ad0(g) decomposes as ad0(g) = L⊕Lα⊗β̄ ⊕Lβ⊗ᾱ, where each line is characterized by the property
that the arithmetic Frobenius Frp acts on it with eigenvalue 1, α/β, β/α, respectively. Let Hp

denote the completion of H in Q̄p, and let

u1, uα⊗β̄, uβ⊗ᾱ, v1, vα⊗β̄, vβ⊗ᾱ ∈ H×p ⊗Q L

denote the projection of the elemets u and v in (H×p ⊗ ad0(g))GQp to the above lines.

Then, we have the following result.

Theorem 0.0.7. With the previous notations, let Lp
gα denote the special value Lp(g, g

∗, 1) asso-
ciated to the α p-stabilization of g. Then, the following equality holds up to L×:

Lp
gα =

logp(v1) · logp(uα⊗β̄)− logp(u1) · logp(vα⊗β̄)

logp(uα⊗β̄)
.

Alternatively, this result may be understood in the framework of p-adic iterated integrals, which
is more convenient towards computational purposes.

In this thesis, we provide two proofs of the aforementioned result, one based on the use of Galois
deformations following the work of Belläıche and Dimitrov [BeDi16], and the other using just the
properties of Beilinson–Flach elements. For the former, the main ingredients are the following ones:

1. The modular forms g and g∗ can be p-adically interpolated along Hida families g and g∗.
Further, Hida [Hi85], [Hi88] constructed a three-variable p-adic L-function Lp(g,g

∗) indexed
by the variables (y, z, s), where (y, z) are the weights of (g,g∗) and s is a cyclotomic variable.
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2. Hida [Hi04] proved the existence of an improved p-adic L-function, with good interpolation
properties which allows us to delete the Euler factor which vanishes in this self-dual case.

3. The previous results allow us to reduce the proof to a Galois deformation problem, which can
be solved using the techniques developed mainly by Belläıche and Dimitrov [BeDi16], in the
setting of [DLR18].

Exceptional zeros of Euler systems

The first chapters of the thesis are based on the tantalizing interaction among three different mathe-
matical concepts: the arithmetic of certain number fields (and in particular, the study of the groups
of units and p-units); the Beilinson–Flach classes attached to two Hida families (g,h) interpolating
weight one modular forms (see for example [BDR15b], [LLZ14], [KLZ20] and [KLZ17]); and the
Hida–Rankin p-adic L-function, also attached to two Hida families. It had already been shown in
[KLZ17, §10.2] that this p-adic L-function is the image under a certain big logarithm of the Euler
system of Beilinson–Flach elements. But while in the applications towards the BSD conjecture it
was convenient to specialize the Hida families (g,h) at weights (2, 1), we focus now in the more
intriguing setting of weights (1, 1).

This big-logarithm map (or Perrin-Riou map) is a map associated to a family of p-adic Galois
representations, interpolating either the dual exponential map or the Bloch–Kato logarithm. It
is natural to ask ourselves how our previous result on the special value of a Hida–Rankin p-adic
L-function fits with the general theory of Euler systems and Beilinson–Flach classes. This is not
straightforward at all since some of the Euler factors which appear in the explicit reciprocity law
connecting the classes with the p-adic L-function vanish under the self-duality assumption. This
leads us to construct a derived cohomology class and establish a derived reciprocity law in this
framework. These derived classes turn out to encode relevant arithmetic information, and indeed
we are able to reprove Theorem 0.0.7 just by using their properties.

Let us be more precise. Given two modular forms (g, h) and an integer s satisfying certain weight
relations, it is possible to construct the so-called Eisenstein class Eis[g,h,s] in étale cohomology.
However, this is no longer possible in weight 1, and one must proceed again in a rather indirect
way: one takes Hida families (g,h) going through some p-stabilizations of the weight one modular
forms, and that way obtains Λ-adic classes which when specialized at geometric points allow us
to recover, up to appropriate Euler factors, the previous constructions of Eisenstein classes (in
strike analogy with the interpolation of critical L-values). It is not surprising at all saying that at
weight one, these classes reproduce similar phenomena than the corresponding p-adic L-functions.
We write κ(gα, hα) for the class associated to the choice of the p-stabilizations gα and hα. When
h = g∗, the p-th Hecke eigenvalues for g∗ are {1/α, 1/β}, and one has that

κ(gα, g
∗
1/β) = κ(gβ, g

∗
1/α) = 0.

In these cases, it is possible to construct derived classes and prove derived reciprocity laws. This
concept is quite subtle and it is present in different parts of the monograph.

• In Section 3 of Chapter 3, we construct derived classes along a weight direction. Moreover,
we prove a reciprocity law connecting this derived class with the p-adic L-function, and we
recover the same L-invariant which arises when working with p-adic L-functions.

• In Chapter 5, however, we take cyclotomic derivatives, and this gives us more flexibility and
encodes more information. What happens here is that over the space of p-adic units, one
direction will recover the p-adic logarithm, while the other will give the order map. This
allows us to reprove Theorem 0.0.7.
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As we later recall, we also explore the concept of derived classes in the setting of elliptic
units (Chapter 6) and Gross–Kudla–Schoen cycles (Chapter 7). This shows another ostensible
parallelism with the theory of p-adic L-functions, where this kind of results had already been
studied, and nowadays there is a well understood framework and quite general conjectures which
are widely believed to be true. We focus on the cases of elliptic units and diagonal cycles, which
allow us to obtain results towards the Elliptic Stark Conjecture of [DLR15a]. This conjecture may
be understood as an analogue of the more well-known Gross–Stark conjectures, but here an elliptic
curve comes into play, showing once more this analogy between the arithmetic of number fields and
elliptic curves. When these exceptional zero phenomena occur, one is led to study higher order
derivatives of the Euler system in order to extract the arithmetic information which is usually
encoded in the explicit reciprocity laws which make the link with p-adic L-functions.

Artin formalism and Euler systems

Let V1 and V2 denote two Artin representations of the absolute Galois group GQ, and write L(V1, s)
and L(V2, s) for the corresponding complex L-functions. Unwinding the definitions, one observes
that the L-function attached to the direct sum V1 ⊕ V2, L(V1 ⊕ V2, s) factors as

L(V1 ⊕ V2, s) = L(V1, s) · L(V2, s).

This is usually called Artin formalism.
A recurrent problem when dealing with p-adic methods is obtaining similar formulas when

complex L-functions are replaced by their p-adic counterparts. There are relatively few such results
in the literature. One example is Gross’ celebrated work [Gro80] for the Katz p-adic L-series
associated to the restriction of a Dirichlet character (their method is indeed based on a comparison
between circular units and elliptic units). A more recent advance has been made by Dasgupta
[Das16], who proved a factorization formula exploding the decomposition Vf ⊗ Vf = Sym2(Vf ) ⊕
χεk−1

cyc , where f ∈ Sk(N,χ), Vf is its associated Galois representation, and εcyc stands for the
cyclotomic character. The Artin formalism yields an equality of primitive L-series

L(f ⊗ f, s) = L(Sym2 f, s) · L(χ, s− k + 1),

and Dasgupta succeeded on proving a p-adic counterpart, which in rough terms asserts that

Lp(f ⊗ f, s) = Lp(Sym2 f, s) · Lp(χ, s− k + 1)2.

A rather related issue arises when taking modulo p reductions, that is, if one considers a cuspidal
modular form f whose mod p reduction is Eisenstein, and hence one may wonder if there is a mod
p Artin formalism for this p-adic L-functions. Mazur [Maz79], and later Stevens [St82], Vatsal
[Va99], or Greenberg [GV00] dealt with that question, which was also studied more recently in
the anticyclotomic setting by Kriz [Kr16]. This crucially depends on the appropriate definition of
certain canonical periods attached to the p-adic L-functions.

The Perrin-Riou formalism connecting p-adic L-functions and Euler systems suggests the exis-
tence of a similar Artin formalism, allowing us to decompose an Euler system attached to a p-adic
representation V = V1⊕V2 as the sum of two other Euler systems attached to V1 and V2. The eas-
iest instance appears in the case where one considers the Kato Euler system attached to a weight
two modular form f which is congruent modulo p to an Eisenstein series. The Beilinson–Kato
cohomology class κf associated to f can give rise to two different components modulo p, and we
discuss congruence relations connecting those components to explicit expressions involving circular
units. See the introduction of Chapter 8 for a precise formulation of the results.

2See [Das16, Theorem 1] for a precise formulation. The formula we have given here requires N to be coprime with
p and must be restricted to half of the weight space.
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Organization of the thesis

The monograph is organized in three parts. The first one corresponds to Chapters 1 and 2 and is
devoted to review the state of the art and discusses certain preliminary results.

The second part is the core of the thesis: it corresponds to Chapters 3–7 and it is there
where we develop the results concerning exceptional zeros, as well as the interaction between
generalized cohomology classes and p-adic L-functions, dealing with several instances where the
arithmetic phenomena are specially rich. In particular, Chapter 3 develops two of the main results
we have mentioned in this Introduction: the special value formula for the Hida–Rankin p-adic L-
function, and also the study of the exceptional specializations for the Beilinson–Flach classes. The
following four chapters, 4, 5, 6 and 7, further develop ideas around those points: Chapter 4 studies
the previous special value conjecture for arbitrary weight one modular forms (g, h); Chapter 5
offers a reinterpretation of the previous results on Beilinson–Flach elements and gives a new proof
of Theorem 0.0.7; and finally, both Chapter 6 and Chapter 7 deal with other instances of the
exceptional zero phenomenon which are particularly interesting due to its arithmetic relevance
(elliptic units and diagonal cycles, respectively).

The third part of the thesis corresponds to Chapter 8, and there we study the interaction of
different Euler systems in a situation where one or more cuspidal modular forms are congruent to
Eisenstein series. This gives rise to an Artin formalism for Euler systems, and it is just the first
insight into a topic that I hope to continue exploring in my future research.

Except for the first two chapters, each one corresponds to a different research article that has
been produced during the realization of this thesis (or which is currently work in progress). They
are intended to be read independently, and for that reason each one contains its own introduction
and its own section of preliminary results.

• Chapter 3 corresponds to the article Derived Beilinson–Flach elements and the arithmetic of
the adjoint of a modular form. This article, which is a joint work with Victor Rotger, has
been accepted for publication in the Journal of the European Mathematical Society.

• Chapter 4 corresponds to the article Beilinson–Flach elements, Stark units and p-adic it-
erated integrals. It is also a joint work with Victor Rotger, that was published in Forum
Mathematicum 31 (2019), no. 6, 1517–1532.

• Chapter 5 corresponds to the article Cyclotomic derivatives of Beilinson–Flach classes and a
new proof of a Gross–Stark formula. This article will be soon posted at the Arxiv repository.

• Chapter 6 corresponds to the article The exceptional zero phenomenon for elliptic units. This
article has been accepted for publication in Revista Matemática Iberoamericana.

• Chapter 7 corresponds to the article Generalized Kato classes and exceptional zero conjectures.
This article has been accepted for publication in Indiana University Mathematics Journal.

• Chapter 8 corresponds to Eisenstein congruences between circular units and Beilinson–Kato
elements. This article, which is a joint work with Victor Rotger, will be soon posted at the
Arxiv repository.



Chapter 1

Background material I: Euler systems
and L-functions

The first two chapters recall several concepts which play a prominent role along the dissertation.
There is no claim of originality and all the results can be found in the references we provide. We
hope that this short presentation, emphasizing the most important points and stressing the link
among the different concepts, can help the reader of this memoir.

We begin by providing background on several topics from where our dissertation builds up.
This includes a short summary of BSD-type conjectures, making precise the analogy with certain
results about the arithmetic of number fields. We continue with the introduction of Euler systems,
which are present all along this thesis and constitute one of the main tools to deal with BSD-type
conjectures; in spite of being introduced via a cumbersome definition, they arise quite naturally in
different frameworks, and behind the scenes one can already envisage a connection with the theory
of (p-adic) L-functions. We recall the most well-known examples, namely circular units, elliptic
units, Kato elements, and Beilinson–Flach classes. Moreover, we emphasize the fact that with a
more relaxed view of this theory we can also consider other kinds of families of cohomology classes
such as those coming from Heegner points or diagonal cycles. The latter should be understood as
the bottom layer of an ubiquitous Euler system that has not been built up yet. We finally point out
that new Euler systems are appearing in the literature, based on a better understanding of bigger
arithmetic groups (symplectic or orthogonal groups). In the third section of the chapter, we review
the theory of p-adic L-functions. We begin by presenting them as a natural p-adic avatar of the
complex L-functions, since they interpolate classical L-values. However, we are mainly interested
in the connection with Euler systems, and in this direction it is particularly relevant the so-called
Perrin-Riou theory. The philosophy behind this, as we have already mentioned in the introduction,
is that p-adic L-functions can be understood as the image under a big-regulator map of an Euler
system.

1.1 BSD-type conjectures

The Birch and Swinnerton-Dyer conjecture, stated as Conjecture 0.0.1 in the introduction, is a
milestone of number theory and of mathematics in general, not only for being one of the celebrated
millennium problems posed by the Clay Mathematic Institute, but for the link it suggests among
different branches of mathematics: the contraposition between an algebraic avatar (the Mordell–
Weil rank) and an analytic one (the order of vanishing of an L-function); but also between a global
object (the rank of the Q-rational points of an elliptic curve) and a local one (the L-function is
obtained as an Euler product of local factors counting the number of points of the elliptic curve
over residue fields). One of the key ideas of this thesis is that there is a rather imperfect dictionary
between the arithmetic of number fields and the arithmetic of elliptic curves. The analytic class

21
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number formula is a good instance of this phenomenon.
Moreover, some of the results and conjectures available for elliptic curves have been also for-

mulated in other settings, and its comprehension shall help us to better understand elliptic curves
(and in particular, the BSD conjecture, that can be thought as one of the leitmotifs of this thesis).
We begin by reviewing the arithmetic of number fields and the analytic class number formula; we
follow by explaining the Bloch–Kato conjecture and discussing some of its easiest cases; and we
finish the section by recalling the Beilinson conjecture, which proposes a tantalising connection
between L-series and cycles in algebraic varieties.

The arithmetic of number fields

Let F denote an algebraic number field. Its Dedekind zeta function is initially defined for complex
numbers s with real part <(s) > 1 by the Dirichlet series

ζF (s) =
∑
I⊂OF

1

(NF/Q(I))s
,

where I ranges through the non-zero ideals of the ring of integers of OF and NF/Q(I) denotes the
norm of the ideal I. Alternatively,

ζF (s) =
∏

p⊂OF

1

1− (NF/Q(p))−s
,

where the product runs over the set of non-zero prime ideals of F . It was Hecke who first proved
that ζF (s) has an analytic continuation to the complex plane as a meromorphic function, having a
simple pole at s = 1. With a slight abuse of notation, we keep the name of ζF (s) for its analytic
extension.

Associated to the number field F , there is a positive real number known as its regulator, RegF ,
formed out of the determinant of a matrix with entries given by the logarithms of all but one of the
real and complex absolute values of F applied to a set of generators of the unit group O×F , modulo
torsion.

The following result can be seen as a quite good analogue of the BSD conjecture. The first
part says that the order of vanishing of ζF at s = 0 agrees with the rank of the group of units O×F .
Moreover, both the first and the second part provide expressions either for the leading term in the
Taylor expansion at s = 0 or the residue at s = 1 in terms of the arithmetic of the number field F .

Theorem 1.1.1 (Analytic class number formula). Let F be a number field. Then, the following
holds:

(a) ζF is holomorphic at s = 0 and its order of vanishing is r = r1 + r2 − 1, where the quantities
r1 and r2 are respectively the number of real and complex places of F . Moreover,

lim
s→0

s−rζF (s) = −hF RegF
wF

,

where hF is the class number of F and wF is the number of roots of unity in F .

(b) ζF has a simple pole at s = 1 and

lim
s→1

(s− 1)ζF (s) =
2r1(2π)r2hF RegF

wF |dF |1/2
,

where dF stands for the discriminant of F .

Following this analogy, the natural replacement of the rank of the elliptic curve is the rank of
the group of units, which agrees with r1 + r2 − 1 by Dirichlet’s unit theorem. The analogue of the
size of the Shafarevich group is the class number hF , whose finiteness is proved using Minkowski’s
theorem. Finally, the obvious analogue of the size of the torsion group is wF , the number of roots
of unity. Of course the regulator of the elliptic curve is substituted by RegF .
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The Bloch–Kato conjecture

We now present the Bloch–Kato conjecture, following the wonderful survey [Bel09]. The statement
appeared in 1990 in The Grothendieck Festchrift [BK93], a collection of papers to commemorate
Grothendieck’s 60th birthday. It can be seen as a generalization of the BSD conjecture, but in
some sense as a second-order conjecture, that is, it talks about objects whose basic properties (or
even definitions!) depend on unproved conjectures. In its most basic formulation, the Bloch–Kato
conjecture relates two objects attached to a geometric Galois representation.

As it is customary, a geometric Galois representation is a semisimple continuous representation
of the absolute Galois group of a number field F on a finite dimensional vector space V over Qp

which satisfies certain properties fulfilled by the Galois representations that appear in the étale
cohomology of proper and smooth varieties.

Let V be a representation of GF unramified outside a finite set of places Σ. If there is a finite set
of places Σ′ ⊃ Σ such that the characteristic polynomial of the Frobenius Frv on V has coefficients
in Q̄ when v /∈ Σ′, we say that V is Σ′-algebraic. Furthermore, we say that V is pure of weight
w if there is a finite set of places Σ′ ⊃ Σ such that V is Σ′-algebraic and all the roots of the

characteristic polynomial of Frv have complex absolute values (for all embeddings Q̄ to C) q
−w/2
v ,

where qv is the cardinality of the residue field kv of F at v. In this case, w is called the weight or
the motivic weight.

The Bloch–Kato conjecture involves different Galois cohomology groups. The most important
ones are the different subgroups of H1(GF , V ), where V is a p-adic Galois representation of F .
More precisely, there is a distinguished subgroup, denoted as H1

f (GF , V ) and usually referred to as
the finite Bloch–Kato Selmer group, which roughly speaking consists on geometric classes, that is,
those which are unramified almost everywhere. See [Bel09, Section 2.2] for the definitions at the
level of local fields and Section 2.3 for the global objects.

There are two morphisms induced by Kummer maps that have special relevance for us. At the
level of units in number fields, one has a map

O×F ⊗Z Qp −→ H1
f (GF ,Qp(1)); (1.1)

which happens to be an isomorphism, and at the level of points of elliptic curves, there is an
injection

E(F )⊗Z Qp ↪→ H1
f (GF , Vp(E)), (1.2)

where Vp(E) is the p-adic Tate module of E.
As anticipated in the introduction, given a p-adic geometric representation of GF , V , we may

consider its associated L-function L(V, s) as a product of the local factors Lv(V, s), where v varies
over the set of finite places of F . More precisely,

Lv(V, s) = det
(

(Fr−1
v q−sv − Id)|V Iv

)
,

where s is a complex argument, qv is the cardinality of the residue field of F at v, and the matrix of
Frv is seen as a complex matrix using a fixed embedding of Qp into C. More generally, we denote
by LΣ(V, s) the L-function with the factors at Σ removed.

Proposition 1.1.2. Let Σ be a finite set of finite places containing all places above p, and all places
where V ramifies. If V is Σ-pure of weight w, then the Euler product defining LΣ(V, s) converges
absolutely and uniformly on all compact sets on the domain <(s) > w/2 + 1.

In general, it is not known if L(V, s) can be analytically continued. However, it is conjectured
that when V is a geometric p-adic representation of GF , pure of weight w, the L-function L(V, s)
admits a meromorphic continuation on all the complex plane. Moreover, L(V, s) has no zeros on
<(s) > w/2 + 1. If V is irreducible, L(V, s) has no poles, except if V ' Qp(n), in which case
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L(V, s) has a unique pole at s = n+ 1, which is simple. Here, Qp(n) denotes the twist of the trivial
representation by the n-th power of the cyclotomic character.

We are now ready to state the Bloch–Kato conjecture. As before, let F denote a number field,
and V a pure geometric representation of the absolute group GF . We assume that the L-function
L(V, s) has a meromorphic continuation to the entire plane.

Conjecture 1.1.3 (Bloch–Kato). The following equality holds:

dimH1
f (GF , V

∗(1))− dimH0(GF , V
∗(1)) = ords=0L(V, s).

The H0 terms in the left hand side is zero unless V contains Qp(1) as a quotient; this can
be usually ignored, although in our applications to exceptional zeros it is convenient to keep it in
mind.

This conjecture relates two very different objects attached to V . Firstly, the Selmer group
H1

f (GF , V ), which is a global invariant of V , that contains deep number-theoretical information
attached to the representation V , the motive M of which it is the p-adic realization, and also, the
algebraic variety where it comes from. Next, the L-function is built on local information, and via
a process of analytic continuation it gives rise to a mysterious integer, the order at s = 0 of the
L-function.

The easiest example arises when V = Qp. In this case, L(V, s) is the Dedekind zeta function
ζF (s), whose order of vanishing at s = 0 is given by r1 + r2 − 1. Similarly,

H1
f (GF , V

∗(1)) ' O×F ⊗Z Qp ' Qr1+r2−1
p , (1.3)

where the first equality comes from Kummer theory (see equation (1.1)) and the second, from
Dirichlet’s unit theorem. In this case, the conjecture clearly holds.

The situation for elliptic curves is more interesting. Let V = Vp(E), whence V ∗(1) ' V by
the Weil’s pairing, and so V is pure of weight one. The Bloch–Kato conjecture amounts to the
prediction

dimH1
f (GF , Vp(E)) = ords=0L(Vp(E), s) = ords=1L(E, s). (1.4)

We have seen that the dimension of dimH1
f (GF , V ) is at least the rank of E(F ); it turns out that

equality holds if and only if Sha(E)[p∞]. Hence, the BSD conjecture together with the fact that
Sha(E)[p∞] is finite imply the Bloch–Kato conjecture for V . Similarly, assuming the finiteness of
the p-part of the Shafarevich group, the classical BSD conjecture is equivalent to the Bloch–Kato
conjecture for V = Vp(E).

The Beilinson conjecture

We now recall another well-known conjecture linking L-functions with algebraic objects. Beilinson’s
conjecture, however, is a more geometric statement, and directly relates the vanishing of the L-
function with the existence of a supply of algebraic cycles over an algebraic variety. To fix our
framework, let X be a smooth and proper algebraic variety of dimension n ≥ 0 over a number
field F . It is known that the étale cohomology of the variety is trivial beyond ranks 0 ≤ i ≤ 2n.
For this set of values, however, the étale cohomology gives rise to a compatible system of Galois
representations of GF , denoted as {H i

et(XF ,Q`)}`.
The Beilinson conjecture relates two different objects. The first one is already familiar to us:

the L-function L(X, i, s) := L({H i
et(XF ,Q`)}`, s) associated to the compatible system of Galois

representation. As before, L(X, i, s) is a product over the local factors Lv(X, i, s), with

Lv(X, i, s) = det
(

(Fr−1
v q−sv − Id)|V Iv

)
, (1.5)

being V the `-adic Galois representation H i
et(XF ,Q`), where Frv acts as an endomorphism in the

part fixed by inertia.
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The statement of the conjecture requires the introduction of the Chow group CHc(X,n) of the
variety, or more generally, its higher Chow groups. A good reference for the study of this theory, far
beyond the scope of this thesis, can be found in [MVW06]. To introduce the higher Chow groups,
let

∆n = {(x0, x1, . . . , xn) ∈ An+1 such that x0 + x1 + . . .+ xn = 1}
be the usual n-dimensional symplex.

Definition 1.1.4. Let
C̃H

c
(X,n) =

{∑
niZi | ni ∈ Z

}
,

where Zi ⊂ X ×∆n is an irreducible subvariety of dimension d+n− c properly intersecting all the
subfaces of ∆n (that is, all the subsets X × F , where F is a subface of ∆n).

We also define the boundary maps between the previous groups.

Definition 1.1.5. The boundary map δn is defined by

δn : C̃H
c
(X,n) −→ C̃H

c
(X,n− 1), Z 7→

n∑
k=0

(−1)k(Z ∩ (X ×∆k
n)),

where ∆i
n = {(x0, . . . , xn) ∈ ∆n | xi = 0}.

The map δ0 : C̃H
c
(X, 0)→ H2d−2c(X) is defined by sending Z 7→ [Z], since Z =

∑
niZi, where

Zi is of complex codimension d− c (and therefore of real dimension 2d− 2c).

We want to consider now a chain of groups of the form

C̃H
c
(X,n+ 1)

∂n+1−−−→ C̃H
c
(X,n)

∂n−→ . . .
∂1−→ C̃H

c
(X, 0)

∂0−→ H2d−2c(X) ' H2c(X),

where in the last step, H2c(X) denotes any of the standard cohomologies attached to X (either
étale, de Rham,. . . ).

It is not difficult to show that this defines a complex of abelian groups, and one may consider
the associated cohomology groups, namely

CHc(X,n) :=
ker ∂n

Im ∂n+1
.

The following conjecture is generally due to Beilinson. We have opted here for presenting its
most basic formulation, without discussing certain subtleties around it and the precise hypothesis
which are needed for the validity of the main statement.

Conjecture 1.1.6. Let F be a number field and let X/F be an algebraic variety of dimension
d satisfying appropriate mild assumptions. Fix integer numbers i, c such that 0 ≤ i ≤ 2d, and
c < i/2 + 1. Then, the order of vanishing

ords=cL(X, i, s)

agrees with the rank of the higher Chow group CH−c+i+1(X,−2c+ i+ 1).

Along this thesis we will implicitly use some concrete descriptions of these higher Chow groups.

• Let X = Spec(F ), and fix i = 0. Then, L(Spec(F ), 0, s) = ζF (s). This function has a simple
pole at s = 1 and for any integer c < 1, the order of vanishing of ζF (s) at s = c is given by:
(a) r1 + r2 − 1 when c = 0; (b) r1 + r2 when c is negative and even; (c) r2 when c is negative
and odd. Hence, the Beilinson conjecture predicts that those are precisely the dimensions of
the Chow groups CH1−c(X, 1 − 2c), that may be identified with the K-groups K1−2c(OF ).
A theorem of Borel [Bo08, Section 11] guarantees that these are precisely the dimensions of
those groups (Borel’s results assert that the rank of Kj(OF ) is 0 when j is even; r1 + r2 when
j is 1 modulo 4; and r2 when j is 3 modulo 4).
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• For an algebraic variety X, CHc(X, 0) is the set of elements of the form Z =
∑
niZi, where

the sum is finite and Zi are cycles of codimension c in X which are homologically trivial and
are taken modulo the equivalence relation induced by the image of ∂1. In the particular case
that X is a curve, CH1(X, 0) = Jac(X), where Jac(X) stands for the jacobian of X.

• For an algebraic variety X, CH1(X, 1) consists on elements Z ⊂ X × A1 of codimension 1.
There is a natural inclusion O×X ↪→ CH1(X, 1) that under quite general assumptions is an
isomorphism. It is given by sending a function u to its graph:

u 7→ Zu := {(x, u(x)) where x ∈ X}.

• Let X stand for an algebraic surface. Then, CH2(X, 1) is given as the set of finite sums of
the form

∑
ni(Ci, ui), where Ci is a curve in X, ui ∈ KCi , and

∑
ni Div(ui) = 0. Here, KCi

stands for the field of functions of the curve Ci.

We point out that these higher Chow groups are endowed with a rich algebraic and geometric
structure (for instance, they come with a cup product and an excision sequence), that will play a
relevant role in different parts of the exposition.

Another conjecture we would like to discuss, and which can be seen as another relation between
algebraic and analytic objects, is the so-called Iwasawa main conjecture, as well as its variants for
elliptic curves. However, we postpone the discussion until the introduction of p-adic L-functions in
the third section of the chapter.

1.2 Euler systems

The term of Euler system was initially coined by Kolyvagin, and the origins of the concept can
be traced to two independent developments. First, Thaine’s cyclotomic method for bounding the
exponents of the ideal class groups of cyclotomic fields. Then, Kolyvagin’s fundamental articles,
which replace the use of circular and elliptic units in the works around the Iwasawa main conjecture
by certain norm-compatible points on a modular elliptic curve, the so-called Heegner points. These
two methods, although applied to different situations, exhibit many formal similarities. Quoting
H. Darmon [Dar02], “Euler systems have cropped up in a rich variety of guises and played key roles
in many of the important number theoretic breakthroughs of the last decades”.

We begin this section by reviewing the basis of the theory and recalling the axiomatic view of
the topic; continue with a study of Kato’s Euler system and their natural generalization to the case
of Beilinson–Flach elements; and finish with an overview of other relevant instances. The two first
sections are based on the extensive surveys of Loeffler [Loe17b] and Loeffler–Zerbes [LZ18].

Definitions and first examples

Let K be a number field, K̄ an algebraic closure, and GK = Gal (K̄/K) its absolute Galois group.
Let p be a prime number. We are interested in representations of the groupGK on finite-dimensional
Qp-vector spaces V . We always assume that the following two conditions hold:

1. % : GK → Aut(V ) ' GLd(Qp) is continuous (where d = dim(V )) with respect to the profinite
topology of GK and the p-adic topology on GLd(Qp).

2. V is unramified almost everywhere: for all but finitely many prime ideals v of K, we have
%(Iv) = {1}, where Iv is an inertia group at v (observe that this depends on the choice of a
prime v of K̄ above v, but since this is only up to conjugation in GK , whether or not V is
unramified at v is well-defined).
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Let V be a GQ-representation; T ⊂ V a GQ-stable Zp-lattice; and Σ a finite set of primes
containing p and all ramified primes for V . Since V is a GQ-representation, we can consider it as
a GK-representation, for any number field K. In particular, there are corestriction or norm maps

NL/K : H i(L, V )→ H i(K,V ) if L ⊃ K.

When K is Galois, H i(K,V ) is a module over Qp[Gal (K/Q)]. This works in the same way for the
cohomology of lattices H i(K,T ).

Definition 1.2.1. An Euler system for (T,Σ) is a collection of classes c = (cm)m≥1, with cm ∈
H1(Q(µm), T ) and satisfying the following compatibility relations for any m ≥ 1 and ` prime:

NQ(µm`)/Q(µm)(cm`) =

{
cm if ` ∈ Σ or ` |m
P`(V

∗(1), σ−1
` ) · cm otherwise,

where σ` is the image of Fr` in Gal (Q(µm)/Q).
An Euler system for V is an Euler system for (T,Σ), for some T ⊂ V and some Σ.

Roughly speaking, the element cm is related with the L-function L(V ∗(1), s), with the Euler
factors at primes dividing mΣ removed. Then, when elements for different m are compared, the
Euler factors appear. The first motivation for the study of Euler systems comes from the following
theorem due to Rubin, building on earlier work of Kolyvagin. Here, Selstrict is the set of Selmer
classes which are trivial at p.

Theorem 1.2.2. Suppose c is an Euler system for (T,Σ), with c1 non-zero, and suppose V satisfies
various technical conditions. Then, Selstrict(Q, V ∗(1)) is zero.

See [Rub00] and [MR04] for a more exhaustive treatment of the topic and a precise statement
of the previous result.

For our purposes, we will be interested in dealing with a more flexible notion of Euler system, also
encompassing the so-called anticyclotomic Euler systems. In this case, one has a representation V
of GK , a quadratic extension L/K, and cohomology classes for V over the anticyclotomic extension
of L, which are the abelian extensions of L on which conjugation by Gal (L/K) acts on their Galois
groups by −1. The most important example is given by Kolyvagin’s Euler system of Heegner points,
where K = Q, V = Vp(E) for E an elliptic curve, and L is an imaginary quadratic field. Other
examples of anticyclotomic Euler systems have recently been found by Cornut, and by Jetchev and
his coauthors.

The easiest instance of an Euler system is provided by circular units. First of all, and after
fixing an embedding ι : Q̄ ↪→ C×, one considers the root of unity ζm = ι−1(e2πi/m). Then, for all
m ≥ 1, we set

um = 1− ζm ∈ Q(ζm)×.

It is easy to show that these elements almost give an Euler system:

NQ(µm`)/Q(µm) =


um if ` |m;

(1− σ−1
` ) · um if ` - m and m > 1;

` if m = 1.

However, this precludes the possibility of defining u1; and moreover, we are seeing Euler factors at
all primes, and we only want them for primes outside a non-empty set Σ (that in particular, has
to contain p). These difficulties can be circumvented by defining

vm =

{
um if p |m,
NQ(µpm)/Q(µm)(upm) if p - m.
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Let

κp : L× −→ H1(L,Zp(1))

stand for the Kummer map associated to any finite extension L/K.

Proposition 1.2.3. With the previous notations, the classes cm = κp(vm) are an Euler system for
(Zp(1), {p}).

It is also interesting to mention the so-called Soulé twists, that arises when we take not just
Zp(1) but a twist by a finite order character χ, that we write Zp(χ)(1). The reason is that the
cohomology classes that we can consider for this representation, and that are constructed after a
suitable modification of cm, are strongly linked with the Kubota–Leopoldt p-adic L-function. We
come to this later on.

The first natural generalization of the previous construction is given by elliptic units, which
constitute the natural replacement of circular units when the field of rational numbers is replaced
by an imaginary quadratic field, that we denote by K. In this case, there are two disjoint Zp-
extensions, which are usually labelled cyclotomic and anticyclotomic, according to the action of the
complex conjugation of Gal (K/Q). Alternatively, elliptic units can be understood in terms of the
values of modular units at the CM points of a modular curve.

For the sake of simplicity, we may assume that K has class number 1. Let E be an elliptic
curve with complex multiplication by an order O contained in OK , the ring of integers of K. The
construction of the Euler system of elliptic unit requires the choice of an ideal a of O coprime to
6. If ∆(E) stands for the discriminant of E and γ ∈ O is a generator of the ideal a, we define

ΘE,a = γ−12∆(E)Na−1
∏

P∈E[a]−O

(x− x(P ))−6. (1.6)

This function is independent of the choice of a model, and is defined over the field of definition of E.
From that function, we may define ΛE,a as a product of some translates of ΘE,a. These functions,
both ΘE,a and ΛE,a, satisfy nice distribution relations, which allow us to define elliptic units.

Let ψ be the Hecke character attached to E with conductor f. Choose a prime p of K not
dividing 6f , and let p be the rational prime below it. As before, fix an ideal a of O coprime to
6pf, and let R stand for the set of square free ideals of O coprime to 6fpa. Finally, fix an analytic
isomorphism ξ : C/L ∼−→ E(C), where L = ΩO and Ω ∈ C.

Definition 1.2.4. Given an integer n ≥ 0 and an integral ideal τ ∈ R, define

η(a)
n (τ) = ΛE,a(ξ(ψ(pnτ)−1Ω)).

The pair given by {η(a)
n (τ)}n≥1 and τ ∈ R is called the set of elliptic units.

It is a nice exercise to analyze the fields of definitions of these units, for which we refer the
interested reader to [Rub92]. In the following chapters we will recover these elliptic units and give
more useful descriptions for our purposes. See for instance the first chapters of [DD06].

Kato’s Euler systems

A problem that has called the attraction of different number theorists is the construction of Eu-
ler systems. There is no a systematic procedure for that, and basically all known constructions
come from geometry. This is because for an algebraic variety X/K, the étale cohomology groups
H i

et(XK̄ ,Qp) are an interesting source of Galois representations, as reflected in celebrated results
like the Fontaine–Mazur conjecture.
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Starting from étale cohomology, there are several ways to obtain Euler systems, making use
of the rich structure of Galois cohomology groups. As anticipated before, one has cup products,
Kummer maps, or pushforward maps; indeed, if Z ⊂ X is a closed subvariety of codimension d,
with X and Z smooth, there are maps

H i(Z,Qp(n)) −→ H i+2d(X,Qp(n+ d)). (1.7)

In particular the pushforward of the identity class 1Z ∈ H0(Z,Qp(0)) is a class in H2d(X,Qp(d)),
the cycle class of Z (see [Mil] for a review of all these concepts on étale cohomology). Therefore,
one of the easiest ways to get useful cohomology classes is using the source of units in the coordinate
ring of our variety, or even a subvariety of it. In the case of modular curves, there are plenty of
units at our disposal; among them, we are interested in the so called modular units. This is also the
case for Shimura varieties. Recall that for a congruence subgroup Γ ⊂ SL2(Z), a modular unit of
level Γ is a nowhere-vanishing, Γ-invariant, holomorphic function H→ C with poles of finite order
at the cusps.

This fact is particularly relevant for constructing two of the Euler systems that will appear more
frequently along this dissertation: Kato’s Euler system, and the Euler system of Beilinson–Flach
elements. In these two cases, the key input is provided by Siegel units.

Definition 1.2.5 (Siegel units). Let α, β ∈ Q/Z, not both zero. Define the function gα,β : H→ C
as follows: write (α, β) = (a/N, b/N) for some N ≥ 1 and a, b ∈ Z, with 0 ≤ a < N . Then,

gα,β(τ) = qw
∏
n≥0

(
1− qn+a/NζbN

)∏
n≥1

(
1− qn−a/Nζ−bN

)
,

where q = e2πiτ and w = 1
12 −

a
N + a2

2N2 .
For c > 1 coprime to 6 and to the order of α and β in Q/Z, let

cgα,β =
(gα,β)c

2

gcα,cβ
.

The units cgα,β, with (α, β) ∈ (1/NZ/Z)⊕2 − {(0, 0)} are all defined over Q(µN ). Moreover,
there is an action of GL2(Z/NZ), under which they transform nicely. The interaction between the
Hecke and the Galois action over these units, which play a key role in the last part of the thesis, is
discussed in [St82]. See also [LLZ14, Sections 2 and 3] for details.

Let N ≥ 2 be an integer coprime to c. We define modular units uN and vN by

uN (τ) = cg1/N,0(Nτ), vN (τ) = dg0,1/N (τ).

While uN is defined over Q, vN is not, and it is in fact defined over Q(µN ). For A ≥ 1 such that
N and AN have the same prime factors, letting π denote the natural map Y1(AN) → Y1(N), we
have that

NQ(µAN )/Q(µN )(uAN ) = π∗(uN ),

π∗(vAN ) = vN .

Here, we are using the same conventions regarding modular curves than in Kato’s seminal paper
[Ka04] (see also [LLZ14]).

Kato classes are then constructed by taking the cup product in cohomology of the two Siegel
units, as illustrated in the following definition.

Definition 1.2.6. For integers m,N , with m ≥ 2 and m |N , we define

zN,m = κp(um) ∪ κp(vN ) ∈ H2
et(Y1(N)Q(µm),Zp(2)).
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We first observe that when m |N |N ′, and N and N ′ have the same prime factors, then

(πN ′/N )∗(zN ′,m) = zN,,

where πN ′/N is the natural map Y1(N ′)→ Y1(N).

Theorem 1.2.7 (Kato). If ` is prime with ` |m, then

NQ(µm`)/Q(µm)(zN,m`) = zN,m.

If ` - mN , then

NQ(µm`)/Q(µm)(zN,m`) = (1− 〈`〉−1T`σ
−1
` + `〈`〉−1σ−2

` )zN,m,

where 〈`〉 and T` are the usual Hecke operators.

When projecting to the quotient H1(Q(µm), Vp(f)(2)) of H2
et(Y1(N)Q(µm),Qp(2)), the Hecke

operators T` and 〈`〉 act as a`(f) and χ(`), respectively. Hence, the Euler factor appearing becomes
(1 − χ(`)−1a`(f)X + `χ(`)−1X2 evaluated at X = σ−1

` . Observe that if V = Vp(f)(2), then
V ∗(1) = Vp(f ⊗ χ−1

f ), and so the Euler factor is exactly P`(V
∗(1), X) evaluated at σ−1

` . However,
observe that we have Euler factors in our norm relations for all primes, so also for p. This can be

remedied by replacing zN,m with z
(p)
N,m = NQ(µmp)/Q(µm)(zN,mp).

Remark 1.2.8. In forthcoming chapters we will use slightly different notations regarding the Galois
representations attached to modular forms; in particular, we closely follow the notations of the
series of papers of Darmon–Rotger, which depart from the conventions of Kato and other recent
works. See Chapter 3 for details.

We would like to point out that these are not the exact kind of Kato elements we will deal
with in subsequent chapters. In [BD14] the authors consider the modular unit uχ1,χ2 associated to
the choice of two Dirichlet characters, and characterized by the fact that its logarithmic derivative
agrees with E2(χ1, χ2), the Eisenstein series of characters χ1 and χ2. Moreover, one has to impose
an additional scaling property. This system can be seen as a weighted variant of Kato’s original
construction, which gives more flexibility towards our arithmetic applications. In a certain sense
that we later formulate in a clearer way, this can be though as an Euler system not for Vf , but for
Vf ⊗ VE , where VE is the Galois representation attached to the aforementioned Eisenstein series.

Kato’s strategy was later generalized to the Beilinson–Flach case, firstly for weight two forms
by Lei, Loeffler and Zerbes [LLZ14] and then allowing higher weights and variation in families, as
developed in the works of Bertolini–Darmon–Rotger [BDR15b] and Kings–Loeffler–Zerbes [KLZ20],
[KLZ17].

We come back to this general construction in the following chapter, but let us mention the
main ideas around the weight two case. The natural approach for obtaining an Euler system for
the Rankin–Selberg convolution Vp(f)⊗Vp(g) is to find curves C ⊂ Y ×Y , where Y = Y1(N), and
suitable units on C. The obvious guess is to take C to be the diagonally-embedded copy of Y in
Y × Y and as units, the corresponding Siegel units. In this case, the curve C varies, and get some
contribution to the norm-compatibility relations. Morally, the compatibility in the level direction
comes from the unit, while the compatibility in the field direction comes from the choice of the
curve C.

We give a rough sketch of the construction. For integers M |N , let

Γ(M,N) =
{( a b

c d

)
such that a ≡ d ≡ 1, c ≡ 0 modulo N ; b ≡ 0 modulo M

}
.

The curve associated to this group, Y (M,N), has a Q-model, but its group action is only defined
over Q(µM ). To overcome this, let CM,N ⊂ Y (M,N)2 be the curve defined by{

(P,Q) ∈ Y (M,N)2 with Q =

(
1 1
0 1

)
· P
}
.
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This is defined over Q(µM ) and satisfies the key compatibility relations. In order to define the
appropriate unit on it, let us first introduce φM1 : Y (M,N)→ Y1(N) as the natural quotient map,
and consider the twisted map φ̂M1 : Y (M,N)→ Y1(N) corresponding to z 7→ z/M on H.

Definition 1.2.9. For M |N and c > 1 coprime to 6N , we define

ξM,N =
(

(φ̂M1 × φ̂M1 )∗ ◦ (ιM,N ) ◦ κp
)

(cg0,1/N ) ∈ H3
et(Y1(N)2

Q(µM ),Zp(2)),

where ιM,N denotes the inclusion CM,N ↪→ Y (M,N)2 and κp is the Kummer map.

These elements satisfy norm-compatibility in N , and we can extend the definition of cξM,N to
all M . To achieve that, let ` be a prime with ` |M and ` |N . Then,

NQ(µM`)/Q(µM )(cξM`,N ) = (U ′` × U ′`) · cξM,N , (1.8)

where U ′` is the transpose Hecke operator, defined by the double coset of

(
` 0
0 1

)
. When there

is no ` dividing both M and N , one obtains analogue results after performing a few intricate
calculations of double cosets (see again [LLZ14, Section 3]).

As with Kato’s elements, we finally want to project these classes in étale cohomology to the
(f, g)-component, where f and g are weight two cuspidal modular forms. The point of [KLZ20] is
that this construction can be extended to higher weight modular forms via the so-called Rankin–
Eisenstein classes. Even more, in [KLZ17] they establish the existence of Λ-adic classes that fit
into Hida families (f ,g), via Kings’ theory of Λ-sheaves.

Generalizations and further work

Rubin defined a so-called anticyclotomic Euler system as a compatible family of classes satisfying
the same norm relations, but only over ring class extensions [Rub92, Section 9.3]; he moreover
allows certain flexibility in the shape of the Euler factors. This allows us to work with Heegner
points in the realm of this theory. Observe that this system is one of the starting points of this
series of developments, and has deep implications towards BSD-type results.

Heegner points are constructed via the theory of complex multiplication. Let N be a fixed
positive integer, and let M0(N) be the ring of 2 × 2 matrices with entries in Z which are upper-

triangular modulo N . Given τ ∈ H, we may define its associated order O(N)
τ to be the set of

γ ∈M0(N) such that γτ = τ , together with the zero matrix.
If E is an elliptic curve of conductor N , we fix a modular parametrization φN : X0(N) → E

and for any τ ∈ H ∩K, we consider its order, O(N)
τ , with associated ring class field H/K. Then,

we have
ΦN (τ) ∈ E(H). (1.9)

This is the key result for constructing the easies instance of an anticyclotomic Euler system.
Indeed, let O be any order of discriminant prime to N . Its set of CM points (that is, those

with O(N)
τ = O) is non-empty if and only if all the primes dividing N split in K/Q, so we keep this

assumption for the moment. More generally, if the cardinality of the set of inert primes is even,
a parallel treatment is available replacing the modular curve by an indefinite Shimura curve. If n
is any integer prime to N , and On is the order of K of conductor n, a point of the form ΦN (τ),
where τ has CM by On, is a Heegner point of conductor n. These points satisfy norm compatibility
relations when n varies, as predicted by this relaxed theory of anticyclotomic Euler systems. See
[Dar04, Sections 3 and 4] for a proof of the compatibility relations and a discussion on how to move
to the setting of Shimura curves.

Like circular units and elliptic units, Heegner points arise as a universal norm of a compatible
system of points defined over anti-cyclotomic extensions ofK. After letting Λ−K = Zp[[Gal (K−∞/K)]]
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be the Iwasawa algebra attached to the anticyclotomic Zp-extension, this norm compatible collection
of Heegner points can be parlayed into the construction of a global cohomology class

κE,K,∞ ∈ H1(K,Vp(E)⊗ Λ−K), (1.10)

where Vp(E) is the Galois representation attached to the p-adic Tate module of E. The module
Λ−K ⊗Zp Vp(E) is a deformation of Vp(E) which p-adically interpolates the twists of Vp(E) by
anticyclotomic Hecke characters. These results were further extended by Castella [Cas20] to allow
variation along Hida families.

The second instance we would like to address is the following one. The Euler systems of Kato
and Beilinson–Flach can be reinterpreted as follows: the former arises when we take a modular
curve and two modular units over it; the latter is the result of considering the two-fold of the
modular curve and a modular unit over the diagonal. This suggests a third option, just considering
the three-fold of the modular curve and a codimension two cycle on it, and that way we get the so-
called diagonal cycles, already studied in the seminal work of Gross and Kudla [GK93]. Let (f, g, h)
a triple of normalized primitive cuspidal eigenforms of weights k, `,m ≥ 2, levels Nf , Ng, Nh ≥ 1
and nebentype characters χf , χg, χh, respectively. Let N = lcm(Nf , Ng, Nh) and assume that
χfχgχh = 1, so that in particular k+ `+m is even. We say that (k, `,m) is balanced if the largest
weight is strictly smaller than the sum of the other two. Let c := k+`+m

2 − 1, and assume that
gcd(Nf , Ng, Nh) = 1. Under these circumstances, and following the notations and ideas of [Tale14],
we may construct appropriate cycles in the Galois representation Vfgh = Vf ⊗ Vg ⊗ Vh, where as
usual Vf , Vg and Vh arise for the Galois representations attached to the modular forms f , g and h,
respectively.

Let us briefly recall the main ideas involved in the construction. Let E denote the universal
generalised elliptic curve fibered over X = X1(N). For any n ≥ 0, let En be the n-th Kuga–
Sato variety over X, which is an n + 1-dimensional variety. The p-adic Galois representation
Vfgh occurs in the middle cohomology of the triple product W := Ek−2 × E`−2 × Em−2. Under
the previous assumptions, the conjectures of Bloch–Kato and Beilinson predict (because of the
vanishing of L(f, g, h, c) due to sign reasons) that there exists a non-trivial cycle in the Chow group
Q ⊗ CHc(W )0 of rational equivalence classes of null-homologous cycles of codimension c on the
variety W . Darmon and Rotger, in [DR14, §3.1], introduce cycles ∆f,g,h ∈ Q ⊗ CHc(W )0 which
are natural candidates to fulfill these expectations. Setting r = c− 2, there is an essentially unique
way to embed the Kuga–Sato variety Er in W . Its image gives rise to an element in CHr+2(W )
which, suitably modified, becomes homologically trivial, giving rise to ∆k,`,m ∈ CHr+2(W )0. When
k = ` = m = 2, this is just the modified cycle considered by Gross–Kudla and Gross–Schoen. The
cycles ∆f,g,h are just the (f, g, h)-isotypical component of the null-homologous cycles ∆k,`,m with
respect to the action of the Hecke operators. See also [YZZ15] for an account of the arithmetic
properties of these cycles.

Again, subsequent work of [DR17] (varying only one weight variable at a time) and [DR20b]
and [BSV20a] allow us to consider the variation of this cycle in Hida families. Unfortunately, these
classes do not yield an Euler system; even for weights (2, 2, 2), we obtain classes in H1(Q, Vfgh(−1))
and although we expect that they should be realized as the bottom layer of an Euler system, this
has not been accomplished yet. A rather related setting is concerned with the theory of the so-called
Hirzebruch–Zagier cycles and twisted diagonal cycles. See for instance the work of Liu [Liu17].

Finally, and since this chapter is merely expositive, we would like to list other instances of
different Euler systems that have been constructed during the last years. This topic seems to be
very active lastly, and this enumeration is likely to become obsolete in a few years:

• Loeffler, Skinner and Zerbes [LSZ20a] have constructed an Euler system for Galois represen-
tations associated to cohomological cuspidal automorphic representations of GSp(4), using
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the pushforwards of Eisenstein classes for GL2 ×GL2. This was further generalized in recent
work of Hsu, Jin and Sakamoto to produce an Euler system for GSp(4)×GL2.

• Cauchi and Jacinto [CJ20] have constructed global cohomology classes in the middle degree
cohomology of the Shimura variety of the sympletic group GSp(6) compatible when varying
the level at p. These classes are expected to form an Euler system for the Galois representa-
tions appearing in these cohomology groups.

• Loeffler, Skinner and Zerbes [LSZ20b] have recently constructed an Euler system for the
unitary group GU(2, 1). In this case the base field is not Q, but an imaginary quadratic field
E, and therefore the Euler system consists of classes over all of the abelian extensions of E,
most of which are not abelian over Q. In this work, they introduce a new strategy for proving
norm-compatibility relations, based on cyclicity results for local Hecke algebras.

• Lei, Loeffler and Zerbes [LLZ18] constructed an Euler system for the Galois representations
appearing in the geometry of Hilbert modular surfaces. The non-triviality of the Euler system
relies on a conjecture of Bloch and Kato about the injectivity of regulator maps.

1.3 p-adic L-functions

The theory of p-adic L-functions has experimented an enormous growth during the last years,
due to the increasing interest on Iwasawa theory and the development of the theory of Euler
systems, to which it is unavoidable linked (it is often said that Euler systems are the geometric
or cohomological incarnation of the appropriate p-adic L-functions). Along this section, we review
the first and easiest examples of p-adic L-functions, emphasizing the connection with the theory
of Hida families; we then move to the study of the p-adic L-functions of Hida–Rankin–Selberg
type, where the connection with Euler systems is crystal-clear; finally, we come back to the ideas
presented in the first section and introduce the Iwasawa main conjecture.

p-adic L-functions: first examples

The complex ζ-function is a function ζ : C → C with complex analytic properties, and which is
rational at negative integers. Since Z is a subset of both C and Zp, we may ask for an analogous
function ζp : Zp → Cp which is p-adic analytic. The same occurs when we look at the L-function
of an elliptic curve.

The use of p-adic L-functions dates back to Serre [Ser72]. Since this circle of ideas is specially
well-known and relevant for further constructions, we briefly recall it here. Observe that if k is even
and greater or equal than 2, the classical L-function L(χ, 1 − k) can be realised as the constant
terms of an holomorphic Eisenstein series

Ek,χ(q) =
L(χ, 1− k)

2
+

∞∑
n=1

σk−1,χ(n)qn, σk−1,χ(n) =
∑
d|n

χ(d)dk−1

of weight k, level N and character χ. If p is any prime, its ordinary p-stabilisation is

E
(p)
k,χ(q) = Ek,χ(q)− χ(p)pk−1Ek,χ(qp),

and its Fourier expansion is given by

E
(p)
k,χ(q) = Lp(χ, 1− k) + 2

∞∑
n=1

σ
(p)
k−1,χ(n)qn, σ

(p)
k−1,χ(n) =

∑
p-d|n

χ(d)dk−1.
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For all n ≥ 1, the function on Z≥1 sending k to the n-th Fourier coefficient σ
(p)
k−1,χ(n) extends to a

p-adic analytic function of k ∈ (Z/(p−1)Z)×Zp. The point here is that the constant term inherits
that same property. More generally, we have the following theorem.

Theorem 1.3.1 (Kubota–Leopoldt). Let χ be an even, primitive Dirichlet character of conductor
Mpr for some r ≥ 0 and M ≥ 1 prime to p. Given an embedding of Q̄ in Cp, there exists a unique
p-adic analytic (aside from s = 1 when χ = 1, where it has a simple pole with residue 1 − p−1)
function Lp(χ, s) on Zp satisfying

Lp(χ, 1− i) = (1− χω−i(p)pi−1)L(χω−i, 1− i)

for all i ≥ 1. Here, ω stands for the Teichmüller character.

The function Lp(χ, s) is the Kubota–Leopoldt p-adic L-function of χ. Different normalizations
are sometimes adopted, depending on the weight space we consider, either Zp[[1+pZp]] or Zp[[Z×p ]];
note that the former requires the introduction of suitable powers of the Teichmüller character in
the interpolation formula, as illustrated in the previous result. In any case, both conventions agree
if we restrict ourselves to a choice of residue class modulo p− 1. See for instance the discussion of
[Das99, Section 3].

The importance of the Kubota–Leopoldt p-adic L-function also comes here from the connection
with circular units. As anticipated in the introduction, one has the following result, due to Leopoldt:
when χ is a non-trivial, even primitive Dirichlet character of conductor N ,

Lp(χ, 1) = −(1− χ(p)p−1)

g(χ̄)

N−1∑
a=1

χ̄(a) logp(1− ζaN ), (1.11)

where ζN is a primitive N -th root of unity and g(χ̄) is the corresponding Gauss sum.
But a more general result holds, and this is the germ of the easiest explicit reciprocity law,

connecting a p-adic L-function with (the bottom layer of) an Euler system. The values Lp(χ, k)
can be also recovered from subsequent specializations of the Kummer image of the whole cyclo-
tomic system of circular units. More precisely, writing Λ = Zp[[Z×p ]], one can construct a Λ-adic
cohomology class

κχ,∞ ∈ H1(Q,Λ⊗Zp Zp,χ(χ̄)(1))

by gluing the image of different cyclotomic units under the Kummer map. Here, we are assum-
ing that Λ is endowed with the tautological Galois action. After applying the GQ-equivariant
specializations maps

νk,ξ : Λ −→ Qp,ξ(ξ̄)(k − 1),

where k is an integer and ξ a character of p-power conductor, we get a family of compatible classes

κk,χξ := νk,ξ(κχ,∞) ∈ H1(Q,Qp,χξ(χ̄ξ̄)(k)).

See Chapters 6 and 8 for a more exhaustive discussion around this construction, emphasizing the
connection with the exceptional zero phenomenon.

Furthermore, for all k ≥ 1,

Lp(k, χ) =
(1− χ(p)p−k)

(1− χ̄(p)pk−1)
× (−t)k

(k − 1)!g(χ̄)
× logk,χ(κk,χ), (1.12)

where t is Fontaine’s p-adic analogue of 2πi and logk,χ is the Bloch–Kato logarithm associated to
the p-adic representation H1(Qp,Qp,χ(k)((χ)−1)). For k ≤ 0 a similar result holds, but replacing
the Bloch–Kato logarithm by the dual exponential map. Along the different chapters of the thesis
we will explore more deeply this idea, which can be summarized under the idea that there exists
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an ubiquitous map, known under the names Perrin-Riou map, big regulator map, big logarithm
map,. . . , and which interpolates either the dual exponential map or the Bloch–Kato logarithm,
according to the Hodge–Tate weights of the representation. This is specially useful when considering
variation in families, and will play a prominent role in the discussion of the Euler systems of
Beilinson–Flach and diagonal cycles. See e.g. [KLZ17, Section 8.2] for an axiomatic treatment
of this map, and the different chapters of this memoir for the study of distinct instances of this
application.

This suggests that there may be a plethora of p-adic L-functions, that we are going to consider
along this thesis, at least one for each Euler system! Due to its special significance and since it is the
first example in this framework, we are going to introduce now the so-called two-variable Mazur–
Kitagawa p-adic L-function. This is a natural generalization of earlier results which establish the
existence of p-adic L-functions attached to a single modular form. This was firstly studied in
the early 1970s by Mazur and Swinnerton-Dyer [MSD74], who constructed a p-adic L-function
attached to a modular elliptic curve for each prime of good, ordinary reduction. In [AV75] and
[Vis14] the construction was generalized to higher weight modular forms, to supersingular primes,
and to primes of bad reduction. See also [MTT86] for a very accurate description of the scenario
regarding p-adic L-functions of modular forms.

The idea we want to develop is the following: once we have a notion of p-adic variation of
modular forms provided by the theory of Hida families, it makes sense to formulate the question
if whether or not we can relate their different p-adic L-functions, that is, if we can introduce a
two-variable (analytic) p-adic L-function, with one of the variables afforded by the weight. It is
important to keep in mind that the setting of Hida families is unavoidably linked to the ordinariness
assumptions; we refer for instance to the work of Pollack [Pol03] for a discussion of the supersingular
case, with very nice applications towards Iwasawa theory.

For our later convenience, let us fix the axiomatic framework to work with Hida families, with
a discussion borrowed from [DR14, Section 2]. Let W = Spf(Λ) = Hom(Λ,Zp). The subset of
classical characters of W is defined to be

Wcl = {(γ 7→ γk), with k ∈ Z≥2}.

Given a finite flat extension Λf of Λ, let Wf = Spf(Λf ). This space is endowed with a natural
p-adic topology and is equipped with a natural projection κ : Wf → W induced by the inclusion
Λ ⊂ Λf . A point x ∈ Wf for which κ(x) belongs to Wcl is called a classical point, and set of such
points is written as Wf ,cl.

Definition 1.3.2. A Hida family of tame level N is a quadruple (Λf ,Wf ,Wf ,cl, f), where:

(a) Λf is a finite flat extension of Λ = Zp[[Z×p ]].

(b) Wf is a non-empty subset of Xf = Homcont(Λf ,Cp), and Wf ,cl is a p-adically dense subset of
Wf whose image under κ lies in Wcl.

(c) f =
∑
anq

n ∈ Λf [[q]] is a formal q-series such that, for all x ∈ Wf ,cl, fx =
∑
x(an)qn is the

q-series of the ordinary p-stabilization of a normalized eigenform of weight κ(x) on Γ1(N).
When there is no risk of confusion, we use κ(x) for the point x itself; it is also customary to
write fx =

∑
an(x)qn.

Hida’s theorem asserts that given a normalized eigenform of weight k ≥ 1 on Γ1(N), where
p - N and such that p is ordinary for f , there exists a Hida family (Λf ,Wf ,Ωf ,cl, f) and a classical
point x0 ∈ Wf ,cl such that κ(x0) = k and fx0 is an ordinary p-stabilization of f , and therefore
unique if k > 1. In this case, we write f◦x for the modular form whose ordinary p-stabilization
is fx. See Section 2 of Chapter 3 for more details on Hida families, with applications towards
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the results of this thesis. There are also more geometric approaches to the topic, relying on the
geometric theory of modular curves and the so-called Igusa tower. Extending Hida’s work, Coleman
and Mazur [CoMa98] constructed a geometric object, the eigencurve, which parametrizes p-adic
families of modular form. The study of its geometry plays a crucial role in several moments of this
dissertation, whose main results rely on the results of Belläıche and Dimitrov [BeDi16]. They show
that the p-adic eigencurve is smooth at classical weight 1 points which are regular at p, and give
a precise criterion for étaleness over the weight space at those points, using for that purpose the
theory of Galois representations.

Let f =
∑∞

n=1 an(k)qn ∈ Λf [[q]] be a Hida family of tame level N , which is defined over a finite
flat extension of the usual Iwasawa algebra Λ = Zp[[Z×p ]]; assume that the weight two specialization
corresponds to the ordinary p-stabilization of the eigenform attached to an elliptic curve E. Fix a
neighborhood U of 2 ∈ Wf , and suppose for simplicity that U is contained in the residue class of 2
modulo p− 1. The weight k specialization, denoted for simplicity as fk, is a normalised eigenform
of weight k on Γ0(Np), which is new at the primes dividing N . More precisely, if k belongs to
U ∩ Z>2, the modular form fk is the p-stabilization of a normalised eigenform on Γ0(N), denoted
now f◦k . If (p, n) = 1, then an(f◦k ) = an(fk). Letting

1− ap(f◦k ) + pk−1−2s = (1− αp(k)p−s)(1− βp(k)p−s)

denote the Euler factor at p that appears in the L-series of f◦k , we may order the roots in such a
way that

αp(k) = ap(fk), βp(k) = pk−1ap(fk)
−1;

then, fk(z) = f◦k (z) − βp(k)f◦k (pz). For each k, we choose the Shimura periods Ω+
k := Ω+

fk
and

Ω−k := Ω−fk , requiring that

Ω+
2 Ω−2 = 〈f, f〉, Ω+

k Ω−k = 〈f◦k , f◦k 〉 for k > 21.

Let χ denote a primitive Dirichlet character of conductor m satisfying χ(−1) = w∞, where w∞
is the Fricke eigenvalue of f . For a fixed modular form g of weight k, an integer j with 1 ≤ j ≤ k−1,
and a Dirichlet character χ satisfying χ(−1) = (−1)j−1w∞, we define

Lalg(g, χ, j) =
(j − 1)!g(χ)

(−2πi)j−1Ωg
L(g, χ, j), (1.13)

where Ωg = Ω+
g if its Fricke eigenvalue w∞ = 1, and Ω−g elsewhere. An algebraicity result usually

attributed to Shimura asserts that this quantity belongs to Kg, the field of coefficients of g.

The Mazur–Kitagawa two-variable p-adic L-function attached to χ is a function of (k, s) ∈
Wf ×W denoted as Lp(f , χ), and usually defined in terms of modular symbols. See [Ki94] for a
detailed construction of that function. The main property we want to underline is summarized in
the following proposition.

Proposition 1.3.3. Suppose that k belongs to U ∩ Z≥2, and that 1 ≤ j ≤ k − 1 satisfies χ(−1) =
(−1)j−1w∞. Then,

Lp(f , χ)(k, j) = λ(k)(1− χ(p)ap(k)−1pj−1)Lalg(fk, χ, j).

Here, λ(k) ∈ Cp is a p-adic period arising from the p-adic interpolation of modular symbols and
that can be made explicit; in particular, λ(2) = 1.

1In the last chapter we will need slightly different normalizations for these periods, but which of course do not
affect to the algebraicity results.
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Alternatively,

Lp(f , χ)(k, j) = λ(k)(1− χ(p)αp(k)−1pj−1)(1− χ(p)αp(k)−1pk−j−1)εkLalg(fk, χ, j),

where εk = 1 if fk 6= f◦k and εk = 0 otherwise.
This function is related with Kato’s Euler system; more precisely, with Ochiai’s variant allowing

the variation of the modular form along a Hida family. See e.g. [Och03], [BD09] or [Ven16].

p-adic L-functions and Euler systems

As we have already mentioned, our main interest for the study of p-adic L-function is the connection
with Euler systems. We have already seen this phenomenon when relating special values of the
Kubota–Leopoldt p-adic L-function with circular units. The same occurs with elliptic units, whose
values are encoded in Katz’s two-variable p-adic L-function. This also suggests that when the
Eisenstein series is replaced by a cuspidal form and elliptic units are substituted by Heegner points,
there should be a cuspidal analogue to Katz’s function. This is provided by Bertolini, Darmon and
Prasanna. Let Σf,c be the set of Hecke characters ψ of conductor c and trivial central character for
which L(f, ψ−1, s) is self-dual and has s = 0 as its central critical point. Then, there is a unique
p-adic analytic function

Lp(f,K) : Σ̂f,c → Cp (1.14)

interpolating the critical values L(f, ψ−1, 0) for those characters of infinity type (κ + 2,−κ), with
κ ≥ 0 (the infinity type of a Hecke character of K is a pair of two integer numbers related with the
archimedean behavior of it). One can prove an explicit reciprocity law connecting this function with
the anticyclotomic Euler system of Heegner points. Both the setting of elliptic units and Heegner
points require the choice of a pair (p,K), where p is a prime and K is an imaginary quadratic field
in which p splits. Andreatta and Iovita [AI19] have recently extended those constructions, allowing
the prime p to be inert or ramified in K.

There is a different scenario arising from the Rankin–Selberg product. Let (f, g, h) be a triple
of eigenforms of weights (k, `,m), with k = `+m+ 2r and r ≥ 0. Let

δm =
1

2πi

( d
dτ

+
m

τ − τ̄

)
stand for the Shimura–Maass derivative operator. The main point is that the Petersson scalar
product

I(f, g, h) := 〈f, g × δrmh〉 (1.15)

may be p-adically interpolated. For that purpose, one has to consider Hida families (f ,g,h) going
through (f, g, h), as well as different operators. These are eord, which stands for Hida’s ordinary
projector; and d = q ddq , which denotes the Atkin–Serre operator that raises the weight of a modular
form by two. This operator admits the same algebraic description as δ in terms of the Gauss–Manin
connection and can be seen as a p-adic replacement of it. Then, for any triple of points (x, y, z)
over the weight space, of weights (k, `,m), with k = `+m+ 2r, r ≥ 0, define

Lp
f (f ,g,h)(x, y, z) =

〈(f∗x)◦, eord(drg
[p]
y × hz)〉

〈(f∗x)◦, (f∗x)◦〉
,

where f∗ denotes the modular form whose q-expansion is given by the complex conjugation of the
coefficients of f , and [p] is the p-depletion operator acting on modular forms. See [DR14, Section
4] for the detailed construction.

When both g and h are Eisenstein series we obtain a p-adic L-function which is essentially the
product of two Mazur–Kitagawa functions attached to f (but one needs to be careful with the choice
of Shimura’s periods!). See e.g. [BD14, Section 3]. If only h is Eisenstein but both f and g are
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cuspidal, we obtain the so-called three-variable Hida–Rankin p-adic L-function Lp(f ,g) attached
to two Hida families, already constructed in [Hi85] and [Hi88]; and when all three Hida families are
cuspidal, this is the triple product p-adic L-function constructed in different instances by Ichino,
Harris–Tilouine, Darmon–Rotger or more recently by Hsieh [Hs20], whose construction also works
for interpolating along the balanced region, where k ≤ ` + m; ` ≤ m + k; and m ≤ k + ` (this
generalizes earlier work of Greenberg and Seveso [GS20]). We extensively discuss these different
instances and the main properties of each p-adic L-function along the text. More precisely, in
Chapter 3 we revisit the Hida–Rankin p-adic L-function and in Chapter 7 we recall the main
properties of the triple product p-adic L-function.

The following table shows different instances of p-adic L-functions and the connection with Euler
systems. In some of the cases, we are not emphasizing the number of variables. For instance, Kato’s
elements were originally constructed for a fixed modular form, and in that case the connection is
with the so-called Mazur–Swinnerton-Dyer p-adic L-function; later, Ochiai’s work [Och03] allowed
to extend the construction to Hida families and connected the two-variable Euler system with the
Mazur–Kitagawa p-adic L-function. Something similar happens with Beilinson–Flach elements:
one can consider up to 3 variables (one for each Hida family and a third one corresponding to
cyclotomic twists), and the same occurs for the Hida–Rankin p-adic L-function, that we have
denoted by Lp(g,h) in the introduction. In the case of diagonal cycles the situation is not so well
understood. There is always a three-variable Euler system which encodes information about an
unbalanced p-adic L-function (there are three options depending on the region of interpolation);
one would expect to construct as a putative refinement a four variable p-adic L-function, but there
is no Ichino formula giving an algebraicity result for non-central values.

Euler system p-adic L-function

Circular units Kubota–Leopoldt p-adic L-function

Elliptic units Katz’s two-variable p-adic L-function

Heegner points Bertolini–Darmon–Prasanna anticyclotomic p-adic L-function

Kato elements Mazur–Swinnerton-Dyer p-adic L-function

Beilinson–Flach Hida–Rankin p-adic L-function

Diagonal cycles Harris–Tilouine triple product p-adic L-function

As we have mentioned in our discussion around Euler systems, one can find in the literature
a plethora of new instances of this formalism. For instance, Loeffler and Zerbes have recently
obtained a reciprocity law for the symplectic group GSp(4), which allows them to obtain positive
results towards the study of the Bloch–Kato conjecture and the Iwasawa main conjecture [LZ20].

Iwasawa main conjectures

Iwasawa theory is by itself one of the most interesting topics in number theory nowadays. The goal
of classical Iwasawa theory is to study the growth of the class group in towers of cyclotomic fields.
Although the most relevant points for our work are those related with the arithmetic of elliptic
curves, we begin by recalling the formulation of the classical Iwasawa main conjecture. For that
purpose, we closely follow [Sh18].

Let Fn = Q(µpn), and let An denote the p-part of the class group of Fn, which is a module over
Zp[(Z/pnZ)×]. For n ≥ m, we may consider the maps Am → An and An → Am induced by the
inclusion of ideal groups and the norm map on ideals, respectively. We let

A∞ = lim
→
An and X∞ = lim

←
An,

with the direct and inverse limits taken with respect to these maps. Endowing A∞ with the discrete
topology and X∞ with the profinite topology, they become continuous modules over the completed
group ring Zp[[Z×p ]] = lim← Zp[(Z/pnZ)].
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The group Γ0 = 1 + pZp is procyclic, generated for example by 1 + p. The profinite Zp-algebra
Λ0 = Zp[[Γ0]] is isomorphic to the completed group ring Zp[[T ]]. The structure of the modules over
Λ0 is quite well understood, and we refer to any standard text on Iwasawa theory for details on
that point. The nice point is that every localization of Λ0 at a height one prime is a principal ideal
domain, and in this case the structure theory of finitely generated modules is standard.

A first remarkable fact, that follows by Nakayama’s lemma, is that the group X∞ is a finitely
generated, torsion Λ0-module. We want a finer decomposition of X∞ as a Zp[(Z/pZ)×]-module,
by singling out one of the p− 1 components with respect to the action of (Z/pZ)×. Each of these
eigenspaces is denoted as X(i), where i ranges over the set of residue classes modulo p− 1, and is
a Λ0-module.

To state the Iwasawa main conjecture we need to introduce the p-adic L-function that best fits
with our purposes, which is nothing but a suitable modification of Kubota–Leopoldt’s one. Indeed,
consider an element fk of the total quotient ring of Zp[[Z×p ]] such that when k is not congruent to
0 modulo p− 1 satisfies that

fk(v
s − 1) = Lp(ω

k, s).

This element can be constructed from the theory of Stickelberger elements. When k ≡ 0 modulo
p− 1, we set fk = 1.

Theorem 1.3.4 (Iwasawa main conjecture, Mazur–Wiles). Let k be an even integer. Then,

Char(X(1−k)
∞ ) = (fk),

where Char is the ideal of the Λ0-module.

There are different approaches to this result. Proving an equality of ideals like the previous
one requires checking both divisibilities; however, in this particular case, the nice behavior of class
groups makes that with one of them suffices. Mazur and Wiles proved it for an odd prime p,
and Wiles treated the case p = 2 and a generalization of the conjecture to totally real number
fields. Their proof uses Hida theory. Rubin gave another proof exhibiting the opposite divisibility,
bounding the size of the unramified Iwasawa module by exploiting the method of Euler systems (in
particular, as we already anticipated, the use of circular units).

Beginning with work of Mazur and Swinnerton–Dyer in the seventies and specially in subse-
quent papers of Greenberg, those ideas were extended to elliptic curves and other p-adic Galois
representations. Each instance has its own main conjecture (at least conjecturally!) relating certain
Galois cohomology groups (algebraic side) with a p-adic L-function (analytic side). And like as
it happens with the original main conjecture, these facts have deep consequences for the related
special value formulas.

Let us discuss the formulation of the Iwasawa main conjecture (IMC) for elliptic curves by
recalling the main ingredients involved in its formulation. The main reference for this part is
[Sk18]. We assume all the time that p > 2. Let F be a fixed number field, and let F∞/F be a
Zdp-extension of F , with d ≥ 1. This is a profinite abelian extension of F such that Γ = Gal (F∞/F )

is isomorphic to Zdp. Now, let Λ = Zp[[Γ]] stand for the completed group ring of Γ over Zp. For
simplicity, assume that F∞ is ramified at each place v | p. Let T = Tp(E) be the p-adic Tate module
of E, which is a free Zp-module with a continuous Zp-linear action of GF , that we denote as %. Let
Λ∨ = Homcont(Λ,Qp/Zp) be the Pontryagin dual of Λ, and let Ψ : GF → Γ stand for the canonical
projection. Put M = T ⊗ Λ∨ and let GF act via %⊗Ψ−1.

We fix a finite set of places of F , Σ, containing all those dividing p or at which E has bad
reduction. We are going to define S(E/F∞) as a subgroup of H1(GF,Σ,M), where GF,Σ is the
Galois group of the maximal extension of F unramified outside Σ. Towards that purpose, and for
the sake of simplicity, we assume that E has either good ordinary, multiplicative, or supersingular
reduction at each v | p. Finally, let Sord

p be set of v | p at which E has good ordinary or multiplicative
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reduction, and therefore there exists a GFv -filtration 0 ⊂ T+
v ⊂ T , with T+

v a rank one Zp-summand.
It is characterized by the property that T/T+

v is unramified and Frv acts as multiplication by the
unit root αv of x2 − av(E) + p (if E has good reduction at v) or by av(E) (if E has multiplicative
reduction at v). Then, define

S(E/F∞) = ker
(
H1(GF,Σ,M)

res−−→
∏

v∈Σ,v-p

H1(Fv,M)×
∏

v∈Sord
p

H1(Iv, T/T
+
v ⊗Zp Λ∨)

)
.

To formulate the IMC, we content ourselves with the case where F = Q. The p-adic L-function
that appears in this setting is an element L(E/Q∞) ∈ Λ = Zp[[Γ]], closely connected with the
Mazur–Kitagawa p-adic L-function when the weight is kept fixed. To characterize it, we must
fix some notations. Given a primitive pt-th root of unity ζ, ψζ is the finite order character of
GQ obtained by projecting to Γ and composing with the character of Γ and composing with the
character of Γ that sends a topological generator γ to ζ. We also denote by ψζ the Dirichlet
character of (Z/pt+1Z)× of Λ sending T to ζ − 1. Similarly, φζ : Λ → Zp[ζ] is the homomorphism
sending γ ∈ Γ to ζ. Associated to the elliptic curve E there is a modular form fE whose associated
L-function is L(fE , s), that can be twisted by the Dirichlet character ψζ , L(fE , ψζ , s) (we insist
on the fact that this is essentially the Mazur–Swinnerton-Dyer p-adic L-function, which already
appeared in previous sections).

Then, L(E/Q∞) is characterized by the property that for any primitive pt-th root of unity ζ,

φζ(L(E/Q∞)) = ep(ζ)
L(fE , ψ

−1
ζ , 1)

ΩfE

, (1.16)

where ΩfE is a canonical period of fE and

ep(ζ) =

α
−(t+1)
p

pt+1

g(ψ−1
ζ )

if ζ 6= 1,

α−1
p (1− α−1

p )mp if ζ = 1.

Here, mp = 2 if E has good ordinary reduction and mp = 1 if E has multiplicative reduction.

Conjecture 1.3.5 (Cyclotomic Iwasawa–Greenberg main conjecture for E). Assume that E has
good ordinary or multiplicative reduction at p. The Pontryagin dual X(E/Q∞) of S(E/Q∞) is
a torsion Λ-module and its characteristic ideal Char(E/Q∞) = Char(X(E/Q∞)) is generated by
L(E/Q∞) in Λ⊗Zp Qp and even in Λ if E[p] is an irreducible GQ-representation.

There is a formulation of the IMC which does not require p-adic L-functions. Let

Sstr(E/Q∞) = ker
(
S(E/Q∞)→ H1(Qp,M)

)
, Xstr(E/Q∞) = Sstr(E/Q∞)∨.

Kato constructed a free Λ-module ZKato ⊂ H1(Z[1/p], T ⊗Zp Λ). The IMC without L-functions,
in this case, asserts that H1(Z[1/p], T ⊗Zp Λ) is a torsion-free rank one Λ-module, that ZKato 6= 0,
and that

Char(H1(Z[1/p], T ⊗Zp Λ)/ZKato) = Char(Xstr(E/Q∞)). (1.17)

It is quite a pleasant exercise to show that both formulations are equivalent; it basically relies
on Poitou–Tate duality and the reciprocity law connecting Kato’s class with the p-adic L-function.

The main conjecture for CM elliptic curves with ordinary reduction at p was established by
Rubin. Kato establishes one of the divisibilities under certain mild assumptions, relying on the
existence of an Euler system, which gives appropriate bounds for the Selmer group. In particular,
he proved that X(E/Q∞) is a torsion Λ-module and that

(L(E/Q∞)) ⊂ Char(E/Q∞),
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if E has good ordinary reduction at p. Greenberg and Vatsal [GV00] later explored this fact together
with the classical IMC for Dirichlet characters so as to deduce the cyclotomic main conjecture for
some elliptic curves E for which E[p] is reducible as a GQ-representation. The opposite divisibility
was established by Skinner and Urban [SU14], who constructed non-trivial elements of the p-
adic Selmer group from congruences between Eisenstein series and cusp forms of GU(2, 2) of an
appropriate quadratic imaginary field (the Eisenstein series is properly selected so that its constant
terms involves L-values of f). This is a generalization of the strategy initiated by Ribet and
extended by Mazur–Wiles in the proof of the cyclotomic IMC. Finally, we point out that this result
was extended to the case of split multiplicative reduction by Wan [Wan15], where he works with
the unitary group GU(3, 1).

The IMC has deep applications towards the Birch and Swinnerton–Dyer conjecture, for the
moment restricted to ranks 0 and 1, although recent work of Castella and Hsieh [CH20] deals with
an anticyclotomic version of it in a rank 2 situation. Under certain assumptions, Jetchev, Skinner
and Wan [JSW17] have recently proved that the p-part of the BSD conjecture is true in rank 1.

Theorem 1.3.6. Let E be a semistable elliptic curve of conductor NE and p a prime of good
reduction such that ap(E) = 0 if E has supersingular reduction at p. Suppose that E[p] is irreducible
as a GQ-module. If E has analytic rank one, then∣∣∣ L′(E, 1)

ΩE · RegE

∣∣∣−1

p
=
∣∣∣|Sha(E)| ·

∏
`|NE

c`

∣∣∣−1

p
.

The arguments were extended to the case of multiplicative reduction by Castellà [Cas18b].
Some variants of the Iwasawa main conjecture for elliptic curves and modular forms are partic-

ulary interesting, specially those concerning quadratic imaginary fields, where also a lot of progress
has been made (see for instance [How04], [BD05] and [ChHs05]). Another instance of the IMC
is related with the tensor product of the Galois representations attached to two modular forms,
where the results of Lei, Kings, Loeffler and Zerbes [LLZ14], [KLZ17] give the proof of one of the
divisibilities, due to the existence of an Euler system in that case. See also the related works of Lei,
Loeffler and Zerbes [LLZ14] and Büyükboduk and Lei [BL18], [BL20], where the authors discuss
the construction of an Euler system attached to the twist of a modular form by a grössencharacter
of an imaginary quadratic field, and apply this to bounding Selmer groups.

In an ongoing project with Raúl Alonso and Francesc Castellà [ACR21], we expect to partially
adapt these results to the setting of diagonal cycles and triple products p-adic L-functions, com-
bining several of the ideas discussed in this thesis with Castella’s earlier work on anticyclotomic
Iwasawa theory [Cas17], [CH18].
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Chapter 2

Background material II: Gross–Stark
units, exceptional zeros and
congruences

In this chapter, we continue with a review of the state of the art, focusing now on some specific
topics which play a key role in this dissertation. The first section serves as a quick survey of
the different Stark and Gross–Stark conjectures that have been studied in the literature, with
special emphasis again on the connection between the arithmetic of units in number fields and the
arithmetic of elliptic curves, following the analogy of [DLR15a] and [DLR16]. The second part is
a short section devoted to the theory of exceptional zeros and improved p-adic L-functions. We
go back to the origins of the concept and see its evolution, finishing with the general conjectures
posed by Greenberg, Benois, and others. Finally, we close the chapter by emphasizing some of
the most relevant points of the theory of congruences between modular forms, beginning with the
foundational works of Mazur and Ribet and going until the last studies of Sharifi and Fukaya–Kato.

2.1 Gross–Stark units

Stark’s conjectures give complex analytic formulas for units in number fields (more precisely, for
their logarithms) in terms of the leading terms of Artin L-functions at s = 0. This was later studied
in the p-adic setting, where Gross was the first one who envisaged how the use of p-adic techniques
could yield to new results. It is also natural to wonder if there are similar formulas for algebraic
points on elliptic curves. As it has already been mentioned, Heegner points are the right analogue
to circular or elliptic units (arising when the elliptic curve does not have CM), and it is known that
their heights are related to L-series via the celebrated Gross–Zagier formula.

The aim of this section is threefold: we begin with a short overview of different Gross–Stark type
conjectures available in the literature; we then move to the setting of points in elliptic curves; and we
finish stressing the parallelism between the arithmetic of units over number fields and that of elliptic
curves by comparing different constructions for real quadratic fields, appearing when the field of
complex multiplication is no longer available. We had already anticipated in the introduction the
importance of this topic when we discussed the interaction between the arithmetic of triple product
p-adic L-functions and Darmon points, and the possibility of carrying out a similar study when
one takes their natural replacements in the Eisenstein case (Hida–Rankin p-adic L-functions and
Darmon–Dasgupta units).

43
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Stark’s conjectures

The easiest cases where a connection between special values of (p-adic) L-values and units arise
are related with Dirichlet character. For simplicity, say that χ : (Z/NZ)× is a non-trivial even
Dirichlet character. Then, if H = Q(ζN ), the space Uχ = (O×H ⊗E)χ̄ is one-dimensional, and fixing
a generator uχ, we have that

L′(χ, 0) = −1

2
log(uχ), L(χ̄, 1) = − 1

g(χ)
log(uχ).

Here, log is the usual complex logarithm.

The counterpart to this result in the non-archimedean setting was already presented (this is
Leopoldt’s formula again). With the conventions of Theorem 1.3.1,

Lp(χ̄, 1) = −1− χ(p)p−1

g(χ)
logp(uχ),

where now logp is the p-adic logarithm. Similarly, and with the usual conventions adopted in the
study of Stark’s conjectures,

Lp(χ, 0) = −(1− χω−1(p))Bχω−1,1,

where Bχω−1,1 is a generalised Bernoulli number. We come back to this formula later on in Chapter
5, but let us just mention that this is particularly interesting due to the presence of a certain Euler
factor which may vanish, and this happens exactly when χω−1(p) = 1.

In 1980, Gross conjectured a formula for the expected leading term at s = 0 of the Deligne–
Ribet p-adic L-function associated to a totally even character ψ of a totally real field F . It states
that after scaling by L(ψω−1, 0), this value is equal to a p-adic regulator of units in the abelian
extension of F . To fix notations, let F be a totally real field and let

χ : GF −→ Q̄×

be a totally odd character of the absolute Galois group of F . Let H denote the CM, cyclic extension
cut out by χ, and let H stand for the number field of definition of χ. Consider the L-function
associated to χ with the Euler factors at primes above p removed:

L∗(χ, s) = L(χ, s) ·
∏
p|p

(1− χ(p)(Np)−s).

There is a unique meromorphic p-adic L-function

Lp(χω, s) : Zp −→ Cp (2.1)

determined by the interpolation property

Lp(χω, n) = L∗(χωn) for all n ≤ 0.

The set of primes above p in F may be split as R ∪R′, where R consists on those p with χ(p) = 1
and R′ is its complementary. The cardinality of R is denoted as rp(χ). Gross conjectured that

ords=0Lp(χω, s) = rp(χ),

and proposed a formula for the leading term L
(r)
p (χω, 0).

In the case where rp(χ) = 1 and R consists on a single prime p, this is just the following.
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Theorem 2.1.1 (Darmon–Dasgupta–Pollack). With the previous assumptions,

L′p(χω, 0)

L(χ, 0)
= L(χ) ·

∏
q∈R′

(1− χ(q)),

where the L-invariant L(χ) is given by

L(χ) = −
logp(vχ)

ordp(vχ)
.

Here, vχ is a generator of Uχ = (OH [1/p]× ⊗ L)χ̄.

When rp(χ) > 1 there is an analogue expression in terms of a regulator matrix which also
involves p-adic logarithm of units. In this setting, the conjecture was proved by Dasgupta, Kakde
and Ventullo [DKV18]. Along different recent works, Dasgupta and Kakde have achieved a bet-
ter comprehension of this question, studying the so-called Brumer–Stark conjecture and deriving
evidence towards Hilbert’s 12th Problem. More precisely, let H/F be a finite abelian extension
of number fields with F totally real and H a CM field. Let S and T be disjoint sets of places of
F satisfying appropriate conditions. The Brumer–Stark conjecture states that the Stickelberger

element Θ
H/F
S,T annihilates the T -smoothed class group of H. We refer to [DK20] for more details

and for a proof away from p = 2 (that is, after tensoring with Z[1/2]).
Let us discuss another instance, connected with weight one modular forms and of great impor-

tance in this monograph. Let

g =
∑
n≥1

anq
n ∈ S1(N,χ)

be a cusp form of weight one, level N , and odd character χ. Deligne and Serre associated to it an
odd, two-dimensional Artin representation

%g : GQ −→ GL2(C).

Conversely, work of Buzzard–Taylor and Khare–Winterberger asserts that when % is an odd,
irreducible, two-dimensional Artin representation, there is a weight one newform g satisfying
L(%, s) = L(g, s).

As usual, let H stand for the field cut out by the Artin representation %g, and let L be a number
field large enough to contain the Fourier coefficients of g.

Conjecture 2.1.2 (Stark). Let g be a cuspidal newform of weight one, with Fourier coefficients
in L. Then, there is a unit ug ∈ (O×H ⊗ L)+ satisfying

L′(g, 0) = log(ug),

where (O×H⊗L)+ stands for the fixed part of the unit group under the action of complex conjugation.

This conjecture admits a more general formulation in the setting of arbitrary Artin represen-
tations, and moreover some of its generalizations and variants have raised a lot of interest. This
includes for instance the so-called Brumer–Stark conjecture, and also its higher rank variants stud-
ied by Burns, Popescu and Rubin, among others.

The Elliptic Stark Conjecture

We want to present now an alternative Gross–Stark-type conjecture connecting p-adic L-functions
(alternatively, a p-adic iterated integral) with p-adic logarithms of global points over elliptic curves.
This is not new at all, since results of this kind had already appeared in other settings: the Katz p-
adic L-function (Rubin, 1992); the Mazur–Swinnerton-Dyer p-adic L-function (Perrin-Riou, 1993);
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various types of p-adic Rankin L-function attached to f⊗θψ, where θψ is the theta series attached to
a character of a quadratic imaginary field ψ (Bertolini–Darmon, 1995; Bertolini–Darmon–Prasanna,
2008); p-adic Garett–Rankin L-functions attached to f ⊗ g ⊗ h (Darmon–Rotger, 2012). . . In this
section we present the main conjecture of [DLR15a], which intends to shed some light on a rank
two instance of the BSD conjecture. Moreover, we recover one of the triple product L-functions
discussed along the previous part, interpolating central critical values corresponding to (fk, g`, hm),
where ` ≥ k +m. Therefore, it is natural to ask ourselves about the value at a point lying outside
the region of classical interpolation, in this case the point (2, 1, 1) (for balanced points, the values
of the function are related with the Bloch–Kato logarithm of certain diagonal cycles).

To fix notations, consider a triple of normalized weight two newforms

f ∈ S2(Nf ), g ∈M1(Ng, χ̄), h ∈M1(Nh, χ),

and assume for simplicity that f is attached to a rational elliptic curve, and that L is a number
field which is large enough to contain the Fourier coefficients of both g and h, and also the roots
of their p-th Hecke polynomials. We further assume that h = g∗, that is, the twist by the inverse
of its nebentype. Finally, Vg, Vh and Vgh stand for the Galois representations attached to g, h and
g ⊗ h, respectively.

Let us consider the functional equation for the triple product classical L-function L(E, Vgh, s) =
L(f ⊗ g ⊗ h, s), connecting s and 2− s. The sign of the functional equation, expressed in terms of
the root number ε(E, Vgh), is a product of local signs, as

ε(E, Vgh) =
∏
v|N∞

εv(E, Vgh),

where N = lcm(Nf , Ng, Nh). In this case, ε∞(E, Vgh) = 1 since we are in the balanced region (it can
be easily proved that the sign at infinity is −1 if and only if the triple is balanced; this is coherent
with the expectation provided by the Beilinson conjecture and the fact that diagonal cycles are
available precisely in that framework). We now make several assumptions, always following the
setting of [DLR15a].

(A) Local sign hypothesis: for all finite places v |N , εv(E, Vgh) = 1.

Under this assumption, L(E, Vgh, s) vanishes to even order at s = 1, and we can relate its
value at 1 with the value of the trilinear form

I : S2(N)C ×M1(N, χ̄)C ×M1(N,χ)C → C

given by I(f̃ , g̃, h̃) = 〈f̃ , g̃h̃〉. Harris and Kudla proved that the restriction

Ifgh : S2(N)[f ]×M1(N, χ̄)[g]×M1(N,χ)[h]→ C

is identically zero if and only if the central critical value of the L-function vanishes.

(B) Global vanishing hypothesis: the L-function L(E, Vgh, s) vanishes at s = 1 (and therefore the
trilinear form Ifgh is identically zero).

Let d = q ddq stand for Serre’s differential operator, raising by 2 the weight in the space of p-adic

modular forms. If f̃ ∈ S2(N) is overconvergent (see [DR14] for a discussion on the importance
of this fact), which is marked with the superscript “oc”, then its primitive d−1f̃ may be
understood as a p-adic limit of dt when t goes to −1 p-adically. Let F̃ = d−1f̃ ∈ Soc

0 (N) and
define the p-adic iterated integral attached to

(f̃ , γ̃, h̃) ∈ S2(Np)L ×Mord
k (Np, χ)∨L ×Mk(Np, χ)L

as
I ′p(f̃ , γ̃, h̃) = γ̃(eord(F̃ · h̃)) ∈ Cp. (2.2)
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(C) Classicality property for the p-stabilization gα: let gα(q) = g(q)− βgg(qp) and write

Soc,ord
1 (N,χ)Cp [[g

∗
α]] = ∪n≥1 ker(Ingα)

for the generalised eigenspace attached to gα; here Igα is the ideal associated to the system of
Hecke eigenvalues of gα. Then, this space is non-trivial and consists only on classical forms.

This hypothesis is usually satisfied in practice. Indeed, Bellaiche and Dimitrov showed that
when g ∈ S1(N, χ̄), the natural inclusion

S1(Np, χ)Cp [g
∗
α] ↪→ Soc,ord

1 (N,χ)[[g∗α]]

is an isomorphism of Cp-vector spaces if and only if Vg is not induced from a character of a
real quadratic field in which p splits.

(C’) The modular form g satisfies one of the following properties: (i) it is a cusp form, regular at
p, and it is not the theta series of a real quadratic field in which p splits; (ii) it is an Eisenstein
series irregular at p, i.e., Vg = χ1 ⊕ χ2, with χ1(p) = χ2(p).

Hypothesis A and B together imply that ran(E, Vgh) ≥ 2, and of course the same is ex-
pected for the algebraic rank. When this value is 2, we may fix an algebraic basis {P,Q} for
HomGQ(Vgh, E(H)⊗ L). Choose a basis of Vgh compatible with the Frobenius decomposition

eαα ∈ V αα
gh , eαβ ∈ V αβ

gh , eβα ∈ V βα
gh , eββ ∈ V ββ

gh ,

and recall that one may identify HomGQ(Vgh, E(H)⊗ L) ' (E(H)⊗ V ∨gh)GQ . Write

P = Pαα ⊗ e∨ββ + Pαβ ⊗ e∨βα + Pβα ⊗ e∨αβ + Pββ ⊗ e∨αα,

and similarly for Q. Here, the arithmetic Frobenius Frp acts on Pαα with eigenvalue βgβh, and
similarly for the other components1.

The regulator attached to E and Vgh is

Reggα(E, Vgh) = logp(Pαα) · logp(Qαβ)− logp(Qαα) · logp(Pαβ).

Finally, let ad0(g) := Hom0(Vg, Vg) denote the three-dimensional adjoint representation attached
to Vg, on which the Frobenius acts with eigenvalues 1, αg/βg, and βg/αg. In these cases, we may

attach to gα a Stark unit ugα ∈ OHg [1/p]×)
adg
L , where Hg is the number field cut out by ad0

g.

Conjecture 2.1.3. Assume that hypotheses A, B and C-C’ are satisfied. If r(E, Vgh) > 2, the
trilinear form I ′p of (2.2) is zero. Otherwise, there are test vectors

(f̃ , γ̃, h̃) ∈ S2(Np)L[f ]×M1(Np, χ)∨L[gα]×M1(Np, χ)L[h]

for which

Ip(f̃ , γ̃, h̃) =
Reggα(E, Vgh)

logp(ugα)
. (2.3)

Remark 2.1.4. This conjecture is usually presented in terms of triple product p-adic L-functions.
As shown in [DLR15a, Proposition 2.6], the trilinear form may be recast as the special value
Lp

g(f ,g,h) at the point (2, 1, 1). See Chapter 7 for further discussions on this.

1Along the different works around the Elliptic Stark Conjecture, one may find different terminologies regarding
the local decomposition at p. We have tried to be consistent along the memoir, but keep in mind that in some articles
this could be slightly different.
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The case where f is Eisenstein and therefore is no longer attached to an elliptic curve is equally
interesting. In that situation, the global points over elliptic curves are replaced by Gross–Stark
units. This is extensively discussed in subsequent chapters.

A last comment is that there are several cases, namely those where Vgh decomposes as the direct
sum of smaller representations, where the formulation of the conjecture is very explicit. This is
the case where g and h are theta series of the same quadratic imaginary field where p splits, and
the regulator becomes just the product of the logarithms of two Heegner points. There is another
interesting instance: when g and h are theta series of a real quadratic field where p is inert, we
expect to get logarithms of Stark–Heegner points (the natural replacement of Heegner points over
real quadratic fields, we come back to them in the following section). And of course we also expect
this at the level of units when f is Eisenstein: elliptic units in the quadratic imaginary case, and
Darmon–Dasgupta units (sometimes called Gross–Stark units) in the real case. We explore this
parallelism in the following section and prove results in this direction along the first part of the
memoir.

An analogy between units and points

At this point of the discussion is already clear that there is a fruitful connection between the
arithmetic of points in elliptic curves and that of units in number fields. One of the objectives of
Chapter 3 is mimicking the approach of [DR20b] so as to study Stark–Heegner points, but in the
case of units in number fields and with diagonal classes replaced by Beilinson–Flach elements. The
conjectural p-adic replacement for Stark–Heegner points or Darmon points is provided by certain
p-adic units, referred either as Gross–Stark units or Darmon–Dasgupta units; we adopt this name
for the rest of the text. Let us discuss this parallelism and present a general view of Darmon–
Dasgupta units, which are encoded at the weight one specializations of Beilinson–Flach elements,
as shown in Section 6 of the following chapter.

To begin with this analogy, let us mention that in [BD09], the authors give evidence towards
the rationality of Darmon points for genus characters by using the ideas that led to the proof
of the celebrated Kronecker limit formula. The same ideas were also used for Park in its study
of Darmon–Dasgupta units, the real quadratic replacement of elliptic units. The following table
summarizes the different settings we find.

Classical setting p-adic setting

Units in number fields Elliptic units Darmon–Dasgupta units

Points in elliptic curves Heegner points Darmon points

In both p-adic settings, linear combinations of the logarithms of those objects (points or units),
weighted by genus characters, are shown to be equal (up to some factors) to the logarithm of
their classical counterparts, given evidence towards its rationality. These proofs, as it is underlined
in the Introduction of [BD09], are inspired precisely by the Kronecker limit formula, that relates
weighted combinations of logarithms of elliptic units with the logarithm of a fundamental unit of
a real quadratic field. Let us sketch the treatment which is followed in each of the approaches.

Elliptic units: Kronecker’s limit formula. Let K be an imaginary quadratic field and fix
an order OD in K of discriminant D; fix also N > 0 relatively prime with D. Let HD be the set
of τ ∈ H ∩K such that Oτ = OD, where

Oτ =
{( a b

c d

)
∈ R such that aτ + b = cτ2 + dτ

}
⊂ K,

being R the subring of matrices which are upper-triangular modulo N . Let GD be the class group of
K. A non-trivial quadratic (genus) character χ of GD corresponds to a pair of Dirichlet characters
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χ1 and χ2 which are even and odd, respectively, cutting out quadratic extensions K1 and K2 of
Q. Let ε1 be the fundamental unit of K1 and denote by hj the class number of Kj and by w2 the
number of roots of unity in K2.

Let
η∗(τ) := |D|−1/4

√
2y|η(τ)|2;

Kronecker showed that for any τ ∈ HD,∑
σ∈GD

χ(σ) log η∗(τσ) = −2h1h2

w2
log(ε1).

Observe that this gives a solution of the Pell equation x2 −D1y
2 = 1 in terms of the function η∗

evaluated at suitable imaginary quadratic arguments (here, D1 is the discriminant of K1). The
proof uses three main ingredients:

1. The Kronecker limit formula, which expresses the left hand side of the previous equation in
terms of L(K,χ, s). Namely,

−
∑
σ∈GD

χ(σ) log η∗(τσ) =
d

ds
L(K,χ, s)|s=0.

2. A factorisation of L(K,χ, s) as a product of the Dirichlet L-series attached to χ1 and χ2

(where χ1 is odd and χ2 even):

L(K,χ, s) = L(χ1, s)L(χ2, s).

3. Dirichlet’s class number formula, which affirms that

L′(χ1, 0) = h1 log(ε1), L(χ2, 0) =
2h2

w2
.

Darmon–Dasgupta units. Darmon–Dasgupta units, as introduced in [DD06], are natural
substitutes of elliptic units when the imaginary quadratic field of the theory of complex multipli-
cation is replaced by a real quadratic field K. These units are defined over a local field, but it is
conjectured that linear combinations of them, weighted by the values of ring class characters of K,
belong to the group of global p-units of the Hilbert class field of K.

We begin by recalling the main ingredients that are needed for defining Darmon–Dasgupta
units. Let p be a rational prime and K a real quadratic field of discriminant D in which p is inert.
Fix N such that (N, pD) = 1, and fix also a formal sum

δ =
∑

d|N,d>0

nd[d],

such that nd ∈ Z,
∑
nd =

∑
nd · d = 0.

Let Hp denote the p-adic upper half plane, and let R ⊂M2(Z[1/p]) be the subring of matrices
that are upper triangular modulo N . The Z[1/p]-order associated to τ ∈ Hp ∩K, that we denote

as Oτ , is defined to be the set of matrices

(
a b
c d

)
in R such that aτ + b = cτ2 + dτ . Via the

morphism that sends a matrix to cτ+d, we can see this order inside K. We refer to the Z[1/p]-order
of K of discriminant D as OD, and let

HDp := {τ ∈ Hp ∩K such that Oτ = OD}.
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The set HDp is non-empty (since p is inert in K), hence we may fix τ ∈ HDp . Moreover, HDp is
endowed with an action of an arithmetic group, and the quotient space is finite and has a transitive
action of Pic(O); we denote it as a ∗ τ , where a ∈ Pic(O).

Using the theory of p-adic multiplicative integrals, Darmon and Dasgupta constructed an elliptic
unit for K associated to δ and τ ,

u(δ, τ) ∈ K×p .

They conjectured that u(δ, τ) is a global p-unit lying in OH [1/p]×, where H is the Hilbert class
field of K. More precisely:

Conjecture 2.1.5. Let τ ∈ HDp . Then, u(δ, τ) ∈ OH [1/p]×, where H is the Hilbert class field of
K, and

u(δ, a ∗ τ) = rec(a)−1u(δ, τ),

where a ∈ Pic+(O), rec is the usual Shimura reciprocity law map, and a ∗ τ denotes the canonical
action of the narrow Picard group in HOp /Γ.

Let us see the connection with p-adic zeta functions. Consider the Γ0(N)-Eisenstein series of
weight 2r (with r ≥ 1) given by the test vector

F2r(z) = −24 ·
∑

d|N,d>0

nd · d · E2r(dz).

Darmon and Dasgupta established the existence of a family µ of Z-valued p-adic measures on
Q2
p − {(0, 0)}, indexed by pairs (r, s) ∈ Γ · ∞ × Γ · ∞ and denoted µ{r → s}, such that∫

(Z2
p)′
Qτ (z, 1)r−1 dµ{∞ → γτ · ∞}(x, y) = (1− p2r−2) ·

∫ γτ∞

∞
Qτ (z, 1)r−1F2r(z) dz.

This allows us to define a p-adic zeta series

ζp(δ, τ, s) =
1

12
·
∫

(Z2
p)′
〈Qτ (x, y)〉−s dµ{∞ → γτ · ∞}(x, y),

where γτ is the generator of the stabilizer of τ in Γ (which is a rank one module), and the dependence
on δ is encoded in the measure µ.

To any τ ∈ HDp /Γ we can attach a primitive integral indefinite binary quadratic form Qτ of
discriminant D. Let

ζ(τ, s) := ζQτ (s), ζ(δ, τ, s) :=
∑

d|N,d>0

nd · ds · ζ(dτ, s).

It holds that ζ(τ, s) = ζ(a, s)− ζ(a∗, s), where a ∈ Pic(OD) is the narrow ideal class associated to
Qτ , a∗ is the narrow ideal corresponding to αa (with α ∈ K× of negative norm) and

ζ(a, s) =
∑
I∈a

1

N(I)s
.

Darmon and Dasgupta show in [DD06, Section 4] the following relation between the p-adic zeta
function and the units they have previously constructed.

Theorem 2.1.6. The p-adic zeta function ζp(δ, τ, s) vanishes at s = 0 and its derivative satisfies

ζ ′p(δ, τ, 0) = − 1

12
logp(NKp/Qp(u(δ, τ))).
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From now on, we focus on the ψ-version of the conjecture, where ψ is a finite order ring class
character. We define the ψ-component of the Gross-Stark unit as

u(δ, τ)ψ :=
∏

a∈Pic(O)

u(δ, a ∗ τ)ψ(a).

The dependence of u(δ, τ) on τ is not relevant for the study of the rationality of these units, since
their logarithm only depends on τ up to scaling in L×: indeed, given any other τ ′ ∈ HDp , since the
action of Pic(O) is transitive, there exists b ∈ Pic(O) such that τ ′ = b ∗ τ and then

log(u(δ, τ ′)ψ) =
∑

a∈Pic(O)

ψ(a) · u(δ, (ab) ∗ τ) = ψ(b)−1 · log(u(δ, τ)ψ).

Hence, we may forget about the variable τ and just write u(δ)ψ. The ψ-equivariant version of

the Darmon–Dasgupta conjecture says the following. Here, Vψ = IndQ
K ψ.

Conjecture 2.1.7. Let ψ be an odd, finite order ring class character. Then,

u(δ)ψ ∈ OH [1/p]×[Vψ].

In the case of quadratic genus characters, the work of Park [Park10] provides theoretical evidence
in favor of the conjecture. When ψ2 6= 1, the induced representation Vψ is irreducible; the field it
cuts out cannot be embedded in any compositum of ring class fields of imaginary quadratic fields,
and the Darmon–Dasgupta conjecture cannot be studied via the theory of elliptic units in this case.
Assume then that

Vψ = IndQ
K ψ = χ1 ⊕ χ2

decomposes as the sum of two one-dimensional Galois representations attached to quadratic Dirich-
let characters of odd signature satisfying χ1(p) = −χ2(p). In particular, the work of Park establishes
that log(u(δ)+

ψ ) is equal (up to some explicit factors) to logp(u), where u is an elliptic unit. Here,
u(δ)ψ = NKp/Qp(u(δ)ψ).

The different p-adic ζ functions, as τ varies along the class group, are encoded in terms of what
we refer to as Lp(K,ψ, s), which is defined through the equation∑

ψ(a) · ζp(δ, a ∗ τ, s) = 2
( ∑
d|N,d>0

εdnd〈d〉s
)
· Lp(K,ψ, s),

where εd := ψ(aa−1
d ) (according to [Park10, Lemma 4.2], this quantity only depends on d and not

on a). Theorem 2.1.6 can be adapted to the equivariant version of the conjecture and in this case
says that

log(u(δ)+
ψ ) = 24

( ∑
d|N,d>0

εdnd

)
· L′p(K,ψ, 0). (2.4)

One of the main results of [Park10] gives a connection between this p-adic L-function and the
classical elliptic unit of a quadratic imaginary field.

Proposition 2.1.8 (Park). Assume that D = D1 · D2, with D1, D2 < 0, and let ψ be the genus
character associated to that decomposition (with ψD1(p) = −ψD2(p) = 1). There exists a unique
uD1 ∈ Q⊗OQ(

√
D1)[1/p]

× such that

log(u(δ)+
ψ ) =

96h2

w2

( ∑
d|N,d>0

εdnd

)
· logp(uD1),

where h2 is the class number of Q(
√
D2), w2 is the number of roots of unity and εd := χ(aa−1

d ),
being ad ∈ Pic+(OK) such that ζ(d(a ∗ τ), s) = ζ(ad, s)− ζ(a∗d, s) (εd does not depend on a).
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This result is only available for genus characters; however Theorem 2.1.6 always holds. The
principle behind the proof is to compare the Darmon–Dasgupta units to suitable elliptic units,
exploiting the fact that the field over which u(δ)+

ψ is conjecturally defined is a biquadratic extension
of Q and is also contained in ring class fields of imaginary quadratic fields. The argument of Park
shares some ideas with the original method for proving Kronecker’s limit formula. He uses the
following tools.

1. The formula relating a Darmon–Dasgupta unit with the derivative of a zeta function, in
particular with the value at 0 of ζ ′p(δ, τ, 0):

−12 · ζ ′p(δ, τ, 0) = logp(NKp/Qp(u(δ, τ))).

As we have seen, this implies that

log(u(δ)+
χ ) = 24

( ∑
d|N,d>0

εdnd

)
· L′p(K,χ, 0). (2.5)

2. A p-adic analogue of the factorization formula of Kronecker, given by

Lp(K,χ, s) = Lp(χ1 · ω, s) · Lp(χ2 · ω, s),

where ω is the Teichmuller character.

3. Some known cases of Stark’s conjectures, relating the logarithm of elliptic units with special
values of the derivatives of p-adic L-functions. In particular,

Lp(χD2 · ω, 0) =
4h2

w2
, L′p(χD1 · ω, 0) = − logp(uD1).

(Classical) Heegner points. Bertolini and Darmon [BD07] have carried out the first two
steps in the previous guide, showing in [BD07, Theorem 1] that when E has at least two primes of
semistable reduction (this is a technical assumption they need since they work over certain Shimura
curves) there is a global point P ∈ E(Q)⊗Q and a scalar ` ∈ Q× such that

d2

dk2
Lp(f)(k, k/2)|k=2 = ` · logE(P )2.

Some of the common features with the previous settings are the following:

1. A formula relating the logarithm of a Heegner point with the derivative of a p-adic L-functions.
With their notations,

d

dk
Lp(f/K, χ, k)|k=2 =

1

2
(logE(Pχ) + ap logE(Frp(Pχ))),

or using the more familiar L-function Lp(f/K, χ)(k),

d2

dk2
Lp(f/K, χ)(k, k/2)|k=2 = 2 logE(Pχ)2,

provided that χ1(p) = ap (and it is zero elsewhere).

2. A factorization formula that asserts that for all genus characters χ,

Lp(f/K, χ)(k, k/2) = η(k) · Lp(f , χ1)(k, k/2) · Lp(f , χ2)(k, k/2),

being η(k) ∈ Cp an explicit factor such that η(2) = 1. We recall that χ1 and χ2 are respectively
the even and odd characters attached to χ
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We come back to this setting in the following section, to analyze it in the realm of the exceptional
zero phenomenon.

Darmon (Stark–Heegner) points. Bertolini and Darmon followed a similar strategy to
prove the main conjecture about Stark–Heegner points in the case of a genus character χ. Each of
the steps carried out in the case of Darmon–Dasgupta units admits a counterpart in this scenario:

1. A formula relating the Stark–Heegner point Pχ to the leading term of the Mazur–Kitagawa
p-adic L-function over a quadratic imaginary field Lp(f/K, χ)(k, k/2). For this, they derive a
deep relation between periods of Hida families and Stark–Heegner points. With the notations
introduced in [BD14] (observe that in the p-adic setting one has to single out a prime p and
hence there is a factorization N = pM , where some additional requirements are imposed),

d

dk
Lp(f/K, χ, k)|k=2 =

1

2
(1− χ(−M)wM ) logE(Pχ),

or in terms of the more familiar p-adic L-function Lp(f/K, χ(k, k/2),

d2

dk2
Lp(f/K, χ)(k, k/2)|k=2 = 2 log2

E(Pχ),

provided that χ1(−M) = −wM .

2. A factorisation of Lp(f/K, χ) as a product of two Mazur–Kitagawa p-adic L-functions asso-
ciated to Dirichlet characters χj , Lp(f , χj)(k, s).

3. The previous theorem of Bertolini and Darmon (proved in [BD07]) relating the second deriva-
tive of a Mazur–Kitagawa p-adic L-function with a classical Heegner point.

2.2 The exceptional zero phenomenon

The first references to the exceptional zero phenomenon date back to Mazur, Tate, and Teitelbaum
[MTT86], who were some of the first number theorists that studied p-adic analogues of the conjec-
tures of Birch and Swinnerton-Dyer. In the introduction of their paper, they made the following
comment: “it seemed to us to be an appropriate time to embark on the project of formulating a
p-adic analogue of the conjecture of Birch and Swinnerton-Dyer, and gathering numerical data in
its support [...] The project has proved to be anything but routine”. The first main contributions
to the conjecture were done by Greenberg and Stevens [GS94], who proved it when the analytic
rank is 0; and by Bertolini and Darmon [BD07], who did it partially in analytic rank 1. However,
their results are restricted to the central critical line of the Mazur–Kitagawa p-adic L-function,
which is not completely satisfactory (a priori, we expect a formula for the derivative of the p-adic
L-function when the weight is fixed). It was Venerucci [Ven16] who proved firstly a conjecture of
Perrin-Riou, relating p-adic Beilinson–Kato elements to Heegner points, and then a large part of
the rank one case of the Mazur–Tate–Teitelbaum exceptional zero conjecture for the cyclotomic
p-adic L-function. We first review the general statement of the conjectures, and then focus on the
work of Venerucci; we finish by presenting more general conjectures, following Benois [Ben14b].

A conjecture of Mazur, Tate and Teitelbaum

Mazur, Tate and Teitelbaum [MTT86] observed that certain p-adic multipliers involved in the
definition of the p-adic L-function affected the formulation of the conjecture, measuring in a certain
way the discrepancy between the p-adic and classical special values. Unless otherwise stated, assume
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that E is an elliptic curve defined over Q with split multiplicative reduction at p. In this case, it
has been conjectured, also in [MTT86], that

ords=1Lp(E, s) = 1 + ords=1L(E, s).

We will see that this may be understood in terms of the vanishing of one of the Euler factors in
the interpolation property.

The Euler factors at p play a prominent role in the proof given by Greenberg and Stevens, who
covered the rank 0 case. The main tool they use is the p-adic variation of the modular form fE
attached to the elliptic curve E along a Hida family f . For each k ≥ 2 in the same congruence class
than 2 modulo p − 1, we denote by fk ∈ Sk(Np) the specialization of fk at weight k. Let ap(k)
stand for the trace of the Frobenius acting on the Tate module. Then, for each integer k ≥ 2, the
p-th Euler factor of the complex L-function L(fk, s) of fk has the form

1

(1− αp(k)p−s)(1− βp(k)p−s)
,

where αp(k) = ap(k) and

βp(k) =

{
pk−1/αp(k) if k > 2 and k ≡ 2 (mod p− 1)

0 otherwise .

Then, for each integer k ≥ 2 and each integer s0 with 0 < s0 < k and s0 ≡ 1 modulo p − 1, the
p-adic L-function Lp(fk, s) satisfies the following interpolation property:

Lp(fk, s0) = (1− βp(k)p−s0)(1− αp(k)−1ps0−1) · L(fk, s0)

Ωfk

. (2.6)

When s0 = 1 the second Euler factor can be interpolated as an Iwasawa function, namely
(1−ap(k)−1). It vanishes at k = 2, and so it is a non-unit in the Iwasawa algebra. Further, Lp(k, 1)
is also an Iwasawa function in k, which is shown to be divisible by (1 − ap(k)−1). The quotient
L∗p(k, 1) is an Iwasawa function in k, that we call the improved p-adic L-function. It satisfies the
interpolation property

L∗p(k, 1) = (1− βp(k)p−1) · L(fk, 1)

Ωfk

.

This yields to an exceptional vanishing of the p-adic L-function attached to an elliptic curve,
Lp(E, s), at the central critical point s = 1. Greenberg and Stevens introduced in this setting what
they called an L-invariant, characterized by the fact that, in a rank zero situation,

L′p(E, s)|s=1 = LE ·
L(E, 1)

ΩE
. (2.7)

From the functional equation satisfied by the Mazur–Kitagawa p-adic L-function, one has that
Lp(fk, k/2) = 0 for all k. Then, the linear term in the Taylor expansion of Lp(f) around (k, s) =
(2, 1) is given by c · (−1

2(k − 2) + (s− 1)) for some c ∈ Zp. It is clear that c = L′p(E, 1), but at the
same time the interpolation formula also gives a formula for c in terms of the derivative of ap:

Lp(E) = −2 · dap(k)

dk

∣∣∣
k=2

. (2.8)

Here, ap(k) is seen as a p-adic analytic function on the p-adic variable k ∈ Wf , for a certain open
disk Wf of the weight space.
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Then, we just have to connect the quantity −2a′p(2) with Tate’s uniformizer. This is shown
by using the Λ-adic Galois representation Vf attached to the Hida family f so as to compute an
annihilator under the local Tate pairing of a certain class

κ ∈ H1(Qp,Qp) ' Hom(GQp ,Qp).

The construction of this element is rather indirect, and it uses Kummer theory and Galois defor-
mation techniques. The space H1(Qp,Qp) has a canonical basis given by two distinguished classes
κnr and κcyc. The former is defined as the unique unramified homomorphism sending the Frobenius
element Frp to 1; the latter is given by the logarithm of the cyclotomic character. Therefore, writing

κ = x · κnr + y · κcyc, with x, y ∈ Qp,

the quotient −x/y is univocally determined and is precisely the L-invariant we are interested in.
See [GS94] for the details of the proof; it may be illustrative to compare it with that of the
Gross conjecture in [DDP11], where the authors follow a quite similar approach and also need to
compute an annihilator under the local Tate pairing. This same scenario is studied, with much
more generality, in [DKV18], where the authors are able to deal with a situation where the order of
vanishing is greater than 1 (with more or less similar ideas, although there are different technical
difficulties, partially studied in Ventullo’s PhD thesis). In the framework of elliptic curves, we will
see that the problem becomes much more complicated.

As we already discussed, Bertolini and Darmon [BD07] explored the counterpart of the previous
phenomenon, but when the sign of the functional equation is odd. Indeed, among the general
properties of Lp(fk, s), there is a functional equation relating Lp(f)(k, s) to Lp(f)(k, k − s). The
sign is independent on k, and we can denote it as sign(f). If E has split multiplicative reduction
at p, then

sign(f) = −sign(E/Q),

where the latter stands for the sign in the functional equation of the classical Hasse–Weil L-function
L(E, s). This discrepancy reflects the fact that Lp(f, s) has an exceptional zero at the central critical
point s = 1, arising from the fact that p is a prime of split multiplicative reduction for E. While
Greenberg and Stevens considered the case where sign(E,Q) = 1, we are going to assume now that
sign(E,Q) = −1. Since L(E, 1) = 0, the Birch and Swinnerton–Dyer conjecture predicts that E(Q)
is infinite. The results of Greenberg and Stevens show that

∂

∂s
Lp(f)(k, s)|(2,1) =

∂

∂k
Lp(f)(k, s)|(2,1) = 0,

and in particular, Lp(f)(k, s) vanishes to order at least 2 at (k, s) = (2, 1). Since sign(f∞) = 1, the
restriction of Lp(f)(k, s) to the central critical line s = k/2 need not vanish identically, and the
main result of [BD07] is the following, that we have just discussed in the previous section as a part
of the big analogy between points and units.

Theorem 2.2.1 (Bertolini–Darmon). Suppose that E has at least two primes of semistable reduc-
tion.

1. There is a global point P ∈ E(Q)⊗Q and a scalar ` ∈ Q× such that

d2

dk2
Lp(f)(k, k/2)|k=2 = ` · logE(P )2.

2. The point P is of infinite order if and only if L′(E, 1) 6= 0.

It remains of course to study higher rank situations, and this study suggests that this phe-
nomenon may be studied in many other settings. The next section is devoted to study other
derivatives beyond the central critical line.
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A conjecture of Perrin-Riou and Venerucci’s theorem

As before, let f ∈ S2(Γ0(Np),Z) be the weight two newform associated to E by the modularity
theorem, and let f =

∑∞
n=1 an(k)qn ∈ Λf [[q]] be the Hida family passing through it. For simplicity,

we single out the congruence class of 2 modulo p − 1. For every classical point k ∈ Wf , the
q-expansion of fk ∈ Sk(Γ1(Np),Zp) is an N -new p-ordinary Hecke eigenform of weight k, and
moreover f2 = f . We also have the Mazur–Kitagawa two-variable p-adic L-function Lp(f)(k, s),
in such a way that Lp(f)(2, s) = Lp(E, s). One of the main results of [Ven16] is a formula for
d2

ds2
Lp(E, s) at the point s = 1, where it vanishes to order two.
However, and as a part of his program, he first establishes a tantalizing connection between two

a priori different Euler systems. Perrin-Riou had already conjectured that, in a rank one situation,
the logarithm of the p-adic Beilinson–Kato class equals the square of the logarithm of a Heegner
point on the elliptic curve, up to a non-zero rational factor. In particular, she had predicted that
the Beilinson–Kato class is non-zero precisely if the Hasse–Weil L-function has a simple zero at
s = 1. Along this section, we call κE the p-adic Beilinson–Kato class attached to E. According to
Kato’s reciprocity law

exp∗BK(resp(κE)) = (1− p−1)
L(E, 1)

Ω+
E

∈ Q, (2.9)

where Ω+
E is a Néron–Tate period attached to E.

Remark 2.2.2. The Euler system κE used by Venerucci is not exactly the one discussed in the
previous chapter, but a rather connected one. As we will discuss in the last chapter, the Beilinson–
Kato element is usually attached to the convolution f ⊗ E2(χ1, χ2), where E2 is the Eisenstein
series attached to the auxiliary characters χ1 and χ2. This explains the discrepancy between the
reciprocity laws presented by Venerucci and Bertolini–Darmon in [BD14].

Remark 2.2.3. The relations between different Euler systems appears once more. In this case,
we are connecting a cyclotomic Euler system (that of Beilinson–Kato) and an anticyclotomic one
(Heegner points).

Theorem 2.2.4 (Venerucci). Assume that L(E, 1) = 0, and that κE belongs to the Bloch–Kato
Selmer group. Then, there exists a non-zero rational number `1 ∈ Q× and a rational point P ∈
E(Q)⊗Q such that

logE(resp(κE)) = `1 · log2
E(P ).

Further, P is non zero if and only if L(E, s) has a simple zero at s = 1.

Later, he gets a refined version of the result of Bertolini–Darmon, being able to express the
derivative of Lp(E, s) in terms of a height pairing. This is a deep result that requires the introduction
of the so-called Nekovar’s extended Selmer group H̃1

f (Q, Vp(E)). It is a Qp-module, equipped with a
natural inclusion E†(Q)⊗Qp ↪→ H̃1

f (Q, Vp(E)), where E†(Q) stands for the extended Mordell–Weil
group, as introduced in [MTT86]. In general, H̃1

f (Q, Vp(E)) is canonically isomorphic to the direct
sum of the Bloch–Kato Selmer group H1

f (Q, Vp(E)) and the 1-dimensional vector space Qp · qE
generated by the Tate period of EQp . This can be thought as the extra element explaining the
additional zero in the case of split multiplicative reduction, in the same way that the p-unit gives
rise to an extra zero in the setting of units over number fields.

Let I stand for the ideal of functions vanishing at the point (k, s) = (2, 1). In [Ven16, §4], a
canonical Qp-bilinear pairing

〈〈·, ·〉〉p : H̃1
f (Q, Vp(E))⊗Qp H̃

1
f (Q, Vp(E))→ I/I2,

is introduced, called the cyclotomic height-weight pairing. It can be decomposed as

〈〈·, ·〉〉p = 〈·, ·〉cyc
p · {s− 1}+ 〈·, ·〉wt

p · {k − 2},
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in terms of two different pairings, whose definition is also recalled in loc. cit.

Finally, for x, y ∈ H1
f (Q, Vp(E)), let

〈x, y〉Sch
p := 〈x, y〉cyc

p −
logE(resp(x)) · logE(resp(y))

logp(qE)
,

where resp is the map corresponding to localization at p.

Theorem 2.2.5 (Venerucci). Assume that L(E, 1) = 0 and that the restriction map

resp : H1
f (Q, VpE)→ E(Qp)⊗̂Qp

is non-zero. Let P ∈ E(Q) ⊗ Q a Heegner point. Then, Lp(E, s) vanishes to order at least 2 at
s = 1, and there exists a non-zero rational number `2 ∈ Q× such that

d2

ds2
Lp(E, s)|s=1 = `2 · Lp(E) · 〈P, P 〉Sch

p .

Towards a general theory of exceptional zeros

The exceptional zero phenomenon can be explored from a broader perspective. There is a partic-
ularly nice sentence in the Introduction to Chapter III of Perrin-Riou saying the following: “Nous
avons toutefois supposé pour simplifier que les opérateurs 1−φ et 1− p−1φ−1 sont inversibles lais-
sant les autres cas, pourtant extremement intéressant pour plus tard.” (Here, φ is the terminology
she uses for the Frobenius element). Benois formulated a conjecture about extra zeros of p-adic
L-functions at near central points, proving that it is compatible with Perrin-Riou’s theory of p-adic
L-functions. Let us briefly explain the philosophy behind this general framework, following mainly
[Ben14b].

Let M be a pure motive over Q, and assume that its complex L-function L(M, s) extends to a
meromorphic function on the whole complex plane C. As we have already emphasized, Perrin-Riou
formulated precise conjectures about the existence and arithmetic properties of p-adic L-functions
when the p-adic realisation V of M is crystalline at p. Let Dcris(V ) denote the filtered Dieudonné
module attached to V by the theory of Fontaine, and let D be a subspace of it of dimension
d+(V ) = dimQp V

c=1 and stable under the action of Frobenius (here, c is the complex conjugation).
We say that D is regular if we can associate to D a p-adic analogue of the six-term exact sequence
of Fontaine and Perrin-Riou (see [Ben14b] for the definition). Fix a lattice T of V stable under the
action of the Galois group and a lattice N of a regular module D. Perrin-Riou conjectured that
we can associate to this data a p-adic L-function Lp(T,N, s) satisfying an explicit interpolation
property. Observe that this same phenomenon occurs when V is semistable and non-crystaline at
p; here, the functor Dcris is replaced by Dst.

In particular, we can formulate the following expectation, concerning both the existence of the
p-adic L-function and the exceptional zero phenomenon (we do it in the semistable case for its
resemblance with the case of elliptic curves with split multiplicative reduction at p).

Conjecture 2.2.6 (Trivial zero conjecture). Let V be a geometric p-adic representation of GQ
which is semistable at p and critical in the sense of Deligne. Given a regular submodule D ⊂ Dst(Vp),
where Vp = V |GQp , there exists a p-adic L-function Lp(V,D, s) satisfying an interpolation formula
of the form

Lp(V,D, 0) = E(Vp, D)
L(V, 0)

ΩV
,

where ΩV is a Deligne period, L(V, s) is the complex L-function, and E(Vp, D) is a product of
linear Euler factors at p. Moreover, if e is the number of vanishing Euler factors in E(Vp, D) and
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E+(Vp, D) is the product of the remaining non-vanishing ones, then Lp(V,D, s) vanishes to order
at least e at s = 0 and

L(e)
p (V,D, 0) = e!L(V,D) · E+(Vp, D) · L(V, 0)

ΩV
,

where L(V,D) is an arithmetic L-invariant. The trivial zero conjecture for a geometric represen-

tation V of GF agrees with that for Ind
GQ
GF

V .

This conjecture is known in relatively few cases, but there is a general belief that it must be
true. Its study over totally number fields have been recently carried out by Barrera, Dimitrov, and
Jorza [BDJ18], and other generalizations have been appearing in the mathematical literature in
the last years.

Therefore, one of the obstructions to have a better understanding of the theory is the good
definition of L-invariants. We expect to be able to define them from different point of views, and in
fact, this is a question that has been studied in several contexts, beginning with the foundational
work of Greenberg and Stevens [GS94], but also with the more geometric approaches of Coleman
and Coleman–Iovita [Co89].

It may be instructive to look at the aforementioned works [DDP11] and [DKV18], where the
authors relate in a very simple case the special value of a p-adic L-function with the logarithm of a
suitable p-unit, using for that purpose tools from Galois cohomology and Galois deformations, but
also an explicit computation of the Fourier coefficient of certain Eisenstein series. In that work,
for instance, we see different ways of introducing the L-invariant. Although this has been carried
out from many different perspective, our interest will be mainly in these three approaches: (a) the
analytic L-invariant, given as a special value of a p-adic L-function or its derivative (alternatively,
as the value of some rigid analytic function connected with the Fourier coefficients of a modular form
varying over a Hida family); (b) the algebraic L-invariant, given in terms of the slope of a certain
cohomology class (alternatively, Greenberg recasts this formulation in terms of class field theory
and universal norms, see for instance the work of Roset–Rotger–Vatsal [RRV19] for a discussion of
this case in the setting of the adjoint); and (c) the L-invariant à la Greenberg–Stevens, expressed
in terms of the quotient of logarithm and order maps in suitable spaces of units (or more generally,
regulators defined in terms of logarithm and order maps or several units). There are many other
instances where the necessity of seeing the L-invariant from different perspectives is crucial. This
idea will be present in subsequent chapters and will be carefully developed in different scenarios.

2.3 Congruences between modular forms

The theory of congruences between modular forms has been widely studied in the last decades,
beginning with the works of Swinnerton-Dyer [SD73], Ribet [Rib76], or the seminal papers of Mazur
[Maz77], [Maz79] on the arithmetic of the Eisenstein ideal and the arithmetic of special values of
L-functions. There are different kind of congruences one can be interested in. For example, the
study of Fermat’s last theorem and other modularity results put the emphasis on the so called level
raising and level lowering results, which also play a role in problems related with the theory of
Euler systems, like the study of the indivisibility of Heegner points [Zh14]. Other topics of interest
include, for instance, the theory of congruences between classical holomorphic or meromorphic
modular forms, and whose genesis is at various conjectures of Ramanujan concerning the partition
function. In this thesis, our main focus is on the so-called Eisenstein congruences, that is, the case
where a normalised cuspidal eigenform is congruent, modulo a prime ideal, to an Eisenstein series.

Let us begin by recalling one of the most prototypical examples. We refer the reader to the
wonderful survey [Vonk20] for a more detailed treatment. The Ramanujan ∆-function is a cusp
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form of weight 12 whose q-expansion is given by the infinite product due to Jacobi

∆(q) = q
∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn.

Consider also the weight k normalised Eisenstein series

Ek(q) =
−Bk
2k

+

∞∑
n=1

σk−1(n)qn, where σk−1(n) =
∑
d|n

dk−1.

When k = 12, the constant term is equal to 691
65520 , whereas for k = 6 the constant term is −1

504 .
Since the space of weight 12 modular forms of level 1 is two-dimensional and spanned by E12 and
the cuspidal form ∆, the form E2

6 must be a linear combination of the two. Computing the first
two terms of all three q-expansions, we find that

691

65520
· 5042 · E6(q)2 = E12(q)− 756

65
∆(q),

and since all three modular forms involve 691-integral q-expansions, we obtain as a consequence the
congruence E12(q) ≡ ∆(q) modulo 691. In particular, for any prime p, we recover the celebrated
Ramanujan conjecture

τ(p) ≡ 1 + p11 (mod 691).

There are other remarkable examples which shed light into some interesting phenomena, with
applications in other areas of mathematics beyond number theory, like the theory of partitions of
integers. We refer the reader to e.g. [EO96] for further references on this topic.

We fix now some notations and definitions. Let f = q +
∑∞

i=2 aiq
i be a normalised cuspidal

eigenform, and let g =
∑∞

i=0 biq
i be another normalised eigenform (either cuspidal or Eisenstein).

We assume, for the sake of simplicity, that both are of weight 2, trivial nebentype and level Nf and
Ng, respectively. We warn the reader that the assumption on the nebentype can be easily removed,
as we will discuss later on. Let Lf and Lg be the fields generated by the coefficients of f and g,
and let L be their composite field. We denote by Of , Og, and O their rings of integers. Let p > 2
be a prime and let %f (resp. %g) be the 2-dimensional p-adic representation associated to f (resp.
g), with values in Of,p := Of ⊗ Zp (resp. Og,p). Fix a place p | p in L, and let us denote also by p
its restrictions to Lf and to Lg.

Definition 2.3.1. We say that the modular forms f and g are congruent modulo pt (and write
f ≡ g (mod pt)) if a` ≡ b` modulo pt for almost every prime `.

One of the most important points towards our applications, and which has allowed an enormous
development of this theory, is that congruences may be encoded in terms of Galois representations.
Let %̄f,pt (resp. %̄g,pt) stand for the reduction modulo pt of the p-adic Galois representation associated
to f (resp. g). As a consequence of Chebotarev’s density theorem, the congruence property is
equivalent to saying that the semisimplifications of %̄f,pt and %̄g,pt are isomorphic (this further
needs the Brauer–Nesbitt theorem, which guarantees that these elements completely determine the
representation).

Proposition 2.3.2. The congruence property f ≡ g (mod pt) is equivalent to

(%̄f,pt)
ss ∼ (%̄g,pt)

ss,

where we have written ∼ to indicate that the representations are isomorphic, and ss stands for the
semisimplification.

In the following sections, we recover some of the main properties of these Galois representations.



60 CHAPTER 2. BACKGROUND MATERIAL II

Ribet’s converse to Herbrand theorem

In 1976, Ribet [Rib76] proved a refinement of Kummer’s criterion for the regularity of an odd prime
p. Recall that a prime p is said to be regular if the ideal class group of the cyclotomic field Q(µp)
has no p-torsion. Indeed, Kummer’s criterion asserts that an odd prime p is irregular if and only if
there exists an even integer 2 ≤ k ≤ p− 3 such that p divides the numerator of the k-th Bernoulli
number Bk. In particular, an odd prime p is irregular if and only if there exists an even integer
2 ≤ k ≤ p− 3 such that p divides the numerator of ζ(1− k).

Herbrand had proved a refinement of Kummer’s criterion, showing that the p-divisibility of a
specific Bernoulli number could only occur if a corresponding character occurs in the action of
Gal (Q(µp)/Q) on the p-part of the class group of Q(µp). To fix notations, let A be the class
group of Q(µp) and let C be the Fp-vector space A/Ap (the Fp-vector structure is induced by the
structure of A as a Z-module). The absolute Galois group acts on C through its abelian quotient
∆ = Gal (Q(µp)/Q). This allows to give a decomposition of C according to the ∆-action as

C =
⊕

i mod p−1

C(i),

where C(i) is the ωi-isotypical component of C as a ∆-module. Ribet proved the following.

Theorem 2.3.3 (Ribet). Let k be an even integer, 2 ≤ k ≤ p− 3. Then, p divides the numerator
of Bk if and only if C(1−k) 6= 0.

Ribet’s proof is based on the theory of congruences between modular forms. More precisely, he
constructs a cuspidal eigenform which is congruent modulo p to the Eisenstein series Ek. Hence, one
may deduce that the reduction modulo p of the Galois representation % : GQ → GL2(Kp) ' GL(Vp)
attached to this modular form can be written as(

1 ∗
0 εk−1

cyc

)
.

Here, Kp is a finite extension of Qp, Vp a two-dimensional Kp-representation, and % comes from
considering the Galois action on the Tate module of the abelian variety attached to the modular
curve. Then, he establishes that there exists a two-dimensional lattice T ⊂ Vp such that the previous
representation is not semi-simple. As this image is the Galois group of some normal extension of Q,
it turns out that it is precisely these elements of order p that correspond to p-extension of Q(µp).
The harder part in his argument is of course proving that the representation is unramified at p.

Regarding this Galois representation, the following result is essentially [Rib76, Theorem 1.3].

Theorem 2.3.4. Suppose p divides Bk. Then, there exists a finite field F ⊃ Fp and a continuous
representation

%̄ : GQ −→ GL2(F)

such that:

(a) %̄ is unramified at all primes ` 6= p.

(b) The representation %̄ is reducible over F, in the sense that %̄ is isomorphic to a representation
of the form (

1 ∗
0 εk−1

cyc

)
.

This means that %̄ is an extension of the 1-dimensional representation with character εk−1
cyc by

the trivial 1-dimensional representation.

(c) The image of %̄ has order divisible by p (this means that %̄ is not diagonalizable).
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(d) Let Dp be a decomposition group for p. Then, %̄(Dp) has order prime to p (that is, %̄|Dp is
diagonalizable).

The coefficient ∗ in the previous matrix gives a cohomology class in H1
f (Q,Qp(k − 1)) (and

this of course becomes more interesting when we consider non-trivial nebentype, with interesting
applications towards the Bloch–Kato conjecture). Indeed, this idea is very powerful, as shown for
instance in the recent preprints of Kakde and Dasgupta on the Brumer–Stark conjectures.

Congruences between L-values

One of the main sources of motivation for this dissertation has been the article of Vatsal [Va03],
where he shows how congruences between the Fourier coefficients of Hecke eigenforms give rise
to corresponding congruences between the algebraic parts of the critical values of the associated
L-functions. As already mentioned in loc. cit., this topic had already been object of study in works
of Mazur like [Maz79] (where it was made clear how congruences for analytic L-values were closely
related to the integral structure of appropriate Hecke rings and cohomology groups) Stevens [St82],
[St85], Rubin–Wiles [RW82] (who used congruences to study the behavior of elliptic curves in
towers of cyclotomic fields), and the more recent works of Ono–Skinner [OS98] or James [Jam98].
The result of Mazur, which serves as one of the starting points in this theory, can be summarized
as follows. Let N be a prime, and f be a weight two newform for Γ0(N). Write Lalg(f, χ, 1) for the
algebraic part of L(f, χ, 1), whose definition we later explore. Mazur showed that the residue class
of Lalg(f, χ, 1) modulo the Eisenstein ideal gives information about the arithmetic of X0(N). As an
application, in [Maz79], he also derives a congruence formula for the p-adic L-function, connecting
special values of this function at s = 2 with logarithms of circular units.

The starting point in the work of Vatsal is Shimura’s algebraicity result, which asserts that,
given a modular form f of weight k there exist complex periods Ω±f such that, for each integer m
with 0 ≤ m ≤ k − 2, and every Dirichlet character χ, the quantity

g(χ̄) ·m!
L(f, χ,m+ 1)

(−2πi)m+1Ω±f

is algebraic. Here, the sign ± of Ω± is determined by ±1 = χ(−1).
If we take another eigenform g =

∑
bnq

n, where the Fourier coefficients bn are related to those
of f by a congruence an ≡ bn (mod p), the general arguments from Iwasawa theory suggest that
algebraic parts of special values should reflect algebraic properties, so that for critical m, there
must be a congruence

g(χ̄) ·m!
L(f, χ,m+ 1)

(−2πi)m+1Ω±f
≡ g(χ̄) ·m!

L(g, χ,m+ 1)

(−2πi)m+1Ω±g
(mod p).

This is achieved by a careful determination of the periods Ω±∗ , since Shimura’s theorem only specifies
them up to an algebraic constant. In the case of two cuspidal eigenforms, the main result is Theorem
1.10 and the Corollary 1.11. For our purposes, we are particularly interested in the results developed
in the Eisenstein scenario, under certain assumptions on the freeness of the appropriate modules.
In this case, the main result is Theorem 2.10, that we recover here for the sake of completeness.

Theorem 2.3.5. Let f be a p-stabilized cuspidal newform of weight 2 and level Np. Assume that
there exists a p-stabilized Eisenstein series E(ψ1, ψ2) such that f ≡ E (mod pr). Under certain
technical assumptions (see [Va03, Section 2]), for each non-trivial primitive Dirichlet character χ
of conductor prime to Np there exists a period ΩE which is a p-adic unit such that the following
congruence holds:

g(χ̄) · L(f, χ, 1)

(−2πi)Ωα
f

≡ g(χ̄) · L(E,χ, 1)

(−2πi)ΩE
(mod pr),

where α = −ψ1(−1).
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The proof crucially relies on the aforementioned of Stevens [St82] around the study of periods
of modular forms. The author also mentions that the requirement that f is p-stabilized is harmless,
and that the same result holds at level N . There is an important remark we want to emphasize.
In the proof of the result, it is clear that the period ΩE does not depend on the Dirichlet character
χ! Indeed, the main point here is that the period Ωf itself is not well-defined: it depends on the
choice of an isomorphism between two free rank-one modules over the ring of integers of a finite
extension of Qp (see [Va03, Sections 1.2, 1.3] for an exhaustive discussion).

Note that L(E,χ, 1) = L(ψ1χ, 1) · L(ψ2χ, 0), so the algebraic part of L(f, χ, 1) may be written
as the product of two special values of L-functions of Dirichlet characters for a particular choice of
the period Ωf such that the corresponding unit ΩE = 1.

Other works of Greenberg and Greenberg–Vatsal study similar issues, with applications towards
the Iwasawa theory of elliptic curves (see [GV00]). The relation between certain periods and
congruences has been also the topic of other influential works, like that of Prasanna [Pr06].

Goldfeld’s conjecture and other applications

Another of the applications which motivated our study is related with the so-called Goldfeld’s
conjecture, which is related with the theory of families of twists by quadratic characters, where
one aims to have quantitative estimates for the number of quadratic twists of a given modular
form having non-vanishing L-function at s = 1. Following the presentation of Kriz–Li [KrLi19],
the conjecture can be stated as follows. Let E/Q be an elliptic curve, and let ran(E) stand for
its analytic rank. This conjecture is concerned about the distribution of ran(E) when E varies in
families. The simplest 1-parameter family is given by the quadratic twists of E by Q(

√
d), that we

denote E(d). Goldfeld’s conjecture asserts that ran(E(d)) tends to be as low as possible (compatible
with the sign of the equation). Namely, in the quadratic twists family {E(d)}, ran is 0 (resp. 1) for
half of d’s. More precisely, we have the following.

Conjecture 2.3.6 (Goldfeld). Let

Nr(E,X) = {|d| < X with ran(E(d)) = r}.

Then, for r ∈ {0, 1},

Nr(E,X) ∼ 1

2

∑
|d|<X

1, X →∞.

Here, d runs over all fundamental discriminants.

A weaker conjecture asserts that a positive proportion of its quadratic twists have analytic rank
0 (resp. 1).

Kriz and Li derive theoretical evidence towards the weak Goldfeld conjecture by studying con-
gruences between Heegner points, proving it when the elliptic curve has a rational 3-isogeny. They
establish for that purpose a congruence formula between p-adic logarithms of Heegner points, and
apply it in the special cases p = 3 and p = 2 to construct the desired twists explicitly. As a
by-product, they prove the corresponding p-part of the BSD conjecture for these explicit twists.
The proof of the congruence between the logarithms of Heegner points, expressed as Theorem 1.16
of loc. cit., relies on techniques of p-adic integration, and can be seen as an incarnation of a con-
gruence formula for the Bertolini–Darmon–Prasanna p-adic L-function. This is further extended
in Theorem 1.20 to the case of Eisenstein primes.

Kriz [Kr16] also considers the case of a normalized eigenform f ∈ Sk(Γ0(N), χ), whose non-
constant term Fourier coefficients are congruent to those of an Eisenstein series modulo some
prime ideal above a rational prime p. In this situation, he establishes a congruence between the
anticyclotomic p-adic L-function of Bertolini–Darmon–Prasanna and the Katz two-variable p-adic
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L-function. This allows the author to derive congruences between images under the p-adic Abel
Jacobi map of generalized Heegner cycles attached to f and special values of the Katz p-adic L-
function. The main results are presented as Theorem 3 and Corollary 4 in the introduction of his
paper.

All these evidences suggest that one should expect to prove Eisenstein congruences among
different kinds of Euler systems. Recall that this analogy is quite natural: as it has already been
pointed out, p-adic L-functions are realizations of Euler systems after applying a suitable Perrin-
Riou map! The starting point in this study is that the Galois representation is no longer irreducible
modulo p, and hence the corresponding cohomology classes must split as the sum of two classes
for smaller groups, and we aim to relate them with appropriate canonical Euler systems attached
to those groups. As a possible application, if we can prove the non-vanishing of the Euler system
for the smaller group modulo p, we can get positive results towards the non-vanishing of the Euler
system for the bigger.

Sharifi’s conjectures

One of the key tools in our investigations around congruences between modular forms have been
the tools developed around the study of Sharifi’s conjectures [Sha11], most notably in the work of
Fukaya and Kato [FK12]. Concepts like the Eisenstein quotient, the cohomology of the modular
curves, or the p-adic L-function of Mazur and Kitagawa also appear, suggesting a strong connection
with the previous notions we have discussed.

Sharifi proposes, for primes p ≥ 5, a conjecture relating the values of cup products in the Galois
cohomology of the maximal unramified outside p-extension of a cyclotomic field on cyclotomic p-
units to the values of p-adic L-functions of cuspidal eigenforms that satisfy mod p congruences
with Eisenstein series. Passing up to the cyclotomic and Hida towers, the author constructs an
isomorphism that allows to compare the value of a reciprocity map on a particular norm compatible
system of p-units to the two-variable p-adic L-function of Mazur and Kitagawa. We may think on
his conjectures as a link between the geometric theory of GL2 and the arithemtic theory of GL1.
An incarnation of this philosophy is given by the simple and explicit map

[u : v] 7→ {1− ζuN , 1− ζvN},

where [u : v] is a Manin symbol in the relative homology group of the modular curve X1(N), and
{1− ζuN , 1− ζvN} is a Steinberg symbol in the algebraic K-group K2(Z[ζN , 1/N ]).

Let us be more precise, assuming for simplicity that the tame level is 1. For r ≥ 1, let ζpr be
a primitive pr-th root of unity, and let Cl(Q(ζpr)){p} be the p-power part of the ideal class group
Cl(Q(ζpr)) of the cyclotomic field Q(ζpr). Let

X = lim
←

Cl(Q(ζpr)){p},

where the inverse limit is taken with respect to the norm maps of ideal class groups. Then, X is
a finitely generated Zp-modules, which decomposes as X = X+ ⊕ X− according to the action of
complex conjugation.

Consider now Hr, the ordinary part of H1(X1(pr)(C),Zp) = H1
et(X1(pr)⊗ Q̄,Zp) with respect

to the dual Hecke operator T ∗p . Let hr be the subring of the Zp-endomorphisms of Hr generated by
the dual Hecke operators T ∗n . The Eisenstein ideal Ir ⊂ hr is the ideal of hr generated by T ∗p − 1
and T ∗` − `〈`〉−1 − 1 for primes ` 6= p. Let

H = lim
←
Hr, h = lim

←
hr, I = lim

←
Ir ⊂ h.

Then, H/IH and h/I are finitely generated as Zp-modules. The module H admits, as an h-module,
a decomposition H = H+ ⊕H− induced by complex conjugation. Sharifi introduces maps

$ : H−/IH− −→ X−, Υ : X− −→ H−/IH−
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relating modular curves and cyclotomic fields.

Conjecture 2.3.7 (Sharifi). Under certain technical assumptions, the maps $ and Υ are isomor-
phisms, and one is the inverse of the other.

Fukaya and Kato obtain positive results towards the study of the conjecture, stated as Theorem
0.14 and Theorem 0.15 in the Introduction of his influential paper [FK12]. The crucial ingredient is
the use of Beilinson elements (also called Beilinson–Kato elements). This allows them to construct
a map H− → K2, being K2 a certain p-adic completion of the inverse system of K2 of X1(pr); in
rough terms, it is the inverse limit of the maps which in finite levels sends [u : v]−r ∈ H−r /IH−r to
the Beilinson element {g0,u/pr , g0,v/pr} in this K2 (here, g0,u/pr is a specific instance of Siegel unit).
The evaluation of such Siegel units at infinity produces a map to X−, and the composition of both
maps is precisely $. Another crucial ingredient is the study of Galois cohomology, carried out in
Section 9 and whose role will be clear in subsequent chapters of the thesis.



Chapter 3

Derived Beilinson–Flach elements and
the arithmetic of the adjoint of a
modular form

Kings, Lei, Loeffler and Zerbes constructed in [LLZ14], [KLZ17] a three-variable Euler system
κ(g,h) of Beilinson-Flach elements associated to a pair of Hida families (g,h). They exploited
it to obtain applications to the arithmetic of elliptic curves by specializing the Euler system to
points of weights (2, 1, 1), extending the earlier work [BDR15b]. As anticipated before, this Euler
system also encodes arithmetic information at points of weights (1, 1, 0), concerning the group of
units of the associated number fields. The setting becomes specially novel and intriguing when g
and h specialize in weight 1 to p-stabilizations of eigenforms such that one is dual of another. We
encounter an exceptional zero phenomenon which forces the specialization of κ(g,h) at (1, 1, 0) to
vanish and we are led to study the derivative of this class. The main result we obtain is the proof
of the main conjecture of [DLR16] on special values of the Hida–Rankin p-adic L-function and the
main conjecture of [DR16] for Beilinson-Flach elements in the adjoint setting. Our main point is
that the methods of [DLR15a], [DLR16] or [CH20], where the above conjectures are proved when
the weight 1 eigenforms have CM, do not apply to our setting and new ideas are required. In
loc. cit. a crucial ingredient is a factorization of p-adic L-functions, which in our scenario is not
available due to the lack of critical points. Instead we resort to the principle of improved Euler
systems and p-adic L-functions to reduce our problems to questions which can be resolved using
Galois deformation theory.

The results presented at this chapter are the content of the research article [RR20a], which is a
joint work with Victor Rotger. We hope that the background provided along the preceding chapter
could help the reader to a better comprehension of the main theorems. Further, Chapters 4 and 5
can be read as a companion and sequel to this, providing theoretical evidence and partial proofs
to the Elliptic Stark Conjecture of [DLR16].

3.1 Introduction

The purpose of this chapter is proving two results conjectured by H. Darmon, A. Lauder and V.
Rotger in [DLR16] and [DR16] respectively, concerning the interplay between the arithmetic of
units in number fields, the theory of Coleman iterated integrals, and the Rankin p-adic L-function
and Euler system of Beilinson–Flach elements associated to a pair (g,h) of Hida families of modular
forms.

The first theorem of this chapter is Theorem A (together with its equivalent form given in The-
orem A’), which yields a proof of the main conjecture of [DLR16] in the adjoint setting. Although
Beilinson–Flach elements are certainly behind the scenes, we find interesting to remark that this
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Euler system is not involved neither in the statement nor the proof we provide of Theorems A,
A’, and can be phrased in purely analytic terms by means of p-adic iterated integrals and p-adic
L-functions. It is only later in the chapter that we explore the consequences that Theorem A has
on the weight one specialisations of the Euler system of Beilinson-Flach elements, as described in
Theorems B and C.

Let χ be a Dirichlet character of level N ≥ 1 and let Mk(N,χ) (resp.Sk(N,χ)) denote the space
of (resp. cuspidal) modular forms of weight k, level N and nebentype χ. Let g =

∑
n≥1 anq

n ∈
S1(N,χ) be a normalized newform and let g∗ = g ⊗ χ−1 denote its twist by the inverse of its
nebentype. Let

%g : Gal (Hg/Q) ↪→ GL(Vg) ' GL2(L), %ad0(g) : Gal (H/Q) ↪→ GL(ad0(g)) ' GL3(L)

denote the Artin representations associated to g and its adjoint, respectively. Here Hg ⊇ H denote
the finite Galois extensions of Q cut out by these representations, and L is a sufficiently large
finite extension of Q containing their traces. The three-dimensional representation ad0(g) may
be identified with the subspace of End(Vg) of null-trace endomorphisms, on which GQ acts by
conjugation. There is a natural decomposition of L[GQ]-modules ad(g) := End(Vg) = L ⊕ ad0(g),
where L stands for the trivial representation.

Fix a prime p - N and let Soc
k (N,χ) denote the space of overconvergent p-adic modular forms

of weight k, tame level N and character χ. Fix an embedding Q̄ ⊂ Q̄p and let Lp denote the
completion of L in Q̄p.

Label and order the roots of the p-th Hecke polynomial of g as

X2 − ap(g)X + χ(p) = (X − α)(X − β).

We assume throughout that

(H1) The reduction of %g mod p is irreducible;

(H2) g is p-distinguished, i.e.α 6= β (mod p), and

(H3) %g is not induced from a character of a real quadratic field in which p splits.

Let

gα(q) = g(q)− βg(qp)

denote the p-stabilization of g on which the Hecke operator Up acts with eigenvalue α. Enlarge L
if necessary so that it contains all Fourier coefficients of gα.

As shown in [BeDi16] and [DLR15a], the above hypotheses ensure that any generalized over-
convergent modular form with the same generalized eigenvalues as gα is classical, and hence simply
a multiple of gα. This allows to define a canonical projector

egα : Soc
1 (N,χ) −→ Lp

which extracts from an overconvergent modular form its coefficient at gα with respect to an or-
thonormal basis: cf. [DLR15a] for more details.

One can attach a p-adic invariant Ip(g) ∈ Lp to gα as follows. Let

Y := Y1(N) ⊂ X := X1(N)

denote the models over Q of the (affine and projective, respectively) modular curves classifying
pairs (A,P ) where A is a (generalised) elliptic curve and P is a point of order N on A. We keep
these notations for subsequent chapters.
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For a ∈ (Z/NZ)×, let ga;N be Kato’s Siegel unit whose q-expansion is given by

ga;N := (1− ζaN )q1/12
∞∏
n=1

(1− ζaNqn)(1− ζ−aN qn), (3.1)

where ζN is a fixed primitive N -th root of unity. The unit ga;N can naturally be viewed as belonging
to Q⊗O×Y , and its q-expansion is defined over Q(µN ).

Set

g =
1

2
⊗

N∏
a=1

ga;N ∈ Q⊗O×Y , (3.2)

and define

E0 = logp g.

This is a locally analytic modular form of weight 0 on Y . It follows from (3.1) and (3.2) that the
logarithmic derivative of g is

dE0 = E2
dq

q
∈ Ω1

Y , (3.3)

where

E2 =
1

2
· ζ(−1) +

∞∑
n=1

∑
d|n

d

 qn

is the classical Eisenstein series of weight 2.

Let E
[p]
0 :=

∑
p-n an(E0)qn denote the p-depletion of E0; this is an overconvergent modular form

and we may define

Ip(g) := egα(E
[p]
0 · gα). (3.4)

The invariant Ip(g) can be recast as a p-adic iterated integral, denoted I ′p(E2, g, g
∗) in [DLR16].

The first main result of this chapter, conjectured in [DLR16], asserts that Ip(g) is equal to the
following motivic expression. As shown in [DLR16, Lemma 1.1], we have

dimL(O×H ⊗ ad0(g))GQ = 1, dimL(OH [1/p]×/pZ ⊗ ad0(g))GQ = 2.

Fix a generator u of (O×H ⊗ ad0(g))GQ and also an element v of (O×H [1/p]× ⊗ ad0(g))GQ in such a
way that {u, v} is a basis of (OH [1/p]×/pZ ⊗ ad0(g))GQ . The element v may be chosen to have
p-adic valuation ordp(v) = 1, and we do so.

Viewed as a GQp-module, ad0(g) decomposes as ad0(g) = L⊕ Lα⊗β̄ ⊕ Lβ⊗ᾱ, where each line is
characterized by the property that the arithmetic Frobenius Frp acts on it with eigenvalue 1, α/β
and β/α, respectively1. Let Hp denote the completion of H in Q̄p and let

u1, uα⊗β̄, uβ⊗ᾱ, v1, vα⊗β̄, vβ⊗ᾱ ∈ H×p ⊗Q L (modL×)

denote the projection of the elements u and v in (H×p ⊗ ad0(g))GQp to the above lines: cf. (3.50) for
more details. By construction we have u1, v1 ∈ Q×p and

Frp(uα⊗β̄) =
β

α
uα⊗β̄, Frp(vα⊗β̄) =

β

α
vα⊗β̄, Frp(uβ⊗ᾱ) =

α

β
uβ⊗ᾱ, Frp(vβ⊗ᾱ) =

α

β
vβ⊗ᾱ.

Let

logp : H×p ⊗ L −→ Hp ⊗ L
1The decomposition of ad0(g) as the direct sum of three canonical lines is also available when α/β = β/α = −1,

see (3.45) and (3.50) for details.
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denote the usual p-adic logarithm.

Theorem A. The following equality holds in Lp ⊂ Hp ⊗ L (modL×):

Ip(g) =
1

logp(uα⊗β̄)
× det

(
logp u1 logp uα⊗β̄
logp v1 logp vα⊗β̄

)
. (3.5)

This is [DLR16, Conjecture 1.2] specialized to the pair (g, g∗): note that both statements are

equivalent because (O×H ⊗ V α
g )GQp ' HomGQp (V β

g ,O×H).

Let L(ad0(gα)) be Hida’s analytic L-invariant attached to the adjoint Galois representation
of gα; cf. (3.23). As we recall in Proposition 3.2.5, there are several equivalent definitions of this
invariant.

These L-invariants are in general difficult to compute, and explicit expressions for them are
rather rare. The proof of the above result, which we describe further below in this introduction,
shows that Theorem A may be recast as a formula for L(ad0(gα)). Since this might be of in-
dependent interest, specially for the reader less acquainted with the Stark elliptic conjectures of
[DLR15a], [DLR16] and more familiar with the theory of L-invariants, we quote it below as a
separate statement:

Theorem A’. The analytic L-invariant of ad0(gα) is

L(ad0(gα)) =
logp(u1) logp(vα⊗β̄)− logp(uα⊗β̄) logp(v1)

logp(uα⊗β̄)
(modL×). (3.6)

Remark 3.1.1. The prototypical case where an explicit formula for the L-invariant is known arises
of course when E/Q is an elliptic curve of split multiplicative reduction at p (see the previous

chapter). In that case Lp(E) =
logp(qE)

ordp(qE) where qE ∈ pZp is a Tate period for E. Observe that this

expression and the one in Theorem A’ are in fact very similar, as both may be recast as

L =
logp(κ)

ordp(κ)
(3.7)

where κ is an element in H1(Qp,Qp(1)) arising from some global class in motivic cohomology. In
the classical case one has κ = qE , which might be regarded as an element in the extended Mordell-
Weil group Ẽ(Q), or Nekovár’s extended Selmer group of E. In Theorem A’ one has, up to scalar,
κ = logp(vα⊗β̄)u1− logp(uα⊗β̄)v1 in the unit group of H; note that recipe (3.7) indeed gives rise to
(3.6) because ordp(u1) = 0 and ordp(v1) = 1.

The second main result of this chapter may be regarded as a conceptual explanation of Theorem
A, as it establishes a connection between the iterated integral Ip(g), a special value of Hida’s p-adic
Rankin L-function associated to the pair (g, g∗), and the generalized Kato classes arising from the
three-variable Euler system of Beilinson–Flach elements constructed in [KLZ17].

In order to describe it more precisely, let Λ = Zp[[Z×p ]] denote the Iwasawa algebra and denote
W = Spf(Λ) the associated weight space. As shown by Wiles in [Wi88] (cf. also [KLZ17, Section
7.2] for the normalizations we adopt), associated to gα there are:

1. a finite flat extension Λg of Λ, giving rise to a covering w :Wg = Spf(Λg) −→W;

2. a family of overconvergent p-adic ordinary modular forms g with coefficients in Λg specializing
to gα at some point y0 ∈ Wg of weight w(y0) = 1; our running assumptions imply that the
above Hida family passing through gα is unique by [BeDi16].
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3. a Galois representation %g : GQ −→ GL2(Λg) characterized by the property that all its
classical specializations coincide with Deligne’s Galois representation associated to the corre-
sponding specialization of the Hida family.

Let Vg denote the rank two Λg-module realizing the Galois representation %g as specified e.g. in
[KLZ17, Section 7.2], where this is denoted M(g)∗. Let g∗ := g ⊗ χ−1 denote the twist of g by
the inverse of its tame nebentype. Note that g∗ specializes at y0 to the eigenform gα⊗χ−1 = g∗1/β,

namely the p-stabilization of g∗ on which Up acts with eigenvalue 1/β.

Let

εcyc : GQ → Gal (Q(µp∞)/Q)→ Z×p
denote the p-adic cyclotomic character. Let εcyc be the composition of εcyc with the natural
inclusion Z×p ⊂ Λ× taking z to the group-like element [z] in Λ×.

Define the three-variable Iwasawa algebra Λgg∗ := Λg⊗̂ZpΛg∗⊗̂ZpΛ and the Λgg∗ [GQ]-module

Vgg∗ := Vg⊗̂ZpVg∗⊗̂ZpΛ(εcycε
−1
cyc).

The article [KLZ17] attaches to (g,g∗) a Λ-adic global cohomology class

κ(g,g∗) ∈ H1(Q,Vgg∗)

parametrized by the triple product of weight spaces Wgg∗ := Wg × Wg × W, where the first
two variables are afforded by the weight of the Hida families g and g∗, and the third one is the
cyclotomic variable.

The common key strategy in several recent works on the arithmetic of elliptic curves ([BDR15b],
[DR17],[LLZ14],[KLZ17],[CH20]) consists in proving a reciprocity law relating a suitable specializa-
tion of a Λ-adic class as the one above to the critical value of the underlying classical L-function.
The non-vanishing of the appropriate (classical or p-adic) L-value can then be invoked to show
that the associated global cohomology class is not trivial, and one can derive striking arithmetic
consequences from this (cf. e.g. [DR17, Theorems A and B], [KLZ17, Corollary C]).

Our setting differs in several key aspects from the previous ones. Namely, while it is also natural
to consider the specialization

κ(gα, g
∗
1/β) := κ(g,g∗)(y0, y0, 0) ∈ H1(Q, Vg ⊗ Vg∗(1)) (3.8)

of the Euler system of Beilinson–Flach elements at the point (y0, y0, 0), one can show that this
global cohomology class is trivial and thus no arithmetic information can be extracted directly
from it: cf. Theorem 3.3.5.

The fact that κ(gα, g
∗
1/β) = 0 might be regarded as an exceptional zero phenomenon, albeit quite

different from the ones one typically encounters in e.g. the pioneering work [MTT86] of Mazur,
Tate and Teitelbaum, because our case corresponds to a point lying outside the classical region
of interpolation of the associated Hida–Rankin p-adic L-function. But it still keeps the same
flavor, because the vanishing of the global cohomology class (3.8) is caused by the cancellation
of the Euler-like factor at p arising in the interpolation process of the construction of the Euler
system. To be more precise, the situation is more delicate than that: for classical points y ∈ Wg

of weights ` > 1, the triples (y, y, `− 1) do lie in the region of geometric interpolation of the Euler
system of Beilinson–Flach elements, and the main theorem of [KLZ17] applies and implies that
κ(g,g∗)(y, y, `− 1) = 0. The vanishing of κ(gα, g

∗
1/β) then follows by a density argument exploiting

various Λ-adic Perrin-Riou regulators; we refer to Section 3.3 for more details.

We are hence placed to work with the derived class κ′(gα, g
∗
1/β) ∈ H1(Q, ad0(g)(1)), which is

introduced in Section 3.3 as the derivative along the weight of g∗ of the Λ-adic class κ(g,g∗) at
(y0, y0, 0).
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In [DR16] it was laid a conjecture proposing an explicit description of the generalized Kato
classes arising from the Euler systems of diagonal cycles of [DR17]. This conjecture, together with
the expected (but so far also unproved) behavior of certain periods arising from Hida theory, is
shown to imply the main conjecture of [DLR15a] for twists of elliptic curves by Artin representa-
tions. This is seen to provide a conceptual interpretation of the numerical examples computed in
[DLR15a].

In the case of arbitrary pairs (g, h) where h 6= g∗ and there are no exceptional zero phenomena,
the constructions and conjectures of [DR16] can be adapted in an easier way. We refer to Chapter
4 for the details.

However, pairs (g, g∗) present a completely different scenario, as we already hinted at above.
Not only κ(gα, g

∗
1/β) = 0, but it also turns out that the derived class κ′(gα, g

∗
1/β) is not crystalline at

p, as opposed to the set-up of [DR16] and [RR19] (the latter contained as part of Chapter 4). Yet
it is still possible to formulate a conjecture analogous to loc. cit., proposing an explicit description
of κ′(gα, g

∗
1/β) in terms of the ad0(g)-isotypical component of the group of p-units of H. We can in

fact prove it, giving rise to the second main result of this chapter.
Let H1

f,p(Q, ad0(g)(1)) denote the subspace of H1(Q, ad0(g)(1)) consisting of classes that are de
Rham at p and unramified at all remaining places. Kummer theory (cf. Proposition 3.3.11 below)
gives rise to a canonical isomorphism

OH [1/p]×[ad0(g)]⊗ Lp
'−→ H1

f,p(Q, ad0(g)(1)) (3.9)

and we shall use (3.9) throughout to identify these two spaces.

Theorem B. Assume that L(ad0(gα)) 6= 0. The equality

κ′(gα, g
∗
1/β) = L(ad0(gα)) ·

logp(vα⊗β̄)u− logp(uα⊗β̄)v

logp(uα⊗β̄)
(3.10)

holds in OH [1/p]×

pZ
[ad0(g)]⊗ Lp (modL×).

Here it again becomes apparent the notable differences between the phenomena occurring in
say [BDR15b], [DR17], [KLZ17] and this study. In loc. cit., the non-vanishing of the central critical
L-value is shown to imply the triviality of the Mordell-Weil group; conversely, the vanishing of the
central L-value should imply the non-triviality of the Mordell-Weil group.

In contrast, in our setting we have L(g, g∗, 1) 6= 0 and nonetheless the associated motivic groups
O×H [ad0(g)] and OH [1/p]×[ad0(g)] have positive rank. This is ultimately explained by the fact that
L(g, g∗, s) = L(ad0(g), s) · ζ(s) factors as the product of two zeta functions having a simple zero
and a simple pole at s = 1, respectively.

Remark 3.1.2. As we show in Section 3.5, it is actually possible to prove that L(ad0(gα)) 6= 0 in
many dihedral cases, where %g is induced from a finite order character of the Galois group of a
(real or imaginary) quadratic field. We refer to loc. cit. for more details. On the other hand, when
g is exotic, we still expect the L-invariant not to vanish systematically, but proving this properly
appears to be a less accessible question in the theory of transcendental p-adic numbers.

The main ingredients in the proof of Theorems A, A’ and B are the following:

(I) Let Lp(g,g
∗) be the three-variable Hida–Rankin p-adic L-function as introduced in [Hi85] or

[Das16, Section 3.6], and let Lp(gα, g
∗
1/β, s) := Lp(g,g

∗)(y0, y0, s) denote the restriction to {y0, y0}×
W. This function satisfies a functional equation relating the values at s and 1− s.

As explained in [DLR16], the p-adic iterated integral introduced in (3.4) may be recast as a
special value of a p-adic L-function, namely [DLR16, Lemma 4.2] asserts that under our running
assumptions H1-H2-H3 that are in place throughout the chapter, we have

Ip(g) = Lp(gα, g
∗
1/β, 0) = Lp(gα, g

∗
1/β, 1) (mod L×).
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Define SHida ⊂ Wg×Wg×W as the surface for which the collection of crystalline points (y, z, s)
of weights (`,m,m) is Zariski dense. The Euler-like factor at p showing-up in the interpolation
formula of Hida–Rankin’s p-adic L-function turns out to be a rigid-analytic Iwasawa function when
restricted to SHida. In §2.3 we recall how this observation allows to conclude thanks to [Das16] that

L(ad0(gα)) := α′g(y0) = Ip(g) (mod L×). (3.11)

Computing the latter derivative is a question which can be reduced to a problem in Galois
deformation theory as in [DLR15b], although the methods in loc. cit. do not apply directly and
need to be adapted in order to cover our setting. This is carried out in Section 3.4, and allows us
to prove Theorems A and A’, as we spell out in detail in Section 3.5.

(II) The main result of Section 3.3 is Theorem 3.3.7, which we state here in slightly rough
terms (as the Bloch–Kato logarithm map appearing below has not been specified; cf. loc. cit. for
more details):

Theorem C. (Theorem 3.3.7) The derived Beilinson–Flach element satisfies

logp(κ
′(gα, g

∗
1/β)) = L(ad0(gα)) · Lp(gα, g∗1/β, 0) (mod L×). (3.12)

We may see this as an exceptional zero formula, reminiscent of the main theorem of [GS94], which
asserts that for an elliptic curve E/Q with split multiplicative reduction at p, we have

L′p(E, 1) = Lp(E) · Lalg(E, 1).

We thus may invoke Theorem A, which combined with (3.12) implies that

logp(κ
′(gα, g

∗
1/β)) =

( logp(u1) logp(vα⊗β̄)− logp(uα⊗β̄) logp(v1)

logp(uα⊗β̄)

)2
(mod L×).

In light of the general properties satisfied by Beilinson–Flach elements established in [KLZ17], this
allows us to prove in Section 3.5 that the following equality holds in OH [1/p]×[ad0(g)]⊗ Lp:

κ′(gα, g
∗
1/β) =

logp(u1) logp(vα⊗β̄)− logp(uα⊗β̄) logp(v1)

logp(uα⊗β̄)2
×
(

logp(vα⊗β̄)u− logp(uα⊗β̄)v
)

up to a factor in L×, as claimed.

We close the chapter in Section 3.6 by pointing out to the connection between our derived
Beilinson–Flach classes, Darmon–Dasgupta units and the Artin p-adic L-functions associated to
the motives in play. We prove a factorization theorem in the CM case, and explain how our main
results shed some light in the much more intriguing RM setting.

During the realization of this thesis, different works around the subjects discussed in this chapter
have appeared, showing an increasing interest in the study of exceptional zeros. As it is discussed in
5, Theorem A may be understood as a p-adic version of the intriguing Harris–Venkatesh conjecture
[HV19]. Our study of exceptional zeros is also related to the recent work of Benois and Horte
[BH20], which considers precisely the case of two modular forms (g, h) which are not self-dual. It
would be interesting to understand the relationship between both approaches and look for further
applications.

Finally, and as a concluding remark, we hope the approach introduced in this chapter may
be adapted to prove other instances of variants of the Elliptic Stark Conjecture in presence of
exceptional zeros. We refer the reader to Chapter 7 for an exploration of a similar situation in the
setting of diagonal cycles and triple product p-adic L-functions.
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3.2 Preliminary concepts

Hida families

Fix an algebraic closure Q̄ of Q. For a number field K, let GK := Gal (Q̄/K) denote its absolute
Galois group. Fix a prime p and an embedding Q̄ ↪→ Q̄p, and let ordp denote the resulting p-adic
valuation on Q̄×, normalized in such a way that ordp(p) = 1.

Let g be a newform of weight k ≥ 1, level N and character χ, with Fourier coefficients in
a finite extension L of Q. Label the roots of the p-th Hecke polynomial of g as αg, βg with
ordp(αg) ≤ ordp(βg). By enlarging L if necessary, we shall assume throughout that L contains
αg, βg, the N -th roots of unity and the pseudo-eigenvalue λN (g) with respect to the Atkin-Lehner
operator WN (cf. [AL78]).

Let Lp denote the completion of L in Q̄p and let Vg denote the two-dimensional representation
of GQ with coefficients in Lp associated to g as defined e.g. in [KLZ17, Section 2.8], where it is
denoted MLp(g)∗. If g is ordinary at p, there is an exact sequence of GQp-modules

0→ V +
g → Vg → V −g → 0, V +

g ' Lp(εk−1
cyc χψ

−1
g ), V −g ' Lp(ψg), (3.13)

where ψg is the unramified Galois character of GQp sending Frp to αg.
The formal spectrum W = Spf(Λ) of the Iwasawa algebra Λ = Zp[[Z×p ]] is called the weight

space attached to Λ, and their A-valued points over a p-adic ring A are given by

W(A) = Homalg(Λ, A) = Homgrp(Z×p , A×).

Weight space is equipped with a distinguished class of arithmetic points νs,ε indexed by integers
s ∈ Z and Dirichlet characters ε : (Z/prZ)× → Q̄× of p-power conductor. The point νs,ε ∈ W is
defined by the rule

νs,ε(n) = ε(n)ns.

We let Wcl denote the subset of W formed by such arithmetic points. When ε = 1 is the trivial
character, we denote the point νs,1 simply as νs or even s by a slight abuse of notation.

If Λ̃ is a finite flat algebra over Λ, there is a natural finite map W̃ := Spf(W̃)
w−→ W, and

we say that a point x ∈ W̃ is arithmetic of weight s and character ε if w(x) = νs,ε. As in the
introduction, let εcyc denote the p-adic cyclotomic character and εcyc be the composition of εcyc

with the natural inclusion Z×p ⊂ Λ× taking z to the group-like element [z] in Λ×.
Let N ≥ 1 be an integer not divisible by p, and let χ : (Z/NZ)× → C×p be a Dirichlet character.

Let g be a Hida family of tame level N and tame character χ as defined and normalized in [KLZ17,
Section 7.2]. Let Λg the associated Iwasawa algebra (cf. Def. 7.2.5 of loc. cit.), which is finite and flat
over Λ. As in [KLZ17, Section 7.3], we may specialize g at any arithmetic point x ∈ Wg = Spf(Λg)
of weight k ≥ 2 and character ε : (Z/prZ)× −→ L×p and obtain a classical p-ordinary eigenform gx
in the space Sk(Np

r, χε) of cusp forms of weight k, level Npr and nebentype χε.

Definition 3.2.1. Let x ∈ Wg be an arithmetic point of weight k ≥ 1 and character ε. We say
x is crystalline if ε = 1 and there exists an eigenform g◦x of level N such that gx is the ordinary
p-stabilization of g◦x (which given the previous condition, is automatic if k > 2, but not necessarily
if k ≤ 2). We denote by W◦g the set of crystalline arithmetic points of Wg.

As shown by Wiles [Wi88], [KLZ17, Section 7.2] and already recalled in the introduction, a Hida
family g as above comes equipped with a free Λg[GQ]-module Vg of rank two, yielding a Galois
representation %g : GQ −→ GL2(Λg), all whose classical specializations recover the p-adic Galois
representation associated to the classical specialization of g. We assume throughout that the mod
p residual representation %̄g associated to any of its classical specializations is irreducible, and that
the semi-simplification of %̄|GQp

is non-scalar, as in hypotheses (H1-H2) in the introduction.
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Similarly as in (3.13), the restriction to GQp of Vg admits a filtration

0→ V+
g → Vg → V−g → 0, (3.14)

where V+
g and V−g are flat Λg[GQp ]-modules, free of rank one over Λg. If we let ψg denote the

unramified character of GQp taking the arithmetic Frobenius element Frp to ap(g), then

V+
g ' Λg(ψ−1

g χε−1
cycεcyc), V−g ' Λg(ψg). (3.15)

Let Ẑur
p be the ring of integers of the completion of the maximal unramified extension of Qp.

Given a finite-dimensional GQp-module V with coefficients over a finite extension Lp of Qp, the de
Rham Dieudonné module associated to V is defined as

D(V ) = (V ⊗Qp BdR)GQp ,

where BdR is Fontaine’s field of de Rham periods. If V is unramified there is a further canonical
isomorphism

D(V ) '
(
Vint⊗̂ZpẐur

p

)Frp=1
[
1

p
],

where Vint is an integral lattice in V . Similarly, if V is a free module over an Iwasawa algebra
equipped with an unramified action of GQp , we may define

D(V) :=
(
V⊗̂ZpẐur

p

)Frp=1
. (3.16)

Given a newform g ∈ Sk(N,χ) as at the beginning of this section, D(Vg) is an Lp-filtered vector
space of rank 2. Set g∗ = g ⊗ χ̄ ∈ Sk(N, χ̄). Poincaré duality induces a perfect pairing

〈 , 〉 : D(Vg(−1))×D(Vg∗)→ Lp. (3.17)

If g is ordinary at p, then (3.13) gives rise to an exact sequence of Dieudonné modules

0→ D(V +
g )

i−→ D(Vg)
π−→ D(V −g )→ 0

where D(V +
g ) and D(V −g ) have rank 1 over Lp.

If k ≥ 2, Faltings’ comparison theorem allows to associate to g a regular differential form
ωg ∈ Fil(D(Vg)), which induces a linear form

ωg : D(V +
g∗ )→ Lp, η 7→ 〈ωg, η〉.

There is also the differential form ηg, characterized by the properties that it spans the line D(V +
g )

and 〈ηg, ωg∗〉 = 1. It again gives rise to a linear functional

ηg : D(V −g∗ )→ Lp, ω 7→ 〈π−1(ω), ηg〉.

As shown in [Oh00] and [KLZ17], the differential forms (or linear functionals) ωg and ηg vary
in families. In order to recall this more precisely, let g be a Hida family of tame level N and
tame character χ as above. Set g∗ = g ⊗ χ̄. Let Qg denote the fraction field of Λg, and set
U+
g := V+

g (χ−1εcycε
−1
cyc); denote by U+

gy its specialization at a point y ∈ W◦g. By [KLZ17, Proposition
10.1.1], there exist

• A homomorphism of Λg-modules

〈 , ωg〉 : D(U+
g∗)→ Λg (3.18)
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such that for every y ∈ W◦g, the specialization of ωg at y is the linear form

y ◦ 〈 , ωg〉 = 〈 ,Prα∗(ωg◦y )〉 : D(U+
g∗y

)→ Lp

where Prα∗ is the p-stabilization pull-back isomorphism defined in loc. cit.. Note that this
makes sense: since Lp is assumed to contain the N -th roots of unity, D(U+

g∗y
) and D(V +

g∗y
) are

the same module up to a shift in their filtration.

• A homomorphism of Λg-modules

〈 , ηg〉 : D(V−g∗)→ Qg (3.19)

such that for every y ∈ W◦g we have

y ◦ 〈 , ηg〉 =
Prα∗(ηg◦y )

λN (g◦y)E0(g◦y)E1(g◦y)
: D(V −g∗y )→ Lp,

where λN (g◦y) stands for the pseudo-eigenvalue of g◦y , and

E0(g◦y) = 1− χ−1(p)β2
g◦y
p1−k, E1(g◦y) = 1− χ(p)α−2

g◦y
pk−2.

Hida–Rankin’s three-variable p-adic L-function

Let g ∈ Λg[[q]], h ∈ Λh[[q]] be a pair of Hida families of tame level N and tame characters χg and
χh respectively. As in the introduction, set Λgh := Λg⊗̂ZpΛh⊗̂ZpΛ and Wgh := Spf(Λgh). Let Qgh

denote the fraction field of Λgh, and set W◦gh :=W◦g ×W◦h ×Wcl.

Definition 3.2.2. The critical range is the set of points (y, z, σ) ∈ W◦gh of weights (`,m, s) such
that `,m ≥ 2 and m ≤ s < `.

The geometric range is defined to be the set of points (y, z, σ) ∈ W◦gh of weights (`,m, s) such
that `,m ≥ 2 and 1 ≤ s < min(`,m).

Hida constructed [Hi85], [Hi88] a three-variable p-adic Rankin L-function Lp(g,h) on Wgh,
interpolating the algebraic parts of the critical values L(g◦y , h

◦
z, s) for every triple of classical points

(y, z, s) inW◦gh lying in the critical range. More precisely, [Hi88, Theorem 5.1d] asserts the following.

Theorem 3.2.3. (Hida) There exists a unique element Lp(g,h) ∈ Qgh whose value at any
(y, z, s) ∈ W◦gh of weights (`,m, s) in the critical range is well-defined and equal to

Lp(g,h)(y, z, s) =
C · E(y, z, s)

(2πi)2s−m+1〈g◦y , g◦y〉
× L(g◦y , h

◦
z, s)

where C is a non-zero algebraic number in the finite extension Q(g◦y , h
◦
z) generated by the Fourier

coefficients of g◦y and h◦z, 〈g◦y , g◦y〉 is the Petersson norm as normalized in loc. cit., and

E(y, z, s) =
(

1− ps−1

αg◦yαh◦z

)(
1− ps−1

αg◦yβh◦z

)(
1−

βg◦yαh◦z
ps

)(
1−

βg◦yβh◦z
ps

)
. (3.20)

Let g and h be classical specializations of the families g and h at some point (y0, z0) ∈ Wcl
g ×Wcl

h

of weight (`,m). We denote by Lp(g, h, s) the restriction of Lp(g,h)(y, z, s) to the line (y0, z0, s).
As quoted e.g. in [Das16, §9.2], this p-adic L-function satisfies the functional equation

Lp(g, h, `+m− 1− s) = ε(g, h, s)Lp(g
∗, h∗, s) (3.21)

where ε(g, h, ψ, s) = A ·Bs, with A ∈ Q(gy, hz)
× and B ∈ Q×.
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Improved p-adic L-functions

As before, let g ∈ Λg[[q]] be a Hida family of tame level N and tame character χ = χg, and set
h = g∗ := g ⊗ χ−1. As in the introduction, define the surface

SHida := S`,m,m := {(y, z, σ) ∈ Wg ×Wg ×W : w(z) = σ}. (3.22)

Note that this is a sub-variety ofWgg∗ all whose crystalline arithmetic points have weights (`,m,m)
for some `,m ≥ 1.

The restriction to SHida of the second multiplier in the Euler-like factor (3.20) appearing in the
interpolation formula for Hida–Rankin’s p-adic L-function is

1− ps−1

αg◦yβh◦z
= 1−

αg◦z
αg◦y

.

This expression interpolates to an Iwasawa function in Λg×Λg, which by abuse of notation we con-

tinue to denote with the same symbol. One naturally expects 1− αg◦z
αg◦y

should divide the two-variable

p-adic L-function Lp(g,g
∗)(y, z, s), where (y, z) vary in Wg ×Wg and s = w(z) is determined by

the weight of z. Hida proved in [Hi88] the following stronger statement:

Theorem 3.2.4 (Hida). Let L̂p(g,g
∗) be the unique element in the fraction field of Λg⊗̂Λg such

that

Lp(g,g
∗)(y, z,w(z)) =

(
1−

αg◦z
αg◦y

)
· L̂p(g,g∗)(y, z).

Then, fixing y0 ∈ W◦g, the one-variable meromorphic function

L̂p(g,g
∗)(y0, z)

on Wg has a simple pole at z = y0 whose residue is a non-zero explicit rational number.

Associated to the adjoint representation attached to any classical specialization g = gy0 of the
Hida family g at some arithmetic point y0 ∈ Wcl

g , Hida defined an analytic L-invariant, which can
be recast in several equivalent ways (cf. the works of Hida, Harron, Citro and Dasgupta (cf. [Hi04],
[Ci08], [Das16]). We may define it for instance as:

L(ad0(gy0)) :=
−α′g(y0)

αg(y0)
, (3.23)

where recall αg = ap(g) ∈ Λg is the Iwasawa function given by the eigenvalue of the Hecke operator
Up acting on g, and α′g is its derivative.

Let L′p(ad0(gy0), s) denote Hida-Schmidt’s p-adic L-function associated to the adjoint of the or-
dinary eigenform gy0 (cf. [Sc88], [Hi04]). The argument below is mainly due to Citro and Dasgupta,
but since in loc. cit. they often assume that ` ≥ 2, we include it in order to ensure that it holds as
well at weight 1, which is the case we mostly focus on. The main point is that the objects in play
all vary in Hida families.

Proposition 3.2.5. For a crystalline classical point y0 ∈ W◦g of weight ` ≥ 1, we have

L(ad0(gy0)) = Lp(g,g
∗)(y0, y0, `) = L′p(ad0(gy0), `),

up to a non-zero rational constant.
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Proof. The first equality follows from Theorem 3.2.4, which amounts to say that

Lp(g,g
∗)(y0, y0, `) = lim

z→y0

(
1−

αg◦z
αg◦y0

)
· L̂p(g,g∗)(y0, z).

Since
(

1− α◦gz
αg◦y0

)
vanishes at z = y0 and L̂p(g,g

∗)(y0, z) has a pole at z = y0 given by a non-zero

rational number, the value of the previous limit agrees, modulo L×, with the derivative of the first
factor, i.e.,

Lp(g,g
∗)(y0, y0, `) =

−α′g(y0)

αg(y0)
.

In addition, Dasgupta’s factorization proved in [Das16] asserts that Lp(g,g
∗)(y0, y0, s) = ζp(s−

` + 1)Lp(ad0(gy0), s). Here ζp(s) is the p-adic zeta function, which has a pole at s = 1 with non-
zero rational residue. The second factor vanishes at s = ` and it follows that Lp(g,g

∗)(y0, y0, `) =
L′p(ad0(gy0), `) (modQ×).

3.3 Derived Beilinson–Flach elements

The three-variable Euler system of Kings, Lei, Loeffler and Zerbes

Let g and h be a pair of p-adic cuspidal Hida families of tame conductor N and tame nebentype χg
and χh as in Section 3.2. As in the introduction, and keeping the notations of the previous section,
define the Λgh-module

Vgh := Vg⊗̂ZpVh⊗̂ZpΛ(εcycε
−1
cyc). (3.24)

This Λ-adic Galois representation is characterized by the property that for any (y, z, σ) ∈ W◦gh
with w(σ) = νs with s ∈ Z, (3.24) specializes to

Vgh(y, z, σ) = Vgy ⊗ Vhz(1− s),

the (1− s)-th Tate twist of the tensor product of the Galois representations attached to gy and hz.

Fix c ∈ Z>1 such that (c, 6pNgNh) = 1. [KLZ17, Theorem A] yields a three-variable Λ-adic
global Galois cohomology class

κc(g,h) ∈ H1(Q,Vgh)

that is referred to as the Euler system of Beilinson–Flach elements associated to g and h. We
denote by κcp(g,h) ∈ H1(Qp,Vgh) the image of κc(g,h) under the restriction map.

Since c is fixed throughout, we may sometimes drop it from the notation. This constant does
make an appearance in fudge factors accounting for the interpolation properties satisfied by the
Euler system, but in all cases we are interested in these fudge factors do not vanish and hence do
not pose any problem for our purposes.

Given a crystalline arithmetic point (y, z, s) ∈ W◦gh of weights (`,m, s), set for notational
simplicity throughout this section g = g◦y , h = h◦z. With these notations, gy (resp.hz) is the
p-stabilization of g (resp.h) with Up-eigenvalue αg (resp.αh).

Define

κ(gy, hz, s) := κ(g,h)(y, z, s) ∈ H1(Q, Vgy ⊗ Vhz(1− s)) (3.25)

as the specialisation of κ(g,h) at (y, z, s).

If one further assumes that (y, z, s) lies in the geometric range, Kings, Loeffler and Zerbes showed
in [KLZ20] that the cohomology group appearing in (3.25) also hosts a canonical Rankin-Eisenstein
class, denoted

Eis
[g,h,s]
et ∈ H1(Q, Vg ⊗ Vh(1− s)). (3.26)
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This class is attached to the classical pair (g, h) and can be constructed purely by geometric
methods, without appealing to the variation of (gy, hz) in p-adic families. It is for this reason that

in fact the classes Eis
[g,h,s]
et lie in the Bloch–Kato Selmer subgroup

H1
f (Q, Vg ⊗ Vh(1− s)) ⊂ H1(Q, Vg ⊗ Vh(1− s)).

We refer to [KLZ20, Section 5] and [KLZ17, Definition 3.3.2] for the precise statements.

Since both κ(gy, hz, s) and Eis
[g,h,s]
et live in the same space, it makes sense to ask whether they

are related. This is the content of [KLZ17, Theorem A (8.1.3)]:

Theorem 3.3.1. Assume (y, z, s) ∈ W◦gh lies in the geometric range. Then

κ(gy, hz, s) = E(g, h, s) · Eis
[g,h,s]
et (3.27)

where

E(g, h, s) =

(
1− ps−1

αgαh

)(
1− αgβh

ps

)(
1− βgαh

ps

)(
1− βgβh

ps

)
(c2 − c2s−`−m+2)

(−1)s−1(s− 1)!
(
`−2
s−1

)(
m−2
s−1

) . (3.28)

In particular κ(gy, hz, s) lies in H1
f (Q, Vg ⊗ Vh(1− s)).

The following proposition recalls the existence of the so-called Perrin-Riou big logarithm, in-
terpolating the Bloch–Kato logarithm logBK and dual exponential map exp∗BK associated to the
classical specializations of a Λ-adic representation of GQp . We refer to [BK93] and [Bel09] for an
introduction to p-adic Hodge theory and the definitions of these maps.

Recall the unramified character ψg of GQp taking a Frobenius element Frp to ap(g), and as
before, let εg be the composition of the cyclotomic character εcyc with the natural inclusion Λ× ⊂
Λ×g . Define the GQp-subquotient

V−+
gh := V−g ⊗̂V+

h

of Vg⊗̂Vh of rank one over the two-variable Iwasawa algebra Λg⊗̂Λh. In light of (3.15), the Galois
action on V−+

gh is given by the character

ηgh := ε−1
cycχh · ψg ⊗ ψ−1

h εh. (3.29)

It follows that U−+
gh := V−+

gh (εcycε
−1
h ) is an unramified GQp-module and we can thus invoke its

Λ-adic Dieudonné module as defined in (3.16).

Proposition 3.3.2. [KLZ17, Theorem 8.2.8] There is an injective morphism of Λgh-modules

L−+
gh : H1(Qp,V−+

gh ⊗̂Λ(εcycε
−1
cyc))→ D(U−+

gh )⊗̂Λ

such that for all κp ∈ H1(Qp,V−+
gh ⊗̂Λ(εcycε

−1
cyc)) and all (y, z, s) ∈ W◦gh of weights (`,m, s):

• if s < m, (L−+
gh (κp))y,z,s =

(
1− ps−1

αgβh

)(
1− αgβh

ps

)−1
· (−1)m−s+1

(m−s+1)! · logBK(κp(y, z, s));

• if s ≥ m, (L−+
gh (κp))y,z,s =

(
1− ps−1

αgβh

)(
1− αgβh

ps

)−1
(s−m)! · exp∗BK(κp(y, z, s)).

Here, logBK and exp∗BK stand for the Bloch–Kato logarithm (resp. dual exponential) associated
to the Dieudonné module of the p-adic representation V −gy ⊗ U

+
hz

(1− s).

Remark 3.3.3. In the case where αgβh = ps, we implicitly understand that the Euler factor in the
denominator appears on the left hand side of the equality.
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As shown in [KLZ17, Theorem 8.1.7], there is an injection

H1(Qp,V−g ⊗̂V+
h ⊗̂Λ(εcycε

−1
cyc)) ↪→ H1(Qp,V−g ⊗̂Vh⊗̂Λ(εcycε

−1
cyc)).

If we denote by κ−−p (g,h) the projection of κp(g,h) to H1(Qp,V−g ⊗̂V−h ⊗̂Λ(εcycε
−1
cyc)), it is further

shown in loc. cit. that
κ−−p (g,h) = 0. (3.30)

As a consequence, the projection of κp(g,h) to H1(Qp,V−g ⊗̂Vh⊗̂Λ(εcycε
−1
cyc)) actually lies in

H1(Qp,V−g ⊗̂V+
h ⊗̂Λ(εcycε

−1
cyc)) and we may hence denote it κ−+

p (g,h).
Let λN (g) denote the Λ-adic pseudo-eigenvalue of g as defined in [KLZ17, Section 10], interpo-

lating the Atkin-Lehner pseudo-eigenvalues of the classical specializations of g. Recall from (3.18)
and (3.19) Ohta’s families of differential forms ηg ∈ D(U+

g ) and ωh ∈ D(V−h ). As it follows from
the properties recalled in loc. cit., there exists a homomorphism of Λgh-modules

〈 , ηg ⊗ ωh〉 : D(U−+
gh )⊗̂Λ→ Qgh ⊗Qp(µN )

such that for all δ ∈ D(U−+
gh )⊗̂Λ and all (y, z, s) ∈ W◦gh,

νy,z,s(〈δ, ηg ⊗ ωh〉) = 1
λN (g)E0(g)E1(g) · 〈νy,z,s(δ),Prα∗(ηg◦y )⊗ Prα∗(ωh◦z)〉 (3.31)

= 1
λN (g)E0(g)E1(g) · 〈Prα∗ (νy,z,s(δ)), ηg◦y ⊗ ωh◦z〉,

where, recall again,

E0(g) = 1− χ−1
g (p)β2

gp
1−`, E1(g) = 1− χg(p)α−2

g p`−2.

The following explicit reciprocity law is [KLZ17, Theorem 10.2.2].

Theorem 3.3.4. Define the Iwasawa function

A(g,h) := λN (g)−1(−1)s(c2 − c−(`+m−2−2s)εg(c)−1εh(c)−1) (3.32)

in Λgh. Then
〈L−+

gh (κ−+
p (g,h)), ηg ⊗ ωh〉 = A(g,h) · Lp(g,h). (3.33)

The self-dual case

Let g be a Hida family of tame conductor N and tame nebentype χ, and set again h = g∗ = g⊗ χ̄.
Define the curve

C := C`,`,`−1 = {(y, z, σ) ∈ Wgg∗ : y = z, αgy 6= βgy , w(z) = σ · εcyc}. (3.34)

Note that C is a finite cover of the line in W3 given as the set of regular points in the Zariski
closure of the set of points of weights (`, `, `− 1) for some ` ≥ 1.

Theorem 3.3.5. The restriction of κp(g,g
∗) to C is zero.

Proof. Recall firstly from (3.30) that κ−−p (g,g∗) = 0. We also claim that

κ−+
p (g,g∗)|C = κ+−

p (g,g∗)|C = 0.

To see this, observe that the Λg[GQp ]-module V−+
gg∗⊗̂Λ(εcycε

−1
cyc)|C is isomorphic to Λg(1). This

follows directly from (3.29) and (3.34), because
αg◦y
αg◦y
· ε`−1

cyc · ε2−`
cyc = εcyc. Hence

H1(Qp,V−+
gg∗⊗̂Λ(εcycε

−1
cyc)|C) ' H1(Qp,Λg(1)) ' H1(Qp,Zp(1))⊗̂Λg

(ordp,logp)
' Λg ⊕ Λg (3.35)
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and κ−+
p (g,g∗)|C vanishes if and only if infinitely many of its specializations are zero. But this is

true for any crystalline classical point (y, y, ` − 1) on C with ` > 1. Indeed, the factor E(gy, hz, s)
of Theorem 3.3.1 vanishes, as αgβg = χ(p)p`−1, and hence

αh = αg · χ−1(p) =
αgp

`−1

αgβg
=
p`−1

βg
. (3.36)

By (3.27) this shows that the specialization of the global cohomology class κ(g,g∗)(y, y, ` − 1) is
zero for all y ∈ W◦g of weight ` > 1, and a fortiori κ−+

p (g,g∗)(y, y, ` − 1) = 0. We conclude that
κ−+
p (g,g∗)|C = 0 and likewise κ+−

p (g,g∗)|C = 0 by a symmetric reasoning.
Finally, note that there is an exact sequence

0→ H1(Qp,V++
gg∗⊗̂Λ(εcycε

−1
cyc)|C)→ H1(Qp,Vgg∗|C)→ H1(Qp,Vgg∗/(V++

gg∗⊗̂Λ(εcycε
−1
cyc))|C).

(3.37)
The first map above is injective because H0(Qp,Vgg∗/(V++

gg∗⊗̂Λ(εcycε
−1
cyc))|C) = 0, as it follows

again from the description of V−+
gg∗ given in (3.29) (and similarly for V+−

gg∗ and V−−gg∗).
Since we have already shown that κ−−p (g,g∗)|C = κ−+

p (g,g∗)|C = κ+−
p (g,g∗)|C = 0, this implies

that the image of κ(g,g∗)|C in the right-most term of (3.37) vanishes. Hence, κ(g,g∗)|C lies in

H1(Qp,V+
g ⊗̂V+

g∗⊗̂Λ(εcycε
−1
cyc)|C). It follows from [KLZ17, Theorem 8.2.3, Remark 8.2.4] that the

latter space is isomorphic to Λg, and thus κ(g,g∗)|C is zero if and only if infinitely many of its
specializations are, which is the case as already argued above.

A derived system of Beilinson–Flach elements

Keep the notations and assumptions as in previous sections. Theorem 3.3.5 above establishes the
vanishing of the local cohomology class κp(g,g

∗) along C and it is thus natural to ask about the
existence of a derived cohomology class κ′p(g,g

∗) on a proper subspace of three-dimensional weight
spaceWgg∗ containing C, bearing a reciprocity law with Hida–Rankin’s improved p-adic L-function.

The purpose of this section is making this construction explicit. Consider the surface

S := S`,m,m−1 = {(y, z, σ) ∈ Wgg∗ : w(z) = σ · εcyc},

which is a finite cover of the plane inW3 arising as the Zariski closure of points of weights (`,m,m−
1) for some `,m ≥ 1. Note that S obviously contains the curve C.

Let Vgg∗|S denote the restriction of Vgg∗ to the surface S and Vgg∗|C denote its restriction to
C. The following proposition establishes the existence of a class κ′p(g,g

∗) ∈ H1(Qp,Vgg∗|S) that
may be regarded as the derivative of κp(g,g

∗) along the z-direction.
We shrink weight space W to a rigid-analytic open disk U ⊂ W centered at 1 at which the

finite cover w :Wg →W restricts to an isomorphism w : Ug
∼→ U with y0 ∈ Ug. Let ΛUg = O(Ug)

denote the Iwasawa algebra of analytic functions on Ug whose supremum norm is bounded by
1. Shrink likewise C and S so that projection to weight space restricts to an isomorphism with
U and U × U respectively. Having done that, their associated Iwasawa algebras are respectively
O(C) = ΛUg ' Zp[[Z]] and O(S) = ΛUg⊗̂ΛUg ' Zp[[Y, Z]]. The isomorphism ΛUg ' Zp[[Z]] is not
canonical and depends on the choice of an element γ ∈ Λ×Ug which is sent to 1 + Z.

Consider the short exact sequence of Zp-modules

0→ Zp[[Y, Z]]
·(Z−Y )−−−−−→ Zp[[Y,Z]]→ Zp[[Z]]→ 0.

Under the above identifications, the previous exact sequence may be recast as

0→ OS
δ−→ OS → OC → 0

with δ = 1⊗ (γ − 1)− (γ − 1)⊗ 1 in OS ' ΛUg⊗̂ΛUg .
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Proposition 3.3.6. There exists a unique local class κ′p,γ(g,g∗) ∈ H1(Qp,Vgg∗|S) such that

κp(g,g
∗)|S = δ · κ′p,γ(g,g∗).

Proof. The short exact sequence of GQp-modules

0→ Vgg∗|S
δ−→ Vgg∗|S → Vgg∗|C → 0

gives rise to the long exact sequence

H0(Qp,Vgg∗|C)→ H1(Qp,Vgg∗|S)
δ−→ H1(Qp,Vgg∗|S)→ H1(Qp,Vgg∗|C).

Since H0(Qp,Vgg∗|C) = 0 as already argued in the proof of Theorem 3.3.5, the vanishing of
κp(g,g

∗)|C implies the existence of a unique element κ′p,γ(g,g∗) ∈ H1(Qp,Vgg∗|S) satisfying the
claim.

We are interested in the restriction of κ′p,γ(g,g∗) to C; although it depends on the choice of the
topological generator γ, the class κ′p(g,g

∗) ∈ H1(Qp,Vgg∗|C) defined by

κ′p(g,g
∗) =

κ′p,γ(g,g∗)

logp(γ)

is independent of γ.

Since in our setting the Euler factor 1−
αg◦yβh◦z
ps appearing in Proposition 3.3.2 is equal to 1−

αg◦y
αg◦z

,

it is natural to introduce a modified p-adic L-function on the surface S, defined as

L̃p(g,g
∗)(y, z, s) =

(
1−

αg◦y
αg◦z

)
× Lp(g,g∗)(y, z, s). (3.38)

Fix a point (y, z, s) ∈ W◦gh ∩ S. Set L = Q(g◦y , h
◦
z, λN (g◦y)) and let Lp denote the p-adic

completion of L. Define

log−+ : H1(Qp,Vgy ⊗ Vhz(1− s))
pr−+

−−−→ H1(Qp,V−gy ⊗ V
+
hz

(1− s))→ Lp, (3.39)

where the first map is the projection ontoH1(Qp,V−gy⊗V
+
hz

(1−s)) and the last one is the composition
of the Bloch–Kato logarithm with the pairing with the differential ηg◦y ⊗ ωh◦z .

It follows from Theorems 3.3.2 and 3.3.4 that for all (y, z, s) ∈ W◦gh ∩ S:

L̃p(g,g
∗)(y, z, s) =

(
1−

αg◦z
pαg◦y

)
· log−+(κp(g,g

∗)(y, z, s)), (3.40)

up to multiplication by the c-factor we have described in Theorem 3.3.4 and which does not affect
to our discussion since we always work modulo L×.

Observe that the function L̃p(g,g
∗) vanishes along the curve C, so the restriction of its derivative

to that line is exactly zero. Recall that L̃p(g,g
∗) is a two-variable function, determined by the values

of y and z, since the third variable σ comes automatically determined by z. Hence, one has that

∂

∂y
L̃p(g,h) +

∂

∂z
L̃p(g,h) = 0.

Recall that αg is an analytic function defined over Λg; we denote by α′g its derivative. We may
consider as before the L-invariant attached to the adjoint representation of g,

L(ad0(g)) = −
α′g
αg
.
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Observe that its specializations at classical points agree with the definitions given before in (3.23).
Now, we can compute the partial derivatives of L̃p(g,h) at a crystalline point (y, y, `−1) of the

curve C. Using (3.38), one gets

∂

∂y
L̃p(g,h)(y, y, `− 1) = L(ad0(gy)) · Lp(g,g∗)(y, y, `− 1). (3.41)

Then, using (3.40), we first observe that κp(g,g
∗)(y, z, s) vanishes at (y, y, `− 1) and its derivative

in the z-direction is precisely the logarithm of the derived cohomology class we have previously
computed in Proposition 3.3.6; hence, one gets that

∂

∂z
L̃p(g,h)(y, y, `− 1) = (1− p−1) · (log−+(κ′p(g,g

∗)(y, y, `− 1))). (3.42)

We have then proved the following result:

Theorem 3.3.7. For any crystalline point (y, y, `− 1) on C, it holds that

L(ad0(gy)) · Lp(g,g∗)(y, y, `− 1) = log−+(κ′p(g,g
∗)(y, y, `− 1)) (mod L×).

Weight one modular forms

Let g ∈ S1(N,χg) and h ∈ S1(N,χh) be two cuspidal eigenforms of weight one. Let Vg and Vh
denote the Artin representations over a finite extension L of Q attached to g and h. Let αg, βg
(resp.αh, βh) denote the roots of the p-th Hecke polynomial of g (resp. of h). We assume throughout
that αg 6= βg and αh 6= βh. We also assume L is large enough as specified in 3.2.

Definition 3.3.8. Let g and h be Hida families passing through p-stabilizations gα, hα of g, h at
some point (y0, z0) ∈ W◦g ×W◦h of weights (1, 1). Define

κ(gα, hα) := κ(g,h)(y0, z0, 0) ∈ H1(Q, Vgh ⊗ Lp(1))

as the specialization of κ(g,h) at the point (y0, z0, 0).

This procedure yields four a priori different global cohomology classes:

κ(gα, hα), κ(gα, hβ), κ(gβ, hα), κ(gβ, hβ), (3.43)

one for each choice of pair of roots of the p-th Hecke polynomials of g and h.
Given a p-adic representation V of GQp with coefficients in Qp, Bloch and Kato introduced

in [BK93] a collection of subspaces of the local Galois cohomology group H1(Qp, V ), denoted
respectively

0 ⊂ H1
e (Qp, V ) ⊂ H1

f (Qp, V ) ⊂ H1
g (Qp, V ) ⊂ H1(Qp, V ).

Definition 3.3.9. Let V be a representation of GQ with coefficients in Qp. The group of classes
that are de Rham at p (i.e. the restriction to Qp lies in H1

g (Qp, V )) and unramified at all primes
` 6= p is denoted as H1

f,p(Q, V ).
The group of classes that are crystalline at p and unramified at any other prime q 6= p is denoted

as H1
f (Q, V ).

Proposition 3.3.10. The four classes in (3.43) lie in H1
f,p(Q, Vgh ⊗ Lp(1)).

Proof. The dimensions of H1
g (Qp, Vgh(1)) and H1(Qp, Vgh(1)) are equal, according to the discussion

of [DR20b, Section 1.4]; hence, the classes are de Rham at p. Furthermore, the restriction of
these classes to Qq is 0 for q 6= p. In fact a stronger fact holds true: the local Λ-adic classes
κq(g,h) ∈ H1(Qq,Vgh) are 0 at all q 6= p. This can be argued for instance by fixing weights (`,m, s)
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large enough so that for every triple (ε1, ε2, ε3) of characters of arbitrary p-power conductor and for
any point (x, y, z) above (ν`,ε1 , νm,ε2 , νs,ε3), V(g,h)(x, y, z) contains no sub-quotient isomorphic to
neither Qp nor Qp(1). It then follows from Tate’s local Euler characteristic formula (cf. [Nek98, 2.5])
that H1(Qq,Vgh(x, y, z)) = 0. From this it follows that H1(Qq,Vgh) = 0 arguing as in e.g. [KLZ17,
Prop. 8.1.7 or Lemma 8.2.6].

Recall that we let H denote the Galois extension of Q cut out by Vg ⊗ Vh.

Proposition 3.3.11. There are natural identifications

H1
f (Q, Vgh ⊗L Lp(1)) = (O×H ⊗Z Vgh ⊗L Lp)GQ , (3.44)

H1
f,p(Q, Vgh ⊗L Lp(1)) = (OH [1/p]× ⊗Z Vgh ⊗L Lp)GQ .

Proof. This follows from the same arguments as in e.g. [Bel09, Prop. 2.9].

Since αg 6= βg, Vg decomposes as a GQp-module as Vg = V
αg
g ⊕V βg

g , where V
αg
g and V

βg
g are the

GQp-invariant lines on which Frp acts with eigenvalue αg and βg respectively. We similarly have

Vh = V αh
h ⊕ V βh

h , and we may define

V αα
gh := V

αg
g ⊗ V αh

h , ..., V ββ
gh := V

βg
g ⊗ V βh

h .

Note that these four GQp-invariant lines in Vgh are linearly independent even though some of the
eigenvalues αgαh, αgβh, βgαh, βgβh might be equal. Hence there is a decomposition ofGQp-modules

Vgh := Vg ⊗ Vh = V αα
gh ⊕ ...⊕ V

ββ
gh . (3.45)

It follows that the local class κp(gα, hα) may be decomposed as

κp(gα, hα) = κ++
p (gα, hα) + κ+−

p (gα, hα) + κ−+
p (gα, hα) + κ++

p (gα, hα),

where

κ++
p (gα, hα) ∈ H1(Qp, V

ββ
gh ⊗ Lp(1)), κ+−

p (gα, hα) ∈ H1(Qp, V
βα
gh ⊗ Lp(1)) (3.46)

κ−+
p (gα, hα) ∈ H1(Qp, V

αβ
gh ⊗ Lp(1)), κ−−p (gα, hα) ∈ H1(Qp, V

αα
gh ⊗ Lp(1)).

As before, we are specially interested in the case where h = g∗ = g ⊗ χ−1, and we impose on
g the assumptions (H1-H2-H3) listed in the introduction; if we denote by {α, β} the p-th Hecke
eigenvalues of g, the p-th Hecke eigenvalues of h are {1/β, 1/α}.

Let g and h = g∗ := g ⊗ χ−1 denote the Hida families over Wg = Wh passing through gα
and (gα)∗ = (g∗)1/β respectively at some point y0 ∈ Wg in weight space. Thanks to our running
assumptions, the main theorem of [BeDi16] ensures that the weight map Wg −→W is étale at the
point associated to gα. It is therefore possible to fix an open subset in Wg around gα on which the
weight map is an isomorphism. This way we are entitled to work under the simplifying assumptions
posed in 3.3 and the results in loc. cit. and 3.3 may be applied.

Proposition 3.3.12. The global cohomology classes κ(gα, g
∗
1/β) and κ(gβ, g

∗
1/α) are zero.

Proof. The restriction map

resp : H1(Q, Vgh ⊗ Lp(1))→ H1(Qp, Vgh ⊗ Lp(1))

is injective. This follows from [Bel09, Proposition 2.12], which asserts that there are natural
isomorphisms

H1(Q, Vgh ⊗ Lp(1)) ' (H× ⊗ Vgh)GQ , H1(Qp, Vgh ⊗ Lp(1)) ' (H×p ⊗ Vgh)GQp ,

and hence the restriction map corresponds to the natural inclusion H ↪→ Hp. From Theorem 3.3.5,
it follows that κp(gα, g

∗
1/β) and κp(gβ, g

∗
1/α) are both zero, and the result follows.



3.4. DERIVATIVES OF FOURIER COEFFICIENTS VIA GALOIS DEFORMATIONS 83

Define the curve

D := {(y, z, σ) ∈ Wgg∗ : y = y0, w(z) = σ · εcyc} ⊂ S

Proposition 3.3.13. There exists a unique global class κ′γ(g,g∗) ∈ H1(Q,Vgg∗|D) such that

κ′γ(g,g∗)|D = (γ − 1) · κ′γ(g,g∗).

Proof. The short exact sequence of GQ-modules

0→ Vgg∗|D
δ−→ Vgg∗|D → Vgh ⊗ Lp(1)→ 0

gives rise to the long exact sequence

H0(Q, Vgh ⊗ Lp(1))→ H1(Q,Vgg∗|D)
δ−→ H1(Q,Vgg∗|D)→ H1(Q, Vgh ⊗ Lp(1)).

Since H0(Q, Vgh⊗Lp(1)) = 0, the vanishing of κ(gα, g
∗
1/β) proved in Proposition 3.3.12 implies the

existence of a unique element κ′γ(g,g∗) ∈ H1(Q,Vgg∗|D) satisfying the claim.

Remark 3.3.14. The global cohomology class in Proposition 3.3.13 only makes sense along the
curve D. Besides, the local cohomology class constructed in Proposition 3.3.6 exists along the
whole surface S. Hence one can not define the latter on the surface S as the restriction at p of the
former, although this is indeed true after restricting to D, a fact that we shall apply right below.

Set

κ′(gα, g
∗
1/β) =

1

logp(γ)
κ′γ(g,g∗)(y0, y0, 0). (3.47)

Since the construction of this class coincides with the one performed in the previous section once
we localize at p and restrict to the curve D, Theorem 3.3.7 applies and we deduce that

L(ad0(gα)) · Lp(g,g∗)(y0, y0, 0) = log−+(κ′p(gα, g
∗
1/β)) (mod L×). (3.48)

Recall from (3.21) that Lp(g,g
∗) satisfies a functional equation relating the values at s = 0 and

s = 1 up to a simple non-zero rational constant. Together with Proposition 3.2.5 this implies that

Lp(g,g
∗)(y0, y0, 1)2 = L(ad0(gy0))2 = log−+(κ′p(gα, g

∗
1/β)) (mod L×). (3.49)

This formula is the key input for deriving Theorem B, the second main result of this chapter.

3.4 Derivatives of Fourier coefficients via Galois deformations

As in previous sections, let g ∈ S1(N,χ) satisfying the hypothesis of the introduction. Let

%g : Gal (Hg/Q) ↪→ GL(Vg) ' GL2(L), %ad0(g) : Gal (H/Q) ↪→ GL(ad0(g)) ' GL3(L)

denote the Artin representations associated to g and its adjoint, respectively. Here L is a finite
extension of Q and Hg ⊇ H denote the finite Galois extensions of Q cut out by these representations.
Let P denote the set of primes of H lying above p, and fix once for all a prime ℘ ∈ P, thus
determining an embedding H ⊂ Hp ⊂ Q̄p of H into its completion Hp at ℘, and an arithmetic
Frobenius Frp ∈ Gal (Hp/Qp).

As it occurred in [DLR16], the regularity assumptions we have imposed on g imply by e.g. in
[Das99, Prop. 3.2.2] that

dimL(O×H ⊗ Vgg∗)
GQ = 1, dimL(OH [1/p]× ⊗ Vgg∗)GQ = 3,
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and thus
dimL(OH [1/p]×/pZ ⊗ Vgg∗)GQ = dimL(OH [1/p]×/pZ ⊗ ad0(g))GQ = 2.

Fix two linearly independent global cohomology classes

u ∈ H1
f (Q, Vgg∗ ⊗ Lp(1)), v ∈ H1

f,p(Q, Vgg∗ ⊗ Lp(1))

such that under the identifications provided by Proposition 3.3.11, project to a basis of the two-
dimensional space (OH [1/p]×/pZ⊗ad0(g))GQ . By a slight abuse of notation, we continue to denote

u ∈ (O×H ⊗ ad0(g))GQ , v ∈ (OH [1/p]×/pZ ⊗ ad0(g))GQ

the resulting elements.
Recall from (3.45) that Vgh admits a natural decomposition as GQp-module as the direct sum

of the four different lines V αα
gg∗ , ..., V ββ

gg∗ . Since ad0(Vg) is the quotient of Vgg∗ by the trivial repre-

sentation, (3.45) descends to a decomposition of ad0(Vg) as GQp-module as

ad0(g) = ad0(g)1 ⊕ ad0(g)α⊗β̄ ⊕ ad0(g)β⊗ᾱ = L · e1 ⊕ L · eα⊗β̄ ⊕ L · eβ⊗ᾱ,

where Frp(e1) = e1, Frp(eα⊗β̄) = α
β · eα⊗β̄, Frp(eβ⊗ᾱ) = β

α · eβ⊗ᾱ. Note that α/β 6= 1 thanks to
the regularity assumption. It could be that α = −β and hence α/β = β/α = −1, but the above
decomposition is still available as explained in (3.45).

Restriction to the decomposition group at p allows us to regard u and v as elements in
H1(Qp, ad0(g)⊗ Lp(1)) = (H×p ⊗ ad0(g))GQp , and as such we may write u and v as

u = u1 ⊗ e1 + uα⊗β̄ ⊗ eα⊗β̄ + uβ⊗ᾱ ⊗ eβ⊗ᾱ, v = v1 ⊗ e1 + vα⊗β̄ ⊗ eα⊗β̄ + vβ⊗ᾱ ⊗ eβ⊗ᾱ, (3.50)

where u1, v1, uα⊗β̄, vα⊗β̄, uβ⊗ᾱ, vβ⊗ᾱ ∈ H×p satisfy

Frp(u1) = u1, Frp(uα⊗β̄) =
β

α
· uα⊗β̄, Frp(uβ⊗ᾱ) =

α

β
· uβ⊗ᾱ

and similarly for v.
We can now provide the last step in our proof of Theorems A, A’ and B in the introduction. As

it was shown in Corollary 3.2.5, Theorem A may be reduced to the computation of the derivative
of the Fourier coefficient ap(g) at y0, where g stands for the unique Hida family passing through
gα.

Let
%̃g : GQ → GL2(Lp[ε])

be the unique first order α-ordinary deformation of %g such that

det %̃g = χg(1 + logp χcyc · ε).

This representation, whose existence follows from [BeDi16], satisfies

%̃g = (1 + ε · κg) · %g,

for some cohomology class κg : GQ → ad(%). Considering a diagonal basis for the Frobenius action
(where we take the first vector to have eigenvalue α), the matrix form of κ(σ) can be expressed as

κ(σ) =

(
κ1(σ) κ2(σ)
κ3(σ) κ4(σ)

)
.

We denote by %̃g,p the restriction of %̃g to the decomposition group at p; in the same way, the
restriction of κ to the decomposition group at p is denoted by κp, and similarly we denote by κi,p
the restriction of κi to GQp .
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In [BeDi16, Lemmas 2.3 and 2.5] the authors determine the tangent space to a deformation
problem which can be seen to be equivalent to ours. They conclude that there is a natural bijection
between this tangent space and a certain subspace of H1(Q, ad(%g)); in this case, it consists on
those classes κ whose matrix representation satisfies

κ3,p(σ) = 0, κ1,p(σ)|Ip = 0, (3.51)

being Ip the inertia group at p. In [DLR18], the restriction of κ to the inertia group at p was
determined, and the identifications of class field theory allow us to extend this to the whole de-
composition group. A similar setting, where also a quite related deformation problem arises, is
exploded in [BDP19] to treat the case of weight one Eisenstein points.

Let V α
g be the étale subspace on which the action of the Frobenius is unramified for the Λ-adic

representation. Restricting to the decomposition group at p, we have that

%̃g,p|V αg = (1 + ε · κ1,p) · αg,

where κ1,p ∈ H1(Qp,Hom(V α
g , V

α
g )). If g′α stands for the derivative of g evaluated at y0, we then

have

ap(gα) + ε · ap(g′α) = αg + ε · κ1,p(Frp) · αg,

and consequently we have the following.

Proposition 3.4.1. Let g be the Hida family through gα. Then, it holds that

ap(g
′
α) = κ1,p(Frp) (mod L×).

Taking into account the identifications provided by class field theory, one can make κ1(Frp)
explicit.

From [BeDi16, Section 3.2], there is an exact sequence

0→ Hom(GH , Q̄p)→ Hom((OH ⊗Qp)
×, Q̄p)→ Hom(O×H ⊗Qp, Q̄p).

Similarly, one has another exact sequence

0→ Hom(GH , Q̄p)→ Hom((H ⊗Qp)
×, Q̄p)→ Hom(OH [1/p]× ⊗Qp, Q̄p).

Consequently, we have identifications

H1(Q, Q̄p)⊗ ad(%) ' (H1(H, Q̄p)⊗ ad(%))GQ ' (Hom(GH , Q̄p)⊗ ad(%))GQ ,

and this corresponds with the subspace of homomorphisms of

(Hom((H ⊗Qp)
×, Q̄p)⊗ ad(%))GQ

vanishing at OH [1/p]× ⊗Qp.

We now recall some results which allow us to determine each of the κi,p. Since there are
isomorphisms

(OH ⊗Qp)
× '

∏
q∈P
O×Hq

, (H ⊗Qp)
× '

∏
q∈P

H×q ,

we may write elements in (OH ⊗Qp)
× (or (H ⊗Qp)

×) as tuples (xi)i∈P . The action of the Galois
group G = Gal (H/Q) is transitive on P, so any Galois equivariant homomorphism from (H⊗Qp)

×

(resp. (OH ⊗Qp)
×) to Q̄p is completely determined by its values on H×p (resp. O×Hp).

From class field theory, one has two distinguished elements in H1(Qp, Q̄p):
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1. The class κnr, which is the unique homomorphism

κnr ∈ Hom(Gal (Qnr
p /Qp), Q̄p)

taking Frp to 1.

2. The restriction to GQp of the logarithm of the cyclotomic character

κcyc := logp(εcyc),

which gives a ramified element of H1(Qp, Q̄p).

Furthermore, observe that H1(Qp, Q̄p) is identified with Hom(GHp , Q̄p)
Gal (Hp/Qp) as explained

above. In the latter space, we denote by κnr the morphism that takes Frp to 1, and by κcyc the
ramified element defined by logp(εcyc).

Now we can determine explicitly the element κ ∈ H1(Q, ad(%)), by constructing a homomor-
phism

Φg(x) : (H ⊗Qp)
× → Hp ⊗ ad(%)

corresponding to κ via the previous identifications. In particular, it vanishes when evaluated at the
basis {u, v} of units for the adjoint. Moreover, Φg(π

−1
p ) leaves invariant the one-dimensional space

V α
g , being π−1

p the idèle which is equal to the inverse of a local uniformiser of Hp for the fixed prime
℘ above p, and to 1 everywhere else. The eigenvalue for the action of Φg(π

−1
p ) on that subspace is

precisely κ1(Frp).

Let u×g be any generator of (O×H⊗ad(%))GQ , and let v×g be any element of the space (OH [1/p]×⊗
ad(%))GQ such that {u×g , v×g } is a basis of (OH [1/p]×/pZ ⊗ ad(%))GQ . Let

ug := (logp⊗ Id)(u×g ), vg := (logp⊗ Id)(v×g ), ṽg := (ordp ⊗ Id)(v×g ) ∈ Hp ⊗ ad(%).

Consider the element

Ag ∈ (Hp ⊗ ad(%))GQp ,

which on an eigenbasis for the Frobenius takes the form

Ag :

(
0

logp(u1)

logp(uα⊗β̄)

0 1

)
.

Consider also J ∈ (Hp ⊗ ad(%))GQp , which in the same basis is expressed as

J =

(
a b
0 c

)
,

where a, b, c ∈ Hp.

These choices give rise to the GQp-equivariant homomorphism Φg : H× → Hp ⊗ ad(%) given by
the rule

Φg(x) :=
∑
σ∈G

logp(
σx) · (σ−1 ·Ag) +

∑
σ∈G

ordp(
σx) · (σ−1 · J). (3.52)

Here, σ−1 · Ag denotes the action of σ−1 by conjugation on the second factor of the tensor
product, ad(%); then, this homomorphism can be extended to the whole (H ⊗Qp)

×. The aim is to
determine a suitable J such that Φg(x) corresponds to κ via class field theory. The following result
explains the behavior of the terms coming from the log-part.
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Proposition 3.4.2. Let ad(%)ord := Hom(Vg/V
α
g , Vg). The homomorphism Φg vanishes on O×H ⊗

Qp, and Φg(x) ⊂ Hp ⊗ ad(%)ord for any x of the form (xp, 1, . . . , 1), where xp ∈ O×Hp. Moreover,

Φg(x) fixes V α
g for all x of the form (xp, 1, . . . , 1), with xp ∈ H×p .

Proof. This follows from [DLR18, Lemma 1.6], where Φg is defined in the same way but without
the ord-terms. It is clear that the behavior at the OH -units is not affected by the presence of these
extra terms. The last part of the statement follows from the definition of Ag and J .

To determine the remaining parameters of the matrix J (a, b and c), we first observe that
the homomorphism Φg must vanish at OH [1/p]× ⊗Qp. The endomorphism vg is represented by a
matrix of the form

vg :

(
logp(v1) logp(vβ⊗ᾱ)

logp(vα⊗β̄) − logp(v1)

)
,

and hence

Tr(Agvg) =
logp(u1) · logp(vα⊗β̄)− logp(uα⊗β̄) · logp(v1)

logp(uα⊗β̄)
. (3.53)

Furthermore, observe that the restrictions of both κ1,p and κ4,p to the decomposition group at
p belong to

H1(Qp, Q̄p) ' H1(Hp, Q̄p)
GQp ;

this space is two-dimensional and it is generated by κcyc and κnr; in the same way, κ2,p is a
cohomology class in the one-dimensional space

H1(Hp, Q̄p(β/α))GQp .

It is clear that

κ1|Ip = 0, κ2|Ip =
logp(u1)

logp(uα⊗β̄)
κcyc, κ4|Ip = κcyc.

Then, to determine the restriction of the cohomology classes to the whole decomposition group,
we impose these three conditions:

1. The fact that the trace of the representation is prescribed (and is equal to κcyc) forces that

κ1 = λ · κnr, κ4 = κcyc − λ · κnr.

2. The fact that H1(Hp, Q̄p(β/α))GQp is one-dimensional (since α 6= β), makes that

κ2 =
logp(u1)

logp(uα⊗β̄)
κcyc

(i.e., there is no contribution coming from the Frobenius).

3. The remaining parameter λ can be determined by considering the associated matrix J giving
rise to the endomorphism Φg(x). This is the content of the following proposition.

Proposition 3.4.3. There exists a unique λ such that the homomorphism Φg(x) vanishes at
OH [1/p]× ⊗Qp.

Proof. Picking w ∈ OH [1/p]× and an arbitrary B ∈ ad(%), it is enough to see that

Tr(Φg(w) ·B) = 0,
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due to the non-degeneracy of the Hp-valued trace pairing on H℘ ⊗ ad(%). Set

w×g :=
∑
σ∈G

σw ⊗ (σ ·B) ∈ (O×H ⊗ ad(%))GQ .

Observe that w×g can be expressed in terms of the basis u×g and v×g . In particular, let

wg := (logp⊗ Id)(w×g ) = λ · ug + µ · vg; w̃g := (ordp ⊗ Id)(w×g ) = µ · ṽg.

Then,

Tr(Φg(w) ·B) = λ · Tr(Ag · ug) + µ · Tr(Agvg − J · ṽg).

Observe that

J =

(
−λ 0
0 λ

)
,

and from (3.53), one sees that

λ =
logp(u1) · logp(vα⊗β̄)− logp(v1) · logp(uα⊗β̄)

2 · logp(uα⊗β̄) · ordp(v1)
.

Hence, we conclude that

κ1 = −
logp(u1) · logp(vα⊗β̄)− logp(v1) · logp(uα⊗β̄)

2 · logp(uα⊗β̄) · ordp(v1)
· κnr,

and evaluating at Frp we finally obtain the formula we anticipated below

ap(g
′
α) =

logp(u1) · logp(vα⊗β̄)− logp(v1) · logp(vα⊗β̄)

logp(uα⊗β̄)
(mod L×), (3.54)

as claimed.

3.5 Proof of main results

Proof of Theorems A and A’

Recall that by [DLR16, Proposition 4.2], the p-adic iterated integral of the statement agrees, up to
multiplication by a scalar in L×, with the special value Lp(g,g

∗)(y0, y0, 1). Further, applying the
relation between Lp(g,g

∗)(y0, y0, 1) and ap(g
′
α) as described in Corollary 3.2.5, we have that

Lp(g,g
∗)(y0, y0, 1) = Lp(g,g

∗)(y0, y0, 0) = L(ad0(gα)) = ap(g
′
α) (mod L×).

The derivative of the Fourier coefficient was computed in the previous section, and it follows from
(3.54) that

Lp(g,g
∗)(y0, y0, 1) =

logp(u1) · logp(vα⊗β̄)− logp(v1) · logp(uα⊗β̄)

logp(uα⊗β̄)
(mod L×). (3.55)

This proves Theorems A and A’.
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Proof of Theorem B

We may combine (3.49) with the above result to deduce that

log−+(κ′p(gα, g
∗
1/β)) =

( logp(u1) logp(vα⊗β̄)− logp(uα⊗β̄) logp(v1)

logp(uα⊗β̄)

)2
(mod L×).

Recall that in (3.39) we defined the map log−+ as the composition of the Perrin-Riou big
logarithm of Proposition 3.3.2 specialized at weight (y0, y0, 0) and the pairing with the class ηgα ⊗
ωg∗

1/β
introduced in 3.2. These differential classes satisfy

〈ηgα , ωg∗1/β 〉 =
1

λN (gα)E0(gα)E1(gα)
∈ L×.

under the perfect pairing D(Vg) ×D(Vg∗) → Lp. We may take a decomposition of Vg and Vg∗ as
GQp-modules

Vg = L · egα ⊕ L · e
g
β, Vg∗ = L · eg

∗

1/α ⊕ L · e
g∗

1/β,

respectively, where {egα, egβ} and {eg
∗

1/α, e
g∗

1/β} are basis of Vg and Vg∗ , one dual of each other, and
compatible with the choice of the basis for the tensor product Vgg∗ considered at the previous
section. As explained in [DR16, Section 2], one may define p-adic periods

Ξgα ∈ H
Frp=β−1

p , Ωg∗
1/β
∈ HFrp=β

p (3.56)

satisfying that
Ξgα ⊗ e

g
β = ηgα , Ωg∗

1/β
⊗ eg

∗

1/β = ωg∗
1/β
.

The natural pairing between D(Vg) = (Hp⊗ Vg)GQp and D(Vg∗) = (Hp⊗ Vg∗)GQp induces a duality
between Vg and Vg∗ , and hence the quantity

〈ηgα , ωg∗1/β 〉 = Ξgα · Ωg∗
1/β
· 〈egβ, e

g∗

1/β〉 = Ξgα · Ωg∗
1/β

belongs to L×. Consequently, the class

κ◦ =
logp(u1) logp(vα⊗β̄)− logp(uα⊗β̄) logp(v1)

logp(uα⊗β̄)2
×
(

logp(vα⊗β̄)u− logp(uα⊗β̄)v
)

satisfies log−+(κ′p(gα, g
∗
1/β)) = log−+(resp(κ◦)).

We may write the cohomology class κ′(gα, g
∗
1/β) as a linear combination

κ′(gα, g
∗
1/β) = a · u+ b · v + c · p,

where a, b, c ∈ Lp.
The condition for an element to lie in the kernel of the map log−+ is

a · logp(uα⊗β̄) + b · logp(vα⊗β̄) = 0.

Hence, we have that

κ′(gα, g
∗
1/β) = κ◦ + λ(logp(vα⊗β̄) · u− logp(uα⊗β̄) · v) + µ · p.

Consider now the map

log−− : H1(Qp, Vgh(1))
pr−−−−−→ H1(Qp, V

−−
gh (1)) ' H1(Qp,Qp(α/β)(1))

logBK−−−→ Lp.
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According to (3.30), the class κ′p(gα, g
∗
1/β) also lies in the kernel of log−−. Hence, taking equal-

ities up to periods,

log−−(κ′p(gα, g
∗
1/β)) = log−−(resp(κ◦)) + λ(logp(vα⊗β̄) · logp(u1)− logp(uα⊗β̄) · logp(v1))

= λ · (logp(vα⊗β̄) · logp(u1)− logp(uα⊗β̄) · logp(v1)) = λ · logp(uα⊗β̄) · Lp(g,g∗)(y0, y0, 1) = 0.

The assumption L(ad0(gα)) 6= 0 in Theorem B implies that Lp(g,g
∗)(y0, y0, 1) 6= 0 by the first

display in this section. Hence λ = 0 and Theorem B follows.

Non-vanishing of the L-invariant

We conclude this section by noting that the non-vanishing of the L-invariant can be proved in most
dihedral cases, because the expression (3.55) simplifies considerably. Indeed, let K be a real or
imaginary quadratic field of discriminant D and let ψ : GK −→ L× be a finite order character
of conductor c ⊂ OK (and of mixed signature at the two archimedean places if K is real). Then
the theta series g = θ(ψ) attached to ψ is an eigenform of weight 1, level Ng = |D| · NK/Q(c)
and nebentype χg = χKχψ, where χK is the quadratic character associated to K/Q and χψ is the
central character of ψ.

Let ψ′ denote the Gal (K/Q)-conjugate of ψ defined by the rule ψ′(σ) = ψ(σ0σσ
−1
0 ) for any

choice of σ0 ∈ ΓQ \GK . If ψ 6= ψ′ then g is cuspidal.
Let p - Ng be a prime number and fix an embedding Q̄ ⊂ Q̄p. In line with the introduction,

suppose that hypotheses (H1-H2-H3) are fulfilled. This amounts to asking that

(i) ψ 6= ψ′ (mod p), so that g is cuspidal even residually at p.

(ii) If K is imaginary and p = ℘℘̄ splits in K, then ψ(℘) 6= ψ′(℘) (mod p).

(iii) If K is real, p does not split. If K is imaginary and the field H = K̄ker(ψ) cut out by ψ has
Galois group Gal (H/Q) = D4, the dihedral group of order 8, then p does not split in the
single real quadratic field contained in H.

Proposition 3.5.1. If K is imaginary with p split, or K is real with p inert, then

L(ad0(gα)) = logp(v1) (mod L×). (3.57)

In particular L(ad0(gα)) 6= 0.

Proof. If K is real (and thus p remains inert in it) then u1 is the norm of the fundamental unit of
K and hence its p-adic logarithm vanishes. If K is imaginary and p splits, then v is a p-unit in K×

and hence logp(vα⊗β̄) = 0.

Note that Theorem B simplifies considerably in the setting of the above proposition. The
simplest scenario where it is not a priori obvious that the L-invariant is non-zero arises when K is
imaginary but p remains inert. Fix a prime ℘ in H above p and set ψad = ψ/ψ′. Note that ψad is a
ring class character, regardless of whether ψ is so or not. Let uψad

(resp. vψad
) denote any element

spanning the 1-dimensional L-vector space

O×H [ψad] := {x ∈ O×H ⊗ L : σ(x) = ψad(σ)x, σ ∈ Gal (H/K)},

respectively OH [1/℘]×[ψad]

O×H [ψad]
. Set also u′ψad

= Fr℘uψad
and v′ψad

= Fr℘vψad
. Then it is a straight-forward

computation to check that the L-invariant appearing in Theorems A and A’ is

L(ad0(gα)) =
log℘(uψad

) log℘(v′ψad
)− log℘(u′ψad

) log℘(vψad
)

log℘(uψad
)− log℘(u′ψad

)
(mod L×). (3.58)
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3.6 Darmon–Dasgupta units and p-adic L-functions

Darmon–Dasgupta units and Gross’ conjecture

Let us place ourselves again in the setting of 3.5, where K is real and p remains inert in it. In
this scenario Darmon and Dasgupta [DD06] associated to the ring class character ψad a local unit
vDD[ψad] ∈ K×p and conjectured that vDD[ψad] actually belongs to O[1/℘]×[ψad]. We refer to the
introductory chapters for a more exhaustive introduction of the preceding objects. The combination
of [Park10, Theorem 4.4] and Darmon–Dasgupta-Pollack’s [DDP11, Theorem 2] provides strong
evidence for this conjecture, as putting these results together it follows that, in our notations,

logp(NKp/Qp(vDD[ψad])) = logp(v1) (mod L×). (3.59)

The above equality together with Theorems B and C yield a formula relating the derived
Beilinson–Flach elements of this chapter with Darmon–Dasgupta units, much in the spirit of
[BSV20a, Theorem A] and [DR20b, Theorem C] for diagonal cycles versus Stark-Heegner points.
Taking into account the decomposition introduced in (3.50), the element κ′(gα, g

∗
1/β)1 belongs to

Q×p ⊗ Lp.

Corollary 3.6.1. Let g = θ(ψ) be the theta series associated to a finite order character ψ of mixed
signature of a real quadratic field K. Let p be a prime that remains inert in K. Then,

κ′(gα, g
∗
1/β)1 = logp(NKp/Qp(vDD[ψad])) ·NKp/Qp(vDD[ψad]) (mod L×).

In spite of the ostensible parallelism between the above formula and [BSV20a, Theorem A]
and [DR20b, Theorem C], note that the proof of Corollary 3.6.1 follows quite a different route
from [BSV20a] and [DR20b]. The main reason is that in the latter two references it was crucially
exploited a factorization of p-adic L-functions, which follows from a comparison of critical values.

In our setting here one still expects to have an analogous factorization, but proving it appears
to be far less trivial. Since this issue poses intriguing questions, and our results shed some light on
them, we discuss it in more detail below.

Artin p-adic L-functions

Let g = θ(ψ) ∈ S1(N,χ) be a theta series of a quadratic field K and p be a prime which is split
(resp. inert) if K is imaginary (resp. real). Keep the assumptions of Proposition 3.5.1, and set
h = g∗ = θ(ψ−1) and ψad = ψ/ψ′ as usual.

Let Lp(gα, g
∗
1/β, s) denote the cyclotomic p-adic Rankin-Hida L-function associated to the pair

(gα, g
∗
1/β) of p-stabilizations of g and h, as in 3.2. Note that this p-adic L-function has no critical

points.

Nevertheless, since

Vg ⊗ Vg∗ ' 1⊕ χK ⊕ IndKQ (ψad), (3.60)

one may still wonder whether Lp(gα, g
∗
1/β, s) admits a factorization mirroring the one satisfied by

its classical counterpart:

L(g, h, s) = ζ(s) · L(χK , s) · L(K,ψad, s). (3.61)

While (3.61) follows directly from (3.60) by Artin formalism, a putative analogous factorization of
Lp(gα, g

∗
1/β, s) is far less trivial. In the CM case one can prove it by a method which is nowadays

standard, but rather deep as one needs firstly to extend Lp(gα, g
∗
1/β, s) to a two-variable p-adic

L-function, prove a factorization in this scenario, and then invoke Gross’s theorem [Gro80]. Since
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we did not find it in the literature and the output is not precisely what one would näıvely expect2,
we provide it below.

As a piece of notation, we say that an element f in a finite algebra over Λ⊗n for some n ≥ 0,
is an L-rational fudge factor if it is a rational function with coefficients in L which extends to an
Iwasawa function with neither poles nor zeros at crystalline classical points. Let also LKatz

p denote
Katz’s p-adic L-function on the space of Hecke characters of an imaginary quadratic field. If ξ
is one such a character of K, we write LKatz

p (ξ, s) = LKatz
p (ξ · Ns) where N stands for the Hecke

character of infinity type (1, 1) induced by the norm from K to Q.

Theorem 3.6.2. Assume K is imaginary and p splits in it. Then there exists an L-rational fudge
factor f ∈ Λ such that

Lp(g, g
∗, s) =

f(s)

logp(uψad
)
· ζp(s) · Lp(χKω, s) · LKatz

p (ψad, s).

Proof. We follow the notations and normalizations adopted in [DLR15a, Section 3] and [DLR16,
Section 4]. Fix a prime ℘ of K above p. Take a Hecke character λ with image in Z×p of infinity

type (0, 1) and conductor ℘̄. For every integer ` ≥ 1 define ψ
(p)
g,`−1 = ψg〈λ〉`−1 and let ψg,`−1 be the

Hecke character given by

ψg,`−1(q) =

{
ψ

(p)
g,`−1(q) if q 6= ℘̄,

χ(p)p`−1/ψ
(p)
g,`−1(℘) if q = ℘̄.

As explained in loc. cit. there is a p-adic family ψg of Hecke characters whose weight ` specialization

is ψ
(p)
g,`−1 and such that the Hida family g passing through gα satisfies g◦` = θ(ψg,`−1).
Given a pair of classical weights (`, s), define the Hecke characters

Ψgh(`, s) = ψ−1
g,`−1 · ψ

′
g · Ns, Ψgh′(`, s) = ψ−1

g,`−1 · ψg · N
s, Ψg(`) = ψ−2

g,`−1χN
`.

All pairs (`, s) such that ` > s ≥ 1 belong to the region of interpolation of both Rankin-Hida’s p-
adic L-function Lp(g, g

∗
1/β, s) and Katz’s p-adic L-functions LKatz

p (ψgh(`, s)) and LKatz
p (ψgh′(`, s)).

At such critical pairs, it is readily verified that the following factorization of classical L-values
occurs up to an L-rational fudge factor:

L(g`, h, s) = L(ψgh(`, s)−1, 0)L(ψgh′(`, s)
−1, 0).

Using this identity, the same computations as in [DLR16, Theorem 4.2] show that there is an
L-rational fudge factor f(`, s) ∈ Λ⊗2 such that

Lp(g, h)(`, s) · LKatz
p (ψg(`)) = f(`, s) · LKatz

p (ψgh(`, s)) · LKatz
p (ψgh′(`, s)). (3.62)

If we now restrict to ` = 1 and invoke Katz’s p-adic analogue of Kronecker limit formula which
asserts that LKatz

p (ψ) = logp(uψad
) (modL×), it follows that

Lp(g, g
∗, s) =

f(s)

logp(uψad
)
· LKatz

p (Ns) · LKatz
p (ψad, s). (3.63)

Finally, Gross’s main theorem in [Gro80] together with the functional equation for Kubota-
Leopoldt’s p-adic L-function asserts that

LKatz
p (s) = ζp(s) · Lp(χKω, s) (3.64)

up to a rational fudge factor. This yields the theorem.

2Indeed, the formula Lp(g, g
∗, s) = f(s) · ζp(s) · Lp(χKω, s) · LKatz

p (ψad · Ns) is not correct, in spite of being the
direct analogue of (3.61). For one thing, this formula would enter in contradiction with Theorem A.
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Assume now that g = θ(ψ) is the theta series of a character of a real quadratic field in which p
is inert. In light of Theorem 3.6.2 it is natural to pose the following question:

Question 3.6.3. Assume K is real and p remains inert in K. Let uK be a fundamental unit of K
and let Lp(ψadω, s) denote the Deligne-Ribet p-adic L-function attached to ψadω. Is it true that

Lp(g, g
∗, s)

?
=

1

logp(uK)
· ζp(s) · Lp(χK , s) · Lp(ψadω, s) (3.65)

up to an L-rational fudge factor?

Note that the results of this chapter, combined with Darmon–Dasgupta-Pollack’s [DDP11,
Theorem 2] prove that the above factorization holds when evaluated at s = 0 and s = 1. Indeed,
Theorem A in this setting takes the simple form

Lp(g, g
∗, 1) = logp(v1) (mod L×),

while [DDP11, Theorem 2] asserts that Lp(ψadω, s) vanishes at s = 0 and

L′p(ψadω, 0) = logp(v1) (mod L×).

Moreover, ζp(s) has a simple pole at s = 0 whose residue is a non-zero rational number, and
Leopoldt’s formula asserts that Lp(χK , 0) = logp(uK) (modL×). Putting all together shows that
(3.65) is true at s = 0. The functional equations satisfied by each of the p-adic L-functions in play
ensure that the same is true at s = 1. This of course falls short from establishing (3.65).
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Chapter 4

Beilinson–Flach elements, Stark units
and p-adic iterated integrals

We study again one specializations of the Euler systems of Beilinson–Flach elements introduced
by Kings, Loeffler and Zerbes [KLZ17], with a view towards the main conjecture formulated by
Darmon, Lauder and Rotger in [DLR16]. In this framework, we show how the latter conjecture
follows from expected properties of Beilinson–Flach elements, and prove the analogue of the main
theorem of [CH20] in our setting.

The results presented at this chapter are the content of the research article [RR19], which is a
joint work with Victor Rotger.

4.1 Introduction

As we have already pointed out, in the last decade there has been substantial progress in the
theory of Euler systems of Garrett–Rankin type associated to triples (f, g, h) of modular forms.
This framework includes the original scenario of Kato’s Euler system [Ka04] and also encompasses
the Euler systems of Beilinson–Flach elements and diagonal cycles. When f is a weight two cusp
form, associated say to an elliptic curve E/Q, and (g, h) is a pair of modular forms of weight 1,
this approach yielded new results on the Birch and Swinnerton-Dyer conjecture for twists of E by
an Artin representation (see [BDR15b], [DR14], [DR17] and [KLZ17]).

These results, together with extensive numerical computations performed with the algorithm
[Lau14] of A. Lauder, led to the formulation of the Elliptic Stark Conjecture in [DLR15a], relating
the value of a p-adic iterated integral (that may be also recast as a special value of a triple-product
p-adic L-function at a point lying outside the region of interpolation) to a regulator defined in
terms of logarithms of global points on E. The authors of loc. cit. proved their conjecture in the
case where g, h are theta series attached to an imaginary quadratic field in which the prime p splits,
but the general case remains open.

While no Euler systems are invoked at all in [DLR15a], it was clear that they were behind
the scenes, and the connection was made explicit in [DR16], where it was proved how the Elliptic
Stark conjecture of [DLR15a] is implied by a precise (but so far unproved at the time of writing
this thesis) recipe for the weight (2, 1, 1) specializations of the Euler system of diagonal cycles of
[DR17], [DR20b].

There is a parallel story when one replaces the cusp form f and its associated abelian variety with
an Eisenstein series and the multiplicative group Gm. The article [DLR16] proposed a conjecture of
the same flavor as the Elliptic Stark conjecture of [DLR15a], where the entries of the regulator are
p-adic logarithms of Stark units in the number field cut out by the Artin representations associated
to g and h. As in loc. cit., this conjecture was proved when g and h are theta series attached to an
imaginary quadratic field in which the prime p splits.
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One of the aims of the present chapter is to describe the connection between the Euler system of
Beilinson–Flach elements and the arithmetic of unit groups of number fields, showing how expected
properties of the former imply the main conjecture of [DLR16].

In order to state more precisely our results, let

g =
∑
n≥1

anq
n ∈ S1(Ng, χg), h =

∑
n≥1

bnq
n ∈ S1(Nh, χh)

be two normalized newforms, and let Vg and Vh denote the Artin representations attached to them
by Serre and Deligne, with coefficients in a finite extension L/Q.

Consider also the tensor product Vgh := Vg ⊗ Vh, and let H be the smallest number field cut
out by this representation.

Fix a prime number p which does not divide NgNh and label the roots of the p-th Hecke
polynomial of g and h as

X2 − ap(g)X + χg(p) = (X − αg)(X − βg) X2 − ap(h)X + χh(p) = (X − αh)(X − βh).

Let gα(q) = g(q)− βgg(qp) and hα(q) = h(q)− βhh(qp) denote the p-stabilization of g (resp. h) on
which the Hecke operator Up acts with eigenvalue αg (resp. αh).

Let g∗ denote the twist of g by the inverse of its nebentype, i.e., g∗ := g ⊗ χ−1
g . Note that the

Up-eigenvalues of g∗ are 1/α and 1/β, and (gα)∗ = g∗1/β.
By enlarging it if necessary, assume throughout that L contains both the Fourier coefficients of

g and h and the roots of their p-th Hecke polynomials. Define

Ugh = O×H ⊗ L, Ugh[1/p] = OH [1/p]× ⊗ L.

In order to lighten notation, assume that the prime p splits completely in L/Q, so that L is equipped
with an embedding into Qp, which will be fixed from now on.

We assume throughout that

(H1) The reduction of Vg and Vh mod p are irreducible;

(H2) g and h are both p-distinguished, i.e.αg 6= βg (mod p) and αh 6= βh (mod p);

(H3) Vg is not induced from a character of a real quadratic field in which p splits;

(H4) hα 6= g∗1/β.

Assumption (H4) splits naturally into two different settings, namely the case where h 6= g∗

and the case where h = g∗ and αh = 1/αg. Case hα = g∗1/β, excluded here, presents remarkable
differences and we refer to the previous chapter for a thorough study of this scenario.

The results of [KLZ17] imply that there exists a Beilinson–Flach class

κ(gα, hα) ∈ H1(Q, Vgh ⊗Qp(1))

that can be identified, via Kummer theory, with an element of

HomGQ(Vgh ⊗Qp, Ugh[1/p]) = (Ugh[1/p]⊗ V ∨gh ⊗Qp)
GQ .

With a slight abuse of notation, we shall still denote κ(gα, hα) the projection of the cohomology
class to the space (Ugh[1/p]/pZ ⊗ V ∨gh ⊗ Qp)

GQ . Note that there also exist three other classes
κ(gα, hβ), κ(gβ, hα) and κ(gβ, hβ) attached to the different p-stabilizations of g and h.

As in [DLR16], we impose throughout the following:

Assumption 4.1.1. dimL (Ugh[1/p]/pZ ⊗ V ∨gh)GQ = 2.
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When h 6= g∗ this amounts to asking that none of the Frobenius eigenvalues of Vgh is equal to
1, that is to say:

αgαh, αgβh, βgαh, βgβh 6= 1.

Under this assumption, [DLR16, Lemma 1.1] also implies that

dimL(Ugh ⊗ V ∨gh)GQ = dimL(Ugh[1/p]⊗ V ∨gh)GQ = 2.

When hα = g∗1/α, the regularity assumption (H2) directly grants Assumption 4.1.1 and we have

dimL(Ugh ⊗ V ∨gh)GQ = 1, dimL(Ugh[1/p]⊗ V ∨gh)GQ = 3.

In either case, fix elements {u, v} of (Ugh[1/p]⊗V ∨gh⊗Qp)
GQ such that they project to a basis of

the two-dimensional space (Ugh[1/p]/pZ⊗ V ∨gh⊗Qp)
GQ . When hα = g∗1/α we impose the additional

condition that u spans the line (Ugh ⊗ V ∨gh ⊗Qp)
GQ .

Fix a prime ideal ℘ of H lying above p, thus determining an embedding H ⊂ Hp ⊂ Q̄p of H
into its completion Hp at ℘, and an arithmetic Frobenius Frp ∈ Gal (Hp/Qp). Thanks to (H2), the
Gal (Hp/Qp)-modules Vg, Vh decompose as

Vg := V α
g ⊕ V β

g , Vh := V α
h ⊕ V

β
h ,

where Frp acts on V α
g with eigenvalue αg, and similarly for the remaining summands. The tensor

product Vgh decomposes then as GQp-module as the direct sum of four different lines V α⊗α
gh :=

V
αg
g ⊗ V αh

h , ..., V β⊗β
gh . After choosing a basis, we may write this decomposition as

Vgh = L · eαα ⊕ L · eαβ ⊕ L · eβα ⊕ L · eβα,

where

Frp(eλµ) = λµ · eλµ, for any λ ∈ {αg, βg}, µ ∈ {αh, βh}.

We denote by {e∨αα, e∨αβ, e∨βα, e∨ββ} the dual basis of V ∨gh = Hom(Vgh, L), where

Frp(e
∨
αα) = χ−1

gh (p)βgβh · e∨αα , ... , Frp(e
∨
ββ) = χ−1

gh (p)αgαh · e∨ββ .

Restriction to the decomposition group at p allows us to regard u and v as elements in
H1(Qp, Vgh ⊗Qp(1)) = (H×p ⊗ V ∨gh ⊗Qp)

GQp , and as such we may decompose u and v as

u = uββ ⊗ e∨αα + uβα ⊗ e∨αβ + uαβ ⊗ e∨βα + uαα ⊗ e∨ββ , (4.1)

v = vββ ⊗ e∨αα + vβα ⊗ e∨αβ + vαβ ⊗ e∨βα + vαα ⊗ e∨ββ ,

where uαα ∈ H×p ⊗Qp satisfies Frp(uαα) = βgβh · uαα and similarly for the other terms.

Define the regulator

Reggα(Vgh) = logp(uαα) · logp(vαβ)− logp(uαβ) · logp(vαα). (4.2)

In the body of the chapter we introduce a p-adic avatar of the second derivative of L(g ⊗ h, s)
at s = 1, denoted by Lp

gα(g, h) and which can be defined in terms of special values of the Hida–
Rankin p-adic L-function; alternatively, it can also be recast as a Coleman p-adic iterated integral.
The non-vanishing of Lp

gα(g, h) implies the non-vanishing of Reggα(Vgh).

The following result is proved in Section 4.3. Recall that we are identifying cohomology classes
with their projection to the space (Ugh[1/p]/pZ ⊗ V ∨gh ⊗Qp)

GQ .
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Theorem 4.1.2. We have

κ(gα, hα) = Ω ·
(

logp(vαα) · u− logp(uαα) · v
)

(4.3)

for some Ω ∈ Hp. Moreover, if Lp
gα 6= 0, then κ(gα, hα) 6= 0. In this case, if we additionally

impose that h 6= g∗, the two cohomology classes

κ(gα, hα), κ(gα, hβ)

span the whole group (Ugh ⊗ V ∨gh ⊗Qp)
GQ.

The computations of [DLR16] suggest the following refinement of Theorem 4.1.2, which is
discussed in Section 4.3. Let ugα be the Stark unit attached to gα, as defined in [DLR15a]. The
choice of a basis for Vgh determines elements

Ξgα ∈ H
Frp=β−1

g
p , Ωhα ∈ H

Frp=α−1
h

p ,

which are properly defined in [DR16, equation (8)] and which we later recall.

Conjecture 4.1.3. The Beilinson–Flach class κ(gα, hα) satisfies

κ(gα, hα) =
1

Ξgα · Ωhα

· 1

logp(ugα)
·
(

logp(vαα) · u− logp(uαα) · v
)

(mod L×). (4.4)

Theorem 4.1.4. Conjecture A implies the main conjecture of [DLR16]. If we further assume that
Reggα(Vgh) 6= 0, the converse also holds.

As an application of our results, we are able to prove the analogue of the main theorem of
Castella and Hsieh [CH20, Theorem 1] in the setting of units in number fields and Beilinson–Flach
elements. Assume now that hα = g∗1/α and recall the four global cohomology classes

κ(gα, g
∗
1/α), κ(gβ, g

∗
1/β), κ(gα, g

∗
1/β), κ(gβ, g

∗
1/α) ∈ H1(Q, Vgg∗ ⊗Qp(1)) (4.5)

arising from the various p-stabilizations of g and g∗.
Again, since these classes are unramified at primes ` 6= p, they belong to the subspace which is

identified with (Ugg∗ [1/p]⊗ V ∨gg∗ ⊗Qp)
GQ under the Kummer map.

It follows from Proposition 3.3.12 that κ(gα, g
∗
1/β) = κ(gβ, g

∗
1/α) = 0. It is thus natural to

wonder whether one can determine the remaining two classes κ(gα, g
∗
1/α) and κ(gβ, g

∗
1/β).

Theorem 4.1.5. Assume that Reggα(Vgg∗) 6= 0. Then, κ(gα, g
∗
1/α) and κ(gβ, g

∗
1/β) are non-zero

and Conjecture A holds for them. Moreover,

〈κ(gα, g
∗
1/α)〉 = 〈κ(gβ, g

∗
1/β)〉.

Remark 4.1.6. When g is the theta series attached to an imaginary quadratic field where p splits
or to a real quadratic field where p remains inert, we prove that Reggα(Vgg∗) 6= 0 and hence the
above statement holds unconditionally.

The organization of the chapter is as follows. In Section 2, we recover the formulation of the
main conjecture of [DLR16], both in terms of iterated integrals and of the Hida–Rankin p-adic
L-function. Section 3 is devoted to prove Theorems 4.1.2 and 4.1.4, exploring some properties
of Beilinson–Flach classes. Section 4 provides the proof of the analogue of the main theorem of
Castella and Hsieh in the setting of Beilinson–Flach elements. Finally, Section 5 analyzes some
particular cases where the representation Vgh is reducible, in connection with the more classical
Euler systems of circular and elliptic units.
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4.2 The main conjecture of Darmon, Lauder and Rotger

The aim of this section is to recall briefly the Elliptic Stark conjecture formulated in [DLR16]
for units in number fields. We keep the same notations and assumptions of the introduction.
Throughout this section we further assume

h 6= g∗,

which in particular implies, as recalled above, that

αgαh, αgβh, βgαh, βgβh 6= 1. (4.6)

We leave the self-dual case hα = g∗1/α for Section 4.4.

Let

f := E2(1, χ−1
gh ) ∈M2(N,χ−1

gh )

be the weight two Eisenstein series for the character χ−1
gh , and consider also

F := d−1f = E
[p]
0 (χ−1

gh , 1),

the overconvergent Eisenstein series of weight zero attached to the pair (χ−1
gh , 1) of Dirichlet char-

acters.

As shown in [DLR15a], the above hypothesis ensures that any generalized overconvergent mod-
ular form associated to gα is simply a multiple of gα. We denote by eord Hida’s ordinary projection
on the space of overconvergent modular forms of weight one and by eg∗α the Hecke equivariant
projection to the generalized eigenspace attached to the system of Hecke eigenvalues for the dual
form g∗α of gα.

We attach to gα a two-dimensional subspace of the representation Vgh, namely

V β
gh := V β

g ⊗ Vh.

Remark 4.2.1. In the Eisenstein case the conjecture also makes sense, as it is emphasized in [DLR16].
In this case, if g = E1(χ+, χ−), the classicality assumption asserts that χ+(p) = χ−(p) and the

role of the two dimensional space V β
gh is played by W ⊗ Vh, where W is any line in Vg which is not

stable under GQ.

Recall the unit ugα in O×H ⊗ L attached to the p-stabilized eigenform gα, as it is defined in
[DLR15a, 1.2]. It belongs to the ad0(g)-isotypic part of O×H ⊗ L and is an eigenvector for Frp with
eigenvalue βg/αg. For a Dirichlet character of conductor m, we can consider

g(χ) :=

m∑
a=1

χ−1(a)e2πia/m, (4.7)

the usual Gauss sum, on which GQ acts through χ and thus Frp acts with eigenvalue χgh(p).

Since gα is new at level Np, the L-dual space (S1(Np, χ−1
g )∨L[g∗α])∨ is one-dimensional and we

may fix a basis, say γα. As before, we consider a regulator attached to V β
gh given in terms of

the p-units u and v, defined in the introduction of the chapter and which admits a Frobenius
decomposition as in (4.1):

Reggα(Vgh) = logp(uαα) · logp(vαβ)− logp(uαβ) · logp(vαα).

The following question is the main conjecture of [DLR16].
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Conjecture 4.2.2. It holds that

γα(eg∗αeord(Fh)) =
Reggα(Vgh)

g(χgh) · logp(ugα)
(mod L×). (4.8)

We can reformulate the previous conjecture in the language of special values of p-adic L-
functions. Let g ∈ Λg[[q]] and h ∈ Λh[[q]] be Hida families through gα and hα with coefficients
in finite flat extensions Λg and Λh of the Iwasawa algebra Λ = Zp[[Z×p ]], respectively. Write
W = Spf(Λ), Wg = Spf(Λg) and Wh = Spf(Λh) for the associated weight spaces. Let y0 and z0

be weight one points of Wg and Wh such that gy0 = gα and hz0 = hα. Associated to the two cus-
pidal Hida families g and h, Hida constructed in [Hi85] and [Hi88] a three-variable p-adic Rankin
L-function Lp(g,h) on Wgh := Wg × Wh × W interpolating the algebraic parts of the critical
values L(gy, hz, s). See the previous chapter for more details on the notations and normalizations
we adopt. The next result follows from [DLR16, Lemma 4.2].

Proposition 4.2.3. Up to multiplication by a scalar in L×, we have

Lp(g,h)(y0, z0, 1) = g(χgh)× γα(eg∗αeord(Fh)). (4.9)

Hence, as pointed out already in [DLR16], the above conjecture may be recast as

Lp(g,h)(y0, z0, 1)
?
=

Reggα(Vgh)

logp(ugα)
(mod L×). (4.10)

4.3 Beilinson–Flach elements and the main conjecture

The Euler system of Beilinson–Flach elements

We begin this section with a quick review of the main results of [KLZ17], which are crucially used
to study the conjecture we have discussed along the previous section. We also refer the reader to
the previous chapter for a expanded description of the results of [KLZ17] with the same notations
and normalizations adopted here. The purpose of this digression is to make this chapter more
self-contained.

Let
g ∈ Λg[[q]], h ∈ Λh[[q]]

be Hida families of tame level N and tame characters χg and χh respectively, and let Λgh :=
Λg⊗̂Λh⊗̂Λ. Let also εcyc denote the Λ-adic cyclotomic character. Let Vg and Vh stand for the
Λ-adic representations attached to g and h, respectively, endowed with the filtration

0→ V+
g → Vg → V−g → 0

described in [DR16, Section 2], and similarly for h. We also consider the canonical differentials ηg
and ωg as introduced in [Oh00] and [KLZ17, Section 10.1], and denote by ηgy , ωgy the corresponding
specializations at weight y. As it has been extensively discussed in loc. cit. and recalled in the
introductory sections of the previous chapter, this induces homomorphisms of Λgh-modules given by
the pairings with these differentials; these pairings are denoted as 〈·, ·〉. Finally, let αg and βg stand
for the roots of the p-th Hecke polynomial of g, ordered in such a way that ordp(αg) ≤ ordp(βg).
We also consider the same objects for the family h.

We say that a weight y ∈ Wg is crystalline when there exists an eigenform g◦y of level N such that
gy is the ordinary p-stabilization of g◦y . We denote by W◦g (resp. W◦h, W◦gh) the set of crystalline
points of Wg (resp.Wh, Wgh). A point in the latter space is identified with a triple (y, z, s), where
the weights are referred to as (`,m, s). Note that for a matter of simplicity we are just assuming
that the points corresponding to the third variable have trivial nebentype.
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The following result recovers the existence of a Perrin-Riou map (also referred in the literature
as big regulator) interpolating both the Bloch–Kato logarithm and the dual exponential map. Al-
though it had already appeared in the previous chapter, we recall it here in the form it will be used
in forthcoming sections.

Proposition 4.3.1. There exists an injective homomorphism of Λgh-modules

L−+
gh : H1(Qp,V−g ⊗̂V+

h ⊗̂Λ(εcycε
−1
cyc))→ Λgh

satisfying the following interpolation property: for every (y, z, s) ∈ W◦gh, set g := g◦y and h = h◦z.

Then, the specialization of L−+
gh at (y, z, s) is the homomorphism

L−+
gh (y, z, s) : H1(Qp, V

−
g ⊗ V +

h (1− s))→ Cp

given by

L−+
gh (y, z, s) =

(1− ps−1α−1
g β−1

h )(1− α−1
h βh)

(1− p−sαgβh)(1− p−1α−1
g βg)

×

{
(−1)m−s−1

(m−s−1)! × 〈logBK, ηg ⊗ ωh〉 if s < m

(s−m)!× 〈exp∗BK, ηg ⊗ ωh〉 if s ≥ m,

where logBK is the Bloch-Kato logarithm and exp∗BK, the dual exponential map (see [BK93] for
proper definitions of these morphisms).

Proof. This follows from [KLZ17, Theorem 8.2.8, Proposition 10.1.1] and the relations

ηgy =
(

1−
βg◦y
αg◦y

)
ηg◦y , ωhz =

(
1−

βh◦z
αh◦z

)
ω◦hz .

We can now formulate the main results of [KLZ17], which assert that there exists a family of
cohomology classes indexed by points of Wgh and whose image under the previous Perrin-Riou
map agrees with the Hida–Rankin p-adic L-function.

Theorem 4.3.2. Fix an integer c > 1 relatively prime to 6pN . Then, there exists a global coho-
mology class

cκ(g,h) ∈ H1(Q,Vg⊗̂Vh⊗̂Λ(εcycε
−1
cyc))

such that:

1. The projection of the local class resp(cκ(g,h)) to H1(Qp,V−g ⊗̂Vh(εcycε
−1
cyc)) lands in

H1(Qp,V−g ⊗̂V+
h (εcycε

−1
cyc)).

2. Letting cκ
−+
p (g,h) denote the local cohomology class in the above space, we have

L−+
gh (cκ

−+
p (g,h)) =

(−1)s

λg
· (c2 − c2s−`−m+2)× Lp(g,h),

where λg denotes the pseudo-eigenvalue of g, an Iwasawa function interpolating the pseudo-
eigenvalue at N of the crystalline classical specializations of g.

Proof. The global cohomology class cκ(g,h) is introduced in [KLZ17, Definition 8.1.1]. The first
part of the result is just [KLZ17, Proposition 8.1.7], while the second part is Theorem B of [KLZ17].

Since c is fixed throughout, we may sometimes drop it from the notation. The constant does
make an appearance in fudge factors accounting for the interpolation properties satisfied by the
Euler system, but in the case we are interested in these fudge factors do not vanish. We typically
refer to this class as the Beilinson–Flach class or the Beilinson–Flach element attached to g and h.
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An explicit description of the cohomology classes

From now on, we retain the setting of Section 2, where g ∈ S1(N,χg) and h ∈ S1(N,χh) are two
cuspidal eigenforms satisfying hypotheses (H1)-(H3) and h 6= g∗. Let Lp denote the completion of
L in Q̄p under the embedding L ⊂ Q̄ ↪→ Q̄p fixed at the outset. Under our running hypothesis, we
actually have Lp = Qp, although recall this was only assumed for simplicity of exposition.

Definition 4.3.3. Let g and h be Hida families passing through p-stabilizations gα, hα of g, h at
some point (y0, z0) ∈ W◦g ×W◦h of weights (1, 1). Define

κ(gα, hα) := κ(g,h)(y0, z0, 0) ∈ H1(Q, Vgh ⊗Qp(1))

as the specialization of κ(g,h) at the point (y0, z0, 0).

This procedure yields four a priori different global cohomology classes:

κ(gα, hα), κ(gα, hβ), κ(gβ, hα), κ(gβ, hβ), (4.11)

one for each choice of pair of roots of the p-th Hecke polynomials of g and h.
Let H1

f (Q, Vgh ⊗ Qp(1)) denote the finite Bloch-Kato Selmer group, which is the subspace of
H1(Q, Vgh ⊗Qp(1)) which consists on those classes which are crystalline at p and unramifed at all
` 6= p

Proposition 4.3.4. The cohomology classes in (4.11) belong in fact to H1
f (Q, Vgh ⊗Qp(1)).

Proof. The two cohomology spacesH1
f (Qp, Vgh⊗Qp(1)) andH1(Qp, Vgh⊗Qp(1)) are equal according

to the discussion in [DR20b, Section 1.4] combined with the results of [Bel09, Proposition 2.8 and
Exercise 2.21]. Then, the restrictions to Q`, for ` 6= p, are unramified because of the results
established in [Nek98, Section 2.4].

By standard results in Kummer theory (see for example [Bel09, Prop.2.12]), there exists an
isomorphism between H1

f (Q, Vgh ⊗Qp(1)) and (Ugh ⊗ V ∨gh ⊗Qp)
GQ .

As we have already mentioned, the units u, v ∈ (Ugh⊗V ∨gh⊗Qp)
GQ introduced in the introduction

can be also identified with elements in Hom(Vgh ⊗Qp, Ugh)GQ . In the lemma below, we regard the
local class κp(gα, hα) as a homomorphism in Hom(Vgh ⊗Qp, H

×
p ⊗ L)GQ .

Lemma 4.3.5. κp(gα, hα)(eββ) = 0.

Proof. This follows after specializing the content of [KLZ17, Proposition 8.1.7] (also rephrased here
in the first part of Theorem 4.3.2), at the point (y0, z0, 0). It asserts that the component of the
Beilinson–Flach class corresponding to the projection in the quotient V−g ⊗̂V−h vanishes. Combining
the natural dualities with the above referred identifications between the spaces of homomorphisms
and the cohomology groups, the result follows.

Consider again the special p-adic L-value Lp
gα = Lp(g,h)(y0, z0, 1). Recall that this value is

the same if h is chosen to be the Hida family through hβ. This value can be understood as a p-adic
avatar of the second derivative of the classical Hida–Rankin L-function, because of the following
result.

Proposition 4.3.6. The order of vanishing of L(Vgh, s) at s = 1 is two.

Proof. According to [Das99, Section 3.2], we know that

ords=0L(Vgh, s) = 2− dimL(Vgh)GQ ,

and the order of vanishing at s = 1 can be derived via a functional equation relating the values at
s = 0 and s = 1, where some gamma factors arise.

Besides, the assumptions we have fixed imply that dimL(Vgh)GQ = 0, and since the functional
equation introduces no extra zero or pole at s = 1 (see [Das16]), we conclude that the order of
vanishing at s = 1 is also 2.
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The following result was stated in the introduction as Theorem 4.1.2.

Theorem 4.3.7. There exists a period Ω ∈ Hp such that

κ(gα, hα) = Ω · (logp(vαα) · u− logp(uαα) · v).

Moreover, if Lp
gα 6= 0, then κ(gα, hα) 6= 0 and the two global classes

κ(gα, hα), κ(gα, hβ)

are linearly independent in the Selmer group H1(Q, Vgh ⊗Qp(1)).

Proof. The running assumptions imply that αgαh 6= 1 and then H1(Qp, V
αα
gh ⊗ Qp(1)) is one-

dimensional. Observe that V αα
gh ' Qp(αgαh) as GQp-modules, where the latter stands for the

unramified character sending Frp to αgαh. Hence, the Bloch-Kato logarithm associated to this
p-adic representation gives rise to an isomorphism

logBK : H1
f (Qp, V

αα
gh ⊗Qp(1))

∼−→ Hp.

Since {u, v} forms a basis of H1(Q, Vgh ⊗Qp(1)), we may write

κ(gα, hα) = λu+ µv,

with λ, µ ∈ Qp. The preceding lemma implies that

0 = λ · uαα ⊗ e∨ββ + µ · vαα ⊗ e∨ββ ,

and taking logarithms, we conclude that (λ, µ) is a scalar multiple of (logp(vαα),− logp(uαα)). In
particular,

κ(gα, hα) = Ω · (logp(vαα) · u− logp(uαα) · v),

for some Ω ∈ Hp.
For the second part of the statement, observe that since κp(gα, hα) and κp(gα, hβ) may be

regarded as elements in Hom(Vgh⊗Qp, Ugh)GQ , it suffices to prove that the action over two different
vectors of Vgh gives rise to an invertible matrix. By Lemma 4.3.5 we have(

κp(gα, hα)(eββ) κp(gα, hα)(eβα)
κp(gα, hβ)(eββ) κp(gα, hβ)(eβα)

)
=

(
0 ?
? 0

)
and hence we must show that the two entries off the diagonal are non-zero. Combining the in-
jectivity of the Perrin-Riou map introduced in Proposition 4.3.1 with the reciprocity law for the
Beilinson–Flach classes as recalled in the second part of Theorem 4.3.2, this is equivalent to the
non-vanishing of Lp

gα(g, h), as claimed.

Remark 4.3.8. The assumption h 6= g∗ is necessary, since we need to guarantee that the Euler-like
factors at p appearing in the description of the Perrin-Riou map of [KLZ17, Theorem 10.2.2] do
not vanish. In fact, when hα = g∗1/β we have κ(gα, g

∗
1/β) = 0 (see the previous chapter). Similarly,

if hα = g∗1/α then κ(gα, g
∗
1/α) = 0.

A conjecture in terms of Beilinson–Flach elements

We now come back to the main question of [DLR16].

Fix eigenbasis {eαg , e
β
g} and {eαh , e

β
h} of Vg and Vh respectively, which are compatible with the

choice of the basis for Vgh, i.e.,

eαα = eαg ⊗ eαh , eαβ = eαg ⊗ e
β
h, eβα = eβg ⊗ eαh , eββ = eβg ⊗ e

β
h.
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As before, let ηgα ∈ (Hp ⊗ V β
g )GQp and ωhα ∈ (Hp ⊗ V α

h )GQp stand for the canonical periods
arising as the weight one specialization of the Λ-adic periods ηg and ωh.

We can now follow [DR16] and define p-adic periods Ξgα ∈ H
Frp=β−1

g
p and Ωhα ∈ H

Frp=α−1
h

p by
setting

Ξgα ⊗ eβg = ηgα , Ωhα ⊗ eαh = ωhα .

Hence, we have
Ξgα · Ωhα ⊗ eβα = ηgα ⊗ ωhα .

We now apply the Perrin-Riou big logarithm described in Proposition 4.3.1 to the local coho-
mology class κp(gα, hα) ∈ H1

f (Qp, Vgh ⊗Qp(1)) ' (H×p ⊗ V ∨gh ⊗Qp)
GQp .

Indeed, let

log−+ : H1
f (Qp, Vgh ⊗Qp(1))

pr−+

−−−→ H1
f (Qp, V

αβ
gh ⊗Qp(1))

L−+

−−−→ Qp,

where here L−+ must be understood as the composition of the map of [KLZ17, Theorem 8.2.8]
specialized at (y0, z0, 0) with the pairing with the differentials ηgα ⊗ ωhα .

Under the identification of H1
f (Qp, V

αβ
gh ⊗ Qp(1)) ' H×p ⊗ e∨βα, the map L−+ corresponds to

the usual p-adic logarithm in H×p , followed by the pairing with ΞgαΩhα ⊗ eβα. Alternatively, and
via the identification of H1

f (Qp, Vgh ⊗ Qp(1)) with HomGQp (Vgh ⊗ Qp, H
×
p ⊗ L), the map log−+ is

φ 7→ Ξgα ·Ωhα · logp(φ(eβα)). Then, combining the reciprocity law of Theorem 4.3.2 with Theorem
4.3.7, we have

Lp(g,h)(y0, z0, 1) = Ω · Ξgα · Ωhα · (logp(vαα) · logp(uαβ)− logp(uαα) · logp(vαβ)). (4.12)

Hence, Conjecture 4.2.2 in the form given in (4.10) suggests that

Ω =
1

Ξgα · Ωhα

· 1

logp(ugα)
(mod L×). (4.13)

Moreover, if we assume [DR16, Conjecture 2.1] this reduces to

Ω =
1

Ωgα · Ωhα

(mod L×). (4.14)

Remark 4.3.9. These periods we have described are completely non-canonical and depend on the
choice of an L-basis. It is possible to formulate an analogue conjecture to [DR16, Conjecture 3.12],
which only involves the so-called enhanced regulator as well as the differentials ωgα , ωhα , and the
Beilinson–Flach class. This formulation has the advantage that it overcomes the period dependence
by giving an equality in D(V αα

gh )⊗ (Ugh ⊗ Vgh ⊗Qp)
GQ up to multiplication in L×; in particular, it

would state that

ωgαωhα ⊗ κ(gα, hα) = (log(vαα) · u− log(uαα) · v)⊗ eαα (mod L×). (4.15)

This conjecture itself is not directly equivalent to the main conjecture of [DLR16] and also relies
on [DR16, Conjecture 2.1].

In any case, and under the assumptions of the introduction on g and h, we can formulate the
following conjecture (Conjecture A in the introduction of the chapter).

Conjecture 4.3.10. The Beilinson–Flach element κ(gα, hα) satisfies the following equality in
(Ugh ⊗ V ∨gh ⊗Qp)

GQ.

κ(gα, hα) =
1

Ξgα · Ωhα

· 1

logp(ugα)
·
(

logp(vαα) · u− logp(uαα) · v
)

(mod L×). (4.16)
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Under a quite general non-vanishing assumption, it turns out that the previous conjecture is
equivalent to Conjecture 4.2.2. The following is what we anticipated as Theorem 4.1.4.

Proposition 4.3.11. Conjecture 4.3.10 implies Conjecture 4.2.2. If we assume that Reggα(Vgh) 6=
0, then the converse also holds.

Proof. As before, let

log−+ : H1(Qp, Vgh ⊗Qp(1))
pr−+

−−−→ H1(Qp, V
αβ
gh ⊗Qp(1))

L−+

−−−→ Qp.

Applying this map to both sides of (4.16) and using the reciprocity law which relates the Beilinson–
Flach class with the Hida–Rankin p-adic L-function, as recalled in Theorem 4.3.2, we get the main
result of [DLR16] as stated in (4.10).

Conversely, assuming Conjecture 4.2.2 and using again the reciprocity law presented as Theorem
4.3.2, we have

log−+(κp(gα, hα)) =
logp(vαα) · logp(uαβ)− logp(uαα) · logp(vαβ)

logp(ugα)
(mod L×).

The class

κ◦ =
1

Ξgα · Ωhα

· 1

logp(ugα)
·
(

logp(vαα) · u− logp(uαα) · v
)

(mod L×)

satisfies
log−+(κp(gα, hα)) = log−+(resp(κ◦)).

We may write the cohomology class κ(gα, hα) as a linear combination

κ(gα, hα) = κ◦ + a · u+ b · v,

where a, b ∈ Qp. Since κp(gα, hα)− resp(κ◦) lies in the kernel of log−+, one must have

a · logp(uαβ) + b · logp(vαβ) = 0. (4.17)

Consider also the map

log−− : H1(Qp, Vgh ⊗Qp(1))
pr−−−−−→ H1(Qp, V

αα
gh ⊗Qp(1))

logBK−−−→ Qp.

The class κp(gα, hα)−resp(κ◦) is also in the kernel of this map according to the first part of Theorem
4.3.2, and hence

a · logp(uαα) + b · logp(vαα) = 0. (4.18)

However, if both (4.17) and (4.18) are satisfied and (a, b) 6= (0, 0), then Reggα(Vgh) is zero,
contradicting the hypothesis.

Remark 4.3.12. We expect that the non-vanishing of the regulator Reggα(Vgh) could follow from
results on transcendental number theory.

4.4 The self-dual case

Throughout this section we assume that h = g∗ and αh = 1/αg, which amounts to saying that
hα = g∗1/α.

As usual, there exist four global cohomology classes, that we denote

κ(gα, g
∗
1/α), κ(gβ, g

∗
1/β), κ(gα, g

∗
1/β), κ(gβ, g

∗
1/α) ∈ H1(Q, Vgg∗ ⊗Qp(1)). (4.19)

It was proved in Section 3.3 that κ(gα, g
∗
1/β) = κ(gβ, g

∗
1/α) = 0, using an argument involving the

exceptional vanishing of some Euler factors. The aim of this section is to describe the two remaining
classes.
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An explicit description of the cohomology classes

Under our running assumptions, (Ugg∗ ⊗ V ∨gg∗ ⊗Qp)
GQ has dimension 1, while (Ugg∗ [1/p]⊗ V ∨gg∗ ⊗

Qp)
GQ is a three-dimensional space. Fix now a basis {u, v, p} of the latter, with the element u

spanning the line (Ugh ⊗ V ∨gg∗ ⊗Qp)
GQ . Write the Frobenius decomposition of these units as

u = uβ,1/α ⊗ e∨α,1/β + uβ,1/β ⊗ e∨α,1/α + uα,1/α ⊗ e∨β,1/β + uα,1/β ⊗ e∨β,1/α (4.20)

v = vβ,1/α ⊗ e∨α,1/β + vβ,1/β ⊗ e∨α,1/α + vα,1/α ⊗ e∨β,1/β + vα,1/β ⊗ e∨β,1/α. (4.21)

Observe that the above cohomology classes are no longer crystalline at p, and according to the
discussion of Proposition 4.3.4, they belong to H1

f,p(Q, Vgg∗ ⊗Qp(1)), the subspace of H1(Q, Vgg∗ ⊗
Qp(1)) formed by those classes which are unramified at any prime ` 6= p and de Rham at p. The
one-dimensional subspace H1

f (Q, Vgg∗ ⊗Qp(1)) is spanned by the unit u.

The representation V ∨gg∗ is no longer irreducible, as

V ∨gg∗ ' ad0(V ∨g )⊕ Id, (4.22)

where ad0(Vg) stands for the adjoint representation of g and Id for the trivial representation.

The isomorphism (4.22) can be explicitly described as follows: fixing a basis {e∨1 , e∨α⊗β̄, e
∨
β/⊗ᾱ}

of ad0(V ∨g ) and also a basis {e∨Id} for Id, it is given by the rule

e∨α,1/α + e∨β,1/β 7→ (0, e∨Id), e∨α,1/α − e
∨
β,1/β 7→ (e∨1 , 0),

eα,1/β 7→ (e∨α⊗β̄, 0), eβ,1/α 7→ (e∨β⊗ᾱ, 0).
(4.23)

Considering the decomposition

H1
f,p(Q, V ∨gg∗ ⊗Qp(1)) = H1

f,p(Q, ad0(V ∨g )⊗Qp(1))⊕H1
f,p(Q,Qp(1)), (4.24)

we observe that according to [Bel09, Proposition 2.12], the space H1
f,p(Q,Qp(1)) ' (Z[1/p]×)⊗Qp

has dimension 1 and is spanned by p, while there is a canonical identification

H1
f,p(Q, ad0(V ∨g )⊗Qp(1)) = (Ugh[1/p]⊗ ad0(V ∨g )⊗Qp)

GQ . (4.25)

Since u, v ∈ (Ugg∗ [1/p]⊗ ad0(V ∨g ))GQ , it follows from the first equation of (4.23) that

uα,1/α · uβ,1/β = vα,1/α · vβ,1/β = 1.

Set u1 := uα,1/α = u−1
β,1/β and v1 := vα,1/α = v−1

β,1/β. Making a slight abuse of notation, we still

denote by κ(gα, g
∗
1/α) the projection of the cohomology class to the space H1

f,p(Q, ad0(V ∨g )/pZ ⊗
Qp(1)). The following result corresponds to Theorem 4.1.2 when hα = g∗1/α.

Proposition 4.4.1. There exists a period Ω ∈ Hp such that the equality

κ(gα, g
∗
1/α) = Ω · (logp(u1) · v − logp(v1) · u) (mod L×) (4.26)

holds in H1
f,p(Q, ad0(V ∨g )/pZ ⊗Qp(1)). Moreover, if

Ω =
1

Ξgα · Ωg∗
1/α

· 1

logp(uα⊗β̄)
,

Conjecture 4.2.2 is true, and under the assumption that Reggα(Vgg∗) 6= 0 the converse also holds.
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Proof. The first part of the statement follows the same argument used in the proof of Theorem
4.3.7. Now, we may write

κ(gα, g
∗
1/α) = λu+ µv + νp

for some p-adic scalars λ, µ and ν. Next, we project to H1(Qp, V
α
g ⊗V

1/α
g∗ ⊗Qp(1)), which is no longer

one-dimensional, but isomorphic to the two-dimensional space H1(Qp,Qp(1)) ' Q×p ⊗̂Qp ' Qp⊕Qp.
This amounts to saying that both the p-adic valuation and p-adic logarithm are zero. In particular,

λ logp(u1) + µ logp(v1) = 0,

and the equality in (4.26) follows.

In the same way, Proposition 4.3.11 is equally valid once we have considered the quotient by
the trivial representation and we can write the cohomology class as a combination of the units u
and v.

Remark 4.4.2. We have previously proven that when h 6= g∗, the non-vanishing of the special value
Lp

gα allows us to conclude that the classes κ(gα, hα) and κ(gα, hβ) are linearly independent. The
same argument implies that, under the same non-vanishing hypothesis, the class κ(gα, g

∗
1/α) and

the derived class κ′(gα, g
∗
1/β) constructed in the previous chapter are linearly independent.

Assuming again that we know that the regulator does not vanish, we can prove that Ω 6= 0 in
(4.26) and can provide a formula for Ω in H×p /L

×. Furthermore, it clearly follows from Proposition
4.4.1 that the two classes κ(gα, g

∗
1/α) and κ(gβ, g

∗
1/β) are linearly dependent.

Proof of Theorem 4.1.5

We now move to the proof of Theorem 4.1.5 of the introduction. Although we stated the result in
terms of the unit group (Ugh[1/p]/pZ ⊗ V ∨gh)GQ , the identifications of Kummer theory allow us to
consider an equivalent formulation in terms of cohomology groups.

Proposition 4.4.3. If we assume that Reggα(Vgg∗) 6= 0, then

κ(gα, g
∗
1/α) =

1

Ξgα · Ωg∗
1/α

·
logp(u1) · v − logp(v1) · u

logp(uα⊗β̄)
, (4.27)

κ(gβ, g
∗
1/β) =

1

Ξgβ · Ωg∗
1/β

·
logp(u1) · v − logp(v1) · u

logp(uβ⊗ᾱ)
, (4.28)

hold in the space H1
f,p(Q, ad0(V ∨g )/pZ ⊗Qp(1)), modulo L×:

Proof. According to Proposition 4.4.1, this is equivalent to Conjecture 4.2.2, concerning the value
of Lp(g,h) at (y0, y0, 1). However, observe that this value does not depend on the p-stabilization
of h, and hence this follows from Theorem A in the previous chapter, where it was proved that

Lp(g,h)(y0, y0, 1) =
logp(u1) · v − logp(v1) · u

logp(uα⊗β̄)
(mod L×).

In particular, the non-vanishing of the regulator implies that these classes are non-zero, since
the vanishing of both logp(u1) and logp(v1) would automatically imply that Reggα(Vgg∗) = 0.
Furthermore, it is clear from this description that the two classes span a one-dimensional subspace,
as asserted in Theorem 4.1.5.
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Theta series of quadratic fields

When g is the theta series of an imaginary quadratic field where p splits, or the theta series of a
real quadratic field where p remains inert, we can give a more explicit description of the classes.
Furthermore, in these cases we know that the regulator does not vanish.

Quadratic imaginary case, with p split. Let ψ : GK → C× be a ring class character of
conductor prime to p, and write pOK = pp̄ splits in K. Set α := ψ(p̄) and β := ψ(p). Let g and h
be the weight 1 theta series of ψ and ψ−1, respectively.

In this case,
Vgh ' IndQ

K ψtriv ⊕ IndQ
K ψ

2,

where ψtriv stands for the trivial character of K. The theory of elliptic units allows us to attach
a canonical unit uψ2 (resp. uψ−2) to the character ψ2 (resp. ψ−2), where Frp acts with eigenvalue
α/β (resp. β/α). Let u = uψ2 ⊗ e∨

α⊗β̄ + uψ−2 ⊗ e∨β⊗ᾱ.

Let hK denote the class number of K, and write vp ∈ K× for any p-unit satisfying (vp) = phK .
Let v = vp ⊗ e∨1 .

From the description of u and v we see that u1 = 0 and hence we have

κ(gα, g
∗
1/α) = Ω̃1 · u, κ(gβ, g

∗
1/β) = Ω̃2 · u, (4.29)

where Ω̃1, Ω̃2 ∈ Hp. We must prove that these numbers are both non-zero. Projecting to the (β, α)-
component of Vgh and applying the Perrin-Riou map described in Proposition 4.3.1, the explicit
reciprocity law in the form of Theorem 4.3.2 gives that

log−+(κ(gα, g
∗
1/α)) = Ω̃1 · log(uψ−2) = Lp(g,h)(y0, y0, 1) (mod L×).

Although Lp(g,h)(y0, y0, 1) depends on the chosen of a p-stabilization for g, this is not the case for
h. Moreover, according to [Theorem 4.2, DLR2],

Lp(g,h)(y0, y0, 1) =
logp(vp) · logp(uψ−2)

logp(uψ−2)
= logp(vp) (mod L×),

and in particular

Ω̃1 =
1

Ξgα · Ωg∗
1/α

·
logp(vp)

logp(uψ−2)
, Ω̃2 =

1

Ξgβ · Ωg∗
1/β

·
logp(vp)

logp(uψ2)
(mod L×).

Real quadratic case, with p inert. In this case, u is the fundamental unit εK attached to K
and v is a p-unit in the field H cut out by the character. Writing v+ for the norm of v and keeping
the same notations as in the previous case, we get that the periods Ω̃1 and Ω̃2 are given by

Ω̃1 =
1

Ξgα · Ωg∗
1/α

·
logp(v

+)

logp(εK)
, Ω̃2 =

1

Ξgβ · Ωg∗
1/β

·
logp(v

+)

logp(εK)
(mod L×).

As a consequence of this discussion, the following theorem is proved.

Theorem 4.4.4. Let g be a theta series of an imaginary (resp. real) quadratic field K where p splits
(remains inert). Then, the classes of (4.19) span a line in the space H1

f,p(Q, ad0(V ∨g )/pZ⊗Qp(1)).
To be more precise, κ(gα, g

∗
1/β) = κ(gβ, g

∗
1/α) = 0, and the remaining classes can be described as

follows:

(a) In the imaginary quadratic case, with p a prime which splits in K,

κ(gα, g
∗
1/α) =

1

Ξgα · Ωg∗
1/α

·
logp(vp)

logp(uψ−2)
·u, κ(gβ, g

∗
1/β) =

1

Ξgβ · Ωg∗
1/β

·
logp(vp)

logp(uψ2)
·u (mod L×).
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(b) In the real quadratic case, with p an inert prime,

κ(gα, g
∗
1/α) =

1

Ξgα · Ωg∗
1/α

·
logp(v

+)

logp(εK)
· u, κ(gβ, g

∗
1/β) =

1

Ξgβ · Ωg∗
1/β

·
logp(v

+)

logp(εK)
· u (mod L×).

Remark 4.4.5. The proof of our result is ostensibly easier than that of Castella and Hsieh. The
main reason is that, while the order of vanishing of the theta element Θf/K(T ) is unknown, we

do know that the Katz two-variable p-adic L-function LKatz
p (K) attached to the trivial character

vanishes at order zero at s = 0. To overcome this difficulty, Castella and Hsieh use a bound for this
order of vanishing coming from Iwasawa theory and later develop the theory of derived heights in
the case of elliptic curves. Although this treatment would make sense here, it would not yield any
new result.

4.5 Particular cases of the conjecture

In this section we discuss in more detail some of the reducible cases that are considered in [DLR16].
These are scenarios where the Beilinson–Flach classes appearing in the main body of the chapter can
be recast in terms of circular units, elliptic units or Beilinson–Kato elements, and our statements
admit an ostensibly simpler formulation.

As in Section 4.3, and to ease the exposition, we assume that h 6= g∗ throughout this section.

Eisenstein series and circular units

Let

g = E1(χ+
g , χ

−
g ), h = E1(χ+

h , χ
−
h )

denote two Eisenstein series attached to pairs of Dirichlet characters, with the assumption that
χ+
g is even and χ−g is odd, and likewise for χ+

h and χ−h . In the Eisenstein case, as discussed in
[DLR15a], the classicality hypothesis on g reads as

χ+
g (p) = χ−g (p).

Let χg := χ+
g χ
−
g and χh := χ+

h χ
−
h . The representation Vgh decomposes as a direct sum of four

one-dimensional characters,

Vgh = χ++
gh ⊕ χ

−−
gh ⊕ χ

+−
gh ⊕ χ

−+
gh .

Given an even character χ factoring through a finite abelian extension Hχ of Q and taking values
in L, denote by u(χ) ∈ L⊗O×Hχ the fundamental unit in the χ-eigenspace for the GQ-action (this

could be seen as the circular unit attached to χ, following the terminology of [DLR16, Section 3]).
The pair (χ+

g , χ
−
g ) corresponds to a genus character ψg of the imaginary quadratic field K cut out

by the odd Dirichlet character χg := χ+
g χ
−
g . The weight one Eisenstein series E1(χ+

g , χ
−
g ) is equal to

the theta series θK(ψg), and hence the modular form g admits three natural ordinary deformations,
since

E1(χ+
g , χ

−
g ) = E1(χ−g , χ

+
g ) = θK(ψg).

Let g (resp. h) denote the cuspidal family passing through the p-stabilization of g (resp. h).
Instead of going through all the possible cases we just focus on the generic situation where χ++

gh

and χ−−gh are both non-trivial and χ•◦gh 6= 1 for •, ◦ ∈ {±}.
Then, [DLR16, Theorem 3.1] asserts that

Lp(g,h)(y0, z0, 1) = log−+(κp(gα, hα)) =
logp(u(χ++

gh )) logp(u(χ−−gh ))

logp(ugα)
(mod L×). (4.30)
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From here, we see that

κ(gα, hα) = C · u (mod L×),

where u is the unit u = u(χ−−gh )⊗e∨βα+u(χ−+
gh )⊗e∨αα, whose (β, α)-component agrees with u(χ−−gh ),

and C is an explicit constant in terms of the periods we have previously defined, namely

C =
1

Ξgα · Ωhα

·
logp(u(χ++

gh ))

logp(u(gα))
(mod L×). (4.31)

Remark 4.5.1. When some of the characters χ++
gh or χ−−gh are trivial, the regulator also involves the

fundamental p-units in the χ-eigenspace for the Galois action, for an appropriate χ. See Case 2
and Case 3 of [DLR16, Section 3] for more details.

Theta series attached to imaginary quadratic fields and elliptic units

Let

g = θψg ∈M1(Ng, χKχg), h = θψh ∈M1(Nh, χKχh)

be the theta series associated to two arbitrary finite order characters ψg, ψh of the imaginary
quadratic field K. Let ψ1 = ψgψh and ψ2 = ψgψ

′
h, where ψ′ denotes the character given by

ψ′(σ) = ψ(σ0σσ
−1
0 ), for any choice of σ0 ∈ GQ\GK . Let Vg = IndQ

K(ψg) and Vh = IndQ
K(ψh) denote

the two-dimensional induced representations of ψg and ψh. Then,

Vgh = Vψg ⊗ Vψh ' Vψ1 ⊕ Vψ2 .

For any character ψ, we define uψ as the corresponding elliptic unit attached to it, as recalled in
[DLR16, Section 4].

Following the same argument as in Theorem 3.6.2, we have that for any s ∈ Zp,

Lp(g, h, s) =
1

logp(uψad
)
· LKatz

p (ψ−1
gh , s) · L

Katz
p (ψ−1

gh′ , s) (mod L×), (4.32)

where ψgh = ψg · ψh, ψgh′ = ψg · ψh′ , and LKatz
p (ψ, s) stands for the evaluation of the two-variable

Katz p-adic L-function attached to ψ at the character Ns. In particular,

log−+(κ(gα, hα)) =
logp(uψ′1) logp(uψ′2)

logp(ugα)
(mod L×). (4.33)

As we have done before, we can express κ(gα, hα) as an explicit constant multiplied by the elliptic
unit u := uψ2 ⊗ e∨αβ + uψ′2 ⊗ e

∨
βα, making use of the periods we have introduced before, as

κ(gα, hα) =
1

Ξgα · Ωhα

·
logp(uψ′1)

logp(ugα)
· u (mod L×)

Eisenstein series and Beilinson–Kato elements

In the case where exactly one of the modular forms is Eisenstein, the representation Vgh also
decomposes as a sum of two irreducible representations of dimension two. Let g ∈ S1(Ng, χg) and
h = E1(χ+

h , χ
−
h ); then,

Vgh = Vg(χ
+
h )⊕ Vg(χ−h ),

which gives via Artin formalism a decomposition

L(Vgh, s) = L(g, χ+
h , s) · L(g, χ−h , s),
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where L(g, χ•h, s) is the L-function attached to g twisted by the finite order character χ•h.
Let Lp(g, E1(χ+

h , χ
−
h )) denote the two-variable p-adic L-function of [BDR15a, Section 2.2.2]

(when the second modular form does not vary in a Hida family it is allowed to be Eisenstein).
Let χ be a Dirichlet character, and consider Lp(g, χ), the two-variable Mazur–Kitagawa p-adic L-
function attached to g and χ. With the notations of [BD14], let λ±(`) ∈ Cp stand for the canonical
periods involved in the construction of the Mazur–Kitagawa p-adic L-function. We adopt as in
loc. cit. the normalization

Lp(g, χ)(y, s) = λ±(`) ·
(

1− ps−1

χ(p)αg◦y

)
·
(

1−
χ(p)βg◦y
ps

)
× L∗(gy, χ, s),

where L∗(gy, χ, s) is the algebraic part of L(gy, χ, s), defined in [BD14, equation (22)].

Theorem 4.5.2. There exists a rigid analytic function f(y, s) such that the following equality holds
in Λg ⊗ Λ

Lp(g, E1(χ+
h , χ

−
h ))(y, s) = f(y, s) · Lp(g, χ+

h )(y, s) · Lp(g, χ−h )(y, s). (4.34)

Here, f(y, s) = (Cgy ,χ+
h ,χ
−
h
· E(gy) · E∗(gy) · λ+(`) · λ−(`))−1, being Cgy ,χ+

h ,χ
−
h

an explicit non-zero

algebraic number and

E(gy) = 1− β2
g◦y
p−`, E∗(gy) := 1− β2

g◦y
p1−`.

Proof. In the range of classical interpolation we have an equality of the corresponding L-values. The
result follows after gathering together the different factors appearing in the interpolation process,
combined with the observation that Ω+

gy ,C · Ω
−
gy ,C = 4π2〈g◦y,g◦y〉

It may be instructive to compare this result with [BD14, Theorem 3.4]: there, a two-variable
p-adic L-function attached to a cuspidal Hida family and an Eisenstein family which interpo-
lates central critical points is expressed as the product of two Mazur–Kitagawa p-adic L-functions.
Unfortunately, our result is not as useful as one would expect: specialization at weights (y0, 1) es-
tablishes a connection between the Hida–Rankin p-adic L-function and the product of Lp(g, χ

+
h , 1)

with Lp(g, χ
−
h , 1), but up to multiplication by the quantity f(y0, 1). Recall that a similar question

arises at [DR20b, Proposition 2.6], since the factor f(y, s) is essentially (up to multiplication by
some explicit factors) the function Lp(Sym2(g))(y). This multiplier is expected to be related with
the logarithm of the Gross-Stark unit ugα . Further, this also connects with [DR16, Conjecture 2.1],
since we hope λ+(1) to be eventually related with Ωgα and λ−(1) with Ξ−1

gα .
As it is proved in [Och03], there exists a two-variable Euler system (usually referred to as

Beilinson–Kato Euler system), κ(g, χ), satisfying that Lp(g, χ) is the image under a suitable Perrin-
Riou map of κ(g, χ). This allows us to obtain a connection between Beilinson–Flach and Beilinson–
Kato elements, and also an expression for the regulator involving special values of the Mazur–
Kitagawa p-adic L-function. Observe that this is the counterpart of [DLR15a, Sections 6,7], where
this same situation was considered in the case of rational points over elliptic curves.
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Chapter 5

Cyclotomic derivatives of
Beilinson–Flach classes and a new
proof of a Gross–Stark formula

We give a new proof of a conjecture of Darmon, Lauder and Rotger regarding the computation
of the L-invariant of the adjoint of a weight one modular form in terms of units and p-units.
While in Chapter 3 the essential ingredient was the use of Galois deformations techniques following
the computations of Belläıche and Dimitrov, we propose a new approach exclusively using the
properties of Beilinson–Flach classes. One of the key ingredients is the computation of a cyclotomic
derivative of a cohomology class in the framework of Perrin-Riou theory, which can be seen as a
counterpart to the earlier work of Loeffler, Venjakob and Zerbes. We hope that this method could
be applied to other scenarios regarding exceptional zeros, and illustrate how this could lead to a
better understanding of this setting by conjecturally introducing a new p-adic L-function whose
special values involve information just about the unit of the adjoint (and not also the p-unit), in
the spirit of the conjectures of Harris and Venkatesh.

The results presented at this chapter are the content of the research article [Ri20c], which is
currently a work in progress and will be available soon.

5.1 Introduction

In our series of works with Rotger, presented here as part of Chapters 3 and 4, we proposed a sys-
tematic study of the conjecture of Darmon, Lauder and Rotger [DLR16] on p-adic iterated integrals
in terms of certain cohomology classes constructed from the p-adic interpolation of Beilinson–Flach
elements. This conjecture may be subsumed in a broader programme, comprising both the Gross–
Stark conjectures and also the celebrated Elliptic Stark conjectures, which shed some light on the
arithmetic of elliptic curves of rank 2.

Let χ be a Dirichlet character of level N ≥ 1, and let S1(N,χ) stand for the space of cuspidal
modular forms of weight 1, level N and nebentype χ. Let g =

∑
n≥1 anq

n ∈ S1(N,χ) be a
normalized newform and let g∗ = g ⊗ χ̄ denote its twist by the inverse of its nebentype. Let

%g : Gal (Hg/Q) ↪→ GL(Vg) ' GL2(L), %ad0(g) : Gal (H/Q) ↪→ GL(ad0(g)) ' GL3(L)

denote the Artin representations associated to g and its adjoint, respectively. Here Hg ⊇ H denote
the finite Galois extensions of Q cut out by these representations, and L is a sufficiently large finite
extension of Q containing their traces.

Label and order the roots of the p-th Hecke polynomial of g as X2 − ap(g)X + χ(p) = (X −
α)(X − β). We assume throughout that

113
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(H1) The reduction of %g mod p is irreducible;

(H2) g is p-distinguished, i.e.α 6= β (mod p), and

(H3) %g is not induced from a character of a real quadratic field in which p splits.

Hence, following the ideas of previous chapters, there are four (a priori distinct!) cohomology
classes

κ(gα, g
∗
1/α), κ(gβ, g

∗
1/β), κ(gα, g

∗
1/β), κ(gβ, g

∗
1/α) ∈ H1(Q, ad0(g)(1)). (5.1)

However, and as it was proved in Chapter 3 when we dealt with Beilinson–Flach classes, it happens
that

κ(gα, g
∗
1/β) = κ(gβ, g

∗
1/α) = 0. (5.2)

To overcome this situation, in Section 3.3 we had constructed certain derivatives of those classes,
but it turns out that the definition we had used there is not completely useful for our purposes.
Roughly speaking, we had taken the derivative along one of the weight directions associated to
the Hida family interpolating one of the modular forms, while towards obtaining a more flexible
and arithmetically interesting setting we need to consider also the cyclotomic derivative. This
is an analogue situation to the scenario of [Buy16] and [Ven16], where the computation of the
derivative of the Mazur–Kitagawa p-adic L-function along a certain direction of the weight space
was relatively easy using the classical theory of Heegner points (and had already been carried out
by Bertolini and Darmon [BD07]), but the computation of the cyclotomic derivative required new
ideas. Hence, this work may be thought as a counterpart to the approach of Büyükboduk and
Venerucci to the exceptional zero phenomenon, but in the easier case where elliptic curves are
replaced by unit groups (and hence one can circumvent the technical complications introduced by
the use of Nekovar’s height theory). Similar results had been obtained by Loeffler, Venjakob and
Zerbes [LVZ15], and one can see our computations as the dual of Proposition 2.5.5 and Theorem
3.1.2 of loc. cit. We refer also to the seminal works of Benois [Ben14a], [Ben14b] where similar
questions are addressed.

Our main result in Chapter 3 was the computation of a special value formula for the Hida–
Rankin p-adic L-function at weight one (alternatively, the derivative of the adjoint of the modular
form). This is specially intriguing since that function, that we denote as Lp(g, g

∗, s), cannot be
directly defined in terms of an interpolation property, and requires to consider the p-adic variation of
the modular forms (g, g∗) along a Hida family. Indeed, it depends on the choice of a p-stabilization
for g. Along this chapter, we sometimes write Lgαp (g, g∗, s) to emphasize this dependence. In
[DLR16, Section 1] it is shown that

dimL(O×H ⊗ ad0(g))GQ = 1, dimL(OH [1/p]×/pZ ⊗ ad0(g))GQ = 2.

Fix a generator u of (O×H ⊗ ad0(g))GQ and also an element v of (O×H [1/p]× ⊗ ad0(g))GQ in such a
way that {u, v} is a basis of (OH [1/p]×/pZ ⊗ ad0(g))GQ . The element v may be chosen to have
p-adic valuation ordp(v) = 1, and we do so.

Viewed as a GQp-module, ad0(g) decomposes as ad0(g) = L⊕ Lα⊗β̄ ⊕ Lβ⊗ᾱ, where each line is
characterized by the property that the arithmetic Frobenius Frp acts on it with eigenvalue 1, α/β
and β/α, respectively. Let Hp denote the completion of H in Q̄p and let

u1, uα⊗β̄, uβ⊗ᾱ, v1, vα⊗β̄, vβ⊗ᾱ ∈ H×p ⊗Q L (modL×)

denote the projection of the elements u and v in (H×p ⊗ ad0(g))GQp to the above lines.

Then, we had proven the following theorem, which was one of the main results of Chapter 3.



5.1. INTRODUCTION 115

Theorem 5.1.1. Assume that hypothesis (H1)-(H3) hold. Then, the following equality holds up to
multiplication by a scalar in L×

Lgαp (g, g∗, 1) =
logp(uα⊗β̄) logp(v1)− logp(vα⊗β̄) logp(u1)

logp(uα⊗β̄)
.

The proof we had given in Chapter 3 was lengthy and made use of the results of Bellaiche–
Dimitrov computing the tangent space of a deformation problem, together with some techniques
taken from the earlier work [DLR18]. In a certain way, that proof mimicked the approach of
Greenberg–Stevens [GS94] to the exceptional zero phenomenon for elliptic curves with split mul-
tiplicative reduction at p. However, we had observed a tantalizing connection with the theory
of Beilinson–Flach elements, that were affected by a similar exceptional zero phenomenon. This
allowed us to interpret derived classes of Beilinson–Flach elements in terms of the units {u, v}, but
does not give any new insight into the proof of Theorem 5.1.1, as we had initially expected. This
work may be seen as the culmination of one of the initial objectives of this dissertation, that was
proving the Gross–Stark conjecture of Darmon, Lauder and Rotger using just the properties of
Beilinson–Flach elements and the flexibility provided by the notion of derivatives.

We can give, with these ideas at hand, a different proof of the previous theorem. This can be seen
as the counterpart to the approach of Kobayashi [Ko06] to the Mazur–Tate–Teitelbaum conjecture
in rank 0, since he reproves the result of Greenberg and Stevens [GS94] using the properties of
Kato’s cohomology classes.

Our proof is a combination of four main ideas (together with the same starting point coming
from Hida’s theory of improved p-adic L-functions):

(0) The results of Hida [Hi85], [Hi88], which reduce the conjecture to the computation of the
derivative of the Frobenius eigenvalue along the weight direction.

(1) The local properties at p of Beilinson–Flach elements, which give an expression, up to mul-
tiplication by a p-adic scalar, for the derived class κ′(gα, g

∗
1/β) in terms of the units u and v,

where here the derivative is taken along any arbitrary direction of the weigh space.

(2) The observation that knowing two weight derivatives, together with the vanishing of the class
κ(g,g∗) along the line (`, `, ` − 1), allows us to determine the cyclotomic derivative of the
class.

(3) An explicit reciprocity law for the Λ-adic class κ(g,g∗), obtained when g and g∗ vary over
Hida families g and g∗, respectively. This was proved in [KLZ17]. In our situation, there is
an exceptional vanishing, and hence we may consider a derived reciprocity law, in the sense
of Chapter 3. This gives an expression for the weight derivative of the Beilinson–Flach class
in terms of an unknown p-adic period and involving also the L-invariant of the adjoint of gα.

(4) The results of Büyükboduk [Buy12], [Buy16] and Venerucci [Ven16] around Coleman maps,
which allow us to relate the cyclotomic derivative of the Beilinson–Flach class to the Hida–
Rankin p-adic L-function. This part can be also recast, by duality, in terms of the computa-
tions developed in [LVZ15].

Observe that the study of universal norms has also allowed Roset, Rotger and Vatsal [RRV19]
to reinterpret the L-invariant of Theorem 5.1.1 in terms of an algebraic avatar initially defined by
Greenberg [Gre91].

However, Theorem 5.1.1 is not completely satisfactory towards the understanding of the arith-
metic of the adjoint of a weight one modular form, since it involves both the unit and the p-unit
attached to the Galois representation. It is natural to expect a putative refinement of the previous
result in the spirit of the conjectures of Harris–Venkatesh [HV19], with a p-adic L-function whose
special values encode information just about the unit u. The last section of this chapter is devoted
to discuss the following conjecture in the framework provided by Perrin-Riou maps.
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Conjecture 5.1.2. There exists an analytic p-adic L-function LEis
p (g, g∗, s), appropriately related

with the cohomology class κ(gα, g
∗
1/α) via the theory of Perrin-Riou maps, and such that

LEis
p (g, g∗, 1) = logp(u1) (mod L×).

The organization of the chapter is as follows. Section 2 discusses the motivational case of circular
units, where these same phenomena arise and that can serve as a motivation for our later work.
Section 3 recalls the notations and results of the previous chapters around Beilinson–Flach elements
which are needed in the proof, following Chapters 3 and 4. Section 4 contains the main results of
the chapter and discuss the new approach to the proof of Theorem 5.1.1 using the notion of derived
Belinson–Flach elements. Section 5 proposes an alternative interpretation of the previous results
in terms of deformation theory. Finally, Section 6 discusses the p-adic L-function of Conjecture
5.1.2 and its relationship with the periods of weight one modular forms.

5.2 Analogy with the case of circular units

The situation we want to deal with has a clear parallelism with the case of circular units, which
has been discussed in the introductory chapters as part of the background material. We fix a
Dirichlet character χ, and write H for the field cut out by the Artin representation attached to it,
and L for its coefficient field. The case where χ is odd gives rise to an exceptional vanishing of the
Deligne–Ribet p-adic L-function Lp(χω, s) at s = 0 when χ(p) = 1. Under the assumption that
χ is odd, (O×H ⊗ L)χ is a zero-dimensional L-vector space, while (OH [1/p]× ⊗ L)χ has dimension
1 if χ(p) = 1. In this case, choosing a non-zero element vχ of the latter space, we may define an
L-invariant

L(χ) = −
logp(vχ)

ordp(vχ)
, (5.3)

where we are implicitly choosing a prime of H above p. Then,

L′p(χω, s) = L(χ) · L(χ, 0). (5.4)

See [DDP11] for more details on that and for a broader treatment in the setting of totally real
number fields.

In the case where χ is even, the situation is ostensibly different. Then, (O×H ⊗ L)χ is one-
dimensional and we may fix a generator cχ of it, that we call a circular unit. We defined it, as
usual, as a weighted combination of cyclotomic units

cχ =

N−1∏
a=1

(1− ζaN )χ
−1(a),

where ζN is a fixed primitive N -th root of unity and the notation (1− ζaN )χ
−1(a) means (1− ζaN )⊗

χ−1(a). Moreover, if we further assume that χ(p) = 1, (OH [1/p]× ⊗ L)χ has dimension 2, and we
may consider a basis of the form {cχ, vχ}, with the convention that ordp(vχ) = 1.

Given any even, non trivial Dirichlet character, one always have Leopoldt’s formula, which
asserts that

Lp(χ, 1) = −(1− χ(p)p−1)

g(χ̄)
· logp(cχ). (5.5)

Let Λ = Zp[[Z×p ]]. By adding p-power conductors to χ and considering a family of coherent
units along the cyclotomic tower, one may construct a Λ-adic class κ(χ, s), whose bottom layer
vanishes when χ(p) = 1. We keep this assumption on the character χ all along this section and
write

κ(χ, s) ∈ H1(Q, Lp(χ̄)⊗ Λ(εcycεcyc))



5.2. ANALOGY WITH THE CASE OF CIRCULAR UNITS 117

for the Λ-adic class, where εcyc stands for the Λ-adic cyclotomic character. Given k ∈ Z, let

νk : Λ(εcyc)→ Zp be the ring homomorphism sending the group-like element a ∈ Z×p to ak−1. This
induces a GQ-equivariant specialization map

νk : Λ(εcyc) −→ Zp(k − 1)

and gives rise to a collection of global cohomology classes

κ(χ, k) ∈ H1(Q, Lp(χ̄)(k)).

The Perrin-Riou formalism allows us to understand Lp(χ, s) as the image under a Coleman map
(also named as Perrin-Riou map, or Perrin-Riou regulator) of the local class κp(χ, s)

Lχ : H1(Qp, Lp(χ̄)⊗ Λ(εcycεcyc)) −→ I−1Λ, Lχ(κp(χ, s)) = Lp(χ, s),

where I is the ideal of Λ corresponding to the specialization at s = 1 (see [KLZ17, Section 8.2]).
This map interpolates either the dual exponential map (for s ≤ 0) or the Bloch–Kato logarithm (for
s ≥ 1). Unfortunately, the bottom layer κ(χ, 1) vanishes when χ(p) = 1. Following the construction
of [Buy12, Section 3], there is a derived class κ′(χ, s), defined as the unique class satisfying that

κ(χ, s) =
γ − 1

logp(γ)
· κ′(χ, s), (5.6)

where γ is a fixed topological generator of Zp[[1 + pZp]]. It is also proved in [Buy12] that κ′(χ, 1)
belongs to an extended Selmer group, which in this case may be identified with the group of p-units
where the Galois group acts via χ (we insist that when χ is even this space is two-dimensional).

In the cases where χ(p) = 1, one can also define an improved map

L̃χ =
γ − 1

1
p logp(γ)

× Lχ : H1(Qp, Lp(χ̄)(εcycεcyc)) −→ I−1Λ,

where εcyc is the usual cyclotomic character. Therefore,

L̃χ(κ′p(χ, s)) = p · Lp(χ, s).

The computations done in [Buy12, Section 6.2], in particular Remark 6.5, show that the map

L̃χ, when specialized at s = 1, is given by the order map (applied in this case to the derived class).
The crucial point is a computation of the universal norms over the cyclotomic tower, as well as the
use of Lemma 6.4 of loc. cit. (see also [Ven16, Section 3]). Hence, we have the following (identifying
as usual the cohomology classes with the corresponding units via the standard Kummer map).

Proposition 5.2.1. The element κ′(χ, 1) ∈ (OH [1/p]× ⊗ L)χ satisfies that

Lp(χ, 1) = −1− p−1

g(χ̄)
· ordp(κ

′(χ, 1)).

Proof. This follows after combining the results of [Buy12, Section 6.2] on the properties of the map

L̃χ with Solomon’s computations, showing that the p-adic valuation of the derived class (sometimes
referred as the wild cyclotomic unit) agrees with the logarithm of the usual circular unit (see also
Section 4 of loc. cit.).
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5.3 Beilinson–Flach elements

The three variable cohomology classes

We begin by recalling some of the notations that had already been introduced both in Chapter
3 and 4. Let g ∈ Λg[[q]] and g∗ ∈ Λg[[q]] be two Hida families of tame conductor N and tame
nebentype χ and χ̄, where Λg is a finite flat extension of the Iwasawa algebra Λ = Zp[[Z×p ]]. Let
Λgg∗ = Λg⊗̂Λg⊗̂Λ, and consider also the Λg-modules afforded by the Hida families attached to g
and g∗, that we denote Vg and Vg∗ , respectively. Finally, consider the Λgg∗-module

Vgg∗ := Vg⊗̂ZpVg∗⊗̂ZpΛ(εcycε
−1
cyc), (5.7)

where Λ(εcycε
−1
cyc) stands for the twist of Λ by the inverse of the Λ-adic cyclotomic character,

with the conventions adopted in Section 3.2. The formal spectrum of Λgg∗ is endowed with certain
distinguished points, the so-called crystalline points, denoted asW◦gh and indexed by triples (y, z, σ);
we refer the reader to Section 2 of loc. cit. for the definitions.

The Λ-adic Galois representation Vgg∗ is characterized by the property that for (y, z, σ) ∈ W◦gg∗
with w(σ) = νs and s ∈ Z, (5.7) specializes to

Vgg∗(y, z, σ) = Vgy ⊗ Vg∗z (1− s),

the (1− s)-th Tate twist of the tensor product of the Galois representations attached to gy and g∗z .
Fix c ∈ Z>1 such that (c, 6pN) = 1. [KLZ17, Theorem A] yields a three-variable Λ-adic global

Galois cohomology class
κc(g,g∗) ∈ H1(Q,Vgg∗)

that is referred to as the Euler system of Beilinson–Flach elements associated to g and g∗. We
denote by κcp(g,g

∗) ∈ H1(Qp,Vgg∗) the image of κc(g,g∗) under the restriction map. Since c is fixed
throughout, we may sometimes drop it from the notation. This constant does make an appearance
in fudge factors accounting for the interpolation properties satisfied by the Euler system, but in all
cases we are interested in these fudge factors do not vanish and hence do not pose any problem for
our purposes.

Given a crystalline arithmetic point (y, z, s) ∈ W◦gg∗ of weights (`,m, s), set for notational
simplicity throughout this section g = g◦y , g

∗ = (g∗z)
◦. With these notations, gy (resp. g∗z) is the

p-stabilization of g (resp. g∗) with Up-eigenvalue αg (resp.αg∗).
Define

κ(gy, g
∗
z , s) := κ(g,g∗)(y, z, s) ∈ H1(Q, Vgy ⊗ Vg∗z (1− s)) (5.8)

as the specialisation of κ(g,g∗) at (y, z, s).
As explained in [DR16, Section 2] and as we have already recalled in Chapter 3, the spaces Vg

and Vg∗ , as GQp-modules, are endowed with a stable filtration

0 −→ V+
g −→ Vg −→ V−g −→ 0,

where V+
g and V−g are flat Λg-modules with a GQp-action, locally free of rank one over Λg, and such

that the quotient V−g is unramified. Define the GQp-subquotient V−+
gg∗ := V−g ⊗̂V+

g∗ of Vgg∗ , which

is of rank one over the two-variable Iwasawa algebra Λg⊗̂Λg∗ (this quotient makes sense because
of [KLZ17, Proposition 8.1.7]).

Then, one may consider a Perrin-Riou map

〈L−+
gg∗ , ηg ⊗ ωg∗〉 : H1(Qp,V−+

gg∗⊗̂Λ(εcycε
−1
cyc)) −→ I−1Λgg∗ ⊗Qp(µN ). (5.9)

This application satisfies an explicit reciprocity law, which is the content of [KLZ17, Theorem B],
and which asserts that

〈L−+
gg∗(κ

−+
p (g,g∗)), ηg ⊗ ωg∗〉 = A(g,g∗) · Lp(g,g∗), (5.10)
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where A(g,g∗) is the Iwasawa function of [KLZ17, Theorem 10.2.2] and κ−+
p (g,g∗) stands for the

composition of the localization-at-p map with the projection Vgg∗ → V−+
gg∗ in local cohomology.

The different specializations of the map 〈L−+
gg∗ , ηg⊗ωg∗〉 can be expressed in terms of the Bloch–

Kato logarithm or the dual exponential map. In particular, we are interested in the specializations
of the class κ(g,g∗) at weights (1, 1, 0), and more generally, weights (`, `, `− 1), where the Perrin-
Riou map interpolates, up to some explicit Euler factors, the Bloch–Kato logarithm. Unfortunately,
these factors may vanish in the self-dual case, and one must recast to the concept of derivatives of
Euler systems.

Derivatives of Beilinson–Flach elements

We keep the notations fixed in the introduction of the chapter regarding weight one modular forms
and units for the adjoint representation. Further, we fix a point of weight one y0 ∈ Spf(Λg) such
that gy0 = gα and g∗y0

= g∗1/β.

In Section 3.3, we proved that the class κ(g,g∗) was zero over the line corresponding to the
Zariski closure of points of weights (`, `, `−1). In loc. cit. we also constructed a derivative along the
y-direction (alternatively, keeping y fixed and varying at a time the other two variables). However,
since the weight space is three-dimensional, it makes sense to ask about the derivative along any
other direction. Although this is perfectly legit, it was not the approach of loc. cit., where we
restricted only to analytic directions, that is, preserving the condition

s = m− 1.

In particular, this excludes the option of considering cyclotomic derivatives (that is, keeping the
weight fixed and varying the cyclotomic twists).

A first observation we make is that we can determine the derivative of the class κ(g,g∗) along
any direction. Since along the line (`, `, `−1) the class is identically zero, the derivative also vanishes.
Hence, by an elementary argument in linear algebra, it suffices to determine the derivative along
any other two independent directions to capture all the first-order information. These derivatives
will be given as weighted combinations of the units {u, v}.
Remark 5.3.1. Observe that we are using the results of [LZ17] which assert that the Beilinson–
Flach elements lie in the part corresponding to the adjoint in the decomposition Vgg∗ = ad0(Vg)⊕1
(the same proof works for the case or families). Alternatively, one can consider the projection to
the alternate part for weight greater than one and then apply a limit argument. Moreover, and
following the discussion of Section 4.4, one has that the projection of the subspace pZ to the adjoint
component is trivial.

For the sake of simplicity, and since this suffices for our purposes, we restrict to the local classes
at p. We closely follow the ideas of Chapter 3, showing that the specialization at weight 1 of the
Λ-adic class is a linear combination of the unit u and the p-unit v, as described in the introduction.

Lemma 5.3.2. The derivative along the y-direction (keeping fixed both z and s) satisfies the fol-
lowing equality in H1(Qp, Vgg∗(1))

∂κp(g,g
∗)

∂y

∣∣∣
(y0,y0,0)

= Ω · (logp(vα⊗β̄)u− logp(uα⊗β̄)v), (5.11)

where Ω ∈ Hp and we have made use of the usual notations for writing directional derivatives.

Proof. According to the properties of the cohomology classes established in Chapters 3 and 4, the
left hand side may be written as a combination of the units u and v. Then, the result follows by
applying [KLZ17, Proposition 8.1.7] to κ(g,g∗) in order to conclude that its projection to V−−gg∗
is identically zero, and therefore the same is true for its derivative. Specializing at (y0, y0, 0), the
result automatically follows.
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Lemma 5.3.3. The derivative along the z-direction (keeping fixed both y and s) satisfies the fol-
lowing equality in the space H1(Qp, Vgg∗(1)), up to a factor in L×

∂κp(g,g
∗)

∂z

∣∣∣
(y0,y0,0)

= Ω · (logp(vα⊗β̄)u− logp(uα⊗β̄)v). (5.12)

Proof. This follows by applying the same result to the p-adic L-value associated to g∗1/β, which

agrees with the former since it holds that Lgαp (gα, g
∗
1/β, 1) = L

g∗
1/β
p (g∗1/β, gα, 1). Note that the

product of the periods arising when pairing with the differentials is a rational quantity (see Section
3.5), and so it does not affect the result.

Therefore, we may determine the derivative along the direction cyclotomic direction (keeping
the weights fixed) by a linear algebra argument.

Proposition 5.3.4. Assume that the derivative of κp(g,g
∗) along the cyclotomic derivative is non-

vanishing. Then, up to multiplication by a scalar, the cyclotomic derivative of the Beilinson–Flach
class is

∂κp(g,g
∗)

∂s

∣∣∣
(y0,y0,0)

= Ω · (logp(vα⊗β̄)u− logp(uα⊗β̄)v) (mod L×),

where Ω ∈ Hp is the period of equation (5.11) and the equality holds in H1(Qp, Vgg∗(1)).

Proof. Recall that the class vanishes along the line (`, `, ` − 1). Hence, the result follows from
equations (5.11) and (5.12) combined with the fact that

(0, 0, 1) = (1, 1, 1)− (1, 0, 0)− (0, 1, 0).

We will see in the next section that the vanishing of the cyclotomic derivative is equivalent
to the vanishing of the special value Lgαp (g, g∗, 1) and also of the regulator corresponding to the
L-invariant. Observe that the previous results show that the different derived classes, which are
elements living in a two-dimensional space, span the same line!

We can now mimic the approach of Chapter 3 when proving the derived reciprocity law and ob-
tain an expression for Lgαp (g, g∗, 1) involving the period Ω. In particular, considering the derivative
along the analytic direction (1, 0, 0) we have the following.

Proposition 5.3.5. Up to multiplication by an element in L×, the following equality holds

Lgαp (g, g∗, 1) ·
(−α′g
αg

)
|y0

= Ω · (logp(uα⊗β̄) · logp(v1)− logp(vα⊗β̄) · logp(u1)).

As usual αg stands for the derivative of the Up-eigenvalue along the weight direction.

Proof. This follows from making explicit the Euler factors in the explicit reciprocity law of [KLZ17,
§10] and taking derivatives along the y-direction.

In the next section, our aim is determining the value of the period Ω appearing in Proposition
5.3.4, which would complete the proof of our main theorem.
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5.4 Cyclotomic derivatives and proof of the main theorem

Cyclotomic derivatives

Along this section, we assume that g and g∗ do not move along Hida families and we just consider the
cyclotomic variation. As an abuse of notation, write κ(g, g∗, s) := κ(g,g∗)(y0, y0, s) to emphasize
the dependence on s. The image of this class under the Perrin-Riou map recovers the p-adic
L-function Lgαp (g, g∗, s), that is,

〈L−+
gg∗(κp(g, g

∗, s)), ηg ⊗ ωg∗〉 = Lgαp (g, g∗, s). (5.13)

The preceding discussion shows that κp(g, g
∗, 0) is zero, but we do not expect that Lgαp (g, g∗, 0) = 0

in general. This is the same situation we previously found in the setting of circular units: the
Kubota–Leopoldt p-adic L-function of a non-trivial, even Dirichlet character Lp(χ, s) is seen as the
image of a Λ-adic cohomology class κ(χ, s) under a Perrin-Riou map; unfortunately, it happens
that κ(χ, 1) = 0 when χ(p) = 1 and an Euler factor also vanishes, so we cannot assert (and indeed
it is false!) that Lp(χ, 1) = 0.

Along this section, and since there is no possible confusion, we write κ′(g, g∗, s) for the cyclo-
tomic derivative. Define the improved Perrin-Riou map as

〈L̃−+
gg∗ , ηg ⊗ ωg∗〉 =

γ − 1
1
p logp(εcyc(γ))

× 〈L−+
gg∗ , ηg ⊗ ωg∗〉 : H1(Qp, V

−+
gg∗ (1− s)) −→ Λ. (5.14)

Note that we have
〈L̃−+

gg∗(κ
′
p(g, g

∗, s)), ηg ⊗ ωg∗〉 = p · Lgαp (g, g∗, s). (5.15)

Hence, the value of 〈L−+
gg∗(κp(g, g

∗, s)), ηg ⊗ ωg∗〉 agrees with

p

logp(εcyc(γ))
· 〈L−+

gg∗((γ − 1) · κ′p(g, g∗, s)), ηg ⊗ ωg∗〉 = 〈L̃−+
gg∗(κ

′
p(g, g

∗, s)), ηg ⊗ ωg∗〉.

For the following result, consider the identification

H1(Qp, ad0(Vg)(1)) ' H×p [ad0(g)]⊗ Lp, (5.16)

and take the element κ′p(g, g
∗, 0), which belongs to the latter space (and which may be therefore

identified with a local unit in H×p ). The same study of [Buy12, Remark 6.5] works verbatim in
our setting, where he argues that the improved Perrin-Riou map is a multiple of the order map
applied to the derived class. However, we want to find out this explicit multiple (at least, up to
multiplication by a rational constant). Compare for example this setting with the computations of
[LVZ15, Proposition 2.5.5] and the discussions of Section 3 of loc. cit., showing that the improved
exponential map they consider is indeed the order map (up to sign). We come back to this issue
in the last section.

Proposition 5.4.1. Identifying κ′p(g, g
∗, 0) with an element in (H×p ⊗ L)GQp , one has

Lgαp (g, g∗, 0) = (1− p−1) · ordp(κ
′
p(g, g

∗, 0)).

Proof. We can rephrase the statement in terms of the well-known theory of Coleman’s power series.
Then, κp(g, g

∗, s) may be seen as a compatible system of units varying over the cyclotomic p-tower,
but whose bottom layer is trivial. Similarly, κ′p(g, g

∗, s) corresponds to a power series which can
be written as fκ′ = xag(x), where g(x) is invertible in the ring of power series. Hence, using the
well-known properties of universal norms (see for instance [Ven16, Section 3] and specially the proof
of Proposition 3.6), we have that g(x) = 1 and the image under the Coleman map of κ′p(g, g

∗, 0)
agrees with

(1− p−1) · logp(x
a) = a(1− p−1) · logp(x).
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Then, and with the usual identifications, we conclude that

〈L̃−+
gg∗(κ

′
p(g, h, 0)), ηg ⊗ ωg∗〉 = (p− 1) · ordp(κ

′
p(g, g

∗, 0)),

and the statement follows.

Roughly speaking, the previous theorem says that the derivative of the logarithm is the order
(which can be seen as the dual of the result which interprets the derivative of the dual exponential
as a logarithm).

Observe that Venerucci considers a rather similar situation in the setting of elliptic curves.
Although he considers a point where the Perrin-Riou map interpolates the dual exponential map,
we can adapt his approach.

Corollary 5.4.2. With the notations introduced along the previous section, and up to multiplication
by L×,

Lgαp (g, g∗, 1) = Ω · logp(uα⊗β̄).

This can be connected again with the case of circular units, that is, Lp(g, g
∗, s) is also the order

of the derivative of κ(g, g∗, s) along the s-direction.

As usual, let

L(ad0(gα)) :=
−α′g(y0)

αg(y0)
, (5.17)

where recall αg = ap(g) ∈ Λg is the Iwasawa function given by the eigenvalue of the Hecke operator
Up acting on g, and α′g is its derivative.

Proposition 5.4.3. Assume that the L-invariant L(ad0(gα)) is non-zero. Then, it may be written
as

L(ad0(gα)) =
logp(uα⊗β̄) · logp(v1)− logp(vα⊗β̄) · logp(u1)

logp(uα⊗β̄)
(mod L×).

Proof. Combining Proposition (5.3.5) with Proposition (5.4.1), we have that

Ω

L(ad0(gα))
·
( logp(uα⊗β̄) · logp(v1)− logp(vα⊗β̄)

logp(uα⊗β̄)

)
= Ω (mod L×).

Dividing by Ω (provided that this value is non zero!), the result follows.

Improved p-adic L-functions

We finish the proof with the same argument invoked in Chapter 3, involving Hida’s improved p-
adic L-function. Then, the main theorem is automatically proved by virtue of the following result,
which had already been discussed in loc. cit.

Proposition 5.4.4. For a crystalline classical point y0 ∈ W◦g of weight ` ≥ 1, we have

L(ad0(gα)) = Lp(g,g
∗)(y0, y0, `) = L′p(ad0(gy0), `),

up to a non-zero rational constant, and Theorem 5.1.1 holds.
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5.5 A reinterpretation of the special value formula

The result we have proven along the last two sections was presented in the introduction of the chap-
ter as a special value formula for the Hida–Rankin p-adic L-function. Alternatively, we emphasized
in our earlier work how it can be regarded as the computation of the L-invariant for the adjoint of
a weight one modular form, and following the original formulation given by Darmon, Lauder, and
Rotger, it also admits a reinterpretation in terms of p-adic iterated integral (and this point of view
is specially useful towards computational experiments). In order to give a more conceptual view of
our results, and how they fit in the theory of exceptional zeros and Galois deformations of modular
forms, we would like two discuss two other interpretations which were already behind the scenes
both in Chapter 3 and in Chapter 4.

Deformations of weight one modular forms

We fix a p-stabilization gα of the weight one modular form g ∈ S1(N,χ). We discuss a reinterpre-
tation of the main results in terms of deformations of modular forms, in a striking analogy with the
different works around the Gross–Stark conjecture, and which may be useful towards generaliza-
tions of the main results to totally real fields, following the recent approach of Dasgupta, Kakde,
and Ventullo [DKV18].

Let Ek denote the weight k Eisenstein series, whose Fourier expansion is given by

Ek =
ζ(1− k)

2
+
∞∑
n=1

σk−1(n)qn. (5.18)

There are two possible ways of considering its p-adic variation in families, either by taking the
ordinary p-stabilization Eord

k or the critical one Ecrit
k . For the sake of simplicity, we restrict to the

ordinary p-stabilization, and after further normalizing by ζ(1− k)/2, we have the usual Eisenstein

series G
(p)
k , given by

G
(p)
k = 1 + 2ζp(1− k)−1

∞∑
n=1

σ
(p)
k−1(n)qn.

Since ζp(1 − k) has a pole at k = 0, it turns out that G
(p)
0 = 1, and it makes sense to consider its

derivative with respect to the weight variable

(G
(p)
0 )′ := 2(1− p−1)−1 ·

∞∑
n=1

σ
(p)
−1q

n.

Compare this with the analogue situation described by Darmon, Pozzi and Vonk [DPV20] in The-
orem A and in the subsequent discussion. Therefore, it is possible to take the infinitesimal defor-

mation G
(p)
0 + ε(G

(p)
0 )′, and multiplying by gα we obtain

(G
(p)
0 + ε(G

(p)
0 )′) · gα = gα + ε(G

(p)
0 )′gα. (5.19)

We regard this expression as a modular form of weight 1 + ε corresponding to an infinitesimal
deformation of gα.

There is another natural deformation of gα we want to consider, which is precisely the one
behind the scenes in previous chapters and which also appeared in [DLR18]. This is defined as

g′α :=
( d
dy

gα

)
|y=y0

.

Then, we may take a second deformation of the modular form gα, given by

gα + εg′α. (5.20)
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When we subtract the deformations in (5.19) and (5.20), we obtain gα(E
(p)
0 )′ − g′α, which is

overconvergent because of the results of Belläıche–Dimitrov on the geometry of the eigencurve
[BeDi16]. If we furthermore take the ordinary projection and project to the gα-component, we
obtain a multiple of gα, that is

egαeord(gα(E
(p)
0 )′) = g′α + L · gα. (5.21)

Let eord stand for the ordinary projector, and egα for the projector onto the gα-isotypic compo-
nent.

Proposition 5.5.1. Under the running assumptions,

egαeord(gαE
[p]
0 ) = (1− αgU−1

p )g′α (mod L×).

Proof. Substracting the deformations in (5.19) and (5.20), we obtain gα(G
(p)
0 )′ − g′α. If we further-

more take the ordinary projection and project to the gα-component, we obtain a multiple of gα,
that is

egαeord(gα(G
(p)
0 )′) = g′α + L · gα. (5.22)

Next, if we apply the operator 1−αgU−1
p to both sides of the previous equation, the left hand side

becomes just the p-depletion

egαeord(gα(G
[p]
0 )′), (5.23)

while in the right hand side the operator 1 − αgU
−1
p annihilates gα. We have thus proved the

result.

Note that the left hand side is an explicit multiple of the p-adic L-function Lgαp (g, g∗, 1), so the
proposition asserts that the L-invariant which governs the arithmetic of the adjoint may be read
as a generalized eigenvalue attached to the deformation g′α, that is,

(1− αgU−1
p )g′α = L(ad0(gα)) · gα (mod L×).

Spaces of generalized eigenvectors

When discussing circular units, we have seen that the condition χ(p) = 1 provides us with a p-unit
in an extended Selmer group, and we have discussed how to mimic this approach in the case of
Beilinson–Flach elements. But more generally, given two modular forms g and h of weights ` and
m, respectively, and an integer s, there is a geometric construction of the so-called Eisenstein classes
Eis[g,h,s] whenever the triple (`,m, s) satisfies the weight condition of [KLZ17, Section 7], that is,

1 ≤ s < min{`,m}.

This includes all the points of weights (`, `, `−1) when ` ≥ 2, and in particular the most well-known
case of ` = 2.

The proof of the explicit reciprocity law for Beilinson–Flach classes rests on an explicit connec-
tion between the p-depleted Eisenstein series (which encodes values of the p-adic L-function) and
the p-stabilized one (which encodes values of the regulator of a geometric cycle). In this chapter
we recovered the expressions for the logarithm of the derived class in terms of p-adic L-values, but
it is natural to look for a reciprocity law involving Eis[g,h,s], whenever h = g∗ and s = `− 1. Note
that this was the only case excluded by [KLZ20, Theorem 6.5.9]. Let us discuss the limitations for
a result like that and that one may find natural in this framework.

According to [DR14, Lemma 4.10] (see also [KLZ20, Lemma 6.5.8]), one has

E
[p]
0 g = (1− χ(p)αh · U−1

p ) · (E(p)
0 gα), (5.24)
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where E
[p]
0 (resp. E

(p)
0 ) stands for the p-depletion (resp. p-stabilization) of the weight 0 Eisenstein

series E0. In the non self-dual case, the corresponding operator acting on the space of generalized
eigenforms S1(Np)[[gα]] is invertible, and we obtain a straightforward linear relation. But when
h = g∗, the connection is more involved. In this case, consider a generalized eigenbasis {e1, . . . , en}
for the Up-operator acting on the space of generalized space of (non-necessarily overconvergent)
modular forms S1(Np)[[gα]], that is,

Up · e1 = αh · e1, Up · e2 = e1 + αh · e2, . . . , Up · en = en−1 + αh · en.

Hence, the matrix corresponding to the operator 1−αg ·U−1
p acting on this space has the quantity

−1/αg all over the upper diagonal and zeros elsewhere. If we now apply this operator to E
(p)
0 gα,

written in this basis as
∑
λiei, what we get in the first non-zero component is −1/αg · λ2. That

is, the second vector of the generalized eigenbasis is the one which encodes the p-adic L-value.
Therefore, one may consider two different classes.

(a) The class Eis[g,g∗,`−1], where ` is the weight of `, is related with the first coefficient in the
expansion in the generalized eigenbasis (see [KLZ17, Corollary 6.5.7]). This controls the
p-stabilization of the Eisenstein series.

(b) The derived class κ′(g, g∗), constructed in Chapter 3, is related with the p-adic L-value, and
hence with second coefficient in the generalized eigenbasis. This measures the p-depletion of
the Eisenstein series.

Hence, when g ∈ S`(N,χg) is an ordinary modular form of weight ` ≥ 2, the two classes

{Eis[g,g∗,`−1], κ′(g, g∗)}

are a priori unrelated.

Question 5.5.2. Can we interpret the class Eis[g,g∗,`−1] in terms of some p-adic L-value? (While
the p-depleted class is connected with the usual p-adic L-value, a priori there is no natural p-adic
avatar encoding the value of the p-stabilized class).

Observe that in the setting of diagonal cycles of [BSV20a], the authors take a different approach
to the vanishing phenomenon, defining an improved class which is a putative geometric refinement
to the analogue of the Eisenstein class, and which agrees up to some L-invariant with the derived
class.

5.6 A conjectural p-adic L-function

It is a somewhat vexing fact that our computations regarding the L-invariant of the adjoint of a
weight one modular form only captures a 2× 2 regulator encoding information about both a unit
and a p-unit, while the most natural object to work would be the unit itself, in the spirit of the
Gross–Stark conjectures. Similarly, one would expect to be able to construct an Eisenstein family,
in such a way that appropriate special values of it also capture information about the Beilinson–
Flach classes, in a way that we now make precise. This section is purely conjectural, and must be
regarded as a failure in our current work, where we have not succeeded in studying these aspects.

Consider the most general setting in which g and h are two weight one modular forms. As we
have already recalled, there are four Beilinson–Flach classes attached to the choice of p-stabilizations
of g and h,

κ(gα, hα), κ(gα, hβ), κ(gβ, hα), κ(gβ, hβ). (5.25)
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We know that different components of it are related to special values of p-adic L-functions. Take
for instance the case of κ(gα, hα). Considering its restriction to a decomposition group at p, we
may consider a decomposition of κp(gα, hα) of the form

κ−−p (gα, hα)⊗ e∨ββ ⊕ κ−+
p (gα, hα)⊗ e∨βα ⊕ κ+−

p (gα, hα)⊗ e∨αβ ⊕ κ++
p (gα, hα)⊗ e∨αα, (5.26)

where {e∨αα, e∨αβ, e∨βα, e∨ββ} is a basis of V ∨gh with the conventions fixed in Chapter 4.

According to [KLZ17, Proposition 8.2.6], the component κ−−p (gα, hα) = 0 vanishes. In the
same way, the components κ−+

p (gα, hα) and κ+−
p (gα, hα) are related to the special values of the

Hida–Rankin p-adic L-functions Lp
gα and Lp

hα , respectively. Hence, it is natural to expect that
the remaining component κ++

p (gα, hα) could arise as the special value of some p-adic L-function.
Following the analogy with the case of diagonal cycles and triple product p-adic L-functions, it
would be attached to the triple (E2(1, χ−1

gh ), g, h), but varying over the region where the Eisenstein
family is dominant. Of course this is not possible, but let us work formally recasting to the theory of
Perrin-Riou maps. In particular, we may consider the three-variable cohomology class κ(g,h), take
the restriction to the line where both g and h are fixed and take the image under the Perrin-Riou
map. That way we would get an element over the Iwasawa algebra that we may denote LEis

p (g, h, s).
It may be instructive to compare this with the scenario of triple products, where the existence of
a third p-adic L-function Lp

f , which at points of weight (2, 1, 1) interpolates classical L-values,
provides a richer framework and draws a more complete picture.

To simplify things, let us focus again on the case where both g and h are self dual, that is h = g∗.
Recall that this situation naturally splits in two scenarios, namely hα = g∗1/β and hα = g∗1/α. As we
have mentioned before, we expect the previous cyclotomic p-adic L-function to encode information
about the logarithm of the unit u, and not about the apparently complicated regulator of our main
result.

More concretely, assume that αgαh = 1, and take the class κ(gα, g
∗
1/α), although the same works

verbatim for κ(gβ, g
∗
1/β). Consider the map

〈L++
gg∗ , ωg ⊗ ωg∗〉 : H1(Qp, V

++
gg∗ (εcycε

−1
cyc)) −→ I−1Λg, (5.27)

whose specializations are given by

νs(〈L++
gg∗ , ωg ⊗ ωg∗〉) : H1(Qp, V

++
gg∗ (1− s)) −→ Cp,

where

νs(〈L++
gg∗ , ωg ⊗ ωg∗〉) =

1− ps−1

1− p−s
·

{
〈 (−1)s

(−s)! · 〈logBK, ωg ⊗ ωg∗〉 if s < 0

(s− 1)! · 〈exp∗BK, ωg ⊗ ωg∗〉 if s > 1.

Observe that we have not said anything about the specializations at s = 0 and at s = 1.
When s = 0 (resp. s = 1), we are still in the region of the Bloch–Kato logarithm (resp. dual

exponential map), but the expression 1 − p−s (resp. 1 − ps−1) vanishes. Hence, and following
[LVZ15, Proposition 2.5.5] (see also the computations of [Ven16, Section 3.1] and [Buy12, Section
6.3]), we expect to be able to establish the following result.

Expected Lemma 5.6.1. The map

ν0(〈L++
gg∗ , ωg ⊗ ωg∗〉) : H1(Qp, V

++
gg∗ (1)) −→ Cp (5.28)

is given by
ν0(〈L++

gg∗ , ωg ⊗ ωg∗〉) = (1− p−1) · 〈ordp, ωg ⊗ ωg∗〉. (5.29)

Remark 5.6.2. The situation is slightly different to that of circular units: there, the fact of taking
the derived class was related to the fact that the Coleman map was connected to an imprimitive
p-adic L-function, vanishing at the point of interest and whose derivative there corresponds to the
special value of the Kubota–Leopoldt p-adic L-function.
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Define
LEis
p (g, h, s) = 〈L++

gg∗(κ
++
p (gα, g

∗
1/α, s)), ωg ⊗ ωg∗〉, (5.30)

where κ(gα, g
∗
1/α, s) is the restriction of the 3-variable cohomology class to the cyclotomic line.

As a piece of notation for the following result, let Lgα stand for the period ratio introduced in
[DR16, Section 2]. This quantity will be extensively studied in Chapter 7.

Proposition 5.6.3. Assume that Lemma 5.6.1 holds. Then, the special value of the derivative of
LEis
p (gα, g

∗
1/α, 1) satisfies that

LEis
p (gα, g

∗
1/α, 1) =

Lgα
logp(uα⊗β̄)

× logp(u1) (mod L×).

Proof. When s = 0, the denominator of the Perrin-Riou map L++
gg∗ vanishes and we are in the

setting discussed before. Then, the Perrin-Riou map is given by the order followed by the pairing
with the canonical differentials, as in (5.29). Since according to the results of Chapter 4

κ(gα, g
∗
1/α) =

1

ΞgαΩg∗
1/α

logp(u1) · v − logp(v1) · u
logp(uα⊗β̄)

(mod L×),

the image of κp(gα, g
∗
1/α) under the map (5.29) agrees with

logp(u1) · Lgα
logp(uα⊗β̄)

(mod L×).

Further, recall that according to [DR16, Conjecture 2.3], we expect that Lgα agrees with
logp(uα⊗β̄) up to multiplication by L×, and this would give just logp(u1) in the previous formula.

As a final comment, observe that the class κ(gα, g
∗
1/β) vanishes, while neither the numerator

nor the denominator of the Perrin-Riou map do. Hence, we expect the special value to be zero.
However, it would be licit to take the derivative of both the class and the p-adic L-function. We
hope to be able to expand this discussion to really find out until which extent the techniques
developed in this chapter could lead to significant results for the study of the conjectures of Harris
and Venkatesh, and understand the relation with the approach developed on the ongoing work of
Darmon, Harris, Rotger and Venkatesh [DHRV20].
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Chapter 6

The exceptional zero phenomenon for
elliptic units

In this chapter we focus on the elliptic units of an imaginary quadratic field and study this excep-
tional zero phenomenon, proving an explicit formula relating the logarithm of a derived elliptic unit
either to special values of the Katz’s two variable p-adic L-function or to its derivative. Further,
we interpret this fact in terms of an L-invariant and relate this result to other approaches to the
exceptional zero phenomenon concerning Heegner points and Beilinson–Flach elements.

The results presented at this chapter are the content of the research article [Ri20a].

6.1 Introduction

Since the introduction of the exceptional zero phenomenon for the Kubota–Leopoldt p-adic L-
function by Ferrero and Greenberg [FG78] and for the p-adic L-function attached to an elliptic
curve by Mazur, Tate and Teitelbaum [MTT86], a lot of progress has been made in the study
of this topic. The main goal of this chapter is to study exceptional zero phenomena for Katz’s
two-variable p-adic L-function at points lying outside the region of classical interpolation, where
the Euler system of elliptic units vanishes. Hence, our setting departs notably from loc. cit. and
is closer in spirit to the study of e. g. [Cas18a] and [RR20a], sharing some points in common with
earlier work of Solomon [Sol92] and Bley [Ble04], and also with the recent preprint of Büyükboduk
and Sakamoto [BS19].

Fix once and for all a prime p and a quadratic imaginary field K in which p splits, and fix
embeddings C ←↩ Q̄ ↪→ Cp. Let p and p̄ be the two prime ideals lying over p, with p the prime
above p induced by the previously fixed embedding Q̄ ↪→ Cp (assume in the introduction for
notational simplicity that both ideals are principal, and with a slight abuse of notation we denote
by p and p̄ their generators). Let Kcyc

∞ and Kac
∞ be the cyclotomic and anticyclotomic Zp-extensions

of K, respectively, and set K∞ = Kac
∞K

cyc
∞ . Denote ΓK = Gal (K∞/K) and ΛK = Zp[[ΓK ]]. The

latter is a Galois module with an appropriate tautological action that we later recall. The weight
space is the formal spectrum Spf(ΛK) of the two-variable Iwasawa algebra ΛK . Let ψ stand for a
Hecke character of finite order, conductor n and taking values in a number field L, and let N denote
the norm character of K. We denote by N the norm of n, and assume that (N, p) = 1. Finally, let
Lp denote a completion of L at the prime p. The Hecke character ψ may be also understood as a
Galois character ψ : GK → L×; the notation ψ′ will be used to designate the composition of ψ with
conjugation by the non-trivial element in Gal (K/Q): ψ′(σ) = ψ(τστ−1), where τ is any element
of GQ which acts non-trivially on K.

As an additional piece of notation, let H∞ denote the unique Zp-extension of K in which p̄ is
unramified (therefore, the prime p is ramified in H∞/K). We choose a Galois character λ of ΓK ,
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so that it factors through Gal (H∞/K), defining an isomorphism

Gal (H∞/K) −→ 1 + pZp.

The choice of λ is unique once we require that it is the Galois representation corresponding to
a Grössencharacter for K of infinity type (1, 0). We define in the same way an extension H ′∞
and a character λ′, exchanging the roles of p and p̄. Although characters of ΓK are elements of
Homcont(GK , Q̄×p ), we are interested in the restriction to the subspace of Homcont(GK , Q̄×p ) given
by

Σψ := {ψξN sλt such that (s, t) ∈ Z2
p},

where ξ is a finite order character of p-power conductor.
One can naturally associate, via the theory of elliptic units of Robert [Rob71] (see also de Shalit

and Yager’s approaches [deS87], [Yag82]) and Kummer maps, a global cohomology class to ψ

κψ,∞ ∈ H1(K,ΛK ⊗ Lp(ψ−1)(N )). (6.1)

We denote by κψ ∈ H1(K,Lp(ψ
−1)) and κψN ∈ H1(K,Lp(ψ

−1)(N )) the specializations of κψ,∞
at ψ and ψN , respectively. In section 4, we prove that κψ never vanishes, while κψN vanishes if
and only if ψ(p) = 1 or ψ(p̄) = 1. In these cases, there exists a notion of derived cohomology class
along the subvariety C′ of weight space, that we define as the Zariski closure of the points N λ̄t with
t ∈ Z≥0 in an appropriate, sense we make precise later on,

κ′ψ,∞ ∈ H1(K,ΛK ⊗ Lp(ψ−1)(N )|C′).

The specialization of this cohomology class at ψN encodes the arithmetic information which is
given by κψN in a non-exceptional situation. To be more explicit, denote by un a fixed choice of
an elliptic unit of conductor n, and to lighten notations, define

uψ =
∏

σ∈Gal (Kn/K)

(σun)
ψ−1(σ) ∈ (O×Kn

⊗ L)ψ, (6.2)

where Kn is the field cut out by ψ. We expect a relation between κ′ψN and uψ, since they both lie
in the same space (after applying a Kummer map), and this is the content of the main result of
this chapter, which we now state.

Assume that ψ(p) = 1, and let us define the following L-invariant

L(ψ) = (1− ψ−1(p̄)) · logp(p), (6.3)

where logp stands for the usual p-adic Iwasawa logarithm.
Then, we have the following result, proved in Section 6.4.

Theorem 6.1.1. Suppose that ψ(p) = 1. Then,

κ′ψN = L(ψ) · uψ. (6.4)

Although the previous result does not require any explicit mention to the theory of p-adic L-
functions, it is fair to say that Katz’s two variable p-adic L-function plays a prominent role in our
results. The interplay between the Euler system of elliptic units and Katz’s two variable p-adic
L-function can be set as a very particular case of a wider theory. One may distinguish two main
approaches to construct a p-adic L-function.

(a) Firstly, interpolating the algebraic parts of the special values of the classical L-function along
the so-called critical region. This requires, as a starting point, the proof of certain algebraicity
results.
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(b) Secondly, as the image under a certain Perrin-Riou map of a family of cohomology classes,
constructed along the so-called geometric region. These classes are typically obtained as
the image under certain regulators of distinguished elements arising from the geometry of
algebraic varieties.

In both approaches, the p-adic L-function is completely characterized by the value at the points
lying either at the critical or at the geometric region. Moreover, some Euler factors arise, measuring
the discrepancy between the interpolation of L-values in the critical region and the interpolation
of cohomology classes in the geometric region. The vanishing of these factors lead us to study
exceptional zero phenomena. In the case of the Perrin-Riou map, the shape of these factors is

1−pjφ
1−p−1−jφ−1 , where j is related to the Hodge–Tate type of the character at which we are specializing,

and φ refers to a Frobenius eigenvalue. As it is suggested for instance in [KLZ17, Section 8] or
[LZ14], there are two kinds of Euler factors in the usual Perrin-Riou maps: those appearing in the
numerator (which typically lead to an exceptional vanishing of the p-adic L-function via explicit
reciprocity laws) and those appearing in the denominator (which lead to an exceptional vanishing
of the cohomology class). While the former phenomenon has been widely studied, as far as we
know the latter has only been discussed with the tools from Perrin-Riou theory in the setting of
Heegner points in [Cas18a] and for Beilinson–Flach elements in [RR20a] (see also Chapter 3 of this
memoir). Nevertheless, similar results have been obtained by Bley [Ble04], although there are some
differences we later discuss.

Katz’s two-variable p-adic L-function Lp(K)(·) is defined on the domain Homcont(GK , Q̄×p ), but
we can consider its restriction to

Σψ = {ψξN sλt such that (s, t) ∈ Z2
p}, (6.5)

where ξ is a finite order character of p-power conductor. This allows us to make use of the tech-
niques relative to p-adic variation, sharing some points in common with Hida theory. We write
Lp(K,ψ)(·) for the restriction of Lp(K)(·) to the subspace of characters given in (6.5), and denote
Lp(K,ψ)(χtriv) := Lp(K)(ψ) and Lp(K,ψ)(N ) := Lp(K)(ψN ). In our case, and because of the
dualities involved in the Perrin-Riou formalism, we are also interested in the function Lp(K, (ψ

′)−1).
We can now describe the main ingredients involved in the proof of Theorem 6.1.1.

(a) An explicit reciprocity law for Katz’s two-variable p-adic L-function due to Yager. This
expresses the special value Lp(K, (ψ

′)−1)(N ) in terms of the image under a Perrin-Riou map
of the cohomology class κψN , and directly gives us that locp(κψN ) = 0 when ψ(p) = 1,
due to the vanishing of an Euler factor. Here, locp stands for the localization at p. The
explicit description of the localization-at-p map shows that we can conclude that κψN = 0
and consider the derived cohomology class. We refer the reader to Sections 6.3 and 6.4 for a
proper definition of derived class and for more details on that.

(b) A derived reciprocity law, expressing the Bloch–Kato logarithm of the derived class in
terms of Lp(K, (ψ

′)−1)(N ). This requires an explicit description of the Perrin-Riou map,
which at the norm character interpolates the Bloch–Kato logarithm and gives a map

logBK : H1(Kp, Lp(ψ
−1)(N )) −→ DdR(Lp(ψ

−1)) ' Lp.

Under the identification induced by the Kummer morphism, this map corresponds, in a sense
that we later make precise, to the usual p-adic logarithm. Then, we have the following result,
whose proof is given in Section 6.4.

Proposition 6.1.2. Assume that ψ(p) = 1. Then,

logp(p) · Lp(K, (ψ
′)−1)(N ) = −(1− p−1) · logp(locp(κ

′
ψN )).
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(c) The functional equation for Katz’s two-variable p-adic L-function (see [Gro80, p.90–91]),
which asserts that

Lp(K, (ψ
′)−1)(N ) = Lp(K,ψ)(χtriv).

(d) Katz’s p-adic version of Kronecker limit formula, expressing the special value of
Lp(K,ψ) at the trivial character in terms of the elliptic unit uψ

Lp(K,ψ)(χtriv) = −(1− ψ−1(p̄))(1− ψ(p)p−1) · logp(uψ).

In Section 6.3 we properly discuss the main features of Katz’s two-variable p-adic L-function.

As a by-product of the previous discussion, along the text we also deal with other instances of
the exceptional zero phenomenon. The results of Section 4 encompass two main situations: the
exceptional vanishing of κψN ; and the exceptional vanishing of the p-adic L-function Lp(K,ψ),
which is a more well-established phenomenon that has been widely studied in the literature and
already appears in Katz’s original work.

Once these results have been developed, the last section of the chapter serves to analyze how
our results fit with similar statements concerning exceptional zero phenomena. In particular, we
emphasize the parallelism, but also the differences, with the theory of Heegner points, as well as
the fact that these elliptic units may be seen as a particular case inside the theory of Beilinson–
Flach elements, where different instances of the exceptional zero phenomena also appear. When
g is a theta series of an imaginary quadratic field where p splits and we take the pair of modular
forms (g, g∗), Chapter 3 describes a connection between a derived Beilinson–Flach element, an
elliptic unit and an special value of the Hida–Rankin p-adic L-function attached to (g, g∗). The
assumptions considered in loc. cit. (we had imposed that the Galois representation attached to g
was p-distinguished) excluded the possibility of elliptic units presenting an exceptional zero, so in a
certain way the results of this chapter regarding exceptional zeros of elliptic units can be thought
as a degenerate case inside the theory of Beilinson–Flach elements. While our main theorem can
be seen as the counterpart of [RR20a, Theorem B] (see also Chapter 3) in the framework of elliptic
units, we point out that there is another exceptional zero phenomenon related to the vanishing of
the numerator of the Perrin-Riou map, which in this case leads to a trivial zero of the Katz’s two
variable p-adic L-function (see Section 4.1) and which in the setting of Beilinson–Flach elements
has been studied in [LZ17].

6.2 Circular units

Circular units constitute one of the first examples of Euler systems, and they play a key role in
the proof of the classical Iwasawa main conjecture. We recall here some of their most relevant
features because of the parallelism they keep with the theory of elliptic units. We discuss what the
exceptional zero phenomenon represents in this case, and then we will compare this setting with
that of elliptic units.

Leopoldt’s formula

In this section, we denote by Λ := Zp[[Z×p ]], and let W := Spf(Λ). We fix a primitive, non-trivial
even Dirichlet character of conductor N ,

χ : (Z/NZ)× → L×

where L is a number field and (p,N) = 1. We write Lp for its completion at a prime lying above
p. For our applications to exceptional zero phenomena, we are interested in the case in which
χ(p) = 1.
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The Kubota–Leopoldt p-adic L-function attached to χ, Lp(χ, s), can be defined as the p-adic
analytic function satisfying the interpolation property

Lp(χ, n) = (1− χ(p)p−n)L(χ, n), for all n ≤ 0.

Alternatively, we may understand it as a function defined over an appropriate rigid analytic space,
sometimes called the weight space.

Definition 6.2.1. A classical point of W is a pair (k, ξ), where k is an integer and ξ is a Dirichlet
character of p-power conductor, corresponding to the homomorphism

z 7→ zk−1ξ(z).

Then, the Kubota–Leopoldt p-adic L-function can be seen as an application

Lp(χ, ·) : W −→ Cp

defined in terms of an interpolation property for a subset of classical points. We warn the reader
that there are several possible conventions regarding this function. Here, we closely follow the
approach of [PR94, Section 3], and the p-adic L-function we have considered satisfies the inter-
polation property of Proposition 3.1.4 of loc. cit. See also [Tale14] for a reformulation of those
ideas in our language. Another standard way of presenting this p-adic L-function is discussed in
[Das99, Section 3], and we will come back to this issue later on; there, the interpolation property
involves appropriate twists by powers of the Teichmüller character, but both approaches are closely
connected as shown in [PR94, Section 3.1.5]: in particular, the p-adic L-values at integers n with
n ≡ 1 modulo p− 1 agree.

Let H denote the field cut out by χ, and for a choice of a primitive pn-th root of unity ζpn , let
Hn = H(ζpn). Define the units

cχ,n :=
N−1∏
a=1

(1− ζaNpn)χ
−1(a) ∈ (O×Hn ⊗ L)χ, (6.6)

that behave under the norm maps as dictated by the theory of Euler systems:

NHn+1

Hn
(cχ,n+1) =

{
cχ,n if n ≥ 1,

cχ ⊗ (χ(p)− 1) if n = 0.
,

where cχ = cχ,0. As a word of caution, note that we have used the standard multiplicative notation,

where the exponentiation (1− ζaNpn)χ
−1(a) means (1− ζaNpn)⊗ χ−1(a).

Hence, one can construct a norm compatible family of cohomology classes taking the image
under the Kummer map δ. More precisely, we consider

κχ,n := δ(cχ,n) ∈ H1(Hn, Lp(1))χ = H1(Hn, Lp(χ
−1)(1)). (6.7)

As in previous chapters, let

εcyc : GQ → Λ×

denote the Λ-adic cyclotomic character, sending a Galois element σ to the group-like element
[εcyc(σ)]. Recall that it interpolates the powers of the Zp-cyclotomic character, in the sense that
for any arithmetic point νr,ξ ∈ Wcl,

νr,ξ ◦ εcyc = ξ · εr−1
cyc . (6.8)
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These classes can be patched all together taking the projective limit for n ≥ 1, resulting in an
element κχ,∞

κχ,∞ ∈ lim
←
H1(Hn, Lp(χ

−1)(1)) = H1(Q, Lp(χ)⊗ Λ(εcycεcyc)). (6.9)

Let Lξ,p stand for the compositum of Lp with the field of values of ξ. The specialization maps
νk,ξ : Λ→ Lξ,p are ring homomorphisms sending the group-like element a ∈ Z×p to ak−1(χξ)−1(a),
and induce GQ-equivariant specialization maps

νk,ξ : Λ(εcyc)→ Lξ,p(ξ
−1)(k − 1).

This gives rise to a collection of global cohomology classes

κk,χξ := νk,ξ(κχ,∞) ∈ H1(Q, Lξ,p(χξ)−1(k)). (6.10)

In order to state the following result, recall that the Gauss sum associated to a Dirichlet
character η of conductor m and with values in a number field L is defined by

g(η) =

m−1∑
a=1

ζam ⊗ η(a) ∈ O×Q(ζm) ⊗ L. (6.11)

From now on, exp∗BK stands for the Bloch–Kato dual exponential map and logBK for the Bloch–Kato
logarithm. The following proposition is a reformulation of a classical result by Coleman [Co79],
using the formalism of Perrin-Riou regulators developed in [PR94].

Proposition 6.2.2 (Coleman, Perrin-Riou). There exists a morphism of Λ-modules (referred to
as the Coleman or the Perrin-Riou map)

Lp : H1(Qp, Lp(χ)⊗ Λ(εcycεcyc)) −→ I−1Λ

satisfying that for all classical points (k, ξ), the specialization map νk,χξ(Lp) is the homomorphism

νk,χξ(Lp) : H1(Qp, Lξ,p(χξ)
−1(k)) −→ DdR(Lξ,p((χξ)

−1)(k)) ' Lξ,p

given by

νk,χξ(Lp) =
1

g((χξ)−1)
· 1− χξ(p)p−k

1− (χξ)−1(p)pk−1
·

{
(−t)k
(k−1)! logBK if k ≥ 1

(−k)!tk exp∗BK if k < 1,

where t is Fontaine’s p-adic analogue of 2πi, and the target of both the Bloch–Kato logarithm and
the dual exponential map is identified with Lξ,p. Here, I is the kernel of the specialization at ν1,χ.

We finally relate the image of the previously introduced class κχ,∞ under the Perrin-Riou
regulator with the Kubota–Leopoldt p-adic L-function. See for instance [PR94] for a more detailed
treatment of this result. Here, locp stands for the localization at p of a global cohomology class.

Theorem 6.2.3. Let χ stand for a non-trivial and even Dirichlet character. Then, the cohomology
class κχ,∞ ∈ H1(Q, Lp(χ)⊗ Λ(εcycεcyc)) introduced in (6.9) satisfies

Lp(χ, ·) = Lp(locp(κχ,∞)).

The previous theorem can be seen as an equality in Λ, and we may apply the specialization maps
to both sides at any Cp-valued point. From the previous results, and using Kummer’s identifications
again, it turns out that one has the equality

Lp(χξ, 1) = − (1− χξ(p)p−1)

(1− (χξ)−1(p))
·

logp(locp(κ1,χξ))

g((χξ)−1)
, (6.12)
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whenever (χξ)(p) 6= 1; if (χξ)(p) = 1, both the Euler factor in the denominator and the cohomology
class in the numerator vanish. Recall that here we have identified t · logBK with the Iwasawa p-adic
logarithm.

Since χ is non-trivial, one has Lp(χ, 1) ∈ Q̄×p . This suggests the existence of a derived cohomol-
ogy class κ′1,χ related with Lp(χ, 1), which is the content of the following section. We recover this
idea along the chapter, but anyway it is good to keep in mind that in this setting one also has a
p-adic Kronecker’s limit formula expressing the value of Lp(χ, 1) in terms of a unit in the number
field cut out by the character

Lp(χ, 1) = −(1− χ(p)p−1)

g(χ−1)
· logp

(N−1∏
a=1

(1− ζa)χ−1(a)
)
. (6.13)

This result is generally due to Leopoldt (see also [PR94]), and is often called in the literature
Leopoldt’s formula. The quantity

∏N−1
a=1 (1 − ζa)χ

−1(a) is typically referred as the circular unit
attached to χ and we have denoted it by cχ.

As we have pointed out, we may instead consider a slightly different p-adic L-function, that we
denote Lp,1(χ, n), and defined in terms of the interpolation property

Lp,1(χ, n) = (1− χωn−1(p)p−n) · L(χωn−1, n) for all n ≤ 0,

where ω stands for the modulo p cyclotomic character (Teichmüller). A very interesting object
of study in the theory of L-invariants is L′p,1(χ, 0), in the case where χω−1(p) = 1 and therefore
Lp,1(χ, 0) = 0 due to an exceptional vanishing. Washington [Was81] provides a formula for the
value of the derivative in terms of Morita’s p-adic Gamma function, Γp(x):

L′p,1(χ, 0) = logp

( N∏
a=1

Γp(a/N)χω
−1(a)

)
+ Lp,1(χ, 0) logp(N). (6.14)

Hence, in the situation of exceptional vanishing χω−1(p) = 1, there is an exceptional zero for
Lp,1(χ, s) at s = 0 and one has that

L′p,1(χ, 0) = logp(vχ), (6.15)

where

vχ =

N∏
a=1

Γp(a/N)χω
−1(a).

In the case where one considers instead an odd Dirichlet character η with η(p) = 1, the determi-
nation of L′p,1(ηω, 0) is a particular case of Gross’ conjectures, as studied first by Ferrero–Greenberg
[FG78], and then by Darmon–Dasgupta–Pollack (among others!) for arbitrary totally real fields.
Here, this derivative is expressed in terms of the logarithm of a p-unit in the field cut out by the
character.

Exceptional zeros and circular units

Suppose from now on that χ is a non-trivial, even, Dirichlet character of conductor N with χ(p) = 1
and (p,N) = 1. Then, the arguments of the previous section show that the specialization of the
Λ-adic class κχ,∞ at χ vanishes, that is, κ1,χ = 0. Of course, this can be interpreted in terms of the
vanishing of the denominator of the Perrin-Riou map. This section, where no claim of originality is
made, explains how to obtain a formula for Lp(χ, 1) involving κχ,∞, following for that the work of
Solomon [Sol92] and Büyükboduk [Buy12], and also discusses how the vanishing of the numerator
of the Perrin-Riou regulator at s = 0 can be studied inside the framework developed in [Ven16].
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With the previous notations, let T = Lp(χ
−1)(1) and T ∗ = Lp(χ), viewed as representations of

GQ. We single out one of the (p− 1) connected components of W, which corresponds to the choice
of the residue class of 1 modulo p − 1 and of the Iwasawa algebra Λ0 = Zp[[1 + pZp]] ⊂ Zp[[Z×p ]].
After fixing a topological generator γ of 1 + pZp, one may consider the short exact sequence of
Zp-modules

0→ Λ0(εcyc)⊗ T
γ−1−−→ Λ0(εcyc)⊗ T → T → 0

which induces a long exact sequence in cohomology. Since H0(Q, T ) = 0,

0→ H1(Q,Λ0(εcyc)⊗ T )
γ−1−−→ H1(Q,Λ0(εcyc)⊗ T )

N−→ H1(Q, T ).

The image of κχ,∞ under the map N vanishes since χ(p) = 1, and hence there exists a unique

κ′χ,∞ ∈ H1(Q,Λ0(εcyc)⊗ T )

such that
γ − 1

logp(γ)
· κ′χ,∞ = κχ,∞.

The reason of normalizing by logp(γ) is, as discussed in [Buy12, Section 3], that the derived class
does not longer depend on the choice of the topological generator γ.

Summing all up, we have the following result. We refer the reader to [Buy12, Proposition 3.4]
for a more detailed discussion.

Proposition 6.2.4. If χ(p) = 1, the class κχ,∞ vanishes at the character χ and there exists a
derived cohomology class κ′χ,∞ ∈ H1(Q,Λ0(εcyc)⊗ T ) such that

κχ,∞ =
γ − 1

logp(γ)
· κ′χ,∞.

Remark 6.2.5. It may be tempting to look for a relation between κ′1,χ and the special value Lp(χ, 1).

However, the fact that the Euler factor 1 − pk−1 is not analytic in the variable k precludes the
possibility of directly taking derivatives in the reciprocity law of Proposition 6.2.2. However, this
can be remedied invoking Solomon’s results, as we later see, connecting the order of the derived
class with the special value at s = 1. In the following sections we discuss how in a bigger weight
space certain derivatives are related with the p-adic logarithm and others with the p-adic valuation.

Let us provide a more explicit description of the previous result. In [Buy12] the author makes
a connection between the value of Lp(χ, 1) and Nekovar’s pairings. In [Buy12, Corollary 2.11] it is
shown that

H1
f,p(Q, T ) = (O×H [1/p])χ ⊗ Lp,

is a two-dimensional space where we may explicitly construct a basis. Here, H̃1
f (Q, T ) stands for

the Bloch–Kato Selmer group of classes which are unramified outside p and de Rham at p. As
before, we have written H for the field cut out by χ. The fact that this space is two-dimensional
reflects the exceptional zero coming from the condition χ(p) = 1, which gives rise to an extra p-unit
in the field cut out by the character.

Define

cn = NQ(ζNn)/H(ζn)(1− ζNn) ∈ (O×H(ζn) ⊗ L),

and consider its χ-part, cχ,n. The element cχ := cχ,1 is called the tame cyclotomic unit, and agrees
with the definition given in the previous section. For a finite abelian extension H ′ of Q of conductor
m we also define

ξH′ = NQ(ζmp)/H′(1− ζmp).
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With a slight abuse of notation, we may identify the units with the cohomology classes obtained
via the Kummer map. Then, it turns out that the collection

ξ = ξχ,∞ := {eχξHn for n ≥ 1} ∈ lim
←
H1(Hn, T ),

where for the sake of simplicity we have written eχ for the χ-projector, satisfies the Euler system
distribution relation, and moreover ξH = 1. Proceeding as before, we obtain an element zχ,∞
satisfying

γ − 1

logp(γ)
× zχ,∞ = ξ.

We call its bottom layer zχ := z0,χ ∈ H1(Q, T ) the cyclotomic p-unit, and {cχ, zχ} is a basis of
H1

f,p(Q, T ). In [Sol92], it is proved that logp(cχ) = ordp(zχ) ∈ Lp, where ordp is the usual p-adic
valuation. Of course, this depends on the choice of a prime of L lying above p.

The interesting fact appears when the denominator of the Perrin-Riou map vanishes. To cir-
cumvent that problem, [Buy12, Section 6.1] recasts to the principle of improved Perrin-Riou map,
which allows to introduce a primitive p-adic L-function L̃p(χ, s) vanishing at s = 1. The main
result of [Buy12] is the computation, via the theory of Nekovar’s pairings, of a formula for Lp(χ, 1),
which asserts that

L̃′p(χ, 1) = p · Lp(χ, 1) =
1− p
g(χ−1)

× logp(cχ) =
1− p
g(χ−1)

× ordp(zχ). (6.16)

This also works for the case of an imaginary quadratic field when one only consider the Zp-
extension which is ramified just over a fixed prime p above p.

For the sake of completeness, we finish the section by analyzing what happens for Lp,1(χ, 0),
where we may follow the approach of [Ven16, Section 3] to analyze the vanishing of the numerator
in the Perrin-Riou map. To ease notations, let ψ = χω−1 and write again L for its field of values.
In particular, we know that when ψ(p) = 1, Lp,1(χ, 0) = 0.

Since the numerator of the Perrin-Riou regulator vanishes, we can consider its derivative. Let
I stand for the augmentation ideal of Λ. Then, we define the derivative of the Perrin-Riou map Lp
of Proposition 6.2.2 as the application

L′p : H1(Qp,Λ(εcyc)⊗Zp Lp(ψ
−1)(1))→ I/I2,

i. e. , the composition of Lp with the projection {·} : I → I/I2.
Let κψ = (κn,ψ) be the cohomology class we have previously introduced in (6.10). Following

the same strategy as in [Ven16, Prop. 3.6], and identifying κ0,ψ with an element in Hom(Q×p ,Qp)⊗
Lp(ψ

−1), one has that

L′p(κψ) = −g(ψ−1)−1(1− p−1)−1 ·
exp∗BK(locp(κ0,ψ))

logp(γ)
· {γ},

where we have identified I/I2 with the multiplicative group 1 + pZp. As in [Ven16, Section 5], we
can relate the derivative of Lp with the derivative of Lp,1(χ, s) and obtain this way a formula for
L′p,1(χ, 0) in terms of exp∗BK(locp(κ0,ψ)).

6.3 Elliptic units

In this section we introduce Katz’s two-variable p-adic L-function and the theory of elliptic units,
following mainly [deS87] and [Yag82], but adapting their results to the framework discussed be-
fore. We also recall the Perrin-Riou big logarithm and recast Yager’s theorem, which gives an
explicit reciprocity law analogue to Theorem 6.2.3 in this setting. We recover the notations of the
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introduction, where K is an imaginary quadratic field and we fix a prime p which splits on K,
i.e. pOK = pp̄. We also fix an identification of Cp with C and embeddings of Q̄ to either of these
fields, which are compatible with these identifications. Let h denote the class number of K. Then,
let πp ∈ OK be such that ph = πpOK , and define $p = πp/πp̄. For simplicity, we assume that
O×K = ±1 and that the discriminant of K is an odd number D < 0.

Consider also a non-trivial Hecke character of finite order ψ, of conductor n, where (n, p) = 1.
In the particular case that χ is a Dirichlet character of conductor N := NK/Q(n), the Dirichlet
character may be seen by restriction as an example of the kind of Hecke characters we are interested
in, provided that K is a quadratic field where all primes dividing N split. As before, let L stand
for the field cut out by the character and Lp for its completion.

Elliptic units

Elliptic units are the result of evaluating modular units at CM points. They give rise to units in
abelian extensions of the imaginary quadratic field K and are the counterpart of circular units for
cyclotomic fields. They also constitute one of the key ingredients for the proof of the Iwasawa main
conjecture for imaginary quadratic fields [Rub92].

For the general construction of elliptic units, we refer the reader to the seminal work of Coates
and Wiles [CW78], or alternatively to Robert’s original paper [Rob71]. Let us give an explicit
description in the special setting where the conductor n of ψ satisfies that there exists a rational
integer N such that OK/n ' Z/NZ, and ψ can be interpreted as a Dirichlet character of conductor
N . We closely follow the survey [Tale14] for that purpose.

Special values of L-series are encoded in terms of the so-called Siegel units ga ∈ O×Y1(N) ⊗ Q
attached to a fixed choice of primitive N -th root of unity ζN and a parameter 1 ≤ a ≤ N − 1. Its
q-expansion is given by

ga(q) = q1/12(1− ζaN )
∏
n>0

(1− qnζaN )(1− qnζ−aN ). (6.17)

Let τn = b+
√
D

2N , where n = ZN + Z b+
√
D

2 . The classical and p-adic elliptic units are defined by

ua,n := ga(τn), u
(p)
a,n := g(p)

a (τpn), (6.18)

being ga the infinite product of (6.17) and g
(p)
a := gpa(q

p)ga(q)
−p. As we did with circular units,

we may define

uψ :=
∏

σ∈Gal (Kn/K)

(σu1,n)
ψ−1(σ), (6.19)

where Kn is the ray class field of K of conductor n and u1,n ∈ O×Kn
. In additive notation, this

corresponds to (σu1,n)⊗ψ−1(σ). This construction works in greater generality and one can always
define the element uψ (see [Rob71]). These units are the bottom layer of a norm compatible family
of elliptic units over the two-variable Zp-extension K∞ of K.

Performing a similar construction to that of (6.7) and (6.9), the work of Katz [Katz76] and de
Shalit [deS87] gives a cohomology class

κψ,∞ ∈ H1(K,ΛK ⊗ Lp(ψ−1)(N )), (6.20)

where ΛK is the two-variable Iwasawa algebra of the introduction endowed with the tautological
Galois action. In particular, if η is a Hecke character of infinity type (κ1, κ2), the global class
obtained by specializing κψ,∞ at η, although it arises from elliptic units, encodes information
about a Galois representation of K attached to a Hecke character.
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Katz’s two-variable p-adic L-function of an imaginary quadratic field

The classical two-variable L-function attached to K and a Hecke ψ is defined by

L(K,ψ, κ1, κ2) :=
∑′

α∈OK

ψ(α)α−κ1ᾱ−κ2 ,

where the sum is over the set of non-zero ideals of OK . This L-series allows us to recover the more
familiar L-function attached to a character ψ of an imaginary quadratic field, via the relation

L(K,ψ, s) =
1

2
L(K,ψ, s, s). (6.21)

We follow [DLR15a, Section 3] for the construction of Katz’s two variable p-adic L-function.
Let c ⊂ OK be an integral ideal of K, and let Σ be the set of Hecke characters of K of conductor

dividing c. Define ΣK = Σ
(1)
K ∪ Σ

(2)
K ⊂ Σ to be the disjoint union of the sets

Σ
(1)
K = {ψ ∈ Σ of infinity type (κ1, κ2), with κ1 ≤ 0, κ2 ≥ 1},

Σ
(2)
K = {ψ ∈ Σ of infinity type (κ1, κ2), with κ1 ≥ 1, κ2 ≤ 0}.

For all ψ ∈ ΣK , the complex argument s = 0 is a critical point for L(ψ−1, s), and Katz’s p-adic

L-function is constructed interpolating the algebraic part of L(ψ−1, 0), as ψ ranges over Σ
(2)
K .

Let Σ̂K be the completion of Σ
(2)
K with respect to the compact open topology on the space

of OLp-valued functions on a subset of A×K . By the work of Katz, there exists a p-adic analytic
function

Lp(K) : Σ̂K −→ Cp,

uniquely determined by the interpolation property that for all ξ ∈ Σ
(2)
K of infinity type (κ1, κ2),

Lp(K)(ξ) = a(ξ)× e(ξ)× f(ξ)×
Ωκ1−κ2
p

Ωκ1−κ2
× Lc(ξ

−1, 0), (6.22)

where

1. a(ξ) = (κ1 − 1)!π−κ2 ,

2. e(ξ) = (1− ξ(p)p−1)(1− ξ−1(p̄)),

3. f(ξ) = D
κ2/2
K 2−κ2 ,

4. Ωp ∈ C×p is a p-adic period attached to K,

5. Ω ∈ C× is the complex period associated to K,

6. Lc(ξ
−1, s) is Hecke’s L-function associated to ξ−1 with the Euler factors at primes dividing c

removed.

We have followed the conventions of [BDP12, Proposition 3.1], which in turn follows from
[Katz76, Section 5.3.0]. Observe that the definition is not symmetric with respect to the primes p
and p̄ above p, and hence we can also consider the function Lp̄(K)(·).

The p-adic L-function Lp(K)(·) satisfies a functional equation

Lp(K)(ξ) = Lp(K)((ξ′)−1N ), (6.23)

where again ξ′ is the composition of ξ with the complex conjugation (see [Gro80, pages 90–91]).
We remark that since our characters are unramified at p, the Gauss sum that sometimes appears in



140 CHAPTER 6. EXCEPTIONAL ZEROS AND ELLIPTIC UNITS

the interpolation formula is equal to 1. Finally, and according to this definition, the interpolation
is over the special values of the form Lc(ξ

−1, 0); this explains some discrepancies regarding certain
conventions with the case of circular units.

It is possible to obtain an expression for the value of Lp(K)(ψ) at finite order characters. This
is usually referred to as the p-adic Kronecker’s limit formula, and is due to Katz:

Lp(K)(ψ) =

{
1
2

(
1
p − 1

)
· logp(π

1/h
p ) if ψ = 1;

−(1− ψ−1(p̄))(1− ψ(p)p−1) · logp(uψ) if ψ 6= 1.
(6.24)

Here, h stands for the class number of K and πp for a generator of the OK-ideal ph. Via the
functional equation, we also have an expression for the value at the ψN

Lp(K)(ψN ) =

{
1
2

(
1
p − 1

)
· logp(π

1/h
p ) if ψ = 1;

−(1− ψ(p))(1− ψ−1(p̄)p−1) · logp(u(ψ′)−1) if ψ 6= 1.
(6.25)

Definition 6.3.1. Let Lp(K,ψ)(·) stand for the restriction of the p-adic L-function of (6.22) to
characters of the form ψξλκ1(λ′)κ2 , where ξ is a character of p-power conductor and λ is the
character of infinity type (1, 0) presented in the introduction.

In particular, write Lp(K,ψ)(χtriv) := Lp(K)(ψ) and Lp(K,ψ)(N ) := Lp(K)(ψN ).

Remark 6.3.2. Depending on the normalization we choose for the two variable p-adic L-function, the
value Lp(K)(ψ) may be affected by multiplication by a non-zero explicit rational number. Further,
this number can depend on the conductor of ψ; however, since we are restricting the function to
characters of the form ψξ, where ξ has p-power conductor, we can adopt a suitable normalization
such that our special value formulas always work.

Further, observe that the p-adic L-function of [Buy12, Theorem 6.3] also differs from this one
in the factor (1− ξ−1(p̄)).

We finish this description of Katz’s two-variable p-adic L-function by discussing its relation
with the theory of improved p-adic L-functions. We say that a character is analytic if it is of
the form ψλt, with t ∈ Z≥0. The reason for this terminology is that they correspond to the
subvariety of the weight space along which the Euler factors appearing in the Perrin-Riou map are
analytic as functions in the variable t. Katz constructed in [Katz76, Section 7.2] a one-variable
p-adic L-function L∗p(K,ψ, k), such that the restriction of Lp(K,ψ) to analytic characters yields
the equation

Lp(K,ψ)(λk) = (1− ψ−1(p̄)π
−k/h
p̄ )L∗p(K,ψ, k). (6.26)

The ratio of the two p-adic L-series is a p-adic analytic function of k, since πp̄ belongs to
O×Kp

. This ratio measures the difference between working with the ordinary p-stabilization of the

Eisenstein series, E
(p)
k,ψ, and the p-depletion, E

[p]
k,ψ. Further, by a result of Katz [Katz76, Section

7.2], one has a relation between the p-adic L-function of a quadratic imaginary field and elliptic
units, given by

L∗p(K,ψ, 0) = −(1− ψ(p)p−1) · logp(uψ). (6.27)

We refer the reader to [BeDi19, Section 4.3] for a more detailed exposition of this material.

A reciprocity law for elliptic units

In this section, we recall the existence of a Perrin-Riou map interpolating both the dual exponential
map and the Bloch–Kato logarithm, as we did with circular units. We closely follow the treatment
of [deS87], recalling the main properties of this regulator map, whose source is the Iwasawa coho-
mology of the representation induced by a Hecke character, and which interpolates the Bloch–Kato
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logarithm and the dual exponential map, depending on the Hodge–Tate type of the character at
which we specialize.

Although this is part of a rather general theory, we are interested in a more down-to-earth
version of these results, which have been recovered by Loeffler and Zerbes in [LZ14] in the setting
of two-variable Perrin-Riou regulators. In particular, Theorem 4.15 of loc. cit. gives an analogue
to Proposition 6.2.2 in the setting of elliptic units. We restrict to characters of K of the form
ψλκ1(λ′)κ2 , where λ is the character of infinity type (1, 0) of the introduction and λ′ is its complex
conjugate. Of course we may also consider twists by characters ξ of p-power order, but we neglect
this possibility so as to ease the exposition.

Recall that ΛK is the two-variable Iwasawa algebra attached to K with the tautological Galois
action. As with circular units, for any character η = λκ1(λ′)κ2 as above there exists a specialization
map that we normalize, to ease the exposition, as the one inducing specializations of the form

νκ1,κ2 : ΛK ⊗ Lp(ψ−1)(N )→ Lp(ψ
−1)(λκ2(λ′)κ1).

We identify again the target of both the dual exponential map and the Bloch–Kato logarithm with
Lp. The following result has been established in [LZ14, Section 6.4, Appendix B], and here is
presented in the language of [KLZ17, Section 8].

Proposition 6.3.3. There exists a morphism

Lp : H1(Kp,ΛK ⊗ Lp(ψ−1)(N )) −→ ΛK

interpolating both the dual exponential map and the Bloch–Kato logarithm, and such that for any
point η of infinity type (κ1, κ2) with ξ = 1, the specialization of L at η is the homomorphism

νκ1,κ2(Lp) : H1(Kp, Lp(ψ
−1)(λκ2(λ′)κ1)) −→ DdR(Lp(ψ

−1)(λκ2(λ′)κ1)) ' Lp

given by

νκ1,κ2(Lp) =
1− ψ(p)π

−κ2/h
p π

−κ1/h
p̄

1− ψ−1(p)π
κ2/h
p π

κ1/h
p̄

p

{
(−t)κ2

κ2! logBK if κ2 > 0

(−κ2)!tκ2 exp∗BK if κ2 ≤ 0.

Remark 6.3.4. It is interesting to analyze the shape of the Euler factors and compare it with those
of [Cas18a, Theorem 3.5]. To follow this parallelism, let κ = κ1 + κ2 and r = −κ2. Then,

1− ψ(p)π
−κ2/h
p π

−κ1/h
p̄

1− ψ−1(p)π
κ2/h
p π

κ1/h
p̄

p

=
1− ψ(p)π

r/h
p π

(−κ−r)/h
p̄

1− ψ−1(p)π
−r/h
p π

(κ+r)/h
p̄

p

=
1− ψ(p)$

r/h
p π

−κ/h
p̄

1− ψ−1(p)$
−r/h
p π

κ/h
p̄

p

. (6.28)

Our results concerning elliptic units can be seen as a counterpart of those for Heegner points
when the cuspidal Hida family is replaced by an Eisentein series.

Remark 6.3.5. As we will discuss in the last section, this also fits well with [KLZ17, Theorem
8.1.7]; with the notations of loc. cit., if we fix s = 0 and identify the modular forms g and h with
two weight one theta series attached to the imaginary quadratic field K, we recover the map of
Proposition 6.3.3. Further, observe that the numerology is coherent, and the condition m > s
defining the region of interpolation of the Bloch–Kato logarithm becomes in this case κ2 > 0.

The following result is the main theorem of [Yag82].

Proposition 6.3.6. The cohomology class κψ,∞ ∈ H1(K,ΛK ⊗ Lp(ψ−1)) satisfies

Lp(K, (ψ
′)−1) = Lp(locp(κψ,∞)).
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Again, the denominator of the Perrin-Riou regulator may vanish. Assume that ψ(p) = 1. Then,
we have the following:

(i) If κ1 = κ2 = 0, then the numerator vanishes and the denominator equals 1− p−1.

(ii) If κ1 = κ2 = 1, the numerator equals 1− p−1 and the denominator vanishes.

Remark 6.3.7. For a fixed κ2, both the numerator and the denominator are analytic functions on
the variable κ1.

6.4 Exceptional zeros and elliptic units

We analyze different instances of exceptional zero phenomena and discuss the existence of derived
cohomology classes and some of their properties. Our main result, stated as Theorem 6.1.1 in the
introduction, is about the exceptional vanishing of κψN , but for the sake of convenience we also
study the exceptional vanishing of Katz’s two variable p-adic L-functon at ψ in Section 6.4. Then,
in Section 6.4 we discuss the different cases of exceptional zeros at ψN and prove the main result of
the chapter. Finally, Section 6.4 discusses the special case where ψ is the restriction of a Dirichlet
character, suggesting a tantalizing connection with the theory of circular units.

Specialization at the character ψ

We assume that the condition ψ(p̄) = 1 is satisfied. We begin this section by discussing the vanishing
of Katz’s two-variable p-adic L-function at the character ψ under this hypothesis. Indeed, from
(6.26), it is straightforward that ψ(p̄) = 1 is a necessary and sufficient condition for the vanishing
of Lp(K,ψ)(χtriv) when the classical value is non-zero.

Until otherwise stated, and so as to shorten the notation, derivatives of p-adic L-functions are
considered along the character λ (that is, along the H∞ direction).

Proposition 6.4.1. Assume that ψ(p̄) = 1. Then, Lp(K,ψ)(χtriv) = 0, and

L′p(K,ψ)(χtriv) = logp(π
1/h
p ) · (1− ψ(p)p−1) · logp(uψ). (6.29)

Proof. This follows by taking derivatives in (6.26) and applying the special value formula of (6.27).

Observe that we have also used that logp(π
1/h
p ) = − logp(π

1/h
p̄ ).

The Euler factors arising in the Perrin-Riou map are analytic in the variable κ1 once the value
of κ2 is fixed. In particular, we may consider the Perrin-Riou map with κ2 = 0 fixed. Writing κκ1,ψ

for the corresponding specialization of the Λ-adic class, one has

(1− πκ1/h
p̄ /p) · Lp(K,ψ)(χtriv) = (1− π−κ1/h

p̄ ) · exp∗BK(locp(κκ1,(ψ′)−1)),

for all κ1 ≥ 0. Taking derivatives with respect to κ1 at both sides and evaluating at κ1 = 0, we get
that

(1− p−1)L′p(K,ψ)(χtriv) = − logp(π
1/h
p ) · exp∗BK(locp(κ(ψ′)−1)), (6.30)

where κ(ψ′)−1 stands for the specialization at the trivial character.
Here, by class field theory,

H1(Kp, Lp(ψ
−1)) ' Homcont(K

×
p ,Kp)⊗ Lp(ψ−1),

and locp(κ(ψ′)−1) corresponds to the evaluation at the inverse of a local uniformizer, π
−1/h
p . In

particular, there is a non-canonical isomorphism with Lp. Under this isomorphism, the dual expo-
nential map corresponds to the ord map. Then, we may identify an element of the space

Homcont(K
×
p ,Kp)⊗ Lp(ψ−1)
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with its image under evaluation at π
−1/h
p .

Therefore, combining Proposition 6.4.1 with equation (6.30), we get the following.

Proposition 6.4.2. Assume that ψ(p̄) = 1. Then, with the previous identifications,

locp(κ(ψ′)−1) = −(1− p−1)(1− ψ(p)p−1)× logp(uψ). (6.31)

Specialization at the character ψN

The motivation for this section comes from the following lemma.

Lemma 6.4.3. The following relation between the unit uψ and the specialization of κψ,∞ at the
character ψN holds:

logp(κψN ) = (1− ψ−1(p)) · (1− ψ−1(p̄)) · logp(uψ). (6.32)

In particular, logp(κψN ) vanishes if and only if ψ(p) = 1 or ψ(p̄) = 1.

Proof. This follows by combining the p-adic Kronecker limit formula given in (6.25), now applied
to (ψ′)−1, with Proposition 6.3.6. Observe that the factor 1 − ψ(p)/p cancels out, and the same
occurs for the two minus signs (the one coming from the Perrin-Riou map and that of the p-adic
Kronecker limit formula).

Further, since both κψN and uψ are ψ-units, the p-adic logarithm defines an isomorphism and
we may upgrade the previous lemma to an equality in (O×Kn

⊗L)ψ. Observe that we are implicitly
using that the localization map corresponds to the injection of global units inside local units, and
this allows us to conclude that the global class κψN also vanishes when ψ(p) = 1 or ψ(p̄) = 1.

We distinguish now three different situations.

(a) If ψ(p) = 1, the cohomology class κψN = 0. One can construct a derived class whose derivative
along the direction λ is computed and expressed in terms of the unit uψ. If ψ(p̄) 6= 1, the
special value Lp(K,ψ)(N ) does not vanish and it is related with the Bloch–Kato logarithm
of the derived class.

(b) If ψ(p̄) = 1, both κψN = 0 and Lp(K,ψ)(N ) = 0. The logarithm of the derived local class
locp(κ

′
ψN ), once the value of κ2 is fixed, can be expressed in terms of L′p(K,ψ)(N ).

(c) When ψ(p) = ψ(p̄) = 1, both κψN = 0 and Lp(K,ψ)(N ) = 0. Observe that this can be
understood as an extension of the subcases (a) and (b). Then, κ′ψN = 0 too, and there
is a notion of second derivative of the cohomology class, whose logarithm is related with
L′p(K,ψ)(N ).

Case (a). Suppose that ψ(p) = 1. Let C be the line of weight space obtained by taking the
Zariski closure of all the points of the form Nλt (that is, fixing κ2 = 1). We are considering
the Cp-points as a rigid analytic space, and realizing all these characters as elements of this space.
Analogously, define C′ as the closure of the points of the formN λ̄t. At the level of p-adic L-functions,
and under the map of Proposition 6.3.6, the point Nλt in C corresponds to Lp(K, (ψ

′)−1)(N λ̄t), or
alternatively and via the functional equation, to Lp(K,ψ)(λt).

In this situation of exceptional zeros, the Euler factor in the denominator of the Perrin-Riou
map of Proposition 6.3.3 vanishes, and hence one must carry out some new constructions to obtain
a formula relating the special value of the p-adic L-function with an appropriate cohomology class.
For that purpose, we can argue the existence of a derived cohomology class arising from elliptic
units, which is directly related with the special value of the derivative of Katz’s two variable p-adic
L-function. Observe that derivatives of cohomology classes must be taken along C′, since elsewhere
the Euler factors are not analytic (and not even continuous!).
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Proposition 6.4.4. It holds that κψN = 0, and there exists a derived cohomology class along C′

κ′γ,ψ,∞ ∈ H1(K,ΛK ⊗ Lp(ψ−1)(N )|C′)

satisfying that

κψ|C′ = (γ − 1)κ′γ,ψ,∞,

where γ is a fixed topological generator of 1 + pZp.

Proof. The vanishing of the local class locp(κψN ) directly follows from Lemma 6.4.3 and the dis-
cussion after it.

The construction of the derived class follows the same argument than in the case of circular
units explained in Section 2, and which is already present in the work of Bley [Ble04]. After fixing
a topological generator γ of 1 + pZp, one may consider the short exact sequence of Zp-modules

0→ ΛK ⊗ Lp(ψ−1)(N )|C′
γ−1−−→ ΛK ⊗ Lp(ψ−1)(N )|C′ → Lp(ψ

−1)(N )→ 0

which induces a long exact sequence in cohomology. Since H0(K,Lp(ψ
−1)(N )) = 0,

0→ H1(K,ΛK ⊗ Lp(ψ−1)(N )|C′)
γ−1−−→ H1(K,ΛK ⊗ Lp(ψ−1)(N )|C′)

N−→ H1(K,Lp(ψ
−1)(N )).

As we have just seen, the image of κψ,∞ under the map N vanishes, and hence there exists a
unique

κ′γ,ψ,∞ ∈ H1(K,ΛK ⊗ Lp(ψ−1)(N )|C′)

such that
γ − 1

logp(γ)
× κ′γ,ψ,∞ = κγ,ψ,∞.

Remark 6.4.5. If we normalize dividing by logp(γ) the specialization of the resulting class at the

character ψN does not depend on γ (see [Buy12, Section 3]). We define κ′ψ,∞ :=
κ′γ,ψ,∞
logp(γ) .

We can relate the cohomology class with Lp(K)(·) at ψN .

Definition 6.4.6. Let Ep(K, (ψ′)−1)(·) stand for the function defined over the set of characters of
the form λκ1 λ̄ (and then extended to their Zariski closure over weight space), and given by

Ep(K, (ψ′)−1)(λκ1 λ̄) =
(

1−
π

1/h
p π

κ1/h
p̄

p

)
Lp(K, (ψ

′)−1)(λκ1 λ̄). (6.33)

Lemma 6.4.7. The function Ep(K, (ψ′)−1) satisfies that for a character η of infinity type (κ1, 1)

Ep(K)(ψη) = −
(

1− π−1/h
p π

−κ1/h
p̄

)
· t logBK(locp(κψη)). (6.34)

In particular, the function Ep(K, (ψ′)−1) is zero at the norm character.

Proof. The first part follows from Proposition 6.3.6. The second statement is due to the vanishing
of the specialization of the cohomology class at ψN (recall that for characters of infinity type (κ1, 1)
the Bloch–Kato logarithm interpolates the usual logarithm map).

This is sufficient to prove Theorem 6.1.1. Recall again that we may identify the Bloch–Kato
logarithm with the usual p-adic logarithm under Kummer’s isomorphism.
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Remark 6.4.8. For the following result, we need to use that (logBK(κ))′ = logBK(κ′). This can be
easily seen by considering the natural isomorphism between the weight space and Zp[[X]]. Then,
the class κ corresponds to a function f vanishing at 0, and hence there is another function g such
that f = X · g. The Bloch–Kato logarithm is a linear morphism between a Zp[[X]]-module and a
field embedded in Cp, that we may denote with the letter Φ. Then,

Φ(f)′|X=0 = Φ(g)|X=0,

as desired.

Theorem 6.4.9. It holds that

logp(π
1/h
p ) · Lp(K, (ψ

′)−1)(N ) = −(1− p−1) · logp(locp(κ
′
ψN )).

Moreover,

κ′ψN = logp(π
1/h
p ) · (1− ψ−1(p̄)) · uψ,

where locp stands here for the composition of the Kummer map with localization at p.

Proof. The first part follows by considering the derivative of the function Ep(K, (ψ′)−1) using both
(6.33) and (6.34). That is, the left hand side is the result of deriving (6.33) and evaluating at
κ1 = 1, where the Euler factor vanishes; similarly, the right hand side is the result of deriving
(6.34) and evaluating again at κ1 = 1, where the class vanishes. Observe that we have identified
t logBK with the p-adic logarithm, as usual.

The second part directly follows after comparing the first statement with the special value
formula given in (6.25). Further, since we are taking a derivative along the p̄-ramified extension
H ′∞/K, the resulting derived class could only have non-zero valuation at the prime p̄. This cannot
be the case when ψ(p̄) 6= 1 since there are no extra p̄-units, and the p-adic logarithm is therefore
an isomorphism for the ψ-component of the unit group. If ψ(p) = ψ(p̄) = 1 the same conclusion
follows by recasting to the arguments of [Blo86]. We discuss this situation in more detail in the
following sections.

This result slightly differs from the work of Bley [Ble04]. There, the author takes the derivative
along the direction C, which corresponds to the Zp-extension which is ramified at the prime p. In
that case, the derivative of the Perrin-Riou map agrees with the order (and not with the logarithm),
which is coherent with the fact that when ψ(p) = 1 there is a p-unit in the ψ-component. Hence,
our results are coherent with the computations of [Buy12, Section 6.4] relating the valuation of the
extra p-unit with the logarithm of the elliptic unit uψ.

Case (b). Assume now that ψ(p̄) = 1. Observe that via the functional equation for Katz’s
two-variable L-function, this leads to

Lp(K, (ψ
′)−1)(N ) = 0,

and L′p(K, (ψ
′)−1)(N ) can be related with the derived cohomology class constructed in the previous

section. We recall that the derivative of the p-adic L-function always means derivative along the
H∞ direction. As we did in Proposition 6.4.4, we may take the class

κ′ψ,∞ ∈ H1(K,ΛK ⊗ Lp(ψ−1)(N )|C′).

Proposition 6.4.10. Assume that ψ(p̄) = 1. Then,

(1− ψ−1(p)) · L′p(K, (ψ′)−1)(N ) = −(1− ψ(p)p−1) · logp(locp(κ
′
ψN )). (6.35)
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Proof. This directly follows by considering the derivative with respect to the variable κ1 in the
reciprocity law of Proposition 6.3.6 when κ2 is fixed.

The derivative L′p(K,ψ)(N ) is related, via the funcional equation, with the derivative at the
trivial character along the direction λ′, and a priori we do not know any expression for that value in
terms of uψ, which would allow us to prove an analogue of Theorem 6.1.1 in this setting. Further,
in this case the derived class κ′ψN is no longer a unit, but a p̄-unit, and the p-adic logarithm is
not sufficient to characterize κ′ψN (one needs to use the information about its p-adic valuation). It
would be nice to understand these results in the framework provided by [BeDi19, Section 4], and
we hope to come back to this issue in forthcoming work.

In the framework of circular units, Gross’ factorization formula [Gro80], combined with the
results of the previous section, allows us to express, after considering the identifications provided
by Kummer’s isomorphisms, the class κ′ψN as a linear combination of a circular unit and an elliptic
unit. We discuss this in Section 6.4

Remark 6.4.11. Following Proposition 6.4.10, we can extend our computations for the derivative of
the cohomology class to arbitrary directions. Indeed, we may consider the function Lp̄(K)(·), thus
complementing our picture.

• When ψ(p) = 1, Lp̄(K)(·) vanishes at ψN and in this case we can relate the derivative of
locp(κψN ) along the direction C with the derivative of Lp̄(K) at ψ along the (−1, 0) direction.

• When ψ(p̄) = 1, the derivative of locp(κψN ) along the direction C can be explicitly expressed
in terms of Lp̄(ψN ).

Case (c). When ψ(p̄) = ψ(p) = 1, we expect that the cohomology class κ′ψN vanishes since
Lp(K,ψ)(N ) = 0. More precisely, and due to the symmetry between both directions λ and λ′, we
may combine the results of previous sections with [Buy12, Theorem 6.13] to conclude that the class
κ′ψN is zero.

When this happens, we may take a second derivative of the cohomology class

κ′′γ,ψ,∞ ∈ H1(K,ΛK ⊗ Lp(ψ−1)(N )|C′).

Now, we normalize the class dividing by logp(γ)2 in such a way that its value at the character ψN ,
κ′′ψN , does not depend on γ. Proceeding in the same way as before, we may obtain the following
result.

Proposition 6.4.12. Assume that ψ(p̄) = ψ(p) = 1. Then,

logp(π
1/h
p ) · L′p(K, (ψ′)−1)(N ) = −2(1− p−1) · logp(locp(κ

′′
ψN )). (6.36)

Proof. Consider again the reciprocity law of Proposition 6.3.3 and fix again κ2 = 1. When eval-
uating at the norm character, it happens that both the Euler factor of the denominator and the

special value Lp(K, (ψ
′)−1)(N ) are zero. Hence, multiplying both sides by 1 − π−1/h

p π
−κ1/h
p̄ and

taking twice the derivative with respect to κ1, we obtain the result.

Remark 6.4.13. We point out, just for the sake of completeness, that another interesting instance
of the exceptional zero phenomenon can be observed in [BDP12, Proposition 3.5], which asserts
that a self-dual character of infinity type (1 + j,−j) with j ≥ 0 satisfies that the evaluation of
Katz’s two-variable p-adic L-function at ν agrees, up to multiplication by some periods and gamma
factors, with a classical L-value times (1− ν−1(p̄))2. Again, if ν(p̄) = 0 we observe the presence of
an exceptional zero.

In the special case where we consider characters of infinity type (1, 0), Agboola [Agb07] studies
a variant of the p-adic BSD conjecture for CM elliptic curves concerning special values of Katz’s
two-variable p-adic L-function. Here, we are again in a situation where our same condition leads
to an exceptional vanishing.
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Interactions with the theory of circular units

Observe that in the case where ψ(p) = 1 we have described the derived cohomology class κ′ψN as
an explicit multiple of the elliptic unit uψ. However, when ψ(p̄) = 1 this is no longer possible, since
we cannot express in terms of uψ the derivative of the Katz’s two variable p-adic L-function at ψ
along the λ′-direction.

In general, one may wish to determine the derivatives of the p-adic L-function along the different
directions of the weight space. We know the derivative along the λ-direction, and it turns out that
in some particular cases we can further determine the derivative along the norm direction.

This is the case when ψ is a finite order Hecke character which comes from the restriction to
GK of a Dirichlet character (that is, a GQ character), and hence one can invoke Gross’ factorization
formula, which is the main result of [Gro80]. To begin with, consider that ψ comes from a Dirichlet
character and that ψ(p̄) = 1. In this case, we have determined the derivative of Lp(K,ψ) at χtriv

along the direction λ, and this is

∂Lp(K,ψ)

∂λ
= logp(π

1/h
p ) · (1− ψ(p)p−1)× logp(uψ).

Similarly, using Gross’ factorization with the conventions about Gauss sums followed in the chapter,
we have that

∂Lp(K,ψ)

∂N
= −(1− ψ(p)p−1) · L′p,1(ψ−1χKω, 0)× logp(cψ),

where χK stands for the quadratic character attached to K and ω is the Teichmüller character.
Observe that here Lp(ψ

−1χKω, 0) = 0 due to the running assumptions.

Then, one can determine the derivative along any direction: for η = ψλaN b, the derivative of
Lp(K,ψ) at the trivial character along the direction η is given by

a · logp(π
1/h
p ) · (1− ψ(p)p−1) · logp(uψ)− b · L′p,1(ψ−1χKω, 0) · (1− ψ(p)p−1) · logp(cψ). (6.37)

Remark 6.4.14. There is only one direction along which this value is zero; as discussed in the
inspiring presentation [Gre12], this has significant applications towards Iwasawa theory.

Now, the functional equation gives the derivative of Lp(K, (ψ
′)−1) at the norm character along

any direction, and in particular, for the direction λ, we have to set a = 1 and b = −1 (this is the
direction −(λ′) at the trivial character). Then, Proposition 6.4.10 yields that, up to an element in
the kernel of the logarithm,

κ′ψN = αuψ + βcψ

where cψ is the circular unit introduced in Section 6.2, and α and β can be determined combining
(6.37) with (6.13):

α = − logp(π
1/h
p )(1− ψ−1(p)),

β = −L′p,1(ψ−1χKω, 0)(1− ψ−1(p)).

If we further assume that ψ(p) = 1, Proposition 6.4.12 gives a new expression for the second
derivative of the cohomology class, again up to an element in the kernel of the logarithm,

κ′′ψN = α′uψ + β′cφ,

where now

α′ = − logp(π
1/h
p )2/2,

β′ = − logp(π
1/h
p )L′p,1(ψ−1χKω, 0)/2.
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6.5 Beilinson–Flach elements and beyond

In this last section, we emphasize the interplay between the results we have presented until now
and other related works in this direction. In particular, we study how the phenomena we have
discussed arise in some of the other Euler systems presented in the survey [Tale14], focusing on two
main aspects:

(a) Elliptic units can be seen as the natural substitute of Heegner points when instead of consid-
ering a cusp form, one takes an Eisenstein series.

(b) Elliptic units can be recast in terms of Beilinson–Flach elements, when we take two weight
one modular forms corresponding to theta series of the same imaginary quadratic field where
the prime p splits.

As it has been extensively discussed in the literature, there is a striking parallelism between
the theory of Heegner points and that of elliptic units. Following this analogy, this chapter may
be read as the counterpart of [Cas18a] when the cusp form f is replaced by an Eisenstein series.
With the notations introduced in loc. cit., where the weight space is modeled by a weight variable
(that we denote with the letter k) and an anticyclotomic variable (denoted with the letter t), an
exceptional zero arises at the point (k, t) = (2, 0) when ap(f) = 1 (the associated elliptic curve
has split multiplicative reduction at p) and we specialize at the character ψN . There is a clear
interplay between that setting and ours, but we would like to point out some of the differences:

• In [Cas18a] the author extends the p-adic Gross–Zagier formula of [BDP13] and finds an
explicit expression for its value at the norm character, which is different from zero. However,
in our setting it may occur that the p-adic L-function vanishes both at ψN and at ψ. This
simultaneous vanishing of the Euler factor and the p-adic L-function gives rise to a higher
order vanishing of the derived class κψ,∞ at the character ψN . This can be understood via
[Cas18a, Eq. 0.2], where the specialization of the higher dimensional Heegner cycle (whose
role is now played by the cohomology class coming from the elliptic unit) and the Heegner
class (whose role is now played by the unit uψ) are related by the factor(

1− pk/2−1

νk(ap)

)2
.

In our case, however, the link is via the factor

(1− ψ−1(p̄)p(κ1−1)/hp̄(κ2−1)/h) · (1− ψ−1(p)p(κ2−1)/hp̄(κ1−1)/h),

and hence there are two possible (and independent) sources of vanishing.

• In our setting there are two points where the exceptional zero phenomenon emerges: the
character ψ and the character ψN . In [Cas18a] the vanishing of the numerator in the Perrin-
Riou map would occur at (k, t) = (0,−1), where there is not a clear geometric meaning of
this phenomenon.

In any case, the similitude between his main result and ours is evident, expressing a derived
cohomology class as a certain L-invariant times a more classical avatar. Obviously, his L-invariant
encodes information both about the elliptic curve and the imaginary quadratic field K.

Elliptic units and Beilinson–Flach elements

Elliptic units can be understood as a degenerate case of the theory of Beilinson–Flach elements.
To make this statement more precise, let

g =
∑
n≥1

anq
n ∈ S1(Ng, χg), h =

∑
n≥1

bnq
n ∈ S1(Nh, χh)
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be two normalized newforms, and let Vg and Vh denote the Artin representations attached to them.
Consider also Vgh := Vg⊗Vh, and let H be the smallest number field cut out by this representation.
We fix a prime number p which does not divide NgNh. Label the roots of the p-th Hecke polynomial
of g and h as

X2 − ap(g)X + χg(p) = (X − αg)(X − βg) X2 − ap(h)X + χh(p) = (X − αh)(X − βh).

Let

gα(q) = g(q)− βgq(qp), hα(q) = h(q)− βhh(qp)

denote the p-stabilization of g (resp. h) on which the Hecke operator Up acts with eigenvalue
αg (resp. αh). Let L be a number field containing both the Fourier coefficients of g and h and
the eigenvalues for the p-th Hecke polynomials. We can attach in a natural way two canonical
differentials ωgα and ηgα to the weight one modular form g, as it is recalled in Sections 2 and 3 of
Chapter 3. The reinterpretation of the main results of [KLZ17] in previous chapters establishes the
existence of cohomology classes

κ(gα, hα), κ(gα, hβ), κ(gβ, hα), κ(gβ, hβ) ∈ H1(Q, Vgh ⊗ Lp(1)),

and also gives an explicit reciprocity law which in slightly rough terms asserts that(
1− 1

pαgβh

)
· log−+(κp(gα, hα)) = (1− αgβh) · Lp(g, h, 1) (mod L×).

Here, Lp(g, h, s) stands for the Hida–Rankin p-adic L-function attached to the convolution g ⊗ h,
κp(gα, hα) is the restriction of the cohomology class to a decomposition group at p, and log−+ is
the result of applying the Bloch–Kato logarithm to a certain projection of the local class followed
by the pairing with the canonical differentials. The proof of this result is based on considering Hida
families g, h interpolating gα and hα, and on proving the corresponding equality over a dense set
of points of the weight space. We refer the reader to Chapter 3 for a complete discussion of the
results.

Now, let g∗ stand for the twist of g by the inverse of its nebentype. When hα = g∗1/β, the

Euler factor 1− αgβh is zero, and Proposition 3.12 of loc. cit. establishes that both κ(gα, g
∗
1/β) and

κ(gβ, g
∗
1/α) vanish and moreover the authors prove the existence of a derived cohomology class

κ′(gα, g
∗
1/β) ∈ H1(Q, Vgg∗ ⊗ Lp(1)) satisfying

log−+(κ′p(gα, g
∗
1/β)) = L(ad0(gα)) · Lp(g, g∗, 1) (mod L×), (6.38)

being L(ad0(gα)) the L-invariant of the adjoint of the weight one modular form gα.
Other interesting cases arise when both g and h are theta series attached to the same quadratic

imaginary field where the prime p splits. In Section 6 of Chapter 3, we proved a formula establishing
an explicit connection between the Hida–Rankin p-adic L-function attached to the pair of modular
forms (g, g∗) and Katz’s two variable p-adic L-function. Indeed, let g = θ(ψ), the theta series
attached to the character ψ. Then, Theorem 6.2 of Chapter 3 asserts that for any s ∈ Zp the
following equality holds up to multiplication by L×:

Lp(g, g
∗, s) =

1

logp(uψad
)
· ζp(s) · Lp(χKω, s) · Lp(K,ψad)(N s), (6.39)

being ψad = ψ/ψ′. Note that ψad is a ring class character, regardless of whether ψ is so or not.
Then, according to the results of Chapter 3,

Lp(g, g
∗, 0) = logp(v1) (mod L×), (6.40)
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where v1 is the norm of a generator v of the one-dimensional space (O×H [1/p]⊗ L)GQ .

This suggests a link between Beilinson–Flach elements and the cohomology classes coming from
elliptic units via the Kummer map, expressed as

κ′(gα, g
∗
1/β) = logp(v1) · v (mod L×). (6.41)

Additionally, the derived Beilinson–Flach element is also related with the cohomology class κψN
via the factorization formula (6.39) and the results of the preceding sections.

As sketched in Section 5.2 of 4, the factorization formula (6.39) admits a counterpart in the
case where g and h are no longer self-dual. In this case,

Lp(g, h, 0) = log−+(κp(gα, hα)) =
logp(uψ1) · logp(uψ2)

logp(ugα)
(mod L×), (6.42)

where ψ1 = ψgψh and ψ2 = ψgψ
′
h, uψi is the elliptic unit attached to ψi and ugα is the Stark unit

attached to the adjoint representation of gα.

Then, and following Chapter 4,

κ(gα, hα) = C · u2, (6.43)

with C an explicit constant involving uψ1 , ugα and certain periods explicitly described in loc. cit.,
and u2 = uψ2uψ′2 , where as usual ψ′2 is the composition of ψ2 with the complex conjugation.

An interesting observation is that the case where the Euler system of elliptic units presents an
exceptional zero never arises in the setting of Chapter 3, due to the regularity assumptions which
are assumed in loc. cit (the fact of g being p-distinguished). Hence, our results may be seen as a
degenerate case of the theory of Beilinson–Flach elements for weight one modular forms.

Let us be more precise in this last sentence. Let g stand for the Hida family of CM theta series
whose weight κ1 specialization has characteristic Hecke polynomial at p given by

(x− p(κ1−1)/h)(x− p̄(κ1−1)/h).

Similarly, let h be the canonical Hida family of CM forms, such that its weight κ2 specialization
has characteristic Hecke polynomial at p

(x− ψ(p)p(κ2−1)/h)(x− ψ(p̄)p̄(κ2−1)/h).

Then, as we had already anticipated, Proposition 6.3.3 may be seen as a degenerate case of Propo-
sition 3.2 in Chapter 3, where we do not consider the twist by the cyclotomic character (we fix
s = 0). Observe that there, the role played by Katz’s two-variable p-adic L-function is done not
exactly by the Hida–Rankin p-adic L-function, but by its product with the c-factor

c2(1− χg(c)−1χh(c)−1), (6.44)

where c is a fixed integer number relatively prime to 6pNgNh.

Remark 6.5.1. The connection between Beilinson–Flach elements and units (in this case circular
units) is also exploited in [Das99], where the proof of the main result, a factorization formula for the
Rankin–Selberg p-adic L-function, rests on a explicit comparison between a certain unit constructed
via the theory of Beilinson–Flach elements and a circular unit. However, the approach used in
loc. cit. is quite different, since the unit is constructed via the specialization of the Beilinson–Flach
class at a point of weight (2, 2, 1).
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Beilinson–Flach elements and exceptional zeros

As we have pointed out, elliptic units may be understood as a special case inside the theory of
Beilinson–Flach elements, where the two modular forms are theta series attached to the same
imaginary quadratic field. Hence, it is reasonable to expect that the two phenomena we have
described concerning exceptional zeros also arise in this setting. This section serves to recall the
main characteristics of the exceptional zero phenomenon for Beilinson–Flach elements, following
closely the discussions of [LZ17].

With the notations of the previous section, let g and h = g∗ Hida families interpolating two
self-dual modular forms gα and hα = g∗1/β, respectively. We assume that g ∈ Λg[[q]], where Λg is a

finite flat extensions of the Iwasawa algebra Λ = Zp[[Z×p ]]. Write W = Spf(Λ) and Wg = Spf(Λg).
Let y0 be a weight one point of Λg such that gy0 = gα and g∗y0

= g∗1/β.

The work of [KLZ17] attaches to (g,g∗) a three-variable family of cohomology classes κ(g,g∗)
parameterized by points (y, z, s) ∈ Wg ×Wg ×W of weights (`,m, s). More precisely, if Vg and
Vg∗ stand for Hida’s Λ-adic Galois representations afforded by g and g∗, respectively, and εcyc is
the Λ-adic cyclotomic character,

κ(g,g∗) ∈ H1(Q,Vg⊗̂Vg∗⊗̂Λ(ε−1
cyc)(1)).

Observe that here, and as a matter of convention, we have used the inverse of the tautological action
over Λ, and this is why we have written Λ(ε−1

cyc) (we may avoid this by invoking the appropriate
functional equation).

As it follows from the discussion of [KLZ17, Sections 8,10], the three-variable Hida–Rankin
p-adic L-function Lp(g,g

∗) is the image of the class κ(g,g∗) under a Perrin-Riou map. Again, the
numerator or the denominator may vanish in some exceptional cases.

For the precise statements concerning Beilinson–Flach classes, we refer the reader to the nota-
tions of previous chapters. As a first observation, we have that in this self-dual case, and according
to [Das99, Theorem 9.4], one has that Lp(g, g

∗, 0) = Lp(g, g
∗, 1). The main results we want to

discuss here are the following ones:

(i) When we specialize both g and g∗ at a fixed weight one point y0, and the cyclotomic variable
s is set as s = 0, the denominator of the Perrin-Riou map is zero and the cohomology
class κ(g,g∗)(y0, y0, 0) vanishes. Then, the explicit reciprocity law of [KLZ17] is substituted
by a derived reciprocity law relating the derived cohomology class with Lp(g, g

∗, 0), up to
multiplication by an L-invariant. This is precisely equation (6.38).

(ii) When we specialize both g and g∗ at weight one, and the cyclotomic variable s is set as
s = 1 the numerator of the Perrin-Riou map is zero but Lp(g, g

∗, 1) does not vanish (at least
generically). This is because [KLZ17, Thm. B] contains the correction factor of (6.44) at the
L-function side, which vanishes in this case.

Exceptional vanishing of the denominator of the Perrin-Riou big logarithm. The
denominator of the Perrin-Riou regulator introduced in Proposition 3.2 of Chapter 3 vanishes at
all points (y, y, `− 1) of weight (`, `, ` − 1). In particular, specializing g and g∗ at the weight one
modular forms g and g∗ respectively, it turns out that

log−+(κ′p(g,g
∗)(y0, y0, 0)) = L(ad0(gα)) · Lp(g, g∗, 0) = L(ad0(gα)) · Lp(g, g∗, 1) (mod L×).

To shorten our notations, we have written κ′p(g,g
∗) for the localization at p of the class.

We would like to emphasize the similitude with our main results for elliptic units, which also
relate the logarithm of the derived cohomology class with a special value of Katz’s two-variable
p-adic L-function, up to multiplication by a certain L-invariant.
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It turns out that the special value Lp(g,g
∗)(y, y, 0) is related via the functional equation with

Lp(g,g
∗)(y, y, 1) and here, to determine its value, we can follow the same approach than in this

chapter: over the line corresponding to those points of weight (`, `, `), the p-adic L-function factors
due to the analyticity of an Euler factor (this is properly developed in [Hi04]), and this allows us
to obtain an explicit expression of the special value Lp(g, g

∗, 1) via Galois deformation techniques.
This expression involves units and p-units in the field cut out by the Galois representation Vgg∗ .

Exceptional vanishing of the numerator of the Perrin-Riou big logarithm. The
results we present now closely follow [LZ17] and are the counterpart of those developed in previous
chapters. We include it here for the sake of completeness, and to illustrate how this exceptional
phenomenon arises in a setting which is germane to ours.

Consider specializations of κ(g,g∗) at weights (y, z,m), where w(z) = m. Then, if αgy and βgy
stand for the eigenvalues of the p-th Hecke polynomial of gy, with ord(αgy) ≤ ord(βgy), the Euler
factor in the numerator of the Perrin-Riou map is

1− αgz
αgy

.

This factor is zero for all points of weight (`, `, `). But this does not mean that the p-adic L-function
vanishes at those points, since the explicit reciprocity law of [KLZ17, Thm. B] contains the factor

c2 − c2s+2−`−m = c2(1− cm−`)

multiplying the value of Lp(g,g
∗), where c is a fixed positive integer coprime with both 6p and the

level of g. At the points where w(z) = m, the Perrin-Riou map interpolates the Bloch–Kato dual
exponential map, and

c2(1− cm−`)
(

1−
αgy
pαgz

)
Lp(g,g

∗)(y, z,m) =
(

1− αgz
αgy

)
· exp∗−+

BK (κp(g,g
∗)(y, z, s)),

where exp∗−+
BK stands for the composition of the projection to a certain subspace of Vgg∗ ⊗ Lp(1)

followed by the dual exponential map and the pairing with the canonical differentials.
Since both sides of the previous equation vanish along the line y = z, w(z) = m, we may

consider the derivative at a point (y, y, `), obtaining the expression

c2(1− p−1) ˙logp(c)Lp(g,g
∗)(y, y, `) =

(−α′gy
αgy

)
· exp∗−+

BK (κp(g,g
∗)(y, y, `)),

up to multiplication by L×. Here, α′g stands for the derivative of the Iwasawa function αg along
the weight direction.

Additionally, invoking Hida’s result on the existence of an improved p-adic L-function [Hi04],
we get that, whenever the weight of y is 1,

logp(c) = exp∗−+
BK (κp(g,g

∗)(y, y, `)) (mod L×).

Observe now that

Lp(g,g
∗)(y, y, `) = Lp(g,g

∗)(y, y, `− 1) (mod L×),

and hence

Lp(g,g
∗)(y, y, `− 1) = L(ad0(gα))−1 · log−+(κ′p(g,g

∗)(y, y, `− 1)) (mod L×).

Consequently, up to multiplication by L×, we have the equality

logp(c)

L(ad0(gα))2
· log−+(κ′p(g,g

∗)(y, y, `− 1)) = exp∗−+
BK (κp(g,g

∗)(y, y, `)) (6.45)
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In particular, modulo L×, one has

logp(c)

L(ad0(gα))2
· log−+(κ′p(g,g

∗)(y0, y0, 0)) = exp∗−+
BK (κp(g,g

∗)(y0, y0, 1)). (6.46)

Observe that this is coherent with the computations of Chapter 3, from where it follows that,
up to multiplication by a scalar in L×,

log−+(κ′p(g,g
∗)(y, y, `− 1)) = L(ad0(gα))2.

This is a consequence of Hida’s improved factorization and the derived version of the explicit
reciprocity law of [KLZ17].
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Chapter 7

Generalized Kato classes and
exceptional zero conjectures

We study different instances of the Elliptic Stark Conjectures of Darmon, Lauder and Rotger, in a
situation where the elliptic curve attached to the modular form f has split multiplicative reduction
at p. For that purpose, we resort once more to the principle of improved p-adic L-functions and
study their L-invariants. We further interpret these results in terms of cohomology classes coming
from the setting of diagonal cycles. This allows us to reduce, in a multiplicative situation, the
conjecture of Darmon, Lauder and Rotger [DLR15a] to a more familiar statement about higher
order derivatives of a triple product p-adic L-function at a point lying inside the region of classical
interpolation, in the realm of the more well-known exceptional zero conjectures.

The results presented at this chapter are the content of the research article [Ri20b].

7.1 Introduction

The Elliptic Stark Conjecture was first formulated by Darmon, Lauder and Rotger in [DLR15a] as
a “more constructive alternative to the Birch and Swinnerton-Dyer conjecture, since it often allows
the efficient analytic computation of p-adic logarithms of global points”. As pointed out by the
authors, “it also yields conjectural constructions and explicit formulae, in situations of rank one
and two, for global points over cyclotomic fields, abelian extensions of quadratic fields which are
not necessarily anticyclotomic, and extensions of Q with Galois group a central extension of A4,
S4 or A5”. The conjecture relates a p-adic iterated integral attached to a triple (f, g, h) of cuspidal
modular forms with a regulator given in terms of points in an elliptic curve, in a rank 2 situation.
Until the moment, not too much work towards the proof of the conjecture has been done: most
of the results are restricted to situations where there exists a factorization of p-adic L-functions,
which allows to interpret the conjecture in terms of the more familiar objects of Bertolini–Darmon–
Prasanna [BDP13]. A multiplicative setting of the conjecture had already been studied in [CR19],
but restricted to the case of theta series of imaginary quadratic fields, where a factorization formula
for the triple product L-series is also available. This is based on the results of Castella [Cas18a],
which extend the work of [BDP13] to the split multiplicative situation.

However, recent works of Bertolini–Seveso–Veneruci [BSV20a], [BSV20b] and Darmon–Rotger
[DR20a], [DR20b] suggest an alternative conjecture also in terms of triple product p-adic L-
functions: while the first formulation of [DLR15a] is concerned with the p-adic value at a point
lying outside the region of classical interpolation, the new version we discuss is about higher order
derivatives at a point which belongs to the classical interpolation region. This setting is germane
to that explored firstly by Greenberg–Stevens [GS94] and then by Bertolini–Darmon [BD07] or
Venerucci [Ven16]. We propose an alternative conjecture in the split multiplicative setting, and
one of the main results of this chapter is the discussion of the equivalence between both formula-
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tions, using for that purpose the setting of generalized cohomology classes. This relies, however, on
an apparently deep fact about periods of weight one modular forms, stated in [DR16] as Conjecture
2.1. We believe that this translation of the conjecture to a more well understood setting provides
new evidence for a better understanding of the problem.

The genesis of this project comes from a parallel story where a new conjecture, formulated
in [DLR16], arises; this gives a formula for the p-adic iterated integral when the modular form f
is no longer cuspidal, but an Eisenstein series. In Chapter 3 we propose a method of proof for
this conjecture when the two modular forms (g, h) are self-dual: this was based on Hida’s improved
factorization theorem for the Hida–Rankin p-adic L-function and allowed us to study the conjecture
in terms of a question concerning Galois deformations.

The discussion of our results in this chapter also leads us to the study of an exceptional vanishing
of the generalized cohomology classes of [DR16] and [CH20], proposing a putative refinement in
terms of some derived generalized cohomology classes.

Setting and notations. Fix once for all a prime number p ≥ 3 and three positive integers Nf ,
Ng, Nh. Let N = lcm(Nf , Ng, Nh) and assume that p - N . Let χ : (Z/NZ)× → C× be a Dirichlet
character. Let

f ∈ S2(pNf ), g ∈M1(Ng, χ), h ∈M1(Nh, χ̄)

be a triple of newforms of weights (2, 1, 1), levels (pNf , Ng, Nh) and nebentype characters (1, χ, χ̄),
where χ̄ stands for the character obtained by composing χ with complex conjugation. Further,
we denote by Vg and by Vh the Artin representations attached to g and h, respectively, and write
Vgh := Vg ⊗ Vh. Let H be the number field cut out by this representation, and L for the field over
which it is defined. To simplify the exposition, we assume that f has rational Fourier coefficients
and that is attached via modularity to an elliptic curve E with split multiplicative reduction at
p. Under the assumption that (pNf , NgNh) = 1, the global sign of the functional equation of
L(E, Vgh, s) is +1. We keep this assumption from now on.

Label and order the roots of the p-th Hecke polynomial of g as

X2 − ap(g)X + χ(p) = (X − αg)(X − βg)

and do the same for those of h. Let gα(q) = g(q) − βg(qp) denote the p-stabilization of g with
Up-eigenvalue αg; it is defined by the q-expansion gα(q) = g(q) − βgg(qp). We want to deal with
a situation of exceptional zeros, that is, where one or several of the Euler factors involved in the
interpolation formula of the p-adic L-function vanish (alternatively, and as we will see later on, this
can be understood in terms of the eigenvalues for the Frobenius action). This naturally splits into
two different settings, namely

(a) the case where αgαh = 1 (and therefore βgβh = 1); and

(b) the case where αgβh = 1 (and therefore βgαh = 1).

In both cases, if we denote the roots of the p-th Hecke polynomial of g by {αg, βg}, those of h
are {1/αg, 1/βg}. As a piece of notation, we write h1/α and h1/β for the p-stabilizations of h with
eigenvalues 1/αg and 1/βg, respectively. Along this work, we refer to these settings as Case (a)
and Case (b). In the framework of Beilinson–Flach elements and Hida–Rankin p-adic L-functions,
the second case has been studied in Chapter 3, and the former has been worked out in the last
section of Chapter 4.

To prove our main results, we also need a classicality property for g. Hence, we assume through-
out that

(H1) the reduction of both Vg and Vh modulo p is irreducible (this requires the choice of integral
lattices Tg and Th, but the fact of being irreducible or not is independent of this choice);
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(H2) g and h are p-distinguished, i.e, αg 6= βg, αh 6= βh (mod p); and

(H3) Vg is not induced from a character of a real quadratic field in which p splits.

Enlarge L if necessary so that it contains all Fourier coefficients of gα. As shown in [DLR15a],
the above hypotheses ensure that any generalized overconvergent modular form with the same
generalized eigenvalues as gα is classical, and hence simply a multiple of gα.

In order to describe our results more precisely, let Λ = Zp[[Z×p ]] be the Iwasawa algebra and
denote by W = Spf(Λ) the weight space. Hida’s theory associates the following data to f :

• a finite flat extension Λf of Λ, giving rise to a covering w :Wf = Spf(Λf ) −→W;

• a family of overconvergent p-adic ordinary modular forms f ∈ Λf [[q]] specializing to f at some
point x0 ∈ Wf of weight w(x0) = 2.

• a representation of the absolute Galois group GQ, %f : GQ −→ GL(Vf ) ' GL2(Λf ) character-
ized by the property that all its classical specializations coincide with the Galois representation
associated by Deligne to the corresponding specialization of the Hida family.

The same occurs with gα and hα thanks to the work of Bellaiche and Dimitrov [BeDi16] on the
geometry of the eigencurve for points of weight one; we denote by Λg and Λh the corresponding
extensions of Λ over which the Hida families g and h are defined, and by y0 ∈ Wg, z0 ∈ Wh the
weight one points for which the specializations agree with gα and hα, respectively.

For each of the settings (a) and (b) presented above, we discuss three different objects which
are expected to encode arithmetic information regarding the convolution of the three Galois rep-
resentations attached to the modular forms f , g and h. We denote by (x, y, z) a triple of points in
Wf ×Wg ×Wh, whose weights are referred as (k, `,m).

(i) The cohomology classes κ(f, gα, hα) studied for instance in [DR16] and [CH20], arising as
the specialization at weights (2, 1, 1) of the three-variable family κ(f ,g,h) constructed as
the image under a p-adic Abel-Jacobi map of certain diagonal cycles. In general, one may
construct four different classes

κ(f, gα, hα), κ(f, gα, hβ), κ(f, gβ, hα), κ(f, gβ, hβ),

one for each p-stabilization of g and h. Further, when some of these classes vanish, we are
lead to consider their derivatives.

(ii) The special value Lp
f (f ,g,h) at weights (2, 1, 1) and its derivatives. Here, Lp

f (f ,g,h) stands
for the three-variable p-adic L-function attached to three Hida families, characterized by an
interpolation property regarding the classical values of the triple product L-function at the
region where k ≥ ` + m. When this function vanishes at the point (2, 1, 1), the derivatives
along different directions of the weight space may encode interesting arithmetic information.

(iii) The special value Lp
gα(f ,g,h) at weights (2, 1, 1), denoted Lp

gα . This p-adic L-function
is defined in an analogue way to the previous one, but now the region of interpolation is
characterized by the inequality ` ≥ k + m so the point (2, 1, 1) is outside the region of
classical interpolation. Similarly, we may also take Lp

hα(f ,g,h), whose region of interpolation
concerns those points for which m ≥ k+ `. Observe that the first value depends on the choice
of p-stabilizations for the weight one form gα.

(i) Cohomology classes coming from the theory of diagonal cycles. We begin by
recalling the results concerning cohomology classes. Results of this kind had already been explored
in [BSV20b] and [DR20b] when αgαh = 1. In that case, the cohomology class is not expected to
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vanish, but the numerator of the (Perrin-Riou) regulator in the reciprocity law for Lp
f does, which

is coherent with the fact that the p-adic L-function Lp
f (f, g, h) is zero (this can be seen, of course,

as an exceptional zero coming from the vanishing of an Euler factor).

Here we are mostly interested in the case where the denominator of the Perrin-Riou regulator
in the reciprocity law for Lp

gα vanishes due to another exceptional zero phenomenon. This occurs
when αgβh = 1 and leads us to recover the ideas of [Cas18a], [RR20a] and [Ri20a], where this
same phenomenon was studied for Heegner points, Beilinson–Flach elements and elliptic units,
respectively. In those cases, the reciprocity laws linking Euler systems and p-adic L-functions were
updated to derived reciprocity laws. A different approach is taken also in [BSV20a, Section 8], where
the authors introduce certain improved cohomology classes, which in this case we may compare in
an explicit way with appropriate derived elements.

Define the three-variable Iwasawa algebra Λfgh := Λf ⊗̂ZpΛg⊗̂ZpΛh and the Λfgh[GQ]-module

Vfgh := Vf ⊗̂ZpVg⊗̂ZpVh.

We work with V†fgh, a certain twist of it by an appropriate power of the Λ-adic cyclotomic character
defined for instance in [DR20b, Section 5.1] and that is needed to satisfy the self-dual assumption.

The works [BSV20a] and [DR20b] attach to (f ,g,h) a Λ-adic global cohomology class

κ(f ,g,h) ∈ H1(Q,V†fgh)

parameterized by the triple product of the weight space Wfgh :=Wf ×Wg ×Wh.

Consider the specialization of the class at weights (x0, y0, z0),

κ(f, gα, h1/β) ∈ H1(Q, Vfgh),

where Vfgh is the tensor product Vf ⊗Vg⊗Vh of the Galois representations attached to the modular
forms f , g and h. This class can be shown to be trivial and hence we are placed to work with an
appropriate derived class κ′(f, gα, h1/β).

As it occurred in the setting of Beilinson–Flach classes, the notion of derivative is rather flexible.
We consider here a derivative along an analytic direction, and keeping fixed the weight of h. Rather
informally, this may be thought as the line (`+1, `, 1) of the weight space. Note that at least in the
self-dual case, where we may argue that the corresponding class vanishes all along the line (2, `, `),
we may consider the derivative along any direction of the weight space.

Let αf (resp. αg, αh) stand for the Iwasawa function corresponding to the root of the p-th Hecke
polynomial of f (resp. g, h) with smallest p-adic valuation. As an additional piece of notation, let

L :=
α′g
αg
−
α′f
αf
, (7.1)

where α′f (resp. α′g, α
′
h) stands for the derivative of the Frobenius eigenvalues at x0 (resp. y0,

z0) when seen as an Iwasawa function along the Hida family Λf (resp. Λg, Λh). Observe that
we can give explicit formulas for L, involving both some units and p-units in the field cut out by
the representation Vgh and the Tate uniformizer of the elliptic curve E. Hence, the L-invariant
governing the arithmetic of the triple (f, g, h) is related both with the L-invariant of the elliptic
curve (the logarithm of the Tate uniformizer) and also with the regulator attached to the adjoint
representation ad0(Vg), expressed in Chapters 3 and 5 as a combination of logarithms of units and
p-units. Compare for instance this result with the main theorem of [Cas18a], where he interprets
the L-invariant attached to a modular form f and an anticyclotomic character as the sum of the two
L-invariants. Our first main result is the following (see Theorem 7.3.9 for the precise formulation),
relating an appropriate logarithm of the derived class with the special value Lp

gα .
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Theorem 7.1.1. The derived cohomology class satisfies

〈logBK(κ′p(f, gα, h1/β)g), ηf ⊗ ωgα ⊗ ωh1/β
〉 = L ·Lp

gα(f ,g,h)(x0, y0, z0) (mod L×),

where the superindex g stands for an appropriate projection of κ′p that we later introduce, and
logBK refers to the Bloch–Kato logarithm, followed by the pairing 〈−,−〉 with certain canonical
differentials.

Remark 7.1.2. In [BSV20a] the authors take a different approach to this exceptional zero phe-
nomenon, and construct an improved cohomology class κ∗g(f, gα, h1/β). As we will later show, there
is a connection between both constructions and one may prove (under mild conditions!) that the
following equality holds in H1(Q, (Vf ⊗Vg⊗Vh)|S), where S stands for the subvariety of the weight
space along which the derived and the improved class are defined, corresponding to the set of
weights k +m = `+ 2:

κ′(f, gα, h1/β) = L · κ∗g(f, gα, h1/β). (7.2)

(ii) The special value Lp
f and derivatives of the triple product p-adic L-function.

In subsequent parts of the chapter we use the previous cohomology classes to study different
instances of the Elliptic Stark Conjecture. Section 4 is devoted to analyze higher order derivatives
of Lp

f (f ,g,h) at (x0, y0, z0). The presence of an Euler factor which vanishes at weights (2, 1, 1)
automatically forces the vanishing of that value. Therefore, it is natural to formulate several
conjectures for the value of the derivatives of Lp

f (f ,g,h).
When αgαh = 1 and L(f ⊗ g ⊗ h, 1) 6= 0, the results of [BSV20a] relying on the existence of

an improved p-adic L-function allow us to state the following result. Although this can be seen as
a straightforward corollary of the results developed in loc. cit., we want to point out that the L-
invariants attached to both g and h have a strong connection with the arithmetic of number fields.
This reveals that in the rank 0 situation the quantity Lp

f is also a putative refinement of the more
well-known L-invariants of Greenberg–Stevens, where not only the Tate period qE appears. This
result follows from [BSV20a, Proposition 8.2].

Proposition 7.1.3 (Bertolini–Seveso–Venerucci). Let I denote the ideal of functions in Λfgh which
vanish at (x0, y0, z0). Assume that L(f ⊗ g ⊗ h, 1) 6= 0, and let Lξ := α′ξ/αξ, for ξ ∈ {f, g, h}.
Then, up to a constant in L×,

Lp
f (f ,g,h) = (Lg − Lf )(`− 1) + (Lh − Lf )(m− 1) (mod I2).

Moreover, the quantities Lχ are explicitly computable in terms of the arithmetic of number fields
and elliptic curves.

Observe for example that the derivative along the y-direction agrees with the L-invariant that
also arises as the derivative of the diagonal class discussed before.

However, the most interesting case appears when L(f⊗g⊗h, 1) = 0. Let us put ourselves in the
setting of [DLR15a] and assume that (E(H) ⊗ V ∨gh)Gal (H/Q) is two-dimensional, where V ∨gh stands
for the contragradient representation of Vgh. This group is equipped with an inclusion in the p-adic
Selmer group corresponding to the group of extensions of Qp by Vfgh in the category of Qp-linear
representations of GQ that are crystalline at p. This group is denoted by H1

f (Q, Vfgh), and we
also assume that is two-dimensional (the latter would follow from the Birch and Swinnerton-Dyer
conjecture for the pair (E, Vgh) and the finiteness of the corresponding Tate–Shafarevich group).

Let {P,Q} denote generators of (E(H) ⊗ V ∨gh)GQ , and fix a basis {e∨αα, e∨αβ, e∨βα, e∨ββ} of V ∨gh as
a GQp-module with the Frobenius action. This allows us to write

P = Pαα ⊗ e∨ββ + Pαβ ⊗ e∨βα + Pβα ⊗ e∨αβ + Pββ ⊗ e∨αα,

and similarly for Q. Here, the arithmetic Frobenius Frp acts on Pαα with eigenvalue βgβh and
analogously for the remaining components. In this case, we can conjecture the following result,
that we extensively discuss in Section 7.5.
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Conjecture 7.1.4. Assume that the L-dimension of (E(H) ⊗ V ∨gh)GQ is two. Then, under the

running assumptions, the p-adic L-function Lp
f (f ,g,h) satisfies

∂2Lp
f (fx, gα, h1/α)

∂x2

∣∣∣
x=x0

= logp(Pαα) · logp(Qββ)− logp(Qαα) · logp(Pββ) (mod L×).

If the L-dimension of (E(H)⊗ V ∨gh)GQ is greater than two, then the left hand side vanishes.

There are other interesting lines along weight space to take derivatives. For example, in [CH20]
the study is concerned with the line (2, `, `), where the derivatives are connected with appropriate
derived heights of the points P and Q.

The work of Bertolini–Seveso–Venerucci and Darmon–Rotger establishes the conjecture for
the case where g and h are theta series of a quadratic field where p is inert, which leads to a
decomposition Vgh = Vψ1 ⊕ Vψ2 . In the imaginary case, we can extend their computations to the
split case, observing that here one has a trivial equality of the form 0 = 0. We expect that the
same occurs for the adjoint case, that is, when h = g∗.

Therefore, we may establish that Conjecture 7.1.4 holds in some dihedral cases. The first part
of this Proposition follows from [BSV20b, Theorem A], and the second is established as part of
Proposition 7.4.7.

Proposition 7.1.5. Conjecture 7.1.4 holds in the following cases:

(a) CM or RM series with p inert in K and at least one of ψ1 or ψ2 being a genus characters;

(b) CM series with p split in K.

We must say that in all these cases the proof is based on a factorization formula, so we expect
that new ideas would be required for the proof in the general case.

(iii) The special value Lp
gα. In the last section, we discuss a way to connect the previ-

ous conjecture with the Elliptic Stark Conjecture of [DLR15a] when αgαh = 1. Recall that the
conjecture predicts that

Lp
gα =

logp(Pαβ) logp(Qαα)− logp(Pαα) logp(Qαβ)

logp(ugα)
(mod L×), (7.3)

with ugα being a Gross–Stark unit whose characterization we later recall. In particular, it is
expected that this unit could be expressed as a ratio of periods attached to weight one forms.
These two periods, denoted by Ωgα and Ξgα , will play a prominent role in the last part of the
work. More precisely, in [DR16, eq. (9)], the authors introduce a p-adic period, Lgα = Ωgα/Ξgα and
conjecture (see Conjecture 2.1 of loc. cit.)

Lgα = logp(ugα). (7.4)

In Section 7.5 we consider the following three conjectures:

(i) the Elliptic Stark Conjecture for Lp
gα ;

(ii) the conjecture for the second derivative along the f -direction for Lp
f , i.e., Conjecture 7.1.4;

(iii) [DR16, Conjecture 2.1] about periods of weight one modular forms. Proposition 7.5.1 can be
seen as an extra piece of theoretical evidence towards this conjecture, showing that

Lgα
Lgβ

=
logp(ugα)

logp(ugβ )
.
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Under certain non-vanishing hypothesis, we prove that if two of the previous conjectures are
true, the third one automatically holds. In particular, we establish the following in Corollary 7.5.5.

Theorem 7.1.6. Let g and h be theta series of a quadratic field (either real or imaginary) where p
is inert. Write Vgh = Vψ1⊕Vψ2, and assume that either ψ1 or ψ2 is a genus character. Then, under
the given assumptions, the equality (7.4) is equivalent to the Elliptic Stark Conjecture of Darmon,
Lauder and Rotger (7.3).

All the previous results are based on the interaction of the different arithmetic actors when
αgαh = 1. The case where αgβh = 1 is more subtle, since here the cohomology class κ(f, gα, h1/β)
vanishes and we cannot extract the same arithmetic information. In any case, we expect that a
similar result must hold in this setting. The reason is that the value of Lp

gα does not depend on
the choice of a p-stabilization for h, and hence we can also give a conjectural expression for the
derived cohomology class in terms of points, in complete analogy with Theorem B of Chapter 3.

Conjecture 7.1.7. The following equality holds in H1
f (Q, Vfgh):

κ′(f, gα, h1/β) =
L

Ξgα · Ωh1/β

·
logp(Pαα) ·Q− logp(Qαα) · P

logp(ugα)
(mod L×). (7.5)

Proceeding as in [DR16] and [RR19] (see Chapter 4) we may also obtain expressions (at
least conjecturally) for the three remaining cohomology classes, κ′(f, gβ, h1/α), κ(f, gα, h1/α) and
κ(f, gβ, h1/β).

7.2 Preliminaries

This section aims to give an overview of the setting we present, concerned with triple product
p-adic L-functions, and also recalls some known results in other related scenarios coming from the
theory of elliptic curves and weight one modular forms.

Hsieh’s triple product p-adic L-function

Fix an algebraic closure Q̄ of Q. For a number field K, let GK := Gal (Q̄/K) denote its absolute
Galois group. Fix also an odd prime p and an embedding Q̄ ↪→ Q̄p.

The formal spectrum W = Spf(Λ) of the Iwasawa algebra Λ = Zp[[Z×p ]] is called the weight
space attached to Λ. The weight space is equipped with a distinguished class of arithmetic points
νs,ε indexed by integers s ∈ Z and Dirichlet characters ε : (Z/prZ)× → Q̄× of p-power conductor.
The point νs,ε ∈ W is defined by the rule

νs,ε(n) = ε(n)ns.

Let (f ,g,h) be a triple of p-adic Hida families of tame levels Nf , Ng, Nh and tame characters
χf , χg, χh. Let also (f∗,g∗,h∗) denote the conjugate triple, and assume that χfχgχh = 1 (this is
referred to as the self-duality assumption). Set N = lcm(Nf , Ng, Nh), and suppose that p - N .

Let Λf , Λg and Λh be the finite extensions of Λ generated by the coefficients of the Hida families
f , g and h, respectively. The weight space attached to Λf is Wf := Spf(Λf ). Since Λf is a finite
flat algebra over Λ, there is a natural finite map

π :Wf := Spf(Wf )
w−→W,

and we say that a point x ∈ Wf is arithmetic of weight s and character ε if π(x) = νs,ε.
A point x ∈ Wf of weight k ≥ 1 and character ε is said to be crystalline if ε = 1 and there

exists an eigenform f◦x of level N such that fx is the ordinary p-stablization of f◦x . We denote by
W◦f the set of crystalline arithmetic points of Wf .
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Finally, set Λfgh = Λf ⊗̂Λg⊗̂Λh and let W◦fgh := W◦f ×W◦g ×W◦h ⊂ Wfgh = Spf(Λfgh) be the
set of triples of crystalline classical points, at which the three Hida families specialize to modular
forms with trivial nebentype at p. This set admits the natural partition

W◦fgh =Wf
fgh tW

g
fgh tW

h
fgh tWbal

fgh,

where

• Wf
fgh denotes the set of points (x, y, z) ∈ W◦fgh of weights (k, `,m) such that k ≥ `+m.

• Wg
fgh and Wh

fgh are defined similarly, replacing the role of f by g (resp. h).

• Wbal
fgh is the set of balanced triples, consisting of points (x, y, z) of weights (k, `,m) such that

each of the weights is strictly smaller than the sum of the other two.

Recall from [DR20b, Section 1.4] the notion of test vector. As proved in Section 3.5 of loc. cit.
following [Hs20], there is a canonical choice of test vectors for which there exists a square-root p-adic
L-function

Lp
f (f ,g,h) :Wfgh → Cp,

characterized by an interpolation property relating its values at classical points (x, y, z) ∈ Wf
fgh

to the square root of the central critical value of Garrett’s triple-product complex L-function
L(fx,gy,hz, s) associated to the triple of classical eigenforms (fx,gy,hz). For the following propo-
sition, let αfx and βfx be the roots of the p-th Hecke polynomial of fx, ordered in such a way that
ordp(αfx) ≤ ordp(βfx). The following result is [DR20b, Proposition 5.1].

Proposition 7.2.1. Fix test vectors (f̃ , g̃, h̃) as in [Hs20, Section 3]. Then Lp
f (f̃ , g̃, h̃) lies in

Λfgh and for every (x, y, z) ∈ Wf
fgh of weights (k, `,m) we have

Lp
f (f̃ , g̃, h̃)2(x, y, z) =

a(k, `,m)

〈f◦x , f◦x〉2
· e2(x, y, z)× L(f◦x ,g

◦
y,h
◦
z, c),

where

1. c = k+`+m−2
2 .

2. a(k, `,m) = (2πi)−2k ·
(
k+`+m−4

2

)
! ·
(
k+`−m−2

2

)
! ·
(
k−`+m−2

2

)
! ·
(
k−`−m

2

)
!,

3. e(x, y, z) = E(x, y, z)/E0(x)E1(x) with

E0(x) := 1− χ−1
f (p)β2

fxp
1−k,

E1(x) := 1− χf (p)α−2
fx
pk−2,

E(x, y, z) :=
(

1− χf (p)α−1
fx
αgyαhzp

k−`−m
2

)
×
(

1− χf (p)α−1
fx
αgyβhzp

k−`−m
2

)
×
(

1− χf (p)α−1
fx
βgyαhzp

k−`−m
2

)
×
(

1− χf (p)α−1
fx
βgyβhzp

k−`−m
2

)
.

There is an ostensible parallelism between this p-adic L-function and the so-called Hida–Rankin
p-adic L-function attached to a pair of Hida families (g,h), but where the cyclotomic variable s
is allowed to move freely. It may be instructive to keep in mind this analogy for the subsequent
results.

Some of the easiest cases to understand these triple product p-adic L-functions arise when
the representation attached to Vgh is irreducible. In particular, assume that g is a weight one
theta series attached to a quadratic field K (either real of imaginary) where p remains inert. Then,
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Vgh = Vψ1⊕Vψ2 , and under the assumption that at least one between ψ1 or ψ2 is a genus (quadratic)
character, the works [BSV20b] and [DR20b] show that

Lp
f (f , g, h)2 = f(k) · Lp(f/K,ψ1) · Lp(f/K,ψ2), (7.6)

where f(k) is a bounded analytic function on Λf such that f(x0) ∈ L×. Here, Lp(f/K,ψ) is the
two-variable p-adic L-function attached to a Hida family f and a character ψ of a quadratic field.

As a word of caution, observe that there are three different p-adic L-functions, depending on
the region of classical interpolation (associated to the dominant weight).

Improved p-adic L-functions

It is a natural phenomenon in the study of p-adic L-functions that some of the Euler factors
arising in the interpolation process are analytic along a subvariety of the weight space (recall
that this idea already appeared in Chapter 3). When this happens, one is tempted to define
improved p-adic L-functions, that is, functions over the corresponding subvariety characterized
by the same interpolation property, but with these Euler factors removed. This is a quite well-
known phenomenon, which dates back to Greenberg–Stevens [GS94] and their study of the Mazur–
Kitagawa p-adic L-function. This was one of the key ingredients in the proof of our main results in
previous chapter, and we would like to stress the limitations of the method in this triple product
setting. The interest of this study is that we also want to discuss later on its applicability from the
Euler system side in order to construct improved cohomology classes.

For the sake of simplicity, assume that χf is trivial. In the setting of triple product p-adic
L-functions we have just discussed, one of the Euler factors appearing in the interpolation property
of Lp

f (f ,g,h) is

1−
αgyαhz

αfx

p
k−`−m

2 ,

which is an Iwasawa function along the surface Sk=`+m defined by

Sk=`+m = {(x, y, z) ∈ W◦f ×W◦g ×W◦h such that k = `+m}.

The definitions given in [DR14, Def. 4.4] can be adapted to yield an improved p-adic L-function
Lp(f ,g,h)∗ on Sk=`+m, by replacing the family h× dtg[p] with the family h×g, whose coefficients
vary analytically because t = 0 on Sk=`+m.

Proposition 7.2.2. There exists an analytic p-adic L-function over the surface Sk=`+m, written
as Lp

f (f ,g,h)∗, and such that the following equality holds in Sk=`+m:

Lp
f (f ,g,h) = (1− α−1

f αgαh)Lp
f (f ,g,h)∗. (7.7)

Proof. This follows from the proof of [BSV20a, Proposition 8.2] and the discussion after it.

We point out that the improved p-adic L-function we have considered, Lp
f (f ,g,h)∗, interpolates

classical L-values, in the same way than Lp
f (f ,g,h), but with the vanishing Euler factor removed.

Therefore, its value at (x0, y0, y0) is given by an explicit non-zero multiple of the square root of
the algebraic part of L(f, g, h, 1). In particular, L(f, g, h, 1) 6= 0 if and only if the improved p-adic
L-function does not vanish at (x0, y0, y0).

Observe however that we may also consider other Euler factors. Take for example

1− χ̄h(p)αhz

αgyαfx

p
k+`−m−2

2 ,

which is analytic along k + ` = m+ 2.
We would expect that one can establish that these factors (each along its respective region)

divide the p-adic L-function and yield other improved p-adic L-functions satisfying mild analytic
and interpolation properties.
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Exceptional zeros and L-invariants

The situations we study in this chapter are mostly concerned with the so-called exceptional zero
phenomenon. We now recall several results which appear in the literature around that, mainly in
[GS94], [Ven16] and [RR20a]. As anticipated before, the point is that the L-invariant governing the
arithmetic of Vf ⊗ Vgh is a combination of the L-invariants attached to f and the adjoint of g (or
the adjoint of h, according to the direction we choose). For a brief summary of the usual definition
and the main properties of the adjoint representation in this scenario, see [DLR15a, Section 1.2].

The aim of this section is to give an arithmetic description of the different L-invariants that
later appear in the setting of triple products, to have a complete description of our picture.

Let us define, to ease notations,

L(ad0(gα)) :=
α′g
αg
, L(E) :=

α′f
αf
, (7.8)

where the derivative is taken along the unique Hida family passing through gα and f , respectively,
and then evaluating at the points corresponding to gα and f .

I. The L-invariant of the adjoint of a modular form. One of the main results of Chapter
3 was the computation of the L-invariant associated to the adjoint of a modular form.

As shown in [DLR16, Lemma 1.1], we have

dimL(O×H ⊗ ad0(g))GQ = 1, dimL(OH [1/p]×/pZ ⊗ ad0(g))GQ = 2.

Fix a generator u of (O×H ⊗ ad0(g))GQ and also an element v of (O×H [1/p]× ⊗ ad0(g))GQ such
that {u, v} is a basis of (OH [1/p]× ⊗ ad0(g))GQ . The element v may be chosen to have p-adic
valuation ordp(v) = 1, and we do so. Viewed as a GQp-module, ad0(g) decomposes as ad0(g) =

L⊕Lα⊗β̄⊕Lβ⊗ᾱ, where all the summands are 1-dimensional subspaces characterized by the property
that the arithmetic Frobenius Frp acts on it with eigenvalue 1, α/β and β/α, respectively. Let Hp

denote the completion of H in Q̄p and let

u1, uα⊗β̄, uβ⊗ᾱ, v1, vα⊗β̄, vβ⊗ᾱ ∈ H×p ⊗Q L (mod L×)

denote the projection of the elements u and v in (H×p ⊗ad0(g))GQp to the above lines. By construc-
tion we have u1, v1 ∈ Q×p and

Frp(uα⊗β̄) =
β

α
uα⊗β̄, Frp(vα⊗β̄) =

β

α
vα⊗β̄, Frp(uβ⊗ᾱ) =

α

β
uβ⊗ᾱ, Frp(vβ⊗ᾱ) =

α

β
vβ⊗ᾱ.

Let
logp : H×p ⊗ L −→ Hp ⊗ L

denote the usual p-adic logarithm.
Then, L(ad0(gα)) can be expressed as

L(ad0(gα)) = −
logp(v1) logp(uα⊗β̄)− logp(u1) logp(vα⊗β̄)

2ordp(v1) · logp(uα⊗β̄)
. (7.9)

II. The L-invariant of an elliptic curve (rank 0). In [GS94], the authors prove a conjecture
of Mazur, Tate and Teitelbaum [MTT86] expressing the quantity Lp(E, 1) in terms of the derivative
of L(E, 1) when the rank is zero. As a consequence of this, they show that an elliptic curve with
split multiplicative reduction at p satisfies

L(E) = −
logp(qE)

2ordp(qE)
, (7.10)



7.2. PRELIMINARIES 165

where qE is Tate’s uniformizer for the elliptic curve E. We write Lp(f)(x, s) for the usual two-
variable Mazur–Kitagawa p-adic L-function, and x0 for the weight two point satisfying fx0 = f ,
with f the modular form attached to E by modularity.

As recalled for instance in the discussion of [BD07, Remark 1.13], there exists an improved
p-adic L-function along s = 1, that we denote here as L∗p(f)(x) and which is characterized by

Lp(f)(x, 1) = (1− ap(fx)−1) · L∗p(f)(x).

Observe that in a rank 0 situation L∗p(fx0) is a non-zero algebraic number which agrees (up to
constant) with the algebraic part of the classical L-value.

III. The L-invariant of an elliptic curve (rank 1). In a rank 1 situation, Venerucci relates
the second derivatives of the Mazur–Kitagawa p-adic L-function with certain heights of Heegner
points. Observe that in this setting, Lp(f)(x0, 1) = 0 and the same happens for its first derivatives.
To determine the second order derivatives, he recast in [Ven16] to the theory of Selmer complexes
and Nekovář’s Selmer groups, as introduced in [Nek06].

Following the conventions used in loc. cit., let H̃1
f be Nekovar’s extended Selmer group. It is a

Qp-module, equipped with a natural inclusion of the extended Mordell-Weil group of E, that we
denote by E†(Q)⊗Qp. In general,

H̃1
f (Q, Vp(E)) = H1

f (Q, Vp(E))⊕Qp · qE ,

where H1
f (Q, Vp(E)) is the Bloch–Kato p-adic Selmer group. Using Nekovar and Venerucci’s results,

there is a canonical Qp-bilinear form

〈·, ·〉 : H̃1
f (Q, Vp(E))⊗Qp H̃

1
f (Q, Vp(E))→ I/I2,

where I stands for the augmentation ideal of the cyclotomic Iwasawa algebra, and which may be
thought as the ring of functions vanishing at the point (x, s) = (x0, 1), that with a slight abuse of
notation we denote by (2, 1). This is the so-called height-weight pairing, which decomposes as

〈·, ·〉 = 〈·, ·〉cyc
p · {s− 1}+ 〈·, ·〉wt

p · {k − 2},

where 〈·, ·〉cyc
p and 〈·, ·〉wt

p are canonical Qp-valued pairings on the extended Selmer group. Finally,
the Schneider height is defined by

〈·, ·〉Sch
p = 〈x, y〉cyc

p −
logp(resp(x)) · logp(resp(y))

logp(qE)
,

where resp(x) is the localization-at-p map. The following result provides expressions for the second
derivative of Lp(f) along different directions of the weight space.

Proposition 7.2.3. The following formulas hold, where P is a generator of the Mordell–Weil group
E(Q).

(a)
d2Lp(f)(k, k/2)

dk2

∣∣∣
k=2

= logE(P )2 (mod L×);

(b)
d2Lp(f)(k, 1)

dk2

∣∣∣
k=2

= L(E) · 〈P, P 〉cyc (mod L×);

(c)
d2Lp(f)(x0, s)

ds2

∣∣∣
s=1

= L(E) · 〈P, P 〉Sch (mod L×).
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Proof. The first part follows from the main result of [BD07], and the other two are [Ven16, Theorems
D and E]. We refer the reader to loc. cit. for a definition of the corresponding pairings.

IV. Results beyond modular forms of weight 2. The main result of Bertolini and Darmon
[BD07] was generalized by Seveso [Se14] to modular forms of even weight. Let us recall here his
main result for the sake of completeness and to illustrate that most of our results generalize to the
situation of weights (k, 1, 1), by replacing the points over the elliptic curve by the corresponding
Heegner cycles. Let fk ∈ Sk(N), where N = pN+N− and N− is the squarefree product of an odd
number of prime factors. The modular form corresponds, via the Jacquet-Langlands correspon-
dence, to a modular form on a certain Shimura curve X = XN+,pN− uniformized by the p-adic
upper half-plane. In this framework, Iovita and Spiess [IS03] constructed a Chow motive Mk−2

attached to modular forms on X. Let m = k/2− 1.

We fix K/Q a quadratic imaginary field extension, of discriminant DK prime to pN , such that
N+ is a product of primes that are split in K, while pN− is a product of primes that are inert in
K; we further fix an order of K of conductor c prime to NDK . Hence, one may consider a higher

weight analogue of Heegner points, the Heegner cycles y
(n)
ψ ∈ CHm+1(Mn) attached to a character

ψ. The p-adic étale Abel-Jacobi map takes the form

AJp : CHm+1(Mn)→M∨k .

For this result, the Mazur–Kitagawa p-adic L-function is replaced by the p-adic L-function
attached to the quadratic field and the character ψ, that we denote by L(f/K,ψ)(k, s) following
the notations of [Se14].

Proposition 7.2.4 (Seveso). The first derivative of L(f/K,ψ)(k, s) in the weight direction is given
by

2
d

dx

(
L(f/K,ψ)(x, x/2)

)∣∣∣
x=k

= AJp(y
(n)
ψ )(f) + (−1)mAJp(y

(n)

ψ̄
)(f).

This suggests that some of our results can be transposed to a higher weight situation, replacing
the points over the elliptic curve by the corresponding Heegner cycles. More precisely, the results
relying on the work of Darmon, Lauder and Rotger on the Elliptic Stark Conjecture [DLR15a] can
be adapted following the generalizations of Gatti and Guitart to higher weights [GG20]. Similarly,
the construction of derived cohomology classes, anticipated in the introduction and developed in
Section 7.3, can be also carried out for general weights (k, 1, 1).

7.3 Derived diagonal cycles and an explicit reciprocity law

Diagonal cycles and an explicit reciprocity law

Darmon and Rotger constructed in [DR20b] an element

κ(f ,g,h) ∈ H1(Q,V†fgh)

arising from the interpolation of diagonal cycles along the balanced region. An alternative con-
struction has been given by Bertolini, Seveso and Venerucci [BSV20a, Section 3]. This class is
symmetric in all three variables. Let

resp : H1(Q,V†fgh)→ H1(Qp,V†fgh)

denote the restriction map to the local cohomology at p, and set

κp(f ,g,h) := resp(κ(f ,g,h)) ∈ H1(Qp,V†fgh).
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One of the main results of both [BSV20a] and [DR20b] is the proof of an explicit reciprocity

law. As showed in loc. cit., the Galois representation V†fgh is endowed with a four-step filtration

0 ⊂ V++
fgh ⊂ V+

fgh ⊂ V−fgh ⊂ V†fgh (7.11)

by GQp-stable Λfgh-submodules of ranks 0, 1, 4, 7 and 8, respectively. Moreover,

V+
fgh/V

++
fgh = Vgh

f ⊕ Vhf
g ⊕ Vfg

h .

We discuss now the definition of Vgh
f . Let Θgh

f be the Λfgh-adic cyclotomic character whose

specialization at a point of weight (k, `,m) is εtcyc, with t := (−k + ` + m)/2, and let ψgh
f be the

unramified character of GQp sending Frp to χ−1
f (p)ap(f)ap(g)−1ap(h)−1. Define U as the unramified

Λfgh-adic representation of GQp given by several copies of the character ψgh
f , and let

Vgh
f = U(Θgh

f ).

We finally introduce the Λ-adic Dieudonné module

D(U) := (U⊗̂Znr
p )GQp .

Then, one may construct a Perrin-Riou regulator map whose source is H1(Qp,Vgh
f ) → Λfgh

and which interpolates either the Bloch–Kato logarithm or the dual exponential map, according
to the value of a certain Hodge–Tate weight. In order to state their main properties, we need to
introduce more terminology. Let c = k+`+m−2

2 , and with the previous notations, define

EPR(x, y, z) =
1− p−cβfxαgyαhz

1− p−cαfxβgyβhz
.

The following result is discussed e.g. in [DR20b, Proposition 5.6].

Proposition 7.3.1. There is a homomorphism (usually named Perrin-Riou regulator)

Lf ,gh : H1(Qp,Vgh
f )→ D(U)

such that for all κp ∈ H1(Qp,Vgh
f ) the image Lf ,gh(κp) satisfies the following interpolation proper-

ties:

1. For all points (x, y, z) /∈ Wf
fgh,

νx,y,z(Lf ,gh(κp)) =
(−1)t

t!
EPR(x, y, z) · 〈logBK(νx,y,z(κp)), ηf ⊗ ωg ⊗ ωh〉,

2. For all points (x, y, z) ∈ Wf
fgh,

νx,y,z(Lf ,gh(κp)) = (−1)t · (1− t)! · EPR(x, y, z) · 〈exp∗BK(νx,y,z(κp)), ηf ⊗ ωg ⊗ ωh〉.

Following [DR20b], one can define

κp(f ,g,h)f ∈ H1(Qp,Vgh
f ) (7.12)

as the projection of the local class κp(f ,g,h) to Vgh
f . Let ηf∗ , ωg∗ and ωh∗ be the canonical

differentials attached to Hida families as introduced for instance in [KLZ17, Section 10]. The
following result has been independently established in [BSV20a, Thoerem A] and [DR20b, Theorem
10].
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Proposition 7.3.2. For any triplet of Λ-adic test vectors (f̃ , g̃, h̃), the following equality holds in
the ring of fractions of Λfgh:

〈Lf ,gh(κp(f ,g,h)f ), ηf̃∗ ⊗ ωg̃∗ ⊗ ωh̃∗〉 = Lfp(f̃ , g̃, h̃).

Remark 7.3.3. There exist analogue reciprocity laws for Lp
g and Lp

h.

We can also formulate an explicit reciprocity law for the improved p-adic L-function. Since
along the region k = `+m the Perrin-Riou map interpolates the dual exponential, we have that

1

1− p−k+1αfxβgyβhz
· 〈exp∗BK(κp(f ,g,h)f (x, y, z)), ηf̃∗x

⊗ ωg̃∗y ⊗ ωh̃∗z
〉 = Lfp(f̃x, g̃y, h̃z)

∗, (7.13)

and in particular the dual exponential map vanishes at (x0, y0, y0) (i.e. the class is crystalline) if
and only if the improved p-adic L-function is zero at that point.

Remark 7.3.4. In [GGMR20], the authors study the cohomology classes in a generic rank zero
situation, where they are non-crystalline. This yields a formula for the special value Lp

g in terms of
Lp

f in absence of exceptional zeros. Again, the key point is that each component of the cohomology
class encodes information about a different p-adic L-function.

Vanishing of cohomology classes

In [BSV20a, Section 8.2], the authors deal with a situation where the numerator of the Perrin-Riou
map Lf ,gh vanishes, defining an improved map whose derivatives may be explicitly computed. We
come back to this question later on. Let us analyze, firstly, the vanishing of the denominator of
the Perrin-Riou map, but in the case of the Perrin-Riou map Lg,hf , that is:

1− p−cβfxαgyβhz = 0. (7.14)

Since we have placed ourselves in the ordinary setting, a necessary condition for this to happen
is k + m = ` + 2, which moreover suffices to guarantee the analyticity of the Euler factor in the
denominator.

Hence, when f is of weight 2 with split multiplicative reduction at p, and g and h are self-dual
of the same weight (h = g ⊗ χ−1

g ), the denominator of the Perrin-Riou map vanishes. This means
that we expect

logBK(κp(f ,g,h)g(x, y, z)) = 0.

However, the self-duality condition is not necessary for this vanishing, and following the conventions
of the introduction in the case of weights (2, 1, 1) (again, with E of split multiplicative reduction),
it suffices to impose that αgβh = 1. This encompasses for example the case of theta series of
quadratic fields where the prime p is inert. Nevertheless, there are certain phenomena which are
exclusive from the self-dual case: indeed, the fact that the Hida families interpolating both g and
h keep the self-duality condition gives us a vanishing along the whole line (2, `, `). We treat both
the self-dual and the non self-dual case, emphasizing the main differences between them.

We begin by showing that when αgβh = 1 and g and h are self-dual, the local class κp(f, gα, hα)
vanishes, using the techniques discussed in Chapter 3. Although this is not strictly necessary
since we will later see that the whole global class is zero, we believe that it may be instructive
for the reader to compare the formalism of Chapter 3, which relies on the basic properties of the
Perrin-Riou maps, with the more conceptual proof of [BSV20a, Section 8], based on the geometric
construction of an improved cohomology class.

Proposition 7.3.5. With the running assumptions, the specialization of the Λ-adic cohomology
class κp(f ,g,g

∗) at (x0, y0, y0) vanishes, that is, κp(f, gα, g
∗
1/β) = 0.
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Proof. We will follow the same strategy used in Theorem 3.3.5. First of all we show, invoking
[BSV20a, Theorem 7.1], that any specialization of the three-variable Λ-adic class at a point of
weights (2, `, `), with ` ≥ 2, is zero. In order to achieve this, we just use the comparison provided
by the aforementioned result with the twisted class κ†, twisting now in the g-variable, that is,
applying the operator Id⊗w′p⊗ Id according to the definitions given at the beginning of Section 7.2
of loc. cit., where wp stands for the Atkin–Lehner involution. As we later discuss, this class may be
understood as an improved cohomology class, since it agrees with the former up to multiplication
by the Euler factor

1−
χ̄(p)αgy

αfxαhz

p
k−`+m−2

2 .

This factor is zero over the line (2, `, `) when we take Hida families such that h = g∗, since
χ̄(p)αgy = αhy . Observe that we are implicitly using Lemma 8.4 of loc. cit., which assert that the
class κ(f ,g,h) is symmetric in all three variables.

The second part of the proof consists on applying a limit argument componentwise, via the
corresponding Perrin-Riou maps, to conclude that the limit when ` goes to one is also zero. For this
last step, we look at the four different components of the local class κp(f, gα, g

∗
1/β) corresponding

to the balanced subspace V+
fgg∗ . This suffices according to the results established in [BSV20a,

Corollary 7.2] and following the notations of Section 6.2 in loc. cit., which asserts that the three-
variable cohomology class lies in the balanced subspace. The components of the balanced subspace
are denoted by V gg∗

f , V g∗f
g , V fg

g∗ and V ++
fgg∗ , where V gg∗

f stands for the specialization of Vgg∗

f and
similarly for the other factors (recall the filtration of (7.11)).

• We first prove that the component associated to the rank one subspace V gg∗

f is zero. Ob-

serve that along the line (2, `, `), the specialization of the module H1(Qp,Vgg∗

f ) agrees with
H1(Qp,Zp(ψ−2

gy )(` − 1)), where y is a point of weight `. Then, the Perrin-Riou map is an
application

H1(Qp,Λg(ψ−2
g )⊗̂Λ(εcyc))→ D(Λg(ψ−2

g ))⊗̂Λ. (7.15)

Since ψ−2
g 6= 1, we have H0(Qp,Λg(ψ−2

g )) = 0 and it follows from [KLZ17, Theorem 8.2.3]
that the above map is an isomorphism. Moreover, using the same argument of the proof of
the last step of Theorem 3.3.5, we conclude that the Λ-module of (7.15) is non-canonically
isomorphic to Λg. Therefore, and since infinitely many specializations vanish according to
the previously quoted result of [BSV20a], the corresponding H1 is zero.

• The components associated to V g∗f
g and V fg

g∗ are zero; this is because

H1(Qp,Vg∗f
g |(2,`,`)) ' H1(Qp,Λg(1)) ' Λg ⊕ Λg,

and although the Perrin-Riou map only kills one of the above two components, the restriction
of the class is zero since again infinitely many specializations are zero.

• For the remaining component, the one corresponding to V++
fgg∗ , the same argument used in

the first step works once we have established that the other projections vanish.

Consider now the surface

S = Sk,k+m−2,m := {(x, y, z) ∈ Wf ×Wg ×Wh : w(x) + w(z) = w(y) + 2},

and also the line

C := {(x, y, z) ∈ Wf ×Wg ×Wh : w(x) = 2, w(y) = w(z)}.
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Observe that the surface S is just a finite cover of the plane in W3 arising as the Zariski closure of
weights (k, k +m− 2,m).

Using the results of [BSV20a, Section 8.2], we may upgrade Proposition 7.3.5 to the vanishing
of the global class κ(f, gα, hα) when αgβh = 1 (and hence we can work beyond the setting of the
adjoint, covering for example the case of theta series of quadratic fields where the prime p remains
inert).

In particular, we have the following result.

Proposition 7.3.6. The global class κ(f ,g,h) vanishes along the line C in the self dual case.
Moreover, the class κ(f, gα, h1/β) is zero when αgβh = 1.

Proof. Following again [BSV20a, Section 8.2], there is an improved class κ∗g(f ,g,h) along the surface
S satisfying

κ(f ,g,h)|S =
(

1−
χ̄(p)αgy

αfxαhz

)
κ∗g(f ,g,h). (7.16)

Hence, the vanishing of κ(f, gα, h1/β) follows from the vanishing of the corresponding Euler factor.

Derived classes and reciprocity laws

Following the analogy with Chapter 3, let us focus firstly on the self-dual case to discuss the notion
of derived classes. We shrink the weight space W to a rigid-analytic open disk U ⊂ W centered at
2 at which the finite cover w : Wf → W restricts to an isomorphism w : Uf

∼−→ U with x0 ∈ Uf .
Let ΛUf = O(Uf ) denote the Iwasawa algebra of analytic functions on Uf whose supremum norm
is bounded by 1. Shrink likewise C and S so that projection to the weight space restricts to an
isomorphism with U and U × U respectively. Having done that, their associated Iwasawa algebras
are respectively O(C) = ΛUf ' Zp[[X]] and O(S) = ΛUf ⊗̂ΛUh ' Zp[[X,Z]]. The isomorphism
ΛUf ' Zp[[X]] is not canonical and depends on the choice of an element γ ∈ Λ×Uf which is sent to
1 +X.

Then, consider the short exact sequence of Zp-modules

0→ Zp[[X,Z]]
·X−→ Zp[[X,Z]]→ Zp[[Z]]→ 0.

Under the usual isomorphisms, Λf may be identified with Zp[[X]] after fixing a topological generator
γ of Λ×Uf and sending [γ] to 1+X. Then, Λf ⊗̂Λh becomes isomorphic to Zp[[X,Z]] and the previous
exact sequence may be recast as

0→ OS
δ−→ OS → OC → 0 (7.17)

with δ = (γ − 1)⊗ 1 in OS ' Λf ⊗̂Λh.

Proposition 7.3.7. In the self-dual case, there is a unique class κ′γ(f ,g,g∗) ∈ H1(Q,Vfgg∗|S) such
that

κ(f ,g,g∗)|S = δ · κ′γ(f ,g,g∗).

Proof. This follows by considering the long exact sequence in cohomology attached to (7.17):

H0(Q,Vfgg∗|C)→ H1(Q,Vfgg∗|S)→ H1(Q,Vfgg∗|S)→ H1(Q,Vfgg∗|C).

Since the restriction of κ(f ,g,g∗) to H1(Q,Vfgg∗|C) is zero by Proposition 7.3.6, one may assure
the existence of a derived class as in the statement, which is moreover unique due to the vanishing
of the H0 for weight reasons (the Hodge–Tate weights corresponding to the balanced part cannot
be zero, as shown in [DR20b, Corollary 5.3]).
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Normalizing by logp(γ), the specializations of this class over the line (2, `, `) can be proved to
be independent of the choice of γ.

In general, if we are no longer in the self-dual case but the condition αgβh = 1 still holds, the
notion of derived class makes sense at the point (x0, y0, z0). For that purpose, let D stand for the
codimension two subvariety

D := {(x, y, z) ∈ Wf ×Wg ×Wh : w(x) = w(y) + 1, z = z0}.

The following result is the analogue of Proposition 3.3.13 and its proof follows from the same
argument of Proposition 7.3.7.

Proposition 7.3.8. Assume that αgβh = 1. Then, there exists a unique class κ′γ(f ,g,h) ∈
H1(Q,Vfgh|D) such that

κ(f ,g,h)|D = δ · κ′γ(f ,g,h).

Let L =
α′g
αg
− α′f

αf
, and consider the normalization of κ′γ(f ,g,h) by γ, that is,

κ′(f ,g,h) =
κ′γ(f ,g,h)

logp(γ)
.

Theorem 7.3.9. The logarithm of the derived class satisfies the following

〈logBK(κ′p(f ,g,h)g(x0, y0, z0)), ηf ⊗ ωg ⊗ ωh〉 = L ·Lp
gα(f ,g,h)(x0, y0, z0) (mod L×),

where as in (7.12) the superindex g refers to the projection to Vhf
g .

Proof. Consider the reciprocity law of Proposition 7.3.2, now for Lp
gα(f ,g,h), restricted to D, and

multiply both sides by the Euler factor in the denominator of the Perrin-Riou map. Then, we have
an equality of the form(

1−
χ̄(p)αgy

pαfxαhz

)
· 〈logBK(κp(f ,g,h)g), ηf ⊗ ωg ⊗ ωh〉 =

(
1− αfxαhz

χ̄(p)αgy

)
·Lp

gα(f ,g,h),

since along D the Perrin-Riou interpolates the Bloch–Kato logarithm. At the point (x0, y0, z0)
both the cohomology class at the left hand side and the Euler factor at the right are zero. Taking
derivatives along the direction (k + 1, k, 1), and evaluating then at the point (x0, y0, z0), the result
follows.

An analogue formula holds for any point over the line (2, `, `) in the self-dual case, but of course
the description of the L-invariant is not so explicit and relies on the results of [Se14].

It may be instructive to compare this derived cohomology class with the improved cohomology
class considered by Bertolini, Seveso and Venerucci. We can prove the following.

Proposition 7.3.10. Consider the map given by the projection

φhfg : H1(Q,Vfgh|S)→ H1(Qp,Vhf
g |S).

Then, there is a relation between the improved class φhfg (κ∗g(f ,g,h)) and φhfg (κ′(f ,g,h)), given by

φhfg (κ′(f ,g,h)) = L · φhfg (κ∗g(f ,g,h)) (mod L×).

Proof. This is proved by applying the map 〈logBK(·), ηf⊗ωg⊗ωh〉 to both sides, and then comparing
the results. For that purpose, we use that the Euler factors involved in the Perrin-Riou map are
analytic along S and can be cancelled out. That way, we obtain an improved reciprocity law

Lp
gα(f ,g,h)(x, y, z) = 〈logBK(φhfg (κ∗g(f ,g,h)g(x, y, z))), ηfx ⊗ ωgy ⊗ ωhz〉 (mod L×),

which holds for all the points (x, y, z) of S.
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Finally, we point out that we may expect a relation between κ′p(f ,g,h)(x, y, z) and the Gross–
Kudla–Schoen cycle of [DR14], that we denote by ∆k,`,m ∈ H1(Q, Vfgh((4 − k − ` − m)/2). In
particular, we expect the following result to be true (or at least, a slight variant of it). Here, locp
stands for the localization at p-map.

Question 7.3.11. Can we establish that, up to multiplication by a non-zero constant in L× and
for any point (x, y, z) of weights (2, `, `) with ` ≥ 2, we have the equality

κ′p(f ,g,h)(x, y, z) = L · locp(∆2,`,`)?

Of course, this would require the proof of an analogue result to [DR14, Theorem 5.1] in a
situation where f has split multiplicative reduction.

7.4 Derivatives of triple product p-adic L-functions

In this section, we discuss a variant of the Elliptic Stark Conjecture for the derivative of the
triple product p-adic L-function Lp

f in a situation of exceptional zeros. As before, we keep the
assumption that f has split multiplicative reduction at p and that an exceptional zero condition
occurs.

There are two main instances we want to consider: the rank zero situation and the rank two
situation. While the former is quite well understood after the results developed in [BSV20a] and
[BSV20b], the latter is more subtle and we will propose a conjectural formula in this scenario. Along
this section, by the word rank, we refer to the rank of the Vgh-isotypic component of E(H). Ac-
cording to our general assumptions on the local signs, the rank is always even. The Vgh-component
of E(H) is endowed with an inclusion in the Selmer group, that is,

HomGQ(E(H), Vgh) ' (E(H)⊗ V ∨gh)GQ ⊂ H1
f (Q, Vfgh),

where H1
f (Q, Vfgh) is the group of extensions of Qp by Vfgh in the category of Qp-linear represen-

tations of GQ which are crystalline at p.
Recall that for higher ranks the computations performed in [DLR15a] lead us to expect that

the special value Lp
gα presented in the introduction is zero, and that the second derivative of Lp

f

along the f -direction vanishes, too. The odd rank situation is equally interesting, and we hope to
come back to this question in a further work. We keep the notations of the previous section.

Proposition 7.4.1. The value Lp
f (f ,g,h)(x0, y0, z0) is zero. Moreover, the jacobian matrix of

Lp
f (f ,g,h) at the point (x0, y0, z0) is given by

(0 Lgα − Lf Lhα − Lf ) ·Lp
f (f ,g,h)∗.

Proof. This directly follows from [BSV20a, Proposition 8.2].

Remark 7.4.2. Observe that, towards the rationality conjectures we are interested in, the value
Lp

f (f ,g,h)∗ is an algebraic number, and it is non-zero if and only if the class κ(f, gα, hα) is
non-crystalline.

In particular, the derivative along the direction (2 + k, 1, 1) vanishes and along the direction
(2, 1 + `, 1 + `) is given by Lgα +Lhα − 2Lf , up to an explicit algebraic number in the number field
L.

Suppose from now on that Lp
f (f ,g,h)∗ vanishes at (x0, y0, z0). Therefore, the cohomology class

κ(f, gα, hα) is crystalline, and following [BSV20b, Section 2.1] we may define a new Bloch–Kato
logarithm, denoted by logββ in loc. cit. Roughly speaking, it can be understood as a projection to

the rank one subspace V ++
fgh arising in the filtration (7.11), followed by the Bloch–Kato logarithm
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and the pairing with ωf ⊗ ωg ⊗ ωh. To be coherent with the other notations we will need later on,
write log++ for this map. Alternatively, we may consider the local class κp(f, gα, hα) and take its
decomposition according to the action of the Frobenius element, in such a way that κββ is the part
corresponding to the (βg, βh) component.

Assume further that αgαh = 1 (in particular, this also implies that βgβh = 1). The following
result is the content of [BSV20b, Section 2.1].

Proposition 7.4.3. Under the given conditions, the value Lp
f (f , gα, hα) vanishes and

d2

dx2
Lp

f (f , gα, hα)|x=x0 =
1

2ordp(qE)
· (1− p−1)−1 · log++(κp(f, gα, hα)).

Remark 7.4.4. In the adjoint case, when we take h1/α = g∗1/β we do have a relation between Lg and
Lh: indeed

(1/αg)
′

1/αg
= −

α′g
αg

;

however when h1/α = g∗1/α both quantities are a priori unrelated.

A conjecture for the second derivative

As we have discussed before, the improved p-adic L-function Lp
f (f ,g,h)∗ interpolates an explicit

non-zero multiple of L(f ⊗ g ⊗ h, 1), and we expect this value to be zero when the rank of the
corresponding isotypic component of the Selmer group is two. In those cases, we would like to
compare the Kato class with a basis of (E(H)⊗ V ∨gh)GQ , that we write as {P,Q}. We also assume

that H1
f (Q, Vfgh) has dimension 2.

To fix notations, observe that Vgh decomposes as aGQp-module as the direct sum of four different

lines V αα
gh := V

αg
g ⊗ V αh

h , . . . , V ββ
gh . After choosing a basis of V ∨gh, we may write this decomposition

as

V ∨gh = L · e∨αα ⊕ L · e∨αβ ⊕ L · e∨βα ⊕ L · e∨ββ ,

where

Frp(e
∨
λµ) = aλµ · e∨λµ for any λ, µ ∈ {α, β}.

Here, aλµ = βgβh if (λ, µ) = (α, α) and similarly in the other three cases.

In particular, restricting the elements {P,Q} to a decomposition group at p gives expressions

P = Pαα ⊗ e∨ββ + Pαβ ⊗ e∨βα + Pβα ⊗ e∨αβ + Pββ ⊗ e∨αα,

and similarly for Q. As pointed out in the introduction, the arithmetic Frobenius Frp acts on Pαα
with eigenvalue βgβh and analogously for the remaining components.

Conjecture 7.4.5. The following equality holds:

d2

dx2
Lp

f (f , gα, hα)|x=x0 = logp(Pαα) logp(Qββ)− logp(Qαα) logp(Pββ) (mod L×).

This conjecture can be seen as a quite natural analogue for the first part of Proposition 7.2.3;
that is, we are proposing an expression for the second derivative of the p-adic L-function along the
line (k, k/2) since the central critical point corresponding to (k, 1, 1) is precisely k/2. It would be
interesting to understand the derivatives along different directions; we expect that they would be
related with appropriate height pairings. See [CH20] for an approximation to that question when
g and h are theta series attached to the same quadratic imaginary field where the prime p splits.
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Some reducible cases

We continue by recalling some factorization formulas in special cases where the representation Vgh
becomes reducible. See [DLR16, Section 2] for a complete discussion of the different cases where
this may occur.

A first case occurs when g and h are theta series of the same quadratic field K, but the behavior
is ostensibly different depending on whether K is real or imaginary, and on whether p is inert or
split in K. While the inert case was worked out in [BSV20b], the split case was not considered in
loc. cit. However, it turns out that it is not specially interesting, at least when K is imaginary: the
second derivative of Lp

f along the x-direction is 0 for trivial reasons.

Remark 7.4.6. It may be tempting to prove a factorization formula for Lp
f as in [CR19], or even

when all three variables (k, `,m) are allowed to move along a Hida family. However, the two-variable
Castella’s p-adic L-functions considered in loc. cit. would have infinity types(k + `+m

2
− 1,

k + `+m

2
− `−m+ 1

)
,
(k + `+m

2
−m, k + `+m

2
− `
)
.

This precludes the possibility of comparing the different p-adic L-values along the region of classical
interpolation, since they are disjoint.

Finally, in the case where h = g∗, the situation is also quite simple and the right hand of the
conjecture is zero. For details on that, see the case by case analysis, completely analogue to our
situation, of [DR16]. In particular, there are three possibilities according to the values of the ranks
of E(H) and E(H)⊗ ad0(Vg), whose sum is two.

Proposition 7.4.7. Conjecture 7.4.5 holds whenever (a) g is the theta series of an imaginary
quadratic field where p splits; (b) g is the theta series of a quadratic field where p is inert, Vgh =
Vψ1 ⊕ Vψ2, and either ψ1 or ψ2 is a genus character.

Proof. Consider first the case of imaginary quadratic fields, where we can prove that both the
left and the right hand side are zero for trivial reasons. For that purpose, recall the notations
introduced in the discussion before Proposition 7.4.3. In order to see that the second derivative
vanishes, it is enough to conclude that the component κββ = 0, and this follows after adapting the
results of [DR16, Section 4.3] to the multiplicative situation, where one may invoke the discussion
of [CR19]. In particular, if we assume without loss of generality that Pβα 6= 0, then Pαα = Pββ = 0,
and similarly Qαβ = Qβα = 0. See [GGMR20, Section 4] for a completely analogue treatment of
an analogue situation.

The case of theta series for quadratic fields where the prime is inert follows from the main
results of Bertolini–Seveso–Venerucci [BSV20b, Section 3], taking into account the identifications
among the different eigenspaces for the Frobenius action of e.g. [DLR15a, Section 3.3] and [DR16,
Sections 4.3, 4.4].

The conjecture in other settings

We would like to make some comments regarding the case αgβh = 1. Observe that the previous
Euler factor that gave rise to the improved p-adic L-function does not vanish, but the factors

1−
χf (p)αgyβhz

αfx

p
k−`−m

2 and 1−
χf (p)βgyαhz

αfx

p
k−`−m

2

do. The first one is analytic along the region Sk+m=`+2, while the second is analytic along the
region Sk+`=m+2. In this case we cannot assure the existence of an improved p-adic L-function,
but at least we can guarantee that Lp

f (f ,g,h) vanishes.
We get indeed a very similar result.
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Proposition 7.4.8. The value Lp
f (f ,g,h)(x0, y0, z0) = 0. Moreover, the jacobian matrix of

Lp
f (f ,g,h) at (x0, y0, z0) is given by an L-multiple of

(0 Lgα − Lf Lhα − Lf ).

Observe that Conjecture 7.4.5 still makes sense in this framework. And again, we can also take
the derivative along the line (2 + k, 1 + k, 1) and we would expect to relate it with an explicit
multiple of an appropriate height pairing 〈P, P 〉.

7.5 Applications to the Elliptic Stark Conjecture

Interplay between both settings and a conjecture of Darmon–Rotger

Let H denote the smallest number field cut out by the representation Vgh, with coefficients in a
finite extension L/Q. By enlarging it if necessary, assume throughout that L contains both the
Fourier coefficients of g and h, and the roots of their p-th Hecke polynomials. Fix a prime ideal ℘
of H lying above p, thus determining an embedding H ⊂ Hp ⊂ Q̄p of H into its completion Hp at
℘, and an arithmetic Frobenius Frp ∈ Gal (Hp/Qp). Due to our regularity assumptions, Vg and Vh
decompose as

Vg = V α
g ⊕ V β

g , Vh = V α
h ⊕ V

β
h ,

where Frp acts on V α
g with eigenvalue αg, and similarly for the remaining summands.

Fix eigenbases {eαg , e
β
g} and {eαh , e

β
h} of Vg and Vh, respectively, which are compatible with the

choice of the basis for Vgh of the previous section, i.e.,

eαα = eαg ⊗ eαh , eαβ = eαg ⊗ e
β
h, eβα = eβg ⊗ eαh , eββ = eβg ⊗ e

β
h

(recall that in previous sections we were using the dual basis). Let ηgα ∈ (Hp ⊗ V β
g )GQp and

ωhα ∈ (Hp ⊗ V α
g )GQp denote the canonical periods arising as the weight one specializations of the

Λ-adic periods ηg and ωh introduced in [KLZ17, Section 10.1]. Then, we can define p-adic periods

Ξgα ∈ H
Frp=β−1

g
p and Ωhα ∈ H

Frp=α−1
h

p by setting

Ξgα ⊗ eβg = ηgα , Ωhα ⊗ eαh = ωhα ,

and

Lgα :=
Ωgα

Ξgα
∈ (Hp)

Frp=
βg
αg . (7.18)

At the same time, recall that ugα is the Stark unit attached to the adjoint representation of
gα, which arises as a normalization term in the conjectures of [DLR15a] and [DLR16] involving a
second-order regulator. Then, it was conjectured by Darmon and Rotger [DR16] that

Lgα = logp(ugα) (mod L×). (7.19)

This relation gives a relatively easy interpretation of the apparently mysterious unit ugα . This
suggests that more natural descriptions of this object should be available, involving only the arith-
metic of the modular form g. However, this conjecture seems to be hard to prove, even in cases
where the Elliptic Stark Conjecture is known (theta series of quadratic imaginary fields where the
prime p splits). The main difficulty is the lack of an explicit description of the periods Ωgα and
Ξgα : in weights greater than one, these periods can be understood as certain algebraic numbers
and be explicitly described, but in weight one this description is no longer available and Ωgα and
Ξgα are p-adic transcendental numbers.

The main point of this section is that the knowledge of different conjectures involving these
periods can be enough to determine the value of the ratio Lgα . Indeed, the generalized cohomology
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classes described in Section 7.3 can be decomposed as the sum of different components, each one
encoding information about different p-adic L-functions. When combining these results, we may
relate the different periods which are involved.

As a first application of this technique, let us prove a result of this kind using the theory of
Beilinson–Flach elements. This corresponds to the limit case where the modular form f is Eisenstein
and the arithmetic governing the triple product are ostensibly different. For the following discussion,
the notations are the same of Chapter 4. Let Ugg∗ = O×H ⊗ L and Ugg∗ [1/p] = OH [1/p]× ⊗ L, and
assume that the hypothesis (H1)-(H3) of the introduction of Chapter 4 hold. Fix a basis {u, v} of
the two dimensional space (Ugg∗ [1/p]/p

Z ⊗ ad0(Vg))
GQ such that u ∈ (O×H ⊗ ad0(Vg))

GQ . As in the
case of elliptic curves, these unit groups are endowed with a Frobenius action, since the restriction
to a decomposition group allows us to decompose ad0(Vg) = L ⊕ Lα⊗β̄ ⊕ Lβ⊗ᾱ and we may take
the projection of u and v to each of those components. Let

Rgα = logp(u1) logp(vα⊗β̄)− logp(v1) logp(uα⊗β̄),

Rgβ = logp(u1) logp(vβ⊗ᾱ)− logp(v1) logp(uβ⊗ᾱ)

be the regulators which appear in the formulation of the main conjecture of [DLR16] and [RR19].

Proposition 7.5.1. Assume that Rgα and Rgβ are both non-zero. Then,

Lgα
Lgβ

=
logp(ugα)

logp(ugβ )
(mod L×).

Proof. Recall the maps log+− and log−+ introduced in Section 4.3 as the composition of the
corresponding projection maps from Vgh, the Bloch–Kato logarithm, and the pairing with the
canonical differentials. Apply then Proposition 4.4.3 twice, first with the map log−+ (and hence
taking the β ⊗ ᾱ component of both u and v), and then with the map log+− (taking the α ⊗ β̄
component of both u and v). Then, comparing both expressions we have that

Ξgα · Ωg∗
1/α
· logp(ugα) = Ωgα · Ξg∗1/α · logp(ugβ ) (mod L×).

We now proceed as in Section 3.5 (see the discussion after display (3.56)), observing that

Ωg∗
1/α

= Ξ−1
gβ
, Ξg∗

1/α
= Ω−1

gβ
(mod L×),

and we are done.

We would like to go a step beyond and aim for stronger results, so in a certain way we would
like to keep the period attached to h fixed and vary just the one attached to g, which would yield
the desired equality.

We do this by analyzing first the prototypical case of the Elliptic Stark Conjecture, where the
Selmer group is two-dimensional and we may fix a basis {P,Q} of the L-vector space

(E(H)⊗ V ∨gh)GQ .

For the following Proposition we assume the hypothesis discussed in the introduction of [DLR15a].
Recall the decomposition

P = Pαα ⊗ e∨ββ + Pαβ ⊗ e∨βα + Pβα ⊗ e∨αβ + Pββ ⊗ e∨αα,

and similarly for Q.
Define the regulators

Reggα(Vgh) = logp(Pαα) logp(Qαβ)− logp(Qαα) logp(Pαβ)
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and
Regf (Vgh) = logp(Pαα) logp(Qββ)− logp(Qαα) logp(Pββ).

To shorten notations, write

log−+(κ) = 〈logBK(κgp), ωf ⊗ ηg ⊗ ωh〉,

and whenever κ is crystalline, write log++ for the Bloch–Kato logarithm of [BSV20b, Section 2.1],
as recalled before the proof of Proposition 7.4.3.

Proposition 7.5.2. Assume that Reggα(Vgh), Regf (Vgh) 6= 0. Suppose that two of the following
three equalities are true modulo L×. Then, the third automatically holds.

(a)

Lp
gα(f, gα, hα) =

logp(Pαα) logp(Qαβ)− logp(Qαα) logp(Pαβ)

logp(ugα)
.

(b)

∂2Lp
f (fx, gα, hα)

∂x2

∣∣∣
x=x0

= logp(Pαα) logp(Qββ)− logp(Qαα) logp(Pββ).

(c)
Lgα = logp(ugα).

Proof. The proof is based on the study of the local cohomology class κp(f, gα, hα) introduced in
the preceding sections.

Observe that (a) and (b) are equivalent to

log−+(κp(f, gα, hα)) =
logp(Pαα) logp(Qαβ)− logp(Qαα) logp(Pαβ)

logp(ugα)
(mod L×)

and
log++(κp(f, gα, hα)) = logp(Pαα) logp(Qββ)− logp(Qαα) logp(Pββ) (mod L×),

respectively, by virtue of the explicit reciprocity laws of [BSV20a] (both in the usual version and
improved version based on the techniques of Venerucci).

Let us define the local class

κ0 =
1

Ξgα · Ωhα

· 1

logp(ugα)
· (logp(Pαα) ·Q− logp(Qαα) · P ), (7.20)

where we have implicitly identified a point over the elliptic curve with its image under the Kummer
map; take then κ̃ = κ−κ0. The element κ̃ clearly belongs to the kernel of the Bloch–Kato logarithm
log−+, that we have defined by

log−+ : H1(Qp, Vfgh)
pr−+

−−−→ H1(Qp, Vf ⊗ V αβ
gh )→ Cp,

the last map being the composition of the Perrin-Riou map and the pairing with the differentials
ωf⊗ηgα⊗ωhα . Then, κ̃ = λ(logp(Pαβ) ·Q− logp(Qαβ) ·P ). But observe that by [BSV20a, Corollary
7.2] we know that the cohomology class κ lies in the balanced part for the filtration attached to
H1(Qp, Vfgh) and hence κ̃ lies in the kernel of the map log−−

log−− : H1(Qp, Vfgh)
pr−−−−−→ H1(Qp, Vf ⊗ V αα

gh )→ Cp.

Hence, the non-vanishing of the regulator Reggα(Vgh), implies that κ̃ = 0 and therefore κ = κ0.
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From the same argument and under the assumption that Regf (Vgh), the second equation yields

κ =
1

Ωgα · Ωhα

· (logp(Pαα) ·Q− logp(Qαα) · P ) (mod L×), (7.21)

where again we have identified the points with their image under the Kummer map.

Now the statement is clear. For instance, if both (a) and (b) are true, comparing the previous
expressions, we get

logp(ugα) =
Ξgα
Ωgα

(mod L×).

The proof of the other implications is equally straightforward.

It would be interesting to prove an analogue result in a more general situation, beyond the case
of split multiplicative reduction. The discussion around cohomology classes is still valid, but the
point is that one needs a replacement for the results expressing the second derivative of Lp

f in
terms of the Bloch–Kato logarithm of the cohomology class. While we can assure that the special
value Lp

f is zero, it is not clear how to proceed with its derivatives.

Question 7.5.3. Is there a reciprocity law relating the second derivative of Lp
f (or some variation

of it) with the logarithm log−− of the cohomology class κ(f, g, h) in a generic situation (non
exceptional zeros)?

Case (a)

We assume first that αgαh = 1. The results we have proved until now showing a deep interaction
between the value of the derivatives of Lp

f (f ,g,h) and the value of Lp
gα(f ,g,h) may be applied

to study new instances of the Elliptic Stark Conjecture.

Let us analyze some particular cases describing the exact shape of the generalized cohomology
classes. For example, according to the results of [BSV20a], when g is a theta series attached to a
quadratic field where the prime p is inert and Vgh = Vψ1 ⊕Vψ2 with ψ1 being a genus character, we
have

d2Lp
f (f , gα, hα)

dx2

∣∣∣
x=x0

= log++(κp(f, gα, hα)) = log(P+
ψ1

) · log(P+
ψ2

) (mod L×),

where P+
ψi

= Pψi + σpPψi , being σp ∈ Gal (H/Q) a Frobenius element at p.

Remark 7.5.4. This situation occurs in general when at least one of ψ1 or ψ2 is a genus character.
See for example the discussion after [DLR15a, Lemma 3.10] where the authors explain how the
regulator of the Elliptic Stark Conjecture admits a particularly simple expression in this case.

However, from the results we already know around the Elliptic Stark Conjecture, one obtains
that

Lp
gα =

log(P+
ψ1

) · log(P−ψ2
)

Lgα
(mod L×), (7.22)

where with the previous notations, P−ψi = Pψi − σpPψi . This is quite significant, since it establishes
the Elliptic Stark Conjecture only up to a conjecture about periods of weight one modular forms.

Corollary 7.5.5. Let g be a theta series attached to a quadratic field (either real or imaginary)
where the prime p remains inert, with Vgh = Vψ1 ⊕ Vψ2 and at least one of ψ1 or ψ2 being a genus
character. Then, the Elliptic Stark Conjecture of [DLR15a] is equivalent to the conjecture about
periods of [DR16].

Proof. This follows from the fact that part (b) of Proposition 7.5.2 holds in this setting.
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Moreover, we expect conjectural expressions for the generalized Kato classes. In particular, the
previous result suggests the following conjecture.

Proposition 7.5.6. In the setting of Proposition 7.5.2, if the formulas which appear in that state-
ment are satisfied, then the equality

κ(f, gα, h1/α) =
1

Ωgα · Ωhα

· (logp(Pαα) ·Q− logp(Qαα) · P ),

holds in H1
f (Q, Vfgh) up to multiplication by L×.

Proof. This follows verbatim the proof of Proposition 7.5.2, using the third statement to simplify
the different period relations.

The same result holds for κ(f, gβ, h1/α).

Case (b)

In the case where αgβh = 1, the explicit reciprocity law gives a connection between Lp
gα and the

Bloch–Kato logarithm of κ(f, gα, h1/β), but unfortunately both the latter class and one of the Euler
factors involved in the equality vanish. Therefore, that result is meaningless in this setting.

In previous sections we saw how to overcome that difficulty, proving a derived reciprocity law
after having observed that certain Euler factors are analytic along the line k+m = `+2. There are
two natural directions for considering the derivative over that plane (although of course it makes
sense to take any combination of them): the line (2, `, `) and the line (k+ 1, k, 1); the former is not
quite interesting since both the class κ(f, gα, g

∗
1/β) and the Euler factor in the denominator of the

Perrin-Riou map vanish identically. Hence, we may take derivative along (k + 1, k, 1) and we get
an equality of the form

L ·Lp
gα = log−+(κ′p(f, gα, h1/β)) (mod L×),

where L is the L-invariant which already appeared in previous sections. Hence, if the Elliptic Stark
Conjecture for Lp

gα were true, the class κ′p(f, gα, hα) could be expressed as a combination of points,
normalized by appropriate L-invariants. In particular, this would yield an equality of the form

κ′(f, gα, h1/β) =
L

Ξgα · Ωh1/β

·
logp(Pαα) ·Q− logp(Qαα) · P

logp(ugα)
(mod L×). (7.23)

One may obtain a symmetric expression for κ′(f, gβ, h1/α). Recall that this is the analogue of
Theorem B of Chapter 3.

Conjecture 7.5.7. The equality

κ′(f, gα, h1/β) =
L

Ξgα · Ωh1/β

·
logp(Pαα) ·Q− logp(Qαα) · P

logp(ugα)
(mod L×)

holds in H1
f (Q, Vfgh).

As it was pointed out before, in the self dual case the product ΞgαΩh1/β
is an element of L×.

We finish our work with the following result.

Proposition 7.5.8. Assume that Conjecture 7.5.7 is true. Then, the special value Lp
gα satisfies

Lp
gα(f, gα, hα) =

logp(Pαα) logp(Qαβ)− logp(Qαα) logp(Pαβ)

logp(ugα)
(mod L×).

Proof. This follows by applying the Bloch–Kato logarithm log−+ to the class κ′(f, gα, h1/β), and
using the derived reciprocity law of Theorem 3.3.4.

The converse can also be established with some extra assumptions, including the conjecture
about periods of [DR16].
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Chapter 8

Future research plans: Eisenstein
congruences between circular units
and Beilinson–Kato elements

Let f be a cuspidal eigenform of weight two and level N , and let p - N be a prime at which f is
congruent to an Eisenstein series. The Beilinson–Kato cohomology class κf associated to f gives
rise, under appropriate hypotheses, to two different components modulo p. In this chapter we
discuss congruence relations connecting those components to explicit expressions involving circular
units. The proof of the first congruence relation invokes a mod p factorization formula due to Mazur
and Greenberg–Vatsal and reciprocity laws due to Coleman and Kato recasting Kubota–Leopoldt’s
and Mazur–Tate–Teitelbaum’s p-adic L-functions in terms of the Euler systems of circular units
and Beilinson–Kato elements respectively. The second congruence relation is more subtle and it
crucially relies on the ideas developed by Fukaya–Kato in their work on Sharifi’s conjectures.

We warn the reader that this chapter is part of some works in progress, specially [RR20b], and
hence the results we discuss are conditional to several results we expect to develop in the future.

8.1 Introduction

Let N > 1 be a positive integer, θ : (Z/NZ)× → Q̄× an even Dirichlet character and f ∈ S2(N, θ)
a normalized cuspidal eigenform of level N , weight 2 and nebentype θ. Fix a prime p - 6N . Let
Tf denote the integral p-adic Galois representation given as the f -isotypical quotient of the first
étale cohomology group H1

et(Ȳ1(N),Zp(1)) of the open modular curve Y1(N); cf. Section 8.2 for the
particular model of this curve over Q we employ in this chapter and (8.9) for the precise definition
of Tf .

Let F be the finite extension of Q generated by the field of coefficients of f , the N -th roots of
unity and the values of all Dirichlet characters of conductor N ; let O be its ring of integers. Fix
algebraic closures Q̄, Q̄p of Q and Qp respectively, and an embedding Q̄ ↪→ Q̄p. This singles out a
prime ideal p of O lying above p and we let Op ⊂ Q̄p denote the completion of O at p. We assume
throughout the following.

Assumption 8.1.1. The localization of the Hecke algebra of level N at the Eisenstein ideal is
Gorenstein. In particular, this implies that Tf is a free Op-module of rank 2.

Kato introduced in [Ka04] a global Galois cohomology class

κf = κf (χ1, χ2) ∈ H1(Q, Tf (1)) (8.1)

which depends on auxiliary data (cf. loc. cit. and [BD14], [Han16], [KLZ17, Section 9], [Sch10] for
several presentations of the subject in the literature). The way we normalize here κf depends on

181
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the choice of two auxiliary Dirichlet characters χ1 and χ2 of the same parity (see Section 8.3 for
more details) and it is straightforward to relate it to the other equivalent conventions adopted in
loc. cit.

Assume that f is congruent to an Eisenstein series modulo (a power of) p. Up to replacing f
with a twist of it, we may assume without loss of generality that

f ≡ E2(θ, 1) mod pt (8.2)

for some t ≥ 1, where E2(θ, 1) is the Eisenstein series defined in (8.8). If we let f∗ := f ⊗ θ̄ denote
the twist of f by the inverse of its nebentype, then congruence (8.2) is equivalent to f∗ ≡ E2(1, θ̄),
and this in turn implies that pt divides the generalized Bernoulli number B2(θ̄) (or equivalently the
L-value L(θ̄,−1)).

Let T̃f denote the integral p-adic Galois representation given as the f -isotypical quotient of the
first étale cohomology group H1

et(X̄1(N),Op(1)). In [FK12, Section 7.1.11] the authors establish
the existence of a short exact sequence

0→ O/pt(θ)→ T̃f ⊗O/pt
π+

−→ O/pt(1)→ 0. (8.3)

From the relations between the lattices attached to the open and the closed modular curve,
and motivated by [FK12, Section 6.3, Remark 6.3.3], we make the following assumption (which we
hope to remove in the near future by showing that it holds unconditionally, using for that purpose
the existence of the exact sequence of (8.3)).

Working Assumption 8.1.2. There is an exact sequence of O/pt[GQ]-modules

0→ O/pt(1)→ T̄f := Tf ⊗O/pt
π−−→ O/pt(θ)→ 0. (8.4)

Observe that this sequence always exists as an exact sequence of O/pt[GQp ]-modules, as recalled
e.g. in [FK12, Section 1.7.2] (and even without considering it modulo pt).

The choice of the maps π+ and π− in (8.3) and (8.4) is non-canonical, but we exploit the work
of Ohta [Oh99, Oh00] and Fukaya-Kato [FK12] to rigidify them in a canonical way, in the sense
that π+ and π− only depend on canonical periods naturally associated to f ; cf. (8.28) and (8.35)
for more details.

Associated to κ̄f = κf mod pt there exist thus two natural classes. First of all, we define

κ̄f,1 = π−∗ (κf mod pt) ∈ H1(Q,O/pt(θ)(1)).

Assume further that κf may be lifted to an element in the cohomology of the closed modular

curve, that is, that there exists an element κ̃f ∈ H1(Q, T̃f (1)) mapping to κf under the natural
map

H1
et(X̄1(N),Op(1)) −→ H1

et(Ȳ1(N),Op(1)).

From here, and applying the projection map induced from (8.3)

T̃f (1)⊗O/pt π+

−→ O/pt(2),

we get a class

κ̄f,2 = π+
∗ (κ̃f mod pt) ∈ H1(Q,O/pt(2)).

The aim of this chapter is providing an explicit description of these two mod pt Galois coho-
mology classes in terms of circular units. In order to state our results, let

Z[µN ]×[θ] = (Z[µN ]× ⊗Op(θ̄))
Gal (Q(µN )/Q) ' Hom(Op(θ),Z[µN ]× ⊗Op) (8.5)
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denote the θ-isotypic component of Z[µN ]× ⊗ Op on which Gal (Q(µN )/Q) acts through θ, which
may be naturally identified with a Op-submodule of Z[µN ]×⊗Op of rank 1 when θ 6= 1 (resp. rank
0 when θ = 1). Kummer theory gives rise to an injective homomorphism

Z[µN ]×[θ̄]→ Hom(GQ(µN ),Op(1))[θ̄]→ H1(Q,Op(θ)(1)).

Fix a primitive N -th root of unity ζN and define the circular unit

cθ :=
N−1∏
a=1

(1− ζaN )θ(a) ∈ Z[µN ]×[θ̄]. (8.6)

Let
cθ ∈ H1(Q,Op(θ)(1))

denote, with the same symbol by a slight abuse of notation, its image under the identification
provided by the Kummer map. Write c̄θ = cθ (mod pt) ∈ H1(Q,O/pt(θ)(1)).

Let k = Q(µN )+ = Q(ζN + ζ−1
N ) denote the maximal totally real subfield of Q(µN ) and set

dN = [k : Q]. Let Cl(k) denote its class group. As in (8.5) let Cl(k)[θ] denote its θ-eigencomponent.
It follows1 from the work of G. Gras [Gra82, Théorème I2] that

(Gr) rankZ/pZ Cl(k)[θ̄]⊗ Z/pZ ≤ rankZ/pZ Cl(k(µp))[θ̄ω]⊗ Z/pZ,

where ω : (Z/pZ)× → Q̄× is the Teichmüller character. This inequality may be regarded as an
instance of Leopoldt’s spiegelungssatz.

The statement of our first main theorem is conditional on the following hypotheses:

(H1) Non-trivial zeroes mod p:

θ(p)− 1, χ1χ̄2(p)− 1, θχ1χ̄2(p)− 1 6= 0 (mod p).

(H2) θ̄-regularity: (Gr) is an equality.

Let Rp(k) denote the p-adic regulator of k. As it is explained in e.g. [Gra16, Def. 2.3], one
always has ordpRp(k) ≥ dN − 1. It is shown in loc. cit. that (Gr) is an equality for all non-trivial
even Dirichlet characters of conductor N if and only if ordpRp(k) = dN − 1. We refer to [Gra16,
Section 7.3] for conjectures predicting that such an equality is expected to hold for all primes p
away from a set of density 0.

We thus expect both hypotheses (H1)-(H2) to hold very often; in those cases where at least one
of these fails, then we expect the following result to become the trivial congruence 0 ≡ 0.

Define the algebraic L-value

Lalg(f∗, χ̄1χ2, 1) = L(f∗, χ̄1χ2, 1)/Ω+
f ∈ O

where Ω+
f is Shimura’s complex period associated to f , chosen in a specific way that we later recall

in Section 8.3 (we have chosen the period Ω+
f since χ1 and χ2 have the same parity). Let also

g(χ) =

N−1∑
a=1

χ(a)ζaN

denote the Gauss sum attached to a Dirichlet character χ of conductor N .
Then, the following result relies on several assumptions we have made along the text. We expect

in the near future to prove the following statement or a suitable variation of it.

1[Gra82, Théorème I2] applies because Leopoldt’s conjecture is known for (k, p) by the work of Brumer, primes in
k above p are totally ramified in k(µp) and therefore the ω-component of the Gal (k(µp)/k)-submodule of Cl(k(µp))
generated by ideals above p is trivial. [Gra82, Théorème I2] thus asserts that rankZ/pZ Cl(k(µp))[θ̄ω] ⊗ Z/pZ is
equal to the rank of the θ̄-component of the p-torsion of the Galois group Gal (Hp/k) of the maximal p-abelian
extension of k unramified away from p. Hence (Gr) follows because the Hilbert class field H/k is contained in Hp
and Gal (H/k) = Cl(k).
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Expected Theorem 8.1.3. Assume (H1) and (H2). Then in H1(Q,O/pt(θ)(1)) we have

κ̄f,1 ≡
iN

12
· g(θχ1χ̄2)

g(θ)
· Lalg(f∗, χ̄1χ2, 1)× c̄θ (mod pt).

As we describe in more detail in Section 8.3, Kato’s class is constructed as

κf = πf∗(u ∪ v),

namely the push-forward to the f -isotypic component of the cup product of two modular units

u = uχ1,χ2 and v = uχ̄1,θχ̄2

whose logarithmic derivative are respectively the Eisenstein series E2(χ1, χ2) and E2(χ̄1, θχ̄2) given
in (8.8). The q-expansion of the modular units uχ1,χ2 can be written down explicitly. Given a pair
of integers (a, b) between 0 and N − 1, not both equal to 0, define the Siegel unit

ua,b;N = qw
∏
n≥0

(
1− qn+a/NζbN

)∏
n≥1

(
1− qn−a/Nζ−bN

)
,

where w = 1
12 −

a
N + a2

2N2 . Then the q-expansion of the modular unit uχ1,1 is given by

uχ1,1 =
−1

2g(χ̄1)

N−1∑
b=1

χ̄1(b)⊗ u0,b;N , (8.7)

where here N stands for the conductor of χ1. Although we will not use them here in this note,
similar expressions can be given for uχ1,χ2 for arbitrary χ2 by averaging ua,b;N and choosing an
appropriate uniformizer.

Note that uχ1,χ2 are determined by their logarithmic derivative only up to a multiplicative
constant, and therefore the first non-vanishing coefficient in the Laurent expansion of uχ1,χ2 at
∞, which we simply denote uχ1,χ2(∞) as in [FK12, Section 5], may be chosen arbitrarily. Since
Gal (Q(µN )/Q) acts on E2(χ1, χ2) via χ1 [St82, Theorem 1.3.1], it is natural to normalize uχ1,χ2

likewise, so that uχ1,χ2(∞) may be any power of the circular unit cχ1 . In the literature one finds
different normalizations, typically either uχ1,χ2(∞) = 1 or cχ1 . In the statement below we have
chosen to normalize the modular units above so that

uχ1,χ2(∞) = cχ1 , uχ̄1,θχ̄2(∞) = cχ̄1

but any other choice would be perfectly fine, upon replacing accordingly the two circular units
appearing in the cup-product below.

For the second result we make the following assumption, that we had already anticipated. The
theory developed in [FK12, Sections 3, 4] suggests that imposing this condition is rather reasonable;
for instance, in 4.4.1, the authors establish that a similar Kato class belongs to the cohomology of
the closed modular curve.

Working Assumption 8.1.4 (Cohomological condition). The Beilinson–Kato element in the
cohomology group H1

et(Ȳ1(N),Op(1)) may be lifted to a class in H1
et(X̄1(N),Op(1)).

Although for the moment we do not know until which extent the previous hypothesis is reason-
able, we believe that the discussion of the following result introduces certain tools which can be
easily adapted to slightly different settings where the condition does hold. We now formulate the
second theorem. The precise statement may suffer variations as we make progress on the pending
assumptions.
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Expected Theorem 8.1.5. Assume θ is primitive of conductor N and p - ϕ(N). Suppose further
that Assumption 8.1.4 holds. Let Lp(θ̄, s) denote the Kubota–Leopoldt p-adic L-function attached
to θ̄ and assume L′p(θ̄,−1) is a p-adic unit. The following equality holds in H1(Q,O/pt(2)):

κ̄f,2 ≡
L′p(θ̄,−1)

1− p−1
· c̄χ̄1 ∪ c̄χ1

∪ logp(εcyc)
(mod pt).

Here εcyc is the cyclotomic character and 1/ ∪ logp(εcyc) denotes the inverse of the map

H1(Q,O/pt(2))→ H2(Q,O/pt(2)), κ 7→ κ ∪ logp(εcyc),

which is invertible under our assumptions.

Theorem 8.1.3 may be regarded as providing a Jochnowitz congruence between the first deriva-
tive of the Dirichlet L-function L(θ, s) and the first derivative of the Hasse-Weil L-function L(f, s)
at the critical point s = 2. The discussion of this result occupies Section 8.3 and exploits a mod p
factorization of p-adic L-functions due to Mazur and Greenberg-Vatsal, and Ohta’s work on p-adic
families of modular forms.

As for Theorem 8.1.5, note that our running assumptions imply that Lp(θ̄,−1) ≡ 0 (mod pt)
and it is thus natural that the first derivative of the Kubota-Leopoldt p-adic L-function makes an
appearance. This result is discussed in Section 8.4 by a rather different method, as it invokes in a
crucial way the ideas introduced by Fukaya and Kato in their work [FK12] on Sharifi’s conjectures
[Sha11]. For this reason it may be interpreted as a form (or consequence) of Sharifi’s conjecture
which could potentially lead to analogous formulations of the latter in other scenarios (including
Katz’s p-adic L-function associated to imaginary quadratic fields or Hida’s Rankin p-adic L-function
associated to a pair of modular forms); we hope to tackle this approach elsewhere.

Finally, we hope that the results developed along this chapter may be adapted to other set-
tings regarding the Euler systems discussed in this memoir, specially to prove congruence relations
between diagonal cycles and Beilinson–Flach classes.

8.2 Modular curves, modular units and Eisenstein series

Given a variety Y/Q and a field extension F/Q, let YF = Y ×F denote the base change of Y to F
and set Ȳ = YQ̄. Fix an integer N ≥ 3 and let Y1(N) ⊂ X1(N) denote the canonical models over
Q of the (affine and projective, respectively) modular curves classifying pairs (A, i) where A is a
(generalized) elliptic curve and i : µN → A is an embedding of group schemes. It is important to
recall that this is not the model used by Fukaya and Kato, as they consider the one which classifies
pairs (A,P ), where A is a (generalized) elliptic curve and P is an N -torsion point of it. In any
case, the model of [FK12] can be obtained from ours just taking the twist by the cocyle

Gal (Q(µN )/Q)→ Aut(Y ), s 7→ 〈s−1〉,

where 〈s〉 stands for the diamond operator associated to s ∈ (Z/NZ)×.
Let CN := X1(N) \ Y1(N) denote the finite scheme of cusps; among them one may distinguish

the cusp ∞ ∈ CN (Q) associated to Tate’s elliptic curve over Z((q)), which is rational over Q in
this choice of model (cf. e.g. [St82, Section 1.3], [St85]). (Again, note that in the model of [FK12,
§1.3.3], cusp ∞ is not defined over Q but over Q(µN ).)

Assume now that F contains the values of all Dirichlet characters of conductor N . Then a basis
of Eis2(Γ1(N), F ) is indexed by triples (χ1, χ2, r) where χ1 and χ2 are primitive Dirichlet characters
of conductors N1 and N2 with N1 · N2 | N , χ1(−1) = χ2(−1), and r is a positive integer with
1 < rN1N2 | N , provided by the Eisenstein series (cf. e.g. [DS05, Theorem 4.6.2], [St82, Def. 3.4.1]):

E2(χ1, χ2, r) = a0 +

∞∑
n=1

(∑
d|n

χ1(n/d)χ2(d)d
)
qrn, a0 =

{
L(χ2,−1)

2 if χ1 = 1

0 if χ1 6= 1
(8.8)
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unless χ1 = χ2 = 1, in which case E2(1, 1, r) =
∑∞

n=1

(∑
d|n d

)
qn − r

∑∞
n=1

(∑
d|n d

)
qrn.

When r = 1 we shall simply denote E2(χ1, χ2) := E2(χ1, χ2, 1).
When χ1 = 1, the constant term may also be recast as a generalized Bernoulli number: setting

B2(x) = x2 − x+ 1/6, define

B2(χ) := N
N−1∑
a=1

χ(a) ·B2(a/N)

for any Dirichlet character χ of conductor N . One then has −2L(χ2,−1) = B2(χ2).
Let T ⊂ EndH1

et,c(Y 1(N),Op(1)) denote the Hecke algebra acting on the compactly-supported
cohomology of the open modular curve generated by the standard Hecke operators T` for every (good
or bad) prime ` let–commonly denoted U` at primes ` | N . Let also T∗ ⊂ EndH1

et(Y 1(N),Op(1))
denote the Hecke algebra acting on the cohomology of the open modular curve generated by the
dual Hecke operators T ∗` as defined in [Oh99, Section 3.4], [KLZ17, Def. 2.4.3] for every prime `.

Given a newform ϕ ∈ S2(N, θ), let ϕ(q) =
∑
an(ϕ)qn denote its q-expansion at the cusp∞ and

let Op be a finite ring extension of Zp containing the eigenvalues {an(ϕ)}n≥1.
Let Iϕ = (T` − a`(ϕ)) ⊂ T and I∗ϕ = (T ∗` − a`(ϕ)) ⊂ T∗ denote the ideals associated to the

system of eigenvalues of ϕ with respect to the standard (resp. dual) Hecke operators. Define the
Op-modules

Mϕ = H1
et,c(Y 1(N),Op)[Iϕ] := ∩` Ker(T` − a`(ϕ)) ⊂ H1

et,c(Y 1(N),Op(1)) (8.9)

and
Tϕ = H1

et(Y 1(N),Op(1))/I∗ϕ.

Poincaré duality yields a perfect pairing of finitely generated free Zp-modules

〈 , 〉 : H1
et,c(Y 1(N),Zp)×H1

et(Y 1(N),Zp(1)) −→ Zp

which in turn induces a perfect pairing of Op-modules

〈 , 〉 : Mϕ × Tϕ −→ Op(1). (8.10)

Recall that Assumption 8.1.1 allows us to say that Mϕ and Tϕ are Op[GQ]-modules, free of rank
two over Op.

If ϕ is ordinary at p, there are exact sequences of Op[GQp ]-modules

0→M sub
ϕ →Mϕ →Mquo

ϕ → 0 (8.11)

0→ T sub
ϕ → Tϕ → T quo

ϕ → 0

such that

(i) M sub
ϕ and T quo

ϕ are unramified as GQp-modules.

(ii) Mquo
ϕ and T sub

ϕ are free of rank 1 as Op-modules.

(iii) Poincaré duality induces a perfect pairing between Mquo
ϕ and T sub

ϕ , and likewise between M sub
ϕ

and T quo
ϕ .

8.3 First congruence relation

Keep the notations and assumptions fixed in the introduction concerning the first congruence
relation. We begin by recalling more precisely the definition of Kato classes. Choose auxiliary
Dirichlet characters χ1, χ2 as in the introduction and set ξ1 = χ̄1, ξ2 = θχ̄2.
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Define the group of modular units U(N) as the subgroup of rational functions of X1(N)Q(µN )

with zeroes and poles concentrated at the cusps, that is to say

U(N) = O(Y1(N)Q(µN ))
×.

Similarly as in (8.5), let U(N)[χ] denote the χ-isotypic component of U(N) ⊗ Op on which the
Galois group Gal (Q(µN )/Q) acts through the character χ. In light of [St82, Theorem 1.3.1], there
exists a modular unit uχ1,χ2 ∈ U(N)[χ1] satisfying

dlog(uχ1,χ2) = E2(χ1, χ2)
dq

q
and uχ1,χ2(∞) = cχ1 . (8.12)

Kummer theory induces a morphism

δ : U(N)[χ]→ H1
et(Y1(N),Op(χ̄)(1)). (8.13)

By [Nek98, (1.2)], together with the fact that Hj
et(V̄ ,Op) vanishes for any smooth affine va-

riety V of dimension d and any j > d, the Hochschild–Serre’s spectral sequence gives rise to an
isomorphism

H2
et(Y1(N),Op(2)) ' H1(Q, H1

et(Y1(N),Op(2))). (8.14)

In view of (8.9) there is a GQ-equivariant projection

πf : H1
et(Y 1(N),Op(1))→ Tf ,

which in turn gives rise to a homomorphism

πf∗ : H2
et(Y1(N),Op(2)) −→ H1(Q, Tf (1)). (8.15)

It thus makes sense to define

κf := πf∗(δ(uξ1,ξ2) ∪ δ(uχ1,χ2)) ∈ H1(Q, Tf (1)).

Note that f is ordinary at p because of (8.2). Let Lp(χ, s) denote the Kubota–Leopoldt p-adic
L-function associated to a Dirichlet character χ, and Lp(f, χ, s) the Mazur–Tate–Teitelbaum p-adic
L-function associated to (f, χ) (cf. e.g. [Ki94] or [MTT86]).

Label the roots of the p-th Hecke polynomial of f as αf , βf so that ordp(αf ) = 0 and ordp(βf ) =
1, and define the Euler-like factor

Ef = (1− αf )(1− βf )(1− θ̄χ̄1χ2(p)βfp
−1)(1− χ1χ̄2(p)βfp

−1). (8.16)

Define also the p-adic L-value

` = −iN · g(θχ1χ̄2)

g(θ)g(χ1χ̄2)
· (1− θ(p)) · ζp(−1) · Lp(f∗, χ̄1χ2, 1),

Recall from the introduction the class κ̄f,1 ∈ H1(Q,O/pt(θ)(1)). This class always exists
locally, and to make sense of it globally one needs to impose Assumption 8.1.2. We hope to be
able to establish this fact by relating the exact sequence of [FK12, Section 7.1.11] with the explicit
description of the canonical inclusion of the lattice corresponding to the closed modular curve in
the lattice attached to the open modular curve.

Expected Theorem 8.3.1. (First congruence relation) Assuming (H1) and (H2) we have

Ef · κ̄f,1 ≡ ` · c̄θ in H1(Q,O/pt(θ)(1)).
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Theorem 8.1.3 in the introduction readily follows from the above statement. Indeed, as shown
in [MTT86] the p-adic L-value Lp(f

∗, χ̄1χ2, 1) may be written as

Lp(f
∗, χ̄1χ2, 1) = (1− θ̄χ̄1χ2(p)βfp

−1)(1− χ1χ̄2(p)βfp
−1)× g(χ1χ̄2)× L(f∗, χ̄1χ2, 1)

Ω+
f

.

Since ζp(−1) = (1− p) · ζ(−1) = (p− 1) · B2
2 = p−1

12 , the Euler factors in the above theorem cancel
out in light of (H1) and the congruence (αf , βf ) ≡ (θ(p), p) (mod pt). Then, Theorem 8.1.3 follows.

The remainder of this section is devoted to the proof of Theorem 8.3.1, which is a combination
of the following four ingredients:

(a) A factorization formula for the p-adic L-function Lp(f
∗, χ, s).

(b) Coleman’s power series and the p-adic Kronecker limit formula.

(c) Kato’s explicit reciprocity law.

(d) Congruences among Ohta’s periods.

Mazur’s factorization formula

The arithmetic of the Beilinson–Kato elements is governed by the so-called Hida–Rankin p-adic
L-function. More precisely, [Hi88, Section 4] constructed a p-adic L-function associated to a pair
of Hida families (f ,g), where g is allowed to be either cuspidal or Eisenstein, and which depends
on three variables (k, `, s), where (k, `) stand for the weight variables and s for the cyclotomic one.
Recall that this had already been introduced as Theorem 3.2.3. Following [BD14], we assume that
g = E(χ1, χ2) is the Eisenstein family passing through E2(χ1, χ2), and we further assume that
s = k/2 + ` − 1. In this case, Theorem 3.4 of loc. cit. provides a factorization formula for such a
two-variable Hida–Rankin p-adic L-function in terms of two Mazur–Kitagawa p-adic L-functions,
using the same choices of periods as Hida in [Hi88].

For our purposes, f can be kept fixed and we may set k = 2. That way, we have a one-variable
p-adic L-function associated to f⊗E(χ1, χ2) and restricted to the central cyclotomic variable s = `.
Let If be the congruence ideal associated to f , which is an integral ideal of Op. After fixing such a
choice, it follows from Hida’s construction that the restriction of the Hida–Rankin p-adic L-function
to the variable ` belongs to I−1

f ⊗Zp Λ, where Λ is the usual Iwasawa algebra.
Since we are interested in studying congruences, it is more convenient for our purposes to use

a different normalization of the idoneous p-adic L-functions, rendering them integral. To do that,
fix a uniformizer $p of the maximal ideal of Op. In Hida’s terminology, the appropriate power of
$p generating If is sometimes called a congruence divisor. Note that $p is uniquely defined only
up to multiplication by a p-adic unit.

In [Ki94] and [Va99], the authors work with a choice of the pair of periods (Ω+
f ,Ω

−
f ) such that,

according to [Va03, Remark 2.7], the following holds:

Proposition 8.3.2. Let (Ω+
f ,Ω

−
f ) stand for the pair of complex periods defined in [Va99]. Then,

$r
p · Ω+

f Ω−f = 4π2〈f, f〉. (8.17)

Remark 8.3.3. As we shall explain below, there is a canonical choice of period Ω−; let us thus
assume that the choice of Ω− is already fixed throughout.

On the other hand, the choice of congruence divisor is well-defined only up to a p-adic unit.
According to the previous proposition, the choices of $r and Ω− prescribe the value of Ω+

f . This
is analogous to [BD14, eq. (21)]; in our setting however we work integrally and the ambiguity of
our choices is only up to a p-adic unit.
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Let us describe the extent to which this ambiguity in our choice of congruence divisor affects
the statements below. If $r is replaced with u$r

p for some u ∈ O×p , period Ω+
f is thus replaced

with u−1 ·Ω+
f and the values of the Mazur–Kitagawa p-adic L-function Lp(f

∗, ψ, s) at characters ψ

satisfying (−1)s−1ψ(−1) = 1 are affected accordingly. For our purposes this is harmless, because
the values of the p-adic L-function at characters ψ with (−1)sψ(−1) = 1 remain untouched as Ω−f
is chosen canonically.

As we have anticipated, we choose and fix Ω−f as specifically discussed in [FK12, 6.3.18, 7.1.11].
This permits to obtain an appropriate congruence with the product of two Kubota–Leopoldt p-adic
L-functions (see Section 8.2 of loc. cit., and also [FK12, Theorem 3.12]). The choice of Ω−f auto-

matically determines Ω+
f from (8.17) once we have fixed the generator of the congruence module.

In the rest of this section we are implicitly assuming the following.

Working Assumption 8.3.4. The canonical period introduced in [Va99], which is only well-
defined up to p-adic unit, can be chosen to be equal to that of [FK12, Section 8.2].

Remark 8.3.5. As a minor observation, note that the ideal pr measures the existence of congruences
between modular forms of level N and nebentype θ. In general, r ≥ t, and the number may be larger
when there exist other sources of congruences. See also [PW11] for a discussion of the arithmetic
meaning of the discrepancy between the different periods involved in (8.17).

We now discuss a factorization formula for Lp(f
∗, ψ, s) in terms of two Kubota–Leopoldt p-adic

L-functions. For the latter, we take the weight space as Op[[Z×p ]] and not as Op[[1 + pZp]]; this
avoids working with annoying powers of the Teichmüller character. See for instance the discussion
of [Das16, Section 3], where this same approach is also considered.

The factorization formula we present is essentially due to Mazur [Maz79] and Greenberg–Vatsal
[GV00, Theorem 3.12]. The precise formulation adopted here is borrowed from [FK12, Proposition
8.2.4], where the result is presented in terms of classical L-values. The following version immediately
follows by invoking the interpolation formula a in [Das16, eq. (26)] and a density argument.

Proposition 8.3.6. Let ψ : (Z/NpZ)× → Q̄× be a Dirichlet character. Then, for any integer s
satisfying (−1)sψ(−1) = 1, we have that

Lp(f
∗, ψ, s) ≡ 2 · Lp(ψ̄, 1− s) · Lp(θ̄ψ, s− 1) (mod pt). (8.18)

In particular, if ψ is even, it holds that

Lp(f
∗, ψ, 2) = 2 · Lp(ψ̄,−1) · Lp(θ̄ψ, 1) ≡ −B2(ψ̄) · Lp(θ̄ψ, 1) (mod pt). (8.19)

Remark 8.3.7. The previous result depends on the choice of the period Ω−f , which we have chosen in

the same way than in [FK12, Proposition 8.2.4]. However, it does not depend on Ω+
f , and therefore

it is also independent of the choice of the congruence divisor.

Dieudonné modules and congruences among Ohta’s periods

Given a p-adic de Rham representation V of GQp with coefficients in Fp, let DdR(V ) = (V ⊗Qp
BdR)GQp denote its Dieudonné module and let logBK (resp. exp∗BK) stand for the Bloch–Kato
logarithm (resp. dual exponential map) attached to V as defined in [BK93], [Bel09].

Let Ẑur
p denote the completion of the ring of integers of the maximal unramified extension of

Qp. Given an unramified Op[Gal (Q̄p/Qp)]-module T , define as in [Oh00, Theorem 2.1.11]

D(T ) := (T ⊗̂Zp Ẑur
p )Frp=1.

One has DdR(T ⊗ Fp) = D(T )⊗ Fp.
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A Dirichlet character χ of conductor N as in the introduction gives rise to an unramified
character of GQp that we continue to denote with the same symbol. Given a positive integer s ≥ 1
(and assuming χ(p) 6= 1 if s = 1), Bloch-Kato’s logarithm associated to V = Fp(χ)(r) gives rise to
an isomorphism of rank 1 Fp-vector spaces

logBK : H1(Qp, Fp(χ)(s))→ DdR(Fp(χ)(s)). (8.20)

As explained e.g. in [FK12, Prop. 1.7.6], there is a functorial isomorphism of Op-modules (for-
getting the Galois structure) given by

T
∼−→ D(T ). (8.21)

This map is not canonical as it depends on a choice of root of unity; for T = Op(χ) we take it to
be given by the rule 1 7→ g(χ).

There are perfect pairings

〈 , 〉 : DdR(Fp(χ)(s))×DdR(Fp(χ̄)(−s)) −→ Fp

and

〈 , 〉 : D(Op(χ))×D(Op(χ̄)) −→ Op.

Since a canonical generator of DdR(Fp(χ̄)(−s)) is given by tsg(χ)−1, where t is Fontaine’s p-adic
analogue of 2πi, the above pairing yields an isomorphism

DdR(Fp(χ)(s))→ Fp c 7→ 〈c, ts

g(χ)
〉. (8.22)

The de Rham Dieudonné module DdR(Vϕ) is a Fp-filtered free module of rank 2. As discussed
in [KLZ17, Section 2.8], Poincaré duality induces a perfect pairing

〈 , 〉 : DdR(Vϕ(−1))×DdR(Vϕ∗)→ Fp,

and there is an exact sequence of Dieudonné modules

0→ DdR(V sub
ϕ )→ DdR(Vϕ)→ DdR(V quo

ϕ )→ 0, (8.23)

where DdR(V sub
ϕ ) and DdR(V quo

ϕ ) have both rank 1. Falting’s theorem associates to ϕ a regular
differential form ωϕ ∈ Fil(DdR(Vϕ)), which gives rise to an element in DdR(V quo

ϕ ) via the right-most
map in (8.23) and in turn induces a linear form

ωϕ : DdR(V sub
ϕ∗ (−1))→ Fp, η 7→ 〈ωϕ, η〉 (8.24)

that we continue to denote with same symbol by a slight abuse of notation.

There is also a differential ηϕ, which is characterized by the property that it spans the line
DdR(V sub

ϕ (−1)) and

〈ηϕ, ωϕ∗〉 = 1. (8.25)

Again, it induces a linear form

ηϕ : DdR(V quo
ϕ∗ )→ Fp, ω 7→ 〈ηϕ, ω〉 (8.26)

The image of the restriction of (8.26) to D(T quo
ϕ∗ ) is given in terms of the congruence ideal

attached to f , and more precisely, making use of Assumption 8.1.1 and according to [KLZ17,
Section 10.1.2], there is an isomorphism

ηϕ : D(T quo
ϕ∗ ) −→ $−rp Op, ω 7→ 〈ηϕ, ω〉.
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In particular, this means that ωϕ∗/$
r
p is a generator of D(T quo

ϕ∗ ), which is a free rank one module
over Op. We may reformulate this by saying that $r

p · ηϕ induces an isomorphism

$r
p · ηϕ : D(T quo

ϕ∗ ) −→ Op, ω 7→ 〈$r
pηϕ, ω〉.

If ϕ is cuspidal, let αϕ ∈ O×p denote the unit root of the p-th Hecke polynomial of f ; if
ϕ = E2(χ1, χ2) is Eisenstein, set αϕ = χ1(p). Let ψϕ : GQp −→ O×p denote the unramified
character characterized by ψϕ(Frp) = αϕ, so that there is an isomorphism of Op[GQp ]-modules
T quo
ϕ ' Op(ψϕ).

As already mentioned in (8.4), congruence f ≡ E2(θ, 1) mod pt implies that there is an isomor-
phism

π− : T quo
f ⊗O/pt ' O/pt(θ). (8.27)

Since (8.27) is equivalent to the congruence ψf ≡ θ (mod pt) as unramified characters of GQp , the
choice of π− may be regarded as the class (mod pt) of an isomorphism T quo

f ' Op(ψf ). Note that
our running hypothesis (H1) implies that θ|GQp

is non-trivial. Hence (8.27) induces an isomorphism

D(π−) : D(T quo
f )⊗O/pt ' D(Op(θ))⊗O/pt and conversely π− is uniquely determined by D(π−).

Although π− is non-canonical a priori, it can be rigidified by asking (8.27) to be the single map
π− : T quo

f ⊗O/pt ' O/pt(θ) making the following diagram commutative:

D(T quo
f )⊗O/pt

〈 ,$rpηf∗ 〉 //

D(π−)

��

O/pt

D(Op(θ))⊗O/pt
·1/g(θ)

77
(8.28)

Indeed, since both 〈 , $r
pηf∗〉 and ·1/g(θ) are isomorphisms, it follows that such a map D(π−) exists

and is unique, and this in turn pins down η in light of (8.21).

Coleman’s power series and the Kubota-Leopoldt p-adic L-function

We now recast the Kubota–Leopoldt p-adic L-function as envisioned by Coleman in [Co79].
Let W denote weight space, namely the formal spectrum of the Iwasawa algebra Λ = Op[[Z×p ]].

Let Wcl denote the set of arithmetic points of W given by homomorphisms of the form νs,ξ(z) =
ξ(s)zs−1 where s ∈ Z is an integer and ξ is a Dirichlet character of p-power conductor; if ξ is trivial
we just write νs. Let W◦ further denote the set of arithmetic points with ξ = 1; we shall often
write s in place of νs. Let

εcyc : GQ → Λ×

denote the Λ-adic cyclotomic character which sends a Galois element σ to the group-like element
[εcyc(σ)]. It interpolates the powers of the Zp-cyclotomic character, in the sense that for any
arithmetic point νs,ξ ∈ Wcl,

νs,ξ ◦ εcyc = ξ · εs−1
cyc . (8.29)

The following result follows from the general theory of Perrin-Riou maps (see for instance
[KLZ17, Section 8]).

Proposition 8.3.8. There exists a morphism of Λ-modules

Lχ : H1(Qp,Op(χ)⊗ Λ(εcycεcyc))→ Λ

satisfying that for all integers r, the specialization of Lχ at s ∈ W◦ is the homomorphism

Lχ,s : H1(Qp,Op(χ)(s))→ Op
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given by

Lχ,s =
1− χ̄(p)p−s

1− χ(p)ps−1
·

{
(−1)s

(s−1)! · 〈logBK,
1

g(χ)〉 if s ≥ 1

(−s)! · 〈exp∗BK,
1

g(χ)〉 if s < 1,

As a piece of notation, and for any p-adic representation V , we write H1
f (Q, V ) for the finite

Bloch–Kato Selmer group, which is the subspace of H1(Q, V ) which consists on those classes which
are crystalline at p and unramified at ` 6= p.

The following result is a reformulation of Coleman and Perrin-Riou’s reciprocity law ([Co79],
[PR94]), with the normalizations used for instance in [Tale14].

Proposition 8.3.9. There exists a Λ-adic cohomology class

κχ,∞ ∈ H1(Q,Op(χ)⊗ Λ(εcycεcyc))

such that:

(a) Its image under restriction at p followed by the Perrin–Riou regulator gives the Kubota–
Leopoldt p-adic L-function:

Lχ(resp(κχ,∞)) = Lp(χ̄, s).

(b) The bottom layer κχ(1) := ν1(κχ,∞) lies in H1
f (Q,Op(χ)(1)) and satisfies

κχ(1) = (1− χ(p)) · cχ.

Kato’s explicit reciprocity law

Proposition 8.3.10. There exists a homomorphism of Λ-modules

L−f : H1(Qp, T
quo
f ⊗ Λ(εcycεcyc))→ If

satisfying the following interpolation property: for s ∈ W◦, the specialization of L−f at s is the
homomorphism

L−f,s : H1(Qp, T
quo
f (s)) −→ Op

given by

L−f,s =
1− θ̄(p)βfp−s−1

1− θ(p)β−1
f ps

×

{
(−1)s

(s−1)! × 〈logBK, ηf∗〉 if s ≥ 1

(−s)!× 〈exp∗BK, ηf∗〉 if s < 1,

where logBK is the Bloch-Kato logarithm and exp∗BK, the dual exponential map.

Proof. This follows from Coleman and Perrin-Riou’s theory of Λ-adic logarithm maps as extended
by Loeffler and Zerbes in [LZ14]. This is recalled for instance in [KLZ17, Sections 8,9]. More
precisely, [KLZ17, Theorem 8.2.3] and, more particularly, the second displayed equation in [KLZ17,
p. 82] yields an injective map

H1(Qp, T
quo
f ⊗ Λ(εcycεcyc)) −→ D(T quo

f )⊗ Λ,

since H0(Qp, T
quo
f (1)) = 0 because of the assumption that αf ≡ θ(p) 6= 1 modulo p.

This map is characterized by the interpolation property formulated in [LZ14, Appendix B].
Next we apply the pairing of (8.26) and the result follows.

Theorem 8.3.11. There exists a Λ-adic cohomology class

κf,∞ ∈ H1(Q, Tf ⊗ Λ(εcycεcyc))

such that:
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(a) There is an explicit reciprocity law

L−f (resp(κf,∞)−) =
Ng(θχ1χ̄2) · Lp(f∗, χ̄1χ2, 1)

2i$rg(χ1χ̄2)
× Lp(f∗, 1 + s),

where resp stands for the map corresponding to localization at p and resp(κf,∞)− is the map
induced in cohomology from the projection map Tf → T quo

f of (8.11).

(b) The bottom layer κf (1) lies in H1
f (Q, Tf (1)) and satisfies

κf (1) = Ef · κf ,

where Ef is the Euler factor introduced in (8.16).

Proof. This is due to Kato [Ka04] and has been reported in many other places in the literature. See
[Och06] and, more specifically, [BD14, Theorems 4.4 and 5.1] combined with Besser’s [Bes00, Propo-
sition 9.11 and Corollary 9.10] showing that the p-adic regulator can be recast as the compostion
of the p-adic étale regulator followed by the Bloch–Kato logarithm.

Remark 8.3.12. The value Lp(f
∗, χ̄1χ2, 1) depends on the period Ω+

f , fixed around the discussion
of Remark 8.3.3.

Recall our running assumption that f ≡ E2(θ, 1) (mod pt).

Corollary 8.3.13. The following equality holds in Λ/ptΛ:

$r
pL−f (resp κ

−
f,∞) ≡ (−i)N g(θχ1χ̄2)

g(χ1χ̄2)
ζp(−1) · Lp(f∗, χ̄1χ2, 1) · Lθ(resp κθ,∞) (mod pt).

Proof. By Proposition 8.3.6,

Lp(f
∗, 1 + s) ≡ 2 · ζp(−1) · Lp(θ̄, 1 + s) (mod pt).

Applying now part (a) of Theorem 8.3.11 and Proposition 8.3.9 to the left and right hand sides
respectively, the result follows.

Discussion of Theorem 8.3.1

We discuss a path to the proof of Theorem 8.3.1 under the different assumptions we have made
along the chapter. Note that since θ|GQp

is a non-trivial unramified character, it follows from

e.g. [Bel09, §2.2] that
H1(Qp,Op(θ)(1)) = H1

f (Qp,Op(θ)(1)).

We have seen in Proposition 8.3.8 that there is a homomorphism

Lθ,1 : H1(Qp,Op(θ)(1))→ Lp. (8.30)

Lemma 8.3.14. The map Lθ,1 induces an isomorphism

Lθ,1 : H1(Qp,Op(θ)(1))→ Op.

Proof. According to Proposition 8.3.8, the map (8.30) is given by

Lθ,1 =
θ̄(p)p−1 − 1

1− θ(p)
· 〈logBK,

t

g(θ)
〉.

Given a place v of Q(µN ) above p, let Z[µN ]v denote the completion of Z[µN ] at v. Define the
module of local units Up(N) =

∏
v|p Z[µN ]×v , where v = v1, . . . , vr ranges over all places of Q(µN )
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above p. Note that G = Gal (Q(µN )/Q) acts on Up(N) by permuting the places v, and hence it
makes sense to pick the eigen-component of Up(N) with respect to a character of G. In particular,
we have

Up(N)[θ̄] := (Up(N)⊗Op(θ))
G.

Kummer theory identifies H1(Qp,Op(θ)(1)) with Up(N)[θ̄], which is a Op-module of rank one.

Since Q(µN )v is an unramified extension of Qp, the maximal ideal of Z[µN ]v is pZ[µN ]v and the
logarithm defines an isomorphism, as recalled for instance in [Con, §8]

logv : Z[µN ]×v ⊗Op −→ pZ[µN ]v ⊗Op. (8.31)

Note that
∏
v Z[µN ]v is naturally a G-module isomorphic to the regular representation and hence

(
∏
v Z[µN ]v)[θ̄] is again a free module of rank 1 over Op. Define

logθ̄ :=
∑
σ∈G

θ(σ) logσ(v1) : Up(N)[θ̄] −→ p(
∏
v

Z[µN ]v)[θ̄].

A natural generator of the target may be taken to be the Gauss sum g(θ) diagonally embedded in∏
v Z[µN ]v and this yields an identification 1

g(θ)(
∏
v Z[µN ]v)[θ̄] = Op. Under these identifications,

Bloch-Kato’s logarithm may be recast classically as

〈logBK,
t

g(θ)
〉 =

1

g(θ)
logθ̄ : H1(Qp,Op(θ)(1)) = Up(N)[θ̄] −→ Op,

and we already argued that this yields an isomorphism onto pOp.

Since ordp(
θ̄(p)p−1−1

1−θ(p) ) = −1, it follows that Lθ,1 is an isomorphism onto Op, as claimed.

Recall from Proposition 8.3.10 the map

$r
p · L−f,1 : H1(Qp, T

quo
f (1)) → D(T quo

f (1))
·t$rpηf∗→ Op.

Recall the isomorphism T quo
f ⊗ O/pt ' O/pt(θ) fixed in (8.28) above and use it to identify the

source of $r
p · L−f,1 ⊗Opt with H1(Qp,Op/p

t(θ)(1)).

Lemma 8.3.15. As homomorphisms H1(Qp,Op/p
t(θ)(1)) −→ O/pt we have the congruence

$r
p · L−f,1 ≡ Lθ,1 (mod pt).

Proof. This follows by comparing the maps Lθ,1 and $r
p ·L−f,1 described respectively in Proposition

8.3.8 and 8.3.10. Note firstly that the Euler factors involved in the latter agree modulo pt with
those of the former, since αfβf = θ(p)p.

Next, observe that in Proposition 8.3.8 the pairing takes place against tg(χ)−1, while in Propo-
sition 8.3.10 this pairing is with tηf∗ . The lemma follows from the commutativity of the diagram
(8.28).

Lemma 8.3.16. Assuming hypothesis (H2) in the introduction, the global-to-local restriction map

H1
f (Q,Op(θ)(1))→ H1(Qp,Op(θ)(1))

is an isomorphism.
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Proof. Recall from the proof of Lemma 8.3.14 the definition of the group Up(N) of local units.
Consider the following commutative diagram, where vertical arrows are isomorphisms induced from
Kummer theory and the upper horizontal arrow stands for the map corresponding to localization
at p:

H1
f (Q,Op(θ)(1)) // H1(Qp,Op(θ)(1))

Z[µN ]×[θ̄]⊗Op
//

OO

Up(N)[θ̄]⊗Op

OO

The bottom horizontal arrow is injective because it is induced by the natural inclusion Z[µN ]× ↪→
Up(N). Moreover, since θ is even and nontrivial, both Z[µN ]×[θ̄]⊗Op and Up(N)[θ̄] are Op-modules
of rank 1. The cokernel

Q[θ̄] = Up(N)[θ̄]⊗Op/Z[µN ]×[θ̄]⊗Op

is thus a finite group.
In order to prove the lemma it thus suffices to show that Q[θ̄] is trivial. Write k = Q(µN )+

(resp. Z[µN ]+) for the maximal totally real subfield of Q(µN ) (resp. its ring of integers). Let
U1
p (N) =

∏
v|p(Z[µN ]+v )1, where (Z[µN ]+v )1 stands for the set of local units in Zp[µN ]+v which are

congruent to 1 modulo v. Let U+(N) denote the closure of the set of units of Z[µN ]+ congruent to
1 modulo each place above p, diagonally embedded in U1

p (N). Note that Q[θ̄] = U1
p (N)/U+(N).

According to [Neu69, Chapter 4, Theorem 7.8], Q[θ̄] ' Gal (Hp/H)[θ̄], where Hp (resp. H)
is the maximal p-abelian extension of k unramified away from primes above p (resp. everywhere
unramified). Here the θ-eigencomponent on the Galois group is taken with respect to the natural
action of Gal (k/Q) by conjugation on Gal (Hp/H). The lemma hence follows from the running
hypothesis (H2) –see also the footnote in loc. cit.

We are finally in position to provide the proof of Theorem 8.3.1: After specializing Corollary
8.3.13 at s = 1 we obtain

$r
p · L−f,1(resp κf (1)−) ≡ −iN g(θχ1χ̄2)

g(χ1χ̄2)
ζp(−1) · Lp(f∗, χ̄1χ2, 1) · Lθ,1(resp κθ(1)) (mod pt)

Recall that Proposition 8.3.9 and Theorem 8.3.11 assert that

κθ(1) = (1− θ(p)) · cθ, κf (1) = Ef · κf

and hence

$r
p · EfL−f,1(resp κ

−
f ) ≡ −iN g(θχ1χ̄2)

g(χ1χ̄2)
ζp(−1)(1− θ(p)) · Lp(f∗, χ̄1χ2, 1) · Lθ,1(resp cθ) (mod pt)

Recall we have set

` = −iN · g(θχ1χ̄2)

g(θ)g(χ1χ̄2)
· (1− θ(p)) · ζp(−1) · Lp(f∗, χ̄1χ2, 1).

Using Lemma 8.3.15 together with Lemma 8.3.14, we deduce the equality of local classes

Ef · resp κ
−
f ≡ ` · resp cθ (mod pt) (8.32)

in H1(Qp,O/pt(θ)(1)). Observe that resp(κf )− is the local class obtained in cohomology by push-
forward under the map induced by the projection T̄f → T̄ quo

f of (8.11), as already introduced in

Theorem 8.3.11. This corresponds, modulo pt, to what we have called κ̄f,1.
Lemma 8.3.16 allows us to upgrade (8.32) to an equality of global classes in H1(Q,O/pt(θ)(1)),

namely
Ef · κf,1 ≡ ` · cθ (mod pt).

Theorem 8.3.1 follows.
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8.4 Second congruence relation

As in the introduction, let N > 1 be a positive integer, θ : (Z/NZ)× → Q̄× an even Dirichlet
character and f ∈ S2(N, θ) a normalized cuspidal eigenform of level N , weight 2 and nebentype θ.
Fix a prime p - 6Nϕ(N) and assume as in (8.2) that f ≡ E2(θ, 1) mod pt for some t ≥ 1. Recall
this implies that L′p(θ̄,−1) ≡ 0 (mod pt).

We keep the notations introduced along Section 8.2 and Section 8.3. Recall that the value of
the modular unit uχ1,χ2 at ∞ is some power of the circular unit cχ1 , and likewise for uξ1,ξ2 . For
the sake of concreteness, in the statement below we normalize them so that uχ1,χ2(∞) = cχ1 and
uξ1,ξ2(∞) = cξ1 although any other normalization would work.

For the following result, we suppose that Assumption 8.1.4 in the introduction holds, since the
ideas we discuss clearly rely on the results established in [FK12, Section 9], which are developed for
the cohomology of the closed modular curve. The validity of this hypothesis is discussed in 4.4.1
of loc. cit. for a different kind of Beilinson–Kato elements, which are essentially those of the form
uψ,1 (see also the discussion of Section 3.3, and specially Proposition 3.3.14).

Expected Theorem 8.4.1. (Second congruence relation) Suppose L′p(θ̄,−1) 6≡ 0 (mod p) and
that Assumption 8.1.4 holds. Then the following equality holds in H1(Q,O/pt(2)):

κ̄f,2 =
L′p(θ̄,−1)

1− p−1
·
c̄ξ1 ∪ c̄χ1

∪ logp(εcyc)
(mod pt).

Here, 1/ ∪ logp(εcyc) denotes the inverse of the map

H1(Q,O/pt(2))→ H2(Q,O/pt(2)), κ 7→ κ ∪ logp(εcyc),

which is invertible under our running assumptions.

Cohomology and Eisenstein quotients

For any r ≥ 1 and j ∈ Z let

Hr(j) = H1
et(X̄1(Npr),Op(j))

ord

denote the ordinary component of the étale cohomology group H1
et(X̄1(Npr),Op(j)) with respect to

the Hecke operator Up. This is naturally an Op[GQ]-module and we may simply denote it Hr when
the Galois action is understood or irrelevant. Let hr be the subring of EndOp(Hr) spanned over Op

by the Hecke operators Tn, (n,N) = 1. The Eisenstein ideal Ir = IEis,r ⊂ hr is the Op-submodule
of hr generated by Up−1 and T`−`〈`〉−1, for primes ` - Np; here, 〈`〉 stands for the usual diamond
operator.

Passing to the projective limit we may define:

H(j) := H1
et(X̄1(Np∞),Op(j))

ord = lim
←
Hr(j), h = lim

←
hr, I = lim

←
Ir ⊂ h.

The ideal I is a height one ideal contained in the maximal ideal M = (I, p); for any t ≥ 1 we
shall denote M(t) = (I, pt), so that M = M(1). The ideal I is the intersection of a finite number
of height one prime ideals P ⊂ M, each of which corresponds to a weight two eigenform that is
congruent to an Eisenstein series mod p, like the modular form f of the introduction.

Let ΛN := lim←Op[(Z/NprZ)×] denote the Iwasawa algebra of tame level N . Any Dirichlet
character ψ : (Z/NpZ)× → O×p may be extended by linearity to yield a homomorphism

ψ : ΛN −→ Op[(Z/NpZ)×] −→ Op

that we continue to denote with the same symbol.
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For any ΛN -module M let Mψ = M ⊗ΛN ,ψOp stand for the associated ψ-isotypical component.
Note that ΛN = ⊕ΛN,ψ where ψ ranges over all characters of (Z/NpZ)× and ΛN,ψ ' Op[[1 + pZp]].

We begin by rephrasing the results of [FK12, §9] on Sharifi’s conjecture in a convenient way
for our purposes. As we have seen at the beginning of Section 8.3, and more precisely in the
discussion before equation (8.14), the Hochschild–Serre spectral sequence in étale cohomology yields
the commutative diagram of ΛN,θ[GQ]-modules:

H2
et(X1(Np∞),Op(2))ord

θ
//

��

H2
et(X1(Np),Op(2))ord

θ

��
H1(Q, H(2)θ) // H1(Q, H1

et(X̄1(Np),Op(2))ord
θ ).

(8.33)

The module H(2) is endowed with an action of complex conjugation, yielding the decomposition
H(2) = H(2)+ ⊕H(2)−; in the sequel we shall employ a similar notation for any Op-module acted
on by complex conjugation. It follows from [FK12, Prop. 6.3.2] that the quotient

(H(2)/M(t))+
θ (8.34)

is still endowed with a compatible action of GQ.

Our running assumptions imply that the (mod pt) Galois representation T̄f (1) = Tf (1)⊗O/pt
arises as a quotient of H(2)/M(t) as O/pt[GQ]-modules. Since the nebentype of f is θ, it belongs
to the θ-isotypical component of the latter. Denote

πf : (H(2)/M(t))+
θ −→ T̄f (1)

the resulting projection.

Recall also from (8.4) that there is an isomorphism T̄f (1) ' O/pt(θ)(1)⊕O/pt(2) as O/pt[GQ]-
modules. Since θ is even and the cyclotomic character is odd, it follows that the +-component
cuts out the second factor, that is to say: T̄f (1)+ ' O/pt(2) and this is naturally a quotient of
(8.34). Henceforth we fix the canonical isomorphism provided by [FK12, 6.3.18 and 7.1.11] in order
to identify

T̄f (1)+ = O/pt(2) (8.35)

as O/pt[GQ]-modules.

Summing up there is a commutative diagram of GQ-modules, where the horizontal arrows arise
from specializing to r = 1, i.e. level Np:

H1(Q, H(2)θ) //

��

H1(Q, H1
et(X̄1(Np),Op(2))ord

θ )

��
H1(Q, (H(2)/M(t))+

θ ) //

++

H1(Q, (H1
et(X̄1(Np),Op(2))ord/(I1, p

t))+
θ )

π+
f

��
H1(Q, T̄f (1)+) = H1(Q,O/pt(2))

(8.36)

Fukaya–Kato maps

Define the module Q as in [FK12, §6.3.1], with a twist by the square of the cyclotomic character,
namely

Q := (H(2)/IH(2))+
θ .
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Recall from Section 8.3 (cf. e.g. Prop. 8.3.9) the Kubota–Leopoldt p-adic L-function Lp(θ̄) ∈ ΛN,θ
attached to the Dirichlet character θ̄. As shown in [FK12, §6.1.7], there is an isomorphism of Galois
modules

(h/I)θ ' ΛN,θ/(Lp(θ̄))(εcyc),

where εcyc is the Λ-adic cyclotomic character introduced in (8.29) and the identification follows from
[FK12, §6.3], with the conventions recalled in §9.1.2 and 9.1.4. Moreover, and as a consequence of
the proof of the Iwasawa main conjecture by Mazur and Wiles, in §6.3.18 of loc. cit. the authors
show that there are isomorphisms of Galois modules

Q '−→ ΛN,θ/(Lp(θ̄))(εcyc)(2) ' (h(2)/Ih(2))θ. (8.37)

Let H i(Z[1/Np],M) ⊂ H i(Q,M) stand for the set of classes which are unramified at primes
dividing Np. Recall that Shapiro’s lemma gives an isomorphism

lim
←
H2(Z[1/Np, ζNpr ],Op(2)) ' H2(Z[1/Np],ΛN (εcyc)(2)).

As a piece of notation, and following the definition of [FK12, §5.2.6], set

S = lim
←
H2(Z[1/Np, ζNpr ],Op(2))+ ' H2(Z[1/Np],ΛN (εcyc)(2))+,

where again the plus sign stands for the (+1)-eigenspace under the action of complex conjugation.
In [FK12, §9.1] Fukaya and Kato established the existence of isomorphisms

FK1 : H1(Z[1/Np],Q) ' Sθ, FK2 : Sθ ' H2(Z[1/Np],Q)

arising from the long exact sequence in cohomology induced by the short exact sequence

0→ ΛN,θ(εcyc)(2)
·Lp(θ̄)−−−−→ ΛN,θ(εcyc)(2)→ Q→ 0.

stemming from (8.37).
In particular, the map we have denoted as FK2 is just the +-component of the homomorphism

H2(Z[1/Np],ΛN,θ(εcyc)(2)) −→ H2(Z[1/Np],ΛN,θ/(Lp(θ̄))(εcyc)(2)) (8.38)

induced by (a twist of) the natural projection ΛN,θ −→ ΛN,θ/Lp(θ̄). For an explicit description of
FK1, see [FK12, §9.1].

The main result of §9.2 of loc. cit. asserts that the map

ev∞ : H2
et(X1(Np∞),Op(2))θ −→ lim

←
H2(Z[1/Np, ζNpr ],Op(2))θ (8.39)

induced by evaluation at the cusp ∞ factors through the Eisenstein quotient, as stated below.

Proposition 8.4.2 (Fukaya–Kato). The map ev∞ of (8.39) agrees with the composition

H2
et(X1(Np∞),Op(2))θ → H1(Z[1/Np], H(2)θ)→ H1(Z[1/Np],Q) ' Sθ

where:

• the first map is the composition of H2(X1(Np∞),Op(2))→ H2(X1(Np∞),Op(2))ord
θ and the

left vertical arrow in (8.33), both restricted to the subspace of classes unramified at the primes
dividing Np;

• the second map is induced by the projection H(2)θ → Q;

• the last isomorphism is FK1.
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In [FK12, §9.3] Fukaya and Kato further introduced two distinguished morphisms

a, b : H1(Z[1/Np],Q)→ H2(Z[1/Np],Q) (8.40)

a = FK2 ◦FK1,

b = ∪ (1− p−1) logp(εcyc)

where εcyc ∈ H1(Q,O×p ) stands for the cyclotomic character. Note that (1− p−1) logp takes values
in Zp and hence b is indeed well-defined. Under these conditions, they show the following.

Proposition 8.4.3 (Fukaya–Kato). Let L′p(θ̄) ∈ ΛN,θ denote the derivative of Lp(θ̄). Then

b = L′p(θ̄) · a. (8.41)

Proof. This follows from [FK12, Proposition 9.3.1]; in particular, we just need the restriction of θ
to (Z/NZ)× being primitive, since Lemma 9.1.3 of loc. cit. also works in this setting.

Corollary 8.4.4. Assume L′p(θ̄,−1) is a p-adic unit. Then the map

H1(Z[1/Np],O/pt(2)) −→ H2(Z[1/Np],O/pt(2)), κ 7→ κ ∪ (1− p−1) logp(εcyc)

is invertible.

Proof. Observe that FK1 and FK2 are Λ-adic isomorphisms, as it has been proved in [FK12,
Section 9.1]. Hence, once we consider the specialization map at the trivial character, we still have
isomorphisms of Op-modules. The same must be true for their composition multiplied by the p-adic
unit L′p(θ̄,−1), and according to Proposition 8.4.3 and the definitions provided in [FK12, Section
4.1.3], this is precisely the above map.

After applying the Fukaya–Kato map FK1 to the bottom row of diagram (8.36), restricting to
the subspace of unramified classes at primes dividing Np, we reach the commutative diagram

H1(Z[1/Np], (H(2)/M(t))+
θ ) //

F̄K1

��

H1(Z[1/Np], T̄f (1)+) = H1(Z[1/Np],O/pt(2))

F̄K1(r=1)

��
H2(Z[1/Np],ΛN,θ/p

t(εcyc)(2)) // H2(Z[1/Np],O/pt(2)),

(8.42)

where the left-most vertical map is F̄K1 = FK1 (mod pt). As in (8.36), the horizontal arrows are
specialization at r = 1, and the right-most vertical arrow is accordingly the specialization of F̄K1

at r = 1.
We may further apply now Fukaya–Kato’s map F̄K2 = FK2 (mod pt) to the above diagram

and obtain the following one:

H2(Z[1/Np],ΛN,θ/p
t(εcyc)(2)) //

F̄K2

��

H2(Z[1/Np],O/pt(2))

||
��

H2(Z[1/Np], (H(2)/M(t))+
θ ) // H2(Z[1/Np],O/pt(2))

(8.43)

Again the horizontal maps are specialization in level Np at r = 1 and the right-most vertical
map is the specialization of F̄K2 at r = 1. In view of (8.38) the latter may be identified with the
identity map: according to the definitions provided in [FK12, Sections 6.1.6, 4.1.3] and with our
current conventions, the specialization of Lp(θ̄) at r = 1 is

Lp(θ̄,−1) = (1− θ̄(p)p) · L(θ̄,−1) = −(1− θ̄(p)p) ·
B2,θ̄

2
,

which vanishes (mod pt) in light of our assumptions.
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Discussion of Theorem 8.4.1

We can finally discuss how to prove Theorem 8.4.1. With a slight abuse of notation, we identify
global units with their image in cohomology under the Kummer map.

According to Proposition 8.4.2, we have

FK1(κ̄f,2) = ev∞(uξ1,ξ2 ∪ uχ1,χ2) = c̄ξ1 ∪ c̄χ1 (mod pt), (8.44)

where the circular units involved in the cup product are those resulting from the evaluation at
infinity of the modular units uξ1,ξ2 and uχ1,χ2 , respectively. Recall we are assuming that ξ1 = χ̄1,
and it was proved in Theorem 8.3.11 that κf is unramified everywhere.

Next, we apply FK2 to both sides of (8.44). Proposition 8.4.3 together with the commutativity
of (8.43) allow us to establish that

κ̄f,2 ∪ (1− p−1) logp(εcyc) = L′p(θ̄,−1) · (c̄ξ1 ∪ c̄χ1).

The expect theorem 8.4.1 finally follows from Corollary 8.4.4.



Chapter 9

Summaries in Catalan and Galician

9.1 Resum extens en català

Aquesta tesi estudia algunes aplicacions aritmètiques dels sistemes d’Euler de Beilinson–Flach i
cicles diagonals, tot i que la interacció amb altres construccions semblants també hi és present. Els
sistemes d’Euler constitueixen un instrument cabdal en l’estudi de la teoria d’Iwasawa i dels grups
de Selmer. De forma grollera, són col·leccions de classes de cohomologia galoisiana que satisfan
relacions de compatibilitat entre elles, i que es construeixen t́ıpicament en la cohomologia étale
de varietats algebraiques. La gènesi del concepte neix del treball de Kolyvagin, que els emprà
per provar la conjectura de Birch i Swinnerton-Dyer en rang anaĺıtic 1, i també de la recerca
de Rubin, que proposà un context prou general on desenvolupar aquesta teoria. En els últims
anys han aparegut moltes noves construccions i resultats al voltant d’aquests sistemes d’Euler,
que mostren la seva gran aplicabilitat per l’estudi de diferents problemes matemàtics. L’objectiu
d’aquesta monografia és treballar algunes de les seves aplicacions aritmètiques cap a la teoria de
zeros excepcionals, fórmules de valors especials i resultats de congruències amb formes modulars
d’Eisenstein.

Qualsevol motivació històrica dels problemes que s’estudien en aquesta tesi ha de començar
necessàriament per la conjectura de Birch i Swinnerton-Dyer, un dels sis problemes del mil·lenni
encara oberts. Sigui E una corba el·ĺıptica definida sobre el cos dels nombres racionals, i consideri’s
la seva funció L de Hasse–Weil, L(E, s), definida en termes d’un producte de factors d’Euler locals i
que convergeix per a <(s) > 3/2. És conegut pel treball de Wiles i Taylor–Wiles que E és modular,
i per tant la funció L té continuació anaĺıtica a tot el pla complex, i a més satisfà una equació
funcional que relaciona els valors a s i a 2−s. Per tant, té sentit considerar el seu ordre d’anul·lació
a s = 1, ords=1L(E, s). La conjectura de Birch i Swinnerton-Dyer (BSD per abreujar), tal i com
la formulà Tate, s’acostuma presentar de la següent manera.

Conjectura 9.1.1. Sigui E una corba el·ĺıptica definida sobre els racionals i sigui r el rang dels seus
punts Q-racionals, amb l’estructura habitual de Z-mòdul finitament generat. Llavors, les següents
propietats són certes:

1. r = ords=1L(E, s).

2. El terme r-èssim de l’expansió de Taylor, L(r)(E, 1) satisfà que

L(r)(E, 1)

r! · ΩE · RegE
=
|Sha(E)| ·

∏
p|N cp

|Etors|2
.

Aqúı, ΩE és el peŕıode canònic associat a la corba el·ĺıptica; RegE és el regulador de l’apare-
llament de Néron–Tate en E; Sha(E), el grup de Shafarevich, que conjecturalment és finit;
i cp són els anomenats nombres de Tamagawa en p, que només depenen del comportament
local de la corba el·ĺıptica sobre Qp. S’ha denotat la cardinalitat del grup finit G per |G|.
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El grup de Shafarevich (de vegades anomenat de Tate–Shafarevich) és, de forma grollera, el
conjunt de classes de cohomologia global que són trivials a cada plaça local, i per tant es pot pensar
com una mesura de la no aplicabilitat del principi de Hasse–Minkowski per a corbes el·ĺıptiques.
La seva finitud s’enuncia de vegades com a part de la conjectura de BSD.

Recordi’s que la funció L també es pot entendre en termes d’un sistema compatible de repre-
sentacions de Galois. Més en concret, per a cada primer `, es pot introduir el mòdul de Tate V`(E)
com

V`(E) =
(

lim
←
E[`n]

)
⊗Q`.

Aquest objecte ens permet construir una representació del grup de Galois absolut GQ, que es denota

ρE,` : GQ −→ Aut(V`(E)) ' GL2(Q`).

La famı́lia {V`(E)}` és un sistema compatible de representacions de Galois, en el sentit que per a
qualsevol primer p 6= `, el polinomi caracteŕıstic de Frp, l’element de Frobenius en p, té coeficients
enters que no depenen de `. Qualsevol sistema aix́ı dona lloc a una funció L, L({V`(E)}`, s),
definida com un producte de factors locals.

Més en general, sigui H/Q una extensió de Galois finita i sigui ρ : Gal (H/Q) −→ GLn(L) una
representació d’Artin de grau n (on L/Q és una extensió finita). La funció L de E torçada per ρ és

L(E, ρ, s) = L({V`(E)⊗ ρ}`, s).

De forma semblant, es pot definir la component ρ-isot́ıpica del grup de Mordell–Weil E(H) com

E(H)[ρ] = HomGQ(Vρ, E(H)⊗ L),

on Vρ és l’L-espai vectorial associat a la representació ρ. Per tant, podem formular la següent versió
de la conjectura de BSD.

Conjectura 9.1.2. La funció L associada a E i torçada per ρ, L(E, ρ, s), admet continuació
anaĺıtica a tot el pla complex i satisfà una equació funcional que lliga els valors L(E, ρ, s) i
L(E, ρ∨, 2− s). A més,

dimLE(H)[ρ] = ords=1L(E, ρ, s).

Aqúı, ρ∨ és la representació dual de ρ (també anomenada contragradient).

A mode de notació, ens referirem a l’ordre d’anul·lació de L(E, ρ, s) a s = 1 com el rang anaĺıtic,
i escriurem ran(E, ρ). De la mateixa manera, el rang algebraic serà el valor de dimLE(H)[ρ] i en
aquest cas posarem ralg(E, ρ).

Aquestes conjectures són part d’un programa molt més general, que explorem en la primera
secció del primer caṕıtol. Això inclou les conjectures de Beilinson i Bloch–Kato, que relacionen
l’anul·lació de les funcions L amb l’existència de cicles racionals sobre varietats algebraiques.

No hi ha gaires resultats coneguts al voltant de la conjectura de BSD. Coates i Wiles [CW77],
al 1977, van ser els primers en trobar evidència teòrica cap a la conjectura quan E té multiplicació
complexa per un cos quadràtic imaginari i L(E, 1) 6= 0. El punt clau de la seva prova fou l’ús del
sistema d’unitats el·ĺıptiques, que en aquesta tesi es discuteix en el context general dels sistemes
d’Euler. Durant els vuitanta, Gross i Zagier [GZ86] varen esbrinar una manera de demostrar la
conjectura quan el rang anaĺıtic és 1, establint una relació entre la derivada L′(E, 1) i l’aparellament
de Néron–Tate d’un punt de Heegner. Aquests punts de Heegner es poden entendre com els
substituts de les unitats el·ĺıptiques quan la corba el·ĺıptica no té multiplicació complexa. Aquest
resultat fou usat després per Kolyvagin [Kol88a], [Kol88b] per donar una prova completa de la
conjectura de BSD quan el rang anaĺıtic és com a molt 1. Kolyvagin mostrà com l’existència
d’aquest sistema compatible de classes de cohomologia dona també una fita superior per la mida
del grup de Selmer (i per tant del grup de Mordell–Weil).
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Teorema 9.1.1 (Gross–Zagier, Kolyvagin). Sigui K = Q(
√
−D) un cos quadràtic imaginari i

consideri’s un caràcter ψ : Gal (H/K) −→ L×, on H/K és abeliana i H/Q és de Galois i diedral.
Sigui

ρψ = Ind(ψ) : Gal (H/Q) −→ GL(Vψ) ' GL2(L).

Aleshores, si ran(E, ρψ) = r ∈ {0, 1}, se satisfà que ralg(E, ρψ) = r.

Aquesta mena de resultats aviat es van estendre a altres casos mitjançant la teoria dels sistemes
d’Euler. Un dels aspectes més importants d’aquests objectes és que es poden veure com una mena
de realització geomètrica d’una funció L p-àdica. Aquesta frase, d’aparença cŕıptica, juga un paper
clau al llarg d’aquest treball i és el que popularment anomenem formalisme de Perrin-Riou. Les
funcions L p-àdiques són una de les eines més importants d’aquesta memòria, i es poden entendre
també com un anàleg p-àdic de les funcions L complexes, que venen de la interpolació p-àdica de
certs valors L clàssics. A la literatura hom pot trobar un ampli ventall de construccions: automorfes,
amb cohomologia coherent... Però alternativament admeten una construcció més algebraica, que
neix amb Iwasawa i la seva escola i que les connecta amb l’aritmètica dels cossos ciclotòmics i dels
anomenats grups de Selmer. Això forma part també d’unes de les conjectures més estudiades, que
connecten novament un objecte anaĺıtic (la funció L p-àdica) amb un altre de caire algebraic (el
grup de Selmer).

L’exemple de sistema d’Euler més senzill és el de les unitats circulars i el·ĺıptiques. Les primeres
van ser claus, per exemple, en la prova de la conjectura principal d’Iwasawa per Mazur i Wiles,
i les segones formen part de la seva generalització per Rubin a cossos quadràtics imaginaris. Els
sistemes d’Euler però que fan un paper més important en aquesta tesis són els que apareixen quan
s’estudien diferents casos de la conjectura equivariant de Birch i Swinnerton-Dyer. Això es remunta
al treball de Kato [Ka04], que provà el següent resultat.

Teorema 9.1.2 (Kato). Sigui ρ : Gal (H/Q) −→ L× un caràcter de Dirichlet. Si ran(E, ρ) = 0,
aleshores

HomGQ(Vρ, E(H)⊗ L) = 0.

La prova d’aquest resultat es basa en la construcció de classes en la cohomologia galoisiana de les
corbes el·ĺıptiques, i de manera que es belluguin de forma compatible al llarg de la torre ciclotòmica.
Aquesta idea es va generalitzar a dos altres contexts que seran especialment significatius per a
nosaltres. El primer és el cas on ρ és una representació d’Artin senar, irreductible i de dimensió
2. Aquest és l’anomenat cas dels elements de Beilinson–Flach, que admet un tractament força més
general: es pot parlar d’un sistema de Beilinson–Flach associat a dues formes modulars (g, h) de
pesos arbitraris, incorporant a més torcedures per potències del caràcter ciclotòmic. Aquest context
va ser treballat per nombrosos autors: Bertolini–Darmon–Rotger primer [BDR15a], [BDR15b], i
després Kings–Lei–Loeffler–Zerbes en un context més general [LLZ14], [KLZ20], [KLZ17]. L’altre
cas interessant és el donat per ρ = ρ1⊗ρ2, on ρ1 i ρ2 són dues representacions de Galois de dimensió
dos, senars i irreductibles de manera que són autoduals. Aquest és el context dels anomenats cicles
diagonals, que va ser explorat principalment per Darmon i Rotger [DR14], [DR17]. De totes
maneres, aquest cas és força més complex perquè no s’ha pogut construir un sistema d’Euler en el
sentit habitual.

Aquests darrers cicles però, van permetre obtenir aplicacions aritmètiques que van més enllà
de la conjectura de BSD. Darmon i Rotger per una banda [DR20b], i Bertolini, Seveso i Venerucci
per altra [BSV20a], van veure com això donava evidència teòrica cap a la racionalitat dels anom-
enats punts de Stark–Heegner (també coneguts com a punts de Darmon), que són substituts dels
punts de Heegner quan el cos quadràtic imaginari es canvia per un cos quadràtic real. Això
mostra com l’aplicabilitat d’aquestes eines va força més enllà de les que hom podria suposar de bon
començament, i aquesta tesi n’és un petit exemple.

Fem ara un repàs dels resultats més rellevants d’aquesta memòria.
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1. Una fórmula de Gross–Stark per a la convolució de dues formes modulars. El
treball de Mazur, Tate i Teitelbaum [MTT86] és el primer estudi rellevant on es planteja com
estendre la conjectura de Birch i Swinnerton-Dyer al context p-àdic. Si E és una corba el·ĺıptica
sobre Q, és possible associar-li una funció L p-àdica, que anomenarem Lp(E, s). Aquesta funció es
pot definir en termes d’una propietat d’interpolació corresponent a una sèrie de valors anomenats
cŕıtics, i és anaĺıtica per a s ∈ Zp. En particular,

Lp(E, 1) = (1− α−1
p )(1− βpp−1) · L(E, 1)

ΩE
,

on αp és l’arrel unitat del polinomi de Hecke en p; βp = p/αp si E és ordinària i 0 si té reducció
multiplicativa desplegada; i ΩE és el peŕıode canònic associat a E. Pot resultar suggeridor formular
una conjectura de BSD p-àdica dient que l’ordre de la funció L p-àdica coincideix amb el rang d’E.
Malauradament, això no és cert: si L(E, 1) 6= 0 però αp = 1 (és a dir, E té reducció multiplicativa
desplegada), la fórmula anterior mostra que Lp(E, 1) = 0. En aquest cas, la teoria d’uniformització
p-àdica de Tate mostra que existeix un enter qE ∈ pZp i un isomorfisme anaĺıtic

E(Q̄p) ' Q̄×p /q
Q
E

que està definit sobre Qp. Sigui logp el logaritme p-àdic de Z×p , estès a Q×p posant logp(p) = 0; i
sigui ordp la seva valoració normalitzada. Definim

Lp(E) :=
logp(qE)

ordp(qE)
.

Llavors, Greenberg i Stevens [GS94] provaren que per a un primer p ≥ 5 pel qual la corba el·ĺıptica
tingui reducció multiplicativa desplegada,

L′p(E, 1) = Lp(E) · L(E, 1)

ΩE
.

S’ha conjecturat que en aquest cas de corbes el·ĺıptiques amb reducció multiplicativa desplegada se
satisfà

ords=1Lp(E, s) = 1 + ords=1L(E, s).

La demostració de Greenberg–Stevens ha estat una inspiració per a la prova dels resultats desen-
volupats al llarg d’aquesta tesi. Ens conformem aqúı amb donar una idea d’algun dels seus punts
claus. En primer lloc, consideren l’anomenada funció L p-àdica de Mazur–Kitagawa, on enlloc de
treballar només amb la variable ciclotòmica s ∈ Zp, també hi surt una altra variable k anomenada
pes i que pertany a l’espectre formal d’una extensió finita i plana de l’àlgebra d’Iwasawa Zp[[Z×p ]].
Això es troba al centre del que s’anomena teoria de Hida, una eina intŕınsecament p-àdica: una
forma modular f (sota certes hipòtesis) es pot interpolar mitjançant una famı́lia (anaĺıtica en la
topologia p-àdica) f indexada per un conjunt d’enters de manera que les seves especialitzacions fk
es corresponen a formes modulars de pes k. D’aquesta funció de dues variables Lp(f)(k, s) ens inter-
essaran diversos aspectes: les seves propietats d’interpolació; que satisfaci una equació funcional; i
molt especialment la possibilitat de definir el que s’anomena una funció L p-àdica millorada en una
subvarietat de codimensió 1 de l’espai de pesos de dimensió 2, eliminant aix́ı un dels factors d’Euler
que surt a la propietat d’interpolació i que és el responsable del zero excepcional. En tornarem a
parlar al tractar els nostres resultats.

Hi ha altres contexts on l’anul·lació d’un factor d’Euler dona lloc a fenòmens aritmètics interes-
sants. Sigui η un caràcter de Dirichet primitiu mòdul N , prenent valors en un cos de nombres L, i
sigui p - N un primer fixat. La funció L p-àdica de Kubota–Leopoldt Lp(ηω, s) satisfà la propietat
d’interpolació

Lp(ηω, 1− j) = (1− (ηω1−j)(p)pj−1)L(ηω1−j , 1− j), j ≥ 1.
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Sota la hipòtesi η(p) = 1 i suposant a més que η és senar, L(η, 0) 6= 0, però el factor d’Euler
s’anul·la, i això dona lloc novament a una anul·lació de Lp(ηω, s) at s = 0. Si H és el cos retallat

per η, aquest zero excepcional té a veure amb el fet que el grup de les p-unitats (OH [1/p]×⊗L)η
−1

és de dimensió 1, per la qual cosa podem prendre un generador vη, i fixar a més un primer P de H
per sobre de p. Això determina dos Z-mòduls homomorfismes

ordP : OH [1/p]× → Z, LogP : OH [1/p]× → Zp,

on el darrer morfisme es defineix com

LogP(u) = logp(NHp/Qp(u)).

En aquest cas, definint

L(η) := −
LogP(uη)

ordP(uη)
,

se satisfà
L′p(ηω, 0) = L(η) · L(η, 0).

Compari’s aquest resultat amb la coneguda fórmula de Leopoldt, que quan χ és un caràcter parell
no trivial, expressa el valor de Lp(χ, 1) en termes d’una unitat circular associada al caràcter χ (allà
però no hi ha cap anul·lació de la funció L p-àdica).

La situació de zeros excepcionals per la que començarem el nostre estudi comparteix alguns
fenòmens en comú amb les anteriors, ja que està relacionada amb la convolució de dues formes
modulars de pes 1, (g, h). Més en concret, començarem suposant que g ∈ S1(N,χ) i que h = g∗ ∈
S1(N, χ̄) és la seva torcedura per l’invers del caràcter central. Llavors, es pot considerar la funció
L p-àdica de Hida–Rankin Lp(g, g

∗, s), que depèn però de la tria d’una p-estabilització de g. Si
escrivim

x2 − ap(g) + χ(p) = (x− α)(x− β),

ens referirem al valor especial Lp(g, g
∗, 1) associat a la p-estabilització amb valor propi α com a

Lp
gα . Per descriure-ho, ens caldrà introduir certes unitats i p-unitats u i v.
Sigui H el cos retallat per la representació d’Artin associada a la representació adjunta de g,

i sigui L el cos de coeficients per a g, que es pot allargar de manera que contingui α i β. Sigui
Vgg∗ = Vg ⊗ Vg∗ el producte tensorial de les representacions associades a g i g∗; de forma semblant,
sigui ad0(g) la representació adjunta de g, que es pot interpretar com el quocient de Vgg∗ per la
representació trivial.

Sota certes hipòtesis de regularitat que es detallen al primer caṕıtol, es té que

dimL(O×H ⊗ ad0(g))GQ = 1, dimL(OH [1/p]×/pZ ⊗ ad0(g))GQ = 2,

i es pot fixar una base {u, v} del darrer espai, de manera que u ∈ (O×H ⊗ ad0(g))GQ . Com a GQp-

mòdul, ad0(g) descompon com ad0(g) = L ⊕ Lα⊗β̄ ⊕ Lβ⊗ᾱ, on cada ĺınia vé caracteritzada per la
propietat que el Frobenius aritmètic Frp hi actua amb valors propis 1, α/β, β/α, respectivament.
Sigui Hp la completació d’H a Q̄p, i siguin

u1, uα⊗β̄, uβ⊗ᾱ, v1, vα⊗β̄, vβ⊗ᾱ ∈ H×p ⊗Q L

les projeccions dels elements u i v de (H×p ⊗ ad0(g))GQp a les ĺınies precedents.
Tenim doncs el següent resultat, que forma part del treball [RR20a] i que aqúı discutim al

caṕıtol 2.

Teorema 9.1.3. Amb les notacions anteriors, sigui Lp
gα el valor especial Lp(g, g

∗, 1) associat a la
p-estabilització de g corresponent al valor propi α. Aleshores, la següent igualtat se satisfà mòdul
L×:

Lp
gα =

logp(v1) · logp(uα⊗β̄)− logp(u1) · logp(vα⊗β̄)

logp(uα⊗β̄)
.
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En aquesta tesi donem dues proves d’aquest resultat. La primera fa servir la teoria de famı́lies
de Hida i deformacions de Galois. Algunes idees claus són les següents:

1. Les formes modulars g i g∗ es poden interpolar en famı́lies de Hida g i g∗. A més, Hida
[Hi85], [Hi88] constrúı una funció L p-àdica de tres variables Lp(g,g

∗) indexada per variables
(y, z, s), on (y, z) són els pesos de (g,g∗) i s és una variable ciclotòmica.

2. Hida [Hi04] provà l’existència d’una funció L p-àdica millorada, amb bones propietats d’in-
terpolació i que a més ens permet eliminar un dels factors d’Euler que s’anul·la en aquest cas
autodual.

3. Els resultats anteriors ens permeten reduir la prova a un problema de deformacions de Galois,
que es pot resoldre amb les tècniques desenvolupades principalment per Belläıche i Dimitrov
[BeDi16].

2. Classes de cohomologia derivades. El segon apropament que fem al problema anterior
fa servir els elements de Beilinson–Flach, i serveix com a leitmotiv per desenvolupar una teoria
de classes de cohomologia derivades en diferents contextos. Com ja hem comentat, donades dues
formes modulars (g, h) i un enter s, satisfent certes relacions entre els pesos, es pot construir el que
s’anomena una classe d’Eisenstein Eis[g,h,s]. Això però no val per a pes 1 i un ha de procedir de
forma més indirecta: es consideren famı́lies de Hida (g,h) i és possible obtenir classes Λ-àdiques que
quan s’especialitzen als pesos geomètrics ens permeten recuperar, llevat factors d’Euler apropiats,
les construccions anteriors (això és anàleg a la interpolació de valors cŕıtics amb funcions L). Però
podem mirar més enllà i preguntar-nos quina informació codifiquen aquestes classes en pesos no-
geomètrics, com ara pes 1. Potser no és gaire sorprenent dir que aquestes classes, associades a la
tria de p-estabilitzacions per a g i h i que escriurem κ(gα, hα), reprodueixen fenòmens semblants
relacionats amb la presència de zeros excepcionals. En particular, si h = g∗, els valors propis de g∗

són {1/α, 1/β} i
κ(gα, g

∗
1/β) = κ(gβ, g

∗
1/α) = 0.

En aquests casos, podem obtenir el que anomenarem classes derivades i lleis de reciprocitat deri-
vades. Aquest concepte és força subtil i està present a diferents parts de la monografia.

• A la secció 3 del caṕıtol 3 es construeixen classes derivades al llarg d’una direcció pes. A més,
es prova una llei de reciprocitat que lliga aquesta classe de derivada amb la funció L p-àdica,
mitjançant el mateix invariant L que s’obté quan es treballa amb les funcions L.

• Al caṕıtol 5, en canvi, considerem derivades al llarg de direccions ciclotòmiques, la qual cosa
dona més flexibilitat i ens permet obtenir més informació. Grosso modo, el que passa és que
si treballem sobre un espai d’unitats p-àdiques, algunes derivades direccionals recuperaran
el logaritme i altres, la valoració p-àdica. Aquest joc ens permet a més donar una prova
alternativa del teorema de valors especials.

En el caṕıtol 4 analitzem un cas més general del problema, quan h ja no satisfà la condició d’auto-
dualitat. En aquest context formulem una nova conjectura sobre aquestes classes de cohomologia,
que és equivalent sota certes hipòtesis al resultat sobre funcions L que plantejen Darmon, Lauder
i Rotger [DLR16]. Recentment, Castellà i Hsieh [CH20] han obtingut un important resultat cap
a la conjectura de BSD en rang 2, mitjançant un estudi de les classes de Kato generalitzades
(constrüıdes per Darmon–Rotger [DR16] a partir de cicles diagonals). Aqúı veurem que podem
obtenir un anàleg al seu resultat en el context d’unitats, fent servir per a aquest propòsit novament
les propietats dels elements de Beilinson–Flach.

Els caṕıtols 6 i 7 estudien altres situacions on el fenomen de zeros excepcionals també hi apareix.
La primera té a veure amb el sistema de les unitats el·ĺıptiques, que ja hem mencionat. El resul-
tat principal del caṕıtol 6 és una fórmula que relaciona una unitat el·ĺıptica amb una classe de
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cohomologia derivada, i on també hi surt un invariant L associat a la representació. Això es pot
interpretar com una traducció cohomològica del resultat de Katz sobre l’existència d’una funció
L millorada. Veiem a més com aquests resultats es poden entendre com un cas degenerat dels
resultats al voltant d’elements de Beilinson–Flach.

Els resultats del caṕıtol 7 tenen a veure amb l’aritmètica dels cicles diagonals, on la presència
dels zeros excepcionals apareix en pesos (2, 1, 1) quan la forma modular de pes 2 està associada
a un fenomen de reducció multiplicativa dividida i el producte de dos valors propis per les altres
dues formes modulars és 1. Aqúı fem un lligam entre dos tipus de conjectures de zeros excepcionals
diferents:

• Conjectures de zeros excepcionals que es relacionen amb derivades d’ordre superior a la regió
d’interpolació clàssica.

• Conjectures que tenen a veure amb valors especials de funcions L per punts fora de la regió
d’interpolació.

3. Congruències entre sistemes d’Euler. Altre dels temes que explorem és la relació entre
els diferents sistemes d’Euler. Siguin V1 i V2 dues representacions del grup de Galois absolut GQ, i
siguin L(V1, s) i L(V2, s) les funcions L complexes corresponents. No és gaire dif́ıcil comprovar que
la funció L corresponent a la suma directa V1 ⊕ V2, que escriurem L(V1 ⊕ V2, s), factoritza com

L(V1 ⊕ V2, s) = L(V1, s)L(V2, s).

Això és part de l’anomenat formalisme d’Artin, un fenómen clàssic força estudiat a la literatura.
Un problema recorrent quan es treballa amb mètodes p-àdics és la possibilitat d’obtenir fórmules
semblants quan les funcions L complexes se substitueixen pels seus anàlegs p-àdics. Hi ha relati-
vament pocs exemples a la literatura. Un exemple és la fórmula de factorització de Gross per a
caràcters de cossos quadràtics imaginaris, i un altre és la fórmula de factorització de Dasgupta per
l’adjunta. Un tema força relacionat amb l’anterior té a veure amb les reduccions mòdul p. Quan
hom té una forma cuspidal que és Eisenstein mòdul p, és natural cercar factoritzacions d’aquest
tipus mòdul p. Mazur primer, i després Greenberg i Vatsal [GV00], van treballar aquesta qüestió
en alguns casos, que ha estat estudiada més recentment en el context anticiclotòmic per Kriz.

El formalisme de Perrin-Riou que lliga les funcions L p-àdiques i els sistems d’Euler suggereix
l’existència d’un formalisme d’Artin que ens permeti descompondre un sistema d’Euler associat a
una representació p-àdica V com la suma d’altres dos sistemes d’Euler. Aquest context és força
interessant per nosaltres i aqúı explorem aquesta qüestió en alguns casos. Sigui f una forma
pròpia cuspidal de pes 2 i nivell N , i sigui p - N un primer pel qual f és congruent a una sèrie
d’Eisenstein. La classe de cohomologia de Beilinson–Kato κf associada a f dona lloc, mòdul p,
a classes de cohomologia associades a representacions de Galois de dimensió 1. En aquesta tesi
discutim congruències relacionant aquestes components amb expressions expĺıcites que involucren
unitats circulars. La prova de la primera relació de congruències fa servir una factorització mòdul
p de Mazur i Greenberg–Vatsal i les lleis de reciprocitat de Perrin-Riou provades en aquest context
per Coleman i Kato, i que involucren les funcions L p-àdiques de Kubota–Leopoldt i Mazur–Tate–
Teitelbaum, respectivament. La prova de la segona congruència, en canvi, fa servir de forma clau
les idees de Fukaya–Kato desenvolupades al seu treball al voltant de les conjectures de Sharifi.
Referim el lector a la introducció del caṕıtol 8 per a un enunciat prećıs d’aquests resultats, ja que
la seva formulació és lleugerament feixuga perquè es pugui fer sense la introducció de la notació
adient.

El nostre estudi suggereix també altres tipus de congruències entre els anomenats sistemes
d’Euler de tipus Garrett–Rankin–Selberg. Això inclou els casos d’elements de Beilinson–Kato,
Beilinson–Flach i cicles diagonals, aquests dos darrers ja molt presents a la primera part de la tesi.
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De fet, ens hem aprofitat en nombroses ocasions de la interacció entre tots dos, i de les analogies
existents entre les funcions L p-àdiques de Hida–Rankin i la funció L p-àdica triple, aix́ı com entre
l’aritmètica d’unitats en cossos de nombres i la de punts racionals en corbes el·ĺıptiques. Aquesta
similitud suggereix que quan hom comença amb un triplet (f, g, h) de formes cuspidals, de manera
que h és congruent a una sèrie d’Eisenstein mòdul p, la classe de cohomologia associada als cicles
diagonals descompongui com a suma de dues classes mòdul p, una d’elles associada a l’element de
Beilinson–Flach constrüıt a partir de la parella (f, g). Aquest mateix fenomen s’hauria d’observar
quan g és congruent mòdul p a una sèrie d’Eisenstein i el sistema de Beilinson–Flach degenera en
una classe de Beilinson–Kato (prèviament lligat, a la vegada, amb el sistema d’unitats circulars).
Esperem desenvolupar aquesta ĺınia de recerca en treballs futurs.

9.2 Resumo extenso en galego

Esta tese estuda certos problemas aritméticos relacionados cos sistemas de Euler e coas funcións L
p-ádicas, centrándose especialmente nos casos dos sistemas de Beilinson–Flach e ciclos diagonais. Os
sistemas de Euler constitúen un instrumento esencial no estudo da teoŕıa de Iwasawa e dos grupos
de Selmer. Sen entrar en detalles, poderiamos dicir que son clases de cohomolox́ıa galoisiana
que cumpren certas relacións de compatibilidade entre elas, e que se constrúen tipicamente na
cohomolox́ıa étale de variedades alxébricas. A xénese do concepto remóntase aos traballos de
Kolyvagin, que usou os sistemas de Euler para probar a conxectura de Birch e Swinnerton-Dyer en
rango anaĺıtico 1, e tamén á investigación de Rubin, que propuxo un contexto xeral onde desenvolver
esta teoŕıa. Nos últimos anos teñen aparecido moitas construcións novas e resultados en torno a
estes sistemas de Euler, que mostran a súa gran aplicabilidade para o estudo de diferentes problemas
matemáticos. O obxectivo desta monograf́ıa é traballar algunhas das súas aplicacións aritméticas
cara á teoŕıa de ceros excepcionais, fórmulas de valores especiais e resultados de congruencias con
formas modulares de Eisenstein.

Calquera presentación histórica destes temas debe comezar forzosamente coa conxectura de
Birch e Swinnerton-Dyer, un dos seis problemas do milenio áında sen resolver. Sexa E unha curva
eĺıptica definida sobre os números racionais, e vamos considerar a súa función L de Hasse–Weil,
L(E, s). Esta función está definida en termos dun produto de factores de Euler locais que converxe
para <(s) > 3/2. Coñécese, a partir do traballo de Wiles e Taylor–Wiles, que E é modular, e polo
tanto a función L ten continuación anaĺıtica a todo o plano complexo, e ademais cumpre unha
ecuación funcional que relaciona os valores en s e 2− s. Polo tanto, podemos considerar a orde de
anulación en s = 1, ords=1L(E, s). A conxectura de Birch e Swinnerton-Dyer (BSD para abreviar),
tal e como a formulou Tate, acostúmase presentar do seguinte xeito.

Conxectura 9.2.1. Sexa E unha curva eĺıptica e sexa r o rango dos seus puntos Q-racionais, coa
estrutura habitual de Z-módulo de xeración finita. Entón, as seguintes propiedades son certas:

1. r = ords=1L(E, s).

2. O termo r-ésimo da expansión de Taylor, L(r)(E, 1) cumpre que

L(r)(E, 1)

r! · ΩE · RegE
=
|Sha(E)| ·

∏
p|N cp

|Etors|2
.

Aqúı, ΩE é o peŕıodo canónico asociada á curva eĺıptica; RegE é o regulador do aparellamento
de Néron–Tate en E; Sha(E), o grupo de Shafarevich, que conxecturalmente é finito; e cp son
os números de Tamagawa en p, que só dependen do comportamento local da curva eĺıptica
sobre Qp. Por último, a cardinalidade do grupo finito G representámola como |G|.

O grupo de Shafarevich (ás veces chamado de Tate–Shafarevich) é, grosso modo, o conxunto de
clases de cohomolox́ıa global que son triviais en cada praza local, e polo tanto explica a maneira na
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que falla o principio de Hasse–Minkowski para curvas eĺıpticas. O feito de que sexa finito enúnciase
ás veces como parte da conxectura de BSD.

Recordemos que a función L tamén se pode entender en termos dun sistema compatible de
representacións de Galois. Máis en concreto, para cada primo ` podemos introducir o módulo de
Tate V`(E) como

V`(E) =
(

lim
←
E[`n]

)
⊗Q`.

Este obxecto permı́tenos constrúır unha representación do grupo de Galois absoluto GQ, que se
escribe como

ρE,` : GQ −→ Aut(V`(E)) ' GL2(Q`).

A familia {V`(E)}` é un sistema compatible de representacións de Galois, no sentido de que para
cada calquera primo p 6= `, o polinomio caracteŕıstico de Frp, o elemento de Frobenius en p, ten
coeficientes enteiros que non dependen de `. Calquera sistema aśı dá lugar a unha función L,
L({V`(E)}`, s), definida como un produto de factores locais.

Máis en xeral, sexa H/Q unha extensión de Galois finita e sexa ρ : Gal (H/Q) −→ GLn(L)
unha representación de Artin de grao n (onde L/Q é unha extensión finita). A función L de E
torcida por ρ é

L(E, ρ, s) = L({V`(E)⊗ ρ}`, s).

De forma semellante, podemos definir a compoñente ρ-isot́ıpica do grupo de Mordell–Weil E(H)
como

E(H)[ρ] = HomGQ(Vρ, E(H)⊗ L),

onde Vρ é o L-espazo vectorial asociado á representación ρ. Polo tanto, podemos formular a seguinte
versión da conxectura de BSD.

Conxectura 9.2.2. A función L asociada a E e torcida por ρ, L(E, ρ, s), admite continuación
anaĺıtica a todo o plano complexo e cumpre unha ecuación funcional que relaciona os valores
L(E, ρ, s) e L(E, ρ∨, 2− s). Ademais,

dimLE(H)[ρ] = ords=1L(E, ρ, s).

Aqúı, ρ∨ é a representación dual de ρ (tamén chamada contragradiente).

A modo de notación, referirémonos á orde de anulación de L(E, ρ, s) en s = 1 como o rango
anaĺıtico, e escribiremos ran(E, ρ). Do mesmo xeito, o rango alxébrico será o valor de dimLE(H)[ρ]
e neste caso poremos ralg(E, ρ).

Estas conxecturas son parte dun programa máis amplo e xeral, que exploramos na primeira
sección do primeiro caṕıtulo. Isto inclúe as conxecturas de Beilinson e Bloch–Kato, que relacionan
a anulación das funcións L coa existencia de ciclos racionais sobre variedades alxébricas.

Non hai moitos resultados coñecidos en torno á conxectura de BSD. Coates e Wiles [CW77],
no 1977, foron os primeiros que acharon evidencias cara á conxectura cando E ten multiplicación
complexa por un corpo cuadrático imaxinario e L(E, 1) 6= 0. O punto esencial da súa proba
foi o uso do sistema de unidades eĺıpticas, que nesta tese discutimos no contexto máis xeral dos
sistemas de Euler. Durante os oitenta, Gross e Zagier [GZ86] atoparon unha maneira de demostrar
a conxectura cando o rango anaĺıtico é 1, establecendo unha relación entre a derivada L′(E, 1) e o
aparellamento de Néron–Tate dun punto de Heegner. Estes puntos de Heegner pódense entender
como os substitutos das unidades eĺıpticas cando a curva eĺıptica non ten multiplicación complexa.
Este resultado foi posteriormente usado por Kolyvagin [Kol88a], [Kol88b] para dar unha proba
completa da conxectura de BSD cando o rango anaĺıtico é ao sumo 1. Kolyvagin probou que a
existencia deste sistema compatible de clases de cohomolox́ıa dá tamén unha cota superior para o
tamaño do grupo de Selmer (e por tanto do grupo de Mordell–Weil).
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Teorema 9.2.1 (Gross–Zagier, Kolyvagin). Sexa K = Q(
√
−D) un corpo cuadrático imaxinario e

tomemos un carácter ψ : Gal (H/K) −→ L×, onde H/K é abeliana e H/Q é de Galois e diedral.
Sexa

ρψ = Ind(ψ) : Gal (H/Q) −→ GL(Vψ) ' GL2(L).

Entón, se ran(E, ρψ) = r ∈ {0, 1}, cúmprese que ralg(E, ρψ) = r.

Este tipo de resultados pronto se estenderon a outros casos usando a teoŕıa dos sistemas de
Euler. Un dos aspectos máis importantes destes obxectos é que se poden ver como unha especie de
realización xeométrica dunha función L p-ádica. Esta frase, de aparencia cŕıptica, fai un papel clave
ao longo deste traballo e é o que popularmente coñecemos como formalismo de Perrin-Riou. As
funcións L p-ádicas son unha das ferramentas máis importantes desta memoria e pódense entender
tamén como un análogo p-ádico das funcións L complexas, que veñen da interpolación p-ádica das
funcións L clásicas (complexas). Na literatura é pośıbel atopar diferentes construcións: automorfas,
con cohomolox́ıa coherente... Pero alternativamente admiten unha construción máis alxébrica, que
nace con Iwasawa e a súa escola e que as conecta coa aritmética dos corpos ciclotómicos. Isto forma
parte tamén dunha das conxecturas máis estudadas, que conectan novamente un obxecto anaĺıtico
(a función L p-ádica) con outro de natureza alxébrica (o grupo de Selmer).

Os exemplos máis sinxelos de sistemas de Euler son o das unidades circulares e o das unidades
eĺıpticas. As primeiras foron clave, por exemplo, na proba da conxectura principal de Iwasawa por
Mazur e Wiles, e as segundas forman parte da súa xeneralización por Rubin a corpos cuadráticos
imaxinarios. Porén, os sistemas de Euler que fan un papel máis importante nesta tese son os que
aparecen ao estudar diferentes casos da conxectura equivariante de Birch e Swinnerton-Dyer. Isto
vén xa do traballo de Kato [Ka04], que probou o seguinte resultado.

Teorema 9.2.2 (Kato). Sexa ρ : Gal (H/Q) −→ L× un carácter de Dirichlet. Se ran(E, ρ) = 0,
entón

HomGQ(Vρ, E(H)⊗ L) = 0.

A proba deste resultado baséase na construción de clases na cohomolox́ıa galoisiana das cur-
vas eĺıpticas, de forma que vaŕıan de forma compatible ao longo da torre ciclotómica. Esta idea
xeneralizouse a outros dous contextos que serán especialmente significativos para nós. O primeiro
é o caso no que ρ é unha representación de Artin impar, irredutible e de dimensión 2. Este é o
denominado caso dos elementos de Beilinson–Flach, que admite un tratamento bastante máis xeral:
é posible falar dun sistema de Beilinson–Flach asociado a dúas formas modulares (g, h) de pesos
arbitrarios, incorporando ademais torceduras por potencias do carácter ciclotómico. Este concepto
foi traballado por varios autores: Bertolini–Darmon–Rotger primeiro [BDR15a], [BDR15b], e de-
spois Kings–Lei–Loeffler–Zerbes nun contexto máis xeral [LLZ14], [KLZ20], [KLZ17]. O outro caso
interesante é o dado por ρ = ρ1⊗ ρ2, onde ρ1 e ρ2 son dúas representacións de Galois de dimensión
dous, impares e irredutibles, de maneira que sexan autoduais. Este é o contexto dos ciclos diago-
nais, que foi explorado principalmente por Darmon e Rotger [DR14], [DR17]. De calquera xeito,
este é un caso bastante máis complexo, porque non se puido constrúır un sistema de Euler no
sentido habitual.

Estes últimos ciclos permitiron, porén, obter aplicacións aritméticas interesantes que van máis
aló da conxectura de BSD. Darmon e Rotger por un lado [DR20b] e Bertolini, Seveso e Venerucci
por outro [BSV20a], viron como esta construción daba evidencia teórica cara á racionalidade dos
chamados puntos de Stark–Heegner (ou puntos de Darmon), que son substitutos dos puntos de
Heegner cando o corpo cuadrático imaxinario se cambia por un corpo cuadrático real. Isto mostra
como o rango de aplicacións destas ferramentas vai máis aló do que un podeŕıa esperar de entrada,
e esta tese é un pequeno exemplo.

Faremos agora unha pequena andaina por algúns dos resultados máis relevantes desta memoria.
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1. Unha fórmula de Gross–Stark para a convolución de dúas formas modulares.
O traballo de Mazur, Tate e Teitelbaum [MTT86] é o primeiro estudo relevante no que se intenta
estender a conxectura de Birch e Swinnerton-Dyer ao contexto p-ádico. Se E é unha curva eĺıptica
sobre Q, é pośıbel asociarlle unha función L p-ádica, que chamaremos Lp(E, s). Esta función
pódese definir en termos dunha propiedade de interpolación correspondente a unha serie de valores
chamados cŕıticos, e é anaĺıtica para s ∈ Zp. En particular,

Lp(E, 1) = (1− α−1
p )(1− βpp−1) · L(E, 1)

ΩE
,

onde αp é a ráız unidade do polinomio de Hecke en p; βp = p/αp se E é ordinaria e 0 se ten redución
multiplicativa despregada; e ΩE é o peŕıodo canónico asociado a E. Pode resultar suxerinte formular
unha conxectura de BSD p-ádica dicindo que a orde da función L p-ádica coincide co rango de
E. Desafortunadamente, iso non é certo: se L(E, 1) 6= 0 pero αp = 1 (é dicir, E ten redución
multiplicativa despregada), entón Lp(E, 1) = 0. Neste caso, a teoŕıa da uniformización p-ádica de
Tate mostra que existe un enteiro qE ∈ pZp e un isomorfismo anaĺıtico

E(Q̄p) ' Q̄×p /q
Q
E

que está definido sobre Qp. Sexa logp o logaritmo p-adico de Z×p , estendido a Q×p pondo logp(p) = 0;
e sexa ordp a súa valoración normalizada. Definimos

Lp(E) :=
logp(qE)

ordp(qE)
.

Entón, Greenberg e Stevens [GS94] probaron que para un primo p ≥ 5 para o que a curva eĺıptica
teña redución multiplicativa despregada,

L′p(E, 1) = Lp(E) · L(E, 1)

ΩE
.

Conxecturouse que para as curvas eĺıpticas con redución multiplicativa despregada se cumpre

ords=1Lp(E, s) = 1 + ords=1L(E, s).

A demostración de Greenberg–Stevens foi unha inspiración para a proba dos resultados desenvolvi-
dos ao longo desta tese. Conformámonos aqúı con dar unha idea dalgún dos puntos clave. En
primeiro lugar, consideramos o que se chama función L p-ádica de Mazur–Kitagawa, onde non se
traballa só coa variable ciclotómica s ∈ Zp, senón tamén con outra variable k chamada peso e
que pertence ao espectro formal dunha extensión finita e plana da álxebra de Iwasawa Zp[[Z×p ]].
Iso encóntrase no centro do que se chama teoŕıa de Hida, unha ferramenta intrinsecamente p-
ádica: unha forma modular f (baixo certas hipóteses) pódese interpolar usando unha familia (que
é anaĺıtica na topolox́ıa p-ádica) f indexada por un conxunto de enteiros, de maneira que as súas
especializacións fk correspóndense con formas modulares de peso k. Desta función de dúas variables
Lp(f)(k, s) interésannos varios aspectos: as súas propiedades de interpolación; que cumpre unha
ecuación funcional; e moi especialmente a posibilidade de definir o que se chama unha función L
p-ádica mellorada nunha subvariedade de codimensión 1 do espazo de pesos de dimensión 2, elimi-
nando aśı un dos factores de Euler que aparece na propiedade de interpolación e que é o responsable
do cero excepcional. Volveremos a falar disto ao tratar os nosos resultados.

Hai outros contextos onde a anulación dun factor de Euler dá lugar a fenómenos aritméticos
interesantes. Sexa η un carácter de Dirichlet primitivo módulo N e que toma valores nun corpo
de números L, e sexa p - N un primo fixado. A función L p-ádica de Kubota–Leopoldt Lp(ηω, s)
cumpre a propiedade de interpolación

Lp(ηω, 1− j) = (1− (ηω1−j)pj−1)L(ηω1−j , 1− j), j ≥ 1.
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Baixo a hipótese η(p) = 1 e asumiendo tamén que η é impar, L(η, 0) 6= 0, pero o factor de Euler
anúlase, o que dá lugar de novo a unha anulación de Lp(ηω, s) en s = 0. Se H é corpo recortado

por η, este cero excepcional ten que ver co feito de que o grupo das p-unidades (OH [1/p]× ⊗L)η
−1

é de dimensión 1, e polo tanto podemos coller un xerador vη, e fixar tamén un primo P de H por
riba de p. Isto determina dous homomorfismos de Z-módulos

ordP : OH [1/p]× → Z, LogP : OH [1/p]× → Zp,

onde o último morfismo se define como

LogP(u) = logp(NHp/Qp(u)).

Neste caso, definindo

L(η) := −
LogP(vη)

ordP(vη)
,

cúmprese
L′p(ηω, 0) = L(η) · L(η, 0).

Existe un paralelismo evidente coa coñecida fórmula de Leopoldt, que cando χ é un carácter par
non trivial, expresa o valor de Lp(χ, 1) en termos dunha unidade circular asociada ao carácter χ
(nese caso porén non hai ningunha anulación da función L p-ádica).

A situación de ceros excepcionais pola que comezaremos o noso estudo comparte algúns fenó-
menos en común coas anteriores, xa que está relacionada coa convolución de dúas formulares de
peso 1, (g, h). Máis en concreto, comezaremos supondo que g ∈ S1(N,χ) e que h = g∗ ∈ S1(N, χ̄)
é a súa torcedura polo inverso do carácter central. Entón, pódese considerar a función L p-ádica
de Hida–Rankin Lp(g, g

∗, s), que depende da elección dunha p-estabilización de g. Se escribimos

x2 − ap(g) + χ(p) = (x− α)(x− β),

referirémonos ao valor especial Lp(g, g
∗, 1) asociado á p-estabilización con valor propio α como

Lp
gα . Para describilo, cumprirá introducir unha unidade u e unha p-unidade v.
Sexa H o corpo recortado pola representación de Artin asociada á adxunta de g, e sexa L

o corpo de coeficientes de g, que se pode estender de maneira que tamén conteña α e β. Sexa
Vgg∗ = Vg ⊗ Vg∗ o produto tensorial das representacións asociadas a g e g∗. De forma semellante,
sexa ad0(g) a representación adxunta de g, que se pode interpretar como o cociente de Vgg∗ pola
representación trivial. Baixo certas hipóteses de regularidade que se detallan no primeiro caṕıtulo,
temos que

dimL(O×H ⊗ ad0(g))GQ = 1, dimL(OH [1/p]×/pZ ⊗ ad0(g))GQ = 2,

e podemos fixar unha base {u, v} do último espazo, de maneira que u ∈ (O×H ⊗ ad0(g))GQ . Como

GQp-módulo, ad0(g) descompón como ad0(g) = L ⊕ Lα⊗β̄ ⊕ Lβ⊗ᾱ, onde cada liña vén caracteri-
zada pola propiedade de que o Frobenius aritmètico Frp actúa con valores propios 1, α/β, β/α,
respectivamente. Sexa Hp a completación de H en Q̄p, e sexan

u1, uα⊗β̄, uβ⊗ᾱ, v1, vα⊗β̄, vβ⊗ᾱ ∈ H×p ⊗Q L

as proxeccións dos elementos u e v de (H×p ⊗ ad0(g))GQp ás liñas precedentes.
Temos entón o seguinte resultado, que forma parte do traballo [RR20a] e que se discute en

profundidade no caṕıtulo 2.

Teorema 9.2.3. Coas notacións anteriores, sexa Lp
gα o valor especial Lp(g, g

∗, 1) asociado á p-
estabilización de g correspondente ao valor propio α. Entón, a seguinte igualdade dáse módulo
L×:

Lp
gα =

logp(v1) · logp(uα⊗β̄)− logp(u1) · logp(vα⊗β̄)

logp(uα⊗β̄)
.
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Nesta tese damos dúas probas do resultado. A primeira emprega a teoŕıa de familias de Hida e
deformacións de Galois. Algunhas ideas importantes son as seguintes:

1. As formas modulares g e g∗ pódense interpolar en familias de Hida g e g∗. Ademais, Hida
[Hi85], [Hi88] constrúıu unha función L p-ádica Lp(g,g

∗) indexada por tres variables (y, z, s),
onde (y, z) son os pesos de (g,g∗) e s é unha variable ciclotómica.

2. Hida [Hi04] probou a existencia dunha función L p-ádica mellorada, con boas propiedades de
interpolación e que ademais nos permite eliminar un dos factores de Euler que se anula neste
caso autodual.

3. Os resultados anteriores permı́tennos reducir a proba a un problema de deformacións de Ga-
lois, que se pode resolver coas técnicas desenvolvidas principalmente por Belläıche e Dimitrov
[BeDi16] e estendidas logo por Darmon, Lauder e Rotger [DLR18].

2. Clases de cohomolox́ıa derivadas. O segundo acercamento que propomos ao problema
anterior usa os elementos de Beilinson–Flach, e serve como leitmotiv para desenvolver unha teoŕıa
de clases de cohomolox́ıa derivadas en diferentes contextos. Como xa comentamos, dadas dúas
formas modualres (g, h) e un enteiro s cumprindo certas relacións cos pesos, pódese constrúır o que
se chama unha clase de Eisenstein Eis[g,h,s]. Porén, iso non é posible para peso 1 e hai que proceder
dun xeito máis indirecto: considéranse familias de Hida (g,h) e é posible obter clases Λ-ádicas
que cando se especializan nos pesos xeométricos permiten recuperar, multiplicando polos factores
de Euler axeitados, as construcións anteriores (iso é análogo á interpolación de valores cŕıticos con
funcións L). Podemos mirar máis aló e preguntarnos que información codifican estas clases en pesos
non xeométricos, por exemplo peso 1. Quizais non resulta moi sorprendente dicir que estas clases,
asociadas á elección de p-estabilizacións para g e h e que escribiremos como κ(gα, hα), reproducen
fenómenos similares relacionados coa presenza de ceros excepcionais. En particular, cando h = g∗,
os valores propios de g∗ son {1/α, 1/β} e

κ(gα, g
∗
1/β) = κ(gβ, g

∗
1/α) = 0.

Nestes casos, podemos fabricar o que chamaremos clases derivadas e leis de reciprocidade derivadas.
Este concepto é bastante sutil e está presente en diferentes partes do traballo.

• Na sección 3 do caṕıtulo 3 constrúımos clases derivadas ao longo dunha dirección peso. Ade-
mais, probamos unha lei de reciprocidade que conecta esta clase derivada coa función L
p-ádica, usando o mesmo invariante L que se obtén cando se traballa coas funcións L.

• No caṕıtulo 5, en cambio, consideramos derivadas ao longo de direccións ciclotómicas, o que
nos dá máis flexibilidade e nos permite obter máis información. Grosso modo, o que pasa
é que se traballamos sobre un espazo de unidades p-ádicas, algunhas derivadas direccionais
recuperan o logaritmo e outras, a valoración p-ádica. Este xogo coas derivadas permı́tenos
dar unha proba alternativa do teorema anterior sobre valores especiais.

No caṕıtulo 4 analizamos un caso máis xeral do problema, cando a parella (g, h) non cumpre a
condición de autodualidade. Neste contexto formulamos unha nova conxectura sobre estas clases
de cohomolox́ıa, que é equivalente baixo algunhas hipóteses ao resultado sobre funcións L que
formulan Darmon, Lauder e Rotger [DLR16]. Recentemente, Castellà e Hsieh [CH20] obtiveron un
importante resultado cara á conxectura de BSD en rango 2, baseándose nun estado das clases de
Kato xeneralizadas constrúıdas por Darmon e Rotger [DR16] usando a teoŕıa dos ciclos diagonais.
Aqúı veremos que podemos obter un análogo ao seu resultado no contexto de unidades, usando
novamente as propiedades dos elementos de Beilinson–Flach.
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Os caṕıtulos 6 e 7 estudan outras situacións onde o fenómeno dos ceros excepcionais tamén
aparece. A primeira ten que ver co sistema das unidades eĺıpticas, que xa mencionamos. O
resultado principal do caṕıtulo 6 é unha fórmula que relaciona unha unidade eĺıptica cunha clase
de cohomolox́ıa derivada, e onde tamén sae un invariante L asociado á representación. Iso pódese
interpretar como unha tradución cohomolóxica do resultado de Katz sobre a existencia dunha
función L mellorada. Vemos ademais como estes resultados se poden entender como un caso
dexenerado dos nosos resultados anteriores sobre elementos de Beilinson–Flach.

Os resultados do caṕıtulo 7 teñen que ver coa aritmética dos ciclos diagonais, onde a presenza
dos ceros excepcionais aparece en pesos (2, 1, 1) cando a forma modular de peso 2 está asociada
a un fenómeno de redución multiplicativa dividida e o produto dos dous valores propios para as
outras dúas formas modulares é 1. Aqúı relacionamos dous tipos de conxecturas diferentes:

• Conxecturas de ceros excepcionais relacionadas con derivadas de orde superior na rexión de
interpolación clásica.

• Conxecturas relacionadas con valores especiais de funcións L para puntos fóra da rexión de
interpolación.

3. Congruencias entre sistemas de Euler. Outro dos temas que exploramos nesta tese é
a relación entre os diferentes sistemas de Euler. Sexan V1 e V2 dúas representacións do grupo de
Galois absoluto GQ, e sexan L(V1, s) e L(V2, s) as funcións L complexas asociadas a elas. Non é
complicado probar que a función L correspondente á suma directa V1 ⊕ V2, que escribiremos como
L(V1 ⊕ V2, s), factoriza como

L(V1 ⊕ V2, s) = L(V1, s) · L(V2, s).

Iso é parte do formalismo de Artin, un fenómeno clásico moi estudado na literatura. Un problema
recorrente cando se traballa con métodos p-ádicos é a posibilidade de obter fórmulas similares
cando as funcións L complexas se substitúen polos seus análogos p-ádicos. Hai relativamente
poucos exemplos na literatura: un deles é a fórmula de Gross [Gro80] para caracteres de corpos
cuadráticos imaxinarios, e outro é a fórmula de factorización de Dasgupta [Das99] para a adxunta
dunha forma modular. Un tema moi relacionado co anterior ten que ver coas reducións módulo
p. Cando se ten unha forma cuspideal que é Eisenstein módulo p, é natural buscar factorizacións
deste tipo módulo p. Mazur primeiro [Maz79], e logo Greenberg e Vatsal [GV00], traballaron esta
cuestión nalgúns casos, que tamén foi tratada recentemente no caso anticiclotómico por Kriz [Kr16].

O formalismo de Perrin-Riou que liga as funcións L p-ádicas e os sistemas de Euler, suxire a
existencia dun formalismo de Artin que nos permita descompor un sistema de Euler asociado a
unha representación p-ádica V = V1 ⊕ V2 como a suma doutros dous sistemas de Euler asociados
a V1 e V2. Este contexto é bastante interesante para nós, e aqúı exploramos esta cuestión nalgúns
casos. Sexa f uha forma propia cuspidal de peso 2 e nivel N , e sexa p - N un primo para o que f
é congruente cunha serie de Eisenstein. A clase de cohomolox́ıa de Beilinson–Kato κf asociada a f
relaciónase de xeito natural con outras clases asociadas a representacións de Galois de dimensión
1, e que aqúı relacionamos con expresións expĺıcitas que involucran unidades circulares. A proba
da primeira relación de congruencia baséase nunha factorización módulo p de Mazur e Greenberg–
Vatsal, e tamén nas leis de reciprocidade de Perrin-Riou demostradas neste contexto por Coleman
e Kato, e que involucran as funcións L p-ádicas de Kubota–Leopoldt e Mazur–Tate–Teitelbaum,
respectivamente. A proba da segunda congruencia, en cambio, debeŕıase relacionar de forma clave
coas ideas de Fukaya–Kato desenvolvidas no seu traballo sobre as conxecturas de Sharifi. Referimos
ao lector á introdución do caṕıtulo 7 para un enunciado preciso destes resultados.

Isto suxire tamén outro tipo de congruencias, que son as que se debeŕıan observar entre os
chamados sistemas de Euler de tipo Garrett–Rankin–Selberg. Este contexto inclúe os casos de
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elementos de Beilinson–Kato, Beilinson–Flach e ciclos diagonais, os dous últimos moi presentes na
primeira parte da tese. De feito, usamos en varias ocasións a interacción entre ambos, aśı como as
analox́ıas existentes entre as funcións L p-ádicas de Hida–Rankin e a función L p-ádica tripla, ou en-
tre a aritméticas de unidades en corpos de números e a de puntos en curvas eĺıpticas. Esta similitude
suxire que cando un comeza cun triplete (f, g, h) de formas cuspidais, con h congruente cunha serie
de Eisenstein módulo p, a clase de cohomolox́ıa asociada aos ciclos diagonais debeŕıa descompor
como suma de dúas clases módulo p, unha das cales asociada ao elemento de Beilinson–Flach con-
strúıdo a partir da parella (f, g). Este mesmo fenómeno observaŕıase cando g é congruente módulo
p cunha serie de Eisenstein e o sistema de Beilinson–Flach dexenera nunha clase de Beilinson–Kato
(previamente conectada, á súa vez, co sistema de unidades ciculares). Esperamos desenvolver con
máis detalle esta liña de investigación en futuros traballos.

9.3 Tra bufalo e locomotiva: una visió personal

Tra bufalo e locomotiva la differenza salta agli occhi: la locomotiva ha la strada segnata, il bufalo
può scartare di lato e cadere.

Aquesta memòria reflecteix el treball de més de tres anys, i m’agradaria tancar-la amb un petit
comentari de caire més personal, en la ĺınia de la frase amb la que he començat el treball, un vers
del magńıfic cantautor italià Francesco de Gregori. El procés de realització d’una tesi doctoral
és sovint mitificat, i la gent normalment ho descriu com enriquidor, gratificant i apassionant. Jo
sé que tots ells menteixen. És però una mentida social fortament acceptada que ningú no gosa
revelar. En el meu cas, m’he endinsat en un tema que penso que és molt maco, però els moments
de plaer han estat escassos. Ha predominat la frustració d’enfrontar-se a resultats que molts cops
no entenia, la solitud de l’investigador i la incertesa per una carrera laboral on tothom ha acceptat
la precarietat i la misèria com a norma, amb l’excusa d’aquest romanticisme i caràcter vocacional
que la gent imprimeix a la vida acadèmica. He gaudit per moments fent matemàtiques, però també
ho he passat malament, i molts cops he volgut fugir. He estat un búfal que massa sovint ha tingut
aspiracions de locomotora, però finalment he arribat al final del camı́ i no me’n penedeixo ni imagino
la meva vida lluny de les matemàtiques i la teoria de nombres.
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