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ABSTRACT

Neutrino oscillations are a complex phenomenon of theoretical and experi-
mental interest in fundamental physics, studied through diverse experiments,
such as the T2K Collaboration situated in Japan. T2K is composed of two
facilities, which produce and measure neutrino interactions to get a better un-
derstanding of their oscillations through data analysis in the form of parameter
inference, model simulation and detector response. Through this work, state-
of-the-art deep learning techniques in the form of neural density estimators
and graph neural networks will be applied and thoroughly verified in T2K use
cases, assessing their benefits and shortcomings compared to traditional meth-
ods. Additionally an industrial usage of these methodologies for the Spanish
electrical network will be discussed.
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José Antonio y Marcos, por las incontables comidas que hemos pasado juntos
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MC Monte Carlo
MCMC Markov chain Monte Carlo
ML Machine learning
NIS Neural importance sampling
NN Neural network
NSF Neural spline flow
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xii Abbreviations

PMU Phasor measurement unit
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1. OVERVIEW

In this introductory chapter to the thesis, I will lay out the motivation behind
the work done over the past years through my research, explaining why an
industrial PhD between two entities, IFAE (Institut de F́ısica d’Altes Ener-
gies)1 and Grupo AIA: Aplicaciones en Informática Avanzada2, was formed.
The structure of the contents of the thesis will be detailed in Sec. 1.2, where I
make emphasis on the foundations my work is built on as well as pointing out
the original contributions made by me and my collaborators through different
publications.

1.1 Motivation

Current neutrino experiments such as the T2K experiment [1] and future ones
such as Hyper-K [2] and the Deep Underground Neutrino Experiment (DUNE)
[3], and other experiments in high energy physics, e.g., the Large Hadron
Collider (LHC) [4] and its upgrade, the high luminosity LHC [5], have as an
objective to expand and verify the understanding of fundamental physics. For
this purpose, an enormous amount of data is generated and processed both
in real time and offline, to extract from the measurement of the detectors the
physics contained in it.

The proper analysis of this data is vital to improve the precision of the
Standard Model [6] and discover new physics beyond the Standard Model
while answering open questions in the field: the neutrino mass [7], the strong
Charge-Parity problem [8], the matter-antimatter asymmetry [9], the nature
of dark matter [10] and dark energy [11], etc. In order to not limit the reach

1 http://www.ifae.es/
2 https://aia.es/

http://www.ifae.es/
https://aia.es/
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of the experiments’ physics by the algorithms and computational resources,
machine learning has been proposed and shown to produce promising results
compared to classical analysis tools [12].

The neutrino group at IFAE, currently lead by Thorsten Lux (previously
also co-led by Federico Sánchez until 2018), has been actively involved in the
T2K experiment, contributing both from a theoretical point of view of model
building [13, 14] and an experimental point of view of designing new detec-
tor elements [15], generally speaking. When dealing with the analysis of the
data, the T2K experiment has so far relied on classical methods, ranging from
Markov chain Monte Carlo for parameter inference, to standard energy cuts
for event reconstruction. With the fast evolution that data science is taking
through the form of machine learning, in particular through deep learning,
new opportunities open to revolutionize the way data analysis is performed at
T2K.

The other entity involved in the industrial PhD, Grupo AIA, is a consul-
tancy firm founded in 1988 under the motto “Algorithms for a better world”.
The company focuses on transferring concepts and methodologies from basic
science like maths and physics to the business world, enabling the applica-
tion of new technologies to solve problems in an innovative way. Over the
more than 30 years of existence, Grupo AIA has developed strategies involv-
ing advanced analytics and artificial intelligence, approaching challenges from
different enterprises: energy, retail, textile, telecommunication, media, bank-
ing and insurance sectors, among others. Vicens Gaitan has been part of the
data science department since graduating as a PhD in physics at IFAE in 1993,
leading the group currently as chief data scientist. During his thesis, he al-
ready began exploring the application of neural networks to the world of high
energy physics [16].

Thanks to the good relationship between IFAE and Grupo AIA through
the years, as many graduates are and have been part of the company after
leaving academia, a joint effort of forming and performing research through
an industrial PhD was conceived. In particular, Federico Sánchez offered the
T2K neutrino oscillation parameter inference analysis as an interesting starting
point to begin exploring synergies with the knowledge that Grupo AIA, and in
particular Vicens Gaitan, could bring to the table, specifically through machine
learning.

Neutrino physics experiments such as T2K, as all particle physics experi-
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ments, encompass mainly three big branches when dealing with data analysis:

• Detector response: The data measured by the different detectors has to
be processed to reconstruct the physics which is observed through the
raw signals, transforming it into meaningful and interpretable physical
magnitudes.

• Model simulation: Given theoretical models describing the physics at
hand, both from a fundamental level and from a detector response level,
it is essential to be able to generate data which follows these models in
order to perform a proper analysis.

• Parameter inference: Arguably the last part of the analysis which strongly
depends on the previous two branches, parameter inference is essential to
constrain different magnitudes given a model and some observed quan-
tities, finding the relation that leads to determining their values.

All of these processes are vital to explore and assess new physics.
In recent years, machine learning algorithms have overtaken and outper-

formed classical statistical approaches for the above tasks in many fields of
application. Particle physics, however, requires an understanding and preci-
sion of the obtained results which might be unmatched in other areas. The
main objective behind this thesis is to prototype and make a proof of concept
of machine learning applications to these processes, comparing them to tra-
ditional methods while explaining the benefits and disadvantages of the new
methods. Fortunately, as will be laid out in Sec. 1.2, I have been able to touch
on each of the three main branches through three different works in my thesis.

Additionally, as part of Grupo AIA and the industrial PhD, some of the
tools developed through the research phase also have found business applica-
tions.

1.2 Structure of the thesis

In order to make this thesis as self-contained as possible, as well as to account
for the majority of readers with a more physics heavy background rather than
a machine learning one, the thesis has been structured into two major blocks.
The first block contains a series of chapters dedicated to introduce the physics
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and machine learning knowledge needed in order to properly follow and be able
to trace back the following chapters. The second block consists in chapters
presenting the (pre-)publications realized during my PhD. In what follows, I
will describe shortly each of the chapters of the two blocks.

As already mentioned, the first block will serve as the background needed
to have a good understanding of the different models and algorithms utilized
through the PhD. The chapters forming part of this block are the following:

Chapter 2. Neutrino physics and the T2K experiment. A brief historical in-
troduction to neutrino physics is presented, leading to the main property
to be studied in this work: the neutrino oscillations. With the definition
of the oscillation model formulated, the T2K experiment in Japan is laid
out, describing its main two components: the near detector, ND280, and
the far detector, the Super Kamiokande.

Chapter 3. Introduction to neural networks. Basic concepts of machine learn-
ing are introduced in order to familiarize the reader with the thought
process when applying this kind of algorithm. Afterwards, the attention
is focused on constructing step-by-step a basic neural network, explaining
the fitting process utilizing backpropagation, as well as many essential
parts such as optimizers, activation functions and regularization tech-
niques.

Chapter 4. Normalizing flows. The majority of models follow a probability
density function, which can be modeled through a normalizing flow. Nor-
malizing flows are neural networks which construct approximations of
density functions by defining a transformation from an unknown target
density to an easy-to-evaluate base density. This allows to sample and
evaluate the target density once the model is fitted. Neural spline flows
are a particular, powerful implementation of the normalizing flows in the
form of rational quadratic splines. To efficiently evaluate these flows,
the notion of masked autoregressive networks is presented, parallelizing
heavy computations.

Chapter 5. Graph neural networks. Data can be structured in many ways, be-
ing a mathematical graph one of the most flexible and rich one by explic-
itly linking connected samples without the Euclidean restriction. Graph
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neural networks have been growing in the past years, which have the
property of aggregating and embedding the information of a node and
its neighbors in an intelligent way. Through this work in particular, we
are interested in GraphSAGE, one of the first graph neural networks
which enabled the usage of the trained the trained model on new graphs
with different number of nodes and adjacency matrices.

The second block focuses on the contributions made during the PhD. This
includes three articles and an industrial project. For the (pre-)publications,
the chapters are almost entirely the content of said (pre-)publications, while
removing certain sections which are well expanded in the first block and are
instead changed to references to these chapters. The original contributions of
the thesis are:

Chapter 6. Likelihood-free inference of experimental neutrino oscillations us-
ing neural spline flows [17], by Sebastian Pina-Otey, Federico Sánchez,
Vicens Gaitan and Thorsten Lux, published in Physical Review D 101,
113001, on the 2nd of June of 2020. The application of neural spline flows
to perform likelihood-free inference on a simplified two-flavour neutrino
oscillation parameter model for the T2K experiment is presented. In
particular, the usage is exemplified through the case of the disappear-
ance muon neutrino, assessing the advantages gained by utilizing this
novel approach, comparing it to the traditional histogram-based infer-
ence. My original contributions in this work are the modifi-
cation and fusion of neural density estimators in the form of
neural spline flows with the theoretical two-flavour oscillation
model to perform likelihood-free inference, and the verification
of its integrity by comparing it to traditional methods.

Chapter 7. Exhaustive neural importance sampling applied to Monte Carlo
event generation [18], by Sebastian Pina-Otey, Federico Sánchez, Thorsten
Lux and Vicens Gaitan, published in Physical Review D 102, 013003, on
the 16th of July of 2020. Exhaustive neural importance sampling, a
method based on normalizing flows to find a suitable proposal density
for rejection sampling automatically and efficiently, is proposed to solve
the issue of slow and impractical Monte Carlo generators. In particular,
the approach is tested on generating accurately a neutrino-nucleus cross
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section model, needed for neutrino oscillation experiments. My original
contributions are the modification of neural importance sam-
pling with a background density, defining a new algorithm, and
the comparison of utilizing the new obtained proposal function
with generic uniform densities.

Chapter 8. Graph neural network for 3D classification of ambiguities and opti-
cal crosstalk in scintillator-based neutrino detectors [19], by Saúl Alonso-
Monsalve, Dana Douqa, César Jesús-Valls, Thorsten Lux, Sebastian
Pina-Otey, Federico Sánchez, Davide Sgalaberna and Leigh H. White-
head, submitted to Physical Review D on the 1st of September 2020
(preprint arXiv:2009.00688). The reconstruction of neutrino interactions
in future 3D-granular plastic-scintillator detectors will be an essential
task in the near detector upgrade of the T2K experiment. When recon-
structing the three-dimensional particle tracks produced in the detector,
ambiguities due to high multiplicity signatures in the detector or leakage
of signal between neighboring arise. In this work, we present a graph
neural network, inspired by GraphSAGE, to classify the reconstructed
3D-signatures, boosting both efficiencies and purities on the simulated
events, while verifying the robustness against systematic effects which
may appear. My original contributions in this work are the de-
velopment and adaptation of a GraphSAGE-like algorithm to
this particular dataset, and the verification against systematic
uncertainties.

Chapter 9. Predictive analysis of the damping rate in inter-area oscillations.
As part of an industrial project within Grupo AIA, the damping ratio of
the power grid is analyzed and modelled with respect to different magni-
tudes of the Spanish electric network in a qualitative way. In particular,
the damping ratio signal properties with respect to time and space corre-
lations are studied, a predictive model is constructed, the graph structure
of the electric network is exploited through graph neural networks and
an accurate uncertainty assessment is performed through quantile re-
gressions and normalizing flows. My original contributions are the
study of the signal’s autocorrelations, the graph neural network
experiments and the assessment of uncertainties done through
the two models.



1.2. Structure of the thesis 7

Additionally, the Appendix includes additional information and graphics
present in the (pre-)publications to complement the work shown.
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2. NEUTRINO PHYSICS AND THE T2K EXPERIMENT

Neutrinos and their oscillation property are the fundamental objects of study
through this thesis. This chapter is dedicated to give a general overview of
the neutrinos within the particle physics field while also presenting the T2K
experiment. We start by speaking shortly about the historical context of neu-
trinos within particle physics and how they fit inside the Standard Model of
particles, Sec. 2.1. Afterwards, in Sec. 2.2, we focus on the neutrino oscilla-
tion phenomenon from a theoretical point of view, introducing the oscillation
parameters, relevant for the analysis. We finalize the chapter in Sec. 2.3, by
describing the T2K experiment and its set up for the near and far detector
facilities, explaining how the components contribute to measure and detect
neutrino oscillations.

2.1 Brief historical background and basic characteristics

The notion of neutrino particles, ν, was first postulated in 1930 by Pauli, at
the time named “the neutron”, a neutral particle to explain the missing energy
distribution observed experimentally in the β-decay by Chadwick [20, 21]. In
1934, Fermi [22] further incorporated the neutrino into his own β-decay theory
as an invisible four-momentum carrier in the n→ p+ e− + ν̄e process, which
now is known as electron anti-neutrino, ν̄e.

No experimental evidences of a neutrino particle were found for the next 26
years, until Reines and Cowan designed a set up in which inverse β-decays from
the Savannah River nuclear reactor in South Carolina produced a measurable
number of anti-neutrinos in 1956 [23,24].

Up to that point in time, neutrinos appeared to be all the same type of
particle. In 1959, Pontecorvo suggested to verify if indeed the neutrinos are
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produced in association with muons in a pion decay are the same as ones
emitted with electrons in the β-decay [25]. After a few years, in 1962, an
experiment at the Alternating Gradient Synchrotron at Brookhaven National
Laboratory properly identified a distinct type of neutrino, different from the
previously found one by generating µ leptons but no electrons in the process:
the muon neutrino, νµ [26].

The last predicted neutrino, the tau neutrino, ντ , was elusive and only di-
rectly observed in 2000 by the Direct Observation of Nu Tau (DONuT) exper-
iment at Fermilab [27]. With this, all three neutrino flavours were established
experimentally.

The three neutrinos ν (plus their antiparticles ν̄, corresponding to particles
with their same mass but opposite physical charges, such as the electric charge,
lepton number, etc.) form part of the Standard Model of elementary particles,
or simply Standard Model (SM), depicted in Fig. 2.1. The SM is a relativistic
quantum field theory which describes the strong, weak and electromagnetic
interactions between the elemental particles. Most of the experimental obser-
vations can be explained under this theory, including the previously mentioned
neutrino experiments.

According to the SM, there exist three generations of fermions, each of
them consisting of an up-type quark, a down-type quark, a charged lepton
and a neutrino. As we advance through the generations, the structure is re-
peated, increasing the mass of the corresponding particles. All the fermions
interact between them through the weak interaction (through either Z bosons
or W± bosons). Additionally quarks and charged leptons interact through
the electromagnetic interaction (with exchanging photons γ), and the quarks
themselves can interact through the strong interaction (with exchanging gluons
g).

The neutrinos, within the SM, only feel weak interactions and are assumed
to be massless. (In Chapter 7 we will go through one particular example
of this interaction, the charged current quasielastic (CCQE) interaction.) By
being massless and travelling in vacuum, the neutrino generation (also referred
to as flavour) should remain the same. This assumption has been proven
wrong experimentally by the observations of neutrino oscillation, implying
that neutrinos have indeed non-zero mass.
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Fig. 2.1: The Standard Model of elementary particles. Source: [28].

2.2 Neutrino oscillations

The phenomenon of neutrino oscillations is a direct consequence of them having
mass, and consists of neutrinos changing their flavour as they travel in space.

From a historical point of view, the concept of oscillations was first proposed
by Pontecorvo in 1957 [29], before the discovery of the muon neutrino, where
he suggested the possibility of neutrino-antineutrino oscillations. When the
second generation of neutrinos were discovered, Maki, Nagakawa and Sakata
considered the possibility of oscillation between the two types of neutrinos
[30]. Pontecorvo, in 1967, predicted that Sun-emitted electron neutrinos would
transition to muon neutrinos [31], even before the first measurement by the
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Homestake experiment in 1968 showed deficit in the solar electron neutrino
flux [32], known as the solar neutrino problem. A similar issue appeared in
the second half of the 1980s, known as the atmospheric neutrino anomaly,
where measurements of the atmospheric neutrino flux showed a deficit. These
two experimental observations remained controversial for years, and were only
accepted when Super-Kamiokande [33] and Sudbury Neutrino Observatory
(SNO) [34, 35] verified the oscillation hypothesis for atmospheric neutrinos
and solar neutrino, respectively.

From a formal point of view, as we will see in what follows, the neutrino
oscillations are defined by a flavour-mass eigenstate mixing matrix described
by 4 angles (including a charge-parity (CP) violating phase δCP) and the two
mass differences ∆m2 between the three mass states.

In the standard theory of neutrino oscillations, oscillations can be con-
structed via a unitary mixing matrix (U†U = 1), known as the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix, analogous to the one used in the
quark sector, which conserves the lepton number of the particle [36–38]. The
neutrino flavours, or flavour eigenstates, να, α = e, µ, τ , are interpreted as a lin-
ear superposition of massive Dirac particles, or mass eigenstates, νk, k = 1, 2, 3,
with corresponding masses mk:

|να〉 =
∑
k

U∗αk |νk〉 ,

where U is the unitary mixing matrix. In vacuum, the massive neutrinos with
momentum ~p are eigenvectors of the Hamiltonian H:

H |νk〉 = Ek |νk〉 =
√
|~p|2 +m2

k |νk〉 ,

with eigenvalues Ek =
√
|~p|2 +m2

k, where we are assuming natural units [39],
i.e., the speed of light c = 1, as will be done through the rest of the work.

Consider a neutrino flavour state |να(t)〉, describing a neutrino created at
time t = 0, with |να(t = 0)〉 = |να〉, and time evolution in vacuum given by

|να(t)〉 =
∑
k

U∗αke
−iEkt |νk〉 . (2.1)
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Because of the unitarity of the mixing matrix, the massive neutrino states can
be written as

|νk〉 =
∑
α

Uαk |να〉 .

The time evolution for a neutrino flavour state, Eq. (2.1), then becomes

|να(t)〉 =
∑
β

(∑
k

U∗αke
−iEktUβk

)
|νβ〉 .

Therefore, the initial pure neutrino flavour at time t = 0 becomes a superpo-
sition of different flavour states for t > 0, producing neutrino oscillations.

The time-dependent transition amplitude for a flavour conversion να → νβ
is given by

A(να → νβ) = 〈νβ | να(t)〉 =
∑
k

U∗αke
−iEktUβk.

Hence, the transition probability is

P (να → νβ) = |A(να → νβ)|2 =
∑
k,j

U∗αkUβkUαjU
∗
βje
−i(Ek−Ej)t. (2.2)

When considering ultra-relativistic neutrinos, such as the one produced in the
T2K experiment, where the momentum is orders of magnitude larger than the
mass, |~p| � mk, the energy eigenvalues can be approximated by

Ek =
√
|~p|2 +m2

k = |~p|
√

1 +
m2
k

|~p|2 ' |~p|+
m2
k

2|~p| = E +
m2
k

2E
,

where the neutrino energy is defined as E = |~p|, neglecting the mass contribu-
tion. In this regime, the difference Ek − Ej becomes

Ek − Ej =
m2
k −m2

j

2E
=

∆m2
kj

2E
.
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Therefore, the transition probability of Eq. (2.2) takes the form of

P (να → νβ) =
∑
k,j

U∗αkUβkUαjU
∗
βje
−i

∆m2
kjt

2E .

If ultra-relativistic neutrinos travel a fixed distance, L, as is the case for the
T2K experiment, the above expression can be written as

P (να → νβ) =
∑
k,j

U∗αkUβkUαjU
∗
βje
−i

∆m2
kjL

2E , (2.3)

showing that the phase responsible for the neutrino oscillation depends on
the source-detector distance L, the neutrino energy E and the difference of
squared-mass. Notice how only two difference of squared-mass are indepen-
dent: given ∆m2

21 and ∆m2
31, ∆m2

32 is just a the difference: ∆m2
32 = ∆m2

31 −
∆m2

21.
The PMNS matrix for the three neutrino families can be decomposed as a

product of three matrices:

U =

 1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

 ,

where cij = cos θij and sij = sin θij . The first matrix describes the oscillation
of atmospheric neutrinos, while the third does so for the oscillation of solar
neutrinos.

With this, the six free parameters of the mixing matrix have been in-
troduced. To measure them, the different experiments compare the rate of
neutrinos with certain flavour and energy E at the production point and after
travelling a fixed distance L, obtaining different mixing combinations for dif-
ferent energies of P (να → νβ) (see Fig. 2.2). These combinations are broken
down into two channels: disappearance and appearance.

For the disappearance channel, the survival probability of a certain flavour
is measured, e.g., for the νµ disappearance, the rate between the initially pro-
duced νµ neutrinos at the creation point and the measured one after travelling
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Fig. 2.2: Neutrino oscillation probabilities for a pure νµ produced with an
energy of 1 GeV for different distances L.

a distance L, P (νµ → νµ). Contrary, for the appearance channel, the oscil-
lation from one flavour to another is measured, e.g., for the appearance of
electron neutrinos from muon neutrinos, the rate of νµ is measured at the
creation point and is compared to the rate of νe measured after travelling a
certain distance L, P (νµ → νe).

The different neutrino experiments are designed by selecting a specific
source for producing neutrinos with certain flavour and the energy distribution
while fixing an appropriate distance L so that they are sensitive to a specific
mixing channel, and therefore, to specific parameters of the PMNS matrix.
The experiments can be broadly classified into one of four categories:

• Solar neutrino experiments: thermonuclear reactions in the Sun produce
neutrinos which are measurable on Earth. E.g.: the Homestake solar
neutrino observatory [40] and the GALLium EXperiment (GALLEX)



16 2. Neutrino physics and the T2K experiment

[41].

• Atmospheric neutrino experiments: Pions and kaons coming from pri-
mary cosmic rays interacting in the upper layer of the atmosphere decay
into neutrinos. While decaying, the muons produced also further decay
into additional neutrino sources. E.g.: the Irvine–Michigan–Brookhav
experiment [42] and Super Kamiokande [33].

• Reactor neutrino experiments: Electron antineutrinos fluxes are pro-
duced in nuclear reactors via β-decay of certain isotopes. E.g.: the
CHOOZ experiment [43] and KamLAND [44].

• Accelerator neutrino experiments: Neutrinos are produced via the decay
of pions, kaons and muons generated by an accelerated proton hitting a
target. E.g.: the NOvA experiment [45] and the T2K experiment (see
next section).

2.3 The T2K experiment

The T2K (Tokai-to-Kamioka) experiment [1] is one of the leading accelerator
neutrino experiments. In these experiments, neutrinos are produced in particle
accelerators, where protons are accelerated to desired levels of energies in order
to collide onto a nuclear target. When this happens, mesons are generated
(primarily pions π and secondly kaons K and muons µ) which decay after
travelling a certain distance into neutrinos and their associated leptons.

T2K is a long-baseline neutrino oscillation experiment, located in Japan,
designed to analyze the mixing channels of muon neutrinos. It started its
operation in March 2010, being the first long-baseline experiment to find elec-
tron neutrinos appearance from muon neutrinos νµ → νe [46], measuring the
last unknown mixing angle at the time, θ13, among the other PMNS matrix
parameters.

The setup of the experiment is depicted in Fig. 2.3. An accelerator at the
J-PARC produces neutrinos, which are detected at the far detector Super-
Kamiokande (SK) [47], 295 km away from the production target. The near
detector facility has two detectors: the on-axis detector INGRID and the off-
axis detector (2.5◦) ND280, both situated 280 m from the production target.
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Fig. 2.3: Schematic representation of the T2K experiment. Top shows a geo-
graphical representation while bottom details the different components of the
source, near detectors and the far detector.

The beam used for the experiment is the off-axis one, which produces a narrow-
band neutrino beam in energy, with peak energy at 0.6 GeV. The angle can be
reduced up to 2◦, allowing one to modify the energy peak if necessary. Below,
the different parts are briefly detailed.

The J-PARC facility [48] produces the (anti)neutrino beam. First, protons
are accelerated via a linear accelerator (LINAC), a rapid cycling synchrotron
(RCS) and a main ring (MR) synchrotron. The beamline consists of two parts
(see Fig. 2.4): i) the primary beamline, which takes fast-extracted protons
from the MR, bending them to point towards SK and colliding them onto a
graphite target ii) the secondary beamline, which directs the mesons, mainly
pions, from the proton-target interaction through a decay volume, finishing
with a beam dump. In this secondary volume, the pions are collected by a first
magnetic horn, while two consecutive horns focus them further in the proper
direction. The polarity of the horns allow them to focus positive or negative
hadrons to produce either a very pure muon neutrino beam or a very pure
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Fig. 2.4: Overview of the T2K neutrino beamline at the J-PARC facility.

muon antineutrino beam by reversing the magnetic field direction. The beam
of hadrons enters then a decay volume, to decay into neutrinos and leptons,
mainly muons. This decay volume is optimized to enhance the νµ contribution
while reducing the νe and ν̄µ contamination. These decayed particles finally
hit a graphite and iron beam dump, where only very high energetic muons
(above 5 GeV) and neutrinos can pass.

The first near detector, the on-axis detector INGRID [49] (see Fig. 2.5 (a)),
is composed of an array of iron/scintillator sandwiches, and measures the neu-
trino beam direction and profile. Determining the beam direction is crucial
to set up the experiment at the desired off-axis of 2.5◦, and INGRID achieves
this by comparing the different number of events in each of its modules to a
precision of 0.4 mrad. Additionally, INGRID helps to characterize the proper
intensity of the muon neutrino beam, as high statistics are obtained daily on
it.

The second near detector, the off-axis detector ND280 (see Fig. 2.5 (b)),
has as a purpose to measure the flux, energy spectrum and composition of
neutrinos in the direction of the far detector, while also to obtain the rates
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(a) (b)

Fig. 2.5: Schematic representation of the two near detectors: (a) the on-axis
detector INGRID and (b) the off-axis detector ND280 with its different sub-
detectors composition.

for exclusive neutrino reactions. It is composed of two main sections: the
P0D and the TPC/FGD sandwich (trackers). The P0D (π0 detector) [50],
is designed to observe neutral current interactions on water, where π0s are
emitted. This process is one of the main backgrounds in the νe selection
at Super-Kamiokande. The TPC/FGD is composed by a Time Projection
Chamber (TPC) [51] and a Fine-Grained Detector (FGD) [52]. The FGD is
composed of 15+7 modules, and in each of them two layers of 192 scintillator
bars are oriented in the x and y directions alternatively, perpendicular to the
beam direction. In the later 7, the modules are interleaved with thin layers
of water (2.5 mm thick). This fine segmentation allows for precise vertex and
charged particle reconstruction, while providing a target mass for the neutrino
interactions. An upgrade for the ND280 is being developed at the moment of
writing this thesis [53], including an upgrade for the FGD, called the Super
FGD, which will be detailed in Chapter 8. In the TPC, charged particles that
pass through it ionize a gas, producing a readout for precise tracking, as well
as helping with the particle identification (PID) thanks to the characteristic
amount of ionization.
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Fig. 2.6: Diagram of the Super-Kamiokande Detector.

Super-Kamiokande, Fig. 2.6, the far detector of the T2K experiment, is the
world’s largest land-based water Cherenkov detector, located 295 km west from
the beam source, built 1 km within the center of Mt. Ikenoyama. Its construc-
tion finished in 1996, and consists of a cylindrical cavern filled with 50 kton of
pure water together with approximately 13,000 photomultiplier tubes (PMTs).
It measures the flux of the incoming beam, searching for both the disappear-
ance νµ → νµ and the appearance νµ → νe channels via the rates of νµ and νe
CCQE interactions’ produced leptons. These charged leptons produce a cone
of Cherenkov light which is detected by the PMTs. The pattern of the light
allows to extract the position of interaction and the momentum of the outgo-
ing particle by classifying the Cherenkov rings observed as either muon-like or
electron-like via comparison to an analytically calculated expected pattern in
the case of muons and an Monte Carlo-generated expected pattern in the case
of electrons [1], helping to reconstruct the neutrino energy with the outgoing
lepton kinematics (assuming four-body interaction).

Since its first data-taking in January of 2010, the T2K experiment has
accomplished important results in the field of neutrino oscillations, especially
standing out:
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• The discovery of the appearance oscillation channel νµ → νe [46].

• One of the most precise measurements of the θ23 and ∆m2
23 oscillation

parameters [54].

• A 3-σ confidence interval for the constraint on the matter–antimatter
symmetry-violating phase δCP in neutrino oscillations [55].
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3. INTRODUCTION TO NEURAL NETWORKS

Data analysis has advanced at a rapid pace over the last 70 years, since the ap-
pearance of digital computations through computers [56]. One specific branch
of data analysis, machine learning, was conceived thanks to this additional
computational power, which exceeds any previous form of calculations while
growing exponentially rapidly in its own capacity [57]. This has only been
accentuated thanks to the fast evolution brought by the versatility of a spe-
cific machine learning algorithm, the neural networks [58], and the boost in
processing power through graphic cards or graphic process units (GPUs), al-
lowing for highly parallelizable operations to take place [59]. Another factor
influencing the push through machine learning methodologies has been the
abundant growth in data production [60] both from a business point of view,
with super markets, delivery systems, banks, etc. collecting large information
on their clients and transactions, as well as from a scientific and engineering
point of view, with devices digitizing information and models generating new
data through simulations.

This chapter serves as an introduction to machine learning in general as
well as focusing specifically on neural networks. At the end of the chapter,
we will have built a feed-forward fully-connected neural network, the simplest
architecture which serves as a building block to construct more advanced ones,
and is therefore fundamental to have a complete understanding of.

In Sec. 3.1 we present the concepts shared by most machine learning al-
gorithms, as well as defining some important jargon of the field which will be
used extensively through the thesis. In Sec. 3.2, the construction until reaching
the feed-forward neural network will be performed from a historical point of
view, showing the progress of the methodologies which originated the modern
concept of neural networks. To finish the chapter, Sec. 3.3 introduces addi-
tional components which are part of a neural network, such as the functions
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which propagate through it and the initialization of the parameters, among
others.

3.1 Concepts of Machine learning

Machine learning (ML) is the science of algorithms allowing the computer to
learn automatically from experiences in the form of data. The roots of ML lie
in the existing statistical methods before having the modern notion of it, and
current theoretical research in ML is considered a subfield of modern statistics
and artificial intelligence (AI).

The history of ML started in 1949, when Donald O. Hebb proposed a model
for explaining the plasticity and adaptation of the brain [61], which led in
1951 to Marvin Minsky and Dean Edmonds to build the first neural network
machine, the SNARC (Stochastic Neural Analog Reinforcement Calculator)
[62]. A year later, Arthur Samuel, together with IBM, began working on the
first programs that play checkers [63]. From there on, different ML algorithms
were developed in the following decades, with the perceptron in 1957 [64],
Nearest Neighbours Pattern recognition in 1967 [65], Random decision forests
[66] and Support-vector machines [67] in 1995, among many others. From all
the different types of ML algorithms, neural networks will be the focus of this
thesis, and their history will be expanded in depth in Sec. 3.2.

The data is normally structured in an aggregation of instances xi, forming
a dataset {xi}Ni=1. These instances share a defined description of the reality
they are representing, and can take many different mathematical shapes, the
most common being tabular data. Tabular data is defined as a vector of
values, which can be correlated or not, and where each component of the
vector can have its own type of variable, such as float, integer, categorical,
string, etc. For example, the variables involved in a cross section probability,
such as the momentum p and angle θ of the outgoing particle, can form a
tabular data, xi = {pi, θi}. Other types of typical data instances are images,
where each instance is a h × w × 3 tensors, where h (w) are the pixel height
(width) of the image, and each of these pixels have a 3-dimensional RGB color
encoding. Time-series of different length can also form a dataset, such as the
one produced by a seismograph or an electrocardiogram. Mathematical graphs
composed by nodes and edges also form datasets, as will be shown in Chapter 5,
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where each node would correspond to an entry in a tabular dataset, and they
would be connected via an adjacency matrix, giving additional information
of connections between the entries of the tabular dataset. As illustrated with
these examples, datasets can have many different shapes and compositions, but
share this same data structure between the different instances of the dataset.

Once the dataset is defined, the next step is to describe the task to fulfill
using ML techniques. For this purpose, ML approaches can be broadly clas-
sified into three categories (sometimes an algorithm combines two of them or
directly does not fit into any):

• Supervised learning: the data {xi}Ni=1 fed into the algorithm, known as
the input or features, is paired with the expected solution or outcome
{yi}Ni=1, known as the output, target or label. The algorithm’s task is to
find a relation between the input and output in the form of a function fθ,
fθ(x) = ŷ, where θ are the parameters of the algorithm’s function. ŷ is
the prediction of the algorithm given an input x, which for the training
data should be as close as possible to the real value y while generalizing
properly to equally distributed unseen data, tuned by the parameters θ
(the optimization of the parameters will be discussed later). The target
is usually a scalar value, and can be either discrete (e.g. the particle ID
of a trace) or continuous (e.g., the energy of an event). When the target
is discrete, the algorithm performs a classification task, while when the
target is continuous, it does a regression.

• Unsupervised learning: Contrary to the previous set of algorithms, the
data {xi}Ni=1 is unlabeled. The objective of unsupervised algorithms is to
understand and extract information of the structure of the data, which
encompasses a large variety of tasks. A very common goal is to cluster
the data into different groups sharing some structure beneath the data,
which can then be further analyzed (e.g., k-means [68] is a clustering al-
gorithm by partitioning the n vectors of data into k clusters). Sometimes
the data needs to be transformed in order to process it more efficiently,
visualize it in a lower dimension or simply reduce its dimension. Principal
Component Analysis (PCA) [69] projects the data from a higher dimen-
sional space into a lower dimensional space by maximizing the variance
of each component via linear combinations of the original space, getting
rid of linear correlations and defining a new orthogonal basis known as
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principal components. T-distributed Stochastic Neighbor Embedding (t-
SNE) [70], compared to PCA, offers a non-linear embedding to visualize
high dimensional data into a two or three dimensional space. Neural
density estimators also fall into unsupervised learning, where the proba-
bility density function (PDF) is learned through the data. Normalizing
flows, a subfamily of neural density estimators, will be discussed in depth
in Chapter 4.

• Reinforcement learning: reinforcement algorithms work very differently
than the previous ones: instead of having data from which one wishes to
extract direct information, the learning system, called an agent, observes
an environment, selects and performs actions and obtains a reward or
penalty in return. The decisions this agent takes come from a strategy
that it learns through the algorithms, known as policy, with the aim to
maximize the reward obtained at each step until reaching a goal. A typi-
cal application of reinforcement learning is creating an AI to play a game,
such as chess or Go: in these games, the observation would be the state
of the game, the actions would be to move/place the game pieces and the
maximum reward would be to win the game while the maximum penalty
would be to loss it. The AlphaGo documentary1 illustrates the complex-
ity of designing a good reinforcement algorithm while also showing the
potential it has.

For this work, the focus lies in supervised and unsupervised algorithms, hence
we will not go any further in reinforcement learning. In particular, in what fol-
lows this section, we will be speaking strictly about supervised learning, since
the unsupervised learning of normalizing flows in Chapter 4 will be approached
in an analogous way.

As anticipated above, algorithms take the form of a parametrized function
fθ(x), with parameters θ and input the data x. For supervised learning, the
output of the function gives the estimate fθ(x) = ŷ. To find the parameters
θ that best fit the data, a loss function over the parameters’ space is defined,
which quantifies the quality of the model, usually through a measure of distance
between the true value of the output and the estimated output of the algorithm.
The loss function is also known as objective or cost function.

1 https://www.youtube.com/watch?v=WXuK6gekU1Y

https://www.youtube.com/watch?v=WXuK6gekU1Y
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For regression problems, typical loss functions to compare true versus pre-
dicted outputs are:

• The mean absolute error (MAE):

L(θ) =
1

N

N∑
i=1

|yi − fθ(xi)|.

• The root mean squared error (RMSE):

L(θ) =

√√√√ 1

N

N∑
i=1

[yi − fθ(xi)]2. (3.1)

• The mean absolute percentage error (MAPE):

L(θ) =
1

N

N∑
i=1

∣∣∣∣yi − fθ(xi)fθ(xi)

∣∣∣∣ . (3.2)

For classification problems of k different classes, the output of the model re-
turns a vector of dimension k, fθ(x) = p, where each component pj is the
probability of the sample x being of class j according to the model. For this
application, the most common loss function is the log-loss or cross-entropy
function:

L(θ) = − 1

N

N∑
i=1

 k∑
j=1

δjyi log pj

 ,
where yi is the label of the i-th data and δjyi is the Kronecker delta.

The above loss functions are defined over the multivariate parameter space
and satisfy to be always non-negative and only equal to zero if the model fits
perfectly the data. The latter rarely happens as the model could be inade-
quate or insufficient to fit the data, or the data itself could contain stochastic
fluctuations which make a perfect fit impossible (consider the errors appearing
in a perfect linear model). Instead, minima of the loss functions are obtained
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for different models, which, when using the same metric, help to compare the
different models. Additionally, for ML algorithms, and more specifically for
neural networks, the parameter space can range from hundreds to millions of
parameters. This makes it infeasible to find an analytical solution, urging the
need of numerical methods to minimize the loss function, as will be explained
more concretely for neural networks in Secs. 3.2 and 3.3.

Choosing different forms of the loss function for the same goal, such as
MAE or RMSE for a regression problem, has two implications, which are
correlated: i) The gradient of the numerical optimization varies, having larger
smoothness, being convex, etc. ii) Since the perfect model does not usually
exist, the minimum non-zero of the function will depend largely on the form
of the loss function and how it quantifies the mismodeled data samples, e.g.,
taking the loss in the outliers more into account, etc.

When fitting the parameters of a model through a loss function, the model
can get too specific to the training data, losing its generalization value to new
data. This phenomenon is called overfitting, and holds especially true for the
two most used ML algorithms at the time of this writing, neural networks
and boosting decision trees [71]: the first ones usually have large number of
parameters, sometimes even greater than the size of the training samples; the
latter ones can construct an arbitrary size of chained models. On the other
hand, if the model is too simple or the parameters are not adjusted well enough
to the training data, i.e., the model is underfitted, it will also mispredict on
new samples. In practice, a model should be simple and predictive at the same
time, which is known as the general principle of machine learning. The trade-
off between both is called the bias-variance trade-off, illustrated in Fig. 3.1.
The goal is to obtain a model that fits and predicts properly the data in
(a). In (b), the model fits pretty decently the data, but is too complex to
accurately predict new data. In (c), the model is simpler, but the prediction
is not accurate, giving a large error through the loss function. In (d), both
simplicity and predictability are achieved, minimizing the loss function while
generalizing properly to new data samples.

For the neural network models focused in this work, underfitting is not a
concern, while overfitting to the training data is, due to the large flexibility
these networks have of adapting to data. To avoid overfitting a model with a
large number of parameters, there are two kinds of techniques: model indepen-
dent ones and model dependent ones. The latter one for neural networks will
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Fig. 3.1: Example of the general principle of machine learning: a model must
be simple and predictive. In this case, we want to find a model fitting the
data of (a). In (b) the model is too specific, because of its large complexity.
In (c) the model does not fit the training data close enough, hence the new
predictions will be poor. In (d) both the complexity and the predictability of
the model are balanced, having a good bias-variance trade-off.

be discussed in Sec. 3.3.4. Regarding model independent techniques, holdout
and cross-validation are model validation techniques to assess that the model
generalizes well enough when trained thoroughly in data coming from the same
distribution as the one used for training.

The simpler method of the two, the holdout method, consists in dividing
the training dataset into three disjoint subsets: the training set, to optimize
the model’s parameters; the validation set, to optimize hyperparameters and
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avoid overfitting; the test set, to verify the integrity of the model for new data.

• Training set: The data the ML algorithm sees during the optimization
process and fits its parameters to.

• Validation set: The data outside of the ML optimization process used
to stop the training once the improvement has halted for this set, or,
equivalently, to save the model that best adjusts to the validation set
during the training process according to a chosen metric. Additionally,
the validation set is utilized to fine tune the hyperparameters of a model,
to maximize the generalization of the algorithm by comparing how the
model behaves with different hyperparameters for the validation set. Hy-
perparameters are parameters of the model which cannot be learned and
optimized from data, but have to be chosen by hand due to experience
or by trial and error. There are some algorithms to optimize these hy-
perparameters based on the metric received from the validation set, such
as Bayesian optimization [72], but they are out of the scope of this work.

• Test set: The data used after optimizing the parameters with the training
set and choosing a model with the validation set, to verify that the model
really generalizes to data not used at all during the model construction
phase, as the validation set is used indirectly when constructing the final
model.

The general principle allows us to define the ideal model in terms of bal-
ance underfitting and overfitting, while the model selection can be performed
utilizing the validation loss. This is shown in Fig. 3.2, where the final model
should be the one minimizing the loss of the validation set, which contains
data not seen directly by the model fitting stage. In Sec. 3.3.4, early stopping,
a method of regularizing and selecting the proper model, will be discussed,
which precisely utilizes the validation loss curve.

The split of the dataset into the three subsets is usually performed at ran-
dom in order to avoid model dependence on the data chosen, and to cover the
whole distributions of the input and target spaces. In certain cases, however,
the division has to be done in a more sophisticated way, taking into account
that there might occur a phenomenon such as data leaking (discrepancy be-
tween test set performance and out of data performance due to training and
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Fig. 3.2: Model selection/training progress showing the discrepancy between
training and validation loss, depicting the ideal model where the algorithm
minimizes the loss for data not used to fit parameters. If the model is too
complex or one trains to overfit on training data, the model might generalize
poorly on out-of-train data, such as the validation set, which allows to measure
the model’s performance on precisely new data.

testing on a specific distribution, overfitting to it and not generalize well). The
percentage dedicated to each of the subsets may vary depending on the amount
of data available, but usual ratios for train-validation-test are 0.6-0.2-0.2 and
0.8-0.1-0.1.

As an example of a typical cross-validation implementation, the k-fold
cross validation [73] consists in utilizing k-folds on the training+validation
sets, where k models are build using different folds for training and validation.
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3.2 Building a feed forward neural network

In computational terms, the brain is a very versatile and powerful tool of
learning and recognising patterns, which is precisely the goal of a supervised
learning algorithm. It can filter out noise and properly process inconsistent
data, while producing quite accurate answers from very high dimensional data
(such as images or different sounds) in a short amount of time.

At the most basic level, the processing units of the brain are nerve cells
called neurons. On average, the number of neurons in a brain is of the order of
1011, interconnected as a complex network. Their main task, however, is quite
simple: through the fluids of the brain, transmitter chemicals raise or lower
the electrical potential inside the neurons. If the membrane potential surpasses
some threshold, the neuron fires a pulse of fixed strength and duration down the
axon (which is an elongation of the neuron to precisely transmit this pulse).
The axon then divides itself into different connections, known as synapses,
which transmit the fired pulse to many other neurons. Hence, each neuron can
be seen as a separate processor, deciding whether to fire an impulse or not,
making the brain a highly parallel computer.

Even with such a simple behaviour as the one explained above, the brain
adapts quickly to many kinds of tasks. Additionally, there is a strong belief
that neurons are the same all over the brain, but they adapt to their specific
function. This is known as plasticity: the brain can modify the strength of the
synaptic connections between neurons, and create new connections depending
on their purpose.

In 1949, Donald O. Hebb proposed a model for explaining the plasticity
and adaptation of the brain in his book The Organization of Behavior [61],
known as Hebb’s rule:

Let us assume that the persistence or repetition of a reverber-
atory activity (or “trace”) tends to induce lasting cellular changes
that add to its stability. [. . . ] When an axon of cell A is near
enough to excite a cell B and repeatedly or persistently takes part
in firing it, some growth process or metabolic change takes place in
one or both cells such that A’s efficiency, as one of the cells firing
B, is increased.

This means that the change in strength of synaptic connections is proportional
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to the correlation in the firing of the two connecting neurons. Therefore,
if two consecutive neurons fire consistently, their connections will change in
strength, making it stronger. Contrary, if two consecutive neurons do never
fire simultaneously, their connection dies away.

Having this picture in mind, neural networks (NNs) are ML algorithms
which emerged with the goal of simulating the brain’s behaviour of learning
and adapting. Even if they arise originally in analogy to a biological brain, they
have followed their own evolution, retaining only its name. The first scratch
of the framework appeared even before the publication of Hebb’s principle,
in 1943, with a first model coming from McCulloch and Pitts [74], as shown
in Sec. 3.2.1. With this basic mathematical model of how neurons work, the
perceptron is the first ML algorithm to be explored in Sec. 3.2.2, and acts as
the elemental building block of NNs. With the surge of powerful parallelizable
computing via GPUs, NNs are nowadays one of the most important ML algo-
rithms because of the complexity they can capture by stacking perceptron-like
pieces in imaginative ways, being the feed forward neural network architec-
ture in Sec. 3.2.3 the basic composed structure. To train a composed neural
network as the feed forward one, the backpropagation algorithm will also be
introduced.

3.2.1 McCulloch and Pitts neurons

In 1943, Warren S. McCulloch and Walter Pitts published their paper A logical
calculus of the ideas immanent in nervous activity [74], which presents a very
simple model of how the firing of a neuron is related to their membrane poten-
tial and the firing of other neurons. The model they presented is also known
as the “all or nothing”, since a neuron either fires or does not fire, represented
by a 1 and 0, respectively.

The model, shown in Fig. 3.3, has three parts:

1. A set of weighted inputs wi corresponding to the connections.

2. An adder that sums the input signals (the electrical potential that is
collected in the membrane).

3. An activation function σ (which corresponds initially to the threshold
function) deciding whether the neuron fires or not with the current in-
puts.
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Fig. 3.3: Schematic drawing of how the McCulloch and Pitts neuronal model
works to describe the firing of a neuron. m inputs are fed into the model, each
having a weight wi corresponding to the strength of the synaptic connections
of each input. They are summed up into a variable z =

∑
xiwi, which is then

passed to an activation function σ. In biological terms, the activation function
decides whether there is enough membrane potential for the neuron to fire or
not via a threshold function (as in Eq. (3.3)), but in NNs they can be any
function, introducing non-linearity to the algorithm when multiple layers are
added.

In real life, the inputs come from other neurons which are firing some signal,
hence they are either 0 or 1. For NNs however, the inputs can have any
value, although they may not have any biological meaning. Each of those
neurons that fires (or not) a signal, passes it through the synapses, which have
different strengths, called weights wi. The strength of the synapse influences
the strength of the signal the neuron gets, hence the need to multiply the input
times the weight of the synapse. Assuming all signals gather at the neuron
without disappearing, they are added up to see if there is enough membrane
potential to fire:

z =

m∑
i=1

xiwi.

After computing the total potential, it passes through the activation function
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for the neuron to fire. In the biological case, it would be a threshold function
with parameter θ,

ŷ = σ(z) =

{
1, if z > θ,
0, if z ≤ θ, (3.3)

to decide whether the neuron fires or not. In general for NNs, however, the
activation function can be very different, such as the sigmoid or the hyperbolic
tangent functions, and helps to introduce a non-linearity to the algorithm when
dealing with more than one layer.

Although the McCulloch and Pitts neuronal model is far from being realis-
tic, it serves for the ML algorithm to have a solid and simple basis to construct
the perceptron.

3.2.2 The perceptron

In the previous section the McCulloch and Pitts model for a single neuron was
introduced. This, however, is not interesting from the ML point of view, in
the sense that it is not able to learn. Instead, for a proper algorithm, a set of
neurons should be put together, forming a neural network. Once these neurons
are put together, one should be able to understand how the NN can learn the
appropriate weights from the training dataset. The basic NN for supervised
learning is the perceptron.

The perceptron algorithm was introduced by Frank Rosenblatt in 1957 at
the Cornell Aeronautical Laboratory [64]. It is one of the most simple NNs one
can construct, consisting only of grouping many McCulloch and Pitts neurons
together with the same input. Figure 3.4 displays an example of a case with
4 inputs and 5 outputs, where each of the outputs share the same activation
function σ. This can change in some specific cases, where one is interested in
using a custom activation function σ1, . . . , σ5 for each of them.

Notice that neurons are independent of each other: they use their own
weights to compute the sum zi, which decides whether to fire or not, regardless
of other neurons performing that action. The only thing they share are the
inputs. The goal is for the perceptron to learn to reproduce a particular target
vector for a given input via the training data. The parameters that are learned
for a concrete perceptron are the weights Wji, where i is the index of the input
vector and j is the index of the output. In the next section we will see that
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Fig. 3.4: Scheme of perceptron example. It is an ensemble of McCulloch and
Pitts neurons sharing the same inputs. In general, they also share the same
activation function σ, although this can be customized in practice to have
different functions σ1, . . . , σ5. The perceptron is a method to find the weights
of wji, where i is the index of the input and j is the index of the output neuron.
It does so by learning from training data. In this case there are 4 inputs and
5 outputs.

the indices are put in this order to provide a clean matrix notation for bigger
networks. We will now introduce a heuristic form of learning, which is not
used in practice. Instead, a method known as backpropagation, which will be
shown during this introduction, is used in the learning process.

With the scheme in Fig. 3.4 one can compute the output for a given input.
Having a training set, one wants to adjust the weights in a way so that the
loss function over all the dataset is as small as possible. Imagine that only
one of the output neurons, the component k of the target y, is wrong (the
output does not match the target) for binary outputs. Consider that there are
m input neurons, hence having m weights Wki, i ∈ {1, . . . ,m} connected to
it. To learn whether each weight is too big or too small, in order to correct the
output, one starts by computing ŷk− yk, the difference between our output ŷk
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and the target value yk, which is a very simple loss function. The change in
weight is then

∆Wki = −(ŷk − yk) · xi.

This makes sense, since one needs to take into account the sign of the input
and the difference between the prediction and the target to make corrections.

One way is to simply add this change in weight to the original one. This,
however, would make the weights change too abrupt for each data point in-
troduced in the training. Instead, one defines a learning rate η to regulate the
learning. Typical values for η are between 0.1 and 0.4 (Sec. 3.3 of [75]). With
this, the rule for updating the weight Wji is

Wji ←Wji + η ·∆Wki,

enabling to teach the perceptron to move towards the appropriate weights.
To finish with the perceptron method, a bias input bj is introduced as an

additional input with label 0, x0, which always has the value 1. Hence an extra
constant is added when adding over the inputs,

zj =

m∑
i=0

Wjixi = Wj0 +

m∑
i=1

Wjixi = bj +

m∑
i=1

Wjixi,

where an off-set has been added for the summation of the neurons. In the
biological case, it can change thresholds of different activation functions σ.
This input x0 = 1 is called the bias node and exists for every neuron. This
basically means that there is a constant bj which has to be adjusted for all
neuron activations.

3.2.3 Feed forward neural network and backpropagation

The perceptron method introduced in the last section is easy to understand
and to use, but it is only a linear model, being able to identify straight lines,
planes or hyperplanes. When confronting a sufficiently interesting problem,
this usually is not enough. To make the network more complex, neurons
between the input and output nodes can be added.

Commonly, instead of adding single neurons, one adds layers consisting of
multiple neurons. For example, in Fig. 3.5, a 4 layer NN is shown (the input
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Fig. 3.5: Example of a deep learning neural network. It consists of 4 layers
(the input, the output and 2 hidden layers), where the output of each layer
serves as input for the next one. The input layer has 5 neurons, the 2 hidden
layers have 6 neurons each, and the output layer has 2 neurons.

and output layers also count). Each output of a layer is used as input for the
next one. In this particular case, there are 5 input neurons, 2 intermediate or
hidden layers of 6 neurons each, and an output layer of 2 neurons.

Let us denote the value of the neuron after activation at each layer by
ali, where l is the layer going from 1 to L, with L the maximum number of
layers (in Fig. 3.5 L = 4), and i indicating the neuron in hand (the range of i
depends on the layer one is considering). The output vector at each layer l will
be denoted simply by al. The bias vector at each layer will be labelled bl, being
bli the bias at each neuron of the l-th layer, and the weight matrix connecting
the layer l − 1 and the layer l will be W l. In the perceptron notation, the
relation between neurons is

alj = σ(zlj) = σ

(∑
i

W l
jia

l−1
i + blj

)
.
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Hence, one can write the computation of whole layer using matrix notation,

al = σ(zl) = σ(W lal−1 + bl),

where the activation function σ is applied to each component as a single-valued
function.

Now, given a NN such as the one in Fig. 3.5, one is able to compute
the output by applying the previous equation in succession for all the layers.
This process is known as forward propagation, and this kind of standard NN
is known as (deep) feed forward neural networks. Additionally, it is a fully
connected neural network, since all neurons from one layer are connected to
all neurons of the next layer.

For feed forward neural networks to learn, the method used in the last
section for the perceptron is not very useful, since one only gets a total error
for the network in the output layer. This makes it hard to know how each of
the internal weights and biases of the hidden layers affected the output (hence
the name, one does not know directly how they influence the outcome) and
one does not know how to modify them. A different approach was developed
by Rumelhart et al. in 1986 [76], where the final error was passed backwards
through the network. This method is known as backpropagation, and will be
explained in depth, since it is the standard procedure to fit parameters of all
neural networks. The goal, as usual for supervised learning, is to minimize the
loss function.

Consider a loss function C(aLj , yj), which measures how bad the prediction

aLj is compared to the true value yj . It can be any differentiable function such
as RMSE or cross-entropy. There will be one assumption on this loss function:
it has to be linear on each of the training samples, i.e., C =

∑
x Cx, where Cx

is the error for the x-th training sample. This is reasonable because the error
should help to fix individual mistakes in the predictions when computing the
cost without canceling each other out as an ensemble, and all loss functions
introduced in Sec. 3.1 take this form. The objective is to minimize this loss
function for the training space, i.e., to obtain the best parameters θ in the
parameter space of weights and biases, where θ denotes both W and b. Since
this space is too large to find them analytically, the parameters θ are initialized
randomly, and then the gradient of C with respect to the parameters θ is
used to minimize it numerically. This can be done in many ways, such as the



40 3. Introduction to neural networks

Stochastic Gradient method [77] and Adam optimizers [78], as will be discussed
later. All of them depend on the gradient of the loss function C with respect
to the parameters, ∇θC, hence we need to have a way to compute it. This is
the task of the backpropagation.

The backpropagation algorithm to compute ∇θC is explained in great de-
tail in Chapter 2 of Michael Nielsen’s online book Neural Networks and Deep
Learning [79], with several examples. To compute ∂C/∂W l

ji and ∂C/∂blj , a
quantity

δlj :=
∂C

∂zlj
,

is defined, which is the “error” term of neuron j in layer l. Since zl = W lal−1+
bl, by knowing this error, one can compute the partial derivatives with respect
to the weights and biases of that layer using the chain rule:

∂C

∂W l
jk

=
∂C

∂zlj

∂zlj
∂W l

jk

=
∂C

∂zlj
al−1
k =: δlja

l−1
k ,

∂C

∂blj
=
∂C

∂zlj

∂zlj
∂blj

=
∂C

∂zlj
= δlj .

Hence, it is crucial to compute the δl for all the layers to obtain the gradient
of C.

For the output layer one has that it is simply

δLj =
∂C

∂zlj
=
∂C

∂alj

∂alj
∂zlj

=
∂C

∂alj
σ′(zlj),

or in matrix notation,

δL = ∇aLC � σ′(zL),

where � is the entrywise or Hadamard product. This means that the error δL

of the output layer can be computed directly after forward propagation. Now,
by finding a relation of δl as a function of δl+1, one can compute the error
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terms of all the layers, going backwards from δL. The exact equation, using
again the chain rule, can be obtained:

δlj =
∂C

∂zlj
=
∑
k

∂C

∂zl+1
k

∂zl+1
k

∂zlj
=
∑
k

δl+1
k W l+1

kj σ′(zlj),

where

zl+1
k =

∑
i

σ(zli)W
l+1
ki + bl+1

k .

With this, the relation between δl as a function of δl+1 is

δl =
((
W l+1

)T
δl+1

)
� σ′(zl),

and all the error terms for all the layers can be computed.

To sum up, the backpropagation is a method to compute the partial deriva-
tives of the loss function with respect to the weights and biases for one training
sample. It consists of the following four equations:

δL = ∇aLC � σ′(zL), (3.4a)

δl =
((
wl+1

)T
δl+1

)
� σ′(zl), (3.4b)

∂C

∂blj
= δlj , (3.4c)

∂C

∂wljk
= δlja

l−1
k . (3.4d)

The algorithm consists in computing so-called “error” terms, δl, for each layer.
To do so, first one has to do a forward propagation, i.e., evaluate the network
for the training sample, and save all the al and zl. Then, using Eq. (3.4a),
one computes the first error term, δL. Once this term is computed, using
Eq. (3.4b), one calculates in a recurrent way all the other error terms δl. With
all the error terms obtained, one obtains the partial derivatives of the loss
function by using the Eq. (3.4c) and (3.4d).
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Why is this clever algorithm used to find the partial derivatives? Instead,
one could approximate the derivatives of the loss function with respect to a
parameter θi simply by their approximate partial derivatives,

∂C

∂θi
' C(θi + ε)− C(θi)

ε
.

Working with the order of thousands or millions of parameters θi, one would
have to evaluate the network the same order of times to compute all derivatives.
The backpropagation algorithm, however, takes of the same order in time as
doing a single forward propagation, obtaining all the derivatives at the same
time in a very efficient way.

With the partial derivatives of the loss function, one might apply many
different algorithms to update and make the NN learn, i.e., minimize the loss
function C, as stated earlier, which will be described in Sec. 3.3.1.

As will be seen in the next section and in Chapters 4 and 5, deep learn-
ing based on neural networks has started to drift away from their biological
origin while maintaining the concept of highly connected structures with dif-
ferentiable components to compute their gradients. This has induced a shift
in denoting deep learning as representations of biological neural networks to a
branch within differentiable programming [80–82]. For the rest of the thesis,
however, we will still consider the frameworks as part of neural networks, since
this change of paradigm is one of the discussion issues in the community as of
today.

3.3 Components of a neural network

In the previous section, it has been described how a feed forward neural net-
work is built and how the gradient of its parameters are computed with respect
to the loss function. With the understanding of the formal part of the net-
work laid out, this section covers some additional components part of neural
network algorithms. In particular, Sec. 3.3.1 will describe the most popular
optimizers used to apply the gradients to the parameters to fit the network.
Afterwards, in Sec. 3.3.2, activation functions for the hidden and final lay-
ers will be depicted, some inspired by the threshold function of McCulloch
and Pitts while others deviating strongly from the original function to intro-
duce improvements. In Sec. 3.3.3, the random initialization of the parameters
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will be explained, arguing why certain distributions for the randomization are
preferred to others. Finally, in Sec. 3.3.4, regularization techniques to avoid
overfitting neural networks are shown.

3.3.1 Neural network optimizers

Backpropagation enables the computation of partial derivatives of the loss
function with respect to the parameters of a NN. If the gradients would be
applied directly on the weights to update them, the learning process would
become unstable, as it is usual to overshoot in a parameter update step when
utilizing the raw gradient. Optimizers are methodologies that apply changes
to the parameters of the NN to reduce the loss function adequately. Two of
these algorithms will be shown in this section: the stochastic gradient descent
and the Adam optimizer.

The stochastic gradient descent (SGD) [77] algorithm is based on the Rob-
bins–Monro algorithm [83], which modifies the standard gradient descent to
use stochastic subsets of the training data instead of the whole ensemble. Con-
sider having N samples in the training data. SGD selects randomly M samples
to form a so called batch of data, and computes the derivatives of the weights
and biases of the NN for each of them using Eq. (3.4). The weights and bi-
ases (jointly denoted by weights w from now on) of each layer are updated as
follows:

w ← w − η ∂C
∂w

, with
∂C

∂w
=

1

M

M∑
m=1

∂Cm

∂w
,

where η is the learning rate to tune the amount of change in the parameters
and ∂Cm/∂w is the partial derivative for the m-th data. Notice that this is
simply subtracting the batch’s average partial derivative of the loss function
with respect to the parameter, hence moving in the opposite direction of the
gradient in the parameter space and minimizing the loss function.

The purpose of utilizing a random subset of the training set to compute
the derivative and not the whole set is to accelerate the computation, since
one needs to perform M backpropagations instead of N while maintaining
approximately the same direction in the parameter space. The statistical noise
from selecting constantly only a subset also helps to avoid getting stuck in a
local minimum.
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SGD was used as a base to construct all subsequent optimization algo-
rithms, i.e., the notion of using smaller random batches to approximate the
derivative of the loss function. Momentum based optimization [84], aside from
updating the weights, computes a momentum of the gradient which is also
applied and updated. Adaptive gradient (AdaGrad) [85] constructs a per-
parameter learning rate during the optimization. Root Mean Square Propa-
gation2 (RMSProp) also computes an adapted learning rate for each of the
parameters by dividing it for a weight by a running average of the magnitudes
of previous gradients.

Adaptive Moment Estimation (Adam) [78] is another algorithm based on
RMSProp, which itself is based on SGD. As its predecessor, it utilizes individ-
ual learning rates for each parameter, but in this case running averages of both
gradients and second momentum of the gradients are used. Consider the train-
ing iteration t in order to compute the weights at t + 1. Adam’s parameters’
update is the following:

m(t+1)
w ← β1 ·m(t)

w + (1− β1) · ∂C/∂w,
v(t+1)
w ← β2 · v(t)

w + (1− β2) · (∂C/∂w)2,

m̂w =
m

(t+1)
w

1− βt+1
1

,

v̂w =
v

(t+1)
w

1− βt+1
2

,

w(t+1) ← w(t) − η m̂w√
v̂w + ε

,

where β1 and β2 are the exponential decay rates for the first and second mo-
mentum of the gradient, η the learning rate and ε a small factor (10−8) to
avoid division by 0.

Adam is straightforward to implement, not memory nor computational in-
tensive and adapts each component of the parameter space with its own lower
momenta. The majority of practical cases benefit highly from Adam, since it

2 RMSProp was first introduced by Geoff Hinton on a Coursera online course. Slides can
be found here: https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_

lec6.pdf

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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speeds up the convergence by building adequate momenta. The hyperparam-
eters β1, β2, η and ε are very intuitive to understand and to tune. All of this
makes Adam the go-to optimizer for NNs. It is important to note that the first
and second moments might hinder a proper learning in very concrete cases.
For this work, Adam was successfully used in all applications.

3.3.2 Activation functions

Biologically, the McCulloch and Pitts neurons interact with certain weights,
forming a membrane potential z which leads to activate the connected neuron
according to a threshold function ŷ = σ(z). For NNs, however, this activation
function σ can be any function, as there is no biological meaning behind it.
The main purpose of activation functions are to introduce non-linearity in an
otherwise linear combination of variables. This allows the NNs to have a far
richer expressiveness (i.e., the networks are able to approximate a wider family
of functions) than otherwise linear. In fact, there is a large branch of studies
that show through different activation functions and network architectures
that feed-forward neural networks are universal approximators of continuous
functions [86–91]. The other utility activation functions have is to restrict the
output on a certain domain, e.g., in the range [0,1], in R+, etc. All univariate
activation functions described are depicted in Fig. 3.6.

The first activation function used was the sigmoid function, as it can be
interpreted as a smooth threshold function:

σ(z) =
1

1 + e−z
.

This activation function gives outputs between 0 and 1, adds a non-linearity
for values which are not close to zero and has non-zero gradient, which is fun-
damental to apply backpropagation properly, but at the same times is similar
enough to the threshold function to justify its usage by early believes of neural
networks having to be similar to biological ones. Sigmoid functions can be
utilized as a last output activation to ensure obtaining values between 0 and 1,
such as when trying to assign a binary probability to the data. However, chain-
ing many hidden layers of sigmoid functions can lead to the vanishing gradient
phenomenon, as the gradient of sigmoid function quickly saturates outside its
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Fig. 3.6: Typical activation functions for neural networks to induce non-
linearity in the algorithm.

center. When multiplying these small gradients in the chain rule, one obtains
gradients close to zero, making it hard for the NN to update properly.

A similar activation function used is the hyperbolic tangent,

σ(z) = tanh(z) =
ez − e−z
ez + e−z

,

which provides an output centered around zero with values in the range [-1,1].
Even though the output is now centered, tanh suffers from the same issue as
the sigmoid regarding the vanishing gradient.

Both sigmoid and hyperbolic tangent come from the concept of imitating
the McCulloch and Pitts neuron model. In 2000, Hahnloser et al. [92, 93]
introduced a non-saturating, very simple, but highly effective new activation
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function: the Rectified Linear Unit (ReLU),

σ(z) = ReLU(z) = max(0, z).

This function is continuous and differentiable in every point except 0. For
z > 0, the gradient is always equal to 1, getting rid of the vanishing gradient
problem. Even though the non-linearity is very simple, because the function
and its gradient are computationally very cheap to compute, one can stack a
large amount of simple ReLUs to induce stronger non-linearities.

Since the appearance of ReLU, many small tweaks on non-saturating acti-
vation functions keep appearing, such as the Exponential Linear Unit (ELU)
[94], Scaled Exponential Linear Unit (SELU) [95] and Leaky ReLU [96]. The
latter one will be used through this work, and consists in modifying ReLU for
negative values:

σ(z) = Leaky ReLUα(z) = max(α · z, z).

Here, α is a hyperparameter of the model, with usual values between 0.01 and
0.1, and quantifies how much the activation “leaks”. Adding this condition for
negative values solves one of the main issues of the original ReLU: saturating
in negative values, obtaining only zero gradients. The simplicity of ReLU and
its non-linearity is still kept, making it an excellent evolution of the original
activation function.

The last univariate activation function visited will be the SoftPlus function
[97,98]:

σ(z) = S+(z) = log(1 + ez). (3.5)

This function allows to map R → R+, which will be useful when wanting to
force a non-negative output.

There are also multivariate activation functions, i.e., where all the neurons
of a layer are taken as input together and produce a certain output. The
softmax activation takes as an input a real vector and outputs a normalized
probability vector according to the values of such a vector. Each component i
of the probabilities is given by

σ(z)i =
ezi∑
j e
zj
. (3.6)
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This allows to give probabilities of different outputs, such as when performing
a multiclass classification.

3.3.3 Initialization of the parameters

Neural networks follow an iterative process when optimizing their parame-
ters, as discussed before while presenting the different methodologies to do
so. Contrary to other numerical methods, the convergence to a minimum of
this iterative process depends heavily on the initialization of the parameters,
determining whether it converges at all or encounters numerical instabilities
and fails to do so. When converging, the initial point can determine how fast
learning converges, and if the minimum is close to the global one or not. Ad-
ditionally, it can affect how the converged model generalizes to out-of-training
data.

Initialization of a neural network is not well understood, forcing simple and
heuristic strategies, many of which are focused on the network satisfying nice
properties when initialized, such as having symmetry break between the initial
values of the neurons and avoiding exploding or vanishing gradients. There is
no guarantee, however, that these properties persist after training.

The only thing known for sure is the desire to break an initial symmetry
so that the network does learn something different with each neuron. Two
units connected to the same inputs and with the same activation function
have to be initialized differently, otherwise they will be updated exactly the
same. This motivates a random initialization, typically setting the biases at a
constant heuristic value while the weights get assigned a random number from
a distribution, usually a Gaussian or uniform distribution. Even though the
shape of the distribution does not seem to matter at all, its scale does have a
large impact on the network’s ability to learn.

Large initial values yield a stronger symmetry-break effect and avoid loss of
signal during forward and backward propagation. Too large values, however,
can lead to exploding values, which produce exploding gradients, making the
training highly unstable. Many proposals on how to balance the two extremes
and find a compromise have been made, being the Xavier or Glorot initializa-
tion [99] the most popular one. For a fully connected layer of m inputs and
n outputs, Glorot and Bengio proposed to use a uniform initialization for the
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components of the weight matrices W :

Wjk ∼ Unif

(
−
√

6

m+ n
,

√
6

m+ n

)
,

while initializing the biases terms b to zero. This heuristic is designed to have
for all layers both the same activation variance and same gradient variance,
by making the assumption that there are only chains of matrix multiplica-
tions with no non-linearities. Through this work, Glorot initialization will be
performed unless otherwise stated.

3.3.4 Regularization of neural networks

The expressiveness of neural networks allows them to adapt to complex re-
lations between the input and output data. Because of their flexibility, this
leads in many cases to overfit to the training data, as having a parameter space
of thousands or millions of parameters may be large enough to memorize the
training data.

Additionally, neural networks suffer from exploding/vanishing gradients
during backpropagation, which can make some architectures unstable.

To prevent both these things from happening, different methodologies arise,
which vary on how they approach the phenomenon of overfitting and explod-
ing/vanishing gradients. Four techniques used in this work will be presented:
batch normalization, dropout, gradient clipping and early stopping.

Batch normalization

As seen with the initialization and with the activation functions, the values of
the neurons should always be close to zero in order to perform properly. Having
a mixture of positive and negative values allows to prevent exploding and
vanishing gradients. However, after beginning training, the initial distribution
may change, starting to spread and displace itself. In 2015, Ioffe and Szegedy
proposed a technique called batch normalization (BN) [100] to solve this issue.
It adds an operation before applying the activation function of standardizing
the inputs (i.e., making them have a mean of zero and a standard deviation
of one), then shifting and scaling them as needed by the algorithm. This
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operation simply scales and shifts the data adequately so that the algorithm
can profit from them as much as possible given the next operation in the NN.
The equations to apply BN are:

µB =
1

mB

mB∑
i=1

x(i),

σ2
B =

1

mB

mB∑
i=1

(x(i) − µB)2,

x̂(i) =
x(i) − µB√
σ2
B + ε

,

z(i) = γx̂(i) + β,

where:

• x(i) is the i-th input of the BN.

• µB is the empirical mean over a batch of data B.

• σ2
B is the empirical variance over a batch of data B.

• mB is the size of the batch.

• x̂(i) is the zero-centered, normalized input.

• γ is the scaling parameter for the layer.

• β is the shifting parameter for the layer.

• ε is a small factor (10−8) to avoid division by 0.

• z(i) is the i-th output of the BN.

Notice that the above equation is computed during training, as we are using
a batch of data to obtain µB and σ2

B . The parameters γ and β are optimized
as usual via backpropagation. When evaluating the BN layer, it cannot rely
on having a batch to compute the mean and variance. Instead, the layer
saves these quantities as running averages of the means and variances obtained
during training, and uses them when evaluating.
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Ioffe and Szegedy showed in their work [100] that BN improved consid-
erably all the neural networks they experimented with. Vanishing gradients
disappeared, allowing one to use saturating activation functions such as the
sigmoid or tanh. The networks were also less sensitive to weight initialization,
higher learning rates could be applied and, therefore, faster convergence was
found.

Dropout

Introduced in 2012 by Hinton et al. and further detailed in 2014 by Srivastava
et al., dropout [101,102] is one of the most popular and successful regularization
techniques for neural networks, boosting even state-of-the-art neural network
a 1-2%, which are already at 95% accuracy. The algorithm is quite simple:
during every training step, each neuron (including input neurons but excluding
output neurons) has a probability p of dropping out temporally, i.e., it will be
ignored during the training step, coming back on the next iteration. The
hyperparameter p is the dropout rate, typically in the range of [0.1,0.5]. After
training, no neuron gets dropped out anymore, but the weights have to be
multiplied by p, as all neurons will be present and the proper ratio to each
connection has to be preserved.

The concept of dropout revolves around the idea that a neuron cannot de-
pend on a single connection it has with another one, but has to learn to extract
information from a group of neurons it is connected to instead. Additionally, a
neuron cannot co-adapt with others of the same layer, as some of them might
drop randomly, making more emphasis in the information contained in each
neuron. This gives the network higher robustness to slight changes in the input
and makes it generalize better.

Gradient clipping

Even with all the precaution of choosing small learning rates and applying
batch normalization, gradients can explode and make the network unstable
while training. The shape of the loss function over this large multivariate
space might change drastically in different points, a phenomenon which occurs
with certain network architectures more than with others. Gradient clipping
regularization helps to prevent having abrupt changes in the network due to
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the gradient exploding by restricting its norm.
The simplest way of applying gradient clipping is by gathering all the gradi-

ents computed in a backpropagation step of the model into a one-dimensional
vector ∆W before applying any optimization algorithm. Then, the norm of
the vector ‖∆W‖ is computed, usually the euclidean one, in order to define its
normalized version ∆w = ∆W/‖∆W‖. Given the hyperparameter of maxi-
mum norm, m > 0, the new gradient utilized for optimization ∆W′ is given
by

∆W′ = ∆w ·min(m, ‖∆W‖).

By redefining the gradient in each training step this way, a maximum norm m
is ensured while maintaining the proper direction of the original gradient.

Early stopping

When expressive models such as neural networks have the capacity to overfit,
one observes during training that the loss on the training set keeps decreasing
steadily while for the validation set the error begins to rise again. By select-
ing the parameters of the model for which the error in the validation set is
minimal, the model will in theory yield better results for new data, as it is
generalizing best at that point in time. Therefore, each time the error on the
validation set improves, the model’s parameters are stored. When the algo-
rithm terminates, the last saved parameters are restored rather than the latest
ones, allowing us to select the ideal model in Fig. 3.2. The algorithm finishes
once the validation error has not improved over a pre-specified number of iter-
ations, which is a hyperparameter known as patience. This process, known as
early stopping, is the most common regularization method in deep learning,
due to its effectiveness and simplicity.

When training a model, sometimes the validation error stops improving
over a short amount of iterations until it continues to do so. However, it
might be the case that the model does not improve anymore and one is in
the initial phase of the training. This makes the larger part of the learning
procedure unnecessary, as the model is simply overfitting. By applying early
stopping with an appropriate patience, both situations can be avoided, helping
to remove one of the more delicate parameters to tune, the total number of
training iterations.



4. NORMALIZING FLOWS

In modern science and engineering disciplines, well-specified probabilistic mod-
els are able to describe and reproduce the data processing of observed quanti-
ties and link it to an underlying theory. One fundamental task of current ML
research is to develop new utilities which allow richer probabilistic descriptions
to be made, enabling better-specified models.

In this chapter, normalizing flows will be presented as one of the tools avail-
able to build probabilistic distributions. Section 4.1 will introduce the general
concept of normalizing flows while describing their abstract building blocks.
Later on, Sec. 4.2 will present a specific implementation of these building
blocks, the neural spline flows, which allow for very flexible and complex prob-
abilistic distributions to be constructed in an efficient way. Finally, Sec. 4.3
will show a practical way of computing the building blocks through a single
neural network in the form of an autoregressive network.

4.1 Normalizing flows

Normalizing flows construct probability distributions by pushing an initial den-
sity through a series of transformations to obtain a richer distribution, similar
to a fluid going through a chain of tubes of different sizes and shapes. As will
be shown, repeated applications of simple transformations over a unimodal
initial density can lead to complex, multi-modal models.

In high energy physics, normalizing flows have been primarily used for
sampling, e.g., lattice gauge theory and Drell-Yan type processes at the LHC
sampling [103, 104], and integration, e.g., matrix elements for top-quark and
gluon productions [105], but their versatility can also be applied for anomaly
detection [106] and for parameter inference of simulator models [17], as will be
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seen in Chapter 6.

4.1.1 Basic concepts

From a historical point of view, the predecessor of modern normalizing flows
were the whitening transformations [107, 108], shaping data into white noise
with uncorrelated components, each with variance one, to enforce statistical
independence of the variables to work in simpler environments. The first to use
whitening as a density estimation technique instead of data preprocessing were
Chen and Gopinath (2000) [109]. Tabak and Turner (2013) [110] defined the
modern concept of normalizing flows, by being the first to introduce the term
normalizing flows and describing them as a composition of K simple maps, as
will be shown later. Constructing these transformations as parameterized flows
with deep neural networks was shown by Rippel and Adams (2013) [111], rec-
ognizing the potential in defining expressive and general distribution classes.
Dinh et al. (2015) [112] developed a scalable and computational efficient archi-
tecture for image modeling and inference. An in-depth review over the current
state of normalizing flows was recently written by Papamakarios et al. [113],
from which we will only concern on the parts applied through the thesis.

Normalizing flows enable to construct probability distributions over contin-
uous random variables. Consider x to be a D-dimensional vector in RD over
which one would like to define a joint distribution. The idea of a flow-based
modeling is to express x as a transformation T of a real vector u sampled from
pu (u):

x = T (u), with u ∼ pu (u) .

pu (u) is referred to as the base distribution of the flow-based model. The
transformation T usually has parameters φ which induce a family of density
functions over x parameterized by φ.

The defining property of the transformation T in a flow is that it has to
be invertible, and both T and T−1 have to be differentiable, i.e., T defines a
diffeomorphism over RD, requiring u to be in RD as well [114]. Under these
conditions, the density of x is well-defined and can be computed via a change
of variables for density functions:

px (x) = pu (u) |det JT (u)|−1, where u = T−1(x), (4.1)
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with JT (u) the Jacobian of the transformation, given by a D × D matrix of
the partial derivatives of the transformation T :

JT (u) =


∂T1

∂u1
· · · ∂T1

∂uD
...

. . .
...

∂TD
∂u1

· · · ∂TD
∂uD

 .
The density can also be described in terms of the inverse transformation T−1:

px (x) = pu
(
T−1(x)

)
|det JT−1(x)|. (4.2)

In practice, the implementation of T (or T−1) is given partially by a neural
network, and the base density pu (u) is chosen to be a multivariate normal, as
it is a well understood distribution, both easy to sample and evaluate, with a
domain covering the whole space RD while being concentrated in a small and
known area.

Intuitively, the transformation T can be thought of as expanding and com-
pressing the space RD to shape the base density pu (u) into px (x). The relative
change of volume in a small neighborhood around u through T is measured
by the absolute Jacobian determinant |det JT (u)|.

If the transformation is flexible enough, the flow could be used to evaluate
any continuous density in RD. In practice, however, the property that the
composition of diffeomorphisms is a diffeomorphism is used, allowing one to
construct a complex transformation via composition of simpler transformations
(analogous to how rich feed forward neural networks are a sequence of simple
layer functions). This does not compromise any of the properties needed to
define a transformation for a change of variables, such as invertibility and
differentiability. Consider the transformation T as a composition of simpler
Tk transformations,

T = TK ◦ · · · ◦ T1. (4.3)

Assuming z0 = u and zK = x, the forward evaluation and Jacobian are

zk = Tk(zk−1), k = 1 : K,

|JT (x)| =
∣∣∣∣∣
K∏
k=1

JTk(zk−1)

∣∣∣∣∣ . (4.4)
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Fig. 4.1: An example of a normalizing flow, transforming the base density, a
two-dimensional normal distribution (up left), to the target density, a star-
shape distribution (bottom right). The complete transformation of the flow
is a composition of four simpler ones (from top left to bottom right). The
colors are added to follow the transformation of the points through the flow.
Source: [113].

These two computations (plus their inverse) are the building blocks of a nor-
malizing flow [115]. Hence, to make a transformation efficient (i.e., to have
a small computational cost), both operations have to be efficient. Figure 4.1
shows a normalizing flow from a two-dimensional normal distribution to a star-
shape distribution as a composition of 4 transformations. From now on, we
will focus on a simple transformation u = T (x), since constructing a flow from
it is simply applying compositions.

The expressiveness of a flow is the flexibility it has to adapt to arbitrary
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distributions. Papamakarios et al. [113] show that under reasonable conditions
on px (x), a flow will be able to represent said distribution, i.e., flows are highly
expressive. For this, the density has to satisfy that px (x) > 0 for all x ∈ RD
and that all the conditional probabilities Pr(x′i ≤ xi|x<i) are differentiable
with respect to (xi,x<i), with x<i = {x1, x2, . . . , xi−1}.

4.1.2 Objective function

In order to fit a flow-based model, denoted from here on forth by qφ (x),
to a target distribution p (x), some divergence or discrepancy between both
distributions is minimized over the parameters φ of the transformation T of
the flow. There are a number of divergences that could be used, such as f -
divergences [116], that use density ratios for comparison of distributions, or
integral probability metrics [117], which use differences to compare.

The most popular choice is the Kullback-Leibler divergence (KL-divergence)
[118], a particular implementation of the family of f-divergences, defined as

DKL (p (x) ‖qφ (x)) =

∫
p (x) log

(
p (x)

qφ (x)

)
dx. (4.5)

As a divergence, it is always non-negative and only zero if and only if both
densities are equal. Rewriting the above equation as a loss function with
respect to the parameters φ, it becomes:

L(φ) = DKL (p (x) ‖qφ (x))

=

∫
p (x) log

(
p (x)

qφ (x)

)
dx

=

∫
p (x) log p (x) dx−

∫
p (x) log qφ (x) dx

= −Ex∼p(x) [log qφ (x)] + const.

= −Ex∼p(x)

[
log pu

(
T−1(x;φ)

)
+ log |det J−1

T (x;φ)|
]

+ const.

(4.6)

Notice that the loss function can be computed for target densities p (x) from
which one can sample from but not necessarily evaluate explicitly its density
for a given point x. Consider having a set of samples {xn}Nn=1 from p (x). The
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Monte Carlo estimate over the loss function expectation becomes:

L(φ) ≈ − 1

N

N∑
n=1

[
log pu

(
T−1(xn;φ)

)
+ log |det J−1

T (xn;φ)|
]

+ const.(4.7)

Minimizing the Monte Carlo approximation of the KL-divergence is equivalent
to maximizing the log-likelihood of the {xn}Nn=1 samples with the flow-model.

When performing optimization on the transformation T in the form of a
neural network using methods such as SGD or Adam described in Sec. 3.3.1,
the unbiased estimate of the gradient of the KL-divergence with respect to the
parameters is:

∇φL(φ) ≈ − 1

N

N∑
n=1

[
∇φ log pu

(
T−1(xn;φ)

)
+∇φ log |det J−1

T (xn;φ)|
]
.

To fit a flow-based model via maximum likelihood, one needs to be able
to compute and to differentiate the inverse transformation T−1, its Jacobian
determinant and the base density pu (u). The trained model allows one to
evaluate the fitted density even if one is unable to compute T or sample from
pu (u), although both are required to be able to sample from the fitted model.

The KL-divergence is not symmetric, and the order of the factors was
chosen purposefully as in Eq. (4.5). This form of the KL-divergence is known
as forward KL-divergence, although the name is only a rhetorical convenience.
The forward KL-divergence allows one to fit a model where, as stated, one
is able to sample from the target but is not able to evaluate explicitly the
target density. This situation is typical in many science models, as one is able
to produce samples as a chain of stochastic decisions, whose density is either
computationally prohibited due to complex integrals or directly unavailable.

When altering the order of the KL-divergence factors, one gets the so called
reverse KL-divergence:

L(φ) = DKL (qφ (x) ‖p (x))

= Ex∼qφ(x) [log qφ (x)− log p (x)]

= Eu∼pu(u) [log pu (u)− log |det JT (u;φ)| − log p (T (u;φ))] ,

where in the last equality a change of variable is performed to express the
expectation with respect to u. The reverse KL-divergence is suitable to fit the
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flow-model where one is able to evaluate the target density p (x) but cannot
necessarily sample from it. This even holds when the target density is only
available to evaluate up to a constant (p̃(x), with p (x) = p̃(x)/C), as the nor-
malization constant is a constant factor for the loss function which is ignored
when computing the gradient during optimization. In particular, if {un}Nn=1

samples are drawn from the base density pu (u), the Monte Carlo estimation
of the gradient is:

∇φL(φ) ≈ − 1

N

N∑
n=1

[∇φ log |det JT (un;φ)|+∇φ log p̃ (T (un;φ))] .

To minimize the reverse KL-divergence one needs to be able to sample
from the base density as well as compute and differentiate the transformation
T and its Jacobian determinant. Evaluating the base density or computing
the inverse transformation T−1 is not necessary to be able to fit the model
under the reverse KL-divergence, but they enable the evaluation of the trained
model. This makes the reverse KL-divergence, in theory, a great candidate for
obtaining a model from a target density which one can evaluate from but
is hard to sample. This is not necessarily the case, however, as the term
∇φ log p̃ (T (un;φ)) might explode when the density qφ (x) is far from the target
p̃(x), and a tweaked forward KL-divergence might fit better the task, which
will be discussed in Chapter 7.

4.1.3 Constructing finite composition flows

To construct a flow, the transformation that defines it can be considered a
finite composition as shown in Eq. (4.3) or a continuous time flow [119], where
the transformation takes the form of an ordinary differential equation running
from time t = t0 to time t = t1, with zt0 = u and zt1 = x. In this work, we will
focus on the former one, describing the transformation of the flow following
Eq. (4.4) as a composition of simpler discrete transformations. The number
K of composed sub-flows results only in an O(K) growth in computational
complexity, which is a pleasant trade-off for gaining expressiveness.

Depending on the application at hand, it is more convenient to implement
the transformation blocks Tk if one desires to generate samples, as one wants
to compute T (u) = x after generating u ∼ pu (u), or it can be more useful
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to implement T−1
k when interested in evaluating the density of a sample x to

apply Eq. (4.2). Either transformations, denoted generalized as fφk , will be
constructed using a neural network with parameters φk. The transformation
has to be invertible and has to have a tractable Jacobian determinant. Even a
network which makes the transformation guaranteed to be invertible theoret-
ically might, in practice, be too expensive or intractable to compute exactly.
Additionally, if both T and T−1 are needed, one should take into account
that the design of fφk would allow to compute the two operations plus their
Jacobian determinants efficiently.

When speaking about tractable Jacobian determinant, it means that the
operation should be at most O(D), since all the Jacobian determinants are
computable at time O(D3). Constructing the transformations and the archi-
tecture of the neural networks in certain ways can ensure this computational
cost for the Jacobian determinant. Two choices typically used in the commu-
nity are either autoregressive networks [120] and coupling layers [112,121]. In
this work we will focus on the first ones, as, even though they are less efficient
compared to coupling layers, they offer more expressiveness.

To simplify the notation, the dependency on k is dropped for the transfor-
mation, denoting it simply by fφ. Additionally the input of the transformation
is z, while its output is z′, regardless of implementing T or T−1.

Autoregressive flows are a direct implementation of decomposing the den-
sity px (x) into conditional densities p(xi|x<i). This specifies a componentwise
transformation of the following form [122,123]:

z′i = τ(zi; hi) with hi = ci(z<i;φ), (4.8)

where z′i is the i-th component of z′ and zi the i-th of z. τ is the transformer,
which is a one-dimensional diffeomorphism with respect to zi with parameters
hi. ci is the i-th conditioner which takes as input z<i = (z1, z2, . . . , zi−1),
i.e., the previous components of z, and is a a neural network with parameters
φ. The conditioner provides the parameters hi of the i-th transformer of zi
depending on the previous components z<i, defining implicitly a conditional
density over zi with respect to z<i.

Notice that all parameters hi given by the conditioners ci can be computed
simultaneously in parallel since they are independent. Additionally, it is easy to
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see that the Jacobian of the transformation fφ = (c1, c2, . . . , cD) is triangular,

Jfφ(z) =


∂τ
∂z1

(z1; h1) 0

. . .

L(z) ∂τ
∂zD

(zD; hD)

 , (4.9)

making the Jacobian determinant tractable. The computation of the log-
absolute-determinant of Jfφ(z) can be computed in an O(D) time:

log |det Jfφ(z)| = log

∣∣∣∣∣
D∏
i=1

∂τ

∂zi
(zi; hi)

∣∣∣∣∣ =

D∑
i=1

log

∣∣∣∣ ∂τ∂zi (zi; hi)
∣∣∣∣ .

The lower-triangular part of the Jacobian, L(z), is irrelevant to compute the
determinant, which for triangular matrices like in Eq. (4.9) depends only on
the diagonal elements. The derivative of the transformer can have either an
analytical form or can be computed by automatic differentiation [80], the tech-
nique used to perform backpropagation.

In theory, an autoregressive flow is an universal approximator [122, 123],
provided the transformer and the conditioner are flexible enough to approxi-
mate any function arbitrarily well.

To ensure the property of being a diffeomorphism, transformers are usually
taken as monotonic differentiable functions. Affine autoregressive flows present
a simple choice for the transformers and have been extensively used [112,121,
124–126]. The transformer is an affine function:

τ(zi; hi) = αizi + βi where hi = {αi, βi}.

Notice that for αi 6= 0 it is invertible, which can be guaranteed, e.g., by
taking αi = exp α̃i, where α̃i is unconstrained (making hi = {α̃i, βi}). Since
the derivative of the transformer with respect to zi is αi, the log absolute
Jacobian determinant is:

log |det Jfφ(z)| =
D∑
i=1

log |αi| =
D∑
i=1

α̃i.

Affine transformers present simple and analytically tractable transforma-
tions, but have limited expressiveness. Other more complex transformers have
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been suggested, such as monotonic neural networks [122, 127, 128], sum-of-
squares polynomials [123] or monotonic splines [129,130].

In Sec. 4.2 a concrete implementation of monotonic splines will be pre-
sented, the neural spline flows [131], which will be used through the thesis.
Afterwards, in Sec. 4.3, a typical implementation of how one can compute the
parameters hi of the conditioners ci in parallel in a single forward pass of the
neural network using masked autoregressive networks is laid out.

4.2 Neural spline flows

Non-affine transformers such as monotonic neural networks or sum-of-squares
polynomials are arbitrarily flexible, but do not possess an analytic inverse. This
forces the usage of numerical techniques, e.g., bijection search, to calculate the
inverse, which in this specific case, to find the inverse with an accuracy ε, takes
O(log 1

ε ) iterations, carrying a trade-off between accuracy and computational
cost.

To overcome this problem, transformers in the form of monotonic splines
were proposed [129]. A spline [132] consists of a piecewise function of K
segments, where each of these segments is an easy to invert function.

In their work on neural spline flows (NSF) [131], Durkan et al. advocate
for utilizing monotonic rational-quadratic splines as transformers τ , which are
easily differentiable, more flexible than previous attempts of using polynomi-
als for these spline segments (since the Taylor-series expansion of a rational
quadratic polynomial is infinite) and are analytically invertible.

Each monotonic rational-quadratic function in the splines is defined by
a quotient of two quadratic polynomials. In particular, the splines map the
interval [−B,B] to [−B,B], and outside of it the identity function is consid-
ered. The splines are parameterized following Gregory and Delbourgo [133],
whereK different rational-quadratic monotonic and differentiable functions are
used, with boundaries set by the pair of coordinates {(x(k), y(k)}Kk=0, known as
knots of the spline and are the points where it passes through. Note that
(x(0), y(0)) = (−B,−B) and (x(K), y(K)) = (B,B). Additionally, K − 1
intermediate positive derivative values {δ(k)}K−1

k=1 need to be defined, since
the boundary points derivatives are set to 1 to match the identity function
(δ(0) = δ(K) = 1). Figure 4.2 shows, in (a), an example of a rational-quadratic
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Fig. 4.2: Rational-quadratic splines transformer example. In (a), the rational-
quadratic function defined by the knots and derivatives is shown, which is
monotonic. Additionally its inverse is shown. In (b), the derivative is shown,
displaying the expressiveness and flexibility this kind of transformers have.
Source: [131].

spline passing through the defined knots, as well as its inverse; in (b), the
derivative of the function is displayed, demonstrating the flexibility and ex-
pressiveness that these transformers can have for a monotonic function.

With the description of the splines at hand, the conditioner ci(z<i;φ) in
the form of a neural network of parameters φ has as an output a vector hi =
[x,y, δ], computed as:

• x: a vector of length K given the x coordinates of the knots for the
spline between −B and B. For this, an analogous vector x′ of length
K is computed by the network with unbounded values in R, which is
processed through a softmax operation (Eq. (3.6)) and multiplied by
2 ·B to define the bin width of the points:

x = −B + cumsum [2 ·B · softmax(x′)] . (4.10)
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• y: analogous to x, the y coordinates of the K knots are found, after com-
puting an unbounded vector y′ of length K with the network, following
the same operation as Eq. (4.10).

• δ: a positive vector of length K − 1 computed after applying SoftPlus
(Eq. (3.5)) to an unbounded vector given by the network in order to
impose its positivity.

The monotonic, continuously-differentiable, rational-quadratic spline in the
k-th bin, defining s(k) = (y(k+1) − y(k))/(x(k+1) − x(k)) and ξ(x) = (x −
x(k))/(x(k+1) − x(k)), can be written in terms of ξ as:

α(k)(ξ)

β(k)(ξ)
= y(k) +

(y(k+1) − y(k))
[
s(k)ξ2 + δ(k)ξ(1− ξ)

]
s(k) +

[
δ(k+1) + δ(k) − 2s(k)

]
ξ(1− ξ) , (4.11)

where α(k)(ξ) and β(k)(ξ) are quadratic polynomials of ξ and, hence, of x.
Since the splines are defined componentwise with respect to zi, the logarithm
of the absolute Jacobian determinant can be computed as sum of logarithms
of the derivative of Eq. (4.11) with respect to x:

d

dx

[
α(k)(ξ)

β(k)(ξ)

]
=

(
s(k)

)2 [
δ(k+1)ξ2 + 2s(k)ξ(1− ξ) + δ(k)(1− ξ)2

][
s(k) +

[
δ(k+1) + δ(k) − 2s(k)

]
ξ(1− ξ)

]2 .

Additionally, the inverse of a rational-quadratic can be computed analyti-
cally by inverting Eq. (4.11). The solution, as presented in [131], is given by
ξ(x) = 2c/(−b−

√
b2 − 4ac), where

a =
(
y(k+1) − y(k)

) [
s(k) − δ(k)

]
+
(
y − y(k)

) [
δ(k+1) + δ(k) − 2s(k)

]
,

b =
(
y(k+1) − y(k)

)
δ(k) −

(
y − y(k)

) [
δ(k+1) + δ(k) − 2s(k)

]
,

c = −s(k)
(
y − y(k)

)
,

and can be used to determine x given y. Because the transformation is mono-
tonic, one can always determine which quadratic root is correct. The bin is
determined via binary search.
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4.3 Masked autoregressive networks

The D conditioners ci of the transformers in Eq. (4.8) (which in the case of
the NSF in Sec. 4.2 give the knot positions and the derivative in the inter-
mediate knots as these are the parameters of the transformer) can be any
function of z<i. Implementing them as separated neural networks of input z<i
and output hi is quite naive, since it would scale poorly in the dimension D,
requiring D forward propagation of vectors with average size D/2, as well as
training and storing the parameters of D neural networks. This can become
quickly computationally prohibitive, as the dimension of the data can be of
the order of hundreds, thousands or even millions when considering videos or
high-resolution images.

There are several ways to get around this, such as using recurrent neural
networks [134,135] over the components, where the internal hidden state is used
as an input variable to a standard neural network [136–138], or, as mentioned
already earlier, coupling layers [112, 121]. In this work, the implementation
chosen was the masked autoregressive network [120], which led to masked
autoregressive flows.

The concept of a masked autoregressive network is to take as input the
whole vector z and to give as an output all the parameters of theD conditioners
(h1,h2, . . . ,hD) at once. To do so, one takes an arbitrary feed forward network,
such as the one presented in Sec. 3.2.3 and removes the connection between the
neurons until there is no path from the input zi to the outputs (h1, . . . ,hi).
A direct way to perform this connection cut is by multiplying, component
to component, the weight matrices which connect the neurons of the neural
network by a binary matrix of the same size. This binary matrix “masks out”
the connections by making them effectively zero, while maintaining all other
connections intact.

As proposed in Germain et al. [120], to form an appropriate matrix, one
assigns to each input, hidden and output neuron of the neural network a degree
between 1 and D. For the input z, each component has simply a degree
according to its index. For the output, each neuron corresponding to the vector
hi has a degree of i. The hidden layer neurons can have randomly assigned
degrees, but to ensure a more distributed layout and that all degrees have a
meaningful number of connections, one can assign the degree in a sequential
way to the hidden units in a layer. The binary mask matrix for the layer l
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Fig. 4.3: Example of a masked autoregressive network. The numbers indi-
cate the degrees assigned to each neuron, and they are connected following
Eqs. (4.12) and (4.13), with the i-th output depending only on the inputs
1, . . . , i− 1.

(l = 0 is the input layer), corresponding to the weight matrix W l, is then
constructed as follows for all layers except the output layer:

MW l

k′,k = 1ml(k′)≥ml−1(k) =

{
1 if ml(k′) ≥ ml−1(k)
0 otherwise.

, (4.12)

where ml(k) is the degree of the k-th neuron in the l-th layer. For the output
layer L, to ensure that the output with degree i has only connections with
lower degrees, the last binary matrix is given by:

MWL

k′,k = 1mL(k′)>mL−1(k) =

{
1 if mL(k′) > mL−1(k)
0 otherwise.

. (4.13)

When multiplying these matrices MW l

with their corresponding weight matri-
ces W l, one creates an autoregressive network where the outputs with degree i
only depend on the inputs with degree < i. Figure 4.3 shows an example of a
masked autoregressive network to compute all conditional parameters hi in one
forward pass by assigning degrees to each neuron and masking out connections
according to Eqs. (4.12) and (4.13).

Compared to other flows, masked autoregressive flows come with two main
advantages. On one hand, they are efficient to evaluate, as all transformer
parameters (h1,h2, . . . ,hD) are evaluated in one neural network pass. On the
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other hand, given a flexible enough conditioner and form of the transformer,
they are universal approximators, i.e., they can represent any autoregressive
transformation under the conditions mentioned in Sec. 4.1. The main disad-
vantage is, when inverting the flow, one has to evaluate the network D times,
since the parameters for inverting the i-th component are only available when
having the parameters for all the components of index < i. Despite this com-
putational difficulty, the expressiveness of masked autoregressive flows makes
them highly utilized, forming part of many popular flows [122,124,125,127].

Notice how by constructing a sequence of masked conditioners where one
uses as input z<i for the i-th conditioner, one would always construct the
a sequential relation for all the i = 1, . . . , D components, making the later
one richer and the first relations poorer, specially for i = 1, which has no
condition and would be a fixed density. To ensure that all the input variables
interact with each other, it is usual to randomly permute the dimensions in
between transformations of the normalizing flow in Eq. (4.3). Permutations are
invertible linear transformations, with absolute determinant equal to 1, adding
a trivial term to the log absolute Jacobian determinant of the transformation.
The inverse is also easy to compute and can be stored, as these transformations
do not change along the training of the flow. Permutations were generalized
by Oliva et al. [139] to a more general class of linear transformations, with a
matrix W parameterized in terms of its LU -decomposition W = PLU , with
P a fixed permutation matrix, L a lower triangular with ones on the diagonal,
and U an upper triangular. If one restricts the diagonal elements of U to be
positive, W is guaranteed to be invertible. These linear transformations lead
to a rich interaction between the components of z in each flow step.
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5. GRAPH NEURAL NETWORKS

So far through this work, feed forward neural networks were considered, which
work on tabular input and tabular output. Constructing the networks with
this structure was due to building an analogy with respect to the brain. Since
the appearance of neural networks, however, new ways of building the shapes
and architectures of the interconnections of the neurons within neural net-
works have been developed to make full use of the structure of the data. For
instance, to analyze and extract information from sequential data such as
time-series predictions [140, 141], speech synthesis (i.e., artificial production
of human speech) [142], machine translation [137], recurrent neural networks
(RNNs) [134, 135] were built, which exhibit a sequential dynamic behavior
capturing the underlying trend of the data. Another popular type of data are
visual images, which gave rise to convolutional neural networks (CNNs) [143],
characterized by having shared-weights architecture and translation invariance
characteristics due to laying images as a regular grid in the Euclidean space.
Popular applications include image recognition [144,145], video analysis [146]
and natural language processing (i.e., the analysis and interpretation of human
language) [147]. Both sequential and imagery data could have been flatten into
a one dimensional vector to apply a feed forward neural network. However, by
developing new kinds of network architectures more befitting to the natural
structure of the data, the results improved vastly.

In this chapter we will focus on graph neural networks, neural networks
that revolve around data structured as a mathematical graph. A general in-
troduction will be shown in Sec. 5.1, while Sec. 5.2 will develop the algorithm
of GraphSAGE, a particular implementation of graph neural networks.
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5.1 A general introduction

There is an increasing amount of cases where data is represented by a non-
Euclidean domain, in the form of graphs with complex relationships and in-
terdependencies between objects. This spawns a large range of applications:
modeling the molecules with their bioactivity in chemistry to discover drugs,
relationship between e-customers to recommend products, or the labeling of
hits read out by a physics detector (as will be discussed in Chapter 8), among
many others. Graphs carry additional complexity when compared to other
structured data such as images, as they may be irregular, can have a variety
of unordered number of nodes, and the nodes of the graph may have an ar-
bitrary number of neighbors, making it difficult to design operations such as
convolutions over them.

From the formal point of view, a graph is represented as G = (V, E), where V
is a set of vertices or nodes, and E is the set of corresponding edges. Let vi ∈ V
be a node of the graph and let eij = (vi, vj) ∈ E be an edge pointing from vi to
vj . The neighborhood of a node v is defined as N(v) = {u ∈ V|(v, u) ∈ E}. The
adjacency matrix A is an n× n matrix, where n is the number of nodes, with
Ai,j = 1 if eij ∈ E, while Ai,j = 0 if eij /∈ E. An attributed graph is a graph
where a node v has d attributes or features in the form of a vector xv ∈ Rd,
forming a matrixX ∈ Rn×d. They may also have c edge attributesXe ∈ Rm×c,
where m is the total number of edges, and each row is an edge feature vector
xev,u ∈ Rc of the edge e = (v, u). If all edges of a graph are directed from
one node to another, the graph is a directed graph. An undirected graph is a
particular case of a directed graph, where there is a pair of edges with inverse
direction if two nodes are connected, implying a symmetric adjacency matrix.
If the node attributes change dynamically over time, the graph is considered
a spatial-temporal graph G(t) = (V, E , X(t)).

Figure 5.1 shows an example relating the feature matrix plus adjacency
matrix of an undirected graph to its actual representation. Another example
of a graph would be a social network, with the nodes being the users, the edges
being connections within that network, and the node features containing the
user’s information, such as age, location, etc.

To deal with graph structured data, graph neural networks (GNNs) were
developed, first outlined by Gori et al. (2005) [148] and further developed
by Scarselli et al. (2009) [149], and Gallicchio et al. (2010) [150]. These first
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Fig. 5.1: Example of an undirected attributed graph of four nodes, each with
three attributes. On the left, the node feature matrix X with the features xi
corresponding to the nodes vi plus the adjacency matrix A are defined. On
the right, the visual representation of the graph structure and information is
shown.

models fall under the category of recurrent graph neural networks (RecGNNs),
pioneers of future GNNs, with the aim to learn node representation via a recur-
rent neural architecture. They revolve around assuming that nodes exchange
information/messages with their neighbors until a stable equilibrium is found.
Inspired by the concept of message passing and CNNs, convolutional graph
neural networks (ConvGNNs) operate by generalizing the convolution from
grid data to graph data. They can be broadly categorized into two branches,
with the first one being spectral-based approaches initiated by Bruna et al.
(2013) [151], which operate over the spectral eigendecomposition of the graph
Laplacian matrix. The other category would be the spatial-based ConvGNNs,
first introduced by Micheli (2009) [152], where the convolutional operation
is based on a node’s spatial relations. GraphSAGE (2017) [153], which will
be seen in Sec. 5.2, is also a spatial-based ConvGNN. Graph autoencoders
(GAEs) are unsupervised learning algorithms to encode nodes or graphs into
a latent vector space, which is later used to decode and reconstruct the graph.
The focus lies mainly on two applications: network embedding, e.g., Cao et
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al. (2016) [154], where GAEs learn a latent node representation to recon-
struct graph information, such as the adjacency matrix; and graph generation,
as shown by Li et al. (2018) [155], focused on generating nodes and edges
of a graph step by step, or the whole graph at once. Lastly, spatial-temporal
graph neural networks (STGNNs) enable to learn hidden patterns from spatial-
temporal graphs by considering both spatial and temporal dependencies at the
same time. STGNNs have seen applications for example in traffic speed fore-
casting [156] or human action recognition [157].

Given a graph structure and node information, GNNs’ outputs can be
operated and used for different tasks:

• Node-level: outputs are related to performing node regression or clas-
sification. To do so, RecGNNs and ConvGNNs extract high-level node
representation which is vectorized and passed to a feed forward network
to perform regression or classification.

• Edge-level: outputs are related to edge classification and link prediction.
Given two node representations by GNNs, a feed forward neural network
is able to perform label prediction or measurement of the connection
strength of an edge.

• Graph-level: outputs related to graph regression and classification af-
ter obtaining a compact representation on graph level by a GNN. In-
formation related to the graph as a whole, not to individual nodes or
connections, is extracted.

Graph neural networks have become steadily popular due to the variety of
data that can be represented by graphs and the potential and generalization
of operations one can perform on them. Zhou et al. [158] and Wu et al. [159]
perform great reviews on the topic, giving a clean overview on the current
state of GNNs.

In high energy physics, graph neural networks have become a well-received
choice for many implementations due to the abstraction of relational data [160].
Applications include, but are not limited to, jet [161–163] and event [164,165]
classification, calorimeter [166], particle flow [167] and secondary vertex [168]
reconstructions.
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5.2 The GraphSAGE algorithm

Initial RecGNNs and ConvGNNs to generate node embedding were mainly
transductive, i.e., they directly optimize embeddings for each node using matrix-
factorization-based objectives, which does not generalize to unseen data easily
since they make predictions for nodes in a single, fixed graph. These ap-
proaches are useful to label data or quantify magnitudes on fixed graphs, where
the structure does not change and there is no interest in making inference on
different graphs, as they can specialize exactly to the graph at hand. When
dealing with dynamic graphs, where nodes and edges can appear or disappear,
or when considering utilizing the model for new graphs, inductive models are
needed. In an inductive model, when producing node embedding, the algo-
rithm has to generalize newly observed subgraphs to the node embeddings. It
has to recognize the structural properties of a node’s neighborhood, revealing
the node’s local role in the graph as well as its global position.

Hamilton et al. (2017) presented one of the first variations of inductive
node embedding via a spatial based ConvGNN, GraphSAGE (SAmple and
aggreGatE) [153], leveraging node features to learn generalizable embedding
functions applicable to unseen nodes. The algorithm incorporates node fea-
tures and simultaneously learns the topological structure of each node’s neigh-
borhood while taking into account the distribution of node features in the
neighborhood.

GNNs up to that point trained distinct embedding vectors for each node.
GraphSAGE changed the paradigm by learning a set of shared aggregator
functions from a node’s local neighborhood, depicted in Fig. 5.2. Each aggre-
gator function learns to join information at different numbers of hops1/search
depths away from a given node. When performing inference, the new lo-
cal neighborhood is constructed and the information is assembled using the
learned aggregator functions.

The details of the GraphSAGE algorithm to generate the embeddings of
an undirected graph using neighborhood information are described in Al-
gorithm 1, also known as the forward propagation of the algorithm. To

1 The number of hops indicates the number of nodes a path would cross from the starting
node, without counting it. E.g., a number of hops of one would include all the direct
neighbors of the starting node, while a number of hops of two would include the nodes
which are neighbors of neighbors of that starting node.
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Fig. 5.2: Visual illustration of the GraphSAGE sample and aggregate approach
with a depth of three. Source: [19].
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compute the embeddings, K aggregator functions (denoted by aggregatek,
k = 1, . . . ,K) as well as a set of weight matrices Wk, k = 1, . . . ,K are
needed, which propagate the information between the different layers or neigh-
bor depths of the model. A graph G(V, E) with feature {xv,∀v ∈ V} in the
nodes and a neighborhood function N : v → 2V mapping the nodes to its
neighbors are provided. In each step k, the node aggregates information from
their local neighbors, storing it in an embedding hk and, due to iteration, it
gains information from a neighbor at distance k. For this, a node v ∈ V aggre-
gates its direct neighbor’s information at the previous step {hk−1

u ,∀u ∈ N (v)}
in a single vector hk−1

N (v). For k = 0, the initial node features are taken as their

information. The aggregated information is then concatenated to the current
local information hk−1

v and fed to a fully connected layer with a nonlinear
activation function σ, transforming them into the node information (the em-
bedding) for the next iteration hkv . The final node embedding is denoted by
zv ≡ hKv .

In practice, a random subset of the graph is taken to perform mini-batch
computation during the training of the aggregators aggregatek and weight
matrices Wk. Additionally, Hamilton et al. proposed to use a maximum
number of neighbors instead of the full set of neighbors available as shown in
Algorithm 1, where the members of this set are sampled uniformly from the
neighbors of the node if the neighbor number is higher than the maximum.
This measurement is taken in order to consider possible large variations on the
number of neighbors, which can lead to excessive computational operations. In
the application concerned in this work (Chapter 8), the number of neighbors
is low, having a maximum of 26 neighbors, hence all neighbors are considered
to obtain maximum neighbor information available.

Regarding the aggregator architectures, compared to operations on N -
dimensional lattices (e.g., sentences, images, 3-D volumes), a node’s neigh-
bors have no natural ordering. Additionally, the number of neighbors can be
arbitrary. Thus, aggregators have to be functions over an unordered set of
arbitrary length of vectors, i.e., the function has to have an arbitrary num-
ber of inputs and has to be symmetric with respect to them (i.e., invariant
to permutations of its inputs). In their work, Hamilton et al. examine three
aggregators:

• Mean aggregator: One of the most direct operations satisfying the
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Algorithm 1: GraphSAGE [153] embedding generation (i.e., forward
propagation) algorithm

Input : Graph G(V, E); input features {xv,∀v ∈ V}; depth K;
weight matrices Wk,∀k ∈ {1, ...,K}; non-linearity σ;
differentiable aggregator functions
aggregatek,∀k ∈ {1, ...,K}; neighborhood function
N : v → 2V

Output: Vector representations zv for all v ∈ V
1 h0

v ← xv,∀v ∈ V ;
2 for k = 1...K do
3 for v ∈ V do
4 hkN (v) ← aggregatek({hk−1

u ,∀u ∈ N (v)});
5 hkv ← σ

(
Wk · concat(hk−1

v ,hkN (v))
)

6 end

7 hkv ← hkv/‖hkv‖2,∀v ∈ V
8 end

9 zv ← hKv ,∀v ∈ V

above properties is computing simply the elementwise mean of the vectors
in {hk−1

u ,∀u ∈ N (v)}. This operation is nearly equivalent to the con-
volution propagation rule in transductive ConvGNNs [169]. As in [153],
lines 4 and 5 of Algorithm 1 can be replaced by:

hkv ← σ(W ·mean({hk−1
v } ∪ {hk−1

u ,∀u ∈ N (v)}),

transforming the mean-based aggregator to a linear approximation of
a localized spectral convolution, leading to significant gains in perfor-
mance.

• LSTM aggregator: recurrent neural networks, and specifically LSTM
architectures [134], have a large expressive capacity to extract underlying
information from a set of ordered vectors through their hidden state.
However, since the vectors have to be processed in a sequential manner,
the operation is not symmetric as would be desired for an aggregator.
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One way of mitigating this flaw is by introducing the neighbor nodes each
time in a random order so that the LSTM cannot learn any sequence,
only a joint underlying information.

• Pooling aggregator: In a pooling approach, neighbor embeddings are
fed independently into a fully-connected neural network, after which they
follow a transformation: an elementwise max-polling operation:

aggregatepool
k = max({σ

(
Wpoolh

k
ui + b

)
,∀ui ∈ N (v)}),

where max denotes the elementwise max operator and σ is a nonlinear
activation function. The pooling weight matrix Wpool is learned during
training.

Notice how the mean aggregator has no learnable parameters, while the LSTM
aggregator is not strictly symmetric. The pooling aggregator is the only one
satisfying the desired properties while having the flexibility of a neural network.

The final embeddings obtained by GraphSAGE are encodings of the aggre-
gated information of the nodes with their neighbors at distance k, and can be
utilized for a variety of tasks, such as clustering, information compression, etc.
One particular task to be performed with the embeddings is to classify the
nodes, using the embeddings as an input for a secondary feed-forward neural
network, as depicted in Fig. 5.2c. The results of GraphSAGE for such a task
will be thoroughly discussed in Chapter 8.
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6. LIKELIHOOD-FREE INFERENCE OF EXPERIMENTAL
NEUTRINO OSCILLATIONS USING NEURAL SPLINE

FLOWS

Adapted from the original publication in Physical Review D 101, 113001 on the 2nd of June

2020 [17].

In the current state of the determination of neutrino oscillation parameter
(introduced in Chapter 2), all mixing angles have been measured [170], as well
as the two mass differences between the three mass neutrino eigenstates. The
remaining mixing matrix parameters to be measured are the imaginary phase
responsible for the CP violation and the sign of one of the two neutrino mass
splittings, which determines the so-called hierarchy. Both measurements are
at reach for current and near future oscillation experiments.

Statistical methods used in the neutrino oscillation analysis so far com-
prise both frequentist and Bayesian approaches [45, 171]. There are, however,
some limitations to these methods. Both approaches are based as of today
on a binned likelihood algorithm which might limit the sensitivity of the ex-
periment and some of them impose a Gaussian dependency in some of the
nuisance parameters affecting the precision of the results and correctness of
the evaluated uncertainties. Additionally, they require very intensive central
processing unit (CPU) time, which is a limiting factor that reduces the flexi-
bility of the statistical analysis and checks, and introduces strong constraints
on the delivery of the results. These limitations are derived from the intrinsic
difficulties of the statistical data analysis that are depicted in Sec. 6.1, using
the T2K experiment as a reference example.

In this chapter we propose an alternative statistical method to overcome
some of the limitations of the current methods in use. The proposed procedure
is based on an unbinned likelihood inference using neural density estimators.
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This method has the potential of being accurate, fast and to reduce the possible
bias due to the intrinsic binning in other approaches. Neural spline flows (see
Sec. 4.2), the implementation of neural density estimators we chose, have also
some advantages since the Gaussian generator intrinsic to the method will
facilitate the introduction of experimental errors in the distributions. We will
discuss in this chapter the basic concepts of the method and show the potential
with a simplified example.

6.1 Problem definition and physical simulator

Neutrino oscillation experiments search for the modification of the flavour con-
tent of a neutrino beam travelling in vacuum or matter for a certain distance.
Beams are normally characterized at a near site, where the neutrino energy
spectrum and flavour composition are not yet altered by oscillations. The same
beam is sampled after a certain flight distance L. The change on the flavour
composition can be determined in two different ways which are as follows:

(i) The neutrino flavour disappearance (P (να → να)) experiments search
for the disappearance of a certain neutrino flavour as a function of the
neutrino energy. The disappearance produces both a reduction in the flux
of neutrinos of a given flavour and the distortion of the neutrino energy
spectra that is observed in the distribution of the measured quantities.
For example, T2K uses the muon momentum (pµ) and the angle with
respect to the neutrino direction (θµ).

(ii) The neutrino flavour appearance (P (να → νβ), α 6= β), experiments
search for the appearance of a neutrino flavour that is normally sup-
pressed in the original neutrino flux. In T2K, this new flavour is the
electron neutrino. The dependency of the oscillation with the neutrino
energy is inferred from the momentum and the angle with respect to the
neutrino direction of the electron ejected in the interaction of neutrinos
with matter.

The neutrino flavour is determined by the flavour of the charged lepton (muon,
electron or tauon) produced in charged current interactions of neutrinos with
the nuclei. For the current analysis, we will concentrate on the disappearance
phenomenon (i).
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In a synthetic way, the experimental number of observed neutrinos with
observed properties (~θreco

ν ) can be described by:

Nnear
evts (~θreco

ν ) =

∫
σ(Eν)φnear(Eν)Pnear(~θ

reco
ν |Eν)dEν

+ Backnear(~θ
reco)

for the near detector and

N far
evts(

~θreco
ν )

=

∫
σ(Eν)φfar(Eν)Pfar(~θ

reco
ν |Eν)Posc(Eν)dEν

+ Backfar(~θ
reco)

for the far detector. The number of observed neutrinos depends on the cross
section (σ(Eν)), the neutrino flux (φfar,near(Eν)), the probability of observ-

ing the experimentally accessible quantities (~θreco
ν ) given a neutrino energy

(Pfar,near(~θ
reco
ν |Eν)), the oscillation probability (Posc(Eν)) and the backgrounds

observed in the detectors (Backnear,far(~θ
reco)).

The experimental challenge comes from inferring the neutrino energy, Eν ,
given the experimental observable (~θreco

ν ). The term Pfar,near(~θ
reco
ν |Eν) encap-

sulates not only the detector resolution, but also the neutrino-nucleus cross
section model predictions and uncertainties. Other difficulties raise from the
limited knowledge (≈9% in the latest T2K results [172]) of the neutrino flux
(φfar,near(Eν)) and of neutrino cross sections as function of the energy (σ(Eν)).

The background terms (Backfar,near(~θ
reco)) are normally relevant (≈20% in

T2K) [173] and they subsequently depend on the neutrino-nucleus cross sec-
tions in a nontrivial manner.

Both the frequentist and the Bayesian statistical approaches [45,171] utilize
the near detector data to predict the probability density function at the far
detector in the absence of oscillations,

f(~θreco
ν |Eν) = σ(Eν)φfar(Eν)Pfar(~θ

reco
ν |Eν).

Once determined, the conditional probability density function f(~θreco
ν |Eν) can

be used to determine the oscillation parameters (Posc(Eν)) by comparing it to
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the far detector events. Most of the experimental effort is actually devoted
to the determination of this conditional probability which depends also on a
large number of hidden and correlated parameters describing uncertainties in
detector performances, cross section models and the neutrino flux. Hidden
parameters are marginalized or profiled in the analysis, providing the experi-
mental result for oscillation parameters as (the posterior in the case of Bayesian
approaches) probability maps.

In the particular case of the T2K experiment, the experimentally acces-
sible observables (~θreco

ν ) are the momentum and direction of the µ lepton
(preco
µ , θµreco). Near and far detectors are able to provide also the kinematic

of pions (charged and neutral) and protons, or the total released energy in
the interaction, but we will ignore these capabilities to simplify the discussion.
The µ lepton is produced at the interaction of the neutrino with the target
nucleus. In this case the probability density function (f(~θreco

ν |Eν)) can be
simplified to p(preco

µ , θreco
µ |Eν). The near detector of the experiment measures

the neutrino flux and tunes the model of neutrino-nucleus interaction pro-
viding the estimation of the probability density function p(preco

µ , θreco
µ , Eν) =

p(preco
µ , θreco

µ |Eν)p(Eν) together with the expected number of interactions in
the far detector in the absence of oscillations. The near detector also provides
a dependency with free parameters in the model and a full error covariance
matrix relating all of them. To simplify the exercise, we ignore the error covari-
ance matrix in this study and assume that the probability p(preco

µ , θreco
µ , Eν) is

implicitly known to the experiment through simulations.
The neutrino oscillation disappearance probability, introduced in Eq. (2.3)

in Sec. 2.2, can be approached by the simplified two-flavour [170] oscillation.
The disappearance probability as a function of the initial energy of the neutrino
Eν is

posc(Eν , θmix,∆m
2) =

sin2 (2 · θmix) sin2

(
1.27 · ∆m2 · 295

Eν

)
,

(6.1)

where 295 is the distance in kilometers between the near and far sites in the
T2K experiment and 1.27 is a scaling parameter to adjust the oscillation phase
to distance in kilometers. Eν is the neutrino energy in GeV, θmix the mixing
angle of the two flavours and ∆m2 the difference in mass of the two mass eigen-
states in eV2. θmix and ∆m2 are the parameters governing the oscillations.



6.2. Methodology 83

Although the problem was simplified in the following analysis to make a
proof of concept, in Sec. 6.4 we outline how the methodology could be applied
to the full complex analysis.

6.1.1 Physical simulator

We have simplified the problem to demonstrate the viability of the proposed
method to determine the oscillation parameters using neural spline flows.
Event samples are generated using the NEUT [174] Monte Carlo (MC) event
generator model that describes the interactions of neutrinos with nuclei. We
also use a realistic neutrino flux energy spectrum provided by the T2K Col-
laboration [175]. With both inputs, we generate CCQE events. CCQE is the
most probable reaction at T2K energies, and the one dominating the statistical
sensitivity of the experiment, where the neutrino transforms into a muon ex-
changing a neutron into a proton (ν+n→ µ+p). To simplify, we ignore other
reaction channels and potential backgrounds, and also detector effects. The
generator provides n-tuples of events weighted according to their probability
as a function of neutrino energy and angle and momentum of the muon.

6.2 Methodology

In this section we will explain how the likelihood for Bayesian inference is
constructed. In the context of machine learning, likelihood-free inference, as
stated in the abstract, refers to the task of performing such analysis when
the densities are data-driven, but no explicit likelihood function can be con-
structed. This is the case for the near detector, where we have data for the
different magnitudes but no analytical density available. Therefore, a density
estimation for the near detector is performed through a particular implemen-
tation of normalizing flows (introduced in Chapter 4), the neural spline flows
(see Sec. 4.2), which allow to learn an explicit density from data. This near
detector density is then combined with the analytical formula for neutrino
oscillation for the far detector in order to obtain the likelihood for the exper-
iment. By doing so, we are combining the potential of NSF with expertise of
the particular problem.

We start by estimating the explicit density of the expected energy spectrum
Eν of the neutrinos, together with the momentum pµ and angle θµ of the
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measured muon without oscillations, obtaining p(pµ, θµ, Eν), as measured by
the near detector. This is done by learning the density using a NSF from
the Monte Carlo data, generated as presented in Sec. 6.1.1. The base density
pu (u) used for Eq. (4.1) is a three-dimensional standard normal distribution.

Having estimated the joint probability p(pµ, θµ, Eν) of the initial distri-
bution at the near detector, we need to construct the conditional density
p
(
pµ, θµ|θmix,∆m

2
)

of the observed magnitudes given the oscillation param-
eters at the far detector in order to perform Bayesian inference. For this, we
simply integrate the probability of not oscillating, 1 − posc, using Eq. (6.1),
over the energy spectrum of the joint distribution:

p
(
pµ, θµ|θmix,∆m

2
)

= C
(
θmix,∆m

2
)
·∫

p(pµ, θµ, Eν)
(
1− posc(Eν , θmix,∆m

2)
)
dEν ,

where C
(
θmix,∆m

2
)

is a constant of normalization computed after performing
the integral. With this we have the probability of observing a single muon
with momentum pµ and angle θµ after oscillating given the parameters θmix

and ∆m2.

In order to take into account the number of observed samples, the extended
likelihood [176,177] is used, modifying the likelihood with a Poisson count term
to consider the expected number of events for a given set of parameters and
the actual observed number:

L(θ) =
[µ (θ)]

n

n!
e−µ(θ)

n∏
i=1

p (xi|θ) .

In our case, the Poisson parameter µ (θ) is obtained by integrating the pos-
sible oscillations over all the energy spectrum, scaled to the initial number of
particles Nini:

µ
(
θmix,∆m

2
)

= Nini×∫∫∫
p(pµ, θµ, Eν)

(
1− posc

(
Eν , θmix,∆m

2
))
dEνdpµdθµ.
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Hence, the extended likelihood we apply for the analysis is

L
(
θmix,∆m

2
)

=

[
µ
(
θmix,∆m

2
)]n

n!
e−µ(θmix,∆m

2)×
n∏
i=1

p
(
p(i)
µ , θ(i)

µ |θmix,∆m
2
)
, (6.2)

and the posterior for the parameters takes the form of

p
(
θmix,∆m

2|
{
p(i)
µ , θ(i)

µ

}n
i=1

)
∝

L
(
θmix,∆m

2
)
p
(
θmix,∆m

2
)
, (6.3)

with p
(
θmix,∆m

2
)

the prior information before observing the events and{
p

(i)
µ , θ

(i)
µ

}n
i=1

the set of observed events.

6.2.1 Reference analysis using an approximate unbinned likelihood

The results of the experiments are validated using an approximate unbinned
likelihood. The likelihood is computed following Eq. (6.2). To do so, event
histograms (M(piµ, θ

j
µ|Ek)) binned in muon momentum and angle given a neu-

trino energy are generated from the simulated data described in Sec. 6.1.1.
The oscillated probability is computed by reweighting the histogram content,
using Eq. (6.1), as

Mosc(piµ, θ
j
µ|θmix,∆m

2) =∑
k

M(piµ, θ
j
µ|Ek)posc(Ek, θmix,∆m

2),

and is interpolated linearly to reduce the effects due to the coarse binning:

Mosc(piµ, θ
j
µ|θmix,∆m

2)→Mosc(pµ, θµ|θmix,∆m
2).

The number of expected events (µ(θ,∆m2)) is computed by summing the
binned probability:

µ(θmix,∆m
2) =

∑
i,j

Mosc(piµ, θ
j
µ|θmix,∆m

2).
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The probability obtained by normalizing the oscillated maps takes the form

p
(
pµ, θµ|θ,∆m2

)
=
Mosc(pµ, θµ|θmix,∆m

2)

µ(θmix,∆m2)
.

The likelihood probability L(θmix,∆m
2) is finally computed for discrete

values of θmix and ∆m2. Those values are distributed in a grid identical
to the one used for the NSF approach for proper comparison between both
methods. We have tested the results with different numbers of initial bins in
energy, momentum and angle to find a good compromise between stability of
the result and speed. We call this cross-check method in what follows the Hist
method and it will be used as a reference for the NSF calculations.

6.3 Experiments

The methodology is tested on experiments of simulated neutrino oscillations
according to the T2K experiment. For this, ten different sets of observed events
are constructed (see Appendix A), with additional MC data used to fit both
the NSF and construct the unbinned likelihood. The training of the NSF to
fit the density of (pµ, θµ, Eν) is shown and verified in Sec. 6.3.1. Afterward, in
Sec. 6.3.2, the inference on the ten experiments are performed utilizing both
NSF and the unbinned likelihood, discussing the findings of both methodologies
and the possible bias introduced by them.

All events were generated as defined in Sec. 6.1.1, using the neutrino flux
energy spectrum from the T2K Collaboration [175] to produce the energy of
the incoming neutrino Eν , and the NEUT event generator [174] to compute
the momentum pµ and angle θµ of the resulting muon, forming a triplet of
(pµ, θµ, Eν), describing an implicit density of these three magnitudes.

6.3.1 Training and validation of the NSF

In order to apply the methodology described in Sec. 6.2, we start by estimating
the density p(pµ, θµ, Eν) using a neural spline flow1 on ≈ 15M MC events as

1 We would like to thank C. Durkan, A. Bekasov, I. Murray and G. Papamakarios for
their implementation of NSF, on which this work’s code is based on: https://github.com/

bayesiains/nsf

https://github.com/bayesiains/nsf
https://github.com/bayesiains/nsf
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the training set to fit the parameters of the flow. As is a standard procedure
in machine learning, an additional set of ≈ 4M events is used for validation of
the model outside of the training set, i.e., to check the integrity of the models
for data not seen to fit the parameters.

Because of the similarities regarding dimension of the data and number of
samples, but with a simpler structure, we have chosen the hyperparameters
almost as the Power dataset in Appendix B from [131], i.e., Adam optimizer
(see Sec. 3.3) with learning rate 0.0005, batch size 512, training steps 400k,
flow transformations 5, hidden layers in the conditioner 5, hidden features in
the conditioner 128 and bins 8. Additionally, the learning rate was decreased
during the training using a cosine scheduler [178] to ensure stabilization at
the end of the training procedure. As shown in Fig. 6.1, the validation set
stabilizes at the end of the training and appears to converge for the selected
architecture of the network. This asymptotic behaviour towards a value of
the log probability shows that the estimated density has converged properly,
independently of the log probability obtained, which is hard to quantify and
only serves as a means to compare different density estimators (the higher, the
better).

To ensure that the transformation T−1 of Eq. (4.1) was found properly
by the NSF, consider the transformed data u for a new set of ≈ 1M MC
events, never seen before by the algorithm. If T−1 is correctly approximated,
u should follow a three-dimensional standard normal distribution, as is shown
qualitatively in Fig. 6.2.

For this, a χ2-test was performed over a binning of 50 × 50 × 50 in the
domain [−3, 3]3 of the transformed data u to test the goodness-of-fit to a three-
dimensional standard normal distribution, obtaining a p-value of 0.3062. With
this, we can assume that the transformed data u correspond to samples from
such base distribution, justifying that the transformation T−1 was properly
found by the NSF, hence allowing to evaluate p(pµ, θµ, Eν) accurately through
it.

6.3.2 Inference results

To test the performance of obtaining the posterior according to Sec. 6.2, ten
different observation sets were constructed, as explained in Appendix A, with
five different mixing angles θmix and difference in mass squared ∆m2.
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Fig. 6.1: Neural spline flow training log probability for estimating p(pµ, θµ, Eν)
for training (solid) and validation (dashed) sets, as shown by Eq. (4.7). For
the validation, the log probability stabilizes during the training to converge to
a certain value which depends on the architecture of the network.

For each of the five combinations of parameters, low and high statistics
(number of observed events) experiments were performed. Low statistics are
of the order of the real observed samples at T2K and used to assure its perfor-
mance when a small number of events is dealt with. High statistics (2 orders of
magnitude larger number of observed events compared to the usual expected
number in the low statistics case) allow us to check the agreement between
traditional binning methodology with a large number of very fine bins and the
unbinned NSF posterior.

Table 6.1 shows the ten experiments, with the number of observed samples,
the true parameters and the results using the NSF (Sec. 6.2). Additionally, a
result using an approximate unbinned likelihood, denoted by Hist (Sec. 6.2.1),
is also displayed, which would correspond to the limit case when histograms
can be performed with a large number of bins to behave like an unbinned
estimation. Since Bayesian inference is used, the inference on the parameters
describes a density function according to Eq. (6.3). The central value shown
for each parameter is the one that maximizes the joint posterior density. The
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Tab. 6.1: Posterior inference of ten different experiments, alternating between
low and high number of observed events. For the inferred parameters using
NSF and the unbinned histogram approximation, Hist, the 95% confidence
level was computed using the one-dimensional marginalized densities of each
parameter. θmix is given in rad and ∆m2 in ×10−3eV2.

Exp. Nobs Parameter True NSF Hist
# values 95 % C.L. 95 % C.L.

1 506 θmix 0.7594 0.785+0.055
−0.056 0.785+0.055

−0.056

∆m2 2.463 2.440+0.091
−0.085 2.446+0.092

−0.087

2 49672 θmix 0.7594 0.751+0.074
−0.006 0.754+0.069

−0.007

∆m2 2.463 2.464+0.008
−0.012 2.467+0.007

−0.012

3 532 θmix 0.7353 0.71+0.18
−0.03 0.71+0.18

−0.03

∆m2 2.463 2.46+0.10
−0.11 2.46+0.10

−0.11

4 49646 θmix 0.7353 0.738+0.099
−0.006 0.739+0.097

−0.006

∆m2 2.463 2.458+0.009
−0.011 2.461+0.009

−0.011

5 493 θmix 0.6847 0.65+0.28
−0.02 0.65+0.28

−0.02

∆m2 2.463 2.554+0.120
−0.127 2.563+0.122

−0.128

6 49665 θmix 0.6847 0.682+0.210
−0.003 0.683+0.208

−0.004

∆m2 2.463 2.479+0.008
−0.014 2.482+0.009

−0.014

7 506 θmix 0.7353 0.73+0.14
−0.04 0.73+0.14

−0.04

∆m2 2.363 2.347+0.097
−0.095 2.353+0.096

−0.099

8 50145 θmix 0.7353 0.734+0.108
−0.006 0.735+0.106

−0.006

∆m2 2.363 2.365+0.010
−0.011 2.368+0.009

−0.012

9 481 θmix 0.7353 0.785+0.060
−0.061 0.785+0.060

−0.061

∆m2 2.663 2.620+0.086
−0.087 2.626+0.087

−0.089

10 49710 θmix 0.7353 0.741+0.094
−0.005 0.743+0.089

−0.005

∆m2 2.663 2.659+0.007
−0.011 2.662+0.008

−0.010
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Fig. 6.2: Two-dimensional histograms of samples from the initial distribution
of (pµ, θµ, Eν) (top) and the transformed data u = (u1, u2, u3) (bottom) under
T−1 according to Eq. (4.1). If transformation T−1 is approximated properly, u
should follow a three-dimensional standard normal distribution, as is depicted
qualitatively in this figure.

uncertainty is then computed by marginalizing in the two-dimensional density
one of the parameters to obtain the one-dimensional one of the other, and
finding the interval such that for a 1 − α confidence level (CL), α/2 of the
density is found on each side. This is done for both NSF posterior and Hist
posterior.

In general, the results of both methodologies agree, with slight fluctuations
in the confidence levels. The difference could come from the NSF not learning
perfectly the density of the points, from the interpolation done by the Hist
method introducing wrong approximations or from intrinsic biases, which will
be discussed at the end of this subsection.

Additionally, in order to visualize the agreement in two-dimensions in
Figs. 6.3 and 6.4, the highest posterior density (HPD) curves [179] of 68%
and 95%, together with the best fit (highest posterior value) were computed
for experiments 1 (Fig. 6.3 top), 2 (Fig. 6.3 bottom), 7 (Fig. 6.4 top) and 8
(Fig. 6.4 bottom). In both HPD regions a clear overlap for low statistics, and
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slight fluctuations on larger statistics can be observed. When comparing the
difference in area size, the relative difference of the Hist method with respect
to NSF through the ten experiments is 3.1 ± 1.9%, showing that the areas
agree within 2-σ on average.

In Figs. 6.3 and 6.4, one observes that the areas, even being similar in size,
are slightly shifted one from another. Empirical experiments of computing the
posterior using actual discrete binning show that, by using a denser binning,
its posterior was shifting toward the NSF result. To measure the bias (θ̂ − θ)
of the estimated parameters (θ̂mix, ∆̂m

2
) by both methods, an observation of

Nobs ≈ 500k events was used for the two sets of parameters used in Figs. 6.3

and 6.4. Results are summarized in Tab. 6.2 where (θ̂mix, ∆̂m
2
) are taken as the

maximum value of the posterior probability obtained in each set of parameters.
Tab. 6.2 shows that NSF has a significantly smaller bias compared to the Hist
method. This explains the discrepancy in the plots, aside from justifying a
better performance by the NSF method. The Hist bias comes from binning
and interpolation approximations, while for NSF the bias may come from the
density estimation for the near detector not being perfect. In real experiments,
this bias can be estimated using a representative MC dataset, called the Asimov
dataset2.

Both quantitative, Tab. 6.1, and qualitative, Figs. 6.3 and 6.4, show that
NSF indeed provide a tool to perform likelihood-free inference on physical
simulators such as the one of the T2K experiment, in agreement with unbinned
likelihood approaches as we have compared it to, but with less bias as shown
in Tab. 6.2.

6.4 Modelling systematic uncertainties

A comprehensive description of the problem is beyond the scope of this study,
but we will sketch possible implementation alternatives. In experiments, near
detector neutrino interactions data are used to constrain uncertainties in cross
section models (φ̂xsect), neutrino flux (φ̂flux) and detector smearing and effi-

ciency (φ̂det). Comparing the experimental data from the near detector to the

2 The concept of the Asimov data is being a representative date set, inspired by the short
story Franchise by Isaac Asimov, in which the entire electorate is replaced by selecting the
most representative voter.
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Fig. 6.3: Highest posterior density curves for both NSF and Hist posteriors of
experiments 1 (top) and 2 (bottom), together with best fit of each posterior.
Red (blue) lines indicate 68 % (dashed) and 95% (continuous) HPD curves for
the NSF (Hist) method. Orange x-crosses indicate the true parameter used to
generate the observed events. Red stars (blue +-crosses) indicate the best fit
for the NSF (Hist) method. A clear overlap can be found in experiments of
low statistics (top) and a slight fluctuation on large statistics (bottom). Notice
a change of scale in the high statistics plots.
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Fig. 6.4: Highest posterior density curves for both NSF and Hist posteriors of
experiments 7 (top) and 8 (bottom), together with best fit of each posterior.
Red (Blue) lines indicate 68 % (dashed) and 95% (continuous) HPD curves for
the NSF (Hist) method. Orange x-crosses indicate the true parameter used to
generate the observed events. Red stars (blue +-crosses) indicate the best fit
for the NSF (Hist) method. A clear overlap can be found in experiments of
low statistics (top) and a slight fluctuation on large statistics (bottom). Notice
a change of scale in the high statistics plots.
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Tab. 6.2: Bias computation for the posterior densities of the parameters in

Figs. 6.3 and 6.4. The estimators (θ̂mix, ∆̂m
2
) are taken as the maximum

value of the posterior obtained in each set of parameters for a high-statistical
experiment (Nobs ≈ 500k), and the bias is defined as θ̂ − θ. NSF shows a
significant reduction of bias compared to the Hist method. θmix is given in rad
and ∆m2 in ×10−3eV2.

Parameter True NSF Hist
values bias bias

θmix 0.7594 0.0020 0.0087
∆m2 2.463 -0.0012 0.0031
θmix 0.7353 -0.00050 0.00410
∆m2 2.363 -0.00063 0.00675

Monte Carlo model, experiments obtain the distribution for the parameters,
p(φ̂|ND). The uncertainty parameters (φ̂i) are applied to the far detector to
predict the data distributions in the absence of oscillations. The transport of
constrained uncertainties are done either by traditional covariance matrices or
by a more sophisticated Markov Chain Monte Carlo that easily accounts for
non-Gaussian probability distributions. The uncertainties are then marginal-
ized or profiled to propagate the uncertainties to the oscillation analysis.

The proposed method can be used in different ways in this analysis frame-
work. The simplest approach is to obtain the p(φ̂|ND) that includes all possible
parameter correlations. In this case, the model provides at the same time a
simple way to generate Monte Carlo to sample the distributions. This method,
using Gaussian base densities, will easily learn the nuisance parameters prob-
ability density function which is expected to be close to Gaussian. The next
level of complexity is to learn, as we have done in this example, the probability
density function but adding nuisance parameters, p(pµ, θµ, Eν , φ̂). This imple-
mentation will allow us to perform unbinned likelihoods as described in this
work. The more complex and inclusive approach is to avoid the intermediate
nuisance parameter density function (p(φ̂|ND)) description and model both
near and far detectors with a set of common uncertainties. The advantage
of this final description is that all the analysis is carried out in a single fit
avoiding the description of hundreds of uncertainties (φ̂).
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6.5 Conclusions

In this chapter, we have presented the viability of a likelihood-free inference
methodology through neural spline flows on a simplified neutrino oscillation
problem at the T2K experiment. We developed a framework to use this esti-
mation of the density from data taken at the near detector in order to perform
inference of the oscillation parameters at the far detector for a simplified two-
flavour neutrino problem, allowing to perform exact inference if the density
is properly estimated. This method provides potential advantages over tra-
ditional binned histogram methods, especially when the statistics is low as
is the case in the T2K experiment. An unbinned alternative formulated by
interpolating the histogram method was constructed to check the results. Ad-
ditionally, the integrity of the learned density was thoroughly verified through
different statistical and empirical tests. The results obtained using the neu-
ral spline flow methodology and the unbinned likelihood methodology show
results which are in agreement with each other in the estimation of the statis-
tical errors. The alternative method is not refined enough and it shows larger
bias in the estimated parameters. The results presented in this work open new
possibilities to use similar likelihood-free neural network inference for more
complex statistical analyses.
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7. EXHAUSTIVE NEURAL IMPORTANCE SAMPLING
APPLIED TO MONTE CARLO EVENT GENERATION

Adapted from the original publication in Physical Review D 102, 013003 on the 16th of July

2020 [18].

In modern science and engineering disciplines, the generation of random
samples from a probability density function to obtain datasets or compute
expectation values has become an essential tool. These theoretical models can
be described by a target probability density function p (x). Ideally, to generate
samples following p (x), the inverse transformation method is used. To perform
the inverse transformation, the cumulative probability has to be calculated and
the inverse to this function has to be found. Numerical methods have to be
applied to obtain the MC samples when this is not feasible computationally.
This is especially true for high-dimensional spaces, where the integrals required
to find such inverse transformation become analytically challenging.

A standard numerical method to obtain such datasets is to perform a
Markov Chain Monte Carlo (MCMC) algorithm [180], which provides good
results for expected value calculations. Compared to other methods, it has the
advantage that, in general, it requires very little calibration, and high dimen-
sions can be broken down into conditional smaller dimension densities [181].
However, the MCMC method produces samples that form a correlated se-
quence. Also, the convergence of the samples’ chain to the target density
cannot be guaranteed for all possible models.

Another standard algorithm to produce MC samples is the acceptance-
rejection or simply rejection sampling [182–185], which produces i.i.d. (inde-
pendent and identically distributed) samples from the target density via an
auxiliary proposal function. The proposal has to satisfy being a density which
can both be sampled from and evaluated efficiently, as well as being as close
to the target density as possible. The main disadvantages of the method are
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the following [186]:

1. Designing the proposal function close to a particular target density can
be very costly in human time.

2. If a generic proposal function is taken, such as a uniform distribution
over the domain, the algorithm is usually very inefficient.

3. The sampling efficiency decreases rapidly with the number of dimensions.

Ideally, to avoid these inconveniences, one would like to have a method to find
a proposal function that adapts to a given target density automatically. This
would solve simultaneously the human time cost as well as the inefficiency of
generic proposal densities.

An approach of the usage of normalizing flows (see Chapter 4) to find a
suitable proposal for a given target density has been suggested previously as
neural importance sampling (NIS) [129], focused on the integration of functions
via importance sampling [187]. The concept of integrating via importance
sampling with normalizing flows for HEP has been explored in other works to
obtain top-quark pair production and gluon-induced multi-jet production [105]
or to simulate collider experimental observables for the Large Hadron Collider
[104].

In this work we further explore the possibility of utilizing normalizing flows
to find a proposal function for a given target density to perform rejection sam-
pling for MC samples, and analyze its viability through the following points:

• We discuss the importance of adding an additional density (background)
to the target one to assure the coverage of the whole phase space when
performing rejection sampling.

• We define a two-phase training scheme for the normalizing flow to boost
initial inefficiency in the optimization when adjusting the initialized ran-
dom density towards the target one.

• We measure the performance of the method and argue for relaxing the
rejection sampling constant factor k to improve largely the efficiency of
acceptance while quantifying the error committed in doing this approx-
imation via the concept of coverage.
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Considering the proposed algorithm covers the whole domain of interest by
modifying NIS with the background density, we denote this method by ex-
haustive neural importance sampling (ENIS).

We apply the above algorithm to a HEP problem, in the form of the CCQE
cross section for anti-neutrinos interactions with nuclei, performing in-depth
analysis and discussion of the efficiency of the method. Neutrino-nucleus cross
section modeling is one of the main sources of systematic uncertainties in neu-
trino oscillations measurements [172,188,189]. Cross section models are either
analytically simple but describe the experimental data poorly or involving
complex numerical computations, normally related to the description of the
nucleus, that imposes limitations in their MC implementation. New tendencies
in the field also call for a fully exclusive description of the interaction adding
complexity to the calculations. The analytical model utilized in this paper is
simple, but it is a realistic one and a good reference to demonstrate the ca-
pabilities of the proposed method to generate neutrino-nucleus cross sections
efficiently. We will show that ENIS opens the possibility to incorporate effi-
ciently complex theoretical models in the existing MC models enhancing the
physics reach of running and future neutrino oscillation experiments.

ENIS algorithm may be used beyond the scope of neutrino physics. Fur-
ther applications to be evaluated in detail in the future are particle/nuclear
physics experiments, detector responses for medical physics, engineering stud-
ies or theoretical modelling. In general, it could be applied to any Monte Carlo
simulation that is limited by the algorithm’s speed, such as for importance sam-
pling to provide fast Monte Carlo with sufficient accuracy (i.e. fast detector
simulation, design studies, minimum bias background simulations, etc.). Ad-
ditionally, the technique may help model developers extract expected values
from their theoretical predictions in realistic conditions by including simple
detector effects in models, such as effects of detector acceptance cuts, impact
of model degrees of freedom on the predictions or uncertainty propagation.

7.1 Framework

In this section we will describe the background and framework needed for
the rest of the chapter. Sec. 7.1.1 explains the physical model of charged
current quasielastic neutrino interaction we will apply ENIS to in Sec. 7.3. As
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a summary and to introduce our notation, Sec. 7.1.2 overviews the rejection
sampling algorithm.

7.1.1 Model of charged current quasielastic anti-neutrinos interactions with
nuclei

The CCQE is a basic model of neutrino interactions that might be expressed
in simple formulae. The CCQE model has many advantages during this ex-
ploratory work, as it can be implemented in a simple software function, while
at the same time it is also a realistic environment to understand the implica-
tions of modeling cross sections with the proposed methodology. The selected
model to describe CCQE is the well established Smith-Monith [190]. The nu-
cleon momentum distribution follows a relativistic Fermi gas (non-interacting
nucleons in a nuclear potential well) with a 0.225 GeV/c Fermi level. The
model includes the Pauli blocking effect, preventing the creation of final state
nucleons below the nucleus Fermi level. The model can be applied both to neu-
trino and antineutrino interactions. Antineutrinos are selected for this study
due to the vector axial current cancellation imposing more stringent conditions
at the edges of the kinematic phase space. The model includes the following
degrees of freedom generated by the MC model: the neutrino energy, the µ±

momentum and angle, and the target nucleon Fermi momentum. Contrary to
other MC implementations, the neutrino energy is not a fixed input value but
it is generated by the algorithm to add complexity to the calculations and to
check the capabilities of the calculations to reproduce the cross section as a
function of the neutrino energy. The implementation of this model for fixed
energy value is also possible. The basic kinematic distributions obtained with
this model will be discussed in Sec. 7.3.

7.1.2 Rejection sampling

Rejection sampling is a well known technique [182–186] to obtain MC samples
from a target density p (x) which can be evaluated (up to a constant), but
cannot be sampled from through the inverse transform. It relies on an auxiliary
proposal function q (x), from which one should be able to sample from and
evaluate efficiently. A constant k > 0 is introduced which has to satisfy that

k · q (x) ≥ p (x) ∀ x : p (x) > 0. (7.1)
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The resulting function k · q (x) is called the comparison function.
The procedure to sample from the target density is then the following:

1. A sample x is generated following q (x), x ∼ q (x).

2. A random number u is generated uniformly in the range [0, k · q (x)],
u ∼ Unif(0, k · q (x)).

3. If u fulfills the condition u ≤ p (x), the sample is accepted; otherwise, it
is rejected.

Additionally, if p (x) is normalized, the probability that a sample is ac-
cepted is proportional to pacc ∝ 1/k, i.e., k gives an intuition of the number
of tries until we obtain an accepted sample.

7.2 Methodology

With the framework introduced in Sec. 7.1 and the potential of normalizing
flows seen in Chapter 4, we are now in a position to define the ENIS method
and the different metrics we will use to measure its performance.

We start in Sec. 7.2.1 by showing how to modify the objective function to be
minimized by the normalizing flow (Sec. 4.1.2) to adjust its proposal function
qφ (x) to the target density p (x) in the case of performing neural importance
sampling. Then, in Sec. 7.2.2, we discuss the importance of adding background
noise to both ensure coverage of the whole phase space of p (x) and to boost
the initial phase of the training of ENIS. The exact training scheme is then
shown in Sec. 7.2.3, differentiating the warm-up phase from the iterative phase.
Finally, in Sec. 7.2.4, the performance metrics are introduced, explaining the
concept of coverage and effective sample size when considering a more relaxed
condition on the rejection constant k.

7.2.1 Modified optimization for NIS

Consider a target probability density function p (x) which can be evaluated
for all x but from which we are unable to generate samples directly through
an analytical inverse transform. If we could approximate this target density
by our neural density estimator qφ (x), then we could exactly sample from the
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target density using rejection sampling, since we can both sample and evaluate
from qφ (x).

To obtain the parameters φ of qφ (x) given a density p (x) which can be
evaluated, we want to minimize the KL-divergence, Eq. (4.5), between both
distributions. This can be done by computing the gradient of Eq. (4.6), which
could be approximated numerically if we could sample x ∼ p (x), since it
corresponds to approximating an expected value of a function we can evaluate,
log qφ (x). This, however, is not the case.

Müller et al. [129] propose a solution for computing the gradient with re-
spect to φ for this maximization problem. They suggest using importance
sampling [187] for this particular expected value:

∇φEx∼p(x) [log qφ (x)] =

∫
p (x)∇φ log qφ (x) dx

=

∫
qφ (x)

p (x)

qφ (x)
∇φ log qφ (x) dx

= Ex∼qφ(x) [w(x)∇φ log qφ (x)]

≈ 1

N

N∑
i=1

w(xi)∇φ log qφ (xi) , (7.2)

with xi ∼ qφ (x) and the weights defined as w(x) = p (x) /qφ (x). Notice how
we only need to be able to evaluate p (x) to compute this quantity. With this
gradient, we are able to minimize the KL-divergence in Eq. (4.6) if the support
of qφ (x) (i.e., the domain where the function is non-zero) contains the support
of p (x) to perform the importance sampling of Eq. (7.2) correctly. Notice
that, in order to properly optimize the parameters φ, p (x) does not need to
be normalized, since this simply changes the magnitude of the gradient, but
not its direction. The lack of proper normalization can be properly handled
by standard neural network optimizers such as Adam (see Sec. 3.3).

The method described by Eq. (7.2) implies an iterative way of optimizing
qφ (x) with the following steps:

1. A batch of x is generated according to the current state of the neural
network, qφ (x).
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2. Using this batch, the parameters φ of the neural network are optimized
via the gradient of Eq. (7.2).

3. This updated neural network then generates the next batch.

7.2.2 Relevance of background noise

As briefly discussed in Sec. 7.1, in order to optimize the neural network follow-
ing Eq. (7.2), the gradient is only correctly computed if the support of qφ (x)
contains the one of p (x). Moreover, if we want to use qφ (x) as our proposal
function to sample from p (x) via rejection sampling, this also has to hold.

To ensure the proper p (x) support, we introduce the concept of a back-
ground density function, pbg (x). In HEP, as in many other scientific areas, the
density is restricted to a certain domain of x ∈ RD, e.g., the cosine has to be in
[−1, 1], the magnitude of the momentum in an experiment has to be positive
and has a maximum value of pmax, there are constraints in the conservation
of energy and momentum, etc. Hence pbg (x) should be a density that has
a support beyond these phase-space boundaries. In what follows, a uniform
distribution will be considered, with limits in each dimension according to the
phase space of that coordinate. The selection of the functional form of the
pbg (x) is arbitrary and it can be selected to adapt to the requirements of each
project.

The background density pbg (x) will be used for two tasks:

(i) Improve initial training: At the beginning of the training, we cannot
assure that the support of qφ (x) contains the one of p (x). Hence, instead
of using qφ (x) for the importance sampling of Eq. (7.2), pbg (x) will
be used during the warm-up phase of the training. The distribution
of the weight function w(x) = p (x) /pbg (x) might span several orders of
magnitude, but this way we ensure the full support of p (x). This strategy
gives a better approximation than the one obtained by the randomly
initialized neural network qφ (x) at the start of the training.

(ii) Ensure exhaustive coverage of the phase space: The target density ptarget (x)
that the neural network will learn will be constructed as a linear combi-
nation of the true target density p (x) and the background pbg (x):

ptarget (x) = (1− α) · p (x) + α · pbg (x) , (7.3)
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with α ∈ (0, 1). This implementation adds a certain percentage α of
background noise to the target density, spreading it over all the domain
of the background density, allowing to properly apply the methods re-
jection and importance sampling with qφ (x) as the proposal function,
covering exhaustively the phase space. Experimentally we have found
good compromise with α = 0.05.

Optimizing qφ (x) to match ptarget (x) of Eq. (7.3) instead of p (x) will make
the proposal qφ (x) slightly worse for rejection/importance sampling. By per-
forming the optimization to p (x) directly in an iterative way, as explained at
the end of the last section, some regions of the phase space might disappear for
future samplings. These regions are located normally close to the boundaries
of sampled volume. Having a constant background noise prevents these losses
from appearing, as the neural network has to also learn to generate this noise,
covering properly the required phase-space volume. We will discuss the impact
of the background term on the method performance in Sec. 7.3.

7.2.3 ENIS training scheme of the proposal function

The training procedure to obtain qφ (x) from p (x) following ENIS consists of
two phases:

1. Warm-up phase:

(i) Sample xp ∼ pbg (x) and compute their weights wp(xp) = p (xp) /pbg (xp).

(ii) Sample background xbg ∼ pbg (x) with associated weights wbg(xbg) =

Cwbg
· pbg (xbg), where Cwbg

= α
1−α

〈wp(xp)〉
〈pbg(xbg)〉 .

(iii) Optimize the parameters of qφ (x) via Eq. (7.2) using x = {xp,xbg}
with weights w(x) = {wp(xp), wbg(xbg)}.

2. Iterative phase:

(i) Sample xq ∼ qφ (x) and compute their weights wq(xq) = p (xq) /qφ (xq).

(ii) Sample background xbg ∼ pbg (x) with associated weights wbg(xbg) =

C ′wbg
pbg (xbg), where C ′wbg

= α
1−α

〈wq(xq)〉
〈pbg(xbg)〉 .
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(iii) Optimize the parameters of qφ (x) via Eq. (7.2) using x = {xq,xbg}
with weights w(x) = {wq(xq), wbg(xbg)}.

Figures 7.1 and 7.2 depict a flow diagram of the training method for ENIS,
showing in Fig. 7.1 the warm-up phase, while in Fig. 7.2 the iterative phase
is depicted. The phase transition from warm-up to iterative phase is chosen
heuristically. In our particular implementation of Sec. 7.3.1 we have chosen
the warm-up phase to comprise 20 % of the total training iterations.

Steps 1. (ii) and 2. (ii) allow the method to add background following
Eq. (7.3) to construct ptarget (x) even if p (x) is not normalized.

7.2.4 Measuring the performance of the proposal function

The proposed method is not to use qφ (x) as a direct approximation of p (x),
but as proposal function to perform either rejection (Sec. 7.1.2) or importance
sampling [187]. This allows for the methods to correct any deviation in the
neural network modeling of the exact density while utilizing its proximity to
such density.

We use the learned probability density function qφ (x) to generate samples
via rejection sampling (see Sec. 7.1.2), which, in HEP, is of high interest and
costly via standard procedures. The parameter k of the rejection algorithm
has to be estimated empirically. Consider n samples {xi}ni=1 generated with
the proposal function x ∼ q (x), with weights w(xi) = p (x) /q (x), satisfying:

• The average of the weights is

〈w〉 =
1

N

N∑
i=1

w(xi) ≈
∫
q (x)w(x)dx = C,

where C is the normalization of the density p (x), i.e., its volume.

• kmax, the smallest constant k > 0 such that the inequality of Eq. (7.1)
holds, is equal to (maxw(xi))

−1.

In real conditions, the parameter k can be relaxed. Instead of choosing the
maximum value among the empirically computed weight distribution, it can
be taken as the inverse of the Q-quantile of these weights, wQ, denoted by kQ:

kQ = (Q-quantile(w))−1 = w−1
Q . (7.4)
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Fig. 7.1: Exhaustive neural importance sampling flow diagram: warm-up
phase.
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Fig. 7.2: Exhaustive neural importance sampling flow diagram: iterative phase.
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This is equivalent to clipping the weights’ maximum value to the Q-quantile
of w, capping the desired density function p (x) we are generating using these
weights for the rejection. The new weights w′(x) are simply:

w′(xi) =

{
w(xi) if w(xi) ≤ wQ

wQ if w(xi) > wQ
.

The ratio of volume with respect to the original density p (x) we are main-
taining by clipping the weights this way defines the coverage we have of the
rejection sampling, and is equal to

Coverage =

∑N
i=1 w

′(xi)∑N
i=1 w(xi)

. (7.5)

This allows us to quantify the error we are committing when choosing a quan-
tile over the maximum of weights when defining a constant k for rejection
sampling.

The idea behind relaxing this constant k is that we will wrongly approx-
imate only a small region of p (x) with q (x). In that small region, the ratio
p (x) /q (x) is large compared to the rest of the domain but still it is occupying
a small volume of the density p (x). This region can be ignored by relaxing k,
making the overall ratio of p (x) /(k · q (x)) closer to 1 and improving drasti-
cally the rejection sampling at the cost of this small discrepancy which we are
committing, quantified in Eq. (7.5).

As an additional qualitative measurement of the goodness of different pro-
posals under different constants k, the effective sample size (ESS) will be
used [191], which corresponds approximately to the number of independent
samples drawn. The ESS for n samples of weights {w(xi)}ni=1 is defined as:

NESS =

(
N∑
i=1

w(xi)

)2

/

N∑
i=1

w(xi)
2. (7.6)

This is a rule of thumb to obtain the number of independent samples. The
closer NESS is to the number of samples n, the more uncorrelated the weighted
samples are. If large weights appear, then the independence of the samples will
be diminished, as the same sample gets represented many times. We define
NESS/N as a rough estimate for the ratio of independence of the samples.
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7.3 Monte Carlo generation of the CCQE antineutrino cross
section

We will now proceed to apply ENIS to the CCQE antineutrino cross section
density. In Sec. 7.3.1, we discuss how the training for the NSF was performed,
describing the background we added to cover the phase space. We show qual-
itatively the obtained densities and compare them to the target one. After
obtaining a suitable proposal, we discuss in depth the performance of the ob-
tained result in Sec. 7.3.2, comparing the ENIS proposal to a generic uniform
one, demonstrating its potential while justifying the relaxation on the constant
k for the rejection sampling.

7.3.1 Training

To find the proposal function qφ (x) via NSF1 for the CCQE antineutrino in-
teraction cross section density, described in Sec. 7.1.1, we followed the training
scheme from Sec. 7.2.3.

The background chosen is a uniform distribution, covering a range of [0, 10]
for the incoming neutrino energy Eν (in GeV), [0, 10] for the outgoing muon
momentum pµ (in GeV/c), [0, π] for the angle of the outgoing muon θµ (in rad),
and [0, 0.225] for the target nucleon Fermi momentum pnucleon (in GeV/c).
These bounds were expanded by covering a slightly more extended domain, of
an additional 2 % at the beginning and end of each dimension, to assure that
the physical boundaries are completely covered. This expanded background
was added with a α = 0.05 contribution to the cross section density in Eq. (7.3),
as well as used during training for the warm-up phase.

As for the hyperparameters of the NSF, we have chosen the Adam opti-
mizer [78] with learning rate 0.0005, batch size 5 000, training steps 400 000,
5 flow steps, 2 transform blocks, 32 hidden features and 8 bins. This gives a
total dimension of 37 220 for the parameters φ of qφ (x). This configuration for
the NSF was chosen experimentally to have a relatively low number of param-
eters (one can have easily six million parameters instead of the ≈ 37 000 we
have) since a lower number speeds up the generation and evaluation of samples

1 Again, we would like to thank C. Durkan, A. Bekasov, I. Murray and G. Papamakarios
for their implementation of NSF, on which this work’s code is based on: https://github.

com/bayesiains/nsf

https://github.com/bayesiains/nsf
https://github.com/bayesiains/nsf
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x ∼ qφ (x). Additionally, the learning rate was decreased during the training
using a cosine scheduler [178] to ensure stabilization at the end of the training
procedure.

The training consists in maximizing the log-likelihood of Eq. (4.7) by com-
puting its gradient via Eq. (7.2), and is shown over the 400 000 iterations in
Fig. 7.3. In the grey area, the training is performed with samples of the back-
ground distribution pbg (x), while in the white area the samples of the training
samples are generated by the current proposal distribution qφ (x). Notice that
since the samples are generated in real-time during the training, there is no
need to worry about possible overfitting of the parameters of the neural net-
work, which is a common issue in many machine-learning applications. The
values of Fig. 7.3 are computed every one thousand steps, for a batch of 200 000
samples x ∼ qφ (x). The log probability can be seen to converge at the end of
the training, which is mainly due to the cosine scheduler, but also due to the
saturation over the family of parametrized densities qφ (x).

To have a visual representation, Fig. 7.4 shows the marginalized 1-dimensional
densities of the four cross section variables of the target density p (x) (blue)
vs the NSF proposal qφ (x) (orange). The plots show a small discrepancy
in each variable, but an overall agreement between the two densities. Aside
from a mismodeling on the side of qφ (x) in certain regions, the differences can
also come from the fact that the NSF is learning a modified target density
(Eq. (7.3)).

To assess qualitatively that the correlation between the variables are also
captured by qφ (x), Figs. 7.5 and 7.6 show 2D-histograms for both the real
density p (x) and the the proposal density qφ (x), respectively. Visually, an
overall agreement can be seen. There is a slight discrepancy for high energy
pnucleon values, where the attenuation indicates that for the NSF proposal
function it is more spread due to the background noise pbg (x) it is also learning
(Eq. (7.3)).

In what follows the performance of the NSF proposal will be discussed in
more quantitative ways, and compared it to a uniform proposal.

7.3.2 Performance and discussion

In this section we will focus on analyzing the performance of the proposal
density obtained by the NSF while also comparing it to a uniform proposal
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Fig. 7.3: Neural spline flow training log probability for estimating the modified
CCQE cross section with background noise, following Eq. (4.7). In grey, the
warm-up phase is performed, using pbg (x) to generate the weighted samples,
while in the white area the current state of the NSF qφ (x) is used. The log
probability stabilizes during the training to converge to a certain value which
depends on the expressiveness of the network and the normalization of the
target density.

density, pUnif (x), which in our case will be the same as pbg (x), defined in
Sec. 7.3.1.

We start by generating ten million samples from each proposal density
and compute their associated weights. The proportion of samples with weight
equal to zero is 5.56 % for the NSF proposal, compared to the 98.03 % for the
uniform one. To understand the distribution of such weights, Fig. 7.7 shows
the logarithmic scale of them (for the weights > 0), assuming the average of the
weights is equal to 1. For the NSF qφ (x) (left), all weights are concentrated
around log10 w = 0 with a small dispersion around it. Notice that there are
only three weights in ten million slightly over one hundred. This shape justifies
using not the maximum value of w to perform rejection sampling, but some
quantile of it, as we will discuss below. Conversely, for the uniform distribution
pUnif (x) (right) we can see that the spectrum of weights goes over nine orders
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Fig. 7.4: p (x) (blue) vs qφ (x) (orange) 1-dimensional normalized histograms
of the marginalized CCQE cross section density for each of the variables. The
plots show light discrepancy in each variable, but an overall agreement between
the NSF proposal qφ (x) and the CCQE cross section density p (x). Notice how
the distribution of qφ (x) are taken before performing rejection sampling on it.

of magnitude. The mean for log10 wqφ is 0.023±0.040, while for log10 wpUnif
we

obtain an average of 0.85±0.88, indicating a huge fluctuation in the magnitude
of the weights.

The results of the performance test for rejection sampling are summarized
in Tab. 7.1, where we compare various quantities for the NSF qφ (x) and uni-
form pUnif (x) proposal functions. For this, different quantiles for the constant
k for the rejection method are used, following Eq. (7.4), relaxing its restriction
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p (x)

Fig. 7.5: 2D histograms of the cross section density for the real cross section
p (x).

as discussed in Sec. 7.2.4. The quantiles for k were chosen using the ten million
weights computed for the previous discussion of the weight magnitudes, as well
as the probability of acceptance, the coverage, and the effective sample size.
We considered a case of sampling one million accepted samples via rejection
sampling, where samples from the proposal were generated and checked for
acceptance/rejection in parallel, in batches of 300 000 samples. The purpose
of the parallelization is to exploit the computational capacities of a GPU. We
denoted each of these batches of generating and checking a cycle of the rejec-
tion sampling. The values in Tab. 7.1, for each quantile value and a proposal
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qφ (x)

Fig. 7.6: 2D histograms of the cross section density for the proposal density
qφ (x). Visually, an overall agreement can be seen with Fig. 7.5.

function, are the following:

• paccept: probability of accepting a single event, given by the average
of p (x) /(k · qφ (x)). If p (x) /(k · qφ (x)) > 1, it is taken as 1 for the
computation.

• Cycles: number of rejection sampling cycles of size 300 000 samples
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Fig. 7.7: Logarithmic weight distribution for ten million samples from the NSF
proposal qφ (x), wqφ(x) = p (x) /qφ (x), (left) vs the same number of samples
from the uniform proposal pUnif (x), wpUnif

(x) = p (x) /pUnif (x), (right). No-
tice that we are only computing the logarithm for weights > 0. For the NSF,
all weights are concentrated around log10 w = 0 with a small dispersion around
it, while for the uniform distribution the spectrum of weights goes over 9 orders
of magnitude.

needed to obtain one million accepted samples:

Cycles =
⌈ 106

paccept · 3× 105

⌉
(7.7)

• Time: seconds it takes to compute these cycles and obtain one million
accepted samples: tcycle · Cycles.

• Coverage: volume of the original density covering when taking k with a
certain quantile (Eq. (7.4)), following Eq. (7.5).

• NESS/N : the ratio of effective sample size over the total number of
samples, quantifying an estimate of the ratio of independence of the
events. This was computed for a sample size of 10 million.
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Tab. 7.1: Performance values for different quantile choices of k for rejection
sampling, as discussed in Sec. 7.2.4, comparing both NSF qφ (x) and uniform
pUnif (x) proposal functions. For this exercise, one million samples were gener-
ated, performing rejection sampling in batches of 300 000 tries. The quantities
are the probability of accepting a single sample paccept, the number of rejection
cycles (batches of 300 000) used to obtain one million accepted samples, the
time it took in seconds to generate these accepted samples, the coverage of the
target density for that particular quantile (Eq. (7.5)) and the ratio of effective
sample size NESS (Eq. (7.6)) over the total number of samples N .

Quantile Prop. paccept Cycles Time (s) Coverage NESS/N
1.00000 NSF 0.0051 649 201.822 1.0000 0.9140

Unif. 0.0002 16199 47.886 1.0000 0.0016
0.99999 NSF 0.0633 53 16.482 0.9999 0.9242

Unif. 0.0004 8056 23.814 0.9947 0.0017
0.99990 NSF 0.1623 21 6.530 0.9996 0.9284

Unif. 0.0008 4240 12.534 0.9480 0.0020
0.99900 NSF 0.3590 10 3.110 0.9984 0.9338

Unif. 0.0027 1217 3.598 0.6185 0.0045
0.99000 NSF 0.7187 5 1.555 0.9939 0.9400

Unif. 0.0137 244 0.721 0.0818 0.0154
0.98500 NSF 0.7730 5 1.555 0.9927 0.9405

Unif. 0.0171 195 0.576 0.0325 0.0179
0.98100 NSF 0.7968 5 1.555 0.9920 0.9408

Unif. 0.0193 173 0.511 0.0039 0.0195

The probability of acceptance, paccept, for the NSF is at least one order of
magnitude higher than the one obtained from uniform sampling. Additionally,
NSF grows rapidly towards ∼ 70 % acceptance while also covering > 99 % of
the original density volume, as shown in the Coverage column. This is not
the case for the uniform distribution, which, while being only one order of
magnitude behind NSF with regards to acceptance, is missing a large volume
of coverage of the original density.

The number of rejection sampling cycles needed to achieve the desired
number of accepted samples is inversely proportional to paccept, as shown in
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Eq. (7.7). In a cycle, the algorithm has to sample from the proposal and
evaluate both the proposal and p (x). For the NSF, the cycles get stalled when
reaching a high percentage of acceptance, since the number of cycles has to be
a whole number, which is equivalent to the whole number +1. Notice how the
number of cycles for the NSF is two orders of magnitude smaller compared to
the uniform one, however, the coverage of the uniform drops drastically when
decreasing the quantile, and hence the quality of the samples. We will discuss
more in-depth in Appendix B.

When looking at the time it takes to obtain one million accepted samples,
it is directly proportional to the cycles for each proposal. The main difference
is that a cycle for the uniform proposal takes a fraction of the time of a cycle
for the NSF. This is because sampling and evaluating for the NSF is heavy
computationally compared to doing this task for a uniform distribution. As
mentioned before, see Appendix B for a more in-depth discussion.

The coverage is the main quantity of measurement of the quality of the
produced samples since it measures the volume conserved of the original dis-
tribution when performing rejection sampling with certain quantiles. For all
the chosen quantiles, the NSF drops a volume < 1 %, while for the uniform
distribution the loss is of > 5 % for quantile 0.9999, > 38 % for 0.999, and
> 91 % for 0.99, which is unacceptable when trying to produce samples from
the original distribution. For the NSF this level of performance when taking
the above quantiles is expected, as in Fig. 7.7 we have seen that the upper
tail of weights with large magnitudes is a small percentage of the whole distri-
bution. However, for the uniform distribution, the loss of coverage is caused
by two facts: (i) 98.03 % of the weights are zero, hence placing the whole
distribution on a 1.97 % of the weights. (ii) These weights, as seen in Fig. 7.7,
span over many orders of magnitude, making a cut on the quantile of their
distribution more noticeable, as will be discussed below.

To visualize the coverage and the regions missing by choosing a quantile
kQ0.999 and different proposal functions, Figs. 7.8 and 7.9 show 2-dimensional
histogram representation of the marginalized coverage bin-to-bin, taking the
variables in pairs, where each bin quantifies the coverage of that bin (i.e., the
sum of weights in that bin after choosing a certain quantile over the sum of
weights of those weights without clipping). On the left, the coverage for the
NSF is presented and shows that only a few regions of the phase space have
values smaller than 1, and even in those regions the coverage has no noticeable
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Fig. 7.8: 2D histogram representation of the marginalized coverage bin-to-bin
for NSF proposal for k-quantile= 0.999.

discrepancies. On the right, the coverage of the uniform proposal is shown
for the same quantile 0.999, marking clear regions where the coverage drops
drastically to values close to zero.

When comparing both coverage regions in Figs. 7.8 and 7.9, a clear pattern
is seen for the uniform one, while it looks quite random for the NSF. This is
because the coverage is related to the ratio p (x) /q (x), with q (x) the corre-
sponding proposal density. For the NSF, qφ (x) has a shape very closely related
to p (x), as shown in Fig. 7.4 and Figs. 7.5 and 7.6, so the coverage would cor-
respond to regions where the discrepancy is large, which has a noisy behavior.
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Fig. 7.9: 2D histogram representation of the marginalized coverage bin-to-bin
for the uniform proposal, for k-quantile= 0.999. When comparing to the NSF
proposal in Fig. 7.8, the coverage of the NSF presents a negligible discrepancies
in small areas, justifying the use of a quantile for k to improve acceptance and
time, as shown in Tab. 7.1. For the uniform proposal, the coverage presents
an important size of the total area with significant low coverage, which is
unacceptable when trying to perform rejection sampling from it.
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Conversely, for the uniform proposal, pUnif (x), this ratio is proportional to
p (x), hence, by clipping, we are doing so according to that particular shape,
making the coverage less chaotic and more structured. This translates into
making highly probable areas equally likely than others with less probability,
affecting this exact group of regions as we will now analyze.

Figs. 7.8 and 7.9 give us an overall picture of where the densities are wrongly
estimated by choosing certain quantile, but it does not quantify or indicate the
amount of error, that is, it is not telling us whether the coverage is poor in areas
of small or high density. To answer this question, a multidimensional histogram
over all four dimensions was performed, with 20 bins in each dimension. Then,
for each bin, we compute the percentage of weight for a proposal q,

% wq of bin =
∑
x∈bin

wq(x)/
∑
x

wq(x),

which is equivalent to the percentage of density p (x) in that bin, and the
coverage for the quantile kQ0.999. Fig. 7.10 shows a histogram of the number
of bins according to their % wq of bin vs their coverage. Notice how % wq is
presented on a logarithmic scale. For the NSF (Fig. 7.10 left), the regions of
coverage visibly smaller than one are two to four orders of magnitude smaller in
% wq than the denser high % wq region on the top right. This means that the
areas being misrepresented by taking the quantile kQ0.999 are relatively small.
Also, most of the area with coverage < 1 are close to full coverage. Contrary,
the uniform proposal (Fig. 7.10 right) shows the coverage dropping for high
values of % wq, indicating that important regions of the original density are
being trimmed down by choosing kQ0.999. This observation is in agreement
with the total coverage we are seeing in Tab. 7.1.

Concerning the ratio of ESS, we can see that for the NSF it is larger than
90 %, giving highly uncorrelated events. For the uniform proposal however,
the ESS drops to the range of 0.16 − 1.95 %, even for lower quantiles. The
differences can be understood from Eq. (7.6) and by looking at the weight dis-
tribution for each proposal in Fig. 7.7. A large percentage of NSF weights have
the same order of magnitude while for the uniform we go over a spectrum of 8
orders of magnitudes. Additionally this ratio of ESS has to be considered for
the area of the original distribution given by the coverage, where the uniform
distribution poorly reproduces important regions of phase space by choosing
smaller quantiles.
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Fig. 7.10: Representation of the number of bins according to their %wq of bin
vs their coverage for four-dimensional bins in p (x), taking kQ0.999. For the
NSF (left), the coverage is close to one in most of the bins, and when it drops
it is for low %wq. Contrary, for the uniform proposal (right), the coverage
drops for high %wq, making the overall coverage way smaller than the one for
NSF, as shown in Tab. 7.1.

To summarize the analysis performed on the results of Tab. 7.1, in the case
of the NSF, by lowering the quantile, the probability of acceptance grows until
reaching almost 80 %, reducing the time to a 0.7 % of the original one while
maintaining coverage of over 0.99 %. These scores allow us to justify using a
smaller quantile for rejection sampling to improve significantly the performance
in time, while also quantifying the misrepresentation we are doing by lowering
the constant k. On the contrary, for the uniform proposal, the analysis showed
weakness when trying to utilize smaller quantiles, lowering the coverage by over
38 % when using a quantile of only 0.999. Additionally, looking at the NESS

and Fig. 7.7, we can see that most of the distribution is concentrated in a
relatively small number of samples.
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7.4 Conclusions

In this chapter we have presented exhaustive neural importance sampling
(ENIS), a framework to find accurate proposal density functions in the form of
normalizing flows. This proposal density is subsequently used to perform rejec-
tion sampling on a target density to obtain MC datasets or compute expected
values. We argue that ENIS solves the main issues associated with rejection
sampling algorithms as described in the introduction: (i) The training to find
a good proposal is done automatically from the target density, with little con-
figuration needed from the human point of view. (ii) Compared to generic
proposal functions such as the uniform one, the normalizing flow adapts its
density over the target one, getting rid of the inefficiencies which are usually
on the downside of the method. (iii) The proposal function is generated based
on a set of trivial normally distributed random numbers transformed through
the flow, without any rejection method applied.

The performance of the method has been demonstrated and analyzed in
a real case scenario, the CCQE cross section of the antineutrino interaction
with a nucleus, where the density is four-dimensional. We have shown that,
for the normalizing flow proposal, we can relax the condition in the constant
k, used to construct the comparison function, boosting greatly the efficiency
(up to ≈ 80 % of acceptance rate) while committing a very small error on
the target density (less than a 1 %), bringing orders of magnitude of speed
up in computing time compared to the same error committed by a uniform
proposal. Additionally, we investigated the coverage of the generation method
as a function of the constant k. We showed that the areas of the phase space
where the error is committed are less relevant to the final result compared to
the error in the uniform case.

The method can be used to generate fast MC samples in cases where the
precision is less relevant versus the algorithm speed. High Energy Physics
presents some of these examples such as extensive statistical studies based on
“Asimov datasets”, fast detector simulations, or simply in fast studies for de-
tector developments and designs. In those cases, the learned proposal function
might be sufficiently precise and easy to generate with a set of simple normal
random generators transformed through the flow.

Regarding its usage, ENIS brings the possibility of applying the same nor-
malizing flow for rejection sampling of similar densities, e.g., densities coming
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from a model where the parameters are changed slightly, altering the overall
density smoothly. The weight distribution of the ratio between target and pro-
posal will be altered, but no additional training of the neural network would
be needed regarding the theoretical model remains similar to the original one.
This is a significant advantage compared to methods like MCMC, where one
would have to rerun the complete algorithm to obtain samples from each of
the different densities.

As a last remark, we have demonstrated the potential of ENIS for the
four-dimensional CCQE interaction density. We believe this will only be more
noticeable when applying it to higher dimensions, as the original paper of
NSF [131] shows a remarkable performance on spaces of dimensions up to
sixty-three. The advantages will be also more obvious as the underlying cross
section model becomes more complex and computationally involved.
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8. GRAPH NEURAL NETWORK FOR 3D CLASSIFICATION
OF AMBIGUITIES AND OPTICAL CROSSTALK IN
SCINTILLATOR-BASED NEUTRINO DETECTORS

Submitted to Physical Review D on the 1st of September 2020 (preprint arXiv:2009.00688 [19]).

Long-baseline neutrino oscillation experiments [172,192,193], introduced in
Chapter 2, use two detectors to characterize a beam of (anti-)neutrinos: a near
detector, located a few hundred meters away from the target that measures
the original beam composition, and a far detector, located several hundred
kilometres away, that allows for the determination of the beam composition
after neutrino flavor oscillations.

The energy of these beam neutrinos ranges from a few hundred MeV up
to several GeV. Charged particles can be produced in neutrino interactions,
and the energy that they deposit as they traverse the detector can be used to
reconstruct the events. In general, the larger the energy transferred from the
neutrino to the nucleus, the larger the number of particles and particle types
produced in the final state. Modeling nuclear interactions in the target nuclei
is highly complex, particularly for high energy transfers where the hadronic
component of the interaction is more important. As a result, current long-
baseline neutrino oscillation experiments mostly analyze interactions with low
particle multiplicity. This situation, however, is expected to change in the
coming years. On one hand, the statistical and systematic uncertainties of
current experiments have decreased significantly over recent years such that
neutrino-nucleus modeling is becoming a dominant source of uncertainty [172,
194]. On the other hand, future experiments like DUNE [3] will use a broad-
band energy neutrino beam, expecting a significant fraction of the neutrino
interactions to have a high energy transfer to the nucleus.

As a result, in recent years, the neutrino physics community has turned its
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attention to measuring neutrino-nucleus interaction cross sections for different
ranges of energies and target materials [170] as a way to constrain the oscil-
lation uncertainties while providing new measurements to further develop the
interaction models. In parallel, a new generation of neutrino detectors are un-
der development that aim to resolve and reliably identify short particle tracks
even in very complex interactions. To achieve this, two main detector tech-
nologies stand out: one is based on Liquid Argon Time-Projection-Chambers
(LArTPCs) [195] and the other is based on finely segmented plastic scintilla-
tors with three readout views [196] that will form part of the near detectors
for T2K [197] and, possibly, DUNE [198].

For the latter, the detector response to a charged particle is read out into
three orthogonal 2D projections. When reconstructing the 3D neutrino event,
different types of hits are rebuilt, introducing non-physical entities that can
hinder the reconstruction process. Due to the spatial disposition of such hits,
an approach of utilizing graph neural networks (see Chapter 5) is proposed to
perform the classification of 3D hits to provide clean tracks for event recon-
struction.

The chapter proceeds in the following way: Sec. 8.1 describes properly
the motivation behind the methodology given the details of the detector tech-
nology. Section 8.2 provides the background of deep learning techniques in
neutrino detectors as well as justifying the use of GNNs for the concrete prob-
lem at hand. The simulated data samples and GNN training are discussed in
Sec. 8.3. Results and a study of systematic uncertainties are given in Secs. 8.4
and 8.5, respectively, followed by concluding remarks in Sec. 8.6.

8.1 Motivation

A finely segmented scintillator detector consists of a 3D matrix of plastic scin-
tillator cubes. The scintillation light produced by charged particles traversing
the cubes is read out by three orthogonal wavelength-shifting (WLS) fibers
that transport the scintillation light out of the detector where silicon photo-
multipliers (SiPMs) convert it into a certain number of photoelectrons (p.e.),
as illustrated in Figs. 8.1 and 8.2.

Here, we consider the Super Fine-Grained Detector (SuperFGD) [197], a
future upgrade to the current FGD subdetector at ND280 in T2K (see Sec. 2.3),
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Fig. 8.1: Geometry of a single SuperFGD element.

as a specific case-study. The detector contains 192×56×184 plastic scintillator
cubes, each 1×1×1 cm3 in size, and provides three orthogonal 2D projections
of particle tracks produced by a neutrino interaction, as depicted in Fig. 8.4a.

To reconstruct neutrino interactions in three dimensions, the light yield
measurements in the three 2D views are matched together, as shown in Fig. 8.4b.
The 3D objects, corresponding to the cubes where the energy deposition is re-
constructed, are referred to as voxels. In addition to the cubes where a particle
has passed and deposited energy, light-leakage between neighboring cubes can
create additional crosstalk signals [15,199], as depicted in Fig. 8.2. Moreover,
ambiguities in the matching process can give rise to ghost voxels, shown in
Fig. 8.3.

To accurately reconstruct neutrino interactions in these detectors, it is
crucial to be able to classify each voxel as one of the three types:

• Track: a real energy deposit from a charged particle, henceforth referred
to as track signals.

• Crosstalk: a real energy deposit from light-leakage between neighboring
cubes.

• Ghost: fake signals coming from the ambiguity when matching the three
2D views into 3D.
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Figure 8.4c shows the three types of voxels using truth information after
3D matching has been performed for an example neutrino interaction. Once
these voxels are classified, the ghost voxels can be removed before the full event
reconstruction proceeds, while simultaneously cleaning the particle tracks of
crosstalk.

In this chapter, we represent the voxels as nodes in a graph and classify
the signals using a deep learning technique based on a GNN. The abstract
data representation provided by graphs makes this method very versatile and
applicable to any experiment where the output data from the detector elements
can be represented as a list of features with arbitrary dimensionality.

8.2 Background

Deep learning techniques are now commonly applied within the field of neu-
trino physics. In particular, CNN [143] algorithms that operate on two-
dimensional images of the neutrino interactions have been very successful
in a number of tasks, such as event classification [3, 200–202] and pixel-level
identification of track-like (linear) and shower-like (locally dense) energy de-
posits [203, 204]. However, images of neutrino interactions are typically very
sparse as only those readout channels with a detected signal give rise to pixels
with non-zero values, and in the case of the detector presented in Sec. 8.1
the average occupancy of the detector for a neutrino interaction is less than
0.02%. Thus, much of the computation time is spent unnecessarily applying
convolutions to a large number of pixels with zero values.

The goal of this work is to classify 3D voxels as one of three categories
(track, crosstalk or ghost), which is a natively three dimensional problem. To
apply a 3D CNN-based algorithm to this detector would require two million
voxels to avoid any downsampling or cropping of the input data, which is
computationally prohibitive. We here investigate a sparse data representation,
where voxels are represented as nodes in a graph (see Sec. 5.1). Figure 8.5
shows a comparison of the 3D CNN and graph data structures, as well as the
radial search method used for defining edges between nodes.

As mentioned above, each detector cube is represented as a node in a
graph, and each node consists of a list of input variables called features that
describe the physical properties of the detected signal (see Section 8.3 and Ap-
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Fig. 8.2: Sketch of the signal generation, fiber transport and signal detection
processes highlighting the production of optical crosstalk signals.
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Fig. 8.3: Example of a ghost voxel appearance. When matching the coordi-
nates of the fibers that recorded energy deposition, voxels may appear where
no true signal exists, becoming non-physical ghost voxels.
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(a) Projections of the observed neutrino interaction onto the three 2D detector views
(XY, XZ, and YZ).
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(b) 3D view of the neutrino interaction after the 3D matching of the three 2D views.
The 3D voxels are shown as dark points. Projections of the observed neutrino inter-
action onto the three 2D detector views (XY, XZ, and YZ) are shown as shadow.

Fig. 8.4: Visualization of a neutrino interaction in a finely segmented 3D
scintillator detector, demonstrating the relationship between the observed 2D
projections onto the three orthogonal 2D views, the reconstructed 3D voxels
and the true classification of the voxels.
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(c) 3D view of the neutrino interaction after the 3D matching of the three 2D views.
The 3D voxels are labelled as track (red), crosstalk (blue) and ghost (yellow) ac-
cording to the truth information from the simulation. Projections of the observed
neutrino interaction onto the three 2D detector views (XY, XZ, and YZ) are shown
as shadows.

Fig. 8.4: Visualization of a neutrino interaction in a finely segmented 3D
scintillator detector (cont.).

pendix C.1). The deep learning algorithm that operates on graphs is the Graph
Neural Network (GNN), and in this study, a GNN inspired by the GraphSAGE
algorithm (Sec. 5.2) is used to classify individual voxels in SuperFGD events.
The application of GNNs to data from neutrino experiments has been recently
demonstrated by the IceCube experiment in order to identify entire events
as atmospheric neutrino interactions, outperforming a 3D CNN [164]. Other
GNN-based studies have been performed for particle reconstruction in high en-
ergy physics detectors [205–207]. To the best of our knowledge, the approach
we present in this work is the first attempt to use GNNs for node classification
in neutrino experiments.
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     r

Fig. 8.5: Data and computation size comparison between a 3D image and a
graph. The size of the 3D image on the left is fixed (H ×L×W ) regardless of
the number of hits as CNNs require fixed image sizes. The connected graph
shown on the right is a much more efficient representation of the data. Each
hit is represented as a graph node and connections, called edges, are made
between neighboring hits within a sphere of radius r.

8.3 Methodology

This Section contains the different processes needed to properly simulate the
detector data, define a GNN model and train it, before proceeding to the
results discussion in Sec. 8.4. For this, in Sec. 8.3.1 the data sampling of
the detector is described, forming two datasets containing different physics.
Section 8.3.2 formalizes the precise GNN model utilized to classify the voxels,
while Sec. 8.3.3 shows the training procedure of the model for the two datasets.

8.3.1 Data sample generation

In order to generate datasets of neutrino interactions with true labels that
allow training and benchmarking the classification algorithm, the steps below
are followed. For each neutrino interaction:

1. Initial particle types and initial kinematics are specified for all final-state
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particles produced in the interaction.

2. Initial particles are propagated through the detector geometry producing
further particles and leaving signals in the form of energy deposits.

3. Using particle energy deposits, the detector response is simulated.

4. The information is stored as a list of voxels with a known true label.

Initial particle types and kinematics
The initial particle types and their associated kinematics were simulated follow-
ing two approaches. Firstly, GENIE datasets were created using GENIE-G18.10b

neutrino interaction software [208]. For a given neutrino flux1 and target geom-
etry specification, it generates a list of realistic neutrino event interactions both
in the number and type of outgoing particles, often referred to as event topolo-
gies, and in their individual initial kinematics. Secondly, particle-gun (Pgun)
(1-track) and particle-bomb (P-Bomb) (multi-track) datasets were constructed
to be as complementary as possible to the GENIE datasets by minimizing the
modeling dependency. The number of initial particles and their types were
fixed in each of these datasets and their input kinematics were chosen to be
randomly and uniformly distributed in the range 10-1000 MeV/c. A summary
regarding the number of events and voxels in the two datasets, as well as of
the class distribution is presented in Tab. 8.1.

Particle propagation simulation in the detector
The SuperFGD detector geometry was simulated as described in Ref. [197].
The particle propagation and physics simulation is done by means of GEANT

v4-10.6.1 [210]. GEANT is a Monte Carlo based toolkit that provides re-
alistic propagation of particles through matter. It outputs a list of energy
deposits.

All energy deposits2 occurring in the same detector cube, including the
effect of Birks’ quenching [211], are summed to form the list of track voxels.
To simulate imperfect cube light-tightness, the 3D voxelized energy is then
randomly shared (µ = 2.7%) with the neighboring cubes, creating a new set

1 We used the T2K flux, which peaks at 600 MeV/c, see Ref. [209].
2 Only signals in the first 100 ns are considered. Further delayed signals, such as decays,

can be treated as independent graphs.
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GENIE
dataset

Training Validation Testing
# Events 6k 2k 11.5k
# Voxels 1.83M 606.7k 3.58M

Track Crosstalk Ghost
Fraction 43% 37% 20%

P-Bomb
dataset

Training Validation Testing
# Events 6k 2k 39.5k
# Voxels 1.84M 618k 12.3M

Track Crosstalk Ghost
Fraction 49% 38% 13%

Tab. 8.1: Descriptions of both GENIE and P-Bomb datasets, displaying the
number of events and number of voxels used for training, validating and testing
the models. Additionally the fractions of the different classes of voxels are
shown.

of voxels that originally had no energy deposits, the crosstalk voxels (see Fig-
ure 8.2). Then, the 3D voxelized energy of both track and crosstalk voxels is
projected onto its three orthogonal planes where the detector 2D signals are
simulated, converting the continuous energy deposit into discretized photons,
weighted by distance-dependent attenuation factors, which are detected with
35% probability. To mimic a minimum threshold detection sensitivity, only
2D hits with three or more detected photons are kept. Then, the 2D hits are
matched into 3D reconstructed voxels only if the same XYZ coordinate com-
bination can be made using two different combinations of 2D planes. In this
process, due to ambiguities some extra voxels are created, the ghost voxels (see
Fig. 8.3). Finally, those track and crosstalk voxels not reconstructed after the
3D matching are discarded from the original lists. An example of the 2D to
3D reconstruction is shown in Figures 8.4a and 8.4b.

Simulation output
The resulting output from the simulation is a list of voxels and their associated
energy deposits in the three planes, each with one of the following three labels
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that we want to classify, as described in Sec. 8.1: track, crosstalk or ghost
voxel.

8.3.2 Network architecture

Each graph in GraphSAGE is constructed using the proximity of two voxels
in that graph. If both voxels are spatially located within a radius of 1.75 cm3,
then we consider them to be connected in the graph by an edge; we repeat the
same procedure for each pair of voxels4. Additionally, we consider a neigh-
borhood depth of three, i.e., to produce the embedding of a voxel, we use the
voxel features together with its first neighbors’ features, the features of the
neighbors of its neighbors, i.e, second neighbors’ features, and the features
of the neighbors of the neighbors of its neighbors, i.e., third neighbors’ fea-
tures. The aggregator used to combine the features of the neighbors is the
mean aggregator, which produces the average of the neighbors’ values. This
final embedding is then passed to an MLP consisting of two fully connected
layers - each followed by a LeakyReLU activation function, and a final out-
put layer followed by a softmax activation function. Figure 5.2 illustrates the
GraphSAGE-based approach used, while Tab. 8.2 shows the architectural pa-
rameters chosen. Categorical cross-entropy is chosen as the loss function to
minimize during training, as it is considered the standard one for multi-class
classification problems:

J = − 1

m

m∑
i=1

c∑
j=1

y
(i)
j log ŷ

(i)
j ,

where:

• y(k): true values corresponding to the kth training example.

• ŷ(k): predicted values corresponding to the kth training example.

• m: number of training examples.

3 To link only those voxels within the 3×3×3 cube of voxels centred on the target voxel
(the maximum diagonal distance from the center of this cube is

√
12 + 12 + 12 ≈ 1.75).

4 If a voxel has no neighbors, it is discarded from the graph and cannot be classified; this
happens for less than 0.6% of the total number of voxels.
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• c: number of classes/neurons corresponding to the output. In this case,
the three classes are: track, crosstalk, and ghost.

Parameter value
Encoding size 128
Depth 3
Aggregator mean
Fully Connected Layer 1 128 neurons
Fully Connected Layer 2 128 neurons
Fully Connected Layer 3 (output) 3 neurons

Tab. 8.2: Architectural parameters; for more information about the meaning
of the parameters, see Sec. 5.2.

The output layer of the model consists of three neurons, one for each of the
three classes, with values vi for i = 1, 2, 3. The sum of neuron values is given
by
∑3
i=1 vi = 1 such that each neuron value gives a fractional score that can

be used to classify voxels. In other words, the model returns scores for each
voxel to be one of the three desired outputs, which can be interpreted as the
probability: track-like, crosstalk-like, or ghost-like.

8.3.3 Training

The network5 was trained for 50 epochs6 using Python 3.6.9 and PyTorch
1.3.0 [212] as the deep learning framework, on an NVIDIA RTX 2080 Ti GPU.
Adam [78] is used as the optimizer, with a mini-batch size of 32, and an initial
learning rate of 0.001 (divided by 10 when the error plateaus, as suggested
in [213]). The model has a total of 105,347 parameters. Figure 8.6 shows
the validation results during the training process, measured by the F1-score

5 We would like to thank T. Jiang, T. Zhao and D. Wang for their implementation
of GraphSAGE, on which this work’s code is based on: https://github.com/twjiang/

graphSAGE-pytorch
6 Epoch: one forward pass and one backward pass of all the training examples. In other

words, an epoch is one pass over the entire dataset.

https://github.com/twjiang/graphSAGE-pytorch
https://github.com/twjiang/graphSAGE-pytorch
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metric:

F1 = 2
precision · recall

precision + recall
.

The precision and recall are defined as:

precision =
truepositives

truepositives + falsepositives
,

recall =
truepositives

truepositives + truenegatives
,

where the labels are compared as one class vs. all the others. The model used
later for inference on new data is the one that maximizes the F1-score for the
validation set, as it has the best generalization for unseen data.
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Fig. 8.6: Validation F1 results on GENIE and P-Bomb samples.

8.4 Results

The GNN voxel-type predictions are compared against the true labels to evalu-
ate the network performance and identify possible areas of improvement. Here,
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we choose the output class with the highest score as the predicted class of each
voxel although, depending on the type of analysis, different selection criteria
could be applied in the future.

The efficiencies and purities of these predictions are calculated by two meth-
ods: per voxel and per event. The latter method evaluates the correctness of
predictions on an event-by-event basis, while the former does an overall cal-
culation of the efficiencies and purities for all voxels in all events of the sam-
ple. The results of both methods for four sets of training/testing samples are
shown in Tab. 8.3, giving nearly identical performance that is independent of
the dataset used to train and test the GNN.

As an example, Fig 8.7 shows the voxel prediction results from the GNN
when applied to the event shown in Fig. 8.4, a GENIE event that features
a track almost completely composed of ghost voxels. Figure 8.7a shows the
class predicted for each voxel, while Fig. 8.7b displays which voxels were cor-
rectly/incorrectly classified.

A more in-depth analysis of the GNN performance can be carried out by
studying the effects of different event properties on the efficiencies and purities
of the predictions. For these studies, the results of the GNN trained and tested
on the GENIE dataset are used.

One of the factors expected to affect these predictions is the number of vox-
els in the event. Figure 8.8 shows the relationship between the mean efficiency
and purity per event for each type of voxel as a function of the total number of
voxels in the event. The figure also shows the mean number of events in each
bin (in light blue). It is clear that both the efficiencies and purities of the three
types of voxels decrease as the number of voxels in the event increases. This
decrease is coupled with an increase of the fraction of ghost voxels as the total
number of voxels increases, which are the hardest for the GNN to classify.

The number of tracks in the event is an estimate of the complexity of its
topology. According to Fig. 8.9, the classification efficiencies and purities drop
as the number of tracks increases. This behaviour is also correlated with the
increasing fraction of ghost voxels in the events.

The region around the interaction vertex is of particular interest in the
event. It is expected that a high spatial density of voxels within a certain
volume of the detector may pose a challenge for the GNN to correctly identify
the voxel type. This can be observed by studying the efficiencies and purities
as a function of the distance to the interaction vertex, as shown in Fig. 8.10.
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GENIE Training

GENIE
Testing

Per
Voxel

Track Crosstalk Ghost
Efficiency 93% 90% 84%
Purity 93% 87% 91%

Per
Event

Track Crosstalk Ghost
Efficiency 94% 94% 88%
Purity 96% 91% 92%

P-Bomb
Testing

Per
Voxel

Efficiency 94% 93% 87%
Purity 95% 90% 92%

Per
Event

Track Crosstalk Ghost
Efficiency 94% 94% 87%
Purity 96% 90% 92%

P-Bomb Training

GENIE
Testing

Per
Voxel

Track Crosstalk Ghost
Efficiency 93% 89% 80%
Purity 91% 86% 89%

Per
Event

Track Crosstalk Ghost
Efficiency 94% 93% 88%
Purity 95% 91% 91%

P-Bomb
Testing

Per
Voxel

Track Crosstalk Ghost
Efficiency 95% 93% 88%
Purity 95% 91% 92%

Per
Event

Track Crosstalk Ghost
Efficiency 95% 93% 88%
Purity 96% 91% 92%

Tab. 8.3: Mean efficiencies and purities of voxel classification, calculated for
the whole sample (per voxel) and as a mean of the event-by-event efficiencies
and purities (per event).
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(a) Prediction: voxels are colored based on the GNN predictions.
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(b) Accuracy: voxels correctly classified by the GNN are shown in green.

Fig. 8.7: Example GNN prediction results for the interaction shown in Fig. 8.4.
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(a) Efficiency.
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(b) Purity.
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(c) Mean fraction of each type of voxel as a function of the number of voxels in the
event (blue = track, orange = crosstalk, green = ghost).

Fig. 8.8: Efficiency and purity as a function of the number of voxels in the
event for a sample trained and tested on GENIE simulated data.
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(a) Efficiency.
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(b) Purity.
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(c) Mean fraction of each type of voxel as a function of the number of tracks in the
event (blue = track, orange = crosstalk, green = ghost).

Fig. 8.9: Efficiency and purity as a function of the number of tracks in the
event for a sample trained and tested on GENIE simulated data.
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At the interaction vertex itself, it is clear that there are only track voxels and
the GNN can identify them with over 96% efficiency and 100% purity. The
following 2 cm exhibit only a small fraction of ghost voxels, mainly due to the
high spatial density of voxels with real signals in that volume, which is mainly
occupied by track and crosstalk voxels. As we go further from the vertex,
the efficiencies and purities increase up to 10 cm, after which we expect the
density of voxels to decrease allowing for more ghost voxels. Therefore, at
large distances we observe that the efficiencies and purities tend to decrease,
most notably the efficiencies of crosstalk and ghost voxels and the purity of
crosstalk voxels.

As the main goal of this GNN is to identify ghost voxels in order to eliminate
them from the events, it is important to make sure that true track and crosstalk
voxels are not lost in the process. According to the tests performed, only 1.1%
of all true track voxels and 3.3% of crosstalk voxels are incorrectly classified
as ghost voxels by the GNN. In addition, it is important not to miss ghost
voxels: the GNN correctly identified 84.5% of all ghost voxels, where 72.1%
of those classified incorrectly were predicted as crosstalk. Therefore, although
not ideal, this issue is not critical as crosstalk voxels have a smaller influence
on future studies than track voxels.

Lastly, we compare the results of the GNN against a conventional method of
voxel classification which relies on a charge cut. As described in Appendix C.1,
each voxel has three charges that correspond to the signals from the three fibers
passing through it. Since other voxels along the same fiber may have signals
causing a larger amplitude to be recorded, we consider the smallest of these
three charges to be the most accurate estimation of the true voxel charge.
Hence, this minimum charge is used for the purposes of this charge cut. Since,
by definition, we expect higher energy deposition in track voxels compared to
crosstalk and ghost voxels, we set a lower limit for the minimum charge in a
voxel such that any voxels with a higher minimum charge than the threshold
are classified as track voxels. Fig. 8.11 shows the distribution of the minimum
voxel charge for the three types of voxels. From this figure, it is clear that it is
not possible to separate ghost from crosstalk voxels. Thus, this classification
is only binary such that we have two categories: track or other. We decide to
place this cut at 12 p.e., where the track and non-track voxel PDFs intersect.

To compare the results of this cut with those of our GNN, we combine the
predictions of the crosstalk and ghost categories. Table 8.4 shows the efficiency
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(a) Efficiency.
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(c) Mean fraction of each type of voxel as a function of the distance to the vertex
(blue = track, orange = crosstalk, green = ghost).

Fig. 8.10: Efficiency and purity as a function of the distance to the neutrino
interaction vertex for a sample trained and tested on GENIE data.
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and purity of the classifications for the two methods. It is evident that using
only a charge cut can still yield a comparable track voxel classification efficiency
to the GNN. However, it struggles to correctly classify non-track voxels which,
in turn, reduces the purity of the predicted track voxels.

Another improvement given by GNN over the charge cut is the capability
of rejecting “fake” tracks, i.e. a cluster of ghost voxels that closely resembles
the structure of a real particle track. Since fake tracks are usually produced
by the shadowing of real tracks, the corresponding number of p.e. measured
in the three readout views is higher than 12 p.e., hence the charge cut cannot
reject them easily. The ability of the GNN to reject ghost tracks is shown
in Appendix C.3 for a number of neutrino interactions and compared to the
charge cut method.
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Fig. 8.11: The distribution of the minimum charge among the three voxel
charges for the GENIE sample.

Figure 8.12 shows the advantage of the three-fold classification of the GNN
over the binary classification of the charge cut when comparing the fraction
of true total deposited energy obtained using each method. In the case of
the GNN, the total deposited energy in an event is the sum of the true energy
deposited in all non-ghost voxels. For the charge cut, only the energy deposited
in track voxels is used. This causes an average energy loss of 5% per event
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GNN Charge Cut

Track Other Track Other
Efficiency 94% 96% Efficiency 93% 80%
Purity 96% 95% Purity 80% 91%

Tab. 8.4: Mean efficiencies and purities of voxel classification for the GNN and
a simple charge cut.

when using a method that also excludes the crosstalk voxels, compared to less
than 1% when using the GNN that can isolate ghost voxels.

8.5 Systematic uncertainty considerations

The results presented in Sec. 8.4 show that the GNN is a very powerful
technique for removing ghost voxels and identifying optical crosstalk in 3D-
reconstructed neutrino interactions. It is important to demonstrate that this
technique is robust and does not introduce new systematic uncertainties, po-
tentially given by a sub-optimal choice of the training sample.

One of the main limitations in the measurement of the neutrino oscillation
parameters in long-baseline experiments comes from uncertainties in the mod-
eling of neutrino interactions, not yet fully constrained by data and partially
incomplete for describing all the details of the interaction final state. For ex-
ample, the modeling of hadron multiplicity and kinematics may considerably
change the image of the neutrino interaction, particularly near the neutrino
vertex, or the total energy deposited by all the particles produced by the neu-
trino interaction. Hence, it is hard to obtain a data-driven control sample to
train a neural network without making any prior assumptions. Since the GNN
is trained only on a subset of the parameter space, the results could be biased
if the detected neutrino interactions belong to a region of the parameter space
not well covered by the MC generator. Thus, there must be careful studies of
the systematic uncertainties in order to account for a potentially incomplete
sampling of the parameter space.

One advantage of GNNs over algorithms like CNNs is that one can control
the input variables used for the parameterization.
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Fig. 8.12: The fraction of the true total deposited energy obtained when using
the GNN (trained on GENIE) or the charge cut as a classification method.

In this section, we investigate potential sources of systematic uncertainty.

As described in Sec. 8.4, different training samples, (GENIE or P-Bomb)
were generated and the results were summarised in Tab. 8.3, demonstrating
that the performance is still very good even when the samples used for training
and testing were different.

A few comments about the training sample generation are necessary. Whilst
the GENIE sample belongs to a particular choice of the neutrino interaction
model, the P-Bomb sample aims, in principle, to be as model-independent
as possible. However, generalizing the training sample enough to contain all
possible final states of the neutrino interaction is computationally prohibitive.
The training sample will always have some limitations from the subjective de-
cisions about which neutrino interaction topologies are sufficiently improbable
to be omitted. Thus, it is necessary to adopt a figure of merit to quantitatively
evaluate how two training samples differ in terms of sampling of the parame-
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ter space. Following the prescription described in Ref. [214], we computed the
distance between the correlation matrices of the GNN input variables of the
different training samples (GENIE and P-Bomb), defined as

d(C1, C2) = 1− tr {C1C2}
‖C1‖‖C2‖

(8.1)

where C1 and C2 are the correlation matrices obtained from two different
training samples. In the text we will refer to d(C1, C2) simply as to the dis-
tance between training samples. Although this method is an approximation
to a multivariate Gaussian distribution of the probability density function and
does not take into account the scales and means of the variables, it still provides
a quick way to understand how similar the training samples are. Nevertheless,
other heavily computational methods, such as those involving the difference
of probability density function integrals, could be used, but are beyond the
scope of this study. The correlation matrices of the features for the GENIE
and P-Bomb datasets are presented in Fig. C.1 in Appendix C.2. An “alterna-
tive” P-Bomb sample, inclusive of non-physical event topologies (e.g. events
not predicted by neutrino event generators) with respect to the other one, was
generated for the systematic uncertainty evaluation. However, since the dis-
tance between the original and the alternative P-Bomb samples is nearly zero,
the latter was not used. In Tab. 8.5, the distances of Eq. (8.1) between the
correlation matrices from three generated training samples are shown.

GENIE P-Bomb Alternative

GENIE - 0.020075 0.020803
P-Bomb 0.020075 - 0.000136
Alternative 0.020803 0.000136 -

Tab. 8.5: Distance as defined in Eq. 8.1 between the correlation matrices
obtained from the different training samples. Details of the generation of
the GENIE and P-Bomb samples is described in Sec. 8.3.1. The Alternative
sample was built with a particle bomb similar to the P-Bomb sample but with
additional event topologies.

The robustness of the GNN against model dependencies can be verified by
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training different neural networks on different event samples and applying them
to the same set of neutrino interactions. A difference in the observables used
in the physics measurement, such as particle momenta, energy deposit, etc.,
obtained by the different training can be assigned as a systematic uncertainty
introduced by the method.

A study was performed to evaluate the impact of the method on the total
true energy deposited in the detector. The difference between the total energy
deposit computed after rejecting the voxels classified as ghosts for both network
trainings was computed. Fig. 8.13 shows the distribution of the total true
deposited energy before and after discarding the voxels classified as ghosts.
Both GENIE- and P-Bomb- trained GNNs give very similar results over the
full range of total deposited energy. The total true deposited energy computed
with and without ghost rejection differ on average by less than 1 MeV. Hence, it
is expected to be improved by increasing the statistics of the training samples.
The total difference between GENIE- and P-Bomb- trained GNNs is found
to be less than 1 MeV with a standard deviation of approximately 5.5 MeV,
mainly due to a few outlier entries, and 68% of the events with a difference
better than 0.192 MeV, as shown in Fig. 8.14.

This corresponds to less than 2% of the mean total deposited energy per
event. In Fig. 8.15 the impact of the different training sample is shown as
a function of the total deposited energy. The fractional standard deviation,
defined as the standard deviation of the difference between deposited energy
computed from different GNN trainings and divided by the true deposited
energy, shown in the bottom panel, is less than 2% and almost constant as
a function of the deposited energy. This means that the performance of the
method is about the same irrespective of the total deposited energy. This
study confirms that GNN can be used for classifying 3D voxels potentially
with limited systematic uncertainties in the deposited energy, while drastically
improving the tracking capability.

Another potential issue could be given by a mismodeling of the amount
of crosstalk. In addition to the nominal optical crosstalk (2.7%), two further
datasets were simulated using 2% and 5% crosstalk and the voxel classification
was performed using the GNN trained with nominal crosstalk. As shown in
Tab. 8.6, the efficiency and the purity is relatively stable even in the case
where the crosstalk model is wrong, in particular for identifying track voxels.
However, crosstalk can be precisely measured with even small prototypes, thus
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Fig. 8.13: Distribution of the total true deposited energy after rejecting the
ghost voxels classified either with GENIE- (dashed orange) or P-Bomb- (dotted
green) trained GNNs and without any ghost rejection (solid blue). The mean
total deposited energy per event is about 288 MeV.

it is not considered to be a source of additional systematic uncertainty as it
can be accurately simulated.

8.6 Conclusions

A graph neural network inspired by GraphSAGE was developed and tested
on simulated neutrino interactions in a 3D voxelized fine-granularity plastic-
scintillator detector with three 2D readout views. The advantage of this neural
network is that, the graph data structures provide a natural representation of
the neutrino interactions.

The neural network was able to identify ambiguities and scintillation light
leakage between neighboring active scintillator detector volumes as well as real
signatures left by particles with efficiencies and purities in the range of 94-96%
per event, with a clear improvement with respect to less sophisticated meth-
ods. In particular, it can reject fake tracks produced by the shadowing of
real tracks observed in the 2D readout views. The performance was tested for
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Fig. 8.14: Difference between the total true deposited energy computed after
rejecting the ghost voxels classified with GENIE- and P-Bomb- trained GNNs.
The mean is 0.78 MeV while the standard deviation is 5.5 MeV. About 40% of
events show no difference between P-Bomb and GENIE, 68% have a difference
within ±0.192 MeV, while only 5% of the events have a difference outside the
range ±6.35 MeV.

neutrino events with different number of voxels, number of tracks and voxels
at different distances from the vertex, variables that could hint to interaction
model dependencies of the method. Efficiencies and purities were found to
be relatively stable and the trends were consistent with the expectation. The
robustness of the neural network against possible systematic uncertainties in-
troduced by the method was tested. The results were obtained using neural
networks trained on different samples, produced either with the GENIE event
generator or by randomizing the number of final state particles and relative
momentum to obtain a more generic sample that does not belong to any par-
ticular theoretical model. It was found that the bias introduced on the total
deposited energy of the event by arbitrarily choosing a different training sam-
ple is, on average, less than 1 MeV. The impact of potential mismodeling of
the light leakage between neighboring scintillator volumes was tested. Results
show that the performance of the neural network is robust to expected changes
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Crosstalk 2.7% (nominal)
Track Crosstalk Ghost

Efficiency 93% 90% 84%
Purity 92% 87% 91%

Crosstalk 2%
Track Crosstalk Ghost

Efficiency 92% 89% 81%
Purity 94% 83% 89%

Crosstalk 5%
Track Crosstalk Ghost

Efficiency 94% 89% 88%
Purity 86% 91% 93%

Tab. 8.6: Mean efficiencies and purities of voxel classification, per voxel, for
different crosstalk values, i.e. 2.7% (nominal) 2% and 5%. The GNN was
trained with GENIE training samples with nominal crosstalk and tested on the
same GENIE sample with different crosstalk values to study its robustness.

in the crosstalk modeling.
To conclude, we showed that a graph neural network has great potential

in assisting a 3D particle-flow reconstruction of neutrino interactions. Similar
results may be expected for other types of detectors that aim to a 3D recon-
struction of the neutrino event from 2D projections and that share analogous
features like ambiguities and leakage of signal between detector voxels.
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Fig. 8.15: Top: difference between the total true deposited energy computed
after rejecting the ghost voxels classified with GENIE- and P-Bomb- trained
GNNs as a function of the total true deposited energy. Bottom: fractional
standard deviation of the difference of the total true deposited energy com-
puted after rejecting the ghost voxels classified with GENIE- and P-Bomb-
trained GNNs as a function of the total true deposited energy.
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9. PREDICTIVE ANALYSIS OF THE DAMPING RATE IN
INTER-AREA OSCILLATIONS

This chapter contains a descriptive report of an industrial application within
the context of the collaboration between Grupo AIA and IFAE during the
PhD. Due to business secrets and privacy of the data, the following report
does not contain numbers or names quantifying or precisely describing the
nature of the given datasets.

The damping ratio of the electric grid will be analyzed as a model of features
of the Spanish network, as it has strong implications on potential blackouts
(see Sec. 9.1). A first study on the proper nature of the data and a baseline
model are proposed in Sections 9.2 and 9.3. Later, in Sec 9.4, a restructuring
of the data to apply a graph neural network model is discussed. Finally, the
uncertainty of the models is presented in Sec. 9.5 through quantile regression
and normalizing flows.

9.1 Problem description

The electric grid in Europe, and in particular in Spain, operates by produc-
ing and distributing alternating current (AC) with an oscillating frequency of
50 Hz. The stability of maintaining this precise frequency is crucial for the
network to work accordingly and to bring proper electrical power to the end-
user. When having such a system with interconnected synchronous generators,
electro-mechanical oscillations appear around the main frequency. These low-
frequency modes caused by groups of generators in different geographical areas
are inter-area modes [215], producing inter-area oscillations with corresponding
damping ratios for each of the modes. When the system is out of equilibrium,
implying oscillations of the main frequency around 50 Hz, the damping ratios
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of the inter-area oscillations diminish those oscillations, bringing them to low
amplitude [216]. There have been instances, however, where the damping ra-
tios were not strong enough to reduce the oscillations, producing blackouts in
large areas of population.

The goal of this analysis is to construct a model which relates the state
of the electric grid in Spain to the damping ratio for a particular inter-area
oscillation observed in the network, to both predict the damping ratio at future
states of the grid and to asses which adjustments one needs to take in order
to increase the damping ratio above a threshold level. To do so, Grupo AIA
is working together with Red Eléctrica Española (REE)1 through Elewit2 to
understand at a fundamental level the behaviour of the damping ratio and how
to prevent it from reaching a critical level.

For a fixed inter-area oscillation mode, the damping ratio [217] is defined
as the ratio between the actual damping of the oscillation and the intrinsic
critical damping of the mode,

ζ =
actual damping

critical damping
, (9.1)

and is a measurable quantity in the electric grid by phasor measurement units
(PMUs) [218] in the different substations. We consider a threshold of 5% for
the damping ratio as potentially dangerous, below of which the factor is smaller
than desired according to REE, and unstable conditions in the network can
arise.

For the purpose of constructing a model, REE has provided a dataset of
damping ratios together with features of the electric grid of Spain taken every
5 minutes, going from January to August of 2019. The features include local
magnitudes, such as generator powers at different points of the grid; regional
magnitudes, such as the solar power obtained in the different autonomous
communities; and global magnitudes, such as the exchange with France and
Morocco. The complete list of features has a length of over 1100 different
magnitudes, over which we will build a model to predict the damping ratio.

Through the rest of the chapter, we will study the following properties
regarding the damping ratio:

1 https://www.ree.es/en
2 https://www.elewit.ventures/
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• A baseline model utilizing gradient boosting trees is constructed to es-
tablish the minimal relation between the power grid features and the
damping ratio.

• Given the mentioned dataset, we determine the time-correlation of the
damping ratios and features of the electric network, analyzing how this
impacts potential model buildings.

• The signal’s fast variations are analyzed through a new dataset with
higher frequency sampling (every 20 seconds) to understand whether
these variations are noise or have real physical meaning behind them,
comparing the damping ratio measured at different stations of the grid.

• A first model of graph neural networks to exploit the graph structure
of generation and tension of the network is proposed to analyze if local
dependencies can capture additional features compared to treating the
features in a tabular way.

• A probabilistic model is formalized through normalizing flows, showing
an improvement over the standard approach of quantile regression, de-
termining properly the uncertainties of the prediction.

9.2 Fingerprinting and baseline model

The baseline model of the analysis will be a gradient boosting tree regressor
(an ensemble of intelligent-built decision trees) through LightGBM [219]. Al-
though gradient boosting trees were not detailed in the introduction to machine
learning in Chapter 3, they offer powerful models which are complementary to
neural networks and, contrary to them, are very fast to train. As for the loss
functions, both RMSE in Eq. (3.1) and MAPE in Eq. (3.2) will be considered.

When dealing with dividing the data into train, validation and test, we
noticed that there might be a phenomenon of “fingerprinting”. We denote fin-
gerprinting as a model overfitting to the training data, learning by memorizing
directly pairs of features with targets due to strong correlations between train,
validation and test sets, since learning by memorizing maximizes its perfor-
mance across the data. The model learns without forming a concept relating a
richer structure between both, hence performing well for data very close to the
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training one but generalizing poorly. When a sample has features very close
to the ones memorized in training, the prediction will be accurate because
the algorithm has created a relation analogous to a database, but when the
features start to be different from the ones memorized during training, the al-
gorithm gets lost due to not having the proper target in said database. In this
case, this means that data points close in time to each other have very similar
characteristics, studied through a autocorrelation factor, which showed strong
correlations of points with lag up to 3 (i.e., 15 minutes apart), after which
the autocorrelation stabilizes slightly below 0.6. Hence, by randomized train-
validation-test splitting, the performance of the model is accurate (with an
absolute error smaller than a 9%) because it memorizes the samples instead
of finding an underlying relation between the input features and the damping
ratio. To prevent this from happening, we have separated the data in groups
which have a certain lag in time tlag. By grouping the data in sets of fixed
duration tlag, for example in groups of one hour, we generate separated groups
for training and testing, while discarding every two groups in order to have the
data without continuation and, hence, without autocorrelation, eliminating the
phenomenon of fingerprinting. Additionally, when dividing the training into
training and validation, the subgroups of fixed duration were kept together, so
that there was always at least a fixed time tlag between the samples in training
and validation, removing potential autocorrelations when verifying the model
through the validation set.

To verify that there is indeed fingerprinting, we have trained different base-
line models, where the only difference is the time separation tlag between the
groups, these durations being: 0 minutes (no distance), 5 minutes, 10 minutes,
30 minutes, 1 hour, 4 hours, 12 hours and 1 day. The results on the train and
test sets were computed for both RMSE and MAPE. It appears that the lag
in time between train and test tlag has to be large in order for the errors to
stabilize, although it seems to start converging for the largest separation. This
is expected due to the stabilization we observed of the autocorrelation of the
damping ratio, hence removing the largest correlation factors, which are of the
order of 0.84. For the final baseline model we take as separation 1 hour and
5 minutes (i.e., a lag of 13) to ensure eliminating sufficient autocorrelation,
considering it achieves a large enough decoupling of the fingerprinting. The
factor of 13 in lag was chosen in order to make groups which spread all over
the day, since 13 is not a divisor of 60 (the minutes in a day) nor 24 (the hours
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in a day), which is achieved by having groups of 1 hour and 5 minutes.
The parameters for the LightGBM chosen for the final baseline model were

found utilizing Bayesian hyperparameter optimization [72], an algorithm to
fine-tune hyperparameters in an automated way. The model’s performance for
the values below threshold of the damping ratio, i.e., the true values < 5%,
is quite inaccurate. This might be due to the low number of training samples
in that regime and that they are truly anomalies of the system. The RMSE
score (similar to the standard deviation) for the test samples’ damping ratio
is 2.481, while the MAPE (the absolute percentage error) is 0.180.

With this, we have established that the time-correlations of the data sam-
ples have to be taken into account when building a model around them, sug-
gesting a methodology to properly split train, validation and test sets. Ad-
ditionally, the baseline model shows the existence of an underlying relation
between the electric grid features and the damping ratio, quantifying a first
approach.

9.3 Damping ratio signal analysis

The damping ratio signal provided in the previous dataset comes from a PMU
in a substation of the electric grid. At first glance, the signal appears to have
some sort of noise, since the points oscillate around a more stable trend with
some noisy variance around it.

To verify this, REE provided three new datasets of purely the damping ratio
signal from three different substations, located at well-distanced geographical
cities in Spain, with an average distance of over 900 between them. These
datasets have the signal taken every 20 seconds, compared to the previous
one which was every 5 minutes. The upside of these datasets is that for a
particular PMU, 8 months of data is available; the downside is that only 10
global features of the electric grid are measured3 with this frequency.

When plotting the damping ratio of the three substations, the apparent
noisy behaviour is actually the true signal, without noise, as all three of them
show the exact same response through time of growing and decreasing, al-
though with a slight displacement from each other. This synchronized behavior

3 These features are not measured by PMUs, but are aggregated from other sources
through timestamps.
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indicates that the noisy signal is not noisy at all, but correct, so no smoothing
on it can be applied. Nevertheless, working on scales of 5 minutes or even 20
seconds is a low sampling frequency when considering the true damping ratio
time scale variation, making it hard to capture the exact relation between the
network state and the damping ratio at that scale.

Additionally, albeit there being a small displacement between the signals
in the different substations, the discrepancy is small, especially when having
a small damping ratio close to the critical one, where the three signals come
very close together (their difference is smaller than 1% when below threshold).
This, together with the synchronized trend of the different signals, indicate
that the damping ratio is a global property of the electric grid, up to a small
scaling factor.

9.4 Graph neural network study

Contrary to the GNN used in Chapter 8, the GNN implementation has to
change due to two reasons:

1. The objectives of the models are different: For the usage in Super FGD,
the interest was to perform individual node classification, while here we
want to extract a global feature of the graph, i.e., we want to model a
graph regression.

2. The algorithms, although being GNNs, are completely different, as will
be stated in the description of the network below, due to wanting to
extract a different kind of information (a global compared to a local)
than before.

Among the variables in the 5 minutes dataset provided, there is a large
amount of columns corresponding to electric generation and tension in specific
nodes of the Spanish electric grid. By matching the string names of those
variables to a second database which outlines the electric grid structure, we
are able to assign for each node a generation and a tension (assumed to be
zero if the data is not given in the dataset).

The remaining variables, which do not correspond to tensions or genera-
tions, are stored in a vector and are considered global features of the graph.
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With node features distributed through the graph and global features avail-
able, we perform a first study to analyze the potential of GNN to aggregate
and extract richer information from the electric grid structure.

The GNN, constructed using Pytorch [212] and Pytorch Geometric [220],
has then the following ordered structure of operations:

1. Node features are processed to obtain richer encodings via aggregation
functions of GNNs, such as the Chebyshev spectral graph convolutional
[221], the graph attentional convolutional [222], or the standard graph
convolutional operators [169].

2. The encodings of all the nodes are concatenated into a flat, long vector,
which is also concatenated with the global features of the graph, forming
a processed feature vector.

3. The processed feature vector is then passed to a feed-forward neural
network to perform a non-negative regression to predict the damping
ratio of Eq. (9.1).

Testing out different combinations of encoding size, neighbour depth and
aggregation functions, the model did not improve the RMSE/MAPE of the
baseline obtained. Additionally, by stacking4 [223] the GNN model together
with the LightGBM one, we barely got an improvement on the overall perfor-
mance, pointing out that GNN was learning closely related structures of the
data when comparing it to LightGBM (i.e., their information was not com-
plementary). This also holds when constructing a straight feed-forward model
from the tabular data, yielding the same results as GNN.

We have currently three hypotheses of why this could be happening:

• The phenomenon of damping ratio we are modelling does not depend on
the structure of the electric grid and the information exchange happening
between the nodes explicitly, hence having a richer encoding in the nodes
does not provide any additional benefit. This holds especially true when

4 Stacking consists in building a meta-model utilizing prediction of other models as input.
In this particular case, a new LightGBM model was constructed using as inputs the GNN
and LightGBM predictions. This allows to account for shortcomings of one model via the
other, as both models might have learned to extract different information from the data,
even though their performance is similar.
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considering that the most important information is already gathered in
the global features, as has been verified by building a model discarding
generation and tension information.

• The data between the readouts is not properly synchronized, as it is
presented every 5 minutes. Some features might be aggregated as the
average, or sampled at slightly different times.

• A lack of data to properly extract a more complex and rich information
through the aggregation functions. The number of data samples is of
the order of tens of thousands, which is low when considering training a
deep learning model of the complexity we are expecting.

Further studies in the future are required to fine-tune if GNNs can really help
to extract a more accurate model for the damping ratio or not, as it is natural
to think that an electric grid in the form of a graph could utilize the potential
of GNNs for this particular task. This concept has been applied for other tasks
of electric grids, such as emulating the physics within it [224], predicting the
power flow [225] or predicting power outages in a different context [226].

9.5 Uncertainty measurement through quantile regression and
normalizing flows

Assessing the uncertainty of the model is crucial to understand if the RMSE
obtained in Sec. 9.2 comes from a mismodelling of the damping ratio or if
the relation between the features and the target has an intrinsic uncertainty.
For this purpose, two methodologies are applied to quantify the uncertainty:
quantile regression [227,228] and normalizing flows (see Chapter 4).

Quantile regressions are standard ML regressions with the pinball loss func-
tion [227] as objective function. Let τ be the target quantile, y be the real
value and zτ be the quantile prediction, the pinball loss function takes the
form:

Lτ (y, z) =

{
(y − zτ ) τ, if y ≥ zτ ,
(zτ − y)(1− τ), if y < zτ .

This loss function can be applied to any ML algorithm, allowing it to predict
a certain quantile τ instead of the target value. In particular, we have used
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to construct a quantile regressor via LightGBM for the quantiles {0.025, 0.16,
0.50, 0.84, .975}, to have the uncertainty at one and two standard deviations
(if the damping ratio follows a Gaussian-like distribution).

Another method utilized to obtain the quantiles is by performing a density
estimation via normalizing flows of the conditional density

P (damping ratio|electric grid features).

Given the electric grid features, the density of the damping ratio can be esti-
mated, allowing to compute the desired quantiles, among other quantities.

The quantile models were constructed over the 20 second dataset, as the
number of data available is larger. Additionally, when constructing the baseline
model for the 5 minutes dataset but using only the 10 global features observed
in the 20 second dataset, the performance dropped only slightly (from a RMSE
of 2.481 to 2.563), justifying that most of the relevant information is contained
in these 10 variables at this point in time. To verify the integrity of the
quantiles obtained by both methods, one can simply choose to compute the
ratio of test values below the quantile values, which should be as close to the
quantile chosen as possible, i.e., a τ fraction of the data should be below zτ .
For the quantile regressions of LightGBM, the mean absolute quantile error is
of 2.27%, while the normalizing flow obtains a mean absolute quantile error
of 0.60%, showing the expressiveness of capturing properly the uncertainty of
the problem. With this, we can define accurately enough the quantiles of the
uncertainty of the model, which have an average of σ ≡ (z0.84 − z0.16)/2 of
1.79.

Additionally, thanks to predicting the distribution of the damping ratio
instead of a point value, normalizing flows allow to answer the question of how
probable it is for the damping ratio to be below 5% given an electric network
configuration, enabling to detect crucial moments in the power grid.

With all this, normalizing flows show an accurate way of quantifying the
uncertainty contained in modeling the damping ratio as a magnitude of the
rest of the electric grid features.
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9.6 Conclusions

The damping ratio is a complex phenomenon which can make a strong impact
on the electric grid, producing blackouts. Modeling this quantity through
features of the system presents a challenging problem due to the stochastic
variations the damping ratio has intrinsically with these features.

A baseline model was constructed, showing the potential that relates the
features of the grid to the damping ratio. This model gives a quantitative
estimation of how well machine learning can perform when dealing with the
prediction of the damping ratio. Additionally, to build a robust model able
to accurately capture the mechanics which relate the features to the damping
ratio, we have shown that the data has to be split properly to remove temporal
connections between train, validation and test sets which otherwise lead to
fingerprinting of the learned model.

When studying the damping ratio at different stations of the grid for a
higher frequency dataset, it shows that smoothing the signal is incorrect, since
we might be eliminating true physics contained in the data and will be learning
an inaccurate model, emphasizing that the fast variations observed are true
signals.

We have shown that the data can be structured into a graph following the
layout of the electric grid in order to extract potentially new information using
rich models, such as graph neural networks. So far, no additional information
has been obtained using GNNs, possibly explained by one of the three reasons
described previously.

Finally, the stochastic nature of the damping ratio has been quantified
properly both through quantile regressions and specially through normalizing
flows, allowing for the measurement of the probability of being in certain ranges
and below the threshold value.

Future approaches to study more in-depth the impact of the potential ben-
efits a graph neural network could add to the model will be performed with
more data. Furthermore, mechanisms of altering the features of the electric
grid to minimize the risk of the damping ratio to be below threshold will be
proposed. The established baseline, GNN study and uncertainty assessment
open up a future collaboration between Grupo AIA and REE.
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A. APPENDIX: LIKELIHOOD-FREE INFERENCE OF
EXPERIMENTAL NEUTRINO OSCILLATIONS USING

NEURAL SPLINE FLOWS

In this Appendix, we will describe how observed events (pµ, θµ, Eν) are gen-
erated for the different experiments. Because of statistical fluctuations due to
an event oscillation with certain probability (following Eq. (6.1)), the exact
number of observed events cannot be determined beforehand, but can approx-
imately be chosen. In order to generate the observations of a fixed set of
parameters (θmix,∆m

2), the procedure is the following:

1. Choose an approximated number of observed events Napprox.

2. Generate a MC event (pµ, θµ, Eν), make the event oscillate according to
its energy Eν and accept it with probability given by Eq. (6.1), until
accepting a total of Napprox events. This takes a stochastic number
of Ninit tries, which corresponds to the number of initial events before
oscillating.

3. Generate new Ninit number of MC events, and accept them with proba-
bility according to Eq. (6.1). The accepted samples form the observation
set, with a number of Nobs samples, which is similar to Napprox.

To summarize, given a fixed set of parameters (θmix,∆m
2), we determine an

approximate initial number Ninit of events before oscillating needed to generate
Napprox oscillated observations. However, because this is a stochastic procedure
and we stopped exactly when Napprox were generated, the procedure has to be
repeated with a fixed number of Ninit tries, giving us Nobs ∼ Napprox observed
events.

Two kind of experiments were performed for five different set of param-
eters: one of low statistics (around 500 observations), with a number of the
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order of the real number of observed events in T2K, and one of high statistics
(around 50k observations), to see how the algorithm behaves and compares to
traditional methods when having a larger amount of data available.

The parameters of the initial experiments 1 and 2 in Sec. 6.3.2 are chosen
following the best fit value of sin2 θ23 and ∆m2 from [229]. The parameter
θmix is computed as

θmix =
π

2
− arcsin

√
sin2 θ23,

where we have used the fact that Eq. 6.1 is symmetric over θmix = π/4 and
fixed it in the interval [0, π/4]. For the best fit value, maximal mixing is almost
achieved (sin 2θmix = 0.9986). Experiments 3 and 4 (5 and 6) follow the same
procedure, but choosing sin2 θ23 within 1 (2) σ of the best fit. Experiments 7-
10 the mixing angle has the value of experiments 3 and 4, but ∆m2 is changed
in order to explore the behaviour on the parameter space.



B. APPENDIX: EXHAUSTIVE NEURAL IMPORTANCE
SAMPLING APPLIED TO MONTE CARLO EVENT

GENERATION

We can see in Tab. 7.1 that although the number of rejection sampling cycles
is remarkably lower for the NSF proposal, the time for obtaining one million
samples is fairly similar. This is because the time for a cycle is the sum of
the time in generating and evaluating the proposal plus the time it takes to
evaluate p (x), in this case the CCQE cross section. On average, for one re-
jection cycle of this experiment, generating+sampling for the NSF a batch
of 300 000 samples takes 0.31 seconds, for a uniform proposal it only takes
0.00079 seconds, and evaluating 300 000 samples for the CCQE cross section
model takes 0.0021 seconds. When summing up the time for the selected
proposal plus the time of the model, we can see that the NSF takes a large
fraction of the computational time (more than hundred times more than eval-
uating the cross section model), so overall a cycle for the NSF proposal takes
over a hundred cycles of uniform proposal. This is because the CCQE cross
section model we have chosen for this study (Sec. 7.1.1) is relatively simple,
especially compared to other applications in HEP. Additionally we are still
relatively low in the number of dimensions. As a thought experiment, we con-
sidered different cases for a similar set up: sampling ten million samples using
batches of 300 000 in each cycle, where the time of evaluating the model p (x)
is increased by a factor of tincrease.

Tab. B.1 shows the results for obtaining one million samples under these
circumstances for the quantiles kQ1.0, kQ0.9999 and kQ0.9990 with the same ac-
ceptance probability as in Tab. 7.1, consider different hypothetical models with
factors tincrease ∈ {1, 10, 100, 1000} compared to the CCQE cross section. We
show the time (in seconds) it takes to generate these ten million samples for
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Tab. B.1: Model complexity time comparison table for both NSF and uniform
proposals to generate ten million samples via rejection sampling. Choosing
kQ as one of the below quantiles, we increase the time to evaluate the model
p (x) for each rejection cycle by a factor tincrease. tNSF (tUnif) is the time it
takes to obtain ten million accepted samples, in seconds, for the NSF (uniform)
proposal. tUnif/tNSF is the ratio of the time between both proposals, showing
that for more complex models than the CCQE cross section of this paper, NSF
outperforms a uniform proposal by orders of magnitude.

Quantile tincrease tNSF tUnif tUnif/tNSF

1.0000 1 2017.26 471.64 0.23
10 2141.10 3567.01 1.67
100 3379.54 34520.76 10.21
1000 15763.94 344058.17 21.83

0.9999 1 63.95 123.19 1.93
10 67.87 928.73 13.68
100 107.01 8984.12 83.96
1000 498.39 89538.01 179.65

0.9990 1 28.87 35.36 1.22
10 30.64 266.54 8.70
100 48.31 2578.40 53.37
1000 225.00 25696.93 114.21

the NSF, tNSF, and for the uniform proposal, tUnif , while also computing their
ratio tUnif/tNSF. For models of p (x) with larger computationally complexity,
we can see that even for the maximum quantile kQ1.0 NSF is faster to obtain
ten million accepted samples than using a uniform proposal, gaining a whole
order of magnitude in time when the model is at least hundred times more com-
plex. Choosing quantiles smaller than 1.0, for models which take a thousand
times longer to compute compared to the CCQE cross section one, the NSF
proposal generates these ten million samples over a hundred times faster than
the uniform distribution. Even for simpler models with only hundred more
computation complexity, the gain of using the NSF proposal is noticeable.

Regarding the number of parameters used by the NSF with increasing
number of dimensions, when maintaining the same architecture for the NSF,
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the number scales linearly with the dimension of the data. However, when
considering higher dimensions, to enrich further the flexibility of the family of
densities produced by the NSF to account for more complex correlations and
dependencies between each dimension, the architecture might have to change,
adding an increase larger than linear for the number of parameters.
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C. APPENDIX: GRAPH NEURAL NETWORK FOR 3D
CLASSIFICATION OF AMBIGUITIES AND OPTICAL
CROSSTALK IN SCINTILLATOR-BASED NEUTRINO

DETECTORS

C.1 Input variables

The list of variables used as features for the graph nodes is given below. Each
node is placed at XYZ coordinates matching the center of a cube, however,
these center coordinates are not node variables by themselves since the detector
response is isotropic. The numbers in front of each variable match those in
Fig C.1.

• 0-2: peXY, peXZ, peYZ

Number of photons detected in the XY, XZ or YZ-fiber intersecting the
cube under consideration corrected by the expected attenuation.

• 3-5: mXY, mXZ, mYZ

Number of active voxels intersected by the fiber associated to peXY,

peXZ or peYZ

• 6: pewav

Average number of detected photons peXY, peXZ, peYZ, each weighted
by the fiber multiplicity mXY, mXZ, mYZ.

pewav =
peXY
mXY

+ peXZ
mXZ

+ peYZ
mYZ

3

• 7-9: pullX, pullY, pullZ
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Relative difference between the light measured in two different 2D planes.

pullX =
peXY− peXZ

peXY + peXZ

pullY =
peXY− peYZ

peXY + peYZ

pullZ =
peXZ− peYZ

peXZ + peYZ

• 10: residual

Similarity of the light yield measured in the three 2D planes, measured
as the squared distance from each peXY, peXZ, peYZ to the average,
weighted by the squared average.

µ =
peXY + peXZ + peYZ

3

residual =
(peXY− µ)2 + (peXZ− µ)2 + (peYZ− µ)2

µ2

• 11: pullXYZ

Similarity of the light yield measured in the three 2D planes, measured
as a combination of 2D pulls (a1,a2,a3) weighted by pewav.

a1 =
peXY
mXY
− peXZ

mXZ
peXY
mXY

+ peXZ
mXZ

a2 =
peXY
mXY
− peYZ

mYZ
peXY
mXY

+ peYZ
mYZ

a3 =
peXZ
mXZ
− peYZ

mYZ
peXZ
mXZ

+ peYZ
mYZ

pullXYZ =
a1a2 + a1a3 + a2a3

pewav
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• 12: ratioMQ

Ratio between the average voxel multiplicity in the three fibers and
pewav.

ratioMQ =
mXY+mXZ+mYZ

3

pewav

• 13-14: R1, R3

Number of active neighbor voxels in a sphere of certain radius.
↪→ R1, r=1 cm.
↪→ R2, r=2 cm.
↪→ R3, r=5 cm. R2 was not used as a variable due to the high correlation
with R1, but is used to compute RR.

• 15-20: x+, x-, y+, y-, z+, z-

Boolean variables representing the existence of immediate neighbors in
each of the 6 surrounding cubes

• 21: orthogonal neighbor

It is 1 if any of x+, x-, y+, y-, z+, z- is 1.

• 22: RR

Ratio between the number of close and far voxels. The ε = 10−7 prevents
numerical problems when R3=0.

RR =
R2

R3 + ε

• 23: ratioDQ

Ratio between the average voxel distance aveDist around the voxel and
the weighted average light yield pewav.

ratioDQ =
aveDist

pewav

• 24: aveDist

Average distance from the voxel center C to all fired voxel centers (Ci)
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within a sphere of radius 2.5 cm.

aveDist =
1

N

N∑
i

EuclidianDist(C,Ci)

A number of these variables are calculated from the same underlying prop-
erties of the energy deposits. In theory, an infinitely deep GNN trained on an
infinite amount of training data would be able to extract all of the informa-
tion required for classification from the few underlying properties. In practice,
we use a larger number of derived variables to guide the GNN to allow it to
more easily extract information from the data and to converge quickly in the
training process. Global position was intentionally not used as a variable to
avoid the GNN to learn neutrino modelling specific behaviours.

C.2 Comparison of GENIE and P-Bomb simulated data samples

Figure C.1 shows the correlations of the input variables defined in Appendix C.1
for the GENIE and P-Bomb data samples. Differences between the two ma-
trices arise from the different topologies of interactions produced by the two
generator methods.

C.3 Event Gallery

This section contains a number of visualizations to show the classification
performance of the GNN for a number of neutrino interactions with different
complexity and topology. Displays are shown for different events in Figs C.2
- C.7: all voxels with their true classification, only the true track voxels, the
classified track voxels using the charge cut method, and the classified track
voxels using the GNN. The interactions shown here are examples of interactions
containing many ghost voxels in order to showcase the GNN performance.

The track voxel classification ability of the charge cut and GNN methods
can be seen by comparing subfigures (c) and (d) with (b), respectively, for
each interaction. The GNN is able to reject ghost voxels very well, as shown
in Figs C.3, C.5, C.6 and C.7 where ghost tracks remain using the charge cut
method. In general, the performance improvement from the GNN increases
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with the complexity of the interactions. For simple interactions with only a
single muon in the final state both methods perform similarly.
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(a) GENIE dataset correlation matrix.

Fig. C.1: Correlation matrices for the input variables of the GENIE and P-
Bomb datasets used. Appendix C.1 gives the mapping between the numbers
on the axes and the variable names.
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(b) P-Bomb dataset correlation matrix.

Fig. C.1: Correlation matrices for the input variables of the GENIE and P-
Bomb datasets used (cont.).
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(a) The 3D voxels labelled as track (red), crosstalk (blue) and ghost (yellow) accord-
ing to the truth information from the simulation are shown.
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(b) Only the 3D voxels labelled as track according to the truth information from the
simulation are shown.

Fig. C.2: 3D visualization of a neutrino interaction in a finely segmented 3D
scintillator detector after the 3D matching of the three 2D views. The GNN
cut is able to almost entirely reject the fake track traveling on the XZ plane
and stopping near to the vertex at X∼160 mm and Z∼70 mm, while the charge
cut cannot.
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(c) The 3D voxels labelled as track according to the charge cut classification are
shown.
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(d) The 3D voxels labelled as track according to the GNN classification are shown.

Fig. C.2: Continuation.
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(a) The 3D voxels labelled as track (red), crosstalk (blue) and ghost (yellow) accord-
ing to the truth information from the simulation are shown.
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(b) Only the 3D voxels labelled as track according to the truth information from the
simulation are shown.

Fig. C.3: 3D visualization of a neutrino interaction in a finely segmented 3D
scintillator detector after the 3D matching of the three 2D views. The charge
cut is not able to reject two fake tracks, one coming from a vertex a X¡50 mm
Z¡50 mm traveling on the XZ plane and stopping near to the vertex at X∼160
and Z∼70. Moreover, the charge cut leaves a bump of ghost voxels around the
vertex that could mimic the interaction of a few low-energy protons, an effect
that could bias the reconstruction of the neutrino energy.
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(c) The 3D voxels labelled as track according to the charge cut classification are
shown.
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(d) The 3D voxels labelled as track according to the GNN classification are shown.

Fig. C.3: Continuation.
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(a) The 3D voxels labelled as track (red), crosstalk (blue) and ghost (yellow) accord-
ing to the truth information from the simulation are shown.
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(b) Only the 3D voxels labelled as track according to the truth information from the
simulation are shown.

Fig. C.4: 3D visualization of a neutrino interaction in a finely segmented 3D
scintillator detector after the 3D matching of the three 2D views. In this event
the performance of GNN and the charge cut is quite similar because the ghost
voxels are mainly given by the overlap of crosstalk hits in the 2D readout
views.
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(c) The 3D voxels labelled as track according to the charge cut classification are
shown.
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(d) The 3D voxels labelled as track according to the GNN classification are shown.

Fig. C.4: Continuation.
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(a) The 3D voxels labelled as track (red), crosstalk (blue) and ghost (yellow) accord-
ing to the truth information from the simulation are shown.
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(b) Only the 3D voxels labelled as track according to the truth information from the
simulation are shown.

Fig. C.5: 3D visualization of a neutrino interaction in a finely segmented 3D
scintillator detector after the 3D matching of the three 2D views. This neutrino
event has a quite high multiplicity and tracks are quite close to each other.
This produces relatively big clusters of ghost voxels that produce at least two
fake tracks even after the charge cut. Instead GNN allows us to classify ghosts
more precisely and correctly visualize the correct number of tracks. Moreover,
the charge cut makes true tracks more fat making their separation harder and,
potentially, less precise the particle momentum reconstruction.
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(c) The 3D voxels labelled as track according to the charge cut classification are
shown.
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(d) The 3D voxels labelled as track according to the GNN classification are shown.

Fig. C.5: Continuation.
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(a) The 3D voxels labelled as track (red), crosstalk (blue) and ghost (yellow) accord-
ing to the truth information from the simulation are shown.
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(b) Only the 3D voxels labelled as track according to the truth information from the
simulation are shown.

Fig. C.6: 3D visualization of a neutrino interaction in a finely segmented 3D
scintillator detector after the 3D matching of the three 2D views. Although
this is a relatively simple neutrino event, the charge cut is not able to reject
a fake track stopping near the neutrino interaction vertex while GNN can
provide a much cleaner reconstruction.
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(c) The 3D voxels labelled as track according to the charge cut classification are
shown.
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(d) The 3D voxels labelled as track according to the GNN classification are shown.

Fig. C.6: Continuation.
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(a) The 3D voxels labelled as track (red), crosstalk (blue) and ghost (yellow) accord-
ing to the truth information from the simulation are shown.
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(b) Only the 3D voxels labelled as track according to the truth information from the
simulation are shown.

Fig. C.7: 3D visualization of a neutrino interaction in a finely segmented 3D
scintillator detector after the 3D matching of the three 2D views. In the
neutrino event GNN can easily reject the relatively big cluster of ghost voxels
that would make difficult a proper reconstruction of the number of tracks and
corresponding energy, in particular near to the interaction vertex.
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(c) The 3D voxels labelled as track according to the charge cut classification are
shown.
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(d) The 3D voxels labelled as track according to the GNN classification are shown.

Fig. C.7: Continuation.
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[135] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations
using RNN encoder–decoder for statistical machine translation,”
in Proceedings of the 2014 Conference on Empirical Methods in

http://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf
http://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf
https://doi.org/10.1093/imanum/2.2.123
https://doi.org/10.1162/neco.1997.9.8.1735


Bibliography 209

Natural Language Processing (EMNLP). Doha, Qatar: Association
for Computational Linguistics, Oct. 2014, pp. 1724–1734. [Online].
Available: https://www.aclweb.org/anthology/D14-1179

[136] H. Larochelle and I. Murray, “The neural autoregressive distribution
estimator,” ser. Proceedings of Machine Learning Research, G. Gordon,
D. Dunson, and M. Dud́ık, Eds., vol. 15. Fort Lauderdale, FL,
USA: JMLR Workshop and Conference Proceedings, 11–13 Apr
2011, pp. 29–37. [Online]. Available: http://proceedings.mlr.press/v15/
larochelle11a.html

[137] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Advances in Neural Information
Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2014, pp. 3104–3112. [Online]. Available: http://papers.nips.cc/paper/
5346-sequence-to-sequence-learning-with-neural-networks.pdf

[138] N. Kalchbrenner, A. van den Oord, K. Simonyan, I. Danihelka,
O. Vinyals, A. Graves, and K. Kavukcuoglu, “Video pixel networks,”
ser. Proceedings of Machine Learning Research, D. Precup and
Y. W. Teh, Eds., vol. 70. International Convention Centre, Sydney,
Australia: PMLR, 06–11 Aug 2017, pp. 1771–1779. [Online]. Available:
http://proceedings.mlr.press/v70/kalchbrenner17a.html

[139] J. Oliva, A. Dubey, M. Zaheer, B. Poczos, R. Salakhutdinov, E. Xing,
and J. Schneider, “Transformation autoregressive networks,” ser.
Proceedings of Machine Learning Research, J. Dy and A. Krause, Eds.,
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[141] G. Petneházi, “Recurrent neural networks for time series forecasting,”
2019.

https://www.aclweb.org/anthology/D14-1179
http://proceedings.mlr.press/v15/larochelle11a.html
http://proceedings.mlr.press/v15/larochelle11a.html
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://proceedings.mlr.press/v70/kalchbrenner17a.html
http://proceedings.mlr.press/v80/oliva18a.html
http://proceedings.mlr.press/v80/oliva18a.html


210 Bibliography

[142] G. K. Anumanchipalli, J. Chartier, and E. F. Chang, “Speech
synthesis from neural decoding of spoken sentences,” Nature,
vol. 568, no. 7753, pp. 493–498, Apr. 2019. [Online]. Available:
https://doi.org/10.1038/s41586-019-1119-1

[143] Y. LeCun and Y. Bengio, Convolutional Networks for Images, Speech,
and Time Series. Cambridge, MA, USA: MIT Press, 1998, p. 255–258.

[144] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition, 2012, pp. 3642–3649.

[145] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with con-
volutions,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 1–9.

[146] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks
for human action recognition,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 1, pp. 221–231, 2013.

[147] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil, “Learning seman-
tic representations using convolutional neural networks for web search.”
WWW 2014, April 2014.

[148] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in
graph domains,” in Proceedings. 2005 IEEE International Joint Confer-
ence on Neural Networks, 2005., vol. 2, 2005, pp. 729–734 vol. 2.

[149] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-
dini, “The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2009.

[150] C. Gallicchio and A. Micheli, “Graph echo state networks,” in The 2010
International Joint Conference on Neural Networks (IJCNN), 2010, pp.
1–8.

[151] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” in 2nd International Conference

https://doi.org/10.1038/s41586-019-1119-1


Bibliography 211

on Learning Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, Conference Track Proceedings, Y. Bengio and Y. LeCun,
Eds., 2014. [Online]. Available: http://arxiv.org/abs/1312.6203

[152] A. Micheli, “Neural network for graphs: A contextual constructive ap-
proach,” IEEE Transactions on Neural Networks, vol. 20, no. 3, pp.
498–511, 2009.

[153] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing
Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc.,
2017, pp. 1024–1034. [Online]. Available: http://papers.nips.cc/paper/
6703-inductive-representation-learning-on-large-graphs.pdf

[154] S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning graph
representations,” in Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, ser. AAAI’16. AAAI Press, 2016, p. 1145–1152.

[155] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, “Learning deep
generative models of graphs,” 2018.

[156] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional
recurrent neural network: Data-driven traffic forecasting,” in 6th
International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018. [Online]. Available: https:
//openreview.net/forum?id=SJiHXGWAZ

[157] Y. Li, Z. He, X. Ye, Z. He, and K. Han, “Spatial temporal
graph convolutional networks for skeleton-based dynamic hand
gesture recognition,” EURASIP Journal on Image and Video
Processing, vol. 2019, no. 1, Sep. 2019. [Online]. Available:
https://doi.org/10.1186/s13640-019-0476-x

[158] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
“Graph neural networks: A review of methods and applications,” 2018.

http://arxiv.org/abs/1312.6203
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
https://openreview.net/forum?id=SJiHXGWAZ
https://openreview.net/forum?id=SJiHXGWAZ
https://doi.org/10.1186/s13640-019-0476-x


212 Bibliography

[159] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A compre-
hensive survey on graph neural networks,” IEEE Transactions on Neural
Networks and Learning Systems, pp. 1–21, 2020.

[160] J. Shlomi, P. Battaglia, and J.-R. Vlimant, “Graph neural networks in
particle physics,” 2020.

[161] H. Qu and L. Gouskos, “Jet tagging via particle clouds,” Phys.
Rev. D, vol. 101, p. 056019, Mar 2020. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevD.101.056019

[162] E. Bernreuther, T. Finke, F. Kahlhoefer, M. Krämer, and A. Mück,
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