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Abstract

Handwritten documents are not only preserved in historical archives but also
widely used in administrative documents such as cheques and claims. With the
rise of the deep learning era, many state-of-the-art approaches have achieved good
performance on specific datasets for Handwritten Text Recognition (HTR). How-
ever, it is still challenging to solve real use cases because of the varied handwriting
styles across different writers and the limited labeled data. Thus, both exploring
a more robust handwriting recognition architectures and proposing methods to
diminish the gap between the source and target data in an unsupervised way are
demanded.

In this thesis, firstly, we explore novel architectures for HTR, from Sequence-to-
Sequence (Seq2Seq) method with attention mechanism to non-recurrent Transformer-
based method. Secondly, we focus on diminishing the performance gap between
source and target data in an unsupervised way. Finally, we propose a group of
generative methods for handwritten text images, which could be utilized to in-
crease the training set to obtain a more robust recognizer. In addition, by simply
modifying the generative method and joining it with a recognizer, we end up with
an effective disentanglement method to distill textual content from handwriting
styles so as to achieve a generalized recognition performance.

We outperform state-of-the-art HTR performances in the experimental results
among different scientific and industrial datasets, which prove the effectiveness of
the proposed methods. To the best of our knowledge, the non-recurrent recognizer
and the disentanglement method are the first contributions in the handwriting
recognition field. Furthermore, we have outlined the potential research lines, which
would be interesting to explore in the future.
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Resum

Els documents escrits a mà no només es conserven en arxius històrics, sinó que
també s’utilitzen àmpliament en documents administratius, com ara xecs o formu-
laris. Amb l’auge de de l’anomenat aprenentatge profund (Deep Learning), s’ha
aconseguit un bon rendiment en conjunts de dades específics per al reconeixement
de text manuscrit. Tot i això, encara és difícil resoldre casos d’ús reals a causa
de la variació entre estils d’escriptura de diferents escriptors i el fet de tenir dades
etiquetades limitades. Per tant, es requereix explorar arquitectures de reconeixe-
ment d’escriptura més sòlides així com proposar mètodes per disminuir la bretxa
entre conjunts de dades font i objectiu de manera no supervisada.

En aquesta tesi, en primer lloc, explorem noves arquitectures per al reconeixe-
ment de text manuscrit, un mètode Sequence-to-Sequence amb mecanisme d’atenció
i un mètode basat en transformadors no recurrents. En segon lloc, ens centrem en
la disminució de la bretxa de rendiment entre les dades d’origen i les de destinació
de manera no supervisada. Finalment, proposem un grup de mètodes generatius
per a imatges de text manuscrits, que es poden utilitzar per augmentar el conjunt
d’entrenament per obtenir un reconeixement més robust. A més, simplement mod-
ificant el mètode generatiu i unint-lo amb un reconeixedor, acabem amb un mètode
de desenredament eficaç per destil·lar contingut textual d’estils d’escriptura a mà
per aconseguir un rendiment de reconeixement generalitzat.

Superem el rendiment dels reconeixedors de text manuscrit de l’estat de l’art
en els resultats experimentals entre diferents conjunts de dades científics i indus-
trials, que demostren l’eficàcia dels mètodes proposats. Tant ell reconeixement no
recurrent com el mètode de desenredament són les primeres contribucions al camp
del reconeixement d’escriptura a mà. A més, hem esbossat les línies de recerca
potencials, que serien interessants explorar en el futur.
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Resumen

Los documentos manuscritos no solo se conservan en archivos históricos, sino que
también se usan ampliamente en documentos administrativos como cheques y
reclamaciones. Con el auge de las redes neuronales profundas, muchas técnicas
del estado del arte han obtenido un buen rendimiento en conjuntos de datos es-
pecíficos para el reconocimiento de texto manuscrito (HTR). Sin embargo, los
casos de uso reales todavía son un desafío debido a la variabilidad de estilos de
escritura de diferentes escritores y la cantidad limitada de datos etiquetados. Por
lo tanto, es necesario explorar tanto arquitecturas para reconocimiento de texto
manuscrito más robustas como proponer métodos para disminuir la brecha entre
los datos de origen y destino de una manera no supervisada.

En esta tesis, en primer lugar, exploramos arquitecturas novedosas para el
HTR, desde el método secuencia-a-secuencia (Seq2Seq) con mecanismo de aten-
ción, hasta el método no recurrente basado en Transformers. En segundo lugar,
nos centramos en reducir la brecha de rendimiento entre los datos de origen y de
destino mediante métodos no supervisados. Finalmente, proponemos un grupo de
métodos generativos para imágenes de texto manuscrito, que pueden usarse para
aumentar el conjunto de entrenamiento y obtener un reconocedor más robusto.
Además, simplemente modificando el método generativo y uniéndolo con un re-
conocedor, obtenemos un método eficaz para destilar el contenido textual de los
estilos de escritura para lograr un rendimiento de reconocimiento generalizado.

En resultados experimentales obtenemos rendimientos en HTR que superan los
del estado del arte en diferentes conjuntos de datos científicos e industriales, los
cuales demuestran la efectividad de los métodos propuestos. Hasta donde sabe-
mos, el reconocedor no recurrente y el método de para destilar son contribuciones
originales en el campo de reconocimiento de texto manuscrito. Finalmente, hemos
esbozado posibles líneas de investigación que sería interesante explorar en el futuro.
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Chapter 1

Introduction

1.1 Handwritten Text Recognition and Its Limita-
tions

Handwritten Text Recognition (HTR) has interested the Document Analysis and
Pattern Recognition communities for several decades. Handwritten content is
found in volumes of not only historic archives [128], but also contemporary ad-
ministrative documents [114] such as invoices, cheques, tax forms, notes, accident
claims, etc. Automatic reading systems are particularly interesting for document
digitization processes where paper documents are converted into machine read-
able text. Thus, such extracted text can be further leveraged in distilling useful
information for some computer applications, such as automatic decision making
processes, document classification, automatic routing, etc. Even though research
in HTR began in the early sixties [108], it is still considered as an unsolved problem.
The main challenge is the huge variability and ambiguity of the strokes composing
words encountered across different writers [29].

We humans, once we learn how to read scripted words, perform quite well at
reading handwritten texts produced by individuals with handwriting styles that we
have never seen before. However, computational models strive at being so generic
unless they are supplied with huge amounts of training data coming from many
different writers. But, gathering such huge annotated collections of training data
quickly becomes too expensive. Although in the literature some publicly available
benchmarking datasets have been established, such as IAM [103] or RIMES [5],
their volumes are still far away from nowadays computer vision large scale datasets
like ImageNet [32] or Open Images V4 [91], that contain millions of annotations.
Without such large amount of training data, deep learning architectures for HTR
are prone to overfit to the seen writers and not generalize well.

1
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Moreover, besides the public benchmarking datasets, real use cases should also
been taken into consideration when developing novel HTR methods. In industrial
scenarios, the targeted documents are extremely varied across different document
types and multiple writers. It is unrealistic to provide the groundtruth for each
type of document and writer, so a robust recognizer that provides a generalized
performance is demanded. Another important problem in industrial applications
is how to transfer the learned knowledge from a largely owned dataset to a new
target scenario, which might be small in quantity but presenting a large bias from
the training data. Last but not least, the efficiency of both training and evaluation
processes is also a concern, where simpler architectures and better utilization of
parallel computing is desired.

In summary, even though we have seen an important performance improvement
of HTR methods thorough the recent years, there are still some limitations. A
great interest exists in developing a robust handwritten text recognizer methods
aimed at dealing with varied handwriting styles but requiring limited labeled data.
Even more, the proposed methods should work for not only in academic datasets
but also in real industrial use cases.

1.2 State-Of-The-Art Methods

This thesis focuses on offline handwriting recognition in word and text-line levels.
There are two groups of methods in this field, on the one hand, methods towards
a robust recognizer, which are studied for exploring different neural network ar-
chitectures; on the other hand, methods towards minimizing the bias between
training and test data, which are in charge of boosting HTR performance without
extra manual effort of labeling.

1.2.1 Recognition Methods

In the field of document analysis, there are three popular groups of methods achiev-
ing state-of-the-art recognition performance. Since the handwriting text is sequen-
tial in nature, the first applications with Hidden Markov Models (HMM) [12, 52]
started to show a satisfactory performance on HTR tasks. To obtain a better
feature representation from the handwritten images, some other Neural Network
(NN) modules were equipped together with HMM to form the Hybrid HMM meth-
ods [19]. Recurrent Neural Networks (RNN) [96] has a stronger capability in
dealing with long sequential dependencies. The join method of both RNN and
Connectionist temporal classification (CTC) [57] has become the state-of-the-art
approaches for HTR tasks [133, 152, 86, 123, 112] recently. Nearest neighbor search
methods [125, 85, 2] maps all the handwritten words in a common embedding space
and then the recognition is done by finding the nearest one along the feature dis-
tance. This group of methods has a severe limitation that Out-Of-Vocabulary
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(OOV) words can not be predicted, which draws the main disadvantage for appli-
cations in the real use cases.

In the fields of general computer vision and natural language processing, there
are two more popular groups of methods apart from the three mentioned above.
Sequence-to-Sequence (Seq2Seq) models follow an encoder-decoder paradigm using
attention mechanism. This group of methods were first achieved the state-of-the-
art performance in the fields of machine translation [135, 7], image captioning [155]
and speech recognition [27, 8]. There are some early trials applying the Seq2Seq
model to HTR tasks [17], but the performance is not satisfying. The Transformer
architecture was first proposed by Vaswani et al. [146], which relies entirely on at-
tention mechanisms without the need of recurrent nets. Recently, it has become the
state-of-the-arts in natural language processing [33] and speech recognition [37].
The advantage of Transformer than Seq2Seq is the efficient utilization of parallel
computing during training process. So it would also be interesting to apply this
method to HTR tasks.

1.2.2 Bias Diminishing

As we have discussed before that there is always a bias between training and
target data, so that the method cannot be well generalized to achieve the best
performance. In document analysis community, one of the most popular methods
is data augmentation techniques [152]. They include blurring/sharpening, elas-
tic transforming, shearing, rotating, translating, scaling, gamma correcting and
blending with synthetic background textures, which are performed by modifying
the training data so as to improve the generalization. Another popular method is
to make use of a large amount of synthetic data for pre-training and then fine-tune
on the target data. Synthetic data [90] is created using TrueType fonts and data
augmentation techniques. Given a text corpus, zillions of synthetic handwritten
images could be rendered and used to enlarge the training set. Then, by accessing
more data during training process, the recognizer could achieve a more generalized
performance on HTR tasks.

There are also some other machine learning methods that are widely used in
computer vision and natural language processing fields. In transfer learning [118],
a model is firstly trained on a base dataset, and then transferred to a target dataset.
The process works under the assumption that the learned features are general in-
stead of specific to the base dataset. As the neural network methods always ask
for a large amount of data for training, transfer learning is especially useful when
the target data is few. Unsupervised domain adaptation [50] aims to classify un-
labeled target domain by transferring knowledge from labeled source domain with
domain shift. Based on the base model (e.g. a recognizer), an auxiliary domain
classifier is equipped to discriminate between source and target data. The domain
classifier is optimized by minimizing the loss on both source and target data during
training process, while the base model is trained by maximizing the loss of domain
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classifier. Thus, the domain-invariant features can be obtained with the Min-Max
game. The disentanglement [104] offers a neural network model to disentangle a
feature representation into different isolated factors. Recently, this is widely used
in image-to-image translation [53]. Natural scene images can be disentangled into
content (contour and shape) and style (visual appearance) features, which enable
the generation of new images by permutation and combination of these content
and style features.

1.3 Motivation and Research Questions

Based on the limitations of current HTR methods that they still lack the capacity
to deal with the varied handwriting styles in a few data scenario, we would like to
explore novel methods among the fields of document analysis, computer vision and
natural language processing. In this thesis, we focus on the HTR problems. On
the one hand, we explore different network architectures for the handwritten text
recognizer, and achieve the state-of-the-art performance; on the other hand, we
analyze the fundamental problem in HTR tasks and propose different approaches
to reduce the gap between training and test sets. Through this thesis, we are
interested in answering the following questions:

• How long a sentence can be recognized properly with modern handwriting
recognizer?

• Are Recurrent Neural Networks a must component in state-of-the-art hand-
writing recognizer?

• How a language model can help to improve the HTR performance?

• How could we reduce the gap between training set and test set in a target
dataset or even between different datasets?

• How to disentangle textual content from handwriting styles in handwritten
text images?

• How to generate artificial samples of handwritten text images with a partic-
ular content while mimicking a specific calligraphic style?

1.4 Contributions

The main contributions of this thesis are:

1. We present a Seq2Seq model with location-based attention mechanism for
HTR tasks, which is in an end-to-end fashion and achieves the state-of-the-
art performance.
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2. We present a novel language model, namely Candidate Fusion, to equip
with Seq2Seq recognizer for the boosting of HTR performance, which is an
effective way to incorporate external language knowledge while keeping the
capacity in dealing with OOV words.

3. We present a non-recurrent model based on Transformer model for HTR
tasks, which overcomes the drawback of Seq2Seq model with sequential
pipelines. Thus, the proposed transformer recognizer, on the one hand,
achieves a more effective training process with full parallelization in archi-
tecture; on the other hand, shows a better HTR performance on longer text
images.

4. We propose a writer adaptation method to diminish the gap between syn-
thetic and real datasets to reduce the demand for manually labeled training
data. In addition, the adaptation method can also decrease the error rate
gap between training and test sets in the real dataset, which is a further
boost on the target data with the same amount of labeled training data.

5. We propose a disentanglement method to distill textual content from hand-
writing styles in an fashion of Image-to-Image translation, which is jointly
trained with Seq2Seq recognizer with the shared textual content encoder.
Thus, the HTR performance can be boosted with a more robust recognizer
that is capable of extracting images features with exclusion of specific hand-
writing styles.

6. We propose a handwriting synthesis method using GANs to generate any
text samples conditioned on text strings and handwriting style images, whose
generated samples are indistinguishable by humans and can be utilized to
boost the HTR performance.

We have categorized HTR methods in two main groups, either proposing new
architectures or boosting the performance by other techniques, as shown in Ta-
ble 1.1. Bold text indicates the proposed novel methods in this thesis.

1.5 Organization

The rest of this thesis is organized in six chapters.

In Chapter 2, we propose an attention-based Sequence-to-Sequence model for
Handwritten Text Recognition. The proposed architecture has three main parts:
an encoder, consisting of a CNN and a bi-directional GRU, an attention mecha-
nism devoted to focus on the pertinent features and a decoder formed by a one-
directional GRU, able to spell the corresponding word, character by character.
We also propose a novel method to integrate an external language model to a
Sequence-to-Sequence architecture, which provides suggestions from an external
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Table 1.1: A general classification of HTR methods. Methods in bold text are
proposed by this thesis. Corresponding contributions are highlighted in brackets.

Idea Method

Architecture

HMMs [52, 19, 12]
RNN+CTC [112, 123, 86, 152, 133]
Nearest Neighbor Search [2, 85, 125]
Seq2Seq with Attention [17, 134, 79] (contri. 1 & 2)
Transformers [75] (contri. 3)

Boosting

Synthetic Data of TrueType Fonts [71, 1, 89, 76] (contri. 4)
Synthetic Data using GANs [77] (contri. 6)
Writer Adaptation [160, 78] (contri. 4)
Disentanglement [74] (contri. 5)

language knowledge as a new input to the recognizer. Moreover, there are two im-
provements for the state-of-the-art language modeling methods: on the one hand,
the Sequence-to-Sequence recognizer has the flexibility to not only combine the
information from itself and the language model, but also choose the importance
of the information provided by the language model; on the other hand, the ex-
ternal language model has the ability to adapt itself to the training corpus and
even learn the most common errors produced from the recognizer. Finally, by con-
ducting comprehensive experiments, both our proposed Seq2Seq recognizer and
language modeling method achieve the state-of-the-art performance.

In Chapter 3, we propose a non-recurrent approach to recognize handwritten
text by the use of transformer models. We propose a novel method that bypasses
any recurrence. By using multi-head self-attention layers both at the visual and
textual stages, we are able to tackle character recognition as well as to learn
language-related dependencies of the character sequences to be decoded. Our
model is unconstrained to any predefined vocabulary, being able to recognize out-
of-vocabulary words, i.e. words that do not appear in the training vocabulary. We
significantly advance over prior art and demonstrate that satisfactory recognition
accuracies are yielded even in few-shot learning scenarios.

In Chapter 4, we propose an unsupervised writer adaptation approach that is
able to automatically adjust a generic handwritten word recognizer, fully trained
with synthetic fonts, towards a new incoming writer. We have experimentally
validated our proposal using five different datasets, covering several challenges
(i) the document source: modern and historic samples, which may involve paper
degradation problems; (ii) different handwriting styles: single and multiple writer
collections; and (iii) language, which involves different character combinations.
Across these challenging collections, we show that our system is able to maintain
its performance, thus, it provides a practical and generic approach to deal with
new document collections without requiring any expensive and tedious manual
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annotation step.

In Chapter 5, We propose a novel method that is able to produce credible
handwritten text images by conditioning the generative process with both cal-
ligraphic style features and textual content. Our generator is guided by three
complementary learning objectives: to produce realistic images, to imitate a cer-
tain handwriting style and to convey a specific textual content. Our model is
unconstrained to any predefined vocabulary, being able to render whatever input
word. Given a sample writer, it is also able to mimic its calligraphic features in
a few-shot setup. We significantly advance over prior art and demonstrate with
qualitative, quantitative and human-based evaluations the realistic aspect of our
synthetically produced images. Extensive experiments have been done on making
use of the generated samples to boost HTR performance. Thus, both qualitative
and quantitative results have been carried out to demonstrate the advance among
the state-of-the-art approaches.

In Chapter 6, we summarize the main contributions of this thesis and outline
some possible future research lines on HTR tasks.
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Chapter 2

Sequence-to-Sequence Approach for
HTR

2.1 Introduction

The recognition of handwritten text was, in fact, one of the first application
scenarios of convolutional neural networks, when LeCun et al. proposed in the
late nineties such architectures [93] for recognizing handwritten digits from the
MNIST dataset. In the literature, several other methods have been proposed
for tackling the HTR task such as Hidden Markov Models (HMM) [12, 19, 52],
Recurrent Neural Networks (RNN) and Connectionist Temporal Classification
(CTC) [133, 152, 86, 123, 112], or nearest neighbor search methods in embedding
spaces [125, 85, 2]. These methods have started to reach a satisfying performance
in some specific and restricted use cases, but we are still far away from having a
generic and robust system that is able to read any handwritten text.

Inspired in the latest advances in machine translation [135, 7], image cap-
tioning [155] or speech recognition [27, 8], we believe that sequence-to-sequence
models backed with attention mechanisms [17, 134] present a significant poten-
tial to tackle HTR tasks. Recurrent architectures suit the temporal nature of
text, written usually from left to right, and attention mechanisms have proven
to be quite performant when paired with such recurrent architectures to focus
on the right features at each time step. Sequence-to-Sequence (Seq2Seq) models
follow an encoder-decoder paradigm. In our case, the encoder part consists of a
Convolutional Neural Network (CNN) that extracts low-level features from the
written glyphs, that are then sequentially encoded by an Recurrent Neural Net-
work (RNN). The decoder is another RNN that will decode one character at each
time step, thus spelling the whole text. An attention mechanism is introduced as a
bridge between the encoder and the decoder, in order to provide a high-correlated

9
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context vector that focuses on each character’s feature at each decoding time step.

In the HTR tasks, text always follows a particular set of syntactic rules and
presents a well defined morphological structure. Text recognition systems often
integrate statistical language models [102, 87, 43] that are able to complement the
optical part boosting the overall recognition performance. Language models for
HTR tasks implemented as probability distributions over sequences of characters
and words, aim to provide context to discern between sequences of characters
that that might look similar, intending to resolve ambiguities from the optical
recognition part. Different language model approaches have been proposed in the
literature, from n-grams [22] to neural network architectures [159].

However, in most of the state-of-the-art handwritten word recognition systems,
including the recent Seq2Seq-based ones [134, 79], the optical recognition part and
the language models are seen as two separate and independent modules that are
trained separately. Each of those modules are optimized separately using different
data corpora, images of handwritten text on the one side, and a separate text
corpus used to train the language statistics on the other. At the inference time,
both modules are combined together. In that sense, language models are used
either as a post-processing step, aiming at correcting recognition errors with the
most likely sequence of characters [68, 143], or as an integrated guiding module,
steering the decoding process towards the best fitting letter succession [61].

In this chapter, we present a novel Seq2Seq-based recognizer and a novel
method of integrating an external language model for HTR. Since the language
model and the optical recognition parts are jointly trained and optimized, the
language model does not just encode statistics about the language, but also mod-
els the most commonly produced errors from the optical decoder and corrects
them. By incorporating the use of synthetic fonts and data augmentation strate-
gies, we demonstrate the effectiveness and generality of our proposed approach
in a significant amount of different public datasets and real industrial use cases.
We exemplify in Figure 2.11 the different transcription results that we are able to
obtain with the proposed architecture.

2.2 Related Work

Recognizing handwritten text has typically been addressed by combining com-
puter vision and sequence learning techniques. The first handwritten word recog-
nition approaches were based on Hidden Markov Models (HMMs) [12, 19, 44, 52].
Such approaches used to be successful pioneers, while nowadays, they have been
outperformed by Neural Networks-based architectures. With the rise of neural
networks, Recurrent Neural Networks (RNNs) [96] have started to become popu-
lar to deal with sequential data such as handwriting. For example, Bidirectional
Long Short-Term Memory (BLSTM) [58] or Multidimensional Long Short-Term
Memory (MDLSTM) [59] have been widely adopted by handwritten word recog-
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nition community. Lately, these models have been discussed and improved. For
example, Puigcerver [126] compared 1D-LSTM and 2D-LSTM layers to prove that
multidimensional recurrent layers may not be necessary to achieve good accuracy
for handwritten word recognition. Toledo et al. [141] provided an approach that
combined character embeddings with a BLSTM decoding. Most of the handwrit-
ten word recognition approaches today are based on the use of a recurrent network
with Connectionist temporal classification (CTC) layers [57]. However, CTC has
two main drawbacks: First, the length of predicted sequence has always to be
smaller than that of input sequence features. Thus, the CTC-based models need
to be carefully designed base on the specific dataset, otherwise, a short handwrit-
ten image (e.g. a single punctuation mark) might end up with a even shorter
sequence of features than the maximum number of predicted characters. Second,
the number of decoding time steps is dependent of input sequence features, i.e.,
the longer input handwritten image is, the longer the number of decoding time
steps will be. Contrary, the number of decoding time steps is exactly the same
as the maximum number of predicted characters in sequence-to-sequence-based
approaches, because the attention mechanism could deal with the variable length
visual features as shown in Section 2.5.4.

Recently, inspired by machine translation [7, 135], speech recognition [8, 27]
and image captioning [155], the sequence-to-sequence architecture [134, 79] has
started to be applied into handwritten word recognition tasks. These sequence-
to-sequence approaches follow the architecture of encoder, decoder and attention
mechanism. They present the advantage that by decoupling encoder and decoder,
the output size is not determined by the input image width, so that the use of CTC
can be avoided. For example, Sueiras et al. [134] provided a sequence-to-sequence
based handwriting recognizer, but they imposed a manually set sliding-window.
We have analyzed various strategies to find a proper sequence-to-sequence based
architecture for specifically targeting HTR tasks.

With the usage of RNNs, an implicit language model has been proved to help
the recognition process in [129]. However, this internal language model is overfit-
ted on the text of the training dataset. Among the popular handwritten dataset,
there is a gap between training set and test set not only in the sense of handwriting
styles, but also in the sense of text corpus. The main role of an external language
model is to provide the knowledge learnt from an external text corpus, so that it
can help to correct common errors made by the recognizer.

However, these sequence-to-sequence based handwriting recognizers do not in-
tegrate a language model in the whole system. Since the age of HMMs, there
have been plenty of researches on the usage of linguistic knowledge to assist a
HMM-based handwriting recognition process [102, 122, 147]. Later on, as the
RNN-CTC model became the state-of-the-art on handwritten word recognition
tasks, how to effectively integrate a language model into a recognizer has been
a hot topic concurrent with the development of a handwriting recognizer. For
instance [16, 113, 20, 98, 148, 126] have integrated character n-grams language
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modelling into a RNN-CTC based handwriting recognizer. Jelinek et al. [72]
provided a cache trigram language model, which can be adapted to the current
document more closely. Della et al. [31] proposed a minimum discrimination
information model to adapt n-gram language model to a document. However, the
n-gram model is just statistics on the co-ocurrence of characters computed over
a text corpus and, even if they are helpful as an error-correcting post-processing
step, they do not represent inherent language knowledge.

More recently, a Bert-like language model [33], pretrained on plain text for
masked word prediction and next sentence prediction tasks, has achieved state-
of-the-art performance in many natural language understanding tasks. Zhu et al.
[162] propose a method to incorporate Bert into machine translation architecture,
which is a good trial to utilize a powerful pretrained LM with a sequence-to-
sequence model. However, Bert-like LM works at word- or wordpiece-level, which
are restricted to a closed vocabulary so as to fail to predict OOV words. Moreover,
it cannot be flexibly injected to the recognizer at each time step, because there is
no recurrency in Bert-like LM that gains speed but loses flexibility.

Concurrently, Recurrent Neural Network Language Models (RNNLM) [110,
61, 68, 143] have been developed prosperously among machine translation and
speech recognition communities, because they can learn an effective representa-
tion of variable length characters and memory a long enough character history,
outperforming the n-grams. Especially, Gulcehre et al. [61] provided two ap-
proaches: Shallow Fusion and Deep Fusion, which have been widely used and are
the state-of-the-art RNNLMs in machine translation and speech recognition tasks.
However, these RNNLMs are integrated into the sequence-to-sequence recognizer
in a serial way. Both the sequence-to-sequence recognizer and the language mod-
els are trained separately and combined together in the final step. In that sense,
the two different modules cannot properly benefit one from another and leverage
the mutual information that both the optical recognizer and the language models
could provide one to another. Our proposed candidate fusion language modelling
is based on the idea that the optical part and the statistical character modelling
shall communicate between each other, being able to jointly decode the most likely
and most visually suitable character sequence.

2.3 Getting Enough Training Data

A system able to effectively recognize handwritten words should be able to deal
with the inherent deformations of handwriting text. These deformations not only
come from the different writing styles across different individuals, but also in words
written by the same person at different times. Figure 2.1 presents several real word
images coming from different datasets and authors showing the huge variability in
styles. Traditionally, to allow handwritten word recognition systems to generalize
and prevent over-fitting, without having to manually annotate millions of word
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samples, data augmentation has been proposed in the literature. However, this
technique is not able to increase the number of handwriting styles in the dataset.
To solve this lack of diversity of handwriting styles, pre-training the recognition
models with synthetic data is proposed. Intuitively, feeding more data that looks
“realistic” as a pre-training provides a pre-condition to our system, making it able
to extract the general features required for handwriting recognition. Afterwards,
a fine tuning with real data will adapt it to the desired use case. In this Section,
both techniques are presented and adapted to handwritten words.

Figure 2.1: Real word samples in IAM, GW and Rimes datasets, from top to
bottom, respectively. Each example has different characteristics such as shear,
stroke width, language, etc.

2.3.1 Data Augmentation

Having enough training data is crucial for the performance of deep learning frame-
works. To tackle this problem, some data augmentation techniques have been
proposed in the literature. Usually, random image transformations are applied to
the training data in order to increase the diversity. In our sequence-to-sequence
setting, these transformations are constrained to obtain a realistically looking im-
age where the text is readable. In this work, we specially designed a pipeline
able to capture the variability of real data in the document domain. These set of
operations with random parameters are applied among all epochs and consist of
a blurring / sharpening step, elastic transformations by using a mesh grid [131],
shear, rotation, translation and scaling transforms, gamma correction and blend-
ing with synthetically generated background textures. The differences among the
state-of-the-art data augmentation methods are shown in Table 2.1.

Figure 2.2 shows some examples that are used in training after the data aug-
mentation module. Notice that the proposed operations introduce variations of
word samples during training. This diversity helps to some extent to prevent over-
fitting and leads to models that are able to generalize better than training just
with the original set of images. However, the generated words are restricted to
a fixed lexicon and the writing styles provided by the training set. Hence, the
system is not able to extend the vocabulary which is a key feature in handwritten
word recognition systems.
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Table 2.1: Comparison of the data augmentation techniques among state-of-the-
arts.
Methods Dutta et al. [42] Yousef et al. [157] Proposed

Blurring/sharpening − − X
Elastic transformation X X X
Shear X X X
Rotation X − X
Translation and scaling X X X
Gamma correction − − X
Blending with background − − X
Sign flipping − X −

Figure 2.2: Examples of data augmentation on real handwritten words. The
first row shows real word samples, then followed by 10 variations of such word
after random data augmentation.

2.3.2 Pre-training with Synthetic Data

Recently, it has become a common trend the use of synthetically generated images
to magnify the training data volume [38]. Instead of generating realistic images,
the idea is to encode the necessary information required for a desired task. Avail-
able public datasets, such as the IIIT-HWS dataset [88], have already tackled the
generation of synthetically generated handwriting word collections by the use of
truetype electronic fonts. Such approach has the advantage that one can virtually
generate an infinity of annotated training samples for free. However, the available
datasets do not consider special characters (e.g. accents, umlauts, punctuation
symbols, etc.) that may be required. Hence, we defined our own data generator
able to be used to train several languages taking into account its own peculiarities.

As a text corpus, several books written in English and French have been used.
These books are freely available on the Internet and will model the language char-
acter distribution. From these books, over 250.000 unique words were collected.
Afterwards, we randomly render those words with 387 freely available electronic
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fonts that imitate cursive handwriting. However, for a given font, all of the in-
stances of a character will always look the same. In order to overcome such limita-
tion, the same data augmentation pipeline previously presented has been applied.
This augmentation step is applied online within the data loader, so that each batch
is randomly augmented. Some samples of synthetic words are shown in Figure 2.3.

Adversarial after Nester embrouiller tonnerre

Figure 2.3: Examples of synthetic data generation. The first row is the given
word from a public dictionary, then followed by 10 rendered image samples with
different electronic fonts and random augmentation.

2.4 Seq2seq Model with Attention Mechanism

Our attention-based seq2seq model consists of three main parts: an encoder, an
attention mechanism and a decoder. Figure 2.4 shows the whole architecture
proposed in this work. Let us detail each of the different parts.

2.4.1 Encoder

We start with a CNN to extract visual features. Since we believe that handwrit-
ten text images are not visually as complex as real world images, we choose a
reasonable CNN architecture such as the VGG-19-BN [132] and initialize it with
the pre-trained weights from ImageNet.

Then we introduce a multi-layered Bi-directional Gated Recurrent Unit (BGRU)
which will involve mutual information and extra positional information for each
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Figure 2.4: Architecture of the seq2seq model with attention mechanism.

column, and will encode the sequential nature of handwritten text. Considering
the extra positional information, a simple positional encoding [146] is also an-
other popular technique. In the experiments, we will test on the two methods
for incorporating the extra positional information. So we use VGG+BGRU as an
encoder to transfer the image I into an intermediate-level feature X , which then
is reshaped into a two-dimensional feature map X ′. The feature map X ′ can be
referred as a sequence of column feature vectors (x′0, x

′
1, . . . , x

′
N-1), where N is the

width of the feature map. H is the output of encoder which shares the same width
of X ′. Each element hi ∈ H is the output of BGRU at each time step, which will
be further used to calculate attention.

2.4.2 Attention Mechanism

In this section we will discuss two main attention mechanisms, content-based at-
tention and location-based attention.

Content-based Attention

The basic attention mechanism is content-based attention [7]. The intuition is
to find the similarity between the current hidden state of the decoder and the
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word image representation feature map, thus we can find the most correlated
feature vectors in the feature map of the encoder, which can be used to predict
the current character at the current time step. Let us define αt as the attention
mask vector at time step t, hi as the hidden state of the encoder at the current
time step i ∈ {0, 1, . . . , N -1}, st as the hidden state of decoder at current time
step t ∈ {0, 1, . . . , T -1}, where T is the maximum length of decoding characters.
Then,

αt = Softmax(et) (2.1)

where
et,i = f(hi, st−1) = wT tanh(Whi + V st−1 + b) (2.2)

where w, W , V and b are trainable parameters. After obtaining the attention
mask vector, the most relevant context vector can be calculated as:

ct = g(αt, H) =
N-1∑
i=0

αtihi (2.3)

Location-based Attention

The main disadvantage of content-based attention is that it expects positional
information to be encoded in the extracted features. Hence, the encoder is forced
to add this information, otherwise, content-based attention will never detect the
difference between multiple feature representations of same character in different
positions. To overcome it, we use an attention mechanism that takes into account
the location information explicitly, i.e. location-based attention [27]. Thus, the
content-based has been extended to be location-aware by making it take into
account the alignment produced at the previous step. First we extract k vectors
lt,i ∈ Rk for every position i of the previous alignment αt−1 by convolving it with
a matrix F ∈ Rk×r:

lt = F ∗ αt−1 (2.4)

And then, we replace Equation 2.2 by:

et,i = f ′(hi, st−1, lt) = wT tanh(Whi + V st−1 + Ult,i + b) (2.5)

where w, W , V , U and b are trainable parameters.

Attention Smoothing

In practice, the attended area is a little narrower than the target character area
of the word image. Consequently, we can infer that the model can already get the
correct prediction only focusing at the narrow area. However, from the viewpoint
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of humans, a little wider covering area of the target character would be beneficial.
For this reason, we propose to replace the Softmax Equation 2.1 with the logistic
sigmoid σ proposed by [27]:

αt,i =
σ(et,i)∑N
i=0 σ(et,i)

(2.6)

2.4.3 Decoder

(a) (b)

Figure 2.5: Architecture of the conventional decoder and our simplified decoder
are shown in (a) and (b), respectively.

The decoder is a one-directional multi-layered GRUs. During each time step t,
the concatenation of the embedding vector of the previous time step ỹt−1 and the
context vector ct will be fed into the current GRU unit. The embedding vector
for each character in the dataset’s vocabulary comes from a look-up table matrix,
which is randomly initialized and updated during the training process. Since
the decoder unit itself has enough ability to produce a proper character output,
we can reduce the extra injection of context vector ct. Thus, We simplify the
procedure between the decoder hidden state st and the output logit yt at current
time step t as shown in Figure 2.5. The experimental comparison between both
two architectures will be detailed in Section 2.5.3. Thus, the prediction of each
time step t is:

yt = arg max(ω(st)) (2.7)
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where ω(·) is a linear layer. Then we use the index to fetch the corresponding
embedding vector ỹt from the look-up table matrix:

ỹt = Embedding(yt) (2.8)

The decoder always starts with the start signal 〈GO〉 as first input character
and ends the decoding process when the end signal 〈EOS〉 occurs or until the
maximum time step T.

The previous embedding vector and current context vector are concatenated
to obtain st, the hidden state of decoder at current time step. Thus, at each time
step of the decoding, the decoder GRU can take advantage of both the information
of the previous character and the potentially most relevant visual features, which
will benefit the model to make correct predictions. So,

st = Decoder([ỹt−1, ct], st−1) (2.9)

where [·, ·] is the concatenation of two vectors. There are two techniques that
we can adopt to improve the decoding process: multi-nomial decoding and label
smoothing.

Multi-nomial Decoding

Inspired by [25], during the training process, instead of choosing the character that
has the highest probability from the Softmax output dt at time step t, multiple
indices can be sampled from the multi-nomial probability distribution located in
the Softmax output dt. But to keep the model simple, here we sample only one
index but in a random way based on the multi-nomial probability distribution,
and this index corresponds to a specific character. Although only one index has
been sampled, it allows the decoder to explore other alternative decoding paths
towards the final word prediction, which could make the decoder more robust and
lead to better performance, although it will absolutely take longer epochs to train.

Label Smoothing

Label smoothing [136] is a regularization mechanism to prevent the model from
making over-confident predictions. It encourages the model to have higher entropy
at its prediction, and therefore it makes the model more adaptable and improve
generalization. We regularize the groundtruth by replacing the hard 0 and 1

classification targets with targets of
ε

k
and 1− k − 1

k
ε. We choose the ε = 0.4.
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2.4.4 Candidate Fusion Language Model

In this section, we propose a novel way to integrate language models into sequence-
to-sequence models for handwritten word recognition tasks, that we coined as
candidate fusion. The main idea is that the we first train a very simple language
model with just text corpora (no images) with a recurrent neural network that
given a sequence of characters is able to predict which is the most likely character
to come next. This would be a similar idea of the well known word2vec models
(e.g. skipgram) that are able to deduce most likely words within context, but for
characters. Once this language model is pre-trained, now we can combine it with
the optical decoder, so that the input to the decoder are not only the attended
visual features at each particular time step, but also which is the most likely
characters to be decoded given the ones that have been decoded so far.

Unlike the popular Shallow Fusion and Deep Fusion language models [61],
shown in Figure 2.6(a) and (b) respectively, the final prediction is not decided
by merging the outputs of the recognizer and the language model. The role of
our language model is to provide other probabilities among all the characters, as
indicated by ylmt , where t is the current time step during the decoding stage. This
language model information will be injected into the decoder as one of the inputs.
So the new hidden state of the decoder ŝt is calculated by:

ŝt = Decoder([ct, ỹt−1, p
lm
t−1], ŝt−1) (2.10)

where plmt−1 is the output of the language model from slmt−1 at the previous time
step t−1. The effect of the linguistic knowledge will be extensively analyzed in Sec-
tion 2.5.3.

The difference between Equations 2.9 and 2.10 is that we add now a second
“adviser” plmt−1 into our decoder. Thus, the decoder can learn a trade-off between
its output ỹt−1 and that of an additional language model. We call it “adviser”
because the decoder unit could choose to take into account the information from
the “adviser” or totally ignore it. In this way, the explicit language model will
never make the recognition performance worse than the baseline that is trained
without language model at all. The reason is that, in an extreme case, if the bias
of the language knowledge between the training data and the outside corpus is
too high, the decoder can be adapted to predict transcriptions by ignoring the
language model and just relying on the optical part.

Shallow Fusion directly applies a language model to the final prediction of the
decoder by simply summing up both the probabilities of the recognizer yt and the
language model ylmt , as shown in Figure 2.6 (a). Because of the bias of the language
knowledge between the training corpus and the outside corpus, summing up the
probabilities of both the recognizer and language model modules may produce
incorrect final transcriptions. Therefore, to make full use of Shallow Fusion, one
must carefully select a corpus that shares most of the words within the target
dataset and tune the weight hyper-parameter that is in charge of the trade-off
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between both the probabilities of the recognizer and the language model.

Deep Fusion shares the same language model as Shallow Fusion, but it goes one
step further to merge both information from the recognizer and the language model
in the feature level as shown in Figure 2.6 (b). The decoder of the recognizer and
the language model are two independent pipelines, while the hidden state of the
recognizer st, the hidden state of the language model slmt and the context vector
ct at time step t merge together by concatenating them. Afterwards, the merged
feature goes through a fully connected layer and an activation layer to generate
final prediction yot . Both the recognizer and the language model contribute to the
final prediction, but they are still independent from each other. Thus, this method
still can not handle the bias of the language knowledge between both the training
corpus and the outside corpus. In any case, as it can be jointly fine-tuned, the
performance could be better than the Shallow Fusion case.

Our Candidate Fusion language model, shown in Figure 2.6 (c), is designed to
further boost the performance. During training, it treats each independent word
as a sequence of characters for input and tries to generate a shifted prediction,
which has no 〈go〉 symbol at the beginning but with extra 〈end〉 symbol to the
end. The language model is first pretrained on an external text corpus, and then
plugged in the recognizer for a joint fine-tuning on the handwritten dataset. In the
second fine-tuning process, the input of the language model is the prediction of the
recognizer at the previous time step, which takes into account both information of
the recognizer and the language model. Note that the language model is also fine-
tuned on the text of training dataset, which could further reduce the gap between
the external text corpus and the text of target dataset. The intuition behind is to
take advantage of the mutual information from both the optical recognizer and the
morphology of the tackled language. This means that the decoder incorporates
information both from the attended visual features and the language knowledge
at each time step, and, at the same time, the language model itself can also adapt
to the most common mistakes made by the recognizer. To do this, at each time
step t−1, the language model takes the final prediction yt−1 as input and outputs
a corrected version ylt−1m utilizing the learnt knowledge from the outside corpus.
Then, at the next time step t, the recognizer takes the previous prediction of the
recognizer yt−1, the corrected version of the language model ylt−1m and the current
context vector ct as inputs to generate the final prediction yt. At Figure 2.6 we
can see our difference that the final prediction is taken from the recognizer and
the language model is highly integrated into the recognizer system as a candidate
prediction, that is why we denote this method Candidate Fusion. We believe that
it is a natural way to integrate a language model. In Section 2.5 we will show the
performance improvement on popular datasets.
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(a) (b) (c)

Figure 2.6: Architecture of the language models: (a) Shallow Fusion, (b) Deep
Fusion, and (c) our proposed Candidate Fusion. The blue circles represent the
hidden states of the decoder, the red circles represent the hidden states of the
language model, and the green boxes are the final predictions at each time step.
Especially in (a), the rectangle represents the summation between the predictions
of the language model and the decoder; in (b), the crossed rectangle represents
the concatenation process among the hidden state of the language model and
that of the decoder and context vector; in (c), J is the injection function, which
could be a softmax activation, sigmoid activation, embedding or direct connection
without activation.

2.5 Experiments

In this section we present the extensive evaluation of our proposed approach. First,
we perform several ablation studies on the key components to analyze the most
suitable architecture. Second, we compare our recognizer with the state-of-the-art
models on handwritten word recognition. Next, we analyze the performance of the
most popular language models and compare with the proposed candidate fusion
approach. Further, we apply a simple edit-distance-based lexicon to evaluate how
the use of a closed lexicon can boost the performance. Finally, we provide an
experiment on an industrial use case.

2.5.1 Datasets and Metrics

We will use several datasets for the experimental evaluation. They have been
selected because of their different particularities: single or multiple writers, mod-
ern or historical documents or written in different languages. The IAM, George
Washington (GW) and Rimes datasets are publicly available, whereas CarCrash
is a private dataset. The details of these datasets are shown in Table 2.2.

The standard Character Error Rate (CER) and Word Error Rate (WER) met-
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rics are utilized to evaluate the system’s performance. Formally,

CER =
S + I +D

N
(2.11)

where S, I, D are the number of character substitutions, insertions and deletions,
respectively. N is the total number of characters in the groundtruth transcription.

WER =
Sw + Iw +Dw

Nw
(2.12)

The WER metric is computed similar to CER. In this case, Sw, Iw, Dw and
Nw refer to words instead of characters. In the following experiments, the CER
and WER metrics will range from [0-100]. Thus, a lower value indicates a better
performance.

Table 2.2: Overview of the different datasets used in this work depicting its
characteristics.

Dataset Words Writers Period Language

IAM [103] 115,320 657 Modern English
GW [92] 4,860 1 Historical English
Rimes [5] 66,978 1,300 Modern French
CarCrash 24,492 640 Modern German

2.5.2 Implementation Details

All these experiments were run using PyTorch [120] on a cluster of NVIDIA GPUs.
The training was done using the Adam optimizer with an initial learning rate of
2 · 10−4 and a batch size of 32. We have set the dropout probability to be 50%
for all the GRU layers except the last layer of both the encoder and the decoder.
There is a probability of 50% to apply data augmentation on the training set, and
we use label smoothing [136] as a regularization mechanism.

All the images have been resized to a fixed height of 64 pixels while keeping
the original ratio of the length/height. With the fixed height size of 64 pixels, we
pad zeros to the right of every text image so as to meet the maximum length of
images, 1011 and 2160 pixels, for word and text-line image respectively.

2.5.3 Ablation Study

The first experiment corresponds to an ablation study, which has been performed
using the IAM dataset. The CER (%) and WER (%) shown correspond to the
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Table 2.3: Comparison among the popular CNN models on IAM validation set.

Model CER WER Model CER WER

VGG11-BN 7.35 20.91 ResNet101 5.38 14.34
VGG13-BN 6.85 19.76 ResNet152 5.13 13.89
VGG16-BN 6.57 17.04 SqueezeNet 1.0 6.82 17.35
VGG19-BN 5.01 13.61 SqueezeNet 1.1 8.25 20.56
ResNet18 6.72 16.13 Densenet121 5.29 13.79
ResNet34 5.51 14.25 Densenet169 5.30 14.23
ResNet50 5.27 13.95 Densenet201 5.37 13.79

validation set of the IAM. The only one exception is Table 3.6, which is applied
on the GW dataset.

Firstly, different popular CNN models have been evaluated in Table 2.3. Given
that the VGG19-BN model obtains the best results, we have chosen it as the
feature extractor in our architecture.

Secondly, we need to find out relatively perfect parameters for sizes of hidden
state and hidden layers of both encoder and decoder. As the hidden state of
the decoder should be initialized by the encoder, we always keep the size of the
hidden state and the number of hidden layers the same for both the encoder and
decoder. We tried 1, 2 and 3 layers, 128, 256, 512 and 1024 sizes, being a total
of 12 experiments. From the results shown in Table 2.4, we can observe that
the relatively best parameters are 2 layers and 512 size for both the encoder and
decoder.

Table 2.4: Validation CER comparison changing the size of the hidden state and
number of layers.

Size Number of Layers

1 2 3

128 5.57 6.07 6.09
256 5.13 5.33 5.69
512 5.05 5.01 5.34
1024 5.19 5.03 5.10

Thirdly, we compare two different architectures of the encoder, as explained
in Section 2.4.1. The CNN+BGRU architecture obtains better results than when
using a CNN with positional encoding, as shown in the Table 2.5, because a
trainable BGRU can provide not only the positional information, but also better
mutual information among all the feature vector H.

Fourthly, we compare our proposed decoder unit with the conventional decoder
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Table 2.5: Comparison between positional encoding [146] and BGRU on IAM
validation set.

Encoder CER WER

Pos. enc. 5.67 14.79
CNN+BGRU 5.01 13.61

unit explained in Section 2.4.3. From Table 2.6 we notice that the proposed
decoder unit has a similar and even slightly better performance even without the
post feeding of the context vector. Thus, we opt to keep the simpler version of the
decoder architecture.

Table 2.6: Comparison between the conventional decoder unit and the proposed
simplified decoder unit on IAM validation set.

Decoder Unit CER WER Time/Batch (s)

Conventional 5.06 13.91 0.236
Proposed 5.01 13.61 0.229

Table 2.7: Ablation study for the proposed model tested on the IAM dataset,
character error rates are computed from validation set.

Attention AttnSmooth Multinomial LabelSmooth Valid-CER Valid-WER

Content − − − 5.79 15.91
− − X 5.08 13.88

Location

− − − 5.49 14.74
− − X 5.01 13.61
− X − 5.53 14.53
− X X 5.03 13.66
X − − 5.72 15.92
X − X 5.34 14.62
X X − 5.84 15.85
X X X 5.56 14.85

As detailed in Section 2.4, we explored some techniques for potential improve-
ments. Table 2.7, shows that the best performance was achieved using location-
based attention and label smoothing. Studying the table, we can see that the
label smoothing is really helpful. The location-based attention is just slightly bet-
ter than the content-based one. The reason behind this little improvement is that
the use of the BGRU in the encoder can already encode some positional infor-
mation to the feature map. Contrary, once we encode the positional information
explicitly, the result improves. In conclusion, the location-based attention still
meets our expectation.
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Concerning attention smoothing and multi-nomial decoding, they seem not
helping our model. On the one hand, the original Softmax attention is already
good (attention visualization can be found in Figure 2.8, 2.9 and 2.10), therefore
smoothing the attention may introduce noise, which could harm the model. On the
other hand, multi-nomial decoding enables the proposed approach to explore new
decoding paths. This exploration was expected to make our model more robust,
however, it has showed that this technique is still not able to outperform our best
result in the table. This probably means that the multi-nomial decoding really
makes our model harder to train.

Finally, to make the best of a language model, we have investigated which is the
best way to inject the linguistic knowledge. In Table 2.8, we have applied different
activation functions on the output of the language model using the GW dataset.
The best performance has been achieved without the usage of activation function
while doing batch normalization on the concatenation of the three components:
the prediction of external language model, the embedding of the character that is
predicted by the decoder at previous time step, and the current context vector.
Different activations have been visualized in Figure 2.7. The softmax approach, as
shown in Figure 2.7(a), is not working well because it gives too strong hypothesis
to only one specific character in the available list. On the contrary, the sigmoid
approach, as shown in Figure 2.7(b), gives independent probabilities across the
available character list, but it also highlights the unrelated characters. The em-
bedding approach selects the best hypothesis from the language model and feeds its
embedded format into the decoder. This can help because the embedding process
has projected the relevant linguistic characters into a common latent space, which
gives the decoder an opportunity to select a possible character in a closed range
in that space, but the embedding process loses some useful information. Thus,
the best way is to use what it is provided from the language model without any
activation function as shown in Figure 2.7(c), while batch normalizing the three
inputs of the decoder can further improve the performance because of the similar
value range for the three different vectors.

(a) (b) (c)

Figure 2.7: Visualization of the probability distributions among characters
when using different injection functions for the output of language model. The
groundtruth is “the”, where predicted probability distributions are shown from
top to bottom corresponding to “t”, “h” and “e”, respectively. (a) is of softmax,
(b) is of sigmoid, and (c) is without activation.
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Table 2.8: Comparison of the injection functions to inject the external language
model on GW validation set.

Injection Function CER WER

Baseline 2.82 7.13

Softmax 2.78 7.13
Sigmoid 2.81 7.04
Embedding 2.78 7.13
No activation 2.58 6.78
No activation + batch norm. 2.52 6.61

2.5.4 Main Results

In this section, firstly, we describe the comprehensive experiments that have been
conducted to explore the best sequence-to-sequence architecture for handwritten
word recognition tasks. Secondly, based on the baseline model that has been
selected, we carry on further experiments with the sequence-to-sequence model
equipped with the different language models to prove their different effectiveness
and robustness. Finally, a real industrial use case is shown to demonstrate its
applicability to industry.

Baseline Model

Table 2.9 shows the most popular approaches on the IAM word-level dataset, how-
ever, most of them have applied different pre-processings on the original dataset.
For HMM-based approaches, Gimenez et al. [52] corrected the slant in the image
and made the gray level normalization. Bluche et al. [19] also corrected the slant
in the image, enhanced the image contrast and added 20 white pixels on left and
right to model the empty context. Bianne et al. [12] trained the model using all
training and validation sets. These approaches have already been outperformed,
since the RNN- and nearest neighbor- based approaches perform pretty well. In
the case of RNN-based approaches, Mor et al. [112] filtered out punctuation and
short words, and trained the model using training and validation sets. Krishnan et
al. [86] has been pre-trained using synthetic data. Wiginton et al. [152] cleaned
the punctuation and upper-cases, used the profile normalization and applied test
augmentation.

Since the nearest neighbor-based approaches cannot work without lexicons,
they cannot be widely used in daily or industrial use cases. In addition, Krishnan et
al. [85] has also pre-trained using synthetic data, cleaned punctuation and upper-
cases and applied test augmentation. Poznanski et al. [125] used a pre-trained
model from synthetic data and applied test augmentation.

The bottom rows of Table 2.9 correspond to attention-based approaches, which
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Table 2.9: Comparison with the state-of-the-art methods on IAM dataset of
word-level.

Idea Method Lexicona LM Proc. Pre-train CER WER

HMMs
Gimenez et al. [52] tr+va+te X X − − 25.80
Bluche et al. [19] te X X − − 23.70
Bianne et al. [12] tr+va+te − − − − 21.90

CTC
+

RNN
Mor et al. [112] − − − − − 20.49
Pham et al. [123] − − − − 13.92 31.48
Krishnan et al. [86] − X − Syn. 6.34 16.19
Wiginton et al. [152] − − X − 6.07 19.07
Stunner et al. [133] 2.4M X − − 4.77 13.30

Search
Neighbor
Nearest Almazan et al. [2] te − − − 11.27 20.01

Krishnan et al. [85] te+90K − − Syn. 6.33 14.07
Poznanski et al. [125] tr+te X X Syn. 3.44 6.45

Attention
Bluche et al. [17] − − − CTC 12.60 −
Sueiras et al. [134] − − X − 8.80 23.80
Ours − − − − 6.88 17.45

aVocabulary of all words occurring in training (tr), validation (va) and test set (te). 2.4
million (2.4M) and 90 thousand (90K) words lexicon.

are relatively new for handwriting recognition and have a significant potential for
development. But Bluche et al. [17] has been pre-trained using CTC loss in order
to get meaningful feature representation. Sueiras et al. [134] corrected the line
skew and the slant in the images, normalized the height of the characters based
on baseline and corpus line.

Among all those approaches, some of them have utilized language model (LM)
explicitly. Even though no language model is used in our system, the RNN of the
decoder might learn the relations between characters in the training vocabulary.

In summary, we can observe that our results are the best among the attention-
based approaches and comparable to other state-of-the-art approaches especially
with neither dataset pre-processing, model pre-training on synthetic dataset nor
using CTC loss.

To further boost the HTR performance, we make use of the synthetic data to
pre-train our recognizer as shown in Table 2.10. From the table, we observe that
our recognizer achieves good performance on the IAM, GW and Rimes datasets.
By introducing the synthetic pre-training, the performance is boosted from 6.88%
to 5.79% for CER. We show some examples of the visualized attention maps on the
IAM (Figure 2.8), GW (Figure 2.9) and Rimes (Figure 2.10). From those examples,
we observe that the attention is able to attend each character at its corresponding
time step. In addition, it can adapt itself to change its focus depending on the
varied width of each character.
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Table 2.10: Comparison with the state-of-the-art handwritten word recognition
works, without language model nor lexicon. Results are evaluated on test sets of
IAM, GW and Rimes datasets.

IAM GW Rimes

Method CER WER CER WER CER WER

Mor et al. [112] − 20.49 − − − 11.95
Pham et al. [123] 13.92 31.48 − − 8.62 27.01
Bluche et al. [17] 12.60 − − − − −
Wiginton et al. [152] 6.07 19.07 − − 3.09 11.29
Sueiras et al. [134] 8.80 23.80 − − 4.80 15.90
Kang et al. [79] 6.88 17.45 − − − −
Krishnan et al. [87] 6.34 16.19 − − − −
Toledo et al. [141] − − 7.32 − − −
Dutta et al. [42]a 4.88 12.61 4.29 12.98 2.32 7.04

Proposed 5.79 15.15 2.82 7.13 2.59 8.71

aThis work provides the results using Test-time Augmentation, which are not directly
comparable with other results.

Figure 2.8: Visualization samples of attention on the IAM dataset.

Integration of the Language Model

In this subsection we evaluate the performance of our language model by expanding
the baseline model shown in Table 2.10. The results are shown in Table 2.11. Our
language model is pre-trained with a large corpus, detailed in Section 2.3.2, and
fine-tuned with the training data within the whole sequence-to-sequence system
during end-to-end training process. Thus, the language model can adapt itself to
a specific dataset corpus while keeping the capacity of generalization. To make a
fair comparison, we have tuned the trade-off weight between language model and
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Figure 2.9: Visualization samples of attention on the GW dataset.

Figure 2.10: Visualization samples of attention on the Rimes dataset.

Syn. hesporuaklly enterr ma eeree RAlexiin foure
↓ ↓ ↓ ↓ ↓ ↓

+Tr. resporishle unterry cim remann réflévion feure
↓ ↓ ↓ ↓ ↓ ↓

+LM responsible century im remain réflexion faire

Figure 2.11: The improvements of performance from pre-training on only syn-
thetic data, fine-tuning on training set of target dataset, to joint training with
our proposed external language model, which are shown from top to bottom re-
spectively indicating by arrows. The examples are from IAM, GW and Rimes
datasets with two images per each from left to right respectively.

recognizer to achieve the best performance in the case of shallow fusion. While in
the case of deep fusion, the results are obtained with early stopping on validation
set.
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As we can see in this table, our language model can boost the performance
on all the three datasets, achieving better results than the Shallow Fusion and
Deep Fusion language models. In fact, the Shallow Fusion makes the performance
to decrease on all the three datasets, because it is too sensitive that any peaky
probability distribution from both the outputs of the decoder and the external
language model can ruin the final result. The Deep Fusion model behaves quite
well on the GW and Rimes datasets, being able to improve the results a little bit
compared to the baseline. In conclusion, our proposed Candidate Fusion is better
than the Shallow and Deep Fusion approaches, because it is trainable and flexible
to assist the recognizer during decoding. In addition, it does not need to manually
tune the trade-off between the outputs of decoder and language model. In fact,
in our Candidate Fusion architecture, the role of an external language model is to
provide an extra predicted transcription based on the recognizer’s prediction and
its own language knowledge, while at the same time, the external language model
can be adapted to the most common errors made by the sequence-to-sequence
optical recognizer.

Table 2.11: Comparison with the state-of-the-art handwritten word recognition
with language model, but not constrained by a lexicon. Results are evaluated on
test sets of IAM, GW and Rimes datasets.

IAM GW Rimes

Method CER WER CER WER CER WER

Baseline no LM 5.79 15.15 2.82 7.13 2.65 8.71

Shallow Fusion LM 6.14 16.12 2.95 7.73 3.63 12.29
Deep Fusion LM 5.91 15.45 2.72 6.79 2.54 8.20

Candidate Fusion LM 5.47a 14.51a 2.51 6.62 2.26a 7.47a

aStatistically significant with threshold P-value 0.05.

Restriction with a Close Dictionary

In all the experiments shown above, we never restrict the recognizer to a specific
lexicon, which means the recognizer can predict out-of-vocabulary (OOV) words.
Indeed, a generic handwritten word recognizer should not be restricted to closed
lexicon in industrial use cases. However, since the use of closed lexicons is also a
common practice, we have also tested how it can improve the overall performance.
Thus, in Table 2.12, we have applied a simple edit-distance method to find the
closest word in three lexicons: the brown lexicon with the lexicon of the test set
(te+brown), the lexicon from the target dataset (tr+va+te), and only the lexicon
of the test set (te). As expected, a lexicon can always improve the performance.
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Table 2.12: Applying a simple edit-distance based lexicon constraint, the results
are evaluated on test sets of IAM, GW and Rimes datasets.

IAM GW Rimes

Lexicon CER WER CER WER CER WER

Baseline 5.47 14.51 2.51 6.62 2.26 7.47

te+brown 4.97 10.30 2.29 4.90 1.82 4.59
tr+va+te 4.47 8.83 1.79 3.95 1.67 4.44
te 4.15 8.11 1.63 3.44 1.47 3.81

Application to Text-line Level

Our proposed method is not restricted to word level data. Thus, we propose an
experiment to apply the Candidate Fusion LM based recognizer to text-line level
Rimes dataset as shown in Table 2.13. The performance of joining the candidate
fusion LM is proved to be statistically significant with threshold P-value 0.05.
Even though the results on text-line Rimes data are acceptable and the Candidate
Fusion LM shows a great boost on the recognition performance, the CERs are not
as good as those in word level. We do believe that this is the limitation of Seq2Seq
method, whose main problem is the gradient vanishing for long sequences such as
text-line texts. This problem motivates us to propose a non-recurrent method for
HTR in next Chapter.

Table 2.13: Results at text-line level on the Rimes dataset. Both of the methods
are pre-trained with French synthetic data.

Method LM CER WER

Seq2Seq − 8.33 25.31
Seq2Seq Candidate Fusion 6.87 21.14

Application to a Real Industrial Use Case

Finally, we evaluate our recognizer in a real world scenario for recognizing hand-
written fields in car crash statement forms, which is an in-house private dataset.
Due to the privacy protection, we could only show a cropped image of the real
dataset in Figure 2.12. In this industrial dataset, the texts to be recognized are
names, telephone numbers, emails, addresses and even check-boxes, which are way
more challenging than the popular scientific datasets and would be unfeasible to
be included in a vocabulary. Thus, we do not use explicit language model for both
seq2seq- and CTC- based methods. Compared with a well-known CTC-based ap-
proach [126], our proposed approach achieves better performance, as shown in
Table 2.14. This results suggests that our model has a good generalization ability.
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Figure 2.12: A cropped area of the real industrial use case dataset.

Table 2.14: Results of a real use case.
Method CER WER

CTC-based [126] 5.6 7.4
Proposed 3.7 4.5

2.6 Conclusion

In this chapter, we have presented an attention-based Seq2Seq model and a novel
way to integrate an external language model into the Seq2Seq model for HTR. The
extensive evaluation, including an ablation study as well as comparisons with state-
of-the-art approaches, demonstrates the effectiveness of our approach. Indeed it
not only outperforms the existing approaches on public scientific datasets, but it
also shows its robustness on a real industrial use case.

However, this Seq2Seq-based method has gradient vanishing problem especially
when dealing with long sequences because of the recurrent nets architecture. In
addition, this recurrency hinders the training speed without the full use of parallel
computing.
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Chapter 3

Transformer-based approach

3.1 Introduction

As introduced in the previous Chapter, we know that Seq2Seq approaches, con-
formed by encoder-decoder networks led by attention mechanisms, have become
the state-of-the-art methods for HTR [109]. These methods are not only a good
fit to process images sequentially, but also have, in principle, the inherent power
of language modelling, i.e. to learn which character is more probable to be found
after another in their respective decoding steps. Nonetheless, this ability of lan-
guage modelling has proven to be limited, since recognition performances are in
most cases still enhanced when using a separate statistical language model as a
post-processing step [138].

Despite the fact that attention-based encoder-decoder architectures have started
to be used for HTR with impressive results, one major drawback still remains. In
all of those cases, such attention mechanisms are still used in conjunction with
a recurrent network, either BLSTMs or Gated Recurrent Unit (GRU) networks.
The use of such sequential processing deters parallelization at training stage, and
severely affects the effectiveness when processing longer sequence lengths by im-
posing substantial memory limitations.

Motivated by the above observations, we propose in this chapter a non-recurrent
method to replace Seq2Seq one for HTR tasks. We got inspiration from Vaswani
et al., who proposed in [146] the seminal work on the Transformer architecture.
Transformers rely entirely on attention mechanisms, relinquishing any recurrent
designs. Stimulated by such advantage, we propose to address the HTR prob-
lem by an architecture based on transformers, which dispenses of any recurrent
network. By using multi-head self-attention layers both at the visual and textual
stages, we aim to tackle both the proper step of character recognition from images,
as well as to learn language-related dependencies of the character sequences to be

35
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decoded.

The main contributions of our work are summarized as follows. i) For the first
time, we explore the use of transformers for the HTR task, bypassing any recurrent
architecture. We attempt to learn, with a single unified architecture, to recognize
character sequences from images as well as to model language, providing context
to distinguish between characters or words that might look similar. The proposed
architecture works at character level, waiving the use of predefined lexicons. ii)
By using a pre-training step using synthetic data, the proposed approach is able
to yield competitive results with a limited amount of real annotated training data.
iii) Extensive ablation and comparative experiments are conducted in order to
validate the effectiveness of our approach. Our proposed HTR system achieves
new state-of-the-art performance on the public IAM dataset.

3.2 Related Work

Vaswani et al. presented in [146] the Transformer architecture. Their proposal
relies entirely on the use of attention mechanisms, avoiding any recurrent steps.
Since the original publication, the use of transformers has been popularized in
many different computer vision and natural language processing tasks such as
automatic translation [33] or speech-to-text applications [37]. Its use has started
to eclipse recurrent architectures such as BLSTMs or GRUs for such tasks, both
by being more parallelizable, facilitating training, and by having the ability to
learn powerful language modelling rules of the symbol sequences to be decoded.

However, to the best of our knowledge, the transformer architecture has not yet
been used to tackle the handwriting recognition problem. It has been nonetheless
used lately to recognize text in natural scenes [99]. In such works, the origi-
nal transformers architecture, often applied to one-dimensional signals (i.e. text,
speech, etc.), has been adapted to tackle two-dimensional input images. Image
features are extracted by the use of CNNs [130], two-dimensional positional en-
codings [94, 14] or additional segmentation modules [9] help the system locate
textual information amidst background clutter. However, all such works present
some limitations when dealing with handwritten text lines. On the one hand, all
such architectures work with fixed image size whereas for handwriting recognition
we have to face variable length inputs. On the other hand, they work at individ-
ual word level, whereas in handwriting recognition we have to face much longer
sequences. Finally, despite also having its own great variability, scene text is often
much legible than cursive handwriting, since in most of the cases words are formed
by individual block letters, which, in turn, are easier to synthesize to obtain large
training volumes.

Summarizing, state-of-the-art handwriting recognition based on deep recurrent
networks have started to reach decent recognition results, but are too computa-
tionally demanding at training stage. Moreover, albeit they shall have the ability
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to model language-specific dependencies, they usually fall short of inferring ade-
quate language models and need further post-processing steps. In this chapter we
propose, for the first time, the use of transformers for the HTR task, bypassing any
recurrent architecture. A single unified architecture, both recognizes long charac-
ter sequences from images as well as models language at character level, waiving
the use of predefined lexicons.

3.3 Proposed Method
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Figure 3.1: Overview of the architecture of the proposed method. Text-line
images are processed by a CNN feature extractor followed by a set of multi-
headed self-attention layers. During training, the character-wise embeddings of
the transcriptions are also encoded by self-attentions and a final mutual attention
module aims to align both sources of information to decode the text-line character
by character.

3.3.1 Problem Formulation

Let {X ,Y} be a handwritten text dataset, containing images X of handwritten
textlines, and their corresponding transcription strings Y. The alphabet defining
all the possible characters of Y (letters, digits, punctuation signs, white spaces,
etc.), is denoted as A. Given pairs of images xi ∈ X and their corresponding
strings yi ∈ Y, the proposed recognizer has the ability to combine both sources of
information, learning both to interpret visual information and to model language-
specific rules.

The proposed method’s architecture is shown in Figure 3.1. It consists of
two main parts. On the one hand a visual feature encoder aimed at extracting the
relevant features from text-line images and at focusing its attention at the different
character locations. Subsequently, the text transcriber is devoted to output the
decoded characters by mutually attending both at the visual features as well as the
language-related features. The whole system is trained in an end-to-end fashion,
learning both to decipher handwritten images as well as modelling language.
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3.3.2 Visual Feature Encoder

The role of the visual feature encoder is to extract high-level feature representations
from an input handwritten image x ∈ X . It will encode both visual content as
well as sequential order information. This module is composed by the following
three parts.

CNN Feature Encoder

Input images x of handwritten text-lines, which might have arbitrary lengths, are
first processed by a Convolutional Neural Network. We obtain an intermediate vi-
sual feature representation Fc of size f . We use the ResNet50 [66] as our backbone
convolutional architecture. Such visual feature representation has a contextualized
global view of the whole input image while remaining compact.

Temporal Encoding

Handwritten text images are sequential signals in nature, to be read in order from
left to right in Latin scripts. The temporal encoding steps are aimed to leverage
and encode such important information bypassing any recurrency.

In a first step, the three-dimensional feature Fc is reshaped into a two-dimensional
feature by keeping its width, i.e. obtaining a feature shape (f×h,w). This feature
map is later fed into a fully connected layer in order to reduce f×h back to f . The
obtained feature F

′

c , with the shape of (f, w), can be seen as a w-length sequence
of visual vectors.

However, we desire that the same character appearing at different positions of
the image has different feature representations, so that the attention mechanisms
are effectively and unequivocally guided. That is, we want that the visual vectors
F

′

c loose their horizontal shift invariance. Following the proposal from Vaswani et
al. [146], a one-dimensional positional encoding using sine and cosine functions is
applied.

TE(pos, 2i) = sin
( pos

100002i/f

)
TE(pos, 2i+ 1) = cos

( pos

100002i/f

)
, (3.1)

where pos ∈ {0, 1, 2, . . . , w − 1} and i ∈ {0, 1, 2, . . . , f − 1}.

F
′

c and TE, sharing the same shape are added along the width axis. A final
fully connected layer produces an abscissa-sensitive visual feature F̄c with shape
(f, w).
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Visual Self-Attention Module

To further distill the visual features, self-attention modules are applied four times
upon F̄c. The multi-head attention mechanism from [146] is applied using eight
heads. This attention module takes three inputs, namely the query Qc, key Kc

and value Vc, where Qc = Kc = Vc = F̄c. The correlation information is obtained
by:

v̂ic = Softmax

(
qicKc√
f

)
Vc, (3.2)

where qic ∈ Qc and i ∈ {0, 1, . . . , w − 1}. The final high-level visual feature is
F̂c = {v̂0

c , v̂
1
c , . . . , v̂

w−1
c }.

3.3.3 Text Transcriber

The text transcriber is the second part of the proposed method. It is in charge
of outputting the decoded characters, attending to both the visual features as
well as the language-specific knowledge learnt form the textual features. It is
worth to note that unlike translation of speech-to-text transformer architectures,
our text transcriber works at character level instead of word-level. It will thus
learn n-gram like knowledge from the transcriptions, i.e. predicting the next most
probable character after a sequence of decoded characters. The text transcriber
consists of three steps, the text encoding, the language self-attention step and the
mutual-attention module.

Text Encoding

Besides the different characters considered in alphabet A, we require some symbols
without textual content for the correct processing of the text-line string. Special
character 〈S〉 denotes the start of the sequence, 〈E〉 the end of the sequence, and
〈P 〉 is used for padding. The transcriptions y ∈ Y are extended to a maximum
length of N characters in the prediction.

A character-level embedding is performed by means of a fully-connected layer
that maps each character from the input string to an f -dimensional vector. The
same temporal encoding introduced in eq. 3.1 is used here to obtain

Ft = Embedding (y) + TE, (3.3)

where Ft has the shape of (f,N).

In the decoding step of recurrent-based HTR approaches [79, 109] every de-
coded character is iteratively fed again to the decoder, to predict the next char-
acter, thus inhibiting its parallelization. Contrary, in the transformer paradigm,
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all possible decoding steps are fed concurrently at once with a masking opera-
tion [146]. To decode the j-th character from y, all characters at positions greater
than j are masked so that the decoding only depends on predictions produced
prior to j. Such a parallel processing of what used to be different time steps in
recurrent approaches drastically reduces training time.

Language Self-attention Module

This module follows the same architecture as in Section 3.3.2 and aims to further
distill the text information and learn language-specific properties. F̂t is obtained
after the self-attention module implicitly delivers n-gram-like features, since to
decode the j-th character from y all character features prior to j are visible.

a) Real data from IAM dataset

b) Synthetically rendered text-lines with truetype fonts

Figure 3.2: Examples of real and synthetic training handwritten text-line im-
ages.

Mutual-attention Module

A final mutual self-attention step is devoted to align and combine the learned fea-
tures form the images as well as from the text strings. We follow again the same
architecture from Section 3.3.2, but now the query Qt comes from the textual rep-
resentation F̂t while the keyKc and value Vc are fed with the visual representations
F̂c

v̂ict = Softmax

(
qjtKc√
f

)
Vc, (3.4)
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where qjt ∈ Qt and j ∈ {0, 1, . . . , N − 1}. The final combined representation is
F̂ct = {v̂0

ct, v̂
1
ct, . . . , v̂

N−1
ct }.

The output F̂ct is expected to be aligned with the transcription Y . Thus, by
feeding the F̂ct into a linear module followed by a softmax activation function, the
final prediction is obtained.

3.3.4 Inference on Test Data

When evaluating on test data, the transcriptions Y are not available. The text
pipeline is initialized by feeding the start indicator 〈S〉 and it predicts the first
character by attending the related visual part on the input handwritten text image.
With the strategy of greedy decoding, this first predicted character is fed back to
the system, which outputs the second predicted character. This inference process
is repeated in a loop until the end of sequence symbol 〈E〉 is produced or when
the maximum output length N is reached.

3.4 Experimental Evaluation

3.4.1 Dataset and Performance Measures

We conduct our experiments on the popular IAM handwritten dataset [103], com-
posed of modern handwritten English texts. We use the RWTH partition, which
consists of 6482, 976 and 2914 lines for training, validation and test, respectively.
The size of alphabet |A| is 83, including special symbols, and the maximum length
of the output character sequence is set to 89. All the handwritten text images are
resized to the same height of 64 pixels while keeping the aspect ratio, which means
that the textline images have variable length. To pack images into mini-batches,
we pad all the images to the width of 2227 pixels with blank pixels.

Character Error Rate (CER) and Word Error Rate (WER) [47] are used for
the performance measures. The CER is computed as the Levenshtein distance
which is the sum of the character substitutions (Sc), insertions (Ic) and deletions
(Dc) that are needed to transform one string into the other, divided by the total
number of characters in the groundtruth (Nc). Formally,

CER =
Sc + Ic +Dc

Nc
(3.5)

Similarly, the WER is computed as the sum of the word substitutions (Sw), inser-
tions (Iw) and deletions (Dw) that are required to transform one string into the
other, divided by the total number of words in the groundtruth (Nw). Formally,

WER =
Sw + Iw +Dw

Nw
(3.6)
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3.4.2 Implementation Details

Hyper-Parameters of Networks

In the proposed architecture, the feature size f is 1024. We use four blocks of
visual and language self-attention modules, and each self-attention module has
eight heads. We use 0.1 dropout setting for every dropout layer. In the text
transcriber, all the transcriptions include the extended special symbols 〈S〉 and
〈E〉 at the beginning and at the end, respectively. Then, they are padded to 89
length with a special symbol 〈P 〉 to the right, which is the maximum number of
characters in the prediction N . The output size of the softmax is 83, which is the
size of the alphabet A, including upper/lower cased letters, punctuation marks,
blank space and special symbols.

Optimization Strategy

We adopt label smoothing mechanism [136] to prevent the system from making
over-confident predictions, which is also a way of regularization. As the ground-
truth are one-hot vectors with binary values, label smoothing is done by replacing

the 0 and 1 with
ε

|A|
and 1 − |A| − 1

|A|
ε, where ε is set to 0.4. We utilize Adam

optimizer [81] for the training process with an initial learning rate of 2 ·10−4, while
reducing the learning rate by half every 20 epochs. The implementation of this
system is based on PyTorch [120] and performed on a NVIDIA Cluster. The code
will be publicly available.

3.4.3 Pre-training with Synthetic Data

Deep learning based methods need a large amount of labelled training data to
obtain a well generalized model. Thus, synthetic data is widely used to compen-
sate the scarcity of training data in the public datasets. There are some popular
synthetically generated handwriting datasets available [88, 76], but they are at
word level. For this reason we have created our own synthetic data at line level for
pre-training. First, we collect a text corpus in English from online e-books and end
up with over 130, 000 lines of text. Second, we select 387 freely available electronic
cursive fonts and use them to randomly render text lines from the first step. Fi-
nally, by applying a set of random augmentation techniques (blurring/sharpening,
elastic transforming, shearing, rotating, translating, scaling, gamma correcting
and blending with synthetic background textures), we obtain a synthetic dataset
with 138, 000 lines. The comparison between the synthetic data and the real data
is shown in Figure 3.2.
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3.4.4 Ablation Studies

In the ablation studies, all the experiments are trained from scratch with the IAM
training set at line-level, and then early-stopped by the CER of the validation set,
which is also utilized as an indicator to choose the hyper-parameters as shown in
Table 3.1 3.2 3.4.

Architecture of CNN Feature Encoder

We have explored different popular Convolutional Neural Networks for the feature
encoder detailed in Section 3.3.2. The best results were obtained with ResNet
models. We modified the original ResNet architecture to slighty increase the final
resolution of the features, by changing the stride parameter from 2 to 1 in the
last convolutional layer. From Table 3.1, the best performance is achieved with a
modified version of ResNet50.

Table 3.1: Ablation study on Convolutional architectures. ∗ indicates modified
architectures.

CNN CER (%) WER (%)

ResNet34 6.33 22.63
ResNet34∗ 5.44 20.13
ResNet50 5.49 20.93
ResNet50∗ 4.86 18.65

Function of Temporal Encoding

In both the visual feature encoder and the text transcriber, we have used tempo-
ral encoding in order to enforce an order information to both visual and textual
features. Nonetheless we want to analyze its impact. In Table 3.2, it is clear that
using temporal encoding at text level boosts the performance drastically from
7.72% to 4.86%, and from 6.33% to 5.52%, depending on whether we use it at
image level or not. The best performance is reached when using the temporal
encoding step both for image and text representations.

Role of Self-Attention Modules

Self-attention modules have been applied in both image and text levels. In Ta-
ble 3.4 we analyze their effect in our system. We observe that the visual self-
attention module barely improves the performance. Nonetheless, for the language
self-attention module, it really plays an important role that improves the perfor-
mance from 7.71% to 4.86%, and from 7.78% to 4.89%, with and without the
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Table 3.2: Ablation study on the use of temporal encoding in image and text
levels.

Image level Text level CER (%) WER (%)

− − 6.33 21.64
X − 7.72 24.70
− X 5.52 20.72
X X 4.86 18.65

Table 3.3: Fine-tuning with different portions of real data (line-level test set
with greedy decoding).

20% 40% 60% 80% 100%

CER WER CER WER CER WER CER WER CER WER

Seq2Seq 20.61 56.50 16.15 46.97 15.61 46.01 12.18 38.11 11.91 37.39
+ Synth 18.64 51.77 13.01 39.72 13.00 39.34 12.15 37.43 10.64 33.64

Ours 73.81 132.74 17.34 42.57 10.14 30.34 10.11 29.90 7.62 24.54
+ Synth 6.51 20.53 6.20 19.69 5.54 17.71 4.90 16.44 4.67 15.45

visual self-attention module, respectively. Our intuition is that the language self-
attention module actually does learn language-modelling information. This im-
plicitly learned language model is at character level and takes advantage of the
contextual information of the whole text-line, which not only boosts the recogni-
tion performance but also keep the capability to predict out-of-vocabulary (OOV)
words.

Table 3.4: Ablation study on visual and language self-attention modules.

Image level Text level CER (%) WER (%)

− − 7.78 29.78
X − 7.71 28.50
− X 4.89 18.57
X X 4.86 18.65

We showcase in Figure 3.4 some qualitative results on text-line recognition,
where we visualize the attention maps as well. The attention maps are obtained
by averaging the mini attention maps across different layers and different heads.
Those visualizations prove the successful alignment between decoded characters
and images.
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Figure 3.3: Performance of the transformer-based decodings for different
amounts of real training data.

Figure 3.4: Qualitative results on text-line recognition and visualization of at-
tention maps that coarsely align transcriptions and corresponding image charac-
ters.
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3.4.5 Detailed Comparison with Seq2Seq Model

In order to provide a fair comparison between the proposed architecture and
recurrent-based solutions, we re-implemented a state-of-the-art recurrent hand-
writing recognition pipeline, and we train and evaluate those under the exact
same circumstances. Following the methods proposed in Chapter 2, we built a
sequence-to-sequence recognizer composed of an encoder, a decoder and an at-
tention mechanism. The encoder consists of a VGG19-BN [132] and a two-layer
Bidirectional Gated Recurrent Units (BGRU) with feature size of 512. The de-
coder is a two-layer one directional GRU with feature size of 512, and we power
the architecture with a location-based attention mechanism [27]. All the dropout
layers are set to 0.5. Label smoothing technique is also used during the training
process. The maximum number of predicted characters is also set to 89. All the
hyper-parameters in this sequence-to-sequence model are also exhaustively vali-
dated by ablation studies with validation data.

We first provide in Table 3.5, the CER and WER rates on the IAM test set both
when training the networks from scratch and just using the IAM training data,
and when pre-training the networks with synthetic data for a later fine-tuning step
on real data. We also provide the model size and the time taken per epoch during
training. While the sequence-to-sequence model has much less parameters, it still
takes longer to train than the transformers-based one. We also observe that both
models benefit from the use of synthetic pre-training, improving the final error
rates quite noticeably for the transformers model, although such boost is not so
drastic for the sequence-to-sequence approach.

Table 3.5: Comparison between Recurrent and Transformers.

Method CER (%) WER (%) Time(s) Param(M)

Seq2Seq 11.91 37.39 338.7 37
+ Synth 10.64 33.64 338.7 37

Ours 7.62 24.54 202.5 100
+ Synth 4.67 15.45 202.5 100

3.4.6 Few-shot Training

Due to the scarcity and the cost of producing large volumes of real annotated
data, we provide an analysis on the performance of the proposed approach when
dealing with a few-shot training setup, when compared again with the sequence-
to-sequence approach. To mimic a real scenario in which only a small portion of
real data is available, we randomly selected 20%, 40%, 60% and 80% of the IAM
training set.

As shown in Table 3.3, both sequence-to-sequence and transformer-based ap-
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proaches follow the same trend. The more real training data is available, the
better the performance is. Overall, the transformer-based method performs bet-
ter than the sequence-to-sequence, except for the extreme case of just having a
20% of real annotated training data available. The transfomer approach, being a
much larger model, struggles at such drastic data scarcity conditions. However,
when considering the models that have been pre-trained with synthetic data, the
transformer-based approach excels in few-shot setting conditions. We provide in
Figure 3.3 some qualitative examples of the transcriptions provided by different
models trained with reduced training sets. All of the models were pre-trained with
synthetic data.

3.4.7 Language Modelling Abilities

In order to validate whether the proposed approach indeed is able to model
language-specific knowledge besides its ability to decode handwritten characters,
we propose to test whether using a state-of-the-art language model as a post-
processing step actually improves the performance. We implement a shallow fu-
sion [61] language model, consisting of a recurrent network with 2, 400 LSTM
units. It has been trained on 130, 000 English text-lines. The additive weight for
the shallow fusion is set to 0.2.

We observe in Table 3.6, that the use of such language modelling post-processing
is useless, somehow indicating that the proposed approach already incorporates
such language-specific contextual information within the language self-attention
module.

Table 3.6: Effect of using a post-processing langauge model.

Method CER (%) WER (%)

Ours 4.67 15.45
+LM 4.66 15.47

3.4.8 Comparison with the State-Of-The-Art

Finally, we provide in Table 3.7 and extensive performance comparison with the
state of the art. Different approaches have been grouped into a taxonomy depend-
ing on whether they are based on HMMs or early neural network architectures,
whether they use recurrent neural networks (usually different flavours of LSTMs)
followed by a Connectionist Temporal Classification (CTC) layer, or if they are
based on encoder-decoder sequence-to-sequence architectures. Within each group,
we differentiate results depending on whether they make use of a closed vocabulary
of size Ω or they are able to decode OOV words. Bluche et al. [18] achieves the
best result among the methods using a closed lexicon, while our proposed method
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Table 3.7: Comparison with the State-Of-The-Art approaches on IAM line level
dataset.

System Method Ω (k) CER (%) WER (%)

HMM/ANN
2008 - now

Almazán et al. [2] − 11.27 20.01
España et al. [44] − 9.80 22.40

Dreuw et al. [40] 50 12.40 32.90
Bertolami et al. [10] 20 − 32.83
Dreuw et al. [41] 50 10.30 29.20
Zamora et al. [159] 103 7.60 16.10
Pastor et al. [119] 103 7.50 19.00
España et al. [44] 5 6.90 15.50
Kozielski et al. [35] 50 5.10 13.30
Doetsch et al. [34] 50 4.70 12.20

RNN+CTC
2008 - now

Chen et al. [24] − 11.15 34.55
Pham et al. [123] − 10.80 35.10
Krishnanet al. [87] − 9.78 32.89
Wigington et al. [153] − 6.40 23.20
Puigcerver [126] − 5.80 18.40
Dutta et al. [42] − 5.70 17.82

Graves et al. [58] 20 18.20 25.90
Pham et al. [123] 50 5.10 13.60
Puigcerver [126] 50 4.40 12.20
Bluche et al. [18] 50 3.20 10.50

Seq2Seq
2016 - now

Chowdhury [28] − 8.10 16.70
Bluche [15] − 7.90 24.60

Bluche [15] 50 5.50 16.40

Transf. Ours − 4.67 15.45

obtains the best result among the methods without using a closed lexicon, while
still competing with most of the closed-vocabulary approaches.

3.5 Conclusion

In this chapter, we have proposed a novel non-recurrent and open-vocabulary
method for handwritten text-line recognition. As far as we know, it is the first ap-
proach that adopts the transformer networks for the HTR task. We have performed
a detailed analysis and evaluation on each module, demonstrating the suitability
of the proposed approach. Indeed, the presented results prove that our method
not only achieves the state-of-the-art performance, but also has the capability to
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deal with few-shot training scenarios, which further extends its applicability to
real industrial use cases. Finally, since the proposed approach is designed to work
at character level, we are not constrained to any closed-vocabulary setting, and
transformers shine at combining visual and language-specific learned knowledge.

However, by witnessing the experimental results, we find that the performance
on training data always performs better than that of test data, i.e. there is a gap
between training and test data. It would be interesting to define this gap and
reduce it, so that a better performance on test data can be obtained.
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Chapter 4

Unsupervised Writer Adaptation

4.1 Introduction

In the first two chapters, we have proposed two recognition methods, a Seq2Seq
method and a transformer-based method. And in the experimental results, we
have witnessed a gap between the training and test data, so that the recognition
performance on test set can never be as good as the training one. We define it as
domain gap, which is caused of different handwriting styles between training and
test data. Thus, we further define two domains: source and target domain, where
the source domain contains the labeled images referred as training set while the
target domain consists of unlabeled images referred as test set. Thus, the source
domain can be either the real training data or the huge amount of synthetically
rendered data (refer to Chapter 2).

For the real dataset, the different handwriting styles between training and test
sets produce the domain gap. Similarly, even if the synthetic fonts are carefully se-
lected, the extracted visual features will most likely differ from the ones one might
find when dealing with real handwritten text. In that sense, a final adjustment
step is needed in order to bridge the representation gap between the synthetic and
the real samples.

Such issue raised awareness of the document analysis community, that has
researched on the topic of writer adaptation since the early nineties [105, 124, 51].
The main motivation of such applications, consist in adapting a generic writer-
independent HTR system, trained over a large enough source dataset, towards a
new distribution of a particular writer. Especially interesting are the approaches
that are able to yield such writer adaptation step in an unsupervised manner, that
is, without needing any ground-truth labels from the new target writer.

Our main application contribution stems for the use of unsupervised domain

51
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adaptation to forge an annotation-free handwriting recognition system. Our pro-
posed approach is fully trained with synthetically generated samples that mimic
the specific characteristics of handwritten text. Later, it is unsupervisedly adapted
towards any new incoming target writer. In particular, the system produces tran-
scriptions (without the need of labelled real data) that are competitive even com-
pared to supervised methods. Text being a sequential signal, several temporal
pooling alternatives are proposed to redesign current domain adaptation tech-
niques so that they are able to process variable-length sequences. All in all it
represents a step towards the practical success of HTR in unconstrained scenarios.

We show some examples of the results obtained after such writer adaptation
in Fig. 4.4. We observe that even though the synthetically trained model outputs
gibberish text, the committed errors are quite understandable, since the confusion
is between letters and glyphs that are visually close. Once the unsupervised writer
adaptation is applied, the text is correctly transcribed in all those cases. Our
proposal is validated by using five different datasets in different languages, showing
that our handwritten word recognizer is adapted to modern and historic samples,
single and multi-writer collections. Our proposed adaptable handwritten word
recognition model outperforms the state of the art, and compares quite favourably
to supervised fine-tuning methods while not needing any manually annotated label.

4.2 Related Work

Inspired by the speech recognition community, writer adaptation techniques have
been applied to modify early handwritten text recognition models based on Hidden
Markov Models [51, 127, 1]. Once an omni-writer model has been trained, the
model parameters, consisting of the Gaussian mixture means and variances, can
be modified to better fit the target data distribution. Other early works proposed
an Expectation-Maximization strategy [116, 137] over a set of different character
recognizers. The main advantage of such techniques was that the adaptation
procedure to unseen target writers was done in an unsupervised manner, without
needing any target labelled data.

With the rise of deep learning, the use of Long Short-Term Memory (LSTMs)
architectures became established for HTR. Such data hungry approaches have
been commonly trained with the largest publicly available datasets, and then fine-
tuned to the target collection to be recognized. Such tuning strategies [4, 55, 115]
guarantee that the neural networks can be properly trained, ending up extracting
relevant features from handwriting strokes, that are later revamped to the target
collection. But fine-tuning presents the downside of needing manual annotations
both from the source and target datasets. In order to alleviate such pain, the use
of synthetically generated texts as source data has lately surfaced [89, 62, 11].
By the use of synthetic fonts, overfitting is avoided at no labelling cost. However,
HTR models fully trained on synthetically generated data still need to be grounded
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Figure 4.1: Architecture of the adaptable handwritten word recognizer. The
model consists of an encoder, a decoder and a discriminator. The discriminator
incorporates a temporal pooling step to be able to adapt to variable-length se-
quences. The blocks corresponding to the handwriting recognizer, and therefore
used for inference, are highlighted in light green; the block responsible for the
unsupervised domain adaptation during training is highlighted in light magenta
(best viewed in color).

with real data in order to be effective, and thus target labels are still needed.

In order to discard target labelled data, unsupervised domain adaptation tech-
niques have been proposed in the literature. Given a labeled source dataset and
an unlabeled target dataset, their main goal is to adjust the recognition model so
that it can generalize to the target domain while taking the domain shift across
the datasets into account. A common approach to tackle unsupervised domain
adaptation is through an adversarial learning strategy [49, 50, 121, 145], in which
the discrepancy across different domains is minimized by means of jointly training
a recognizer network and a domain discriminator network. The recognizer seeks
to correctly recognize the labeled source domain data, whereas the discriminator
has to distinguish between samples drawn either from source or target domains.
The adversarial model is trained jointly in a min-max fashion, in which the aim
is to minimize the recognition loss while maximizing the discriminator loss. For
instance, Ganin et al. [50] adapted a digit recognizer trained on handwritten dig-
its from MNIST to tackle other target digit datasets such as MNIST-M or SVHN;
or Yang et al. [156], who proposed an unsupervised domain adaptation scheme
for Chinese characters across different datasets. Such strategy has been proven
to be effective when dealing with classification problems, where the source and
target domains share the same classes. However it can not be straightforwardly
applied to HTR applications, where, instead of a classification problem, the input
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and output signals are sequential in nature.

We propose to integrate this adversarial domain adaptation for the recognition
of cursive handwriting recognition using an encoder-decoder framework. Thus,
both the inputs and outputs of our system are variable-length signals formed by a
sequence of characters. Although the same character set has to be used for both
source and target domains, the proposed method is not restricted to a particu-
lar output lexicon nor language. We incorporate a temporal pooling step aimed
at adjusting the adversarial domain adaptation techniques to problems having
variable-length signals. To the best of our knowledge, just the recent parallel work
of Zhang et al. [160] proposes a similar idea. However, they propose that both the
recognition and discrimination steps focus on character level. By disentangling the
recognition and discrimination processes, one working at character and the other
at word level respectively, we significantly outperform their approach. In addition,
by synthetically rendering the source words with truetype fonts, our system does
not require any manually generated label, and is trained “for free”, not requiring
any real annotated training data to be used as source domain.

4.3 Adaptable Handwritten Word Recognition

4.3.1 Problem Formulation

Our main objective is to propose an adaptable handwritten word recognizer appli-
cation that is initially trained by synthetically generated word images, and then
adapted to a specific handwriting style in an unsupervised and end-to-end manner.
Our architecture, depicted in Fig. 4.1, consists of two interconnected branches, the
handwriting recognizer and the discriminator, in charge of the adaptation process.
By means of a gradient reversal layer, the two blocks will play an adversarial game
in order to obtain an intermediate feature representation that is indistinguishable
whether it is generated from a real or synthetic input, while being representative
enough to yield good transcription performances.

Figure 4.2: Synthetically generated words in English (top), French (mid) and
Catalan (bottom) used during training.

In the proposed framework, two different flows are followed. The synthetically
generated source words xsi ∈ Ds do come with their associated transcriptions
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ysi ∈ Ys, and enter both the recognizer and the discriminator branches. Contrary,
the real target word images xti ∈ Dt, being unlabelled, are just processed through
encoding and the discriminator block. At inference time, the prediction of the
target texts ŷti is not bounded by any previously defined lexicon, being totally
independent of Ys.

4.3.2 Rendering Synthetic Sources

The use of synthetically generated word collections that look like real handwrit-
ing to magnify training data volumes has become a common practice. Although
several public datasets, such as the IIIT-HWS dataset [88], exist, we decided to
create our own, in order to include special characters (e.g. accents, umlauts, punc-
tuation symbols, etc.) that we want our recognizer to tackle. 387 freely available
electronic fonts that imitate cursive handwriting were selected. A text corpus
consisting of over 430,000 unique words was collected from free ebooks written in
English, French, Catalan and German languages. By randomly rendering those
words with the different electronic fonts, we ended up with more than 5.6 million
word images. In order to add more variability to the synthetic collection and to
act as a regularizer, we incorporate a data augmentation step, specifically tailored
to produce realistic deformations that one can find in handwritten data. This
augmentation step is applied online within the data loader, so that each batch is
randomly augmented. Pixel-level deformations include blurring, gamma, bright-
ness and contrast adjustments or Gaussian noise. Geometric transformations such
as shear, rotation, scaling and an elastic deformation are also randomly applied.
Finally a model generating random background textures that simulate paper sur-
face is applied. Some samples of synthetic words are shown in Fig. 4.2.

4.3.3 Handwritten Word Recognition Framework

We use a sequence-to-sequence architecture topped with an attention mechanism
to be our handwritten word recognition branch, which follows the same method
in Chapter 2. Such architectures are able to process and output variable length
data, and thus are not restricted to work with a predefined vocabulary. It consists
of two main parts: the encoder and the attention-based decoder.

Encoder

The aim of the encoder is to extract high-level features given a word image, which
can be further adapted in the same feature hyperspace. In this work we define the
encoder as a Convolutional Neural Network feature extractor followed by a Recur-
rent Neural Network. The initial CNN is in charge of extracting visual features
that characterize the handwritten words. This encoder leads to the final feature
representation H. We denote hi ∈ H, i ∈ {1, 2, ..., N} as the output sequence of
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the encoder. N is the length of H, which varies according to the lengths of the
input word images. Thus, we denote Ge : I → RD×N as the encoder function
given an image I ∈ I with parameters θe.

Attention-based Decoder

The decoder is a one-directional multi-layered GRU, which predicts one character
ŷsi,k at each time step k until reaching the maximum number of steps T or meeting
the end of sequence symbol 〈end〉. Thus, let Gr denote the decoder function
given the output of encoder H ∈ RD×N with parameters θr, and its output is a
sequence of characters ŷsi , which is the concatenation of ŷsi,k, where k ∈ {1, 2, ..., T}.
Location-based attention mechanism [27] is chosen to give a constraint that the
decoding process should be done from left to right of the images.

4.3.4 Temporal Pooling for Unsupervised Writer Adapta-
tion

Text being a sequential and variable-length signal, state-of-the-art adversarial do-
main adaptation methods can not be straightforwardly used, since they all rely
on having fixed length feature vectors. We propose to explore several Temporal
Pooling strategies in order to transfer the variable length feature representation
H into a fixed size feature representation F within the discriminator module:

Column-wise Mean Value (CMV) treats H as a column-wise sequence
feature. The mean value is calculated as follows

F =
1

N

N∑
i=1

hi. (4.1)

Spatial Pyramid Pooling (SPP) [65] is a flexible solution for handling
different scales, sizes and aspect ratios of images. It severs the images into divisions
from finer to coarser levels and aggregates local features in a fixed-size feature
vector.

Temporal Pyramid Pooling (TPP) [151] is an one-directional SPP. It is
considered to be more suitable for handwriting recognition tasks, because words
are composed of a sequence of characters, and they are read in a specific direction.

Gated Recurrent Unit (GRU) are used to process the sequential signal H
to output a fixed size feature representation F . In our model, we simply apply a
2-layered one-directional GRU.

Once we have obtained a fixed representation, F is fed into the domain clas-
sifier, which consists of three fully connected layers with batch normalization and
ReLU activation. θd is used to represent the parameters of the discriminator Gd.
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The output of Gd is binary, either predicting that the features F come from source
or target samples.

4.3.5 Learning Objectives

Until now, we have a recognition loss Lr from the decoder and a discriminator loss
Ld from the domain classifier. Since our model is trained in end-to-end fashion,
the overall loss for the training scheme is defined as

L(θe, θr, θd) =
∑
xi∈Ds

Lr (Gr (Ge(xi)) , yi)−

λ
∑

xj∈Ds∪Dt

Ld (Gd (Ge(xj)) , dj) ,
(4.2)

where λ is a hyper-parameter to trade off the two losses Lr and Ld. In Section 4.4.2,
different λ methods have been studied.

As stated before, the source data consists in synthetic word images plus their
corresponding labels. The target data corresponds to real word images, but with-
out labels.

The parameters of the discriminator are randomly initialized during the writer
adaptation process. For the forward pass, the synthetic word images can be trans-
ferred through both the recognizer and the discriminator, while the real word
images can only contribute to the discriminator loss. The backward propagation
follows the same but reverse flow of the model by applying a Gradient Reversal
Layer (GRL) [49] between the encoder and the discriminator. This layer applies
the identity function during the forward pass but during the backward pass it mul-
tiplies the gradients by the parameter −λ. Thus, this layer reverses the gradient
sign that flows through the model. By doing so, the model can be trained in a
min-max optimization fashion. Minimizing the discriminator loss means to train
a better discriminator for distinguishing between the synthetic and real data. In
contrast, maximizing the discriminator loss for the encoder means to eliminate the
differences of data feature distribution between the synthetic and real data. The
goal of the optimization process is to find a saddle point that

θ̂e, θ̂r = arg min
θe,θr

L(θe, θr, θd) (4.3)

θ̂d = arg max
θd

L(θe, θr, θd). (4.4)

In short, synthetic data contributes to both the recognizer and the discrimina-
tor, whereas real data only contributes to the discriminator.
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Table 4.1: Overview of the different datasets used in this work depicting its
characteristics.

Dataset Words Writers Period Language

GW [92] 4,860 1 Historic English
IAM [103] 115,320 657 Modern English
Rimes [5] 66,978 1,300 Modern French
Esposalles [46] 39,527 1 Historic Catalan
CVL [83] 99,902 310 Modern English/German

4.4 Experiments

In order to carry our writer adaptation experiments, we will use five different
publicly available datasets with different particularities: single or multiple writers,
coming from historic or modern documents or written in English, French, Catalan
or German. We provide the details of such datasets in Table 4.1. To evaluate the
system’s performance, we will use the standard Character Error Rate (CER) and
Word Error Rate (WER) metrics. In the tables, these values are in percentage
ranging from [0-100].

4.4.1 Implementation Details

All our experiments were run using PyTorch [120] on a cluster of NVIDIA GPUs.
The training was done using the Adam optimizer with an initial learning rate of
2 · 10−4 and a batch size of 32. We have set the dropout probability to be 50% for
all the GRU layers except the last layer of both the encoder and decoder. During
training, we have kept a balance in the total number of samples shown for both
synthetic source words and real unlabelled target data. However, the training set
is shuffled at each epoch and source and target data balancing is not guaranteed
within a batch.

4.4.2 Ablation Study

Before assessing the performance of the proposed unsupervised writer adaptation
model, we want to validate the adequacy of several hyper-parameters involved in
our system. The following experiments are carried out using the IAM validation
set as target dataset, except the last one, where the GW dataset was used in-
stead. First, we evaluate which is the best temporal pooling strategy to recast
the variable-length features of the encoder to the fixed-length features needed by
the discriminator. In Table 4.2, we observe that the GRU achieves the best per-
formance. The GRU module has trainable parameters, so, contrary to the other
aggregation strategies, it can learn how to effectively pool the variable-length fea-
tures into a meaningful fixed-length representation, and consequently, obtain a
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better performance. For the rest of experiments we will use the GRU as our
temporal pooling strategy.

Table 4.2: Study on the different Temporal Pooling approaches of the discrimi-
nator, evaluated on the IAM validation set.

CMV SPP TPP GRU

CER 14.83 15.76 14.55 13.58
WER 36.83 38.86 36.44 33.99

Second, we analyze three different approaches to set the hyper-parameter λ,
which controls the trade-off between the recognition loss Lr and the discriminator
loss Ld. We choose to either set it as a constant λ = 1, increase its value linearly
from 0 to 1 at each epoch, or increase its value from 0 to 1 in an exponential
way. Although a gradual increase of the weight of the discriminator loss could
potentially benefit the overall performance, in Table 4.3 we appreciate that simply
setting λ as a constant value provides the best results.

Table 4.3: Study on the different λ strategies, evaluated on the IAM validation
set.

λ Constant Linear Exponential

CER 13.58 13.79 14.43
WER 33.99 35.42 36.65

Finally, we explore the effect of providing different amounts of unlabelled target
data to the system during writer adaptation. In this experiment we use the GW
dataset, since it contains almost 5, 000 words from the same writer. We observe in
Fig. 4.3 that the higher the amount of unlabelled target data, the lower the error
rate. Thus, for the subsequent experiments, we will use all the available target
data at hand during the adaptation, no matter if the scenario concerns a single
writer or several of them. For multi-writer collections, we could thus choose among
two options: (i) the system is adapted to a particular writer, using just a subset of
the collection; (ii) the system is adapted to the whole collection style (rather than
to the individual writing characteristics) by providing the whole dataset during
the adaptation.

4.4.3 From synthetic to real writer adaptation

For the unsupervised writer adaptation experiments, we will use all the available
images from each dataset during the unsupervised writer adaptation process, in
order to have as much real word instances as possible. According to the experi-
ments in the previous section, this should yield the best performance. It should
be noted that these datasets are always used in an unsupervised manner, i.e. the
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Figure 4.3: Influence of the amount of unlabeled real word images over the
performance, evaluated on the GW dataset.

Table 4.4: Unsupervised writer adaptation results for handwritten word recog-
nition. The gap reduction shows the improvement when the HTR, trained on
synthetic data, is adapted to real data.

GW IAM Rimes CVL Esposalles

CER WER CER WER CER WER CER WER CER WER

Real target only 4.56 13.49 6.88 17.45 2.80 8.51 3.64 7.77 0.47 1.68
Synth. source only 26.05 56.79 26.44 54.56 21.46 52.48 26.30 55.64 30.78 66.33
Uns. adaptation 16.28 39.95 14.05 34.86 14.39 39.21 19.19 44.29 20.96 50.00

Gap reduction (%) 45.46 38.89 63.34 53.09 37.89 30.18 31.38 23.71 32.40 25.26

system has access to the word images, but never to their transcriptions (labels).
However, the CER and WER results are computed on the official test set par-
titions in all datasets, so that those results are comparable with the literature.
Qualitative results are shown in Figure 4.4.

In Table 4.4 we present our writer adaptation results on the five different
datasets. For each dataset we also provide two baseline results. Training using
target labels and training just using the synthetic samples provide baselines for
the best and worst case scenarios respectively, either using ground-truth labels or
ignoring any labelled information. The gap reduction is an measurement used to
measure the effectiveness of the adaptation method which is defined as:

gap reduction =
error(synth.)− error(adapted)

error(synth.)− error(real)
(4.5)

We appreciate that, in general, the difference in CER between these two baselines,
lower bound error(synth.) and upper bound error(real), is about 20 points, with
the exception of the Esposalles dataset, which presents a much higher gap. This
difference is most likely justified because it is the dataset in which the handwriting
style differs more from a visual point of view from the synthetically generated
samples.

Concerning the unsupervised writer adaptation results (in Table 4.4, Uns.
adaptation), we appreciate a significant improvement when compared with the
sole use of synthetic training samples. The gap reduction ranges from 20% in the
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Figure 4.4: Handwritten word recognition results with our model trained only
using synthetically generated word samples. We show the transcription before
and after (in boldface) the unsupervised writer adaptation, for the GW, IAM,
RIMES, Esposalles and CVL datasets respectively.

worse case (CVL), up to 60% in the best case (IAM). It is true that these results
are worse than the ones obtained by a recognizer trained on labelled target data.
However, the loss in accuracy is compensated by the fact that our approach is
more generic and flexible: it is trained with synthetically generated data and it
does not require any manually annotated target data for writer adaptation. In
Fig. 4.5 we provide a tSNE visualization of the sample distribution before and
after the unsupervised writer adaptation in the single-writer GW dataset.

4.4.4 Writer adaptation with few samples

This experiment is devised to evaluate whether the adaptation ability of our ap-
proach decreases when there are few samples in the target domain. Indeed, in the
experiments presented in Table 4.4, the system is adapting to a particular indi-
vidual handwriting style for the GW and Esposalles datasets, because they are
single writer. Given that the IAM, Rimes and CVL datasets contain samples from
multiple writers, the system is adapting from synthetic samples to the overall col-
lection style. Since in the IAM dataset we do have groundtruth information about
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a) Before adaptation b) After adaptation

Figure 4.5: The distribution of source (blue) and target (red) domain samples
before (a) and after (b) the adaption to the GW dataset for the ten most common
words.

which specific writer produced each word, we choosed it for this writer specific
adaptation experiment, taking into account that the volume of words per writer
that we can use as target domain is very reduced. Within the IAM validation
set, each writer has written between 13 and 602 words. As source domain we
randomly selected 600 synthetic words (images and labels) for every single writer
specific adaptation experiment.

From the results shown in Table 4.5, we appreciate that our model boosts the
recognition performance on every writer even though when there is a very reduced
amount of both source and unlabelled target samples. Due to the limited space, we
only show the top five best and worse cases ranked by the improvement percentage
between the CER measure obtained with a system trained with just synthetic data
or after writer adaptation using this low amount of samples. We observe that for
all the writers in the IAM validation set, the CER measure is enhanced after
the proposed unsupervised adaptation. By inspecting the qualitative results, we
observe that the writers that present the lowest improvement corresponded to
specimens with writing styles that are visually very dissimilar to our synthetically
generated source material.

In general, this experiment depicts a realistic scenario in which our generic
handwritten word recognizer, fully trained with synthetic data, is adapted to a
new incoming writer by just providing a very reduced set of his handwriting. From
the results, we can conclude that the recognition performance for this new writer
is significantly boosted in most cases, in an unsupervised and efficient manner.
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Table 4.5: Writer adaptation results, in terms of the CER, ranked by the im-
provement percentage with respect to the synthetic training.

Writer ID Words Synth. Adapt. Improv.(%)

ID202 396 13.65 3.96 71.0
ID521 48 21.68 7.39 65.9
ID278 129 7.71 3.66 52.5
ID625 80 23.18 11.76 49.3
ID210 136 9.41 5.29 43.8
. . . . . . . . . . . . . . .
ID533 52 37.50 32.50 13.3
ID182 69 29.89 26.05 12.8
ID515 74 38.29 34.20 10.7
ID527 127 24.86 22.20 10.7
ID612 55 29.83 28.57 4.2

Mean 135 24.32 18.34 27.4

4.4.5 Comparison with the state of the art

Supervised fine-tuning. In order to put into context our reached results, we
compare in Table 4.6 our model with the state-of-the-art approaches that propose
to pre-train a handwriting recognizer with a large dataset, e.g. IAM, and then
fine-tune the network to transfer the learned parameters to a different collection,
e.g. GW, with a disparate style. We compare against the recent works proposed
by Nair et al. [115] and Arandillas et al. [4]. They achieve CER values of 59.3%
and 82%, respectively with their models trained on IAM and tested over the GW
test set. Our baseline model, pre-trained just using a synthetically produced data,
already achieves a 26.05% CER on the GW dataset. This backs up the intuition
that the use of a synthetic dataset, which can contain as many training samples as
desired, provides better generalization than training with a much shorter amount
of real data.

Our unsupervised writer adaptation reaches a 16.28% CER while Nair et al.
and Arandillas et al. reach a 8.26% and 5.3% CER respectively when fine-tuning,
at the expense of requiring a fair amount of manually labeled data. Obviously, our
unsupervised approach does not reach the same performance as these supervised
approaches, because they use labelled GW words. Although it is not the main
scope of our work, if we do use labels for the target domain (last row in Table 4.6),
i.e. we adapt to the new incoming writer in a supervised manner, our approach
outperforms the above methods, reaching a 2.99% CER.

Unsupervised domain adaptation. To the best of our knowledge, only the
work of Zhang et al. [160] report results for unsupervised writer adaptation
at word level. However, for the case of handwriting words, they propose to use
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Table 4.6: Comparison with supervised fine-tuning.

Method Train Fine-tuning
adaptation CER

Nair [115] IAM None 59.30
IAM Sup. GW 8.26

Arandillas [4] IAM None 82.00
IAM Sup. GW 5.30

Proposed
Synth. None 26.05
Synth. Uns. GW 16.28
Synth. Sup. GW 2.99

Table 4.7: Comparison with sequence-to-sequence domain adaptation on IAM
dataset.

Method CER WER Average

Zhang et al. [160] 8.50 22.20 15.35
Proposed 6.75 17.26 12.01

labelled IAM training data as source and unlabelled IAM test data as target do-
mains. In our opinion, such experiment does not present any significant domain
shift. When using their same experimental setting, shown in Table 4.7, our ap-
proach achieves a significant better performance.

4.5 Conclusion

We have proposed a novel unsupervised writer adaptation application for hand-
written text recognition. Our method is able to adapt a generic HTR model,
trained only with synthetic data, towards real handwritten data in a completely
unsupervised way. The system mutually makes the high-level feature distribution
of synthetic and real handwritten words align towards each other, while training
the recognizer with this common feature distribution.

Our approach has shown very good performance on different datasets, includ-
ing modern, historical, single and multi-writer document collections. Even when
compared to supervised approaches, our approach demonstrates competitive re-
sults. Moreover, since our unsupervised approach only requires to have access to
a few amount of word images from the target domain, but not their labels, we
believe that it is a promising direction towards a universal HTR for unconstrained
scenarios, e.g. industrial applications.

However, the writer adaptation method can only diminish the gap between
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source and target data, but never eliminate it. If the synthetic data could mimic
the exact visual appearance of target data, obtaining a good performance trained
with that synthetic data would guarantee the same performance on the target one.
We do believe that this will be a more effective method.
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Chapter 5

Handwriting Synthesizer using
GANs and the Boost on HTR

5.1 Introduction

As discussed in the previous chapter, the writer adaptation method can diminish
but not eliminate the domain gap between source and target data. In this chap-
ter, we want to alleviate this problem by making the source data to mimic the
same visual appearance as the target one. The intuition is to generate target-like
synthetic data based on unlabeled target images.

In the field of image generation, we have witnessed a remarkable success in gen-
erating natural scene images based on Generative Adversarial Networks (GANs) [54],
which are even indiscernible from real ones by humans [80]. Conditional Gener-
ative Adversarial Networks (cGANs) [111] were proposed to condition the gen-
eration process with a class label. Thus, controllable samples can be generated
from different given types [26]. However, these conditioned class labels have to
be predefined and hard-coded in the model before the training process, so that it
lacks the flexibility to generate images from unseen classes at inference time.

Concerning the specific case of generating samples of handwritten text, there
are two different approaches to the problem. Since handwritten text is a sequen-
tial signal in nature, the same as natural language strings [158], sketch draw-
ings [63, 161], audio signals [36] or video streams [144], it is natural that the first
attempts at generating handwritten data [56] were based on Recurrent Neural Net-
works (RNNs) [96]. Such approaches generate a sequence of strokes in vectorial
format that are used to render images. On the contrary, some more recent ap-
proaches propose to directly generate images instead of sequences of strokes. By
producing images directly, long-range dependency and gradient vanishing prob-
lems of recurrencies are avoided, while achieving a better efficiency. Furthermore,

67
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such approaches are able to produce richer results in the sense that they go be-
yond producing just nib locations, but also provide visual appearance such as the
calligraphic styles, such as slant, glyph shapes, stroke width, darkness, character
roundness, ligatures, etc., and background paper features like texture, opacity,
show-through effects, etc.

Current state-of-the-art methods that directly generate handwriting images
work at different levels. First, some approaches are focused on producing isolated
characters or ideograms [60, 23]. Such approaches often work over a set of prede-
fined classes, so that they can only generate a reduced set of contents. Second,
some approaches are able to generate handwritten words [3, 77], allowing not to
be restricted to a closed vocabulary. Finally, some works like [45, 30] go beyond
isolated words and produce full text-lines. The generation on text-line level is
difficult because not only the handwritten text should be readable and realistic,
but also the writing flow should be natural and smooth.

In this chapter, we would propose two approaches that are able to artificially
render realistic handwritten word and text-line images that match a certain tex-
tual content and that mimic some style features (text skew, slant, roundness,
stroke width, ligatures, etc.) from an exemplar writer. To this end, we guide the
learning process by three different learning objectives [117]. First, an adversarial
discriminator ensures that the images are realistic and that its visual appearance
is as closest as possible to real handwritten word images. Second, a style classifier
guarantees that the provided calligraphic attributes, characterizing a particular
handwriting style, are properly transferred to the generated word instances. Fi-
nally, a state-of-the-art sequence-to-sequence handwritten word recognizer 2 or
a transformer-based handwritten text-line recognizer 3 controls that the textual
contents have been properly conveyed during the image generation. The extension
from word to text-line generation requires for several modifications with Periodic
Padding and curriculum learning strategy. In addition, we propose a novel version
of the Fréchet Inception Distance (FID) metric to guide the method to choose
the best hyper-parameters specifically for variable-length samples like handwrit-
ten text images. The proposed method is particularly focused on improving the
HTR performance, demonstrating that the use of realistic synthetic generated
text at training time is indeed useful for improving HTR. Moreover, we have tried
a disentanglement experiment by modifying the method into an image-to-image
translation setting as an auxiliary module for the recognizer, which could dis-
till the textual content information from handwriting styles so as to boost HTR
performance.

To summarize, the main contributions of this chapter are the following:

• We propose a group of methods for handwritten word and text-line image
generation conditioning on textual content and visual appearance informa-
tion, which is capable of generating open vocabulary text and visual appear-
ance.
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• We introduce an improved version of the FID measure, namely vFID, as
a novel metric to evaluate the quality of the generated handwritten image.
It is more robust to variable-length images and particularly suited for the
handwriting case.

• We conduct extensive experiments to demonstrate, on the one hand, the
realism of the generated handwritten text images and, on the other hand,
the boost in HTR performance avoiding the manual labeling effort.

• We modify the method as an auxiliary disentanglement module, which is
equipped with a handwriting recognizer in an end-to-end fashion to boost
HTR performance.

5.2 Related Work

Traditional methods [149, 95, 84, 139] approached the generation of word samples
by manually segmenting individual characters or glyphs and then tune a deforma-
tion to match the target writing style. Recently, based on these rendering methods,
Haines et al. [64] succeeded in generating indistinguishable historical manuscripts
of Sir Arthur Conan Doyle, Abraham Lincoln and Frida Kahlo with new textual
contents, but these impressive results are obtained at the cost of a high manual
intervention.

The generation of sequential handwritten data consists of producing stroke se-
quences in vector form with nib locations and sometimes velocity records. With
the coming of deep learning era, Graves [56] utilized Long Short-Term Memory
(LSTM) to predict point by point at each time step to generate stroke sequences
conditioned on a given writing style and a certain text string. Following this
sequential-based idea, some recent works [63, 48, 161, 106] have reached an impres-
sive performance on text or sketch generation. However, sequential handwritten
data is expensive to obtain and loose some richer visual appearance such as text
thickness, darkness of strokes or paper textures.

Thus, the direct generation of images of handwritten data draws more atten-
tion, since it contains all the details of strokes and background paper. Different
levels of handwritten data can be processed: characters/glyphs, words and text-
lines. Based on the ideas of variational auto-encoders [82] or GANs [54], some
works achieve impressive performance on synthesizing Chinese ideograms [100,
140, 23, 73, 154] and glyphs [6]. However, these methods are restricted to a pre-
defined set of content classes and the input images have fixed size. To overcome
the limitation of incapability of generating out of vocabulary (OOV) texts, Alonso
et al. [3] proposed a cGAN-based method to generate handwritten word samples,
which is conditioned on RNN-embedded text information. However, this proposed
approach suffers from the mode collapse problem so that it learns the general writ-
ing style of the training set and does not offer variability of the generated samples.
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Fogel et al. [45] equip a style-promoting discriminator to be able to generate di-
verse styles for handwritten image samples. However, the generated characters
have the same receptive field width, which can make the generated samples look
unrealistic. Davis et al. [30] takes advantage of CTC activations [57] to produce
spaced text, which helps the generator to achieve horizontal alignment with the
input style image. The style information is the concatenation of both global style
feature and character-wise style feature. However, the character-wise style feature
highly depends on the performance of CTC, so mode collapse problem may happen
when tackling the unseen style images from the target dataset.

Summarizing, state-of-the-art generative methods are still unable to produce
plausible yet diverse images of whatever handwritten word or text-line automati-
cally. In this chapter, we propose to condition a generative model for handwritten
words or text-lines with unconstrained text sequences and stylistic typographic
attributes, so that we are able to generate any text with a great diversity over the
produced results.

5.3 Conditioned Handwritten Text Generation

5.3.1 Problem Formulation

Let {X ,Y,W} = {(xi, yi, wi)}Ni=1 be a multi-writer handwritten text dataset, con-
taining gray-scale text images X , their corresponding transcription strings Y and
their writer identifiersW. In this work, the handwriting calligraphic style is consid-
ered as an inherent feature for each of the different writers, and we also hypothesize
that the background paper features are consistent within each writer. Thus, the
visual appearance is identified with wi ∈ W. Therefore, let Xi = {xwi,j}Kj=1 ⊂ X
be a subset of K real text images with the same style defined by writer wi ∈ W.
Besides, A denotes the alphabet containing all the supported characters such as
lower and upper case letters, digits and punctuation signs that the generator will
be able to produce.

In this setting, the realistic handwritten text generation problem is formulated
in terms of few-shot learning. Two inputs are given to the model: 1) a set of im-
ages Xi as a support example of the visual appearance attributes of a particular
writer wi; and 2) a textual content provided by any text string t where ti ∈ A.
The proposed conditioned handwritten text generation model is able to combine
both sources of information in order to yield realistic handwritten text-line im-
ages, which share the visual appearance attributes of writer wi and the textual
content provided by the string t. Finally, our objective model H, able to generate
handwritten text, is formally defined as

x̄ = H (t,Xi) = H (t, {x1, . . . , xK}) , (5.1)

where x̄ is the artificially generated handwritten text image with the desired prop-
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erties. From now on, we denote X̄ as the output distribution of the generative
network H.

5.3.2 Handwritten Word Generation

The proposed architecture is divided in two main components. The generative
network produces human-readable images conditioned to the combination of cal-
ligraphic style and textual content information. The second component are the
learning objectives which guide the generative process towards producing images
that look realistic; exhibiting a particular calligraphic style attributes; and having
a specific textual content. Fig. 5.1 gives an overview of our model.
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Figure 5.1: Architecture of the proposed handwriting generation model.

Generative Network

The proposed generative architecture H consists of a calligraphic style encoder S,
a textual content encoder C and a conditioned image generator G. The overall
calligraphic style of input images Xi is disentangled from their individual textual
contents, whereas the string t provides the desired content.

Calligraphic style encoding. Given the set Xi ⊂ X of K = 15 word images
from the same writer wi, the style encoder aims at extracting the calligraphic style
attributes, i.e. slant, glyph shapes, stroke width, character roundness, ligatures etc.
from the provided input samples. Specifically, our proposed network S learns a
style latent space mapping, in which the obtained style representations Fs = S(Xi)
are disentangled from the actual textual contents of the images Xi. The VGG-19-
BN [132] architecture is used as the backbone of S. In order to process the input
image set Xi, all the images are resized to have the same height h, padded to
meet a maximum width w and concatenated channel-wise to end up with a single
tensor h×w×K. If we ask a human to write the same word several times, slight
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involuntary variations appear. In order to imitate this phenomenon, randomly
choosing permutations of the subset Xi will already produce such characteristic
fluctuations. In addition, an additive noise Z ∼ N (0, 1) is applied to the output
latent space to obtain a subtly distorted feature representation F̂s = Fs + Z.

Textual content encoding. The textual content network C is devoted to pro-
duce an encoding of the given text string t that we want to artificially write. The
proposed architecture outputs content features at two different levels. Low-level
features encode the different characters that form a word and their spatial position
within the string. A subsequent broader representation aims at guiding the whole
word consistency. Formally, let t ∈ Al be the input text string, character sequences
shorter than l are padded with the empty symbol ε. Let us define a character-wise
embedding function e : A → Rn. The first step of the content encoding stage em-
beds with a linear layer each character c ∈ t, represented by a one-hot vector, into
a character-wise latent space. Then, the architecture is divided into two branches.

Character-wise encoding: Let g1 : Rn → Rm be a Multi-Layer Perceptron
(MLP). Each embedded character e(c) is processed individually by g1 and their
results are later stacked together. In order to combine such representation with
style features, we have to ensure that the content feature map meets the shape of
F̂s. Each character embedding is repeated multiple times horizontally to coarsely
align the content features with the visual ones extracted from the style network,
and the tensor is finally vertically expanded. The two feature representations are
concatenated to be fed to the generator F = [F̂s ‖ Fc]. Such a character-wise
encoding enables the network to produce OOV words, i.e. words that have never
been seen during training.

Global string encoding: Let g2 : Rl·n → R2p·q be another MLP aimed at obtain-
ing a much broader and global string representation. The character embeddings
e(c) are concatenated into a large one-dimensional vector of size l · n that is then
processed by g2. Such global representation vector fc will be then injected into
the generator splitted into p pairs of parameters.

Both functions g1(·) and g2(·) make use of three fully-connected layers with
ReLU activation functions and batch normalization [70].

Generator. Let F be the combination of the calligraphic style attributes and the
textual content information character-wise; and fc the global textual encoding.
The generator G is composed of two residual blocks [69] using the AdaIN as the
normalization layer. Then, four convolutional modules with nearest neighbor up-
sampling and a final tanh activation layer generates the output image x̄. AdaIN
is formally defined as

AdaIN (z, α, β) = α

(
z − µ (z)

σ (z)

)
+ β, (5.2)

where z ∈ F , µ and σ are the channel-wise mean and standard deviations. The
global content information is injected four times (p = 4) during the generative



5.3. Conditioned Handwritten Text Generation 73

process by the AdaIN layers. Their parameters α and β are obtained by splitting
fc in four pairs. Hence, the generative network is defined as

x̄ = H (t,Xi) = G (C (t) , S (Xi)) = G
(
g1

(
t̂
)
, g2

(
t̂
)
, S (Xi)

)
, (5.3)

where t̂ = [e(c);∀c ∈ t] is the encoding of the string t character by character.

Learning Objectives

We propose to combine three complementary learning objectives: a discriminative
loss, a style classification loss and a textual content loss. Each one of these losses
aim at enforcing different properties of the desired generated image x̄.

Discriminative Loss. Following the paradigm of GANs [54], we make use of a
discriminative model D to estimate the probability that samples come from a real
source, i.e. training data X , or belong to the artificially generated distribution X̄ .
Taking the generative networkH and the discriminatorD, this setting corresponds
to a min max optimization problem. The proposed discriminator D starts with a
convolutional layer, followed by six residual blocks with LeakyReLU activations
and average poolings. A final binary classification layer is used to discern between
fake and real images. Thus, the discriminative loss only controls that the general
visual appearance of the generated image looks realistic. However, it does not take
into consideration neither the calligraphic styles nor the textual contents. This loss
is formally defined as

Ld (H,D) = Ex∼X [log (D (x))] + Ex̄∼X̄ [log (1−D (x̄))] . (5.4)

Style Loss. When generating realistic handwritten word images, encoding infor-
mation related to calligraphic styles not only provides diversity on the generated
samples, but also prevents the mode collapse problem. Calligraphy is a strong
identifier of different writers. In that sense, the proposed style loss guides the gen-
erative network H to generate samples conditioned to a particular writing style
by means of a writer classifier W . Given a handwritten word image, W tries to
identify the writer wi ∈ W who produced it. The writer classifier W follows the
same architecture of the discriminator D with a final classification MLP with the
amount of writers in our training dataset. The classifier W is only optimized with
real samples drawn from X , but it is used to guide the generation of the synthetic
ones. We use the cross entropy loss, formally defined as

Lw (H,W ) = −Ex∼{X ,X̄}

|W|∑
i=1

wi log (ŵi)

 , (5.5)

where ŵ = W (x) is the predicted probability distribution over writers inW and wi
the real writer distribution. Generated samples should be classified as the writer
wi used to construct the input style conditioning image set Xi.
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Content Loss. A final handwritten word recognizer network R is used to guide
our generator towards producing synthetic word images with a specific textual con-
tent. We implemented a state-of-the-art sequence-to-sequence model as detailed
in Chapter 2 for handwritten word recognition to examine whether the produced
images x̄ are actually decoded as the string t. The Kullback-Leibler divergence
loss is used as the recognition loss at each time step. This is formally defined as

Lr (H,R) = −Ex∼{X ,X̄}

 l∑
i=0

|A|∑
j=0

ti,j log

(
ti,j

t̂i,j

) , (5.6)

where t̂ = R(x); t̂i being the i-th decoded character probability distribution by
the word recognizer, t̂i,jbeing the probability of j-th symbol in A for t̂i, and ti,j
being the real probability corresponding to t̂i,j . The empty symbol ε is ignored in
the loss computation; ti denotes the i-th character on the input text t.

5.3.3 End-to-end Training

Overall, the whole architecture is trained end to end with the combination of the
three proposed loss functions

L(H,D,W,R) = Ld(H,D) + Lw(H,W ) + Lr(H,R), (5.7)

min
H,W,R

max
D
L(H,D,W,R). (5.8)

Algorithm 1 presents the training strategy that has been followed in this work.
Γ(·) denotes the optimizer function. Note that the parameter optimization is
performed in two steps. First, the discriminative loss is computed using both
real and generated samples (line 3). The style and content losses are computed
by just providing real data (line 4). Even though W and D are optimized using
only real data and, therefore, they could be pre-trained independently from the
generative network H, we obtained better results by initializing all the networks
from scratch and jointly training them altogether. The network parameters ΘD are
optimized by gradient ascent following the GAN paradigm whereas the parameters
ΘW and ΘR are optimized by gradient descent. Finally, the overall generator loss
is computed following Equation 5.7 where only the generator parameters ΘH are
optimized (line 8).

5.3.4 Handwritten Text-line Generation

Since the generation problem extends from word to text-line level, the method
proposed above cannot deal with the increasing difficulty. Thus, we introduce a
Periodic Padding module and replace the Seq2Seq recognizer with Transformer-
based recognizer. In addition, curriculum learning strategy is applied to help the
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Algorithm 1 Training algorithm for the proposed model.
Input: Input data {X ,Y,W}; alphabet A; max training iterations T
Output: Networks parameters {ΘH ,ΘD,ΘW ,ΘR}.

1: repeat
2: Get style and content mini-batches {Xi, wi}NB

i=1 and {ti}NB
i=1

3: Ld ← Eq. 5.4 . Real and generated samples x ∼ {X , X̄ }
4: Lw,r ← Eq. 5.5 + Eq. 5.6 . Real samples x ∼ X
5: ΘD ← ΘD + Γ(∇ΘD

Ld)
6: ΘW,R ← ΘW,R − Γ(∇ΘW,R

Lw,d)
7: L ← Eq. 5.7 . Generated samples x ∼ X̄
8: ΘH ← ΘH − Γ(∇ΘH

L)
9: until Max training iterations T

proposed method to generalize from short words to longer text-lines. Thus, the
method is updated in Figure 5.2. Xi becomes the handwritten text-line images
from writer wi and t is a text-line string sampled from an external language corpus.

Periodic
Padding

g1t

|| G

D W R

Xi
Fs

Fc

Visual Appearance Encoder

Textual Content Encoder

Embedding
Module

F'c
AdaIN

"our virtues and our failings are
     inseparable, like force and matter" g2

Style
Blending
Module

Generator

Learning Objectives

Figure 5.2: Architecture of the proposed handwriting synthesis model. It con-
sists of a Visual Appearance Encoder (green box), a Textual Content Encoder
(red box), a Generator (magenta box) and learning objectives (blue box). Xi and
t are the images and text string input, respectively. The x̄ is the generated sample
that shares the visual appearance with Xi and contains the textual information
with t.
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Periodic Padding Module

As the style image samples Xi have varied shapes, they are firstly resized to the
same 64 pixels height while keeping the aspect ratio. Let L be the maximum length
of both input and output images. In the HTR literature, the usual technique
to align all the images to have the same length in a mini-batch is to add 0-
padding to the right of each image until reaching the maximum length L. We have
experimentally observed that 0-padding has a severe impact on the handwritten
text-line image generation process, which can easily collapse in terms of style in
the padded regions. This is especially important when there is a huge difference
in the length of input images. The style representations Fs contain not only the
visual appearance attributes, but also the spatial information. Thus, the padding
would make longer texts to loose the handwritten style consistency in the final
generated output. To overcome this problem, we introduce a simple periodic
padding module, which consists in repeating the input image several times to
the right until the length fits the maximum width L. An example is shown in
Figure 5.3. Bear in mind that the style images Xi are only used to extract style
features, which are completely independent from the textual content in the image.

Figure 5.3: Periodic padding example. Given a real image, periodic padding to
the right is applied several times until the maximum image width L is reached.

5.4 Variable-length Fréchet Inception Distance

The Fréchet Inception Distance (FID) [39] is the metric that calculates the dis-
tance between two feature vectors, which are obtained from two image sets. FID
has been widely used in evaluating the performance of GANs at image generation.
This metric follows two steps: first, it extracts features from an InceptionV3 net-
work [67] while keeping activations of the last pooling layer, which is pretrained
on the ImageNet dataset [32]; then, it calculates the distance between the feature
vectors. Even though FID has been widely used for the evaluation of the gener-
ated natural scene images, it is not well suited for handwritten image data. The
main drawbacks in such case are (i) the ImageNet dataset consists of natural scene
image samples that have very few common features with handwritten text images;
(ii) the InceptionV3 model used by the FID requires a fixed size input, which could
not handle the variable-length scenario of handwritten text images. Thus, we in-
troduce a novel version of FID, namely vFID (Variable-length Fréchet Inception
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Distance), specially suited for such variable-length images such as handwritten
text images. Similarly to the original FID, the proposed metric vFID share the
same InceptionV3 network as the convolutional backbone. However, instead of the
average pooling used by the FID, we first reshape the convolutional feature into
a 2-dimensional feature map which is then fed into a Temporal Pyramid Pooling
(TPP) layer [150] as shown in Figure 5.4. TPP is especially useful when the input
is a variable-length sequence of features, which is the case for handwritten text-line
images. Based on the pretrained InceptionV3, we fine-tune the vFID model with
the IAM dataset by fitting a writer classifier.

(a)

(b)

Figure 5.4: (a) Inception module of FID with Average Pooling, (b) Updated
Inception module of vFID with Temporal Pyramid Pooling.

The performance comparison of FID and vFID for the IAM dataset is shown
in Figure 5.5. The blue distribution indicates the performance for the same writer,
while the red one indicates the performance for a different writer pair. The lower
value of the FID/vFID, the better similarity is obtained. Therefore, we aim to
achieve a robust metric that produces a lower value for the same writer (blue) and
a higher value for the different writers (red). In Figure 5.5(a), we observe that the
performance of FID do not have a good behaviour since it has a big overlapping
area, so that it cannot provide a reasonable judgement on the performance of the
generated text. Contrary, our proposed vFID in Figure 5.5(b) could provide a
more trustful measure.

5.5 Experiments

In this section, we present the extensive evaluation of our proposed approach.
First, we perform several ablation studies on the key modules to find the best
balance between performance and efficiency. Then, we demonstrate qualitative
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(a) (b)

Figure 5.5: Histogram of FID (a) and vFID (b). The x-axis indicates the
FID/vFID values, and the y-axis indicates the counts. The FID/vFID between
subsets of samples in the same writer is shown in blue, and between different
writers in red. The distribution of blue and red should be apart as far as possible.
Both histograms are normalized to sum up to one.

and quantitative results on synthetically generated images. Finally, we make use
of the generated samples to boost the HTR performance in different experimen-
tal settings. Moreover, we modify the proposed method into an image-to-image
translation setting to perform the disentanglement between textual content and
handwriting style, which is then equipped into a normal recognizer to boost HTR
performance.

5.5.1 Datasets and Metrics

The IAM offline dataset [103], the Rimes dataset [5] and the Spanish Numbers
dataset [142] are utilized in our experiments as shown in Table 5.1. However,
our proposed generative method is only trained with IAM dataset. All the three
datasets are utilized in the HTR experiments. Note that we only use IAM dataset
for the word-level experiments. The word and text-line examples are shown in
Figure 5.6 and Figure 5.7, respectively.

Figure 5.6: Real word samples in IAM dataset. Each example has different
characteristics such as shear, stroke width, language, etc.

In the word level setting, a subset of 22, 500 unique English words from the
Brown [13] corpus is utilized as the source of strings for the content input. While
in the text-line level setting, WikiText-103 [107] is chosen to be our external text
corpus when selecting random text strings as textual input. We select texts in
WikiText-103 from one word to Nt words to create sentences. We end up with 3.6
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Table 5.1: Overview of the datasets used in our HTR experiments: Number of
images used for training, validation and test sets, and number of writers.

Type Dataset Train Val. Test Writers Language

Word IAM [103] 55081 8895 25920 657 English

Line
IAM [103] 6482 976 2914 657 English
Rimes [5] 11333 − 778 1300 French
Spanish Num. [142] 298 − 187 30 Spanish

(a)

(b)

(c)

Figure 5.7: Text-line examples of the IAM, Rimes and Spanish Numbers
datasets are shown in (a), (b) and (c), respectively.

million text-lines with number of characters varying from 1 to 88.

The Character Error Rate (CER) and the Word Error Rate (WER) [47] are
the performance measures. The CER is computed as the Levenshtein distance,
which is the sum of the character substitutions (Sc), insertions (Ic) and deletions
(Dc) that are needed to transform one string into the other, divided by the total
number of characters in the groundtruth (Nc). Formally,

CER =
Sc + Ic +Dc

Nc
(5.9)

Similarly, the WER is computed as the sum of the word substitutions (Sw), inser-
tions (Iw) and deletions (Dw) that are required to transform one string into the
other, divided by the total number of words in the groundtruth (Nw). Formally,

WER =
Sw + Iw +Dw

Nw
(5.10)
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a) IV-S

b) IV-U

c) OOV-S

d) OOV-U

Figure 5.8: Word image generation. a) In-Vocabulary (IV) words and seen (S)
styles; b) In-Vocabulary (IV) words and unseen (U) styles; c) Out-of-Vocabulary
(OOV) words and seen (S) styles and d) Out-of-Vocabulary (OOV) words and
unseen (U) styles.

5.5.2 Word Level Experiments

To carry out the different experiments, we have used a subset of the IAM cor-
pus [103] as our multi-writer handwritten dataset {X ,Y,W}. It consists of 62, 857
handwritten word snippets (55,081, 8,895 and 25,920 word images for training,
validation and test sets respectively according to RWTH Aachen partition), writ-
ten by 500 different individuals (283, 56, 161 writers for training, validation and
test sets respectively). Each word image has its associated writer and transcrip-
tion metadata. A test subset of 160 writers has been kept apart during training to
check whether the generative model is able to cope with unseen calligraphic styles.
We have also used a subset of 22, 500 unique English words from the Brown [13]
corpus as the source of strings for the content input. A test set of 400 unique
words, disjoint from the IAM transcriptions has been used to test the performance
when producing OOV words. To quantitatively measure the image quality, diver-
sity and the ability to transfer style attributes of the proposed approach we will
use the Fréchet Inception Distance (FID) [67, 21], measuring the distance between
the Inception-v3 activation distributions for generated X̄ and real samples X for
each writer wi separately, and finally averaging them. Inception features, trained
over ImageNet data, have not been designed to discern between different hand-
writing images. Although this measure might not be ideal to evaluate our specific
case, it will still serve as an indication of the similarity between generated and real
images.

In order to evaluate the effectiveness on the recognition performance, we use the
standard error measures at character and word level. The Character Error Rate
(CER) and the Word Error Rate (WER) [47], are computed as the Levenshtein
distance at either character or word level. Since we focus our experiments on
individual words, the WER measure is the inverse of the overall word accuracy.
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Table 5.2: FID between generated images and real images of corresponding set.

Real images IV-S IV-U OOV-S OOV-U

FID 90.43 120.07 124.30 125.87 130.68

Generating Handwritten Word Images

We present in Fig. 5.8 an illustrative selection of generated handwritten words. We
appreciate the realistic and diverse aspect of the produced images. Qualitatively,
we observe that the proposed approach is able to yield satisfactory results even
when dealing with both words and calligraphic styles never seen during training.
But, when analyzing the different experimental settings in Table 5.2, we appreciate
that the FID measure slightly degrades when either we input an OOV word or a
style never seen during training. Nevertheless, the reached FID measures in all
four settings satisfactorily compare with the baseline achieved by real data.

Figure 5.9: t-SNE embedding visualization of 2.500 generated instances of the
word "deep".

In order to show the ability of the proposed method to produce a diverse set
of generated images, we present in Fig. 5.9 a t-SNE [101] visualization of different
instances produced with a fixed textual content while varying the calligraphic
style inputs. Different clusters corresponding to particular slants, stroke widths,
character roundnesses, ligatures and cursive writings are observed.

To further demonstrate the ability of the proposed approach to coalesce content
and style information into the generated handwritten word images, we compare in
Fig. 5.10 our produced results with the outcomes of the state-of-the-art approach
FUNIT [97]. Being an image-to-image translation method, FUNIT starts with a
content image and then injects the style attributes derived from a second sample
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Figure 5.10: Comparison of handwritten word generation with FUNIT [97].

image. Although FUNIT performs well for natural scene images, it is clear that
such kind of approaches do not apply well for the specific case of handwritten
words. Starting with a content image instead of a text string confines the genera-
tive process to the shapes of the initial drawing. When infusing the style features,
the FUNIT method is only able to deform the stroke textures, often resulting in
extremely distorted words. Conversely, our proposed generative process is able
to produce realistic and diverse word samples given a content text string and a
calligraphic style example. We observe how for the different produced versions
of the same word, the proposed approach is able to change style attributes as
stroke width or slant, to produce both cursive words, where all characters are
connected through ligatures as well as disconnected writings, and even render the
same characters differently, e.g. note the characters n or s in "Thank" or "inside"
respectively.

Latent Space Interpolations

The generator network G learns to map feature points F in the latent space to
synthetic handwritten word images. Such latent space presents a structure worth
exploring. We first interpolate in Fig. 5.11 between two different points FAs and
FBs corresponding to two different calligraphic styles wA and wB while keeping the
textual contents t fixed. We observe how the generated images smoothly adjust
from one style to another. Again note how individual characters evolve from one
typography to another, e.g. the l from "also", or the f from "final".

Contrary to the continuous nature of the style latent space, the original content
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Figure 5.11: Latent space interpolation between two calligraphic styles for dif-
ferent words while keeping contents fixed.

"three" "threw" "shrew" "shred" "sired" "fired" "fined" "firer" "fiver" "fever" "sever" "seven"

Figure 5.12: Word ladder. From "three" to "seven" changing one character at
a time, generated for five different calligraphic styles.

space is discrete in nature. Instead of computing point-wise interpolations, we
present in Fig. 5.12 the obtained word images for different styles when following
a “word ladder” puzzle game, i.e. going from one word to another, one character
difference at a time. Here we observe how different contents influence stylistic
aspects. Usually s and i are disconnected when rendering the word "sired" but
often appear with a ligature when jumping to the word "fired".

Impact of the Learning Objectives

Along this chapter, we have proposed to guide the generation process by three
complementary goals. The discriminator loss Ld controlling the genuine appear-
ance of the generated images x̄. The writer classification loss Lw forcing x̄ to
mimic the calligraphic style of input images Xi. The recognition loss Lr guaran-
teeing that x̄ is readable and conveys the exact text information t. We analyze in
Table 5.3 the effect of each learning objective.

The sole use of the Ld leads to constantly generating an image that is able
to fool the discriminator. Although the generated image looks like handwritten
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Table 5.3: Effect of each different learning objectives when generating the con-
tent t = "vision" for different styles.

Ld Lw Lr FID Style Images

X - - 364.10

X X - 207.47

X - X 138.80

X X X 130.68

strokes, the content and style inputs are ignored. When combining the discrimi-
nator with the auxiliary task of writer classification Lw, the produced results are
more encouraging, but the input text is still ignored, always tending to generate
the word "the", since it is the most common word seen during training. When
combining the discriminator with the word recognizer loss Lr, the desired word is
rendered. However, as in [3], we suffer from the mode collapse problem, always
producing unvarying word instances. When combining the three learning objec-
tives we appreciate that we are able to correctly render the appropriate textual
content while mimicking the input styles, producing diverse results. We appreciate
that the FID measure also decreases for each successive combination.

Comparison with SOTA

we have shown the comparison results with the state-of-the-art methods on hand-
written text generation in Table 5.4.

Human Evaluation

Finally, we also tested whether the generated images were actually indistinguish-
able from real ones by human judgments. We have conducted a human evaluation
study as follows: we have asked 200 human examiners to assess whether a set of
images were written by a human or artificially generated. Appraisers were pre-
sented a total of sixty images, one at a time, and they had to choose if each of
them was real of fake. We chose thirty real words from the IAM test partition from
ten different writers. We then generated thirty artificial samples by using OOV
textual contents and by randomly taking the previous writers as the sources for
the calligraphic styles. Such sets were not curated, so the only filter was that the
generated samples had to be correctly transcribed by the word recognizer network
R. In total we collected 12, 000 responses. In Table 5.5 we present the confusion
matrix of the human assessments, with Accuracy (ACC), Precision (P), Recall (R),



5.5. Experiments 85

Table 5.4: Qualitative comparison with Alonso et al. [3], Fogel et al. [45], and
Davis et al. [30], whose images are cropped from their papers.

Content [3] [45] [30] Ours

Style A Style B Style C

"olibus"

"reparer"

"bonjour"

"famille"

"gorille"

"malade"

"certes"

"golf"

"des"

"ski"

"le"

Table 5.5: Human evaluation plausibility experiment.

Actual Predicted

Real Fake

Genuine 27.01 22.99 R: 54.1
Generated 27.69 22.31 FPR: 55.4

P: 49.4 FOR: 50.8 ACC: 49.3
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a) Confusion matrix (%) b) Accuracy distribution

False Positive Rate (FPR) and False Omission Rate (FOR) values. The study re-
vealed that our generative model was clearly perceived as plausible, since a great
portion of the generated samples were deemed genuine. Only a 49.3% of the im-
ages were properly identified, which shows a similar performance than a random
binary classifier. Accuracies over different examiners were normally distributed.
We also observe that the synthetically generated word images were judged more
often as being real than correctly identified as fraudulent, with a final FPR of
55.4%.
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5.5.3 Text-line Level Experiments

Curriculum Learning Strategy

The line-level IAM dataset is used to train our generative method. It is a multi-
writer dataset in English, which consists of 1, 539 scanned pages written by 657
writers, as detailed in Table 5.1. Since we can access to the groundtruth of the
training data, including the bounding-boxes at word level, we could enlarge the
training set using the N-gram cropping strategy. For example, given a sequence of
words, we can iteratively crop out one-word, two-words, and so on until N -word
sub-lines, where N is the maximum number of words in the given text-line. Thus,
given the normalized height of 64 pixels, we end up with 598, 489 images with
variable lengths from 64 to 2160 pixels and the number of characters from 1 to
88, where 2160 and 88 are the maximum image length and text length for IAM
dataset, respectively.

Table 5.6: Three categories of the IAM offline dataset, from short to long text-
lines.

Category Num. of chars. Image length

1 1− 24 64− 600
2 24− 48 600− 1200
3 48− 88 1200− 2160

To achieve a better handwriting generation with fine-grained details, we make
use of curriculum learning strategy by splitting training data into 3 categories as
shown in Table 5.6, from shorter to longer sentences. We start the training with
data of Category 1 from scratch, then we fine-tune with data of Category 2, and
finally we fine-tune with data of Category 3. The training is done step by step
with increasing difficulty in the sense of image and text length. Note that the
data used in the previous training step does not appear in the next fine-tuning
step considering the training speed. In practice, the second and third steps just
need to be fine-tuned for few epochs.

Updated Modules with Ablation Study

First, we compare the generated samples with and without Periodic Padding Mod-
ule as shown in Figure 5.13. The style input is randomly selected from a specific
writer, and it may be a shorter image than what we expect to generate. In the
upper part of Figure 5.13, the style input is padded with 0 to the maximum width,
so that the generated image suffers from the style collapse problem in the corre-
sponding padded area. Contrary, in the lower part of Figure 5.13, with the periodic
padding process, the style image has been extended to the maximum width that is
sure of covering all the possibly generated area. Thus, the generated sample keeps
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Sty. Inp.
Output

Sty. Fil.
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Figure 5.13: Comparison of the generated results for the same text string “art
in the ownership of both the state and the municipality of” with and without the
periodic padding process.

the consistency in the visual appearance from the first character until the end.

Second, we modify the convolutional layers from VGG19 to ResNet34, and
study the performance and training speed. The performance is evaluated on the
generated samples based on the style information from IAM test set and con-
tent information from a subset of WikiText-103. The models are trained until
500 epochs. Speed is the total time for a forward and backward pass. From Ta-
ble 5.7, we observe that ResNet34 achieves a higher training speed while obtaining
a slightly better performance.

Table 5.7: Ablation study for Convolutional layers on the IAM test set.

Conv. vFID Speed (ms)

VGG19 115.46 144.13
ResNet34 114.39 136.80

Table 5.8: vFID performance on generating different length of images for the
sequence-to-sequence and Transformer-based HTR methods. The lower the value,
the better the performance.

Method Num. of chars to be generated
1-10 (words) 1-90 (lines)

Seq2Seq 136.51 249.94
Transfo. 146.74 114.39

Finally, we analyze the effect of replacing the sequence-to-sequence recognizer
with the Transformer-based recognizer. Based on the number of characters to be
rendered in the generated samples, we have two categories: words with 1 up to 10
characters and text-lines with 1 up to 90 characters, as shown in Table 5.8. From
the Table we observe that sequence-to-sequence-based method performs well at
word level but it significantly degrades when extending to text-lines. Contrary, the
Transformer-based HTR method achieves a better performance when dealing with
longer text sequences. Since the transformer network has the ability of dealing
with long-term dependencies, it becomes more powerful to control the textual
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content of the generated samples.

Latent Space Interpolation

Once the system is trained, the generator G has learned a map in the handwriting
style latent space. Each writer corresponds to a point in this latent space and
different writers are connected in a continuous way. Thus, we can explore it by
randomly choosing two writers and try to traverse between the corresponded two
points in the style latent space as shown in Figures 5.14 and 5.15. The first and
last rows show the real samples from writer A and B, respectively. The samples
in between are synthetically generated ones that try to traverse from writer A to
B. The rendered text is the quote of “our virtues and our failings are inseparable,
like force and matter” from Nikola Tesla, which has not been seen during training.

Style A:

0.0:
0.1:
0.2:
0.3:
0.4:
0.5:
0.6:
0.7:
0.8:
0.9:
1.0:

Style B:

Figure 5.14: Example of interpolations in the style latent space.

Conditioned Handwritten Text-line Generation

For the qualitative experiments, we show the results in two cases. First, given a
same writing style, we try to generate samples with different text strings. Sec-
ond, given a specific text string, we try to generate samples in different writing
styles. The first case is shown in Figure 5.16. The text string is the quote of “the
progressive development of man is vitally dependent on invention.” from Nikola
Tesla. We translate it into German, French and Spanish while replacing special
characters with the corresponding letters (e.g. “é” to “e”). In Figure 5.16, the first
row is a sample of the style input, and the following rows are (text string, synthet-
ically generated sample) pairs. By showing the generation on different languages,
our method proves to be not restricted to a training corpus nor a language model.
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Style C:

0.0:
0.1:
0.2:
0.3:
0.4:
0.5:
0.6:
0.7:
0.8:
0.9:
1.0:

Style D:

Figure 5.15: Example of interpolations in the style latent space.

Style Input:

Text En: “the progressive development of man is vitally dependent on invention.”
Output:

Text De: “die fortschreitende entwicklung des Menschen hangt entscheidend von der erfindung ab.”
Output:

Text Fr: “le developpement progressif de l’homme depend de facon vitale de l’invention.”
Output:

Text Es: “el desarrollo progresivo del hombre depende vitalmente de la invencion.”
Output:

Figure 5.16: Generation on varied texts of multi-lingual cases.

Text Input: “the progressive development of man is vitally dependent on invention.”

Style A:
Output:

Style B:
Output:

Style C:
Output:

Style D:
Output:

Figure 5.17: Generation on varied styles.

Thus, this method can be applied to generate any OOV words and sentences. The
second case is shown in Figure 5.17. The first row is the text string input, and
the following rows are (handwriting style sample, synthetically generated sample)
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pairs. From the results we observe that our method has the ability to generate
text-line samples with diverse writing styles.

Furthermore, we show a comparative with the state-of-the-art methods on
handwritten text generation in Table 5.4.

HTR Performance Improvement

The main objective of this test is to prove that the generated text-lines can indeed
be used as training data in order to the HTR performance at text-line level. For
this purpose, we define three settings: first, a conventional supervised learning on
the IAM dataset; second, transfer learning from the IAM to the Rimes dataset;
and third, a realistic few-shot setting on the Spanish Numbers dataset. To be
fairly comparable, we do not use any data augmentation techniques nor pretrained
modules.

Enhance the training set

The most straightforward way to improve the HTR performance is to incor-
porate extra synthetically generated data to the training set. In Table 5.9, we
evaluate the improvements in different cases. The first row shows the results when
using the IAM training set only. To keep the training data balanced between
real and generated samples, we generate 8, 000 text-line images based on the style
of the IAM images and a lexicon. Concerning the lexicon, we have two choices:
WikiText-103 or the groundtruth of IAM training set, shown in the second and
third row, respectively. Note that the HTR performance is boosted when adding
the 8, 000 synthetically generated samples. Furthermore, the choice of lexicon also
matters because the performance is further boosted when using a similar lexicon
to the target dataset. Finally, we even apply data augmentation techniques on
both the real and generated training samples so that we end up with the best
result as shown in the fourth row. Furthermore, our method shows a significant
improvement over the performance achieved by ScrabbleGAN [45] in comparable
settings. Thus, we can conclude that our proposed generative method generates
useful samples that are useful to train HTR networks.

Transfer learning on a new dataset

Another useful setting is transfer learning, which consists of transferring a
trained recognizer to an unknown dataset. In this case, the source data is the
IAM dataset and the target is the Rimes dataset. Both datasets are at text-line
level and share some characters in vocabularies such as English letters, space,
punctuation marks and numbers. However, the IAM dataset is in English while
the Rimes dataset is in French, so some special letters like “é” or “â” are exclusive
from the Rimes dataset. This scenario may occur in real use cases in which there is
a general recognizer, which has been properly trained, that is used to recognize a
target dataset, containing some exclusive characters. Instead of manually labeling
a subset of target data and training the recognizer again, we could provide a faster
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Table 5.9: HTR experiments. Results are evaluated on the IAM test set at
text-line level. The Error rate reduction is calculated taking the results of the
first and last rows.

Aug. GAN Lexicon ScrabbleGAN [45] Proposed
CER WER CER WER

− − IAM 13.82 25.10 10.46 33.40
− X WikiText 9.66 31.87
− X IAM 9.37 30.58
X X IAM 13.57 23.98 8.62 26.69

Error Rate Reduction (%) 1.8 4.5 17.6 20.1

solution: to generate a set of synthetic samples mimicking the style of target
dataset and then fine-tuning on it. In this way, the HTR performance on the
target data is boosted to some extent with a manual-free effort, although it can
not recognize those special characters.

Table 5.10 shows the transfer learning results. In the first row, considered
as a lower bound, the recognizer is pretrained on the IAM dataset and directly
evaluated on the Rimes test set. As an upper bound, we train the recognizer
from scratch using the Rimes dataset. Below these two baselines, we show the
performance when using the IAM training set and 8, 000 synthetically generated
samples using IAM handwriting styles and random text strings fromWikiText-103.
Secondly, we assume that we have access to images of the Rimes dataset (but not
their labels), and we generate 8, 000 synthetic samples that mimic the style of the
Rimes dataset while sampling text strings from WikiText-103. We observe that by
incorporating these extra synthetically generated samples, the HTR performance
for the unlabeled Rimes target dataset is boosted in a transfer learning setting
(the CER decreases from 27.3% down to 18.19%).

Table 5.10: Transfer learning setting from IAM to Rimes. Results are evaluated
on Rimes test set at text-line level. Only the second row has access to labeled
Rimes data, while the Adaptation indicates the usage of unlabeled images and
external text strings.

Train set Adaptation CER WER

Baselines IAM − 27.30 74.57
Rimes − 6.45 19.56

Transfer IAM IAM + WikiText (8K) 20.55 63.20
IAM Rimes + WikiText (8K) 18.19 54.83

Few-shot setting on target dataset

We are also interested in investigating how to make use of the generated images
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to improve the HTR performance in another realistic scenario: when the target
dataset is very small, such as the Spanish Number dataset. Here, we take our
baseline method, a recognizer pretrained on IAM dataset, and test it with the
test set of Spanish Number data directly, so that we obtain the lower bound with
CER 27.82% as shown as the dashed black line in Figure 5.18. We hypothesize
that we have access to the whole labeled training set of Spanish Number data (298
images), thus we further fine-tune our pretrained recognizer and achieve a CER
of 4.94%, which is the ideal case as shown as the dashed magenta line. Then, we
select 5, 10, 20, 40, 80, 160 labeled real samples from the Spanish Number training
set randomly to carry on the next experiments. Based on our baseline recognizer,
we fine-tune on the selected subset of labeled real images to end up with the red
curve. Ten individual experiments have been done for each subset of labeled real
data, and the data sampling process is also randomly done for every experiment.
From the red curve, we can see that the performance is significantly improved with
few labeled real samples, while remaining steady when adding more data.
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TrueType font synthetic samples
GAN generated samples
whole real training data (298 images)

Figure 5.18: HTR improvement in a real use case on Spanish Number dataset.

For comparisons, we carry on experiments with a sequence-to-sequence method
that uses synthetic handwritten images based on TrueType fonts as detailed in
Chapter 2. To avoid a large unbalance between synthetic and real data, we make
use of 100, 300, 500, 700 and 900 synthetic data with a specific amount of real
subset (indicated as x-axis) to fine-tune the recognizer. We carry on 10 individual
experiments with randomly selected synthetic and real subsets, so that we obtain
the green curve that behaves better than the red one. The results prove that using
extra synthetic data along the training set boosts the HTR performance. However,
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the handwriting style diversity that the synthetic data provides is very limited to
the chosen fonts, so the improvement is also limited.

Since we already have the generative model pretrained on the IAM dataset, we
produce synthetic samples based on the unlabeled Spanish Number images and
random text strings of WikiText-103. We follow the same experimental setting
with the TrueType font based experiments, and generate the blue curve. We
observe that our generated samples significantly boost the HTR performance over
both the red and green curves. Even more, when using our generated samples with
160 labeled real ones, the recognizer performs better than when using the whole
real training set (298 images).

5.6 Disentanglement in Image-to-Image Setting

5.6.1 Disentanglement Method

As explained in Section 5.3.2, the method takes images and text strings as in-
put. Following an image-to-image translation setting, we modify the input as two
images. One image is in charge of providing textual content information, while
the other one provides handwriting style information. This modification is based
on our hypothesis that every handwritten text image can be disentangled into
textual content and handwriting style features. Thus, by joining this disentangle-
ment module into a Seq2Seq recognizer, we end up with an end-to-end method for
HTR tasks as shown in Figure 5.19. To note that we have simplified the combi-
nation process between content feature Fc and style feature Fs with only AdaIN
normalization layer. The whole disentanglement process is defined as

x̄ij = G(F̄c, Fs) = G(C̄(xi), S(xj)), (5.11)

where xi, xj ∈ X . Thus, x̄ij is expected to contain the same textual content of
xi and to share calligraphic style attributes with xj .

5.6.2 Experiments

Dataset and Performance Evaluation

To carry our experiments, we have chosen the IAM offline handwriting dataset [103],
being one of the most popular and widely used benchmarks in the field of hand-
writing recognition. We have used the RWTH Aachen partition for the dataset,
composed of 55,081, 8,895 and 25,920 word images for training, validation and
test sets respectively. Furthermore, the IAM dataset provides not only text im-
ages and their corresponding transcriptions, but also the writer identifier. Based
on the assumption that each writer has one specific writing style, we have 500
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Figure 5.19: Architecture of the proposed model with HWR module in red box
and disentanglement module in blue box. Note that the content encoder C is
used by both the HWR module and the disentanglement module.

handwriting styles in the IAM dataset, with 283 writers in the training set, 56
writers for validation and 161 writers in the test set.

In order to evaluate the effectiveness on the recognition performance, we will
use the standard error measures at character and word level. Since we focus our
experiments on individual words, the WER measure is the inverse of the overall
word accuracy.

Qualitative Evaluation of the Generative Process

First and foremost, in order to validate that the proposed method is able to really
learn properly disentangled feature representations for both contents and writing
styles, from the content and style encoders C and S, we will qualitatively analyze
the generative part of our approach.

Given a pair of input word images xi and xj , four different permutations, style
and content-wise, are possible to be generated. Formally, the generated images
x̄ii, x̄ij , x̄ji and x̄jj will be the result of using either xi or xj as input for the
content or style encoders (c.f. equation 5.11). We show in Table 5.11 some results
of such generative process. Images x̄ii and x̄jj shall be the re-writings with the
same content and style of xi and xj respectively, while x̄ij and x̄ji shall correspond
to images conveying the content of xi while appearing to be written with the style
of xj , and vice-versa. In order to properly transfer both style and content within
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the generator, the feature tensors Fc and Fs should be completely disentangled,
which means that the content representation Fc should just encode the textual
features that conform a certain word completely disregarding the writing style.
We observe in such sample results how effectively the learned content and style
feature representations have been properly disentangled one from each other. The
qualitative results from the generative part, although not being the ultimate goal
of this work, are encouraging enough to think that the content features Fc shall
be at a certain extent agnostic to the handwriting styles.

Table 5.11: Qualitative results of the content and style guided generative pro-
cess. Given a pair of input images, we are able to generate the four different
permutations of styles and textual contents.

pair 1 pair 2 pair 3 pair 4 pair 5 pair 6 pair 7 pair 8

xi

xj

x̄ii

x̄ij

x̄ji

x̄jj

Handwriting Recognition Performance

In order to quantitatively evaluate the performance of the proposed style invari-
ant content features within the recognition pipeline, we present in Table 5.12
some comparative results. In this experiment we have trained exactly the same
sequence-to-sequence neural architecture in three different setups that are objec-
tively comparable. On the one hand, we just use the IAM training set images
with data augmentation, and we reach a CER value of 6.88%. To push that value
forward, we make use of not only IAM training set, but also unlabelled IAM test
set to do a domain adaptation between both sets by using the adversarial domain
adaptation technique proposed in [49], so that the feature distribution of test set
samples shall be properly adapted to that of training samples. We observe that the
yielded CER is of 6.75% in that case. We finally jointly train the recognizer with
the generative pipeline in an end-to-end fashion, and, we just use IAM training
samples, without any other additional image. We observe that the obtained error
rates are lower than the two previous approaches, 6.43% and 16.39% respectively,
indicating that the learned features are actually better focused to the conveyed
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textual contents, while being resilient to handwriting style changes.

Table 5.12: Recognition performance for sequence-to-sequence network with
three different training strategies.

Training Procedure CER (%) WER (%)

IAM Training Set [79] 6.88 17.45
Domain Adaptation [78] 6.75 17.26
Content Distillation (Proposed) 6.43 16.39

Comparison with State of the Art

Finally, in order to put in context the previous performance evaluation measures,
we provide in Table 5.13 a comparison with the the state-of-the-art methods for
handwritten word recognition. To give a fair comparison, we have just selected
works focused at word level, and from them, we report the error rates from those
models that do not entail any language model nor closed lexicon. We observe that
our proposed approach compares quite satisfactorily with the rest of the state-
of-the-art methods. The exception is the approach of Dutta et al. [42], however
this work provides their results on IAM by pre-training on 9M synthetic data of
IIIT-HWS [88], de-slanting word images as pre-processing, and using test-time
augmentation, which make such results not directly comparable with the rest of
the reported error measures.

Table 5.13: Comparison with the state-of-the-art methods.

Approach Method CER (%) WER (%)

CTC
+

RNN Mor et al. [112] − 20.49
Pham et al. [123] 13.92 31.48
Krishnan et al. [86] 6.34 16.19
Wiginton et al. [152] 6.07 19.07

Attention
+

Seq2Seq
Bluche et al. [17] 12.60 −
Sueiras et al. [134] 8.80 23.80
Zhang et al. [160] 8.50 22.20
Dutta et al. [42] 4.88 12.61
Proposed 6.43 16.39

5.7 Conclusion

We have presented a group of image generation architectures that produce real-
istic and varied artificially rendered samples of handwritten words and text-lines.
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Our pipeline can yield credible text images by conditioning the generative process
with both calligraphic style and textual content. Furthermore, by jointly guiding
our generator with three different cues: a discriminator, a style classifier and a
content recognizer, our model is able to render any input text, not depending on
any predefined vocabulary, while incorporating calligraphic styles in a few-shot
setup. Experimental results demonstrate that the proposed method yields images
with such a great realistic quality that are indistinguishable by humans and can
effectively boost the HTR performance.

Furthermore, by modifying the proposed architecture into an image-to-image
translation setting, we end up obtaining a novel training approach for handwriting
recognition that is able to disentangle the content and style features of input im-
ages. The proposed method jointly optimizes a generative process and a handwrit-
ten word recognizer with the aim of yielding a style-independent content-centric
feature representation that boosts the recognition performance in multi-writer sce-
narios. The presented results prove that by coupling a generative and a recognition
process we are able to achieve separated content and calligraphic stylistic features
that serve both to style and content transfer and for better recognition perfor-
mance.
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Chapter 6

Conclusions and Future Work

This thesis has addressed the general task of handwritten text recognition. We
have proposed two main groups of methods in either exploring different neural
network architectures or diminishing the bias between training and test sets. As
far as we know, we are the first to propose transformer-based recognizer and dis-
entanglement method for HTR, and we also propose pioneer works of Seq2Seq
recognizer, writer adaptation method and handwriting synthesis method among
the contemporary state-of-the-arts. With these proposed method, the recognition
performance is largely improved for both scientific dataset and real industrial use
cases.

This last Chapter is organized as follows. In Section 6.1, the contributions are
summarized. Then, the pros and cons are discussed in Section 6.2. Finally, the
future work is outlined in Section 6.3.

6.1 Summary of the Contributions

The main contributions of this thesis are two-folds: on the one hand, the proposal
of novel neural network architectures for HTR; on the other hand, the methods
for diminishing the bias between training and test sets.

6.1.1 Proposal of Novel Architectures

Seq2Seq Model with Attention

We have applied Seq2Seq model to HTR tasks, whose architecture and modules are
carefully chosen so as to achieve state-of-the-art performance. In addition, atten-
tion mechanism is studied extensively from content- to location-based methods.

99
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Further more, optimizing strategies such as attention smoothing, multi-nomial
decoding and label smoothing are evaluated. To conclude, these explorations con-
tribute to the final state-of-the-art recognizer.

Novel language modeling

We have proposed a novel method to inject a RNN language model into the
Seq2Seq recognizer in an end-to-end fashion. It has the advantage of equipping
an external language knowledge with the base recognizer effectively, which is prior
to the state-of-the-art approaches such as Shallow Fusion and Deep Fusion. In
addition, this language modeling is in character-level, which enables recognizing
OOV words.

Transformer-based Recognizer

As far as we know, we are the first to propose a transformer-based recognizer for
HTR tasks. We have made modifications of the architecture to fit HTR settings,
such as a convolutional module that extracts high-level features of variable-length
handwritten images and a one-dimensional positional encoding that provides the
basic rule of writing from left to right. In addition, we have explored this method in
few shot setting, which gives up a much better performance than that of Seq2Seq
method. Thus, transformer-based recognizer is a good fit for industrial HTR
problems that have limited training data.

6.1.2 Diminishing the Bias between Training and Test Sets

Unsupervised Writer Adaptation

We have proposed an unsupervised method for writer adaptation, which consists of
a Seq2Seq recognizer and an auxiliary domain classifier. It does not require extra
effort of labeling, so that it is beneficial to further boost the HTR performance
in real use cases. This method can be applied to diminish the bias between two
domains, which could be from synthetic to target data or from real training to test
set.

Disentanglement of Content and Style

As far as we know, we are the first to propose the disentanglement method for
HTR tasks. The method consists of both a handwriting recognizer and an image-
to-image translation module, which follows the end-to-end fashion. Via our ex-
periments, any handwritten text image can be disentangled into textual content
and visual appearance style features using the generative method. By distilling
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the content from varied styles, the handwriting recognizer can achieve a better
generalization and performance.

Handwriting Synthesis

We have proposed a generative method for handwriting synthesis using GANs,
which can produce zillions of synthetic data conditioned on text strings and hand-
written images. Text strings can be selected from any text corpus in any language,
while the handwritten images are from the target data. Once properly trained,
the generative method can adapt to new writers so as to produce realistic hand-
written samples mimicking the target style and containing the known texts. Thus,
pre-trained on the zillions of synthetic data, the recognizer can adapt to the target
data easily and achieve a better performance.

6.2 Discussion

The Seq2Seq recognizer achieves the state-of-the-art performance in word level,
but it suffers in text-line level. As the usage of recurrent nets in the Seq2Seq
model, the gradient vanishing problem is inevitable and the recognition perfor-
mance would decrease with longer text input. In addition, the recurrent nets also
prohibit the parallel computing during the training process, so that the training
speed is slow. To overcome the limitations of Seq2Seq method, we have pro-
posed the transformer-based approach for HTR. Without the usage of recurrent
nets, transformer-based recognizer can achieve a faster training speed even with
a larger architecture than that of Seq2Seq method. Even more, the transformer-
based recognizer is good at dealing with longer text input because of the full
parallel architecture. So transformer-based method can achieve a much better
performance than that of Seq2Seq method, even in few shot settings. However,
to achieve the state-of-the-art performance, the architecture has to be huge to
equip enough computing capacity. Furthermore, the evaluation is done in a loop
that is quite slow, because it still depends on previous prediction for the current
one. To conclude, we can choose either Seq2Seq or transformer method depending
on the specific HTR task. If the task consists only short words and sentences,
Seq2Seq method is a good option with smaller architecture and faster evaluation.
While if the task focuses on long sentences, transformer method is a good choice
to achieve a better performance. The balance between efficiency and performance
is important especially for industrial use cases.

Unsupervised writer adaptation method is proved to be effective in boosting
performance on new target data without labeling. When applying this method
to HTR tasks, the balance between source and target data should be considered.
In industrial use cases, we always have our own data, which is large in quantity.
There are two tips for the real applications: first, if the target data shares similar
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visual appearance styles, we can merge all the target data together and do writer
adaptation between our own data and the target one; second, if the styles of
target data vary a lot from image to image, we need to cluster different mini-
groups for the similar style images, then select a similar quantity subset for our
own data, and finally do writer adaptation between our own subset and the target
mini-group. The limitation of this method is that the writer adaptation process
need to be done whenever a new target data comes. To overcome this limitation
and propose a robust recognizer, we have proposed the disentanglement method
for HTR tasks. Once trained properly, the disentanglement method is expected
to distill textual content from any handwritten text images, so that a robust
recognizer can be obtained with the textual content feature extractor. However, in
practice, the distilled textual content features still contain some visual appearance
style information. So it has some limitations to generalize well for any target data.
In real use cases, we need to select the training data carefully to cover as much
writing styles as we can, so that the disentanglement module is able to access a
large distribution of style features. Thus, the textual content feature extractor
could be more robust for new target data.

Finally, there is a main limitation for the generative method of handwriting
synthesis that the training process asks for the labeled data. It means that we
always need to label part of the target data so as to produce more synthetic data
with similar visual appearance of target one. Even if we have demonstrated in
the experiments that the generative method can be adapted to new target data
without training, the performance is not satisfying when the types of training and
target data are too different. Thus, in practice, when we try to synthesize modern
handwritten images, we should collect the training data with similar modern ones.
Similarly, if the task is historical document recognition, we have to collect the
training data with similar visual appearance such as other contemporary historical
documents.

To conclude, all these methods achieve state-of-the-art performance for sci-
entific datasets. However, when we apply them to real industrial use cases, we
need to focus more on the task itself and collect the proper training set to take
advantage of the proposed methods.

6.3 Future Work

6.3.1 Tasks

Recently, we are doing and solving simplified tasks for handwritten text recogni-
tion. The simplicity is two-folds: first, the bounding boxes are obtained in word
or text-line level; second, a hypothesis that the images contain only text inside the
bounding boxes.
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Full Paragraph Recognition

For the first case that the bounding boxes are in word or text-line level, collecting
the training data is a huge effort. Especially in industrial use cases, the customers’
documents are varied and huge in quantity. That is why the full paragraph recog-
nition is in a great demand, which asks for much less manual segmentation and
labeling efforts. Even more, when the recognition process is extended to full para-
graph, a much better performance can be obtained with an external language
model as more context information is involved.

Complex Layout Documents

Among the popular handwritten text datasets, the bounding boxes are carefully
drawn for each word or text-line. This greatly simplifies the recognition process
while on contrary introduces extra time-consuming labeling process. A potential
future work would be the complicated document analysis, which consists of figures,
tables and texts. In this sense, recognition is not a simple spelling process of
character by character, instead, it will become the general understanding of a
document with the judgement of text type and spelling.

Effective Combination with Language Model

In this thesis, we have explained that both Seq2Seq method and transformer-
based method have an inherent language modeling, which learns from the training
text corpus. In addition, we have proposed a novel method to inject an external
language model for the Seq2Seq recognizer. This external language model is in
character level, so that it can handle the OOV words. However, there are still some
problems in the combination between a recognizer and a language model. First,
how could we define that the external language model is pre-trained properly with-
out nether over-fit nor under-fit? Due to the gap between the external language
corpus and that of the training set, well pre-trained language model on the exter-
nal text corpus does not guarantee the same performance on the target dataset.
Second, character level language modeling delivers the capacity on OOV words,
however, the potential power of language modeling might be used in a better way
in word or word-piece level. Thus, how could we balance the language modeling
between character and word level to achieve the best performance? These open
questions worth to research in the future.

6.3.2 Architectures

With the development of neural networks, the architecture continues to evolve from
recurrent nets to self-attentions. As we have discussed the limitations for each of
the method in previous section, the improvements can be done for each method
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accordingly. The general intuition would be obtaining a more robust recognizer
with smaller architecture and faster training speed.
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Khudanpur. Recurrent neural network based language model. In Proceedings
of Eleventh annual conference of the international speech communication
association, 2010.

[111] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets.
arXiv preprint arXiv:1411.1784, 2014.

[112] Noam Mor and Lior Wolf. Confidence prediction for lexicon-free OCR. In
Proceedings of the IEEE Winter Conference on Applications of Computer
Vision, 2018.

[113] Bastien Moysset, Théodore Bluche, Maxime Knibbe, Mohamed Faouzi Ben-
zeghiba, Ronaldo Messina, Jérôme Louradour, and Christopher Kermorvant.
The a2ia multi-lingual text recognition system at the second maurdor evalu-
ation. In Proceedings of the International Conference on Frontiers in Hand-
writing Recognition, 2014.

[114] Bastien Moysset and Ronaldo Messina. Are 2d-lstm really dead for offline
text recognition? International Journal on Document Analysis and Recog-
nition, 22(3):193–208, 2019.

[115] Rathin Radhakrishnan Nair, Nishant Sankaran, Bharagava Urala Kota,
Sergey Tulyakov, Srirangaraj Setlur, and Venu Govindaraju. Knowledge
transfer using neural network based approach for handwritten text recog-
nition. In Proceedings of the IAPR International Workshop on Document
Analysis Systems, 2018.

[116] Ali Nosary, Laurent Heutte, and Thierry Paquet. Unsupervised writer
adaptation applied to handwritten text recognition. Pattern Recognition,
37(2):385–388, 2004.

[117] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional im-
age synthesis with auxiliary classifier GANs. In Proceedings of the Interna-
tional Conference on Machine Learning, 2017.

[118] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):1345–1359, 2009.



118 BIBLIOGRAPHY

[119] Joan Pastor-Pellicer, Salvador Espana-Boquera, Marıa José Castro-Bleda,
and Francisco Zamora-Martinez. A combined convolutional neural network
and dynamic programming approach for text line normalization. In Proceed-
ings of the International Conference on Document Analysis and Recognition,
2015.

[120] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and
Adam Lerer. Automatic differentiation in PyTorch. In NIPS 2017 Autodiff
Workshop: The Future of Gradient-based Machine Learning Software and
Techniques, 2017.

[121] Kuan-Chuan Peng, Ziyan Wu, and Jan Ernst. Zero-shot deep domain adap-
tation. In Proceedings of the European Conference on Computer Vision,
2018.

[122] Freddy Perraud, Christian Viard-Gaudin, Emmanuel Morin, and
Pierre Michel Lallican. N-gram and n-class models for on line handwriting
recognition. In Proceedings of the International Conference on Document
Analysis and Recognition, 2003.

[123] Vu Pham, Théodore Bluche, Christopher Kermorvant, and Jérôme
Louradour. Dropout improves recurrent neural networks for handwriting
recognition. In Proceedings of the International Conference on Frontiers in
Handwriting Recognition, 2014.

[124] John C Platt and Nada Matic. A constructive RBF network for writer
adaptation. In Proceedings of the Neural Information Processing Systems
Conference, 1997.

[125] Arik Poznanski and Lior Wolf. CNN-N-gram for handwriting word recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016.

[126] Joan Puigcerver. Are multidimensional recurrent layers really necessary for
handwritten text recognition? In Proceedings of the International Confer-
ence on Document Analysis and Recognition, 2017.

[127] José A Rodríguez-Serrano, Florent Perronnin, Gemma Sánchez, and Josep
Lladós. Unsupervised writer adaptation of whole-word HMMs with applica-
tion to word-spotting. Pattern Recognition Letters, 31(8):742–749, 2010.

[128] Verónica Romero, Alicia Fornés, Nicolás Serrano, Joan Andreu Sánchez,
Alejandro H Toselli, Volkmar Frinken, Enrique Vidal, and Josep Lladós.
The ESPOSALLES database: An ancient marriage license corpus for off-
line handwriting recognition. Pattern Recognition, 46(6):1658–1669, 2013.



BIBLIOGRAPHY 119

[129] Ekraam Sabir, Stephen Rawls, and Prem Natarajan. Implicit language
model in lstm for ocr. In Proceedings of the International Conference on
Document Analysis and Recognition, 2017.

[130] Fenfen Sheng, Zhineng Chen, and Bo Xu. NRTR: A no-recurrence sequence-
to-sequence model for scene text recognition. In Proceedings of the Inter-
national Conference on Document Analysis and Recognition, pages 781–786,
2019.

[131] Patrice Y Simard, David Steinkraus, John C Platt, et al. Best practices for
convolutional neural networks applied to visual document analysis. In Pro-
ceedings of the International Conference on Document Analysis and Recog-
nition, 2003.

[132] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[133] Bruno Stuner, Clément Chatelain, and Thierry Paquet. Handwriting recog-
nition using cohort of LSTM and lexicon verification with extremely large
lexicon. arXiv preprint arXiv:1612.07528, 2016.

[134] Jorge Sueiras, Victoria Ruiz, Angel Sanchez, and Jose F Velez. Offline con-
tinuous handwriting recognition using sequence to sequence neural networks.
Neurocomputing, 289:119–128, 2018.

[135] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. In Proceedings of the Neural Information Processing
Systems Conference, 2014.

[136] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbig-
niew Wojna. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2016.

[137] Martin Szummer and Christopher M Bishop. Discriminative writer adapta-
tion. In Proceedings of the International Conference on Frontiers in Hand-
writing Recognition, 2006.

[138] Christopher Tensmeyer, Curtis Wigington, Brian Davis, Seth Stewart, Tony
Martinez, and William Barrett. Language model supervision for handwriting
recognition model adaptation. In Proceedings of the International Conference
on Frontiers in Handwriting Recognition, 2018.

[139] Achint Oommen Thomas, Amalia Rusu, and Venu Govindaraju. Synthetic
handwritten CAPTCHAs. Pattern Recognition, 42(12):3365–3373, 2009.

[140] Yuchen Tian. zi2zi: Master chinese calligraphy with conditional adversarial
networks, 2017.



120 BIBLIOGRAPHY

[141] J Ignacio Toledo, Sounak Dey, Alicia Fornés, and Josep Lladós. Hand-
writing recognition by attribute embedding and recurrent neural networks.
In Proceedings of the International Conference on Document Analysis and
Recognition, 2017.

[142] Alejandro H Toselli, Alfons Juan, Jorge González, Ismael Salvador, Enrique
Vidal, Francisco Casacuberta, Daniel Keysers, and Hermann Ney. Inte-
grated handwriting recognition and interpretation using finite-state mod-
els. International Journal of Pattern Recognition and Artificial Intelligence,
18(04):519–539, 2004.

[143] Shubham Toshniwal, Anjuli Kannan, Chung-Cheng Chiu, Yonghui Wu,
Tara N Sainath, and Karen Livescu. A comparison of techniques for language
model integration in encoder-decoder speech recognition. In Proceedings of
IEEE Spoken Language Technology Workshop. IEEE, 2018.

[144] Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. MoCoGAN:
Decomposing motion and content for video generation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[145] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial
discriminative domain adaptation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017.

[146] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Proceedings of the Neural Information Processing Systems Confer-
ence, 2017.

[147] Alessandro Vinciarelli, Samy Bengio, and Horst Bunke. Offline recognition
of large vocabulary cursive handwritten text. In Proceedings of the Interna-
tional Conference on Document Analysis and Recognition, 2003.

[148] Paul Voigtlaender, Patrick Doetsch, and Hermann Ney. Handwriting recog-
nition with large multidimensional long short-term memory recurrent neural
networks. In Proceedings of the International Conference on Frontiers in
Handwriting Recognition, 2016.

[149] Jue Wang, Chenyu Wu, Ying-Qing Xu, and Heung-Yeung Shum. Combining
shape and physical models for online cursive handwriting synthesis. Interna-
tional Journal on Document Analysis and Recognition, 7(4):219–227, 2005.

[150] Peng Wang, Yuanzhouhan Cao, Chunhua Shen, Lingqiao Liu, and Heng Tao
Shen. Temporal pyramid pooling-based convolutional neural network for
action recognition. IEEE Transactions on Circuits and Systems for Video
Technology, 27(12):2613–2622, 2016.



BIBLIOGRAPHY 121

[151] Peng Wang, Yuanzhouhan Cao, Chunhua Shen, Lingqiao Liu, and Heng Tao
Shen. Temporal pyramid pooling-based convolutional neural network for
action recognition. IEEE Transactions on Circuits and Systems for Video
Technology, 27(12):2613–2622, 2017.

[152] Curtis Wigington, Seth Stewart, Brian Davis, Bill Barrett, Brian Price, and
Scott Cohen. Data augmentation for recognition of handwritten words and
lines using a CNN-LSTM network. In Proceedings of the International Con-
ference on Document Analysis and Recognition, 2017.

[153] Curtis Wigington, Chris Tensmeyer, Brian Davis, William Barrett, Brian
Price, and Scott Cohen. Start, follow, read: End-to-end full-page handwrit-
ing recognition. In Proceedings of the European Conference on Computer
Vision, 2018.

[154] Shan-Jean Wu, Chih-Yuan Yang, and Jane Yung-jen Hsu. Calligan: Style
and structure-aware chinese calligraphy character generator. arXiv preprint
arXiv:2005.12500, 2020.

[155] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Rus-
lan Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell:
Neural image caption generation with visual attention. In Proceedings of the
International Conference on Machine Learning, 2015.

[156] Hong-Ming Yang, Xu-Yao Zhang, Fei Yin, Jun Sun, and Cheng-Lin Liu.
Deep transfer mapping for unsupervised writer adaptation. In Proceedings
of the International Conference on Frontiers in Handwriting Recognition,
2018.

[157] Mohamed Yousef, Khaled F Hussain, and Usama S Mohammed. Accurate,
data-efficient, unconstrained text recognition with convolutional neural net-
works. Pattern Recognition, page 107482, 2020.

[158] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. SeqGAN: Sequence
generative adversarial nets with policy gradient. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2017.

[159] Francisco Zamora-Martinez, Volkmar Frinken, Salvador España-Boquera,
Maria Jose Castro-Bleda, Andreas Fischer, and Horst Bunke. Neural network
language models for off-line handwriting recognition. Pattern Recognition,
47(4):1642–1652, 2014.

[160] Yaping Zhang, Shuai Nie, Wenju Liu, Xing Xu, Dongxiang Zhang, and
Heng Tao Shen. Sequence-to-sequence domain adaptation network for robust
text image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019.



122 BIBLIOGRAPHY

[161] Ningyuan Zheng, Yifan Jiang, and Dingjiang Huang. Strokenet: A neural
painting environment. In Proceedings of the International Conference on
Learning Representations, 2019.

[162] Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin, Wengang Zhou,
Houqiang Li, and Tie-Yan Liu. Incorporating bert into neural machine
translation. Proceedings of the International Conference on Learning Repre-
sentations, 2020.



This work was supported by EU H2020 SME Instrument project 849628, the
Spanish projects TIN2017-89779-P and RTI2018-095645-B-C21, and grants 2016-
DI-087, FPU15/06264 and RYC-2014-16831. Titan GPU was donated by NVIDIA.






	Introduction
	Handwritten Text Recognition and Its Limitations
	State-Of-The-Art Methods
	Recognition Methods
	Bias Diminishing

	Motivation and Research Questions
	Contributions
	Organization

	Sequence-to-Sequence Approach for HTR
	Introduction
	Related Work
	Getting Enough Training Data
	Data Augmentation
	Pre-training with Synthetic Data

	Seq2seq Model with Attention Mechanism
	Encoder
	Attention Mechanism
	Content-based Attention
	Location-based Attention
	Attention Smoothing

	Decoder
	Multi-nomial Decoding
	Label Smoothing

	Candidate Fusion Language Model

	Experiments
	Datasets and Metrics
	Implementation Details
	Ablation Study
	Main Results
	Baseline Model
	Integration of the Language Model
	Restriction with a Close Dictionary
	Application to Text-line Level
	Application to a Real Industrial Use Case


	Conclusion

	Transformer-based approach
	Introduction
	Related Work
	Proposed Method
	Problem Formulation
	Visual Feature Encoder
	CNN Feature Encoder
	Temporal Encoding
	Visual Self-Attention Module

	Text Transcriber
	Text Encoding
	Language Self-attention Module
	Mutual-attention Module

	Inference on Test Data

	Experimental Evaluation
	Dataset and Performance Measures
	Implementation Details
	Hyper-Parameters of Networks
	Optimization Strategy

	Pre-training with Synthetic Data
	Ablation Studies
	Architecture of CNN Feature Encoder
	Function of Temporal Encoding
	Role of Self-Attention Modules

	Detailed Comparison with Seq2Seq Model
	Few-shot Training
	Language Modelling Abilities
	Comparison with the State-Of-The-Art

	Conclusion

	Unsupervised Writer Adaptation
	Introduction
	Related Work
	Adaptable Handwritten Word Recognition
	Problem Formulation
	Rendering Synthetic Sources
	Handwritten Word Recognition Framework
	Encoder
	Attention-based Decoder

	Temporal Pooling for Unsupervised Writer Adaptation
	Learning Objectives

	Experiments
	Implementation Details
	Ablation Study
	From synthetic to real writer adaptation
	Writer adaptation with few samples
	Comparison with the state of the art

	Conclusion

	Handwriting Synthesizer using GANs and the Boost on HTR
	Introduction
	Related Work
	Conditioned Handwritten Text Generation
	Problem Formulation
	Handwritten Word Generation
	Generative Network
	Learning Objectives

	End-to-end Training
	Handwritten Text-line Generation
	Periodic Padding Module


	Variable-length Fréchet Inception Distance
	Experiments
	Datasets and Metrics
	Word Level Experiments
	Generating Handwritten Word Images
	Latent Space Interpolations
	Impact of the Learning Objectives
	Comparison with SOTA
	Human Evaluation

	Text-line Level Experiments
	Curriculum Learning Strategy
	Updated Modules with Ablation Study
	Latent Space Interpolation
	Conditioned Handwritten Text-line Generation
	HTR Performance Improvement


	Disentanglement in Image-to-Image Setting
	Disentanglement Method
	Experiments
	Dataset and Performance Evaluation
	Qualitative Evaluation of the Generative Process
	Handwriting Recognition Performance
	Comparison with State of the Art


	Conclusion

	Conclusions and Future Work
	Summary of the Contributions
	Proposal of Novel Architectures
	Seq2Seq Model with Attention
	Novel language modeling
	Transformer-based Recognizer

	Diminishing the Bias between Training and Test Sets
	Unsupervised Writer Adaptation
	Disentanglement of Content and Style
	Handwriting Synthesis


	Discussion
	Future Work
	Tasks
	Full Paragraph Recognition
	Complex Layout Documents
	Effective Combination with Language Model

	Architectures


	List of Publications
	Bibliography

	Títol de la tesi: Robust Handwritten Text Recognition in ScarceLabeling Scenarios: Disentanglement, Adaptationand Generation
	Nom autor/a: Lei Kang


